Science.gov

Sample records for aircraft composite inspections

  1. Improving aircraft composite inspections using optimized reference standards

    SciTech Connect

    Roach, D.; Dorrell, L.; Kollgaard, J.; Dreher, T.

    1998-10-01

    The rapidly increasing use of composites on commercial airplanes coupled with the potential for economic savings associated with their use in aircraft structures means that the demand for composite materials technology will continue to increase. Inspecting these composite structures is a critical element in assuring this continued airworthiness. The FAA`s Airworthiness Assurance NDI Validation Center, in conjunction with the Commercial Aircraft Composite Repair committee, is developing a set of composite reference standards to be used in NDT equipment calibration for accomplishment of damage assessment and post-repair inspection of all commercial aircraft composites. In this program, a series of NDI tests on a matrix of composite aircraft structures and prototype reference standards were completed in order to minimize the number of standards needed to carry out composite inspections on aircraft. Two tasks, related to composite laminates and non-metallic composite honeycomb configurations, were addressed.

  2. Nondestructive inspection of bonded composite doublers for aircraft

    NASA Astrophysics Data System (ADS)

    Roach, Dennis P.; Moore, David; Walkington, Phillip D.

    1996-11-01

    One of the major thrusts established under the FAA's National Aging Aircraft Research Program is to foster new technologies associated with civil aircraft maintenance. Recent DOD and other government developments in the use of bonded composite doublers on metal structures has supported the need for research and validation of such doubler applications on US certificated airplanes. Composite doubler technology is rapidly maturing and shows promise of cost savings on aging aircraft. While there have been numerous studies and military aircraft installations of composite doublers, the technology has not been certified for use on commercial aircraft. Before the use of composite doublers can be accepted by the civil aviation industry, it is imperative that methods be developed which can quickly and reliably assess the integrity of the doubler. In this study, a specific composite application was chosen on an L-1011 aircraft in order to focus the tasks on application and operation issues. Primary among inspection requirements for these doublers is the identification of disbonds, between the composite laminate and aluminum parent material, and delaminations in the composite laminate. Surveillance of cracks or corrosion in the inspection (NDI) method can inspect for every flaw type, therefore it is important to be aware of available NDI techniques and to properly address their capabilities and limitations. This paper reports on a series of NDI tests which have been conducted on laboratory test structures and on a fuselage section cut from a retired L-1011 aircraft. Specific challenges, unique to bonded composite doubler applications, will be highlighted. In order to quickly integrate this technology into existing aircraft maintenance depots, the use of conventional NDI, ultrasonics, x-ray, and eddy current, is stressed. The application of these NDI technique to composite doublers and the results from test specimens, which were loaded to provide a changing flaw profile, are

  3. Nondestructive inspection of bonded composite doublers for aircraft

    SciTech Connect

    Roach, D.; Moore, D.; Walkington, P.

    1996-12-31

    One major thrust in FAA`s National Aging Aircraft Research Program is to foster new technologies in civil aircraft maintenance. Recent DOD and other government developments in using bonded composite doublers on metal structures support the need for validation of such doubler applications on US certificated airplanes. In this study, a specific composite application was chosen on an L-1011 aircraft. Primary inspection requirements for these doublers include identifying disbonds between composite laminate and aluminum parent material, and delaminations in the composite laminate. Surveillance of cracks or corrosion in the parent aluminum material beneath the double is also a concern. No single NDI method can inspect for every flaw type, therefore we need to know NDI capabilities and limitations. This paper reports on a series of NDI tests conducted on laboratory test structures and on a fuselage section from a retired L-1011. Application of ultrasonics, x-ray, and eddy current to composite doublers and results from test specimens loaded to provide a changing flaw profile, are presented in this paper. Development of appropriate inspection calibration standards are also discussed.

  4. Development and utilization of composite honeycomb and solid laminate reference standards for aircraft inspections.

    SciTech Connect

    Roach, Dennis Patrick; Rackow, Kirk A.

    2004-06-01

    The FAA's Airworthiness Assurance NDI Validation Center, in conjunction with the Commercial Aircraft Composite Repair Committee, developed a set of composite reference standards to be used in NDT equipment calibration for accomplishment of damage assessment and post-repair inspection of all commercial aircraft composites. In this program, a series of NDI tests on a matrix of composite aircraft structures and prototype reference standards were completed in order to minimize the number of standards needed to carry out composite inspections on aircraft. Two tasks, related to composite laminates and non-metallic composite honeycomb configurations, were addressed. A suite of 64 honeycomb panels, representing the bounding conditions of honeycomb construction on aircraft, was inspected using a wide array of NDI techniques. An analysis of the resulting data determined the variables that play a key role in setting up NDT equipment. This has resulted in a set of minimum honeycomb NDI reference standards that include these key variables. A sequence of subsequent tests determined that this minimum honeycomb reference standard set is able to fully support inspections over the full range of honeycomb construction scenarios found on commercial aircraft. In the solid composite laminate arena, G11 Phenolic was identified as a good generic solid laminate reference standard material. Testing determined matches in key velocity and acoustic impedance properties, as well as, low attenuation relative to carbon laminates. Furthermore, comparisons of resonance testing response curves from the G11 Phenolic NDI reference standard was very similar to the resonance response curves measured on the existing carbon and fiberglass laminates. NDI data shows that this material should work for both pulse-echo (velocity-based) and resonance (acoustic impedance-based) inspections.

  5. Ultrasonic inspection technique for composite doubler/aluminum skin bond integrity for aircraft

    SciTech Connect

    Gieske, J.H.; Roach, D.P.; Walkington, P.D.

    1998-02-01

    As part of the FAA`s National Aging Aircraft Research Program to foster new technologies for civil aircraft maintenance and repair, use of bonded composite doublers on metal aircraft structures has been advanced. Research and validation of such doubler applications on US certified commercial aircraft has begun. A specific composite application to assess the capabilities of composite doublers was chosen on a L-1011 aircraft for reinforcement of the comer of a cargo door frame where a boron-epoxy repair patch of up to 72 plies was installed. A primary inspection requirement for these doublers is the identification of disbonds between the composite laminate and the aluminum parent material. This paper describes the development of an ultrasonic pulse echo technique using a modified immersion focus transducer where a robust signal amplitude signature of the composite aluminum interface is obtained to characterize the condition of the bond. Example waveforms and C-scan images are shown to illustrate the ultrasonic response for various transducer configurations using a boron-epoxy aluminum skin calibration test sample where disbonds and delaminations were built-in. The modified focus transducer is compatible with portable ultrasonic scanning systems that utilize the weeper or dripless bubbler technologies when an ultrasonic inspection of the boron-epoxy composite doublers installed on aircraft is implemented.

  6. Ultrasonic inspection technique for composite doubler/aluminum skin bond integrity for aircraft

    NASA Astrophysics Data System (ADS)

    Gieske, John H.; Roach, Dennis P.; Walkington, Phillip D.

    1998-03-01

    As part of the FAA's National Aging Aircraft Research Program to foster new technologies for civil aircraft maintenance and repair, use of bonded composite doublers on metal aircraft structures has been advanced. Research and validation of such doubler applications on U.S. certified commercial aircraft has begun. A specific composite application to assess the capabilities of composite doublers was chosen on a L-1011 aircraft for reinforcement of the corner of a cargo door frame where a boron-epoxy repair patch of up to 72 plies was installed. A primary inspection requirement for these doublers is the identification of disbonds between the composite laminate and the aluminum parent material. This paper describes the development of an ultrasonic pulse-echo technique using a modified immersion focus transducer where a robust signal amplitude signature of the composite/aluminum interface is obtained to characterize the condition of the bond. Example waveforms and C-scan images are shown to illustrate the ultrasonic response for various transducer configurations using a boron-epoxy/aluminum skin calibration test sample where disbonds and delaminations were built-in. The modified focus transducer is compatible with portable ultrasonic scanning systems that utilize the weeper or dripless bubbler technologies when an ultrasonic inspection of the boron-epoxy composite doublers installed on aircraft is implemented.

  7. Development of Composite Honeycomb and Solid Laminate Reference Standards to Aid Aircraft Inspections

    SciTech Connect

    Dorrell, L.; Roach, D.

    1999-03-04

    The rapidly increasing use of composites on commercial airplanes coupled with the potential for economic savings associated with their use in aircraft structures means that the demand for composite materials technology will continue to increase. Inspecting these composite structures is a critical element in assuring their continued airworthiness. The FAA's Airworthiness Assurance NDI Validation Center, in conjunction with the Commercial Aircraft Composite Repair Committee (CACRC), is developing a set of composite reference standards to be used in NDT equipment calibration for accomplishment of damage assessment and post-repair inspection of all commercial aircraft composites. In this program, a series of NDI tests on a matrix of composite aircraft structures and prototype reference standards were completed in order to minimize the number of standards needed to carry out composite inspections on aircraft. Two tasks, related to composite laminates and non-metallic composite honeycomb configurations, were addressed. A suite of 64 honeycomb panels, representing the bounding conditions of honeycomb construction on aircraft, were inspected using a wide array of NDI techniques. An analysis of the resulting data determined the variables that play a key role in setting up NDT equipment. This has resulted in a prototype set of minimum honeycomb reference standards that include these key variables. A sequence of subsequent tests determined that this minimum honeycomb reference standard set is able to fully support inspections over the fill range of honeycomb construction scenarios. Current tasks are aimed at optimizing the methods used to engineer realistic flaws into the specimens. In the solid composite laminate arena, we have identified what appears to be an excellent candidate, G11 Phenolic, as a generic solid laminate reference standard material. Testing to date has determined matches in key velocity and acoustic impedance properties, as well as, low attenuation relative

  8. Development and validation of nondestructive inspection techniques for composite doubler repairs on commercial aircraft

    SciTech Connect

    Roach, D.; Walkington, P.

    1998-05-01

    Composite doublers, or repair patches, provide an innovative repair technique which can enhance the way aircraft are maintained. Instead of riveting multiple steel or aluminum plates to facilitate an aircraft repair, it is possible to bond a single boron-epoxy composite doubler to the damaged structure. In order for the use of composite doublers to achieve widespread use in the civil aviation industry, it is imperative that methods be developed which can quickly and reliably assess the integrity of the doubler. In this study, a specific composite application was chosen on an L-1011 aircraft in order to focus the tasks on application and operation issues. Primary among inspection requirements for these doublers is the identification of disbonds, between the composite laminate and aluminum parent material, and delaminations in the composite laminate. Surveillance of cracks or corrosion in the parent aluminum material beneath the doubler is also a concern. No single nondestructive inspection (NDI) method can inspect for every flaw type, therefore it is important to be aware of available NDI techniques and to properly address their capabilities and limitations. A series of NDI tests were conducted on laboratory test structures and on full-scale aircraft fuselage sections. Specific challenges, unique to bonded composite doubler applications, were highlighted. An array of conventional and advanced NDI techniques were evaluated. Flaw detection sensitivity studies were conducted on applicable eddy current, ultrasonic, X-ray and thermography based devices. The application of these NDI techniques to composite doublers and the results from test specimens, which were loaded to provide a changing flaw profile, are presented in this report. It was found that a team of these techniques can identify flaws in composite doubler installations well before they reach critical size.

  9. Damage criticality and inspection concerns of composite-metallic aircraft structures under blunt impact

    NASA Astrophysics Data System (ADS)

    Zou, D.; Haack, C.; Bishop, P.; Bezabeh, A.

    2015-04-01

    Composite aircraft structures such as fuselage and wings are subject to impact from many sources. Ground service equipment (GSE) vehicles are regarded as realistic sources of blunt impact damage, where the protective soft rubber is used. With the use of composite materials, blunt impact damage is of special interest, since potential significant structural damage may be barely visible or invisible on the structure's outer surface. Such impact can result in local or non-local damage, in terms of internal delamination in skin, interfacial delamination between stiffeners and skin, and fracture of internal reinforced component such as stringers and frames. The consequences of these events result in aircraft damage, delays, and financial cost to the industry. Therefore, it is necessary to understand the criticality of damage under this impact and provide reliable recommendations for safety and inspection technologies. This investigation concerns a composite-metallic 4-hat-stiffened and 5-frame panel, designed to represent a fuselage structure panel generic to the new generation of composite aircraft. The test fixtures were developed based on the correlation between finite element analyses of the panel model and the barrel model. Three static tests at certain amount of impact energy were performed, in order to improve the understanding of the influence of the variation in shear ties, and the added rotational stiffness. The results of this research demonstrated low velocity high mass impacts on composite aircraft fuselages beyond 82.1 kN of impact load, which may cause extensive internal structural damage without clear visual detectability on the external skin surface.

  10. Development of an ultrasonic nondestructive inspection method for impact damage detection in composite aircraft structures

    NASA Astrophysics Data System (ADS)

    Capriotti, M.; Kim, H. E.; Lanza di Scalea, F.; Kim, H.

    2017-04-01

    High Energy Wide Area Blunt Impact (HEWABI) due to ground service equipment can often occur in aircraft structures causing major damages. These Wide Area Impact Damages (WAID) can affect the internal components of the structure, hence are usually not visible nor detectable by typical one-sided NDE techniques and can easily compromise the structural safety of the aircraft. In this study, the development of an NDI method is presented together with its application to impacted aircraft frames. The HEWABI from a typical ground service scenario has been previously tested and the desired type of damages have been generated, so that the aircraft panels could become representative study cases. The need of the aircraft industry for a rapid, ramp-friendly system to detect such WAID is here approached with guided ultrasonic waves (GUW) and a scanning tool that accesses the whole structure from the exterior side only. The wide coverage of the specimen provided by GUW has been coupled to a differential detection approach and is aided by an outlier statistical analysis to be able to inspect and detect faults in the challenging composite material and complex structure. The results will be presented and discussed with respect to the detection capability of the system and its response to the different damage types. Receiving Operating Characteristics curves (ROC) are also produced to quantify and assess the performance of the proposed method. Ongoing work is currently aimed at the penetration of the inner components of the structure, such as shear ties and C-frames, exploiting different frequency ranges and signal processing techniques. From the hardware and tool development side, different transducers and coupling methods, such as air-coupled transducers, are under investigation together with the design of a more suitable scanning technique.

  11. Human factors in aircraft maintenance and inspection

    NASA Technical Reports Server (NTRS)

    Shepherd, William T.

    1992-01-01

    The events which have led to the intensive study of aircraft structural problems have contributed in no less measure to the study of human factors which influence aircraft maintenance and inspection. Initial research emphasis on aging aircraft maintenance and inspection has since broadened to include all aircraft types. Technicians must be equally adept at repairing old and new aircraft. Their skills must include the ability to repair sheet metal and composite materials; control cable and fly-by-wire systems; round dials and glass cockpits. Their work performance is heavily influenced by others such as designers, technical writers, job card authors, schedulers, and trainers. This paper describes the activities concerning aircraft and maintenance human factors.

  12. Human factors in aircraft maintenance and inspection

    NASA Technical Reports Server (NTRS)

    Shepherd, William T.

    1992-01-01

    The events which have led to the intensive study of aircraft structural problems have contributed in no less measure to the study of human factors which influence aircraft maintenance and inspection. Initial research emphasis on aging aircraft maintenance and inspection has since broadened to include all aircraft types. Technicians must be equally adept at repairing old and new aircraft. Their skills must include the ability to repair sheet metal and composite materials; control cable and fly-by-wire systems; round dials and glass cockpits. Their work performance is heavily influenced by others such as designers, technical writers, job card authors, schedulers, and trainers. This paper describes the activities concerning aircraft and maintenance human factors.

  13. Assessment of state-of-the-art of in-service inspection methods for graphite epoxy composite structures on commercial transport aircraft

    NASA Technical Reports Server (NTRS)

    Phelps, M. L.

    1979-01-01

    A survey was conducted to determine current in-service inspection practices for all types of aircraft structure and particularly for advanced composite structures. The survey consisted of written questionnaires to commercial airlines, visits to airlines, aircraft manufacturers, and government agencies, and a literature search. Details of the survey including visits, questions asked, a bibliography of reviewed literature and details of the results are reported. From the results, a current in-service inspection baseline and a preliminary inspection program for advanced composite structures is documented as appendices to the report.

  14. Aircraft engine inspection

    SciTech Connect

    Burkel, R.H. )

    1990-08-01

    The inspection of new and in-service parts such as compressor blades is integral to the operations of engine manufacturers and operators alike. Subject to cracking from high temperatures and stresses, these blades must be inspected for minute cracks and surface-connected porosity at regular periods, during their entire service life. Conventional manual fluorescent penetrant inspection (FPI) is the generally accepted method for detecting these surface flaws. However, results can vary substantially, depending on the inspector's skill, experience, and human error factors. The USAF has initiated development of an integrated blade inspection system that calls for automated X-ray and infrared blade inspection systems, which have been developed along with automated FPI. Further developments have allowed all of the processing steps to be handled automatically and has led to replication of the human inspector's process of both scanning the part and evaluating any discrepancies. Finally, success with advanced FPI systems is leading to research for a larger automated system which would be capable of detecting surface flaws in larger engine parts, such as turbofan disks, compressors, and turbines.

  15. Non-Destructive Inspection of Impact Damage in Composite Aircraft Panels by Ultrasonic Guided Waves and Statistical Processing

    PubMed Central

    Capriotti, Margherita; Kim, Hyungsuk E.; Lanza di Scalea, Francesco; Kim, Hyonny

    2017-01-01

    This paper discusses a non-destructive evaluation (NDE) technique for the detection of damage in composite aircraft structures following high energy wide area blunt impact (HEWABI) from ground service equipment (GSE), such as heavy cargo loaders and other heavy equipment. The test structures typically include skin, co-cured stringers, and C-frames that are bolt-connected onto the skin with shear ties. The inspection exploits the waveguide geometry of these structures by utilizing ultrasonic guided waves and a line scan approach. Both a contact prototype and a non-contact prototype were developed and tested on realistic test panels subjected to impact in the laboratory. The results are presented in terms of receiver operating characteristic curves that show excellent probability of detection with low false alarm rates for defects located in the panel skin and stringers. PMID:28772976

  16. Automated Inspection of Aircraft

    DTIC Science & Technology

    1998-04-01

    Phase/Quadrature Versus Time Display 52 55 Alarm Region on an Impedance-Plane Display 53 56 Video Subsystem 55 57 Video-Processing Computer 56 58...The robot was demonstrated on a DC-9 nose section during the 1994 Air Transport Association (ATA) NDT Forum hosted by the FAA’s Aging Aircraft NDI...The stabilizer bridge can travel a maximum distance of 15 inches (38 cm) along the spine assembly, and the stroke of the bridge’s lead screw assembly

  17. Aircraft Inspection for the General Aviation Aircraft Owner.

    ERIC Educational Resources Information Center

    Federal Aviation Administration (DOT), Washington, DC. Flight Standards Service.

    Presented is useful information for owners, pilots, student mechanics, and others with aviation interests. Part I of this booklet outlines aircraft inspection requirements, owner responsibilities, inspection time intervals, and sources of basic information. Part II is concerned with the general techniques used to inspect an aircraft. (Author/JN)

  18. Composite components on commercial aircraft

    NASA Technical Reports Server (NTRS)

    Dexter, H. B.

    1980-01-01

    Commercial aircraft manufacturers are making production commitments to composite structure for future aircraft and modifications to current production aircraft. Flight service programs with advanced composites sponsored by NASA during the past 10 years are described. Approximately 2.5 million total composite component flight hours have been accumulated since 1970 on both commercial transports and helicopters. Design concepts with significant mass savings were developed, appropriate inspection and maintenance procedures were established, and satisfactory service was achieved for the various composite components. A major NASA/U.S. industry technology program to reduce fuel consumption of commercial transport aircraft through the use of advanced composites was undertaken. Ground and flight environmental effects on the composite materials used in the flight service programs supplement the flight service evaluation.

  19. Automation for nondestructive inspection of aircraft

    NASA Technical Reports Server (NTRS)

    Siegel, M. W.

    1994-01-01

    We discuss the motivation and an architectural framework for using small mobile robots as automated aids to operators of nondestructive inspection (NDI) equipment. We review the need for aircraft skin inspection, and identify the constraints in commercial airlines operations that make small mobile robots the most attractive alternative for automated aids for NDI procedures. We describe the design and performance of the robot (ANDI) that we designed, built, and are testing for deployment of eddy current probes in prescribed commercial aircraft inspections. We discuss recent work aimed at also providing robotic aids for visual inspection.

  20. Emerging nondestructive inspection methods for aging aircraft

    SciTech Connect

    Beattie, A; Dahlke, L; Gieske, J

    1994-01-01

    This report identifies and describes emerging nondestructive inspection (NDI) methods that can potentially be used to inspect commercial transport and commuter aircraft for structural damage. The nine categories of emerging NDI techniques are: acoustic emission, x-ray computed tomography, backscatter radiation, reverse geometry x-ray, advanced electromagnetics, including magnetooptic imaging and advanced eddy current techniques, coherent optics, advanced ultrasonics, advanced visual, and infrared thermography. The physical principles, generalized performance characteristics, and typical applications associated with each method are described. In addition, aircraft inspection applications are discussed along with the associated technical considerations. Finally, the status of each technique is presented, with a discussion on when it may be available for use in actual aircraft maintenance programs. It should be noted that this is a companion document to DOT/FAA/CT-91/5, Current Nondestructive Inspection Methods for Aging Aircraft.

  1. Improved portable lighting for visual aircraft inspection

    SciTech Connect

    Shagam, R.N.; Lerner, J.; Shie, R.

    1995-04-01

    The most common tool used by aircraft inspectors is the personal flashlight. While it is compact and very portable, it is generally typified by poor beam quality which can interfere with the ability for an inspector to detect small defects and anomalies, such as cracks and corrosion sites, which may be indicators of major structural problems. A Light Shaping Diffuser{trademark} (LSD) installed in a stock flashlight as a replacement to the lens can improve the uniformity of an average flashlight and improve the quality of the inspection. Field trials at aircraft maintenance facilities have demonstrated general acceptance of the LSD by aircraft inspection and maintenance personnel.

  2. Aircraft inspection using neutron radioscopic techniques

    NASA Astrophysics Data System (ADS)

    Shields, Kevin C.; Richards, Wade J.

    1995-07-01

    The McClellan Air Force Base's Nuclear Radiation Center (MNRC) consists of the most extensive aircraft neutron radioscopic facilities in the world. The neutron radioscopic facility's primary function is the detection of low levels of moisture and corrosion in aircraft structures. These inspections are accomplished using two independent but complementary systems. The first system is the Maneuverable Neutron Radiography System (MNRS). The MNRS is used to inspect intact aircraft structures for moisture and corrosion with minimal disassembly of the airframe. The system is comprised of two source manipulating robots, one being an overhead six-axis gantry robot and the other four-axis floor mounted robot. Each robot utilizes 50 milligrams of Californium-252 as the neutron source. The Californium-252 source is robotically manipulated around the aircraft to the desired inspection location. The second independent inspection system is based around a one-megawatt TRIGA nuclear reactor with four neutron beam tubes which terminate in four separate concrete bays. Two of these bays are each equipped with a six-axis component positioning system (CPS) robot and radioscopic imaging equipment. This combination allows for high throughput production inspection of aircraft components for moisture and corrosion.

  3. 14 CFR 91.1109 - Aircraft maintenance: Inspection program.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 2 2011-01-01 2011-01-01 false Aircraft maintenance: Inspection program... Ownership Operations Program Management § 91.1109 Aircraft maintenance: Inspection program. Each program manager must establish an aircraft inspection program for each make and model program aircraft and ensure...

  4. 14 CFR 91.1109 - Aircraft maintenance: Inspection program.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 2 2013-01-01 2013-01-01 false Aircraft maintenance: Inspection program... Ownership Operations Program Management § 91.1109 Aircraft maintenance: Inspection program. Each program manager must establish an aircraft inspection program for each make and model program aircraft and...

  5. 14 CFR 91.1109 - Aircraft maintenance: Inspection program.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 2 2012-01-01 2012-01-01 false Aircraft maintenance: Inspection program... Ownership Operations Program Management § 91.1109 Aircraft maintenance: Inspection program. Each program manager must establish an aircraft inspection program for each make and model program aircraft and...

  6. 14 CFR 91.1109 - Aircraft maintenance: Inspection program.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 2 2014-01-01 2014-01-01 false Aircraft maintenance: Inspection program... Ownership Operations Program Management § 91.1109 Aircraft maintenance: Inspection program. Each program manager must establish an aircraft inspection program for each make and model program aircraft and...

  7. 14 CFR 91.1109 - Aircraft maintenance: Inspection program.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Aircraft maintenance: Inspection program... Ownership Operations Program Management § 91.1109 Aircraft maintenance: Inspection program. Each program manager must establish an aircraft inspection program for each make and model program aircraft and ensure...

  8. Inspection of aging aircraft: A manufacturer's perspective

    NASA Technical Reports Server (NTRS)

    Hagemaier, Donald J.

    1992-01-01

    Douglas, in conjunction with operators and regulators, has established interrelated programs to identify and address issues regarding inspection of aging aircraft. These inspection programs consist of the following: Supplemental Inspection Documents; Corrosion Prevention and Control Documents; Repair Assessment Documents; and Service Bulletin Compliance Documents. In addition, airframe manufacturers perform extended airframe fatigue tests to deal with potential problems before they can develop in the fleet. Lastly, nondestructive inspection (NDI) plays a role in all these programs through the detection of cracks, corrosion, and disbonds. However, improved and more cost effective NDI methods are needed. Some methods such as magneto-optic imaging, electronic shearography, Diffractor-Sight, and multi-parameter eddy current testing appear viable for near-term improvements in NDI of aging aircraft.

  9. In-service inspection methods for graphite-epoxy structures on commercial transport aircraft

    NASA Technical Reports Server (NTRS)

    Phelps, M. L.

    1981-01-01

    In-service inspection methods for graphite-epoxy composite structures on commercial transport aircraft are determined. Graphite/epoxy structures, service incurred defects, current inspection practices and concerns of the airline and manufacturers, and other related information were determind by survey. Based on this information, applicable inspection nondestructive inspection methods are evaluated and inspection techniques determined. Technology is developed primarily in eddy current inspection.

  10. Visual inspection reliability of transport aircraft

    NASA Astrophysics Data System (ADS)

    Spencer, Floyd W.

    1996-11-01

    The Federal Aviation Administration Technical Center has sponsored a visual inspection reliability program at its airworthiness assurance nondestructive inspection validation center (AANC). We report on the results of the benchmark phase of that program in which 12 inspectors were observed in two days of inspections on a Boeing 737 aircraft. All of the inspectors were currently employed with major airlines and all had experience inspecting the Boeing 737 aircraft. Each inspector spent 2 days at the AANC facility where they inspected to the same ten job cards. Each inspector was videotaped and all nonroutine repair actions were recorded for each inspector. Background information on each of the inspectors, including vision test results, was also gathered. The inspection results were correlated with the background variables. Aviation experience and a test time reflecting visual acuity were significantly correlated with performance factors. An analysis of the video tapes was performed to separate decision errors from search errors. Probability of detection curves were fit to the results of inspecting for cracks from beneath rivet heads in a task using prepared samples with known cracks.

  11. Current Nondestructive Inspection Methods For Aging Aircraft

    DTIC Science & Technology

    1992-06-01

    United States Government assumes no liability for the contents or use thereof. The United States Government does not endorse products or manufacturers ...Trade or manufacturers ’ names appear herein solely because they are considered essential to the objective of this report. Technical Report...characteristics, and specific equipment manufacturers . Aircraft Inspection Applications. This section is divided into the subsections of airframe

  12. 14 CFR 91.415 - Changes to aircraft inspection programs.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 2 2013-01-01 2013-01-01 false Changes to aircraft inspection programs. 91..., Preventive Maintenance, and Alterations § 91.415 Changes to aircraft inspection programs. (a) Whenever the Administrator finds that revisions to an approved aircraft inspection program under § 91.409(f)(4) or §...

  13. 14 CFR 91.415 - Changes to aircraft inspection programs.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 2 2011-01-01 2011-01-01 false Changes to aircraft inspection programs. 91..., Preventive Maintenance, and Alterations § 91.415 Changes to aircraft inspection programs. (a) Whenever the Administrator finds that revisions to an approved aircraft inspection program under § 91.409(f)(4) or §...

  14. Monitoring Integrity Of Composite Aircraft Components

    NASA Technical Reports Server (NTRS)

    Tang, Shu Shing; Chen, Kuan-Luen; Kuo, An-Yu; Riccardella, Peter C.; Mucciardi, Anthony N.; Andrews, Robert J.; Grady, Joseph

    1994-01-01

    System developed that monitors integrity of composite-material structural components of aircraft in service. Includes strain gauges and accelerometers installed permanently in components to monitor vibrations, microprocessor-based data-acquisition system to process outputs of these vibration sensors, and desktop computer to analyze acquired data. By automating significant part of inspection process, system reduces amount of time needed for inspection and cost of inspection equipment. Contributes to safety by giving timely warning of hidden flaws that necessitate early, detailed inspection of critical components to determine whether components should be replaced immediately.

  15. Monitoring Integrity Of Composite Aircraft Components

    NASA Technical Reports Server (NTRS)

    Tang, Shu Shing; Chen, Kuan-Luen; Kuo, An-Yu; Riccardella, Peter C.; Mucciardi, Anthony N.; Andrews, Robert J.; Grady, Joseph

    1994-01-01

    System developed that monitors integrity of composite-material structural components of aircraft in service. Includes strain gauges and accelerometers installed permanently in components to monitor vibrations, microprocessor-based data-acquisition system to process outputs of these vibration sensors, and desktop computer to analyze acquired data. By automating significant part of inspection process, system reduces amount of time needed for inspection and cost of inspection equipment. Contributes to safety by giving timely warning of hidden flaws that necessitate early, detailed inspection of critical components to determine whether components should be replaced immediately.

  16. 14 CFR 135.419 - Approved aircraft inspection program.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... OPERATING REQUIREMENTS: COMMUTER AND ON DEMAND OPERATIONS AND RULES GOVERNING PERSONS ON BOARD SUCH AIRCRAFT Maintenance, Preventive Maintenance, and Alterations § 135.419 Approved aircraft inspection program. (a... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Approved aircraft inspection program. 135...

  17. 14 CFR 135.419 - Approved aircraft inspection program.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Approved aircraft inspection program. 135... OPERATING REQUIREMENTS: COMMUTER AND ON DEMAND OPERATIONS AND RULES GOVERNING PERSONS ON BOARD SUCH AIRCRAFT Maintenance, Preventive Maintenance, and Alterations § 135.419 Approved aircraft inspection program....

  18. 14 CFR 135.419 - Approved aircraft inspection program.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Approved aircraft inspection program. 135... OPERATING REQUIREMENTS: COMMUTER AND ON DEMAND OPERATIONS AND RULES GOVERNING PERSONS ON BOARD SUCH AIRCRAFT Maintenance, Preventive Maintenance, and Alterations § 135.419 Approved aircraft inspection program....

  19. 14 CFR 135.419 - Approved aircraft inspection program.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Approved aircraft inspection program. 135... OPERATING REQUIREMENTS: COMMUTER AND ON DEMAND OPERATIONS AND RULES GOVERNING PERSONS ON BOARD SUCH AIRCRAFT Maintenance, Preventive Maintenance, and Alterations § 135.419 Approved aircraft inspection program....

  20. 14 CFR 135.419 - Approved aircraft inspection program.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Approved aircraft inspection program. 135... OPERATING REQUIREMENTS: COMMUTER AND ON DEMAND OPERATIONS AND RULES GOVERNING PERSONS ON BOARD SUCH AIRCRAFT Maintenance, Preventive Maintenance, and Alterations § 135.419 Approved aircraft inspection program. (a...

  1. 14 CFR 91.415 - Changes to aircraft inspection programs.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Maintenance, Preventive Maintenance, and Alterations § 91.415 Changes to aircraft inspection programs. (a) Whenever...

  2. 14 CFR 91.415 - Changes to aircraft inspection programs.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Maintenance, Preventive Maintenance, and Alterations § 91.415 Changes to aircraft inspection programs. (a) Whenever...

  3. Improved NDI techniques for aircraft inspections

    NASA Astrophysics Data System (ADS)

    Hagemaier, Donald J.; Wilson, Dwight

    1996-11-01

    Through the use of an 'integrated product team' approach and new inspection techniques incorporating the latest in imaging capabilities and automation, the costs of some man- power intensive tasks can now be drastically reduced. Also, through the use of advanced eddy current techniques, the detectable size of cracks under flush-head fasteners can be reduced while maintaining a reliable inspection. Early in this decade, the FAA Technical Center and NASA LaRC formulated an aging aircraft research plan. The unique aspect about the research is that it is driven by the aircraft manufacturers and airlines in order to center only on those areas in which help is needed and to keep it focused. Once developed, the manufacturer works with the FAA Validation Center at Sandia National Labs., the airline, and the researcher to transfer technology to the field. This article describes the evaluation and results obtained using eddy current technology to determine the minimum detectable crack size under installed flush-head fasteners. Secondly, it describes the integrated efforts of engineers at McDonnell Douglas Aerospace and Northwest Airlines in the successful application of MAUS eddy current C-scanning of the DC-10 circumferential and axial crown splices. The eddy current C-scanning greatly reduced the man-hour effort required for the existing radiographic inspection. Thirdly, it describes the use of a novel ultrasonic technique coupled to a scanner and graphics for the detection and quantification of corrosion thinning and stress corrosion cracking of the DC-9 lower wing tee cap. This successful effort resulted from a rather large integrated task team. It also results in a vast man-hour savings over the existing internal visual inspection.

  4. 14 CFR 91.415 - Changes to aircraft inspection programs.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Maintenance, Preventive Maintenance, and Alterations § 91.415 Changes to aircraft inspection programs. (a) Whenever the... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Changes to aircraft inspection programs. 91...

  5. Potential of Computed Tomography for inspection of aircraft components

    SciTech Connect

    Azevedo, S.G.; Martz, H.E.; Schneberk, D.J.

    1993-08-01

    Computed Tomography (CT) using penetrating radiation (x- or gamma-rays) can be used in a number of aircraft applications. This technique results in 3D volumetric attenuation data that is related to density and effective atomic number. CT is a transmission scanning method that must allow complete access to both sides of the object under inspection; the radiation source and detection systems must surround the object. This normally precludes the inspection of some large or planar (large aspect ratio) parts of the aircraft. However, we are pursuing recent limited-data techniques using object model information to obtain useful data from the partial information acquired. As illustrative examples, we describe how CT was instrumental in the analysis of particular aircraft components. These include fuselage panels, single crystal turbine blades, and aluminumlithium composites. These tests were performed by the members of the Nondestructive Evaluation Section at the Lawrence Livermore National Laboratory (LLNL) where we have been actively working in CT research and development. The aerospace applications can represent various phases of the design, manufacture, assembly, test, and retirement of various components and assemblies.

  6. Light shaping diffusers{trademark} improve aircraft inspection

    SciTech Connect

    Shagam, R.N.; Shie, R.; Lerner, J.

    1994-11-01

    Physical Optical Corporation has introduced a Light Shaping Diffuser{trademark} (LSD) for the specialized illumination requirements of aircraft inspection. Attached to a handheld, battery-powered flashlight, this light-weight, holographic diffuser element provides bright, even illumination as aircraft inspectors perform the important task of visually examining aircraft for possible structural defects. Field trials conducted by the Aging Aircraft Program at Sandia National Laboratories confirm that the LSD-equipped flashlights are preferred by visual inspectors over stock flashlights.

  7. Dynamic thermal tomography for nondestructive inspection of aging aircraft

    SciTech Connect

    Del Grande, N.K.; Dolan, K.W.; Durbin, P.F.; Gorvad, M.R.; Shapiro, A.B.

    1993-11-01

    The authors apply dual-band infrared (DBIR) imaging as a dynamic thermal tomography tool for wide area inspection of a Boeing 737 aircraft and several Boeing KC-135 aircraft panels. The analyses are discussed in this report. After flash-heating the aircraft skin, they record synchronized DBIR images every 40 ms, from onset to 8 seconds after the heat flash. They analyze selective DBIR image ratios which enhance surface temperature contrast and remove surface-emissivity clutter. The Boeing 737 and KC-135 aircraft fuselage panels have varying percent thickness losses from corrosion. They established the correlation of percent thickness loss with surface temperature rise (above ambient) for a partially corroded F-18 wing box structure and several aluminum plates which had 6 to 60% thickness losses at milled flat-bottom hole sites. Based on this correlation, lap splice temperatures rise 1C per 24 {plus_minus} 5% material loss at 0.4 s after the heat flash. They tabulate and map corrosion-related percent thickness loss effects for the riveted Boeing 737, and the riveted Boeing KKC-135. They map the fuselage composite thermal inertia, based on the (inverse) slope of the surface temperature versus inverse square root of time. Composite thermal inertia maps characterized shallow skin defects within the lap splice at early times (< 0.3 s) and deeper skin defects within the lap splice at late times (> 0.4 s). Late time composite thermal inertia maps depict where corrosion-related thickness losses occur (e.g., on the inside of the Boeing 737 lap splice, beneath the galley and the latrine). Lap splice sites on a typical Boeing KC-135 panel with low composite thermal inertia values had high skin-thickness losses from corrosion.

  8. Flexible ultrasonic array system for inspecting thick composite structures

    NASA Astrophysics Data System (ADS)

    Frankle, Robert S.; Rose, Douglas N.

    1995-06-01

    Composite materials, which have commonly been used in recreational boats, are now being applied to more challenging marine applications. The high specific stiffness and strength of composites translates into increased range and payload. Composites offer the added benefits of corrosion and erosion resistance, fatigue and wear resistance, reduced signature, and reduced maintenance and life cycle costs as compared to traditional metallic structures. Although ultrasonic techniques are typically used to inspect composite structures, thick composites, such as those used in marine applications, are difficult to inspect with ordinary ultrasonic methods. An ultrasonic inspection system is being developed for the US Army to inspect thick composite materials for future armored vehicles. This system is an extension of the existing PARIS flexible array ultrasonic inspection system, which was originally developed for inspecting thin composite aircraft structures. The extension is designed to increase ultrasonic penetration by 1) fabricating an array that operates at lower frequency and higher voltage, and 2) employing a synthetic pulse technique. The flexible array can rapidly inspect large areas and produce images of the inspection results that are easy to interpret. This paper describes the ultrasonic inspection system and presents examples of inspection results from both thick and thin composite materials.

  9. Federal Aviation Administration aircraft inspection research and develoment programs

    NASA Astrophysics Data System (ADS)

    Smith, Christopher D.

    1996-11-01

    A substantial and coordinated program in inspection system research was initiated at the FAA Technical Center in 1990 as part of the National Aging Aircraft Research Program. the primary objectives of the inspection systems initiative are to develop improved inspection techniques to address specific aging airframe and engine inspection problems and to evaluate and validate existing and emerging inspection systems. Advanced conventional technologies, emerging technologies, or combinations of technologies are investigated for their ability to accurately and reliably detect cracks, disbonds, corrosion, and other damage. This paper will present an overview of FAA inspection system research initiatives, but will focus primarily on the technical issues which have defined and prioritized those initiatives.

  10. General considerations for structural inspection of older aircraft

    NASA Technical Reports Server (NTRS)

    Hardrath, H. F.

    1973-01-01

    Generalized considerations for structural inspections needed to maintain airworthiness of older aircraft are reviewed. Recommendations are made to account for accumulated service usage by counting flights rather than flight hours, to inspect structures made of flaw-sensitive materials more frequently than those made of flaw-tolerant materials, and to inspect structures having little redundancy more frequently than those having more redundancy. Occasional destructive inspections of high-time aircraft are suggested as being useful, but expensive, sources of either continued confidence or impending problems.

  11. Using alternative feedback strategies to improve aircraft inspection performance

    NASA Astrophysics Data System (ADS)

    Kaewkuekool, Sittichai

    The aircraft inspection and maintenance system consists of several interrelated human and machine components, with visual inspection playing a significant role in ensuring aircraft safety. Training has been identified as one of the most important intervention strategies for enhancing the quality and reliability of aircraft inspection. This process has the potential to be improved using advancements in computer technology, especially virtual reality (VR) technology, which is becoming increasingly more affordable and prevalent. In light of this situation, this study investigated the use of VR technology to support training in the improvement of aircraft inspection performance. An experiment was developed to investigate the use of performance and process feedback in both statistical and graphical forms in two different task environments. In addition, information on defect criticality, defect location, and occurrence of defect was provided to subjects to study the effectiveness of feedforward information on inspection performance. Specifically, the experiment involved the inspection of an aircraft cargo bay using VR technology with eye tracking movement devices and a 6 degree of freedom mouse for pointing and clicking on defects. Results from the feedback training indicated that providing process along with performance feedback improved inspection performance as evidenced in the speed, accuracy and search strategy measures. Similar results were shown for both task environments. However, the addition feedforward information in the heterogeneous task environment yielded ever better inspection performance, and process and performance feedback coupled with feedforward information on defect criticality, defect location, and occurrence of defect yielded the best inspection performance as seen in the speed, accuracy and search strategy measures. The findings of this study indicate that using a combination of training intervention strategies leads to an improvement in

  12. Advanced technology composite aircraft structures

    NASA Technical Reports Server (NTRS)

    Ilcewicz, Larry B.; Walker, Thomas H.

    1991-01-01

    Work performed during the 25th month on NAS1-18889, Advanced Technology Composite Aircraft Structures, is summarized. The main objective of this program is to develop an integrated technology and demonstrate a confidence level that permits the cost- and weight-effective use of advanced composite materials in primary structures of future aircraft with the emphasis on pressurized fuselages. The period from 1-31 May 1991 is covered.

  13. Computerized ultrasonic test inspection enhancement system for aircraft components

    NASA Astrophysics Data System (ADS)

    Parent, R. G.

    Attention is given to the computerized ultrasonic test inspection enhancement (CUTIE) system which was designed to meet the following program goals: (1) automation of the inspection technique and evaluation of the discontinuities for aircraft components while maintaining reasonable implementation costs and reducing the overall inspection costs; and (2) design of a system which would allow for easy modification so that new concepts could be implemented. The system's ultrasonic test bridge, C-scan recorder, computer control, and ultrasonic flaw detector are described. Consideration is also given to the concurrent development of an eight element array transducer (for increasing the inspection rate) and a high-speed data acquisition system (for signature analysis).

  14. Composite structural materials. [aircraft applications

    NASA Technical Reports Server (NTRS)

    Ansell, G. S.; Loewy, R. G.; Wiberley, S. E.

    1981-01-01

    The development of composite materials for aircraft applications is addressed with specific consideration of physical properties, structural concepts and analysis, manufacturing, reliability, and life prediction. The design and flight testing of composite ultralight gliders is documented. Advances in computer aided design and methods for nondestructive testing are also discussed.

  15. Commercial transport aircraft composite structures

    NASA Technical Reports Server (NTRS)

    Mccarty, J. E.

    1983-01-01

    The role that analysis plays in the development, production, and substantiation of aircraft structures is discussed. The types, elements, and applications of failure that are used and needed; the current application of analysis methods to commercial aircraft advanced composite structures, along with a projection of future needs; and some personal thoughts on analysis development goals and the elements of an approach to analysis development are discussed.

  16. Development of thermographic inspection routine exploiting phase transition of water for moisture detection in aircraft structures

    NASA Astrophysics Data System (ADS)

    Saarimäki, Eetta; Ylinen, Peter

    2009-05-01

    Penetrated water in the composite sandwich structures has caused problems in aircraft structures. Flight surfaces have been lost during the flights, because moisture corrodes the honeycomb and further reduces the strength of the adhesive. Water can also cause additional defects during the composite repairs, which have resulted because of the expansion of the moisture (in closed cavity), hence causing skin blow core phenomena during the curing cycle (heating) of the repair. Thermographic investigation is done to find a suitable procedure to find penetrated water from the composite aircraft structures by cooling the whole structure, or separated parts of the aircraft, under freezing conditions. Thermographic inspection based on the phase transition of water exploits the phase transition energy that is needed for the water defrosting (melting). Advantage of this method is that no additional excitation source is needed for the tests. Method based on phase transition can be especially exploited during the long period of arctic weather conditions in Finland and other cold areas. Aircraft can be either inspected right after a flight, or it can be left outside in freezing conditions overnight and inspected when it has been brought in to the maintenance hall to warm conditions.

  17. Impact analysis of composite aircraft structures

    NASA Technical Reports Server (NTRS)

    Pifko, Allan B.; Kushner, Alan S.

    1993-01-01

    The impact analysis of composite aircraft structures is discussed. Topics discussed include: background remarks on aircraft crashworthiness; comments on modeling strategies for crashworthiness simulation; initial study of simulation of progressive failure of an aircraft component constructed of composite material; and research direction in composite characterization for impact analysis.

  18. Dual-band infrared imaging applications: Locating buried minefields, mapping sea ice, and inspecting aging aircraft

    SciTech Connect

    Del Grande, N.K.; Durbin, P.F.; Perkins, D.E.

    1992-09-01

    We discuss the use of dual-band infrared (DBIR) imaging for three quantitative NDE applications: location buried surrogate mines, mapping sea ice thicknesses and inspecting subsurface flaws in aging aircraft parts. Our system of DBIR imaging offers a unique combination of thermal resolution, detectability, and interpretability. Pioneered at Lawrence Livermore Laboratory, it resolves 0.2 {degrees}C differences in surface temperatures needed to identify buried mine sites and distinguish them from surface features. It produces both surface temperature and emissivity-ratio images of sea ice, needed to accurately map ice thicknesses (e.g., by first removing clutter due to snow and surface roughness effects). The DBIR imaging technique depicts subsurface flaws in composite patches and lap joints of aircraft, thus providing a needed tool for aging aircraft inspections.

  19. Dual-band infrared imaging applications: Locating buried minefields, mapping sea ice, and inspecting aging aircraft

    NASA Astrophysics Data System (ADS)

    Delgrande, N. K.; Durbin, P. F.; Perkins, D. E.

    1992-09-01

    We discuss the use of dual-band infrared (DBIR) imaging for three quantitative NDE applications: location buried surrogate mines, mapping sea ice thicknesses, and inspecting subsurface flaws in aging aircraft parts. Our system of DBIR imaging offers a unique combination of thermal resolution, detectability, and interpretability. Pioneered at Lawrence Livermore Laboratory, it resolves 0.2 C differences in surface temperatures needed to identify buried mine sites and distinguish them from surface features. It produces both surface temperature and emissivity-ratio images of sea ice, needed to accurately map ice thicknesses (e.g., by first removing clutter due to snow and surface roughness effects). The DBIR imaging technique depicts subsurface flaws in composite patches and lap joints of aircraft, thus providing a needed tool for aging aircraft inspections.

  20. Composite structural materials. [aircraft structures

    NASA Technical Reports Server (NTRS)

    Ansell, G. S.; Loewy, R. G.; Wiberley, S. E.

    1980-01-01

    The use of filamentary composite materials in the design and construction of primary aircraft structures is considered with emphasis on efforts to develop advanced technology in the areas of physical properties, structural concepts and analysis, manufacturing, and reliability and life prediction. The redesign of a main spar/rib region on the Boeing 727 elevator near its actuator attachment point is discussed. A composite fabrication and test facility is described as well as the use of minicomputers for computer aided design. Other topics covered include (1) advanced structural analysis methids for composites; (2) ultrasonic nondestructive testing of composite structures; (3) optimum combination of hardeners in the cure of epoxy; (4) fatigue in composite materials; (5) resin matrix characterization and properties; (6) postbuckling analysis of curved laminate composite panels; and (7) acoustic emission testing of composite tensile specimens.

  1. The Potential of Sonic IR to Inspect Aircraft Components Traditionally Inspected with Fluorescent Penetrant and or Magnetic Particle Inspection

    NASA Astrophysics Data System (ADS)

    DiMambro, J.; Ashbaugh, D. M.; Han, X.; Favro, L. D.; Lu, J.; Zeng, Z.; Li, W.; Newaz, G. M.; Thomas, R. L.

    2006-03-01

    Sandia National Laboratories Airworthiness Assurance Nondestructive Inspection Validation Center (AANC) provides independent and quantitative evaluations of new and enhanced inspection, to developers, users, and regulators of aircraft. Wayne State University (WSU) has developed and patented an inspection technique using high-power ultrasonic excitation and infrared technology to detect defects in a variety of materials. AANC and WSU are working together as part of the FAA Sonic Infrared Technology Transfer Program. The ultimate goal of the program is to implement Sonic IR in the aviation field where appropriate. The capability of Sonic IR imaging to detect cracks in components commonly inspected with magnetic particle or liquid penetrant inspection in the field is of interest to industry.

  2. Low-voltage radiography on aircraft composite doublers

    SciTech Connect

    Moore, D.G.; Murray, J.D.

    1997-11-01

    Composite doublers are gaining popularity for their ability to repair and reinforce commercial aircraft structures and it is anticipated that the potential cost savings may spur wider use of this technology. But before composite doublers can be accepted by the civil aviation industry, inspection techniques must be developed to verify the integrity of the doubler and the parent material under the doubler. The Federal Aviation Administration Airworthiness Assurance NDI Validation Center (AANC) is currently developing test methods to inspect aircraft structures under composite doublers using low kilovoltage radiography. This paper documents the radiographic techniques developed by the AANC which have been found to give the best contrast of the radiographic image with reduced image distortion.

  3. Inspection of composites using a computer-based real-time radiographic facility

    NASA Technical Reports Server (NTRS)

    Roberts, E., Jr.; Vary, A.

    1976-01-01

    A radiographic inspection facility was developed at the NASA Lewis Research Center. The facility uses a digital computer to provide enhanced images in near real-time. Some capabilities of the facility are demonstrated in the inspection of a fan frame ring for an experimental aircraft gas turbine. The ring was fabricated from a carbon-fiber-reinforced epoxy composite material. Inspection procedures were evaluated, and comparisons were made with an ultrasonic C-scan and conventional film X-ray.

  4. Composite materials inspection. [ultrasonic vibration holographic NDT

    NASA Technical Reports Server (NTRS)

    Erf, R. K.

    1974-01-01

    Investigation of the application requirements, advantages, and limitations of nondestructive testing by a technique of ultrasonic-vibration holographic-interferometry readout used in a production control facility for the inspection of a single product such as composite compressor blades. It is shown that, for the detection and characterization of disbonds in composite material structures, this technique may represent the most inclusive test method.

  5. Aging aircraft NDI Development and Demonstration Center (AANC): An overview. [nondestructive inspection

    NASA Technical Reports Server (NTRS)

    Walter, Patrick L.

    1992-01-01

    A major center with emphasis on validation of nondestructive inspection (NDI) techniques for aging aircraft, the Aging Aircraft NDI Development and Demonstration Center (AANC), has been funded by the FAA at Sandia National Laboratories. The Center has been assigned specific tasks in developing techniques for the nondestructive inspection of static engine parts, assessing inspection reliability (POD experiments), developing testbeds for NDI validation, maintaining a FAA library of characterized aircraft structural test specimens, and leasing a hangar to house a high flight cycle transport aircraft for use as a full scale test bed.

  6. Flight service evaluation of advanced composite ailerons on the L-1011 transport aircraft

    NASA Technical Reports Server (NTRS)

    Stone, R. H.

    1984-01-01

    A flight service evaluation of composite inboard ailerons on the L-1011 is discussed. This is the second annual report of the maintenance evaluation program, and covers the period from July 1983 when the first yearly inspections were completed, through July 1984. Four shipsets of graphite/epoxy composite ailerons were installed on L-1011 aircraft for this maintenance evaluation program. These include two Delta aircraft and two TWA aircraft. A fifth shipset of composite ailerons were installed in 1980 on Lockheed's flight test L-1011. A visual inspection was also conducted on these components. No visible damage was observed on any of the composite ailerons, and no maintenance action has occurred on any of the composite parts except for repainting of areas with paint loss. Flight hours on the airline components at the time of inspection ranged from 6318 to 6989 hours, after approximately 2 years of service.

  7. Composite Aircraft Life Cycle Cost Estimating Model

    DTIC Science & Technology

    2011-03-01

    the new Boeing 787 Dreamliner , the 15 company has become a leader in composite...aircraft manufacturing. Boeing reports that the new 787 Dreamliner will be composed of 80% of composite material by structure and 50% of composites...for Boeing to incorporate composites into a significant percentage of the structure of the 787 Dreamliner . Looking at Figure 1 it is evident

  8. Thermal inspection of composite honeycomb structures

    NASA Astrophysics Data System (ADS)

    Zalameda, Joseph N.; Parker, F. Raymond

    2014-05-01

    Composite honeycomb structures continue to be widely used in aerospace applications due to their low weight and high strength advantages. Developing nondestructive evaluation (NDE) inspection methods are essential for their safe performance. Pulsed thermography is a commonly used technique for composite honeycomb structure inspections due to its large area and rapid inspection capability. Pulsed thermography is shown to be sensitive for detection of face sheet impact damage and face sheet to core disbond. Data processing techniques, using principal component analysis to improve the defect contrast, are presented. In addition, limitations to the thermal detection of the core are investigated. Other NDE techniques, such as computed tomography X-ray and ultrasound, are used for comparison to the thermography results.

  9. Thermal Inspection of Composite Honeycomb Structures

    NASA Technical Reports Server (NTRS)

    Zalameda, Joseph N.; Parker, F. Raymond

    2014-01-01

    Composite honeycomb structures continue to be widely used in aerospace applications due to their low weight and high strength advantages. Developing nondestructive evaluation (NDE) inspection methods are essential for their safe performance. Pulsed thermography is a commonly used technique for composite honeycomb structure inspections due to its large area and rapid inspection capability. Pulsed thermography is shown to be sensitive for detection of face sheet impact damage and face sheet to core disbond. Data processing techniques, using principal component analysis to improve the defect contrast, are presented. In addition, limitations to the thermal detection of the core are investigated. Other NDE techniques, such as computed tomography X-ray and ultrasound, are used for comparison to the thermography results.

  10. Composites Inservice Inspection System Producibility

    DTIC Science & Technology

    1988-10-15

    the document. Prepared for DTIC MATERIALS LABORATORY Air Force Wright Aeronautical Laboratories 10% ELECTE Air Force Systems Command ’’h.MAY 0 9 1939...ORGANIZATION lit applicabb) Materials Laboratory (AFWAL/NLTh) Southwest Research Institute AF Wright Aeronautical *Labs 6c. ADDRESS (City,~ State, and ZIP Code...1104 - Composite materials Include (See COSATI 02-1402 - Laboratories , test facilities, and test equipmnent CODE Slit Atch) ___________________ 19

  11. Dual-band infrared (DBIR) imaging inspections of Boeing 737 and KC-135 aircraft panels

    SciTech Connect

    Del Grande, N.K.; Dolan, K.W.; Durbin, P.F.; Gorvad, M.R.; Shapiro, A.B.

    1993-08-27

    We apply dual-band infrared (DBIR) imaging as a dynamic thermal tomography tool for wide area inspection of a Boeing 737 aircraft, and several Boeing KC-135 aircraft panels. Our analyses are discussed in this report. After flash-heating the aircraft skin, we record synchronized DBIR images every 40 ms, from onset to 8 seconds after the heat flash. We analyze selective DBIR image ratios which enhance surface temperature contrast and remove surface-emissivity clutter (from dirt, dents, tape, markings, ink, sealants, uneven paint, paint stripper, exposed metal and roughness variations). The Boeing 737 and KC-135 aircraft fuselage panels have varying percent thickness losses from corrosion. We established the correlation of percent thickness loss with surface temperature rise (above ambient) for a partially corroded F-18 wing box structure and several aluminum reference panels. Based on this correlation, lap splice temperatures rise 1{degrees}C per 24 {plus_minus} 5 % material loss at 0.4 s after the heat flash. We show tables, charts and temperature maps of typical lap splice material losses for the riveted (and bonded) Boeing 737, and the riveted (but unbonded) Boeing KC-135. We map the fuselage composite thermal inertia, based on the (inverse) slope of the surface temperature versus inverse square root of time. Composite thermal inertia maps characterize shallow skin defects within the lap splice at early times (<0.3 s) and deeper skin defects within the lap splice at late times (>0.4 s). Late time composite thermal inertia maps depict where corrosion-related thickness losses occur. Lap splice sites on a typical Boeing KC-135 panel with low composite thermal inertia values had high skin-thickness losses from corrosion.

  12. Composite structures for commercial transport aircraft

    NASA Technical Reports Server (NTRS)

    Vosteen, L. F.

    1978-01-01

    The development of graphite-epoxy composite structures for use on commercial transport aircraft is considered. Six components, three secondary structures, and three primary structures, are presently under development. The six components are described along with some of the key features of the composite designs and their projected weight savings.

