Science.gov

Sample records for aircraft control irac

  1. Resilient Propulsion Control Research for the NASA Integrated Resilient Aircraft Control (IRAC) Project

    NASA Technical Reports Server (NTRS)

    Guo, Ten-Huei; Litt, Jonathan S.

    2007-01-01

    Gas turbine engines are designed to provide sufficient safety margins to guarantee robust operation with an exceptionally long life. However, engine performance requirements may be drastically altered during abnormal flight conditions or emergency maneuvers. In some situations, the conservative design of the engine control system may not be in the best interest of overall aircraft safety; it may be advantageous to "sacrifice" the engine to "save" the aircraft. Motivated by this opportunity, the NASA Aviation Safety Program is conducting resilient propulsion research aimed at developing adaptive engine control methodologies to operate the engine beyond the normal domain for emergency operations to maximize the possibility of safely landing the damaged aircraft. Previous research studies and field incident reports show that the propulsion system can be an effective tool to help control and eventually land a damaged aircraft. Building upon the flight-proven Propulsion Controlled Aircraft (PCA) experience, this area of research will focus on how engine control systems can improve aircraft safe-landing probabilities under adverse conditions. This paper describes the proposed research topics in Engine System Requirements, Engine Modeling and Simulation, Engine Enhancement Research, Operational Risk Analysis and Modeling, and Integrated Flight and Propulsion Controller Designs that support the overall goal.

  2. Propulsion controlled aircraft computer

    NASA Technical Reports Server (NTRS)

    Cogan, Bruce R. (Inventor)

    2010-01-01

    A low-cost, easily retrofit Propulsion Controlled Aircraft (PCA) system for use on a wide range of commercial and military aircraft consists of an propulsion controlled aircraft computer that reads in aircraft data including aircraft state, pilot commands and other related data, calculates aircraft throttle position for a given maneuver commanded by the pilot, and then displays both current and calculated throttle position on a cockpit display to show the pilot where to move throttles to achieve the commanded maneuver, or is automatically sent digitally to command the engines directly.

  3. Adaptive Flight Control for Aircraft Safety Enhancements

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan T.; Gregory, Irene M.; Joshi, Suresh M.

    2008-01-01

    This poster presents the current adaptive control research being conducted at NASA ARC and LaRC in support of the Integrated Resilient Aircraft Control (IRAC) project. The technique "Approximate Stability Margin Analysis of Hybrid Direct-Indirect Adaptive Control" has been developed at NASA ARC to address the needs for stability margin metrics for adaptive control that potentially enables future V&V of adaptive systems. The technique "Direct Adaptive Control With Unknown Actuator Failures" is developed at NASA LaRC to deal with unknown actuator failures. The technique "Adaptive Control with Adaptive Pilot Element" is being researched at NASA LaRC to investigate the effects of pilot interactions with adaptive flight control that can have implications of stability and performance.

  4. Aircraft adaptive learning control

    NASA Technical Reports Server (NTRS)

    Lee, P. S. T.; Vanlandingham, H. F.

    1979-01-01

    The optimal control theory of stochastic linear systems is discussed in terms of the advantages of distributed-control systems, and the control of randomly-sampled systems. An optimal solution to longitudinal control is derived and applied to the F-8 DFBW aircraft. A randomly-sampled linear process model with additive process and noise is developed.

  5. Aircraft control position indicator

    NASA Technical Reports Server (NTRS)

    Dennis, Dale V. (Inventor)

    1987-01-01

    An aircraft control position indicator was provided that displayed the degree of deflection of the primary flight control surfaces and the manner in which the aircraft responded. The display included a vertical elevator dot/bar graph meter display for indication whether the aircraft will pitch up or down, a horizontal aileron dot/bar graph meter display for indicating whether the aircraft will roll to the left or to the right, and a horizontal dot/bar graph meter display for indicating whether the aircraft will turn left or right. The vertical and horizontal display or displays intersect to form an up/down, left/right type display. Internal electronic display driver means received signals from transducers measuring the control surface deflections and determined the position of the meter indicators on each dot/bar graph meter display. The device allows readability at a glance, easy visual perception in sunlight or shade, near-zero lag in displaying flight control position, and is not affected by gravitational or centrifugal forces.

  6. Aircraft Laminar Flow Control

    NASA Technical Reports Server (NTRS)

    Joslin, Ronald D.

    1998-01-01

    Aircraft laminar flow control (LFC) from the 1930's through the 1990's is reviewed and the current status of the technology is assessed. Examples are provided to demonstrate the benefits of LFC for subsonic and supersonic aircraft. Early studies related to the laminar boundary-layer flow physics, manufacturing tolerances for laminar flow, and insect-contamination avoidance are discussed. LFC concept studies in wind-tunnel and flight experiments are the major focus of the paper. LFC design tools are briefly outlined for completeness.

  7. Complexity and Pilot Workload Metrics for the Evaluation of Adaptive Flight Controls on a Full Scale Piloted Aircraft

    NASA Technical Reports Server (NTRS)

    Hanson, Curt; Schaefer, Jacob; Burken, John J.; Larson, David; Johnson, Marcus

    2014-01-01

    Flight research has shown the effectiveness of adaptive flight controls for improving aircraft safety and performance in the presence of uncertainties. The National Aeronautics and Space Administration's (NASA)'s Integrated Resilient Aircraft Control (IRAC) project designed and conducted a series of flight experiments to study the impact of variations in adaptive controller design complexity on performance and handling qualities. A novel complexity metric was devised to compare the degrees of simplicity achieved in three variations of a model reference adaptive controller (MRAC) for NASA's F-18 (McDonnell Douglas, now The Boeing Company, Chicago, Illinois) Full-Scale Advanced Systems Testbed (Gen-2A) aircraft. The complexity measures of these controllers are also compared to that of an earlier MRAC design for NASA's Intelligent Flight Control System (IFCS) project and flown on a highly modified F-15 aircraft (McDonnell Douglas, now The Boeing Company, Chicago, Illinois). Pilot comments during the IRAC research flights pointed to the importance of workload on handling qualities ratings for failure and damage scenarios. Modifications to existing pilot aggressiveness and duty cycle metrics are presented and applied to the IRAC controllers. Finally, while adaptive controllers may alleviate the effects of failures or damage on an aircraft's handling qualities, they also have the potential to introduce annoying changes to the flight dynamics or to the operation of aircraft systems. A nuisance rating scale is presented for the categorization of nuisance side-effects of adaptive controllers.

  8. Aircraft control system

    NASA Technical Reports Server (NTRS)

    Lisoski, Derek L. (Inventor); Kendall, Greg T. (Inventor)

    2007-01-01

    A solar rechargeable, long-duration, span-loaded flying wing, having no fuselage or rudder. Having a two-hundred foot wingspan that mounts photovoltaic cells on most all of the wing's top surface, the aircraft uses only differential thrust of its eight propellers to turn, pitch and yaw. The wing is configured to deform under flight loads to position the propellers such that the control can be achieved. Each of five segments of the wing has one or more motors and photovoltaic arrays, and produces its own lift independent of the other segments, to avoid loading them. Five two-sided photovoltaic arrays, in all, are mounted on the wing, and receive photovoltaic energy both incident on top of the wing, and which is incident also from below, through a bottom, transparent surface.

  9. NASA Aircraft Controls Research, 1983

    NASA Technical Reports Server (NTRS)

    Beasley, G. P. (Compiler)

    1984-01-01

    The workshop consisted of 24 technical presentations on various aspects of aircraft controls, ranging from the theoretical development of control laws to the evaluation of new controls technology in flight test vehicles. A special report on the status of foreign aircraft technology and a panel session with seven representatives from organizations which use aircraft controls technology were also included. The controls research needs and opportunities for the future as well as the role envisioned for NASA in that research were addressed. Input from the panel and response to the workshop presentations will be used by NASA in developing future programs.

  10. Neural networks for aircraft control

    NASA Technical Reports Server (NTRS)

    Linse, Dennis

    1990-01-01

    Current research in Artificial Neural Networks indicates that networks offer some potential advantages in adaptation and fault tolerance. This research is directed at determining the possible applicability of neural networks to aircraft control. The first application will be to aircraft trim. Neural network node characteristics, network topology and operation, neural network learning and example histories using neighboring optimal control with a neural net are discussed.

  11. Aircraft flight test trajectory control

    NASA Technical Reports Server (NTRS)

    Menon, P. K. A.; Walker, R. A.

    1988-01-01

    Two control law design techniques are compared and the performance of the resulting controllers evaluated. The design requirement is for a flight test trajectory controller (FTTC) capable of closed-loop, outer-loop control of an F-15 aircraft performing high-quality research flight test maneuvers. The maneuver modeling, linearization, and design methodologies utilized in this research, are detailed. The results of applying these FTTCs to a nonlinear F-15 simulation are presented.

  12. Aircraft control system

    NASA Technical Reports Server (NTRS)

    Kendall, Greg T. (Inventor); Morgan, Walter R. (Inventor)

    2010-01-01

    A span-loaded, highly flexible flying wing, having horizontal control surfaces mounted aft of the wing on extended beams to form local pitch-control devices. Each of five spanwise wing segments of the wing has one or more motors and photovoltaic arrays, and produces its own lift independent of the other wing segments, to minimize inter-segment loads. Wing dihedral is controlled by separately controlling the local pitch-control devices consisting of a control surface on a boom, such that inboard and outboard wing segment pitch changes relative to each other, and thus relative inboard and outboard lift is varied.

  13. Aircraft Control-Position Indicator

    NASA Technical Reports Server (NTRS)

    Dennis, D. V.

    1985-01-01

    Aircraft control-position indicator cockpit-mounted instrument that displays positions of elevator and ailerons to pilot. Display is cruciform array of lights: horizontal row of amber lights and vertical row of green lights representing aileron and elevator positions, respectively. Display used extensively in spin testing and has been trouble-free, with no maintenance required after about 30 hours of operation.

  14. Aircraft flight test trajectory control

    NASA Technical Reports Server (NTRS)

    Menon, P. K. A.; Walker, R. A.

    1988-01-01

    Two design techniques for linear flight test trajectory controllers (FTTCs) are described: Eigenstructure assignment and the minimum error excitation technique. The two techniques are used to design FTTCs for an F-15 aircraft model for eight different maneuvers at thirty different flight conditions. An evaluation of the FTTCs is presented.

  15. Wet runways. [aircraft landing and directional control

    NASA Technical Reports Server (NTRS)

    Horne, W. B.

    1975-01-01

    Aircraft stopping and directional control performance on wet runways is discussed. The major elements affecting tire/ground traction developed by jet transport aircraft are identified and described in terms of atmospheric, pavement, tire, aircraft system and pilot performance factors or parameters. Research results are summarized, and means for improving or restoring tire traction/aircraft performance on wet runways are discussed.

  16. Aircraft digital control design methods

    NASA Technical Reports Server (NTRS)

    Powell, J. D.; Parsons, E.; Tashker, M. G.

    1976-01-01

    Variations in design methods for aircraft digital flight control are evaluated and compared. The methods fall into two categories; those where the design is done in the continuous domain (or s plane) and those where the design is done in the discrete domain (or z plane). Design method fidelity is evaluated by examining closed loop root movement and the frequency response of the discretely controlled continuous aircraft. It was found that all methods provided acceptable performance for sample rates greater than 10 cps except the uncompensated s plane design method which was acceptable above 20 cps. A design procedure based on optimal control methods was proposed that provided the best fidelity at very slow sample rates and required no design iterations for changing sample rates.

  17. Aircraft Loss of Control Study

    NASA Technical Reports Server (NTRS)

    Jacobson, Steven R.

    2010-01-01

    Loss of control has become the leading cause of jet fatalities worldwide. Aside from their frequency of occurrence, accidents resulting from loss of aircraft control seize the public s attention by yielding large numbers of fatalities in a single event. In response to the rising threat to aviation safety, NASA's Aviation Safety Program has conducted a study of the loss of control problem. This study gathered four types of information pertaining to loss of control accidents: (1) statistical data; (2) individual accident reports that cite loss of control as a contributing factor; (3) previous meta-analyses of loss of control accidents; and (4) inputs solicited from aircraft manufacturers, air carriers, researchers, and other industry stakeholders. Using these information resources, the study team identified causal factors that were cited in the greatest number of loss of control accidents, and which were emphasized most by industry stakeholders. For each causal factor that was linked to loss of control, the team solicited ideas about what solutions are required and future research efforts that could potentially help avoid their occurrence or mitigate their consequences when they occurred in flight.

  18. Laminar flow control for transport aircraft applications

    NASA Technical Reports Server (NTRS)

    Wagner, R. D.

    1986-01-01

    The incorporation of laminar flow control into transport aircraft is discussed. Design concepts for the wing surface panel of laminar flow control transport aircraft are described. The development of small amounts of laminar flow on small commercial transports with natural or hybrid flow control is examined. Techniques for eliminating the insect contamination problem in the leading-edge region are proposed.

  19. Subsonic Aircraft Safety Icing Study

    NASA Technical Reports Server (NTRS)

    Jones, Sharon Monica; Reveley, Mary S.; Evans, Joni K.; Barrientos, Francesca A.

    2008-01-01

    NASA's Integrated Resilient Aircraft Control (IRAC) Project is one of four projects within the agency s Aviation Safety Program (AvSafe) in the Aeronautics Research Mission Directorate (ARMD). The IRAC Project, which was redesigned in the first half of 2007, conducts research to advance the state of the art in aircraft control design tools and techniques. A "Key Decision Point" was established for fiscal year 2007 with the following expected outcomes: document the most currently available statistical/prognostic data associated with icing for subsonic transport, summarize reports by subject matter experts in icing research on current knowledge of icing effects on control parameters and establish future requirements for icing research for subsonic transports including the appropriate alignment. This study contains: (1) statistical analyses of accident and incident data conducted by NASA researchers for this "Key Decision Point", (2) an examination of icing in other recent statistically based studies, (3) a summary of aviation safety priority lists that have been developed by various subject-matter experts, including the significance of aircraft icing research in these lists and (4) suggested future requirements for NASA icing research. The review of several studies by subject-matter experts was summarized into four high-priority icing research areas. Based on the Integrated Resilient Aircraft Control (IRAC) Project goals and objectives, the IRAC project was encouraged to conduct work in all of the high-priority icing research areas that were identified, with the exception of the developing of methods to sense and document actual icing conditions.

  20. Aircraft digital control design methods

    NASA Technical Reports Server (NTRS)

    Tashker, M. G.; Powell, J. D.

    1975-01-01

    Investigations were conducted in two main areas: the first area is control system design, and the goals were to define the limits of 'digitized S-Plane design techniques' vs. sample rate, to show the results of a 'direct digital design technique', and to compare the two methods; the second area was to evaluate the roughness of autopilot designs parametrically versus sample rate. Goals of the first area were addressed by (1) an analysis of a 2nd order example using both design methods, (2) a linear analysis of the complete 737 aircraft with an autoland obtained using the digitized S-plane technique, (3) linear analysis of a high frequency 737 approximation with the autoland from a direct digital design technique, and (4) development of a simulation for evaluation of the autopilots with disturbances and nonlinearities included. Roughness evaluation was studied by defining an experiment to be carried out on the Langley motion simulator and coordinated with analysis at Stanford.

  1. Noise control mechanisms of inside aircraft

    NASA Astrophysics Data System (ADS)

    Zverev, A. Ya.

    2016-07-01

    World trends in the development of methods and approaches to noise reduction in aircraft cabins are reviewed. The paper discusses the mechanisms of passive and active noise and vibration control, application of "smart" and innovative materials, new approaches to creating all fuselage-design elements, and other promising directions of noise control inside aircraft.

  2. Aircraft system modeling error and control error

    NASA Technical Reports Server (NTRS)

    Kulkarni, Nilesh V. (Inventor); Kaneshige, John T. (Inventor); Krishnakumar, Kalmanje S. (Inventor); Burken, John J. (Inventor)

    2012-01-01

    A method for modeling error-driven adaptive control of an aircraft. Normal aircraft plant dynamics is modeled, using an original plant description in which a controller responds to a tracking error e(k) to drive the component to a normal reference value according to an asymptote curve. Where the system senses that (1) at least one aircraft plant component is experiencing an excursion and (2) the return of this component value toward its reference value is not proceeding according to the expected controller characteristics, neural network (NN) modeling of aircraft plant operation may be changed. However, if (1) is satisfied but the error component is returning toward its reference value according to expected controller characteristics, the NN will continue to model operation of the aircraft plant according to an original description.

  3. Integrated lift/drag controller for aircraft

    NASA Technical Reports Server (NTRS)

    Olcott, J. W.; Seckel, E.; Ellis, D. R. (Inventor)

    1974-01-01

    A system for altering the lift/drag characteristics of powered aircraft to provide a safe means of glide path control includes a control device integrated for coordination action with the aircraft throttle. Such lift/drag alteration devices as spoilers, dive brakes, and the like are actuated by manual operation of a single lever coupled with the throttle for integrating, blending or coordinating power control. Improper operation of the controller is inhibited by safety mechanisms.

  4. Aircraft Loss-of-Control Accident Analysis

    NASA Technical Reports Server (NTRS)

    Belcastro, Christine M.; Foster, John V.

    2010-01-01

    Loss of control remains one of the largest contributors to fatal aircraft accidents worldwide. Aircraft loss-of-control accidents are complex in that they can result from numerous causal and contributing factors acting alone or (more often) in combination. Hence, there is no single intervention strategy to prevent these accidents. To gain a better understanding into aircraft loss-of-control events and possible intervention strategies, this paper presents a detailed analysis of loss-of-control accident data (predominantly from Part 121), including worst case combinations of causal and contributing factors and their sequencing. Future potential risks are also considered.

  5. Pneumatic system structure for circulation control aircraft

    NASA Technical Reports Server (NTRS)

    Krauss, Timothy A. (Inventor); Roman, Stephan (Inventor); Beurer, Robert J. (Inventor)

    1986-01-01

    A plenum for a circulation control rotor aircraft which surrounds the rotor drive shaft (18) and is so constructed that the top (32), outer (38) and bottom (36) walls through compressed air is admitted are fixed to aircraft structure and the inner wall (34) through which air passes to rotor blades (14) rotates with the drive shaft and rotor blades.

  6. Nonclassical Flight Control for Unhealthy Aircraft

    NASA Technical Reports Server (NTRS)

    Lu, Ping

    1997-01-01

    This research set out to investigate flight control of aircraft which has sustained damage in regular flight control effectors, due to jammed control surfaces or complete loss of hydraulic power. It is recognized that in such an extremely difficult situation unconventional measures may need to be taken to regain control and stability of the aircraft. Propulsion controlled aircraft (PCA) concept, initiated at the NASA Dryden Flight Research Center. represents a ground-breaking effort in this direction. In this approach, the engine is used as the only flight control effector in the rare event of complete loss of normal flight control system. Studies and flight testing conducted at NASA Dryden have confirmed the feasibility of the PCA concept. During the course of this research (March 98, 1997 to November 30, 1997), a comparative study has been done using the full nonlinear model of an F-18 aircraft. Linear controllers and nonlinear controllers based on a nonlinear predictive control method have been designed for normal flight control system and propulsion controlled aircraft. For the healthy aircraft with normal flight control, the study shows that an appropriately designed linear controller can perform as well as a nonlinear controller. On the other hand. when the normal flight control is lost and the engine is the only available means of flight control, a nonlinear PCA controller can significantly increase the size of the recoverable region in which the stability of the unstable aircraft can be attained by using only thrust modulation. The findings and controller design methods have been summarized in an invited paper entitled.

  7. Multidisciplinary Techniques and Novel Aircraft Control Systems

    NASA Technical Reports Server (NTRS)

    Padula, Sharon L.; Rogers, James L.; Raney, David L.

    2000-01-01

    The Aircraft Morphing Program at NASA Langley Research Center explores opportunities to improve airframe designs with smart technologies. Two elements of this basic research program are multidisciplinary design optimization (MDO) and advanced flow control. This paper describes examples where MDO techniques such as sensitivity analysis, automatic differentiation, and genetic algorithms contribute to the design of novel control systems. In the test case, the design and use of distributed shapechange devices to provide low-rate maneuvering capability for a tailless aircraft is considered. The ability of MDO to add value to control system development is illustrated using results from several years of research funded by the Aircraft Morphing Program.

  8. Multidisciplinary Techniques and Novel Aircraft Control Systems

    NASA Technical Reports Server (NTRS)

    Padula, Sharon L.; Rogers, James L.; Raney, David L.

    2000-01-01

    The Aircraft Morphing Program at NASA Langley Research Center explores opportunities to improve airframe designs with smart technologies. Two elements of this basic research program are multidisciplinary design optimization (MDO) and advanced flow control. This paper describes examples where MDO techniques such as sensitivity analysis, automatic differentiation, and genetic algorithms contribute to the design of novel control systems. In the test case, the design and use of distributed shape-change devices to provide low-rate maneuvering capability for a tailless aircraft is considered. The ability of MDO to add value to control system development is illustrated using results from several years of research funded by the Aircraft Morphing Program.

  9. Fighter aircraft flight control technology design requirements

    NASA Technical Reports Server (NTRS)

    Nelson, W. E., Jr.

    1984-01-01

    The evolution of fighter aircraft flight control technology is briefly surveyed. Systems engineering, battle damage considerations for adaptive flutter suppression, in-flight simulation, and artificial intelligence are briefly discussed.

  10. Pilot Preferences on Displayed Aircraft Control Variables

    NASA Technical Reports Server (NTRS)

    Trujillo, Anna C.; Gregory, Irene M.

    2013-01-01

    The experiments described here explored how pilots want available maneuver authority information transmitted and how this information affects pilots before and after an aircraft failure. The aircraft dynamic variables relative to flight performance were narrowed to energy management variables. A survey was conducted to determine what these variables should be. Survey results indicated that bank angle, vertical velocity, and airspeed were the preferred variables. Based on this, two displays were designed to inform the pilot of available maneuver envelope expressed as bank angle, vertical velocity, and airspeed. These displays were used in an experiment involving control surface failures. Results indicate the displayed limitations in bank angle, vertical velocity, and airspeed were helpful to the pilots during aircraft surface failures. However, the additional information did lead to a slight increase in workload, a small decrease in perceived aircraft flying qualities, and no effect on aircraft situation awareness.

  11. Flight Controller Software Protects Lightweight Flexible Aircraft

    NASA Technical Reports Server (NTRS)

    2015-01-01

    Lightweight flexible aircraft may be the future of aviation, but a major problem is their susceptibility to flutter-uncontrollable vibrations that can destroy wings. Armstrong Flight Research Center awarded SBIR funding to Minneapolis, Minnesota-based MUSYN Inc. to develop software that helps program flight controllers to suppress flutter. The technology is now available for aircraft manufacturers and other industries that use equipment with automated controls.

  12. Nonlinear longitudinal control of a supermaneuverable aircraft

    NASA Technical Reports Server (NTRS)

    Garrard, William L.; Snell, Anthony; Enns, Dale F.

    1989-01-01

    A technique is described which can be used for design of feedback controllers for high-performance aircraft operating in flight conditions in which nonlinearities significantly affect performance. Designs are performed on a mathematical model of the longitudinal dynamics of a hypothetical aircraft similar to proposed supermaneuverable flight test vehicles. Nonlinear controller designs are performed using truncated solutions of the Hamilton-Jacobi-Bellman equation. Preliminary results show that the method yields promising results.

  13. Capability Description for NASA's F/A-18 TN 853 as a Testbed for the Integrated Resilient Aircraft Control Project

    NASA Technical Reports Server (NTRS)

    Hanson, Curt

    2009-01-01

    The NASA F/A-18 tail number (TN) 853 full-scale Integrated Resilient Aircraft Control (IRAC) testbed has been designed with a full array of capabilities in support of the Aviation Safety Program. Highlights of the system's capabilities include: 1) a quad-redundant research flight control system for safely interfacing controls experiments to the aircraft's control surfaces; 2) a dual-redundant airborne research test system for hosting multi-disciplinary state-of-the-art adaptive control experiments; 3) a robust reversionary configuration for recovery from unusual attitudes and configurations; 4) significant research instrumentation, particularly in the area of static loads; 5) extensive facilities for experiment simulation, data logging, real-time monitoring and post-flight analysis capabilities; and 6) significant growth capability in terms of interfaces and processing power.

  14. Reconfiguration control system for an aircraft wing

    NASA Technical Reports Server (NTRS)

    Wakayama, Sean R. (Inventor)

    2008-01-01

    Independently deflectable control surfaces are located on the trailing edge of the wing of a blended wing-body aircraft. The reconfiguration control system of the present invention controls the deflection of each control surface to optimize the spanwise lift distribution across the wing for each of several flight conditions, e.g., cruise, pitch maneuver, and high lift at low speed. The control surfaces are deflected and reconfigured to their predetermined optimal positions when the aircraft is in each of the aforementioned flight conditions. With respect to cruise, the reconfiguration control system will maximize the lift to drag ratio and keep the aircraft trimmed at a stable angle of attack. In a pitch maneuver, the control surfaces are deflected to pitch the aircraft and increase lift. Moreover, this increased lift has its spanwise center of pressure shifted inboard relative to its location for cruise. This inboard shifting reduces the increased bending moment about the aircraft's x-axis occasioned by the increased pitch force acting normal to the wing. To optimize high lift at low speed, during take-off and landing for example, the control surfaces are reconfigured to increase the local maximum coefficient of lift at stall-critical spanwise locations while providing pitch trim with control surfaces that are not stall critical.

  15. Design Considerations for Laminar Flow Control Aircraft

    NASA Technical Reports Server (NTRS)

    Sturgeon, R. F.; Bennett, J. A.

    1976-01-01

    A study was conducted to investigate major design considerations involved in the application of laminar flow control to the wings and empennage of long range subsonic transport aircraft compatible with initial operation in 1985. For commercial transports with a design mission range of 10,186 km (5500 n mil) and a payload of 200 passengers, parametric configuration analyses were conducted to evaluate the effect of aircraft performance, operational, and geometric parameters on fuel efficiency. Study results indicate that major design goals for aircraft optimization include maximization of aspect ratio and wing loading and minimization of wing sweep consistent with wing volume and airport performance requirements.

  16. Display/control requirements for VTOL aircraft

    NASA Technical Reports Server (NTRS)

    Hoffman, W. C.; Curry, R. E.; Kleinman, D. L.; Hollister, W. M.; Young, L. R.

    1975-01-01

    Quantative metrics were determined for system control performance, workload for control, monitoring performance, and workload for monitoring. Pilot tasks were allocated for navigation and guidance of automated commercial V/STOL aircraft in all weather conditions using an optimal control model of the human operator to determine display elements and design.

  17. Towards Intelligent Control for Next Generation Aircraft

    NASA Technical Reports Server (NTRS)

    Acosta, Diana Michelle; KrishnaKumar, Kalmanje Srinvas; Frost, Susan Alane

    2008-01-01

    NASA Aeronautics Subsonic Fixed Wing Project is focused on mitigating the environmental and operation impacts expected as aviation operations triple by 2025. The approach is to extend technological capabilities and explore novel civil transport configurations that reduce noise, emissions, fuel consumption and field length. Two Next Generation (NextGen) aircraft have been identified to meet the Subsonic Fixed Wing Project goals - these are the Hybrid Wing-Body (HWB) and Cruise Efficient Short Take-Off and Landing (CESTOL) aircraft. The technologies and concepts developed for these aircraft complicate the vehicle s design and operation. In this paper, flight control challenges for NextGen aircraft are described. The objective of this paper is to examine the potential of state-of-the-art control architectures and algorithms to meet the challenges and needed performance metrics for NextGen flight control. A broad range of conventional and intelligent control approaches are considered, including dynamic inversion control, integrated flight-propulsion control, control allocation, adaptive dynamic inversion control, data-based predictive control and reinforcement learning control.

  18. Artificial Intelligence for Controlling Robotic Aircraft

    NASA Technical Reports Server (NTRS)

    Krishnakumar, Kalmanje

    2005-01-01

    A document consisting mostly of lecture slides presents overviews of artificial-intelligence-based control methods now under development for application to robotic aircraft [called Unmanned Aerial Vehicles (UAVs) in the paper] and spacecraft and to the next generation of flight controllers for piloted aircraft. Following brief introductory remarks, the paper presents background information on intelligent control, including basic characteristics defining intelligent systems and intelligent control and the concept of levels of intelligent control. Next, the paper addresses several concepts in intelligent flight control. The document ends with some concluding remarks, including statements to the effect that (1) intelligent control architectures can guarantee stability of inner control loops and (2) for UAVs, intelligent control provides a robust way to accommodate an outer-loop control architecture for planning and/or related purposes.

  19. Modal control of an oblique wing aircraft

    NASA Technical Reports Server (NTRS)

    Phillips, James D.

    1989-01-01

    A linear modal control algorithm is applied to the NASA Oblique Wing Research Aircraft (OWRA). The control law is evaluated using a detailed nonlinear flight simulation. It is shown that the modal control law attenuates the coupling and nonlinear aerodynamics of the oblique wing and remains stable during control saturation caused by large command inputs or large external disturbances. The technique controls each natural mode independently allowing single-input/single-output techniques to be applied to multiple-input/multiple-output systems.

  20. Controlling crippled aircraft-with throttles

    NASA Technical Reports Server (NTRS)

    Burcham, Frank W., Jr.; Fullerton, C. Gordon

    1991-01-01

    A multiengine crippled aircraft, with most or all of the flight control system inoperative, may use engine thrust for control. A study was conducted of the capability and techniques for emergency flight control. Included were light twin engine piston powered airplanes, an executive jet transport, commercial jet transports, and a high performance fighter. Piloted simulations of the B-720, B-747, B-727, MD-11, C-402, and F-15 airplanes were studied, and the Lear 24, PA-30, and F-15 airplanes were flight tested. All aircraft showed some control capability with throttles and could be kept under control in up-and-away flight for an extended period of time. Using piloted simulators, landings with manual throttles-only control were extremely difficult. However, there are techniques that improve the chances of making a survivable landing. In addition, augmented control systems provide major improvements in control capability and make repeatable landings possible. Control capabilities and techniques are discussed.

  1. Control technology for future aircraft propulsion systems

    NASA Technical Reports Server (NTRS)

    Zeller, J. R.; Szuch, J. R.; Merrill, W. C.; Lehtinen, B.; Soeder, J. F.

    1984-01-01

    The need for a more sophisticated engine control system is discussed. The improvements in better thrust-to-weight ratios demand the manipulation of more control inputs. New technological solutions to the engine control problem are practiced. The digital electronic engine control (DEEC) system is a step in the evolution to digital electronic engine control. Technology issues are addressed to ensure a growth in confidence in sophisticated electronic controls for aircraft turbine engines. The need of a control system architecture which permits propulsion controls to be functionally integrated with other aircraft systems is established. Areas of technology studied include: (1) control design methodology; (2) improved modeling and simulation methods; and (3) implementation technologies. Objectives, results and future thrusts are summarized.

  2. Neural Networks in Nonlinear Aircraft Control

    NASA Technical Reports Server (NTRS)

    Linse, Dennis J.

    1990-01-01

    Recent research indicates that artificial neural networks offer interesting learning or adaptive capabilities. The current research focuses on the potential for application of neural networks in a nonlinear aircraft control law. The current work has been to determine which networks are suitable for such an application and how they will fit into a nonlinear control law.

  3. Nonlinear feedback control of highly manoeuvrable aircraft

    NASA Technical Reports Server (NTRS)

    Garrard, William L.; Enns, Dale F.; Snell, S. A.

    1992-01-01

    This paper describes the application of nonlinear quadratic regulator (NLQR) theory to the design of control laws for a typical high-performance aircraft. The NLQR controller design is performed using truncated solutions of the Hamilton-Jacobi-Bellman equation of optimal control theory. The performance of the NLQR controller is compared with the performance of a conventional P + I gain scheduled controller designed by applying standard frequency response techniques to the equations of motion of the aircraft linearized at various angles of attack. Both techniques result in control laws which are very similar in structure to one another and which yield similar performance. The results of applying both control laws to a high-g vertical turn are illustrated by nonlinear simulation.

  4. Interactive aircraft flight control and aeroelastic stabilization

    NASA Technical Reports Server (NTRS)

    Weisshaar, T. A.; Schmidt, D. K.

    1984-01-01

    The potential benefits and costs of optimizing both the structural stiffness and the active control of aircraft in a rational manner are investigated. The ultimate goal is to arrive at a unified treatment of structural and active control design for the stability augmentation of flexible aircraft. An exhaustive literature evaluation in the area of passive tailoring for aircraft performance is undertaken. A mathematical technique to be used for aeroservoelastic tailoring studies is described. Two analytical models, one elementary, the other sophisticated, are developed to illustrate the potential for aeroservoelastic tailoring. Both models have essential features of real world hardware, yet the physical understanding is not buried in a myriad of detail. These models are also described.

  5. Attitude controls for VTOL aircraft

    NASA Technical Reports Server (NTRS)

    Pauli, F. A.

    1971-01-01

    Systems consist of single duct system with two sets of reaction control nozzles, one linked mechanically to pilot's controls, and other set driven by electric servomotors commanded by preselected combinations of electrical signals.

  6. Advanced control technology and its potential for future transport aircraft

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The topics covered include fly by wire, digital control, control configured vehicles, applications to advanced flight vehicles, advanced propulsion control systems, and active control technology for transport aircraft.

  7. Propulsion Controlled Aircraft design and development

    NASA Technical Reports Server (NTRS)

    Wells, Edward A.; Urnes, James M., Sr.

    1995-01-01

    This paper describes the design, development, and ground testing of the propulsion controlled aircraft (PCA) flight control system. A backup flight control system which uses only engine thrust, the PCA system utilizes collective and differential thrust changes to steer an aircraft that experiences partial or complete failure of the hydraulically actuated control surfaces. The objective of the program was to investigate, in flight, the throttles-only control capability of the F-15, using manual control, and also an augmented PCA mode in which computer-controlled thrust was used for flight control. The objective included PCA operation in up-and-away flight and, if performance was adequate, a secondary objective to make actual PCA landings. The PCA design began with a feasibility study which evaluated many control law designs. The study was done using off-line control analysis, simulation, and on-line manned flight simulator tests. Control laws, cockpit displays, and cockpit controls were evaluated by NASA test pilots. A flight test baseline configuration was selected based on projected flight performance, applicability to transport and fighter aircraft, and funding costs. During the PCA software and hardware development, the initial design was updated as data became available from throttle-only flight experiments conducted by NASA on the F-15. This information showed basic airframe characteristics that were not observed in the F-15 flight simulator and resulted in several design changes. After the primary objectives of the PCA flight testing were accomplished, additional PCA modes of operation were developed and implemented. The evolution of the PCA system from the initial feasibility study, control law design, simulation, hardware-in-the-loop tests, pilot-in-the-loop tests, and ground tests is presented.

  8. Supplemental Control for Aircraft Riding Qualities

    NASA Technical Reports Server (NTRS)

    Williams, Rolanda S.; Ashokkumar, C. R.; Homaifar, Abdollah

    1997-01-01

    The concept of preview control has been applied and proven to be successful in the automotive vehicle. These same concepts are now applied to an aircraft under the assumption that exogenous inputs (wind gust, turbulence, etc. ) can be measured. A supplemental control law for surface deflection is designed to compensate for the loss in performance in the presence of atmospheric disturbances. Fuzzy logic control is employed to handle the nonlinear, time varying characteristics of the disturbance. A methodology to tune the outer loop control parameters is presented.

  9. Emergency Control Aircraft System Using Thrust Modulation

    NASA Technical Reports Server (NTRS)

    Burken, John J. (Inventor); Burcham, Frank W., Jr. (Inventor)

    2000-01-01

    A digital longitudinal Aircraft Propulsion Control (APC system of a multiengine aircraft is provided by engine thrust modulation in response to comparing an input flightpath angle signal (gamma)c from a pilot thumbwheel. or an ILS system with a sensed flightpath angle y to produce an error signal (gamma)e that is then integrated (with reasonable limits) to generate a drift correction signal to be added to the error signal (gamma)e after first subtracting a lowpass filtered velocity signal Vel(sub f) for phugoid damping. The output error signal is multiplied by a constant to produce an aircraft thrust control signal ATC of suitable amplitude to drive a throttle servo for all engines. each of which includes its own full-authority digital engine control (FADEC) computer. An alternative APC system omits sensed flightpath angle feedback and instead controls the flightpath angle by feedback of the lowpass filtered velocity signal Vel(sub f) which also inherently provides phugoid damping. The feature of drift compensation is retained.

  10. Aircraft digital flight control technical review

    NASA Technical Reports Server (NTRS)

    Davenport, Otha B.; Leggett, David B.

    1993-01-01

    The Aircraft Digital Flight Control Technical Review was initiated by two pilot induced oscillation (PIO) incidents in the spring and summer of 1992. Maj. Gen. Franklin (PEO) wondered why the Air Force development process for digital flight control systems was not preventing PIO problems. Consequently, a technical review team was formed to examine the development process and determine why PIO problems continued to occur. The team was also to identify the 'best practices' used in the various programs. The charter of the team was to focus on the PIO problem, assess the current development process, and document the 'best practices.' The team reviewed all major USAF aircraft programs with digital flight controls, specifically, the F-15E, F-16C/D, F-22, F-111, C-17, and B-2. The team interviewed contractor, System Program Office (SPO), and Combined Test Force (CTF) personnel on these programs. The team also went to NAS Patuxent River to interview USN personnel about the F/A-18 program. The team also reviewed experimental USAF and NASA systems with digital flight control systems: X-29, X-31, F-15 STOL and Maneuver Technology Demonstrator (SMTD), and the Variable In-Flight Stability Test Aircraft (VISTA). The team also discussed the problem with other experts in the field including Ralph Smith and personnel from Calspan. The major conclusions and recommendations from the review are presented.

  11. Intelligent Control Approaches for Aircraft Applications

    NASA Technical Reports Server (NTRS)

    Gundy-Burlet, Karen; KrishnaKumar, K.; Soloway, Don; Kaneshige, John; Clancy, Daniel (Technical Monitor)

    2001-01-01

    This paper presents an overview of various intelligent control technologies currently being developed and studied under the Intelligent Flight Control (IFC) program at the NASA Ames Research Center. The main objective of the intelligent flight control program is to develop the next generation of flight controllers for the purpose of automatically compensating for a broad spectrum of damaged or malfunctioning aircraft components and to reduce control law development cost and time. The approaches being examined include: (a) direct adaptive dynamic inverse controller and (b) an adaptive critic-based dynamic inverse controller. These approaches can utilize, but do not require, fault detection and isolation information. Piloted simulation studies are performed to examine if the intelligent flight control techniques adequately: 1) Match flying qualities of modern fly-by-wire flight controllers under nominal conditions; 2) Improve performance under failure conditions when sufficient control authority is available; and 3) Achieve consistent handling qualities across the flight envelope and for different aircraft configurations. Results obtained so far demonstrate the potential for improving handling qualities and significantly increasing survivability rates under various simulated failure conditions.

  12. Digital adaptive control laws for VTOL aircraft

    NASA Technical Reports Server (NTRS)

    Hartmann, G. L.; Stein, G.

    1979-01-01

    Honeywell has designed a digital self-adaptive flight control system for flight test in the VALT Research Aircraft (a modified CH-47). The final design resulted from a comparison of two different adaptive concepts: one based on explicit parameter estimates from a real-time maximum likelihood estimation algorithm and the other based on an implicit model reference adaptive system. The two designs are compared on the basis of performance and complexity.

  13. An adaptive learning control system for aircraft

    NASA Technical Reports Server (NTRS)

    Mekel, R.; Nachmias, S.

    1976-01-01

    A learning control system is developed which blends the gain scheduling and adaptive control into a single learning system that has the advantages of both. An important feature of the developed learning control system is its capability to adjust the gain schedule in a prescribed manner to account for changing aircraft operating characteristics. Furthermore, if tests performed by the criteria of the learning system preclude any possible change in the gain schedule, then the overall system becomes an ordinary gain scheduling system. Examples are discussed.

  14. Feedback control laws for highly maneuverable aircraft

    NASA Technical Reports Server (NTRS)

    Garrard, William L.; Balas, Gary J.

    1992-01-01

    The results of a study of the application of H infinity and mu synthesis techniques to the design of feedback control laws for the longitudinal dynamics of the High Angle of Attack Research Vehicle (HARV) are presented. The objective of this study is to develop methods for the design of feedback control laws which cause the closed loop longitudinal dynamics of the HARV to meet handling quality specifications over the entire flight envelope. Control law designs are based on models of the HARV linearized at various flight conditions. The control laws are evaluated by both linear and nonlinear simulations of typical maneuvers. The fixed gain control laws resulting from both the H infinity and mu synthesis techniques result in excellent performance even when the aircraft performs maneuvers in which the system states vary significantly from their equilibrium design values. Both the H infinity and mu synthesis control laws result in performance which compares favorably with an existing baseline longitudinal control law.

  15. Active Aircraft Pylon Noise Control System

    NASA Technical Reports Server (NTRS)

    Thomas, Russell H. (Inventor); Czech, Michael J (Inventor); Elmiligui, Alaa A. (Inventor)

    2015-01-01

    An active pylon noise control system for an aircraft includes a pylon structure connecting an engine system with an airframe surface of the aircraft and having at least one aperture to supply a gas or fluid therethrough, an intake portion attached to the pylon structure to intake a gas or fluid, a regulator connected with the intake portion via a plurality of pipes, to regulate a pressure of the gas or fluid, a plenum chamber formed within the pylon structure and connected with the regulator, and configured to receive the gas or fluid as regulated by the regulator, and a plurality of injectors in communication with the plenum chamber to actively inject the gas or fluid through the plurality of apertures of the pylon structure.

  16. Automatic control of an aircraft employing outboard horizontal stabilizers

    NASA Astrophysics Data System (ADS)

    Mukherjee, Jason S.

    2000-10-01

    This dissertation concerns the study of radio-operated control of an aircraft using fixed gain and adaptive controllers. The real-time feedback control system is developed to enhance the flying qualities of an experimental model aircraft. The non-conventional flight dynamics of the Outboard Horizontal Stabilizer (OHS) aircraft cause significant differences in the piloting of the aircraft. The control system was added to augment stability as well as to adjust the flight characteristics so that the OHS aircraft handles similar to a conventional aircraft. The control system design process, as applied to recent innovations in aircraft design, is followed. The Outboard Horizontal Stabilizer concept is a non-conventional aircraft, designed to take advantage of the normally wasted energy developed by the wing tip vortices. The research is based on a remotely-controlled OHS aircraft fitted with various sensors and telemetry as part of a real time feedback control system. Fixed gain Linear Quadratic controllers are first applied to the aircraft and result in a dramatic increase in performance at a nominal operating condition. Non-linearities in the OHS aircraft behavior and a wide operating range demanded the development of a variable gain adaptive controller utilizing a parameter estimation scheme to model the plant. The adaptive LQR gain-scheduled controller that emerged gave good performance over a wide flight envelope.

  17. IRAC F/A-18 RFCS on NASA 853

    NASA Technical Reports Server (NTRS)

    Pahli, Joseph

    2009-01-01

    F/A-18 testbed development and flight research are highlighted in this presentation. The current focus is on stability, specifically adaptive flight control, but soon the focus will move towards stability and maneuverability, examining flight planning and guidance, adaptive flight control, engine control and airframe and structures. Later research will additionally review V and V methods. Current and future IRAC plans are highlighted.

  18. An adaptive learning control system for aircraft

    NASA Technical Reports Server (NTRS)

    Mekel, R.; Nachmias, S.

    1978-01-01

    A learning control system and its utilization as a flight control system for F-8 Digital Fly-By-Wire (DFBW) research aircraft is studied. The system has the ability to adjust a gain schedule to account for changing plant characteristics and to improve its performance and the plant's performance in the course of its own operation. Three subsystems are detailed: (1) the information acquisition subsystem which identifies the plant's parameters at a given operating condition; (2) the learning algorithm subsystem which relates the identified parameters to predetermined analytical expressions describing the behavior of the parameters over a range of operating conditions; and (3) the memory and control process subsystem which consists of the collection of updated coefficients (memory) and the derived control laws. Simulation experiments indicate that the learning control system is effective in compensating for parameter variations caused by changes in flight conditions.

  19. An Investigation of Nonlinear Controller for Propulsion Controlled Aircraft

    NASA Technical Reports Server (NTRS)

    Lu, Ping

    1997-01-01

    Aircraft control systems are usually very reliable because of redundancy and multiple control surfaces. However, there are rare occasions when potentially disastrous flight control system failures do occur. At such times, the use of appropriate modulation of engine thrust to stabilize the aircraft may be the only chance of survival for the people aboard. In several cases where complete loss of control systems has occurred in multi-engine aircraft, pilots used the propulsion system to regain limited control of the aircraft with various degrees of success. In order to evaluate the feasibility of using only engine thrust modulation for emergency backup flight control, the NASA Dryden Flight Research Center has been conducting a series of analytical studies and flight tests on several different types of aircraft in a propulsion controlled aircraft (PCA) program. Simulation studies have included B-720, B-727, MD-11, C-402, C-17, F-18, and F-15, and flight tests have included B-747, B-777, MD-11, T-39, Lear 24, F-18, F-15, T-38, and PA-30. One objective was to determine the degree of control available with manual manipulation (open-loop) of the engine throttles. Flight tests and simulations soon showed that a closed loop controller could improve the chances of making a safe runway landing. The major work to date has concentrated on three aircraft (F-15, F-18, and the MD-11). Successful landings using PCA controllers were performed on the F-15 and MD-11 without the use of control surfaces. During the course of the research, some unique challenges have been identified. Compared to the conventional flight control surfaces, the engines are slow and have limited control effectiveness. Hence the ability of the system to promptly respond to aerodynamic changes is limited. Consequently, many nonlinear effects, which are easily accommodated by a conventional flight control system, become significant issues in the design of an effective controller when the engines are used as the

  20. Design of a control configured tanker aircraft

    NASA Technical Reports Server (NTRS)

    Walker, S. A.

    1976-01-01

    The benefits that accrue from using control configured vehicle (CCV) concepts were examined along with the techniques for applying these concepts to an advanced tanker aircraft design. Reduced static stability (RSS) and flutter mode control (FMC) were the two primary CCV concepts used in the design. The CCV tanker was designed to the same mission requirements specified for a conventional tanker design. A seven degree of freedom mathematical model of the flexible aircraft was derived and used to synthesize a lateral stability augmentation system (SAS), a longitudinal control augmentation system (CAS), and a FMC system. Fatigue life and cost analyses followed the control system synthesis, after which a comparative evaluation of the CCV and conventional tankers was made. This comparison indicated that the CCV weight and cost were lower but that, for this design iteration, the CCV fatigue life was shorter. Also, the CCV crew station acceleration was lower, but the acceleration at the boom operator station was higher relative to the corresponding conventional tanker. Comparison of the design processes used in the CCV and conventional design studies revealed that they were basically the same.

  1. Control of Next Generation Aircraft and Wind Turbines

    NASA Technical Reports Server (NTRS)

    Frost, Susan

    2010-01-01

    The first part of this talk will describe some of the exciting new next generation aircraft that NASA is proposing for the future. These aircraft are being designed to reduce aircraft fuel consumption and environmental impact. Reducing the aircraft weight is one approach that will be used to achieve these goals. A new control framework will be presented that enables lighter, more flexible aircraft to maintain aircraft handling qualities, while preventing the aircraft from exceeding structural load limits. The second part of the talk will give an overview of utility-scale wind turbines and their control. Results of collaboration with Dr. Balas will be presented, including new theory to adaptively control the turbine in the presence of structural modes, with the focus on the application of this theory to a high-fidelity simulation of a wind turbine.

  2. Application of active controls to civil transport aircraft

    NASA Technical Reports Server (NTRS)

    Taylor, L. W., Jr.

    1975-01-01

    The impact of active controls on civil transport aircraft and some of the complex problems involved are described. The approach taken by NASA as part of the Active Control Technology Program is discussed to integrate active controls in the conceptual design phase. It is shown that when handled correctly, active controls improve aircraft performance.

  3. Trust Control of VTOL Aircraft Part Deux

    NASA Technical Reports Server (NTRS)

    Dugan, Daniel C.

    2014-01-01

    Thrust control of Vertical Takeoff and Landing (VTOL) aircraft has always been a debatable issue. In most cases, it comes down to the fundamental question of throttle versus collective. Some aircraft used throttle(s), with a fore and aft longitudinal motion, some had collectives, some have used Thrust Levers where the protocol is still "Up is Up and Down is Down," and some have incorporated both throttles and collectives when designers did not want to deal with the Human Factors issues. There have even been combinations of throttles that incorporated an arc that have been met with varying degrees of success. A previous review was made of nineteen designs without attempting to judge the merits of the controller. Included in this paper are twelve designs entered in competition for the 1961 Tri-Service VTOL transport. Entries were from a Bell/Lockheed tiltduct, a North American tiltwing, a Vanguard liftfan, and even a Sikorsky tiltwing. Additional designs were submitted from Boeing Wichita (direct lift), Ling-Temco-Vought with its XC-142 tiltwing, Boeing Vertol's tiltwing, Mcdonnell's compound and tiltwing, and the Douglas turboduct and turboprop designs. A private party submitted a re-design of the Breguet 941 as a VTOL transport. It is important to document these 53 year-old designs to preserve a part of this country's aviation heritage.

  4. F-15 PCA (Propulsion Controlled Aircraft) Simulation Cockpit

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The F-15 PCA (Propulsion Controlled Aircraft) simulation was used from 1990 to 1993. It was used for the development of propulsion algorithms and piloting techniques (using throttles only) to be used for emergency flight control in the advent of a major flight control system failure on a multi-engine aircraft. Following this program with the Dryden F-15, similiar capabilities were developed for other aircraft, such as the B-720, Lear 24, B-727, C-402, and B-747.

  5. Fracture control procedures for aircraft structural integrity

    NASA Technical Reports Server (NTRS)

    Wood, H. A.

    1972-01-01

    The application of applied fracture mechanics in the design, analysis, and qualification of aircraft structural systems are reviewed. Recent service experiences are cited. Current trends in high-strength materials application are reviewed with particular emphasis on the manner in which fracture toughness and structural efficiency may affect the material selection process. General fracture control procedures are reviewed in depth with specific reference to the impact of inspectability, structural arrangement, and material on proposed analysis requirements for safe crack growth. The relative impact on allowable design stress is indicated by example. Design criteria, material, and analysis requirements for implementation of fracture control procedures are reviewed together with limitations in current available data techniques. A summary of items which require further study and attention is presented.

  6. Aircraft and airport noise control prospective outlook

    SciTech Connect

    Shapiro, N.

    1982-01-01

    In a perspective look at aircraft and airport noise control over the past ten years or more - or more is added here because the Federal Aviation Regulation Part 36 of 1969 is a more significant milestone for the air transportation system than is the Noise Control Act of 1972 - we see an appreciable reduction in the noise emitted by newly designed and newly produced airplanes, particularly those powered by the new high bypass engines, but only, at best, a moderate alleviation of airport noise. The change in airport noise exposure was the consequence of the introduction of some new, quieter airplanes into the airlines fleets and some operational modifications or restrictions at the airports.

  7. Structureborne noise control in advanced turboprop aircraft

    NASA Astrophysics Data System (ADS)

    Loeffler, Irvin J.

    1987-01-01

    Structureborne noise is discussed as a contributor to propeller aircraft interior noise levels that are nonresponsive to the application of a generous amount of cabin sidewall acoustic treatment. High structureborne noise levels may jeopardize passenger acceptance of the fuel-efficient high-speed propeller transport aircraft designed for cruise at Mach 0.65 to 0.85. These single-rotation tractor and counter-rotation tractor and pusher propulsion systems will consume 15 to 30 percent less fuel than advanced turbofan systems. Structureborne noise detection methodologies and the importance of development of a structureborne noise sensor are discussed. A structureborne noise generation mechanism is described in which the periodic components or propeller swirl produce periodic torques and forces on downstream wings and airfoils that are propagated to the cabin interior as noise. Three concepts for controlling structureborne noise are presented: (1) a stator row swirl remover, (2) selection of a proper combination of blade numbers in the rotor/stator system of a single-rotation propeller, and the rotor/rotor system of a counter-rotation propeller, and (3) a tuned mechanical absorber.

  8. Design and flight test of the Propulsion Controlled Aircraft (PCA) flight control system on the NASA F-15 test aircraft

    NASA Technical Reports Server (NTRS)

    Wells, Edward A.; Urnes, James M., Sr.

    1994-01-01

    This report describes the design, development and flight testing of the Propulsion Controlled Aircraft (PCA) flight control system performed at McDonnell Douglas Aerospace (MDA), St. Louis, Missouri and at the NASA Dryden Flight Research Facility, Edwards Air Force Base, California. This research and development program was conducted by MDA and directed by NASA through the Dryden Flight Research Facility for the period beginning January 1991 and ending December 1993. A propulsion steering backup to the aircraft conventional flight control system has been developed and flight demonstrated on a NASA F-15 test aircraft. The Propulsion Controlled Aircraft (PCA) flight system utilizes collective and differential thrust changes to steer an aircraft that experiences partial or complete failure of the hydraulically actuated control surfaces. The PCA flight control research has shown that propulsion steering is a viable backup flight control mode and can assist the pilot in safe landing recovery of a fighter aircraft that has damage to or loss of the flight control surfaces. NASA, USAF and Navy evaluation test pilots stated that the F-15 PCA design provided the control necessary to land the aircraft. Moreover, the feasibility study showed that PCA technology can be directly applied to transport aircraft and provide a major improvement in the survivability of passengers and crew of controls damaged aircraft.

  9. Aircraft Accident Prevention: Loss-of-Control Analysis

    NASA Technical Reports Server (NTRS)

    Kwatny, Harry G.; Dongmo, Jean-Etienne T.; Chang, Bor-Chin; Bajpai, Guarav; Yasar, Murat; Belcastro, Christine M.

    2009-01-01

    The majority of fatal aircraft accidents are associated with loss-of-control . Yet the notion of loss-of-control is not well-defined in terms suitable for rigorous control systems analysis. Loss-of-control is generally associated with flight outside of the normal flight envelope, with nonlinear influences, and with an inability of the pilot to control the aircraft. The two primary sources of nonlinearity are the intrinsic nonlinear dynamics of the aircraft and the state and control constraints within which the aircraft must operate. In this paper we examine how these nonlinearities affect the ability to control the aircraft and how they may contribute to loss-of-control. Examples are provided using NASA s Generic Transport Model.

  10. RSRA flight control and stabilization. [Rotor Systems Research Aircraft

    NASA Technical Reports Server (NTRS)

    Linden, A. W.

    1976-01-01

    Handling qualities of the RSRA (rotor systems research aircraft), a special test vehicle with optional configurations (forewings, removable horizontal tailplanes, main rotor, tail rotor, and twin engines for forward flight all removable), are described. The aircraft can be fitted to fly as a conventional rotary-wing aircraft, fixed-wing aircraft, or compound helicopter, and is designed for testing existing and future rotor systems in flight. Controls include full-authority fly-by-wire controls and mechanical controls for rotary wing and for fixed wing. Stability augmentation, rotor test measurement systems, variable center of gravity capability, and rotor loading potential of the RSRA are also described.

  11. IRAC: Mode of action classification and insecticide resistance management.

    PubMed

    Sparks, Thomas C; Nauen, Ralf

    2015-06-01

    Insecticide resistance is a long standing and expanding problem for pest arthropod control. Effective insecticide resistance management (IRM) is essential if the utility of current and future insecticides is to be preserved. Established in 1984, the Insecticide Resistance Action Committee (IRAC) is an international association of crop protection companies. IRAC serves as the Specialist Technical Group within CropLife International focused on ensuring the long term efficacy of insect, mite and tick control products through effective resistance management for sustainable agriculture and improved public health. A key function of IRAC is the continued development of the Mode of Action (MoA) classification scheme, which provides up-to-date information on the modes of action of new and established insecticides and acaricides and which serves as the basis for developing appropriate IRM strategies for crop protection and vector control. The IRAC MoA classification scheme covers more than 25 different modes of action and at least 55 different chemical classes. Diversity is the spice of resistance management by chemical means and thus it provides an approach to IRM providing a straightforward means to identify potential rotation/alternation options. PMID:26047120

  12. Causal Factors and Adverse Conditions of Aviation Accidents and Incidents Related to Integrated Resilient Aircraft Control

    NASA Technical Reports Server (NTRS)

    Reveley, Mary S.; Briggs, Jeffrey L.; Evans, Joni K.; Sandifer, Carl E.; Jones, Sharon Monica

    2010-01-01

    The causal factors of accidents from the National Transportation Safety Board (NTSB) database and incidents from the Federal Aviation Administration (FAA) database associated with loss of control (LOC) were examined for four types of operations (i.e., Federal Aviation Regulation Part 121, Part 135 Scheduled, Part 135 Nonscheduled, and Part 91) for the years 1988 to 2004. In-flight LOC is a serious aviation problem. Well over half of the LOC accidents included at least one fatality (80 percent in Part 121), and roughly half of all aviation fatalities in the studied time period occurred in conjunction with LOC. An adverse events table was updated to provide focus to the technology validation strategy of the Integrated Resilient Aircraft Control (IRAC) Project. The table contains three types of adverse conditions: failure, damage, and upset. Thirteen different adverse condition subtypes were gleaned from the Aviation Safety Reporting System (ASRS), the FAA Accident and Incident database, and the NTSB database. The severity and frequency of the damage conditions, initial test conditions, and milestones references are also provided.

  13. Advanced Study for Active Noise Control in Aircraft (ASANCA)

    NASA Technical Reports Server (NTRS)

    Borchers, Ingo U.; Emborg, Urban; Sollo, Antonio; Waterman, Elly H.; Paillard, Jacques; Larsen, Peter N.; Venet, Gerard; Goeransson, Peter; Martin, Vincent

    1992-01-01

    Aircraft interior noise and vibration measurements are included in this paper from ground and flight tests. In addition, related initial noise calculations with and without active noise control are conducted. The results obtained to date indicate that active noise control may be an effective means for reducing the critical low frequency aircraft noise.

  14. Highly integrated digital electronic control: Digital flight control, aircraft model identification, and adaptive engine control

    NASA Technical Reports Server (NTRS)

    Baer-Riedhart, Jennifer L.; Landy, Robert J.

    1987-01-01

    The highly integrated digital electronic control (HIDEC) program at NASA Ames Research Center, Dryden Flight Research Facility is a multiphase flight research program to quantify the benefits of promising integrated control systems. McDonnell Aircraft Company is the prime contractor, with United Technologies Pratt and Whitney Aircraft, and Lear Siegler Incorporated as major subcontractors. The NASA F-15A testbed aircraft was modified by the HIDEC program by installing a digital electronic flight control system (DEFCS) and replacing the standard F100 (Arab 3) engines with F100 engine model derivative (EMD) engines equipped with digital electronic engine controls (DEEC), and integrating the DEEC's and DEFCS. The modified aircraft provides the capability for testing many integrated control modes involving the flight controls, engine controls, and inlet controls. This paper focuses on the first two phases of the HIDEC program, which are the digital flight control system/aircraft model identification (DEFCS/AMI) phase and the adaptive engine control system (ADECS) phase.

  15. Method and System for Active Noise Control of Tiltrotor Aircraft

    NASA Technical Reports Server (NTRS)

    Betzina, Mark D. (Inventor); Nguyen, Khanh Q. (Inventor)

    2003-01-01

    Methods and systems for reducing noise generated by rotating blades of a tiltrotor aircraft. A rotor-blade pitch angle associated with the tiltrotor aircraft can be controlled utilizing a swashplate connected to rotating blades of the tiltrotor aircraft. One or more Higher Harmonic Control (HHC) signals can be transmitted and input to a swashplate control actuator associated with the swashplate. A particular blade pitch oscillation (e.g., four cycles per revolution) is there-after produced in a rotating frame of reference associated with the rotating blades in response to input of an HHC signal to the swashplate control actuator associated with the swashplate to thereby reduce noise associated with the rotating blades of the tiltrotor aircraft. The HHC signal can be transmitted and input to the swashplate control actuator to reduce noise of the tiltrotor aircraft in response to a user input utilizing an open-loop configuration.

  16. IRAC imaging of GOGREEN clusters

    NASA Astrophysics Data System (ADS)

    McGee, Sean; Balogh, Michael; Cooper, Michael; Gilbank, David; Lidman, Chris; Muzzin, Adam; Old, Lyndsay; Rudnick, Greg; Wilson, Gillian; Yee, Howard

    2016-08-01

    We propose deep IRAC imaging of three galaxy clusters drawn from the GOGREEN survey of 21 galaxy clusters in the redshift range 1 < z < 1.5. This imaging will enable the accurate measurement of unprecedentedly low stellar masses at this redshift, leveraging our deep spectroscopy. This will give a first look at environmental effects on galaxy evolution at a time when galaxies are growing in a fundamentally different way from today. With this data, we will perform accurate SED modeling in order to classify galaxies as passive or star-forming and measure stellar masses, as well as compute cluster membership using accurate photometric redshifts. These data will be augmented by approved VLT, Subaru, Magellan and CFHT imaging and by an ongoing Gemini Large Programme, with which we are obtaining deep spectroscopy of > 1000 member and > 600 field galaxies. With these data and our own lower-redshift descendant data, we will measure 1) the evolution of the quenched fraction and its dependence on distance from the cluster center and 2) the relation between stellar and halo mass and its evolution. This will provide unique constraints to our in-house theoretical models at an epoch where there are currently almost none available. The imaging that we propose will ensure all 21 GOGREEN clusters have deep IRAC data, ensuring the lasting legacy of this benchmark sample.

  17. Aircraft performance and control in downburst wind shear

    NASA Technical Reports Server (NTRS)

    Bray, Richard S.

    1986-01-01

    The methods developed for analyses of the winds and of aircraft performance during an investigation of a downburst wind-shear-induced accident have been utilized in a more general study of aircraft performance in such encounters. The computed responses of a generic, large transport aircraft to take-off and approach encounters with a downburst wind field were used in examining the effects of performance factors and control procedures on the ability of the aircraft to survive. Obvious benefits are seen for higher initial encounter speeds, maximum thrust-weight values typical of two-engined aircraft, and immediacy of pilot response. The results of controlling to a constant, predetermined, pitch attitude are demonstrated. Control algorithms that sacrifice altitude for speed appear to provide a higher level of survivability, but guidance displays more explicitly defining flightpath than those commonly in use might be required.

  18. Flying qualities and control system characteristics for superaugmented aircraft

    NASA Technical Reports Server (NTRS)

    Myers, T. T.; Mcruer, D. T.; Johnston, D. E.

    1984-01-01

    Aircraft-alone dynamics and superaugmented control system fundamental regulatory properties including stability and regulatory responses of the basic closed-loop systems; fundamental high and low frequency margins and governing factors; and sensitivity to aircraft and controller parameters are addressed. Alternative FCS mechanizations, and mechanizational side effects are also discussed. An overview of flying qualities considerations encompasses general pilot operations as a controller in unattended, intermittent and trim, and full-attention regulatory or command control; effective vehicle primary and secondary response properties to pilot inputs and disturbances; pilot control architectural possibilities; and comparison of superaugmented and conventional aircraft path responses for different forms of pilot control. Results of a simple experimental investigation into pilot dynamic behavior in attitude control of superaugmented aircraft configurations with high frequency time laps and time delays are presented.

  19. Bioelectric Control of a 757 Class High Fidelity Aircraft Simulation

    NASA Technical Reports Server (NTRS)

    Jorgensen, Charles; Wheeler, Kevin; Stepniewski, Slawomir; Norvig, Peter (Technical Monitor)

    2000-01-01

    This paper presents results of a recent experiment in fine grain Electromyographic (EMG) signal recognition, We demonstrate bioelectric flight control of 757 class simulation aircraft landing at San Francisco International Airport. The physical instrumentality of a pilot control stick is not used. A pilot closes a fist in empty air and performs control movements which are captured by a dry electrode array on the arm, analyzed and routed through a flight director permitting full pilot outer loop control of the simulation. A Vision Dome immersive display is used to create a VR world for the aircraft body mechanics and flight changes to pilot movements. Inner loop surfaces and differential aircraft thrust is controlled using a hybrid neural network architecture that combines a damage adaptive controller (Jorgensen 1998, Totah 1998) with a propulsion only based control system (Bull & Kaneshige 1997). Thus the 757 aircraft is not only being flown bioelectrically at the pilot level but also demonstrates damage adaptive neural network control permitting adaptation to severe changes in the physical flight characteristics of the aircraft at the inner loop level. To compensate for accident scenarios, the aircraft uses remaining control surface authority and differential thrust from the engines. To the best of our knowledge this is the first time real time bioelectric fine-grained control, differential thrust based control, and neural network damage adaptive control have been integrated into a single flight demonstration. The paper describes the EMG pattern recognition system and the bioelectric pattern recognition methodology.

  20. Analysis and testing of aeroelastic model stability augmentation systems. [for supersonic transport aircraft wing and B-52 aircraft control system

    NASA Technical Reports Server (NTRS)

    Sevart, F. D.; Patel, S. M.

    1973-01-01

    Testing and evaluation of a stability augmentation system for aircraft flight control were performed. The flutter suppression system and synthesis conducted on a scale model of a supersonic wing for a transport aircraft are discussed. Mechanization and testing of the leading and trailing edge surface actuation systems are described. The ride control system analyses for a 375,000 pound gross weight B-52E aircraft are presented. Analyses of the B-52E aircraft maneuver load control system are included.

  1. Automatic control design procedures for restructurable aircraft control

    NASA Technical Reports Server (NTRS)

    Looze, D. P.; Krolewski, S.; Weiss, J.; Barrett, N.; Eterno, J.

    1985-01-01

    A simple, reliable automatic redesign procedure for restructurable control is discussed. This procedure is based on Linear Quadratic (LQ) design methodologies. It employs a robust control system design for the unfailed aircraft to minimize the effects of failed surfaces and to extend the time available for restructuring the Flight Control System. The procedure uses the LQ design parameters for the unfailed system as a basis for choosing the design parameters of the failed system. This philosophy alloys the engineering trade-offs that were present in the nominal design to the inherited by the restructurable design. In particular, it alloys bandwidth limitations and performance trade-offs to be incorporated in the redesigned system. The procedure also has several other desirable features. It effectively redistributes authority among the available control effectors to maximize the system performance subject to actuator limitations and constraints. It provides a graceful performance degradation as the amount of control authority lessens. When given the parameters of the unfailed aircraft, the automatic redesign procedure reproduces the nominal control system design.

  2. Control of a swept wing tailless aircraft through wing morphing

    NASA Astrophysics Data System (ADS)

    Guiler, Richard W.

    Inspired by flight in nature, work done by Lippisch, the Hortens, and Northrop offered insight to achieving the efficiency of bird flight with swept-wing tailless aircraft. Tailless designs must incorporate aerodynamic compromises for control, which have inhibited potential advantages. A morphing mechanism, capable of changing the twist of wing and that can also provide pitch, roll and yaw control for a tailless swept wing aircraft is the first step to a series of morphing techniques, which will lead to more fluid, bird-like flight. This research focuses on investigating the design of a morphing wing to improve the flight characteristics of swept wing Horten type tailless aircraft. Free flight demonstrators, wind tunnel flow visualization, wind-tunnel force and moment data along with CFD studies have been used to evaluate the stability, control and efficiency of a morphing swept wing tailless aircraft. A wing morphing mechanism for the control of a swept wing tailless aircraft has been developed. This new control technique was experimentally and numerically compared to an existing elevon equipped tailless aircraft and has shown the potential for significant improvement in efficiency. The feasibility of this mechanism was also validated through flight testing of a flight weight version. In the process of comparing the Horten type elevon equipped aircraft and the morphing model, formal wind tunnel verification of wingtip induced thrust, found in Horten (Bell Shaped Lift distribution) type swept wing tailless aircraft was documented. A more complete physical understanding of the highly complex flow generated in the control region of the morphing tailless aircraft has been developed. CFD models indicate the possibility of the presence of a Leading Edge Vortex (LEV) on the control section morphing wing when the tip is twisted between +3.5 degrees and +7 degrees. The presence of this LEV causes a reduction of drag while lift is increased. Similar LEVs have been

  3. Integrated Control with Structural Feedback to Enable Lightweight Aircraft

    NASA Technical Reports Server (NTRS)

    Taylor, Brian R.

    2011-01-01

    This presentation for the Fundamental Aeronautics Program Technical Conference covers the benefits of active structural control, related research areas, and focuses on the use of optimal control allocation for the prevention of critical loads. Active control of lightweight structures has the potential to reduce aircraft weight and fuel burn. Sensor, control law, materials, control effector, and system level research will be necessary to enable active control of lightweight structures. Optimal control allocation with structural feedback has been shown in simulation to be feasible in preventing critical loads and is one example of a control law to enable future lightweight aircraft.

  4. A review of foreign technology in aircraft flight controls

    NASA Technical Reports Server (NTRS)

    Hewett, M. D.; Rediess, H. A.; Buckley, E. C.; Spitzer, C. R.

    1984-01-01

    A survey of U.S. and foreign technology in aircraft flight controls was conducted for NASA Langley Research Center as a data base for planning future research and technology programs. The survey covers control and hardware configurations of major contemporary systems on operational aircraft, R&D flight programs, advanced aircraft developments and significant research and technology programs. This paper concentrates on the foreign technology elements and findings of the survey with primary emphasis on Western Europe, where most of the advanced technology resides.

  5. A Risk Management Architecture for Emergency Integrated Aircraft Control

    NASA Technical Reports Server (NTRS)

    McGlynn, Gregory E.; Litt, Jonathan S.; Lemon, Kimberly A.; Csank, Jeffrey T.

    2011-01-01

    Enhanced engine operation--operation that is beyond normal limits--has the potential to improve the adaptability and safety of aircraft in emergency situations. Intelligent use of enhanced engine operation to improve the handling qualities of the aircraft requires sophisticated risk estimation techniques and a risk management system that spans the flight and propulsion controllers. In this paper, an architecture that weighs the risks of the emergency and of possible engine performance enhancements to reduce overall risk to the aircraft is described. Two examples of emergency situations are presented to demonstrate the interaction between the flight and propulsion controllers to facilitate the enhanced operation.

  6. MTR BASEMENT. GENERAL ELECTRIC CONTROL CONSOLE FOR AIRCRAFT NUCLEAR PROPULSION ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    MTR BASEMENT. GENERAL ELECTRIC CONTROL CONSOLE FOR AIRCRAFT NUCLEAR PROPULSION EXPERIMENT NO. 1. INL NEGATIVE NO. 6510. Unknown Photographer, 9/29/1959 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  7. 11. VIEW LOOKING EAST AT MODEL AIRCRAFT CONTROL ROOM; MODEL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. VIEW LOOKING EAST AT MODEL AIRCRAFT CONTROL ROOM; MODEL OF BOEING 737 AT TOP OF PHOTOGRAPH IN FULL-SCALE WIND TUNNEL. - NASA Langley Research Center, Full-Scale Wind Tunnel, 224 Hunting Avenue, Hampton, Hampton, VA

  8. Stability and control of maneuvering high-performance aircraft

    NASA Technical Reports Server (NTRS)

    Stengel, R. F.; Berry, P. W.

    1977-01-01

    The stability and control of a high-performance aircraft was analyzed, and a design methodology for a departure prevention stability augmentation system (DPSAS) was developed. A general linear aircraft model was derived which includes maneuvering flight effects and trim calculation procedures for investigating highly dynamic trajectories. The stability and control analysis systematically explored the effects of flight condition and angular motion, as well as the stability of typical air combat trajectories. The effects of configuration variation also were examined.

  9. Dynamics and Adaptive Control for Stability Recovery of Damaged Aircraft

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan; Krishnakumar, Kalmanje; Kaneshige, John; Nespeca, Pascal

    2006-01-01

    This paper presents a recent study of a damaged generic transport model as part of a NASA research project to investigate adaptive control methods for stability recovery of damaged aircraft operating in off-nominal flight conditions under damage and or failures. Aerodynamic modeling of damage effects is performed using an aerodynamic code to assess changes in the stability and control derivatives of a generic transport aircraft. Certain types of damage such as damage to one of the wings or horizontal stabilizers can cause the aircraft to become asymmetric, thus resulting in a coupling between the longitudinal and lateral motions. Flight dynamics for a general asymmetric aircraft is derived to account for changes in the center of gravity that can compromise the stability of the damaged aircraft. An iterative trim analysis for the translational motion is developed to refine the trim procedure by accounting for the effects of the control surface deflection. A hybrid direct-indirect neural network, adaptive flight control is proposed as an adaptive law for stabilizing the rotational motion of the damaged aircraft. The indirect adaptation is designed to estimate the plant dynamics of the damaged aircraft in conjunction with the direct adaptation that computes the control augmentation. Two approaches are presented 1) an adaptive law derived from the Lyapunov stability theory to ensure that the signals are bounded, and 2) a recursive least-square method for parameter identification. A hardware-in-the-loop simulation is conducted and demonstrates the effectiveness of the direct neural network adaptive flight control in the stability recovery of the damaged aircraft. A preliminary simulation of the hybrid adaptive flight control has been performed and initial data have shown the effectiveness of the proposed hybrid approach. Future work will include further investigations and high-fidelity simulations of the proposed hybrid adaptive Bight control approach.

  10. Application of nonlinear feedback control theory to supermaneuverable aircraft

    NASA Technical Reports Server (NTRS)

    Garrard, William L.; Enns, Dale F.

    1991-01-01

    Controlled flight at extremely high angles of attack, far exceeding the stall angle, and/or at high angular rates is sometimes referred to as supermaneuvering flight. The objective was to examine methods for design of control laws for aircraft performing supermaneuvers. Since the equations which govern the motion of aircraft during supermaneuvers are nonlinear, this study concentrated on nonlinear control law design procedures. The two nonlinear techniques considered were Nonlinear Quadratic Regulator (NLQR) theory and nonlinear dynamic inversion. A conventional gain scheduled proportional plus integral (P + I) controller was also developed to serve as a baseline design typical of current control laws used in aircraft. A mathematical model of a generic supermaneuverable aircraft was developed from data obtained from the literature. A detailed computer simulation of the aircraft was also developed. This simulation allowed the flying of proposed supermaneuvers and was used to evaluate the performance of the control law designs and to generate linearized models of the aircraft at different flight conditions.

  11. Control optimization, stabilization and computer algorithms for aircraft applications

    NASA Technical Reports Server (NTRS)

    Athans, M. (Editor); Willsky, A. S. (Editor)

    1982-01-01

    The analysis and design of complex multivariable reliable control systems are considered. High performance and fault tolerant aircraft systems are the objectives. A preliminary feasibility study of the design of a lateral control system for a VTOL aircraft that is to land on a DD963 class destroyer under high sea state conditions is provided. Progress in the following areas is summarized: (1) VTOL control system design studies; (2) robust multivariable control system synthesis; (3) adaptive control systems; (4) failure detection algorithms; and (5) fault tolerant optimal control theory.

  12. Decoupling control synthesis for an oblique-wing aircraft

    NASA Technical Reports Server (NTRS)

    Alag, G. S.; Kempel, R. W.; Pahle, J. W.

    1986-01-01

    Interest in oblique-wing aircraft has surfaced periodically since the 1940's. This concept offers some substantial aerodynamic performance advantages but also has significant aerodynamic and inertial cross-coupling between the aircraft longitudinal and lateral-directional axes. This paper presents a technique for synthesizing a decoupling controller while providing the desired stability augmentation. The proposed synthesis procedure uses the concept of a real model-following control system. Feedforward gains are selected on the assumption that perfect model-following conditions are satisfied. The feedback gains are obtained by using eigensystem assignment, and the aircraft is stabilized by using partial state feedback. The effectiveness of the control laws developed in achieving the desired decoupling is illustrated by application to linearized equations of motion of an oblique-wing aircraft for a given flight condition.

  13. Lightweight sidewalls for aircraft interior noise control

    NASA Technical Reports Server (NTRS)

    May, D. N.; Plotkin, K. J.; Selden, R. G.; Sharp, B. H.

    1985-01-01

    A theoretical and experimental study was performed to devise lightweight sidewalls for turboprop aircraft. Seven concepts for new sidewalls were analyzed and tested for noise reduction using flat panels of 1.2 m x 1.8 m (4 ft x 6 ft), some of which were aircraft-type constructions and some of which were simpler, easier-to-construct panels to test the functioning of an acoustic principle. Aircraft-application sidewalls were then conceived for each of the seven concepts, and were subjectively evaluated for their ability to meet aircraft nonacoustic design requirements. As a result of the above, the following sidewall concepts were recommended for further investigation: a sidewall in which the interior cavity is vented to ceiling and underfloor areas; sidewalls with wall-mounted resonators, one having a conventional trim panel and one a limp one; and a sidewall with a stiff outer wall and a limp trim panel. These sidewalls appear to promise lower weights than conventional sidewalls adjusted to meet similar acoustic requirements, and further development may prove them to be practical.

  14. A practical scheme for adaptive aircraft flight control systems

    NASA Technical Reports Server (NTRS)

    Athans, M.; Willner, D.

    1974-01-01

    A flight control system design is presented, that can be implemented by analog hardware, to be used to control an aircraft with uncertain parameters. The design is based upon the use of modern control theory. The ideas are illustrated by considering control of STOL longitudinal dynamics.

  15. 76 FR 45011 - Control of Air Pollution From Aircraft and Aircraft Engines; Proposed Emission Standards and Test...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-27

    ... comment includes information claimed to be Confidential Business Information (CBI) or other information... Procedures for Aircraft;'' Final Rule, 38 FR 19088, July 17, 1973. \\12\\ U.S. EPA, ``Control of Air Pollution from Aircraft and Aircraft Engines; Emission Standards and Test Procedures;'' Final Rule, 62 FR...

  16. Aircraft energy efficiency laminar flow control wing design study

    NASA Technical Reports Server (NTRS)

    Bonner, T. F., Jr.; Pride, J. D., Jr.; Fernald, W. W.

    1977-01-01

    An engineering design study was performed in which laminar flow control (LFC) was integrated into the wing of a commercial passenger transport aircraft. A baseline aircraft configuration was selected and the wing geometry was defined. The LFC system, with suction slots, ducting, and suction pumps was integrated with the wing structure. The use of standard aluminum technology and advanced superplastic formed diffusion bonded titanium technology was evaluated. The results of the design study show that the LFC system can be integrated with the wing structure to provide a structurally and aerodynamically efficient wing for a commercial transport aircraft.

  17. Dynamics and control of robotic aircraft with articulated wings

    NASA Astrophysics Data System (ADS)

    Paranjape, Aditya Avinash

    There is a considerable interest in developing robotic aircraft, inspired by birds, for a variety of missions covering reconnaissance and surveillance. Flapping wing aircraft concepts have been put forth in light of the efficiency of flapping flight at small scales. These aircraft are naturally equipped with the ability to rotate their wings about the root, a form of wing articulation. This thesis covers some problems concerning the performance, stability and control of robotic aircraft with articulated wings in gliding flight. Specifically, we are interested in aircraft without a vertical tail, which would then use wing articulation for longitudinal as well as lateral-directional control. Although the dynamics and control of articulated wing aircraft share several common features with conventional fixed wing aircraft, the presence of wing articulation presents several unique benefits as well as limitations from the perspective of performance and control. One of the objective of this thesis is to understand these features using a combination of theoretical and numerical tools. The aircraft concept envisioned in this thesis uses the wing dihedral angles for longitudinal and lateral-directional control. Aircraft with flexible articulated wings are also investigated. We derive a complete nonlinear model of the flight dynamics incorporating dynamic CG location and the changing moment of inertia. We show that symmetric dihedral configuration, along with a conventional horizontal tail, can be used to control flight speed and flight path angle independently of each other. This characteristic is very useful for initiating an efficient perching maneuver. It is shown that wing dihedral angles alone can effectively regulate sideslip during rapid turns and generate a wide range of equilibrium turn rates while maintaining a constant flight speed and regulating sideslip. We compute the turning performance limitations that arise due to the use of wing dihedral for yaw control

  18. Control Design for a Generic Commercial Aircraft Engine

    NASA Technical Reports Server (NTRS)

    Csank, Jeffrey; May, Ryan D.

    2010-01-01

    This paper describes the control algorithms and control design process for a generic commercial aircraft engine simulation of a 40,000 lb thrust class, two spool, high bypass ratio turbofan engine. The aircraft engine is a complex nonlinear system designed to operate over an extreme range of environmental conditions, at temperatures from approximately -60 to 120+ F, and at altitudes from below sea level to 40,000 ft, posing multiple control design constraints. The objective of this paper is to provide the reader an overview of the control design process, design considerations, and justifications as to why the particular architecture and limits have been chosen. The controller architecture contains a gain-scheduled Proportional Integral controller along with logic to protect the aircraft engine from exceeding any limits. Simulation results illustrate that the closed loop system meets the Federal Aviation Administration s thrust response requirements

  19. Aircraft Turbine Engine Control Research at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Garg, Sanjay

    2013-01-01

    This paper provides an overview of the aircraft turbine engine control research at the NASA Glenn Research Center (GRC). A brief introduction to the engine control problem is first provided with a description of the state-of-the-art control law structure. A historical aspect of engine control development since the 1940s is then provided with a special emphasis on the contributions of GRC. With the increased emphasis on aircraft safety, enhanced performance, and affordability, as well as the need to reduce the environmental impact of aircraft, there are many new challenges being faced by the designers of aircraft propulsion systems. The Controls and Dynamics Branch (CDB) at GRC is leading and participating in various projects to develop advanced propulsion controls and diagnostics technologies that will help meet the challenging goals of NASA Aeronautics Research Mission programs. The rest of the paper provides an overview of the various CDB technology development activities in aircraft engine control and diagnostics, both current and some accomplished in the recent past. The motivation for each of the research efforts, the research approach, technical challenges, and the key progress to date are summarized.

  20. Loss-of-Control-Inhibitor Systems for Aircraft

    NASA Technical Reports Server (NTRS)

    AHarrah, Ralph C.

    2007-01-01

    Systems to provide improved tactile feedback to aircraft pilots are being developed to help the pilots maintain harmony between their control actions and the positions of aircraft control surfaces, thereby helping to prevent loss of control. A system of this type, denoted a loss-of-control-inhibitor system (LOCIS) can be implemented as a relatively simple addition to almost any pre-existing flight-control system. The LOCIS concept offers at least a partial solution to the problem of (1) keeping a pilot aware of the state of the control system and the aircraft and (2) maintaining sufficient control under conditions that, as described below, have been known to lead to loss of control. Current commercial aircraft exhibit uneven responses of primary flight-control surfaces to aggressive pilot control commands, leading to deterioration of pilots ability to control their aircraft. In severe cases, this phenomenon can result in loss of control and consequent loss of aircraft. For an older aircraft equipped with a purely mechanical control system, the loss of harmony between a pilot s command action and the control- surface response can be attributed to compliance in the control system (caused, for example, by stretching of control cables, flexing of push rods, or servo-valve distortion). In a newer aircraft equipped with a fly-by-wire control system, the major contributions to loss of harmony between the pilot and the control surfaces are delays attributable to computer cycle time, control shaping, filtering, aliasing, servo-valve distortion, and actuator rate limiting. In addition, a fly-by-wire control system provides no tactile feedback that would enable the pilot to sense such features of the control state as surface flutter, surface jam, position limiting, actuator rate limiting, and control limiting imposed by the aircraft operational envelope. Hence, for example, when a pilot is involved in aggressive closed-loop maneuvering, as when encountering a wake

  1. Flight experience with manually controlled unconventional aircraft motions

    NASA Technical Reports Server (NTRS)

    Barfield, A. F.

    1978-01-01

    A modified YF-16 aircraft was used to flight demonstrate decoupled modes under the USAF Fighter Control Configured Vehicle (CCV) Program. The direct force capabilities were used to implement seven manually controlled unconventional modes on the aircraft, allowing flat turns, decoupled normal acceleration control, independent longitudinal and lateral translations, uncoupled elevation and azimuth aiming, and blended direct lift. This paper describes the design, development, and flight testing of these control modes. The need for task-tailored mode authorities, gain-scheduling and selected closed-loop design is discussed.

  2. How to fly an aircraft with control theory and splines

    NASA Technical Reports Server (NTRS)

    Karlsson, Anders

    1994-01-01

    When trying to fly an aircraft as smoothly as possible it is a good idea to use the derivatives of the pilot command instead of using the actual control. This idea was implemented with splines and control theory, in a system that tries to model an aircraft. Computer calculations in Matlab show that it is impossible to receive enough smooth control signals by this way. This is due to the fact that the splines not only try to approximate the test function, but also its derivatives. A perfect traction is received but we have to pay in very peaky control signals and accelerations.

  3. The aircraft energy efficiency active controls technology program

    NASA Technical Reports Server (NTRS)

    Hood, R. V., Jr.

    1977-01-01

    Broad outlines of the NASA Aircraft Energy Efficiency Program for expediting the application of active controls technology to civil transport aircraft are presented. Advances in propulsion and airframe technology to cut down on fuel consumption and fuel costs, a program for an energy-efficient transport, and integrated analysis and design technology in aerodynamics, structures, and active controls are envisaged. Fault-tolerant computer systems and fault-tolerant flight control system architectures are under study. Contracts with leading manufacturers for research and development work on wing-tip extensions and winglets for the B-747, a wing load alleviation system, elastic mode suppression, maneuver-load control, and gust alleviation are mentioned.

  4. Control Reallocation Strategies for Damage Adaptation in Transport Class Aircraft

    NASA Technical Reports Server (NTRS)

    Gundy-Burlet, Karen; Krishnakumar, K.; Limes, Greg; Bryant, Don

    2003-01-01

    This paper examines the feasibility, potential benefits and implementation issues associated with retrofitting a neural-adaptive flight control system (NFCS) to existing transport aircraft, including both cable/hydraulic and fly-by-wire configurations. NFCS uses a neural network based direct adaptive control approach for applying alternate sources of control authority in the presence of damage or failures in order to achieve desired flight control performance. Neural networks are used to provide consistent handling qualities across flight conditions, adapt to changes in aircraft dynamics and to make the controller easy to apply when implemented on different aircraft. Full-motion piloted simulation studies were performed on two different transport models: the Boeing 747-400 and the Boeing C-17. Subjects included NASA, Air Force and commercial airline pilots. Results demonstrate the potential for improving handing qualities and significantly increased survivability rates under various simulated failure conditions.

  5. Design and certification of low-cost distributed Control-By-Light aircraft control systems for part 25 aircraft

    NASA Astrophysics Data System (ADS)

    Morrison, Brian D.; Robillard, Michael N.

    1996-10-01

    Raytheon has developed and is certifying fault-tolerant low- cost distributed Control-By-LightTM technology for use in the next generation of Civil, Regional, and General Aviation aircraft. Distributed Control-By-LightTM holds significant promise when applied to complex sensor/actuator systems such as aircraft controls. CBLTM systems replace mechanical, hydraulic and electrical controls presently used to monitor, control and display flight, engine, and utility functions, and has substantial weight, cost, safety, and performance advantages over today's mechanical and Fly-By- Wire techniques. This paper describes the system concepts and outlines the formal certification program presently underway.

  6. Information fusion based optimal control for large civil aircraft system.

    PubMed

    Zhen, Ziyang; Jiang, Ju; Wang, Xinhua; Gao, Chen

    2015-03-01

    Wind disturbance has a great influence on landing security of Large Civil Aircraft. Through simulation research and engineering experience, it can be found that PID control is not good enough to solve the problem of restraining the wind disturbance. This paper focuses on anti-wind attitude control for Large Civil Aircraft in landing phase. In order to improve the riding comfort and the flight security, an information fusion based optimal control strategy is presented to restrain the wind in landing phase for maintaining attitudes and airspeed. Data of Boeing707 is used to establish a nonlinear mode with total variables of Large Civil Aircraft, and then two linear models are obtained which are divided into longitudinal and lateral equations. Based on engineering experience, the longitudinal channel adopts PID control and C inner control to keep longitudinal attitude constant, and applies autothrottle system for keeping airspeed constant, while an information fusion based optimal regulator in the lateral control channel is designed to achieve lateral attitude holding. According to information fusion estimation, by fusing hard constraint information of system dynamic equations and the soft constraint information of performance index function, optimal estimation of the control sequence is derived. Based on this, an information fusion state regulator is deduced for discrete time linear system with disturbance. The simulation results of nonlinear model of aircraft indicate that the information fusion optimal control is better than traditional PID control, LQR control and LQR control with integral action, in anti-wind disturbance performance in the landing phase. PMID:25440950

  7. Linear and reconfigurable control of wing damaged aircraft

    NASA Astrophysics Data System (ADS)

    Nespeca, Pascal

    Recently, there has been an interest in researching control techniques that might improve the overall safety of flight. The goal is to create an autopilot control system which could safely land a wing damaged aircraft. Spanwise Full-Loss (SFL) is defined as the entire removal of wing section along the chord of the wing, starting from the tip and moving toward the root. Based upon computational models of a rigid aircraft with varying SFL, obvious force-moment imbalances are likely to be the primary factor affecting survivability. Rigid aircraft with more effective ailerons or additional rolling control surfaces are more likely to survive wing damage. Computer models of wing damage suggest that wing loss in the range of 0--50% SFL will not create an abnormal dynamic instability of a rigid aircraft with a standard linear autopilot. Dynamic instability is not present because the SFL linear model is mostly triangular with longitudinal variables almost exclusively effecting lateral variables. Closed loop performance is not compromised in the range of 0--20% SFL. Resizing ailerons may be needed to accommodate wing damage beyond 20 to 30% SFL. For a flexible aircraft, wing damage that reduces the torsional stiffness of the wing could cause roll-control reversal. Roll control reversal can create closed loop instability with undamaged aircraft. SFL actually increases the torsional stiffness of the wing. However, real world wing damage may not be limited to a spanwise wing loss. Conventional control techniques are introduced by several design examples and successfully extended to wing damaged aircraft. Reconfigurable, switching and conventional control techniques are found to possess acceptable levels of technical merit for flight control. With reconfigurable and switching flight control techniques, one can avoid known instabilities due to time varying gain by simply waiting 6 to 20 seconds between controller switches. Many direct adaptive control and indirect adaptive

  8. Aircraft Turbine Engine Control Research at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Garg, Sanjay

    2014-01-01

    This lecture will provide an overview of the aircraft turbine engine control research at NASA (National Aeronautics and Space Administration) Glenn Research Center (GRC). A brief introduction to the engine control problem is first provided with a description of the current state-of-the-art control law structure. A historical aspect of engine control development since the 1940s is then provided with a special emphasis on the contributions of GRC. The traditional engine control problem has been to provide a means to safely transition the engine from one steady-state operating point to another based on the pilot throttle inputs. With the increased emphasis on aircraft safety, enhanced performance and affordability, and the need to reduce the environmental impact of aircraft, there are many new challenges being faced by the designers of aircraft propulsion systems. The Controls and Dynamics Branch (CDB) at GRC is leading and participating in various projects in partnership with other organizations within GRC and across NASA, other government agencies, the U.S. aerospace industry, and academia to develop advanced propulsion controls and diagnostics technologies that will help meet the challenging goals of NASA programs under the Aeronautics Research Mission. The second part of the lecture provides an overview of the various CDB technology development activities in aircraft engine control and diagnostics, both current and some accomplished in the recent past. The motivation for each of the research efforts, the research approach, technical challenges and the key progress to date are summarized. The technologies to be discussed include system level engine control concepts, gas path diagnostics, active component control, and distributed engine control architecture. The lecture will end with a futuristic perspective of how the various current technology developments will lead to an Intelligent and Autonomous Propulsion System requiring none to very minimum pilot interface

  9. Active Structural Control for Aircraft Efficiency with the X-56A Aircraft

    NASA Technical Reports Server (NTRS)

    Ouellette, Jeffrey

    2015-01-01

    The X-56A Multi-Utility Technology Testbed is an experimental aircraft designed to study active control of flexible structures. The vehicle is easily reconfigured to allow for testing of different configurations. The vehicle is being used to study new sensor, actuator, modeling and controls technologies. These new technologies will allow for lighter vehicles and new configurations that exceed the efficiency currently achievable. A description of the vehicle and the current research efforts that it enables are presented.

  10. Dynamic-Loads Analysis of Flexible Aircraft With Active Controls

    NASA Technical Reports Server (NTRS)

    Perry, B. I.; Durling, B. J.

    1982-01-01

    Integrated system of stand-along computer programs, DYLOFLEX, analyzes dynamic loads on flexible aircraft with active controls. DYLOFLEX capabilities include calculating dynamic loads due to continuous atmospheric turbulence, discrete gusts, and discrete control inputs. Each of the eight individual DYLOFLEX programs may be used alone or in conjunction with other DYLOFLEX programs.

  11. Diagnostics and Active Control of Aircraft Interior Noise

    NASA Technical Reports Server (NTRS)

    Fuller, C. R.

    1998-01-01

    This project deals with developing advanced methods for investigating and controlling interior noise in aircraft. The work concentrates on developing and applying the techniques of Near Field Acoustic Holography (NAH) and Principal Component Analysis (PCA) to the aircraft interior noise dynamic problem. This involves investigating the current state of the art, developing new techniques and then applying them to the particular problem being studied. The knowledge gained under the first part of the project was then used to develop and apply new, advanced noise control techniques for reducing interior noise. A new fully active control approach based on the PCA was developed and implemented on a test cylinder. Finally an active-passive approach based on tunable vibration absorbers was to be developed and analytically applied to a range of test structures from simple plates to aircraft fuselages.

  12. Blade-Pitch Control for Quieting Tilt-Rotor Aircraft

    NASA Technical Reports Server (NTRS)

    Betzina, Mark D.; Nguyen, Khanh Q.

    2004-01-01

    A method of reducing the noise generated by a tilt-rotor aircraft during descent involves active control of the blade pitch of the rotors. This method is related to prior such noise-reduction methods, of a type denoted generally as higher-harmonic control (HHC), in which the blade pitch is made to oscillate at a harmonic of the frequency of rotation of the rotor. A tilt-rotor aircraft is so named because mounted at its wing tips are motors that can be pivoted to enable the aircraft to take off and land like a helicopter or to fly like a propeller airplane. When the aircraft is operating in its helicopter mode, the rotors generate more thrust per unit rotor-disk area than helicopter rotors do, thus producing more blade-vortex interaction (BVI) noise. BVI is a major source of noise produced by helicopters and tilt-rotor aircraft during descent: When a rotor descends into its own wake, the interaction of each blade with the blade-tip vortices generated previously gives rise to large air-pressure fluctuations. These pressure fluctuations radiate as distinct, impulsive noise. In general, the pitch angle of the rotor blades of a tilt-rotor aircraft is controlled by use of a swash plate connected to the rotor blades by pitch links. In both prior HHC methods and the present method, HHC control signals are fed as input to swash-plate control actuators, causing the rotor-blade pitch to oscillate. The amplitude, frequency, and phase of the control signal can be chosen to minimize BVI noise.

  13. Spitzer IRAC Detection of Protostellar Outflows

    NASA Astrophysics Data System (ADS)

    Ybarra, Jason E.; Lada, E. A.; Balog, Z.

    2009-01-01

    We will discuss a method for detecting shocked H2 emission in IRAC band images and distinguishing H2 knots from stellar sources. Using this method we will present Spitzer IRAC imaging of a recently discovered parsec scale protostellar outflow. This outflow was detected in all four IRAC bands. The proposed source of the outflow is an embedded Class 0 object detected in the MIPS images. This work is based in part on archival data obtained with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA. Support for this work was provided by an award issued by JPL/Caltech and also a NASA LTSA Grant NNG05GD66G

  14. An aircraft model for the AIAA controls design challenge

    NASA Technical Reports Server (NTRS)

    Brumbaugh, Randal W.

    1991-01-01

    A generic, state-of-the-art, high-performance aircraft model, including detailed, full-envelope, nonlinear aerodynamics, and full-envelope thrust and first-order engine response data is described. While this model was primarily developed Controls Design Challenge, the availability of such a model provides a common focus for research in aeronautical control theory and methodology. An implementation of this model using the FORTRAN computer language, associated routines furnished with the aircraft model, and techniques for interfacing these routines to external procedures is also described. Figures showing vehicle geometry, surfaces, and sign conventions are included.

  15. Optimizing aircraft performance with adaptive, integrated flight/propulsion control

    NASA Technical Reports Server (NTRS)

    Smith, R. H.; Chisholm, J. D.; Stewart, J. F.

    1991-01-01

    The Performance-Seeking Control (PSC) integrated flight/propulsion adaptive control algorithm presented was developed in order to optimize total aircraft performance during steady-state engine operation. The PSC multimode algorithm minimizes fuel consumption at cruise conditions, while maximizing excess thrust during aircraft accelerations, climbs, and dashes, and simultaneously extending engine service life through reduction of fan-driving turbine inlet temperature upon engagement of the extended-life mode. The engine models incorporated by the PSC are continually upgraded, using a Kalman filter to detect anomalous operations. The PSC algorithm will be flight-demonstrated by an F-15 at NASA-Dryden.

  16. Feedback Linearized Aircraft Control Using Dynamic Cell Structure

    NASA Technical Reports Server (NTRS)

    Jorgensen, C. C.

    1998-01-01

    A Dynamic Cell Structure (DCS ) Neural Network was developed which learns a topology representing network (TRN) of F-15 aircraft aerodynamic stability and control derivatives. The network is combined with a feedback linearized tracking controller to produce a robust control architecture capable of handling multiple accident and off-nominal flight scenarios. This paper describes network and its performance for accident scenarios including differential stabilator lock, soft sensor failure, control, stability derivative variation, and turbulence.

  17. Systems and Methods for Collaboratively Controlling at Least One Aircraft

    NASA Technical Reports Server (NTRS)

    Estkowski, Regina I. (Inventor)

    2016-01-01

    An unmanned vehicle management system includes an unmanned aircraft system (UAS) control station controlling one or more unmanned vehicles (UV), a collaborative routing system, and a communication network connecting the UAS and the collaborative routing system. The collaborative routing system being configured to receive flight parameters from an operator of the UAS control station and, based on the received flight parameters, automatically present the UAS control station with flight plan options to enable the operator to operate the UV in a defined airspace.

  18. Optimal and suboptimal control technique for aircraft spin recovery

    NASA Technical Reports Server (NTRS)

    Young, J. W.

    1974-01-01

    An analytic investigation has been made of procedures for effecting recovery from equilibrium spin conditions for three assumed aircraft configurations. Three approaches which utilize conventional aerodynamic controls are investigated. Included are a constant control recovery mode, optimal recoveries, and a suboptimal control logic patterned after optimal recovery results. The optimal and suboptimal techniques are shown to yield a significant improvement in recovery performance over that attained by using a constant control recovery procedure.

  19. Aircraft

    DOEpatents

    Hibbs, B.D.; Lissaman, P.B.S.; Morgan, W.R.; Radkey, R.L.