  13. Flammability characteristics of aircraft interior composites

    NASA Technical Reports Server (NTRS)

    Kourtides, D. A.; Parker, J. A.; Gilwee, W. J., Jr.; Lerner, N. R.; Hilado, C. J.; Labossiere, L. A.; Hsu, M.-T. S.

    1976-01-01

    The thermochemical and flammability characteristics of two polymeric composites currently in use and seven others being considered for use as aircraft interior panels are described. The properties studied included: (1) oxygen index of the composite constituents; (2) fire containment capability of the composite; (3) smoke evolution from the composite; (4) thermogravimetric analysis; (5) composition of the volatile products of pyrolysis. The performance of foam filled honeycomb laminated panels consisting of high-temperature laminating bismaleimide resins is compared with the performance of empty honeycomb laminated panels consisting of laminating epoxy or phenolic resins at similar densities. Processing parameters of one of the bismaleimide composites is detailed.

  14. Nondestructive inspection of a composite missile launcher

    NASA Astrophysics Data System (ADS)

    Ley, O.; Chung, S.; Butera, M.; Valatka, T.; Triplett, M. H.; Godinez, V.

    2012-05-01

    Lighter weight alternatives are being sought to replace metallic components currently used in high performance aviation and missile systems. Benefits of lightweight, high strength carbon fiber reinforced composites in missile launchers and rocket motor cases include improved fuel economy, increased flight times, enhanced lethality and/or increased velocity. In this work, various nondestructive inspection techniques are investigated for the damage assessment of a composite missile launcher system for use in U.S. Army attack helicopters. The launcher system, which includes rails and a hardback, can be subject to impact damage from accidental tool drops, routine operation, and/or ballistic threats. The composite hardback and the launch rails both have complex geometries that can challenge the inspection process. Scanning techniques such as line scanning thermography, ultrasonic, and acousto-ultrasonics will be used and compared to determine damage detection accuracy, reliability, and efficiency. Results will also be compared with visual observations to determine if there is a correlation. The goal is to establish an inspection method that quickly and accurately assesses damage extent in order to minimize service time and return the missile system back into the field [1].

  15. NASA Thermographic Inspection of Advanced Composite Materials

    NASA Technical Reports Server (NTRS)

    Cramer, K. Elliott

    2004-01-01

    As the use of advanced composite materials continues to increase in the aerospace community, the need for a quantitative, rapid, in situ inspection technology has become a critical concern throughout the industry. In many applications it is necessary to monitor changes in these materials over an extended period of time to determine the effects of various load conditions. Additionally, the detection and characterization of defects such as delaminations, is of great concern. This paper will present the application of infrared thermography to characterize various composite materials and show the advantages of different heat source types. Finally, various analysis methodologies used for quantitative material property characterization will be discussed.

  16. Experimental flight test vibration measurements and nondestructive inspection on a USCG HC-130H aircraft

    SciTech Connect

    Moore, D.G.; Jones, C.R.; Mihelic, J.E.; Barnes, J.D.

    1998-08-01

    This paper presents results of experimental flight test vibration measurements and structural inspections performed by the Federal Aviation Administration`s Airworthiness Assurance NDI Validation Center (AANC) at Sandia National Laboratories and the US Coast Guard Aircraft Repair and Supply Center (ARSC). Structural and aerodynamic changes induced by mounting a Forward Looking Infrared (FLIR) system on a USCG HC-130H aircraft are described. The FLIR adversely affected the air flow characteristics and structural vibration on the external skin of the aircraft`s right main wheel well fairing. Upon initial discovery of skin cracking and visual observation of skin vibration in flight by the FLIR, a baseline flight without the FLIR was conducted and compared to other measurements with the FLIR installed. Nondestructive inspection procedures were developed to detect cracks in the skin and supporting structural elements and document the initial structural condition of the aircraft. Inspection results and flight test vibration data revealed that the FLIR created higher than expected flight loading and was the possible source of the skin cracking. The Coast Guard performed significant structural repair and enhancement on this aircraft, and additional in-flight vibration measurements were collected on the strengthened area both with and without the FLIR installed. After three months of further operational FLIR usage, the new aircraft skin with the enhanced structural modification was reinspected and found to be free of flaws. Additional US Coast Guard HC-130H aircraft are now being similarly modified to accommodate this FLIR system. Measurements of in-flight vibration levels with and without the FLIR installed, and both before and after the structural enhancement and repair were conducted on the skin and supporting structure in the aircraft`s right main wheel fairing. Inspection results and techniques developed to verify the aircraft`s structural integrity are discussed.

  17. Millimeter Wave Holographical Inspection of Honeycomb Composites

    NASA Technical Reports Server (NTRS)

    Case, J. T.; Kharkovsky, S.; Zoughi, R.; Stefes, G.; Hepburn, Frank L.; Hepburn, Frank L.

    2007-01-01

    Multi-layered composite structures manufactured with honeycomb, foam or balsa wood cores are finding increasing utility in a variety of aerospace, transportation, and infrastructure applications. Due to the low conductivity and inhomogeneity associated with these composites standard nondestructive testing (NDT) methods are not always capable of inspecting their interior for various defects caused during the manufacturing process or as a result of in-service loading. On the contrary, microwave and millimeter wave NDT methods are well-suited for inspecting these structures since signals at these frequencies readily penetrate through these structures and reflect from different interior boundaries revealing the presence of a wide range of defects such as disbond, delamination, moisture and oil intrusion, impact damage, etc. Millimeter wave frequency spectrum spans 30 GHz - 300 GHz with corresponding wavelengths of 10 - 1 mm. Due to the inherent short wavelengths at these frequencies, one can produce high spatial resolution images of these composites either using real-antenna focused or synthetic-aperture focused methods. In addition, incorporation of swept-frequency in the latter method (i.e., holography) results in high-resolution three-dimensional images. This paper presents the basic steps behind producing such images at millimeter wave frequencies and the results of two honeycomb composite panels are demonstrated at Q-band (33-50 GHz). In addition, these results are compared to previous results using X-ray computed tomography.

  18. Millimeter Wave Holographical Inspection of Honeycomb Composites

    NASA Astrophysics Data System (ADS)

    Case, J. T.; Kharkovsky, S.; Zoughi, R.; Steffes, G.; Hepburn, F. L.

    2008-02-01

    Multi-layered composite structures manufactured with honeycomb, foam, or balsa wood cores are finding increasing utility in a variety of aerospace, transportation, and infrastructure applications. Due to the low conductivity and inhomogeneity associated with these composites, standard nondestructive testing (NDT) methods are not always capable of inspecting their interior for various defects caused during the manufacturing process or as a result of in-service loading. On the contrary, microwave and millimeter wave NDT methods are well-suited for inspecting these structures since signals at these frequencies readily penetrate through these structures and reflect from different interior boundaries revealing the presence of a wide range of defects such as isband, delamination, moisture and oil intrusion, impact damage, etc. Millimeter wave frequency spectrum spans 30 GHz-300 GHz with corresponding wavelengths of 10-1 mm. Due to the inherent short wavelengths at these frequencies, one can produce high spatial resolution images of these composites either using real-antenna focused or synthetic-aperture focused methods. In addition, incorporation of swept-frequency in the latter method (i.e., holography) results in high-resolution three-dimensional images. This paper presents the basic steps behind producing such images at millimeter wave frequencies and the results of two honeycomb composite panels are demonstrated at Q-band (33-50 GHz). In addition, these results are compared to previous results using X-ray computed tomography.

  19. Flight service evaluation of Kevlar-49/epoxy composite panels in wide-bodied commercial transport aircraft

    NASA Technical Reports Server (NTRS)

    Stone, R. H.

    1977-01-01

    Kevlar-49 fairing panels, installed as flight service components on three L-1011s, were inspected after three years' service, and found to be performing satisfactorily. There are six Kevlar-49 panels on each aircraft, including sandwich and solid laminate wing-body panels, and 150 C service aft engine fairings. The service history to date indicates that Kevlar-49 epoxy composite materials have satisfactory service characteristics for use in aircraft secondary structure.

  20. Lightning Protection for Composite Aircraft Structures

    NASA Technical Reports Server (NTRS)

    Olson, G. O.

    1985-01-01

    Lightning protection system consisting of two layers of aluminum foil separated by layer of dielectric material protects graphite/epoxy composite structures on aircraft. Protective layer is secondarily applied lightning protection system, prime advantage of which is nullification of thermal and right angle effect of lightning arc attachment to graphite/epoxy laminate.

  1. Performance analysis of bonded composite doublers on aircraft structures

    SciTech Connect

    Roach, D.

    1995-08-01

    Researchers contend that composite repairs (or structural reinforcement doublers) offer numerous advantages over metallic patches including corrosion resistance, light weight, high strength, elimination of rivets, and time savings in installation. Their use in commercial aviation has been stifled by uncertainties surrounding their application, subsequent inspection and long-term endurance. The process of repairing or reinforcing airplane structures is time consuming and the design is dependent upon an accompanying stress and fatigue analysis. A repair that is too stiff may result in a loss of fatigue life, continued growth of the crack being repaired, and the initiation of a new flaw in the undesirable high stress field around the patch. Uncertainties in load spectrums used to design repairs exacerbates these problems as does the use of rivets to apply conventional doublers. Many of these repair or structural reinforcement difficulties can be addressed through the use of composite doublers. Primary among unknown entities are the effects of non-optimum installations and the certification of adequate inspection procedures. This paper presents on overview of a program intended to introduce composite doubler technology to the US commercial aircraft fleet. In this project, a specific composite application has been chosen on an L-1011 aircraft in order to focus the tasks on application and operation issues. Through the use of laboratory test structures and flight demonstrations on an in-service L-1011 airplane, this study is investigating composite doubler design, fabrication, installation, structural integrity, and non-destructive evaluation. In addition to providing an overview of the L-1011 project, this paper focuses on a series of fatigue and strength tests which have been conducted in order to study the damage tolerance of composite doublers. Test results to-date are presented.

  2. 9 CFR 98.32 - Inspection of certain aircraft and other means of conveyance and shipping containers thereon...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... other means of conveyance and shipping containers thereon; unloading, cleaning, and disinfection... aircraft and other means of conveyance and shipping containers thereon; unloading, cleaning, and disinfection requirements. (a) Inspection: All aircraft and other means of conveyance (including shipping...

  3. 14 CFR 129.105 - Aging airplane inspections and records reviews for U.S.-registered multiengine aircraft.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Aging airplane inspections and records... § 129.105 Aging airplane inspections and records reviews for U.S.-registered multiengine aircraft. (a... completed the aging airplane inspection and records review required by this section. During the inspection...

  4. 14 CFR 129.105 - Aging airplane inspections and records reviews for U.S.-registered multiengine aircraft.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Aging airplane inspections and records... § 129.105 Aging airplane inspections and records reviews for U.S.-registered multiengine aircraft. (a... completed the aging airplane inspection and records review required by this section. During the inspection...

  5. 14 CFR 129.105 - Aging airplane inspections and records reviews for U.S.-registered multiengine aircraft.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Aging airplane inspections and records... § 129.105 Aging airplane inspections and records reviews for U.S.-registered multiengine aircraft. (a... completed the aging airplane inspection and records review required by this section. During the inspection...

  6. 14 CFR 129.105 - Aging airplane inspections and records reviews for U.S.-registered multiengine aircraft.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Aging airplane inspections and records... § 129.105 Aging airplane inspections and records reviews for U.S.-registered multiengine aircraft. (a... completed the aging airplane inspection and records review required by this section. During the inspection...

  7. 14 CFR 129.105 - Aging airplane inspections and records reviews for U.S.-registered multiengine aircraft.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Aging airplane inspections and records... § 129.105 Aging airplane inspections and records reviews for U.S.-registered multiengine aircraft. (a... completed the aging airplane inspection and records review required by this section. During the inspection...

  8. Using virtual reality technology for aircraft visual inspection training: presence and comparison studies.

    PubMed

    Vora, Jeenal; Nair, Santosh; Gramopadhye, Anand K; Duchowski, Andrew T; Melloy, Brian J; Kanki, Barbara

    2002-11-01

    The aircraft maintenance industry is a complex system consisting of several interrelated human and machine components. Recognizing this, the Federal Aviation Administration (FAA) has pursued human factors related research. In the maintenance arena the research has focused on the aircraft inspection process and the aircraft inspector. Training has been identified as the primary intervention strategy to improve the quality and reliability of aircraft inspection. If training is to be successful, it is critical that we provide aircraft inspectors with appropriate training tools and environment. In response to this need, the paper outlines the development of a virtual reality (VR) system for aircraft inspection training. VR has generated much excitement but little formal proof that it is useful. However, since VR interfaces are difficult and expensive to build, the computer graphics community needs to be able to predict which applications will benefit from VR. To address this important issue, this research measured the degree of immersion and presence felt by subjects in a virtual environment simulator. Specifically, it conducted two controlled studies using the VR system developed for visual inspection task of an aft-cargo bay at the VR Lab of Clemson University. Beyond assembling the visual inspection virtual environment, a significant goal of this project was to explore subjective presence as it affects task performance. The results of this study indicated that the system scored high on the issues related to the degree of presence felt by the subjects. As a next logical step, this study, then, compared VR to an existing PC-based aircraft inspection simulator. The results showed that the VR system was better and preferred over the PC-based training tool.

  9. Metal matrix composites for aircraft propulsion systems

    NASA Technical Reports Server (NTRS)

    Signorelli, R. A.

    1975-01-01

    Studies of advanced aircraft propulsion systems have indicated that performance gains and operating costs are possible through the application of metal matrix composites. Compressor fan blades and turbine blades have been identified as components with high payoff potential as a result of these studies. This paper will present the current status of development of five candidate materials for such applications. Boron fiber/aluminum, boron fiber/titanium, and silicon carbide fiber/titanium composites are considered for lightweight compressor fan blades. Directionally solidified eutectic superalloy and tungsten wire/superalloy composites are considered for application to turbine blades for use temperatures to 1100 C (2000 F).

  10. Advanced composite fiber/metal pressure vessels for aircraft applications

    NASA Astrophysics Data System (ADS)

    Papanicolopoulos, Aleck

    1993-06-01

    Structural Composites Industries has developed, qualified, and delivered a number of high performance carbon epoxy overwrapped/seamless aluminum liner pressure vessels for use in military aircraft where low weight, low cost, high operating pressure and short lead time are the primary considerations. This paper describes product design, development, and qualification for a typical program. The vessel requirements included a munitions insensitivity criterion as evidenced by no fragmentation following impact by a .50 cal tumbling bullet. This was met by the development of a carbon-Spectra hybrid composite overwrap on a thin-walled seamless aluminum liner. The same manufacturing, inspection, and test processes that are used to produce lightweight, thin walled seamless aluminum lined carbon/epoxy overwrapped pressure vessels for satellite and other space applications were used to fabricate this vessel. This report focuses on the results of performance in the qualification testing.

  11. Experimental flight test vibration measurements and nondestructive inspection on a USCG HC-130H aircraft

    NASA Technical Reports Server (NTRS)

    Moore, D. G.; Jones, C. R.; Mihelic, J. E.; Barnes, J. D.

    1998-01-01

    This paper presents results of experimental flight test vibration measurements and structural inspections performed by the Federal Aviation Administration's Airworthiness Assurance NDI Validation Center (AANC) at Sandia National Laboratories and the US Coast Guard Aircraft Repair and Supply Center (ARSC). Structural and aerodynamic changes induced by mounting a Forward Looking Infrared (FLIR) system on a USCG HC-130H aircraft are described. The FLIR adversely affected the air flow characteristics and structural vibration on the external skin of the aircraft's right main wheel well fairing. Upon initial discovery of skin cracking and visual observation of skin vibration in flight by the FLIR, a baseline flight without the FLIR was conducted and compared to other measurements with the FLIR installed. Nondestructive inspection procedures were developed to detect cracks in the skin and supporting structural elements and document the initial structural condition of the aircraft. Inspection results and flight test vibration data revealed that the FLIR created higher than expected flight loading and was the possible source of the skin cracking. The Coast Guard performed significant structural repair and enhancement on this aircraft, and additional in-flight vibration measurements were collected on the strengthened area both with and without the FLIR installed. After three months of further operational FLIR usage, the new aircraft skin with the enhanced structural modification was reinspected and found to be free of flaws. Additional US Coast Guard HC-130H aircraft are now being similarly modified to accommodate this FLIR system. Measurements of in- flight vibration levels with and without the FLIR installed, and both before and after the structural enhancement and repair were conducted on the skin and supporting structure in the aircraft's right main wheel fairing. Inspection results and techniques developed to verify the aircraft's structural integrity are discussed.

  12. Experimental flight test vibration measurements and nondestructive inspection on a USCG HC-130H aircraft

    NASA Technical Reports Server (NTRS)

    Moore, D. G.; Jones, C. R.; Mihelic, J. E.; Barnes, J. D.

    1998-01-01

    This paper presents results of experimental flight test vibration measurements and structural inspections performed by the Federal Aviation Administration's Airworthiness Assurance NDI Validation Center (AANC) at Sandia National Laboratories and the US Coast Guard Aircraft Repair and Supply Center (ARSC). Structural and aerodynamic changes induced by mounting a Forward Looking Infrared (FLIR) system on a USCG HC-130H aircraft are described. The FLIR adversely affected the air flow characteristics and structural vibration on the external skin of the aircraft's right main wheel well fairing. Upon initial discovery of skin cracking and visual observation of skin vibration in flight by the FLIR, a baseline flight without the FLIR was conducted and compared to other measurements with the FLIR installed. Nondestructive inspection procedures were developed to detect cracks in the skin and supporting structural elements and document the initial structural condition of the aircraft. Inspection results and flight test vibration data revealed that the FLIR created higher than expected flight loading and was the possible source of the skin cracking. The Coast Guard performed significant structural repair and enhancement on this aircraft, and additional in-flight vibration measurements were collected on the strengthened area both with and without the FLIR installed. After three months of further operational FLIR usage, the new aircraft skin with the enhanced structural modification was reinspected and found to be free of flaws. Additional US Coast Guard HC-130H aircraft are now being similarly modified to accommodate this FLIR system. Measurements of in- flight vibration levels with and without the FLIR installed, and both before and after the structural enhancement and repair were conducted on the skin and supporting structure in the aircraft's right main wheel fairing. Inspection results and techniques developed to verify the aircraft's structural integrity are discussed.

  13. Fibre reinforced composites in aircraft construction

    NASA Astrophysics Data System (ADS)

    Soutis, C.

    2005-02-01

    Fibrous composites have found applications in aircraft from the first flight of the Wright Brothers’ Flyer 1, in North Carolina on December 17, 1903, to the plethora of uses now enjoyed by them on both military and civil aircrafts, in addition to more exotic applications on unmanned aerial vehicles (UAVs), space launchers and satellites. Their growing use has risen from their high specific strength and stiffness, when compared to the more conventional materials, and the ability to shape and tailor their structure to produce more aerodynamically efficient structural configurations. In this paper, a review of recent advances using composites in modern aircraft construction is presented and it is argued that fibre reinforced polymers, especially carbon fibre reinforced plastics (CFRP) can and will in the future contribute more than 50% of the structural mass of an aircraft. However, affordability is the key to survival in aerospace manufacturing, whether civil or military, and therefore effort should be devoted to analysis and computational simulation of the manufacturing and assembly process as well as the simulation of the performance of the structure, since they are intimately connected.

  14. Aeroelastic tailoring of composite aircraft wings

    NASA Astrophysics Data System (ADS)

    Mihaila-Andres, Mihai; Larco, Ciprian; Rosu, Paul-Virgil; Rotaru, Constantin

    2017-07-01

    The need of a continuously increasing size and performance of aerospace structures has settled the composite materials as the preferred materials in aircraft structures. Apart from the clear capacity to reduce the structural weight and with it the manufacture cost and the fuel consumption while preserving proper airworthiness, the prospect of tailoring a structure using the unique directional stiffness properties of composite materials allows an aerospace engineer to optimize aircraft structures to achieve particular design objectives. This paper presents a brief review of what is known as the aeroelastic tailoring of airframes with the intent of understanding the evolution of this research topic and at the same time providing useful references for further studies.

  15. Human Factors Issues in Aircraft Maintenance and Inspection

    DTIC Science & Technology

    1989-10-01

    Unaided, Colin G. Drury , Ph.D .......................................... A-65 Vigilance and Inspection Performance, Earl L. Wiener, Ph.D .... A-72 Human...Inspection and Review A- 64 The Human Operator as an Inspector: Aided and Unaided Colin G. Drury , Ph.D. Professor of Industrial Engineering SUNY, Buffalo...Continued Ballroom A - HUMAN FACTORS TECHNOLOGY - 10:15 a.m. The Human Operator as an Inspector: Aided and Unaided Colin G. Drury , Ph.D. SUNY, Buffalo

  16. Design of piezoelectric transducers for health monitoring of composite aircraft structures

    NASA Astrophysics Data System (ADS)

    Stepinski, Tadeusz; Engholm, Marcus

    2007-04-01

    Composite structures have become a significant part of modern lightweight aircrafts. Contrary to the aluminum panels such structures are susceptible to catastrophic failure without noticeable forewarnings. One possible way of preventing catastrophic failures is integrating health monitoring systems in the critical composite structures of the aircraft. Ultrasonic resonance inspection is especially suitable for the inspection of multilayered composite structures. In our previous works we have described the principle of narrow-band ultrasonic spectroscopy (NBUS), where the surface of an inspected structure is scanned with a resonant transducer whose frequency response is monitored in a narrow frequency band. It has been proven that the NBUS method is capable of detecting both artificial disbonds and real impact defects in carbon fiber composites. In this paper we present design guidelines for optimizing narrow-band electromechanical impedance (NBE/MI) sensors that are to be integrated with a monitored composite structure. The NBE/MI sensor takes the form of a piezoelectric element bonded to the monitored structure. Parameter variations in the inspected structure result in the respective variations of the electrical impedance (admittance) of the piezoelectric sensor. Relation between the state of the inspected structure and the sensor's admittance is estimated using the network representation. Conclusions concerning the proper choice of the operating frequencies suitable for various structures are presented.

  17. Full-Scale Structural and NDI Validation Tests of Bonded Composite Doublers for Commercial Aircraft Applications

    SciTech Connect

    Roach, D.; Walkington, P.

    1999-02-01

    Composite doublers, or repair patches, provide an innovative repair technique which can enhance the way aircraft are maintained. Instead of riveting multiple steel or aluminum plates to facilitate an aircraft repair, it is possible to bond a single Boron-Epoxy composite doubler to the damaged structure. Most of the concerns surrounding composite doubler technology pertain to long-term survivability, especially in the presence of non-optimum installations, and the validation of appropriate inspection procedures. This report focuses on a series of full-scale structural and nondestructive inspection (NDI) tests that were conducted to investigate the performance of Boron-Epoxy composite doublers. Full-scale tests were conducted on fuselage panels cut from retired aircraft. These full-scale tests studied stress reductions, crack mitigation, and load transfer capabilities of composite doublers using simulated flight conditions of cabin pressure and axial stress. Also, structures which modeled key aspects of aircraft structure repairs were subjected to extreme tension, shear and bending loads to examine the composite laminate's resistance to disbond and delamination flaws. Several of the structures were loaded to failure in order to determine doubler design margins. Nondestructive inspections were conducted throughout the test series in order to validate appropriate techniques on actual aircraft structure. The test results showed that a properly designed and installed composite doubler is able to enhance fatigue life, transfer load away from damaged structure, and avoid the introduction of new stress risers (i.e. eliminate global reduction in the fatigue life of the structure). Comparisons with test data obtained prior to the doubler installation revealed that stresses in the parent material can be reduced 30%--60% through the use of the composite doubler. Tests to failure demonstrated that the bondline is able to transfer plastic strains into the doubler and that the

  18. Comparison of Requirements for Composite Structures for Aircraft and Space Applications

    NASA Technical Reports Server (NTRS)

    Raju, Ivatury S.; Elliot, Kenny B.; Hampton, Roy W.; Knight, Norman F., Jr.; Aggarwal, Pravin; Engelstad, Stephen P.; Chang, James B.

    2010-01-01

    In this report, the aircraft and space vehicle requirements for composite structures are compared. It is a valuable exercise to study composite structural design approaches used in the airframe industry and to adopt methodology that is applicable for space vehicles. The missions, environments, analysis methods, analysis validation approaches, testing programs, build quantities, inspection, and maintenance procedures used by the airframe industry, in general, are not transferable to spaceflight hardware. Therefore, while the application of composite design approaches from aircraft and other industries is appealing, many aspects cannot be directly utilized. Nevertheless, experiences and research for composite aircraft structures may be of use in unexpected arenas as space exploration technology develops, and so continued technology exchanges are encouraged.

  19. Aircraft subsystems inspection: objective and easy... then, why skimp?

    NASA Astrophysics Data System (ADS)

    Mehrotra, Yogesh

    2000-03-01

    Both NUVU and NUVU-IR instruments are now a proven demonstrated technology based on sound scientific concepts. They are designed to eliminate any crystal-ball approach to life prediction of aircraft wiring and cable subsystems. It is scientific, not magic.

  20. Federal Aviation Administration aging aircraft nondestructive inspection research plan

    NASA Technical Reports Server (NTRS)

    Seher, Chris C.

    1992-01-01

    This paper highlights the accomplishments and plans of the Federal Aviation Administration (FAA) for the development of improved nondestructive evaluation (NDE) equipment, procedures, and training. The role of NDE in aircraft safety and the need for improvement are discussed. The FAA program participants, and coordination of activities within the program and with relevant organizations outside the program are also described.

  1. Development and validation of bonded composite doubler repairs for commercial aircraft.

    SciTech Connect

    Roach, Dennis Patrick; Rackow, Kirk A.

    2007-07-01

    substandard design and a flawed installation. In addition, the new Sol-Gel surface preparation technique was evaluated. Fatigue coupon tests produced Sol-Gel results that could be compared with a large performance database from conventional, riveted repairs. It was demonstrated that not only can composite doublers perform well in severe off-design conditions (low doubler stiffness and presence of defects in doubler installation) but that the Sol-Gel surface preparation technique is easier and quicker to carry out while still producing optimum bonding properties. Nondestructive inspection (NDI) methods were developed so that the potential for disbond and delamination growth could be monitored and crack growth mitigation could be quantified. The NDI methods were validated using full-scale test articles and the FedEx aircraft installations. It was demonstrated that specialized NDI techniques can detect flaws in composite doubler installations before they reach critical size. Probability of Detection studies were integrated into the FedEx training in order to quantify the ability of aircraft maintenance depots to properly monitor these repairs. In addition, Boeing Structural Repair and Nondestructive Testing Manuals were modified to include composite doubler repair and inspection procedures. This report presents the results from the FedEx Pilot Program that involved installation and surveillance of numerous repairs on operating aircraft. Results from critical NDI evaluations are reported in light of damage tolerance assessments for bonded composite doublers. This work has produced significant interest from airlines and aircraft manufacturers. The successful Pilot Program produced flight performance history to establish the durability of bonded composite patches as a permanent repair on commercial aircraft structures. This report discusses both the laboratory data and Pilot Program results from repair installations on operating aircraft to introduce composite doubler repairs into

  2. Self Healing Composite for Aircraft's Structural Application

    NASA Astrophysics Data System (ADS)

    Teoh, S. H.; Chia, H. Y.; Lee, M. S.; Nasyitah, A. J. N.; Luqman, H. B. S. M.; Nurhidayah, S.; Tan, Willy. C. K.

    When one cuts himself, it is amazing to watch how quickly the body acts to mend the wound. Immediately, the body works to pull the skin around the cut back together. The concept of repair by bleeding of enclosed functional agents serves as the biomimetic inspiration of synthetic self repair systems. Such synthetic self repair systems are based on advancement in polymeric materials; the process of human thrombosis is the inspiration for the application of self healing fibres within the composite materials. Results based on flexural 3 point bend test on the prepared samples have shown that the doubled layer healed hollow fibre laminate subjected to a healing regime of 3 weeks has a healed strength increase of 27% compared to the damaged baseline laminate. These results gave us confidence that there is a great potential to adopt such self healing mechanism on actual composite parts like in aircraft's composite structures.

  3. Composite structural materials. [fiber reinforced composites for aircraft structures

    NASA Technical Reports Server (NTRS)

    Ansell, G. S.; Loewy, R. G.; Wiberly, S. E.

    1981-01-01

    Physical properties of fiber reinforced composites; structural concepts and analysis; manufacturing; reliability; and life prediction are subjects of research conducted to determine the long term integrity of composite aircraft structures under conditions pertinent to service use. Progress is reported in (1) characterizing homogeneity in composite materials; (2) developing methods for analyzing composite materials; (3) studying fatigue in composite materials; (4) determining the temperature and moisture effects on the mechanical properties of laminates; (5) numerically analyzing moisture effects; (6) numerically analyzing the micromechanics of composite fracture; (7) constructing the 727 elevator attachment rib; (8) developing the L-1011 engine drag strut (CAPCOMP 2 program); (9) analyzing mechanical joints in composites; (10) developing computer software; and (11) processing science and technology, with emphasis on the sailplane project.

  4. Thermal Inspection of a Composite Fuselage Section Using a Fixed Eigenvector Principal Component Analysis Method

    NASA Technical Reports Server (NTRS)

    Zalameda, Joseph N.; Bolduc, Sean; Harman, Rebecca

    2017-01-01

    A composite fuselage aircraft forward section was inspected with flash thermography. The fuselage section is 24 feet long and approximately 8 feet in diameter. The structure is primarily configured with a composite sandwich structure of carbon fiber face sheets with a Nomex(Trademark) honeycomb core. The outer surface area was inspected. The thermal data consisted of 477 data sets totaling in size of over 227 Gigabytes. Principal component analysis (PCA) was used to process the data sets for substructure and defect detection. A fixed eigenvector approach using a global covariance matrix was used and compared to a varying eigenvector approach. The fixed eigenvector approach was demonstrated to be a practical analysis method for the detection and interpretation of various defects such as paint thickness variation, possible water intrusion damage, and delamination damage. In addition, inspection considerations are discussed including coordinate system layout, manipulation of the fuselage section, and the manual scanning technique used for full coverage.

  5. Thermal inspection of a composite fuselage section using a fixed eigenvector principal component analysis method

    NASA Astrophysics Data System (ADS)

    Zalameda, Joseph N.; Bolduc, Sean; Harman, Rebecca

    2017-05-01

    A composite fuselage aircraft forward section was inspected with flash thermography. The fuselage section is 24 feet long and approximately 8 feet in diameter. The structure is primarily configured with a composite sandwich structure of carbon fiber face sheets with a Nomex® honeycomb core. The outer surface area was inspected. The thermal data consisted of 477 data sets totaling in size of over 227 Gigabytes. Principal component analysis (PCA) was used to process the data sets for substructure and defect detection. A fixed eigenvector approach using a global covariance matrix was used and compared to a varying eigenvector approach. The fixed eigenvector approach was demonstrated to be a practical analysis method for the detection and interpretation of various defects such as paint thickness variation, possible water intrusion damage, and delamination damage. In addition, inspection considerations are discussed including coordinate system layout, manipulation of the fuselage section, and the manual scanning technique used for full coverage.

  6. Revisiting the Aging Aircraft Nondestructive Inspection Validation Center -- A resource for the FAA and industry

    SciTech Connect

    Smith, C.; Walter, P.L.

    1995-08-01

    The Aging Aircraft Nondestructive Inspection Validation Center (commonly designated AANC or The Validation Center) was founded by the Federal Aviation Administration (FAA) in response to the Aviation Safety Research Act of 1988, which mandates that the FAA carry out research and develop technologies to help the aviation industry to (1) better predict the effects of design, maintenance, testing, wear and fatigue in the life of an aircraft; (2) develop methods for improving aircraft maintenance technology and practices including nondestructive inspection; and (3) expand general long range research activities applicable to aviation systems. The AANC validates NDI technology, provides a quick response capability, assesses the reliability of NDI applications, and performs other projects to support the FAA and aviation industry. Sandia National Laboratories was funded by the FAA in August 1991 to establish the Validation Center at Albuquerque International Airport.

  7. Development program to certify composite doubler repair technique for commercial aircraft

    SciTech Connect

    Roach, D.P.

    1997-07-01

    Commercial airframes exceeding 20 service years often develop crack and corrosion flaws. Bonded composite doublers offer a cost effective method to safely extend aircraft lives. The Federal Aircraft Authority (FAA) has completed a project to introduce composite doubler repair technology to the commercial aircraft industry. Instead of riveting steel or aluminum plates for repair, a single composite doubler may be bonded to the damaged structure. Adhesive bonding eliminates stress concentrations caused by fastener holes. Composites are readily formed into complex shapes for repairing irregular components. Also, composite doublers can be tailored to meet specific anisotropy needs, eliminating structural stiffening in directions other than those required. Other advantages include corrosion resistance, a high strength-to-weight ratio, and potential time savings in installation. One phase of this study developed general methodologies and test programs to ensure proper performance of the technique. A second phase focused on reinforcement of an L-1011 door frame, and encompassed all lifetime tasks such as design, analysis, installation, and nondestructive inspection. This paper overviews the project and details the activities conducted to gain FAA approval for composite doubler use. Structural tests evaluated the damage tolerance and fatigue performance of composite doublers while finite element models were generated to study doubler design issues. Nondestructive inspection procedures were developed and validated using full-scale test articles. Installation dry-runs demonstrated the viability of applying composite doublers in hangar environments. The project`s documentation package was used to support installation of a Boron-Epoxy composite repair on a Delta Air Lines L-1011 aircraft. A second product of the results is a Lockheed Service Bulletin which allows the door corner composite doubler to be installed on all L-1011 aircraft. 9 refs., 10 figs., 2 tabs.

  8. Critical joints in large composite aircraft structure

    NASA Technical Reports Server (NTRS)

    Nelson, W. D.; Bunin, B. L.; Hart-Smith, L. J.

    1983-01-01

    A program was conducted at Douglas Aircraft Company to develop the technology for critical structural joints of composite wing structure that meets design requirements for a 1990 commercial transport aircraft. The prime objective of the program was to demonstrate the ability to reliably predict the strength of large bolted composite joints. Ancillary testing of 180 specimens generated data on strength and load-deflection characteristics which provided input to the joint analysis. Load-sharing between fasteners in multirow bolted joints was computed by the nonlinear analysis program A4EJ. This program was used to predict strengths of 20 additional large subcomponents representing strips from a wing root chordwise splice. In most cases, the predictions were accurate to within a few percent of the test results. In some cases, the observed mode of failure was different than anticipated. The highlight of the subcomponent testing was the consistent ability to achieve gross-section failure strains close to 0.005. That represents a considerable improvement over the state of the art.

  9. Further Evolution of Composite Doubler Aircraft Repairs Through a Focus on Niche Applications

    SciTech Connect

    ROACH,DENNIS P.

    2000-07-15

    The number of commercial airframes exceeding twenty years of service continues to grow. A typical aircraft can experience over 2,000 fatigue cycles (cabin pressurizations) and even greater flight hours in a single year. An unavoidable by-product of aircraft use is that crack and corrosion flaws develop throughout the aircraft's skin and substructure elements. Economic barriers to the purchase of new aircraft have created an aging aircraft fleet and placed even greater demands on efficient and safe repair methods. The use of bonded composite doublers offers the airframe manufacturers and aircraft maintenance facilities a cost effective method to safety extend the lives of their aircraft. Instead of riveting multiple steel or aluminum plates to facilitate an aircraft repair, it is now possible to bond a single Boron-Epoxy composite doubler to the damaged structure. The FAA's Airworthiness Assurance Center at Sandia National Labs (AANC) is conducting a program with Boeing and Federal Express to validate and introduce composite doubler repair technology to the US commercial aircraft industry. This project focuses on repair of DC-10 structure and builds on the foundation of the successful L-1011 door corner repair that was completed by the AANC, Lockheed-Martin, and Delta Air Lines. The L-1011 composite doubler repair was installed in 1997 and has not developed any flaws in over three years of service, As a follow-on effort, this DC-1O repair program investigated design, analysis, performance (durability, flaw containment, reliability), installation, and nondestructive inspection issues. Current activities are demonstrating regular use of composite doubler repairs on commercial aircraft. The primary goal of this program is to move the technology into niche applications and to streamline the design-to-installation process. Using the data accumulated to date, the team has designed, analyzed, and developed inspection techniques for an array of composite doubler repairs

  10. Flight-service program for advanced composite rudders on transport aircraft

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Flight service experience and in-service inspection results are reported for DC-10 graphite composite rudders during the third year of airline service. Test results and status are also reported for ground-based and airborne graphite-epoxy specimens with three different epoxy resin systems to obtain moisture absorption data. Twenty graphite composite rudders were produced, nine of which were installed on commercial aircraft during the past three years. The rudders collectively accumulated 75,863 flight hours. The high time rudder accumulated 12,740 flight hours in slightly over 36 months. The graphite composite rudders were inspected visually at approximately 1000 flight hour intervals and ultrasonically at approximately 3000 flight hour intervals in accordance with in-service inspection plans. All rudders were judged acceptable for continued service as a result of these inspections. Composite moisture absorption data on small specimens, both ground-based and carried aboard three flight-service aircraft, are given. The specimens include Thornel 300 fibers in Narmco 5208 and 5209 resin systems, and Type AS fibers in the Hercules 3501-6 resin system.

  11. Impact damage in aircraft composite sandwich panels

    NASA Astrophysics Data System (ADS)

    Mordasky, Matthew D.

    An experimental study was conducted to develop an improved understanding of the damage caused by runway debris and environmental threats on aircraft structures. The velocities of impacts for stationary aircraft and aircraft under landing and takeoff speeds was investigated. The impact damage by concrete, asphalt, aluminum, hail and rubber sphere projectiles was explored in detail. Additionally, a kinetic energy and momentum experimental study was performed to look at the nature of the impacts in more detail. A method for recording the contact force history of the impact by an instrumented projectile was developed and tested. The sandwich composite investigated was an IM7-8552 unidirectional prepreg adhered to a NOMEXRTM core with an FM300K film adhesive. Impact experiments were conducted with a gas gun built in-house specifically for delivering projectiles to a sandwich composite target in this specic velocity regime (10--140 m/s). The effect on the impact damage by the projectile was investigated by ultrasonic C-scan, high speed camera and scanning electron and optical microscopy. Ultrasonic C-scans revealed the full extent of damage caused by each projectile, while the high speed camera enabled precise projectile velocity measurements that were used for striking velocity, kinetic energy and momentum analyses. Scanning electron and optical images revealed specific features of the panel failure and manufacturing artifacts within the lamina and honeycomb core. The damage of the panels by different projectiles was found to have a similar damage area for equivalent energy levels, except for rubber which had a damage area that increased greatly with striking velocity. Further investigation was taken by kinetic energy and momentum based comparisons of 19 mm diameter stainless steel sphere projectiles in order to examine the dominating damage mechanisms. The sandwich targets were struck by acrylic, aluminum, alumina, stainless steel and tungsten carbide spheres of the

  12. Dynamics-based damage inspection of an aircraft wing panel

    NASA Astrophysics Data System (ADS)

    Pai, P. F.; Kim, Byeong-Seok; Chung, Jaycee H.

    2003-08-01

    This paper presents the dynamic characteristics and damage detection of an aircraft wing panel using a scanning laser vibrometer. The panel has an irregular shape with side lengths 16.44" x 14.82" x 11.10" x 5.38" x 14.22", different values of thickness (0.059" to 0.110"), and seven ribs on its backside. An in-house finite element code GESA is used to model the panel using 528 DKT plate elements and to obtain mode shapes and natural frequencies, and Operational Deflection Shapes (ODS) are measured using a scanning laser vibrometer. Results show that numerical dynamic characteristics agree well with the experimental ones. Six defects are created in the panel, including four small nuts glued on the backside and two small slots cut by electron discharge machining. Detection of the six defects is performed using the distributions of RMS velocities under high-frequency broadband periodic chirp excitations provided by a PZT patch and damage locating curves obtained by processing experimental ODSs using a newly developed BOudnary Effect Evaluation (BEE) method. The BEE method is non-destructive and model-independent; it processes experimental ODSs to reveal local boundary effects caused by defects. Experimental results show that the six small defects in the panel can be pinpointed using the approach.

  13. Evaluation of scanners for C-scan imaging in nondestructive inspection of aircraft

    SciTech Connect

    Gieske, J.H.

    1994-04-01

    The goal of this project was to produce a document that contains information on the usability and performance of commercially available, fieldable, and portable scanner systems as they apply to aircraft NDI inspections. In particular, the scanners are used to generate images of eddy current, ultrasonic, or bond tester inspection data. The scanner designs include manual scanners, semiautomated scanners, and fully automated scanners. A brief description of the functionality of each scanner type, a sketch, and a fist of the companies that support the particular design are provided. Vendors of each scanner type provided hands-on demonstrations of their equipment on real aircraft samples in the FAA Aging Aircraft Nondestructive Inspection Validation Center (AANC) in Albuquerque, NM. From evaluations recorded during the demonstrations, a matrix of scanner features and factors and ranking of the capabilities and limitations of the design, portability, articulation, performance, usability, and computer hardware/software was constructed to provide a quick reference for comparing the different scanner types. Illustrations of C-scan images obtained during the demonstration are shown.

  14. Comparison of Requirements for Composite Structures for Aircraft and Space Applications

    NASA Technical Reports Server (NTRS)

    Raju, Ivatury S.; Elliott, Kenny B.; Hampton, Roy W.; Knight, Norman F., Jr.; Aggarwal, Pravin; Engelstad, Stephen P.; Chang, James B.

    2010-01-01

    In this paper, the aircraft and space vehicle requirements for composite structures are compared. It is a valuable exercise to study composite structural design approaches used in the airframe industry, and to adopt methodology that is applicable for space vehicles. The missions, environments, analysis methods, analysis validation approaches, testing programs, build quantities, inspection, and maintenance procedures used by the airframe industry, in general, are not transferable to spaceflight hardware. Therefore, while the application of composite design approaches from other industries is appealing, many aspects cannot be directly utilized. Nevertheless, experiences and research for composite aircraft structures may be of use in unexpected arenas as space exploration technology develops, and so continued technology exchanges are encouraged.

  15. Application of LCR Waves to Inspect Aircraft Structures

    DTIC Science & Technology

    2013-01-01

    influence factors. The main factors at that time identified for measurements with Lcr waves were temperature , surface uniformity, texture (metals...We also decided to use carbon fiber composites with epoxy matrix (HexTow® AS4 / Hexply® 8552) in the form of sheets. The fibers are arranged one...the bars during cutting processes. In this case, we did not perform a thermal process for stress relief, as we use to do with steel . This could lead

  16. Advanced organic composite materials for aircraft structures: Future program

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Revolutionary advances in structural materials have been responsible for revolutionary changes in all fields of engineering. These advances have had and are still having a significant impact on aircraft design and performance. Composites are engineered materials. Their properties are tailored through the use of a mix or blend of different constituents to maximize selected properties of strength and/or stiffness at reduced weights. More than 20 years have passed since the potentials of filamentary composite materials were identified. During the 1970s much lower cost carbon filaments became a reality and gradually designers turned from boron to carbon composites. Despite progress in this field, filamentary composites still have significant unfulfilled potential for increasing aircraft productivity; the rendering of advanced organic composite materials into production aircraft structures was disappointingly slow. Why this is and research and technology development actions that will assist in accelerating the application of advanced organic composites to production aircraft is discussed.

  17. Techno-economic requirements for composite aircraft components

    NASA Technical Reports Server (NTRS)

    Palmer, Ray

    1993-01-01

    The primary reason for use of composites is to save structural weight. A well designed composite aircraft structure will usually save 25-30 percent of a well designed metal structure. The weight savings then translates into improved performance of the aircraft in measures of greater payload, increased flying range or improved efficiency - less use of fuel. Composite materials offer technical advantages. Key technical advantages that composites offer are high stiffness, tailored strength capability, fatigue resistance, and corrosion resistance. Low thermal expansion properties produce dimensionally stable structures over a wide range of temperature. Specialty resin 'char' forming characteristics in a fire environment offer potential fire barrier application and safer aircraft. The materials and processes of composite fabrication offer the potential for lower cost structures in the near future. The application of composite materials to aircraft are discussed.

  18. Composition of smoke generated by landing aircraft.

    PubMed

    Bennett, Michael; Christie, Simon M; Graham, Angus; Thomas, Bryony S; Vishnyakov, Vladimir; Morris, Kevin; Peters, Daniel M; Jones, Rhys; Ansell, Cathy

    2011-04-15

    A combination of techniques has been used to examine the composition of smoke generated by landing aircraft. A sample of dust from the undercarriage from several commercial airliners was examined with SEM/EDX (Scanning Electron Microscope/Energy Dispersive X-ray) to determine its elemental composition and also with an aerosizer/aerodisperser in order to measure the particle size spectrum. The observed size spectrum was bimodal with equal numbers of particles at peaks of aerodynamic diameter ∼10 μm and ∼50 μm. The EDX analysis suggested that the former peak is carbonaceous, while the latter consists of elements typical of an asphalt concrete runway. In the field, a scanning Lidar, in combination with optical and condensation particle counters, was deployed to obtain limits to the number concentration and size of such particles. Most of the (strong) Lidar signal probably arose from the coarser 50 μm aerosol, while respirable aerosol was too sparse to be detected by the optical particle counters.

  19. 9 CFR 98.32 - Inspection of certain aircraft and other means of conveyance and shipping containers thereon...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... as to present a danger of the spread of any communicable animal disease, he or she shall notify the... 9 Animals and Animal Products 1 2011-01-01 2011-01-01 false Inspection of certain aircraft and... requirements. 98.32 Section 98.32 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION...

  20. 9 CFR 93.502 - Inspection of certain aircraft and other means of conveyance and shipping containers thereon...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... as to present a danger of the spread of any communicable animal disease, he or she shall notify the... 9 Animals and Animal Products 1 2011-01-01 2011-01-01 false Inspection of certain aircraft and... requirements. 93.502 Section 93.502 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION...

  1. 9 CFR 93.402 - Inspection of certain aircraft and other means of conveyance and shipping containers thereon...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... as to present a danger of the spread of any communicable animal disease, he or she shall notify the... 9 Animals and Animal Products 1 2011-01-01 2011-01-01 false Inspection of certain aircraft and... requirements. 93.402 Section 93.402 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION...

  2. 9 CFR 93.202 - Inspection of certain aircraft and other means of conveyance and shipping containers thereon...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... as to present a danger of the spread of any communicable animal disease, he or she shall notify the... 9 Animals and Animal Products 1 2011-01-01 2011-01-01 false Inspection of certain aircraft and... requirements. 93.202 Section 93.202 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION...

  3. 9 CFR 93.302 - Inspection of certain aircraft and other means of conveyance and shipping containers thereon...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... as to present a danger of the spread of any communicable animal disease, he or she shall notify the... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Inspection of certain aircraft and... requirements. 93.302 Section 93.302 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION...

  4. 9 CFR 93.202 - Inspection of certain aircraft and other means of conveyance and shipping containers thereon...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... as to present a danger of the spread of any communicable animal disease, he or she shall notify the... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Inspection of certain aircraft and... requirements. 93.202 Section 93.202 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION...

  5. 9 CFR 93.502 - Inspection of certain aircraft and other means of conveyance and shipping containers thereon...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... as to present a danger of the spread of any communicable animal disease, he or she shall notify the... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Inspection of certain aircraft and... requirements. 93.502 Section 93.502 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION...

  6. 9 CFR 93.402 - Inspection of certain aircraft and other means of conveyance and shipping containers thereon...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... as to present a danger of the spread of any communicable animal disease, he or she shall notify the... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Inspection of certain aircraft and... requirements. 93.402 Section 93.402 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION...

  7. 9 CFR 98.32 - Inspection of certain aircraft and other means of conveyance and shipping containers thereon...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... as to present a danger of the spread of any communicable animal disease, he or she shall notify the... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Inspection of certain aircraft and... requirements. 98.32 Section 98.32 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION...

  8. 9 CFR 93.302 - Inspection of certain aircraft and other means of conveyance and shipping containers thereon...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 1 2014-01-01 2014-01-01 false Inspection of certain aircraft and... requirements. 93.302 Section 93.302 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE EXPORTATION AND IMPORTATION OF ANIMALS (INCLUDING POULTRY) AND ANIMAL...

  9. 9 CFR 93.302 - Inspection of certain aircraft and other means of conveyance and shipping containers thereon...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 1 2011-01-01 2011-01-01 false Inspection of certain aircraft and... requirements. 93.302 Section 93.302 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE EXPORTATION AND IMPORTATION OF ANIMALS (INCLUDING POULTRY) AND ANIMAL...

  10. Tiltrotor research aircraft composite blade repairs: Lessons learned

    NASA Technical Reports Server (NTRS)

    Espinosa, Paul S.; Groepler, David R.

    1991-01-01

    The XV-15, N703NA Tiltrotor Research Aircraft located at the NASA Ames Research Center, Moffett Field, California, currently uses a set of composite rotor blades of complex shape known as the advanced technology blades (ATBs). The main structural element of the blades is a D-spar constructed of unidirectional, angled fiberglass/graphite, with the aft fairing portion of the blades constructed of a fiberglass cross-ply skin bonded to a Nomex honeycomb core. The blade tip is a removable laminate shell that fits over the outboard section of the spar structure, which contains a cavity to retain balance weights. Two types of tip shells are used for research. One is highly twisted (more than a conventional helicopter blade) and has a hollow core constructed of a thin Nomex-honeycomb-and-fiberglass-skin sandwich; the other is untwisted with a solid Nomex honeycomb core and a fiberglass cross-ply skin. During initial flight testing of the blades, a number of problems in the composite structure were encountered. These problems included debonding between the fiberglass skin and the honeycomb core, failure of the honeycomb core, failures in fiberglass splices, cracks in fiberglass blocks, misalignment of mated composite parts, and failures of retention of metal fasteners. Substantial time was spent in identifying and repairing these problems. Discussed here are the types of problems encountered, the inspection procedures used to identify each problem, the repairs performed on the damaged or flawed areas, the level of criticality of the problems, and the monitoring of repaired areas. It is hoped that this discussion will help designers, analysts, and experimenters in the future as the use of composites becomes more prevalent.

  11. Resin transfer molding for advanced composite primary aircraft structures

    NASA Technical Reports Server (NTRS)

    Markus, Alan; Palmer, Ray

    1991-01-01

    Resin Transfer Molding (RTM) has been identified by Douglas Aircraft Company (DAC) and industry to be one of the promising processes being developed today which can break the cost barrier of implementing composite primary structures into a commercial aircraft production environment. The RTM process developments and scale-up plans Douglas Aircrart will be conducting under the NASA ACT contract are discussed.

  12. Nondestructive Evaluation (NDE) for Inspection of Composite Sandwich Structures

    NASA Technical Reports Server (NTRS)

    Zalameda, Joseph N.; Parker, F. Raymond

    2014-01-01

    Composite honeycomb structures are widely used in aerospace applications due to their low weight and high strength advantages. Developing nondestructive evaluation (NDE) inspection methods are essential for their safe performance. Flash thermography is a commonly used technique for composite honeycomb structure inspections due to its large area and rapid inspection capability. Flash thermography is shown to be sensitive for detection of face sheet impact damage and face sheet to core disbond. Data processing techniques, using principal component analysis to improve the defect contrast, are discussed. Limitations to the thermal detection of the core are investigated. In addition to flash thermography, X-ray computed tomography is used. The aluminum honeycomb core provides excellent X-ray contrast compared to the composite face sheet. The X-ray CT technique was used to detect impact damage, core crushing, and skin to core disbonds. Additionally, the X-ray CT technique is used to validate the thermography results.

  13. Aircraft corrosion and crack inspection using advanced magneto-optic imaging technology

    NASA Astrophysics Data System (ADS)

    Thome, David K.; Fitzpatrick, Gerald L.; Skaugset, Richard L.; Shih, William C.

    1996-11-01

    A next generation magneto-optic imaging system, the MOI 303, has recently been introduced with the ability to generate real-time, complete, 2D eddy current images of cracks and corrosion in aircraft. The new imaging system described features advanced, digital remote control operation and on- screen display of setup parameters for ease of use. This instrument gives the inspector the capability to more rapidly scan large surfaces areas. The magneto-optic/eddy current imaging technology has already been formally approved for inspection of surface cracking on an aircraft fuselage. The improved magneto-optic imager is now poised to aid rapid inspection for corrosion and subsurface cracking. Previous magneto-optic imaging systems required the inspector to scan the surface twice for complete inspection coverage: a second scan was necessary with the imager rotated about 90 degrees from the orientation of the first pass. However, by providing eddy current excitation simultaneously from two orthogonal directions, complete, filled-in magneto-optic images are now generated regardless of the orientation of the imager. THese images are considerably easier to interpret and evaluate. In addition, there is a synergism obtained in applying eddy current excitation simultaneously in multiple directions: better penetration is obtained and the resulting images have better signal to noise levels compared to those produced with eddy current excitation applied only in one direction. Examples of these improved images are presented.

  14. Impact of composites on future transport aircraft

    NASA Technical Reports Server (NTRS)

    Kinder, Robert H.

    1993-01-01

    In the current environment, new technology must be cost-effective in addition to improving operability. Various approaches have been used to determine the 'hurdle' or 'breakthrough' return that must be achieved to gain customer commitment for a new product or aircraft, or in this case, a new application of the technology. These approaches include return-on-investment, payback period, and addition to net worth. An easily understood figure-of-merit and one used by our airline customers is improvement in direct operating cost per seat-mile. Any new technology must buy its way onto the aircraft through reduction in direct operating cost (DOC).

  15. Low-Cost Composite Materials and Structures for Aircraft Applications

    NASA Technical Reports Server (NTRS)

    Deo, Ravi B.; Starnes, James H., Jr.; Holzwarth, Richard C.

    2003-01-01

    A survey of current applications of composite materials and structures in military, transport and General Aviation aircraft is presented to assess the maturity of composites technology, and the payoffs realized. The results of the survey show that performance requirements and the potential to reduce life cycle costs for military aircraft and direct operating costs for transport aircraft are the main reasons for the selection of composite materials for current aircraft applications. Initial acquisition costs of composite airframe components are affected by high material costs and complex certification tests which appear to discourage the widespread use of composite materials for aircraft applications. Material suppliers have performed very well to date in developing resin matrix and fiber systems for improved mechanical, durability and damage tolerance performance. The next challenge for material suppliers is to reduce material costs and to develop materials that are suitable for simplified and inexpensive manufacturing processes. The focus of airframe manufacturers should be on the development of structural designs that reduce assembly costs by the use of large-scale integration of airframe components with unitized structures and manufacturing processes that minimize excessive manual labor.

  16. Low-Cost Composite Materials and Structures for Aircraft Applications

    NASA Technical Reports Server (NTRS)

    Deo, Ravi B.; Starnes, James H., Jr.; Holzwarth, Richard C.

    2003-01-01

    A survey of current applications of composite materials and structures in military, transport and General Aviation aircraft is presented to assess the maturity of composites technology, and the payoffs realized. The results of the survey show that performance requirements and the potential to reduce life cycle costs for military aircraft and direct operating costs for transport aircraft are the main reasons for the selection of composite materials for current aircraft applications. Initial acquisition costs of composite airframe components are affected by high material costs and complex certification tests which appear to discourage the widespread use of composite materials for aircraft applications. Material suppliers have performed very well to date in developing resin matrix and fiber systems for improved mechanical, durability and damage tolerance performance. The next challenge for material suppliers is to reduce material costs and to develop materials that are suitable for simplified and inexpensive manufacturing processes. The focus of airframe manufacturers should be on the development of structural designs that reduce assembly costs by the use of large-scale integration of airframe components with unitized structures and manufacturing processes that minimize excessive manual labor.

  17. Flight service evaluation of Kevlar-49 epoxy composite panels in wide-bodied commercial transport aircraft

    NASA Technical Reports Server (NTRS)

    Stone, R. H.

    1982-01-01

    Kevlar-49 fairing panels, installed as flight service components on three l-1011's, were inspected after 8 years service. The fairings had accumulated a total of 62,000 hours, with one ship set having 20,850 hours service. Kevlar-49 components were found to be performing satisfactorily in service with no major problems. The only defects noted were minor impact damage, a few minor disbonds and a minor degree of fastener hole fraying and elongation. The service history to date indicates that Kevlar-49 epoxy composite materials have satisfactory service characteristics for use in aircraft secondary structures.