    1998-09-22

    This disclosure provides a solar rechargeable aircraft that is inexpensive to produce, is steerable, and can remain airborne almost indefinitely. The preferred aircraft is a span-loaded flying wing, having no fuselage or rudder. Travelling at relatively slow speeds, and having a two-hundred foot wingspan that mounts photovoltaic cells on most all of the wing`s top surface, the aircraft uses only differential thrust of its eight propellers to turn. Each of five sections of the wing has one or more engines and photovoltaic arrays, and produces its own lift independent of the other sections, to avoid loading them. Five two-sided photovoltaic arrays, in all, are mounted on the wing, and receive photovoltaic energy both incident on top of the wing, and which is incident also from below, through a bottom, transparent surface. The aircraft is capable of a top speed of about ninety miles per hour, which enables the aircraft to attain and can continuously maintain altitudes of up to sixty-five thousand feet. Regenerative fuel cells in the wing store excess electricity for use at night, such that the aircraft can sustain its elevation indefinitely. A main spar of the wing doubles as a pressure vessel that houses hydrogen and oxygen gases for use in the regenerative fuel cell. The aircraft has a wide variety of applications, which include weather monitoring and atmospheric testing, communications, surveillance, and other applications as well. 31 figs.

  20. Aircraft

    DOEpatents

    Hibbs, Bart D.; Lissaman, Peter B. S.; Morgan, Walter R.; Radkey, Robert L.

    1998-01-01

    This disclosure provides a solar rechargeable aircraft that is inexpensive to produce, is steerable, and can remain airborne almost indefinitely. The preferred aircraft is a span-loaded flying wing, having no fuselage or rudder. Travelling at relatively slow speeds, and having a two-hundred foot wingspan that mounts photovoltaic cells on most all of the wing's top surface, the aircraft uses only differential thrust of its eight propellers to turn. Each of five sections of the wing has one or more engines and photovoltaic arrays, and produces its own lift independent of the other sections, to avoid loading them. Five two-sided photovoltaic arrays, in all, are mounted on the wing, and receive photovoltaic energy both incident on top of the wing, and which is incident also from below, through a bottom, transparent surface. The aircraft is capable of a top speed of about ninety miles per hour, which enables the aircraft to attain and can continuously maintain altitudes of up to sixty-five thousand feet. Regenerative fuel cells in the wing store excess electricity for use at night, such that the aircraft can sustain its elevation indefinitely. A main spar of the wing doubles as a pressure vessel that houses hydrogen and oxygen gasses for use in the regenerative fuel cell. The aircraft has a wide variety of applications, which include weather monitoring and atmospheric testing, communications, surveillance, and other applications as well.

  1. STOVL aircraft simulation for integrated flight and propulsion control research

    NASA Technical Reports Server (NTRS)

    Mihaloew, James R.; Drummond, Colin K.

    1989-01-01

    The United States is in the initial stages of committing to a national program to develop a supersonic short takeoff and vertical landing (STOVL) aircraft. The goal of the propulsion community in this effort is to have the enabling propulsion technologies for this type aircraft in place to permit a low risk decision regarding the initiation of a research STOVL supersonic attack/fighter aircraft in the late mid-90's. This technology will effectively integrate, enhance, and extend the supersonic cruise, STOVL and fighter/attack programs to enable U.S. industry to develop a revolutionary supersonic short takeoff and vertical landing fighter/attack aircraft in the post-ATF period. A joint NASA Lewis and NASA Ames research program, with the objective of developing and validating technology for integrated-flight propulsion control design methodologies for short takeoff and vertical landing (STOVL) aircraft, was planned and is underway. This program, the NASA Supersonic STOVL Integrated Flight-Propulsion Controls Program, is a major element of the overall NASA-Lewis Supersonic STOVL Propulsion Technology Program. It uses an integrated approach to develop an integrated program to achieve integrated flight-propulsion control technology. Essential elements of the integrated controls research program are realtime simulations of the integrated aircraft and propulsion systems which will be used in integrated control concept development and evaluations. This paper describes pertinent parts of the research program leading up to the related realtime simulation development and remarks on the simulation structure to accommodate propulsion system hardware drop-in for real system evaluation.

  2. Mapping automotive like controls to a general aviation aircraft

    NASA Astrophysics Data System (ADS)

    Carvalho, Christopher G.

    The purpose of this thesis was to develop fly-by-wire control laws enabling a general aviation aircraft to be flown with automotive controls, i.e. a steering wheel and gas/brake pedals. There was a six speed shifter used to change the flight mode of the aircraft. This essentially allows the pilot to have control over different aspects of the flight profile such as climb/descend or cruise. A highway in the sky was used to aid in the navigation since it is not intuitive to people without flight experience how to navigate from the sky or when to climb and descend. Many believe that general aviation could become as widespread as the automobile. Every person could have a personal aircraft at their disposal and it would be as easy to operate as driving an automobile. The goal of this thesis is to fuse the ease of drivability of a car with flight of a small general aviation aircraft. A standard automotive control hardware setup coupled with variably autonomous control laws will allow new pilots to fly a plane as easily as driving a car. The idea is that new pilots will require very little training to become proficient with these controls. Pilots with little time to stay current can maintain their skills simply by driving a car which is typically a daily activity. A human factors study was conducted to determine the feasibility of the applied control techniques. Pilot performance metrics were developed to compare candidates with no aviation background and experienced pilots. After analyzing the relative performance between pilots and non-pilots, it has been determined that the control system is robust and easy to learn. Candidates with no aviation experience whatsoever can learn to fly an aircraft as safely and efficiently as someone with hundreds of hours of flight experience using these controls.

  3. IRACproc: IRAC Post-BCD Processing

    NASA Astrophysics Data System (ADS)

    Schuster, Mike; Marengo, Massimo; Patten, Brian

    2012-09-01

    IRACproc is a software suite that facilitates the co-addition of dithered or mapped Spitzer/IRAC data to make them ready for further analysis with application to a wide variety of IRAC observing programs. The software runs within PDL, a numeric extension for Perl available from pdl.perl.org, and as stand alone perl scripts. In acting as a wrapper for the Spitzer Science Center's MOPEX software, IRACproc improves the rejection of cosmic rays and other transients in the co-added data. In addition, IRACproc performs (optional) Point Spread Function (PSF) fitting, subtraction, and masking of saturated stars.

  4. Active Combustion Control for Aircraft Gas Turbine Engines

    NASA Technical Reports Server (NTRS)

    DeLaat, John C.; Breisacher, Kevin J.; Saus, Joseph R.; Paxson, Daniel E.

    2000-01-01

    Lean-burning combustors are susceptible to combustion instabilities. Additionally, due to non-uniformities in the fuel-air mixing and in the combustion process, there typically exist hot areas in the combustor exit plane. These hot areas limit the operating temperature at the turbine inlet and thus constrain performance and efficiency. Finally, it is necessary to optimize the fuel-air ratio and flame temperature throughout the combustor to minimize the production of pollutants. In recent years, there has been considerable activity addressing Active Combustion Control. NASA Glenn Research Center's Active Combustion Control Technology effort aims to demonstrate active control in a realistic environment relevant to aircraft engines. Analysis and experiments are tied to aircraft gas turbine combustors. Considerable progress has been shown in demonstrating technologies for Combustion Instability Control, Pattern Factor Control, and Emissions Minimizing Control. Future plans are to advance the maturity of active combustion control technology to eventual demonstration in an engine environment.

  5. A Roadmap for Aircraft Engine Life Extending Control

    NASA Technical Reports Server (NTRS)

    Guo, Ten-Huei

    2001-01-01

    The concept of Aircraft Engine Life Extending Control is introduced. A brief description of the tradeoffs between performance and engine life are first explained. The overall goal of the life extending controller is to reduce the engine operating cost by extending the on-wing engine life while improving operational safety. The research results for NASA's Rocket Engine life extending control program are also briefly described. Major building blocks of the Engine Life Extending Control architecture are examined. These blocks include: life prediction models, engine operation models, stress and thermal analysis tools, control schemes, and intelligent control systems. The technology areas that would likely impact the successful implementation of an aircraft engine life extending control are also briefly described. Near, intermediate, and long term goals of NASA's activities are also presented.

  6. An efficient navigation-control system for small unmanned aircraft

    NASA Astrophysics Data System (ADS)

    Girwar-Nath, Jonathan Alejandro

    Unmanned Aerial Vehicles have been research in the past decade for a broad range of tasks and application domains such as search and rescue, reconnaissance, traffic control, pipe line inspections, surveillance, border patrol, and communication bridging. This work describes the design and implementation of a lightweight Commercial-Off-The-Shelf (COTS) semi-autonomous Fixed-Wing Unmanned Aerial Vehicle (UAV). Presented here is a methodology for System Identification utilizing the Box-Jenkins model estimator on recorded flight data to characterize the system and develop a mathematical model of the aircraft. Additionally, a novel microprocessor, the XMOS, is utilized to navigate and maneuver the aircraft utilizing a PD control system. In this thesis is a description of the aircraft and the sensor suite utilized, as well as the flight data and supporting videos for the benefit of the UAV research community.

  7. Recent advances in active control of aircraft cabin noise

    NASA Astrophysics Data System (ADS)

    Mathur, Gopal; Fuller, Christopher

    2002-11-01

    Active noise control techniques can provide significant reductions in aircraft interior noise levels without the structural modifications or weight penalties usually associated with passive techniques, particularly for low frequency noise. Our main objective in this presentation is to give a review of active control methods and their applications to aircraft cabin noise reduction with an emphasis on recent advances and challenges facing the noise control engineer in the practical application of these techniques. The active noise control method using secondary acoustic sources, e.g., loudspeakers, as control sources for tonal noise reduction is first discussed with results from an active noise control flight test demonstration. An innovative approach of applying control forces directly to the fuselage structure using piezoelectric actuators, known as active structural acoustic control (ASAC), to control cabin noise is then presented. Experimental results from laboratory ASAC tests conducted on a full-scale fuselage and from flight tests on a helicopter will be discussed. Finally, a hybrid active/passive noise control approach for achieving significant broadband noise reduction will be discussed. Experimental results of control of broadband noise transmission through an aircraft structure will be presented.

  8. Full-Scale Flight Research Testbeds: Adaptive and Intelligent Control

    NASA Technical Reports Server (NTRS)

    Pahle, Joe W.

    2008-01-01

    This viewgraph presentation describes the adaptive and intelligent control methods used for aircraft survival. The contents include: 1) Motivation for Adaptive Control; 2) Integrated Resilient Aircraft Control Project; 3) Full-scale Flight Assets in Use for IRAC; 4) NASA NF-15B Tail Number 837; 5) Gen II Direct Adaptive Control Architecture; 6) Limited Authority System; and 7) 837 Flight Experiments. A simulated destabilization failure analysis along with experience and lessons learned are also presented.

  9. An advanced control system for a next generation transport aircraft

    NASA Technical Reports Server (NTRS)

    Rising, J. J.; Davis, W. J; Grantham, W. D.

    1983-01-01

    The use of modern control theory to develop a high-authority stability and control system for the next generation transport aircraft is described with examples taken from work performed on an advanced pitch active control system (PACS). The PACS was configured to have short-period and phugoid modes frequency and damping characteristics within the shaded S-plane areas, column force gradients with set bounds and with constant slope, and a blended normal-acceleration/pitch rate time history response to a step command. Details of the control law, feedback loop, and modal control syntheses are explored, as are compensation for the feedback gain, the deletion of the velocity signal, and the feed-forward compensation. Scheduling of the primary and secondary gains are discussed, together with control law mechanization, flying qualities analyses, and application on the L-1011 aircraft.

  10. Feedback control laws for highly maneuverable aircraft

    NASA Technical Reports Server (NTRS)

    Garrard, William L.; Balas, Gary J.

    1995-01-01

    During this year, we concentrated our efforts on the design of controllers for lateral/directional control using mu synthesis. This proved to be a more difficult task than we anticipated and we are still working on the designs. In the lateral-directional control problem, the inputs are pilot lateral stick and pedal commands and the outputs are roll rate about the velocity vector and side slip angle. The control effectors are ailerons, rudder deflection, and directional thrust vectoring vane deflection which produces a yawing moment about the body axis. Our math model does not contain any provision for thrust vectoring of rolling moment. This has resulted in limitations of performance at high angles of attack. During 1994-95, the following tasks for the lateral-directional controllers were accomplished: (1) Designed both inner and outer loop dynamic inversion controllers. These controllers are implemented using accelerometer outputs rather than an a priori model of the vehicle aerodynamics; (2) Used classical techniques to design controllers for the system linearized by dynamics inversion. These controllers acted to control roll rate and Dutch roll response; (3) Implemented the inner loop dynamic inversion and classical controllers on the six DOF simulation; (4) Developed a lateral-directional control allocation scheme based on minimizing required control effort among the ailerons, rudder, and directional thrust vectoring; and (5) Developed mu outer loop controllers combined with classical inner loop controllers.

  11. Damped Windows for Aircraft Interior Noise Control

    NASA Technical Reports Server (NTRS)

    Buehrle, Ralph D.; Klos, Jacob; Gibbs, Gary P.

    2004-01-01

    Windows are a significant path for structure-borne and air-borne noise transmission into aircraft. To improve the acoustical performance, damped windows were fabricated using two or three layers of plexiglas with transparent viscoelastic damping material sandwiched between the layers. In this paper, numerical and experimental results are used to evaluate the acoustic benefits of damped windows. Tests were performed in the Structural Acoustic Loads and Transmission Facility at NASA Langley Research Center to measure the transmission loss for diffuse acoustic excitation and radiated sound power for point force excitation. Comparisons between uniform and damped plexiglas windows showed increased transmission loss of 6 dB at the first natural frequency, 6 dB at coincidence, and 4.5 dB over a 50 to 4k Hz range. Radiated sound power was reduced up to 7 dB at the lower natural frequencies and 3.7 dB over a 1000 Hz bandwidth. Numerical models are presented for the prediction of radiated sound power for point force excitation and transmission loss for diffuse acoustic excitation. Radiated sound power and transmission loss predictions are in good agreement with experimental data. A parametric study is presented that evaluates the optimum configuration of the damped plexiglas windows for reducing the radiated sound power.

  12. Intelligent Life-Extending Controls for Aircraft Engines Studied

    NASA Technical Reports Server (NTRS)

    Guo, Ten-Huei

    2005-01-01

    Current aircraft engine controllers are designed and operated to provide desired performance and stability margins. Except for the hard limits for extreme conditions, engine controllers do not usually take engine component life into consideration during the controller design and operation. The end result is that aircraft pilots regularly operate engines under unnecessarily harsh conditions to strive for optimum performance. The NASA Glenn Research Center and its industrial and academic partners have been working together toward an intelligent control concept that will include engine life as part of the controller design criteria. This research includes the study of the relationship between control action and engine component life as well as the design of an intelligent control algorithm to provide proper tradeoffs between performance and engine life. This approach is expected to maintain operating safety while minimizing overall operating costs. In this study, the thermomechanical fatigue (TMF) of a critical component was selected to demonstrate how an intelligent engine control algorithm can significantly extend engine life with only a very small sacrifice in performance. An intelligent engine control scheme based on modifying the high-pressure spool speed (NH) was proposed to reduce TMF damage from ground idle to takeoff. The NH acceleration schedule was optimized to minimize the TMF damage for a given rise-time constraint, which represents the performance requirement. The intelligent engine control scheme was used to simulate a commercial short-haul aircraft engine.

  13. Optimal Discrete Event Supervisory Control of Aircraft Gas Turbine Engines

    NASA Technical Reports Server (NTRS)

    Litt, Jonathan (Technical Monitor); Ray, Asok

    2004-01-01

    This report presents an application of the recently developed theory of optimal Discrete Event Supervisory (DES) control that is based on a signed real measure of regular languages. The DES control techniques are validated on an aircraft gas turbine engine simulation test bed. The test bed is implemented on a networked computer system in which two computers operate in the client-server mode. Several DES controllers have been tested for engine performance and reliability.

  14. Control optimization, stabilization and computer algorithms for aircraft applications

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Research related to reliable aircraft design is summarized. Topics discussed include systems reliability optimization, failure detection algorithms, analysis of nonlinear filters, design of compensators incorporating time delays, digital compensator design, estimation for systems with echoes, low-order compensator design, descent-phase controller for 4-D navigation, infinite dimensional mathematical programming problems and optimal control problems with constraints, robust compensator design, numerical methods for the Lyapunov equations, and perturbation methods in linear filtering and control.

  15. Optimal Aircraft Control Upset Recovery With and Without Component Failures

    NASA Technical Reports Server (NTRS)

    Sparks, Dean W.; Moerder, Daniel D.

    2002-01-01

    This paper treats the problem of recovering sustainable nondescending (safe) flight in a transport aircraft after one or more of its control effectors fail. Such recovery can be a challenging goal for many transport aircraft currently in the operational fleet for two reasons. First, they have very little redundancy in their means of generating control forces and moments. These aircraft have, as primary control surfaces, a single rudder and pairwise elevators and aileron/spoiler units that provide yaw, pitch, and roll moments with sufficient bandwidth to be used in stabilizing and maneuvering the airframe. Beyond this, throttling the engines can provide additional moments, but on a much slower time scale. Other aerodynamic surfaces, such as leading and trailing edge flaps, are only intended to be placed in a position and left, and are, hence, very slow-moving. Because of this, loss of a primary control surface strongly degrades the controllability of the vehicle, particularly when the failed effector becomes stuck in a non-neutral position where it exerts a disturbance moment that must be countered by the remaining operating effectors. The second challenge in recovering safe flight is that these vehicles are not agile, nor can they tolerate large accelerations. This is of special importance when, at the outset of the recovery maneuver, the aircraft is flying toward the ground, as is frequently the case when there are major control hardware failures. Recovery of safe flight is examined in this paper in the context of trajectory optimization. For a particular transport aircraft, and a failure scenario inspired by an historical air disaster, recovery scenarios are calculated with and without control surface failures, to bring the aircraft to safe flight from the adverse flight condition that it had assumed, apparently as a result of contact with a vortex from a larger aircraft's wake. An effort has been made to represent relevant airframe dynamics, acceleration limits

  16. Pseudo Aircraft Systems - A multi-aircraft simulation system for air traffic control research

    NASA Technical Reports Server (NTRS)

    Weske, Reid A.; Danek, George L.

    1993-01-01

    Pseudo Aircraft Systems (PAS) is a computerized flight dynamics and piloting system designed to provide a high fidelity multi-aircraft real-time simulation environment to support Air Traffic Control research. PAS is composed of three major software components that run on a network of computer workstations. Functionality is distributed among these components to allow the system to execute fast enough to support real-time operation. PAS workstations are linked by an Ethernet Local Area Network, and standard UNIX socket protocol is used for data transfer. Each component of PAS is controlled and operated using a custom designed Graphical User Interface. Each of these is composed of multiple windows, and many of the windows and sub-windows are used in several of the components. Aircraft models and piloting logic are sophisticated and realistic and provide complex maneuvering and navigational capabilities. PAS will continually be enhanced with new features and improved capabilities to support ongoing and future Air Traffic Control system development.

  17. Hierarchical Discrete Event Supervisory Control of Aircraft Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Yasar, Murat; Tolani, Devendra; Ray, Asok; Shah, Neerav; Litt, Jonathan S.

    2004-01-01

    This paper presents a hierarchical application of Discrete Event Supervisory (DES) control theory for intelligent decision and control of a twin-engine aircraft propulsion system. A dual layer hierarchical DES controller is designed to supervise and coordinate the operation of two engines of the propulsion system. The two engines are individually controlled to achieve enhanced performance and reliability, necessary for fulfilling the mission objectives. Each engine is operated under a continuously varying control system that maintains the specified performance and a local discrete-event supervisor for condition monitoring and life extending control. A global upper level DES controller is designed for load balancing and overall health management of the propulsion system.

  18. A multiple objective optimization approach to aircraft control systems design

    NASA Technical Reports Server (NTRS)

    Tabak, D.; Schy, A. A.; Johnson, K. G.; Giesy, D. P.

    1979-01-01

    The design of an aircraft lateral control system, subject to several performance criteria and constraints, is considered. While in the previous studies of the same model a single criterion optimization, with other performance requirements expressed as constraints, has been pursued, the current approach involves a multiple criteria optimization. In particular, a Pareto optimal solution is sought.

  19. Cabin Noise Control for Twin Engine General Aviation Aircraft

    NASA Technical Reports Server (NTRS)

    Vaicaitis, R.; Slazak, M.

    1982-01-01

    An analytical model based on modal analysis was developed to predict the noise transmission into a twin-engine light aircraft. The model was applied to optimize the interior noise to an A-weighted level of 85 dBA. To achieve the required noise attenuation, add-on treatments in the form of honeycomb panels, damping tapes, acoustic blankets, septum barriers and limp trim panels were added to the existing structure. The added weight of the noise control treatment is about 1.1 percent of the total gross take-off weight of the aircraft.

  20. Bayesian Software Health Management for Aircraft Guidance, Navigation, and Control

    NASA Technical Reports Server (NTRS)

    Schumann, Johann; Mbaya, Timmy; Menghoel, Ole

    2011-01-01

    Modern aircraft, both piloted fly-by-wire commercial aircraft as well as UAVs, more and more depend on highly complex safety critical software systems with many sensors and computer-controlled actuators. Despite careful design and V&V of the software, severe incidents have happened due to malfunctioning software. In this paper, we discuss the use of Bayesian networks (BNs) to monitor the health of the on-board software and sensor system, and to perform advanced on-board diagnostic reasoning. We will focus on the approach to develop reliable and robust health models for the combined software and sensor systems.

  1. Aircraft Loss of Control Causal Factors and Mitigation Challenges

    NASA Technical Reports Server (NTRS)

    Jacobson, Steven R.

    2010-01-01

    Loss of control is the leading cause of jet fatalities worldwide. Aside from their frequency of occurrence, accidents resulting from loss of aircraft control seize the public s attention by yielding a large number of fatalities in a single event. In response to the rising threat to aviation safety, the NASA Aviation Safety Program has conducted a study of the loss of control problem. This study gathered four types of information pertaining to loss of control accidents: (1) statistical data; (2) individual accident reports that cite loss of control as a contributing factor; (3) previous meta-analyses of loss of control accidents; and (4) inputs solicited from aircraft manufacturers, air carriers, researchers, and other industry stakeholders. Using these information resources, the study team identified the causal factors that were cited in the greatest number of loss of control accidents, and which were emphasized most by industry stakeholders. This report describes the study approach, the key causal factors for aircraft loss of control, and recommended mitigation strategies to make near-term impacts, mid-term impacts, and Next Generation Air Transportation System impacts on the loss of control accident statistics

  2. System identification methods for aircraft flight control development and validation

    NASA Technical Reports Server (NTRS)

    Tischler, Mark B.

    1995-01-01

    System-identification methods compose a mathematical model, or series of models, from measurements of inputs and outputs of dynamic systems. The extracted models allow the characterization of the response of the overall aircraft or component subsystem behavior, such as actuators and on-board signal processing algorithms. This paper discusses the use of frequency-domain system-identification methods for the development and integration of aircraft flight-control systems. The extraction and analysis of models of varying complexity from nonparametric frequency-responses to transfer-functions and high-order state-space representations is illustrated using the Comprehensive Identification from FrEquency Responses (CIFER) system-identification facility. Results are presented for test data of numerous flight and simulation programs at the Ames Research Center including rotorcraft, fixed-wing aircraft, advanced short takeoff and vertical landing (ASTOVL), vertical/short takeoff and landing (V/STOL), tiltrotor aircraft, and rotor experiments in the wind tunnel. Excellent system characterization and dynamic response prediction is achieved for this wide class of systems. Examples illustrate the role of system-identification technology in providing an integrated flow of dynamic response data around the entire life-cycle of aircraft development from initial specifications, through simulation and bench testing, and into flight-test optimization.

  3. Integrated flight/propulsion control for supersonic STOVL aircraft

    NASA Technical Reports Server (NTRS)

    Franklin, James A.; Stortz, Michael W.; Mihaloew, James R.

    1990-01-01

    A technology program to investigate integrated flight/propulsion control-system design for STOVL fighter aircraft is described. Integrated control systems being developed by U.S. industry for specific STOVL concepts are discussed. Attention is given to NASA involvement in the definition of control concepts, design-methods and flying-qualities criteria, and the evaluation of these concepts and criteria in analytical design studies, in ground-based experiments, and in flight on the Harrier V/STOL research aircraft. Initial fixed-base simulation experiments conducted for two STOVL fighter concepts are discussed. These simulations defined acceptable transition flight envelopes, determined control power used during transition and hover, and provided evaluations of the integration of the flight and propulsion controls to achieve good flying qualities throughout the low-speed flight envelope.

  4. Effects of mass on aircraft sidearm controller characteristics

    NASA Technical Reports Server (NTRS)

    Wagner, Charles A.

    1994-01-01

    When designing a flight simulator, providing a set of low mass variable-characteristic pilot controls can be very difficult. Thus, a strong incentive exists to identify the highest possible mass that will not degrade the validity of a simulation. The NASA Dryden Flight Research Center has conducted a brief flight program to determine the maximum acceptable mass (system inertia) of an aircraft sidearm controller as a function of force gradient. This information is useful for control system design in aircraft as well as development of suitable flight simulator controls. A modified Learjet with a variable-characteristic sidearm controller was used to obtain data. A boundary was defined between mass considered acceptable and mass considered unacceptable to the pilot. This boundary is defined as a function of force gradient over a range of natural frequencies. This investigation is limited to a study of mass-frequency characteristics only. Results of this investigation are presented in this paper.

  5. Fault-tolerant software for aircraft control systems

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Concepts for software to implement real time aircraft control systems on a centralized digital computer were discussed. A fault tolerant software structure employing functionally redundant routines with concurrent error detection was proposed for critical control functions involving safety of flight and landing. A degraded recovery block concept was devised to allow collocation of critical and noncritical software modules within the same control structure. The additional computer resources required to implement the proposed software structure for a representative set of aircraft control functions were discussed. It was estimated that approximately 30 percent more memory space is required to implement the total set of control functions. A reliability model for the fault tolerant software was described and parametric estimates of failure rate were made.

  6. Fuzzy-neural control of an aircraft tracking camera platform

    NASA Technical Reports Server (NTRS)

    Mcgrath, Dennis

    1994-01-01

    A fuzzy-neural control system simulation was developed for the control of a camera platform used to observe aircraft on final approach to an aircraft carrier. The fuzzy-neural approach to control combines the structure of a fuzzy knowledge base with a supervised neural network's ability to adapt and improve. The performance characteristics of this hybrid system were compared to those of a fuzzy system and a neural network system developed independently to determine if the fusion of these two technologies offers any advantage over the use of one or the other. The results of this study indicate that the fuzzy-neural approach to control offers some advantages over either fuzzy or neural control alone.

  7. Direct Adaptive Aircraft Control Using Dynamic Cell Structure Neural Networks

    NASA Technical Reports Server (NTRS)

    Jorgensen, Charles C.

    1997-01-01

    A Dynamic Cell Structure (DCS) Neural Network was developed which learns topology representing networks (TRNS) of F-15 aircraft aerodynamic stability and control derivatives. The network is integrated into a direct adaptive tracking controller. The combination produces a robust adaptive architecture capable of handling multiple accident and off- nominal flight scenarios. This paper describes the DCS network and modifications to the parameter estimation procedure. The work represents one step towards an integrated real-time reconfiguration control architecture for rapid prototyping of new aircraft designs. Performance was evaluated using three off-line benchmarks and on-line nonlinear Virtual Reality simulation. Flight control was evaluated under scenarios including differential stabilator lock, soft sensor failure, control and stability derivative variations, and air turbulence.

  8. Research in robust control for hypersonic aircraft

    NASA Technical Reports Server (NTRS)

    Calise, A. J.

    1994-01-01

    The research during the third reporting period focused on fixed order robust control design for hypersonic vehicles. A new technique was developed to synthesize fixed order H(sub infinity) controllers. A controller canonical form is imposed on the compensator structure and a homotopy algorithm is employed to perform the controller design. Various reduced order controllers are designed for a simplified version of the hypersonic vehicle model used in our previous studies to demonstrate the capabilities of the code. However, further work is needed to investigate the issue of numerical ill-conditioning for large order systems and to make the numerical approach more reliable.

  9. IRAC Full-Scale Flight Testbed Capabilities

    NASA Technical Reports Server (NTRS)

    Lee, James A.; Pahle, Joseph; Cogan, Bruce R.; Hanson, Curtis E.; Bosworth, John T.

    2009-01-01

    Overview: Provide validation of adaptive control law concepts through full scale flight evaluation in a representative avionics architecture. Develop an understanding of aircraft dynamics of current vehicles in damaged and upset conditions Real-world conditions include: a) Turbulence, sensor noise, feedback biases; and b) Coupling between pilot and adaptive system. Simulated damage includes 1) "B" matrix (surface) failures; and 2) "A" matrix failures. Evaluate robustness of control systems to anticipated and unanticipated failures.

  10. Robust nonlinear control of vectored thrust aircraft

    NASA Technical Reports Server (NTRS)

    Doyle, John C.; Murray, Richard; Morris, John

    1993-01-01

    An interdisciplinary program in robust control for nonlinear systems with applications to a variety of engineering problems is outlined. Major emphasis will be placed on flight control, with both experimental and analytical studies. This program builds on recent new results in control theory for stability, stabilization, robust stability, robust performance, synthesis, and model reduction in a unified framework using Linear Fractional Transformations (LFT's), Linear Matrix Inequalities (LMI's), and the structured singular value micron. Most of these new advances have been accomplished by the Caltech controls group independently or in collaboration with researchers in other institutions. These recent results offer a new and remarkably unified framework for all aspects of robust control, but what is particularly important for this program is that they also have important implications for system identification and control of nonlinear systems. This combines well with Caltech's expertise in nonlinear control theory, both in geometric methods and methods for systems with constraints and saturations.

  11. Feedback control laws for highly maneuverable aircraft

    NASA Technical Reports Server (NTRS)

    Garrard, William L.; Balas, Gary J.

    1994-01-01

    During the first half of the year, the investigators concentrated their efforts on completing the design of control laws for the longitudinal axis of the HARV. During the second half of the year they concentrated on the synthesis of control laws for the lateral-directional axes. The longitudinal control law design efforts can be briefly summarized as follows. Longitudinal control laws were developed for the HARV using mu synthesis design techniques coupled with dynamic inversion. An inner loop dynamic inversion controller was used to simplify the system dynamics by eliminating the aerodynamic nonlinearities and inertial cross coupling. Models of the errors resulting from uncertainties in the principal longitudinal aerodynamic terms were developed and included in the model of the HARV with the inner loop dynamic inversion controller. This resulted in an inner loop transfer function model which was an integrator with the modeling errors characterized as uncertainties in gain and phase. Outer loop controllers were then designed using mu synthesis to provide robustness to these modeling errors and give desired response to pilot inputs. Both pitch rate and angle of attack command following systems were designed. The following tasks have been accomplished for the lateral-directional controllers: inner and outer loop dynamic inversion controllers have been designed; an error model based on a linearized perturbation model of the inner loop system was derived; controllers for the inner loop system have been designed, using classical techniques, that control roll rate and Dutch roll response; the inner loop dynamic inversion and classical controllers have been implemented on the six degree of freedom simulation; and lateral-directional control allocation scheme has been developed based on minimizing required control effort.

  12. Dynamics and control of robotic aircraft with articulated wings

    NASA Astrophysics Data System (ADS)

    Paranjape, Aditya Avinash

    There is a considerable interest in developing robotic aircraft, inspired by birds, for a variety of missions covering reconnaissance and surveillance. Flapping wing aircraft concepts have been put forth in light of the efficiency of flapping flight at small scales. These aircraft are naturally equipped with the ability to rotate their wings about the root, a form of wing articulation. This thesis covers some problems concerning the performance, stability and control of robotic aircraft with articulated wings in gliding flight. Specifically, we are interested in aircraft without a vertical tail, which would then use wing articulation for longitudinal as well as lateral-directional control. Although the dynamics and control of articulated wing aircraft share several common features with conventional fixed wing aircraft, the presence of wing articulation presents several unique benefits as well as limitations from the perspective of performance and control. One of the objective of this thesis is to understand these features using a combination of theoretical and numerical tools. The aircraft concept envisioned in this thesis uses the wing dihedral angles for longitudinal and lateral-directional control. Aircraft with flexible articulated wings are also investigated. We derive a complete nonlinear model of the flight dynamics incorporating dynamic CG location and the changing moment of inertia. We show that symmetric dihedral configuration, along with a conventional horizontal tail, can be used to control flight speed and flight path angle independently of each other. This characteristic is very useful for initiating an efficient perching maneuver. It is shown that wing dihedral angles alone can effectively regulate sideslip during rapid turns and generate a wide range of equilibrium turn rates while maintaining a constant flight speed and regulating sideslip. We compute the turning performance limitations that arise due to the use of wing dihedral for yaw control

  13. Research in robust control for hypersonic aircraft

    NASA Technical Reports Server (NTRS)

    Calise, A. J.

    1993-01-01

    The research during the second reporting period has focused on robust control design for hypersonic vehicles. An already existing design for the Hypersonic Winged-Cone Configuration has been enhanced. Uncertainty models for the effects of propulsion system perturbations due to angle of attack variations, structural vibrations, and uncertainty in control effectiveness were developed. Using H(sub infinity) and mu-synthesis techniques, various control designs were performed in order to investigate the impact of these effects on achievable robust performance.

  14. Switching LPV Control for High Performance Tactical Aircraft

    NASA Technical Reports Server (NTRS)

    Lu, Bei; Wu, Fen; Kim, SungWan

    2004-01-01

    This paper examines a switching Linear Parameter-Varying (LPV) control approach to determine if it is practical to use for flight control designs within a wide angle of attack region. The approach is based on multiple parameter-dependent Lyapunov functions. The full parameter space is partitioned into overlapping subspaces and a family of LPV controllers are designed, each suitable for a specific parameter subspace. The hysteresis switching logic is used to accomplish the transition among different parameter subspaces. The proposed switching LPV control scheme is applied to an F-16 aircraft model with different actuator dynamics in low and high angle of attack regions. The nonlinear simulation results show that the aircraft performs well when switching among different angle of attack regions.

  15. Actively Controlled Landing Gear for Aircraft Vibration Reduction

    NASA Technical Reports Server (NTRS)

    Horta, Lucas G.; Daugherty, Robert H.; Martinson, Veloria J.

    1999-01-01

    Concepts for long-range air travel are characterized by airframe designs with long, slender, relatively flexible fuselages. One aspect often overlooked is ground induced vibration of these aircraft. This paper presents an analytical and experimental study of reducing ground-induced aircraft vibration loads using actively controlled landing gears. A facility has been developed to test various active landing gear control concepts and their performance. The facility uses a NAVY A6-intruder landing gear fitted with an auxiliary hydraulic supply electronically controlled by servo valves. An analytical model of the gear is presented including modifications to actuate the gear externally and test data is used to validate the model. The control design is described and closed-loop test and analysis comparisons are presented.

  16. The design of digital-adaptive controllers for VTOL aircraft

    NASA Technical Reports Server (NTRS)

    Stengel, R. F.; Broussard, J. R.; Berry, P. W.

    1976-01-01

    Design procedures for VTOL automatic control systems have been developed and are presented. Using linear-optimal estimation and control techniques as a starting point, digital-adaptive control laws have been designed for the VALT Research Aircraft, a tandem-rotor helicopter which is equipped for fully automatic flight in terminal area operations. These control laws are designed to interface with velocity-command and attitude-command guidance logic, which could be used in short-haul VTOL operations. Developments reported here include new algorithms for designing non-zero-set-point digital regulators, design procedures for rate-limited systems, and algorithms for dynamic control trim setting.

  17. 77 FR 65823 - Control of Air Pollution From Aircraft and Aircraft Engines; Emission Standards and Test Procedures

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-31

    ... From the Federal Register Online via the Government Publishing Office ENVIRONMENTAL PROTECTION AGENCY 40 CFR Parts 87 RIN 2060-AO70 Control of Air Pollution From Aircraft and Aircraft Engines; Emission Standards and Test Procedures Correction In rule document 2012-13828 appearing on pages...

  18. Knowledge-based processing for aircraft flight control

    NASA Technical Reports Server (NTRS)

    Painter, John H.

    1991-01-01

    The purpose is to develop algorithms and architectures for embedding artificial intelligence in aircraft guidance and control systems. With the approach adopted, AI-computing is used to create an outer guidance loop for driving the usual aircraft autopilot. That is, a symbolic processor monitors the operation and performance of the aircraft. Then, based on rules and other stored knowledge, commands are automatically formulated for driving the autopilot so as to accomplish desired flight operations. The focus is on developing a software system which can respond to linguistic instructions, input in a standard format, so as to formulate a sequence of simple commands to the autopilot. The instructions might be a fairly complex flight clearance, input either manually or by data-link. Emphasis is on a software system which responds much like a pilot would, employing not only precise computations, but, also, knowledge which is less precise, but more like common-sense. The approach is based on prior work to develop a generic 'shell' architecture for an AI-processor, which may be tailored to many applications by describing the application in appropriate processor data bases (libraries). Such descriptions include numerical models of the aircraft and flight control system, as well as symbolic (linguistic) descriptions of flight operations, rules, and tactics.

  19. The Role of Modern Control Theory in the Design of Controls for Aircraft Turbine Engines

    NASA Technical Reports Server (NTRS)

    Zeller, J.; Lehtinen, B.; Merrill, W.

    1982-01-01

    Accomplishments in applying Modern Control Theory to the design of controls for advanced aircraft turbine engines were reviewed. The results of successful research programs are discussed. Ongoing programs as well as planned or recommended future thrusts are also discussed.

  20. Modal Filtering for Control of Flexible Aircraft

    NASA Technical Reports Server (NTRS)

    Suh, Peter M.; Mavris, Dimitri N.

    2013-01-01

    Modal regulators and deformation trackers are designed for an open-loop fluttering wing model. The regulators are designed with modal coordinate and accelerometer inputs respectively. The modal coordinates are estimated with simulated fiber optics. The robust stability of the closed-loop systems is compared in a structured singular-value vector analysis. Performance is evaluated and compared in a gust alleviation and flutter suppression simulation. For the same wing and flight condition two wing-shape-tracking control architectures are presented, which achieve deformation control at any point on the wing.

  1. Flight Test of ASAC Aircraft Interior Noise Control System

    NASA Technical Reports Server (NTRS)

    Palumbo, Dan; Cabell, Ran; Cline, John; Sullivan, Brenda

    1999-01-01

    A flight test is described in which an active structural/acoustic control system reduces turboprop induced interior noise on a Raytheon Aircraft Company 1900D airliner. Control inputs to 21 inertial force actuators were computed adaptively using a transform domain version of the multichannel filtered-X LMS algorithm to minimize the mean square response of 32 microphones. A combinatorial search algorithm was employed to optimize placement of the force actuators on the aircraft frame. Both single frequency and multi-frequency results are presented. Reductions of up to 15 dB were obtained at the blade passage frequency (BPF) during single frequency control tests. Simultaneous reductions of the BPF and next 2 harmonics of 10 dB, 2.5 dB and 3.0 dB, were obtained in a multi-frequency test.

  2. Adaptive Control of a Transport Aircraft Using Differential Thrust

    NASA Technical Reports Server (NTRS)

    Stepanyan, Vahram; Krishnakumar, Kalmanje; Nguyen, Nhan

    2009-01-01

    The paper presents an adaptive control technique for a damaged large transport aircraft subject to unknown atmospheric disturbances such as wind gust or turbulence. It is assumed that the damage results in vertical tail loss with no rudder authority, which is replaced with a differential thrust input. The proposed technique uses the adaptive prediction based control design in conjunction with the time scale separation principle, based on the singular perturbation theory. The application of later is necessitated by the fact that the engine response to a throttle command is substantially slow that the angular rate dynamics of the aircraft. It is shown that this control technique guarantees the stability of the closed-loop system and the tracking of a given reference model. The simulation example shows the benefits of the approach.

  3. Selection of sampling rate for digital control of aircrafts

    NASA Technical Reports Server (NTRS)

    Katz, P.; Powell, J. D.

    1974-01-01

    The considerations in selecting the sample rates for digital control of aircrafts are identified and evaluated using the optimal discrete method. A high performance aircraft model which includes a bending mode and wind gusts was studied. The following factors which influence the selection of the sampling rates were identified: (1) the time and roughness response to control inputs; (2) the response to external disturbances; and (3) the sensitivity to variations of parameters. It was found that the time response to a control input and the response to external disturbances limit the selection of the sampling rate. The optimal discrete regulator, the steady state Kalman filter, and the mean response to external disturbances are calculated.

  4. Interactive aircraft flight control and aeroelastic stabilization

    NASA Technical Reports Server (NTRS)

    Weisshaar, T. A.

    1985-01-01

    Aeroservoelastic optimization techniques were studied to determine a methodology for maximization of the stable flight envelope of an idealized, actively controlled, flexible airfoil. The equations of motion for the airfoil were developed in state-space form to include time-domain representations of aerodynamic forces and active control. The development of an optimization scheme to stabilize the aeroelastic system over a range of airspeeds, including the design airspeed is outlined. The solution approach was divided in two levels: (1) the airfoil structure, with a design variable represented by the shear center position; and (2) the control system. An objective was stated in mathematical form and a search was conducted with the restriction that each subsystem be constrained to be optimal in some sense. Analytical expressions are developed to compute the changes in the eigenvalues of the closed-loop, actively controlled system. A stability index is constructed to ensure that stability is present at the design speed and at other airspeeds away from the design speed.

  5. Control of turbofan lift engines for VTOL aircraft

    NASA Technical Reports Server (NTRS)

    Sellers, J. F.; Szuch, J. R.

    1973-01-01

    The use of turbofan engines as lift units for VTOL aircraft poses new engine control problems. At low flight speeds, the lift units must provide the fast thrust response needed for aircraft attitude and height control. The results are presented of an analytical study of the dynamics and control of turbofan lift engines, and methods are proposed for meeting the response requirements imposed by the VTOL aircraft application. Two types of lift fan engines are discussed: the integral and remote. The integral engine is a conventional two-spool, high bypass ratio turbofan designed for low noise and short length. The remote engine employs a gas generator and a lift fan which are separated by a duct, and which need not be coaxial. For the integral engine, a control system design is presented which satisfies the VTOL response requirements. For the remote engine, two unconventional methods of control involving flow transfer between lift units are discussed. Both methods are shown to have thrust response near the required levels.

  6. Fiber Optics For Aircraft Engine/Inlet Control

    NASA Astrophysics Data System (ADS)

    Baumbick, Robert J.

    1982-01-01

    A review of NASA programs which focus on the use of fiber optics for aircraft engine/inlet control is presented. Fiber optics for aircraft control is attractive because of its inherent immunity to EMI and RFI noise. Optical signals can be safely transmitted through areas that contain flammable or explosive materials. The use of optics also makes remote sensing feasible, eliminating the need for electrical wires to be connected between sensors and computers. Using low level optical signals to control actuators is also feasible when power is generated at the actuator. For engine/inlet control applications, fiber optic cables and cornectors will be subjected to nacelle air temperatures. These temperatures range between -55°C to 260°C. Each application of fiber optics for aircraft control has different requirements for both the optical cables and optical connectors. Sensors that measure position and speed using slotted plates can use lossy cables and bundle type connectors if data transfer is in the parallel mode. If position and speed signals are multiplexed cable and connector requirements change. Other sensors that depend on changes in transmission through materials require dependable characteristics of both the optical cable and optical connectors. A variety of sensor types are reviewed, including rotary position encoders, tachometers, temperature sensors, and blade tip clearance sensors for compressors and turbines. Research on a gallium arsenide photoswitch for optically-switched actuators that operate at 250°C is also described.

  7. Components for digitally controlled aircraft engines

    NASA Technical Reports Server (NTRS)

    Meador, J. D.

    1981-01-01

    Control system components suitable for use in digital electronic control systems are defined. Compressor geometry actuation concepts and fuel handling system concepts suitable for use in large high performance turbofan/turbojet engines are included. Eight conceptual system designs were formulated for the actuation of the compressor geometry. Six conceptual system designs were formulated for the engine fuel handling system. Assessment criteria and weighting factors were established and trade studies performed on their candidate systems to establish the relative merits of the various concepts. Fuel pumping and metering systems for small turboshaft engines were also studied. Seven conceptual designs were formulated, and trade studies performed. A simplified bypassing fuel metering scheme was selected and a preliminary design defined.

  8. Utilization of separate surface control systems on general aviation aircraft

    NASA Technical Reports Server (NTRS)

    Roskam, J.

    1977-01-01

    The application of separate surface control systems to general aviation aircraft is discussed. Block diagrams of a conventional control system with autopilot tie-in and of a separate surface control system are presented, and the advantages and disadvantages of the two systems are compared. Theoretical descriptions of pilot-in-the-loop operation and operation in the autopilot mode are presented. The application of separate surface stability augmentation in yaw dampers, wing levelers, and static longitudinal stability augmentation is examined. The state-of-the-art of separate control surface technology is summarized.

  9. Approach path control for powered-lift STOL aircraft

    NASA Technical Reports Server (NTRS)

    Clymer, D. J.; Flora, C. C.

    1973-01-01

    A flight control system concept is defined for approach flightpath control of an augmentor wing (or similar) powered-lift STOL configuration. The proposed STOL control concept produces aircraft transient and steady-state control responses that are familiar to pilots of conventional jet transports, and has potential for good handling qualities ratings in all approach and landing phases. The effects of trailing-edge rate limits, real-engine dynamics, and atmospheric turbulence are considered in the study. A general discussion of STOL handling qualities problems and piloting techniques is included.

  10. Neural network application to aircraft control system design

    NASA Technical Reports Server (NTRS)

    Troudet, Terry; Garg, Sanjay; Merrill, Walter C.

    1991-01-01

    The feasibility of using artificial neural network as control systems for modern, complex aerospace vehicles is investigated via an example aircraft control design study. The problem considered is that of designing a controller for an integrated airframe/propulsion longitudinal dynamics model of a modern fighter aircraft to provide independent control of pitch rate and airspeed responses to pilot command inputs. An explicit model following controller using H infinity control design techniques is first designed to gain insight into the control problem as well as to provide a baseline for evaluation of the neurocontroller. Using the model of the desired dynamics as a command generator, a multilayer feedforward neural network is trained to control the vehicle model within the physical limitations of the actuator dynamics. This is achieved by minimizing an objective function which is a weighted sum of tracking errors and control input commands and rates. To gain insight in the neurocontrol, linearized representations of the nonlinear neurocontroller are analyzed along a commanded trajectory. Linear robustness analysis tools are then applied to the linearized neurocontroller models and to the baseline H infinity based controller. Future areas of research identified to enhance the practical applicability of neural networks to flight control design.

  11. Neural network application to aircraft control system design

    NASA Technical Reports Server (NTRS)

    Troudet, Terry; Garg, Sanjay; Merrill, Walter C.

    1991-01-01

    The feasibility of using artificial neural networks as control systems for modern, complex aerospace vehicles is investigated via an example aircraft control design study. The problem considered is that of designing a controller for an integrated airframe/propulsion longitudinal dynamics model of a modern fighter aircraft to provide independent control of pitch rate and airspeed responses to pilot command inputs. An explicit model following controller using H infinity control design techniques is first designed to gain insight into the control problem as well as to provide a baseline for evaluation of the neurocontroller. Using the model of the desired dynamics as a command generator, a multilayer feedforward neural network is trained to control the vehicle model within the physical limitations of the actuator dynamics. This is achieved by minimizing an objective function which is a weighted sum of tracking errors and control input commands and rates. To gain insight in the neurocontrol, linearized representations of the nonlinear neurocontroller are analyzed along a commanded trajectory. Linear robustness analysis tools are then applied to the linearized neurocontroller models and to the baseline H infinity based controller. Future areas of research are identified to enhance the practical applicability of neural networks to flight control design.

  12. Reconfigurable control of aircraft undergoing sensor and actuator failures

    NASA Astrophysics Data System (ADS)

    Bajpai, Gaurav

    2001-07-01

    Significant number of fatal aircraft accidents in recent years have been linked to component failures. With the predicted increase in air traffic these numbers are likely to increase. With reduction of fatal accidents as motivation, this dissertation investigates design of fault tolerant control systems for aircrafts undergoing sensor and/or actuator failures. Given that the nominal controller may perform inadequately in the event of sensors and/or actuator failure, the feasible approach for such a control scheme is to predesign various controllers anticipating these failures and then switching to an appropriate controller when the failure occurs. This is enabled by the available redundancy in sensing and actuation and allows the system to perform adequately even when these failures occur. The predesign of controllers for sensor and actuator failures is considered. Sensor failures are easily accommodated if certain detectability conditions are met. However, the predesign for actuator failures is not trivial as the position at which the actuators fail is not known a priori. It is shown that this problem can be tackled by reducing it to the classical control problem of disturbance decoupling, in which, the functional control enables the steady state output of dynamical system to reject any disturbance due to the failed actuators. For linear systems, conditions for existence of a controller capable of accommodating these failures can be understood in geometric terms and calculations are linked to solvability of coupled matrix equations. Although control design for aircrafts is done using linear techniques, failures can cause excursions into nonlinear regimes due to ensuing changes in the flight conditions. This dissertation also uses the recent results in the nonlinear regulator theory to address actuator failures in nonlinear systems. The utility of design techniques is illustrated using flight control examples with failures. The symbolic computational tools are

  13. Integrated Model Reduction and Control of Aircraft with Flexible Wings

    NASA Technical Reports Server (NTRS)

    Swei, Sean Shan-Min; Zhu, Guoming G.; Nguyen, Nhan T.

    2013-01-01

    This paper presents an integrated approach to the modeling and control of aircraft with exible wings. The coupled aircraft rigid body dynamics with a high-order elastic wing model can be represented in a nite dimensional state-space form. Given a set of desired output covariance, a model reduction process is performed by using the weighted Modal Cost Analysis (MCA). A dynamic output feedback controller, which is designed based on the reduced-order model, is developed by utilizing output covariance constraint (OCC) algorithm, and the resulting OCC design weighting matrix is used for the next iteration of the weighted cost analysis. This controller is then validated for full-order evaluation model to ensure that the aircraft's handling qualities are met and the uttering motion of the wings suppressed. An iterative algorithm is developed in CONDUIT environment to realize the integration of model reduction and controller design. The proposed integrated approach is applied to NASA Generic Transport Model (GTM) for demonstration.

  14. Fiber optics for aircraft engine/inlet control

    NASA Technical Reports Server (NTRS)

    Baumbick, R. J.

    1981-01-01

    NASA programs that focus on the use of fiber optics for aircraft engine/inlet control are reviewed. Fiber optics for aircraft control is attractive because of its inherent immunity to EMI and RFI noise. Optical signals can be safely transmitted through areas that contain flammable or explosive materials. The use of optics also makes remote sensing feasible by eliminating the need for electrical wires to be connected between sensors and computers. Using low-level optical signals to control actuators is also feasible when power is generated at the actuator. Each application of fiber optics for aircraft control has different requirements for both the optical cables and the optical connectors. Sensors that measure position and speed by using slotted plates can use lossy cables and bundle connectors if data transfer is in the parallel mode. If position and speed signals are multiplexed, cable and connector requirements change. Other sensors that depend on changes in transmission through materials require dependable characteristics of both the optical cables and the optical connectors. A variety of sensor types are reviewed, including rotary position encoders, tachometers, temperature sensors, and blade tip clearance sensors for compressors and turbines. Research on a gallium arsenide photoswitch for optically switched actuators that operate at 250 C is also described.

  15. Analysis of Aircraft Control Performance using a Fuzzy Rule Base Representation of the Cooper-Harper Aircraft Handling Quality Rating

    NASA Technical Reports Server (NTRS)

    Tseng, Chris; Gupta, Pramod; Schumann, Johann

    2006-01-01

    The Cooper-Harper rating of Aircraft Handling Qualities has been adopted as a standard for measuring the performance of aircraft since it was introduced in 1966. Aircraft performance, ability to control the aircraft, and the degree of pilot compensation needed are three major key factors used in deciding the aircraft handling qualities in the Cooper- Harper rating. We formulate the Cooper-Harper rating scheme as a fuzzy rule-based system and use it to analyze the effectiveness of the aircraft controller. The automatic estimate of the system-level handling quality provides valuable up-to-date information for diagnostics and vehicle health management. Analyzing the performance of a controller requires a set of concise design requirements and performance criteria. Ir, the case of control systems fm a piloted aircraft, generally applicable quantitative design criteria are difficult to obtain. The reason for this is that the ultimate evaluation of a human-operated control system is necessarily subjective and, with aircraft, the pilot evaluates the aircraft in different ways depending on the type of the aircraft and the phase of flight. In most aerospace applications (e.g., for flight control systems), performance assessment is carried out in terms of handling qualities. Handling qualities may be defined as those dynamic and static properties of a vehicle that permit the pilot to fully exploit its performance in a variety of missions and roles. Traditionally, handling quality is measured using the Cooper-Harper rating and done subjectively by the human pilot. In this work, we have formulated the rules of the Cooper-Harper rating scheme as fuzzy rules with performance, control, and compensation as the antecedents, and pilot rating as the consequent. Appropriate direct measurements on the controller are related to the fuzzy Cooper-Harper rating system: a stability measurement like the rate of change of the cost function can be used as an indicator if the aircraft is under

  16. Control law system for X-Wing aircraft

    NASA Technical Reports Server (NTRS)

    Lawrence, Thomas H. (Inventor); Gold, Phillip J. (Inventor)

    1990-01-01

    Control law system for the collective axis, as well as pitch and roll axes, of an X-Wing aircraft and for the pneumatic valving controlling circulation control blowing for the rotor. As to the collective axis, the system gives the pilot single-lever direct lift control and insures that maximum cyclic blowing control power is available in transition. Angle-of-attach de-coupling is provided in rotary wing flight, and mechanical collective is used to augment pneumatic roll control when appropriate. Automatic gain variations with airspeed and rotor speed are provided, so a unitary set of control laws works in all three X-Wing flight modes. As to pitch and roll axes, the system produces essentially the same aircraft response regardless of flight mode or condition. Undesirable cross-couplings are compensated for in a manner unnoticeable to the pilot without requiring pilot action, as flight mode or condition is changed. A hub moment feedback scheme is implemented, utilizing a P+I controller, significantly improving bandwidth. Limits protect aircraft structure from inadvertent damage. As to pneumatic valving, the system automatically provides the pressure required at each valve azimuth location, as dictated by collective, cyclic and higher harmonic blowing commands. Variations in the required control phase angle are automatically introduced, and variations in plenum pressure are compensated for. The required switching for leading, trailing and dual edge blowing is automated, using a simple table look-up procedure. Non-linearities due to valve characteristics of circulation control lift are linearized by map look-ups.

  17. Acceptance and control of aircraft interior noise and vibration

    NASA Technical Reports Server (NTRS)

    Stephens, D. G.; Leatherwood, J. D.

    1980-01-01

    Ride quality criteria for noise, vibration, and their combination in the helicopter cabin environment are discussed. Results are presented of laboratory and field studies of passenger responses to interior noise and vibration during the performance of a listening task and during reverie, as well as to the interaction of noise with multi-frequency and multi-axis vibration. A study of means for reducing helicopter interior noise based on analytical, experimental and flight studies of the near-field noise source characteristics of the aircraft, the transmission of noise through aircraft structures and the attenuation of noise by various noise control treatments is then presented which has resulted in a reduction of 3 dB in helicopter cabin noise. Finally, a model under development to evaluate passenger acceptance of a helicopter noise and vibration environment is indicated which incorporates the observed noise and vibration effects on comfort and is expected to provide insights for more effective noise and vibration control.

  18. Inlet, engine, airframe controls integration development for supercruising aircraft

    NASA Technical Reports Server (NTRS)

    Houchard, J. H.; Carlin, C. M.; Tjonneland, E.

    1983-01-01

    In connection with a consideration of advanced military aircraft systems, attention is given to research for improving the technology of the design of supersonic cruise aircraft. Syberg et al. (1981) have shown that an analytic design method is now available to accurately predict the flow characteristics of axisymmetric supersonic inlets, including off-design angle of attack operation. On the basis of information regarding the inlet flow characteristics, the control system designer can begin the inlet design and development, before wind tunnel testing has begun. The present investigation is concerned with details and status of inlet control technology. A detailed representation of a supersonic propulsion system is developed. This development demonstrates the feasibility of the selected hybrid computational concept.

  19. An electric control for an electrohydraulic active control aircraft landing gear

    NASA Technical Reports Server (NTRS)

    Ross, I.; Edson, R.

    1979-01-01

    An electronic controller for an electrohydraulic active control aircraft landing gear was developed. Drop tests of a modified gear from a 2722 Kg (6000 lbm) class of airplane were conducted to illustrate controller performance. The results indicate that the active gear effects a force reduction, relative to that of the passive gear, from 9 to 31 percent depending on the aircraft sink speed and the static gear pressure.

  20. IRAC Snapshot Imaging of Red Herschel Galaxies

    NASA Astrophysics Data System (ADS)

    Cooray, Asantha; Nayyeri, Hooshang; Wardlow, Julie; Ivison, Rob; Perez-Fournon, Ismael; Riechers, Dominik; Clements, David; Oliver, Seb; Oteo, Ivan

    2016-08-01

    Wide-field submillimeter surveys with Herschel have produced large samples of rare populations, which provide some of the most stringent constraints on galaxy formation theories. In this proposal we request IRAC observations of 'red' Herschel sources, which are the most extreme DSFGs at z>4. The proposed snapshot IRAC 3.6 and 4.5um data will probe the stellar emission from these systems - complementary data to the far-infrared dust emission that led to their identification. We will use these data to extend the SEDs into the near-IR regime and measure more reliable stellar masses than otherwise available. They will be combined with existing survey data and dedicated follow-up programs to map the evolution of DSFGs as a function of redshift, stellar mass and far-IR luminosity.

  1. Integrated Resilient Aircraft Control Project Full Scale Flight Validation

    NASA Technical Reports Server (NTRS)

    Bosworth, John T.

    2009-01-01

    Objective: Provide validation of adaptive control law concepts through full scale flight evaluation. Technical Approach: a) Engage failure mode - destabilizing or frozen surface. b) Perform formation flight and air-to-air tracking tasks. Evaluate adaptive algorithm: a) Stability metrics. b) Model following metrics. Full scale flight testing provides an ability to validate different adaptive flight control approaches. Full scale flight testing adds credence to NASA's research efforts. A sustained research effort is required to remove the road blocks and provide adaptive control as a viable design solution for increased aircraft resilience.

  2. Touchdown: The Development of Propulsion Controlled Aircraft at NASA Dryden

    NASA Technical Reports Server (NTRS)

    Tucker, Tom

    1999-01-01

    This monograph relates the important history of the Propulsion Controlled Aircraft project at NASA's Dryden Flight Research Center. Spurred by a number of airplane crashes caused by the loss of hydraulic flight controls, a NASA-industry team lead by Frank W. Burcham and C. Gordon Fullerton developed a way to land an aircraft safely using only engine thrust to control the airplane. In spite of initial skepticism, the team discovered that, by manually manipulating an airplane's thrust, there was adequate control for extended up-and-away flight. However, there was not adequate control precision for safe runway landings because of the small control forces, slow response, and difficulty in damping the airplane phugoid and Dutch roll oscillations. The team therefore conceived, developed, and tested the first computerized Propulsion Controlled Aircraft (PCA) system. The PCA system takes pilot commands, uses feedback from airplane measurements, and computes commands for the thrust of each engine, yielding much more precise control. Pitch rate and velocity feedback damp the phugoid oscillation, while yaw rate feedback damps the Dutch roll motion. The team tested the PCA system in simulators and conducted flight research in F-15 and MD-11 airplanes. Later, they developed less sophisticated variants of PCA called PCA Lite and PCA Ultralite to make the system cheaper and therefore more attractive to industry. This monograph tells the PCA story in a non- technical way with emphasis on the human aspects of the engineering and flic,ht-research effort. It thereby supplements the extensive technical literature on PCA and makes the development of this technology accessible to a wide audience.

  3. Multivariable control of VTOL aircraft for shipboard landing

    NASA Technical Reports Server (NTRS)

    Bodson, M.; Athans, M.

    1985-01-01

    The problem of the automatic landing of VTOL aircraft on small ships is considered. Linear quadratic optimal control theory is used to design a VTOL ship motion tracking controller. Optimal root-loci and step responses are obtained to study the dynamics of the closed-loop system. Standard deviations of the ship motion tracking errors, and of the VTOL control amplitudes are computed, illustrating the tradeoff between accurate tracking, and limited control authority. Multivariable robustness margins are also obtained. The tracking of the vertical motion presents the difficulty of requiring large variations of the VTOL total thrust, a control which is limited both in amplitude and in bandwidth. Lateral controls are less restricted, but the motions are strongly coupled, with some adverse couplings in the ship motions, and in the aircraft dynamics. The advantage of the LQ control theory is demonstrated however, by its ability to account for these couplings in a robust manner, and, when possible, to use them to limit the control amplitudes.

  4. Analysis of Control Strategies for Aircraft Flight Upset Recovery

    NASA Technical Reports Server (NTRS)

    Crespo, Luis G.; Kenny, Sean P.; Cox, David E.; Muri, Daniel G.

    2012-01-01

    This paper proposes a framework for studying the ability of a control strategy, consisting of a control law and a command law, to recover an aircraft from ight conditions that may extend beyond the normal ight envelope. This study was carried out (i) by evaluating time responses of particular ight upsets, (ii) by evaluating local stability over an equilibrium manifold that included stall, and (iii) by bounding the set in the state space from where the vehicle can be safely own to wings-level ight. These states comprise what will be called the safely recoverable ight envelope (SRFE), which is a set containing the aircraft states from where a control strategy can safely stabilize the aircraft. By safe recovery it is implied that the tran- sient response stays between prescribed limits before converging to a steady horizontal ight. The calculation of the SRFE bounds yields the worst-case initial state corresponding to each control strategy. This information is used to compare alternative recovery strategies, determine their strengths and limitations, and identify the most e ective strategy. In regard to the control law, the authors developed feedback feedforward laws based on the gain scheduling of multivariable controllers. In regard to the command law, which is the mechanism governing the exogenous signals driving the feed- forward component of the controller, we developed laws with a feedback structure that combines local stability and transient response considera- tions. The upset recovery of the Generic Transport Model, a sub-scale twin-engine jet vehicle developed by NASA Langley Research Center, is used as a case study.

  5. Display/control requirements for automated VTOL aircraft

    NASA Technical Reports Server (NTRS)

    Hoffman, W. C.; Kleinman, D. L.; Young, L. R.

    1976-01-01

    A systematic design methodology for pilot displays in advanced commercial VTOL aircraft was developed and refined. The analyst is provided with a step-by-step procedure for conducting conceptual display/control configurations evaluations for simultaneous monitoring and control pilot tasks. The approach consists of three phases: formulation of information requirements, configuration evaluation, and system selection. Both the monitoring and control performance models are based upon the optimal control model of the human operator. Extensions to the conventional optimal control model required in the display design methodology include explicit optimization of control/monitoring attention; simultaneous monitoring and control performance predictions; and indifference threshold effects. The methodology was applied to NASA's experimental CH-47 helicopter in support of the VALT program. The CH-47 application examined the system performance of six flight conditions. Four candidate configurations are suggested for evaluation in pilot-in-the-loop simulations and eventual flight tests.

  6. Knowledge-based processing for aircraft flight control

    NASA Technical Reports Server (NTRS)

    Painter, John H.; Glass, Emily; Economides, Gregory; Russell, Paul

    1994-01-01

    This Contractor Report documents research in Intelligent Control using knowledge-based processing in a manner dual to methods found in the classic stochastic decision, estimation, and control discipline. Such knowledge-based control has also been called Declarative, and Hybid. Software architectures were sought, employing the parallelism inherent in modern object-oriented modeling and programming. The viewpoint adopted was that Intelligent Control employs a class of domain-specific software architectures having features common over a broad variety of implementations, such as management of aircraft flight, power distribution, etc. As much attention was paid to software engineering issues as to artificial intelligence and control issues. This research considered that particular processing methods from the stochastic and knowledge-based worlds are duals, that is, similar in a broad context. They provide architectural design concepts which serve as bridges between the disparate disciplines of decision, estimation, control, and artificial intelligence. This research was applied to the control of a subsonic transport aircraft in the airport terminal area.

  7. Single-Lever Power Control for General Aviation Aircraft Promises Improved Efficiency and Simplified Pilot Controls

    NASA Technical Reports Server (NTRS)

    Musgrave, Jeffrey L.

    1997-01-01

    General aviation research is leading to major advances in internal combustion engine control systems for single-engine, single-pilot aircraft. These advances promise to increase engine performance and fuel efficiency while substantially reducing pilot workload and increasing flight safety. One such advance is a single-lever power control (SLPC) system, a welcome departure from older, less user-friendly, multilever engine control systems. The benefits of using single-lever power controls for general aviation aircraft are improved flight safety through advanced engine diagnostics, simplified powerplant operations, increased time between overhauls, and cost-effective technology (extends fuel burn and reduces overhaul costs). The single-lever concept has proven to be so effective in preliminary studies that general aviation manufacturers are making plans to retrofit current aircraft with the technology and are incorporating it in designs for future aircraft.

  8. A Study on Aircraft Engine Control Systems for Integrated Flight and Propulsion Control

    NASA Astrophysics Data System (ADS)

    Yamane, Hideaki; Matsunaga, Yasushi; Kusakawa, Takeshi; Yasui, Hisako

    The Integrated Flight and Propulsion Control (IFPC) for a highly maneuverable aircraft and a fighter-class engine with pitch/yaw thrust vectoring is described. Of the two IFPC functions the aircraft maneuver control utilizes the thrust vectoring based on aerodynamic control surfaces/thrust vectoring control allocation specified by the Integrated Control Unit (ICU) of a FADEC (Full Authority Digital Electronic Control) system. On the other hand in the Performance Seeking Control (PSC) the ICU identifies engine's various characteristic changes, optimizes manipulated variables and finally adjusts engine control parameters in cooperation with the Engine Control Unit (ECU). It is shown by hardware-in-the-loop simulation that the thrust vectoring can enhance aircraft maneuverability/agility and that the PSC can improve engine performance parameters such as SFC (specific fuel consumption), thrust and gas temperature.

  9. Tracking control for VTOL aircraft with disabled IMUs

    NASA Astrophysics Data System (ADS)

    Wang, Xinhua; Liu, Jinkun; Cai, Kai-Yuan

    2010-10-01

    This article focuses on the design of an output feedback controller able to achieve the asymptotic tracking of a reference trajectory for vertical take off and landing aircraft with disabled inertial measurement units (IMUs). Roll angle and roll rate cannot be measured directly when IMUs are disabled. A dynamic linear observer is designed to estimate the tracking errors of the roll angle and equivalent roll angular velocity with respect to their desired states. Moreover, based on the centre manifold theory and on the equivalent control, the closed-loop system is asymptotically convergent. The theoretical results are confirmed by computer simulations.

  10. Optimal control of a low wing-loading STOL aircraft

    NASA Technical Reports Server (NTRS)

    Cunningham, T. B.

    1976-01-01

    Linear optimal quadratic control theory is applied to a low wing-loading STOL aircraft for ride quality and flight path following. Design criteria include minimum rms response to wind turbulence and desired transient response characteristics. Design techniques include proper choosing of design versus evaluation models, choosing appropriate performance index responses, and use of classical evaluation techniques. Results are obtained through a combination of frequency response shaping and gust observation. Effects of control rate and authority saturation are examined with a new rapid calculation of random input describing functions. Parameter sensitivity is also evaluated using a Liapunov type matrix equation.

  11. Aircraft Interior Noise Control Using Distributed Piezoelectric Actuators

    NASA Technical Reports Server (NTRS)

    Sun, Jian Q.

    1996-01-01

    Developing a control system that can reduce the noise and structural vibration at the same time is an important task. This talk presents one possible technical approach for accomplishing this task. The target application of the research is for aircraft interior noise control. The emphasis of the present approach is not on control strategies, but rather on the design of actuators for the control system. In the talk, a theory of distributed piezoelectric actuators is introduced. A uniform cylindrical shell is taken as a simplified model of fuselage structures to illustrate the effectiveness of the design theory. The actuators developed are such that they can reduce the tonal structural vibration and interior noise in a wide range of frequencies. Extensive computer simulations have been done to study various aspects of the design theory. Experiments have also been conducted and the test results strongly support the theoretical development.

  12. Human Systems Integration: Unmanned Aircraft Control Station Certification Plan Guidance

    NASA Technical Reports Server (NTRS)

    2005-01-01

    This document provides guidance to the FAA on important human factors considerations that can be used to support the certification of a UAS Aircraft Control Station (ACS). This document provides a synopsis of the human factors analysis, design and test activities to be performed to provide a basis for FAA certification. The data from these analyses, design activities, and tests, along with data from certification/qualification tests of other key components should be used to establish the ACS certification basis. It is expected that this information will be useful to manufacturers in developing the ACS Certification Plan,, and in supporting the design of their ACS.

  13. Two blowing concepts for roll and lateral control of aircraft

    NASA Technical Reports Server (NTRS)

    Tavella, D. A.; Wood, N. J.; Lee, C. S.; Roberts, L.

    1986-01-01

    Two schemes to modulate aerodynamic forces for roll and lateral control of aircraft have been investigated. The first scheme, called the lateral blowing concept, consists of thin jets of air exiting spanwise, or at small angle with the spanwise direction, from slots at the tips of straight wings. For this scheme, in addition to experimental measurements, a theory was developed showing the analytical relationship between aerodynamic forces and jet and wing parameters. Experimental results confirmed the theoretically derived scaling laws. The second scheme, which was studied experimentally, is called the jet spoiler concept and consists of thin jets exiting normally to the wing surface from slots aligned with the spanwise direction.

  14. Quelling Cabin Noise in Turboprop Aircraft via Active Control

    NASA Technical Reports Server (NTRS)

    Kincaid, Rex K.; Laba, Keith E.; Padula, Sharon L.

    1997-01-01

    Cabin noise in turboprop aircraft causes passenger discomfort, airframe fatigue, and employee scheduling constraints due to OSHA standards for exposure to high levels of noise. The noise levels in the cabins of turboprop aircraft are typically 10 to 30 decibels louder than commercial jet noise levels. However. unlike jet noise the turboprop noise spectrum is dominated by a few low frequency tones. Active structural acoustic control is a method in which the control inputs (used to reduce interior noise) are applied directly to a vibrating structural acoustic system. The control concept modeled in this work is the application of in-plane force inputs to piezoceramic patches bonded to the wall of a vibrating cylinder. The goal is to determine the force inputs and locations for the piezoceramic actuators so that: (1) the interior noise is effectively damped; (2) the level of vibration of the cylinder shell is not increased; and (3) the power requirements needed to drive the actuators are not excessive. Computational experiments for data taken from a computer generated model and from a laboratory test article at NASA Langley Research Center are provided.

  15. Anchoring tick salivary anti-complement proteins IRAC I and IRAC II to membrane increases their immunogenicity.

    PubMed

    Gillet, Laurent; Schroeder, Hélène; Mast, Jan; Thirion, Muriel; Renauld, Jean-Christophe; Dewals, Benjamin; Vanderplasschen, Alain

    2009-01-01

    Tick salivary proteins are promising targets for the development of anti-tick vaccines. Recently, we described two paralogous anti-complement proteins, called Ixodes ricinus anti-complement (IRAC) proteins I and II, that are co-expressed in tick I. ricinus salivary glands. However, our previous attempts to immunize rabbits against IRAC via infection with recombinant Bovine herpesvirus 4 (BoHV-4) vectors invariably failed although both recombinants expressed high levels of functional IRAC proteins in vitro. As IRAC are soluble monovalent antigens, one of the possible explanations is that monovalent ligation of the B-cell receptor induces receptor activation but fails to promote antigen presentation, a phenomenon that is thought to induce a state of B-cell tolerance. In the present study, we tried to increase IRAC immunogenicity by expressing them as oligovalent antigens. To this end, IRAC were fused to membrane anchors and BoHV-4 vectors expressing these recombinant forms were produced. The immunization potentials of recombinant viruses expressing either secreted or transmembrane IRAC proteins were then compared. While the former did not induce a detectable immune response against IRAC, the latter led to high titres of anti-IRAC antibodies that only marginally affected tick blood feeding. All together, the data presented in this study demonstrate that the immunogenicity of a soluble antigen can be greatly improved by anchoring it in membrane. PMID:19531344

  16. An electronic control for an electrohydraulic active control landing gear for the F-4 aircraft

    NASA Technical Reports Server (NTRS)

    Ross, I.

    1982-01-01

    A controller for an electrohydraulic active control landing gear was developed for the F-4 aircraft. A controller was modified for this application. Simulation results indicate that during landing and rollout over repaired bomb craters the active gear effects a force reduction, relative to the passive gear, or approximately 70%.

  17. Switching LPV Control of an F-16 Aircraft via Controller State Reset

    NASA Technical Reports Server (NTRS)

    Lu, Bei; Wu, Fen; Kim, SungWan

    2004-01-01

    In flight control, the design objective and the aircraft dynamics may be different in low and high angle of attack regions. This paper presents a systematic switching Linear Parameter-varying LPV method to determine if it is practical to use for flight control designs over a wide angle of attack region. The approach is based on multiple parameter-dependent Lyapunov functions a family of LPV controllers are designed, and each of them is suitable for a specific parameter subspace. The state of the controller is reset to guarantee the stability requirement of the Lyapunov function when the switching event occurs. Two parameter-dependent switching logics, hysteresis switching and switching with average dwell times are examined. The proposed switching LPV control scheme is applied to an F-16 aircraft model with different design objectives and aircraft dynamics in low and high angle of attack regions. The nonlinear simulating results using both switching logics are compared.

  18. Emergency Multiengine Aircraft System for Lateral Control Using Differential Thrust Control of Wing Engines

    NASA Technical Reports Server (NTRS)

    Burken, John J. (Inventor); Burcham, Frank W., Jr. (Inventor); Bull, John (Inventor)

    2000-01-01

    Development of an emergency flight control system is disclosed for lateral control using only differential engine thrust modulation of multiengine aircraft is currently underway. The multiengine has at least two engines laterally displaced to the left and right from the axis of the aircraft. In response to a heading angle command psi(sub c) is to be tracked. By continually sensing the heading angle psi of the aircraft and computing a heading error signal psi(sub e) as a function of the difference between the heading angle command psi(sub c) and the sensed heading angle psi, a track control signal is developed with compensation as a function of sensed bank angle phi. Bank angle rate phi, or roll rate p, yaw rate tau, and true velocity produce an aircraft thrust control signal ATC(sub psi(L,R)). The thrust control signal is differentially applied to the left and right engines, with equal amplitude and opposite sign, such that a negative sign is applied to the control signal on the side of the aircraft. A turn is required to reduce the error signal until the heading feedback reduces the error to zero.

  19. Stability Result For Dynamic Inversion Devised to Control Large Flexible Aircraft

    NASA Technical Reports Server (NTRS)

    Gregory, Irene M.

    2001-01-01

    High performance aircraft of the future will be designed lighter, more maneuverable, and operate over an ever expanding flight envelope. One of the largest differences from the flight control perspective between current and future advanced aircraft is elasticity. Over the last decade, dynamic inversion methodology has gained considerable popularity in application to highly maneuverable fighter aircraft, which were treated as rigid vehicles. This paper is an initial attempt to establish global stability results for dynamic inversion methodology as applied to a large, flexible aircraft. This work builds on a previous result for rigid fighter aircraft and adds a new level of complexity that is the flexible aircraft dynamics, which cannot be ignored even in the most basic flight control. The results arise from observations of the control laws designed for a new generation of the High-Speed Civil Transport aircraft.

  20. Control of turbofan lift engines for VTOL aircraft.

    NASA Technical Reports Server (NTRS)

    Sellers, J. F.; Szuch, J. R.

    1973-01-01

    This paper presents the results of an analytical study of the dynamics and control of turbofan lift engines, and proposes methods of meeting the response requirements imposed by the VTOL aircraft application. Two types of lift fan engines are discussed: the integral and remote. The integral engine is a conventional two-spool, high bypass ratio turbofan designed for low noise and short length. The remote engine employs a gas generator and a lift fan which are separated by a duct, and which need not be coaxial. For the integral engine, a control system design is presented which satisfies the VTOL response requirements. For the remote engine, two unconventional methods of control involving flow transfer between lift units are discussed.

  1. Input design for identification of aircraft stability and control derivatives

    NASA Technical Reports Server (NTRS)

    Gupta, N. K.; Hall, W. E., Jr.

    1975-01-01

    An approach for designing inputs to identify stability and control derivatives from flight test data is presented. This approach is based on finding inputs which provide the maximum possible accuracy of derivative estimates. Two techniques of input specification are implemented for this objective - a time domain technique and a frequency domain technique. The time domain technique gives the control input time history and can be used for any allowable duration of test maneuver, including those where data lengths can only be of short duration. The frequency domain technique specifies the input frequency spectrum, and is best applied for tests where extended data lengths, much longer than the time constants of the modes of interest, are possible. These technqiues are used to design inputs to identify parameters in longitudinal and lateral linear models of conventional aircraft. The constraints of aircraft response limits, such as on structural loads, are realized indirectly through a total energy constraint on the input. Tests with simulated data and theoretical predictions show that the new approaches give input signals which can provide more accurate parameter estimates than can conventional inputs of the same total energy. Results obtained indicate that the approach has been brought to the point where it should be used on flight tests for further evaluation.

  2. Technical Seminar: "Quest for Aircraft Stability and Control"

    NASA Video Gallery

    Testing of full-scale aircraft in flight to validate or improve predictions obtained through wind tunnel testing or CFD calculations is expensive and time-consuming. Being able to test aircraft sta...

  3. Future Integrated Systems Concept for Preventing Aircraft Loss-of-Control Accidents

    NASA Technical Reports Server (NTRS)

    Belcastro, Christine M.; Jacobson, Steven r.

    2010-01-01

    Loss of control remains one of the largest contributors to aircraft fatal accidents worldwide. Aircraft loss-of-control accidents are highly complex in that they can result from numerous causal and contributing factors acting alone or (more often) in combination. Hence, there is no single intervention strategy to prevent these accidents. This paper presents future system concepts and research directions for preventing aircraft loss-of-control accidents.

  4. Analysis and testing of stability augmentation systems. [for supersonic transport aircraft wing and B-52 aircraft control system

    NASA Technical Reports Server (NTRS)

    Sevart, F. D.; Patel, S. M.; Wattman, W. J.

    1972-01-01

    Testing and evaluation of stability augmentation systems for aircraft flight control were conducted. The flutter suppression system analysis of a scale supersonic transport wing model is described. Mechanization of the flutter suppression system is reported. The ride control synthesis for the B-52 aeroelastic model is discussed. Model analyses were conducted using equations of motion generated from generalized mass and stiffness data.

  5. Flight control synthesis for flexible aircraft using Eigenspace assignment

    NASA Technical Reports Server (NTRS)

    Davidson, J. B.; Schmidt, D. K.

    1986-01-01

    The use of eigenspace assignment techniques to synthesize flight control systems for flexible aircraft is explored. Eigenspace assignment techniques are used to achieve a specified desired eigenspace, chosen to yield desirable system impulse residue magnitudes for selected system responses. Two of these are investigated. The first directly determines constant measurement feedback gains that will yield a close-loop system eigenspace close to a desired eigenspace. The second technique selects quadratic weighting matrices in a linear quadratic control synthesis that will asymptotically yield the close-loop achievable eigenspace. Finally, the possibility of using either of these techniques with state estimation is explored. Application of the methods to synthesize integrated flight-control and structural-mode-control laws for a large flexible aircraft is demonstrated and results discussed. Eigenspace selection criteria based on design goals are discussed, and for the study case it would appear that a desirable eigenspace can be obtained. In addition, the importance of state-space selection is noted along with problems with reduced-order measurement feedback. Since the full-state control laws may be implemented with dynamic compensation (state estimation), the use of reduced-order measurement feedback is less desirable. This is especially true since no change in the transient response from the pilot's input results if state estimation is used appropriately. The potential is also noted for high actuator bandwidth requirements if the linear quadratic synthesis approach is utilized. Even with the actuator pole location selected, a problem with unmodeled modes is noted due to high bandwidth. Some suggestions for future research include investigating how to choose an eigenspace that will achieve certain desired dynamics and stability robustness, determining how the choice of measurements effects synthesis results, and exploring how the phase relationships between desired

  6. Coordination control of quadrotor VTOL aircraft in three-dimensional space

    NASA Astrophysics Data System (ADS)

    Do, K. D.

    2015-03-01

    This paper presents a constructive design of distributed coordination controllers for a group of N quadrotor vertical take-off and landing (VTOL) aircraft in three-dimensional space. A combination of Euler angles and unit-quaternion for the attitude representation of the aircraft is used to result in an effective control design, and to reduce singularities in the aircraft's dynamics. The coordination control design is based on a new bounded control design technique for second-order systems and new pairwise collision avoidance functions. The pairwise collision functions are functions of both relative positions and relative velocities between the aircraft instead of only their relative positions as in the literature. To overcome the inherent underactuation of the aircraft, the roll and pitch angles of the aircraft are considered as immediate controls. Simulations illustrate the results.

  7. MRAC Control with Prior Model Knowledge for Asymmetric Damaged Aircraft

    PubMed Central

    Xu, Xieyu; Yang, Lingyu; Zhang, Jing

    2015-01-01

    This paper develops a novel state-tracking multivariable model reference adaptive control (MRAC) technique utilizing prior knowledge of plant models to recover control performance of an asymmetric structural damaged aircraft. A modification of linear model representation is given. With prior knowledge on structural damage, a polytope linear parameter varying (LPV) model is derived to cover all concerned damage conditions. An MRAC method is developed for the polytope model, of which the stability and asymptotic error convergence are theoretically proved. The proposed technique reduces the number of parameters to be adapted and thus decreases computational cost and requires less input information. The method is validated by simulations on NASA generic transport model (GTM) with damage. PMID:26180839

  8. Pivoting output unit control systems activated by jacks. [for controlling aircraft flaps

    NASA Technical Reports Server (NTRS)

    Belliere, P.

    1978-01-01

    An invention to be used for controlling aircraft flaps is described. It is applicable to control systems with two coaxial output units which pivot simultaneously with respect to two fixed units and which are activated by two opposed, straight coaxial jacks.

  9. Intelligent Life-Extending Controls for Aircraft Engines

    NASA Technical Reports Server (NTRS)

    Guo, Ten-Huei; Chen, Philip; Jaw, Link

    2005-01-01

    Aircraft engine controllers are designed and operated to provide desired performance and stability margins. The purpose of life-extending-control (LEC) is to study the relationship between control action and engine component life usage, and to design an intelligent control algorithm to provide proper trade-offs between performance and engine life usage. The benefit of this approach is that it is expected to maintain safety while minimizing the overall operating costs. With the advances of computer technology, engine operation models, and damage physics, it is necessary to reevaluate the control strategy fro overall operating cost consideration. This paper uses the thermo-mechanical fatigue (TMF) of a critical component to demonstrate how an intelligent engine control algorithm can drastically reduce the engine life usage with minimum sacrifice in performance. A Monte Carlo simulation is also performed to evaluate the likely engine damage accumulation under various operating conditions. The simulation results show that an optimized acceleration schedule can provide a significant life saving in selected engine components.

  10. The optimal control frequency response problem in manual control. [of manned aircraft systems

    NASA Technical Reports Server (NTRS)

    Harrington, W. W.

    1977-01-01

    An optimal control frequency response problem is defined within the context of the optimal pilot model. The problem is designed to specify pilot model control frequencies reflective of important aircraft system properties, such as control feel system dynamics, airframe dynamics, and gust environment, as well as man machine properties, such as task and attention allocation. This is accomplished by determining a bounded set of control frequencies which minimize the total control cost. The bounds are given by zero and the neuromuscular control frequency response for each control actuator. This approach is fully adaptive, i.e., does not depend upon user entered estimates. An algorithm is developed to solve this optimal control frequency response problem. The algorithm is then applied to an attitude hold task for a bare airframe fighter aircraft case with interesting dynamic properties.

  11. Future Air Force aircraft propulsion control systems: The extended summary paper

    NASA Technical Reports Server (NTRS)

    Skira, C. A.

    1980-01-01

    Hydromechanical control technology simply cannot compete against the performance benefits offered by electronics. Future military aircraft propulsion control systems will be full authority, digital electronic, microprocessor base systems. Anticipating the day when microprocessor technology will permit the integration and management of aircraft flight control, fire control and propulsion control systems, the Air Force Aero Propulsion Laboratory is developing control logic algorithms for a real time, adaptive control and diagnostic information system.

  12. Linear tracking systems with applications to aircraft control system design

    NASA Technical Reports Server (NTRS)

    Lee, W. H.; Athans, M.; Castanon, D.; Bacchioloni, F.

    1977-01-01

    A class of optimal linear time invariant tracking systems, both in continuous time and discrete time, of which the number of inputs (which are restricted to be step functions) is equal to the number of system outputs, is studied. Along with derivation of equations and design procedures, two discretization schemes are presented, constraining either the control or its time derivative, to be a constant over each sampling period. Descriptions are given for the linearized model of the F-8C aircraft longitudinal dynamics, and the C* handling qualities criterion, which then serve as an illustration of the applications of these linear tracking designs. A suboptimal reduced state design is also presented. Numerical results are given for both the continuous time and discrete time designs.

  13. Flexible aircraft dynamic modeling for dynamic analysis and control synthesis

    NASA Technical Reports Server (NTRS)

    Schmidt, David K.

    1989-01-01

    The linearization and simplification of a nonlinear, literal model for flexible aircraft is highlighted. Areas of model fidelity that are critical if the model is to be used for control system synthesis are developed and several simplification techniques that can deliver the necessary model fidelity are discussed. These techniques include both numerical and analytical approaches. An analytical approach, based on first-order sensitivity theory is shown to lead not only to excellent numerical results, but also to closed-form analytical expressions for key system dynamic properties such as the pole/zero factors of the vehicle transfer-function matrix. The analytical results are expressed in terms of vehicle mass properties, vibrational characteristics, and rigid-body and aeroelastic stability derivatives, thus leading to the underlying causes for critical dynamic characteristics.

  14. Modified Dynamic Inversion to Control Large Flexible Aircraft: What's Going On?

    NASA Technical Reports Server (NTRS)

    Gregory, Irene M.

    1999-01-01

    High performance aircraft of the future will be designed lighter, more maneuverable, and operate over an ever expanding flight envelope. One of the largest differences from the flight control perspective between current and future advanced aircraft is elasticity. Over the last decade, dynamic inversion methodology has gained considerable popularity in application to highly maneuverable fighter aircraft, which were treated as rigid vehicles. This paper explores dynamic inversion application to an advanced highly flexible aircraft. An initial application has been made to a large flexible supersonic aircraft. In the course of controller design for this advanced vehicle, modifications were made to the standard dynamic inversion methodology. The results of this application were deemed rather promising. An analytical study has been undertaken to better understand the nature of the made modifications and to determine its general applicability. This paper presents the results of this initial analytical look at the modifications to dynamic inversion to control large flexible aircraft.

  15. A brief review of aircraft controls research opportunities in the general aviation field

    NASA Technical Reports Server (NTRS)

    Kendall, E. R.

    1984-01-01

    A review of aircraft controls research in the general aviation field is given. Among the topics included are: controls technology benefits, military and commercial test programs, flight tests, ride quality control, and wind loading.

  16. Identifying Luminous AGN in Deep Surveys: Revised IRAC Selection Criteria

    NASA Astrophysics Data System (ADS)

    Donley, Jennifer; Koekemoer, A. M.; Brusa, M.; Capak, P.; Cardamone, C. N.; Civano, F.; Ilbert, O.; Impey, C. D.; Kartaltepe, J.; Miyaji, T.; Salvato, M.; Sanders, D. B.; Trump, J. R.; Zamorani, G.

    2012-01-01

    Spitzer IRAC selection is a powerful tool for identifying luminous AGN. The AGN selection wedges currently in use, however, are heavily contaminated by star-forming galaxies, especially at high redshift. Using the large samples of luminous AGN and high-redshift star-forming galaxies in COSMOS, we redefine the AGN selection criteria for use in deep IRAC surveys. The new IRAC criteria are designed to be both highly complete and reliable, and incorporate the best aspects of the current AGN selection wedges and of infrared power-law selection while excluding high redshift star-forming galaxies selected via the BzK, DRG, LBG, and SMG criteria. At QSO-luminosities of log L(2-10 keV)>44, the new IRAC criteria recover 75% of the hard X-ray and IRAC-detected XMM-COSMOS sample, yet only 37% of the IRAC AGN candidates have X-ray counterparts, a fraction that rises to 51% in regions with Chandra exposures of 50-160 ks. X-ray stacking of the individually X-ray non-detected AGN candidates leads to a hard X-ray signal indicative of heavily obscured to mildly Compton-thick obscuration (log NH >= 23.7). While IRAC selection recovers a substantial fraction of luminous unobscured and obscured AGN, it is incomplete to low-luminosity and host-dominated AGN.

  17. Unmanned Aircraft System Control and ATC Communications Bandwidth Requirements

    NASA Technical Reports Server (NTRS)

    Henriksen, Steve

    2008-01-01

    There are significant activities taking place to establish the procedures and requirements for safe and routine operation of unmanned aircraft systems (UAS) in the National Airspace System (NAS). Among the barriers to overcome in achieving this goal is the lack of sufficient frequency spectrum necessary for the UAS control and air traffic control (ATC) communications links. This shortcoming is compounded by the fact that the UAS control communications links will likely be required to operate in protected frequency spectrum, just as ATC communications links are, because they relate to "safety and regularity of flight." To support future International Telecommunications Union (ITU) World Radio Conference (WRC) agenda items concerning new frequency allocations for UAS communications links, and to augment the Future Communications Study (FCS) Technology Evaluation Group efforts, NASA Glenn Research Center has sponsored a task to estimate the UAS control and ATC communications bandwidth requirements for safe, reliable, and routine operation of UAS in the NAS. This report describes the process and results of that task. The study focused on long-term bandwidth requirements for UAS approximately through 2030.

  18. Evaluation of active control technology for short haul aircraft. [cost effectiveness

    NASA Technical Reports Server (NTRS)

    Renshaw, J. H.; Bennett, J. A.; Harris, O. C.; Honrath, J. F.; Patterson, R. W.

    1975-01-01

    An evaluation of the economics of short-haul aircraft designed with active controls technology and low wing-loading to achieve short field performance with good ride quality is presented. Results indicate that for such a system incorporating gust load alleviation and augmented stability the direct operating cost is better than for aircraft without active controls.

  19. FCAP - A new tool for the evaluation of active control technology. [Flight Control Analysis Program for flexible aircraft

    NASA Technical Reports Server (NTRS)

    Noll, R. B.; Morino, L.

    1975-01-01

    A computer program has been developed for the evaluation of flight control systems designed for flexible aircraft. This Flight Control Analysis Program (FCAP) is designed in a modular fashion to incorporate sensor, actuator, and control logic element dynamics as well as aircraft dynamics and aerodynamics for complex configurations. Formulation of the total aircraft dynamic system is accomplished in matrix form by casting the equations in state vector format. The system stability and performance are determined in either the frequency or time domain using classical analysis techniques. The aerodynamic method used also permits evaluation of the flutter characteristics of the aircraft.

  20. Assessing and controlling the effect of aircraft on the environment: Pollution

    NASA Technical Reports Server (NTRS)

    Poppoff, I. G.; Grobman, J. S.

    1975-01-01

    The air pollution created by aircraft engines around airports and the global atmospheric problem of supersonic aircraft operating in the stratosphere are discussed. Methods for assessing the air pollution impact are proposed. The use of atmospheric models to determine the air pollution extent is described. Methods for controlling the emissions of aircraft engines are examined. Diagrams of the atmospheric composition resulting from exhaust gas emissions are developed.

  1. Adaptive glide slope control for parafoil and payload aircraft

    NASA Astrophysics Data System (ADS)

    Ward, Michael

    Airdrop systems provide a unique capability of delivering large payloads to undeveloped and inaccessible locations. Traditionally, these systems have been unguided, requiring large landing zones and drops from low altitude. The invention of the steerable, gliding, ram-air parafoil enabled the possibility of precision aerial payload delivery. In practice, the gliding ability of the ram-air parafoil can actually create major problems for airdrop systems by making them more susceptible to winds and allowing them to achieve far greater miss distances than were previously possible. Research and development work on guided airdrop systems has focused primarily on evolutionary improvements to the guidance algorithm, while the navigation and control algorithms have changed little since the initial autnomous systems were developed. Furthermore, the control mechanisms have not changed since the invention of the ram-air canopy in the 1960’s. The primary contributions of this dissertation are: (1) the development of a reliable and robust method to identify a flight dynamic model for a parafoil and payload aircraft using minimal sensor data; (2) the first demonstration in flight test of the ability to achieve large changes in glide slope over ground using coupled incidence angle variation and trailing edge brake deflection; (3) the first development of a control law to implement glide slope control on an autonomous system; (4) the first flight tests of autonomous landing with a glide slope control mechanism demonstrating an improvement in landing accuracy by a factor of 2 or more in especially windy conditions, and (5) the first demonstrations in both simulation and flight test of the ability to perform in-flight system identification to adapt the internal control mappings to flight data and provide dramatic improvements in landing accuracy when there is a significant discrepancy between the assumed and actual flight characteristics.

  2. A computer module used to calculate the horizontal control surface size of a conceptual aircraft design

    NASA Technical Reports Server (NTRS)

    Sandlin, Doral R.; Swanson, Stephen Mark

    1990-01-01

    The creation of a computer module used to calculate the size of the horizontal control surfaces of a conceptual aircraft design is discussed. The control surface size is determined by first calculating the size needed to rotate the aircraft during takeoff, and, second, by determining if the calculated size is large enough to maintain stability of the aircraft throughout any specified mission. The tail size needed to rotate during takeoff is calculated from a summation of forces about the main landing gear of the aircraft. The stability of the aircraft is determined from a summation of forces about the center of gravity during different phases of the aircraft's flight. Included in the horizontal control surface analysis are: downwash effects on an aft tail, upwash effects on a forward canard, and effects due to flight in close proximity to the ground. Comparisons of production aircraft with numerical models show good accuracy for control surface sizing. A modified canard design verified the accuracy of the module for canard configurations. Added to this stability and control module is a subroutine that determines one of the three design variables, for a stable vectored thrust aircraft. These include forward thrust nozzle position, aft thrust nozzle angle, and forward thrust split.

  3. Flight control systems research. [optimization of F-8 aircraft control system

    NASA Technical Reports Server (NTRS)

    Whitaker, H. P.; Baram, Y.; Cheng, Y.

    1973-01-01

    Theoretical development is reported for the parameter optimization design technique needed for digital flight control system design. The results of an example case study applying the optimization technique for continuous systems to an F-8 aircraft feedback control system are presented. The concept of evolving the simplest system configuration that is capable of meeting a specified set of performance requirements is illustrated in this work.

  4. Current and Future Research in Active Control of Lightweight, Flexible Structures Using the X-56 Aircraft

    NASA Technical Reports Server (NTRS)

    Ryan, John J.; Bosworth, John T.; Burken, John J.; Suh, Peter M.

    2014-01-01

    The X-56 Multi-Utility Technology Testbed aircraft system is a versatile experimental research flight platform. The system was primarily designed to investigate active control of lightweight flexible structures, but is reconfigurable and capable of hosting a wide breadth of research. Current research includes flight experimentation of a Lockheed Martin designed active control flutter suppression system. Future research plans continue experimentation with alternative control systems, explore the use of novel sensor systems, and experiments with the use of novel control effectors. This paper describes the aircraft system, current research efforts designed around the system, and future planned research efforts that will be hosted on the aircraft system.

  5. Development of control laws for a flight test maneuver autopilot for an F-15 aircraft

    NASA Technical Reports Server (NTRS)

    Alag, G. S.; Duke, E. L.

    1985-01-01

    An autopilot can be used to provide precise control to meet the demanding requirements of flight research maneuvers with high-performance aircraft. The development of control laws within the context of flight test maneuver requirements is discussed. The control laws are developed using eigensystem assignment and command generator tracking. The eigenvalues and eigenvectors are chosen to provide the necessary handling qualities, while the command generator tracking enables the tracking of a specified state during the maneuver. The effectiveness of the control laws is illustrated by their application to an F-15 aircraft to ensure acceptable aircraft performance during a maneuver.

  6. Flight dynamics analysis and control of transport aircraft subject to failure

    NASA Astrophysics Data System (ADS)

    Daşkɪran, O.; Kavsaoğlu, M. Ş.

    2013-12-01

    After a structural damage or component failure during any flight mode, aircraft dynamics are dramatically altered. A quick and adequate stabilization effort is crucial. Flight dynamics for several failure scenarios are analyzed. Necessary amounts of control deflections for postfailure trim are calculated. These trim values are used as control input in an open loop manner and validity of this approach is tested via flight simulations. Alternatively, a closed loop flight control system, which does not need the postfailure trim values, is also designed. This closed loop controller is based on a linearized aircraft model whereas flight simulations are based on nonlinear aircraft dynamics.

  7. A Study on Aircraft Engine Control Systems for Integrated Flight and Propulsion Control

    NASA Astrophysics Data System (ADS)

    Yamane, Hideaki; Matsunaga, Yasushi; Kusakawa, Takeshi

    A flyable FADEC system engineering model incorporating Integrated Flight and Propulsion Control (IFPC) concept is developed for a highly maneuverable aircraft and a fighter-class engine. An overview of the FADEC system and functional assignments for its components such as the Engine Control Unit (ECU) and the Integrated Control Unit (ICU) are described. Overall system reliability analysis, convex analysis and multivariable controller design for the engine, fault detection/redundancy management, and response characteristics of a fuel system are addressed. The engine control performance of the FADEC is demonstrated by hardware-in-the-loop simulation for fast acceleration and thrust transient characteristics.

  8. Adaptive Failure Compensation for Aircraft Flight Control Using Engine Differentials: Regulation

    NASA Technical Reports Server (NTRS)

    Yu, Liu; Xidong, Tang; Gang, Tao; Joshi, Suresh M.

    2005-01-01

    The problem of using engine thrust differentials to compensate for rudder and aileron failures in aircraft flight control is addressed in this paper in a new framework. A nonlinear aircraft model that incorporates engine di erentials in the dynamic equations is employed and linearized to describe the aircraft s longitudinal and lateral motion. In this model two engine thrusts of an aircraft can be adjusted independently so as to provide the control flexibility for rudder or aileron failure compensation. A direct adaptive compensation scheme for asymptotic regulation is developed to handle uncertain actuator failures in the linearized system. A design condition is specified to characterize the system redundancy needed for failure compensation. The adaptive regulation control scheme is applied to the linearized model of a large transport aircraft in which the longitudinal and lateral motions are coupled as the result of using engine thrust differentials. Simulation results are presented to demonstrate the effectiveness of the adaptive compensation scheme.

  9. Reconfigurable flight control for high angle of attack fighter aircraft, with wind tunnel study

    NASA Astrophysics Data System (ADS)

    Siddiqui, Bilal Ahmed

    In this work we studied Reconfigurable Flight Control Systems to achieve acceptable performance of a fighter aircraft, even in the event of wing damage to the aircraft at low speeds and high angle of attack, which is typical of many combat maneuvers. Equations of motion for the damaged aircraft were derived, which helped in building simulators. A new methodology combining experimental and numerical aerodynamic prediction was proposed and implemented. For this a wind-tunnel study of a similar configuration was carried out to study the aerodynamics at low speeds and high angle of attack. A baseline control system for undamaged aircraft was developed, and finally a reconfigurable flight control scheme was implemented to keep the aircraft flyable even after the damage.

  10. Application of Active Controls Technology to Aircraft Ride Smoothing Systems

    NASA Technical Reports Server (NTRS)

    Lapins, Maris; Jacobson, Ira D.