  18. Design considerations for composite fuselage structure of commercial transport aircraft

    NASA Technical Reports Server (NTRS)

    Davis, G. W.; Sakata, I. F.

    1981-01-01

    The structural, manufacturing, and service and environmental considerations that could impact the design of composite fuselage structure for commercial transport aircraft application were explored. The severity of these considerations was assessed and the principal design drivers delineated. Technical issues and potential problem areas which must be resolved before sufficient confidence is established to commit to composite materials were defined. The key issues considered are: definition of composite fuselage design specifications, damage tolerance, and crashworthiness.

  19. Damage tolerance of bonded composite aircraft repairs for metallic structures

    NASA Astrophysics Data System (ADS)

    Clark, Randal John

    This thesis describes the development and validation of methods for damage tolerance substantiation of bonded composite repairs applied to cracked plates. This technology is used to repair metal aircraft structures, offering improvements in fatigue life, cost, manufacturability, and inspectability when compared to riveted repairs. The work focuses on the effects of plate thickness and bending on repair life, and covers fundamental aspects of fracture and fatigue of cracked plates and bonded joints. This project falls under the UBC Bonded Composite Repair Program, which has the goal of certification and widespread use of bonded repairs in civilian air transportation. This thesis analyses the plate thickness and transverse stress effects on fracture of repaired plates and the related problem of induced geometrically nonlinear bending in unbalanced (single-sided) repairs. The author begins by developing a classification scheme for assigning repair damage tolerance substantiation requirements based upon stress-based adhesive fracture/fatigue criteria and the residual strength of the original structure. The governing equations for bending of cracked plates are then reformulated and line-spring models are developed for linear and nonlinear coupled bending and extension of reinforced cracks. The line-spring models were used to correct the Wang and Rose energy method for the determination of the long-crack limit stress intensity, and to develop a new interpolation model for repaired cracks of arbitrary length. The analysis was validated using finite element models and data from mechanical tests performed on hybrid bonded joints and repair specimens that are representative of an in-service repair. This work will allow designers to evaluate the damage tolerance of the repaired plate, the adhesive, and the composite patch, which is an airworthiness requirement under FAR (Federal Aviation Regulations) 25.571. The thesis concludes by assessing the remaining barriers to

  20. Flight service evaluation of Kevlar-49 epoxy composite panels in wide-bodies commercial transport aircraft

    NASA Technical Reports Server (NTRS)

    Stone, R. H.

    1983-01-01

    Kevlar-49 fairing panels, installed as flight service components on three L-1011s, were inspected after 9 years of service. There are six Kevlar-49 panels on each aircraft: a left hand and right hand set of a wing body sandwich fairing; a solid laminate under wing fillet panel; and a 422 K (300 F) service aft engine fairing. The fairings have accumulated a total of 70,000 hours, with one ship set having over 24,000 hours service. The Kevlar-49 components were found to be performing satisfactorily in service with no major problems, or any condition requiring corrective action. The only defects noted were minor impact damage, a few minor disbonds and a minor degree of fastener hole fraying and elongation. These are for the most part comparable to damage noted on fiberglass fairings. The service history to date indicates that Kevlar-49 epoxy composite materials have satisfactory service characteristics for use in aircraft secondary structure.

  1. Preliminary design of graphite composite wing panels for commercial transport aircraft

    NASA Technical Reports Server (NTRS)

    Byers, B. A.; Stoecklin, R. L.

    1980-01-01

    Subjectively assessed practical and producible graphite/epoxy designs were subjected to a multilevel screening procedure which considered structural functions, efficiency, manufacturing and producibility, costs, maintainability, and inspectability. As each progressive screening level was reviewed, more definitive information on the structural efficiency (weight), manufacturing, and inspection procedures was established to support the design selection. The configuration features that enhance producibility of the final selected design can be used as a generic base for application to other wing panel designs. The selected panel design showed a weight saving of 25 percent over a conventional aluminum design meeting the same design requirements. The estimated cost reduction in manufacturing was 20 percent, based on 200 aircraft and projected 1985 automated composites manufacturing capability. The panel design background information developed will be used in the follow-on tasks to ensure that future panel development represents practical and producible design approaches to graphite/epoxy wing surface panels.

  2. Inspection of composite structures using line scanning thermography

    NASA Astrophysics Data System (ADS)

    Ley, Obdulia; Butera, Manny; Godinez, Valery

    2012-06-01

    This work deals with the non destructive analysis of different composite parts and structures using Line Scanning Thermography (LST), a non-contact inspection method based in dynamic thermography. The LST technique provides a quick and efficient methodology to scan wide areas rapidly; the technique has been used on the inspection of composite propellers, sandwich panels, motor case tubes and wind turbine blades, among others. In LST a line heat source is used to thermally excite the surface under study while an infrared detector records the transient surface temperature variation of the heated region. Line Scanning Thermography (LST), has successfully been applied to determine the thickness of metallic plates and to assess boiler tube thinning. In this paper the LST protocols developed for the detection of sub-surface defects in different composite materials commonly used in aerospace applications, plates will be presented. In most cases the thermal images acquired using LST will be compared with ultrasonic c-scans. The fundamentals of LST will be discussed, as well as the limitations of this technique for NDT inspection.

  3. A Wireless Ultrasonic Guided Wave Structural Health Monitoring System for Aircraft Wing Inspection

    NASA Astrophysics Data System (ADS)

    Zhao, X.; Qian, T.; Popovic, Z.; Zane, R.; Mei, G.; Walsh, C.; Paing, T.; Kwan, C.

    2007-03-01

    A wireless, in-situ ultrasonic guided wave structural health monitoring (SHM) system was developed and tested for aircraft wing inspection. It applies small, low cost and light weight piezoelectric (PZT) disc transducer network bonded to the surface of a structure, and an embedded miniature diagnosis device that can generate 350 kHz, 70 V peak-to-peak tone-burst signal; collect, amplify and digitize multiple channel ultrasonic signals; and process the data on-board and transfer them wirelessly to a ground station. The whole system could be powered by an X-band microwave rectenna that converts illuminating microwave energy into DC. The data collected with this device are almost identical with those collected through a direct-wire connection.

  4. 9 CFR 93.502 - Inspection of certain aircraft and other means of conveyance and shipping containers thereon...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... other means of conveyance and shipping containers thereon; unloading, cleaning, and disinfection... IMPORTATION OF CERTAIN ANIMALS, BIRDS, FISH, AND POULTRY, AND CERTAIN ANIMAL, BIRD, AND POULTRY PRODUCTS; REQUIREMENTS FOR MEANS OF CONVEYANCE AND SHIPPING CONTAINERS Swine § 93.502 Inspection of certain aircraft...

  5. Design, ancillary testing, analysis and fabrication data for the advanced composite stabilizer for Boeing 737 aircraft, volume 2

    NASA Technical Reports Server (NTRS)

    Aniversario, R. B.; Harvey, S. T.; Mccarty, J. E.; Parsons, J. T.; Peterson, D. C.; Pritchett, L. D.; Wilson, D. R.; Wogulis, E. R.

    1982-01-01

    Results of tests conducted to demonstrate that composite structures save weight, possess long term durability, and can be fabricated at costs competitive with conventional metal structures are presented with focus on the use of graphite-epoxy in the design of a stabilizer for the Boeing 737 aircraft. Component definition, materials evaluation, material design properties, and structural elements tests are discussed. Fabrication development, as well as structural repair and inspection are also examined.

  6. Ultrasonic inspection of adhesive joints of composite pipelines

    NASA Astrophysics Data System (ADS)

    de Almeidaa, Priscila Duarte; Alcoforado Rebello, João Marcos; Pereira, Gabriela Ribeiro; Soares, Sérgio Damasceno; Fernandez, Roman

    2014-02-01

    Composite pipelines are an attractive solution when traditional materials are not suitable for this purpose, which happens frequently at aggressive environments and also where the structural weight is a limiting factor. This work studies the application of the ultrasonic technique at the detection of defects as lack of adhesive and lack of adhesion, commonly found in adhesive joints of glass fiber reinforced plastic (GFRP) pipelines applied at onshore and offshore facilities. Computational simulations were conducted in CIVA 11software (beta version) in order to obtain the best possible configuration for the inspections, applying the pulse-echo technique. Experimental results were compared to these simulations and several transducers were tested. An inspection methodology and reference blocks were developed for the calibration of the inspections. Some samples were selected for cutting in order to compare the ultrasonic results and the real condition of the joints. Results show that smaller frequencies are suitable for the inspection of this material and focused probes present more accurate results.

  7. Continuous Ultrasonic Inspection of Extruded Wood-Plastic Composites

    SciTech Connect

    Tucker, Brian J. ); Bender, Donald A.

    2003-06-19

    Nondestructive evaluation (NDE) techniques are needed for in-line monitoring of wood-plastic composite (WPC) quality during manufacturing for process control. Through-transmission ultrasonic inspection is useful in characterizing stiffness and detecting cracks and voids in a range of materials; however, little is documented about ultrasound propagation in WPC materials. The objectives of this research were to determine applicable ultrasonic transducer frequencies, coupling methods, configurations and placements for wave speed monitoring and web defect detection within an extrusion process; to quantify the effects of temperature on ultrasonic parameters; and to develop a prototype ultrasonic inspection system for a full-size extrusion line. An angled beam, water-coupled ultrasonic inspection system using a pair of 50-kHz narrowband transducers was adequate for monitoring wave speed parallel to the extrusion direction. For locating internal web defects, water-coupled, 500-kHz broadband ultrasonic transducers were used in a through-thickness transmission setup. Temperature compensation factors were developed to adjust ultrasonic wave speed measurements. The prototype inspection system was demonstrated in a 55 mm conical twin-screw extrusion line.

  8. Guidelines for composite materials research related to general aviation aircraft

    NASA Technical Reports Server (NTRS)

    Dow, N. F.; Humphreys, E. A.; Rosen, B. W.

    1983-01-01

    Guidelines for research on composite materials directed toward the improvement of all aspects of their applicability for general aviation aircraft were developed from extensive studies of their performance, manufacturability, and cost effectiveness. Specific areas for research and for manufacturing development were identified and evaluated. Inputs developed from visits to manufacturers were used in part to guide these evaluations, particularly in the area of cost effectiveness. Throughout the emphasis was to direct the research toward the requirements of general aviation aircraft, for which relatively low load intensities are encountered, economy of production is a prime requirement, and yet performance still commands a premium. A number of implications regarding further directions for developments in composites to meet these requirements also emerged from the studies. Chief among these is the need for an integrated (computer program) aerodynamic/structures approach to aircraft design.

  9. Benefits and limitations of composites in carrier-based aircraft

    NASA Technical Reports Server (NTRS)

    Mcerlean, Donald P.

    1992-01-01

    There are many unique aspects of Navy air missions that lead to the differentiation between the design and performance of ship and shore-based aircraft. The major aspects are discussed from which essentially all Navy aircraft design requirements derive. (1) Navy aircraft operate from carriers at sea imposes a broad spectrum of physical conditions, constraints, and requirements ranging from the harsh sea environment, the space limitations of a carrier, takeoff and landing requirements as well as for endurance at long distances from the carrier. (2) Because the carrier and its airwing are intended to be capable of responding to a broad range of contingencies, mission flexibility is essential (maximum weapon carriage, rapid reconfiguration, multiple mission capability). (3) The embarked aircraft provides the long range defense of the battle group against air, surface and subsurface launched antiship missiles. (4) The carrier and its aircraft must operate independently and outside of normal supply lines. Taking into account these aspects, the use of composite materials in the design and performance of naval aircraft is outlined, also listing advantages and disadvantages.

  10. Development of Textile Reinforced Composites for Aircraft Structures

    NASA Technical Reports Server (NTRS)

    Dexter, H. Benson

    1998-01-01

    NASA has been a leader in development of composite materials for aircraft applications during the past 25 years. In the early 1980's NASA and others conducted research to improve damage tolerance of composite structures through the use of toughened resins but these resins were not cost-effective. The aircraft industry wanted affordable, robust structures that could withstand the rigors of flight service with minimal damage. The cost and damage tolerance barriers of conventional laminated composites led NASA to focus on new concepts in composites which would incorporate the automated manufacturing methods of the textiles industry and which would incorporate through-the-thickness reinforcements. The NASA Advanced Composites Technology (ACT) Program provided the resources to extensively investigate the application of textile processes to next generation aircraft wing and fuselage structures. This paper discusses advanced textile material forms that have been developed, innovative machine concepts and key technology advancements required for future application of textile reinforced composites in commercial transport aircraft. Multiaxial warp knitting, triaxial braiding and through-the-thickness stitching are the three textile processes that have surfaced as the most promising for further development. Textile reinforced composite structural elements that have been developed in the NASA ACT Program are discussed. Included are braided fuselage frames and window-belt reinforcements, woven/stitched lower fuselage side panels, stitched multiaxial warp knit wing skins, and braided wing stiffeners. In addition, low-cost processing concepts such as resin transfer molding (RTM), resin film infusion (RFI), and vacuum-assisted resin transfer molding (VARTM) are discussed. Process modeling concepts to predict resin flow and cure in textile preforms are also discussed.

  11. V/STOL tilt rotor aircraft study. Volume 6: Preliminary design of a composite wing for tilt rotor research aircraft

    NASA Technical Reports Server (NTRS)

    Soule, V. A.; Badri-Nath, Y.

    1973-01-01

    The results of a study of the use of composite materials in the wing of a tilt rotor aircraft are presented. An all-metal tilt rotor aircraft was first defined to provide a basis for comparing composite with metal structure. A configuration study was then done in which the wing of the metal aircraft was replaced with composite wings of varying chord and thickness ratio. The results of this study defined the design and performance benefits obtainable with composite materials. Based on these results the aircraft was resized with a composite wing to extend the weight savings to other parts of the aircraft. A wing design was then selected for detailed structural analysis. A development plan including costs and schedules to develop this wing and incorporate it into a proposed flight research tilt rotor vehicle has been devised.

  12. Aircraft

    DTIC Science & Technology

    2002-01-01

    Company, Washington, DC Boeing Commercial Aircraft Division, Seattle, WA and Long Beach, CA Boeing Military Aircraft and Missile Division, St. Louis, MO and... aircraft ; military fixed-wing aircraft ; rotorcraft (helicopters and tiltrotor aircraft ); and aircraft jet engines. Two companies dominate the commercial... aircraft business, Boeing and Airbus. Four companies dominate the military fixed-wing market, Boeing, Lockheed Martin, BAE Systems, and European

  13. Finite Element Modeling of Transient Thermography Inspection of Composite Materials

    NASA Technical Reports Server (NTRS)

    Chu, Tsuchin Philip

    1998-01-01

    Several finite element models of defects such as debond and void have been developed for composite panels subjected to transient thermography inspection. Since the exact nature of the heat generated from the flash lamps is unknown, direct comparison between FEA and experimental results is not possible. However, some similarity of the results has been observed. The shape of the time curve that simulates the heat flux from the flash lamps has minimal effect on the temperature profiles. Double the number of flash lamps could increase the contrast of thermal image and define the shape of defect better.

  14. Advanced composite stabilizer for Boeing 737 aircraft

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Activities related to development of an advanced composites stabilizer for the Boeing 737 commercial transport are reported. Activities include discussion of criteria and objectives, design loads, the fatigue spectrum definition to be used for all spectrum fatigue testing, fatigue analysis, manufacturing producibility studies, the ancillary test program, quality assurance, and manufacturing development.

  15. Advanced composite elevator for Boeing 727 aircraft

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Detail design activities are reported for a program to develop an advanced composites elevator for the Boeing 727 commercial transport. Design activities include discussion and results of the ancillary test programs, sustaining efforts, weight status, manufacturing producibility studies, quality assurance development, and production status.

  16. Automated exterior inspection of an aircraft with a pan-tilt-zoom camera mounted on a mobile robot

    NASA Astrophysics Data System (ADS)

    Jovančević, Igor; Larnier, Stanislas; Orteu, Jean-José; Sentenac, Thierry

    2015-11-01

    This paper deals with an automated preflight aircraft inspection using a pan-tilt-zoom camera mounted on a mobile robot moving autonomously around the aircraft. The general topic is image processing framework for detection and exterior inspection of different types of items, such as closed or unlatched door, mechanical defect on the engine, the integrity of the empennage, or damage caused by impacts or cracks. The detection step allows to focus on the regions of interest and point the camera toward the item to be checked. It is based on the detection of regular shapes, such as rounded corner rectangles, circles, and ellipses. The inspection task relies on clues, such as uniformity of isolated image regions, convexity of segmented shapes, and periodicity of the image intensity signal. The approach is applied to the inspection of four items of Airbus A320: oxygen bay handle, air-inlet vent, static ports, and fan blades. The results are promising and demonstrate the feasibility of an automated exterior inspection.

  17. A Review of Crashworthiness of Composite Aircraft Structures

    DTIC Science & Technology

    1990-02-01

    CRASHWORTHINESS OF COMPOSITE AIRCRAFT STRUCTURES ETUDE SUR LA RESISTANCE A L’ECRASEMENT DES STRUCTURES D’AERONEF EN MATERIAUX COMPOSITES by/par C. Poon...menses en Am~rique du Nord sur la resistance A l16crasement des structures d’a~ronef en materiaux composites a 06 effectude dans le but d’identifier les...dimension des a~ro-efs sur les exigences de conception relatives A la resistance A l-cras( , e ,_: l’implantation du code KRASH au Canada pour uniformiser

  18. A composite system approach to aircraft cabin fire safety

    NASA Technical Reports Server (NTRS)

    Kourtides, D. A.; Parker, J. A.; Gilwee, W. J., Jr.; Lerner, N. R.; Hilado, C. J.; Labossiere, L. A.; Hsu, M. T. S.

    1976-01-01

    The thermochemical and flammability characteristics of two polymeric composites currently in use and seven others being considered for use as aircraft interior panels are described. The properties studied included: (1) limiting oxygen index of the composite constituents; (2) fire containment capability of the composite; (3) smoke evolution from the composite; (4) thermogravimetric analysis; (5) composition of the volatile products of thermal degradation; and (6) relative toxicity of the volatile products of pyrolysis. The performance of high temperature laminating resins such as bismaleimides is compared with the performance of phenolics and epoxies. The relationship of increased fire safety with the use of polymers with high anaerobic char yield is shown. Processing parameters of one of the baremaleimide composites are detailed.

  19. A composite system approach to aircraft cabin fire safety

    NASA Technical Reports Server (NTRS)

    Kourtides, D. A.; Parker, J. A.; Gilwee, W. J., Jr.; Lerner, N. R.; Hilado, C. J.; Labossiere, L. A.; Hsu, M.-T.

    1976-01-01

    The thermochemical and flammability characteristics of two polymeric composites currently in use and seven others being considered for use as aircraft interior panels are described. The properties studied included: (1) limiting oxygen index of the composite constituents; (2) fire containment capability of the composite; (3) smoke evolution from the composite; (4) thermogravimetric analysis; (5) composition of the volatile products of thermal degradation; and (6) relative toxicity of the volatile products of pyrolysis. The performance of high-temperature laminating resins such as bismaleimides is compared with the performance of phenolics and epoxies. The relationship of increased fire safety with the use of polymers with high anaerobic char yield is shown. Processing parameters of one of the bismaleimide composites is detailed.

  20. Advanced composite elevator for Boeing 727 aircraft

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Detail design activities are reported for a program to develop an advanced composites elevator for the Boeing 727 commercial transport. Design activities include discussion of the full scale ground test and flight test activities, the ancillary test programs, sustaining efforts, weight status, and the production status. Prior to flight testing of the advanced composites elevator, ground, flight flutter, and stability and control test plans were reviewed and approved by the FAA. Both the ground test and the flight test were conducted according to the approved plan, and were witnessed by the FAA. Three and one half shipsets have now been fabricated without any significant difficulty being encountered. Two elevator system shipsets were weighed, and results validated the 26% predicted weight reduction. The program is on schedule.

  1. Advanced Composite Aircraft Electromagnetic Design and Synthesis

    DTIC Science & Technology

    1980-05-01

    resulted in a prolifera- tion of available composite materials. This report describes simple methods for determining the shielding provided by an...R. F. Harrington, "Field Computation by Moment Methods ," Macmillan Co., 1968, Chap. 5. 7. A. J. Poggio and E. K. Miller, "Litegral Equation...the total electric shielding effectiveness of the shield. ENeoyinZNNewton’s method , the electric shielding effectiveness attains its minimum when --2 d

  2. Development of thermoplastic composite aircraft structures

    NASA Technical Reports Server (NTRS)

    Renieri, Michael P.; Burpo, Steven J.; Roundy, Lance M.; Todd, Stephanie A.; Kim, H. J.

    1992-01-01

    Efforts focused on the use of thermoplastic composite materials in the development of structural details associated with an advanced fighter fuselage section with applicability to transport design. In support of these designs, mechanics developments were conducted in two areas. First, a dissipative strain energy approach to material characterization and failure prediction, developed at the Naval Research Laboratory, was evaluated as a design/analysis tool. Second, a finite element formulation for thick composites was developed and incorporated into a lug analysis method which incorporates pin bending effects. Manufacturing concepts were developed for an upper fuel cell cover. A detailed trade study produced two promising concepts: fiber placement and single-step diaphragm forming. Based on the innovative design/manufacturing concepts for the fuselage section primary structure, elements were designed, fabricated, and structurally tested. These elements focused on key issues such as thick composite lugs and low cost forming of fastenerless, stiffener/moldine concepts. Manufacturing techniques included autoclave consolidation, single diaphragm consolidation (SDCC) and roll-forming.

  3. Open Circuit Resonant (SansEC) Sensor for Composite Damage Detection and Diagnosis in Aircraft Lightning Environments

    NASA Technical Reports Server (NTRS)

    Wang, Chuantong; Dudley, Kenneth L.; Szatkowski, George N.

    2012-01-01

    Composite materials are increasingly used in modern aircraft for reducing weight, improving fuel efficiency, and enhancing the overall design, performance, and manufacturability of airborne vehicles. Materials such as fiberglass reinforced composites (FRC) and carbon-fiber-reinforced polymers (CFRP) are being used to great advantage in airframes, wings, engine nacelles, turbine blades, fairings, fuselage and empennage structures, control surfaces and coverings. However, the potential damage from the direct and indirect effects of lightning strikes is of increased concern to aircraft designers and operators. When a lightning strike occurs, the points of attachment and detachment on the aircraft surface must be found by visual inspection, and then assessed for damage by maintenance personnel to ensure continued safe flight operations. In this paper, a new method and system for aircraft in-situ damage detection and diagnosis are presented. The method and system are based on open circuit (SansEC) sensor technology developed at NASA Langley Research Center. SansEC (Sans Electric Connection) sensor technology is a new technical framework for designing, powering, and interrogating sensors to detect damage in composite materials. Damage in composite material is generally associated with a localized change in material permittivity and/or conductivity. These changes are sensed using SansEC. Unique electrical signatures are used for damage detection and diagnosis. NASA LaRC has both experimentally and theoretically demonstrated that SansEC sensors can be effectively used for in-situ composite damage detection.

  4. Flight service evaluation of Kevlar-49 epoxy composite panels in wide-bodied commercial transport aircraft

    NASA Technical Reports Server (NTRS)

    Stone, R. H.

    1984-01-01

    Kevlar-49 fairing panels, installed as flight service components on three L-1011s, were inspected after 10 years of service. There are six Kevlar-49 panels on each aircraft: a left-hand and right-hand set of a wing-body sandwich fairing; a solid laminate under-wing fillet panel; and a 422 K (300 F) service aft engine fairing. The three L-1011s include one each in service with Eastern, Air Canada, and TWA. The fairings have accumulated a total of 79,568 hours, with one ship set having nearly 28,000 hours service. The inspections were conducted at the airlines' major maintenance bases with the participation of Lockheed Engineering. The Kevlar-49 components were found to be performing satisfactorily in service with no major problems, or any condition requiring corrective action. The only defects noted were minor impact damage, a few minor disbonds and a minor degree of fastener hole fraying and elongation. These are for the most part comparable to damage noted on fiberglass fairings. The service history obtained in this program indicates that Kevlar-49 epoxy composite materials have satisfactory service characteristics for use in aircraft secondary structure.

  5. Simulation of ultrasonic inspection of curved composites using a hybrid semi-analytical/numerical code

    NASA Astrophysics Data System (ADS)

    Reverdy, Frédéric; Mahaut, Steve; Dominguez, Nicolas; Dubois, Philippe

    2015-03-01

    Carbon Fiber reinforced composites are increasingly used in structural parts in the aeronautics industry, as they allow to reduce the weight of aircrafts while maintaining high mechanical performances. However, such structures can be complicated to inspect due to their complex geometries and complex composite properties, leading to highly heterogeneous and anisotropic materials. Different potential damages and manufacturing flaws related to these parts are to be detected: porosities, ply waviness, delaminations after impact. Ultrasonic inspection, which is commonly used to test the full volume of composite panels, thus has to cope with both complex wave propagation (within anisotropic parts whose crystallographic orientation varies according to the layers structure) and flaw interaction (local distortion of plies such as ply waviness, small pores, structural noise due to periodicity patterns…). Developing NDT procedures for those parts therefore requires simulation tools to help for understanding those phenomena, and to optimize probes and techniques. Within the CIVA multi-techniques platform, CEA-LIST has developed semi-analytical tools for ultrasonic techniques, which have the advantages of high computational efficiency (fast calculations), but with limited range of application due to some hypothesis (for instance, homogenization approaches which don't allow to take account of structural noise). On the other hand, numerical methods such as finite element (FEM) or finite difference in time domain (FDTD) are more suitable to compute ultrasonic wave propagation and defect scattering in complex materials such as composite but require more computational efforts. Hybrid methods couple semi-analytical solutions and numerical computations in limited spatial domains to handle complex cases with high computation performances. In CIVA we have integrated a hybrid model that combines the semi-analytical methods developed at CEA to FDTD codes developed at Airbus Group

  6. Portable Ultrasonic Guided Wave Inspection with MACRO Fiber Composite Actuators

    NASA Astrophysics Data System (ADS)

    Haig, A.; Mudge, P.; Catton, P.; Balachandran, W.

    2010-02-01

    The development of portable ultrasonic guided wave transducer arrays that utilize Macro Fiber Composite actuators (MFCs) is described. Portable inspection equipment can make use of ultrasonic guided waves to rapidly screen large areas of many types of engineering structures for defects. The defect finding performance combined with the difficulty of application determines how much the engineering industry makes use of this non-destructive, non-disruptive technology. The developments with MFCs have the potential to make considerable improvements in both these aspects. MFCs are highly efficient because they use interdigital electrodes to facilitate the extensional, d33 displacement mode. Their fiber composite design allows them to be thin, lightweight, flexible and durable. The flexibility affords them conformance with curved surfaces, which can facilitate good mechanical coupling. The suitability of a given transducer for Long Range Ultrasonic Testing is governed by the nature and amplitude of the displacement that it excites/senses in the contact area of the target structure. This nature is explored for MFCs through directional sensitivity analysis and empirical testing. Housing methods that facilitate non-permanent coupling techniques are discussed. Finally, arrangements of arrays of MFCs for the guided wave inspection of plates and pipes are considered and some broad design criteria are given.

  7. Technology of civil usage of composites. [in commercial aircraft structures

    NASA Technical Reports Server (NTRS)

    Kemp, D. E.

    1977-01-01

    The paper deals with the use of advanced composites in structural components of commercial aircraft. The need for testing the response of a material system to service environment is discussed along with methods for evaluating design and manufacturing aspects of a built-up structure under environmental conditions and fail-safe (damage-tolerance) evaluation of structures. Crashworthiness aspects, the fire-hazard potential, and electrical damage of composite structures are considered. Practical operational experience with commercial aircraft is reviewed for boron/epoxy foreflaps, Kevlar/epoxy fillets and fairings, graphite/epoxy spoilers, graphite/polysulfone spoilers, graphite/epoxy floor posts, boron/aluminum aft pylon skin panels, graphite/epoxy engine nose cowl outer barrels, and graphite/epoxy upper aft rudder segments.

  8. Dynamic tests of composite panels of an aircraft wing

    NASA Astrophysics Data System (ADS)

    Splichal, Jan; Pistek, Antonin; Hlinka, Jiri

    2015-10-01

    The paper describes the analysis of aerospace composite structures under dynamic loading. Today, it is common to use design procedures based on assumption of static loading only, and dynamic loading is rarely assumed and applied in design and certification of aerospace structures. The paper describes the application of dynamic loading for the design of aircraft structures, and the validation of the procedure on a selected structure. The goal is to verify the possibility of reducing the weight through improved design/modelling processes using dynamic loading instead of static loading. The research activity focuses on the modelling and testing of a composite panel representing a local segment of an aircraft wing section, investigating in particular the buckling behavior under dynamic loading. Finite Elements simulation tools are discussed, as well as the advantages of using a digital optical measurement system for the evaluation of the tests. The comparison of the finite element simulations with the results of the tests is presented.

  9. Developments in real-time 2D ultrasound inspection for aging aircraft

    NASA Astrophysics Data System (ADS)

    Lasser, Marvin E.; Lasser, Bob; Kula, John; Rohrer, Gene; Harrison, George H.

    1999-01-01

    Nondestructive testing of aircraft components through ultrasonic testing is well established as one of the industry's benchmark techniques. Its capability to penetrate both thin and thick material provides arguably the best information to inspectors on subsurface faults. However, there are tow basic drawbacks to it use: its difficulty to employ and its slow speed. Real-time C-scan solves both of these issues while maintain high quality subsurface information. Cracking, corrosion, voids, delaminations and impact damage can be observed in 1/30 second. The basis for this technology is a novel 2D imaging array that creates immediate, high-resolution images of subsurface faults. The latest developments of the technique include commercial introduction of a through-transmission scanning product which can inspect large structures, as well as significant progress in the development of a hand held device which produces instantaneous high quality imagery of defects in reflection over an area as the user simply holds a probe up to the target. This work is funded in part by the Navy SBIR 'Fasttrack' program.

  10. Finite Element Modeling of the Thermographic Inspection for Composite Materials

    NASA Technical Reports Server (NTRS)

    Bucinell, Ronald B.

    1996-01-01

    The performance of composite materials is dependent on the constituent materials selected, material structural geometry, and the fabrication process. Flaws can form in composite materials as a result of the fabrication process, handling in the manufacturing environment, and exposure in the service environment to anomalous activity. Often these flaws show no indication on the surface of the material while having the potential of substantially degrading the integrity of the composite structure. For this reason it is important to have available inspection techniques that can reliably detect sub-surface defects such as inter-ply disbonds, inter-ply cracks, porosity, and density changes caused by variations in fiber volume content. Many non-destructive evaluation techniques (NDE) are capable of detecting sub-surface flaws in composite materials. These include shearography, video image correlation, ultrasonic, acoustic emissions, and X-ray. The difficulty with most of these techniques is that they are time consuming and often difficult to apply to full scale structures. An NDE technique that appears to have the capability to quickly and easily detect flaws in composite structure is thermography. This technique uses heat to detect flaws. Heat is applied to the surface of a structure with the use of a heat lamp or heat gun. A thermographic camera is then pointed at the surface and records the surface temperature as the composite structure cools. Flaws in the material will cause the thermal-mechanical material response to change. Thus, the surface over an area where a flaw is present will cool differently than regions where flaws do not exist. This paper discusses the effort made to thermo-mechanically model the thermography process. First the material properties and physical parameters used in the model will be explained. This will be followed by a detailed discussion of the finite element model used. Finally, the result of the model will be summarized along with

  11. Composite Structure Modeling and Analysis of Advanced Aircraft Fuselage Concepts

    NASA Technical Reports Server (NTRS)

    Mukhopadhyay, Vivek; Sorokach, Michael R.

    2015-01-01

    NASA Environmentally Responsible Aviation (ERA) project and the Boeing Company are collabrating to advance the unitized damage arresting composite airframe technology with application to the Hybrid-Wing-Body (HWB) aircraft. The testing of a HWB fuselage section with Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) construction is presently being conducted at NASA Langley. Based on lessons learned from previous HWB structural design studies, improved finite-element models (FEM) of the HWB multi-bay and bulkhead assembly are developed to evaluate the performance of the PRSEUS construction. In order to assess the comparative weight reduction benefits of the PRSEUS technology, conventional cylindrical skin-stringer-frame models of a cylindrical and a double-bubble section fuselage concepts are developed. Stress analysis with design cabin-pressure load and scenario based case studies are conducted for design improvement in each case. Alternate analysis with stitched composite hat-stringers and C-frames are also presented, in addition to the foam-core sandwich frame and pultruded rod-stringer construction. The FEM structural stress, strain and weights are computed and compared for relative weight/strength benefit assessment. The structural analysis and specific weight comparison of these stitched composite advanced aircraft fuselage concepts demonstrated that the pressurized HWB fuselage section assembly can be structurally as efficient as the conventional cylindrical fuselage section with composite stringer-frame and PRSEUS construction, and significantly better than the conventional aluminum construction and the double-bubble section concept.

  12. Advances in the Use of Thermography to Inspect Composite Tanks for Liquid Fuel Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Lansing, Matthew D.; Russell, Samuel S.; Walker, James L.; Jones, Clyde S. (Technical Monitor)

    2001-01-01

    This viewgraph presentation gives an overview of advances in the use of thermography to inspect composite tanks for liquid fuel propulsion systems. Details are given on the thermographic inspection system, thermographic analysis method (includes scan and defect map, method of inspection, and inclusions, ply wrinkle, and delamination defects), graphite composite cryogenic feedline (including method, image map, and deep/shallow inclusions and resin rich area defects), and material degradation nondestructive evaluation.

  13. Advanced composite vertical fin for L-1011 aircraft

    NASA Technical Reports Server (NTRS)

    Jackson, A. C.

    1984-01-01

    The structural box of the L-1011 vertical fin was redesigned using advanced composite materials. The box was fabricated and ground tested to verify the structural integrity. This report summarizes the complete program starting with the design and analysis and proceeds through the process development ancillary test program production readiness verification testing, fabrication of the full-scale fin boxes and the full-scale ground testing. The program showed that advanced composites can economically and effectively be used in the design and fabrication of medium primary structures for commercial aircraft. Static-strength variability was demonstrated to be comparable to metal structures and the long term durability of advanced composite components was demonstrated.

  14. Open Circuit Resonant (SansEC) Sensor Technology for Lightning Mitigation and Damage Detection and Diagnosis for Composite Aircraft Applications

    NASA Technical Reports Server (NTRS)

    Szatkowski, George N.; Dudley, Kenneth L.; Smith, Laura J.; Wang, Chuantong; Ticatch, Larry A.

    2014-01-01

    Traditional methods to protect composite aircraft from lightning strike damage rely on a conductive layer embedded on or within the surface of the aircraft composite skin. This method is effective at preventing major direct effect damage and minimizes indirect effects to aircraft systems from lightning strike attachment, but provides no additional benefit for the added parasitic weight from the conductive layer. When a known lightning strike occurs, the points of attachment and detachment on the aircraft surface are visually inspected and checked for damage by maintenance personnel to ensure continued safe flight operations. A new multi-functional lightning strike protection (LSP) method has been developed to provide aircraft lightning strike protection, damage detection and diagnosis for composite aircraft surfaces. The method incorporates a SansEC sensor array on the aircraft exterior surfaces forming a "Smart skin" surface for aircraft lightning zones certified to withstand strikes up to 100 kiloamperes peak current. SansEC sensors are open-circuit devices comprised of conductive trace spiral patterns sans (without) electrical connections. The SansEC sensor is an electromagnetic resonator having specific resonant parameters (frequency, amplitude, bandwidth & phase) which when electromagnetically coupled with a composite substrate will indicate the electrical impedance of the composite through a change in its resonant response. Any measureable shift in the resonant characteristics can be an indication of damage to the composite caused by a lightning strike or from other means. The SansEC sensor method is intended to diagnose damage for both in-situ health monitoring or ground inspections. In this paper, the theoretical mathematical framework is established for the use of open circuit sensors to perform damage detection and diagnosis on carbon fiber composites. Both computational and experimental analyses were conducted to validate this new method and system for

  15. Compact survey and inspection day/night image sensor suite for small unmanned aircraft systems (EyePod)

    NASA Astrophysics Data System (ADS)

    Bird, Alan; Anderson, Scott A.; Linne von Berg, Dale; Davidson, Morgan; Holt, Niel; Kruer, Melvin; Wilson, Michael L.

    2010-04-01

    EyePod is a compact survey and inspection day/night imaging sensor suite for small unmanned aircraft systems (UAS). EyePod generates georeferenced image products in real-time from visible near infrared (VNIR) and long wave infrared (LWIR) imaging sensors and was developed under the ONR funded FEATHAR (Fusion, Exploitation, Algorithms, and Targeting for High-Altitude Reconnaissance) program. FEATHAR is being directed and executed by the Naval Research Laboratory (NRL) in conjunction with the Space Dynamics Laboratory (SDL) and FEATHAR's goal is to develop and test new tactical sensor systems specifically designed for small manned and unmanned platforms (payload weight < 50 lbs). The EyePod suite consists of two VNIR/LWIR (day/night) gimbaled sensors that, combined, provide broad area survey and focused inspection capabilities. Each EyePod sensor pairs an HD visible EO sensor with a LWIR bolometric imager providing precision geo-referenced and fully digital EO/IR NITFS output imagery. The LWIR sensor is mounted to a patent-pending jitter-reduction stage to correct for the high-frequency motion typically found on small aircraft and unmanned systems. Details will be presented on both the wide-area and inspection EyePod sensor systems, their modes of operation, and results from recent flight demonstrations.

  16. Energy-absorbing-beam design for composite aircraft subfloors

    NASA Technical Reports Server (NTRS)

    Carden, Huey D.; Kellas, Sotiris

    1993-01-01

    Data have been presented from the design support testing of composite energy absorbing (EA) aircraft subfloor structures. The focus of the current study is the design and testing of subfloor structural concepts that would limit the loads transmitted to occupants to less than 20 g at crush speeds of approximately 30 fps. The EA composite subfloor is being designed to replace an existing noncrashworthy metallic subfloor in a composite aircraft prior to a full-scale crash test. A sandwich spar construction of a sine wave beam was chosen for evaluation and was found to have excellent energy absorbing characteristics. The design objective of obtaining sustained crushing loads of the spar between 200-300 lbf/inch were achieved for potentially limiting occupants loads to around 20 g's. Stroke efficiency of up to 79 percent of the initial spar height under desired sustained crushing loads was obtained which is far greater than the level provided by metal structure. Additionally, a substantial residual spar stiffness was retained after impact, and the flange integrity, which is critical for seat retention, was maintained after crushing of the spars.

  17. Energy-absorbing-beam design for composite aircraft subfloors

    NASA Technical Reports Server (NTRS)

    Carden, Huey D.; Kellas, Sotiris

    1993-01-01

    Data have been presented from the design support testing of composite energy absorbing (EA) aircraft subfloor structures. The focus of the current study is the design and testing of subfloor structural concepts that would limit the loads transmitted to occupants to less than 20 g at crush speeds of approximately 30 fps. The EA composite subfloor is being designed to replace an existing noncrashworthy metallic subfloor in a composite aircraft prior to a full-scale crash test. A sandwich spar construction of a sine wave beam was chosen for evaluation and was found to have excellent energy absorbing characteristics. The design objective of obtaining sustained crushing loads of the spar between 200-300 lbf/inch were achieved for potentially limiting occupants loads to around 20 g's. Stroke efficiency of up to 79 percent of the initial spar height under desired sustained crushing loads was obtained which is far greater than the level provided by metal structure. Additionally, a substantial residual spar stiffness was retained after impact, and the flange integrity, which is critical for seat retention, was maintained after crushing of the spars.

  18. Advanced composite vertical stabilizer for DC-10 transport aircraft

    NASA Technical Reports Server (NTRS)

    Stephens, C. O.

    1979-01-01

    Structural design, tooling, fabrication, and test activities are reported for a program to develop an advanced composite vertical stabilizer (CVS) for the DC 10 Commercial Transport Aircraft. Structural design details are described and the status of structural and weight analyses are reported. A structural weight reduction of 21.7% is currently predicted. Test results are discussed for sine wave stiffened shear webs containing representative of the CVS spar webs and for lightning current transfer and tests on a panel representative of the CVS skins.

  19. Lightning protection technology for small general aviation composite material aircraft

    NASA Technical Reports Server (NTRS)

    Plumer, J. A.; Setzer, T. E.; Siddiqi, S.

    1993-01-01

    An on going NASA (Small Business Innovative Research) SBIR Phase II design and development program will produce the first lightning protected, fiberglass, General Aviation aircraft that is available as a kit. The results obtained so far in development testing of typical components of the aircraft kit, such as the wing and fuselage panels indicate that the lightning protection design methodology and materials chosen are capable of protecting such small composite airframes from lightning puncture and structural damage associated with severe threat lightning strikes. The primary objective of the program has been to develop a lightening protection design for full scale test airframe and verify its adequacy with full scale laboratory testing, thus enabling production and sale of owner-built, lightning-protected, Stoddard-Hamilton Aircraft, Inc. Glasair II airplanes. A second objective has been to provide lightning protection design guidelines for the General Aviation industry, and to enable these airplanes to meet lightening protection requirements for certification of small airplanes. This paper describes the protection design approaches and development testing results obtained thus far in the program, together with design methodology which can achieve the design goals listed above. The presentation of this paper will also include results of some of the full scale verification tests, which will have been completed by the time of this conference.

  20. Environmental exposure effects on composite materials for commercial aircraft

    NASA Technical Reports Server (NTRS)

    Hoffman, Daniel J.; Bielawski, William J.

    1991-01-01

    A study was conducted to determine the effects of long term flight and ground exposure on three commercially available graphite-epoxy material systems: T300/5208, T300/5209, and T300/934. Sets of specimens were exposed on commercial aircraft and ground racks for 1, 2, 3, 5, and 10 years. Inflight specimen sites included both the interior and exterior of aircraft based in Hawaii, Texas, and New Zealand. Ground racks were located at NASA-Dryden and the above mentioned states. Similar specimens were exposed to controlled lab conditions for up to 2 years. After each exposure, specimens were tested for residual strength and a dryout procedure was used to measure moisture content. Both room and high temperature residual strengths were measured and expressed as a pct. of the unexposed strength. Lab exposures included the effects of time alone, moisture, time on moist specimens, weatherometer, and simulated ground-air-ground cycling. Residual strengths of the long term specimens were compared with residual strengths of the lab specimens. Strength retention depended on the exposure condition and the material system. Results showed that composite materials can be successfully used on commercial aircraft if environmental effects are considered.

  1. Non-Contact Inspection of Composites Using Air-Coupled Ultrasound

    NASA Astrophysics Data System (ADS)

    Peters, J.; Kommareddy, V.; Liu, Z.; Fei, D.; Hsu, D.

    2003-03-01

    Conventional ultrasonic tests are conducted using water as a transmitting medium. Water coupled ultrasound cannot be applied to certain water-sensitive or porous materials and is more difficult to use in the field. In contrast, air-coupled ultrasound is non-contact and has clear advantages over water-coupled testing. The technology of air-coupled ultrasound has gained maturity in recent years. Some systems have become commercially available and researchers are pursuing several different modalities of air-coupled transduction. This paper reports our experience of applying air-coupled ultrasound to the inspection of flaws, damage, and normal internal structures of composite parts. Through-transmission C-scans at 400 kHz using a focused receiver has resolution sufficient to image honeycomb cells in the sandwich core. With the transmitter and receiver on the same side of a laminate. Lamb waves were generated and used for the imaging of substructures. Air-coupled scan results are presented for flaw detection and damage in aircraft composite structures.

  2. Development of Stitched Composite Structure for Advanced Aircraft

    NASA Technical Reports Server (NTRS)

    Jegley, Dawn; Przekop, Adam; Rouse, Marshall; Lovejoy, Andrew; Velicki, Alex; Linton, Kim; Wu, Hsi-Yung; Baraja, Jaime; Thrash, Patrick; Hoffman, Krishna

    2015-01-01

    NASA has created the Environmentally Responsible Aviation Project to develop technologies which will reduce the impact of aviation on the environment. A critical aspect of this pursuit is the development of a lighter, more robust airframe that will enable the introduction of unconventional aircraft configurations. NASA and The Boeing Company are working together to develop a structural concept that is lightweight and an advancement beyond state-of-the-art composites. The Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) is an integrally stiffened panel design where elements are stitched together and designed to maintain residual load-carrying capabilities under a variety of damage scenarios. With the PRSEUS concept, through-the-thickness stitches are applied through dry fabric prior to resin infusion, and replace fasteners throughout each integral panel. Through-the-thickness reinforcement at discontinuities, such as along flange edges, has been shown to suppress delamination and turn cracks, which expands the design space and leads to lighter designs. The pultruded rod provides stiffening away from the more vulnerable skin surface and improves bending stiffness. A series of building blocks were evaluated to explore the fundamental assumptions related to the capability and advantages of PRSEUS panels. These building blocks addressed tension, compression, and pressure loading conditions. The emphasis of the development work has been to assess the loading capability, damage arrestment features, repairability, post-buckling behavior, and response of PRSEUS flat panels to out-of plane pressure loading. The results of this building-block program from coupons through an 80%-scale pressure box have demonstrated the viability of a PRSEUS center body for the Hybrid Wing Body (HWB) transport aircraft. This development program shows that the PRSEUS benefits are also applicable to traditional tube-andwing aircraft, those of advanced configurations, and other

  3. Evaluation of Advanced Non-Destructive Inspection Methods for Aircraft Tires.

    DTIC Science & Technology

    1980-02-01

    return to service. The advanced NOT inspection systems considered were: the air needle buffing, holographic, pulse-echo ultrasound , and x-ray types. A...The principal domestic manufacturers were Westinghouse, Picker Corporation, Imagex, INc., and Monsanto Company. At the time this evaluation study was...soliciting inspection sources, Westinghouse was no longer offering tire inspection equipment nor was Picker Corporation. Monsanto Company had purchased

  4. Investigation of the Potential for FTIR as a Nondestructive Inspection Technique for Aircraft Coating Degradation

    DTIC Science & Technology

    2014-03-27

    functions of a coating material is to protect against corrosion of the underlying panel. When the coating fails, moisture and air are able to penetrate...1.1. Background Aircraft have long been coated to protect against damage, provide camouflage, and aesthetic purposes. One of the most important...aircraft coating .................................... 9 Figure 2.3: Tapping mode AFM images of filiform corrosion

  5. A study on the utilization of advanced composites in commercial aircraft wing structure: Executive summary

    NASA Technical Reports Server (NTRS)

    Watts, D. J.

    1978-01-01

    The overall wing study objectives are to study and plan the effort by commercial transport aircraft manufacturers to accomplish the transition from current conventional materials and practices to extensive use of advanced composites in wings of aircraft that will enter service in the 1985-1990 time period. Specific wing study objectives are to define the technology and data needed to support an aircraft manufacturer's commitment to utilize composites primary wing structure in future production aircraft and to develop plans for a composite wing technology program which will provide the needed technology and data.

  6. Damage tolerance assessment of bonded composite doubler repairs for commercial aircraft applications

    SciTech Connect

    Roach, D.

    1998-08-01

    The Federal Aviation Administration has sponsored a project at its Airworthiness Assurance NDI Validation Center (AANC) to validate the use of bonded composite doublers on commercial aircraft. A specific application was chosen in order to provide a proof-of-concept driving force behind this test and analysis project. However, the data stemming from this study serves as a comprehensive evaluation of bonded composite doublers for general use. The associated documentation package provides guidance regarding the design, analysis, installation, damage tolerance, and nondestructive inspection of these doublers. This report describes a series of fatigue and strength tests which were conducted to study the damage tolerance of Boron-Epoxy composite doublers. Tension-tension fatigue and ultimate strength tests attempted to grow engineered flaws in coupons with composite doublers bonded to aluminum skin. An array of design parameters, including various flaw scenarios, the effects of surface impact, and other off-design conditions, were studied. The structural tests were used to: (1) assess the potential for interply delaminations and disbonds between the aluminum and the laminate, and (2) determine the load transfer and crack mitigation capabilities of composite doublers in the presence of severe defects. A series of specimens were subjected to ultimate tension tests in order to determine strength values and failure modes. It was demonstrated that even in the presence of extensive damage in the original structure (cracks, material loss) and in spite of non-optimum installations (adhesive disbonds), the composite doubler allowed the structure to survive more than 144,000 cycles of fatigue loading. Installation flaws in the composite laminate did not propagate over 216,000 fatigue cycles. Furthermore, the added impediments of impact--severe enough to deform the parent aluminum skin--and hot-wet exposure did not effect the doubler`s performance. Since the tests were conducting

  7. Inspecting Composite Ceramic Armor Using Advanced Signal Processing Together with Phased Array Ultrasound

    DTIC Science & Technology

    2010-01-08

    processing techniques have been developed to help improve phased array ultrasonic inspection and analysis of multi-layered ceramic armor panels. The...INSPECTING COMPOSITE CERAMIC ARMOR USING ADVANCED SIGNAL PROCESSING TOGETHER WITH PHASED ARRAY ULTRASOUND J. S. Steckenrider Illinois College...immersion phased array ultrasound system. Some of these specimens had intentional design defects inserted interior to the specimens. Because of the very

  8. Awareness grows of importance of human factors issues in aircraft maintenance and inspection.

    PubMed

    1996-01-01

    Until recently, the role of human factors in maintenance operations was not adequately addressed. That is changing, because it is clear that human error in aircraft maintenance can have a serious impact on flight safety.

  9. Provisional rules for the inspection of aircraft adopted by the French Bureau Veritas

    NASA Technical Reports Server (NTRS)

    1924-01-01

    These new regulations are intended to replace those of November 1, 1922, and give the directions to be followed in the supervision of aircraft by the agents of the Aeronautical Section of the Bureau Veritas.

  10. Damage tolerant composite wing panels for transport aircraft

    NASA Technical Reports Server (NTRS)

    Smith, Peter J.; Wilson, Robert D.; Gibbins, M. N.

    1985-01-01

    Commercial aircraft advanced composite wing surface panels were tested for durability and damage tolerance. The wing of a fuel-efficient, 200-passenger airplane for 1990 delivery was sized using grahite-epoxy materials. The damage tolerance program was structured to allow a systematic progression from material evaluations to the optimized large panel verification tests. The program included coupon testing to evaluate toughened material systems, static and fatigue tests of compression coupons with varying amounts of impact damage, element tests of three-stiffener panels to evaluate upper wing panel design concepts, and the wing structure damage environment was studied. A series of technology demonstration tests of large compression panels is performed. A repair investigation is included in the final large panel test.

  11. Potential release of fibers from burning carbon composites. [aircraft fires

    NASA Technical Reports Server (NTRS)

    Bell, V. L.

    1980-01-01

    A comprehensive experimental carbon fiber source program was conducted to determine the potential for the release of conductive carbon fibers from burning composites. Laboratory testing determined the relative importance of several parameters influencing the amounts of single fibers released, while large-scale aviation jet fuel pool fires provided realistic confirmation of the laboratory data. The dimensions and size distributions of fire-released carbon fibers were determined, not only for those of concern in an electrical sense, but also for those of potential interest from a health and environmental standpoint. Fire plume and chemistry studies were performed with large pool fires to provide an experimental input into an analytical modelling of simulated aircraft crash fires. A study of a high voltage spark system resulted in a promising device for the detection, counting, and sizing of electrically conductive fibers, for both active and passive modes of operation.

  12. Environmental exposure effects on composite materials for commercial aircraft

    NASA Technical Reports Server (NTRS)

    Gibbins, M. N.; Hoffman, D. J.

    1982-01-01

    The effects of environmental exposure on composite materials are studied. The environments considered are representative of those experienced by commercial jet aircraft. Initial results have been compiled for the following material systems: T300/5208, T300/5209 and T300/934. Specimens were exposed on the exterior and interior of Boeing 737 airplanes of three airlines, and to continuous ground level exposure at four locations. In addition specimens were exposed in the laboratory to conditions such as: simulated ground-air-ground, weatherometer, and moisture. Residual strength results are presented for specimens exposed for up to two years at three ground level exposure locations and on airplanes from two airlines. Test results are also given for specimens exposed to the laboratory simulated environments. Test results indicate that short beam shear strength is sensitive to environmental exposure and dependent on the level of absorbed moisture.

  13. Environmental exposure effects on composite materials for commercial aircraft

    NASA Technical Reports Server (NTRS)

    Coggeshall, R. L.

    1985-01-01

    The effects of environmental exposure on composite materials are determined. The environments considered are representative of those experienced by commercial jet aircraft. Initial results have been compiled for the following material systems: T300/5208, T300/5209, and T300/934. Future results will include AS-1/3501-6 and Kevlar 49/F161-188. Specimens are exposed on the exterior and interior of 737 airplanes of three airlines, and to continuous ground-level exposure at four locations. In addition, specimens are exposed in the laboratory to conditions such as: simulated ground-air-ground, weatherometer, and moisture. Residual strength results are presented for specimens exposed for up to five years at five ground-level exposure locations and on airplanes from one airline.

  14. Nondestructive inspection of tagged composites using real-time magneto-optic imaging

    NASA Astrophysics Data System (ADS)

    Fitzpatrick, Gerald L.; Thome, David K.; Skaugset, Richard L.; Shih, William C.

    1996-11-01

    While magneto-optic/eddy current imagers (MOIs) are widely used for the nondestructive inspection (NDI) of aging aluminum airframes, they are not currently used to inspect aerospace composites for two reasons. First, most composites are essentially electrical insulators, which makes it difficult for the MOI to induce sufficient eddy currents in these materials for imaging. Second, unlike steel, which can be easily magnetized and inspected using the MOI, most composites are not appreciably magnetic. Exceptions to these two stated limitations are composites containing electrically conducting 'screens' of aluminum or copper for lighting-protection, 'stealthy' military composites containing iron particles for radar absorption, and some commercial composites containing nickel-coated carbon fibers for lighting protection and/or electromagnetic shielding. These existing composites can be inspected, to one degree or another,with the MOI. Moreover, by 'tagging' the matrix component of newly-manufactured composites with magnetic oxides, excellent MOI images of cracks, voids, potential disbonds and defects in fiber-weave are possible. Experimental results presented here demonstrate these facts. It is anticipated that when this new technology is perfected, and when magnetic 'tagging' at the time of manufacture becomes an accepted practice, the MOI will be widely used for the NDI of composites during their manufacture, in-service inspection or repair.

  15. Photometric stereo sensor for robot-assisted industrial quality inspection of coated composite material surfaces

    NASA Astrophysics Data System (ADS)

    Weigl, Eva; Zambal, Sebastian; Stöger, Matthias; Eitzinger, Christian

    2015-04-01

    While composite materials are increasingly used in modern industry, the quality control in terms of vision-based surface inspection remains a challenging task. Due to the often complex and three-dimensional structures, a manual inspection of these components is nearly impossible. We present a photometric stereo sensor system including an industrial robotic arm for positioning the sensor relative to the inspected part. Two approaches are discussed: stop-and-go positioning and continuous positioning. Results are presented on typical defects that appear on various composite material surfaces in the production process.

  16. Simulation of an Impact Test of the All-Composite Lear Fan Aircraft

    NASA Technical Reports Server (NTRS)

    Stockwell, Alan E.; Jones, Lisa E. (Technical Monitor)

    2002-01-01

    An MSC.Dytran model of an all-composite Lear Fan aircraft fuselage was developed to simulate an impact test conducted at the NASA Langley Research Center Impact Dynamics Research Facility (IDRF). The test was the second of two Lear Fan impact tests. The purpose of the second test was to evaluate the performance of retrofitted composite energy-absorbing floor beams. A computerized photogrammetric survey was performed to provide airframe geometric coordinates, and over 5000 points were processed and imported into MSC.Patran via an IGES file. MSC.Patran was then used to develop the curves and surfaces and to mesh the finite element model. A model of the energy-absorbing floor beams was developed separately and then integrated into the Lear Fan model. Structural responses of components such as the wings were compared with experimental data or previously published analytical data wherever possible. Comparisons with experimental results were used to guide structural model modifications to improve the simulation performance. This process was based largely on qualitative (video and still camera images and post-test inspections) rather than quantitative results due to the relatively few accelerometers attached to the structure.

  17. Material Distribution Optimization for the Shell Aircraft Composite Structure

    NASA Astrophysics Data System (ADS)

    Shevtsov, S.; Zhilyaev, I.; Oganesyan, P.; Axenov, V.

    2016-09-01

    One of the main goal in aircraft structures designing isweight decreasing and stiffness increasing. Composite structures recently became popular in aircraft because of their mechanical properties and wide range of optimization possibilities.Weight distribution and lay-up are keys to creating lightweight stiff strictures. In this paperwe discuss optimization of specific structure that undergoes the non-uniform air pressure at the different flight conditions and reduce a level of noise caused by the airflowinduced vibrations at the constrained weight of the part. Initial model was created with CAD tool Siemens NX, finite element analysis and post processing were performed with COMSOL Multiphysicsr and MATLABr. Numerical solutions of the Reynolds averaged Navier-Stokes (RANS) equations supplemented by k-w turbulence model provide the spatial distributions of air pressure applied to the shell surface. At the formulation of optimization problem the global strain energy calculated within the optimized shell was assumed as the objective. Wall thickness has been changed using parametric approach by an initiation of auxiliary sphere with varied radius and coordinates of the center, which were the design variables. To avoid a local stress concentration, wall thickness increment was defined as smooth function on the shell surface dependent of auxiliary sphere position and size. Our study consists of multiple steps: CAD/CAE transformation of the model, determining wind pressure for different flow angles, optimizing wall thickness distribution for specific flow angles, designing a lay-up for optimal material distribution. The studied structure was improved in terms of maximum and average strain energy at the constrained expense ofweight growth. Developed methods and tools can be applied to wide range of shell-like structures made of multilayered quasi-isotropic laminates.

  18. Robotic inspection of fiber reinforced composites using phased array UT

    NASA Astrophysics Data System (ADS)

    Stetson, Jeffrey T.; De Odorico, Walter

    2014-02-01

    Ultrasound is the current NDE method of choice to inspect large fiber reinforced airframe structures. Over the last 15 years Cartesian based scanning machines using conventional ultrasound techniques have been employed by all airframe OEMs and their top tier suppliers to perform these inspections. Technical advances in both computing power and commercially available, multi-axis robots now facilitate a new generation of scanning machines. These machines use multiple end effector tools taking full advantage of phased array ultrasound technologies yielding substantial improvements in inspection quality and productivity. This paper outlines the general architecture for these new robotic scanning systems as well as details the variety of ultrasonic techniques available for use with them including advances such as wide area phased array scanning and sound field adaptation for non-flat, non-parallel surfaces.

  19. Fabrication of Fabry-Perot Interferometer Sensors and Characterization of their Performances for Aircraft Inspection

    NASA Technical Reports Server (NTRS)

    Pendergrass, LeRuth Q.

    1995-01-01

    This work provides the information for fabricating Fabry-Perot Interferometer sensors and their performances. The Fabry-Perot Interferometer sensors developed here will be used for the detection of flaws in aircraft structures. The sequel also contains discussion of the experimental setups for the Ultrasonic technique and the Fabry-Perot Interferometer.

  20. Full-scale testing and progressive damage modeling of sandwich composite aircraft fuselage structure

    NASA Astrophysics Data System (ADS)

    Leone, Frank A., Jr.

    A comprehensive experimental and computational investigation was conducted to characterize the fracture behavior and structural response of large sandwich composite aircraft fuselage panels containing artificial damage in the form of holes and notches. Full-scale tests were conducted where panels were subjected to quasi-static combined pressure, hoop, and axial loading up to failure. The panels were constructed using plain-weave carbon/epoxy prepreg face sheets and a Nomex honeycomb core. Panel deformation and notch tip damage development were monitored during the tests using several techniques, including optical observations, strain gages, digital image correlation (DIC), acoustic emission (AE), and frequency response (FR). Additional pretest and posttest inspections were performed via thermography, computer-aided tap tests, ultrasound, x-radiography, and scanning electron microscopy. The framework to simulate damage progression and to predict residual strength through use of the finite element (FE) method was developed. The DIC provided local and full-field strain fields corresponding to changes in the state-of-damage and identified the strain components driving damage progression. AE was monitored during loading of all panels and data analysis methodologies were developed to enable real-time determination of damage initiation, progression, and severity in large composite structures. The FR technique has been developed, evaluating its potential as a real-time nondestructive inspection technique applicable to large composite structures. Due to the large disparity in scale between the fuselage panels and the artificial damage, a global/local analysis was performed. The global FE models fully represented the specific geometries, composite lay-ups, and loading mechanisms of the full-scale tests. A progressive damage model was implemented in the local FE models, allowing the gradual failure of elements in the vicinity of the artificial damage. A set of modifications

  1. Recent NASA progress in composites. [application to spacecraft and aircraft structures

    NASA Technical Reports Server (NTRS)

    Heldenfels, R. R.

    1975-01-01

    The application of composites in aerospace vehicle structures is reviewed. Research and technology program results and specific applications to space vehicles, aircraft engines, and aircraft and helicopter structures are discussed in detail. Particular emphasis is given to flight service evaluation programs that are or will be accumulating substantial experience with secondary and primary structural components on military and commercial aircraft to increase confidence in their use.

  2. Automated Ultrasonic Disbond Inspection of Metal Matrix Composite Tank Track Shoes

    NASA Astrophysics Data System (ADS)

    Xiang, Dan; Zhao, George; Raju, Basavaraju B.

    2010-02-01

    An automated disbond inspection system using an ultrasonic array for Metal Matrix Composite (MMC) tank track shoes has been developed. To ensure a reliable inspection, we investigated the test procedures and disbond identification criteria. A standard specimen was designed and fabricated for calibration of the transducer array. This specimen was also used to study the variables that affect the system performance, such as the repeatability and reproducibility with respect to acoustic coupling, and contact conditions, etc. Based on the statistic data analysis, an automated test procedure and criteria for detection and classification of MMC disbond have been established. By applying the inspection procedure to a set of track shoes, we have achieved more reproducible and reliable inspection results than previous tests. The inspection results were confirmed by ultrasonic C-scans.

  3. Flight service evaluation of kevlar-49 epoxy composite panels in wide-bodied commercial transport aircraft: Flight service report

    NASA Technical Reports Server (NTRS)

    Stone, R. H.

    1981-01-01

    Kevlar-49 fairing panels, installed as flight service components on three L-1011s, were inspected after 7 years service. There are six Kevlar-49 panels on each aircraft: a left hand and right hand set of a wing-body sandwich fairing; a slid laminate under-wing fillet panel; and a 422 K service aft engine fairing. The three L-1011s include one each in service with Eastern, Air Canada, and TWA. The fairings have accumulated a total of 52,500 hours, with one ship set having 17.700 hours service. The inspections were conducted at the airlines' major maintenance bases with the participation of Lockheed Engineering. The Kevlar-49 components were found to be performing satisfactorily in service with no major problems or any condition requiring corrective action. The only defects noted were minor impact damage and a minor degree of fastener hole fraying and elongation. These are for the most part comparable to damage noted on fiberglass fairings. The service history to date indicates that Kevlar-49 epoxy composite materials have satisfactory service characteristics for use in aircraft secondary structure.

  4. Evaluation of efficiency of aircraft liquid waste treatment and identification of daily inspection indices: a case study in Changchun, China.

    PubMed

    Xu, Jianling; Yang, Jiaqi; Zhao, Nan; Sheng, Lianxi; Zhao, Yuanhui; Tang, Zhanhui

    2013-07-01

    Evaluation of the efficiency of aircraft liquid waste treatment has previously been conducted to prevent pollution of the environment. The current study aimed to provide a set of practical methods for efficient airport sanitary supervision. Aircraft liquid waste was collected at Longjia International Airport, Changchun from multiple flights. The efficiency of liquid waste treatment as well as the water quality of the wastewater processed via a second-stage wastewater facility were examined by measuring a number of physical, chemical, and biological indices. Our results indicated that treatment solely via resolvable sanitizing liquid was not sufficient. Although the contents of first-class pollutants all met the requirements of the standard criteria, the contents of a number of second-class pollutants did not satisfy these criteria. However, after further treatment via a second-stage wastewater facility installed at the airport, all indices reached second-grade requirements of the discharge standard. We suggest that daily inspection and quarantine indices at airports should include the suspension content, biological oxygen demands after 5 days, chemical oxygen demand total organic carbon content, amino nitrogen content, total phosphorous content, and the level of fecal coliforms.

  5. Smart patches: self-monitoring composite patches for the repair of aircraft

    NASA Astrophysics Data System (ADS)

    Crossley, Samuel D.; Marioli-Riga, Zaira; Tsamasphyros, George; Kanderakis, George; Furnarakis, Nikos; Ikiades, Aris; Konstantaki, Mary

    2004-03-01

    Conventional aircraft repair techniques employ bolted or riveted metallic reinforcements, which frequently introduce additional stress concentrations leading to further cracking and creating areas difficult or impossible to inspect. Bonded composite repairs ("patches") result in the elimination of stress concentrations caused by additional fastener holes, improved strength to weight ratio and present a sealed interface. This reduces even further the danger of corrosion and fretting under the repair, gives greater flexibility in design and lessens application time while lengthening fatigue life. Embedding optical fibres and sensors into the patch, and combining this with advanced data collection and processing systems, creating a so-called "smart patch", will enable the real-time assessment of aircraft structural integrity resulting in reliable prediction of maintenance requirements for repaired structures. This paper describes the current state of the art in smart patch technology, and includes a detailed description of the measurement problem and of the work being undertaken to solve it, at both the component and system level. An analysis of typical crack behaviour, based on FE modelling is presented and this demonstrates the need for optical strain sensors having a very short gauge length. The paper discusses the advantages and limitations of very short Fibre Bragg Gratings (FBGs) in this context and also provides early experimental data from 1mm and 2mm gratings which have been fabricated for this purpose. The paper also describes the impact of the measurement and environmental constraints on the design of the FBG interrogation system and presents the results of initial trials. The work is being undertaken in the framework of a collaborative project (ACIDS) which is co-funded by the European Commission.

  6. Thermography Inspection for Early Detection of Composite Damage in Structures During Fatigue Loading

    NASA Technical Reports Server (NTRS)

    Zalameda, Joseph N.; Burke, Eric R.; Parker, F. Raymond; Seebo, Jeffrey P.; Wright, Christopher W.; Bly, James B.

    2012-01-01

    Advanced composite structures are commonly tested under controlled loading. Understanding the initiation and progression of composite damage under load is critical for validating design concepts and structural analysis tools. Thermal nondestructive evaluation (NDE) is used to detect and characterize damage in composite structures during fatigue loading. A difference image processing algorithm is demonstrated to enhance damage detection and characterization by removing thermal variations not associated with defects. In addition, a one-dimensional multilayered thermal model is used to characterize damage. Lastly, the thermography results are compared to other inspections such as non-immersion ultrasonic inspections and computed tomography X-ray.

  7. Aircraft

    DOEpatents

    Hibbs, Bart D.; Lissaman, Peter B. S.; Morgan, Walter R.; Radkey, Robert L.

    1998-01-01

    This disclosure provides a solar rechargeable aircraft that is inexpensive to produce, is steerable, and can remain airborne almost indefinitely. The preferred aircraft is a span-loaded flying wing, having no fuselage or rudder. Travelling at relatively slow speeds, and having a two-hundred foot wingspan that mounts photovoltaic cells on most all of the wing's top surface, the aircraft uses only differential thrust of its eight propellers to turn. Each of five sections of the wing has one or more engines and photovoltaic arrays, and produces its own lift independent of the other sections, to avoid loading them. Five two-sided photovoltaic arrays, in all, are mounted on the wing, and receive photovoltaic energy both incident on top of the wing, and which is incident also from below, through a bottom, transparent surface. The aircraft is capable of a top speed of about ninety miles per hour, which enables the aircraft to attain and can continuously maintain altitudes of up to sixty-five thousand feet. Regenerative fuel cells in the wing store excess electricity for use at night, such that the aircraft can sustain its elevation indefinitely. A main spar of the wing doubles as a pressure vessel that houses hydrogen and oxygen gasses for use in the regenerative fuel cell. The aircraft has a wide variety of applications, which include weather monitoring and atmospheric testing, communications, surveillance, and other applications as well.

  8. Aircraft

    DOEpatents

    Hibbs, B.D.; Lissaman, P.B.S.; Morgan, W.R.; Radkey, R.L.

    1998-09-22

    This disclosure provides a solar rechargeable aircraft that is inexpensive to produce, is steerable, and can remain airborne almost indefinitely. The preferred aircraft is a span-loaded flying wing, having no fuselage or rudder. Travelling at relatively slow speeds, and having a two-hundred foot wingspan that mounts photovoltaic cells on most all of the wing`s top surface, the aircraft uses only differential thrust of its eight propellers to turn. Each of five sections of the wing has one or more engines and photovoltaic arrays, and produces its own lift independent of the other sections, to avoid loading them. Five two-sided photovoltaic arrays, in all, are mounted on the wing, and receive photovoltaic energy both incident on top of the wing, and which is incident also from below, through a bottom, transparent surface. The aircraft is capable of a top speed of about ninety miles per hour, which enables the aircraft to attain and can continuously maintain altitudes of up to sixty-five thousand feet. Regenerative fuel cells in the wing store excess electricity for use at night, such that the aircraft can sustain its elevation indefinitely. A main spar of the wing doubles as a pressure vessel that houses hydrogen and oxygen gases for use in the regenerative fuel cell. The aircraft has a wide variety of applications, which include weather monitoring and atmospheric testing, communications, surveillance, and other applications as well. 31 figs.

  9. Costs and benefits of composite material applications to a civil STOL aircraft

    NASA Technical Reports Server (NTRS)

    Logan, T. R.

    1974-01-01

    Costs and benefits of advanced composite primary airframe structure were studied to determine cost-effective applications to a civil STOL aircraft designed for introduction in the early 1980 time period. Applications were assessed by comparing costs and weights with a baseline metal aircraft which served as a basis of comparison throughout the study. Costs as well as weights were estimated from specific designs of principal airframe components, thus establishing a cost-data base for the study. Cost effectiveness was judged by an analysis that compared direct operating costs and return on investment of the composite and baseline aircraft. A systems operations analysis was performed to judge effects of the smaller, lighter composite aircraft. It was determined that broad applications of advanced composites to the airframe considered could be cost-effective, but this advantage is strongly influenced by structural configuration and several key cost categories.

  10. Advanced manufacturing development of a composite empennage component for L-1011 aircraft

    NASA Technical Reports Server (NTRS)

    Alva, T.; Henkel, J.; Johnson, R.; Carll, B.; Jackson, A.; Mosesian, B.; Brozovic, R.; Obrien, R.; Eudaily, R.

    1982-01-01

    This is the final report of technical work conducted during the fourth phase of a multiphase program having the objective of the design, development and flight evaluation of an advanced composite empennage component manufactured in a production environment at a cost competitive with those of its metal counterpart, and at a weight savings of at least 20 percent. The empennage component selected for this program is the vertical fin box of the L-1011 aircraft. The box structure extends from the fuselage production joint to the tip rib and includes front and rear spars. During Phase 4 of the program, production quality tooling was designed and manufactured to produce three sets of covers, ribs, spars, miscellaneous parts, and subassemblies to assemble three complete ACVF units. Recurring and nonrecurring cost data were compiled and documented in the updated producibility/design to cost plan. Nondestruct inspections, quality control tests, and quality acceptance tests were performed in accordance with the quality assurance plan and the structural integrity control plan. Records were maintained to provide traceability of material and parts throughout the manufacturing development phase. It was also determined that additional tooling would not be required to support the current and projected L-1011 production rate.

  11. Design and Demonstration of Automated Data Analysis Algorithms for Ultrasonic Inspection of Complex Composite Panels with Bonds

    DTIC Science & Technology

    2016-02-01

    AFRL-RX-WP-JA-2017-0194 DESIGN AND DEMONSTRATION OF AUTOMATED DATA ANALYSIS ALGORITHMS FOR ULTRASONIC INSPECTION OF COMPLEX COMPOSITE PANELS...INSPECTION OF COMPLEX COMPOSITE PANELS WITH BONDS (POSTPRINT) 5a. CONTRACT NUMBER IN-HOUSE 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR...data review burden and improve the reliability of the ultrasonic inspection of large composite structures, automated data analysis (ADA) algorithms

  12. Health and usage monitoring system for the small aircraft composite structure

    NASA Astrophysics Data System (ADS)

    Růžička, Milan; Dvořák, Milan; Schmidová, Nikola; Šašek, Ladislav; Štěpánek, Martin

    2017-07-01

    This paper is focused on the design of the health and usage monitoring system (HUMS) of the composite ultra-light aircrafts. A multichannel measuring system was developed and installed for recording of the long-term operational measurements of the UL airplane. Many fiber Bragg grating sensors were implemented into the composite aircraft structure, mainly in the glue joints. More than ten other analog functions and signals of the aircraft is monitored and can be correlated together. Changing of the FBG sensors responses in monitored places and their correlations, comparing with the calibration and recalibration procedures during a monitored life may indicate damage (eg. in bonded joints) and complements the HUMS system.

  13. Electromagnetic on-aircraft antenna radiation in the presence of composite plates

    NASA Technical Reports Server (NTRS)

    Kan, S. H-T.; Rojas, R. G.

    1994-01-01

    The UTD-based NEWAIR3 code is modified such that it can model modern aircraft by composite plates. One good model of conductor-backed composites is the impedance boundary condition where the composites are replaced by surfaces with complex impedances. This impedance-plate model is then used to model the composite plates in the NEWAIR3 code. In most applications, the aircraft distorts the desired radiation pattern of the antenna. However, test examples conducted in this report have shown that the undesired scattered fields are minimized if the right impedance values are chosen for the surface impedance plates.

  14. Real-time monitoring system of composite aircraft wings utilizing Fibre Bragg Grating sensor

    NASA Astrophysics Data System (ADS)

    Vorathin, E.; Hafizi, Z. M.; Che Ghani, S. A.; Lim, K. S.

    2016-10-01

    Embedment of Fibre Bragg Grating (FBG) sensor in composite aircraft wings leads to the advancement of structural condition monitoring. The monitored aircraft wings have the capability to give real-time response under critical loading circumstances. The main objective of this paper is to develop a real-time FBG monitoring system for composite aircraft wings to view real-time changes when the structure undergoes some static loadings and dynamic impact. The implementation of matched edge filter FBG interrogation system to convert wavelength variations to strain readings shows that the structure is able to response instantly in real-time when undergoing few loadings and dynamic impact. This smart monitoring system is capable of updating the changes instantly in real-time and shows the weight induced on the composite aircraft wings instantly without any error. It also has a good agreement with acoustic emission (AE) sensor in the dynamic test.

  15. An Enhanced Vacuum Cure Technique for On-Aircraft Repair of Carbon-Bismaleimide Composites

    NASA Astrophysics Data System (ADS)

    Rider, Andrew N.; Baker, Alan A.; Wang, Chun H.; Smith, Graeme

    2011-06-01

    Carbon/bismaleimide (BMI) composite is increasingly employed in critical load carrying aircraft structures designed to operate at temperatures approaching 180°C. The high post-cure temperature (above 220°C) required to fully react the BMI resin, however, renders existing on-aircraft prepreg or wet layup repair methods invalid. This paper presents a new on-aircraft repair technique for carbon/BMI composites. The composite prepregs are first warm-staged to improve the ability to evacuate entrapped air. Then the patch is cured in the scarf cavity using the vacuum bag technique, followed by off-aircraft post-cure. The fully cured patch then can be bonded using a structural adhesive.

  16. Flight service evaluation of Kevlar-49/epoxy composite panels in wide-bodied commercial transport aircraft

    NASA Technical Reports Server (NTRS)

    Stone, R. H.

    1975-01-01

    Kevlar-49 fairing panels were inspected and found to be performing satisfactorily after two years flight service on an Eastern and an Air Canada L-1011. Six panels are on each aircraft including sandwich and solid laminate wing-body panels, and 300 F service aft engine fairings. Some of the panels were removed from the aircraft to permit inspection of inner surfaces and fastener hole conditions. Minor defects such as surface cracks due to impact damage, small delaminated areas, elongation and fraying of fastener holes, were noted. None of these defects were considered serious enough to warrant corrective action in the opinion of airline personnel. The defects are typical for the most part of defects noted on similar fiberglass parts.

  17. Development of Ultrasonic and Fabry-Perot Interferometer for Non-Destruction Inspection of Aging Aircraft

    NASA Technical Reports Server (NTRS)

    Smith, Alphonso C.

    1998-01-01

    Fabry-Perot Interferometer (FPI) sensor detection system was continued and refined modifications were made in the data acquisition and evaluation process during the last year. The ultrasonic and FPI detection system was improved from one to multiple sensor detectors. Physical models were developed to understand the physical phenomenon of this work. Multilayered flawed samples were fabricated for inspection by a prototype ultrasonic and FPI detection. Experimental data was verified with simulated results. Undergraduate students that were associated with this research gained valuable knowledge from this experience. This was a learning process helping students to understand the importance of research and its application to solve important technological problems. As a result of our students exposure to this research two and planning to continue this type of research work in graduate school. A prototype instrument package was laboratory tested an actual airframe structure for documentation purposes.

  18. Aircraft

    DTIC Science & Technology

    2003-01-01

    national power. But with the recent events such as the war with Iraq, the Severe Acute Respiratory Syndrome (SARS) outbreak, some major carriers... TITLE AND SUBTITLE 2003 Industry Studies: Aircraft 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER

  19. Line scanning thermography for rapid nondestructive inspection of large scale composites

    SciTech Connect

    Chung, S.; Ley, O.; Godinez, V.; Bandos, B.

    2011-06-23

    As next generation structures are utilizing larger amounts of composite materials, a rigorous and reliable method is needed to inspect these structures in order to prevent catastrophic failure and extend service life. Current inspection methods, such as ultrasonic, generally require extended down time and man hours as they are typically carried out via point-by-point measurements. A novel Line Scanning Thermography (LST) System has been developed for the non-contact, large-scale field inspection of composite structures with faster scanning times than conventional thermography systems. LST is a patented dynamic thermography technique where the heat source and thermal camera move in tandem, which allows the continuous scan of long surfaces without the loss of resolution. The current system can inspect an area of 10 in{sup 2} per 1 second, and has a resolution of 0.05x0.03 in{sup 2}. Advanced data gathering protocols have been implemented for near-real time damage visualization and post-analysis algorithms for damage interpretation. The system has been used to successfully detect defects (delamination, dry areas) in fiber-reinforced composite sandwich panels for Navy applications, as well as impact damage in composite missile cases and armor ceramic panels.

  20. Line Scanning Thermography for Rapid Nondestructive Inspection of Large Scale Composites

    NASA Astrophysics Data System (ADS)

    Chung, S.; Ley, O.; Godinez, V.; Bandos, B.

    2011-06-01

    As next generation structures are utilizing larger amounts of composite materials, a rigorous and reliable method is needed to inspect these structures in order to prevent catastrophic failure and extend service life. Current inspection methods, such as ultrasonic, generally require extended down time and man hours as they are typically carried out via point-by-point measurements. A novel Line Scanning Thermography (LST) System has been developed for the non-contact, large-scale field inspection of composite structures with faster scanning times than conventional thermography systems. LST is a patented dynamic thermography technique where the heat source and thermal camera move in tandem, which allows the continuous scan of long surfaces without the loss of resolution. The current system can inspect an area of 10 in2 per 1 second, and has a resolution of 0.05×0.03 in2. Advanced data gathering protocols have been implemented for near-real time damage visualization and post-analysis algorithms for damage interpretation. The system has been used to successfully detect defects (delamination, dry areas) in fiber-reinforced composite sandwich panels for Navy applications, as well as impact damage in composite missile cases and armor ceramic panels.

  1. A study on the utilization of advanced composites in commercial aircraft wing structure

    NASA Technical Reports Server (NTRS)

    Watts, D. J.

    1978-01-01

    A study was conducted to define the technology and data needed to support the introduction of advanced composite materials in the wing structure of future production aircraft. The study accomplished the following: (1) definition of acceptance factors, (2) identification of technology issues, (3) evaluation of six candidate wing structures, (4) evaluation of five program options, (5) definition of a composite wing technology development plan, (6) identification of full-scale tests, (7) estimation of program costs for the total development plan, (8) forecast of future utilization of composites in commercial transport aircraft and (9) identification of critical technologies for timely program planning.

  2. Advanced composite elevator for Boeing 727 aircraft, volume 2

    NASA Technical Reports Server (NTRS)

    Chovil, D. V.; Grant, W. D.; Jamison, E. S.; Syder, H.; Desper, O. E.; Harvey, S. T.; Mccarty, J. E.

    1980-01-01

    Preliminary design activity consisted of developing and analyzing alternate design concepts and selecting the optimum elevator configuration. This included trade studies in which durability, inspectability, producibility, repairability, and customer acceptance were evaluated. Preliminary development efforts consisted of evaluating and selecting material, identifying ancillary structural development test requirements, and defining full scale ground and flight test requirements necessary to obtain Federal Aviation Administration (FAA) certification. After selection of the optimum elevator configuration, detail design was begun and included basic configuration design improvements resulting from manufacturing verification hardware, the ancillary test program, weight analysis, and structural analysis. Detail and assembly tools were designed and fabricated to support a full-scope production program, rather than a limited run. The producibility development programs were used to verify tooling approaches, fabrication processes, and inspection methods for the production mode. Quality parts were readily fabricated and assembled with a minimum rejection rate, using prior inspection methods.

  3. Airborne ultrasonic inspection in carbon/carbon composite materials

    NASA Astrophysics Data System (ADS)

    Yang, In-Young; Kim, Young-Hun; Park, Je-Woong; Hsu, David K.; Song, Song-Jin; Cho, Hyun-Jun; Kim, Sun-Kyu; Im, Kwang-Hee

    2007-07-01

    In this work, a carbon/carbon (C/C) composite material was nondestructively characterized with non-contact ultrasonic methods using automated acquisition scanner as well as contact ultrasonic measurement because (C/C) composite materials have obvious high price over conventional materials. Because of permeation of coupling medium such as water, it is desirable to perform contact-less nondestructive evaluation to assess material properties and part homogeneity. Also through transmission mode was performed because of the main limitation for air-coupled transducers, which is the acoustic impedance mismatch between most materials and air. Especially ultrasonic images and velocities for C/C composite disk brake was measured and found to be consistent to some degree with the non-contact and contact ultrasonic measurement methods. Low frequency through-transmission scans based on both amplitude and time-of-flight of the ultrasonic pulse were used for mapping out the material property inhomogeneity. Measured results were compared with those obtained by the motorized system with using dry-coupling ultrasonics and through transmission method in immersion. Finally, results using a proposed peak-delay measurement method well corresponded to ultrasonic velocities of the pulse overlap method.

  4. Probability of Detection Study on Impact Damage to Honeycomb Composite Structure using Thermographic Inspection

    NASA Technical Reports Server (NTRS)

    Hodge, Andrew J.; Walker, James L., II

    2008-01-01

    A probability of detection study was performed for the detection of impact damage using flash heating infrared thermography on a full scale honeycomb composite structure. The honeycomb structure was an intertank structure from a previous NASA technology demonstration program. The intertank was fabricated from IM7/8552 carbon fiber/epoxy facesheets and aluminum honeycomb core. The intertank was impacted in multiple locations with a range of impact energies utilizing a spherical indenter. In a single blind study, the intertank was inspected with thermography before and after impact damage was incurred. Following thermographic inspection several impact sites were sectioned from the intertank and cross-sectioned for microscopic comparisons of NDE detection and actual damage incurred. The study concluded that thermographic inspection was a good method of detecting delamination damage incurred by impact. The 90/95 confidence level on the probability of detection was close to the impact energy that delaminations were first observed through cross-sectional analysis.

  5. Carbon fiber composites inspection and defect characterization using active infrared thermography: numerical simulations and experimental results.

    PubMed

    Fernandes, Henrique; Zhang, Hai; Figueiredo, Alisson; Ibarra-Castanedo, Clemente; Guimarares, Gilmar; Maldague, Xavier

    2016-12-01

    Composite materials are widely used in the aeronautic industry. One of the reasons is because they have strength and stiffness comparable to metals, with the added advantage of significant weight reduction. Infrared thermography (IT) is a safe nondestructive testing technique that has a fast inspection rate. In active IT, an external heat source is used to stimulate the material being inspected in order to generate a thermal contrast between the feature of interest and the background. In this paper, carbon-fiber-reinforced polymers are inspected using IT. More specifically, carbon/PEEK (polyether ether ketone) laminates with square Kapton inserts of different sizes and at different depths are tested with three different IT techniques: pulsed thermography, vibrothermography, and line scan thermography. The finite element method is used to simulate the pulsed thermography experiment. Numerical results displayed a very good agreement with experimental results.

  6. Develop Critical Profilometers to Meet Current and Future Composite Overwrapped Pressure Vessel (COPV) Interior Inspection Needs

    NASA Technical Reports Server (NTRS)

    Saulsberry, Regor L.

    2010-01-01

    The objective of this project is to develop laser profilometer technology that can efficiently inspect and map the inside of composite pressure vessels for flaws such as liner buckling, pitting, or other surface imperfections. The project will also provide profilometers that can directly support inspections of flight vessels during development and qualification programs and subsequently be implemented into manufacturing inspections to screen out vessels with "out of family" liner defects. An example interior scan of a carbon overwrapped bottle is shown in comparison to an external view of the same bottle (Fig. 1). The internal scan is primarily of the cylindrical portion, but extends about 0.15 in. into the end cap area.

  7. Fuel containment and damage tolerance for large composite primary aircraft structures. Phase 1: Testing

    NASA Technical Reports Server (NTRS)

    Sandifer, J. P.

    1983-01-01

    Technical problems associated with fuel containment and damage tolerance of composite material wings for transport aircraft were identified. The major tasks are the following: (1) the preliminary design of damage tolerant wing surface using composite materials; (2) the evaluation of fuel sealing and lightning protection methods for a composite material wing; and (3) an experimental investigation of the damage tolerant characteristics of toughened resin graphite/epoxy materials. The test results, the test techniques, and the test data are presented.

  8. Status of Advanced Stitched Unitized Composite Aircraft Structures

    NASA Technical Reports Server (NTRS)

    Jegley, Dawn C.; Velicki, Alex

    2013-01-01

    NASA has created the Environmentally Responsible Aviation (ERA) Project to explore and document the feasibility, benefits and technical risk of advanced vehicle configurations and enabling technologies that will reduce the impact of aviation on the environment. A critical aspect of this pursuit is the development of a lighter, more robust airframe that will enable the introduction of unconventional aircraft configurations that have higher lift-to-drag ratios, reduced drag, and lower community noise levels. The primary structural concept being developed under the ERA project in the Airframe Technology element is the Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) concept. This paper describes how researchers at NASA and The Boeing Company are working together to develop fundamental PRSEUS technologies that could someday be implemented on a transport size aircraft with high aspect ratio wings or unconventional shapes such as a hybrid wing body airplane design.

  9. Environmental Exposure Effects on Composite Materials for Commercial Aircraft

    NASA Technical Reports Server (NTRS)

    Hoffman, D. J.

    1981-01-01

    This period's activities were highlighted by continued long term and accelerated lab exposure testing, and by completion of all fabrication tasks on the optional material systems, AS1/3501-6 and Kevlar 49/F161-188. Initial baseline testing was performed on the two optional material systems. Long term exposure specimens were returned from three of the four ground rack sites and from two of the three aircraft locations. Test data from specimens returned from Dryden after 2 years exposure do not indicate continuing trends of strength reduction from the 1 year data. Test data from specimens returned from the Wellington, new Zealand ground rack and on Air New Zealand aircraft after 1 year exposure show strength changes fairly typical of other locations.

  10. Environmental exposure effects on composite materials for commercial aircraft

    NASA Technical Reports Server (NTRS)

    Hoffman, D. J.

    1978-01-01

    Activities reported include completion of the program design tasks, resolution of a high fiber volume problem and resumption of specimen fabrication, fixture fabrication, and progress on the analysis methodology and definition of the typical aircraft environment. Program design activities including test specimens, specimen holding fixtures, flap-track fairing tailcones, and ground exposure racks were completed. The problem experienced in obtaining acceptable fiber volume fraction results on two of the selected graphite epoxy material systems was resolved with an alteration to the bagging procedure called out in BAC 5562. The revised bagging procedure, involving lower numbers of bleeder plies, produces acceptable results. All required laminates for the contract have now been laid up and cured. Progress in the area of analysis methodology has been centered about definition of the environment that a commercial transport aircraft undergoes. The selected methodology is analagous to fatigue life assessment.

  11. Current and projected use of carbon composites in United States aircraft

    NASA Technical Reports Server (NTRS)

    Leonard, R. W.; Mulville, D. R.

    1980-01-01

    It is noted that carbon composite materials are beginning to be used in commercial transports, general aviation aircraft, military fighter aircraft and helicopters due to demonstrated weight savings and potential manufacturing cost savings. Attention is given to current production applications of carbon composites which range from the secondary structures of new commercial transports to wing primary structures of fighters. Current development efforts are discussed that will lead to their future application to fuselages, as well as whole airframes. Finally, laminate constructions which vary widely, and may be relevant to avionics system design, are examined.

  12. Damage monitoring of aircraft structures made of composite materials using wavelet transforms

    NASA Astrophysics Data System (ADS)

    Molchanov, D.; Safin, A.; Luhyna, N.

    2016-10-01

    The present article is dedicated to the study of the acoustic properties of composite materials and the application of non-destructive testing methods to aircraft components. A mathematical model of a wavelet transformed signal is presented. The main acoustic (vibration) properties of different composite material structures were researched. Multiple vibration parameter dependencies on the noise reduction factor were derived. The main steps of a research procedure and new method algorithm are presented. The data obtained was compared with the data from a three dimensional laser-Doppler scanning vibrometer, to validate the results. The new technique was tested in the laboratory and on civil aircraft at a training airfield.

  13. Development of pressure containment and damage tolerance technology for composite fuselage structures in large transport aircraft

    NASA Technical Reports Server (NTRS)

    Smith, P. J.; Thomson, L. W.; Wilson, R. D.

    1986-01-01

    NASA sponsored composites research and development programs were set in place to develop the critical engineering technologies in large transport aircraft structures. This NASA-Boeing program focused on the critical issues of damage tolerance and pressure containment generic to the fuselage structure of large pressurized aircraft. Skin-stringer and honeycomb sandwich composite fuselage shell designs were evaluated to resolve these issues. Analyses were developed to model the structural response of the fuselage shell designs, and a development test program evaluated the selected design configurations to appropriate load conditions.

  14. Aircraft Pneudraulic Systems Mechanic Career Ladder AFSC 423X4.

    DTIC Science & Technology

    1984-06-01

    G262 INSPECT AIRCRAFT INSTALLED NOSE WHEEL STEERING SYSTEM COMPONENTS 7 G253 INSPECT AIRCRAFT INSTALLED HYDRAULIC POWER SYSTEMS 72 9.. G280 INSPECT...INSPECT AIRCRAFT INSTALLED LANDING GEAR EXTENSION OR . RETRACTION COMPONENTS 100 G280 INSPECT AIRCRAFT INSTALLED SHOCK STRUTS 93 B57 SUPERVISE AIRCRAFT...SYSTEMS 59 K577 REMOVE OR INSTALL TUBE ASSEMBLIES 59 K558 REMOVE OR INSTALL COMPONENTS OF SHOCK STRUTS 59 G280 INSPECT AIRCRAFT INSTALLED SHOCK STRUTS 59

  15. On design methods for bolted joints in composite aircraft structures

    NASA Astrophysics Data System (ADS)

    Ireman, Tomas; Nyman, Tonny; Hellbom, Kurt

    The problems related to the determination of the load distribution in a multirow fastener joint using the finite element method are discussed. Both simple and more advanced design methods used at Saab Military Aircraft are presented. The stress distributions obtained with an analytically based method and an FE-based method are compared. Results from failure predictions with a simple analytically based method and the more advanced FE-based method of multi-fastener tension and shear loaded test specimens are compared with experiments. Finally, complicating factors such as three-dimensional effects caused by secondary bending and fastener bending are discussed and suggestions for future research are given.

  16. Progress on the development of automated data analysis algorithms and software for ultrasonic inspection of composites

    NASA Astrophysics Data System (ADS)

    Aldrin, John C.; Coughlin, Chris; Forsyth, David S.; Welter, John T.

    2014-02-01

    Progress is presented on the development and implementation of automated data analysis (ADA) software to address the burden in interpreting ultrasonic inspection data for large composite structures. The automated data analysis algorithm is presented in detail, which follows standard procedures for analyzing signals for time-of-flight indications and backwall amplitude dropout. ADA processing results are presented for test specimens that include inserted materials and discontinuities produced under poor manufacturing conditions.

  17. Study on utilization of advanced composites in commercial aircraft wing structures. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    Sakata, I. F.; Ostrom, R. B.; Cardinale, S. V.

    1978-01-01

    The effort required by commercial transport manufacturers to accomplish the transition from current construction materials and practices to extensive use of composites in aircraft wings was investigated. The engineering and manufacturing disciplines which normally participate in the design, development, and production of an aircraft were employed to ensure that all of the factors that would enter a decision to commit to production of a composite wing structure were addressed. A conceptual design of an advanced technology reduced energy aircraft provided the framework for identifying and investigating unique design aspects. A plan development effort defined the essential technology needs and formulated approaches for effecting the required wing development. The wing development program plans, resource needs, and recommendations are summarized.

  18. Studying Impact Damage on Carbon-Fiber Reinforced Aircraft Composite Panels with Sonicir

    NASA Astrophysics Data System (ADS)

    Han, Xiaoyan; Zhao, Xinyue; Zhang, Ding; He, Qi; Song, Yuyang; Lubowicki, Anthony; Newaz, Golam.; Favro, Lawrence D.; Thomas, Robert L.

    2011-06-01

    Composites are becoming more important materials in commercial aircraft structures such as the fuselage and wings with the new B787 Dreamliner from Boeing which has the target to utilize 50% by weight of composite materials. Carbon-fiber reinforced composites are the material of choice in aircraft structures. This is due to their light weight and high strength (high strength-to-weight ratio), high specific stiffness, tailorability of properties, design flexibility etc. Especially, by reducing the aircraft's body weight by using such lighter structures, the cost of fuel can be greatly reduced with the high jet fuel price for commercial airlines. However, these composites are prone to impact damage and the damage may occur without any observable sign on the surface, yet resulting in delaminations and disbonds that may occur well within the layers. We are studying the impact problem with carbon-fiber reinforced composite panels and developing SonicIR for this application as a fast and wide-area NDE technology. In this paper, we present our results in studying composite structures including carbon-fiber reinforced composite materials, and preliminary quantitative studies on delamination type defect depth identification in the panels.

  19. Studying impact damage on carbon-fiber reinforced aircraft composite panels with sonicir

    SciTech Connect

    Han Xiaoyan; Zhang Ding; He Qi; Song Yuyang; Lubowicki, Anthony; Zhao Xinyue; Newaz, Golam.; Favro, Lawrence D.; Thomas, Robert L.

    2011-06-23

    Composites are becoming more important materials in commercial aircraft structures such as the fuselage and wings with the new B787 Dreamliner from Boeing which has the target to utilize 50% by weight of composite materials. Carbon-fiber reinforced composites are the material of choice in aircraft structures. This is due to their light weight and high strength (high strength-to-weight ratio), high specific stiffness, tailorability of properties, design flexibility etc. Especially, by reducing the aircraft's body weight by using such lighter structures, the cost of fuel can be greatly reduced with the high jet fuel price for commercial airlines. However, these composites are prone to impact damage and the damage may occur without any observable sign on the surface, yet resulting in delaminations and disbonds that may occur well within the layers. We are studying the impact problem with carbon-fiber reinforced composite panels and developing SonicIR for this application as a fast and wide-area NDE technology. In this paper, we present our results in studying composite structures including carbon-fiber reinforced composite materials, and preliminary quantitative studies on delamination type defect depth identification in the panels.

  20. Polymer, metal, and ceramic matrix composites for advanced aircraft engine applications

    SciTech Connect

    Mc Daniels, D.L.; Serafini, T.T.; Di Carlo, J.A.

    1986-06-01

    Advanced aircraft engine research within NASA Lewis focuses on propulsion systems for subsonic, supersonic, and hypersonic aircraft. Each of these flight regimes requires different types of engines, but all require advanced materials to meet their goals of performance, thrust-to-weight ratio, and fuel efficiency. The high strength/weight and stiffness/weight properties of resin, metal, and ceramic matrix composites will play an increasingly key role in meeting these performance requirements. At NASA Lewis, research is ongoing to apply graphite/polyimide composites to engine components and to develop polymer matrices with higher operating temperature capabilities. Metal matrix composites, using magnesium, aluminum, titanium, and superalloy matrices, are being developed for application to static and rotating engine components, as well as for space applications, over a broad temperature range. Ceramic matrix composites are also being examined to increase the toughness and reliability of ceramics for application to high-temperature engine structures and components.

  1. Polymer, metal and ceramic matrix composites for advanced aircraft engine applications

    NASA Technical Reports Server (NTRS)

    Mcdanels, D. L.; Serafini, T. T.; Dicarlo, J. A.

    1985-01-01

    Advanced aircraft engine research within NASA Lewis is being focused on propulsion systems for subsonic, supersonic, and hypersonic aircraft. Each of these flight regimes requires different types of engines, but all require advanced materials to meet their goals of performance, thrust-to-weight ratio, and fuel efficiency. The high strength/weight and stiffness/weight properties of resin, metal, and ceramic matrix composites will play an increasingly key role in meeting these performance requirements. At NASA Lewis, research is ongoing to apply graphite/polyimide composites to engine components and to develop polymer matrices with higher operating temperature capabilities. Metal matrix composites, using magnesium, aluminum, titanium, and superalloy matrices, are being developed for application to static and rotating engine components, as well as for space applications, over a broad temperature range. Ceramic matrix composites are also being examined to increase the toughness and reliability of ceramics for application to high-temperature engine structures and components.

  2. Through-the Thickness(R) braided composites for aircraft applications

    NASA Technical Reports Server (NTRS)

    Brown, Richard T.

    1992-01-01

    Material and structural specimens of Through-the-Thickness(R) braided textile composites were tested in a variety of experiments. The results have demonstrated that the preform architecture provides significant payoffs in damage tolerance, delamination resistance, and attachment strength. This paper describes the braiding process, surveys the experimental data base, and illustrates the application of three dimensional braiding in aircraft structures.

  3. Study on utilization of advanced composites in commercial aircraft wing structures, volume 2

    NASA Technical Reports Server (NTRS)

    Sakata, I. F.; Ostrom, R. B.

    1978-01-01

    A plan is defined for a composite wing development effort which will assist commercial transport manufacturers in reaching a level of technology readiness where the utilization of composite wing structure is a cost competitive option for a new aircraft production plan. The recommended development effort consists of two programs: a joint government/industry material development program and a wing structure development program. Both programs are described in detail.

  4. Composite Material Aircraft Electromagnetic Properties and Design Guidelines

    DTIC Science & Technology

    1981-01-01

    shape and cure the composite. Pultrusion is a low-cost method for producing sttaight "or slightly curved shapes with constant crous-section.( 1 , 2...Apply MIL-P-23277 yellow primer. 9. Apply MIL-C-23286 Polyurethane enamel. and the cold bond procedure war, 1. Abrade away damaged material (taper...repair area. 7. Mask off undamaged panel area. 8. Apply MIL-P-23277 yellow primer. 9. Apply MIL-C-23286 polyurethane enamel. After repair, the composite

  5. Impact Testing of Composites for Aircraft Engine Fan Cases

    NASA Technical Reports Server (NTRS)

    Roberts, Gary D.; Revilock, Duane M.; Binienda, Wieslaw K.; Nie, Walter Z.; Mackenzie, S. Ben; Todd, Kevin B.

    2001-01-01

    Before composite materials can be considered for use in the fan case of a commercial jet engine, the performance of a composite structure under blade-out loads needs to be demonstrated. The objective of this program is to develop an efficient test and analysis method for evaluating potential composite case concepts. Ballistic impact tests were performed on laminated glass/epoxy composites in order to identify potential failure modes and to provide data for analysis. Flat 7x7 in. panels were impacted with cylindrical titanium projectiles, and 15 in. diameter half-rings were impacted with wedge-shaped titanium projectiles. Composite failure involved local fiber fracture as well as tearing and delamination on a larger scale. A 36 in. diameter full-ring subcomponent was proposed for larger scale testing. Explicit, transient, finite element analyses were used to evaluate impact dynamics and subsequent global deformation for the proposed full-ring subcomponent test. Analyses on half-ring and quarter ring configurations indicated that less expensive smaller scale tests could be used to screen potential composite concepts when evaluation of local impact damage is the primary concern.

  6. Application study of filamentary composites in a commercial jet aircraft fuselage

    NASA Technical Reports Server (NTRS)

    Johnson, R. W.; June, R. R.

    1972-01-01

    A study of applications of filamentary composite materials to aircraft fuselage structure was performed. General design criteria were established and material studies conducted using the 727-200 forebody as the primary structural component. Three design approaches to the use of composites were investigated: uniaxial reinforcement of metal structure, uniaxial and biaxial reinforcement of metal structure, and an all-composite design. Materials application studies for all three concepts were conducted on fuselage shell panels, keel beam, floor beams, floor panels, body frames, fail-safe straps, and window frames. Cost benefit studies were conducted and developmental program costs estimated. On the basis of weight savings, cost effectiveness, developmental program costs, and potential for early application on commercial aircraft, the unaxial design is recommended for a 5-year flight service evaluation program.

  7. Aeroelastic instability of aircraft wings modelled as anisotropic composite thin-walled beams in incompressible flow

    NASA Astrophysics Data System (ADS)

    Qin, Z.; Librescu, L.

    2003-08-01

    An encompassing aeroelastic model developed toward investigating the influence of directionality property of advanced composite materials and non-classical effects such as transverse shear and warping restraint on the aeroelastic instability of composite aircraft wings is presented. Within the model developed herein, both divergence and flutter instabilities are simultaneously addressed. The aircraft wing is modelled as an anisotropic composite thin-walled beam featuring circumferentially asymmetric stiffness lay-up that generates, for the problem at hand, elastic coupling among plunging, pitching and transverse shear motions. The unsteady incompressible aerodynamics used here is based on the concept of indicial functions. Issues related to aeroelastic instability are discussed, the influence of warping restraint and transverse shear on the critical speed are evaluated, and pertinent conclusions are outlined.

  8. Novel matrix resins for composites for aircraft primary structures, phase 1

    NASA Technical Reports Server (NTRS)

    Woo, Edmund P.; Puckett, P. M.; Maynard, S.; Bishop, M. T.; Bruza, K. J.; Godschalx, J. P.; Mullins, M. J.

    1992-01-01

    The objective of the contract is the development of matrix resins with improved processability and properties for composites for primarily aircraft structures. To this end, several resins/systems were identified for subsonic and supersonic applications. For subsonic aircraft, a series of epoxy resins suitable for RTM and powder prepreg was shown to give composites with about 40 ksi compressive strength after impact (CAI) and 200 F/wet mechanical performance. For supersonic applications, a thermoplastic toughened cyanate prepreg system has demonstrated excellent resistance to heat aging at 360 F for 4000 hours, 40 ksi CAI and useful mechanical properties at greater than or equal to 310 F. An AB-BCB-maleimide resin was identified as a leading candidate for the HSCT. Composite panels fabricated by RTM show CAI of approximately 50 ksi, 350 F/wet performance and excellent retention of mechanical properties after aging at 400 F for 4000 hours.

  9. Elliptic generation of composite three-dimensional grids about realistic aircraft

    NASA Technical Reports Server (NTRS)

    Sorenson, R. L.

    1986-01-01

    An elliptic method for generating composite grids about realistic aircraft is presented. A body-conforming grid is first generated about the entire aircraft by the solution of Poisson's differential equation. This grid has relatively coarse spacing, and it covers the entire physical domain. At boundary surfaces, cell size is controlled and cell skewness is nearly eliminated by inhomogeneous terms, which are found automatically by the program. Certain regions of the grid in which high gradients are expected, and which map into rectangular solids in the computational domain, are then designated for zonal refinement. Spacing in the zonal grids is reduced by adding points with a simple, algebraic scheme. Details of the grid generation method are presented along with results of the present application, a wing-body configuration based on the F-16 fighter aircraft.

  10. Dinosaurs, Witches, and Anti-Aircraft: Primary Composition.

    ERIC Educational Resources Information Center

    Evertts, Eldonna L.

    1966-01-01

    The composition teacher in the primary grades should emphasize content and ideas, not form and properly written expression, to develop the students' interest in writing. By surrounding the students with fine literature, by presenting them with model stories to imitate, and by letting them make up alternate endings and illustrations for stories,…

  11. Current and projected use of carbon composites in United States aircraft

    NASA Technical Reports Server (NTRS)

    Leonard, R.; Mulville, D. R.

    1980-01-01

    Carbon composite materials are finding limited use in both civil and military aircraft structures to exploit their weight saving potential for improved performance or fuel efficiency. Since these needs are growing, and a manufacturing cost savings potential is also recognized, wider use of composites in the near future may be expected. Carbon composites generally involve fiber volume fractions in excess of 60 percent in a variety of orthotropic sandwich or solid laminates. Bidirectional woven carbon cloth, common in recently designed structure, may provide higher, more uniform laminate conductivities than tape.

  12. A 1 kHz A-scan rate pump-probe laser-ultrasound system for robust inspection of composites.

    PubMed

    Pelivanov, Ivan; Shtokolov, Alex; Wei, Chen-Wei; O'Donnell, Matthew

    2015-09-01

    We recently built a fiber-optic laser-ultrasound (LU) scanner for nondestructive evaluation (NDE) of aircraft composites and demonstrated its greatly improved sensitivity and stability compared with current noncontact systems. It is also very attractive in terms of cost, stability to environmental noise and surface roughness, simplicity in adjustment, footprint, and flexibility. A new type of a balanced fiber-optic Sagnac interferometer is a key component of this all-optical LU pump-probe system. Very high A-scan rates can be achieved because no reference arm or stabilization feedback are needed. Here, we demonstrate LU system performance at 1000 A-scans/s combined with a fast 2-D translator operating at a scanning speed of 100 mm/s with a peak acceleration of 10 m/s(2) in both lateral directions to produce parallel B-scans at high rates. The fast scanning strategy is described in detail. The sensitivity of this system, in terms of noise equivalent pressure, was further improved to be only 8.3 dB above the Nyquist thermal noise limit. To our knowledge, this is the best reported sensitivity for a noncontact ultrasonic detector of this dimension used to inspect aircraft composites.

  13. Advanced composite structural concepts and material technologies for primary aircraft structures

    NASA Technical Reports Server (NTRS)

    Jackson, Anthony

    1991-01-01

    Structural weight savings using advanced composites have been demonstrated for many years. Most military aircraft today use these materials extensively and Europe has taken the lead in their use in commercial aircraft primary structures. A major inhibiter to the use of advanced composites in the United States is cost. Material costs are high and will remain high relative to aluminum. The key therefore lies in the significant reduction in fabrication and assembly costs. The largest cost in most structures today is assembly. As part of the NASA Advanced Composite Technology Program, Lockheed Aeronautical Systems Company has a contract to explore and develop advanced structural and manufacturing concepts using advanced composites for transport aircraft. Wing and fuselage concepts and related trade studies are discussed. These concepts are intended to lower cost and weight through the use of innovative material forms, processes, structural configurations and minimization of parts. The approach to the trade studies and the downselect to the primary wing and fuselage concepts is detailed. The expectations for the development of these concepts is reviewed.

  14. Environmental exposure effects on composite materials for commercial aircraft

    NASA Technical Reports Server (NTRS)

    Gibbons, M. N.

    1982-01-01

    The data base for composite materials' properties as they are affected by the environments encountered in operating conditions, both in flight and at ground terminals is expanded. Absorbed moisture degrades the mechanical properties of graphite/epoxy laminates at elevated temperatures. Since airplane components are frequently exposed to atmospheric moisture, rain, and accumulated water, quantitative data are required to evaluate the amount of fluids absorbed under various environmental conditions and the subsequent effects on material properties. In addition, accelerated laboratory test techniques are developed are reliably capable of predicting long term behavior. An accelerated environmental exposure testing procedure is developed, and experimental results are correlated and compared with analytical results to establish the level of confidence for predicting composite material properties.

  15. Advanced Design Composite Aircraft (ADCA) Study. Volume 2. Manufacturing Plan

    DTIC Science & Technology

    1976-11-01

    polyurethane finishes are used as required. Ultrasonically welded, fuel-resistant, thermally stable thermo- plastics (polyimide, polyphenylene sullide...of Composite Clips The Gr/Ep clips required are machined from cross-ply pultrusions . As an alternate, the clip layups are cut from preplied sheet...primed and painted with linear polyurethane paint prior to installation. 34 , _ ^^ V •- • > ♦ V J IV .’,’" Lrj

  16. Enclosure Fire Tests for Understanding Aircraft Composite Fire Environments (Postprint)

    DTIC Science & Technology

    2011-06-01

    100 lbs) of material. Propane burners are used to ignite the solid materials during the first few minutes of the test. The remainder of the test...Propane burners are used to ignite the solid materials during the first few minutes of the test. The remainder of the test involves sustained...the chemical energy released from the composites. The steel enclosure was lined internally with Unifrax Durabord 3000 insulation, providing a low

  17. Multifunctional composites aircraft applications in Finmeccanica - Some examples

    NASA Astrophysics Data System (ADS)

    Iannone, Michele

    2016-05-01

    Some examples of multifunctional composite materials presently developed by Finmeccanica are described. The basic concept is to modify the material/structure by adding a further function to the structural basic one. The described examples refer to: improvement of processability; self-diagnostic capability; improvement of the allowables, acting on reduction of the knock down factor required to take in account the environmental ageing effects.

  18. Advanced composite vertical stabilizer for DC-10 transport aircraft

    NASA Technical Reports Server (NTRS)

    Stephens, C. O.

    1978-01-01

    The structural design configuration for the Composite Vertical Stabilizer is described and the structural design, analysis, and weight activities are presented. The status of fabrication and test activities for the development test portion of the program is described. Test results are presented for the skin panels, spar web, spar cap to cover, and laminate properties specimens. Engineering drawings of vertification test panels and root fittings, rudder support specimens, titanium fittings, and rear spar specimen analysis models are included.

  19. Certification of Discontinuous Composite Material Forms for Aircraft Structures

    NASA Astrophysics Data System (ADS)

    Arce, Michael Roger

    New, high performance chopped, discontinuous, or short fiber composites (DFCs), DFCs, such as HexMC and Lytex, made by compression molding of randomly oriented pre-impregnated unidirectional tape, can be formed into complex geometry while retaining mechanical properties suitable for structural use. These DFCs provide the performance benefits of Continuous Fiber Composites (CFCs) in form factors that were previously unavailable. These materials demonstrate some notably different properties from continuous fiber composites, especially with respect to damage tolerance and failure behavior. These behaviors are not very well understood, and fundamental research efforts are ongoing to better characterize the material and to ease certification for future uses. Despite this, these new DFCs show such promise that they are already in service in the aerospace industry, for instance in the Boeing 787. Unfortunately, the relative novelty of these parts means that they needed to be certified by “point design”, an excess of physical testing, rather than by a mix of physical testing and finite element analysis, which would be the case for CFCs or metals. In this study, one particular approach to characterizing both linear-elastic and failure behaviors are considered. The Stochastic Laminate Analogy, which represents a novel approach to modeling DFCs, and its combination with a Ply Discount scheme. Owing to limited available computational resources, only preliminary results are available, but those results are quite promising and warrant further investigation.

  20. Evolution of industrial laser-ultrasonic systems for the inspection of composites

    NASA Astrophysics Data System (ADS)

    Dubois, Marc; Drake, Thomas E., Jr.

    2011-09-01

    For nearly 30 years, laser ultrasonics has been under investigation and development for the inspection of complex composites for the aeronautic industry; however, this technology has failed to achieve widespread adoption. The authors of this paper use their combined experience of over 40 years in the development and use of laser-ultrasonic systems in industrial environments to review the characteristics that appeared to have limited the widespread use of laser ultrasonics in the aeronautic industry. The authors review various technologies that they have explored and developed over the years to address those issues. Finally, a novel laser-ultrasonic approach is described and its capabilities are discussed.

  1. Acousto-ultrasonic system for the inspection of composite armored vehicles

    NASA Astrophysics Data System (ADS)

    Godinez, Valery F.; Carlos, Mark F.; Delamere, Michael; Hoch, William; Fotopoulos, Christos; Dai, Weiming; Raju, Basavaraju B.

    2001-04-01

    In this paper the design and implementation of a unique acousto-ultrasonics system for the inspection of composite armored vehicles is discussed. The system includes a multi-sensor probe with a position-tracking device mounted on a computer controlled scanning bridge. The system also includes an arbitrary waveform generator with a multiplexer and a multi-channel acoustic emission board capable of simultaneously collecting and processing up to four acoustic signals in real time. C-scans of an armored vehicle panel with defects are presented.