    1975-01-01

    A critical review of past efforts in the design and testing of ride smoothing and gust alleviation systems is presented. Design trade-offs involving sensor types, choice of feedback loops, human comfort and aircraft handling-qualities criteria are discussed. Synthesis of a system designed to employ direct-lift and side-force producing surfaces is reported. Two STOL-class aircraft and an executive transport are considered. Theoretically-predicted system performance is compared with hybrid simulation and flight test data. Pilot opinion rating, pilot workload, and passenger comfort rating data for the basic and augmented aircraft are included.

  11. Application of active controls technology to aircraft bide smoothing systems

    NASA Technical Reports Server (NTRS)

    Lapins, M.; Jacobson, I. D.

    1975-01-01

    A critical review of past efforts in the design and testing of ride smoothing and gust alleviation systems is presented. Design trade offs involving sensor types, choice of feedback loops, human comfort, and aircraft handling-qualities criteria are discussed. Synthesis of a system designed to employ direct-lift and side-force producing surfaces is reported. Two STOL aircraft and an executive transport are considered. Theoretically predicted system performance is compared with hybrid simulation and flight test data. Pilot opinion rating, pilot workload, and passenger comfort rating data for the basic and augmented aircraft are included.

  12. 76 FR 72087 - Special Conditions: Diamond Aircraft Industries, Model DA-40NG; Electronic Engine Control (EEC...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-22

    .... A47CE to include the new model DA- 40NG with the Austro Engine GmbH model E4 Aircraft Diesel Engine (ADE...-tail airplane with the Austro Engine GmbH model E4 diesel engine and an increased maximum takeoff gross... Engine GmbH model E4 aircraft diesel engine. 1. Electronic Engine Control a. For electronic...

  13. Realistic science data simulator for the IRAC instrument on SIRTF

    NASA Astrophysics Data System (ADS)

    Ashby, Matthew L. N.; Surace, Jason A.; Hora, Joseph L.

    2003-03-01

    The Infrared Array Camera (IRAC) is one of three major scientific instruments to be launched aboard the Space Infrared Telescope Facility (SIRTF). This document briefly describes the features, usage, and limitations of the IRAC Science Data Simulator (ISDS) that can be used to generate simulated data to anticipate data quality and reduction issues for mission operations. The software is a combination of C++ and IRAF SPP routines that implement the features already characterized during the integration and test phase of IRAC's development. While no guarantee of accuracy is made, the intention is to replicate as faithfully as possible known characteristics and artifacts of the IRAC instrument. The many beneficial applications of the ISDS include facilitating planning of the IRAC pipeline by the SIRTF Science Center (SSC), and validating observing strategies for SIRTF Guaranteed Time Observers and Legacy teams. The simulator has already been used by mission planners to demonstrate the relative effectiveness of different approaches to data reduction. It will also be of great value in demonstrating IRAC's capabilities for mapping and source detection, and in testing post-pipeline software currently being developed for these purposes.

  14. Assessment of the State of the Art of Flight Control Technologies as Applicable to Adverse Conditions

    NASA Technical Reports Server (NTRS)

    Reveley, Mary s.; Briggs, Jeffrey L.; Leone, Karen M.; Kurtoglu, Tolga; Withrow, Colleen A.

    2010-01-01

    Literature from academia, industry, and other Government agencies was surveyed to assess the state of the art in current Integrated Resilient Aircraft Control (IRAC) aircraft technologies. Over 100 papers from 25 conferences from the time period 2004 to 2009 were reviewed. An assessment of the general state of the art in adaptive flight control is summarized first, followed by an assessment of the state of the art as applicable to 13 identified adverse conditions. Specific areas addressed in the general assessment include flight control when compensating for damage or reduced performance, retrofit software upgrades to flight controllers, flight control through engine response, and finally test and validation of new adaptive controllers. The state-of-the-art assessment applicable to the adverse conditions include technologies not specifically related to flight control, but may serve as inputs to a future flight control algorithm. This study illustrates existing gaps and opportunities for additional research by the NASA IRAC Project

  15. Photometric Redshifts in the IRAC Shallow Survey

    SciTech Connect

    Brodwin, M; Brown, M; Ashby, M; Bian, C; Brand, K; Dey, A; Eisenhardt, P; Eisenstein, D; Gonzalez, A; Huang, J; Kochanek, C; McKenzie, E; Pahre, M; Smith, H; Soifer, B; Stanford, S; Stern, D; Elston, R

    2006-06-13

    Accurate photometric redshifts are calculated for nearly 200,000 galaxies to a 4.5 micron flux limit of {approx} 13 {micro}Jy in the 8.5 deg{sup 2} Spitzer/IRAC Shallow survey. Using a hybrid photometric redshift algorithm incorporating both neural-net and template-fitting techniques, calibrated with over 15,000 spectroscopic redshifts, a redshift accuracy of {sigma} = 0.06 (1+z) is achieved for 95% of galaxies at 0 < z < 1.5. The accuracy is {sigma} = 0.12 (1 + z) for 95% of AGN at 0 < z < 3. Redshift probability functions, central to several ongoing studies of the galaxy population, are computed for the full sample. We demonstrate that these functions accurately represent the true redshift probability density, allowing the calculation of valid confidence intervals for all objects. These probability functions have already been used to successfully identify a population of Spitzer-selected high redshift (z > 1) galaxy clusters. We present one such spectroscopically confirmed cluster at = 1.24, ISCS J1434.2+3426. Finally, we present a measurement of the 4.5 {micro}m-selected galaxy redshift distribution.

  16. NDE of Damage in Aircraft Flight Control Surfaces

    NASA Astrophysics Data System (ADS)

    Hsu, David K.; Barnard, Daniel J.; Dayal, Vinay

    2007-03-01

    Flight control surfaces on an aircraft, such as ailerons, flaps, spoilers and rudders, are typically adhesively bonded composite or aluminum honeycomb sandwich structures. These components can suffer from damage caused by hail stone, runway debris, or dropped tools during maintenance. On composites, low velocity impact damages can escape visual inspection, whereas on aluminum honeycomb sandwich, budding failure of the honeycomb core may or may not be accompanied by a disbond. This paper reports a study of the damage morphology in such structures and the NDE methods for detecting and characterizing them. Impact damages or overload failures in composite sandwiches with Nomex or fiberglass core tend to be a fracture or crinkle or the honeycomb cell wall located a distance below the facesheet-to-core bondline. The damage in aluminum honeycomb is usually a buckling failure, propagating from the top skin downward. The NDE methods used in this work for mapping out these damages were: air-coupled ultrasonic scan, and imaging by computer aided tap tester. Representative results obtained from the field will be shown.

  17. Exploratory Studies in Generalized Predictive Control for Active Aeroelastic Control of Tiltrotor Aircraft

    NASA Technical Reports Server (NTRS)

    Kvaternik, Raymond G.; Juang, Jer-Nan; Bennett, Richard L.

    2000-01-01

    The Aeroelasticity Branch at NASA Langley Research Center has a long and substantive history of tiltrotor aeroelastic research. That research has included a broad range of experimental investigations in the Langley Transonic Dynamics Tunnel (TDT) using a variety of scale models and the development of essential analyses. Since 1994, the tiltrotor research program has been using a 1/5-scale, semispan aeroelastic model of the V-22 designed and built by Bell Helicopter Textron Inc. (BHTI) in 1981. That model has been refurbished to form a tiltrotor research testbed called the Wing and Rotor Aeroelastic Test System (WRATS) for use in the TDT. In collaboration with BHTI, studies under the current tiltrotor research program are focused on aeroelastic technology areas having the potential for enhancing the commercial and military viability of tiltrotor aircraft. Among the areas being addressed, considerable emphasis is being directed to the evaluation of modern adaptive multi-input multi- output (MIMO) control techniques for active stability augmentation and vibration control of tiltrotor aircraft. As part of this investigation, a predictive control technique known as Generalized Predictive Control (GPC) is being studied to assess its potential for actively controlling the swashplate of tiltrotor aircraft to enhance aeroelastic stability in both helicopter and airplane modes of flight. This paper summarizes the exploratory numerical and experimental studies that were conducted as part of that investigation.

  18. Configuration management and automatic control of an augmentor wing aircraft with vectored thrust

    NASA Technical Reports Server (NTRS)

    Cicolani, L. S.; Sridhar, B.; Meyer, G.

    1979-01-01

    An advanced structure for automatic flight control logic for powered-lift aircraft operating in terminal areas is under investigation at Ames Research Center. This structure is based on acceleration control; acceleration commands are constructed as the sum of acceleration on the reference trajectory and a corrective feedback acceleration to regulate path tracking errors. The central element of the structure, termed a Trimmap, uses a model of the aircraft aerodynamic and engine forces to calculate the control settings required to generate the acceleration commands. This report describes the design criteria for the Trimmap and derives a Trimmap for Ames experimental augmentor wing jet STOL research aircraft.

  19. Nonlinear control design for slightly nonminimum phase systems - Application to V/STOL aircraft

    NASA Technical Reports Server (NTRS)

    Hauser, John; Sastry, Shankar; Meyer, George

    1992-01-01

    The paper describes the application of techniques of exact I/O linearization of nonlinear control systems to the flight control of V/STOL aircraft. It is seen that the application of the theory to this example is not straightforward; in particular, the direct application of the theory yielded an undesirable controller. The situation was remedied by neglecting the coupling between the rolling moment input to the aircraft dynamics and the dynamics along the y-axis. An approximate I/O linearization procedure developed for slightly nonminimum phase nonlinear systems is shown to be effective for V/STOL aircraft.

  20. Analysis of aircraft control strategies for microburst encounter. [low altitude wind shear

    NASA Technical Reports Server (NTRS)

    Stengel, R. F.; Psiaki, M. L.

    1984-01-01

    Analyses have indicated that improved control strategies could reduce the threat posed by the presence of microburst-type wind shear during aircraft takeoffs and landings. The attenuation of flight path response to microburst inputs by feedback control to elevators and throttle was studied for the cases of a jet transport and a general aviation aircraft, using longitudinal equations of motion, root locus analysis, Bode plots of altitude response to wind inputs, and nonlinear numerical simulation. Energy management relative to the airmass, a pitch-up response to the decreasing airspeed, increased phugoid mode damping, and decreased phugoid natural frequency, are found to improve microburst penetration aircraft behavior. Aircraft stall, and throttle saturation, are limiting factors in an aircraft's ability to maintain a given flight path during a microburst encounter.

  1. Developments in Stochastic Fuel Efficient Cruise Control and Constrained Control with Applications to Aircraft

    NASA Astrophysics Data System (ADS)

    McDonough, Kevin K.

    The dissertation presents contributions to fuel-efficient control of vehicle speed and constrained control with applications to aircraft. In the first part of this dissertation a stochastic approach to fuel-efficient vehicle speed control is developed. This approach encompasses stochastic modeling of road grade and traffic speed, modeling of fuel consumption through the use of a neural network, and the application of stochastic dynamic programming to generate vehicle speed control policies that are optimized for the trade-off between fuel consumption and travel time. The fuel economy improvements with the proposed policies are quantified through simulations and vehicle experiments. It is shown that the policies lead to the emergence of time-varying vehicle speed patterns that are referred to as time-varying cruise. Through simulations and experiments it is confirmed that these time-varying vehicle speed profiles are more fuel-efficient than driving at a comparable constant speed. Motivated by these results, a simpler implementation strategy that is more appealing for practical implementation is also developed. This strategy relies on a finite state machine and state transition threshold optimization, and its benefits are quantified through model-based simulations and vehicle experiments. Several additional contributions are made to approaches for stochastic modeling of road grade and vehicle speed that include the use of Kullback-Liebler divergence and divergence rate and a stochastic jump-like model for the behavior of the road grade. In the second part of the dissertation, contributions to constrained control with applications to aircraft are described. Recoverable sets and integral safe sets of initial states of constrained closed-loop systems are introduced first and computational procedures of such sets based on linear discrete-time models are given. The use of linear discrete-time models is emphasized as they lead to fast computational procedures. Examples of

  2. Optimal guidance and control for investigating aircraft noise-impact reduction

    NASA Technical Reports Server (NTRS)

    Stewart, E. C.; Carson, T. M.

    1978-01-01

    A methodology for investigating the reduction of community noise impact is reported. This report is concerned with the development of two models to provide data: a guidance generator and an aircraft control generator suitable for various current and advanced types of aircraft. The guidance generator produces the commanded path information from inputs chosen by an operator from a graphic scope display of a land-use map of the terminal area. The guidance generator also produces smoothing at the junctions of straight-line paths.The aircraft control generator determines the optimal set of the available controls such that the aircraft will follow the commanded path. The solutions for the control functions are given and shown to be dependent on the class of aircraft to be considered, that is, whether the thrust vector is rotatable and whether the thrust vector affects the aerodynamic forces. For the class of aircraft possessing a rotatable thrust vector, the solution is redundant; this redundancy is removed by the additional condition that the noise inpact be minimized. Information from both the guidance generator and the aircraft control generator is used by the footprint program to construct the noise footprint.

  3. A review of in-flight detection and identification of aircraft icing and reconfigurable control

    NASA Astrophysics Data System (ADS)

    Caliskan, Fikret; Hajiyev, Chingiz

    2013-07-01

    The recent improvements and research on aviation have focused on the subject of aircraft safe flight even in the severe weather conditions. As one type of such weather conditions, aircraft icing considerably has negative effects on the aircraft flight performance. The risks of the iced aerodynamic surfaces of the flying aircraft have been known since the beginning of the first flights. Until recent years, as a solution for this event, the icing conditions ahead flight route are estimated from radars or other environmental sensors, hence flight paths are changed, or, if it exists, anti-icing/de-icing systems are used. This work aims at the detection and identification of airframe icing based on statistical properties of aircraft dynamics and reconfigurable control protecting aircraft from hazardous icing conditions. In this review paper, aircraft icing identification based on neural network (NN), batch least-squares algorithm, Kalman filtering (KF), combined NN/KF, and H∞ parameter identification techniques are investigated, and compared with each other. Following icing identification, reconfigurable control is applied for protecting the aircraft from hazardous icing conditions.

  4. Application of variable structure system theory to aircraft flight control. [AV-8A and the Augmentor Wing Jet STOL Research Aircraft

    NASA Technical Reports Server (NTRS)

    Calise, A. J.; Kadushin, I.; Kramer, F.

    1981-01-01

    The current status of research on the application of variable structure system (VSS) theory to design aircraft flight control systems is summarized. Two aircraft types are currently being investigated: the Augmentor Wing Jet STOL Research Aircraft (AWJSRA), and AV-8A Harrier. The AWJSRA design considers automatic control of longitudinal dynamics during the landing phase. The main task for the AWJSRA is to design an automatic landing system that captures and tracks a localizer beam. The control task for the AV-8A is to track velocity commands in a hovering flight configuration. Much effort was devoted to developing computer programs that are needed to carry out VSS design in a multivariable frame work, and in becoming familiar with the dynamics and control problems associated with the aircraft types under investigation. Numerous VSS design schemes were explored, particularly for the AWJSRA. The approaches that appear best suited for these aircraft types are presented. Examples are given of the numerical results currently being generated.

  5. Cadenced IRAC Monitoring of Infrared-Variable AGNs, Part II

    NASA Astrophysics Data System (ADS)

    Ashby, Matthew; Fouesneau, Morgan; Hora, Joseph; Krick, Jessica; Smith, Howard; Surace, Jason

    2008-03-01

    We have analyzed IRAC imaging data from all 97 Spitzer visits to a very well-studied field, the IRAC Dark Calibration Field (IRAC-CF) near the north ecliptic pole. With this extensive dataset we have already identified a unique sample of 30 IR-variable galaxies which we are now working to characterize with respect to variability amplitudes and timescales, panchromatic SEDs, and host morphologies, among other quantities. Unfortunately, the continual change in spacecraft roll angle means that our sources are typically observed for at most six months at a time by each IRAC FOV in succession -- in other words, the visibility windows are exactly out of phase. Thus the existing data, despite the fact that they extend over more than four years, present large, unavoidable gaps that frustrate the time-delay analysis we wish to perform on exactly the timescales known to be common in active galaxies. This has only changed beginning in 2007 July: since that time cadenced IRAC observations have been carried out in synchrony with the IRAC-CF dark-calibration observations as part of our approved Cycle-4 program (PID 40553). Here we are proposing to continue this successful AGN monitoring campaign until the end of the cryogenic mission. The resulting timelines (covering 1500 days thus far and expected to run ultimately to some 2200+ days), will be a unique legacy of the Spitzer mission. This dataset, especially for the sizable, unbiased AGN sample we now have, holds unique promise for measuring the colors and temperatures of IR-varying AGN, and will have much to say about the underlying physical models of the infrared AGN emission. Accordingly we ask for just 8 h to gather IRAC photometry in the temporal gaps that would otherwise accrue in Cycle 5.

  6. Application of modern control theory to the design of optimum aircraft controllers

    NASA Technical Reports Server (NTRS)

    Power, L. J.

    1973-01-01

    A procedure is described for synthesis of optimal aircraft control systems by application of the concepts of optimal control theory to time-invariant linear systems with quadratic performance criteria. Essential in this synthesis procedure is the solution of the Riccati matrix equation which results in a constant linear feedback control law for an output regulator which maintains a plant in an equilibrium in the presence of impulse disturbances. An algorithm is derived for designing maneuverable output regulators with selected state variables for feedback.

  7. Comparative study of flare control laws. [optimal control of b-737 aircraft approach and landing

    NASA Technical Reports Server (NTRS)

    Nadkarni, A. A.; Breedlove, W. J., Jr.

    1979-01-01

    A digital 3-D automatic control law was developed to achieve an optimal transition of a B-737 aircraft between various initial glid slope conditions and the desired final touchdown condition. A discrete, time-invariant, optimal, closed-loop control law presented for a linear regulator problem, was extended to include a system being acted upon by a constant disturbance. Two forms of control laws were derived to solve this problem. One method utilized the feedback of integral states defined appropriately and augmented with the original system equations. The second method formulated the problem as a control variable constraint, and the control variables were augmented with the original system. The control variable constraint control law yielded a better performance compared to feedback control law for the integral states chosen.

  8. Interior noise control ground test studies for advanced turboprop aircraft applications

    NASA Technical Reports Server (NTRS)

    Simpson, Myles A.; Cannon, Mark R.; Burge, Paul L.; Boyd, Robert P.

    1989-01-01

    The measurement and analysis procedures are documented, and the results of interior noise control ground tests conducted on a DC-9 aircraft test section are summarized. The objectives of these tests were to study the fuselage response characteristics of treated and untreated aircraft with aft-mount advanced turboprop engines and to analyze the effectiveness of selected noise control treatments in reducing passenger cabin noise on these aircraft. The results of fuselage structural mode surveys, cabin cavity surveys and sound intensity surveys are presented. The performance of various structural and cabin sidewall treatments is assessed, based on measurements of the resulting interior noise levels under simulated advanced turboprop excitation.

  9. Adaptive Failure Compensation for Aircraft Tracking Control Using Engine Differential Based Model

    NASA Technical Reports Server (NTRS)

    Liu, Yu; Tang, Xidong; Tao, Gang; Joshi, Suresh M.

    2006-01-01

    An aircraft model that incorporates independently adjustable engine throttles and ailerons is employed to develop an adaptive control scheme in the presence of actuator failures. This model captures the key features of aircraft flight dynamics when in the engine differential mode. Based on this model an adaptive feedback control scheme for asymptotic state tracking is developed and applied to a transport aircraft model in the presence of two types of failures during operation, rudder failure and aileron failure. Simulation results are presented to demonstrate the adaptive failure compensation scheme.

  10. A neural based intelligent flight control system for the NASA F-15 flight research aircraft

    NASA Technical Reports Server (NTRS)

    Urnes, James M.; Hoy, Stephen E.; Ladage, Robert N.; Stewart, James

    1993-01-01

    A flight control concept that can identify aircraft stability properties and continually optimize the aircraft flying qualities has been developed by McDonnell Aircraft Company under a contract with the NASA-Dryden Flight Research Facility. This flight concept, termed the Intelligent Flight Control System, utilizes Neural Network technology to identify the host aircraft stability and control properties during flight, and use this information to design on-line the control system feedback gains to provide continuous optimum flight response. This self-repairing capability can provide high performance flight maneuvering response throughout large flight envelopes, such as needed for the National Aerospace Plane. Moreover, achieving this response early in the vehicle's development schedule will save cost.

  11. Optimal nonlinear estimation for aircraft flight control in wind shear

    NASA Technical Reports Server (NTRS)

    Mulgund, Sandeep S.

    1994-01-01

    The most recent results in an ongoing research effort at Princeton in the area of flight dynamics in wind shear are described. The first undertaking in this project was a trajectory optimization study. The flight path of a medium-haul twin-jet transport aircraft was optimized during microburst encounters on final approach. The assumed goal was to track a reference climb rate during an aborted landing, subject to a minimum airspeed constraint. The results demonstrated that the energy loss through the microburst significantly affected the qualitative nature of the optimal flight path. In microbursts of light to moderate strength, the aircraft was able to track the reference climb rate successfully. In severe microbursts, the minimum airspeed constraint in the optimization forced the aircraft to settle on a climb rate smaller than the target. A tradeoff was forced between the objectives of flight path tracking and stall prevention.

  12. Application of Hybrid Laminar Flow Control to Global Range Military Transport Aircraft

    NASA Technical Reports Server (NTRS)

    Lange, Roy H.

    1988-01-01

    A study was conducted to evaluate the application of hybrid laminar flow control (HLFC) to global range military transport aircraft. The global mission included the capability to transport 132,500 pounds of payload 6500 nautical miles, land and deliver the payload and without refueling return 6500 nautical miles to a friendly airbase. The preliminary design studies show significant performance benefits obtained for the HLFC aircraft as compared to counterpart turbulent flow aircraft. The study results at M=0.77 show that the largest benefits of HLFC are obtained with a high wing with engines on the wing configuration. As compared with the turbulent flow baseline aircraft, the high wing HLFC aircraft shows 17 percent reduction in fuel burned, 19.2 percent increase in lift-to-drag ratio, an insignificant increase in operating weight, and a 7.4 percent reduction in gross weight.

  13. The F-12 series aircraft approach to design for control system reliability

    NASA Technical Reports Server (NTRS)

    Schenk, F. L.; Mcmaster, J. R.

    1976-01-01

    The F-12 series aircraft control system design philosophy is reviewed as it pertains to functional reliability. The basic control system, i.e., cables, mixer, feel system, trim devices, and hydraulic systems are described and discussed. In addition, the implementation of the redundant stability augmentation system in the F-12 aircraft is described. Finally, the functional reliability record that has been achieved is presented.

  14. Aircraft loss-of-control prevention and recovery: A hybrid control strategy

    NASA Astrophysics Data System (ADS)

    Dongmo, Jean-Etienne Temgoua

    The Complexity of modern commercial and military aircrafts has necessitated better protection and recovery systems. With the tremendous advances in computer technology, control theory and better mathematical models, a number of issues (Prevention, Reconfiguration, Recovery, Operation near critical points, ... etc) moderately addressed in the past have regained interest in the aeronautical industry. Flight envelope is essential in all flying aerospace vehicles. Typically, flying the vehicle means remaining within the flight envelope at all times. Operation outside the normal flight regime is usually subject to failure of components (Actuators, Engines, Deflection Surfaces) , pilots's mistakes, maneuverability near critical points and environmental conditions (crosswinds...) and in general characterized as Loss-Of-Control (LOC) because the aircraft no longer responds to pilot's inputs as expected. For the purpose of this work, (LOC) in aircraft is defined as the departure from the safe set (controlled flight) recognized as the maximum controllable (reachable) set in the initial flight envelope. The LOC can be reached either through failure, unintended maneuvers, evolution near irregular points and disturbances. A coordinated strategy is investigated and designed to ensure that the aircraft can maneuver safely in their constraint domain and can also recover from abnormal regime. The procedure involves the computation of the largest controllable (reachable) set (Safe set) contained in the initial prescribed envelope. The problem is posed as a reachability problem using Hamilton-Jacobi Partial Differential Equation (HJ-PDE) where a cost function is set to he minimized along trajectory departing from the given set. Prevention is then obtained by computing the controller which would allow the flight vehicle to remain in the maximum controlled set in a multi-objective set up. Then the recovery procedure is illustrated with a two-point boundary value problem. Once

  15. Manual Throttles-Only Control Effectivity for Emergency Flight Control of Transport Aircraft

    NASA Technical Reports Server (NTRS)

    Stevens, Richard; Burcham, Frank W., Jr.

    2009-01-01

    If normal aircraft flight controls are lost, emergency flight control may be attempted using only the thrust of engines. Collective thrust is used to control flightpath, and differential thrust is used to control bank angle. One issue is whether a total loss of hydraulics (TLOH) leaves an airplane in a recoverable condition. Recoverability is a function of airspeed, altitude, flight phase, and configuration. If the airplane can be recovered, flight test and simulation results on several transport-class airplanes have shown that throttles-only control (TOC) is usually adequate to maintain up-and-away flight, but executing a safe landing is very difficult. There are favorable aircraft configurations, and also techniques that will improve recoverability and control and increase the chances of a survivable landing. The DHS and NASA have recently conducted a flight and simulator study to determine the effectivity of manual throttles-only control as a way to recover and safely land a range of transport airplanes. This paper discusses TLOH recoverability as a function of conditions, and TOC landability results for a range of transport airplanes, and some key techniques for flying with throttles and making a survivable landing. Airplanes evaluated include the B-747, B-767, B-777, B-757, A320, and B-737 airplanes.

  16. Design, analysis, and control of large transport aircraft utilizing engine thrust as a backup system for the primary flight controls

    NASA Technical Reports Server (NTRS)

    Gerren, Donna S.

    1993-01-01

    A review of accidents that involved the loss of hydraulic flight control systems serves as an introduction to this project. In each of the accidents--involving transport aircraft such as the DC-10, the C-5A, the L-1011, and the Boeing 747--the flight crew attempted to control the aircraft by means of thrust control. Although these incidents had tragic endings, in the absence of control power due to primary control system failure, control power generated by selective application of engine thrust has proven to be a viable alternative. NASA Dryden has demonstrated the feasibility of controlling an aircraft during level flight, approach, and landing conditions using an augmented throttles-only control system. This system has been successfully flown in the flight test simulator for the B-720 passenger transport and the F-15 air superiority fighter and in actual flight tests for the F-15 aircraft. The Douglas Aircraft Company is developing a similar system for the MD-11 aircraft. The project's ultimate goal is to provide data for the development of thrust control systems for mega-transports (600+ passengers).

  17. Advanced technology for controlling pollutant emissions from supersonic cruise aircraft

    NASA Technical Reports Server (NTRS)

    Duerr, R. A.; Diehl, L. A.

    1980-01-01

    Gas turbine engine combustor technology for the reduction of pollutant emissions is summarized. Variations of conventional combustion systems and advanced combustor concepts are discussed. Projected results from far term technology efforts aimed at applying the premixed prevaporized and catalytic combustion techniques to aircraft combustion systems indicate a potential for significant reductions in pollutant emission levels.

  18. Longitudinal control of aircraft dynamics based on optimization of PID parameters

    NASA Astrophysics Data System (ADS)

    Deepa, S. N.; Sudha, G.

    2016-03-01

    Recent years many flight control systems and industries are employing PID controllers to improve the dynamic behavior of the characteristics. In this paper, PID controller is developed to improve the stability and performance of general aviation aircraft system. Designing the optimum PID controller parameters for a pitch control aircraft is important in expanding the flight safety envelope. Mathematical model is developed to describe the longitudinal pitch control of an aircraft. The PID controller is designed based on the dynamic modeling of an aircraft system. Different tuning methods namely Zeigler-Nichols method (ZN), Modified Zeigler-Nichols method, Tyreus-Luyben tuning, Astrom-Hagglund tuning methods are employed. The time domain specifications of different tuning methods are compared to obtain the optimum parameters value. The results prove that PID controller tuned by Zeigler-Nichols for aircraft pitch control dynamics is better in stability and performance in all conditions. Future research work of obtaining optimum PID controller parameters using artificial intelligence techniques should be carried out.

  19. The sensitivity and specificity of control surface injuries in aircraft accident fatalities.

    PubMed

    Campman, Steven C; Luzi, Scott A

    2007-06-01

    Among the important determinations that aircraft crash investigators try to make is which occupant of an aircraft was attempting to control the aircraft at the time of the crash. The presence or absence of certain injuries of the extremities is used to help make this determination. These "control surface injuries" reportedly occur when crash forces are applied to a pilot's hands and feet through the aircraft's controls. We sought to clarify the significance of these injuries and the frequency with which their presence indicates that the decedent was the person that might have been trying to control the aircraft, questions that are frequently asked of the examining pathologist. We studied sequential fatalities of airplane and helicopter crashes in which autopsies were performed by the Office of the Armed Forces Medical Examiner, excluding those that were known to have been incapacitated before the crash and those that were known to have attempted to escape from the aircraft, collecting 100 "qualified" crash decedents. The incidence of control surface injuries was determined for both pilots and passengers. The sensitivity and specificity of control surface injuries were calculated by classifying the decedents into a 4-cell diagnostic matrix. The positive and negative predictive values for control surface injuries were also calculated. Injuries that met the published definitions of control surface injuries had high incidences in passengers, as well as pilots, giving the term control surface injury a diagnostically unacceptable sensitivity and specificity for indicating "a pilot attempting to control an aircraft." We offer caveats and refinements to the definition of these injuries that help to increase the sensitivity and specificity of this term. PMID:17525559

  20. Non-linear controls influence functions in an aircraft dynamics simulator

    NASA Technical Reports Server (NTRS)

    Guerreiro, Nelson M.; Hubbard, James E., Jr.; Motter, Mark A.

    2006-01-01

    In the development and testing of novel structural and controls concepts, such as morphing aircraft wings, appropriate models are needed for proper system characterization. In most instances, available system models do not provide the required additional degrees of freedom for morphing structures but may be modified to some extent to achieve a compatible system. The objective of this study is to apply wind tunnel data collected for an Unmanned Air Vehicle (UAV), that implements trailing edge morphing, to create a non-linear dynamics simulator, using well defined rigid body equations of motion, where the aircraft stability derivatives change with control deflection. An analysis of this wind tunnel data, using data extraction algorithms, was performed to determine the reference aerodynamic force and moment coefficients for the aircraft. Further, non-linear influence functions were obtained for each of the aircraft s control surfaces, including the sixteen trailing edge flap segments. These non-linear controls influence functions are applied to the aircraft dynamics to produce deflection-dependent aircraft stability derivatives in a non-linear dynamics simulator. Time domain analysis of the aircraft motion, trajectory, and state histories can be performed using these nonlinear dynamics and may be visualized using a 3-dimensional aircraft model. Linear system models can be extracted to facilitate frequency domain analysis of the system and for control law development. The results of this study are useful in similar projects where trailing edge morphing is employed and will be instrumental in the University of Maryland s continuing study of active wing load control.

  1. Robust Damage-Mitigating Control of Aircraft for High Performance and Structural Durability

    NASA Technical Reports Server (NTRS)

    Caplin, Jeffrey; Ray, Asok; Joshi, Suresh M.

    1999-01-01

    This paper presents the concept and a design methodology for robust damage-mitigating control (DMC) of aircraft. The goal of DMC is to simultaneously achieve high performance and structural durability. The controller design procedure involves consideration of damage at critical points of the structure, as well as the performance requirements of the aircraft. An aeroelastic model of the wings has been formulated and is incorporated into a nonlinear rigid-body model of aircraft flight-dynamics. Robust damage-mitigating controllers are then designed using the H(infinity)-based structured singular value (mu) synthesis method based on a linearized model of the aircraft. In addition to penalizing the error between the ideal performance and the actual performance of the aircraft, frequency-dependent weights are placed on the strain amplitude at the root of each wing. Using each controller in turn, the control system is put through an identical sequence of maneuvers, and the resulting (varying amplitude cyclic) stress profiles are analyzed using a fatigue crack growth model that incorporates the effects of stress overload. Comparisons are made to determine the impact of different weights on the resulting fatigue crack damage in the wings. The results of simulation experiments show significant savings in fatigue life of the wings while retaining the dynamic performance of the aircraft.

  2. Damage-mitigating control of aircraft for high performance and life extension

    NASA Astrophysics Data System (ADS)

    Caplin, Jeffrey

    1998-12-01

    A methodology is proposed for the synthesis of a Damage-Mitigating Control System for a high-performance fighter aircraft. The design of such a controller involves consideration of damage to critical points of the structure, as well as the performance requirements of the aircraft. This research is interdisciplinary, and brings existing knowledge in the fields of unsteady aerodynamics, structural dynamics, fracture mechanics, and control theory together to formulate a new approach towards aircraft flight controller design. A flexible wing model is formulated using the Finite Element Method, and the important mode shapes and natural frequencies are identified. The Doublet Lattice Method is employed to develop an unsteady flow model for computation of the unsteady aerodynamic loads acting on the wing due to rigid-body maneuvers and structural deformation. These two models are subsequently incorporated into a pre-existing nonlinear rigid-body aircraft flight-dynamic model. A family of robust Damage-Mitigating Controllers is designed using the Hinfinity-optimization and mu-synthesis method. In addition to weighting the error between the ideal performance and the actual performance of the aircraft, weights are also placed on the strain amplitude at the root of each wing. The results show significant savings in fatigue life of the wings while retaining the dynamic performance of the aircraft.

  3. Evaluation of laminar flow control systems for subsonic commercial transport aircraft: Executive summary

    NASA Technical Reports Server (NTRS)

    Pearce, W. E.

    1982-01-01

    An evaluation was made of laminar flow control (LFC) system concepts for subsonic commercial transport aircraft. Configuration design studies, performance analyses, fabrication development, structural testing, wind tunnel testing, and contamination-avoidance techniques were included. As a result of trade studies, a configuration with LFC on the upper wing surface only, utilizing an electron beam-perforated suction surface, and employing a retractable high-lift shield for contamination avoidance, was selected as the most practical LFC system. The LFC aircraft was then compared with an advanced turbulent aircraft designed for the same mission. This comparison indicated significant fuel savings.

  4. Evaluation of laminar flow control systems concepts for subsonic commercial transport aircraft

    NASA Technical Reports Server (NTRS)

    Pearce, W. E.

    1983-01-01

    An evaluation was made of laminar flow control (LFC) system concepts for subsonic commercial transport aircraft. Configuration design studies, performance analyses, fabrication development, structural testing, wind tunnel testing, and contamination-avoidance techniques were included. As a result of trade studies, a configuration with LFC on the upper wing surface only, utilizing an electron beam-perforated suction surface, and employing a retractable high-lift shield for contamination avoidance, was selected as the most practical LFC system. The LFC aircraft was then compared with an advanced turbulent aircraft designed for the same mission. This comparison indicated significant fuel savings and reduced direct operating cost benefits would result from using LFC.

  5. Biomechanically Induced and Controller Coupled Oscillations Experienced on the F-16XL Aircraft During Rolling Maneuvers

    NASA Technical Reports Server (NTRS)

    Smith, John W.; Montgomery, Terry

    1996-01-01

    During rapid rolling maneuvers, the F-16 XL aircraft exhibits a 2.5 Hz lightly damped roll oscillation, perceived and described as 'roll ratcheting.' This phenomenon is common with fly-by-wire control systems, particularly when primary control is derived through a pedestal-mounted side-arm controller. Analytical studies have been conducted to model the nature of the integrated control characteristics. The analytical results complement the flight observations. A three-degree-of-freedom linearized set of aerodynamic matrices was assembled to simulate the aircraft plant. The lateral-directional control system was modeled as a linear system. A combination of two second-order transfer functions was derived to couple the lateral acceleration feed through effect of the operator's arm and controller to the roll stick force input. From the combined systems, open-loop frequency responses and a time history were derived, describing and predicting an analogous in-flight situation. This report describes the primary control, aircraft angular rate, and position time responses of the F-16 XL-2 aircraft during subsonic and high-dynamic-pressure rolling maneuvers. The analytical description of the pilot's arm and controller can be applied to other aircraft or simulations to assess roll ratcheting susceptibility.

  6. Structural Acoustic Characteristics of Aircraft and Active Control of Interior Noise

    NASA Technical Reports Server (NTRS)

    Fuller, C. R.

    1998-01-01

    The reduction of aircraft cabin sound levels to acceptable values still remains a topic of much research. The use of conventional passive approaches has been extensively studied and implemented. However performance limits of these techniques have been reached. In this project, new techniques for understanding the structural acoustic behavior of aircraft fuselages and the use of this knowledge in developing advanced new control approaches are investigated. A central feature of the project is the Aircraft Fuselage Test Facility at Va Tech which is based around a full scale Cessna Citation III fuselage. The work is divided into two main parts; the first part investigates the use of an inverse technique for identifying dominant fuselage vibrations. The second part studies the development and implementation of active and active-passive techniques for controlling aircraft interior noise.

  7. ACFA 2020 - An FP7 project on active control of flexible fuel efficient aircraft configurations

    NASA Astrophysics Data System (ADS)

    Maier, R.

    2013-12-01

    This paper gives an overview about the project ACFA 2020 which is funded by the European Commission within the 7th framework program. The acronym ACFA 2020 stands for Active Control for Flexible Aircraft 2020. The project is dealing with the design of highly fuel efficient aircraft configurations and, in particular, on innovative active control concepts with the goal to reduce loads and structural weight. Major focus lays on blended wing body (BWB) aircraft. Blended wing body type aircraft configurations are seen as the most promising future concept to fulfill the so-called ACARE (Advisory Council for Aeronautics Research in Europe) vision 2020 goals in regards to reduce fuel consumption and external noise. The paper discusses in some detail the overall goals and how they are addressed in the workplan. Furthermore, the major achievements of the project are outlined and a short outlook on the remaining work is given.

  8. Robust Gain-Scheduled Fault Tolerant Control for a Transport Aircraft

    NASA Technical Reports Server (NTRS)

    Shin, Jong-Yeob; Gregory, Irene

    2007-01-01

    This paper presents an application of robust gain-scheduled control concepts using a linear parameter-varying (LPV) control synthesis method to design fault tolerant controllers for a civil transport aircraft. To apply the robust LPV control synthesis method, the nonlinear dynamics must be represented by an LPV model, which is developed using the function substitution method over the entire flight envelope. The developed LPV model associated with the aerodynamic coefficient uncertainties represents nonlinear dynamics including those outside the equilibrium manifold. Passive and active fault tolerant controllers (FTC) are designed for the longitudinal dynamics of the Boeing 747-100/200 aircraft in the presence of elevator failure. Both FTC laws are evaluated in the full nonlinear aircraft simulation in the presence of the elevator fault and the results are compared to show pros and cons of each control law.

  9. Flight dynamics simulation modeling and control of a large flexible tiltrotor aircraft

    NASA Astrophysics Data System (ADS)

    Juhasz, Ondrej

    A high order rotorcraft mathematical model is developed and validated against the XV-15 and a Large Civil Tiltrotor (LCTR) concept. The mathematical model is generic and allows for any rotorcraft configuration, from single main rotor helicopters to coaxial and tiltrotor aircraft. Rigid-body and inflow states, as well as flexible wing and blade states are used in the analysis. The separate modeling of each rotorcraft component allows for structural flexibility to be included, which is important when modeling large aircraft where structural modes affect the flight dynamics frequency ranges of interest, generally 1 to 20 rad/sec. Details of the formulation of the mathematical model are given, including derivations of structural, aerodynamic, and inertial loads. The linking of the components of the aircraft is developed using an approach similar to multibody analyses by exploiting a tree topology, but without equations of constraints. Assessments of the effects of wing flexibility are given. Flexibility effects are evaluated by looking at the nature of the couplings between rigid-body modes and wing structural modes and vice versa. The effects of various different forms of structural feedback on aircraft dynamics are analyzed. A proportional-integral feedback on the structural acceleration is deemed to be most effective at both improving the damping and reducing the overall excitation of a structural mode. A model following control architecture is then implemented on full order flexible LCTR models. For this aircraft, the four lowest frequency structural modes are below 20 rad/sec, and are thus needed for control law development and analysis. The impact of structural feedback on both Attitude-Command, Attitude-Hold (ACAH) and Translational Rate Command (TRC) response types are investigated. A rigid aircraft model has optimistic performance characteristics, and a control system designed for a rigid aircraft could potentially destabilize a flexible one. The various

  10. Application of the concept of dynamic trim control to automatic landing of carrier aircraft. [utilizing digital feedforeward control

    NASA Technical Reports Server (NTRS)

    Smith, G. A.; Meyer, G.

    1980-01-01

    The results of a simulation study of an alternative design concept for an automatic landing control system are presented. The alternative design concept for an automatic landing control system is described. The design concept is the total aircraft flight control system (TAFCOS). TAFCOS is an open loop, feed forward system that commands the proper instantaneous thrust, angle of attack, and roll angle to achieve the forces required to follow the desired trajector. These dynamic trim conditions are determined by an inversion of the aircraft nonlinear force characteristics. The concept was applied to an A-7E aircraft approaching an aircraft carrier. The implementation details with an airborne digital computer are discussed. The automatic carrier landing situation is described. The simulation results are presented for a carrier approach with atmospheric disturbances, an approach with no disturbances, and for tailwind and headwind gusts.

  11. Control-system techniques for improved departure/spin resistance for fighter aircraft

    NASA Technical Reports Server (NTRS)

    Nguyen, L. T.; Gilbert, W. P.; Ogburn, M. E.

    1980-01-01

    Some fundamental information on control system effects on controllability of highly maneuverable aircraft at high angles of attack are summarized as well as techniques for enhancing fighter aircraft departure/spin resistance using control system design. The discussion includes: (1) a brief review of pertinent high angle of attack phenomena including aerodynamics, inertia coupling, and kinematic coupling; (2) effects of conventional stability augmentation systems at high angles of attack; (3) high angle of attack control system concepts designed to enhance departure/spin resistance; and (4) the outlook for applications of these concepts to future fighters, particularly those designs which incorporate relaxed static stability.

  12. Survey of piloting factors in V/STOL aircraft with implications for flight control system design

    NASA Technical Reports Server (NTRS)

    Ringland, R. F.; Craig, S. J.

    1977-01-01

    Flight control system design factors involved for pilot workload relief are identified. Major contributors to pilot workload include configuration management and control and aircraft stability and response qualities. A digital fly by wire stability augmentation, configuration management, and configuration control system is suggested for reduction of pilot workload during takeoff, hovering, and approach.

  13. Real-Time Adaptive Control Allocation Applied to a High Performance Aircraft

    NASA Technical Reports Server (NTRS)

    Davidson, John B.; Lallman, Frederick J.; Bundick, W. Thomas

    2001-01-01

    Abstract This paper presents the development and application of one approach to the control of aircraft with large numbers of control effectors. This approach, referred to as real-time adaptive control allocation, combines a nonlinear method for control allocation with actuator failure detection and isolation. The control allocator maps moment (or angular acceleration) commands into physical control effector commands as functions of individual control effectiveness and availability. The actuator failure detection and isolation algorithm is a model-based approach that uses models of the actuators to predict actuator behavior and an adaptive decision threshold to achieve acceptable false alarm/missed detection rates. This integrated approach provides control reconfiguration when an aircraft is subjected to actuator failure, thereby improving maneuverability and survivability of the degraded aircraft. This method is demonstrated on a next generation military aircraft Lockheed-Martin Innovative Control Effector) simulation that has been modified to include a novel nonlinear fluid flow control control effector based on passive porosity. Desktop and real-time piloted simulation results demonstrate the performance of this integrated adaptive control allocation approach.

  14. Design criteria for flightpath and airspeed control for the approach and landing of STOL aircraft

    NASA Technical Reports Server (NTRS)

    Franklin, J. A.; Innis, R. C.; Hardy, G. H.; Stephenson, J. D.

    1982-01-01

    A flight research program was conducted to assess requirements for flightpath and airspeed control for glide-slope tracking during a precision approach and for flare control, particularly as applied to powered-lift, short takeoff and landing (STOL) aircraft. Ames Research Center's Augmentor Wing Research Aircraft was used to fly approaches on a 7.5 deg glide slope to landings on a 30 X 518 m (100 X 1700 ft) STOL runway. The dominant aircraft response characteristics determined were flightpath overshoot, flightpath-airspeed coupling, and initial flightpath response time. The significant contribution to control of the landing flare using pitch attitude was the short-term flightpath response. The limiting condition for initial flightpath response time for flare control with thrust was also identified. It is possible to define flying-qualities design criteria for glide-slope and flare control based on the aforementioned response characteristics.

  15. Design of a flight control system for a highly maneuverable aircraft using mu synthesis

    NASA Technical Reports Server (NTRS)

    Reiner, Jacob; Balas, Gary J.; Garrard, William L.

    1993-01-01

    This paper presents a methodology for the design of longitudinal controllers for high performance aircraft operating over large ranges of angle of attack. The technique used for controller design is structured singular value or mu synthesis. The controller is designed to minimize the weighted H-infinity norm of the error between the aircraft response and the desired handling quality specifications without saturating the control actuators. The mu synthesis procedure ensures that the stability and performance of the aircraft is robust to parameter variations and modeling uncertainties included in the design model. Nonlinear simulations demonstrate that the controller satisfies handling quality requirements and provides excellent tracking of pilot inputs over a wide range of transient angles of attack and Mach number.

  16. A linear input-varying framework for modeling and control of morphing aircraft

    NASA Astrophysics Data System (ADS)

    Grant, Daniel T.

    2011-12-01

    a method to relate the flight dynamics of morphing aircraft by interpreting a time-varying eigenvector in terms of flight modes. The time-varying eigenvector is actually defined through a decomposition of the state-transition matrix and thus describes an entire response through a morphing trajectory. A variable-sweep aircraft is analyzed to demonstrate the information that is obtained through this method and how the flight dynamics are altered by the time-varying morphing. Also, morphing vehicles have inherently time-varying dynamics due to the alteration of their configurations; consequently, the numerous techniques for analysis and control of time-invariant systems are inappropriate. Therefore, a control scheme is introduced that directly considers a concept of time-varying pole to command morphing. The resulting trajectory minimizing tracking error for either a state response or a pole response.

  17. Active vibration control of a full scale aircraft wing using a reconfigurable controller

    NASA Astrophysics Data System (ADS)

    Prakash, Shashikala; Renjith Kumar, T. G.; Raja, S.; Dwarakanathan, D.; Subramani, H.; Karthikeyan, C.

    2016-01-01

    This work highlights the design of a Reconfigurable Active Vibration Control (AVC) System for aircraft structures using adaptive techniques. The AVC system with a multichannel capability is realized using Filtered-X Least Mean Square algorithm (FxLMS) on Xilinx Virtex-4 Field Programmable Gate Array (FPGA) platform in Very High Speed Integrated Circuits Hardware Description Language, (VHDL). The HDL design is made based on Finite State Machine (FSM) model with Floating point Intellectual Property (IP) cores for arithmetic operations. The use of FPGA facilitates to modify the system parameters even during runtime depending on the changes in user's requirements. The locations of the control actuators are optimized based on dynamic modal strain approach using genetic algorithm (GA). The developed system has been successfully deployed for the AVC testing of the full-scale wing of an all composite two seater transport aircraft. Several closed loop configurations like single channel and multi-channel control have been tested. The experimental results from the studies presented here are very encouraging. They demonstrate the usefulness of the system's reconfigurability for real time applications.

  18. Flight testing a propulsion-controlled aircraft emergency flight control system on an F-15 airplane

    NASA Technical Reports Server (NTRS)

    Burcham, F. W., Jr.; Burken, John; Maine, Trindel A.

    1994-01-01

    Flight tests of a propulsion-controlled aircraft (PCA) system on an F-15 airplane have been conducted at the NASA Dryden Flight Research Center. The airplane was flown with all flight control surfaces locked both in the manual throttles-only mode and in an augmented system mode. In the latter mode, pilot thumbwheel commands and aircraft feedback parameters were used to position the throttles. Flight evaluation results showed that the PCA system can be used to land an airplane that has suffered a major flight control system failure safely. The PCA system was used to recover the F-15 airplane from a severe upset condition, descend, and land. Pilots from NASA, U.S. Air Force, U.S. Navy, and McDonnell Douglas Aerospace evaluated the PCA system and were favorably impressed with its capability. Manual throttles-only approaches were unsuccessful. This paper describes the PCA system operation and testing. It also presents flight test results and pilot comments.

  19. A knowledge-based system design/information tool for aircraft flight control systems

    NASA Technical Reports Server (NTRS)

    Mackall, Dale A.; Allen, James G.

    1989-01-01

    Research aircraft have become increasingly dependent on advanced control systems to accomplish program goals. These aircraft are integrating multiple disciplines to improve performance and satisfy research objectives. This integration is being accomplished through electronic control systems. Because of the number of systems involved and the variety of engineering disciplines, systems design methods and information management have become essential to program success. The primary objective of the system design/information tool for aircraft flight control system is to help transfer flight control system design knowledge to the flight test community. By providing all of the design information and covering multiple disciplines in a structured, graphical manner, flight control systems can more easily be understood by the test engineers. This will provide the engineers with the information needed to thoroughly ground test the system and thereby reduce the likelihood of serious design errors surfacing in flight. The secondary objective is to apply structured design techniques to all of the design domains. By using the techniques in the top level system design down through the detailed hardware and software designs, it is hoped that fewer design anomalies will result. The flight test experiences of three highly complex, integrated aircraft programs are reviewed: the X-29 forward-swept wing, the advanced fighter technology integration (AFTI) F-16, and the highly maneuverable aircraft technology (HiMAT) program. Significant operating anomalies and the design errors which cause them, are examined to help identify what functions a system design/information tool should provide to assist designers in avoiding errors.

  20. A knowledge-based system design/information tool for aircraft flight control systems

    NASA Technical Reports Server (NTRS)

    Mackall, Dale A.; Allen, James G.