  2. Large-area thermographic inspection of GRP composite marine vessel hulls

    NASA Astrophysics Data System (ADS)

    Jones, Thomas S.; Berger, Harold; Weaver, Elizabeth

    1993-04-01

    Every year there is an increase in the number of Glass Reinforced Plastic (GRP) composite vessels the Coast Guard inspects. A fast, nondestructive evaluation (NDE) technique is needed to facilitate these inspections. The technique must be suitable for use in field environments. Through a Small Business Innovation Research (SBIR) contract with the Coast Guard R&D Center, Industrial Quality, Inc. has performed a feasibility study evaluating the use of infrared thermography for such applications. The study demonstrated the ability of infrared thermography to detect hidden flaws through a variety of laminates and sandwich panel core materials. Empirical results matched well with analytical results of the sensitivity of the technique to various sizes of discontinuities at different depths. Following the successful SBIR program results, the Coast Guard R&D Center asked IQI to do a survey of the Steam Yacht Medea. The Medea had been repaired by a unique system of laying foam core and fiberglass over the ship's original steel-clad hull. The hybrid steel/foam core/GRP hull provided an additional structural configuration for the infrared thermography inspection equipment to handle.

  3. Design of a composite wing extension for a general aviation aircraft

    NASA Technical Reports Server (NTRS)

    Adney, P. S.; Horn, W. J.

    1984-01-01

    A composite wing extension was designed for a typical general aviation aircraft to improve lift curve slope, dihedral effect, and lift to drag ratio. Advanced composite materials were used in the design to evaluate their use as primary structural components in general aviation aircraft. Extensive wind tunnel tests were used to evaluate six extension shapes. The extension shape chosen as the best choice was 28 inches long with a total area of 17 square feet. Subsequent flight tests showed the wing extension's predicted aerodynamic improvements to be correct. The structural design of the wing extension consisted of a hybrid laminate carbon core with outer layers of Kevlar - layed up over a foam interior which acted as an internal support. The laminate skin of the wing extension was designed from strength requirements, and the foam core was included to prevent buckling. A joint lap was recommended to attach the wing extension to the main wing structure.

  4. Critical joints in large composite primary aircraft structures. Volume 1: Technical summary

    NASA Technical Reports Server (NTRS)

    Bunin, Bruce L.

    1985-01-01

    A program was conducted at Douglas Aircraft Company to develop the technology for critical joints in composite wing structure that meets all the design requirements of a 1990 commercial transport aircraft. In fulfilling this objective, analytical procedures for joint design and analysis were developed during Phase 1 of the program. Tests were conducted at the element level to supply the empirical data required for methods development. Large composite multirow joints were tested to verify the selected design concepts and for correlation with analysis predictions. The Phase 2 program included additional tests to provide joint design and analysis data, and culminated with several technology demonstration tests of a major joint area representative of a commercial transport wing. The technology demonstration program of Phase 2 is discussed. The analysis methodology development, structural test program, and correlation between test results and analytical strength predictions are reviewed.

  5. Fibre Optic Sensors for Structural Health Monitoring of Aircraft Composite Structures: Recent Advances and Applications

    PubMed Central

    Di Sante, Raffaella

    2015-01-01

    In-service structural health monitoring of composite aircraft structures plays a key role in the assessment of their performance and integrity. In recent years, Fibre Optic Sensors (FOS) have proved to be a potentially excellent technique for real-time in-situ monitoring of these structures due to their numerous advantages, such as immunity to electromagnetic interference, small size, light weight, durability, and high bandwidth, which allows a great number of sensors to operate in the same system, and the possibility to be integrated within the material. However, more effort is still needed to bring the technology to a fully mature readiness level. In this paper, recent research and applications in structural health monitoring of composite aircraft structures using FOS have been critically reviewed, considering both the multi-point and distributed sensing techniques. PMID:26263987

  6. Fibre Optic Sensors for Structural Health Monitoring of Aircraft Composite Structures: Recent Advances and Applications.

    PubMed

    Di Sante, Raffaella

    2015-07-30

    In-service structural health monitoring of composite aircraft structures plays a key role in the assessment of their performance and integrity. In recent years, Fibre Optic Sensors (FOS) have proved to be a potentially excellent technique for real-time in-situ monitoring of these structures due to their numerous advantages, such as immunity to electromagnetic interference, small size, light weight, durability, and high bandwidth, which allows a great number of sensors to operate in the same system, and the possibility to be integrated within the material. However, more effort is still needed to bring the technology to a fully mature readiness level. In this paper, recent research and applications in structural health monitoring of composite aircraft structures using FOS have been critically reviewed, considering both the multi-point and distributed sensing techniques.

  7. Advanced composite elevator for Boeing 727 aircraft. Volume 1: Technical summary

    NASA Technical Reports Server (NTRS)

    Chovil, D. V.; Harvey, S. T.; Mccarty, J. E.; Desper, O. E.; Jamison, E. S.; Syder, H.

    1981-01-01

    The design, development, analysis, and testing activities and results that were required to produce five and one-half shipsets of advanced composite elevators for Boeing 727 aircraft are summarized. During the preliminary design period, alternative concepts were developed. After selection of the best design, detail design and basic configuration improvements were evaluated. Five and one-half shipsets were manufactured. All program goals (except competitive cost demonstration) were accomplished when our design met or exceeded all requirements, criteria, and objectives.

  8. Ultrasonic Phased Array Tools for Large Area Composite Inspection during Maintenance and Manufacturing

    NASA Astrophysics Data System (ADS)

    Habermehl, J.; Lamarre, A.; Roach, D.

    2009-03-01

    Aircraft manufacturers, maintenance service providers, and airline operators have recently started to use ultrasonic phased-array technology to ensure the quality of their composite parts during maintenance and manufacturing. Olympus NDT has developed various solutions with its phased-array instruments like the OmniScan PA and the Focus LT to meet the most demanding requirements. These tools combined with composite specific software features provide greater productivity with respect to scanning and defect characterization such as sizing while maintaining a high degree of reliability. This paper summarizes the advantages and the benefits obtained by the use of this technology on samples provided by the FAA Airworthiness Assurance Center (AANC) operated by Sandia National Labs.

  9. Advanced composite aileron for L-1011 transport aircraft: Aileron manufacture

    NASA Technical Reports Server (NTRS)

    Dunning, E. G.; Cobbs, W. L.; Legg, R. L.

    1981-01-01

    The fabrication activities of the Advanced Composite Aileron (ACA) program are discussed. These activities included detail fabrication, manufacturing development, assembly, repair and quality assurance. Five ship sets of ailerons were manufactured. The detail fabrication effort of ribs, spar and covers was accomplished on male tools to a common cure cycle. Graphite epoxy tape and fabric and syntactic epoxy materials were utilized in the fabrication. The ribs and spar were net cured and required no post cure trim. Material inconsistencies resulted in manufacturing development of the front spar during the production effort. The assembly effort was accomplished in subassembly and assembly fixtures. The manual drilling system utilized a dagger type drill in a hydraulic feed control hand drill. Coupon testing for each detail was done.

  10. Advanced composite aileron for L-1011 transport aircraft, task 1

    NASA Technical Reports Server (NTRS)

    Griffin, C. F.; Fogg, L. D.; Stone, R. L.; Dunning, E. G.

    1978-01-01

    Structural design and maintainability criteria were established and used as a guideline for evaluating a variety of configurations and materials for each of the major subcomponents. From this array of subcomponent designs, several aileron assemblies were formulated and analyzed. The selected design is a multirib configuration with sheet skin covers mechanically fastened to channel section ribs and spars. Qualitative analysis of currently available composite material systems led to the selection of three candidate materials on which comparative structural tests were conducted to measure the effects of environment and impact damage on mechanical property retention. In addition, each system was evaluated for producibility characteristics. From these tests, Thornel 300/5208 unidirectional tape was selected for the front spar and covers, and Thornel 300 fabric/5208 was chosen for the ribs.

  11. Advanced composite aileron for L-1011 transport aircraft

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Design and evaluation of alternate concepts for the major subcomponents of the advanced composite aileron (ACA) was completed. From this array of subcomponents, aileron assemblies were formulated and evaluated. Based on these analyses a multirib assembly with graphite tape/syntactic core covers, a graphite tape front spar, and a graphite fabric rib was selected for development. A weight savings of 29.1 percent (40.8 pounds per aileron) is predicted. Engineering cost analyses indicate that the production cost of the ACA will be 7.3 percent less than the current aluminum aileron. Fabrication, machining, and testing of the material evaluation specimens for the resin screening program was completed. The test results lead to the selection of Narmco 5208 resin for the ACA. Other activities completed include: the detailed design of the ACA, construction of a three dimensional finite element model for structural analysis, and formulation of detail plans for material verification and process development.

  12. Full-scale testing, production and cost analysis data for the advanced composite stabilizer for Boeing 737 aircraft, volume 2

    NASA Technical Reports Server (NTRS)

    Aniversario, R. B.; Harvey, S. T.; Mccarty, J. E.; Parson, J. T.; Peterson, D. C.; Pritchett, L. D.; Wilson, D. R.; Wogulis, E. R.

    1982-01-01

    The development, testing, production activities, and associated costs that were required to produce five-and-one-half advanced-composite stabilizer shipsets for Boeing 737 aircraft are defined and discussed.

  13. Aeronautics composite material inspection with a terahertz time-domain spectroscopy system

    NASA Astrophysics Data System (ADS)

    Ospald, Frank; Zouaghi, Wissem; Beigang, René; Matheis, Carsten; Jonuscheit, Joachim; Recur, Benoit; Guillet, Jean-Paul; Mounaix, Patrick; Vleugels, Wouter; Bosom, Pablo Venegas; González, Laura Vega; López, Ion; Edo, Rafael Martínez; Sternberg, Yehuda; Vandewal, Marijke

    2014-03-01

    The usability of pulsed broadband terahertz radiation for the inspection of composite materials from the aeronautics industry is investigated, with the goal of developing a mobile time-domain spectroscopy system that operates in reflection geometry. A wide range of samples based on glass and carbon fiber reinforced plastics with various types of defects is examined using an imaging system; the results are evaluated both in time and frequency domain. The conductivity of carbon fibers prevents penetration of the respective samples but also allows analysis of coatings from the reflected THz pulses. Glass fiber composites are, in principle, transparent for THz radiation, but commonly with significant absorption for wavelengths >1 THz. Depending on depth, matrix material, and size, defects like foreign material inserts, delaminations, or moisture contamination can be visualized. If a defect is not too deep in the sample, its location can be correctly identified from the delay between partial reflections at the surface and the defect itself.

  14. Investigation of Carbon Fiber Architecture in Braided Composites Using X-Ray CT Inspection

    NASA Technical Reports Server (NTRS)

    Rhoads, Daniel J.; Miller, Sandi G.; Roberts, Gary D.; Rauser, Richard W.; Golovaty, Dmitry; Wilber, J. Patrick; Espanol, Malena I.

    2017-01-01

    During the fabrication of braided carbon fiber composite materials, process variations occur which affect the fiber architecture. Quantitative measurements of local and global fiber architecture variations are needed to determine the potential effect of process variations on mechanical properties of the cured composite. Although non-destructive inspection via X-ray CT imaging is a promising approach, difficulties in quantitative analysis of the data arise due to the similar densities of the material constituents. In an effort to gain more quantitative information about features related to fiber architecture, methods have been explored to improve the details that can be captured by X-ray CT imaging. Metal-coated fibers and thin veils are used as inserts to extract detailed information about fiber orientations and inter-ply behavior from X-ray CT images.

  15. Ultrasonic, microwave, and millimeter wave inspection techniques for adhesively bonded stacked open honeycomb core composites

    NASA Astrophysics Data System (ADS)

    Thomson, Clint D.; Cox, Ian; Ghasr, Mohammad Tayeb Ahmed; Ying, Kuang P.; Zoughi, Reza

    2015-03-01

    Honeycomb sandwich composites are used extensively in the aerospace industry to provide stiffness and thickness to lightweight structures. A common fabrication method for thick, curved sandwich structures is to stack and bond multiple honeycomb layers prior to machining core curvatures. Once bonded, each adhesive layer must be inspected for delaminations and the presence of unwanted foreign materials. From a manufacturing and cost standpoint, it can be advantageous to inspect the open core prior to face sheet closeout in order to reduce end-article scrap rates. However, by nature, these honeycomb sandwich composite structures are primarily manufactured from low permittivity and low loss materials making detection of delamination and some of the foreign materials (which also are low permittivity and low loss) quite challenging in the microwave and millimeter wave regime. Likewise, foreign materials such as release film in adhesive layers can be sufficiently thin as to not cause significant attenuation in through-transmission ultrasonic signals, making them difficult to detect. This paper presents a collaborative effort intended to explore the efficacy of different non-contact NDI techniques for detecting flaws in a stacked open fiberglass honeycomb core panel. These techniques primarily included air-coupled through-transmission ultrasonics, single-sided wideband synthetic aperture microwave and millimeter-wave imaging, and lens-focused technique. The goal of this investigation has been to not only evaluate the efficacy of these techniques, but also to determine their unique advantages and limitations for evaluating parameters such as flaw type, flaw size, and flaw depth.

  16. Full-field ultrasonic inspection for a composite sandwich plate skin-core debonding detection using laser-based ultrasonics

    NASA Astrophysics Data System (ADS)

    Chong, See Yenn; Victor, Jared J.; Todd, Michael D.

    2017-04-01

    In this paper, a full-field ultrasonic guided wave method is proposed to inspect a composite sandwich specimen made for an aircraft engine nacelle. The back skin/core interface of the specimen is built with two fabricated disbond defects (diameters of 12.7 mm and 25.4 mm) by removing areas of the adhesive used to bond the back skin to the core. A laser ultrasonic interrogation system (LUIS) incorporated with a disbond detection algorithm is developed. The system consists of a 1-kHz laser ultrasonic scanning system and a single fixed ultrasonic sensor to interrogate ultrasonic guided waves in the sandwich specimen. The interest area of 400 mm × 400 mm is scanned at a 0.5 mm scan interval. The corresponding full-field ultrasonic data is obtained and generated in the three-dimensional (3-D) space-time domain. Then, the 3-D full-field ultrasonic data is Fourier transformed and the ultrasonic frequency spectra are analyzed to determine the dominant frequency that is sensitive to the disbond defects. Continuous wavelet transform (CWT) based on fast Fourier transform (FFT) is implemented as a single-frequency bandpass filter to filter the full-field ultrasonic data in the 3-D space-time domain at the selected dominant frequency. The LUIS has shown the ability to detect the disbond with diameters of 11 mm and 23 mm which match to the pre-determined disbond sizes well. For future research, a robust signal processing algorithm and a model-based matched filter will be investigated to make the detection process autonomous and improve detectability

  17. Common failure modes for composite aircraft structures due to secondary loads

    NASA Astrophysics Data System (ADS)

    Rubin, A. M.

    The most common examples of composite laminate failure in typical aircraft structures are discussed, with particular consideration given to the effects of out-of-plane loads (and the resulting interlaminar shear/interlaminar tension) and bolted joint failure modes on the composite substructure and skins. It is noted that design allowables and environmental strength reduction factors for these types of failure model can be easily developed by performing simple element tests under RT/Dry and worst-case environmental conditions. The strength/stiffness factors identified during these tests may then be used to modify data obtained during full-scale RT/Dry tests.

  18. Firefighting and Emergency Response Study of Advanced Composites Aircraft; Objective 1: Composite Material Damage in Minor Aircraft Fires

    DTIC Science & Technology

    2013-05-18

    with 12.7 mm flexible ceramic insulation. Centered on the far end was a rectangular sheet of of 3.2 mm steel . This steel fixture had four holes near...A.C.S. Reagent Grade Acetone) to remove any organic residue material such as oil from the preparer’s hands. Tabbing Procedure: A stainless steel ...applied to the top and bottom faces of the steel frame.  Two fiberglass tabs were placed on the bottom portion of the steel frame.  Up to six composite

  19. Flight service evaluation of Kevlar-49 epoxy composite panels in wide-bodied commercial transport aircraft

    NASA Technical Reports Server (NTRS)

    Stone, R. H.

    1979-01-01

    Kevlar-49 fairing panels, installed as flight service components on three L-1011s, were inspected after five years' service. There are six Kevlar-49 panels on each aircraft: a left-hand and right-hand set of a wing-body sandwich fairing; a solid laminate under-wing fillet panel; and a 150 C (300 F) service aft engine fairing. The fairings have accumulated a total of 40,534 hours, with one ship set having 16,091 hours service as of Feb. 11, 1979. The Kevlar-49 components were found to be performing satisfactorily in service with no major problems, or any condition requiring corrective action. The only defects noted were minor impact damage, and a minor degree of fastener hole fraying and elongation. These are for the most part comparable to damage noted on fiberglass fairings.

  20. Analytical and experimental investigation of aircraft metal structures reinforced with filamentary composites. Phase 3: Major component development

    NASA Technical Reports Server (NTRS)

    Bryson, L. L.; Mccarty, J. E.

    1973-01-01

    Analytical and experimental investigations, performed to establish the feasibility of reinforcing metal aircraft structures with advanced filamentary composites, are reported. Aluminum-boron-epoxy and titanium-boron-epoxy were used in the design and manufacture of three major structural components. The components were representative of subsonic aircraft fuselage and window belt panels and supersonic aircraft compression panels. Both unidirectional and multidirectional reinforcement concepts were employed. Blade penetration, axial compression, and inplane shear tests were conducted. Composite reinforced structural components designed to realistic airframe structural criteria demonstrated the potential for significant weight savings while maintaining strength, stability, and damage containment properties of all metal components designed to meet the same criteria.

  1. Aircraft Fuel Systems Career Ladder.

    DTIC Science & Technology

    1985-09-01

    type fittings remove and install fuel cells clean work areas inspect aircraft for safety pin installation purge tanks or cells using blow purge method...INSPECT AIRCRAFT FOR SAFETY PIN INSTALLATION 84 H254 PURGE TANKS OR CELLS USING BLOW PURGE METHOD 83 H227 CHECK AIRCRAFT FOR LIQUID OXYGEN (LOX...H243 INSPECT AIRCRAFT FOR SAFETY PIN INSTALLATION 52 M483 MIX SEALANTS BY HAND 48 K372 CONNECT OR DISCONNECT WIGGINS TYPE FITTINGS 48 H236 DISCONNECT

  2. Critical joints in large composite primary aircraft structures. Volume 2: Technology demonstration test report

    NASA Technical Reports Server (NTRS)

    Bunin, Bruce L.

    1985-01-01

    A program was conducted to develop the technology for critical structural joints in composite wing structure that meets all the design requirements of a 1990 commercial transport aircraft. The results of four large composite multirow bolted joint tests are presented. The tests were conducted to demonstrate the technology for critical joints in highly loaded composite structure and to verify the analytical methods that were developed throughout the program. The test consisted of a wing skin-stringer transition specimen representing a stringer runout and skin splice on the wing lower surface at the side of the fuselage attachment. All tests were static tension tests. The composite material was Toray T-300 fiber with Ciba-Geigy 914 resin in 10 mil tape form. The splice members were metallic, using combinations of aluminum and titanium. Discussions are given of the test article, instrumentation, test setup, test procedures, and test results for each of the four specimens. Some of the analytical predictions are also included.

  3. Energy Finite Element Analysis Developments for Vibration Analysis of Composite Aircraft Structures

    NASA Technical Reports Server (NTRS)

    Vlahopoulos, Nickolas; Schiller, Noah H.

    2011-01-01

    The Energy Finite Element Analysis (EFEA) has been utilized successfully for modeling complex structural-acoustic systems with isotropic structural material properties. In this paper, a formulation for modeling structures made out of composite materials is presented. An approach based on spectral finite element analysis is utilized first for developing the equivalent material properties for the composite material. These equivalent properties are employed in the EFEA governing differential equations for representing the composite materials and deriving the element level matrices. The power transmission characteristics at connections between members made out of non-isotropic composite material are considered for deriving suitable power transmission coefficients at junctions of interconnected members. These coefficients are utilized for computing the joint matrix that is needed to assemble the global system of EFEA equations. The global system of EFEA equations is solved numerically and the vibration levels within the entire system can be computed. The new EFEA formulation for modeling composite laminate structures is validated through comparison to test data collected from a representative composite aircraft fuselage that is made out of a composite outer shell and composite frames and stiffeners. NASA Langley constructed the composite cylinder and conducted the test measurements utilized in this work.

  4. Composition and morphology of particle emissions from in-use aircraft during takeoff and landing.

    PubMed

    Mazaheri, Mandana; Bostrom, Thor E; Johnson, Graham R; Morawska, Lidia

    2013-05-21

    In order to provide realistic data for air pollution inventories and source apportionment at airports, the morphology and composition of ultrafine particles (UFP) in aircraft engine exhaust were measured and characterized. For this purpose, two independent measurement techniques were employed to collect emissions during normal takeoff and landing operations at Brisbane Airport, Australia. PM1 emissions in the airfield were collected on filters and analyzed using the particle-induced X-ray emission (PIXE) technique. Morphological and compositional analyses of individual ultrafine particles in aircraft plumes were performed on silicon nitride membrane grids using transmission electron microscopy (TEM) combined with energy-dispersive X-ray microanalysis (EDX). TEM results showed that the deposited particles were in the range of 5-100 nm in diameter, had semisolid spherical shapes and were dominant in the nucleation mode (18-20 nm). The EDX analysis showed the main elements in the nucleation particles were C, O, S, and Cl. The PIXE analysis of the airfield samples was generally in agreement with the EDX in detecting S, Cl, K, Fe, and Si in the particles. The results of this study provide important scientific information on the toxicity of aircraft exhaust and their impact on local air quality.

  5. Final Environmental Assessment: Proposed Composite Aircraft Inspection Facilities, Hill Air Force Base, Utah

    DTIC Science & Technology

    2008-10-02

    taking many exposures using tripods or mechanical booms during nights and weekends. X-ray technicians receive exposures to ionizing radiation that...equipment and other controls to ensure that occupational exposures to hazardous agents do not adversely affect health and safety, and acquisition of...characterized as non hazardous). Wipes from wiping developer would fill approximately one 55-gallon drum per year, would contain talc and alcohol

  6. 9 CFR 93.202 - Inspection of certain aircraft and other means of conveyance and shipping containers thereon...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... other means of conveyance and shipping containers thereon; unloading, cleaning, and disinfection... IMPORTATION OF CERTAIN ANIMALS, BIRDS, FISH, AND POULTRY, AND CERTAIN ANIMAL, BIRD, AND POULTRY PRODUCTS; REQUIREMENTS FOR MEANS OF CONVEYANCE AND SHIPPING CONTAINERS Poultry § 93.202 Inspection of certain...

  7. 9 CFR 93.402 - Inspection of certain aircraft and other means of conveyance and shipping containers thereon...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... other means of conveyance and shipping containers thereon; unloading, cleaning, and disinfection... IMPORTATION OF CERTAIN ANIMALS, BIRDS, FISH, AND POULTRY, AND CERTAIN ANIMAL, BIRD, AND POULTRY PRODUCTS; REQUIREMENTS FOR MEANS OF CONVEYANCE AND SHIPPING CONTAINERS Ruminants § 93.402 Inspection of certain...

  8. Fuel containment and damage tolerance in large composite primary aircraft structures

    NASA Technical Reports Server (NTRS)

    Griffin, C. F.

    1983-01-01

    Technical problems related to fuel containment and damage tolerance of composite material wings for transport aircraft was investigated. The major tasks are the following: (1) the preliminary design of damage tolerant wing surface using composite materials; (2) the evaluation of fuel sealing and lightning protection methods for a composite material wing; and (3) an experimental investigation of the damage tolerant characteristics of toughened resin graphite/epoxy materials. The design concepts investigated for the upper and lower surfaces of a composite wing for a transport aircraft are presented and the relationship between weight savings and the design allowable strain used within the analysis is discussed. Experiments which compare the fuel sealing characteristics of bolt-bonded joints and bolted joints sealed with a polysulphide sealant are reviewed. Data from lightning strike tests on stiffened and unstiffened graphite/epoxy panels are presented. A wide variety of coupon tests were conducted to evaluate the relative damage tolerance of toughened resin graphite/epoxies. Data from these tests are presented and their relevance to the wing surface design concepts are discussed.

  9. Scanning Ultrasonic Spectroscopy System Developed for the Inspection of Composite Flywheels

    NASA Technical Reports Server (NTRS)

    Martin, Richard E.; Baaklini, George Y.

    2002-01-01

    Composite flywheels are being considered as replacements for chemical batteries aboard the International Space Station. A flywheel stores energy in a spinning mass that can turn a generator to meet power demands. Because of the high rotational speeds of the spinning mass, extensive testing of the flywheel system must be performed prior to flight certification. With this goal in mind, a new scanning system has been developed at the NASA Glenn Research Center for the nondestructive inspection of composite flywheels and flywheel subcomponents. The system uses ultrasonic waves to excite a material and examines the response to detect and locate flaws and material variations. The ultrasonic spectroscopy system uses a transducer to send swept-frequency ultrasonic waves into a test material and then receives the returning signal with a second transducer. The received signal is then analyzed in the frequency domain using a fast Fourier transform. A second fast Fourier transform is performed to examine the spacing of the peaks in the frequency domain. The spacing of the peaks is related to the standing wave resonances that are present in the material because of the constructive and destructive interferences of the waves in the full material thickness as well as in individual layers within the material. Material variations and flaws are then identified by changes in the amplitudes and positions of the peaks in both the frequency and resonance spacing domains. This work, conducted under a grant through the Cleveland State University, extends the capabilities of an existing point-by-point ultrasonic spectroscopy system, thus allowing full-field automated inspection. Results of an ultrasonic spectroscopy scan of a plastic cylinder with intentionally seeded flaws. The result of an ultrasonic spectroscopy scan of a plastic cylinder used as a proof-of-concept specimen is shown. The cylinder contains a number of flat bottomed holes of various sizes and shapes. The scanning system

  10. Rugometric and microtopographic non-invasive inspection in dental-resin composites and zirconia ceramics

    NASA Astrophysics Data System (ADS)

    Fernández-Oliveras, Alicia; Costa, Manuel F. M.; Pecho, Oscar E.; Rubiño, Manuel; Pérez, María. M.

    2013-11-01

    Surface properties are essential for a complete characterization of biomaterials. In restorative dentistry, the study of the surface properties of materials meant to replace dental tissues in an irreversibly diseased tooth is important to avoid harmful changes in future treatments. We have experimentally analyzed the surface characterization parameters of two different types of dental-resin composites and pre-sintered and sintered zirconia ceramics. We studied two shades of both composite types and two sintered zirconia ceramics: colored and uncolored. Moreover, a surface treatment was applied to one specimen of each dental-resin. All the samples were submitted to rugometric and microtopographic non-invasive inspection with the MICROTOP.06.MFC laser microtopographer in order to gather meaningful statistical parameters such as the average roughness (Ra), the root-mean-square deviation (Rq), the skewness (Rsk), and the kurtosis of the surface height distribution (Rku). For a comparison of the different biomaterials, the uncertainties associated to the surface parameters were also determined. With respect to Ra and Rq, significant differences between the composite shades were found. Among the dental resins, the nanocomposite presented the highest values and, for the zirconia ceramics, the pre-sintered sample registered the lowest ones. The composite performance may have been due to cluster-formation variations. Except for the composites with the surface treatment, the sample surfaces had approximately a normal distribution of heights. The surface treatment applied to the composites increased the average roughness and moved the height distribution farther away from the normal distribution. The zirconia-sintering process resulted in higher average roughness without affecting the height distribution.

  11. A control method to inspect the compositional authenticity of Minas Frescal cheese by gel electrophoresis.

    PubMed

    Magenis, Renata B; Prudêncio, Elane S; Molognoni, Luciano; Daguer, Heitor

    2014-08-20

    This study introduces a qualitative method to inspect the compositional authenticity of white nonripened cheeses like Minas Frescal, a typical Brazilian cheese, especially when irregular replacement of milk by whey is suspected. A sodium dodecyl sulfate gel electrophoresis (SDS-PAGE) method, followed by image densitometry, was validated. Cheeses were freeze-dried to electrophoresis, and β-lactoglobulin (β-LG) was chosen as the adulteration marker. In gel trypsin digestion followed by matrix assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry provided its identification. Cheeses with a minimum of 14 mg·g(-1) of β-LG are considered to be adulterated. The method shows satisfactory precision with a detection limit of 7 mg·g(-1). Forty-two commercial samples from inspected establishments were then assessed and subjected to cluster analysis. Compliant and noncompliant groups were set with 24 (57%) authentic samples and 18 (43%) adulterated samples, respectively, showing that proper analytical monitoring is required to inhibit this practice.

  12. Rapid non-contact inspection of composite ailerons using air-coupled ultrasound

    NASA Astrophysics Data System (ADS)

    Panda, Rabi Sankar; Karpenko, Oleksii; Udpa, Lalita; Haq, Mahmoodul; Rajagopal, Prabhu; Balasubramaniam, Krishnan

    2016-02-01

    This paper demonstrates an approach for rapid non-contact air-coupled ultrasonic inspection of composite ailerons with complex cross-sectional profile including thickness changes, curvature and the presence of a number of stiffeners. Low-frequency plate guided ultrasonic modes are used in B-scan mode for the measurements in pitch-catch mode. Appropriate probe holder angles suitable for generating and receiving lower order guided wave modes are discussed. Different embodiments of the pitch-catch tandem positions along and across stiffener and curved regions of the test sample enable a rapid test campaign capturing the feature-rich sample profile. Techniques to distinguish special features in the stiffener are presented.

  13. Critical Joints in Large Composite Primary Aircraft Structures. Volume 3: Ancillary Test Results

    NASA Technical Reports Server (NTRS)

    Bunin, Bruce L.; Sagui, R. L.

    1985-01-01

    A program was conducted to develop the technology for critical structural joints for composite wing structure that meets all the design requirements of a 1990 commercial transport aircraft. The results of a comprehensive ancillary test program are summarized, consisting of single-bolt composite joint specimens tested in a variety of configurations. These tests were conducted to characterize the strength and load deflection properties that are required for multirow joint analysis. The composite material was Toray 300 fiber and Ciba-Geigy 914 resin, in the form of 0.005 and 0.01 inch thick unidirectional tape. Tests were conducted in single and double shear for loaded and unloaded hole configurations under both tensile and compressive loading. Two different layup patterns were examined. All tests were conducted at room temperature. In addition, the results of NASA Standard Toughness Test (NASA RP 1092) are reported, which were conducted for several material systems.

  14. Real-Time Impact Visualization Inspection of Aerospace Composite Structures with Distributed Sensors

    PubMed Central

    Si, Liang; Baier, Horst

    2015-01-01

    For the future design of smart aerospace structures, the development and application of a reliable, real-time and automatic monitoring and diagnostic technique is essential. Thus, with distributed sensor networks, a real-time automatic structural health monitoring (SHM) technique is designed and investigated to monitor and predict the locations and force magnitudes of unforeseen foreign impacts on composite structures and to estimate in real time mode the structural state when impacts occur. The proposed smart impact visualization inspection (IVI) technique mainly consists of five functional modules, which are the signal data preprocessing (SDP), the forward model generator (FMG), the impact positioning calculator (IPC), the inverse model operator (IMO) and structural state estimator (SSE). With regard to the verification of the practicality of the proposed IVI technique, various structure configurations are considered, which are a normal CFRP panel and another CFRP panel with “orange peel” surfaces and a cutout hole. Additionally, since robustness against several background disturbances is also an essential criterion for practical engineering demands, investigations and experimental tests are carried out under random vibration interfering noise (RVIN) conditions. The accuracy of the predictions for unknown impact events on composite structures using the IVI technique is validated under various structure configurations and under changing environmental conditions. The evaluated errors all fall well within a satisfactory limit range. Furthermore, it is concluded that the IVI technique is applicable for impact monitoring, diagnosis and assessment of aerospace composite structures in complex practical engineering environments. PMID:26184196

  15. Real-Time Impact Visualization Inspection of Aerospace Composite Structures with Distributed Sensors.

    PubMed

    Si, Liang; Baier, Horst

    2015-07-08

    For the future design of smart aerospace structures, the development and application of a reliable, real-time and automatic monitoring and diagnostic technique is essential. Thus, with distributed sensor networks, a real-time automatic structural health monitoring (SHM) technique is designed and investigated to monitor and predict the locations and force magnitudes of unforeseen foreign impacts on composite structures and to estimate in real time mode the structural state when impacts occur. The proposed smart impact visualization inspection (IVI) technique mainly consists of five functional modules, which are the signal data preprocessing (SDP), the forward model generator (FMG), the impact positioning calculator (IPC), the inverse model operator (IMO) and structural state estimator (SSE). With regard to the verification of the practicality of the proposed IVI technique, various structure configurations are considered, which are a normal CFRP panel and another CFRP panel with "orange peel" surfaces and a cutout hole. Additionally, since robustness against several background disturbances is also an essential criterion for practical engineering demands, investigations and experimental tests are carried out under random vibration interfering noise (RVIN) conditions. The accuracy of the predictions for unknown impact events on composite structures using the IVI technique is validated under various structure configurations and under changing environmental conditions. The evaluated errors all fall well within a satisfactory limit range. Furthermore, it is concluded that the IVI technique is applicable for impact monitoring, diagnosis and assessment of aerospace composite structures in complex practical engineering environments.

  16. Experimental research on acousto-ultrasonic inspection of composites by PZT patches and wavelet analysis

    NASA Astrophysics Data System (ADS)

    Shi, Lihua; Chen, Bin; Yuan, Shengfang; Tao, Baoqi

    2001-08-01

    In smart composite structures, piezoelectric patches are usually bonded to surfaces or embedded in structures for strain measurement and active control. This paper investigates applications of these patches for acousto-ultrasonic(AU) inspection of structure without special design or additional change of their shapes and configurations. By using these multi-functional built-in transducers, the smart composite has the potential to monitor a large area on the structure with AU method. Experiments were conducted on a fiber-epoxy composite beam. A PZT transmitter pasted on the beam was stimulated by a nanosecond pulse generator, reflected stress wave caused by edges of the beam was clearly observed. Artificial slots on the beam can be well located from the arriving time of the reflected waves, their size can be estimated from the shape and peak value of the waves reflected by or propagating through slot. Wavelet analysis was used to extract features from the measured signals. Local maxima of coefficients of Mexico hat wavelet decomposition were employed as features to describe arriving time and slope of signals. Features in different damage conditions were compared, results show these features can represent both the location and extent of the simulated damages.

  17. Compact, Lightweight, Ceramic Matrix Composite (CMC) Based Acoustic Liners for Reducing Subsonic Jet Aircraft Engine Noise

    NASA Technical Reports Server (NTRS)

    Kiser, J. Douglas; Grady, Joseph E.; Miller, Christopher J.; Hultgren, Lennart S.; Jones, Michael G.

    2016-01-01

    Recent developments have reduced fan and jet noise contributions to overall subsonic aircraft jet-engine noise. Now, aircraft designers are turning their attention toward reducing engine core noise. The NASA Glenn Research Center and NASA Langley Research Center have teamed to investigate the development of a compact, lightweight acoustic liner based on oxide/oxide ceramic matrix composite (CMC) materials. The NASA team has built upon an existing oxide/oxide CMC sandwich structure concept that provides monotonal noise reduction. Oxide/oxide composites have good high temperature strength and oxidation resistance, which could allow them to perform as core liners at temperatures up to 1000C (1832F), and even higher depending on the selection of the composite constituents. NASA has initiated the evaluation of CMC-based liners that use cells of different lengths (variable-depth channels) or effective lengths to achieve broadband noise reduction. Reducing the overall liner thickness is also a major goal, to minimize the volume occupied by the liner. As a first step toward demonstrating the feasibility of our concepts, an oxide/oxide CMC acoustic testing article with different channel lengths was tested. Our approach, summary of test results, current status, and goals for the future are reported.

  18. High-Temperature, Lightweight, Self-Healing Ceramic Composites for Aircraft Engine Applications

    NASA Technical Reports Server (NTRS)

    Raj, Sai V.; Bhatt, Ramkrishna

    2013-01-01

    The use of reliable, high-temperature, lightweight materials in the manufacture of aircraft engines is expected to result in lower fossil and biofuel consumption, thereby leading to cost savings and lower carbon emissions due to air travel. Although nickel-based superalloy blades and vanes have been successfully used in aircraft engines for several decades, there has been an increased effort to develop high-temperature, lightweight, creep-resistant substitute materials under various NASA programs over the last two decades. As a result, there has been a great deal of interest in developing SiC/SiC ceramic matrix composites (CMCs) due to their higher damage tolerance compared to monolithic ceramics. Current-generation SiC/SiC ceramic matrix composites rely almost entirely on the SiC fibers to carry the load, owing to the premature cracking of the matrix during loading. Thus, the high-temperature usefulness of these CMCs falls well below their theoretical capabilities. The objective of this work is to develop a new class of high-temperature, lightweight, self-healing, SiC fiber-reinforced, engineered matrix ceramic composites.

  19. Numerical simulation of two-dimensional heat transfer in composite bodies with application to de-icing of aircraft components

    NASA Astrophysics Data System (ADS)

    Chao, D. F. K.

    1983-11-01

    Transient, numerical simulations of the de-icing of composite aircraft components by electrothermal heating were performed for a two dimensional rectangular geometry. The implicit Crank-Nicolson formulation was used to insure stability of the finite-difference heat conduction equations and the phase change in the ice layer was simulated using the Enthalpy method. The Gauss-Seidel point iterative method was used to solve the system of difference equations. Numerical solutions illustrating de-icer performance for various composite aircraft structures and environmental conditions are presented. Comparisons are made with previous studies. The simulation can also be used to solve a variety of other heat conduction problems involving composite bodies.

  20. Nondestructive evaluation of aircraft composites using transmissive terahertz time domain spectroscopy.

    PubMed

    Stoik, Christopher D; Bohn, Matthew J; Blackshire, James L

    2008-10-13

    Terahertz time domain spectroscopy (TDS) was assessed as a nondestructive evaluation technique for aircraft composites. Damage to glass fiber was studied including voids, delaminations, mechanical damage, and heat damage. Measurement of the material properties on samples with localized heat damage showed that burning did not change the refractive index or absorption coefficient noticeably; however, material blistering was detected. Voids were located by TDS transmissive imaging using amplitude and phase techniques. The depth of delaminations was measured via the timing of Fabry-Perot reflections after the main pulse. Evidence of bending stress damage and simulated hidden cracks was also detected with terahertz imaging.

  1. Residual stress alleviation of aircraft metal structures reinforced with filamentary composites

    NASA Technical Reports Server (NTRS)

    Kelly, J. B.; June, R. R.

    1973-01-01

    Methods to eliminate or reduce residual stresses in aircraft metal structures reinforced by filamentary composites are discussed. Residual stress level reductions were achieved by modifying the manufacturing procedures used during adhesive bonding. The residual stress alleviation techniques involved various forms of mechanical constraint which were applied to the components during bonding. Nine methods were evaluated, covering a wide range in complexity. All methods investigated during the program affected the residual stress level. In general, residual stresses were reduced by 70 percent or more from the stress level produced by conventional adhesive bonding procedures.

  2. Evaluation of energy absorption of new concepts of aircraft composite subfloor intersections

    NASA Technical Reports Server (NTRS)

    Jones, Lisa E.; Carden, Huey D.

    1989-01-01

    Forty-one composite aircraft subfloor intersection specimens were tested to determine the effects of geometry and material on the energy absorbing behavior, failure characteristics, and post-crush structural integrity of the specimens. The intersections were constructed of twelve ply + or - 45 sub 6 laminates of either Kevlar 49/934 or AS-4/934 graphite-epoxy in heights of 4, 8, and 12 inches. The geometry of the specimens varied in the designs of the intersection attachment angle. Four different geometries were tested.

  3. Advanced composites structural concepts and materials technologies for primary aircraft structures: Design/manufacturing concept assessment

    NASA Technical Reports Server (NTRS)

    Chu, Robert L.; Bayha, Tom D.; Davis, HU; Ingram, J. ED; Shukla, Jay G.

    1992-01-01

    Composite Wing and Fuselage Structural Design/Manufacturing Concepts have been developed and evaluated. Trade studies were performed to determine how well the concepts satisfy the program goals of 25 percent cost savings, 40 percent weight savings with aircraft resizing, and 50 percent part count reduction as compared to the aluminum Lockheed L-1011 baseline. The concepts developed using emerging technologies such as large scale resin transfer molding (RTM), automatic tow placed (ATP), braiding, out-of-autoclave and automated manufacturing processes for both thermoset and thermoplastic materials were evaluated for possible application in the design concepts. Trade studies were used to determine which concepts carry into the detailed design development subtask.

  4. Laser ultrasonic inspection system (LUIS) at the Sacramento Air Logistics Center

    SciTech Connect

    Fiedler, C.; Ducharme, T.; Kwan, J.

    1996-12-31

    The usage of composite parts for critical applications on Air Force aircraft increases significantly with each new aircraft design. These composite parts are susceptible to delaminations, disbonds, and impact damage. As part of its mission to validate the integrity of aging composite aircraft, the Sacramento Air Logistics Center needs to be able to rapidly, economically, and accurately inspect a wide range of composite aircraft parts. Laser based ultrasound (LBU) inspection systems can rapidly inspect composite parts because they use laser beams which can be rapidly scanned because they do not need to be incident normal to the surface. One short pulse of laser light (120 ns) is used to generate an ultrasonic pulse, which always propagates normal to the surface where it is generated. A second, much longer pulse of laser light, and an interferometer are used to detect ultrasonic echoes which are reflected by internal flaws. Both of these laser beams can be rapidly scanned across the surface of the part, which enables LBU inspections to be as much as ten times faster than conventional inspections. In addition, LBU inspections do not require the complex scan plans or expensive fixturing that squirter systems require. Because of these advantages, and because of its composite workload, the Sacramento Air Logistics Center (SM-ALC/TIMSN) has procured the Laser Ultrasonic Inspection System (LUIS) for inspecting composite parts. Since this is the first known LBU inspection system to be installed in a production environment for scanning a production workload, the capabilities of this system will be described in detail.

  5. Chemical composition and photochemical reactivity of exhaust from aircraft turbine engines

    NASA Astrophysics Data System (ADS)

    Spicer, C. W.; Holdren, M. W.; Riggin, R. M.; Lyon, T. F.

    1994-10-01

    Assessment of the environmental impact of aircraft emissions is required by planners and policy makers. Seveal areas of concern are: 1. exposure of airport workers and urban residents to toxic chemicals emitted when the engines operate at low power (idle and taxi) on the ground; 2. contributions to urban photochemical air pollution of aircraft volatile organic and nitrogen oxides emissions from operations around airports; and 3. emissions of nitrogen oxides and particles during high-altitude operation. The environmental impact of chemicals emitted from jet aircraft turbine engines has not been firmly established due to lack of data regarding emission rates and identities of the compounds emitted. This paper describes an experimental study of two different aircraft turbine engines designed to determine detailed organic emissions, as well as emissions of inorganic gases. Emissions were measured at several engine power settings. Measurements were made of detailed organic composition from C1 through C17, CO, CO2, NO, NOx, and polycyclic aromatic hydrocarbons. Measurements were made using a multi-port sampling pro be positioned directly behind the engine in the exhaust exit plane. The emission measurements have been used to determine the organic distribution by carbon number and the distribution by compound class at each engine power level. The sum of the organic species was compared with an independent measurement of total organic carbon to assess the carbon mass balance. A portion of the exhaust was captured and irradiated in outdoor smog chambers to assess the photochemical reactivity of the emissions with respect to ozone formation. The reactivity of emissions from the two engines was apportioned by chemical compound class.

  6. A new fiber-optic non-contact compact laser-ultrasound scanner for fast non-destructive testing and evaluation of aircraft composites

    PubMed Central

    Pelivanov, Ivan; Buma, Takashi; Xia, Jinjun; Wei, Chen-Wei; O'Donnell, Matthew

    2014-01-01

    Laser ultrasonic (LU) inspection represents an attractive, non-contact method to evaluate composite materials. Current non-contact systems, however, have relatively low sensitivity compared to contact piezoelectric detection. They are also difficult to adjust, very expensive, and strongly influenced by environmental noise. Here, we demonstrate that most of these drawbacks can be eliminated by combining a new generation of compact, inexpensive fiber lasers with new developments in fiber telecommunication optics and an optimally designed balanced probe scheme. In particular, a new type of a balanced fiber-optic Sagnac interferometer is presented as part of an all-optical LU pump-probe system for non-destructive testing and evaluation of aircraft composites. The performance of the LU system is demonstrated on a composite sample with known defects. Wide-band ultrasound probe signals are generated directly at the sample surface with a pulsed fiber laser delivering nanosecond laser pulses at a repetition rate up to 76 kHz rate with a pulse energy of 0.6 mJ. A balanced fiber-optic Sagnac interferometer is employed to detect pressure signals at the same point on the composite surface. A- and B-scans obtained with the Sagnac interferometer are compared to those made with a contact wide-band polyvinylidene fluoride transducer. PMID:24737921

  7. A new fiber-optic non-contact compact laser-ultrasound scanner for fast non-destructive testing and evaluation of aircraft composites.

    PubMed

    Pelivanov, Ivan; Buma, Takashi; Xia, Jinjun; Wei, Chen-Wei; O'Donnell, Matthew

    2014-03-21

    Laser ultrasonic (LU) inspection represents an attractive, non-contact method to evaluate composite materials. Current non-contact systems, however, have relatively low sensitivity compared to contact piezoelectric detection. They are also difficult to adjust, very expensive, and strongly influenced by environmental noise. Here, we demonstrate that most of these drawbacks can be eliminated by combining a new generation of compact, inexpensive fiber lasers with new developments in fiber telecommunication optics and an optimally designed balanced probe scheme. In particular, a new type of a balanced fiber-optic Sagnac interferometer is presented as part of an all-optical LU pump-probe system for non-destructive testing and evaluation of aircraft composites. The performance of the LU system is demonstrated on a composite sample with known defects. Wide-band ultrasound probe signals are generated directly at the sample surface with a pulsed fiber laser delivering nanosecond laser pulses at a repetition rate up to 76 kHz rate with a pulse energy of 0.6 mJ. A balanced fiber-optic Sagnac interferometer is employed to detect pressure signals at the same point on the composite surface. A- and B-scans obtained with the Sagnac interferometer are compared to those made with a contact wide-band polyvinylidene fluoride transducer.

  8. Progress on automated data analysis algorithms for ultrasonic inspection of composites

    NASA Astrophysics Data System (ADS)

    Aldrin, John C.; Forsyth, David S.; Welter, John T.

    2015-03-01

    Progress is presented on the development and demonstration of automated data analysis (ADA) software to address the burden in interpreting ultrasonic inspection data for large composite structures. The automated data analysis algorithm is presented in detail, which follows standard procedures for analyzing signals for time-of-flight indications and backwall amplitude dropout. New algorithms have been implemented to reliably identify indications in time-of-flight images near the front and back walls of composite panels. Adaptive call criteria have also been applied to address sensitivity to variation in backwall signal level, panel thickness variation, and internal signal noise. ADA processing results are presented for a variety of test specimens that include inserted materials and discontinuities produced under poor manufacturing conditions. Software tools have been developed to support both ADA algorithm design and certification, producing a statistical evaluation of indication results and false calls using a matching process with predefined truth tables. Parametric studies were performed to evaluate detection and false call results with respect to varying algorithm settings.

  9. Large strain variable stiffness composites for shear deformations with applications to morphing aircraft skins

    NASA Astrophysics Data System (ADS)

    McKnight, G. P.; Henry, C. P.

    2008-03-01

    Morphing or reconfigurable structures potentially allow for previously unattainable vehicle performance by permitting several optimized structures to be achieved using a single platform. The key to enabling this technology in applications such as aircraft wings, nozzles, and control surfaces, are new engineered materials which can achieve the necessary deformations but limit losses in parasitic actuation mass and structural efficiency (stiffness/weight). These materials should exhibit precise control of deformation properties and provide high stiffness when exercised through large deformations. In this work, we build upon previous efforts in segmented reinforcement variable stiffness composites employing shape memory polymers to create prototype hybrid composite materials that combine the benefits of cellular materials with those of discontinuous reinforcement composites. These composites help overcome two key challenges for shearing wing skins: the resistance to out of plane buckling from actuation induced shear deformation, and resistance to membrane deflections resulting from distributed aerodynamic pressure loading. We designed, fabricated, and tested composite materials intended for shear deformation and address out of plane deflections in variable area wing skins. Our designs are based on the kinematic engineering of reinforcement platelets such that desired microstructural kinematics is achieved through prescribed boundary conditions. We achieve this kinematic control by etching sheets of metallic reinforcement into regular patterns of platelets and connecting ligaments. This kinematic engineering allows optimization of materials properties for a known deformation pathway. We use mechanical analysis and full field photogrammetry to relate local scale kinematics and strains to global deformations for both axial tension loading and shear loading with a pinned-diamond type fixture. The Poisson ratio of the kinematically engineered composite is ~3x higher than

  10. Evaluation of teeth loss among workers in the laminate and composite materials department of aircraft factory.

    PubMed

    Bachanek, Teresa; Samborski, Dariusz; Chałas, Renata; Wolańska, Ewa

    2005-01-01

    Liquid epoxide resins, solvents and solvent-modified epoxide resins, as well as hardeners for epoxide resins, appear to be skin and mucosa irritants of different intensity and possibly have allergenic properties. Therefore, it is required that the employees are qualified and industrial safety rules are followed when these substances are in use in the manufacturing process. Our study evaluated the state of dentition and analysed the loss of teeth in the workers of the laminate and composite materials department of aircraft factory. The research has been carried out in a group of 114 workers, which consisted of 88 men and 26 women 20 to 61 years old. The control group consisted of 41 workers of the administration department in the aircraft factory who did not have any contact with chemical compounds. The workers in the studied group are characterised as having an unsatisfactory state of dentition, as shown by the high rate of lost teeth (74 %). Statistically significant difference between the studied group and the control was found when the relationship between the number of lost molar teeth in women in the studied group and those in the control group is taken into consideration, a statistically significant difference appears to refer to teeth 46 and 27. The same statistically important correlation between men in the control and studied groups concerns teeth 16. The research data shows that incisor teeth are the least frequently extracted teeth in the whole population studied. Statistically significant differences can be noted for teeth 21 and 23 between the women in the control group and those in the studied one. Future studies are necessary to assess the potential relationship between the loss of teeth among workers of the department of laminate and composite materials of aircraft factory and their workplace.

  11. Failure behavior of generic metallic and composite aircraft structural components under crash loads

    NASA Technical Reports Server (NTRS)

    Carden, Huey D.; Robinson, Martha P.

    1990-01-01

    Failure behavior results are presented from crash dynamics research using concepts of aircraft elements and substructure not necessarily designed or optimized for energy absorption or crash loading considerations. To achieve desired new designs incorporating improved energy absorption capabilities often requires an understanding of how more conventional designs behave under crash loadings. Experimental and analytical data are presented which indicate some general trends in the failure behavior of a class of composite structures including individual fuselage frames, skeleton subfloors with stringers and floor beams without skin covering, and subfloors with skin added to the frame-stringer arrangement. Although the behavior is complex, a strong similarity in the static/dynamic failure behavior among these structures is illustrated through photographs of the experimental results and through analytical data of generic composite structural models.

  12. Rheological Behavior of Composites Based on Carbon Fibers Recycled from Aircraft Waste

    NASA Astrophysics Data System (ADS)

    Marcaníková, Lucie; Hausnerová, Berenika; Kitano, Takeshi

    2009-07-01

    Rheological investigation of composite materials prepared from the recycled aircraft waste materials based on thermoset (epoxy/resin) matrix and long carbon fibers (CF) is presented with the aim of their utilization in consumer industry applications. The carbon fibers recovered via thermal process of pyrolysis were cut into about 150 μm length and melt mixed with thermoplastic matrices based on polypropylene (PP) and polyamide 6 (PA) and various modifiers—ethylene-ethyl acrylate-maleic anhydride (E-EA-MAH), polypropylene grafted maleic anhydride (PP-g-MA) and poly(styrene)-block-poly(ethylene-co-but-1-ene)-block-poly(styrene) (SEBS). Rheological, electrical, mechanical, thermal and morphological results revealed the composites of recycled CF and PP/PP-g-MA as well as PA/E-EA-MAH to be the most promising candidates for new applications.

  13. Low density bismaleimide-carbon microballoon composites. [aircraft and submarine compartment safety

    NASA Technical Reports Server (NTRS)

    Kourtides, D. A.; Parker, J. A. (Inventor)

    1978-01-01

    A process is described for constructing for a composite laminate structure which exhibits a high resistance to heat and flame provides safer interior structures for aircraft and submarine compartments. Composite laminate structures are prepared by the bismaleimide resin preimpregnation of a fiberglass cloth to form a face sheet which is bonded with a bismaleimide hot melt adhesive to a porous core structure selected from the group consisting of polyamide paper and bismaleimide-glass fabric which is filled with carbon microballoons. The carbon microballoons are prepared by pyrolyzing phenolic micro-balloons in the presence of nitrogen. A slurry of the carbon microballoons is prepared to fill the porous core structure. The porous core structure and face sheet are bonded to provide panel structures exhibiting increased mechanical capacities and lower oxygen limit values and smoke density values.

  14. Fuel containment, lightning protection and damage tolerance in large composite primary aircraft structures

    NASA Technical Reports Server (NTRS)

    Griffin, Charles F.; James, Arthur M.

    1985-01-01

    The damage-tolerance characteristics of high strain-to-failure graphite fibers and toughened resins were evaluated. Test results show that conventional fuel tank sealing techniques are applicable to composite structures. Techniques were developed to prevent fuel leaks due to low-energy impact damage. For wing panels subjected to swept stroke lightning strikes, a surface protection of graphite/aluminum wire fabric and a fastener treatment proved effective in eliminating internal sparking and reducing structural damage. The technology features developed were incorporated and demonstrated in a test panel designed to meet the strength, stiffness, and damage tolerance requirements of a large commercial transport aircraft. The panel test results exceeded design requirements for all test conditions. Wing surfaces constructed with composites offer large weight savings if design allowable strains for compression can be increased from current levels.

  15. An overview of the crash dynamics failure behavior of metal and composite aircraft structures

    NASA Technical Reports Server (NTRS)

    Carden, Huey D.; Boitnott, Richard L.; Fasanella, Edwin L.; Jones, Lisa E.

    1991-01-01

    An overview of failure behavior results is presented from some of the crash dynamics research conducted with concepts of aircraft elements and substructure not necessarily designed or optimized for energy absorption or crash loading considerations. Experimental and analytical data are presented that indicate some general trends in the failure behavior of a class of composite structures that includes fuselage panels, individual fuselage sections, fuselage frames, skeleton subfloors with stringers and floor beams without skin covering, and subfloors with skin added to the frame stringer structure. Although the behavior is complex, a strong similarity in the static/dynamic failure behavior among these structures is illustrated through photographs of the experimental results and through analytical data of generic composite structural models.

  16. Modeling and Design Analysis Methodology for Tailoring of Aircraft Structures with Composites

    NASA Technical Reports Server (NTRS)

    Rehfield, Lawrence W.

    2004-01-01

    Composite materials provide design flexibility in that fiber placement and orientation can be specified and a variety of material forms and manufacturing processes are available. It is possible, therefore, to 'tailor' the structure to a high degree in order to meet specific design requirements in an optimum manner. Common industrial practices, however, have limited the choices designers make. One of the reasons for this is that there is a dearth of conceptual/preliminary design analysis tools specifically devoted to identifying structural concepts for composite airframe structures. Large scale finite element simulations are not suitable for such purposes. The present project has been devoted to creating modeling and design analysis methodology for use in the tailoring process of aircraft structures. Emphasis has been given to creating bend-twist elastic coupling in high aspect ratio wings or other lifting surfaces. The direction of our work was in concert with the overall NASA effort Twenty- First Century Aircraft Technology (TCAT). A multi-disciplinary team was assembled by Dr. Damodar Ambur to work on wing technology, which included our project.

  17. Neural adaptive control for vibration suppression in composite fin-tip of aircraft.

    PubMed

    Suresh, S; Kannan, N; Sundararajan, N; Saratchandran, P

    2008-06-01

    In this paper, we present a neural adaptive control scheme for active vibration suppression of a composite aircraft fin tip. The mathematical model of a composite aircraft fin tip is derived using the finite element approach. The finite element model is updated experimentally to reflect the natural frequencies and mode shapes very accurately. Piezo-electric actuators and sensors are placed at optimal locations such that the vibration suppression is a maximum. Model-reference direct adaptive neural network control scheme is proposed to force the vibration level within the minimum acceptable limit. In this scheme, Gaussian neural network with linear filters is used to approximate the inverse dynamics of the system and the parameters of the neural controller are estimated using Lyapunov based update law. In order to reduce the computational burden, which is critical for real-time applications, the number of hidden neurons is also estimated in the proposed scheme. The global asymptotic stability of the overall system is ensured using the principles of Lyapunov approach. Simulation studies are carried-out using sinusoidal force functions of varying frequency. Experimental results show that the proposed neural adaptive control scheme is capable of providing significant vibration suppression in the multiple bending modes of interest. The performance of the proposed scheme is better than the H(infinity) control scheme.

  18. Implementation of CAPIO for Composite Adaptive Control of Cross-Coupled Unstable Aircraft

    NASA Technical Reports Server (NTRS)

    Yildiz, Yildiray; Kolmanovsky, Ilya V.

    2011-01-01

    This paper presents an implementation of a recently developed control allocation algorithm CAPIO (a Control Allocation technique to recover from Pilot Induced Oscillations) for composite adaptive control of an inertially cross coupled unstable aircraft. When actuators are rate-saturated due to either an aggressive pilot command, high gain of the flight control system or some anomaly in the system, the effective delay in the control loop may increase due to the phase shifting between the desired and the achieved system states. This effective time delay may deteriorate the performance or even destabilize the system in some cases, depending on the severity of rate saturation. CAPIO reduces the effective time delay by minimizing the phase shift between the commanded and the actual attitude accelerations. We present simulation results for an unstable aircraft with cross-coupling controlled with a composite adaptive controller in the presence of rate saturation. The simulations demonstrate the potential of CAPIO serving as an effective rate saturation compensator in adverse conditions.

  19. Analysis and Testing of a Metallic Repair Applicable to Pressurized Composite Aircraft Structure

    NASA Technical Reports Server (NTRS)

    Przekop, Adam; Jegley, Dawn C.; Rouse, Marshall; Lovejoy, Andrew E.

    2014-01-01

    Development of repair technology is vital to the long-term application of new structural concepts on aircraft structure. The design, analysis, and testing of a repair concept applicable to a stiffened composite panel based on the Pultruded Rod Stitched Efficient Unitized Structure was recently completed. The damage scenario considered was a mid-bay to mid-bay saw-cut with a severed stiffener, flange, and skin. A bolted metallic repair was selected so that it could be easily applied in the operational environment. The present work describes results obtained from tension and pressure panel tests conducted to validate both the repair concept and finite element analysis techniques used in the design effort. Simulation and experimental strain and displacement results show good correlation, indicating that the finite element modeling techniques applied in the effort are an appropriate compromise between required fidelity and computational effort. Static tests under tension and pressure loadings proved that the proposed repair concept is capable of sustaining load levels that are higher than those resulting from the current working stress allowables. Furthermore, the pressure repair panel was subjected to 55,000 pressure load cycles to verify that the design can withstand a life cycle representative for a transport category aircraft. These findings enable upward revision of the stress allowables that had been kept at an overly-conservative level due to concerns associated with repairability of the panels. This conclusion enables more weight efficient structural designs utilizing the composite concept under investigation.

  20. A Study of the Utilization of Advanced Composites in Fuselage Structures of Commercial Aircraft

    NASA Technical Reports Server (NTRS)

    Watts, D. J.; Sumida, P. T.; Bunin, B. L.; Janicki, G. S.; Walker, J. V.; Fox, B. R.

    1985-01-01

    A study was conducted to define the technology and data needed to support the introduction of advanced composites in the future production of fuselage structure in large transport aircraft. Fuselage structures of six candidate airplanes were evaluated for the baseline component. The MD-100 was selected on the basis of its representation of 1990s fuselage structure, an available data base, its impact on the schedule and cost of the development program, and its availability and suitability for flight service evaluation. Acceptance criteria were defined, technology issues were identified, and a composite fuselage technology development plan, including full-scale tests, was identified. The plan was based on composite materials to be available in the mid to late 1980s. Program resources required to develop composite fuselage technology are estimated at a rough order of magnitude to be 877 man-years exclusive of the bird strike and impact dynamic test components. A conceptual composite fuselage was designed, retaining the basic MD-100 structural arrangement for doors, windows, wing, wheel wells, cockpit enclosure, major bulkheads, etc., resulting in a 32 percent weight savings.

  1. Scaled Composites' Proteus aircraft and an F/A-18 Hornet from NASA's Dryden Flight Research Center d

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Scaled Composites' Proteus aircraft and an F/A-18 Hornet from NASA's Dryden Flight Research Center during a low-level flyby at Las Cruces Airport in New Mexico. The unique Proteus aircraft served as a test bed for NASA-sponsored flight tests designed to validate collision-avoidance technologies proposed for uninhabited aircraft. The tests, flown over southern New Mexico in March, 2002, used the Proteus as a surrogate uninhabited aerial vehicle (UAV) while three other aircraft flew toward the Proteus from various angles on simulated collision courses. Radio-based 'detect, see and avoid' equipment on the Proteus successfully detected the other aircraft and relayed that information to a remote pilot on the ground at Las Cruces Airport. The pilot then transmitted commands to the Proteus to maneuver it away from the potential collisions. The flight demonstration, sponsored by NASA Dryden Flight Research Center, New Mexico State University, Scaled Composites, the U.S. Navy and Modern Technology Solutions, Inc., were intended to demonstrate that UAVs can be flown safely and compatibly in the same skies as piloted aircraft.

  2. Structural Analysis and Optimization of a Composite Fan Blade for Future Aircraft Engine

    NASA Technical Reports Server (NTRS)

    Coroneos, Rula M.

    2012-01-01

    This report addresses the structural analysis and optimization of a composite fan blade sized for a large aircraft engine. An existing baseline solid metallic fan blade was used as a starting point to develop a hybrid honeycomb sandwich construction with a polymer matrix composite face sheet and honeycomb aluminum core replacing the original baseline solid metallic fan model made of titanium. The focus of this work is to design the sandwich composite blade with the optimum number of plies for the face sheet that will withstand the combined pressure and centrifugal loads while the constraints are satisfied and the baseline aerodynamic and geometric parameters are maintained. To satisfy the requirements, a sandwich construction for the blade is proposed with composite face sheets and a weak core made of honeycomb aluminum material. For aerodynamic considerations, the thickness of the core is optimized whereas the overall blade thickness is held fixed so as to not alter the original airfoil geometry. Weight is taken as the objective function to be minimized by varying the core thickness of the blade within specified upper and lower bounds. Constraints are imposed on radial displacement limitations and ply failure strength. From the optimum design, the minimum number of plies, which will not fail, is back-calculated. The ply lay-up of the blade is adjusted from the calculated number of plies and final structural analysis is performed. Analyses were carried out by utilizing the OpenMDAO Framework, developed at NASA Glenn Research Center combining optimization with structural assessment.

  3. Structural Analysis and Optimization of a Composite Fan Blade for Future Aircraft Engine

    NASA Astrophysics Data System (ADS)

    Coroneos, Rula M.; Gorla, Rama Subba Reddy

    2012-09-01

    This paper addresses the structural analysis and optimization of a composite sandwich ply lay-up of a NASA baseline solid metallic fan blade comparable to a future Boeing 737 MAX aircraft engine. Sandwich construction with a polymer matrix composite face sheet and honeycomb aluminum core replaces the original baseline solid metallic fan model made of Titanium. The focus of this work is to design the sandwich composite blade with the optimum number of plies for the face sheet that will withstand the combined pressure and centrifugal loads while the constraints are satisfied and the baseline aerodynamic and geometric parameters are maintained. To satisfy the requirements a sandwich construction for the blade is proposed with composite face sheets and a weak core made of honeycomb aluminum material. For aerodynamic considerations, the thickness of the core is optimized where as the overall blade thickness is held fixed in order not to alter the original airfoil geometry. Weight reduction is taken as the objective function by varying the core thickness of the blade within specified upper and lower bounds. Constraints are imposed on radial displacement limitations and ply failure strength. From the optimum design, the minimum number of plies, which will not fail, is back-calculated. The ply lay-up of the blade is adjusted from the calculated number of plies and final structural analysis is performed. Analyses were carried out by utilizing the OpenMDAO Framework, developed at NASA Glenn Research Center combining optimization with structural assessment.

  4. Evaluation of modal-based damage detection techniques for composite aircraft sandwich structures

    NASA Astrophysics Data System (ADS)

    Oliver, J. A.; Kosmatka, J. B.

    2005-05-01

    Composite sandwich structures are important as structural components in modern lightweight aircraft, but are susceptible to catastrophic failure without obvious forewarning. Internal damage, such as disbonding between skin and core, is detrimental to the structures' strength and integrity and thus must be detected before reaching critical levels. However, highly directional low density cores, such as Nomex honeycomb, make the task of damage detection and health monitoring difficult. One possible method for detecting damage in composite sandwich structures, which seems to have received very little research attention, is analysis of global modal parameters. This study will investigate the viability of modal analysis techniques for detecting skin-core disbonds in carbon fiber-Nomex honeycomb sandwich panels through laboratory testing. A series of carbon fiber prepreg and Nomex honeycomb sandwich panels-representative of structural components used in lightweight composite airframes-were fabricated by means of autoclave co-cure. All panels were of equal dimensions and two were made with predetermined sizes of disbonded areas, created by substituting areas of Teflon release film in place of epoxy film adhesive during the cure. A laser vibrometer was used to capture frequency response functions (FRF) of all panels, and then real and imaginary FRFs at different locations on each plate and operating shapes for each plate were compared. Preliminary results suggest that vibration-based techniques hold promise for damage detection of composite sandwich structures.

  5. Habitat Inspection Scanner, Bio-Structure Scanner, and In Situ Sub-Surface Composition Sensor

    NASA Technical Reports Server (NTRS)

    VanSteenberg, Michael

    2004-01-01

    The extension of dielectric and inductive spectroscopy into in situ observations represents a significant exploration-enabling tool. This technology can be widely applied from microscopic to macroscopic. Dielectrometry and inductometry can measure sub-surface composition and its distribution. The primary environment that we cannot easily explored is the sub-surface of solid bodies. Weather as part of our equipment that we bring with us, or the locations we are exploring. These fundamental questions lie at the core of the exploration Initiative. To answer them we must use a whole host of complimentary tools including those that allow us to practically examine the sub-surface environment. A nondestructive approach offers significant advantages for both the initial identification of likely samples but also the monitoring of ecosystems and crew health. These include materials characterization, nondestructive inspection, and process quality control, damage monitoring, and hidden object detection and identification. The identification of natural resources such as water on the Moon or Mars is of great importance to the utilization of local resource in the support of human exploration crews. On the macroscopic scale, the understanding of what resources are available and how they are distributed is of primary importance to their productive utilization. Even if initial explorations do not require the use of local resources to succeed, eventual settlement and commercial development will. The routine examination of the structural integrity (micro cracks, leaks) of hi.inafi habitats in harsh envkmments ww!d also be enabled.

  6. Weight Assessment for Fuselage Shielding on Aircraft With Open-Rotor Engines and Composite Blade Loss

    NASA Technical Reports Server (NTRS)

    Carney, Kelly; Pereira, Michael; Kohlman, Lee; Goldberg, Robert; Envia, Edmane; Lawrence, Charles; Roberts, Gary; Emmerling, William

    2013-01-01

    The Federal Aviation Administration (FAA) has been engaged in discussions with airframe and engine manufacturers concerning regulations that would apply to new technology fuel efficient "openrotor" engines. Existing regulations for the engines and airframe did not envision features of these engines that include eliminating the fan blade containment systems and including two rows of counter-rotating blades. Damage to the airframe from a failed blade could potentially be catastrophic. Therefore the feasibility of using aircraft fuselage shielding was investigated. In order to establish the feasibility of this shielding, a study was conducted to provide an estimate for the fuselage shielding weight required to provide protection from an open-rotor blade loss. This estimate was generated using a two-step procedure. First, a trajectory analysis was performed to determine the blade orientation and velocity at the point of impact with the fuselage. The trajectory analysis also showed that a blade dispersion angle of 3deg bounded the probable dispersion pattern and so was used for the weight estimate. Next, a finite element impact analysis was performed to determine the required shielding thickness to prevent fuselage penetration. The impact analysis was conducted using an FAA-provided composite blade geometry. The fuselage geometry was based on a medium-sized passenger composite airframe. In the analysis, both the blade and fuselage were assumed to be constructed from a T700S/PR520 triaxially-braided composite architecture. Sufficient test data on T700S/PR520 is available to enable reliable analysis, and also demonstrate its good impact resistance properties. This system was also used in modeling the surrogate blade. The estimated additional weight required for fuselage shielding for a wing- mounted counterrotating open-rotor blade is 236 lb per aircraft. This estimate is based on the shielding material serving the dual use of shielding and fuselage structure. If the

  7. Testing and Analysis of a Composite Non-Cylindrical Aircraft Fuselage Structure . Part II; Severe Damage

    NASA Technical Reports Server (NTRS)

    Przekop, Adam; Jegley, Dawn C.; Lovejoy, Andrew E.; Rouse, Marshall; Wu, Hsi-Yung T.

    2016-01-01

    The Environmentally Responsible Aviation Project aimed to develop aircraft technologies enabling significant fuel burn and community noise reductions. Small incremental changes to the conventional metallic alloy-based 'tube and wing' configuration were not sufficient to achieve the desired metrics. One airframe concept identified by the project as having the potential to dramatically improve aircraft performance was a composite-based hybrid wing body configuration. Such a concept, however, presented inherent challenges stemming from, among other factors, the necessity to transfer wing loads through the entire center fuselage section which accommodates a pressurized cabin confined by flat or nearly flat panels. This paper discusses a finite element analysis and the testing of a large-scale hybrid wing body center section structure developed and constructed to demonstrate that the Pultruded Rod Stitched Efficient Unitized Structure concept can meet these challenging demands of the next generation airframes. Part II of the paper considers the final test to failure of the test article in the presence of an intentionally inflicted severe discrete source damage under the wing up-bending loading condition. Finite element analysis results are compared with measurements acquired during the test and demonstrate that the hybrid wing body test article was able to redistribute and support the required design loads in a severely damaged condition.

  8. NASA Dryden DC-8 maintenance crew members inspect the aircraft prior to take-off for an AirSAR 2004 flight

    NASA Image and Video Library

    2004-03-06

    NASA Dryden DC-8 maintenance crew members inspect the aircraft prior to take-off. L-R; Scott Silver, Paul Ristrim and Mike Lakowski. AirSAR 2004 Mesoamerica is a three-week expedition by an international team of scientists that uses an all-weather imaging tool, called the Airborne Synthetic Aperture Radar (AirSAR) which is located onboard NASA's DC-8 airborne laboratory. Scientists from many parts of the world including NASA's Jet Propulsion Laboratory are combining ground research done in several areas in Central America with NASA's AirSAR technology to improve and expand on the quality of research they are able to conduct. The radar, developed by NASA's Jet Propulsion Laboratory, can penetrate clouds and also collect data at night. Its high-resolution sensors operate at multiple wavelengths and modes, allowing AirSAR to see beneath treetops, through thin sand, and dry snow pack. AirSAR's 2004 campaign is a collaboration of many U.S. and Central American institutions and scientists, including NASA; the National Science Foundation; the Smithsonian Institution; National Geographic; Conservation International; the Organization of Tropical Studies; the Central American Commission for Environment and Development; and the Inter-American Development Bank.

  9. The friction and wear of carbon-carbon composites for aircraft brakes

    NASA Astrophysics Data System (ADS)

    Hutton, Toby

    Many carbon-carbon composite aircraft brakes encounter high wear rates during low energy braking operations. The work presented in this thesis addresses this issue, but it also elucidates the microstructural changes and wear mechanisms that take place in these materials during all braking conditions encountered by aircraft brakes. A variety of investigations were conducted using friction and wear testing, as well as examination of wear surfaces and wear debris using OM, SEM, X-RD, TGA and Density Gradient Separation (DOS). Friction and wear tests were conducted on a PAN fibre/CVI matrix carbon-carbon composite (Dunlop) and a pitch fibre/Resin-CVI matrix carbon-carbon composite (Bendix). Extensive testing was undertaken on the Dunlop composites to asses the effects of composite architecture, fibre orientation and heat treatment temperatures on friction and wear. Other friction and wear tests, conducted on the base Dunlop composite, were used to investigate the relative influences of temperature and sliding speed. It was found that the effect of temperature was dominant over composite architecture, fibre orientation and sliding speed in governing the friction and wear performance of the Dunlop composites. The development of bulk temperatures in excess of 110 C by frictional heating resulted in smooth friction and a low wear rate. Reducing heat treatment temperature also reduced the thermal conductivity producing high interface temperatures, low smooth friction coefficients and low wear rates under low energy braking conditions. However, this was at the expense of high oxidative wear rates under higher energy braking conditions. The Bendix composites had lower thermal conductivities than the fully heat treated Dunlop composite and exhibited similar friction and wear behaviour to Dunlop composites heat treated to lower temperatures. Examination of the wear surfaces using OM and SEM revealed particulate or Type I surface debris on wear surfaces tested under low energy

  10. 14 CFR 33.93 - Teardown inspection.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Teardown inspection. 33.93 Section 33.93 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Block Tests; Turbine Aircraft Engines § 33.93 Teardown inspection. (a) After...

  11. 14 CFR 33.93 - Teardown inspection.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Teardown inspection. 33.93 Section 33.93 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Block Tests; Turbine Aircraft Engines § 33.93 Teardown inspection. (a)...

  12. NASA/aircraft industry standard specification for graphite fiber toughened thermoset resin composite material

    NASA Technical Reports Server (NTRS)

    1985-01-01

    A standard specification for a selected class of graphite fiber/toughened thermoset resin matrix material was developed through joint NASA/Aircraft Industry effort. This specification was compiled to provide uniform requirements and tests for qualifying prepreg systems and for acceptance of prepreg batches. The specification applies specifically to a class of composite prepreg consisting of unidirectional graphite fibers impregnated with a toughened thermoset resin that produce laminates with service temperatures from -65 F to 200 F when cured at temperatures below or equal to 350 F. The specified prepreg has a fiber areal weight of 145 g sq m. The specified tests are limited to those required to set minimum standards for the uncured prepreg and cured laminates, and are not intended to provide design allowable properties.

  13. Dhaksha, the Unmanned Aircraft System in its New Avatar-Automated Aerial Inspection of INDIA'S Tallest Tower

    NASA Astrophysics Data System (ADS)

    Kumar, K. S.; Rasheed, A. Mohamed; Krishna Kumar, R.; Giridharan, M.; Ganesh

    2013-08-01

    DHAKSHA, the unmanned aircraft system (UAS), developed after several years of research by Division of Avionics, Department of Aerospace Engineering, MIT Campus of Anna University has recently proved its capabilities during May 2012 Technology demonstration called UAVforge organised by Defence Research Project Agency, Department of Defence, USA. Team Dhaksha with its most stable design outperformed all the other contestants competing against some of the best engineers from prestigi ous institutions across the globe like Middlesex University from UK, NTU and NUS from Singapore, Tudelft Technical University, Netherlands and other UAV industry participants in the world's toughest UAV challenge. This has opened up an opportunity for Indian UAVs making a presence in the international scenario as well. In furtherance to the above effort at Fort Stewart military base at Georgia,USA, with suitable payloads, the Dhaksha team deployed the UAV in a religious temple festival during November 2012 at Thiruvannamalai District for Tamil Nadu Police to avail the instant aerial imagery services over the crowd of 10 lakhs pilgrims and also about the investigation of the structural strength of the India's tallest structure, the 300 m RCC tower during January 2013. The developed system consists of a custom-built Rotary Wing model with on-board navigation, guidance and control systems (NGC) and ground control station (GCS), for mission planning, remote access, manual overrides and imagery related computations. The mission is to fulfill the competition requirements by using an UAS capable of providing complete solution for the stated problem. In this work the effort to produce multirotor unmanned aerial systems (UAS) for civilian applications at the MIT, Avionics Laboratory is presented

  14. Flammability of self-extinguishing kenaf/ABS nanoclays composite for aircraft secondary structure

    NASA Astrophysics Data System (ADS)

    Karunakaran, S.; Majid, D. L.; Mohd Tawil, M. L.

    2016-10-01

    This study investigates the flammability properties of kenaf fiber reinforced acrylonitrile butadiene styrene (ABS) with nanoclays composites. Natural fiber is one of the potential materials to be used with thermoplastic as a composite due to its attractive properties such as lightweight and strong. In this paper, flammability properties of this material are evaluated through Underwriters Laboratory 94 Horizontal Burning (UL94 HB), which has been conducted for both controlled and uncontrolled conditions, smoke density and limiting oxygen index tests (LOI). These flammability tests are in compliance with the Federal Aviation Regulation (FAR) requirement. The results from UL94 HB and smoke density tests show that the presence of nanoclays with effective composition of kenaf fiber reinforced ABS has enhanced the burning characteristics of the material by hindering propagation of flame spread over the surface of the material through char formation. Consequently, this decreases the burning rate and produces low amount of smoke during burning. On contrary, through LOI test, this material requires less oxygen to burn when exposed to fire, which hinders the enhancement of burning characteristics. This is due to burning mechanism exhibited by nanoclays that catalyzes barrier formation and flame propagation rate over the surface of the biocomposite material. Overall, these experimental results suggest that this biocomposite material is capable of self-extinguishing and possesses effective fire extinction. The observed novel synergism from the result obtained is promising to be implemented in secondary structures of aircraft with significant benefits such as cost-effective, lightweight and biodegradable self-extinguishing biocomposite.

  15. Comparison of X-Ray, Millimeter Wave, Shearography and Through-Transmission Ultrasonic Methods for Inspection of Honeycomb Composites (Preprint)

    DTIC Science & Technology

    2006-08-01

    reinforced polymer ( GFRP ) skins can be inspected, for subsurface flaws using, a variety of nondestructive testing (NDT) methods. Such methods include X...assessed. SAMPLES DESCRIPTION Two honeycomb composites panels (1”-thick and 0.5”-thick) each with one side bonded with a thin GFRP laminar...the Figure 2, there are four subsurface flaws of different shapes appearing at the upper right-hand corner of the core- GFRP skin interface slice. A

  16. Nondestructive Characterization of Composite Materials

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Y.

    1993-01-01

    Increasingly, composite materials are applied to fracture-critical structures of aircraft and spacecraft...Ultrasonics offer the most capable inspection technology and recently developed techniques appear to improve this technology significantly... Recent progress in ultrasonic NDE of composites will be reviewed.

  17. An endoscopic shearography system with radial sensitivity for inner inspection of adhesion faults in composite material pipes

    NASA Astrophysics Data System (ADS)

    Benedet, M. E.; Macedo, F. J.; Fantin, A. V.; Willemann, D. P.; Silva, F. A. A.; Soares, S. D.; Albertazzi, A.

    2017-06-01

    This work presents the development of a special shearography system with radial sensitivity and explores its applicability for detecting adhesion flaws on internal surfaces of joints of composite material pipes. The system uses two conical mirrors to achieve radial sensitivity. A primary 45° conical mirror is responsible for promoting the inspection of the internal surface all way around 360°. A special Michelson-like interferometer is formed replacing one of the plane mirrors by a conical mirror. The image reflected by this conical mirror is shifted away from the image center in a radial way and a radial shear is produced on the images. The concept was developed and tested. Two tubular steel specimens internally coated with composite materials and having known artificial defects were analyzed to test the ability of the system to detect the flaws. The system presented very good results on all inspected specimens. The experimental results obtained in this work are promising and open a new front for inspections of inner surfaces of composite pipes with shearography.

  18. The Effects of Temperature, Humidity and Aircraft Fluid Exposure on T800H/3900-2 Composites Bonded with AF-555M Adhesive

    NASA Technical Reports Server (NTRS)

    Miner, Gilda A.; Hou, Tan-Hung; Lowther, Sharon E.; Thibeault, Sheila A.; Connell, John W.; Blasini, Sheila Roman

    2010-01-01

    Fiber reinforced resin matrix composites and structural adhesives have found increased usage on commercial and military aircraft in recent years. Due to the lack of service history of these relatively new material systems, their long-term aging performance has not been well established. In this study, single lap shear specimens (SLS) were fabricated by secondary bonding of Scotch-Weld(TradeMark) AF-555M between pre-cured adherends comprised of T800H/3900-2 uni-directional laminates. The adherends were co-cured with wet peel-ply for surface preparation. Each bond-line of the SLS specimen was measured to determine thickness and inspected visually using an optical microscope for voids. A three-year environmental aging plan for the SLS specimens at 82 C (180 F) and 85% relative humidity was initiated. SLS strengths were measured for both controls and aged specimens at room temperature and 82 C. The effect of this exposure on lap shear strength and failure modes to date is reported. In addition, the effects of water, saline water, deicing fluid, JP-5 jet fuel and hydraulic fluid on both the composite material and the adhesive bonds were investigated. The up to date results on the effects of these exposures will be discussed.

  19. Metal-matrix composite processing technologies for aircraft engine applications. [Ti-6Al-2Sn-4Zr-2Mo

    SciTech Connect

    Pank, D.R.; Jackson, J.J. )

    1993-06-01

    Titanium metal-matrix composites (MMC) are prime candidate materials for aerospace applications because of their excellent high-temperature longitudinal strength and stiffness and low density compared with nickel- and steel-base materials. This article examines the steps GE Aircraft Engines (GEAE) has taken to develop an induction plasma deposition (IPD) processing method for the fabrication of Ti6242/SiC MMC material. Information regarding process methodology, microstructures, and mechanical properties of consolidated MMC structures will be presented. The work presented was funded under the GE-Aircraft Engine IR and D program.

  20. The effect of material heterogeneity in curved composite beams for use in aircraft structures

    NASA Technical Reports Server (NTRS)

    Otoole, Brendan J.; Santare, Michael H.

    1992-01-01

    A design tool is presented for predicting the effect of material heterogeneity on the performance of curved composite beams for use in aircraft fuselage structures. Material heterogeneity can be induced during processes such as sheet forming and stretch forming of thermoplastic composites. This heterogeneity can be introduced in the form of fiber realignment and spreading during the manufacturing process causing a gradient in material properties in both the radial and tangential directions. The analysis procedure uses a separate two-dimensional elasticity solution for the stresses in the flanges and web sections of the beam. The separate solutions are coupled by requiring the forces and displacements match at the section boundaries. Analysis is performed for curved beams loaded in pure bending and uniform pressure. The beams can be of any general cross-section such as a hat, T-, I-, or J-beam. Preliminary results show that geometry of the beam dictates the effect of heterogeneity on performance. Heterogeneity plays a much larger role in beams with a small average radius to depth ratio, R/t, where R is the average radius of the beam and t is the difference between the inside and outside radius. Results of the analysis are in the form of stresses and displacements, and they are compared to both mechanics of materials and numerical solutions obtained using finite element analysis.

  1. Unique failure behavior of metal/composite aircraft structural components under crash type loads

    NASA Technical Reports Server (NTRS)

    Carden, Huey D.

    1990-01-01

    Failure behavior results are presented on some of the crash dynamics research conducted with concepts of aircraft elements and substructure which have not necessarily been designed or optimized for energy absorption or crash loading considerations. To achieve desired new designs which incorporate improved energy absorption capabilities often requires an understanding of how more conventional designs behave under crash type loadings. Experimental and analytical data are presented which indicate some general trends in the failure behavior of a class of composite structures which include individual fuselage frames, skeleton subfloors with stringers and floor beams but without skin covering, and subfloors with skin added to the frame-stringer arrangement. Although the behavior is complex, a strong similarity in the static/dynamic failure behavior among these structures is illustrated through photographs of the experimental results and through analytical data of generic composite structural models. It is believed that the thread of similarity in behavior is telling the designer and dynamists a great deal about what to expect in the crash behavior of these structures and can guide designs for improving the energy absorption and crash behavior of such structures.

  2. A KBE-enabled design framework for cost/weight optimization study of aircraft composite structures

    NASA Astrophysics Data System (ADS)

    Wang, H.; La Rocca, G.; van Tooren, M. J. L.

    2014-10-01

    Traditionally, minimum weight is the objective when optimizing airframe structures. This optimization, however, does not consider the manufacturing cost which actually determines the profit of the airframe manufacturer. To this purpose, a design framework has been developed able to perform cost/weight multi-objective optimization of an aircraft component, including large topology variations of the structural configuration. The key element of the proposed framework is a dedicated knowledge based engineering (KBE) application, called multi-model generator, which enables modelling very different product configurations and variants and extract all data required to feed the weight and cost estimation modules, in a fully automated fashion. The weight estimation method developed in this research work uses Finite Element Analysis to calculate the internal stresses of the structural elements and an analytical composite plate sizing method to determine their minimum required thicknesses. The manufacturing cost estimation module was developed on the basis of a cost model available in literature. The capability of the framework was successfully demonstrated by designing and optimizing the composite structure of a business jet rudder. The study case indicates the design framework is able to find the Pareto optimal set for minimum structural weight and manufacturing costin a very quick way. Based on the Pareto set, the rudder manufacturer is in conditions to conduct both internal trade-off studies between minimum weight and minimum cost solutions, as well as to offer the OEM a full set of optimized options to choose, rather than one feasible design.

  3. Design, Evaluation and Experimental Effort Toward Development of a High Strain Composite Wing for Navy Aircraft

    NASA Technical Reports Server (NTRS)

    Bruno, Joseph; Libeskind, Mark

    1990-01-01

    This design development effort addressed significant technical issues concerning the use and benefits of high strain composite wing structures (Epsilon(sub ult) = 6000 micro-in/in) for future Navy aircraft. These issues were concerned primarily with the structural integrity and durability of the innovative design concepts and manufacturing techniques which permitted a 50 percent increase in design ultimate strain level (while maintaining the same fiber/resin system) as well as damage tolerance and survivability requirements. An extensive test effort consisting of a progressive series of coupon and major element tests was an integral part of this development effort, and culminated in the design, fabrication and test of a major full-scale wing box component. The successful completion of the tests demonstrated the structural integrity, durability and benefits of the design. Low energy impact testing followed by fatigue cycling verified the damage tolerance concepts incorporated within the structure. Finally, live fire ballistic testing confirmed the survivability of the design. The potential benefits of combining newer/emerging composite materials and new or previously developed high strain wing design to maximize structural efficiency and reduce fabrication costs was the subject of subsequent preliminary design and experimental evaluation effort.

  4. Fuel containment and damage tolerance in large composite primary aircraft structures. Phase 2: Testing

    NASA Technical Reports Server (NTRS)

    Sandifer, J. P.; Denny, A.; Wood, M. A.

    1985-01-01

    Technical issues associated with fuel containment and damage tolerance of composite wing structures for transport aircraft were investigated. Material evaluation tests were conducted on two toughened resin composites: Celion/HX1504 and Celion/5245. These consisted of impact, tension, compression, edge delamination, and double cantilever beam tests. Another test series was conducted on graphite/epoxy box beams simulating a wing cover to spar cap joint configuration of a pressurized fuel tank. These tests evaluated the effectiveness of sealing methods with various fastener types and spacings under fatigue loading and with pressurized fuel. Another test series evaluated the ability of the selected coatings, film, and materials to prevent fuel leakage through 32-ply AS4/2220-1 laminates at various impact energy levels. To verify the structural integrity of the technology demonstration article structural details, tests were conducted on blade stiffened panels and sections. Compression tests were performed on undamaged and impacted stiffened AS4/2220-1 panels and smaller element tests to evaluate stiffener pull-off, side load and failsafe properties. Compression tests were also performed on panels subjected to Zone 2 lightning strikes. All of these data were integrated into a demonstration article representing a moderately loaded area of a transport wing. This test combined lightning strike, pressurized fuel, impact, impact repair, fatigue and residual strength.

  5. Flight service evaluation of an advanced composite empennage component on commercial transport aircraft

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The development and flight evaluation of an advanced composite empennage component is presented. The recommended concept for the covers is graphite-epoxy hats bonded to a graphite-epoxy skin. The hat flare-out has been eliminated, instead the hat is continuous into the joint. The recommended concept for the spars is graphite-epoxy caps and a hybrid of Kevlar-49 and graphite-epoxy in the spar web. The spar cap, spar web stiffeners for attaching the ribs, and intermediate stiffeners are planned to be fabricated as a unit. Access hole in the web will be reinforced with a donut type, zero degree graphite-epoxy wound reinforcement. The miniwich design concept in the upper three ribs originally proposed is changed to a graphite-epoxy stiffened solid laminate design concept. The recommended configuration for the lower seven ribs remains as graphite-epoxy caps with aluminum cruciform diagonals. The indicated weight saving for the current advanced composite vertical fin configuration is 20.2% including a 24 lb growth allowance. The project production cost saving is approximately 1% based on a cumulative average of 250 aircraft and including only material, production labor, and quality assurance costs.

  6. The stable isotopic composition of molecular hydrogen in the tropopause region probed by the CARIBIC aircraft

    NASA Astrophysics Data System (ADS)

    Batenburg, A. M.; Schuck, T. J.; Baker, A. K.; Zahn, A.; Brenninkmeijer, C. A. M.; Röckmann, T.

    2012-01-01

    More than 450 air samples that were collected in the upper troposphere - lower stratosphere (UTLS) region around the tropopause (TP) by the CARIBIC aircraft (Civil Aircraft for the Regular Investigation of the Atmosphere Based on an Instrument Container) have been analyzed for molecular hydrogen (H2) mixing ratios (m(H2)) and H2 isotopic composition (deuterium content, δD). More than 120 of the analysed samples consisted of air from the lowermost stratosphere (LMS). These show that m(H2) does not vary appreciably with O3-derived height above the thermal TP, whereas δD does increase with height. The isotope enrichment is caused by competing H2 production and destruction processes that enrich the stratospheric H2 reservoir in deuterium (D); the exact shapes of the profiles are mainly determined by mixing of stratospheric with tropospheric air. Tight negative correlations are found between δD and the mixing ratios of methane (CH4) and nitrous oxide (N2O), as a result of the relatively long lifetimes of these three species. The correlations are described by δ D [‰]=-0.35 · m(CH4)[ppb]+768 and δD [‰]=-1.90 · m(N2O)[ppb]+745. These correlations are similar to previously published results and likely hold globally. Samples that were collected from the Indian subcontinent up to 40° N before, during and after the summer monsoon season show no significant seasonal change in m(H2), but δD is up to 15‰ lower in the July, August and September monsoon samples. This δD lowering is correlated with m(CH4) increase. The significant correlation with m(CH4) and the absence of a perceptible m(H2) increase that accompanies the δD lowering indicates that microbial production of very D-depleted H2 in the wet season may contribute to this phenomenon. Some of the samples have very high m(H2) and very low δD values, which indicates a pollution effect. Aircraft engine exhaust plumes are a suspected cause, since the effect mostly occurs in samples collected close to airports

  7. The stable isotopic composition of molecular hydrogen in the tropopause region probed by the CARIBIC aircraft

    NASA Astrophysics Data System (ADS)

    Batenburg, A. M.; Schuck, T. J.; Baker, A. K.; Zahn, A.; Brenninkmeijer, C. A. M.; Röckmann, T.

    2012-05-01

    More than 450 air samples that were collected in the upper troposphere - lower stratosphere (UTLS) region by the CARIBIC aircraft (Civil Aircraft for the Regular Investigation of the atmosphere Based on an Instrument Container) have been analyzed for molecular hydrogen (H2) mixing ratios (χ(H2)) and H2 isotopic composition (deuterium content, δD). More than 120 of the analyzed samples contained air from the lowermost stratosphere (LMS). These show that χ(H2) does not vary appreciably with O3-derived height above the thermal tropopause (TP), whereas δD does increase with height. The isotope enrichment is caused by H2 production and destruction processes that enrich the stratospheric H2 reservoir in deuterium (D); the exact shapes of the profiles are mainly determined by mixing of stratospheric with tropospheric air. Tight negative correlations are found between δD and the mixing ratios of methane (χ(CH4)) and nitrous oxide (χ(N2O)), as a result of the relatively long lifetimes of these three species. The correlations are described by δD[‰]=-0.35 · χ(CH4)[ppb]+768 and δD[‰]=-1.90· χ(N2O)[ppb]+745. These correlations are similar to previously published results and likely hold globally for the LMS. Samples that were collected from the Indian subcontinent up to 40° N before, during and after the summer monsoon season show no significant seasonal change in χ(H2), but δD is up to 12.3‰ lower in the July, August and September monsoon samples. This δD decrease is correlated with the χ(CH4) increase in these samples. The significant correlation with χ(CH4) and the absence of a perceptible χ(H2) increase that accompanies the δD decrease indicates that microbial production of very D-depleted H2 in the wet season may contribute to this phenomenon. Some of the samples have very high χ(H2) and very low δD values, which indicates a pollution effect. Aircraft engine exhaust plumes are a suspected cause, since the effect mostly occurs in samples

  8. Nonlinear Finite Element Analysis of a Composite Non-Cylindrical Pressurized Aircraft Fuselage Structure

    NASA Technical Reports Server (NTRS)

    Przekop, Adam; Wu, Hsi-Yung T.; Shaw, Peter

    2014-01-01

    The Environmentally Responsible Aviation Project aims to develop aircraft technologies enabling significant fuel burn and community noise reductions. Small incremental changes to the conventional metallic alloy-based 'tube and wing' configuration are not sufficient to achieve the desired metrics. One of the airframe concepts that might dramatically improve aircraft performance is a composite-based hybrid wing body configuration. Such a concept, however, presents inherent challenges stemming from, among other factors, the necessity to transfer wing loads through the entire center fuselage section which accommodates a pressurized cabin confined by flat or nearly flat panels. This paper discusses a nonlinear finite element analysis of a large-scale test article being developed to demonstrate that the Pultruded Rod Stitched Efficient Unitized Structure concept can meet these challenging demands of the next generation airframes. There are specific reasons why geometrically nonlinear analysis may be warranted for the hybrid wing body flat panel structure. In general, for sufficiently high internal pressure and/or mechanical loading, energy related to the in-plane strain may become significant relative to the bending strain energy, particularly in thin-walled areas such as the minimum gage skin extensively used in the structure under analysis. To account for this effect, a geometrically nonlinear strain-displacement relationship is needed to properly couple large out-of-plane and in-plane deformations. Depending on the loading, this nonlinear coupling mechanism manifests itself in a distinct manner in compression- and tension-dominated sections of the structure. Under significant compression, nonlinear analysis is needed to accurately predict loss of stability and postbuckled deformation. Under significant tension, the nonlinear effects account for suppression of the out-of-plane deformation due to in-plane stretching. By comparing the present results with the previously

  9. Insights into Submicron Aerosol Composition and Sources from the WINTER Aircraft Campaign Over the Eastern US.

    NASA Astrophysics Data System (ADS)

    Schroder, J. C.; Campuzano Jost, P.; Day, D. A.; Fibiger, D. L.; McDuffie, E. E.; Blake, N. J.; Hills, A. J.; Hornbrook, R. S.; Apel, E. C.; Weinheimer, A. J.; Campos, T. L.; Brown, S. S.; Jimenez, J. L.

    2015-12-01

    The WINTER aircraft campaign was a recent field experiment to probe the sources and evolution of gas pollutants and aerosols in Northeast US urban and industrial plumes during the winter. A highly customized Aerodyne aerosol mass spectrometer (AMS) was flown on the NCAR C-130 to characterize submicron aerosol composition and evolution. Thirteen research flights were conducted covering a wide range of conditions, including rural, urban, and marine environments during day and night. Organic aerosol (OA) was a large component of the submicron aerosol in the boundary layer. The fraction of OA (fOA) was smaller (35-40%) than in recent US summer campaigns (~60-70%). Biomass burning was observed to be an important source of OA in the boundary layer, which is consistent with recent wintertime studies that show a substantial contribution of residential wood burning to the OA loadings. OA oxygenation (O/C ratio) shows a broad distribution with a substantial fraction of smaller O/C ratios when compared to previous summertime campaigns. Since measurements were rarely made very close to primary sources (i.e. directly above urban areas), this is consistent with oxidative chemistry being slower during winter. SOA formation and aging in the NYC plume was observed during several flights and compared with summertime results from LA (CalNex) and Mexico City (MILAGRO). Additionally, an oxidation flow reactor (OFR) capable of oxidizing ambient air up to several equivalent days of oxidation was deployed for the first time in an aircraft platform. The aerosol outflow of the OFR was sampled with the AMS to provide real-time snapshots of the potential for aerosol formation and aging. For example, a case study of a flight through the Ohio River valley showed evidence of oxidation of SO2 to sulfate. The measured sulfate enhancements were in good agreement with our OFR chemical model. OFR results for SOA will be discussed.

  10. Aircraft. [Soviet technology

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The physical principles of flight, and the consideration of atmospheric composition and aerodynamic forces in the design and construction of various types of aircraft are discussed. Flight characteristics are described for helicopters, rotary-wing aircraft, short and vertical takeoff aircraft, and tailess or variable geometry wing aircraft. Flow characteristics at various speeds are also discussed.

  11. Advanced X-Ray Inspection of Reinforced Carbon Composite Materials on the Orbiter Leading Edge Structural Subsystem (LESS)

    NASA Technical Reports Server (NTRS)

    Hernandez, Jose M.; Berry, Robert F.; Osborn, Robin; Bueno, Clifford; Osterlitz, Mark; Mills, Richard; Morris, Philip; Phalen, Robert; McNab, Jim; Thibodeaux, Tahanie; Thompson, Kyle

    2004-01-01

    The post return-to-flight (RTF) inspection methodology for the Orbiter Leading Edge Structural Subsystem (LESS) is currently being defined. Numerous NDT modalities and techniques are being explored to perform the flight-to-flight inspections of the reinforced carbon/carbon (RCC) composite material for impact damage, general loss of mass in the bulk layers, or other anomalous conditions that would pose risk to safe return upon re-entry. It is possible to have an impact upon ascent that is not visually observable on the surface, yet causes internal damage. Radiographic testing may be a useful NDT technique for such occurrences. The authors have performed radiographic tests on full-sized mock samples of LESS hardware with embedded image quality phantoms. Digitized radiographic film, computed radiography and flat panel digital real-time radiography was acquired using a GE Eresco 200 x-ray tube, and Se-75 and Yb-169 radioisotopes.

  12. Mechanical testing and modelling of carbon-carbon composites for aircraft disc brakes

    NASA Astrophysics Data System (ADS)

    Bradley, Luke R.

    The objective of this study is to improve the understanding of the stress distributions and failure mechanisms experienced by carbon-carbon composite aircraft brake discs using finite element (FE) analyses. The project has been carried out in association with Dunlop Aerospace as an EPSRC CASE studentship. It therefore focuses on the carbon-carbon composite brake disc material produced by Dunlop Aerospace, although it is envisaged that the approach will have broader applications for modelling and mechanical testing of carbon-carbon composites in general. The disc brake material is a laminated carbon-carbon composite comprised of poly(acrylonitrile) (PAN) derived carbon fibres in a chemical vapour infiltration (CVI) deposited matrix, in which the reinforcement is present in both continuous fibre and chopped fibre forms. To pave the way for the finite element analysis, a comprehensive study of the mechanical properties of the carbon-carbon composite material was carried out. This focused largely, but not entirely, on model composite materials formulated using structural elements of the disc brake material. The strengths and moduli of these materials were measured in tension, compression and shear in several orientations. It was found that the stress-strain behaviour of the materials were linear in directions where there was some continuous fibre reinforcement, but non-linear when this was not the case. In all orientations, some degree of non-linearity was observed in the shear stress-strain response of the materials. However, this non-linearity was generally not large enough to pose a problem for the estimation of elastic moduli. Evidence was found for negative Poisson's ratio behaviour in some orientations of the material in tension. Additionally, the through-thickness properties of the composite, including interlaminar shear strength, were shown to be positively related to bulk density. The in-plane properties were mostly unrelated to bulk density over the range of

  13. Effect of temperature on composite sandwich structures subjected to low velocity impact. [aircraft construction materials

    NASA Technical Reports Server (NTRS)

    Sharma, A. V.

    1980-01-01

    The effect of low velocity projectile impact on sandwich-type structural components was investigated. The materials used in the fabrication of the impact surface were graphite-, Kevlar-, and boron-fibers with appropriate epoxy matrices. The testing of the specimens was performed at moderately low- and high-temperatures as well as at room temperature to assess the impact-initiated strength degradation of the laminates. Eleven laminates with different stacking sequences, orientations, and thicknesses were tested. The low energy projectile impact is considered to simulate the damage caused by runway debris, the dropping of the hand tools during servicing, etc., on the secondary aircraft structures fabricated with the composite materials. The results show the preload and the impact energy combinations necessary to cause catastrophic failure in the laminates tested. A set of faired curves indicating the failure thresholds is shown separately for the tension-and compression-loaded laminates. The specific-strengths and -modulii for the various laminates tested are also given.

  14. Durability and damage tolerance of Large Composite Primary Aircraft Structure (LCPAS)

    NASA Technical Reports Server (NTRS)

    Mccarty, John E.; Roeseler, William G.

    1984-01-01

    Analysis and testing addressing the key technology areas of durability and damage tolerance were completed for wing surface panels. The wing of a fuel-efficient, 200-passenger commercial transport airplane for 1990 delivery was sized using graphite-epoxy materials. Coupons of various layups used in the wing sizing were tested in tension, compression, and spectrum fatigue with typical fastener penetrations. The compression strength after barely visible impact damage was determined from coupon and structural element tests. One current material system and one toughened system were evaluated by coupon testing. The results of the coupon and element tests were used to design three distinctly different compression panels meeting the strength, stiffness, and damage-tolerance requirements of the upper wing panels. These three concepts were tested with various amounts of damage ranging from barely visible impact to through-penetration. The results of this program provide the key technology data required to assess the durability and damage-tolerance capability or advanced composites for use in commercial aircraft wing panel structure.

  15. Flutter analysis of swept-wing subsonic aircraft with parameter studies of composite wings

    NASA Technical Reports Server (NTRS)

    Housner, J. M.; Stein, M.

    1974-01-01

    A computer program is presented for the flutter analysis, including the effects of rigid-body roll, pitch, and plunge of swept-wing subsonic aircraft with a flexible fuselage and engines mounted on flexible pylons. The program utilizes a direct flutter solution in which the flutter determinant is derived by using finite differences, and the root locus branches of the determinant are searched for the lowest flutter speed. In addition, a preprocessing subroutine is included which evaluates the variable bending and twisting stiffness properties of the wing by using a laminated, balanced ply, filamentary composite plate theory. The program has been substantiated by comparisons with existing flutter solutions. The program has been applied to parameter studies which examine the effect of filament orientation upon the flutter behavior of wings belonging to the following three classes: wings having different angles of sweep, wings having different mass ratios, and wings having variable skin thicknesses. These studies demonstrated that the program can perform a complete parameter study in one computer run. The program is designed to detect abrupt changes in the lowest flutter speed and mode shape as the parameters are varied.

  16. Impact imaging of aircraft composite structure based on a model-independent spatial-wavenumber filter.

    PubMed

    Qiu, Lei; Liu, Bin; Yuan, Shenfang; Su, Zhongqing

    2016-01-01

    The spatial-wavenumber filtering technique is an effective approach to distinguish the propagating direction and wave mode of Lamb wave in spatial-wavenumber domain. Therefore, it has been gradually studied for damage evaluation in recent years. But for on-line impact monitoring in practical application, the main problem is how to realize the spatial-wavenumber filtering of impact signal when the wavenumber of high spatial resolution cannot be measured or the accurate wavenumber curve cannot be modeled. In this paper, a new model-independent spatial-wavenumber filter based impact imaging method is proposed. In this method, a 2D cross-shaped array constructed by two linear piezoelectric (PZT) sensor arrays is used to acquire impact signal on-line. The continuous complex Shannon wavelet transform is adopted to extract the frequency narrowband signals from the frequency wideband impact response signals of the PZT sensors. A model-independent spatial-wavenumber filter is designed based on the spatial-wavenumber filtering technique. Based on the designed filter, a wavenumber searching and best match mechanism is proposed to implement the spatial-wavenumber filtering of the frequency narrowband signals without modeling, which can be used to obtain a wavenumber-time image of the impact relative to a linear PZT sensor array. By using the two wavenumber-time images of the 2D cross-shaped array, the impact direction can be estimated without blind angle. The impact distance relative to the 2D cross-shaped array can be calculated by using the difference of time-of-flight between the frequency narrowband signals of two different central frequencies and the corresponding group velocities. The validations performed on a carbon fiber composite laminate plate and an aircraft composite oil tank show a good impact localization accuracy of the model-independent spatial-wavenumber filter based impact imaging method.

  17. Spiral Passive Electromagnetic Sensor (SPES) for composite structural changes in aircraft structures

    NASA Astrophysics Data System (ADS)

    Iervolino, Onorio; Meo, Michele

    2016-04-01

    A major goal of structural health monitoring (SHM) is to provide accurate and responsive detection and monitoring of flaws. This research work reports an investigation of SPES sensors for damage detection, investigating different sensor sizes and how they affect the sensor's signal. A sensor able to monitor structural change that can be remotely interrogated and does not need a power supply is presented in this work. The SPES-sensor presents the great advantage of monitoring conductive and non-conductive structures such as fiberglass-reinforced composites (FRC) and carbon fiber-reinforced polymers (CFRP). Any phenomena that affect the magnetic field of the SPES can be detected and monitored. A study was conducted to investigate the capability of sensor to give information on structural changes, simulated by the presence of an external mass placed in the proximity of sensor. Effect of different positions of the SPES within the sample, and how to extend the area of inspection using multiple sensors was investigated. The sensor was tested embedded in the samples, simulating the structural change on both sides of the sample. In both configurations the sensor described herein demonstrated a great potential to monitor structural changes.

  18. An assessment of local risk. [to area associated with commercial operations of aircraft with graphite fiber composite structures

    NASA Technical Reports Server (NTRS)

    Pocinki, L. S.

    1979-01-01

    A status report is presented on the assessment of the risk at Washington National Airport and the surrounding Washington, D.C. area associated with commercial operations of aircraft with graphite fiber composite in their structures. The presentation is outlined as follows: (1) overall strategy; (2) need for individual airport results; (3) airport-metro area model - submodels, method, assumptions and data; and (4) preliminary results for National Airport - D.C. area.

  19. Baseline-free delamination inspection in composite plates by synthesizing non-contact air-coupled Lamb wave scan method and virtual time reversal algorithm

    NASA Astrophysics Data System (ADS)

    Liu, Zenghua; Yu, Hongtao; Fan, Junwei; Hu, Yanan; He, Cunfu; Wu, Bin

    2015-04-01

    In the paper, we combined air-coupled Lamb wave scan method and virtual time reversal (VTR) algorithm and proposed a composite baseline-free delamination inspection technique of composite plates. According to VTR algorithm, time reversal process is virtually performed through signal operations and the hardware manipulation for time reversal is not required. Baseline-free damage inspection can be achieved by comparing the first input actuation signal with the reconstructed final signal obtained by VTR algorithm. An air-coupled Lamb wave scan method combined with VTR-based probabilistic imaging algorithm is developed for delamination inspection of composite plates. Carbon fiber-reinforced composite plates with the delaminations of different shapes and sizes were experimentally tested. The testing results are well in accordance with the actual delamination locations and sizes as well as the results obtained with the commercial point-to-point immersion C-scan system.

  20. An assessment of tailoring of lightning protection design requirements for a composite wing structure on a metallic aircraft

    NASA Technical Reports Server (NTRS)

    Harwood, T. L.

    1991-01-01

    The Navy A-6E aircraft is presently being modified with a new wing which uses graphite/epoxy structures and substructures around a titanium load-bearing structure. The ability of composites to conduct electricity is less than that of aluminum. This is cause for concern when the wing may be required to conduct large lightning currents. The manufacturer attempted to solve lightning protection issues by performing a risk assessment based on a statistical approach which allows relaxation of the wing lightning protection design levels over certain locations of the composite wing. A sensitivity study is presented designed to define the total risk of relaxation of the design levels.

  1. Nondestructive inspection perspectives

    NASA Technical Reports Server (NTRS)

    Froom, Douglas A.

    1992-01-01

    This paper presents ideas for consideration by those concerned with commercial aircraft nondestructive inspection (NDI). The perspective is that of an individual with a background in military aircraft NDI, and important differences are indicated between the commercial NDI and military NDI activities. In particular, it is significantly more expensive to implement some new NDI technology, and therefore, in-depth cost-benifit studies for commercial users are recommended.

  2. Flight service evaluation of an advanced composite empennage component on commercial transport aircraft. Phase 1: Engineering development

    NASA Technical Reports Server (NTRS)

    Ary, A.; Axtell, C.; Fogg, L.; Jackson, A.; James, A. M.; Mosesian, B.; Vanderwier, J.; Vanhamersveld, J.

    1976-01-01

    The empennage component selected for this program is the vertical fin box of the L-1011 aircraft. The box structure extends from the fuselage production joint to the tip rib and includes the front and rear spars. Various design options were evaluated to arrive at a configuration which would offer the highest potential for satisfying program objectives. The preferred configuration selected consists of a hat-stiffened cover with molded integrally stiffened spars, aluminum trussed composite ribs, and composite miniwich web ribs with integrally molded caps. Material screening tests were performed to select an advanced composite material system for the Advanced Composite Vertical Fin (ACFV) that would meet the program requirements from the standpoint of quality, reproducibility, and cost. Preliminary weight and cost analysis were made, targets established, and tracking plans developed. These include FAA certification, ancillary test program, quality control, and structural integrity control plans.

  3. 14 CFR 21.33 - Inspection and tests.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... PROCEDURES FOR PRODUCTS AND PARTS Type Certificates § 21.33 Inspection and tests. (a) Each applicant must...— (1) No aircraft, aircraft engine, propeller, or part thereof may be presented to the FAA for test..., aircraft engine, propeller, or part thereof; and (2) No change may be made to an aircraft, aircraft engine...

  4. Structural Integrity Evaluation of the Lear Fan 2100 Aircraft

    NASA Technical Reports Server (NTRS)

    Kan, H. P.; Dyer, T. A.

    1996-01-01

    An in-situ nondestructive inspection was conducted to detect manufacturing and assembly induced defects in the upper two wing surfaces (skin s) and upper fuselage skin of the Lear Fan 2100 aircraft E009. The effects of the defects, detected during the inspection, on the integrity of the structure was analytically evaluated. A systematic evaluation was also conducted to determine the damage tolerance capability of the upper wing skin against impact threats and assembly induced damage. The upper wing skin was divided into small regions for damage tolerance evaluations. Structural reliability, margin of safety, allowable strains, and allowable damage size were computed. The results indicated that the impact damage threat imposed on composite military aircraft structures is too severe for the Lear Fan 2100 upper wing skin. However, the structural integrity is not significantly degraded by the assembly induced damage for properly assembled structures, such as the E009 aircraft.

  5. Structural Integrity Evaluation of the Lear Fan 2100 Aircraft

    NASA Technical Reports Server (NTRS)

    Kan, H. P.; Dyer, T. A.

    1996-01-01

    An in-situ nondestructive inspection was conducted to detect manufacturing and assembly induced defects in the upper two wing surfaces (skin s) and upper fuselage skin of the Lear Fan 2100 aircraft E009. The effects of the defects, detected during the inspection, on the integrity of the structure was analytically evaluated. A systematic evaluation was also conducted to determine the damage tolerance capability of the upper wing skin against impact threats and assembly induced damage. The upper wing skin was divided into small regions for damage tolerance evaluations. Structural reliability, margin of safety, allowable strains, and allowable damage size were computed. The results indicated that the impact damage threat imposed on composite military aircraft structures is too severe for the Lear Fan 2100 upper wing skin. However, the structural integrity is not significantly degraded by the assembly induced damage for properly assembled structures, such as the E009 aircraft.