    1991-01-01

    Research aircraft have become increasingly dependent on advanced electronic control systems to accomplish program goals. These aircraft are integrating multiple disciplines to improve performance and satisfy research objective. This integration is being accomplished through electronic control systems. Systems design methods and information management have become essential to program success. The primary objective of the system design/information tool for aircraft flight control is to help transfer flight control system design knowledge to the flight test community. By providing all of the design information and covering multiple disciplines in a structured, graphical manner, flight control systems can more easily be understood by the test engineers. This will provide the engineers with the information needed to thoroughly ground test the system and thereby reduce the likelihood of serious design errors surfacing in flight. The secondary object is to apply structured design techniques to all of the design domains. By using the techniques in the top level system design down through the detailed hardware and software designs, it is hoped that fewer design anomalies will result. The flight test experiences are reviewed of three highly complex, integrated aircraft programs: the X-29 forward swept wing; the advanced fighter technology integration (AFTI) F-16; and the highly maneuverable aircraft technology (HiMAT) program. Significant operating technologies, and the design errors which cause them, is examined to help identify what functions a system design/informatin tool should provide to assist designers in avoiding errors.

  1. Model-following output feedback controller for oblique-wing aircraft

    NASA Technical Reports Server (NTRS)

    Alag, Gurbux Singh

    1987-01-01

    A variable-skew oblique-wing offers a substantial aerodynamic performance advantage for aircraft missions that require both high efficiency in subsonic flight and supersonic dash or cruise. The most obvious characteristics of the oblique-wing concept is the asymmetry of the wing-skew angle that causes a significant aerodynamic and inertial cross coupling between the aircraft longitudinal and lateral-directional axes. This paper presents a technique for synthesizing a decoupling controller while providing the desired stability augmentation. The use of output feedback in control law synthesis without the requirement of state estimation is presented. An explicit model-following control system with output feedback is developed. The effectiveness of the control laws developed in achieving the desired decoupling is illustrated for a given flight condition for an oblique-wing aircraft.

  2. Output tracking control for a velocity-sensorless VTOL aircraft with measurement delays

    NASA Astrophysics Data System (ADS)

    Su, Shanwei; Lin, Yan

    2015-04-01

    In this paper, we develop a non-linear controller to achieve output tracking for a velocity-sensorless vertical take-off and landing (VTOL) aircraft in the presence of measurement delays. By applying the Pade approximation technique, the original controlled system is transformed into an augmented dimension system without any time delay. After constructing full-order observers, error coordinate transformation, and system decomposition, the tracking problem of the newly transformed system is changed into the stabilisation problem of two non-minimum phase subsystems and one minimum phase subsystem. The resulting controller not only forces the VTOL aircraft to asymptotically track the desired trajectories, but also drives the unstable internal dynamics, which stands for the non-minimum property of VTOL aircraft, to follow the causal ideal internal dynamics (IID) solved via the stable system centre (SSC) method. Numerical simulation results illustrate the effectiveness of the proposed controller.

  3. In-flight Fault Detection and Isolation in Aircraft Flight Control Systems

    NASA Technical Reports Server (NTRS)

    Azam, Mohammad; Pattipati, Krishna; Allanach, Jeffrey; Poll, Scott; Patterson-Hine, Ann

    2005-01-01

    In this paper we consider the problem of test design for real-time fault detection and isolation (FDI) in the flight control system of fixed-wing aircraft. We focus on the faults that are manifested in the control surface elements (e.g., aileron, elevator, rudder and stabilizer) of an aircraft. For demonstration purposes, we restrict our focus on the faults belonging to nine basic fault classes. The diagnostic tests are performed on the features extracted from fifty monitored system parameters. The proposed tests are able to uniquely isolate each of the faults at almost all severity levels. A neural network-based flight control simulator, FLTZ(Registered TradeMark), is used for the simulation of various faults in fixed-wing aircraft flight control systems for the purpose of FDI.

  4. Output model-following control synthesis for an oblique-wing aircraft

    NASA Technical Reports Server (NTRS)

    Pahle, Joseph W.

    1990-01-01

    Recent interest in oblique-wing aircraft has focused on the potential aerodynamic performance advantage of a variable-skew oblique wing over a conventional or symmetric sweep wing. Unfortunately, the resulting asymmetric configuration has significant aerodynamic and inertial cross-coupling between the aircraft longitudinal and lateral-directional axes. Presented here is a decoupling control law synthesis technique that integrates stability augmentation, decoupling, and the direct incorporation of desired handling qualities into an output feedback controller. The proposed design technique uses linear quadratic regulator concepts in the framework of explicit model following. The output feedback strategy used is a suboptimal projection from the state space to the output space. Dynamics are then introduced into the controller to improve steady-state performance and increase system robustness. Closed-loop performance is shown by application of the control laws to the linearized equations of motion and nonlinear simulation of an oblique-wing aircraft.

  5. A Lightweight Loudspeaker for Aircraft Communications and Active Noise Control

    NASA Technical Reports Server (NTRS)

    Warnaka, Glenn E.; Kleinle, Mark; Tsangaris, Parry; Oslac, Michael J.; Moskow, Harry J.

    1992-01-01

    A series of new, lightweight loudspeakers for use on commercial aircraft has been developed. The loudspeakers use NdFeB magnets and aluminum alloy frames to reduce the weight. The NdFeB magnet is virtually encapsulated by steel in the new speaker designs. Active noise reduction using internal loudspeakers was demonstrated to be effective in 1983. A weight, space, and cost efficient method for creating the active sound attenuating fields is to use the existing cabin loudspeakers for both communication and sound attenuation. This will require some additional loudspeaker design considerations.

  6. Adaptive Flight Control Design with Optimal Control Modification on an F-18 Aircraft Model

    NASA Technical Reports Server (NTRS)

    Burken, John J.; Nguyen, Nhan T.; Griffin, Brian J.

    2010-01-01

    In the presence of large uncertainties, a control system needs to be able to adapt rapidly to regain performance. Fast adaptation is referred to as the implementation of adaptive control with a large adaptive gain to reduce the tracking error rapidly; however, a large adaptive gain can lead to high-frequency oscillations which can adversely affect the robustness of an adaptive control law. A new adaptive control modification is presented that can achieve robust adaptation with a large adaptive gain without incurring high-frequency oscillations as with the standard model-reference adaptive control. The modification is based on the minimization of the Y2 norm of the tracking error, which is formulated as an optimal control problem. The optimality condition is used to derive the modification using the gradient method. The optimal control modification results in a stable adaptation and allows a large adaptive gain to be used for better tracking while providing sufficient robustness. A damping term (v) is added in the modification to increase damping as needed. Simulations were conducted on a damaged F-18 aircraft (McDonnell Douglas, now The Boeing Company, Chicago, Illinois) with both the standard baseline dynamic inversion controller and the adaptive optimal control modification technique. The results demonstrate the effectiveness of the proposed modification in tracking a reference model.

  7. Computer simulation of a pilot in V/STOL aircraft control loops

    NASA Technical Reports Server (NTRS)

    Vogt, William G.; Mickle, Marlin H.; Zipf, Mark E.; Kucuk, Senol

    1989-01-01

    The objective was to develop a computerized adaptive pilot model for the computer model of the research aircraft, the Harrier II AV-8B V/STOL with special emphasis on propulsion control. In fact, two versions of the adaptive pilot are given. The first, simply called the Adaptive Control Model (ACM) of a pilot includes a parameter estimation algorithm for the parameters of the aircraft and an adaption scheme based on the root locus of the poles of the pilot controlled aircraft. The second, called the Optimal Control Model of the pilot (OCM), includes an adaption algorithm and an optimal control algorithm. These computer simulations were developed as a part of the ongoing research program in pilot model simulation supported by NASA Lewis from April 1, 1985 to August 30, 1986 under NASA Grant NAG 3-606 and from September 1, 1986 through November 30, 1988 under NASA Grant NAG 3-729. Once installed, these pilot models permitted the computer simulation of the pilot model to close all of the control loops normally closed by a pilot actually manipulating the control variables. The current version of this has permitted a baseline comparison of various qualitative and quantitative performance indices for propulsion control, the control loops and the work load on the pilot. Actual data for an aircraft flown by a human pilot furnished by NASA was compared to the outputs furnished by the computerized pilot and found to be favorable.

  8. Automatic carrier landing system for V/STOL aircraft using L1 adaptive and optimal control

    NASA Astrophysics Data System (ADS)

    Hariharapura Ramesh, Shashank

    This thesis presents a framework for developing automatic carrier landing systems for aircraft with vertical or short take-off and landing capability using two different control strategies---gain-scheduled linear optimal control, and L1 adaptive control. The carrier landing sequence of V/STOL aircraft involves large variations in dynamic pressure and aerodynamic coefficients arising because of the transition from aerodynamic-supported to jet-borne flight, descent to the touchdown altitude, and turns performed to align with the runway. Consequently, the dynamics of the aircraft exhibit a highly non-linear dynamical behavior with variations in flight conditions prior to touchdown. Therefore, the implication is the need for non-linear control techniques to achieve automatic landing. Gain-scheduling has been one of the most widely employed techniques for control of aircraft, which involves designing linear controllers for numerous trimmed flight conditions, and interpolating them to achieve a global non-linear control. Adaptive control technique, on the other hand, eliminates the need to schedule the controller parameters as they adapt to changing flight conditions.

  9. 76 FR 68675 - Revisions to the Export Administration Regulations (EAR): Control of Aircraft and Related Items...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-07

    ...This proposed rule describes how articles the President determines no longer warrant control under Category VIII (aircraft and related items) of the United States Munitions List (USML) would be controlled under the Commerce Control List (CCL) in new Export Control Classification Numbers (ECCNs) 9A610, 9B610, 9C610, 9D610, and 9E610. In addition, this proposed rule would control military......

  10. Maneuvering control and configuration adaptation of a biologically inspired morphing aircraft

    NASA Astrophysics Data System (ADS)

    Abdulrahim, Mujahid

    Natural flight as a source of inspiration for aircraft design was prominent with early aircraft but became marginalized as aircraft became larger and faster. With recent interest in small unmanned air vehicles, biological inspiration is a possible technology to enhance mission performance of aircraft that are dimensionally similar to gliding birds. Serial wing joints, loosely modeling the avian skeletal structure, are used in the current study to allow significant reconfiguration of the wing shape. The wings are reconfigured to optimize aerodynamic performance and maneuvering metrics related to specific mission tasks. Wing shapes for each mission are determined and related to the seagulls, falcons, albatrosses, and non-migratory African swallows on which the aircraft are based. Variable wing geometry changes the vehicle dynamics, affording versatility in flight behavior but also requiring appropriate compensation to maintain stability and controllability. Time-varying compensation is in the form of a baseline controller which adapts to both the variable vehicle dynamics and to the changing mission requirements. Wing shape is adapted in flight to minimize a cost function which represents energy, temporal, and spatial efficiency. An optimal control architecture unifies the control and adaptation tasks.

  11. Advanced control for airbreathing engines, volume 2: General Electric aircraft engines

    NASA Technical Reports Server (NTRS)

    Bansal, Indar

    1993-01-01

    The application of advanced control concepts to air breathing engines may yield significant improvements in aircraft/engine performance and operability. Screening studies of advanced control concepts for air breathing engines were conducted by three major domestic aircraft engine manufacturers to determine the potential impact of concepts on turbine engine performance and operability. The purpose of the studies was to identify concepts which offered high potential yet may incur high research and development risk. A target suite of proposed advanced control concepts was formulated and evaluated in a two phase study to quantify each concept's impact on desired engine characteristics. To aid in the evaluation specific aircraft/engine combinations were considered: a Military High Performance Fighter mission, a High Speed Civil Transport mission, and a Civil Tiltrotor mission. Each of the advanced control concepts considered in the study are defined and described. The concept potential impact on engine performance was determined. Relevant figures of merit on which to evaluate the concepts are determined. Finally, the concepts are ranked with respect to the target aircraft/engine missions. A final report describing the screening studies was prepared by each engine manufacturer. Volume 2 of these reports describes the studies performed by GE Aircraft Engines.

  12. Theoretical modeling and computational simulation of robust control for Mars aircraft

    NASA Astrophysics Data System (ADS)

    Oh, Seyool

    The focus of this dissertation is the development of control system design algorithms for autonomous operation of an aircraft in the Martian atmosphere. This research will show theoretical modeling and computational simulation of robust control and gain scheduling for a prototype Mars aircraft. A few hundred meters above the surface of Mars, the air density is less than 1% of the density of the Earth's atmosphere at sea level. However, at about 33 km (110,000 ft) above the Earth, the air density is similar to that near the surface of Mars. Marsflyer II was designed to investigate these flight regimes: 33 km above the Earth and the actual Mars environment. The fuselage for the preliminary design was cylindrical with a length of 2.59 m (8.49 ft), the wing span was 3.98 m (13.09 ft). The total weight of the demonstrator aircraft was around 4.54 kg (10.02 lb). Aircraft design tools have been developed based on successful aircraft for the Earth`s atmosphere. However, above Mars an airborne robotic explorer would encounter low Reynolds Number flow phenomena combined with high Mach numbers, a region that is unknown for normal Earth aerodynamic applications. These flows are more complex than those occurring at high Reynolds numbers. The performance of airfoils at low Reynolds numbers is poorly understood and generally results in unfavorable aerodynamic characteristics. Design and simulation tools for the low Reynolds number Martian environment could be used to develop Unmanned Aerial Vehicles (UAV). In this study, a robust control method is used to analyze a prototype Mars aircraft. The purpose of this aircraft is to demonstrate stability, control, and performance within a simulated Mars environment. Due to uncertainty regarding the actual Martian environment, flexibility in the operation of the aircraft`s control system is important for successful performance. The stability and control derivatives of Marsflyer II were obtained by using the Advanced Aircraft Analysis (AAA

  13. Variable stream control engine concept for advanced supersonic aircraft: Features and benefits

    NASA Technical Reports Server (NTRS)

    Howlett, R. A.

    1976-01-01

    The Variable Stream Control Engine is studied for advanced supersonic cruise aircraft. Significant environmental and performance improvements relative to first generation supersonic turbojet engines are cited. Two separate flow streams, each with independent burner and nozzle systems are incorporated within the engine. By unique control of the exhaust temperatures and velocities in two coannular streams, significant reduction in jet noise is obtained.

  14. 19 CFR 162.62 - Permissible controlled substances on vessels, aircraft, and individuals.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 19 Customs Duties 2 2014-04-01 2014-04-01 false Permissible controlled substances on vessels, aircraft, and individuals. 162.62 Section 162.62 Customs Duties U.S. CUSTOMS AND BORDER PROTECTION, DEPARTMENT OF HOMELAND SECURITY; DEPARTMENT OF THE TREASURY (CONTINUED) INSPECTION, SEARCH, AND SEIZURE Controlled Substances, Narcotics, and Marihuana...

  15. 19 CFR 162.62 - Permissible controlled substances on vessels, aircraft, and individuals.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 19 Customs Duties 2 2010-04-01 2010-04-01 false Permissible controlled substances on vessels, aircraft, and individuals. 162.62 Section 162.62 Customs Duties U.S. CUSTOMS AND BORDER PROTECTION, DEPARTMENT OF HOMELAND SECURITY; DEPARTMENT OF THE TREASURY (CONTINUED) INSPECTION, SEARCH, AND SEIZURE Controlled Substances, Narcotics, and Marihuana...

  16. 19 CFR 162.62 - Permissible controlled substances on vessels, aircraft, and individuals.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 19 Customs Duties 2 2012-04-01 2012-04-01 false Permissible controlled substances on vessels, aircraft, and individuals. 162.62 Section 162.62 Customs Duties U.S. CUSTOMS AND BORDER PROTECTION, DEPARTMENT OF HOMELAND SECURITY; DEPARTMENT OF THE TREASURY (CONTINUED) INSPECTION, SEARCH, AND SEIZURE Controlled Substances, Narcotics, and Marihuana...

  17. An Active Flow Circulation Controlled Flap Concept for General Aviation Aircraft Applications

    NASA Technical Reports Server (NTRS)

    Jones, Gregory S.; Viken, Sally A.; Washburn, Anthony E.; Jenkins, Luther N.; Cagle, C. Mark

    2002-01-01

    A recent focus on revolutionary aerodynamic concepts has highlighted the technology needs of general aviation and personal aircraft. New and stringent restrictions on these types of aircraft have placed high demands on aerodynamic performance, noise, and environmental issues. Improved high lift performance of these aircraft can lead to slower takeoff and landing speeds that can be related to reduced noise and crash survivability issues. Circulation Control technologies have been around for 65 years, yet have been avoided due to trade offs of mass flow, pitching moment, perceived noise etc. The need to improve the circulation control technology for general aviation and personal air-vehicle applications is the focus of this paper. This report will describe the development of a 2-D General Aviation Circulation Control (GACC) wing concept that utilizes a pulsed pneumatic flap.

  18. A manual control theory analysis of vertical situation displays for STOL aircraft

    NASA Technical Reports Server (NTRS)

    Baron, S.; Levison, W. H.

    1973-01-01

    Pilot-vehicle-display systems theory is applied to the analysis of proposed vertical situation displays for manual control in approach-to-landing of a STOL aircraft. The effects of display variables on pilot workload and on total closed-loop system performance was calculated using an optimal-control model for the human operator. The steep approach of an augmentor wing jet STOL aircraft was analyzed. Both random turbulence and mean-wind shears were considered. Linearized perturbation equations were used to describe longitudinal and lateral dynamics of the aircraft. The basic display configuration was one that abstracted the essential status information (including glide-slope and localizer errors) of an EADI display. Proposed flight director displays for both longitudinal and lateral control were also investigated.

  19. Status of Computational Aerodynamic Modeling Tools for Aircraft Loss-of-Control

    NASA Technical Reports Server (NTRS)

    Frink, Neal T.; Murphy, Patrick C.; Atkins, Harold L.; Viken, Sally A.; Petrilli, Justin L.; Gopalarathnam, Ashok; Paul, Ryan C.

    2016-01-01

    A concerted effort has been underway over the past several years to evolve computational capabilities for modeling aircraft loss-of-control under the NASA Aviation Safety Program. A principal goal has been to develop reliable computational tools for predicting and analyzing the non-linear stability & control characteristics of aircraft near stall boundaries affecting safe flight, and for utilizing those predictions for creating augmented flight simulation models that improve pilot training. Pursuing such an ambitious task with limited resources required the forging of close collaborative relationships with a diverse body of computational aerodynamicists and flight simulation experts to leverage their respective research efforts into the creation of NASA tools to meet this goal. Considerable progress has been made and work remains to be done. This paper summarizes the status of the NASA effort to establish computational capabilities for modeling aircraft loss-of-control and offers recommendations for future work.

  20. Reduced state feedback gain computation. [optimization and control theory for aircraft control

    NASA Technical Reports Server (NTRS)

    Kaufman, H.

    1976-01-01

    Because application of conventional optimal linear regulator theory to flight controller design requires the capability of measuring and/or estimating the entire state vector, it is of interest to consider procedures for computing controls which are restricted to be linear feedback functions of a lower dimensional output vector and which take into account the presence of measurement noise and process uncertainty. Therefore, a stochastic linear model that was developed is presented which accounts for aircraft parameter and initial uncertainty, measurement noise, turbulence, pilot command and a restricted number of measurable outputs. Optimization with respect to the corresponding output feedback gains was performed for both finite and infinite time performance indices without gradient computation by using Zangwill's modification of a procedure originally proposed by Powell. Results using a seventh order process show the proposed procedures to be very effective.

  1. Controlled mobility of unmanned aircraft chains to optimize network capacity in realistic communication environments

    NASA Astrophysics Data System (ADS)

    Dixon, Cory

    This dissertation presents a decentralized gradient-based mobility control algorithm for the formation and maintenance of an optimal end-to-end communication chain using a team of unmanned aircraft acting as communication relays. With the use of unmanned aircraft (UA) as communication relays, a common mode of operation is to form a communication relay chain between a lead exploring node (which may be ground based or another UA) and a control station. In this type of operation the lead node is typically deployed to explore (sense) a remote region of interest that is beyond direct radio frequency (RF) communication range, or out of line-of-sight, to the control station. To provide non-line-of-sight service, and extend the communication range of the lead node, unmanned aircraft acting as communication relays are deployed in a convoy fashion behind the lead vehicle to form a cascaded relay chain. The focus of this work is the use of the mobility of a fixed number of relay aircraft to maximize the capacity of a directed communication chain from a source node to a destination node. Local objective functions are presented that use the signal-to-noise-and-interference ratio (SNIR) of neighbor communication links as inputs to maximize the end-to-end capacity of packet-based and repeater-type network chains. An adaptive gradient-based SNIR controller using the local objective function can show significant improvement in the capacity of the communication chain that is not possible with range-based controllers, or static deployment strategies, in RF environments containing unknown localized noise sources and terrain effects. Since the SNIR field is unknown, an online estimate of the SNIR field gradient is formed using methods of Stochastic Approximation from the orbital motion of the aircraft tracking a control point. Flight demonstrations using the Networked Unmanned Aircraft System Command, Control and Communications testbed were conducted to validate the controller

  2. Adaptive Data-based Predictive Control for Short Take-off and Landing (STOL) Aircraft

    NASA Technical Reports Server (NTRS)

    Barlow, Jonathan Spencer; Acosta, Diana Michelle; Phan, Minh Q.

    2010-01-01

    Data-based Predictive Control is an emerging control method that stems from Model Predictive Control (MPC). MPC computes current control action based on a prediction of the system output a number of time steps into the future and is generally derived from a known model of the system. Data-based predictive control has the advantage of deriving predictive models and controller gains from input-output data. Thus, a controller can be designed from the outputs of complex simulation code or a physical system where no explicit model exists. If the output data happens to be corrupted by periodic disturbances, the designed controller will also have the built-in ability to reject these disturbances without the need to know them. When data-based predictive control is implemented online, it becomes a version of adaptive control. The characteristics of adaptive data-based predictive control are particularly appropriate for the control of nonlinear and time-varying systems, such as Short Take-off and Landing (STOL) aircraft. STOL is a capability of interest to NASA because conceptual Cruise Efficient Short Take-off and Landing (CESTOL) transport aircraft offer the ability to reduce congestion in the terminal area by utilizing existing shorter runways at airports, as well as to lower community noise by flying steep approach and climb-out patterns that reduce the noise footprint of the aircraft. In this study, adaptive data-based predictive control is implemented as an integrated flight-propulsion controller for the outer-loop control of a CESTOL-type aircraft. Results show that the controller successfully tracks velocity while attempting to maintain a constant flight path angle, using longitudinal command, thrust and flap setting as the control inputs.

  3. Linear matrix inequality-based proportional-integral control design with application to F-16 aircraft

    NASA Astrophysics Data System (ADS)

    Theodore, Zachary B.

    A robust proportional-integral (PI) controller was synthesized for the F-16 VISTA (Variable stability In-flight Simulator Test Aircraft) using a linear matrix inequality (LMI) approach, with the goal of eventually designing and implementing a linear parameter-varying PI controller on high performance aircraft. The combination of classical and modern control theory provides theoretically guaranteed stability and performance throughout the flight envelope and ease of implementation due to the simplicity of the PI controller structure. The controller is designed by solving a set of LMIs with pole placement constraints. This closed-loop system was simulated in MATLAB/Simulink to analyze the performance of the controller. A robust Hinfinity controller was also developed to compare performance with PI controller. The simulation results showed stability, albeit with poor performance compared to the Hinfinity controlle.

  4. A Generic Guidance and Control Structure for Six-Degree-of-Freedom Conceptual Aircraft Design

    NASA Technical Reports Server (NTRS)

    Cotting, M. Christopher; Cox, Timothy H.

    2005-01-01

    A control system framework is presented for both real-time and batch six-degree-of-freedom simulation. This framework allows stabilization and control with multiple command options, from body rate control to waypoint guidance. Also, pilot commands can be used to operate the simulation in a pilot-in-the-loop environment. This control system framework is created by using direct vehicle state feedback with nonlinear dynamic inversion. A direct control allocation scheme is used to command aircraft effectors. Online B-matrix estimation is used in the control allocation algorithm for maximum algorithm flexibility. Primary uses for this framework include conceptual design and early preliminary design of aircraft, where vehicle models change rapidly and a knowledge of vehicle six-degree-of-freedom performance is required. A simulated airbreathing hypersonic vehicle and a simulated high performance fighter are controlled to demonstrate the flexibility and utility of the control system.

  5. A Heading and Flight-Path Angle Control of Aircraft Based on Required Acceleration Vector

    NASA Astrophysics Data System (ADS)

    Yoshitani, Naoharu

    This paper describes a control of heading and flight-path angles of aircraft to time-varying command angles. The controller first calculates an acceleration command vector (acV), which is vertical to the velocity vector. acV consists of two components; the one is feedforward acceleration obtained from the rates of command angles, and the other is feedback acceleration obtained from angle deviations by using PID control law. A bank angle command around the velocity vector and commands of pitch and yaw rates are then obtained to generate the required acceleration. A roll rate command is calculated from bank angle deviation. Roll, pitch and yaw rate commands are put into the attitude controller, which can be composed of any suitable control laws such as PID control. The control requires neither aerodynamic coefficients nor online calculation of the inverse dynamics of the aircraft. A numerical simulation illustrates the effects of the control.

  6. Ride comfort control in large flexible aircraft. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Warren, M. E.

    1971-01-01

    The problem of ameliorating the discomfort of passengers on a large air transport subject to flight disturbances is examined. The longitudinal dynamics of the aircraft, including effects of body flexing, are developed in terms of linear, constant coefficient differential equations in state variables. A cost functional, penalizing the rigid body displacements and flexure accelerations over the surface of the aircraft is formulated as a quadratic form. The resulting control problem, to minimize the cost subject to the state equation constraints, is of a class whose solutions are well known. The feedback gains for the optimal controller are calculated digitally, and the resulting autopilot is simulated on an analog computer and its performance evaluated.

  7. Combined dynamic inversion and QFT flight control of an unstable high performance aircraft

    NASA Astrophysics Data System (ADS)

    Stout, Perry Walter

    Quantitative Feedback Theory (QFT) is a control system synthesis, technique that directly considers system uncertainties and disturbance magnitudes when formulating closed-loop control algorithms. Dynamic Inversion is a nonlinear control system design technique that relies on accurate mathematical models to compute control inputs producing arbitrary system responses. Both techniques have been applied to unstable high performance aircraft flight control, and produced effective aircraft controllers. Both techniques have certain drawbacks: Nonlinear QFT controllers tend to be unnecessarily conservative (the computed controllers have excessive bandwidth) because known system properties are treated as "unknown" disturbances during loop synthesis. Meanwhile Dynamic Inversion control is sensitive to differences between assumed mathematical models and actual system dynamic properties. Combining the two control techniques provides the benefit of both while suffering the drawbacks of neither, as demonstrated by Single Input, Single Output (SISO) control of a constant airspeed, no roll, no yaw nonlinear model of the F-16 aircraft, and by Multi-Input, Multi-Output (MIMO) control of a full six-degree-of-freedom version. Design performance of the combined controllers is verified by reduced actuator efforts and by reduced sensor noise to actuator input (U( s)/n(s)) transfer function magnitudes compared to standard QFT versions.

  8. Sliding-Mode Control Applied for Robust Control of a Highly Unstable Aircraft

    NASA Technical Reports Server (NTRS)

    Vetter, Travis Kenneth

    2002-01-01

    An investigation into the application of an observer based sliding mode controller for robust control of a highly unstable aircraft and methods of compensating for actuator dynamics is performed. After a brief overview of some reconfigurable controllers, sliding mode control (SMC) is selected because of its invariance properties and lack of need for parameter identification. SMC is reviewed and issues with parasitic dynamics, which cause system instability, are addressed. Utilizing sliding manifold boundary layers, the nonlinear control is converted to a linear control and sliding manifold design is performed in the frequency domain. An additional feedback form of model reference hedging is employed which is similar to a prefilter and has large benefits to system performance. The effects of inclusion of actuator dynamics into the designed plant is heavily investigated. Multiple Simulink models of the full longitudinal dynamics and wing deflection modes of the forward swept aero elastic vehicle (FSAV) are constructed. Additionally a linear state space models to analyze effects from various system parameters. The FSAV has a pole at +7 rad/sec and is non-minimum phase. The use of 'model actuators' in the feedback path, and varying there design, is heavily investigated for the resulting effects on plant robustness and tolerance to actuator failure. The use of redundant actuators is also explored and improved robustness is shown. All models are simulated with severe failure and excellent tracking, and task dependent handling qualities, and low pilot induced oscillation tendency is shown.

  9. In-flight adaptive performance optimization (APO) control using redundant control effectors of an aircraft

    NASA Technical Reports Server (NTRS)

    Gilyard, Glenn B. (Inventor)

    1999-01-01

    Practical application of real-time (or near real-time) Adaptive Performance Optimization (APO) is provided for a transport aircraft in steady climb, cruise, turn descent or other flight conditions based on measurements and calculations of incremental drag from a forced response maneuver of one or more redundant control effectors defined as those in excess of the minimum set of control effectors required to maintain the steady flight condition in progress. The method comprises the steps of applying excitation in a raised-cosine form over an interval of from 100 to 500 sec. at the rate of 1 to 10 sets/sec of excitation, and data for analysis is gathered in sets of measurements made during the excitation to calculate lift and drag coefficients C.sub.L and C.sub.D from two equations, one for each coefficient. A third equation is an expansion of C.sub.D as a function of parasitic drag, induced drag, Mach and altitude drag effects, and control effector drag, and assumes a quadratic variation of drag with positions .delta..sub.i of redundant control effectors i=1 to n. The third equation is then solved for .delta..sub.iopt the optimal position of redundant control effector i, which is then used to set the control effector i for optimum performance during the remainder of said steady flight or until monitored flight conditions change by some predetermined amount as determined automatically or a predetermined minimum flight time has elapsed.

  10. Criteria for design of integrated flight/propulsion control systems for STOVL fighter aircraft

    NASA Technical Reports Server (NTRS)

    Franklin, James A.

    1993-01-01

    As part of NASA's program to develop technology for short takeoff and vertical landing (STOVL) fighter aircraft, control system designs have been developed for a conceptual STOVL aircraft. This aircraft is representative of the class of mixed-flow remote-lift concepts that was identified as the preferred design approach by the U.S./U.K. STOVL Joint Assessment and Ranking Team. The control system designs have been evaluated throughout the powered-lift flight envelope on the Vertical Motion Simulator (VMS) at Ames Research Center. Items assessed in the control system evaluation were: maximum control power used in transition and vertical flight, control system dynamic response associated with thrust transfer for attitude control, thrust margin in the presence of ground effect and hot-gas ingestion, and dynamic thrust response for the engine core. Effects of wind, turbulence, and ship airwake disturbances are incorporated in the evaluation. Results provide the basis for a reassessment of existing flying-qualities design criteria applied to STOVL aircraft.

  11. Nonlinear stability and control study of highly maneuverable high performance aircraft

    NASA Technical Reports Server (NTRS)

    Mohler, R. R.

    1991-01-01

    The purpose was to develop and apply new nonlinear system methodologies to the stability analysis and adaptive control of high angle of attack (alpha) aircraft such as the F-18. Considerable progress is documented on nonlinear adaptive control and associated model development, identification, and simulation. The analysis considered linear and nonlinear, longitudinal, high alpha aircraft dynamics with varying degrees of approximation dependent on the purpose. In all cases, angle of attack or pitch rate was controlled primarily by a horizontal stabilizer. In most cases studied, a linear adaptive controller provided sufficient stability. However, it has been demonstrated by simulation of a simplified nonlinear model that certain large rapid maneuvers were not readily stabilized by the investigated linear adaptive control, but were controlled instead by means of a nonlinear time-series based adaptive control.

  12. A High-Authority/Low-Authority Control Strategy for Coupled Aircraft-Style Bays

    NASA Technical Reports Server (NTRS)

    Schiller, N. H.; Fuller, C. R.; Cabell, R. H.

    2006-01-01

    This paper presents a numerical investigation of an active structural acoustic control strategy for coupled aircraft-style bays. While structural coupling can destabilize or limit the performance of some model-based decentralized control systems, fullycoupled centralized control strategies are impractical for typical aircraft containing several hundred bays. An alternative is to use classical rate feedback with matched, collocated transducer pairs to achieve active damping. Unfortunately, due to the conservative nature of this strategy, stability is guaranteed at the expense of achievable noise reduction. Therefore, this paper describes the development of a combined control strategy using robust active damping in addition to a high-authority controller based on linear quadratic Gaussian (LQG) theory. The combined control system is evaluated on a tensioned, two-bay model using piezoceramic actuators and ideal point velocity sensors. Transducer placement on the two-bay structure is discussed, and the advantages of a combined control strategy are presented.

  13. An Adaptive Instability Suppression Controls Method for Aircraft Gas Turbine Engine Combustors

    NASA Technical Reports Server (NTRS)

    Kopasakis, George; DeLaat, John C.; Chang, Clarence T.

    2008-01-01

    An adaptive controls method for instability suppression in gas turbine engine combustors has been developed and successfully tested with a realistic aircraft engine combustor rig. This testing was part of a program that demonstrated, for the first time, successful active combustor instability control in an aircraft gas turbine engine-like environment. The controls method is called Adaptive Sliding Phasor Averaged Control. Testing of the control method has been conducted in an experimental rig with different configurations designed to simulate combustors with instabilities of about 530 and 315 Hz. Results demonstrate the effectiveness of this method in suppressing combustor instabilities. In addition, a dramatic improvement in suppression of the instability was achieved by focusing control on the second harmonic of the instability. This is believed to be due to a phenomena discovered and reported earlier, the so called Intra-Harmonic Coupling. These results may have implications for future research in combustor instability control.

  14. Interior noise control prediction study for high-speed propeller-driven aircraft

    NASA Technical Reports Server (NTRS)

    Rennison, D. C.; Wilby, J. F.; Marsh, A. H.; Wilby, E. G.

    1979-01-01

    An analytical model was developed to predict the noise levels inside propeller-driven aircraft during cruise at M = 0.8. The model was applied to three study aircraft with fuselages of different size (wide body, narrow body and small diameter) in order to determine the noise reductions required to achieve the goal of an A-weighted sound level which does not exceed 80 dB. The model was then used to determine noise control methods which could achieve the required noise reductions. Two classes of noise control treatments were investigated: add-on treatments which can be added to existing structures, and advanced concepts which would require changes to the fuselage primary structure. Only one treatment, a double wall with limp panel, provided the required noise reductions. Weight penalties associated with the treatment were estimated for the three study aircraft.

  15. Synthesis from Design Requirements of a Hybrid System for Transport Aircraft Longitudinal Control. Volume 2

    NASA Technical Reports Server (NTRS)

    Hynes, Charles S.; Hardy, Gordon H.; Sherry, Lance

    2007-01-01

    Volume I of this report presents a new method for synthesizing hybrid systems directly from desi gn requirements, and applies the method to design of a hybrid system for longitudinal control of transport aircraft. The resulting system satisfies general requirement for safety and effectiveness specified a priori, enabling formal validation to be achieved. Volume II contains seven appendices intended to make the report accessible to readers with backgrounds in human factors, flight dynamics and control, and formal logic. Major design goals are (1) system design integrity based on proof of correctness at the design level, (2) significant simplification and cost reduction in system development and certification, and (3) improved operational efficiency, with significant alleviation of human-factors problems encountered by pilots in current transport aircraft. This report provides for the first time a firm technical basis for criteria governing design and certification of avionic systems for transport aircraft. It should be of primary interest to designers of next-generation avionic systems.

  16. Longitudinal stability and control characteristics of the Quiet Short-Haul Research Aircraft (QSRA)

    NASA Technical Reports Server (NTRS)

    Stephenson, Jack D.; Hardy, Gordon H.

    1989-01-01

    Flight experiments were conducted to evaluate various aerodynamic characteristics of the Quiet Short-Haul Research Aircraft (QSRA), an experimental aircraft that makes use of the upper-surface blown (USB) powered-lift concept. Time-history records from maneuvers performed with the aircraft in landing-approach and take-off configurations (with its stability augmentation system disengaged) were analyzed to obtain longitudinal stability and control derivatives and performance characteristics. The experiments included measuring the aircraft responses to variations in the deflection of direct-lift control spoilers and to thrust variations as well as to elevator inputs. The majority of the results are given for the aircraft in a landing configuration with the USB flaps at 50 degrees. For this configuration, if the static longitudinal stability is defined as the variation of the pitching-moment coefficient with the lift coefficient at a constant thrust coefficient, this stability decreases significantly with increasing angle of attack above 9 degrees. For this configuration, at small and negative angles of attack and high levels of thrust, the elevators and the horizontal stabilizer lost effectiveness owing to incipent stalling, but this occurred only during unsteady maneuvers and for brief time intervals.

  17. Aircraft control surface failure detection and isolation using the OSGLR test. [orthogonal series generalized likelihood ratio

    NASA Technical Reports Server (NTRS)

    Bonnice, W. F.; Motyka, P.; Wagner, E.; Hall, S. R.

    1986-01-01

    The performance of the orthogonal series generalized likelihood ratio (OSGLR) test in detecting and isolating commercial aircraft control surface and actuator failures is evaluated. A modification to incorporate age-weighting which significantly reduces the sensitivity of the algorithm to modeling errors is presented. The steady-state implementation of the algorithm based on a single linear model valid for a cruise flight condition is tested using a nonlinear aircraft simulation. A number of off-nominal no-failure flight conditions including maneuvers, nonzero flap deflections, different turbulence levels and steady winds were tested. Based on the no-failure decision functions produced by off-nominal flight conditions, the failure detection and isolation performance at the nominal flight condition was determined. The extension of the algorithm to a wider flight envelope by scheduling on dynamic pressure and flap deflection is examined. Based on this testing, the OSGLR algorithm should be capable of detecting control surface failures that would affect the safe operation of a commercial aircraft. Isolation may be difficult if there are several surfaces which produce similar effects on the aircraft. Extending the algorithm over the entire operating envelope of a commercial aircraft appears feasible.

  18. NASA Glenn Research in Controls and Diagnostics for Intelligent Aerospace Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Garg, Sanjay

    2007-01-01

    With the increased emphasis on aircraft safety, enhanced performance and affordability, and the need to reduce the environmental impact of aircraft, there are many new challenges being faced by the designers of aircraft propulsion systems. The Controls and Dynamics Branch (CDB) at NASA (National Aeronautics and Space Administration) Glenn Research Center (GRC) in Cleveland, Ohio, is leading and participating in various projects in partnership with other organizations within GRC and across NASA, the U.S. aerospace industry, and academia to develop advanced controls and health management technologies that will help meet these challenges through the concept of Intelligent Propulsion Systems. This presentation describes the current CDB activities in support of the NASA Aeronautics Research Mission, with an emphasis on activities under the Integrated Vehicle Health Management (IVHM) and Integrated Resilient Aircraft Control (IRAC) projects of the Aviation Safety Program. Under IVHM, CDB focus is on developing advanced techniques for monitoring the health of the aircraft engine gas path with a focus on reliable and early detection of sensor, actuator and engine component faults. Under IRAC, CDB focus is on developing adaptive engine control technologies which will increase the probability of survival of aircraft in the presence of damage to flight control surfaces or to one or more engines. The technology development plans are described as well as results from recent research accomplishments.

  19. Simulator Evaluation of Simplified Propulsion-Only Emergency Flight Control Systems on Transport Aircraft

    NASA Technical Reports Server (NTRS)

    Burcham, Frank W., Jr.; Kaneshige, John; Bull, John; Maine, Trindel A.

    1999-01-01

    With the advent of digital engine control systems, considering the use of engine thrust for emergency flight control has become feasible. Many incidents have occurred in which engine thrust supplemented or replaced normal aircraft flight controls. In most of these cases, a crash has resulted, and more than 1100 lives have been lost. The NASA Dryden Flight Research Center has developed a propulsion-controlled aircraft (PCA) system in which computer-controlled engine thrust provides emergency flight control capability. Using this PCA system, an F-15 and an MD-11 airplane have been landed without using any flight controls. In simulations, C-17, B-757, and B-747 PCA systems have also been evaluated successfully. These tests used full-authority digital electronic control systems on the engines. Developing simpler PCA systems that can operate without full-authority engine control, thus allowing PCA technology to be installed on less capable airplanes or at lower cost, is also a desire. Studies have examined simplified ?PCA Ultralite? concepts in which thrust control is provided using an autothrottle system supplemented by manual differential throttle control. Some of these concepts have worked well. The PCA Ultralite study results are presented for simulation tests of MD-11, B-757, C-17, and B-747 aircraft.

  20. Reconfigurable Control with Neural Network Augmentation for a Modified F-15 Aircraft

    NASA Technical Reports Server (NTRS)

    Burken, John J.; Williams-Hayes, Peggy; Kaneshige, John T.; Stachowiak, Susan J.

    2006-01-01

    Description of the performance of a simplified dynamic inversion controller with neural network augmentation follows. Simulation studies focus on the results with and without neural network adaptation through the use of an F-15 aircraft simulator that has been modified to include canards. Simulated control law performance with a surface failure, in addition to an aerodynamic failure, is presented. The aircraft, with adaptation, attempts to minimize the inertial cross-coupling effect of the failure (a control derivative anomaly associated with a jammed control surface). The dynamic inversion controller calculates necessary surface commands to achieve desired rates. The dynamic inversion controller uses approximate short period and roll axis dynamics. The yaw axis controller is a sideslip rate command system. Methods are described to reduce the cross-coupling effect and maintain adequate tracking errors for control surface failures. The aerodynamic failure destabilizes the pitching moment due to angle of attack. The results show that control of the aircraft with the neural networks is easier (more damped) than without the neural networks. Simulation results show neural network augmentation of the controller improves performance with aerodynamic and control surface failures in terms of tracking error and cross-coupling reduction.

  1. Adaptive Control Using Neural Network Augmentation for a Modified F-15 Aircraft

    NASA Technical Reports Server (NTRS)

    Burken, John J.; Williams-Hayes, Peggy; Karneshige, J. T.; Stachowiak, Susan J.

    2006-01-01

    Description of the performance of a simplified dynamic inversion controller with neural network augmentation follows. Simulation studies focus on the results with and without neural network adaptation through the use of an F-15 aircraft simulator that has been modified to include canards. Simulated control law performance with a surface failure, in addition to an aerodynamic failure, is presented. The aircraft, with adaptation, attempts to minimize the inertial cross-coupling effect of the failure (a control derivative anomaly associated with a jammed control surface). The dynamic inversion controller calculates necessary surface commands to achieve desired rates. The dynamic inversion controller uses approximate short period and roll axis dynamics. The yaw axis controller is a sideslip rate command system. Methods are described to reduce the cross-coupling effect and maintain adequate tracking errors for control surface failures. The aerodynamic failure destabilizes the pitching moment due to angle of attack. The results show that control of the aircraft with the neural networks is easier (more damped) than without the neural networks. Simulation results show neural network augmentation of the controller improves performance with aerodynamic and control surface failures in terms of tracking error and cross-coupling reduction.

  2. Current Methods for Modeling and Simulating Icing Effects on Aircraft Performance, Stability and Control

    NASA Technical Reports Server (NTRS)

    Ralvasky, Thomas P.; Barnhart, Billy P.; Lee, Sam

    2008-01-01

    Icing alters the shape and surface characteristics of aircraft components, which results in altered aerodynamic forces and moments caused by air flow over those iced components. The typical effects of icing are increased drag, reduced stall angle of attack, and reduced maximum lift. In addition to the performance changes, icing can also affect control surface effectiveness, hinge moments, and damping. These effects result in altered aircraft stability and control and flying qualities. Over the past 80 years, methods have been developed to understand how icing affects performance, stability and control. Emphasis has been on wind tunnel testing of two-dimensional subscale airfoils with various ice shapes to understand their effect on the flow field and ultimately the aerodynamics. This research has led to wind tunnel testing of subscale complete aircraft models to identify the integrated effects of icing on the aircraft system in terms of performance, stability, and control. Data sets of this nature enable pilot in the loop simulations to be performed for pilot training, or engineering evaluation of system failure impacts or control system design.

  3. Current Methods Modeling and Simulating Icing Effects on Aircraft Performance, Stability, Control

    NASA Technical Reports Server (NTRS)

    Ratvasky, Thomas P.; Barnhart, Billy P.; Lee, Sam

    2010-01-01

    Icing alters the shape and surface characteristics of aircraft components, which results in altered aerodynamic forces and moments caused by air flow over those iced components. The typical effects of icing are increased drag, reduced stall angle of attack, and reduced maximum lift. In addition to the performance changes, icing can also affect control surface effectiveness, hinge moments, and damping. These effects result in altered aircraft stability and control and flying qualities. Over the past 80 years, methods have been developed to understand how icing affects performance, stability, and control. Emphasis has been on wind-tunnel testing of two-dimensional subscale airfoils with various ice shapes to understand their effect on the flowfield and ultimately the aerodynamics. This research has led to wind-tunnel testing of subscale complete aircraft models to identify the integrated effects of icing on the aircraft system in terms of performance, stability, and control. Data sets of this nature enable pilot-in-the-loop simulations to be performed for pilot training or engineering evaluation of system failure impacts or control system design.

  4. A multi-layer robust adaptive fault tolerant control system for high performance aircraft

    NASA Astrophysics Data System (ADS)

    Huo, Ying

    Modern high-performance aircraft demand advanced fault-tolerant flight control strategies. Not only the control effector failures, but the aerodynamic type failures like wing-body damages often result in substantially deteriorate performance because of low available redundancy. As a result the remaining control actuators may yield substantially lower maneuvering capabilities which do not authorize the accomplishment of the air-craft's original specified mission. The problem is to solve the control reconfiguration on available control redundancies when the mission modification is urged to save the aircraft. The proposed robust adaptive fault-tolerant control (RAFTC) system consists of a multi-layer reconfigurable flight controller architecture. It contains three layers accounting for different types and levels of failures including sensor, actuator, and fuselage damages. In case of the nominal operation with possible minor failure(s) a standard adaptive controller stands to achieve the control allocation. This is referred to as the first layer, the controller layer. The performance adjustment is accounted for in the second layer, the reference layer, whose role is to adjust the reference model in the controller design with a degraded transit performance. The upmost mission adjust is in the third layer, the mission layer, when the original mission is not feasible with greatly restricted control capabilities. The modified mission is achieved through the optimization of the command signal which guarantees the boundedness of the closed-loop signals. The main distinguishing feature of this layer is the the mission decision property based on the current available resources. The contribution of the research is the multi-layer fault-tolerant architecture that can address the complete failure scenarios and their accommodations in realities. Moreover, the emphasis is on the mission design capabilities which may guarantee the stability of the aircraft with restricted post

  5. Multivariable control of a forward swept wing aircraft. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Quinn, W. W.

    1986-01-01

    The impact of independent canard and flaperon control of the longitudinal axis of a generic forward swept wing aircraft is examined. The Linear Quadratic Gaussian (LQG)/Loop Transfer Recovery (LTR) method is used to design three compensators: two single-input-single-output (SISO) systems, one with angle of attack as output and canard as control, the other with pitch attitude as output and canard as control, and a two-input-two-output system with both canard and flaperon controlling both the pitch attitude and angle of attack. The performances of the three systems are compared showing the addition of flaperon control allows the aircraft to perform in the precision control modes with very little loss of command following accuracy.

  6. Development and evaluation of a profile negotiation process for integrating aircraft and air traffic control automation

    NASA Technical Reports Server (NTRS)

    Green, Steven M.; Denbraven, Wim; Williams, David H.

    1993-01-01

    The development and evaluation of the profile negotiation process (PNP), an interactive process between an aircraft and air traffic control (ATC) that integrates airborne and ground-based automation capabilities to determine conflict-free trajectories that are as close to an aircraft's preference as possible, are described. The PNP was evaluated in a real-time simulation experiment conducted jointly by NASA's Ames and Langley Research Centers. The Ames Center/TRACON Automation System (CTAS) was used to support the ATC environment, and the Langley Transport Systems Research Vehicle (TSRV) piloted cab was used to simulate a 4D Flight Management System (FMS) capable aircraft. Both systems were connected in real time by way of voice and data lines; digital datalink communications capability was developed and evaluated as a means of supporting the air/ground exchange of trajectory data. The controllers were able to consistently and effectively negotiate nominally conflict-free vertical profiles with the 4D-equipped aircraft. The actual profiles flown were substantially closer to the aircraft's preference than would have been possible without the PNP. However, there was a strong consensus among the pilots and controllers that the level of automation of the PNP should be increased to make the process more transparent. The experiment demonstrated the importance of an aircraft's ability to accurately execute a negotiated profile as well as the need for digital datalink to support advanced air/ground data communications. The concept of trajectory space is proposed as a comprehensive approach for coupling the processes of trajectory planning and tracking to allow maximum pilot discretion in meeting ATC constraints.

  7. V/STOL tilt rotor aircraft study. Volume 7: Tilt rotor flight control program feedback studies

    NASA Technical Reports Server (NTRS)

    Alexander, H. R.; Eason, W.; Gillmore, K.; Morris, J.; Spittle, R.

    1973-01-01

    An exploratory study has been made of the use of feedback control in tilt rotor aircraft. This has included the use of swashplate cyclic and collective controls and direct lift control. Various sensor and feedback systems are evaluated in relation to blade loads alleviation, improvement in flying qualities, and modal suppression. Recommendations are made regarding additional analytical and wind tunnel investigations and development of feedback systems in the full scale flight vehicle. Estimated costs and schedules are given.

  8. 22 CFR 123.8 - Special controls on vessels, aircraft and satellites covered by the U.S. Munitions List.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... satellites covered by the U.S. Munitions List. 123.8 Section 123.8 Foreign Relations DEPARTMENT OF STATE....8 Special controls on vessels, aircraft and satellites covered by the U.S. Munitions List. (a) Transferring registration or control to a foreign person of any aircraft, vessel, or satellite on the...

  9. Robust integrated flight/propulsion control design for a STOVL aircraft using H-infinity control design techniques

    NASA Technical Reports Server (NTRS)

    Garg, Sanjay

    1993-01-01

    Results are presented from an application of H-infinity control design methodology to a centralized integrated flight/propulsion control (IFPC) system design for a supersonic STOVL fighter aircraft in transition flight. The emphasis is on formulating the H-infinity optimal control synthesis problem such that the critical requirements for the flight and propulsion systems are adequately reflected within the linear, centralized control problem formulation and the resulting controller provides robustness to modeling uncertainties and model parameter variations with flight condition. Detailed evaluation results are presented for a reduced order controller obtained from the improved H-infinity control design showing that the control design meets the specified nominal performance objective as well as provides stability robustness for variations in plant system dynamics with changes in aircraft trim speed within the transition flight envelope.

  10. Integrated flight/propulsion control design for a STOVL aircraft using H-infinity control design techniques

    NASA Technical Reports Server (NTRS)

    Garg, Sanjay; Ouzts, Peter J.

    1991-01-01

    Results are presented from an application of H(infinity) control design methodology to a centralized integrated flight/propulsion control (IFPC) system design for a supersonic short take-off and vertical landing (STOVL) fighter aircraft in transition flight. The emphasis is on formulating the H(infinity) control design problem such that the resulting controller provides robustness to modeling uncertainties and model parameter variations with flight condition. Experience gained from a preliminary H(infinity)=based IFPC design study performed earlier is used as the base to formulate the robust H(infinity) control design problem and improve the previous design. Detailed evaluation results are presented for a reduced-order controller obtained from the improved H(infinity) control design showing that the control design meets the specified nominal performance objectives as well as provides stability robustness for variations in plant system dynamics with chnages in aircraft trim speed within the transition flight envelope.

  11. Review of the FOCSI (Fiber Optic Control System Integration) program. [applications in aircraft flight control

    NASA Technical Reports Server (NTRS)

    Baumbick, Robert

    1991-01-01

    A joint NASA/NAVY program, called FOCSI, is reviewed which is aimed at designing optical sensor systems to fit the installation and environmentally test passive optical sensors and electrooptic architectures. These optical sensor systems will be flown on an F18 aircraft to collect data on the operability and maintainability of these systems in a flight environment. The NASA F-18 aircraft will be equipped with a 1773 optical databus to transfer the optical sensor information to the aircraft data collection location.

  12. Stability and control derivative estimates obtained from flight data for the Beech 99 aircraft

    NASA Technical Reports Server (NTRS)

    Tanner, R. R.; Montgomery, T. D.

    1979-01-01

    Lateral-directional and longitudinal stability and control derivatives were determined from flight data by using a maximum likelihood estimator for the Beech 99 airplane. Data were obtained with the aircraft in the cruise configuration and with one-third flap deflection. The estimated derivatives show good agreement with the predictions of the manufacturer.

  13. Aerodynamics of Rotating-wing Aircraft with Blade-pitch Control

    NASA Technical Reports Server (NTRS)

    Pfluger, A

    1940-01-01

    In the present report, with the aid of the usual computation methods, a rotor is investigated the pitch of whose blades is capable of being controlled in such a manner that it varies linearly with the flapping angle. To test the effect of this linkage on the aircraft performance, the theory is applied to an illustrative example.

  14. Integrated Approach to the Dynamics and Control of Maneuvering Flexible Aircraft

    NASA Technical Reports Server (NTRS)

    Waszak, Martin R. (Technical Monitor); Meirovitch, Leonard; Tuzcu, Ilhan

    2003-01-01

    This work uses a fundamental approach to the problem of simulating the flight of flexible aircraft. To this end, it integrates into a single formulation the pertinent disciplines, namely, analytical dynamics, structural dynamics, aerodynamics, and controls. It considers both the rigid body motions of the aircraft, three translations (forward motion, sideslip and plunge) and three rotations (roll, pitch and yaw), and the elastic deformations of every point of the aircraft, as well as the aerodynamic, propulsion, gravity and control forces. The equations of motion are expressed in a form ideally suited for computer processing. A perturbation approach yields a flight dynamics problem for the motions of a quasi-rigid aircraft and an 'extended aeroelasticity' problem for the elastic deformations and perturbations in the rigid body motions, with the solution of the first problem entering as an input into the second problem. The control forces for the flight dynamics problem are obtained by an 'inverse' process and the feedback controls for the extended aeroservoelasticity problem are determined by the LQG theory. A numerical example presents time simulations of rigid body perturbations and elastic deformations about 1) a steady level flight and 2) a level steady turn maneuver.

  15. Emergency Flight Control of a Twin-Jet Commercial Aircraft using Manual Throttle Manipulation

    NASA Technical Reports Server (NTRS)

    Cole, Jennifer H.; Cogan, Bruce R.; Fullerton, C. Gordon; Burken, John J.; Venti, Michael W.; Burcham, Frank W.

    2007-01-01

    The Department of Homeland Security (DHS) created the PCAR (Propulsion-Controlled Aircraft Recovery) project in 2005 to mitigate the ManPADS (man-portable air defense systems) threat to the commercial aircraft fleet with near-term, low-cost proven technology. Such an attack could potentially cause a major FCS (flight control system) malfunction or other critical system failure onboard the aircraft, despite the extreme reliability of current systems. For the situations in which nominal flight controls are lost or degraded, engine thrust may be the only remaining means for emergency flight control [ref 1]. A computer-controlled thrust system, known as propulsion-controlled aircraft (PCA), was developed in the mid 1990s with NASA, McDonnell Douglas and Honeywell. PCA's major accomplishment was a demonstration of an automatic landing capability using only engine thrust [ref 11. Despite these promising results, no production aircraft have been equipped with a PCA system, due primarily to the modifications required for implementation. A minimally invasive option is TOC (throttles-only control), which uses the same control principles as PCA, but requires absolutely no hardware, software or other aircraft modifications. TOC is pure piloting technique, and has historically been utilized several times by flight crews, both military and civilian, in emergency situations stemming from a loss of conventional control. Since the 1990s, engineers at NASA Dryden Flight Research Center (DFRC) have studied TOC, in both simulation and flight, for emergency flight control with test pilots in numerous configurations. In general, it was shown that TOC was effective on certain aircraft for making a survivable landing. DHS sponsored both NASA Dryden Flight Research Center (Edwards, CA) and United Airlines (Denver, Colorado) to conduct a flight and simulation study of the TOC characteristics of a twin-jet commercial transport, and assess the ability of a crew to control an aircraft down to

  16. A variable structure approach to robust control of VTOL aircraft

    NASA Technical Reports Server (NTRS)

    Calise, A. J.; Kramer, F. S.

    1984-01-01

    This paper examines the application of variable structure control theory to the design of a flight control system for the AV-8A Harrier in a hover mode. The objective in variable structure design is to confine the state trajectories to a subspace of the total state space. The motion in this subspace is insensitive to system parameter variations and external disturbances that lie in the range space of the control. A switching type of control law results from the design procedure. The control system was designed to track a vector-valued velocity command. For comparison, a proportional controller was designed using optimal linear regulator theory. Both controllers were evaluated for their transient response performance using a linear model; then a nonlinear simulation study of a hovering approach to landing was conducted. The variable structure controller outperformed its linear counterpart in the presence of wind disturbances and plant parameter uncertainties afforded by the simulation.

  17. Expansion of flight simulator capability for study and solution of aircraft directional control problems on runways

    NASA Technical Reports Server (NTRS)

    Kibbee, G. W.

    1978-01-01

    The development, evaluation, and evaluation results of a DC-9-10 runway directional control simulator are described. An existing wide bodied flight simulator was modified to this aircraft configuration. The simulator was structured to use either two of antiskid simulations; (1) an analog mechanization that used aircraft hardware; or (2) a digital software simulation. After the simulation was developed it was evaluated by 14 pilots who made 818 simulated flights. These evaluations involved landings, rejected takeoffs, and various ground maneuvers. Qualitatively most pilots evaluated the simulator as realistic with good potential especially for pilot training for adverse runway conditions.

  18. Design developments for advanced general aviation aircraft. [using Fly By Light Control

    NASA Technical Reports Server (NTRS)

    Roskam, Jan; Gomer, Charles

    1991-01-01

    Design study results are presented for two advanced general-aviation aircraft incorporating fly-by-light/fly-by-wire controls and digital avionics and cockpit displays. The design exercise proceeded from a database of information derived from a market survey for the 4-10 passenger aircraft range. Pusher and tractor propeller configurations were treated, and attention was given to the maximization of passenger comfort. 'Outside-in' tooling methods were assumed for the primary structures of both configurations, in order to achieve surface tolerances which maximize the rearward extent of laminar flow.

  19. Advanced combustion techniques for controlling NO sub x emissions of high altitude cruise aircraft

    NASA Technical Reports Server (NTRS)

    Rudey, R. A.; Reck, G. M.

    1976-01-01

    An array of experiments designed to explore the potential of advanced combustion techniques for controlling the emissions of aircraft into the upper atmosphere was discussed. Of particular concern are the oxides of nitrogen (NOx) emissions into the stratosphere. The experiments utilize a wide variety of approaches varying from advanced combustor concepts to fundamental flame tube experiments. Results are presented which indicate that substantial reductions in cruise NOx emissions should be achievable in future aircraft engines. A major NASA program is described which focuses the many fundamental experiments into a planned evolution and demonstration of the prevaporized-premixed combustion technique in a full-scale engine.

  20. Technology for controlling emissions of oxides of nitrogen from supersonic cruise aircraft

    NASA Technical Reports Server (NTRS)

    Reck, G. M.; Rudey, R. A.

    1976-01-01

    Various experiments are sponsored and conducted by NASA to explore the potential of advanced combustion techniques for controlling aircraft engine emissions into the upper atmosphere. Of particular concern are the oxide of nitrogen (NOx) emissions into the stratosphere. The experiments utilize a wide variety of approaches varying from advanced combustor concepts to fundamental flame tube experiments. Results are presented which indicate that substantial reductions in cruise NOx emissions should be achievable in future aircraft engines. A major NASA program is described which focuses the many fundamental experiments into a planned evolution and demonstration of the prevaporized-premixed combustion technique in a full-scale engine.

  1. A FORTRAN program for determining aircraft stability and control derivatives from flight data

    NASA Technical Reports Server (NTRS)

    Maine, R. E.; Iliff, K. W.

    1975-01-01

    A digital computer program written in FORTRAN IV for the estimation of aircraft stability and control derivatives is presented. The program uses a maximum likelihood estimation method, and two associated programs for routine, related data handling are also included. The three programs form a package that can be used by relatively inexperienced personnel to process large amounts of data with a minimum of manpower. This package was used to successfully analyze 1500 maneuvers on 20 aircraft, and is designed to be used without modification on as many types of computers as feasible. Program listings and sample check cases are included.

  2. Active Control of Turbulent Boundary Layer Induced Sound Radiation from Multiple Aircraft Panels

    NASA Technical Reports Server (NTRS)

    Gibbs, Gary P.; Cabell, Randolph H.

    2002-01-01

    The objective of this work is to experimentally investigate active structural acoustic control of turbulent boundary layer (TBL) induced sound radiation from multiple panels on an aircraft sidewall. One possible approach for controlling sound radiation from multiple panels is a multi-input/multi-output scheme which considers dynamic coupling between the panels. Unfortunately, this is difficult for more than a few panels, and is impractical for a typical aircraft which contains several hundred such panels. An alternative is to implement a large number of independent control systems. Results from the current work demonstrate the feasibility of reducing broadband radiation from multiple panels utilizing a single-input/single-output (SISO) controller per bay, and is the first known demonstration of active control of TBL induced sound radiation on more than two bays simultaneously. The paper compares sound reduction for fully coupled control of six panels versus independent control on each panel. An online adaptive control scheme for independent control is also demonstrated. This scheme will adjust for slow time varying dynamic systems such as fuselage response changes due to aircraft pressurization, etc.

  3. Survey of Applications of Active Control Technology for Gust Alleviation and New Challenges for Lighter-weight Aircraft

    NASA Technical Reports Server (NTRS)

    Regan, Christopher D.; Jutte, Christine V.

    2012-01-01

    This report provides a historical survey and assessment of the state of the art in the modeling and application of active control to aircraft encountering atmospheric disturbances in flight. Particular emphasis is placed on applications of active control technologies that enable weight reduction in aircraft by mitigating the effects of atmospheric disturbances. Based on what has been learned to date, recommendations are made for addressing gust alleviation on as the trend for more structurally efficient aircraft yields both lighter and more flexible aircraft. These lighter more flexible aircraft face two significant challenges reduced separation between rigid body and flexible modes, and increased sensitivity to gust encounters due to increased wing loading and improved lift to drag ratios. The primary audience of this paper is engineering professionals new to the area of gust load alleviation and interested in tackling the multifaceted challenges that lie ahead for lighter-weight aircraft.

  4. Development and Flight Testing of a Neural Network Based Flight Control System on the NF-15B Aircraft

    NASA Technical Reports Server (NTRS)

    Bomben, Craig R.; Smolka, James W.; Bosworth, John T.; Silliams-Hayes, Peggy S.; Burken, John J.; Larson, Richard R.; Buschbacher, Mark J.; Maliska, Heather A.

    2006-01-01

    The Intelligent Flight Control System (IFCS) project at the NASA Dryden Flight Research Center, Edwards AFB, CA, has been investigating the use of neural network based adaptive control on a unique NF-15B test aircraft. The IFCS neural network is a software processor that stores measured aircraft response information to dynamically alter flight control gains. In 2006, the neural network was engaged and allowed to learn in real time to dynamically alter the aircraft handling qualities characteristics in the presence of actual aerodynamic failure conditions injected into the aircraft through the flight control system. The use of neural network and similar adaptive technologies in the design of highly fault and damage tolerant flight control systems shows promise in making future aircraft far more survivable than current technology allows. This paper will present the results of the IFCS flight test program conducted at the NASA Dryden Flight Research Center in 2006, with emphasis on challenges encountered and lessons learned.

  5. Force modification and deflection loss compensation to the pilot's controls in an aircraft simulator

    NASA Technical Reports Server (NTRS)

    Cleveland, W. B.

    1974-01-01

    Control loader systems are used widely in flight simulator cockpits so that pilots may experience the correct forces while manipulating the flight controls. Two simulators at Ames Research Center the Flight Simulator for Advanced Aircraft (FSAA) and the Moving Cab Transport Simulator (MCTS) - contain control loader systems that exhibit small control deflection losses at high forces. These losses make force calibration and documentation difficult and also may cause losses in control authority of the simulated aircraft. The study of the deflection losses indicates that the major cause is a structural or mechanical distortion that is linear with applied force. Thus, the phenomena may be modeled and, subsequently, compensation for the losses may be made in the associated simulation computer.

  6. Evaluation of Laminar Flow Control System Concepts for Subsonic Commercial Transport Aircraft

    NASA Technical Reports Server (NTRS)

    Sturgeon, R. F.

    1980-01-01

    Alternatives in the design of laminar flow control (LFC) subsonic commerical transport aircraft for opeation in the 1980's period were studied. Analyses were conducted to select mission parameters and define optimum aircraft configurational parameters for the selected mission, defined by a passenger payload of 400 and a design range of 12, 038 km (6500 n mi). The baseline aircraft developed for this mission was used as a vehicle for the evaluation and development of alternative LFC system concepts. Alternatices in the areas of aerodynamics, structures and materials, LFC systems, leading-edge region cleaning, and integration of auxiliary systems were studied. Relative to a similarly-optimized advanced technology turbulent transport, the final LFC configuration is approximately equal in DOC but provides descreases of 8.2% in gross weight and 21.7% in fuel consumption.

  7. The development and evaluation of advanced technology laminar-flow-control subsonic transport aircraft

    NASA Technical Reports Server (NTRS)

    Sturgeon, R. F.

    1978-01-01

    A study was conducted to evaluate the technical and economic feasibility of applying laminar flow control (LFC) to the wings and empennage of long-range subsonic transport aircraft for initial operation in 1985. For a design mission range of 5500 n mi, advanced technology LFC and turbulent-flow aircraft were developed for a 200-passenger payload, and compared on the basis of production costs, direct operating costs, and fuel efficiency. Parametric analyses were conducted to establish optimum geometry, advanced system concepts were evaluated, and configuration variations maximizing the effectiveness of LFC were developed. The final comparisons include consideation of maintenance costs and procedures, manufacturing costs and procedures, and operational considerations peculiar to LFC aircraft.

  8. Applying Gaussian processes to Spitzer/IRAC transit lightcurves

    NASA Astrophysics Data System (ADS)

    Evans, Thomas

    2015-08-01

    For the past decade, transit and eclipse measurements made with Spitzer/IRAC have been used to characterize dozens of exoplanet atmospheres. However, lightcurves obtained with IRAC are affected by systematics that swamp the faint atmosphere signals being sought, as the instrument was not designed for ~100ppm photometry over >3hr timescales. Robustly quantifying the degeneracies between these systematics and the planet signal is therefore crucial for obtaining realistic uncertainty estimates, to avoid over-interpreting what the data have to tell us. This is challenging, because the nature of the instrumental systematics are not well-understood from a first principles standpoint. I will describe the application of Gaussian process (GPs) models to this problem, which is a relatively new approach in the exoplanet literature. Specifically, I will present transmission and emission results for the hot Jupiter HD209458b, and summarise how the new GP analysis draws into question a number of previous results, including inferences of strong water absorption in transmission and an inverted pressure-temperature profile for the dayside hemisphere. I will also outline the main challenges in applying GP models to datasets like the IRAC lightcurves, which typically contain well over 1000 data points and exhibit non-stationary systematics.

  9. A SPITZER/IRAC MEASURE OF THE ZODIACAL LIGHT

    SciTech Connect

    Krick, Jessica E.; Glaccum, William J.; Carey, Sean J.; Lowrance, Patrick J.; Surace, Jason A.; Ingalls, James G.; Hora, Joseph L.; Reach, William T.

    2012-07-20

    The dominant non-instrumental background source for space-based infrared observatories is the zodiacal light (ZL). We present Spitzer Infrared Array Camera (IRAC) measurements of the ZL at 3.6, 4.5, 5.8, and 8.0 {mu}m, taken as part of the instrument calibrations. We measure the changing surface brightness levels in approximately weekly IRAC observations near the north ecliptic pole over a period of roughly 8.5 years. This long time baseline is crucial for measuring the annual sinusoidal variation in the signal levels due to the tilt of the dust disk with respect to the ecliptic, which is the true signal of the ZL. This is compared to both Cosmic Background Explorer Diffuse Infrared Background Experiment data and a ZL model based thereon. Our data show a few-percent discrepancy from the Kelsall et al. model including a potential warping of the interplanetary dust disk and a previously detected overdensity in the dust cloud directly behind the Earth in its orbit. Accurate knowledge of the ZL is important for both extragalactic and Galactic astronomy including measurements of the cosmic infrared background, absolute measures of extended sources, and comparison to extrasolar interplanetary dust models. IRAC data can be used to further inform and test future ZL models.

  10. A variable structure approach to robust control of VTOL aircraft

    NASA Technical Reports Server (NTRS)

    Calise, A. J.; Kramer, F.

    1982-01-01

    This paper examines the application of variable structure control theory to the design of a flight control system for the AV-8A Harrier in a hover mode. The objective in variable structure design is to confine the motion to a subspace of the total state space. The motion in this subspace is insensitive to system parameter variations and external disturbances that lie in the range space of the control. A switching type of control law results from the design procedure. The control system was designed to track a vector velocity command defined in the body frame. For comparison purposes, a proportional controller was designed using optimal linear regulator theory. Both control designs were first evaluated for transient response performance using a linearized model, then a nonlinear simulation study of a hovering approach to landing was conducted. Wind turbulence was modeled using a 1052 destroyer class air wake model.

  11. Longitudinal-control design approach for high-angle-of-attack aircraft

    NASA Technical Reports Server (NTRS)

    Ostroff, Aaron J.; Proffitt, Melissa S.

    1993-01-01

    This paper describes a control synthesis methodology that emphasizes a variable-gain output feedback technique that is applied to the longitudinal channel of a high-angle-of-attack aircraft. The aircraft is a modified F/A-18 aircraft with thrust-vectored controls. The flight regime covers a range up to a Mach number of 0.7; an altitude range from 15,000 to 35,000 ft; and an angle-of-attack (alpha) range up to 70 deg, which is deep into the poststall region. A brief overview is given of the variable-gain mathematical formulation as well as a description of the discrete control structure used for the feedback controller. This paper also presents an approximate design procedure with relationships for the optimal weights for the selected feedback control structure. These weights are selected to meet control design guidelines for high-alpha flight controls. Those guidelines that apply to the longitudinal-control design are also summarized. A unique approach is presented for the feed-forward command generator to obtain smooth transitions between load factor and alpha commands. Finally, representative linear analysis results and nonlinear batch simulation results are provided.

  12. Artificial Intelligence Based Control Power Optimization on Tailless Aircraft. [ARMD Seedling Fund Phase I

    NASA Technical Reports Server (NTRS)

    Gern, Frank; Vicroy, Dan D.; Mulani, Sameer B.; Chhabra, Rupanshi; Kapania, Rakesh K.; Schetz, Joseph A.; Brown, Derrell; Princen, Norman H.

    2014-01-01

    Traditional methods of control allocation optimization have shown difficulties in exploiting the full potential of controlling large arrays of control devices on innovative air vehicles. Artificial neutral networks are inspired by biological nervous systems and neurocomputing has successfully been applied to a variety of complex optimization problems. This project investigates the potential of applying neurocomputing to the control allocation optimization problem of Hybrid Wing Body (HWB) aircraft concepts to minimize control power, hinge moments, and actuator forces, while keeping system weights within acceptable limits. The main objective of this project is to develop a proof-of-concept process suitable to demonstrate the potential of using neurocomputing for optimizing actuation power for aircraft featuring multiple independently actuated control surfaces. A Nastran aeroservoelastic finite element model is used to generate a learning database of hinge moment and actuation power characteristics for an array of flight conditions and control surface deflections. An artificial neural network incorporating a genetic algorithm then uses this training data to perform control allocation optimization for the investigated aircraft configuration. The phase I project showed that optimization results for the sum of required hinge moments are improved by more than 12% over the best Nastran solution by using the neural network optimization process.

  13. Estimated Benefits of Variable-Geometry Wing Camber Control for Transport Aircraft

    NASA Technical Reports Server (NTRS)

    Bolonkin, Alexander; Gilyard, Glenn B.

    1999-01-01

    Analytical benefits of variable-camber capability on subsonic transport aircraft are explored. Using aerodynamic performance models, including drag as a function of deflection angle for control surfaces of interest, optimal performance benefits of variable camber are calculated. Results demonstrate that if all wing trailing-edge surfaces are available for optimization, drag can be significantly reduced at most points within the flight envelope. The optimization approach developed and illustrated for flight uses variable camber for optimization of aerodynamic efficiency (maximizing the lift-to-drag ratio). Most transport aircraft have significant latent capability in this area. Wing camber control that can affect performance optimization for transport aircraft includes symmetric use of ailerons and flaps. In this paper, drag characteristics for aileron and flap deflections are computed based on analytical and wind-tunnel data. All calculations based on predictions for the subject aircraft and the optimal surface deflection are obtained by simple interpolation for given conditions. An algorithm is also presented for computation of optimal surface deflection for given conditions. Benefits of variable camber for a transport configuration using a simple trailing-edge control surface system can approach more than 10 percent, especially for nonstandard flight conditions. In the cruise regime, the benefit is 1-3 percent.

  14. A model following inverse controller with adaptive compensation for General Aviation aircraft

    NASA Astrophysics Data System (ADS)

    Bruner, Hugh S.

    The theory for an adaptive inverse flight controller, suitable for use on General Aviation aircraft, is developed in this research. The objectives of this controller are to separate the normally coupled modes of the basic aircraft and thereby permit direct control of airspeed and flight-path angle, meet prescribed performance characteristics as defined by damping ratio and natural frequency, adapt to uncertainties in the physical plant, and be computationally efficient. The three basic elements of the controller are a linear prefilter, an inverse transfer function, and an adaptive neural network compensator. The linear prefilter shapes accelerations required of the overall system in order to achieve the desired system performance characteristics. The inverse transfer function is used to compute the aircraft control inputs required to achieve the necessary accelerations. The adaptive neural network compensator is used to compensate for modeling errors during design or real-time changes in the physical plant. This architecture is patterned after the work of Calise, but differs by not requiring dynamic feedback of the state variables. The controller is coded in ANSI C and integrated with a simulation of a typical General Aviation aircraft. Twenty-three cases are simulated to prove that the objectives for the controller are met. Among these cases are simulated stability and controllability failures in the physical plant, as well as several simulated failures of the neural network. With the exception of some bounded speed-tracking error, the controller is capable of continued flight with any foreseeable failure of the neural network. Recommendations are provided for follow-on investigations by other researchers.

  15. Flight Test Results on the Stability and Control of the F-15B Quiet Spike Aircraft

    NASA Technical Reports Server (NTRS)

    Moua, Cheng; McWherter, Shaun H.; Cox, Timothy H.; Gera, Joseph

    2007-01-01

    The Quiet Spike (QS) flight research program was an aerodynamic and structural proof-of-concept of a telescoping sonic-boom suppressing nose boom on an F-15 B aircraft. The program goal was to collect flight data for model validation up to 1.8 Mach. The primary test philosophy was maintaining safety of flight. In the area of stability and controls the primary concerns were to assess the potential destabilizing effect of the spike on the stability, controllability, and handling qualities of the aircraft and to ensure adequate stability margins across the entire QS flight envelop. This paper reports on the stability and control methods used for flight envelope clearance and flight test results of the F-15B Quiet Spike. Also discussed are the flight test approach, the criteria to proceed to the next flight condition, brief pilot commentary on typical piloting tasks, approach and landing, and refueling task, and air data sensitivity to the flight control system.

  16. Multiplexing electro-optic architectures for advanced aircraft integrated flight control systems

    NASA Technical Reports Server (NTRS)

    Seal, D. W.

    1989-01-01

    This report describes the results of a 10 month program sponsored by NASA. The objective of this program was to evaluate various optical sensor modulation technologies and to design an optimal Electro-Optic Architecture (EOA) for servicing remote clusters of sensors and actuators in advanced aircraft flight control systems. The EOA's supply optical power to remote sensors and actuators, process the modulated optical signals returned from the sensors, and produce conditioned electrical signals acceptable for use by a digital flight control computer or Vehicle Management System (VMS) computer. This study was part of a multi-year initiative under the Fiber Optic Control System Integration (FOCSI) program to design, develop, and test a totally integrated fiber optic flight/propulsion control system for application to advanced aircraft. Unlike earlier FOCSI studies, this program concentrated on the design of the EOA interface rather than the optical transducer technology itself.

  17. Robust Nonlinear Feedback Control of Aircraft Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Garrard, William L.; Balas, Gary J.; Litt, Jonathan (Technical Monitor)

    2001-01-01

    This is the final report on the research performed under NASA Glen grant NASA/NAG-3-1975 concerning feedback control of the Pratt & Whitney (PW) STF 952, a twin spool, mixed flow, after burning turbofan engine. The research focussed on the design of linear and gain-scheduled, multivariable inner-loop controllers for the PW turbofan engine using H-infinity and linear, parameter-varying (LPV) control techniques. The nonlinear turbofan engine simulation was provided by PW within the NASA Rocket Engine Transient Simulator (ROCETS) simulation software environment. ROCETS was used to generate linearized models of the turbofan engine for control design and analysis as well as the simulation environment to evaluate the performance and robustness of the controllers. Comparison between the H-infinity, and LPV controllers are made with the baseline multivariable controller and developed by Pratt & Whitney engineers included in the ROCETS simulation. Simulation results indicate that H-infinity and LPV techniques effectively achieve desired response characteristics with minimal cross coupling between commanded values and are very robust to unmodeled dynamics and sensor noise.

  18. Design and simulation of a descent controller for strategic four-dimensional aircraft navigation. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Lax, F. M.

    1975-01-01

    A time-controlled navigation system applicable to the descent phase of flight for airline transport aircraft was developed and simulated. The design incorporates the linear discrete-time sampled-data version of the linearized continuous-time system describing the aircraft's aerodynamics. Using optimal linear quadratic control techniques, an optimal deterministic control regulator which is implementable on an airborne computer is designed. The navigation controller assists the pilot in complying with assigned times of arrival along a four-dimensional flight path in the presence of wind disturbances. The strategic air traffic control concept is also described, followed by the design of a strategic control descent path. A strategy for determining possible times of arrival at specified waypoints along the descent path and for generating the corresponding route-time profiles that are within the performance capabilities of the aircraft is presented. Using a mathematical model of the Boeing 707-320B aircraft along with a Boeing 707 cockpit simulator interfaced with an Adage AGT-30 digital computer, a real-time simulation of the complete aircraft aerodynamics was achieved. The strategic four-dimensional navigation controller for longitudinal dynamics was tested on the nonlinear aircraft model in the presence of 15, 30, and 45 knot head-winds. The results indicate that the controller preserved the desired accuracy and precision of a time-controlled aircraft navigation system.

  19. Modern digital flight control system design for VTOL aircraft

    NASA Technical Reports Server (NTRS)

    Broussard, J. R.; Berry, P. W.; Stengel, R. F.

    1979-01-01

    Methods for and results from the design and evaluation of a digital flight control system (DFCS) for a CH-47B helicopter are presented. The DFCS employed proportional-integral control logic to provide rapid, precise response to automatic or manual guidance commands while following conventional or spiral-descent approach paths. It contained altitude- and velocity-command modes, and it adapted to varying flight conditions through gain scheduling. Extensive use was made of linear systems analysis techniques. The DFCS was designed, using linear-optimal estimation and control theory, and the effects of gain scheduling are assessed by examination of closed-loop eigenvalues and time responses.

  20. A simplified fuel control approach for low cost aircraft gas turbines.

    NASA Technical Reports Server (NTRS)

    Gold, H.

    1973-01-01

    Cost reduction in aircraft turbine engines may be obtained through performance reductions that are acceptable for ranges that are considerably shorter than the range for which current and costly engines were developed. Cost reduction in the fuel control for these cost engines must be achieved without significant performance reduction. This paper describes a fuel control approach that appears to meet this requirement and reviews the work that has been performed on it over the past few years.

  1. Mechanisms of transmission and control of low-frequency sound in aircraft interiors

    NASA Technical Reports Server (NTRS)

    Fuller, C. R.

    1985-01-01

    A simplified analytical model is used to study the principal mechanisms at work in propeller noise source radiation, fuselage response, and the behavior of the coupled inner acoustic field, in order to control low frequency sound in aircraft interiors. Both active and passive methods of noise control are comparatively evaluated in light of the transmission mechanisms. Fuselage vibrational response is noted to be dominated by only a few lower order circumferential modes.

  2. Aircraft Loss-of-Control Accident Prevention: Switching Control of the GTM Aircraft with Elevator Jam Failures

    NASA Technical Reports Server (NTRS)

    Chang, Bor-Chin; Kwatny, Harry G.; Belcastro, Christine; Belcastro, Celeste

    2008-01-01

    Switching control, servomechanism, and H2 control theory are used to provide a practical and easy-to-implement solution for the actuator jam problem. A jammed actuator not only causes a reduction of control authority, but also creates a persistent disturbance with uncertain amplitude. The longitudinal dynamics model of the NASA GTM UAV is employed to demonstrate that a single fixed reconfigured controller design based on the proposed approach is capable of accommodating an elevator jam failure with arbitrary jam position as long as the thrust control has enough control authority. This paper is a first step towards solving a more comprehensive in-flight loss-of-control accident prevention problem that involves multiple actuator failures, structure damages, unanticipated faults, and nonlinear upset regime recovery, etc.

  3. Aircraft Design

    NASA Technical Reports Server (NTRS)

    Bowers, Albion H. (Inventor); Uden, Edward (Inventor)

    2016-01-01

    The present invention is an aircraft wing design that creates a bell shaped span load, which results in a negative induced drag (induced thrust) on the outer portion of the wing; such a design obviates the need for rudder control of an aircraft.

  4. Nonlinear stability and control study of highly maneuverable high performance aircraft, phase 2

    NASA Technical Reports Server (NTRS)

    Mohler, R. R.

    1992-01-01

    Research leading to the development of new nonlinear methodologies for the adaptive control and stability analysis of high angle of attack aircraft such as the F-18 is discussed. The emphasis has been on nonlinear adaptive control, but associated model development, system identification, stability analysis, and simulation were studied in some detail as well. Studies indicated that nonlinear adaptive control can outperform linear adaptive control for rapid maneuvers with large changes in angle of attack. Included here are studies on nonlinear model algorithmic controller design and an analysis of nonlinear system stability using robust stability analysis for linear systems.

  5. Stable H(infinity) Controller Design for the Longitudinal Dynamics of an Aircraft

    NASA Technical Reports Server (NTRS)

    Oezbay, Hitay; Garg, Sanjay

    1995-01-01

    This report discusses different approaches to stable H infinity controller design applied to the problem of augmenting the longitudinal dynamics of an aircraft. Stability of the H infinity controller is investigated by analyzing the effects of changes in the performance index weights, and modifications in the measured outputs. The existence of a stable suboptimal controller is also investigated. It is shown that this is equivalent to finding a stable controller, whose infinity norm is less than a specified bound, for an unstable plant which is determined from parametrization of all H infinity controllers. Examples are given for a gust alleviation and a command tracking problem.

  6. Launch Vehicle Manual Steering with Adaptive Augmenting Control In-flight Evaluations Using a Piloted Aircraft

    NASA Technical Reports Server (NTRS)

    Hanson, Curt

    2014-01-01

    An adaptive augmenting control algorithm for the Space Launch System has been developed at the Marshall Space Flight Center as part of the launch vehicles baseline flight control system. A prototype version of the SLS flight control software was hosted on a piloted aircraft at the Armstrong Flight Research Center to demonstrate the adaptive controller on a full-scale realistic application in a relevant flight environment. Concerns regarding adverse interactions between the adaptive controller and a proposed manual steering mode were investigated by giving the pilot trajectory deviation cues and pitch rate command authority.

  7. On the mechanisms controlling the formation and properties of volatile particles in aircraft wakes

    NASA Astrophysics Data System (ADS)

    Yu, Fangqun; Turco, Richard P.; Kärcher, Bernd; Schröder, Franz P.

    New observations taken in aircraft wakes, including the DLR ATTAS, provide strong constraints on models of aircraft plume aerosols. Using a comprehensive microphysics code, we have performed sensitivity studies to identify the key microphysical mechanisms acting in such plumes. Analysis of these simulations reveals that the largest volatile plume particles—those most likely to contribute to the background abundance of condensation nuclei—are dominated by ion-mode particles when chemiions are included. Moreover, such modeling demonstrates that standard treatments of plume microphysics—in the absence of chemiions—fails to explain field measurements. The principal factor controlling the population of ultrafine plume particles is the number of chemiions emitted by the aircraft engines. Since the ions are a byproduct of the combustion itself, and their abundance in the exhaust stream is controlled by ion-ion recombination, the initial ion concentrations—and so the eventual emission indices for ion-mode particles—are expected to be relatively invariant. Our results indicate that reductions in fuel sulfur content, while not likely to lower the total number of volatile particles emitted, would decrease the size of the ion-mode particles in fresh aircraft wakes, reducing their atmospheric lifetimes and potential environmental effects.

  8. Preliminary Study of Relationships between Stability and Control Characteristics and Affordability for High-Performance Aircraft

    NASA Technical Reports Server (NTRS)

    Ogburn, Marilyn E.

    1998-01-01

    This paper describes a study that is being done as part of the Methods for Affordable Design (MAD) program within the National Aeronautics and Space Administration (NASA), for which the goal is to develop design methods and information that contribute to reductions in the aircraft development cycle time while increasing design confidence throughout the design cycle. The product of the study will be a database of information that relates key stability and control parameters to affordability considerations such as air combat exchange ratio, safety of flight, and probability of loss of the aircraft or pilot. The overall background and methodology are described, and preliminary results are shown for the first phase of the study to evaluate characteristics in the longitudinal axis. For these preliminary results a simplified analytical model of the aircraft response to uncommanded nose-up pitching moments was developed and used to characterize the requirements for recoveries to controlled flight conditions and to evaluate some parameters that affect the survivability of the aircraft and the pilot.

  9. Practical Application of a Subscale Transport Aircraft for Flight Research in Control Upset and Failure Conditions

    NASA Technical Reports Server (NTRS)

    Cunningham, Kevin; Foster, John V.; Morelli, Eugene A.; Murch, Austin M.

    2008-01-01

    Over the past decade, the goal of reducing the fatal accident rate of large transport aircraft has resulted in research aimed at the problem of aircraft loss-of-control. Starting in 1999, the NASA Aviation Safety Program initiated research that included vehicle dynamics modeling, system health monitoring, and reconfigurable control systems focused on flight regimes beyond the normal flight envelope. In recent years, there has been an increased emphasis on adaptive control technologies for recovery from control upsets or failures including damage scenarios. As part of these efforts, NASA has developed the Airborne Subscale Transport Aircraft Research (AirSTAR) flight facility to allow flight research and validation, and system testing for flight regimes that are considered too risky for full-scale manned transport airplane testing. The AirSTAR facility utilizes dynamically-scaled vehicles that enable the application of subscale flight test results to full scale vehicles. This paper describes the modeling and simulation approach used for AirSTAR vehicles that supports the goals of efficient, low-cost and safe flight research in abnormal flight conditions. Modeling of aerodynamics, controls, and propulsion will be discussed as well as the application of simulation to flight control system development, test planning, risk mitigation, and flight research.

  10. Combustion Dynamics and Control for Ultra Low Emissions in Aircraft Gas-Turbine Engines

    NASA Technical Reports Server (NTRS)

    DeLaat, John C.

    2011-01-01

    Future aircraft engines must provide ultra-low emissions and high efficiency at low cost while maintaining the reliability and operability of present day engines. The demands for increased performance and decreased emissions have resulted in advanced combustor designs that are critically dependent on efficient fuel/air mixing and lean operation. However, all combustors, but most notably lean-burning low-emissions combustors, are susceptible to combustion instabilities. These instabilities are typically caused by the interaction of the fluctuating heat release of the combustion process with naturally occurring acoustic resonances. These interactions can produce large pressure oscillations within the combustor and can reduce component life and potentially lead to premature mechanical failures. Active Combustion Control which consists of feedback-based control of the fuel-air mixing process can provide an approach to achieving acceptable combustor dynamic behavior while minimizing emissions, and thus can provide flexibility during the combustor design process. The NASA Glenn Active Combustion Control Technology activity aims to demonstrate active control in a realistic environment relevant to aircraft engines by providing experiments tied to aircraft gas turbine combustors. The intent is to allow the technology maturity of active combustion control to advance to eventual demonstration in an engine environment. Work at NASA Glenn has shown that active combustion control, utilizing advanced algorithms working through high frequency fuel actuation, can effectively suppress instabilities in a combustor which emulates the instabilities found in an aircraft gas turbine engine. Current efforts are aimed at extending these active control technologies to advanced ultra-low-emissions combustors such as those employing multi-point lean direct injection.

  11. How Past Loss of Control Accidents May Inform Safety Cases for Advanced Control Systems on Commercial Aircraft

    NASA Technical Reports Server (NTRS)

    Holloway, C. M.; Johnson, C. W.

    2008-01-01

    This paper describes five loss of control accidents involving commercial aircraft, and derives from those accidents three principles to consider when developing a potential safety case for an advanced flight control system for commercial aircraft. One, among the foundational evidence needed to support a safety case is the availability to the control system of accurate and timely information about the status and health of relevant systems and components. Two, an essential argument to be sustained in the safety case is that pilots are provided with adequate information about the control system to enable them to understand the capabilities that it provides. Three, another essential argument is that the advanced control system will not perform less safely than a good pilot.

  12. Active control of aerothermoelastic effects for a conceptual hypersonic aircraft

    NASA Technical Reports Server (NTRS)

    Heeg, Jennifer; Gilbert, Michael G.; Pototzky, Anthony S.

    1990-01-01

    Procedures for and results of aeroservothermoelastic studies are described. The objectives of these studies were to develop the necessary procedures for performing an aeroelastic analysis of an aerodynamically heated vehicle and to analyze a configuration in the classical cold state and in a hot state. Major tasks include the development of the structural and aerodynamic models, open loop analyses, design of active control laws for improving dynamic responses and analyses of the closed loop vehicles. The analyses performed focused on flutter speed calculations, short period eigenvalue trends and statistical analyses of the vehicle response to controls and turbulence. Improving the ride quality of the vehicle and raising the flutter boundary of the aerodynamically-heated vehicle up to that of the cold vehicle were the objectives of the control law design investigations.

  13. Engine Yaw Augmentation for Hybrid-Wing-Body Aircraft via Optimal Control Allocation Techniques

    NASA Technical Reports Server (NTRS)

    Taylor, Brian R.; Yoo, Seung-Yeun

    2011-01-01

    Asymmetric engine thrust was implemented in a hybrid-wing-body non-linear simulation to reduce the amount of aerodynamic surface deflection required for yaw stability and control. Hybrid-wing-body aircraft are especially susceptible to yaw surface deflection due to their decreased bare airframe yaw stability resulting from the lack of a large vertical tail aft of the center of gravity. Reduced surface deflection, especially for trim during cruise flight, could reduce the fuel consumption of future aircraft. Designed as an add-on, optimal control allocation techniques were used to create a control law that tracks total thrust and yaw moment commands with an emphasis on not degrading the baseline system. Implementation of engine yaw augmentation is shown and feasibility is demonstrated in simulation with a potential drag reduction of 2 to 4 percent. Future flight tests are planned to demonstrate feasibility in a flight environment.

  14. A moving-window parameter adaptive control system for the F8-DFBW aircraft

    NASA Technical Reports Server (NTRS)

    Montgomery, R. C.; Dunn, H. J.

    1976-01-01

    This paper describes the moving-window parameter adaptive control system developed for the NASA F8-DFBW aircraft. The control system employs a parameter identification process that, iteratively, adjusts parameters of a model of the aircraft motions in a batch processing manner so that responses generated from the model fit the outputs of sensors stored in a finite record referred to as the moving window. Tests are made on the validity of the parameter estimates before using the parameters in an on-line design process. The on-line design process is an algebraic mapping of the parameters of the model into primary control system feedback and feedforward gains. The mapping was selected to satisfy specific flying quality characteristics over the range of parameter variations expected. Results are presented from simulation studies on the identification algorithm, tests for parameter validity, and the on-line design process.

  15. A moving window parameter adaptive control system for the F8-DFBW aircraft

    NASA Technical Reports Server (NTRS)

    Dunn, H. J.; Montgomery, R. C.

    1977-01-01

    This paper describes the moving window parameter adaptive control system developed for the NASA F8-DFBW aircraft. The control system employs a parameter identification process that, iteratively, adjusts parameters of a model of the aircraft motions in a batch-processing manner so that responses generated from the model fit the outputs of sensors stored in a finite record referred to as the moving window. Tests are made on the validity of the parameter estimates before using the parameters in an on-line design process. The on-line design process is an algebraic mapping of the parameters of the model into primary control system feedback and feedforward gains. The mapping was selected to satisfy specific flying quality characteristics over the range of parameter variations expected. Results are presented from simulation studies on the identification algorithm made during the development of the system.

  16. Expansion of flight simulator capability for study and solution of aircraft directional control problems on runways, appendixes

    NASA Technical Reports Server (NTRS)

    Mcgowan, J. A.

    1978-01-01

    The models used to implement the DC-9-10 aircraft simulation for the Runway Direction Control study are presented. The study was done on the Douglas Aircraft six-degree-of-freedom motion simulator. Documentation of the models was in algebraic form, to the extent possible. Effort was directed toward presenting what was actually done rather than general forms.

  17. An experimental radio-controlled model aircraft casts two unique shadows as it flies inside a Dryden

    NASA Technical Reports Server (NTRS)

    2002-01-01

    An experimental radio-controlled model aircraft casts two unique shadows as it flies inside a Dryden hangar using two spotlights as energy sources. This phase of testing was used to develop procedures and operations for 'handing off' the aircraft between different sources of power.

  18. 22 CFR 123.8 - Special controls on vessels, aircraft and satellites covered by the U.S. Munitions List.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... satellites covered by the U.S. Munitions List. 123.8 Section 123.8 Foreign Relations DEPARTMENT OF STATE... on vessels, aircraft and satellites covered by the U.S. Munitions List. (a) Transferring registration or control to a foreign person of any aircraft, vessel, or satellite on the U.S. Munitions List is...

  19. 22 CFR 123.8 - Special controls on vessels, aircraft and satellites covered by the U.S. Munitions List.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... satellites covered by the U.S. Munitions List. 123.8 Section 123.8 Foreign Relations DEPARTMENT OF STATE... on vessels, aircraft and satellites covered by the U.S. Munitions List. (a) Transferring registration or control to a foreign person of any aircraft, vessel, or satellite on the U.S. Munitions List is...

  20. 22 CFR 123.8 - Special controls on vessels, aircraft and satellites covered by the U.S. Munitions List.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... satellites covered by the U.S. Munitions List. 123.8 Section 123.8 Foreign Relations DEPARTMENT OF STATE... on vessels, aircraft and satellites covered by the U.S. Munitions List. (a) Transferring registration or control to a foreign person of any aircraft, vessel, or satellite on the U.S. Munitions List is...

  1. 22 CFR 123.8 - Special controls on vessels, aircraft and satellites covered by the U.S. Munitions List.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... satellites covered by the U.S. Munitions List. 123.8 Section 123.8 Foreign Relations DEPARTMENT OF STATE... on vessels, aircraft and satellites covered by the U.S. Munitions List. (a) Transferring registration or control to a foreign person of any aircraft, vessel, or satellite on the U.S. Munitions List is...

  2. Pilot modeling, modal analysis, and control of large flexible aircraft

    NASA Technical Reports Server (NTRS)

    Schmidt, D. K.

    1984-01-01

    The issues to be addressed are threefold. The first deals with the question of whether dynamic aeroelastic effects can significantly impact piloted flight dynamics. For example, if one were to explore this problem experimentally, what mathematical model would be appropriate to use in the simulation? What modes, for example, should be included in the simulation, or what linear model should be used in the control synthesis? The second question deals with the appropriate design criteria or design objectives. In the case of active control, for example, what would be the design objectives for the control synthesis if aeroelastic effects are a problem? The outline of the topics includes a description of a model analysis methodology aimed at answering the question of the significance of higher order dynamics. Secondly, a pilot vehicle analysis of some experimental data addresses the question of ""What's important in the task?'' The experimental data will be presented briefly, followed by the results of an open-loop modal analysis of the generic vehicle configurations in question. Finally, one of the vehicles will be augmented via active control and the results presented.

  3. Active local control of propeller-aircraft run-up noise.

    PubMed

    Hodgson, Murray; Guo, Jingnan; Germain, Pierre

    2003-12-01

    Engine run-ups are part of the regular maintenance schedule at Vancouver International Airport. The noise generated by the run-ups propagates into neighboring communities, disturbing the residents. Active noise control is a potentially cost-effective alternative to passive methods, such as enclosures. Propeller aircraft generate low-frequency tonal noise that is highly compatible with active control. This paper presents a preliminary investigation of the feasibility and effectiveness of controlling run-up noise from propeller aircraft using local active control. Computer simulations for different configurations of multi-channel active-noise-control systems, aimed at reducing run-up noise in adjacent residential areas using a local-control strategy, were performed. These were based on an optimal configuration of a single-channel control system studied previously. The variations of the attenuation and amplification zones with the number of control channels, and with source/control-system geometry, were studied. Here, the aircraft was modeled using one or two sources, with monopole or multipole radiation patterns. Both free-field and half-space conditions were considered: for the configurations studied, results were similar in the two cases. In both cases, large triangular quiet zones, with local attenuations of 10 dB or more, were obtained when nine or more control channels were used. Increases of noise were predicted outside of these areas, but these were minimized as more control channels were employed. By combining predicted attenuations with measured noise spectra, noise levels after implementation of an active control system were estimated. PMID:14714802

  4. Leading edge flap system for aircraft control augmentation

    NASA Technical Reports Server (NTRS)

    Rao, D. M. (Inventor)

    1984-01-01

    Traditional roll control systems such as ailerons, elevons or spoilers are least effective at high angles of attack due to boundary layer separation over the wing. This invention uses independently deployed leading edge flaps on the upper surfaces of vortex stabilized wings to shift the center of lift outboard. A rolling moment is created that is used to control roll in flight at high angles of attack. The effectiveness of the rolling moment increases linearly with angle of attack. No adverse yaw effects are induced. In an alternate mode of operation, both leading edge flaps are deployed together at cruise speeds to create a very effective airbrake without appreciable modification in pitching moment. Little trim change is required.

  5. Optimum Actuator Selection with a Genetic Algorithm for Aircraft Control

    NASA Technical Reports Server (NTRS)

    Rogers, James L.

    2004-01-01

    The placement of actuators on a wing determines the control effectiveness of the airplane. One approach to placement maximizes the moments about the pitch, roll, and yaw axes, while minimizing the coupling. For example, the desired actuators produce a pure roll moment without at the same time causing much pitch or yaw. For a typical wing, there is a large set of candidate locations for placing actuators, resulting in a substantially larger number of combinations to examine in order to find an optimum placement satisfying the mission requirements and mission constraints. A genetic algorithm has been developed for finding the best placement for four actuators to produce an uncoupled pitch moment. The genetic algorithm has been extended to find the minimum number of actuators required to provide uncoupled pitch, roll, and yaw control. A simplified, untapered, unswept wing is the model for each application.

  6. Control and Non-Payload Communications Links for Integrated Unmanned Aircraft Operations

    NASA Technical Reports Server (NTRS)

    Kerczewski, Robert J.; Griner, James H.