  6. On-Line Multi-Damage Scanning Spatial-Wavenumber Filter Based Imaging Method for Aircraft Composite Structure.

    PubMed

    Ren, Yuanqiang; Qiu, Lei; Yuan, Shenfang; Bao, Qiao

    2017-05-11

    Structural health monitoring (SHM) of aircraft composite structure is helpful to increase reliability and reduce maintenance costs. Due to the great effectiveness in distinguishing particular guided wave modes and identifying the propagation direction, the spatial-wavenumber filter technique has emerged as an interesting SHM topic. In this paper, a new scanning spatial-wavenumber filter (SSWF) based imaging method for multiple damages is proposed to conduct on-line monitoring of aircraft composite structures. Firstly, an on-line multi-damage SSWF is established, including the fundamental principle of SSWF for multiple damages based on a linear piezoelectric (PZT) sensor array, and a corresponding wavenumber-time imaging mechanism by using the multi-damage scattering signal. Secondly, through combining the on-line multi-damage SSWF and a PZT 2D cross-shaped array, an image-mapping method is proposed to conduct wavenumber synthesis and convert the two wavenumber-time images obtained by the PZT 2D cross-shaped array to an angle-distance image, from which the multiple damages can be directly recognized and located. In the experimental validation, both simulated multi-damage and real multi-damage introduced by repeated impacts are performed on a composite plate structure. The maximum localization error is less than 2 cm, which shows good performance of the multi-damage imaging method. Compared with the existing spatial-wavenumber filter based damage evaluation methods, the proposed method requires no more than the multi-damage scattering signal and can be performed without depending on any wavenumber modeling or measuring. Besides, this method locates multiple damages by imaging instead of the geometric method, which helps to improve the signal-to-noise ratio. Thus, it can be easily applied to on-line multi-damage monitoring of aircraft composite structures.

  7. The effects of aircraft fuel and fluids on the strength properties of Resin Transfer Molded (RTM) composites

    NASA Technical Reports Server (NTRS)

    Falcone, Anthony; Dow, Marvin B.

    1993-01-01

    The resin transfer molding (RTM) process offers important advantages for cost-effective composites manufacturing, and consequently has become the subject of intense research and development efforts. Several new matrix resins have been formulated specifically for RTM applications in aircraft and aerospace vehicles. For successful use on aircraft, composite materials must withstand exposure to the fluids in common use. The present study was conducted to obtain comparative screening data on several state-ofthe-art RTM resins after environmental exposures were performed on RTM composite specimens. Four graphite/epoxy composites and one graphite/bismaleimide composite were tested; testing of two additional graphite epoxy composites is in progress. Zero-deg tension tests were conducted on specimens machined from eight-ply (+45-deg, -45-deg) laminates, and interlaminar shear tests were conducted on 32-ply 0-deg laminate specimens. In these tests, the various RTM resins demonstrated widely different strengths, with 3501-6 epoxy being the strongest. As expected, all of the matrix resins suffered severe strength degradation from exposure to methylene chloride (paint stripper). The 3501-6 epoxy composites exhibited about a 30 percent drop in tensile strength in hot, wet tests. The E905-L epoxy exhibited little loss of tensile strength (less than 8 percent) after exposure to water. The CET-2 and 862 epoxies as well as the bismaleimide exhibited reduced strengths at elevated temperature after exposure to oils and fuel. In terms of the percentage strength reductions, all of the RTM matrix resins compared favorably with 3501-6 epoxy.

  8. A preliminary design study of a laminar flow control wing of composite materials for long range transport aircraft

    NASA Technical Reports Server (NTRS)

    Swinford, G. R.

    1976-01-01

    The results of an aircraft wing design study are reported. The selected study airplane configuration is defined. The suction surface, ducting, and compressor systems are described. Techniques of manufacturing suction surfaces are identified and discussed. A wing box of graphite/epoxy composite is defined. Leading and trailing edge structures of composite construction are described. Control surfaces, engine installation, and landing gear are illustrated and discussed. The preliminary wing design is appraised from the standpoint of manufacturing, weight, operations, and durability. It is concluded that a practical laminar flow control (LFC) wing of composite material can be built, and that such a wing will be lighter than an equivalent metal wing. As a result, a program of suction surface evaluation and other studies of configuration, aerodynamics, structural design and manufacturing, and suction systems are recommended.

  9. Laboratory evaluation of airborne particulate control treatments for simulated aircraft crash recovery operations involving carbon fiber composite materials.

    PubMed

    Ferreri, Matthew; Slagley, Jeremy; Felker, Daniel

    2015-01-01

    This study compared four treatment protocols to reduce airborne composite fiber particulates during simulated aircraft crash recovery operations. Four different treatments were applied to determine effectiveness in reducing airborne composite fiber particulates as compared to a "no treatment" protocol. Both "gold standard" gravimetric methods and real-time instruments were used to describe mass per volume concentration, particle size distribution, and surface area. The treatment protocols were applying water, wetted water, wax, or aqueous film-forming foam (AFFF) to both burnt and intact tickets of aircraft composite skin panels. The tickets were then cut using a small high-speed rotary tool to simulate crash recovery operations. Aerosol test chamber. None. Airborne particulate control treatments. Measures included concentration units of milligrams per cubic meter of air, particle size distribution as described by both count median diameter and mass median diameter and geometric standard deviation of particles in micrometers, and surface area concentration in units of square micrometers per cubic centimeter. Finally, a Monte Carlo simulation was run on the particle size distribution results. Comparison was made via one-way analysis of variance. A significant difference (p < 0.0001) in idealized particle size distribution was found between the water and wetted water treatments as compared to the other treatments for burnt tickets. Emergency crash recovery operations should include a treatment of the debris with water or wetted water. The resulting increase in particle size will make respiratory protection more effective in protecting the response crews.

  10. Laboratory evaluation of airborne particulate control treatments for simulated aircraft crash recovery operations involving carbon fiber composite materials.

    PubMed

    Ferreri, Matthew; Slagley, Jeremy; Felker, Daniel

    2015-01-01

    This study compared four treatment protocols to reduce airborne composite fiber particulates during simulated aircraft crash recovery operations. Four different treatments were applied to determine effectiveness in reducing airborne composite fiber particulates as compared to a "no treatment" protocol. Both "gold standard" gravimetric methods and real-time instruments were used to describe mass per volume concentration, particle size distribution, and surface area. The treatment protocols were applying water, wetted water, wax, or aqueous film-forming foam (AFFF) to both burnt and intact tickets of aircraft composite skin panels. The tickets were then cut using a small high-speed rotary tool to simulate crash recovery operations. Aerosol test chamber. None. Airborne particulate control treatments. Measures included concentration units of milligrams per cubic meter of air, particle size distribution as described by both count median diameter and mass median diameter and geometric standard deviation of particles in micrometers, and surface area concentration in units of square micrometers per cubic centimeter. Finally, a Monte Carlo simulation was run on the particle size distribution results. Comparison was made via one-way analysis of variance. A significant difference (p<0.0001) in idealized particle size distribution was found between the water and wetted water treatments as compared to the other treatments for burnt tickets. Emergency crash recovery operations should include a treatment of the debris with water or wetted water. The resulting increase in particle size will make respiratory protection more effective in protecting the response crews.

  11. Numerical simulation of two-dimensional heat transfer in composite bodies with application to de-icing of aircraft components. Ph.D. Thesis. Final Report

    NASA Technical Reports Server (NTRS)

    Chao, D. F. K.

    1983-01-01

    Transient, numerical simulations of the de-icing of composite aircraft components by electrothermal heating were performed for a two dimensional rectangular geometry. The implicit Crank-Nicolson formulation was used to insure stability of the finite-difference heat conduction equations and the phase change in the ice layer was simulated using the Enthalpy method. The Gauss-Seidel point iterative method was used to solve the system of difference equations. Numerical solutions illustrating de-icer performance for various composite aircraft structures and environmental conditions are presented. Comparisons are made with previous studies. The simulation can also be used to solve a variety of other heat conduction problems involving composite bodies.

  12. Experimental verification of tapping sound analysis for the inspection of laminated composite structures

    NASA Astrophysics Data System (ADS)

    Hwang, Joon S.; Kim, Seung J.

    2002-06-01

    In this paper, an experimental study was performed to investigate the possibility of a new NDE system - Tapping Sound Analysis (TSA). The tapping sound and contact force of healthy laminated composite structure and defective laminated composite structure were measured using tapping device. The feature extraction method based on the wavelet packet transform was used to extract features from the tapping sound. Comparing the feature of the tapping sound of healthy structure and defective structure, a feature index could be derived, which indicates the existence of defect inside the laminated composite structure. Using the feature index, the difference between the tapping sound data of the present specimens could be expressed as a single value.

  13. 14 CFR 43.15 - Additional performance rules for inspections.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... TRANSPORTATION AIRCRAFT MAINTENANCE, PREVENTIVE MAINTENANCE, REBUILDING, AND ALTERATION § 43.15 Additional..., or 135 of this chapter, shall— (1) Perform the inspection so as to determine whether the aircraft, or... accordance with the instructions and procedures set forth in the inspection program for the aircraft being...

  14. 14 CFR 43.15 - Additional performance rules for inspections.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... TRANSPORTATION AIRCRAFT MAINTENANCE, PREVENTIVE MAINTENANCE, REBUILDING, AND ALTERATION § 43.15 Additional..., or 135 of this chapter, shall— (1) Perform the inspection so as to determine whether the aircraft, or... accordance with the instructions and procedures set forth in the inspection program for the aircraft being...

  15. X-ray Computer Tomography and Real Time Ultrasonic Inspection as Process Development Tools for Discontinuous Fiber Composites

    SciTech Connect

    Holbery, Jim; Simmons, Kevin L.; Nguyen, Ba Nghiep; Smith, Mark T.

    2007-09-14

    X-ray Computer Tomography (XCT) and Real Time Ultrasonic Inspection (RTUIS) has been used to analyze fiber orientation and flow patterns in both discontinuous long- fiber thermoset composites and in long-fiber injection molded composites. X-ray computed tomography (XCT) is a non-destructive technique that may be used to provide structural information within an object by mathematically reconstructing its 3-D image from a series of projections, providing the ability to make quantitative measurement on complex structures. Material quantity and size limitations are generally eliminated (up to the limits of the XCT size) and the images may be taken at any required section of the sample with no extensive pre-imaging sample preparation. The Real Time Ultrasonic Imaging System (RTUIS) developed at PNNL uses a liquid surface ultrasonic detector that produces an instantaneous two-dimensional image. Images are formed in 100-μs and are displayed at video frame rates (60 images per second). At any instant a 3-inch diameter field-of-view is presented. Using 5-MHz ultrasound, the field displays 5,625 resolvable picture elements instantaneously. Over the past two years, PNNL has developed the XCT and RTUIS techniques specifically applicable to long-fiber injection molded thermoplastics and random long-fiber thermoset molded composites. These techniques provide a basis for optimizing process parameters and fiber orientations and in this paper, examples of the techniques in practice will be provided on both injection molded and compression molded parts.

  16. Full-scale testing, production and cost analysis data for the advanced composite stabilizer for Boeing 737 aircraft. Volume 1: Technical summary

    NASA Technical Reports Server (NTRS)

    Aniversario, R. B.; Harvey, S. T.; Mccarty, J. E.; Parsons, J. T.; Peterson, D. C.; Pritchett, L. D.; Wilson, D. R.; Wogulis, E. R.

    1983-01-01

    The full scale ground test, ground vibration test, and flight tests conducted to demonstrate a composite structure stabilizer for the Boeing 737 aircraft and obtain FAA certification are described. Detail tools, assembly tools, and overall production are discussed. Cost analyses aspects covered include production costs, composite material usage factors, and cost comparisons.

  17. Preliminary design study of advanced composite blade and hub and nonmechanical control system for the tilt-rotor aircraft. Volume 2: Project planning data

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Project planning data for a rotor and control system procurement and testing program for modifications to the XV-15 tilt-rotor research demonstrator aircraft is presented. The design, fabrication, and installation of advanced composite blades compatible with the existing hub, an advanced composite hub, and a nonmechanical control system are required.

  18. Evaluation of Microencapsulated Penetrant Inspection.

    DTIC Science & Technology

    1980-12-01

    AD-A9b 826 GENERAL ELECTRIC CO CINCINNATI OH AIRCRAFT ENGINE GROUP F/6 IA/2ADG EVALUATION OF MICROENCAPSULATED PENETRANT INSPECTION.(U) DEC 80 J M...4156 ADA096826 EVALUATION OF MICROENCAPSULATED PENETRANT INSPECTION i :I J.M. Portaz Aircraft Engine Group General Electric Company Cincinnati, Ohio... Microencapsulated Penetrant 5 7riJF-Iehica17 = Inspection p un May@84 -1 ---- --- ---- 19AMFGK657j7 7. AiJTHOR(s) nVCWRACT OR GRANT m 𔃻 " JO J.M./Portaz

  19. Transition from glass to graphite in manufacture of composite aircraft structure

    NASA Technical Reports Server (NTRS)

    Buffum, H. E.; Thompson, V. S.

    1978-01-01

    The transition from fiberglass reinforced plastic composites to graphite reinforced plastic composites is described. Structural fiberglass design and manufacturing background are summarized. How this experience provides a technology base for moving into graphite composite secondary structure and then to composite primary structure is considered. The technical requirements that must be fulfilled in the transition from glass to graphite composite structure are also included.

  20. Firefighting and Emergency Response Study of Advanced Composites Aircraft. Objective 2: Firefighting Effectiveness of Technologies and Agents on Composite Aircraft Fires

    DTIC Science & Technology

    2011-12-31

    allowed the lower end of one composite panel to dip into the fuel and created a wicking effect that transported fuel from the pool into the interior of the...cavity) The radiative and convective heating, as well as the addition of volatile fuel via the wicking effect, allowed for a high-intensity, robust fire...was a small, laminar flame, similar to a candle . In one test, the flame burned for 13–15 min after the pool self-extinguished. The composite panel

  1. Scaled Composites' Proteus aircraft and an F/A-18 Hornet from NASA's Dryden Flight Research Center at Mojave Airport in Southern California.

    NASA Image and Video Library

    2003-04-03

    Scaled Composites' Proteus aircraft and an F/A-18 Hornet from NASA's Dryden Flight Research Center at Mojave Airport in Southern California. The unique tandem-wing Proteus was the testbed for a series of UAV collision-avoidance flight demonstrations. An Amphitech 35GHz radar unit installed below Proteus' nose was the primary sensor for the Detect, See and Avoid tests. NASA Dryden's F/A-18 Hornet was one of many different aircraft used in the tests.

  2. Preliminary design study of advanced composite blade and hub and nonmechanical control system for the tilt-rotor aircraft. Volume 1: Engineering studies

    NASA Technical Reports Server (NTRS)

    Alexander, H. R.; Smith, K. E.; Mcveigh, M. A.; Dixon, P. G.; Mcmanus, B. L.

    1979-01-01

    Composite structures technology is applied in a preliminary design study of advanced technology blades and hubs for the XV-15 tilt rotor research demonstrator aircraft. Significant improvements in XV-15 hover and cruise performance are available using blades designed for compatibility with the existing aircraft, i.e., blade installation would not require modification of the airframe, hub or upper controls. Provision of a low risk nonmechanical control system was also studied, and a development specification is given.

  3. Nuclear Hardness Simulation and Analysis of Composite Aircraft Structures. Volume 2. Dust Erosion Assessment.

    DTIC Science & Technology

    1985-12-31

    so from Equation (5) lv (J) At j ) - L ( j ) the distance the aircraft travels through dust with concentration n (j ) . The density of the generic...AFSC ATTN: NTA A SHARP U S ARMY BALLISTIC RESEARCH LAB ATTN: NTATE E FRANKLIN ATTN: S POLYAK ATTN: NTN (NGCS) ATTN: SLCBR-TB-B R RALEY ATTN: SUL U S

  4. Probabilistic inspection strategies for minimizing service failures

    NASA Astrophysics Data System (ADS)

    Brot, Abraham

    1994-09-01

    The INSIM computer program is described which simulates the 'limited fatigue life' environment in which aircraft structures generally operate. The use of INSIM to develop inspection strategies which aim to minimize service failures is demonstrated. Damage-tolerance methodology, inspection thresholds and customized inspections are simulated using the probability of failure as the driving parameter.

  5. Ultrasonic nonlinear guided wave inspection of microscopic damage in a composite structure

    NASA Astrophysics Data System (ADS)

    Zhang, Li; Borigo, Cody; Owens, Steven; Lissenden, Clifford; Rose, Joseph; Hakoda, Chris

    2017-02-01

    Sudden structural failure is a severe safety threat to many types of military and industrial composite structures. Because sudden structural failure may occur in a composite structure shortly after macroscale damage initiates, reliable early diagnosis of microdamage formation in the composite structure is critical to ensure safe operation and to reduce maintenance costs. Ultrasonic guided waves have been widely used for long-range defect detection in various structures. When guided waves are generated under certain excitation conditions, in addition to the traditional linear wave mode (known as the fundamental harmonic wave mode), a number of nonlinear higher-order harmonic wave modes are also be generated. Research shows that the nonlinear parameters of a higher-order harmonic wave mode could have excellent sensitivity to microstructural changes in a material. In this work, we successfully employed a nonlinear guided wave structural health monitoring (SHM) method to detect microscopic impact damage in a 32-layer carbon/epoxy fiber-reinforced composite plate. Our effort has demonstrated that, utilizing appropriate transducer design, equipment, excitation signals, and signal processing techniques, nonlinear guided wave parameter measurements can be reliably used to monitor microdamage initiation and growth in composite structures.

  6. Analytical and experimental investigation of aircraft metal structures reinforced with filamentary composites. Phase 1: Concept development and feasibility

    NASA Technical Reports Server (NTRS)

    Oken, S.; June, R. R.

    1971-01-01

    The analytical and experimental investigations are described in the first phase of a program to establish the feasibility of reinforcing metal aircraft structures with advanced filamentary composites. The interactions resulting from combining the two types of materials into single assemblies as well as their ability to function structurally were studied. The combinations studied were boron-epoxy reinforced aluminum, boron-epoxy reinforced titanium, and boron-polyimide reinforced titanium. The concepts used unidirectional composites as reinforcement in the primary loading direction and metal for carrying the transverse loads as well as its portion of the primary load. The program established that several realistic concepts could be fabricated, that these concepts could perform to a level that would result in significant weight savings, and that there are means for predicting their capability within a reasonable degree of accuracy. This program also encountered problems related to the application of polyimide systems that resulted in their relatively poor and variable performance.

  7. Ultrasonic IR thermographic inspection of graphite epoxy composite: a comparative study of piezoelectric and magnetostrictive stimulation

    NASA Astrophysics Data System (ADS)

    Swiderski, W.; Vavilov, V.

    2015-03-01

    In this paper the experimental results of piezoelectric and magnetostrictive ultrasonic stimulation are comparatively analyzed in the evaluation of impact damage in a graphite epoxy composite sample chosen for a round robin test. By comparing theoretical and experimental results, it is shown that the equivalent power of internal friction can reach some hundreds mill watt per a single crack.

  8. Application of operational radiographic inspection method for flaw detection of blade straightener from polymeric composite materials

    NASA Astrophysics Data System (ADS)

    Anoshkin, A. N.; Osokin, V. M.; Tretyakov, A. A.; Potrakhov, N. N.; Bessonov, V. B.

    2017-02-01

    In the article on the example of the straightener blade made of polymer composite materials, discusses the advantages of using the method of microfocus X-ray for nondestructive testing of aviation products. Described basic types of defects characteristics occurring in a similar type parts both during their manufacture and during their operation, namely, interlayer delamination, pores and wrinkles. Peculiarities of microfocus X-ray are shown, which is the use of radiation sources with a focal spot size of less than 100 μm. These features make it possible to increase the details and therefore, to minimize the size of detected defects in transmission. On the basis of experimental studies were defined radiographic signs of major types of defects, typical for products made of polymeric composite materials. Calculated time costs of personnel required for high-resolution X-ray recording and evaluation of test results.

  9. Characterization of Delaminations and Transverse Matrix Cracks in Composite Laminates Using Multiple-Angle Ultrasonic Inspection

    NASA Technical Reports Server (NTRS)

    Johnston, Patrick H.; Appleget, Chelsea D.; Odarczenko, Michael T.

    2012-01-01

    Delaminations and transverse matrix cracks often appear concurrently in composite laminates. Normal-incidence ultrasound is excellent at detecting delaminations, but is not optimum for matrix cracks. Non-normal incidence, or polar backscattering, has been shown to optimally detect matrix cracks oriented perpendicular to the ultrasonic plane of incidence. In this work, a series of six composite laminates containing slots were loaded in tension to achieve various levels of delamination and ply cracking. Ultrasonic backscattering was measured over a range of incident polar and azimuthal angles, in order to characterize the relative degree of damage of the two types. Sweptpolar- angle measurements were taken with a curved phased array, as a step toward an array-based approach to simultaneous measurement of combined flaws.

  10. Inspection on SiC coated carbon-carbon composite with subsurface defects using pulsed thermography

    NASA Astrophysics Data System (ADS)

    Qingju, Tang; Junyan, Liu; Wang, Yang; Litao, Qi; Lei, Qin

    2013-09-01

    An investigation on SiC coated carbon-carbon (C/C) composite plates has been undertaken by pulsed thermography. The heat transfer model has been built and the finite element method (FEM) is applied to solve the thermal model. The simulation results show that defects with DA/DP smaller than one can hardly be detected by an infrared camera with the sensitivity of 0.02 °C. Certificated experiments were performed on the built pulsed thermography system. The thermal wave signals have been processed by subtracting background image method (SBIM), pulsed phase thermography (PPT), and temperature-time logarithm fitting method (TtLFM). The limit DA/DP of defects in SiC coated C/C composite plates with the thickness of 6 mm that can be detected by pulsed thermography with the presented signal analysis algorithms has been obtained.

  11. Characterization of delaminations and transverse matrix cracks in composite laminates using multiple-angle ultrasonic inspection

    NASA Astrophysics Data System (ADS)

    Johnston, Patrick H.; Appleget, Chelsea D.; Odarczenko, Michael T.

    2013-01-01

    Delaminations and transverse matrix cracks often appear concurrently in composite laminates. Normal-incidence ultrasound is excellent at detecting delaminations, but is not optimum for matrix cracks. Non-normal incidence, or polar backscattering, has been shown to optimally detect matrix cracks oriented perpendicular to the ultrasonic plane of incidence. In this work, a series of six composite laminates containing slots were loaded in tension to achieve various levels of delamination and ply cracking. Ultrasonic backscattering was measured over a range of incident polar and azimuthal angles, in order to characterize the relative degree of damage of the two types. Sweptpolar-angle measurements were taken with a curved phased array, as a step toward an array-based approach to simultaneous measurement of combined flaws.

  12. Application of Ultrasonic ’F-Scan’ to the Inspection of Composite Materials.

    DTIC Science & Technology

    1982-04-15

    insure the quality of a composite is increasingly rising. The main objective of Nondestructive Test ( NDT ) is to locate the defect’s size, shape, and...criticality. Various disciplines of NDT are presently being researched, and several studies have discussed and com- pared these techniques specifically...composities. For many years, the popular method based on attenuation of high-frequency ultrasonic waves through the sample, has been the subject of many

  13. Thermography inspection for detection and tracking of composite cylinder damage during load testing

    SciTech Connect

    Zalameda, J. N.; Winfree, W. P.; Johnston, P. H.; Seebo, J. P.

    2011-06-23

    Two thermography techniques, passive and active, are used to detect damage initiation and progression in a cyclically loaded composite cylinder. The passive thermography tracks damage progression in real time during cyclic loading. Active flash thermography, using a flash tube enclosed within the cylinder, images delaminations. A differential thermography processing technique eliminates normal material variations and improves sensitivity to and sizing of delaminations. The thermography results were compared to non-immersion ultrasonic results.

  14. Thermography Inspection for Detection and Tracking of Composite Cylinder Damage During Load Testing

    NASA Technical Reports Server (NTRS)

    Zalameda, J. N.; Winfree, W. P.; Seebo, J. P.; Johnston, P. H.

    2010-01-01

    Two thermography techniques, passive and active, are used to detect damage initiation and progression in a cyclically loaded composite cylinder. The passive thermography tracks damage progression in real time during cyclic loading. Active flash thermography, using a flash tube enclosed within the cylinder, images delaminations in a cylinder under different loads. A differential thermography processing technique eliminates normal material variations and improves sensitivity to and sizing of delaminations. The thermography results were compared to nonimmersion ultrasonic results.

  15. Identification of NDE Methods for Inspection Multi-Layer Ceramic Composite Armor

    DTIC Science & Technology

    2010-01-08

    composite armor The NDE methods under evaluation include: 1)-immersion phased array ultrasonics , 2)- through- transmission, direct-digital x-ray imaging...results in very long data acquisition times as compare to phased array scans. 5. Air Coupled Ultrasonic methods The last NDE method...include: 1)-immersion phased array ultrasonics , 2)- through-transmission, direct-digital x-ray imaging, 3)-non-contact scanning microwaves, 4)-air

  16. Flight service evaluation of Kevlar-49 epoxy composite panels in wide-bodied commercial transport aircraft

    NASA Technical Reports Server (NTRS)

    Stone, R. H.

    1980-01-01

    Kevlar-49 fairing panels, installed as flight service components on three L-1011s, were inspected after 6 years' service. The Kevlar-49 components were found to be performing satisfactorily in service with no major problems, or any condition requiring corrective action. The only defects noted were minor impact damage, and a minor degree of fastener hole fraying and elongation. These are for the most part comparable to damage noted on fiberglass fairings.

  17. Use of robotics in nondestructive inspection

    SciTech Connect

    Sartell, R.J.; Richards, W.J.

    1987-01-01

    Until very recently, nondestructive inspection of aircraft components at McClellan Air Force Base had been done in the traditional way. Ultrasonic inspections have been performed using hand-held equipment. X-ray inspections were performed using film radiography with the x-ray tubes being held on cradles, tripods, or suspended from pendant-operated or manual overhead crane-type fixtures. Implementation of advanced ultrasonic and real-time x-ray systems required that new equipment handling and parts handling methods be devised. Aircraft flight safety considerations demanded that neutron radiography be implemented as an inspection technique in order to find low levels of moisture and corrosion in the F-111 aircraft structure and aerodynamic surfaces. Traditional nondestructive inspection (NDI) methods require removal of suspect panels from the aircraft, including some panels that were not designed to be removed. The solution to these problems was to implement NDI systems that would allow inspection of intact aircraft. A new NDI facility especially designed for the latest in technology is under construction. It will house two large maneuverable x- and n-ray systems. The approx. 90-ft-span gantry robots will scan intact aircraft with real-time x-ray and near real-time n-ray systems. A unique floor/rail-mounted n-ray system will automatically inspect the F-111 aircraft engine bays.

  18. Reliability assessment at airline inspection facilities. Volume 2: Protocol for an eddy current inspection reliability experiment

    NASA Astrophysics Data System (ADS)

    Spencer, Floyd; Borgonovi, Giancarlo; Roach, Dennis; Schurman, Don; Smith, Ron

    1993-05-01

    The Aging Aircraft NDI Development and Demonstration Center (AANC) at Sandia National Laboratories is charged by the FAA to support technology transfer, technology assessment, and technology validation. A key task facing the center is the establishment of a consistent and systematic methodology to assess the reliability of inspections through field experiments. This task is divided into three major areas: reliability of eddy current lap splice inspections at transport aircraft maintenance facilities; reliability of inspection at commuter aircraft maintenance facilities; and reliability of inspection associated with visual inspection of aircraft structural parts. Volume 2 is the second document in a series of three describing the planning, execution, and results of an eddy current inspection field experiment. This document provides a detailed description of the experimental hardware and protocols. It also describes the methodology to be used in the analysis of the data.

  19. X-ray imaging inspection of fiberglass reinforced by epoxy composite

    NASA Astrophysics Data System (ADS)

    Rique, A. M.; Machado, A. C.; Oliveira, D. F.; Lopes, R. T.; Lima, I.

    2015-04-01

    The goal of this work was to study the voids presented in bonded joints in order to minimize failures due to low adhesion of the joints in the industry field. One of the main parameters to be characterized is the porosity of the glue, since these pores are formed by several reasons in the moment of its adhesion, which are formed by composite of epoxy resin reinforced by fiberglass. For such purpose, it was used high energy X-ray microtomography and the results show its potential effective in recognizing and quantifying directly in 3D all the occlusions regions presented at glass fiber-epoxy adhesive joints.

  20. MUSIC imaging method for electromagnetic inspection of composite multi-layers

    NASA Astrophysics Data System (ADS)

    Rodeghiero, Giacomo; Ding, Ping-Ping; Zhong, Yu; Lambert, Marc; Lesselier, Dominique

    2015-03-01

    A first-order asymptotic formulation of the electric field scattered by a small inclusion (with respect to the wavelength in dielectric regime or to the skin depth in conductive regime) embedded in composite material is given. It is validated by comparison with results obtained using a Method of Moments (MoM). A non-iterative MUltiple SIgnal Classification (MUSIC) imaging method is utilized in the same configuration to locate the position of small defects. The effectiveness of the imaging algorithm is illustrated through some numerical examples.

  1. Study on Design of High Efficiency and Light Weight Composite Propeller Blade for a Regional Turboprop Aircraft

    NASA Astrophysics Data System (ADS)

    Kong, Changduk; Lee, Kyungsun

    2013-03-01

    In this study, aerodynamic and structural design of the composite propeller blade for a regional turboprop aircraft is performed. The thin and wide chord propeller blade of high speed turboprop aircraft should have proper strength and stiffness to carry various kinds of loads such as high aerodynamic bending and twisting moments and centrifugal forces. Therefore the skin-spar-foam sandwich structure using high strength and stiffness carbon/epoxy composite materials is used to improve the lightness. A specific design procedure is proposed in this work as follows; firstly the aerodynamic configuration design, which is acceptable for the design requirements, is carried out using the in-house code developed by authors, secondly the structure design loads are determined through the aerodynamic load case analysis, thirdly the spar flange and the skin are preliminarily sized by consideration of major bending moments and shear forces using both the netting rule and the rule of mixture, and finally, the stress analysis is performed to confirm the structural safety and stability using finite element analysis commercial code, MSC. NASTRAN/PATRAN. Furthermore the additional analysis is performed to confirm the structural safety due to bird strike impact on the blade during flight operation using a commercial code, ANSYS. To realize the proposed propeller design, the prototype blades are manufactured by the following procedure; the carbon/epoxy composite fabric prepregs are laid up for skin and spar on a mold using the hand lay-up method and consolidated with a proper temperature and vacuum in the oven. To finalize the structural design, the full-scale static structural test is performed under the simulated aerodynamic loads using 3 point loading method. From the experimental results, it is found that the designed blade has a good structural integrity, and the measured results agree well with the analytical results as well.

  2. Structural Diagnostics of CFRP Composite Aircraft Components by Ultrasonic Guided Waves and Built-In Piezoelectric Transducers

    SciTech Connect

    Matt, Howard M.

    2006-01-01

    To monitor in-flight damage and reduce life-cycle costs associated with CFRP composite aircraft, an autonomous built-in structural health monitoring (SHM) system is preferred over conventional maintenance routines and schedules. This thesis investigates the use of ultrasonic guided waves and piezoelectric transducers for the identification and localization of damage/defects occurring within critical components of CFRP composite aircraft wings, mainly the wing skin-to-spar joints. The guided wave approach for structural diagnostics was demonstrated by the dual application of active and passive monitoring techniques. For active interrogation, the guided wave propagation problem was initially studied numerically by a semi-analytical finite element method, which accounts for viscoelastic damping, in order to identify ideal mode-frequency combinations sensitive to damage occurring within CFRP bonded joints. Active guided wave tests across three representative wing skin-to-spar joints at ambient temperature were then conducted using attached Macro Fiber Composite (MFC) transducers. Results from these experiments demonstrate the importance of intelligent feature extraction for improving the sensitivity to damage. To address the widely neglected effects of temperature on guided wave base damage identification, analytical and experimental analyses were performed to characterize the influence of temperature on guided wave signal features. In addition, statistically-robust detection of simulated damage in a CFRP bonded joint was successfully achieved under changing temperature conditions through a dimensionally-low, multivariate statistical outlier analysis. The response of piezoceramic patches and MFC transducers to ultrasonic Rayleigh and Lamb wave fields was analytically derived and experimentally validated. This theory is useful for designing sensors which possess optimal sensitivity toward a given mode-frequency combination or for predicting the frequency dependent

  3. Automated Telerobotic Inspection Of Surfaces

    NASA Technical Reports Server (NTRS)

    Balaram, J.; Prasad, K. Venkatesh

    1996-01-01

    Method of automated telerobotic inspection of surfaces undergoing development. Apparatus implementing method includes video camera that scans over surfaces to be inspected, in manner of mine detector. Images of surfaces compared with reference images to detect flaws. Developed for inspecting external structures of Space Station Freedom for damage from micrometeorites and debris from prior artificial satellites. On Earth, applied to inspection for damage, missing parts, contamination, and/or corrosion on interior surfaces of pipes or exterior surfaces of bridges, towers, aircraft, and ships.

  4. Preliminary weight and cost estimates for transport aircraft composite structural design concepts

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Preliminary weight and cost estimates have been prepared for design concepts utilized for a transonic long range transport airframe with extensive applications of advanced composite materials. The design concepts, manufacturing approach, and anticipated details of manufacturing cost reflected in the composite airframe are substantially different from those found in conventional metal structure and offer further evidence of the advantages of advanced composite materials.

  5. Crack detection on HU-25 Guardian aircraft

    SciTech Connect

    Moore, D.G.; Jones, C.R.; Mihelic, J.E.; Dassler, E.; Walizer, J.

    1996-10-01

    An ultrasonic inspection method was developed at FAA`s Airworthiness Assurance NDI Validation Center (AANC) to easily and rapidly detect hidden fatigue cracks in the copilot vertical windshield post on USCG (Coast Guard) HU-25 `Guardian` aircraft. The inspection procedure locates hidden cracks as small as 3.2 mm emanating from internal fastener holes and determines their length. A test procedure was developed and a baseline assessment of the USCG fleet conducted. Inspection results on 41 aircraft revealed good correlation with results made during subsequent structural disassembly and visual inspection of selected aircraft.

  6. 14 CFR 43.15 - Additional performance rules for inspections.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... TRANSPORTATION AIRCRAFT MAINTENANCE, PREVENTIVE MAINTENANCE, REBUILDING, AND ALTERATION § 43.15 Additional... inspect the following systems in accordance with the maintenance manual or Instructions for...

  7. 14 CFR 43.15 - Additional performance rules for inspections.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... TRANSPORTATION AIRCRAFT MAINTENANCE, PREVENTIVE MAINTENANCE, REBUILDING, AND ALTERATION § 43.15 Additional... inspect the following systems in accordance with the maintenance manual or Instructions for...

  8. 14 CFR 43.15 - Additional performance rules for inspections.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... TRANSPORTATION AIRCRAFT MAINTENANCE, PREVENTIVE MAINTENANCE, REBUILDING, AND ALTERATION § 43.15 Additional... inspect the following systems in accordance with the maintenance manual or Instructions for...

  9. ILS Glide Slope Standards. Part 2. Validation of Proposed Flight Inspection Filter Systems, and Responses of Simulated Aircraft on Coupled Approaches

    DTIC Science & Technology

    1975-10-01

    frequency IIi Gilds Clap atisctue fur all v:nrla.ue oxer i’.iatel glide poth dovistion (as ot would expett. This It the principal feature difrerentlating...fasilitics which produce out-ot-specification approach$* and landings. 17. Key Words III . Distribution slttment Instrumentation Landing System (ILS) Document...OF TYPICAL AIRCRAFT/CONTROL SYSTEM DYNAMICS ON COUPLED APPROACHES .... ........... Final Selection and Validation of a Filter System. . . . III . SM

  10. Separation of conductivity and distance measurements for eddy current nondestructive inspection of graphite composite materials

    NASA Astrophysics Data System (ADS)

    Dufour, Isabelle; Placko, Dominique

    1993-06-01

    This article deals with the study of a process based on the principle of eddy current sensors for the nondestructive evaluation of graphite composite plates. This research has been carried out in the Laboratoire d'Electricitd Signaux et Robotique by the team working on datacollecting sensors for robotics in collaboration with Aerospatiale. Eddy current sensors are characterized by their impedance, which varies when a conducting material is approached in their sensitive area. For a given sensor, the output signal depends directly on the electrical and geometrical properties of the object. In the case discussed here, the interesting data are the distance between the sensor and the object, and its local conductivity. In order to invert the relationships between the sensor signal and the properties of the material, an external parametrical model has been developed. A scanning of the surface with a sensor designed for good spatial resolution measurements gives two accurate maps of the useful data.

  11. Testing and Analysis of a Composite Non-Cylindrical Aircraft Fuselage Structure. Part 1; Ultimate Design Loads

    NASA Technical Reports Server (NTRS)

    Przekop, Adam; Jegley, Dawn C.; Lovejoy, Andrew E.; Rouse, Marshall; Wu, Hsi-Yung T.

    2016-01-01

    The Environmentally Responsible Aviation Project aimed to develop aircraft technologies enabling significant fuel burn and community noise reductions. Small incremental changes to the conventional metallic alloy-based 'tube and wing' configuration were not sufficient to achieve the desired metrics. One airframe concept identified by the project as having the potential to dramatically improve aircraft performance was a composite-based hybrid wing body configuration. Such a concept, however, presented inherent challenges stemming from, among other factors, the necessity to transfer wing loads through the entire center fuselage section which accommodates a pressurized cabin confined by flat or nearly flat panels. This paper discusses finite element analysis and testing of a large-scale hybrid wing body center section structure developed and constructed to demonstrate that the Pultruded Rod Stitched Efficient Unitized Structure concept can meet these challenging demands of the next generation airframes. Part I of the paper considers the five most critical load conditions, which are internal pressure only and positive and negative g-loads with and without internal pressure. Analysis results are compared with measurements acquired during testing. Performance of the test article is found to be closely aligned with predictions and, consequently, able to support the hybrid wing body design loads in pristine and barely visible impact damage conditions.

  12. Vibrational behavior of adaptive aircraft wing structures modelled as composite thin-walled beams

    NASA Technical Reports Server (NTRS)

    Song, O.; Librescu, L.; Rogers, C. A.

    1992-01-01

    The vibrational behavior of cantilevered aircraft wings modeled as thin-walled beams and incorporating piezoelectric effects is studied. Based on the converse piezoelectric effect, the system of piezoelectric actuators conveniently located on the wing yield the control of its associated vertical and lateral bending eigenfrequencies. The possibility revealed by this study enabling one to increase adaptively the eigenfrequencies of thin-walled cantilevered beams could play a significant role in the control of the dynamic response and flutter of wing and rotor blade structures.

  13. Nondestructive testing potential evaluation of a terahertz frequency-modulated continuous-wave imager for composite materials inspection

    NASA Astrophysics Data System (ADS)

    Cristofani, Edison; Friederich, Fabian; Wohnsiedler, Sabine; Matheis, Carsten; Jonuscheit, Joachim; Vandewal, Marijke; Beigang, René

    2014-03-01

    The sub-terahertz (THz) frequency band has proved to be a noteworthy option for nondestructive testing (NDT) of nonmetal aeronautics materials. Composite structures or laminates can be inspected for foreign objects (water or debris), delaminations, debonds, etc., using sub-THz sensors during the manufacturing process or maintenance. Given the harmless radiation to the human body of this frequency band, no special security measures are needed for operation. Moreover, the frequency-modulated continuous-wave sensor used in this study offers a very light, compact, inexpensive, and high-performing solution. An automated two-dimensional scanner carrying three sensors partially covering the 70- to 320-GHz band is operated, using two complementary measurement approaches: conventional focused imaging, where focusing lenses are used; and synthetic aperture (SA) or unfocused wide-beam imaging, for which lenses are no longer needed. Conventional focused imagery offers finer spatial resolutions but imagery is depth-limited due to the beam waist effect, whereas SA measurements allow imaging of thicker samples with depth-independent but coarser spatial resolutions. The present work is a compendium of a much larger study and describes the key technical aspects of the proposed imaging techniques and reports on results obtained from human-made samples (A-sandwich, C-sandwich, solid laminates) which include diverse defects and damages typically encountered in aeronautics multilayered structures. We conclude with a grading of the achieved results in comparison with measurements performed by other NDT techniques on the same samples.

  14. Design and demonstration of automated data analysis algorithms for ultrasonic inspection of complex composite panels with bonds

    NASA Astrophysics Data System (ADS)

    Aldrin, John C.; Forsyth, David S.; Welter, John T.

    2016-02-01

    To address the data review burden and improve the reliability of the ultrasonic inspection of large composite structures, automated data analysis (ADA) algorithms have been developed to make calls on indications that satisfy the detection criteria and minimize false calls. The original design followed standard procedures for analyzing signals for time-of-flight indications and backwall amplitude dropout. However, certain complex panels with varying shape, ply drops and the presence of bonds can complicate this interpretation process. In this paper, enhancements to the automated data analysis algorithms are introduced to address these challenges. To estimate the thickness of the part and presence of bonds without prior information, an algorithm tracks potential backwall or bond-line signals, and evaluates a combination of spatial, amplitude, and time-of-flight metrics to identify bonded sections. Once part boundaries, thickness transitions and bonded regions are identified, feature extraction algorithms are applied to multiple sets of through-thickness and backwall C-scan images, for evaluation of both first layer through thickness and layers under bonds. ADA processing results are presented for a variety of complex test specimens with inserted materials and other test discontinuities. Lastly, enhancements to the ADA software interface are presented, which improve the software usability for final data review by the inspectors and support the certification process.

  15. General Motors Corporation and Pacific Northwest Laboratory staff exchange: Inspection of case hardened steels and metal-matrix composites

    SciTech Connect

    Good, M.S.; Rogers, D.D.

    1993-10-01

    Staff exchanges, such as the one described in this report, are intended to facilitate communication and collaboration among scientists and engineers at Department of Energy (DOE) laboratories, in US industry, and academia. Funding support for these exchanges is provided by the DOE, Office of Energy Research, Laboratory Technology Transfer Program. The exchanges offer the opportunity for the laboratories to transfer technology and expertise to industry, gain a perspective on industry`s problems, and develop the basis for further cooperative efforts through Cooperative Research and Development Agreements (CRADAs) or other mechanisms. The objectives of this report were as follows: for Pacific Northwest Laboratory (PNL) staff to present technology to General Motors (GM) staff on nondestructive measurement of hardened steel components and uniformity of particle dispersion in metal-matrix composites for evaluation for possible application in GM`s manufacturing processes; for GM staff to discuss with PNL staff common manufacturing processes, metallurgy, and flaw criteria for hardening of various components and manufacturing of metal-matrix composites; to provide an initial step in building a long-term collaborative relationship between PNL and GM. Information in this report on the staff exchange of PNL staff with GM Corporation includes the purpose and objectives, a summary of activities, significant accomplishments, significant problems, industry benefits realized, recommended follow-on work and potential benefits from that work, and three appendixes. Appendix A is a description of ultrasonic backscatter technology and its applications to the two nondestructive inspection interests defined by GM. Appendix B is a list of key contacts and the schedule of activities pertaining to the staff exchange. Appendix C is an article from American Society for Metals News relating to sensor needs.

  16. Evaluation of low-cost aluminum composites for aircraft engine structural applications

    NASA Technical Reports Server (NTRS)

    Mcdanels, D. L.; Signorelli, R. A.

    1983-01-01

    Panels of discontinuous SiC composites, with several aluminum matrices, were fabricated and evaluated. Modulus, yield strength and tensile strength results indicated that the properties of composites containing SiC whisker, nodule or particulate reinforcements were similar. The modulus of the composites was controlled by the volume percentage of the SiC reinforcement content, while the strength and ductility were controlled by both the reinforcement content and the matrix alloy. The feasibility of fabricating structural shapes by both wire performs and direct casting was demonstrated for Al2O3/Al composites. The feasibility of fabricating high performance composites into structural shapes by low pressure hot molding was demonstrated for B4C-coated B/Al composites.

  17. Design, Fabrication, and Testing of Composite Energy-Absorbing Keel Beams for General Aviation Type Aircraft

    NASA Technical Reports Server (NTRS)

    Kellas, Sotiris; Knight, Norman F., Jr.

    2002-01-01

    A lightweight energy-absorbing keel-beam concept was developed and retrofitted in a general aviation type aircraft to improve crashworthiness performance. The energy-absorbing beam consisted of a foam-filled cellular structure with glass fiber and hybrid glass/kevlar cell walls. Design, analysis, fabrication and testing of the keel beams prior to installation and subsequent full-scale crash testing of the aircraft are described. Factors such as material and fabrication constraints, damage tolerance, crush stress/strain response, seat-rail loading, and post crush integrity, which influenced the course of the design process are also presented. A theory similar to the one often used for ductile metal box structures was employed with appropriate modifications to estimate the sustained crush loads for the beams. This, analytical tool, coupled with dynamic finite element simulation using MSC.Dytran were the prime design and analysis tools. The validity of the theory as a reliable design tool was examined against test data from static crush tests of beam sections while the overall performance of the energy-absorbing subfloor was assessed through dynamic testing of 24 in long subfloor assemblies.

  18. Remote sensing of aircraft exhaust temperature and composition by passive Fourier Transform Infrared (FTIR)

    NASA Astrophysics Data System (ADS)

    Flores, Edgar; Schäfer, Klaus; Black, John; Harig, Roland; Jahn, Carsten

    2007-10-01

    The scanning infrared gas imaging system (SIGIS-HR) and the quantitative gas analysis software MAPS (Multicomponent Air Pollution Software) are applied to investigate the spatial distribution of the temperature and gas concentrations (CO, NO) within the plume of aircraft engines at airports. The system integrates an infrared camera also. It is used for the localisation of the hot source that additionally suggests the best measurement position of the SIGIS-HR. The application of emission FTIR spectrometry for the measurement of temperature and gas emission index of CO and NO is presented for the exhaust of a small turbojet based on a helicopter turbine. In these measurements the emitted infrared radiation from the exhaust gas stream was collected by the SIGIS-HR at different spectral resolution (56 cm -1 and 0.2 cm -1). The software MAPS includes the Instrumental Line Shape (ILS) of the OPAG- 22 FTIR spectrometer obtained by active gas cell measurements and ILS modelling. The rough concept of the system will be presented and operational applications will be discussed. The results of the investigation of the temperature and gas concentrations (CO, NO) within the aircraft engine plumes will be shown. The limitations and of the systems will be discussed.

  19. Advanced composites structural concepts and materials technologies for primary aircraft structures. Structural response and failure analysis: ISPAN modules users manual

    NASA Technical Reports Server (NTRS)

    Hairr, John W.; Huang, Jui-Ten; Ingram, J. Edward; Shah, Bharat M.

    1992-01-01

    The ISPAN Program (Interactive Stiffened Panel Analysis) is an interactive design tool that is intended to provide a means of performing simple and self contained preliminary analysis of aircraft primary structures made of composite materials. The program combines a series of modules with the finite element code DIAL as its backbone. Four ISPAN Modules were developed and are documented. These include: (1) flat stiffened panel; (2) curved stiffened panel; (3) flat tubular panel; and (4) curved geodesic panel. Users are instructed to input geometric and material properties, load information and types of analysis (linear, bifurcation buckling, or post-buckling) interactively. The program utilizing this information will generate finite element mesh and perform analysis. The output in the form of summary tables of stress or margins of safety, contour plots of loads or stress, and deflected shape plots may be generalized and used to evaluate specific design.

  20. Composites applications - The future is now

    SciTech Connect

    Drozda, T.J.

    1989-01-01

    The present volume on the development status of advanced composites discusses resin-, ceramic- and metal-matrix composites, as well as tooling practices, testing and inspection methods, and novel applications. Attention is given to interface considerations in ceramic-matrix composites, applications of metal-matrix composites to military aircraft, advanced thermoplastic preforms, tooling for filament-winding processes, trapped-rubber molding methods, pultrusion for automotive applications, and composite-production tooling using CAD/CAM. Also discussed are expert systems for composites inspection and repair, acoustographic high-speed NDE for composites, the design and production of a composite landing gear-retracting beam, braided composite structures, and the uses of composites in orthopedics.

  1. Developing Large-Scale Bayesian Networks by Composition: Fault Diagnosis of Electrical Power Systems in Aircraft and Spacecraft

    NASA Technical Reports Server (NTRS)

    Mengshoel, Ole Jakob; Poll, Scott; Kurtoglu, Tolga

    2009-01-01

    In this paper, we investigate the use of Bayesian networks to construct large-scale diagnostic systems. In particular, we consider the development of large-scale Bayesian networks by composition. This compositional approach reflects how (often redundant) subsystems are architected to form systems such as electrical power systems. We develop high-level specifications, Bayesian networks, clique trees, and arithmetic circuits representing 24 different electrical power systems. The largest among these 24 Bayesian networks contains over 1,000 random variables. Another BN represents the real-world electrical power system ADAPT, which is representative of electrical power systems deployed in aerospace vehicles. In addition to demonstrating the scalability of the compositional approach, we briefly report on experimental results from the diagnostic competition DXC, where the ProADAPT team, using techniques discussed here, obtained the highest scores in both Tier 1 (among 9 international competitors) and Tier 2 (among 6 international competitors) of the industrial track. While we consider diagnosis of power systems specifically, we believe this work is relevant to other system health management problems, in particular in dependable systems such as aircraft and spacecraft. (See CASI ID 20100021910 for supplemental data disk.)

  2. Aircraft Ducting

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Templeman Industries developed the Ultra-Seal Ducting System, an environmental composite air duct with a 50 percent weight savings over current metallic ducting, but could not find a commercial facility with the ability to test it. Marshall Space Flight Center conducted a structural evaluation of the duct, equivalent to 86 years of take-offs and landings in an aircraft. Boeing Commercial Airplane Group and McDonnell Douglas Corporation are currently using the ducts.

  3. A domain-specific design architecture for composite material design and aircraft part redesign

    NASA Technical Reports Server (NTRS)

    Punch, W. F., III; Keller, K. J.; Bond, W.; Sticklen, J.

    1992-01-01

    Advanced composites have been targeted as a 'leapfrog' technology that would provide a unique global competitive position for U.S. industry. Composites are unique in the requirements for an integrated approach to designing, manufacturing, and marketing of products developed utilizing the new materials of construction. Numerous studies extending across the entire economic spectrum of the United States from aerospace to military to durable goods have identified composites as a 'key' technology. In general there have been two approaches to composite construction: build models of a given composite materials, then determine characteristics of the material via numerical simulation and empirical testing; and experience-directed construction of fabrication plans for building composites with given properties. The first route sets a goal to capture basic understanding of a device (the composite) by use of a rigorous mathematical model; the second attempts to capture the expertise about the process of fabricating a composite (to date) at a surface level typically expressed in a rule based system. From an AI perspective, these two research lines are attacking distinctly different problems, and both tracks have current limitations. The mathematical modeling approach has yielded a wealth of data but a large number of simplifying assumptions are needed to make numerical simulation tractable. Likewise, although surface level expertise about how to build a particular composite may yield important results, recent trends in the KBS area are towards augmenting surface level problem solving with deeper level knowledge. Many of the relative advantages of composites, e.g., the strength:weight ratio, is most prominent when the entire component is designed as a unitary piece. The bottleneck in undertaking such unitary design lies in the difficulty of the re-design task. Designing the fabrication protocols for a complex-shaped, thick section composite are currently very difficult. It is in

  4. Characterization and manufacture of braided composites for large commercial aircraft structures

    NASA Technical Reports Server (NTRS)

    Fedro, Mark J.; Willden, Kurtis

    1992-01-01

    Braided composite materials has been recognized as a potential cost effective material form for fuselage structural elements. Consequently, there is a strong need for more knowledge in the design, manufacture, test, and analysis of textile structural composites. Advance braided composite technology is advanced towards applications to a large commercial transport fuselage. The mechanics are summarized of materials and manufacturing demonstration results which were obtained in order to acquire an understanding of how braided composites can be applied to a commercial fuselage. Textile composites consisting of 2-D, 2-D triaxial, and 3-D braid patterns with thermoplastic and two resin transfer molding resin systems were studied. The structural performance of braided composites was evaluated through an extensive mechanical test program. Analytical methods were also developed and applied to predict the following: internal fiber architecture; stiffness; fiber stresses; failure mechanisms; notch effects; and the history of failure of the braided composite specimens. The applicability of braided composites to a commercial transport fuselage was further assessed through a manufacturing demonstration.

  5. Characterization and manufacture of braided composites for large commercial aircraft structures

    NASA Technical Reports Server (NTRS)

    Fedro, Mark J.; Willden, Kurtis

    1992-01-01

    Braided composite materials, one of the advanced material forms which is under investigation in Boeing's ATCAS program, have been recognized as a potential cost-effective material form for fuselage structural elements. Consequently, there is a strong need for more knowledge in the design, manufacture, test, and analysis of textile structural composites. The overall objective of this work is to advance braided composite technology towards applications to a large commercial transport fuselage. This paper summarizes the mechanics of materials and manufacturing demonstration results which have been obtained in order to acquire an understanding of how braided composites can be applied to a commercial fuselage. Textile composites consisting of 1D, 2D triaxial, and 3D braid patterns with thermoplastic and two RTM resin systems were investigated. The structural performance of braided composites was evaluated through an extensive mechanical test program. Analytical methods were also developed and applied to predict the following: internal fiber architectures, stiffnesses, fiber stresses, failure mechanisms, notch effects, and the entire history of failure of the braided composites specimens. The applicability of braided composites to a commercial transport fuselage was further assessed through a manufacturing demonstration. Three foot fuselage circumferential hoop frames were manufactured to demonstrate the feasibility of consistently producing high quality braided/RTM composite primary structures. The manufacturing issues (tooling requirements, processing requirements, and process/quality control) addressed during the demonstration are summarized. The manufacturing demonstration in conjunction with the mechanical test results and developed analytical methods increased the confidence in the ATCAS approach to the design, manufacture, test, and analysis of braided composites.

  6. Impact of environmental constraints and aircraft technology on airline fleet composition

    NASA Astrophysics Data System (ADS)

    Moolchandani, Kushal A.

    This thesis models an airline's decisions about fleet evolution in order to maintain economic and regulatory viability. The aim is to analyze the fleet evolution under different scenarios of environmental policy and technology availability in order to suggest an optimal fleet under each case. An understanding of the effect of aircraft technologies, fleet size and age distribution, and operational procedures on airline performance may improve the quality of policies to achieve environmental goals. Additionally, the effect of decisions about fleet evolution on air travel is assessed as the change in market demand and profits of an abstracted, benevolent monopolist airline. Attention to the environmental impact of aviation has grown, and this has prompted several organizations such as ICAO (and, in response, NASA) to establish emissions reduction targets to reduce aviation's global climate impact. The introduction of new technology, change in operational procedures, etc. are some of the proposed means to achieve these targets. Of these, this thesis studies the efficacy of implementation of environmental policies in form of emissions constraints as a means to achieve these goals and assesses their impact on an airline's fleet evolution and technology use (along with resulting effects on air travel demand). All studies in this thesis are conducted using the Fleet-level Environmental Evaluation Tool (FLEET), a NASA sponsored simulation tool developed at Purdue University. This tool models airline operational decisions via a resource allocation problem and uses a system dynamics type approach to mimic airline economics, their decisions regarding retirement and acquisition of aircraft and evolution of market demand in response to the economic conditions. The development of an aircraft acquisition model for FLEET is a significant contribution of the author. Further, the author conducted a study of various environmental policies using FLEET. Studies introduce constraints on

  7. Concepts for improving the damage tolerance of composite compression panels. [aircraft structures

    NASA Technical Reports Server (NTRS)

    Rhodes, M. D.; Williams, J. G.

    1984-01-01

    The residual strength of specimens with damage and the sensitivity to damage while subjected to an applied inplane compression load were determined for flatplate specimens and blade-stiffened panels. The results suggest that matrix materials that fail by delamination have the lowest damage tolerance capability. Alternate matrix materials or laminates which are transversely reinforced suppress the delamination mode of failure and change the failure mode to transverse shear crippling which occurs at a higher strain value. Several damage-tolerant blade-stiffened panel design concepts are evaluated. Structural efficiency studies conducted show only small mass penalties may result from incorporating these damage-tolerant features in panel design. The implication of test results on the design of aircraft structures was examined with respect to FAR requirements.

  8. Flight service evaluation of PRD-49/epoxy composite panels in wide bodied commercial transport aircraft

    NASA Technical Reports Server (NTRS)

    Wooley, J. H.; Paschal, D. R.; Crilly, E. R.

    1973-01-01

    L-1011 aircraft fairing panel configurations were selected as test parts to compare the fabrication, costs and service performance characteristics of PRD-49 and fiberglass. These parts are currently fiberglass reinforced structure and the purpose of this program is to evaluate the results of direct substitution of PRD-49 fabric for the fiberglass. Three ship sets of these panels have been fabricated for a five year flight service evaluation on three L-1011 commercial airlines operating in widely diverse route structures. The standard tools and machining techniques used for fiberglass parts are unacceptable for cutting, trimming, and drilling the tougher PRD-49 fibers. Therefore, a machining development study was undertaken to provide the necessary new tools and machining techniques. After incorporating these new developments in the fabrication and installation of the panels, a manufacturing cost study revealed that the labor hours were only increased by about 12.5 percent.

  9. Advanced composite aileron for L-1011 transport aircraft: Design and analysis

    NASA Technical Reports Server (NTRS)

    Griffin, C. F.; Fogg, L. D.; Dunning, E. G.

    1981-01-01

    Detail design of the composite aileron has been completed. The aileron design is a multi-rib configuration with single piece upper and lower covers mechanically fastened to the substructure. Covers, front, spar and ribs are fabricated with graphite/epoxy tape or fabric composite material. The design has a weight savings of 23 percent compared to the aluminum aileron. The composite aileron has 50 percent fewer fasteners and parts than the metal aileron and is predicted to be cost competitive. Structural integrity of the composite aileron was verified by structural analysis and an extensive test program. Static, failsafe, and vibration analyses have been conducted on the composite aileron using finite element models and specialized computer programs for composite material laminates. The fundamental behavior of the composite materials used in the aileron was determined by coupon tests for a variety of environmental conditions. Critical details of the design were interrogated by static and fatigue tests on full-scale subcomponents and subassemblies of the aileron.

  10. Impact Testing and Analysis of Composites for Aircraft Engine Fan Cases

    NASA Technical Reports Server (NTRS)

    Roberts, Gary D.; Revilock, Duane M.; Binienda, Wieslaw K.; Nie, Walter Z.; Mackenzie, S. Ben; Todd, Kevin B.

    2002-01-01

    The fan case in a jet engine is a heavy structure because of its size and because of the requirement that it contain a blade released during engine operation. Composite materials offer the potential for reducing the weight of the case. Efficient design, test, and analysis methods are needed to efficiently evaluate the large number of potential composite materials and design concepts. The type of damage expected in a composite case under blade-out conditions was evaluated using a subscale test in which a glass/epoxy composite half-ring target was impacted with a wedge-shaped titanium projectile. Fiber shearing occurred near points of contact between the projectile and target. Delamination and tearing occurred on a larger scale. These damage modes were reproduced in a simpler test in which flat glass/epoxy composites were impacted with a blunt cylindrical projectile. A surface layer of ceramic eliminated fiber shear fracture but did not reduce delamination. Tests on 3D woven carbon/epoxy composites indicated that transverse reinforcement is effective in reducing delamination. A 91 cm (36 in.) diameter full-ring sub-component was proposed for larger scale testing of these and other composite concepts. Explicit, transient, finite element analyses indicated that a full-ring test is needed to simulate complete impact dynamics, but simpler tests using smaller ring sections are adequate when evaluation of initial impact damage is the primary concern.

  11. Flight service evaluation of Kevlar-49 epoxy composite panels in wide-bodied commercial transport aircraft

    NASA Technical Reports Server (NTRS)

    Stone, R. H.

    1978-01-01

    Kevlar-49 fairing panels, installed as flight service components on three L-1011s, were inspected after four years' service, and found to be performing satisfactorily. The Kevlar-49 components were all found to be performing satisfactorily in service with no major problems, or any condition requiring corrective action. The only defects noted were minor impact damage, and a minor degree of fastener hole fraying and elongation. These are for the most part comparable to damage noted on fiberglass fairings. A concurrent investigation was conducted on Kevlar-49/epoxy coupons exposed to an outdoor environment over a three year period at various locations providing a variety of climatic conditions. Weight changes and retention of mechanical properties were determined after one and three years exposure. A net weight loss occurred due to ultraviolet effects on the unpainted specimens. Mechanical property retentions were satisfactory with most specimens retaining well over 80% of their original value.

  12. Rating aircraft on energy

    NASA Technical Reports Server (NTRS)

    Maddalon, D. V.

    1974-01-01

    Questions concerning the energy efficiency of aircraft compared to ground transport are considered, taking into account as energy intensity the energy consumed per passenger statute mile. It is found that today's transport aircraft have an energy intensity potential comparable to that of ground modes. Possibilities for improving the energy density are also much better in the case of aircraft than in the case of ground transportation. Approaches for potential reductions in aircraft energy consumption are examined, giving attention to steps for increasing the efficiency of present aircraft and to reductions in energy intensity obtainable by the introduction of new aircraft utilizing an advanced technology. The use of supercritical aerodynamics is discussed along with the employment of composite structures, advances in propulsion systems, and the introduction of very large aircraft. Other improvements in fuel economy can be obtained by a reduction of skin-friction drag and a use of hydrogen fuel.

  13. Firefighting and Emergency Response Study of Advanced Composites Aircraft. Objective 3: Penetrating and Overhauling Wreckage

    DTIC Science & Technology

    2011-10-01

    tools were evaluated. Fabricators and makers of composite components commonly use diamond coated blades and saws, water jet cutters and lasers to cut...injection of garnet (aggregate PyroShot) once the water jet has penetrated the composite panel. This feature 25 Distribution A: Approved for public...reciprocating, circular, and hole saws), a pry axe, and a water jet cutting tool (Pyrolance). Cutting continued until the blade was too dull to cut

  14. Pulsed eddy current inspection of CF-188 inner wing spar

    NASA Astrophysics Data System (ADS)

    Horan, Peter Francis

    Royal Canadian Air Force (RCAF) CF-188 Hornet aircraft engineering authorities have stated a requirement for a Non-Destructive Evaluation (NDE) technique to detect Stress Corrosion Cracking (SCC) in the inner wing spars without fastener or composite wing skin removal. Current radiographic inspections involve significant aircraft downtime, and Pulsed Eddy Current (PEC) inspection is proposed as a solution. The aluminum inner wing spars of CF-188 Hornet aircraft may undergo stress corrosion cracking (SCC) along the spar between the fasteners that secure carbon-fiber/ epoxy composite skin to the wing. Inspection of the spar through the wing skin is required to avoid wing disassembly. The thickness of the wing skin varies between 8 and 20 mm (0.3 to 0.8 inch) and fasteners may be either titanium or ferrous. PEC generated by a probe centered over a fastener, demonstrates capability of detecting simulated cracks within spars with the wing skin present. Comparison of signals from separate sensors, mounted to either side of the excitation coil, is used to detect differences in induced eddy current fields, which arise in the presence of cracks. To overcome variability in PEC signal response due to variation in 1) skin thickness, 2) fastener material and size, and 3) centering over fasteners, a large calibration data set is acquired. Multi-dimensional scores from a Modified Principal Components Analysis (PCA) of the data are reduced to one dimension (1D) using a Discriminant Analysis method. Under inspection conditions, calibrated PCA scores combined with discriminant analysis permit rapid real time go/no-go PEC detection of cracks in CF-188 inner wing spar. Probe designs using both pickup coils and Giant Magnetoresistive (GMR) sensors were tested on samples with the same ferrous and titanium fasteners found on the CF-188. Flaws were correctly detected at lift-offs of up to 21mm utilizing a variety of insulating skin materials simulating the carbon-fibre reinforced polymer

  15. Behavior of composite/metal aircraft structural elements and components under crash type loads - What are they telling us?

    NASA Technical Reports Server (NTRS)

    Carden, Huey D.; Boitnott, Richard L.; Fasanella, Edwin L.

    1990-01-01

    Failure behavior results are presented from crash dynamics research using concepts of aircraft elements and substructure not necessarily designed or optimized for energy absorption or crash loading considerations. To achieve desired new designs which incorporate improved energy absorption capabilities often requires an understanding of how more conventional designs behave under crash loadings. Experimental and analytical data are presented which indicate some general trends in the failure behavior of a class of composite structures which include individual fuselage frames, skeleton subfloors with stringers and floor beams but without skin covering, and subfloors with skin added to the frame-stringer arrangement. Although the behavior is complex, a strong similarity in the static and dynamic failure behavior among these structures is illustrated through photographs of the experimental results and through analytical data of generic composite structural models. It is believed that the similarity in behavior is giving the designer and dynamists much information about what to expect in the crash behavior of these structures and can guide designs for improving the energy absorption and crash behavior of such structures.

  16. Behavior of composite/metal aircraft structural elements and components under crash type loads: What are they telling us

    NASA Technical Reports Server (NTRS)

    Carden, Huey D.; Boitnott, Richard L.; Fasanella, Edwin L.

    1990-01-01

    Failure behavior results are presented from crash dynamics research using concepts of aircraft elements and substructure not necessarily designed or optimized for energy absorption or crash loading considerations. To achieve desired new designs which incorporate improved energy absorption capabilities often requires an understanding of how more conventional designs behave under crash loadings. Experimental and analytical data are presented which indicate some general trends in the failure behavior of a class of composite structures which include individual fuselage frames, skeleton subfloors with stringers and floor beams but without skin covering, and subfloors with skin added to the frame-stringer arrangement. Although the behavior is complex, a strong similarity in the static and dynamic failure behavior among these structures is illustrated through photographs of the experimental results and through analytical data of generic composite structural models. It is believed that the similarity in behavior is giving the designer and dynamists much information about what to expect in the crash behavior of these structures and can guide designs for improving the energy absorption and crash behavior of such structures.

  17. Behavior of composite/metal aircraft structural elements and components under crash type loads - What are they telling us?

    NASA Technical Reports Server (NTRS)

    Carden, Huey D.; Boitnott, Richard L.; Fasanella, Edwin L.

    1990-01-01

    Failure behavior results are presented from crash dynamics research using concepts of aircraft elements and substructure not necessarily designed or optimized for energy absorption or crash loading considerations. To achieve desired new designs which incorporate improved energy absorption capabilities often requires an understanding of how more conventional designs behave under crash loadings. Experimental and analytical data are presented which indicate some general trends in the failure behavior of a class of composite structures which include individual fuselage frames, skeleton subfloors with stringers and floor beams but without skin covering, and subfloors with skin added to the frame-stringer arrangement. Although the behavior is complex, a strong similarity in the static and dynamic failure behavior among these structures is illustrated through photographs of the experimental results and through analytical data of generic composite structural models. It is believed that the similarity in behavior is giving the designer and dynamists much information about what to expect in the crash behavior of these structures and can guide designs for improving the energy absorption and crash behavior of such structures.

  18. 9 CFR 91.41 - Cleaning and disinfecting of aircraft.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Cleaning and disinfecting of aircraft... INSPECTION AND HANDLING OF LIVESTOCK FOR EXPORTATION Cleaning and Disinfecting of Aircraft § 91.41 Cleaning and disinfecting of aircraft. Prior to loading of animals, the stowage area of aircraft to be used to...

  19. Active aeroelastic control of aircraft composite wings impacted by explosive blasts

    NASA Astrophysics Data System (ADS)

    Librescu, Liviu; Na, Sungsoo; Qin, Zhanming; Lee, Bokhee

    2008-11-01

    In this paper, the dynamic aeroelastic response and the related robust control of aircraft swept wings exposed to gust and explosive type loads are examined. The structural model of the wing is in the form of a thin/thick-walled beam and incorporates a number of non-standard effects, such as transverse shear, material anisotropy, warping inhibition, the spanwise non-uniformity of the cross-section, and the rotatory inertias. The circumferentially asymmetric stiffness lay-up configuration is implemented to generate preferred elastic couplings, and in this context, the implications of the plunging-twist elastic coupling and of warping inhibition on the aeroelastic response are investigated. The unsteady incompressible aerodynamic theory adopted in this study is that by von-Kármán and Sears, applicable to arbitrary small motion in the time domain. The considered control methodology enabling one to enhance the aeroelastic response in the subcritical flight speed range and to suppress the occurrence of the flutter instability is based on a novel control approach that is aimed to improve the robustness to modeling uncertainties and external disturbances. To this end, a combined control based on Linear Quadratic Gaussian (LQG) controller coupled with the Sliding Mode Observer (SMO) is designed and its high efficiency is put into evidence.

  20. Aging Aircraft NDI Development and Demonstration Center (AANC): An overview

    SciTech Connect

    Walter, P.L.

    1991-01-01

    A major center with emphasis on validation of nondestructive inspection techniques for aging aircraft, the Aging Aircraft NDI Development and Demonstration Center (AANC), has been funded by the FAA at Sandia National Laboratories. The Center has been assigned specific tasks in developing techniques for the nondestructive inspection of static engine parts, assessing inspection reliability (POD experiments), developing test beds for nondestructive inspection validation, maintaining a FAA library of characterized aircraft structural test specimens, and leasing a hangar to house a high flight cycle transport aircraft for use as a full scale test bed. 3 refs.

  1. Impact resistance of fiber composite blades used in aircraft turbine engines

    NASA Technical Reports Server (NTRS)

    Friedrich, L. A.; Preston, J. L., Jr.

    1973-01-01

    Resistance of advanced fiber reinforced epoxy matrix composite materials to ballistic impact was investigated as a function of impacting projectile characteristics, and composite material properties. Ballistic impact damage due to normal impacts, was classified as transverse (stress wave delamination and splitting), penetrative, or structural (gross failure). Steel projectiles were found to be gelatin ice projectiles in causing penetrative damage leading to reduced tensile strength. Gelatin and ice projectiles caused either transverse or structural damage, depending upon projectile mass and velocity. Improved composite transverse tensile strength, use of dispersed ply lay-ups, and inclusion of PRD-49-1 or S-glass fibers correlated with improved resistance of composite materials to transverse damage. In non-normal impacts against simulated blade shapes, the normal velocity component of the impact was used to correlate damage results with normal impact results. Stiffening the leading edge of simulated blade specimens led to reduced ballistic damage, while addition of a metallic leading edge provided nearly complete protection against 0.64 cm diameter steel, and 1.27 cm diameter ice and gelatin projectiles, and partial protection against 2.54 cm diameter projectiles of ice and gelatin.

  2. Novel Epoxy Particulate Composites for Mitigation of Insect Residue Adhesion on Future Aircraft Surfaces

    NASA Technical Reports Server (NTRS)

    Wohl, Christopher J.; Smith, Joseph G., Jr.; Gardner, John M.; Penner, Ronald K.; Connell, John W.; Siochi, Emilie J.

    2014-01-01

    Drag is reduced significantly for airflow over surfaces when laminar flow can be maintained over greater chord lengths, the distance from the leading edge of an airfoil.1 However, surface imperfections, such as chipped paint, scratches, and events that change topography on a microscopic scale can introduce airflow instabilities resulting in premature transition to turbulent flow.1 Although many of these surface imperfections can be avoided with proper maintenance, advanced materials, and advanced manufacturing practices, topographical surface anomalies arising during flight from insect impacts cannot be controlled and can influence laminar flow stability. Practical solutions to this operational challenge need to be developed for future aircraft to have full advantage of laminar flow designs that improve fuel efficiency.2 Researchers have investigated various methods to mitigate insect residue adhesion for decades.3 Although several techniques have demonstrated efficacy including mechanical scrapers, active liquid discharge systems, and sacrificial paper coatings, they have not been commercially implemented due to increased manufacturing and operational complexity, environmental impact, and weight penalties. Coatings offer a simple route for passive insect residue adhesion prevention without many of the challenges associated with maintenance of laminar flow.4 In our previous work, we determined that most commercially available materials were not effective at insect residue adhesion.5 We also identified improvements when both surface energy could be controlled by surface modifying agents and the topography could be altered through the use of micron-sized and nanometer-sized filler materials.6 In this work, these general principles were applied to an epoxy system to evaluate the behavior of the surface modifying agent, a fluorinated alkyl ether oligomer, on surface energy and insect residue adhesion properties.

  3. Advanced composite rudders for DC-10 aircraft: Design, manufacturing, and ground tests

    NASA Technical Reports Server (NTRS)

    Lehman, G. M.; Purdy, D. M.; Cominsky, A.; Hawley, A. V.; Amason, M. P.; Kung, J. T.; Palmer, R. J.; Purves, N. B.; Marra, P. J.; Hancock, G. R.

    1976-01-01

    Design synthesis, tooling and process development, manufacturing, and ground testing of a graphite epoxy rudder for the DC-10 commercial transport are discussed. The composite structure was fabricated using a unique processing method in which the thermal expansion characteristics of rubber tooling mandrels were used to generate curing pressures during an oven cure cycle. The ground test program resulted in certification of the rudder for passenger-carrying flights. Results of the structural and environmental tests are interpreted and detailed development of the rubber tooling and manufacturing process is described. Processing, tooling, and manufacturing problems encountered during fabrication of four development rudders and ten flight-service rudders are discussed and the results of corrective actions are described. Non-recurring and recurring manufacturing labor man-hours are tabulated at the detailed operation level. A weight reduction of 13.58 kg (33 percent) was attained in the composite rudder.

  4. Fabrication of PDA/HTS prototype components. [graphite composites for space shuttle and YF-12 aircraft

    NASA Technical Reports Server (NTRS)

    Sheppard, C. H.; Orell, M. K.; Vaughan, R. W.; Jones, R. J.

    1976-01-01

    A process was developed for autoclave molding structural poly-(Diels-Alder) polyimide (PDA) resin/HTS graphite composites for short-term 600 F service. The autoclave molding process used to fabricate these composites required a maximum cure temperature of 427 K (400 F) and a maximum molding pressure of 0.7 MN/sq m (100 psig). This process then was adapted to the fabrication of co-cured polyimide sandwich panels consisting of PDA/HTS skins, PDA syntactic foam and polyimide/glass honeycomb core. Fabrication ease was demonstrated by manufacturing five three-quarter scale YF-12 wing panels using the PDA resin. It was concluded from successful evaluation of these prototype units that the PDA resin is suitable for fabrication of components using commercial equipment.

  5. Cost Effectiveness of Composite Materials on the F-15 and F-16 Aircrafts

    DTIC Science & Technology

    1989-09-01

    reinforcement are REINFORCEMENTS COMPOSITE THE MATRIX AND FILLERS FORMING STRUCTURES AND PROCESSING LAMINATES, FILMS + WHISKERS, FIBERS, . AND FOILS, HONEY ...303, 327, and 353 respectively. For the F-15 honey comb assembly, horizontal stabilator assembly, the data range for flight hours, sorties, and...added to a cementing agent to make concrete. 2. Boron Essentially a non-metal occurring naturally as in borax or boric acid. 3. Carbon An element that

  6. 14 CFR 33.55 - Teardown inspection.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... established and recorded at the beginning of the test; and (c) Each engine component must conform to the type... STANDARDS: AIRCRAFT ENGINES Block Tests; Reciprocating Aircraft Engines § 33.55 Teardown inspection. After completing the endurance test— (a) Each engine must be completely disassembled; (b) Each component having an...

  7. 14 CFR 33.93 - Teardown inspection.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...; and (2) Each engine part must conform to the type design and be eligible for incorporation into an... STANDARDS: AIRCRAFT ENGINES Block Tests; Turbine Aircraft Engines § 33.93 Teardown inspection. (a) After completing the endurance testing of § 33.87 (b), (c), (d), (e), or (g) of this part, each engine must be...

  8. 14 CFR 33.55 - Teardown inspection.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... established and recorded at the beginning of the test; and (c) Each engine component must conform to the type... STANDARDS: AIRCRAFT ENGINES Block Tests; Reciprocating Aircraft Engines § 33.55 Teardown inspection. After completing the endurance test— (a) Each engine must be completely disassembled; (b) Each component having an...

  9. Pathfinder aircraft in flight

    NASA Image and Video Library

    1995-07-27

    The Pathfinder research aircraft's wing structure was clearly defined as it soared under a clear blue sky during a test flight July 27, 1995, from Dryden Flight Research Center, Edwards, California. The center section and outer wing panels of the aircraft had ribs constructed of thin plastic foam, while the ribs in the inner wing panels are fabricated from lightweight composite material. Developed by AeroVironment, Inc., the Pathfinder was one of several unmanned aircraft being evaluated under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) program.

  10. 14 CFR 31.41 - Inspection provisions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Inspection provisions. 31.41 Section 31.41 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: MANNED FREE BALLOONS Design Construction § 31.41 Inspection provisions. There must be a means...

  11. 14 CFR 31.41 - Inspection provisions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Inspection provisions. 31.41 Section 31.41 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: MANNED FREE BALLOONS Design Construction § 31.41 Inspection provisions. There must be a means...

  12. 14 CFR 31.41 - Inspection provisions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Inspection provisions. 31.41 Section 31.41 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: MANNED FREE BALLOONS Design Construction § 31.41 Inspection provisions. There must be a means...

  13. 14 CFR 31.41 - Inspection provisions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Inspection provisions. 31.41 Section 31.41 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: MANNED FREE BALLOONS Design Construction § 31.41 Inspection provisions. There must be a means...

  14. 14 CFR 31.41 - Inspection provisions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Inspection provisions. 31.41 Section 31.41 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: MANNED FREE BALLOONS Design Construction § 31.41 Inspection provisions. There must be a means...

  15. 14 CFR 21.615 - FAA inspection.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false FAA inspection. 21.615 Section 21.615 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT CERTIFICATION... quality control system; (c) Witness any tests; (d) Inspect the manufacturing facilities; and (e)...

  16. High Temperature Lightweight Self-Healing Ceramic Composites for Aircraft Engine Applications

    NASA Technical Reports Server (NTRS)

    Raj, Sai V.; Singh, Mrityunjay; Bhatt, Ramakrishna T.

    2014-01-01

    The present research effort was undertaken to develop a new generation of SiC fiber- reinforced engineered matrix composites (EMCs) with sufficient high temperature plasticity to reduce crack propagation and self-healing capabilities to fill surface-connected cracks to prevent the oxygen ingress to the fibers. A matrix engineered with these capabilities is expected to increase the load bearing capabilities of SiCSiC CMCs at high temperatures. Several matrix compositions were designed to match the coefficient of thermal expansion (CTE) of the SiC fibers using a rule of mixture (ROM) approach. The CTE values of these matrices were determined and it was demonstrated that they were generally in good agreement with that of monolithic SiC between room temperature and 1525 K. The parameters to hot press the powders were optimized, and specimens were fabricated for determining bend strength, CTE, oxidation and microstructural characteristics of the engineered matrices. The oxidation tests revealed that some of the matrices exhibited catastrophic oxidation, and therefore, these were eliminated from further consideration. Two promising compositions were down selected based on these results for further development. Four-point bend tests were conducted on these two promising matrices between room temperature and 1698 K. Although theses matrices were brittle and failed at low stresses at room temperature, they exhibited high temperature ductility and higher stresses at the higher temperatures. The effects of different additives on the self-healing capabilities of these matrices were investigated. The results of preliminary studies conducted to slurry and melt infiltration trials with CrSi2 are described.

  17. Elastomer toughened polyimide adhesives. [bonding metal and composite material structures for aircraft and spacecraft

    NASA Technical Reports Server (NTRS)

    St.clair, A. K.; St.clair, T. L. (Inventor)

    1985-01-01

    A rubber-toughened, addition-type polyimide composition is disclosed which has excellent high temperature bonding characteristics in the fully cured state and improved peel strength and adhesive fracture resistance physical property characteristics. The process for making the improved adhesive involves preparing the rubber-containing amic acid prepolymer by chemically reacting an amine-terminated elastomer and an aromatic diamine with an aromatic dianhydride with which a reactive chain stopper anhydride has been mixed, and utilizing solvent or mixture of solvents for the reaction.

  18. Ceramic composite protection for turbine disc bursts. [for the A-300 aircraft

    NASA Technical Reports Server (NTRS)

    Gardner, P. B.

    1977-01-01

    Ceramic composite turbine disc protection panels for the A300B were developed using armor technology. Analytical predictions for modifying the ballistic projectile armor system were verified by a test program conducted to qualify the rotor containment system. With only a slight change in the areal density of the armor system a more than two-fold increase in kinetic energy protection level was achieved. Thickness of the fiberglass reinforced plastic backing material was increased to achieve an optimum ratio of ceramic thickness to backing thickness for the different ballistic defeat condition.

  19. Multilevel probabilistic approach to evaluate manufacturing defect in composite aircraft structures

    SciTech Connect

    Caracciolo, Paola

    2014-05-15

    In this work it is developed a reliable approach and its feasibility to the design and analysis of a composite structures. The metric is compared the robustness and reliability designs versus the traditional design, to demonstrate the gain that can be achieved with a probabilistic approach. The use of the stochastic approach of the uncertain parameteters in combination with the multi-scale levels analysis is the main objective of this paper. The work is dedicated to analyze the uncertainties in the design, tests, manufacturing process, and key gates such as materials characteristic.

  20. Advanced composite structural concepts and materials technologies for primary aircraft structures: Advanced material concepts

    NASA Technical Reports Server (NTRS)

    Lau, Kreisler S. Y.; Landis, Abraham L.; Chow, Andrea W.; Hamlin, Richard D.

    1993-01-01

    To achieve acceptable performance and long-term durability at elevated temperatures (350 to 600 F) for high-speed transport systems, further improvements of the high-performance matrix materials will be necessary to achieve very long-term (60,000-120,000 service hours) retention of mechanical properties and damage tolerance. This report emphasizes isoimide modification as a complementary technique to semi-interpenetrating polymer networks (SIPN's) to achieve greater processibility, better curing dynamics, and possibly enhanced thermo-mechanical properties in composites. A key result is the demonstration of enhanced processibility of isoimide-modified linear and thermo-setting polyimide systems.

  1. Innovative fabrication processing of advanced composite materials concepts for primary aircraft structures

    NASA Technical Reports Server (NTRS)

    Kassapoglou, Christos; Dinicola, Al J.; Chou, Jack C.

    1992-01-01

    The autoclave based THERM-X(sub R) process was evaluated by cocuring complex curved panels with frames and stiffeners. The process was shown to result in composite parts of high quality with good compaction at sharp radius regions and corners of intersecting parts. The structural properties of the postbuckled panels fabricated were found to be equivalent to those of conventionally tooled hand laid-up parts. Significant savings in bagging time over conventional tooling were documented. Structural details such as cocured shear ties and embedded stiffener flanges in the skin were found to suppress failure modes such as failure at corners of intersecting members and skin stiffeners separation.

  2. Innovative Aircraft Design Study. Task II. Nuclear Aircraft Concepts

    DTIC Science & Technology

    1977-04-01

    Laminar flow control (LFC) was applied to the aircraft wing and vertical surfaces , as an additional technology feature. The results from these...Supercritical Wing o Nuclear Propulsion o Laminar Flow Control o High Bypass-Ratio Engines o Upper Surface Blowing o Dual Cycle Engines o Externally Blown Flaps...8217Advanced Transport Aircraft, Chemical-Fueled Aircraft, Advanced Technology Aircraft, _NuERA 11 Reactor Systems, Composite Materials, Laminar Flow

  3. Reliability-based aeroelastic optimization of a composite aircraft wing via fluid-structure interaction of high fidelity solvers

    NASA Astrophysics Data System (ADS)

    Nikbay, M.; Fakkusoglu, N.; Kuru, M. N.

    2010-06-01

    We consider reliability based aeroelastic optimization of a AGARD 445.6 composite aircraft wing with stochastic parameters. Both commercial engineering software and an in-house reliability analysis code are employed in this high-fidelity computational framework. Finite volume based flow solver Fluent is used to solve 3D Euler equations, while Gambit is the fluid domain mesh generator and Catia-V5-R16 is used as a parametric 3D solid modeler. Abaqus, a structural finite element solver, is used to compute the structural response of the aeroelastic system. Mesh based parallel code coupling interface MPCCI-3.0.6 is used to exchange the pressure and displacement information between Fluent and Abaqus to perform a loosely coupled fluid-structure interaction by employing a staggered algorithm. To compute the probability of failure for the probabilistic constraints, one of the well known MPP (Most Probable Point) based reliability analysis methods, FORM (First Order Reliability Method) is implemented in Matlab. This in-house developed Matlab code is embedded in the multidisciplinary optimization workflow which is driven by Modefrontier. Modefrontier 4.1, is used for its gradient based optimization algorithm called NBI-NLPQLP which is based on sequential quadratic programming method. A pareto optimal solution for the stochastic aeroelastic optimization is obtained for a specified reliability index and results are compared with the results of deterministic aeroelastic optimization.

  4. Design and Optimization of a Composite Canard Control Surface of an Advanced Fighter Aircraft under Static Loading

    NASA Astrophysics Data System (ADS)

    Shrivastava, Sachin; Mohite, P. M.

    2015-01-01

    The minimization of weight and maximization of payload is an ever challenging design procedure for air vehicles. The present study has been carried out with an objective to redesign control surface of an advanced all-metallic fighter aircraft. In this study, the structure made up of high strength aluminum, titanium and ferrous alloys has been attempted to replace by carbon fiber composite (CFC) skin, ribs and stiffeners. This study presents an approach towards development of a methodology for optimization of first-ply failure index (FI) in unidirectional fibrous laminates using Genetic-Algorithms (GA) under quasi-static loading. The GAs, by the application of its operators like reproduction, cross-over, mutation and elitist strategy, optimize the ply-orientations in laminates so as to have minimum FI of Tsai-Wu first-ply failure criterion. The GA optimization procedure has been implemented in MATLAB and interfaced with commercial software ABAQUS using python scripting. FI calculations have been carried out in ABAQUS with user material subroutine (UMAT). The GA's application gave reasonably well-optimized ply-orientations combination at a faster convergence rate. However, the final optimized sequence of ply-orientations is obtained by tweaking the sequences given by GA's based on industrial practices and experience, whenever needed. The present study of conversion of an all metallic structure to partial CFC structure has led to 12% of weight reduction. Therefore, the approach proposed here motivates designer to use CFC with a confidence.

  5. Novel approaches for alleviation of electrical hazards of graphite-fiber composites. [aircraft safety

    NASA Technical Reports Server (NTRS)

    Ramohalli, K.

    1979-01-01

    Four basically different approaches were considered: gasification of fibers, retention in the matrix, clumping to prevent entrainment, and electrical insulation of fibers. The techniques used to achieve them are described in some detail. These involved surface treatment of fibers to improve the wettability of fibers and coating the fibers with the selected substances before laying them up for composite fabrication. Thermogravimetric analyses were performed on the plain and treated fibers in inert (nitrogen, argon) and reactive (air) atmospheres. The treated fibers embedded in epoxy were ignited in a Bunsen flame to determine the efficiency of these treatments. A simple apparatus was assembled to detect the time for the first short circuit (in a typical electrical circuit) when exposed to the combustion products from a graphite fiber composite fire. The state-of-the-art and treated fibers cast in typical epoxy were burned and ranked for potential success. It was inferred that the gasification schemes appear promising when reduction or oxidation is tried. It was also found that some very promising candidates were available for the clumping and for the electrical insulation of fibers.

  6. Estimating the Cost of Composite Material Airframes Using the Rand Corporation Development and Procurement Costs of Aircraft Parametric Model (DAPCA III).

    DTIC Science & Technology

    1983-09-01

    estimate. Necessarily, many assumptions about the manufacturing and assembly processes were needed to get a reliable estimate for the composite...time, Mr. Gibson (6), chief of the Aeronautical Systems * Division (ASD) Cost Research Branch (ASD/ACCR) identified a need for a reliable method of...material airframes is massing the data necessary for reliable parametric estimation. Currently, there is only one aircraft with more than 20 percent

  7. Current and future inspection and maintenance challenges

    NASA Astrophysics Data System (ADS)

    Bhagat, Pramode K.; Bessette, Lorence; Leonelli, Fredrick

    1996-11-01

    Ever-increasing diversity of civilian aircraft inventory and continued technological advancements in aircraft materials, aircraft flight control equipment, testing equipment, and software methodologies are impacting aircraft inspection and maintenance practices. Current procedures deal mainly with issues related to structural and electrical or electronic integrity to assure continued airworthiness of operational aircraft. Techniques and methodologies for these are widely available, and training needs are well defined. Advances in technology, however, are yielding new and different aircraft, which require more sophisticated electronic instruments for navigation and control.A major issue is the continued reliability and airworthiness of avionics and development of adequate safeguards for these aircraft. Built-in test equipment, maintenance across terminals, and data bases defining inspection needs that are based on operational data, and software integrity, are also rapidly becoming important considerations in aircraft maintenance. In this era of declining funds and personnel resources, a cost-effective approach requires a fresh look at all phases of the current inspection and maintenance practices, including oversight and management. This paper provides a perspective on issues and challenges facing a civilian regulatory agency, specifically, the aircraft maintenance division in the FAA.

  8. Survivability of Affordable Aircraft Composite Structures. Volume 1: Overview and Ballistic Impact Testing of Affordable Woven Carbon/Epoxy Composites

    DTIC Science & Technology

    2003-04-01

    Carbon/Epoxy Composites………………………...4 2.1 Introduction……………………………………………………………………………………………4 2.2 VARTM …………………………………..……………………………………………………………7 2.3 High...2.5.3.2 Stitched Laminates………………………………………………………………20 2.6 Effect of Projectile Shape on the Ballistic Perforation of VARTM Carbon/Epoxy Composite...molding processes the cost of production has been drastically reduced. Resin transfer molding ( RTM ) and vacuum assisted resin infusion molding

  9. Experimental and numerical analysis of defects in composite panels used in business aircrafts interior

    NASA Astrophysics Data System (ADS)

    Ruiz, Edu; Courteau-Godmaire, H.; Fotsing, R.; Billotte, C.; Levesque, M.

    2016-05-01

    This paper provides an optical characterization and numerical prediction of local deformations appearing on the visible side of composite sandwich panels used for interior furniture of business airplanes. During manufacturing of furniture panels, metallic inserts are bonded inside the sandwich panel using an epoxy adhesive. Surface defects appear on the visible side of the panels due to curing of the adhesive, but also because of temperature gradients and humidity during manufacturing and in service. This paper presents an optical characterization based on deflectometry principle, that allows qualitative and quantitative analyses of the surface deformations in 3-dimensions. In addition, this paper presents a parametric model based on finite elements to predict the formation of surface defects using ABAQUS. A comparison is presented between the experimental observations and numerical predictions with good agreement between them.

  10. Challenges and payoff of composites in transport aircraft: 777 empennage and future applications

    NASA Technical Reports Server (NTRS)

    Quinlivan, John

    1993-01-01

    The Boeing 777 is the first of a new family of wide body airplanes. The new large twin is sized to accommodate 360 to 390 passengers in typical two-class configurations and planned growth beyond that. The 777 offers airlines three engine options, extremely attractive operating costs, and compatibility with existing airport gates and taxiways. The 777 has a wingspan of nearly 197 feet and is offered with a wing-tip folding mechanism that will reduce the span to 156 feet. Extensive use of advance composite is included in the 777. The application range from fiberglass fairing to primary structures. The 777 empennage includes vertical fin and a horizontal stabilizer. The material used for the empennage is a new, toughened epoxy materials. The material provides outstanding resistance to impact damage.

  11. The failure analysis of composite material flight helmets as an aid in aircraft accident investigation.

    PubMed

    Caine, Y G; Bain-Ungerson, O; Schochat, I; Marom, G

    1991-06-01

    Understanding why a flying helmet fails to maintain its integrity during an accident can contribute to an understanding of the mechanism of injury and even of the accident itself. We performed a post-accident evaluation of failure modes in glass and aramid fibre-reinforced composite helmets. Optical and microscopic (SEM) techniques were employed to identify specific fracture mechanisms. They were correlated with the failure mode. Stress and energy levels were estimated from the damage extent. Damage could be resolved into distinct impact, flexure and compression components. Delamination was identified as a specific mode, dependent upon the matrix material and bonding between the layers. From the energy dissipated in specific fracture mechanisms we calculated the minimum total energy imparted to the helmet-head combination and the major injury vector (MIV) direction and magnitude. The level of protection provided by the helmet can also be estimated.

  12. Time-temperature-stress capabilities of composites for supersonic cruise aircraft applications

    NASA Technical Reports Server (NTRS)

    Haskins, J. F.; Kerr, J. R.; Stein, B. A.

    1976-01-01

    A range of baseline properties was determined for representatives of 5 composite materials systems: B/Ep, Gr/Ep, B/PI, Gr/PI, and B/Al. Long-term exposures are underway in static thermal environments and in ones which simultaneously combine programmed thermal histories and mechanical loading histories. Selected results from the environmental exposure studies with emphasis placed on the 10,000-hour thermal aging data are presented. Results of residual strength determinations and changes in physcial and chemical properties during high temperature aging are discussed and illustrated using metallographic, fractographic and thermomechanical analyses. Some initial results of the long-term flight simulation tests are also included.

  13. Scaled Composites' Doug Shane examines the screen of his ground control station during tests in New Mexico. Shane used this configuration as the ground control station to remotely pilot the Proteus aircraft during a NASA sponsored series of tests.

    NASA Image and Video Library

    2002-03-13

    Scaled Composites' Doug Shane examines the screen of his ground control station during tests in New Mexico. Shane used this configuration as the ground control station to remotely pilot the Proteus aircraft during a NASA sponsored series of tests.

  14. 14 CFR 33.90 - Initial maintenance inspection test.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Initial maintenance inspection test. 33.90 Section 33.90 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Block Tests; Turbine Aircraft Engines § 33.90 Initial...

  15. Mission management aircraft operations manual

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This manual prescribes the NASA mission management aircraft program and provides policies and criteria for the safe and economical operation, maintenance, and inspection of NASA mission management aircraft. The operation of NASA mission management aircraft is based on the concept that safety has the highest priority. Operations involving unwarranted risks will not be tolerated. NASA mission management aircraft will be designated by the Associate Administrator for Management Systems and Facilities. NASA mission management aircraft are public aircraft as defined by the Federal Aviation Act of 1958. Maintenance standards, as a minimum, will meet those required for retention of Federal Aviation Administration (FAA) airworthiness certification. Federal Aviation Regulation Part 91, Subparts A and B, will apply except when requirements of this manual are more restrictive.

  16. Evaluation of Ceramic Matrix Composite Technology for Aircraft Turbine Engine Applications

    NASA Technical Reports Server (NTRS)

    Halbig, Michael C.; Jaskowiak, Martha H.; Kiser, James D.; Zhu, Dongming

    2013-01-01

    The goals of the NASA Environmentally Responsible Aviation (ERA) Project are to reduce the NO(x) emissions, fuel burn, and noise from turbine engines. In order to help meet these goals, commercially-produced ceramic matrix composite (CMC) components and environmental barrier coatings (EBCs) are being evaluated as parts and panels. The components include a CMC combustor liner, a CMC high pressure turbine vane, and a CMC exhaust nozzle as well as advanced EBCs that are tailored to the operating conditions of the CMC combustor and vane. The CMC combustor (w/EBC) could provide 2700 F temperature capability with less component cooling requirements to allow for more efficient combustion and reductions in NOx emissions. The CMC vane (w/EBC) will also have temperature capability up to 2700 F and allow for reduced fuel burn. The CMC mixer nozzle will offer reduced weight and improved mixing efficiency to provide reduced fuel burn. The main objectives are to evaluate the manufacturability of the complex-shaped components and to evaluate their performance under simulated engine operating conditions. Progress in CMC component fabrication, evaluation, and testing is presented in which the goal is to advance from the proof of concept validation (TRL 3) to a system/subsystem or prototype demonstration in a relevant environment (TRL 6).

  17. Modelling Strategies for Predicting the Residual Strength of Impacted Composite Aircraft Fuselages

    NASA Astrophysics Data System (ADS)

    Lachaud, Frederic; Espinosa, Christine; Michel, Laurent; Rahme, Pierre; Piquet, Robert

    2015-12-01

    Aeronautic Certification rules established for the metallic materials are not convenient for the composite structures concerning the resistance against impact. The computer-based design is a new methodology that is thought about to replace the experimental tests. It becomes necessary for numerical methods to be robust and predictive for impact. Three questions are addressed in this study: (i) can a numerical model be "mechanically intrinsic" to predict damage after impact, (ii) can this model be the same for a lab sample and a large structure, and (iii) can the numerical model be predictive enough to predict the Compression After Impact (CAI)? Three different computational strategies are used and compared: a Cohesive Model (CM), a Continuous Damage Model (CDM) coupling failure modes and damage, and a Mixed Methodology (MM) using the CDM for delamination initiation and the CM for cracks propagation. The first attempts to use the Smooth Particle Hydrodynamics method are presented. Finally, impact on a fuselage is modelled and a numerical two-stage strategy is developed to predict the CAI.

  18. Advanced composites structural concepts and materials technologies for primary aircraft structures: Structural response and failure analysis

    NASA Technical Reports Server (NTRS)

    Dorris, William J.; Hairr, John W.; Huang, Jui-Tien; Ingram, J. Edward; Shah, Bharat M.

    1992-01-01

    Non-linear analysis methods were adapted and incorporated in a finite element based DIAL code. These methods are necessary to evaluate the global response of a stiffened structure under combined in-plane and out-of-plane loading. These methods include the Arc Length method and target point analysis procedure. A new interface material model was implemented that can model elastic-plastic behavior of the bond adhesive. Direct application of this method is in skin/stiffener interface failure assessment. Addition of the AML (angle minus longitudinal or load) failure procedure and Hasin's failure criteria provides added capability in the failure predictions. Interactive Stiffened Panel Analysis modules were developed as interactive pre-and post-processors. Each module provides the means of performing self-initiated finite elements based analysis of primary structures such as a flat or curved stiffened panel; a corrugated flat sandwich panel; and a curved geodesic fuselage panel. This module brings finite element analysis into the design of composite structures without the requirement for the user to know much about the techniques and procedures needed to actually perform a finite element analysis from scratch. An interactive finite element code was developed to predict bolted joint strength considering material and geometrical non-linearity. The developed method conducts an ultimate strength failure analysis using a set of material degradation models.

  19. 14 CFR 35.34 - Inspections, adjustments and repairs.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Inspections, adjustments and repairs. 35.34 Section 35.34 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: PROPELLERS Tests and Inspections § 35.34 Inspections, adjustments and repairs....

  20. 14 CFR 135.429 - Required inspection personnel.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... REQUIREMENTS: COMMUTER AND ON DEMAND OPERATIONS AND RULES GOVERNING PERSONS ON BOARD SUCH AIRCRAFT Maintenance, Preventive Maintenance, and Alterations § 135.429 Required inspection personnel. (a) No person may use any... maintenance program; (4) Each item is inspected after each flight until the item has been inspected by an...

  1. 14 CFR 135.429 - Required inspection personnel.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... REQUIREMENTS: COMMUTER AND ON DEMAND OPERATIONS AND RULES GOVERNING PERSONS ON BOARD SUCH AIRCRAFT Maintenance, Preventive Maintenance, and Alterations § 135.429 Required inspection personnel. (a) No person may use any... maintenance program; (4) Each item is inspected after each flight until the item has been inspected by...

  2. Bonded composite repair of composite structures

    NASA Astrophysics Data System (ADS)

    Mahler, Mary A.

    Repair and maintenance cost drives a large percentage of the lifetime cost of aircraft structures. Understanding repair issues can lead to a structure that significantly lowers the lifetime cost. Advanced composite materials, while offering the potential to increase aircraft capabilities with minimum weight, are more susceptible to repairable damage than conventional aircraft materials. Improved inspection and repair methods are required to ensure structural integrity and aircraft readiness in the existing operational environment. Many of today's innovative composite designs may result in aircraft structures that are unreasonably difficult to repair. As a first step, technical issues associated with bonded composite repair of composite structures were investigated. An extensive literature review identified many areas where real world composite repairs are being used successfully. An electronic database was developed summarizing the publications found during the literature review. The database includes publication, experimental test results and analytical results of advanced composite bonded repairs. The current analysis of repair does not account for the variations that exist in repair. To facilitate the analysis, a finite element interface was developed to provide analysts with a tool that would create complete finite element models of repaired structures efficiently and in a 3-dimensional view. The finite element models created by the developed interface were successfully correlated to test data for accuracy of the results. Parametric studies were performed using the interface to evaluate effects of repair variables. Thermal impact of repair on the repair panel is one area lacking attention in the repair literature. To understand the impact of heat and thermal gradients of the repair, an analytical investigation was performed to evaluate. the parameters affected by heat. For a solid laminate, the temperature at the adhesive bondline was investigated. The primary

  3. Aging aircraft NDI Development and Demonstration Center (AANC): An overview

    NASA Astrophysics Data System (ADS)

    Walter, Patrick L.

    1992-07-01

    A major center with emphasis on validation of nondestructive inspection (NDI) techniques for aging aircraft, the Aging Aircraft NDI Development and Demonstration Center (AANC), has been funded by the FAA at Sandia National Laboratories. The Center has been assigned specific tasks in developing techniques for the nondestructive inspection of static engine parts, assessing inspection reliability (POD experiments), developing testbeds for NDI validation, maintaining a FAA library of characterized aircraft structural test specimens, and leasing a hangar to house a high flight cycle transport aircraft for use as a full scale test bed.

  4. Damage Tolerance Applied to Design of Mid-Size Aircraft

    NASA Astrophysics Data System (ADS)

    Chaves, Carlos Eduardo

    Most of the mid-size aircraft are certified according to FAA Part 25 requirements, and in order to comply with these requirements the majority of the aircraft structure must be damage tolerant. To assure damage tolerance, despite the overall structural behavior, one should look at the details. There is a great amount of analysis tasks and tests that must be carried out in order to guarantee the aircraft structural integrity. This paper presents an overview of Embraer experience with design and analysis for damage tolerance during the last 30 years. Aspects like DT analysis for metallic and composite structures, selection of appropriate materials, loads, definition of limits of validity and definition of inspection intervals will be addressed along this work. Selected structural tests that have been performed for validation of modeling predictions will be presented. Some aspects to be discussed are related to the design differences between commercial jets, which are usually subjected to high usage conditions, business jets and military aircraft. Further, the application of future technologies, such as structural health monitoring, and also of new materials and manufacturing processes that have been evaluated in order to improve the damage tolerance capability of the aircraft structures will be discussed.

  5. Emerging NDE Technology for aging aircraft

    SciTech Connect

    Moore, D.G.; Perry, R.L.

    1998-03-01

    This paper presents an overview of several emerging nondestructive evaluation technologies that are being employed or considered for use to inspect commercial transport, commuter aircraft and military aircraft. An overview of the Federal Aviation Administration (FAA) Airworthiness Assurance NDI Validation Center (AANC) is described and how AANC teams with industry, universities, and other federal entities to assess these technologies.

  6. Gluing Practice at Aircraft Manufacturing Plants

    NASA Technical Reports Server (NTRS)

    Truax, T R

    1928-01-01

    This report records observations and recommendations resulting from an inspection trip to representative aircraft manufacturing establishments and repair stations. This inspection was made for the Navy Department and was specifically in reference to gluing practice at the various places visited. The period of the visits was between November 23, 1926 and February 16, 1927.

  7. Advanced Design Composite Aircraft

    DTIC Science & Technology

    1976-02-01

    tensile properties. The cost increase is minimal. The alloy 7471.-T76 has been selected to replace 7075, since it has higher toughness and virtually the...i. / fy/’AtJ’Jk fyfJPt’Mi RAY PPff LOHOtKON WfJEK LOHuneOAJ Wf-Ti AL AL/ \\ \\ I I ENälNl COMPT AULA sopezPLAinc yexwD JET FLAP hwP

  8. Ultrasonic Inspection Of Thick Sections

    NASA Technical Reports Server (NTRS)

    Friant, C. L.; Djordjevic, B. B.; O'Keefe, C. V.; Ferrell, W.; Klutz, T.

    1993-01-01

    Ultrasonics used to inspect large, relatively thick vessels for hidden defects. Report based on experiments in through-the-thickness transmission of ultrasonic waves in both steel and filament-wound composite cases of solid-fuel rocket motors.

  9. RECENT AND FUTURE ENHANCEMENTS IN NDI FOR AIRCRAFT STRUCTURES (POSTPRINT)

    DTIC Science & Technology

    2015-09-10

    This capability was documented in the publication EN- SB -08-012, “Nondestructive Inspection Capability Guidelines for United States Air Force...unlimited. 8 POD curve for the inspections is an input to risk calculations. Detected fatigue cracks require remediation to ensure safety of aircraft is...www.dtic.mil. [6] EZ- SB -15-002, “Requirements for NDI Procedure Development, Validation and Verification for Aircraft Structural Inspection During

  10. Recent and Future Enhancements in NDI for Aircraft Structures (Postprint)

    DTIC Science & Technology

    2015-11-01

    This capability was documented in the publication EN- SB -08-012, “Nondestructive Inspection Capability Guidelines for United States Air Force...unlimited. 8 POD curve for the inspections is an input to risk calculations. Detected fatigue cracks require remediation to ensure safety of aircraft is...www.dtic.mil. [6] EZ- SB -15-002, “Requirements for NDI Procedure Development, Validation and Verification for Aircraft Structural Inspection During

  11. 77 FR 33083 - Airworthiness Directives; WACO Classic Aircraft Corporation Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-05

    ... Aircraft Corporation Airplanes AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule... Aircraft Corporation Models 2T-1A, 2T-1A-1, and 2T-1A-2 airplanes. This AD requires inspection of the front..., contact WACO Classic Aircraft Corporation; 15955 South Airport Rd., Battle Creek, Michigan...

  12. 75 FR 70098 - Airworthiness Directives; Various Aircraft Equipped With Rotax Aircraft Engines 912 A Series Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-17

    ... Metalurgica AMT-200 912 A2 ltda. Diamond Aircraft Industries HK 36 R ``SUPER DIMONA''....... 912 A Diamond... prevent vapor locks in the cooling system and fuel system. (v) Inspect the crankcase for evidence of oil...

  13. Missile on Display at the 1957 NACA Lewis Inspection

    NASA Image and Video Library

    1957-10-21

    A researcher examines a model being installed in the test section of the 10- by 10-Foot Supersonic Wind Tunnel during the 1957 Inspection of the National Advisory Committee for Aeronautics (NACA) Lewis Flight Propulsion Laboratory. The NACA held its annual Inspection at one of its three research laboratories. Representatives from the military, aeronautical industry, universities, and the press were invited to the laboratory to be briefed on the NACA’s latest research efforts and tour the state- of- the- art test facilities. Over 1700 people visited the NACA Lewis in Cleveland, Ohio during the October 7 - 10, 1957 Inspection. NACA researchers Leonard Obery, seen here, James Connors, Leonard, Stitt, David Bowditch gave presentations on high Mach number turbojets at the 10- by 10 tunnel. It had been only 15 years since a jet aircraft had first flown in the US. Since then the sound barrier had been broken and speeds of Mach 2.5 had been achieved. In the late 1950s NACA researchers sought to create an engine that could achieve Mach 4. This type of engine would require an extremely long inlet and nozzle which would have to be capable of adjusting their diameter for different speeds. A Mach 4 engine would require new composite materials to withstand the severe conditions, modified airframes to hold the longer engines, and high temperature seals and lubricants. The 10- by 10-foot tunnel, which had only been in operation for a year and a half, would play a critical role in these studies. NACA researchers at other facilities discussed high energy aircraft fuels and rocket propellants, aircraft noise reduction, hypersonic flight, nuclear propulsion, and high temperature materials.

  14. Program for establishing long-time flight service performance of composite materials in the center wing structure of C-130 aircraft. Phase 3: Fabrication

    NASA Technical Reports Server (NTRS)

    Harvill, W. E.; Kays, A. O.

    1974-01-01

    The manufacturing plan for three C-130 aircraft center wing box test articles, selectively reinforced with boron-epoxy composites, is outlined for the following tasks: (1) tooling; (2) metal parts fabrication: (3) reinforcing laminate fabrication; (4) laminate-to-metal parts bonding; and (5) wing box assembly. The criteria used for reliability and quality assurance are discussed, and several solutions to specific manufacturing problems encountered during fabrication are given. For Vol. 1, see N73-13011; for Vol. 2, see N73-22929.

  15. Aircraft Loadmaster Career Ladder, AFSC 114X0.

    DTIC Science & Technology

    1991-05-01

    in aircraft inspect extraction systems inspect airdrop platforms after loading secure equipment for descents or landings perform predrop inspections...func- tions (13 percent). These airmen perform an average of 147 tasks. Common tasks include: rig airdrop platforms recover equipment and parachutes...containers, airdrop parachutes, and airdrop platforms . Their special airdrop qualifica- tion includes combat crew; CDS; high speed, low level, aerial

  16. Development, manufacturing, and test of graphite-epoxy composite spoilers for flight service on 737 transport aircraft

    NASA Technical Reports Server (NTRS)

    Stoecklin, R. L.

    1976-01-01

    A total of 114 spoiler units were fabricated in a production shop environment, utilizing three graphite epoxy material systems. Production planning paper was generated for each spoiler unit to completely document each production step of each spoiler unit. The graphite epoxy skins were laid up on production tooling using both mechanical and hand layup techniques. Inspection techniques utilized MRB type assessment in the abscence of quality requirements. Each completed spoiler was subjected to ultrasonic inspection utilizing a multicolor recording system that documented each inspection result. In addition, one static test spoiler was sectioned after the test to examine the adhesive filleting to the honeycomb core. Visual examination of the cured adhesives showed excellent results.

  17. Trace gas composition in the Asian summer monsoon anticyclone: a case study based on aircraft observations and model simulations

    NASA Astrophysics Data System (ADS)

    Gottschaldt, Klaus-D.; Schlager, Hans; Baumann, Robert; Bozem, Heiko; Eyring, Veronika; Hoor, Peter; Jöckel, Patrick; Jurkat, Tina; Voigt, Christiane; Zahn, Andreas; Ziereis, Helmut

    2017-05-01

    We present in situ measurements of the trace gas composition of the upper tropospheric (UT) Asian summer monsoon anticyclone (ASMA) performed with the High Altitude and Long Range Research Aircraft (HALO) in the frame of the Earth System Model Validation (ESMVal) campaign. Air masses with enhanced O3 mixing ratios were encountered after entering the ASMA at its southern edge at about 150 hPa on 18 September 2012. This is in contrast to the presumption that the anticyclone's interior is dominated by recently uplifted air with low O3 in the monsoon season. We also observed enhanced CO and HCl in the ASMA, which are tracers for boundary layer pollution and tropopause layer (TL) air or stratospheric in-mixing respectively. In addition, reactive nitrogen was enhanced in the ASMA. Along the HALO flight track across the ASMA boundary, strong gradients of these tracers separate anticyclonic from outside air. Lagrangian trajectory calculations using HYSPLIT show that HALO sampled a filament of UT air three times, which included air masses uplifted from the lower or mid-troposphere north of the Bay of Bengal. The trace gas gradients between UT and uplifted air masses were preserved during transport within a belt of streamlines fringing the central part of the anticyclone (fringe), but are smaller than the gradients across the ASMA boundary. Our data represent the first in situ observations across the southern part and downstream of the eastern ASMA flank. Back-trajectories starting at the flight track furthermore indicate that HALO transected the ASMA where it was just splitting into a Tibetan and an Iranian part. The O3-rich filament is diverted from the fringe towards the interior of the original anticyclone, and is at least partially bound to become part of the new Iranian eddy. A simulation with the ECHAM/MESSy Atmospheric Chemistry (EMAC) model is found to reproduce the observations reasonably well. It shows that O3-rich air is entrained by the outer streamlines of the

  18. ACEE Composite Structures Technology: Review of selected NASA research on composite materials and structures

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The NASA Aircraft Energy Efficiency (ACEE) Composite Primary Aircraft Structures Program was designed to develop technology for advanced composites in commercial aircraft. Research on composite materials, aircraft structures, and aircraft design is presented herein. The following parameters of composite materials were addressed: residual strength, damage tolerance, toughness, tensile strength, impact resistance, buckling, and noise transmission within composite materials structures.

  19. Quantitative Inspection Technologies for Aging Military Aircraft

    DTIC Science & Technology

    2013-11-01

    To The (022) Peak Versus Depth From The Peened Surface Showing A Change Of Texture With Depth. (d) Schematic Illustration Of The Mass Flow Caused By...Shot Peening And The Resulting Texture .............. 30 Figure 14. (a) Measured And Best-Fitted V-Component EC Signals Measured From The Inconel...Face For Several Modeling Assumptions And (Right) Corresponding Pressure Fields In Steel For Full Aperture

  20. Aircraft Turbine Engine Reliability and Inspection Investigations

    DTIC Science & Technology

    1993-10-01

    controls and accessories typically produced the largest number of in-flight flameouts, compressor stalls , and engine shutdowns. In addition to the actuarial...typically produced the largest number of in-flight flameouts, compressor stalls , and engine shutdowns. Diagnostic troubleshooting procedures for controls...airfoils suffer because these * materials are damaged during compressor stalls when cooling air flows are disrupted. 3. Fuel/oil system failures are