    2012-01-01

    Technology for unmanned aircraft has advanced so rapidly in recent years that many new applications to public and commercial use are being proposed and implemented. In many countries, emphasis is now being placed on developing the means to allow unmanned aircraft to operate within non-segregated airspace along with commercial, cargo and other piloted and passenger-carrying aircraft.In the U.S., Congress has mandated that the Federal Aviation Administration reduce and remove restrictions on unmanned aircraft operations in a relatively short time frame. To accomplish this, a number of technical and regulatory hurdles must be overcome. A key hurdle involve the communications link connecting the remote pilot located at a ground control station with the aircraft in the airspace, referred to as the Control and Non-Payload Communications (CNPC) link. This link represents a safety critical communications link, and thus requires dedicated and protected aviation spectrum as well as national and international standards defining the operational requirements the CNPC system. The CNPC link must provide line-of-site (LOS) communications, primarily through a ground-based communication system, and beyond-line-of-sight (BLOS) communication achieved using satellite communications. In the U.S., the National Aeronautics and Space Administration (NASA) is charged with providing the technical body of evidence to support spectrum allocation requirements and national and international standards development for the CNPC link. This paper provides a description of the CNPC system, an overview of NASA's CNPC project, and current results in technology assessment, air-ground propagation characterization, and supporting system studies and analyses will be presented.

  7. Implementation and Evaluation of Multiple Adaptive Control Technologies for a Generic Transport Aircraft Simulation

    NASA Technical Reports Server (NTRS)

    Campbell, Stefan F.; Kaneshige, John T.; Nguyen, Nhan T.; Krishakumar, Kalmanje S.

    2010-01-01

    Presented here is the evaluation of multiple adaptive control technologies for a generic transport aircraft simulation. For this study, seven model reference adaptive control (MRAC) based technologies were considered. Each technology was integrated into an identical dynamic-inversion control architecture and tuned using a methodology based on metrics and specific design requirements. Simulation tests were then performed to evaluate each technology s sensitivity to time-delay, flight condition, model uncertainty, and artificially induced cross-coupling. The resulting robustness and performance characteristics were used to identify potential strengths, weaknesses, and integration challenges of the individual adaptive control technologies

  8. Evaluation of laminar flow control system concepts for subsonic commercial transport aircraft

    NASA Technical Reports Server (NTRS)

    1980-01-01

    A study was conducted to evaluate alternatives in the design of laminar flow control (LFC) subsonic commercial transport aircraft for operation in the 1980's period. Analyses were conducted to select mission parameters and define optimum aircraft configurational parameters for the selected mission, defined by a passenger payload of 400 and a design range of 12,038 km (6500 n mi). The baseline aircraft developed for this mission was used as a vehicle for the evaluation and development of alternative LFC system concepts. Alternatives were evaluated in the areas of aerodynamics structures, materials, LFC systems, leading-edge region cleaning and integration of auxiliary systems. Based on these evaluations, concept in each area were selected for further development and testing and ultimate incorporation in the final study aircraft. Relative to a similarly-optimized advanced technology turbulent transport, the final LFC configuration is approximately equal in direct operating cost but provides decreases of 8.2% in gross weight and 21.7% in fuel consumption.

  9. Buffet induced structural/flight-control system interaction of the X-29A aircraft

    NASA Technical Reports Server (NTRS)

    Voracek, David F.; Clarke, Robert

    1991-01-01

    High angle-of-attack flight regime research is currently being conducted for modern fighter aircraft at the NASA Ames Research Center's Dryden Flight Research Facility. This flight regime provides enhanced maneuverability to fighter pilots in combat situations. Flight research data are being acquired to compare and validate advanced computational fluid dynamic solutions and wind-tunnel models. High angle-of-attack flight creates unique aerodynamic phenomena including wing rock and buffet on the airframe. These phenomena increase the level of excitation of the structural modes, especially on the vertical and horizontal stabilizers. With high gain digital flight-control systems, this structural response may result in an aeroservoelastic interaction. A structural interaction on the X-29A aircraft was observed during high angle-of-attack flight testing. The roll and yaw rate gyros sensed the aircraft's structural modes at 11, 13, and 16 Hz. The rate gyro output signals were then amplified through the flight-control laws and sent as commands to the flaperons and rudder. The flight data indicated that as the angle of attack increased, the amplitude of the buffet on the vertical stabilizer increased, which resulted in more excitation to the structural modes. The flight-control system sensors and command signals showed this increase in modal power at the structural frequencies up to a 30 degree angle-of-attack. Beyond a 30 degree angle-of-attack, the vertical stabilizer response, the feedback sensor amplitude, and control surface command signal amplitude remained relatively constant. Data are presented that show the increased modal power in the aircraft structural accelerometers, the feedback sensors, and the command signals as a function of angle of attack. This structural interaction is traced from the aerodynamic buffet to the flight-control surfaces.

  10. The application of the detection filter to aircraft control surface and actuator failure detection and isolation

    NASA Technical Reports Server (NTRS)

    Bonnice, W. F.; Wagner, E.; Motyka, P.; Hall, S. R.

    1985-01-01

    The performance of the detection filter in detecting and isolating aircraft control surface and actuator failures is evaluated. The basic detection filter theory assumption of no direct input-output coupling is violated in this application due to the use of acceleration measurements for detecting and isolating failures. With this coupling, residuals produced by control surface failures may only be constrained to a known plane rather than to a single direction. A detection filter design with such planar failure signatures is presented, with the design issues briefly addressed. In addition, a modification to constrain the residual to a single known direction even with direct input-output coupling is also presented. Both the detection filter and the modification are tested using a nonlinear aircraft simulation. While no thresholds were selected, both filters demonstrated an ability to detect control surface and actuator failures. Failure isolation may be a problem if there are several control surfaces which produce similar effects on the aircraft. In addition, the detection filter was sensitive to wind turbulence and modeling errors.

  11. The use of pressure sensing taps on the aircraft wing as sensor for flight control systems

    NASA Astrophysics Data System (ADS)

    Brunner, D.

    1985-02-01

    For the low speed operation of aircraft, during STOL-take off or STOL-landing and for windshear situations a precise measurement of the state of the aerodynamic flow is required. Normally the dynamic pressure is used to assess the state of flow, thus defining the stall margin in terms of a speed factor. However, flying at higher lift coefficients, a precise maintainence of a given lift coefficient by controlling the speed is no longer feasible. Instead, controlling the angle of attack or controlling the lift coefficient directly should be used. Some methods for the measurement and the control of the state of the aerodynamical flow including wing tap pressure measurements are discussed. Wind tunnel results are presented, that show the pressure distribution of a slotted STOL-wing and the typical relationship between the tap pressure, angle of attack and flap angle. Wing tape pressure measurements taken with the STOL-aircraft Do 28 aircraft are then discussed showing the feasibility of the method described to sense the state of flow.

  12. Automatic guidance and control of a transport aircraft during a helical landing approach

    NASA Technical Reports Server (NTRS)

    Crawford, D. J.

    1975-01-01

    A linear optimal regulator theory was applied to a nonlinear simulation of a transport aircraft performing a helical landing approach. A closed-form expression for the quasi-steady nominal flight path is presented along with the method for determining the corresponding constant nominal control inputs. The Jacobian matrices and the weighting matrices in the cost functional were time varying. A method of solving for the optimal feedback gains is reviewed. The control system was tested on several alternative landing approaches using both 3 deg and 6 deg flight path angles. On each landing approach, the aircraft was subjected to large random initial-state errors and to randomly directed crosswinds. The system was also tested for sensitivity to changes in the parameters of the aircraft and of the atmosphere. Results indicate that performance of the optimal controller on all the 3 deg approaches is very good. The control system proved to be reasonably insensitive to parametric uncertainties. Performance is not as good on the 6 deg approaches. A modification to the 6 deg flight path was proposed for the purpose of improving performance.

  13. A Pilot Opinion Study of Lateral Control Requirements for Fighter-Type Aircraft

    NASA Technical Reports Server (NTRS)

    Creer, Brent Y.; Stewart, John D.; Merrick, Robert B.; Drinkwater, Fred J., III

    1959-01-01

    As part of a continuing NASA program of research on airplane handling qualities, a pilot opinion investigation has been made on the lateral control requirements of fighter aircraft flying in their combat speed range. The investigation was carried out using a stationary flight simulator and a moving flight simulator, and the flight simulator results were supplemented by research tests in actual flight. The flight simulator study was based on the presumption that the pilot rates the roll control of an airplane primarily on a single-degree-of-freedom basis; that is, control of angle of roll about the aircraft body axis being of first importance. From the assumption of a single degree of freedom system it follows that there are two fundamental parameters which govern the airplane roll response, namely the roll damping expressed as a time constant and roll control power in terms of roll acceleration. The simulator study resulted in a criterion in terms of these two parameters which defines satisfactory, unsatisfactory, and unacceptable roll performance from a pilot opinion standpoint. The moving simulator results were substantiated by the in-flight investigation. The derived criterion was compared with the roll performance criterion based upon wing tip helix angle and also with other roll performance concepts which currently influence the roll performance design of military fighter aircraft flying in their combat speed range.

  14. The stochastic control of the F-8C aircraft using the Multiple Model Adaptive Control (MMAC) method

    NASA Technical Reports Server (NTRS)

    Athans, M.; Dunn, K. P.; Greene, E. S.; Lee, W. H.; Sandel, N. R., Jr.

    1975-01-01

    The purpose of this paper is to summarize results obtained for the adaptive control of the F-8C aircraft using the so-called Multiple Model Adaptive Control method. The discussion includes the selection of the performance criteria for both the lateral and the longitudinal dynamics, the design of the Kalman filters for different flight conditions, the 'identification' aspects of the design using hypothesis testing ideas, and the performance of the closed loop adaptive system.

  15. Study of synthesis techniques for insensitive aircraft control systems

    NASA Technical Reports Server (NTRS)

    Harvey, C. A.; Pope, R. E.

    1977-01-01

    Insensitive flight control system design criteria was defined in terms of maximizing performance (handling qualities, RMS gust response, transient response, stability margins) over a defined parameter range. Wing load alleviation for the C-5A was chosen as a design problem. The C-5A model was a 79-state, two-control structure with uncertainties assumed to exist in dynamic pressure, structural damping and frequency, and the stability derivative, M sub w. Five new techniques (mismatch estimation, uncertainty weighting, finite dimensional inverse, maximum difficulty, dual Lyapunov) were developed. Six existing techniques (additive noise, minimax, multiplant, sensitivity vector augmentation, state dependent noise, residualization) and the mismatch estimation and uncertainty weighting techniques were synthesized and evaluated on the design example. Evaluation and comparison of these six techniques indicated that the minimax and the uncertainty weighting techniques were superior to the other six, and of these two, uncertainty weighting has lower computational requirements. Techniques based on the three remaining new concepts appear promising and are recommended for further research.

  16. DCS-Neural-Network Program for Aircraft Control and Testing

    NASA Technical Reports Server (NTRS)

    Jorgensen, Charles C.

    2006-01-01

    A computer program implements a dynamic-cell-structure (DCS) artificial neural network that can perform such tasks as learning selected aerodynamic characteristics of an airplane from wind-tunnel test data and computing real-time stability and control derivatives of the airplane for use in feedback linearized control. A DCS neural network is one of several types of neural networks that can incorporate additional nodes in order to rapidly learn increasingly complex relationships between inputs and outputs. In the DCS neural network implemented by the present program, the insertion of nodes is based on accumulated error. A competitive Hebbian learning rule (a supervised-learning rule in which connection weights are adjusted to minimize differences between actual and desired outputs for training examples) is used. A Kohonen-style learning rule (derived from a relatively simple training algorithm, implements a Delaunay triangulation layout of neurons) is used to adjust node positions during training. Neighborhood topology determines which nodes are used to estimate new values. The network learns, starting with two nodes, and adds new nodes sequentially in locations chosen to maximize reductions in global error. At any given time during learning, the error becomes homogeneously distributed over all nodes.

  17. Spitzer/IRAC Photometry Of The Four Largest Uranian Satellites

    NASA Astrophysics Data System (ADS)

    Cartwright, Richard; Emery, J.; Rivkin, A.; Trilling, D.

    2012-10-01

    The surfaces of the four largest Uranian satellites are dominated by water ice and a spectrally neutral constituent that is likely carbonaceous in composition. CO2 ice has been detected on Ariel, Umbriel, and Titania, with no detection on the furthest regular Uranian satellite, Oberon (Grundy et al., 2003, 2006). Whether CO2 ice is primordial or is actively produced in the Uranian system is unclear; however, it seems unlikely that primordial CO2 ice would remain exposed on an icy satellite surface over the age of the Solar System. One possible mechanism for producing CO2 ice is bombardment of water ice and carbonaceous material by charged particles caught in Uranus’ magnetic field. Unlike the other large Uranian satellites, Oberon spends part of its orbit outside the confines of Uranus’ magnetic field, which might help explain why CO2 ice has yet to be detected on Oberon. We are using photometric data gathered by the Infrared Array Camera (IRAC), onboard the Spitzer Space Telescope (SST), in order to search for the signature of CO2 ice on Oberon, and confirm its presence on Ariel, Umbriel, and Titania at longer wavelengths than previous studies. IRAC collects data in four different channels, which are centered roughly at 3.6, 4.5, 5.8, and 8.0 µm. Additionally, we are gathering spectroscopic data using SpeX on IRTF, at similar longitudes to the IRAC observations, in order to characterize the distribution of CO2 ice on these icy satellites over a wide range of near-infrared wavelengths. Our preliminary photometry results for Oberon indicate that there is a steep reduction in reflected solar flux from channel 1 to channel 2, suggesting that surface materials are absorbing photons at wavelengths within the bandpass of channel 2. We will present the results of our photometric analysis of the four largest Uranian moons.

  18. Completing the Legacy of Spitzer/IRAC over COSMOS

    NASA Astrophysics Data System (ADS)

    Labbe, Ivo; Caputi, Karina; McLeod, Derek; Cowley, Will; Dayal, Pratika; Behroozi, Peter; Ashby, Matt; Franx, Marijn; Dunlop, James; Le Fevre, Olivier; Fynbo, Johan; McCracken, Henry; Milvang-Jensen, Bo; Ilbert, Olivier; Tasca, Lidia; de Barros, Stephane; Oesch, Pascal; Bouwens, Rychard; Muzzin, Adam; Illingworth, Garth; Stefanon, Mauro; Schreiber, Corentin; Hutter, Anne; van Dokkum, Pieter

    2016-08-01

    We propose to complete the legacy of Spitzer/IRAC over COSMOS by extending the deep coverage to the full 1.8 sq degree field, producing a nearly homogenous and contiguous map unparalleled in terms of area and depth. Ongoing and scheduled improvements in the supporting optical-to-NIR data down to ultradeep limits have reconfirmed COSMOS as a unique field for probing the bright end of the z=6-11 universe and the formation of large-scale structures. However, currently only one-third of the field has received sufficiently deep IRAC coverage to match the new optical/near-IR limits. Here we request deep matching IRAC data over the full 1.8 sq degree field to detect almost one million galaxies. The proposed observations will allow us to 1) constrain the galaxy stellar mass function during the epoch of reionization at z=6-8 with ~10,000 galaxies at these redshifts, 2) securely identify the brightest galaxies at 9 < z < 11, 3) trace the growth of stellar mass at 1 < z < 8 and the co-evolution of galaxies and their dark matter halos, 4) identify (proto)clusters and large scale structures, and 5) reveal dust enshrouded starbursts and the first quiescent galaxies at 3 < z < 6. The Spitzer Legacy over COSMOS will enable a wide range of discoveries beyond these science goals owing to the unique array of multiwavelength data from the X-ray to the radio. COSMOS is a key target for ongoing and future studies with ALMA and for spectroscopy from the ground, and with the timely addition of the Spitzer Legacy it will prove to be a crucial treasury for efficient planning and early follow-up with JWST.

  19. An evaluation and force gradient determination of mechanically linked reversible sidestick controllers for General Aviation aircraft

    NASA Technical Reports Server (NTRS)

    Bergeron, H. P.

    1984-01-01

    In connection with the increase in air traffic, IFR (Instrument Flight Rules) flight in the air traffic control system has become very demanding. It has, therefore, become imperative to optimize the pilot's skills in his management of the various aircraft systems. The present investigation is concerned with the human factors aspects of the use of sidesticks in direct mechanical linkage (reversible) control systems in a production General Aviation (G.A.) aircraft. A total of 140 fifteen to twenty minute flight tasks were flown on the NASA Langley G.A. motion base simulator. The study involved a comparison of three locations of the sidestick, left side, center, and right side, and the standard yoke. It was found that the sidestick is preferable to the standard yoke. However, some of the design and installation features of the sidestick are critical for pilot acceptance.

  20. Development of an adaptive failure detection and identification system for detecting aircraft control element failures

    NASA Technical Reports Server (NTRS)

    Bundick, W. Thomas

    1990-01-01

    A methodology for designing a failure detection and identification (FDI) system to detect and isolate control element failures in aircraft control systems is reviewed. An FDI system design for a modified B-737 aircraft resulting from this methodology is also reviewed, and the results of evaluating this system via simulation are presented. The FDI system performed well in a no-turbulence environment, but it experienced an unacceptable number of false alarms in atmospheric turbulence. An adaptive FDI system, which adjusts thresholds and other system parameters based on the estimated turbulence level, was developed and evaluated. The adaptive system performed well over all turbulence levels simulated, reliably detecting all but the smallest magnitude partially-missing-surface failures.

  1. Hydraulic actuator mechanism to control aircraft spoiler movements through dual input commands

    NASA Technical Reports Server (NTRS)

    Irick, S. C. (Inventor)

    1981-01-01

    An aircraft flight spoiler control mechanism is described. The invention enables the conventional, primary spoiler control system to retain its operational characteristics while accommodating a secondary input controlled by a conventional computer system to supplement the settings made by the primary input. This is achieved by interposing springs between the primary input and the spoiler control unit. The springs are selected to have a stiffness intermediate to the greater force applied by the primary control linkage and the lesser resistance offered by the spoiler control unit. Thus, operation of the primary input causes the control unit to yield before the springs, yet, operation of the secondary input, acting directly on the control unit, causes the springs to yield and absorb adjustments before they are transmitted into the primary control system.

  2. Human factors studies of control configurations for advanced transport aircraft

    NASA Technical Reports Server (NTRS)

    Snyder, Harry L.; Monty, Robert W.; Old, Joe

    1985-01-01

    This research investigated the threshold levels of display luminance contrast which were required to interpret static, achromatic, integrated displays of primary flight information. A four-factor within-subjects design was used to investigate the influences of type of flight variable information, the level of ambient illumination, the type of control input, and the size of the display symbology on the setting of these interpretability thresholds. A three-alternative forced choice paradigm was used in conjunction with the method of adjustments to obtain a measure of the upper limen of display luminance contrast needed to interpret a complex display of primary flight information. The pattern of results and the absolute magnitudes of the luminance contrast settings were found to be in good agreement with previously reported data from psychophysical investigations of display luminance contrast requirements.

  3. The IRAC Shutter Mechanism: Residual Magnetism and the Rotary Solenoid

    NASA Technical Reports Server (NTRS)

    Schwinger, Scott; Hakun, Claef; Brown, Gary; Blumenstock, Ken

    2002-01-01

    The Infrared Array Camera (IRAC) Shutter mechanism was originally presented in the paper, 'A Low Power Cryogenic Shutter Mechanism for Use on Infrared Imagers' at the 34th Aerospace Mechanisms Symposium, May 2000. At that time, the shutter was believed to be performing flawlessly and there was every indication it would continue to do so. In early spring of 2001, the calibration shutter, a rotary solenoid designed to be fail-safe open, remained in a closed state with no power to the electromagnetic coils. The ensuing investigation, subsequent testing, proposed remedy, and lessons learned are the focus of this paper.

  4. Analyses and tests of the B-1 aircraft structural mode control system

    NASA Technical Reports Server (NTRS)

    Wykes, J. H.; Byar, T. R.; Macmiller, C. J.; Greek, D. C.

    1980-01-01

    Analyses and flight tests of the B-1 structural mode control system (SMCS) are presented. Improvements in the total dynamic response of a flexible aircraft and the benefits to ride qualities, handling qualities, crew efficiency, and reduced dynamic loads on the primary structures, were investigated. The effectiveness and the performance of the SMCS, which uses small aerodynamic surfaces at the vehicle nose to provide damping to the structural modes, were evaluated.

  5. Multi-input multi-output system control for experimental aircraft

    NASA Technical Reports Server (NTRS)

    Schmidt, David K.

    1987-01-01

    Results from the synthesis of control laws for an advanced short takeoff aircraft in a low-speed approach flight condition are given. Two of four candidate synthesis techniques are reported: direct eigenspace assignment and explicit model following via a linear quadratic regulator (LQR) formulation. A fundamental objective of this work is to obtain low-order feedback compensators, synthesized via the above techniques, and the judicious use of state estimation, thus allowing the use of a reasonable number of sensors for feedback.

  6. Decentralized Control of Sound Radiation from an Aircraft-Style Panel Using Iterative Loop Recovery

    NASA Technical Reports Server (NTRS)

    Schiller, Noah H.; Cabell, Randolph H.; Fuller, Chris R.

    2008-01-01

    A decentralized LQG-based control strategy is designed to reduce low-frequency sound transmission through periodically stiffened panels. While modern control strategies have been used to reduce sound radiation from relatively simple structural acoustic systems, significant implementation issues have to be addressed before these control strategies can be extended to large systems such as the fuselage of an aircraft. For instance, centralized approaches typically require a high level of connectivity and are computationally intensive, while decentralized strategies face stability problems caused by the unmodeled interaction between neighboring control units. Since accurate uncertainty bounds are not known a priori, it is difficult to ensure the decentralized control system will be robust without making the controller overly conservative. Therefore an iterative approach is suggested, which utilizes frequency-shaped loop recovery. The approach accounts for modeling error introduced by neighboring control loops, requires no communication between subsystems, and is relatively simple. The control strategy is validated using real-time control experiments performed on a built-up aluminum test structure representative of the fuselage of an aircraft. Experiments demonstrate that the iterative approach is capable of achieving 12 dB peak reductions and a 3.6 dB integrated reduction in radiated sound power from the stiffened panel.

  7. Variable-Speed Induction Motor Drives for Aircraft Environmental Control Compressors

    NASA Technical Reports Server (NTRS)

    Mildice, J. W.; Hansen, I. G.; Schreiner, K. E.; Roth, M. E.

    1996-01-01

    New, more-efficient designs for aircraft jet engines are not capable of supplying the large quantities of bleed air necessary to provide pressurization and air conditioning for the environmental control systems (ECS) of the next generation of large passenger aircraft. System analysis and engineering have determined that electrically-driven ECS can help to maintain the improved fuel efficiencies; and electronic controllers and induction motors are now being developed in a NASA/NPD SBIR Program to drive both types of ECS compressors. Previous variable-speed induction motor/controller system developments and publications have primarily focused on field-oriented control, with large transient reserve power, for maximum acceleration and optimum response in actuator and robotics systems. The application area addressed herein is characterized by slowly-changing inputs and outputs, small reserve power capability for acceleration, and optimization for maximum efficiency. This paper therefore focuses on the differences between this case and the optimum response case, and shows the development of this new motor/controller approach. It starts with the creation of a new set of controller requirements. In response to those requirements, new control algorithms are being developed and implemented in an embedded computer, which is integrated into the motor controller closed loop. Buffered logic outputs are used to drive the power switches in a resonant-technology, power processor/motor-controller, at switching/resonant frequencies high enough to support efficient high-frequency induction motor operation at speeds up to 50,000-RPA

  8. Effects of higher order control systems on aircraft approach and landing longitudinal handling qualities

    NASA Technical Reports Server (NTRS)

    Pasha, M. A.; Dazzo, J. J.; Silverthorn, J. T.

    1982-01-01

    An investigation of approach and landing longitudinal flying qualities, based on data generated using a variable stability NT-33 aircraft combined with significant control system dynamics is described. An optimum pilot lead time for pitch tracking, flight path angle tracking, and combined pitch and flight path angle tracking tasks is determined from a closed loop simulation using integral squared error (ISE) as a performance measure. Pilot gain and lead time were varied in the closed loop simulation of the pilot and aircraft to obtain the best performance for different control system configurations. The results lead to the selection of an optimum lead time using ISE as a performance criterion. Using this value of optimum lead time, a correlation is then found between pilot rating and performance with changes in the control system and in the aircraft dynamics. It is also shown that pilot rating is closely related to pilot workload which, in turn, is related to the amount of lead which the pilot must generate to obtain satisfactory response. The results also indicate that the pilot may use pitch angle tracking for the approach task and then add flight path angle tracking for the flare and touchdown.

  9. Sources, control, and effects of noise from aircraft propellers and rotors

    NASA Technical Reports Server (NTRS)

    Mixson, J. S.; Greene, G. C.; Dempsey, T. K.

    1981-01-01

    Recent NASA and NASA sponsored research on the prediction and control of propeller and rotor source noise, on the analysis and design of fuselage sidewall noise control treatments, and on the measurement and quantification of the response of passengers to aircraft noise is described. Source noise predictions are compared with measurements for conventional low speed propellers, for new high speed propellers (propfans), and for a helicopter. Results from a light aircraft demonstration program are considered which indicates that about 5 dB reduction of flyover noise can be obtained without significant performance penalty. Sidewall design studies are examined for interior noise control in light general aviation aircraft and in large transports using propfan propulsion. The weight of the added acoustic treatment is estimated and tradeoffs between weight and noise reduction are discussed. A laboratory study of passenger response to combined broadband and tonal propeller-like noise is described. Subject discomfort ratings of combined tone broadband noises are compared with ratings of broadband (boundary layer) noise alone and the relative importance of the propeller tones is examined.

  10. Design and evaluation of a robust dynamic neurocontroller for a multivariable aircraft control problem

    NASA Technical Reports Server (NTRS)

    Troudet, T.; Garg, S.; Merrill, W.

    1992-01-01

    The design of a dynamic neurocontroller with good robustness properties is presented for a multivariable aircraft control problem. The internal dynamics of the neurocontroller are synthesized by a state estimator feedback loop. The neurocontrol is generated by a multilayer feedforward neural network which is trained through backpropagation to minimize an objective function that is a weighted sum of tracking errors, and control input commands and rates. The neurocontroller exhibits good robustness through stability margins in phase and vehicle output gains. By maintaining performance and stability in the presence of sensor failures in the error loops, the structure of the neurocontroller is also consistent with the classical approach of flight control design.

  11. Analysis of an electrohydraulic aircraft control surface servo and comparison with test results

    NASA Technical Reports Server (NTRS)

    Edwards, J. W.

    1972-01-01

    An analysis of an electrohydraulic aircraft control-surface system is made in which the system is modeled as a lumped, two-mass, spring-coupled system controlled by a servo valve. Both linear and nonlinear models are developed, and the effects of hinge-moment loading are included. Transfer functions of the system and approximate literal factors of the transfer functions for several cases are presented. The damping action of dynamic pressure feedback is analyzed. Comparisons of the model responses with results from tests made on a highly resonant rudder control-surface servo indicate the adequacy of the model. The effects of variations in hinge-moment loading are illustrated.

  12. Knowledge-Based Aircraft Automation: Managers Guide on the use of Artificial Intelligence for Aircraft Automation and Verification and Validation Approach for a Neural-Based Flight Controller

    NASA Technical Reports Server (NTRS)

    Broderick, Ron

    1997-01-01

    The ultimate goal of this report was to integrate the powerful tools of artificial intelligence into the traditional process of software development. To maintain the US aerospace competitive advantage, traditional aerospace and software engineers need to more easily incorporate the technology of artificial intelligence into the advanced aerospace systems being designed today. The future goal was to transition artificial intelligence from an emerging technology to a standard technology that is considered early in the life cycle process to develop state-of-the-art aircraft automation systems. This report addressed the future goal in two ways. First, it provided a matrix that identified typical aircraft automation applications conducive to various artificial intelligence methods. The purpose of this matrix was to provide top-level guidance to managers contemplating the possible use of artificial intelligence in the development of aircraft automation. Second, the report provided a methodology to formally evaluate neural networks as part of the traditional process of software development. The matrix was developed by organizing the discipline of artificial intelligence into the following six methods: logical, object representation-based, distributed, uncertainty management, temporal and neurocomputing. Next, a study of existing aircraft automation applications that have been conducive to artificial intelligence implementation resulted in the following five categories: pilot-vehicle interface, system status and diagnosis, situation assessment, automatic flight planning, and aircraft flight control. The resulting matrix provided management guidance to understand artificial intelligence as it applied to aircraft automation. The approach taken to develop a methodology to formally evaluate neural networks as part of the software engineering life cycle was to start with the existing software quality assurance standards and to change these standards to include neural network

  13. Sensor Needs for Control and Health Management of Intelligent Aircraft Engines

    NASA Technical Reports Server (NTRS)

    Simon, Donald L.; Gang, Sanjay; Hunter, Gary W.; Guo, Ten-Huei; Semega, Kenneth J.

    2004-01-01

    NASA and the U.S. Department of Defense are conducting programs which support the future vision of "intelligent" aircraft engines for enhancing the affordability, performance, operability, safety, and reliability of aircraft propulsion systems. Intelligent engines will have advanced control and health management capabilities enabling these engines to be self-diagnostic, self-prognostic, and adaptive to optimize performance based upon the current condition of the engine or the current mission of the vehicle. Sensors are a critical technology necessary to enable the intelligent engine vision as they are relied upon to accurately collect the data required for engine control and health management. This paper reviews the anticipated sensor requirements to support the future vision of intelligent engines from a control and health management perspective. Propulsion control and health management technologies are discussed in the broad areas of active component controls, propulsion health management and distributed controls. In each of these three areas individual technologies will be described, input parameters necessary for control feedback or health management will be discussed, and sensor performance specifications for measuring these parameters will be summarized.

  14. The Effect of Faster Engine Response on the Lateral Directional Control of a Damaged Aircraft

    NASA Technical Reports Server (NTRS)

    May, Ryan D.; Lemon, Kimberly A.; Csank, Jeffrey T.; Litt, Jonathan S.; Guo, Ten-Huei

    2012-01-01

    The integration of flight control and propulsion control has been a much discussed topic, especially for emergencies where the engines may be able to help stabilize and safely land a damaged aircraft. Previous research has shown that for the engines to be effective as flight control actuators, the response time to throttle commands must be improved. Other work has developed control modes that accept a higher risk of engine failure in exchange for improved engine response during an emergency. In this effort, a nonlinear engine model (the Commercial Modular Aero-Propulsion System Simulation 40k) has been integrated with a nonlinear airframe model (the Generic Transport Model) in order to evaluate the use of enhanced-response engines as alternative yaw rate control effectors. Tests of disturbance rejection and command tracking were used to determine the impact of the engines on the aircraft's dynamical behavior. Three engine control enhancements that improve the response time of the engine were implemented and tested in the integrated simulation. The enhancements were shown to increase the engine s effectiveness as a yaw rate control effector when used in an automatic feedback loop. The improvement is highly dependent upon flight condition; the airframe behavior is markedly improved at low altitude, low speed conditions, and relatively unchanged at high altitude, high speed.

  15. Design and piloted simulation evaluation of integrated flight/propulsion controls for STOVL aircraft

    NASA Technical Reports Server (NTRS)

    Franklin, James A.; Engelland, Shawn A.

    1991-01-01

    Integrated flight/propulsion control systems have been designed for operation of STOVL aircraft over the low speed powered-lift flight envelope. The control system employs command modes for attitude, flightpath angle and flightpath acceleration during transition, and translational velocity command for hover and vertical landing. The command modes and feedback control are implemented in the form of a state-rate feedback implicit model follower to achieve the desired flying qualities and to suppress the effects of external disturbances and variations in the aircraft characteristics over the low speed envelope. A nonlinear inverse system was used to translate the output from these commands and feedback control into commands for the various aerodynamic and propulsion control effectors that are employed in powered-lift flight. Piloted evaluations of these STOVL integrated control designs have been conducted on Ames Research Center's Vertical Motion Simulator to assess flying qualities over the low-speed flight envelope. Results indicate that Level 1 flying qualities are achieved with this control system concept for each of these low-speed operations over a wide range of wind, atmospheric turbulence, and visibility conditions.

  16. Implementation of CAPIO for Composite Adaptive Control of Cross-Coupled Unstable Aircraft

    NASA Technical Reports Server (NTRS)

    Yildiz, Yildiray; Kolmanovsky, Ilya V.

    2011-01-01

    This paper presents an implementation of a recently developed control allocation algorithm CAPIO (a Control Allocation technique to recover from Pilot Induced Oscillations) for composite adaptive control of an inertially cross coupled unstable aircraft. When actuators are rate-saturated due to either an aggressive pilot command, high gain of the flight control system or some anomaly in the system, the effective delay in the control loop may increase due to the phase shifting between the desired and the achieved system states. This effective time delay may deteriorate the performance or even destabilize the system in some cases, depending on the severity of rate saturation. CAPIO reduces the effective time delay by minimizing the phase shift between the commanded and the actual attitude accelerations. We present simulation results for an unstable aircraft with cross-coupling controlled with a composite adaptive controller in the presence of rate saturation. The simulations demonstrate the potential of CAPIO serving as an effective rate saturation compensator in adverse conditions.

  17. Fault tolerant attitude control for small unmanned aircraft systems equipped with an airflow sensor array.

    PubMed

    Shen, H; Xu, Y; Dickinson, B T

    2014-01-01

    Inspired by sensing strategies observed in birds and bats, a new attitude control concept of directly using real-time pressure and shear stresses has recently been studied. It was shown that with an array of onboard airflow sensors, small unmanned aircraft systems can promptly respond to airflow changes and improve flight performances. In this paper, a mapping function is proposed to compute aerodynamic moments from the real-time pressure and shear data in a practical and computationally tractable formulation. Since many microscale airflow sensors are embedded on the small unmanned aircraft system surface, it is highly possible that certain sensors may fail. Here, an adaptive control system is developed that is robust to sensor failure as well as other numerical mismatches in calculating real-time aerodynamic moments. The advantages of the proposed method are shown in the following simulation cases: (i) feedback pressure and wall shear data from a distributed array of 45 airflow sensors; (ii) 50% failure of the symmetrically distributed airflow sensor array; and (iii) failure of all the airflow sensors on one wing. It is shown that even if 50% of the airflow sensors have failures, the aircraft is still stable and able to track the attitude commands. PMID:25405953

  18. The Effect of Modified Control Limits on the Performance of a Generic Commercial Aircraft Engine

    NASA Technical Reports Server (NTRS)

    Csank, Jeffrey T.; May, Ryan D.; Gou, Ten-Huei; Litt, Jonathan S.

    2012-01-01

    This paper studies the effect of modifying the control limits of an aircraft engine to obtain additional performance. In an emergency situation, the ability to operate an engine above its normal operating limits and thereby gain additional performance may aid in the recovery of a distressed aircraft. However, the modification of an engine s limits is complex due to the risk of an engine failure. This paper focuses on the tradeoff between enhanced performance and risk of either incurring a mechanical engine failure or compromising engine operability. The ultimate goal is to increase the engine performance, without a large increase in risk of an engine failure, in order to increase the probability of recovering the distressed aircraft. The control limit modifications proposed are to extend the rotor speeds, temperatures, and pressures to allow more thrust to be produced by the engine, or to increase the rotor accelerations and allow the engine to follow a fast transient. These modifications do result in increased performance; however this study indicates that these modifications also lead to an increased risk of engine failure.

  19. Application of an Integrated Methodology for Propulsion and Airframe Control Design to a STOVL Aircraft

    NASA Technical Reports Server (NTRS)

    Garg, Sanjay; Mattern, Duane

    1994-01-01

    An advanced methodology for integrated flight propulsion control (IFPC) design for future aircraft, which will use propulsion system generated forces and moments for enhanced maneuver capabilities, is briefly described. This methodology has the potential to address in a systematic manner the coupling between the airframe and the propulsion subsystems typical of such enhanced maneuverability aircraft. Application of the methodology to a short take-off vertical landing (STOVL) aircraft in the landing approach to hover transition flight phase is presented with brief description of the various steps in the IFPC design methodology. The details of the individual steps have been described in previous publications and the objective of this paper is to focus on how the components of the control system designed at each step integrate into the overall IFPC system. The full nonlinear IFPC system was evaluated extensively in nonreal-time simulations as well as piloted simulations. Results from the nonreal-time evaluations are presented in this paper. Lessons learned from this application study are summarized in terms of areas of potential improvements in the STOVL IFPC design as well as identification of technology development areas to enhance the applicability of the proposed design methodology.

  20. NASA advanced design program. Design and analysis of a radio-controlled flying wing aircraft

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The main challenge of this project was to design an aircraft that will achieve stability while flying without a horizontal tail. The project focused on both the design, analysis and construction of a remotely piloted, elliptical shaped flying wing. The design team was composed of four sub-groups each of which dealt with the different aspects of the design, namely aerodynamics, stability and control, propulsion, and structures. Each member of the team initially researched the background information pertaining to specific facets of the project. Since previous work on this topic was limited, most of the focus of the project was directed towards developing an understanding of the natural instability of the aircraft. Once the design team entered the conceptual stage of the project, a series of compromises had to be made to satisfy the unique requirements of each sub-group. As a result of the numerous calculations and iterations necessary, computers were utilized extensively. In order to visualize the design and layout of the wing, engines and control surfaces, a solid modeling package was used to evaluate optimum design placements. When the design was finalized, construction began with the help of all the members of the project team. The nature of the carbon composite construction process demanded long hours of manual labor. The assembly of the engine systems also required precision hand work. The final product of this project is the Elang, a one-of-a-kind remotely piloted aircraft of composite construction powered by two ducted fan engines.

  1. Synthesis from Design Requirements of a Hybrid System for Transport Aircraft Longitudinal Control. Volume 1

    NASA Technical Reports Server (NTRS)

    Hynes, Charles S.; Hardy, Gordon H.; Sherry, Lance

    2007-01-01

    Volume I of this report presents a new method for synthesizing hybrid systems directly from design requirements, and applies the method to design of a hybrid system for longitudinal control of transport aircraft. The resulting system satisfies general requirement for safety and effectiveness specified a priori, enabling formal validation to be achieved. Volume II contains seven appendices intended to make the report accessible to readers with backgrounds in human factors, fli ght dynamics and control. and formal logic. Major design goals are (1) system desi g n integrity based on proof of correctness at the design level, (2), significant simplification and cost reduction in system development and certification, and (3) improved operational efficiency, with significant alleviation of human-factors problems encountered by pilots in current transport aircraft. This report provides for the first time a firm technical basis for criteria governing design and certification of avionic systems for transport aircraft. It should be of primary interest to designers of next-generation avionic systems.

  2. Near-field noise prediction for aircraft in cruising flight: Methods manual. [laminar flow control noise effects analysis

    NASA Technical Reports Server (NTRS)

    Tibbetts, J. G.

    1979-01-01

    Methods for predicting noise at any point on an aircraft while the aircraft is in a cruise flight regime are presented. Developed for use in laminar flow control (LFC) noise effects analyses, they can be used in any case where aircraft generated noise needs to be evaluated at a location on an aircraft while under high altitude, high speed conditions. For each noise source applicable to the LFC problem, a noise computational procedure is given in algorithm format, suitable for computerization. Three categories of noise sources are covered: (1) propulsion system, (2) airframe, and (3) LFC suction system. In addition, procedures are given for noise modifications due to source soundproofing and the shielding effects of the aircraft structure wherever needed. Sample cases, for each of the individual noise source procedures, are provided to familiarize the user with typical input and computed data.

  3. Estimation of longitudinal stability and control derivatives for an icing research aircraft from flight data

    NASA Technical Reports Server (NTRS)

    Batterson, James G.; Omara, Thomas M.

    1989-01-01

    The results of applying a modified stepwise regression algorithm and a maximum likelihood algorithm to flight data from a twin-engine commuter-class icing research aircraft are presented. The results are in the form of body-axis stability and control derivatives related to the short-period, longitudinal motion of the aircraft. Data were analyzed for the baseline (uniced) and for the airplane with an artificial glaze ice shape attached to the leading edge of the horizontal tail. The results are discussed as to the accuracy of the derivative estimates and the difference between the derivative values found for the baseline and the iced airplane. Additional comparisons were made between the maximum likelihood results and the modified stepwise regression results with causes for any discrepancies postulated.

  4. Interpreting the handling qualities of aircraft with stability and control augmentation

    NASA Technical Reports Server (NTRS)

    Hodgkinson, J.; Potsdam, E. H.; Smith, R. E.

    1990-01-01

    The general process of designing an aircraft for good flying qualities is first discussed. Lessons learned are pointed out, with piloted evaluation emerging as a crucial element. Two sources of rating variability in performing these evaluations are then discussed. First, the finite endpoints of the Cooper-Harper scale do not bias parametric statistical analyses unduly. Second, the wording of the scale does introduce some scatter. Phase lags generated by augmentation systems, as represented by equivalent time delays, often cause poor flying qualities. An analysis is introduced which allows a designer to relate any level of time delay to a probability of loss of aircraft control. This view of time delays should, it is hoped, allow better visibility of the time delays in the design process.

  5. Subscale Flight Testing for Aircraft Loss of Control: Accomplishments and Future Directions

    NASA Technical Reports Server (NTRS)

    Cox, David E.; Cunningham, Kevin; Jordan, Thomas L.

    2012-01-01

    Subscale flight-testing provides a means to validate both dynamic models and mitigation technologies in the high-risk flight conditions associated with aircraft loss of control. The Airborne Subscale Transport Aircraft Research (AirSTAR) facility was designed to be a flexible and efficient research facility to address this type of flight-testing. Over the last several years (2009-2011) it has been used to perform 58 research flights with an unmanned, remotely-piloted, dynamically-scaled airplane. This paper will present an overview of the facility and its architecture and summarize the experimental data collected. All flights to date have been conducted within visual range of a safety observer. Current plans for the facility include expanding the test volume to altitudes and distances well beyond visual range. The architecture and instrumentation changes associated with this upgrade will also be presented.

  6. Integrated Flight/Structural Mode Control for Very Flexible Aircraft Using L1 Adaptive Output Feedback Controller

    NASA Technical Reports Server (NTRS)

    Che, Jiaxing; Cao, Chengyu; Gregory, Irene M.

    2012-01-01

    This paper explores application of adaptive control architecture to a light, high-aspect ratio, flexible aircraft configuration that exhibits strong rigid body/flexible mode coupling. Specifically, an L(sub 1) adaptive output feedback controller is developed for a semi-span wind tunnel model capable of motion. The wind tunnel mount allows the semi-span model to translate vertically and pitch at the wing root, resulting in better simulation of an aircraft s rigid body motion. The control objective is to design a pitch control with altitude hold while suppressing body freedom flutter. The controller is an output feedback nominal controller (LQG) augmented by an L(sub 1) adaptive loop. A modification to the L(sub 1) output feedback is proposed to make it more suitable for flexible structures. The new control law relaxes the required bounds on the unmatched uncertainty and allows dependence on the state as well as time, i.e. a more general unmatched nonlinearity. The paper presents controller development and simulated performance responses. Simulation is conducted by using full state flexible wing models derived from test data at 10 different dynamic pressure conditions. An L(sub 1) adaptive output feedback controller is designed for a single test point and is then applied to all the test cases. The simulation results show that the L(sub 1) augmented controller can stabilize and meet the performance requirements for all 10 test conditions ranging from 30 psf to 130 psf dynamic pressure.

  7. Integrated flight/propulsion control design for a STOVL aircraft using H-infinity control design techniques

    NASA Technical Reports Server (NTRS)

    Garg, Sanjay; Ouzts, Peter J.

    1991-01-01

    Results are presented from an application of H-infinity control design methodology to a centralized integrated flight propulsion control (IFPC) system design for a supersonic Short Takeoff and Vertical Landing (STOVL) fighter aircraft in transition flight. The emphasis is on formulating the H-infinity control design problem such that the resulting controller provides robustness to modeling uncertainties and model parameter variations with flight condition. Experience gained from a preliminary H-infinity based IFPC design study performed earlier is used as the basis to formulate the robust H-infinity control design problem and improve upon the previous design. Detailed evaluation results are presented for a reduced order controller obtained from the improved H-infinity control design showing that the control design meets the specified nominal performance objectives as well as provides stability robustness for variations in plant system dynamics with changes in aircraft trim speed within the transition flight envelope. A controller scheduling technique which accounts for changes in plant control effectiveness with variation in trim conditions is developed and off design model performance results are presented.

  8. 77 FR 36341 - Control of Air Pollution From Aircraft and Aircraft Engines; Emission Standards and Test Procedures

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-18

    ...). \\17\\ U.S. EPA, ``Emission Standards and Test Procedures for Aircraft;'' Final Rule, 38 FR 19088, July... Standards and Test Procedures;'' Final Rule, 62 FR 25356, May 8, 1997. While ICAO's standards were not... pollution which may reasonably be anticipated to endanger public health or welfare was so limited, See 62...

  9. Air traffic control resource management strategies and the small aircraft transportation system: A system dynamics perspective

    NASA Astrophysics Data System (ADS)

    Galvin, James J., Jr.

    The National Aeronautics and Space Administration (NASA) is leading a research effort to develop a Small Aircraft Transportation System (SATS) that will expand air transportation capabilities to hundreds of underutilized airports in the United States. Most of the research effort addresses the technological development of the small aircraft as well as the systems to manage airspace usage and surface activities at airports. The Federal Aviation Administration (FAA) will also play a major role in the successful implementation of SATS, however, the administration is reluctant to embrace the unproven concept. The purpose of the research presented in this dissertation is to determine if the FAA can pursue a resource management strategy that will support the current radar-based Air Traffic Control (ATC) system as well as a Global Positioning Satellite (GPS)-based ATC system required by the SATS. The research centered around the use of the System Dynamics modeling methodology to determine the future behavior of the principle components of the ATC system over time. The research included a model of the ATC system consisting of people, facilities, equipment, airports, aircraft, the FAA budget, and the Airport and Airways Trust Fund. The model generated system performance behavior used to evaluate three scenarios. The first scenario depicted the base case behavior of the system if the FAA continued its current resource management practices. The second scenario depicted the behavior of the system if the FAA emphasized development of GPS-based ATC systems. The third scenario depicted a combined resource management strategy that supplemented radar systems with GPS systems. The findings of the research were that the FAA must pursue a resource management strategy that primarily funds a radar-based ATC system and directs lesser funding toward a GPS-based supplemental ATC system. The most significant contribution of this research was the insight and understanding gained of how

  10. Experiments in Aircraft Roll-Yaw Control using Forebody Tangential Blowing

    NASA Technical Reports Server (NTRS)

    Pedreiro, Nelson

    1997-01-01

    Advantages of flight at high angles of attack include increased maneuverability and lift capabilities. These are beneficial not only for fighter aircraft, but also for future supersonic and hypersonic transport aircraft during take-off and landing. At high angles of attack the aerodynamics of the vehicle are dominated by separation, vortex shedding and possibly vortex breakdown. These phenomena severely compromise the effectiveness of conventional control surfaces. As a result, controlled flight at high angles of attack is not feasible for current aircraft configurations. Alternate means to augment the control of the vehicle at these flight regimes are therefore necessary. The present work investigates the augmentation of an aircraft flight control system by the injection of a thin sheet of air tangentially to the forebody of the vehicle. This method, known as Forebody Tangential Blowing (FTB), has been proposed as an effective means of increasing the controllability of aircraft at high angles of attack. The idea is based on the fact that a small amount of air is sufficient to change the separation lines on the forebody. As a consequence, the strength and position of the vortices are altered causing a change on the aerodynamic loads. Although a very effective actuator, forebody tangential blowing is also highly non-linear which makes its use for aircraft control very difficult. In this work, the feasibility of using FTB to control the roll-yaw motion of a wind tunnel model was demonstrated both through simulations and experimentally. The wind tunnel model used in the experiments consists of a wing-body configuration incorporating a delta wing with 70-degree sweep angle and a cone-cylinder fuselage. The model is equipped with forebody slots through which blowing is applied. There are no movable control surfaces, therefore blowing is the only form of actuation. Experiments were conducted at a nominal angle of attack of 45 degrees. A unique apparatus that constrains

  11. Anticipated Effectiveness of Active Noise Control in Propeller Aircraft Interiors as Determined by Sound Quality Tests

    NASA Technical Reports Server (NTRS)

    Powell, Clemans A.; Sullivan, Brenda M.

    2004-01-01

    Two experiments were conducted, using sound quality engineering practices, to determine the subjective effectiveness of hypothetical active noise control systems in a range of propeller aircraft. The two tests differed by the type of judgments made by the subjects: pair comparisons in the first test and numerical category scaling in the second. Although the results of the two tests were in general agreement that the hypothetical active control measures improved the interior noise environments, the pair comparison method appears to be more sensitive to subtle changes in the characteristics of the sounds which are related to passenger preference.

  12. Analysis and compensation of an aircraft simulator control loading system with compliant linkage. [using hydraulic equipment

    NASA Technical Reports Server (NTRS)

    Johnson, P. R.; Bardusch, R. E.

    1974-01-01

    A hydraulic control loading system for aircraft simulation was analyzed to find the causes of undesirable low frequency oscillations and loading effects in the output. The hypothesis of mechanical compliance in the control linkage was substantiated by comparing the behavior of a mathematical model of the system with previously obtained experimental data. A compensation scheme based on the minimum integral of the squared difference between desired and actual output was shown to be effective in reducing the undesirable output effects. The structure of the proposed compensation was computed by use of a dynamic programing algorithm and a linear state space model of the fixed elements in the system.

  13. Buffet induced structural/flight-control system interaction of the X-29A aircraft

    NASA Technical Reports Server (NTRS)

    Voracek, David F.; Clarke, Robert

    1991-01-01

    High-alpha flight creates unique aerodynamic phenomena which increase the level of structural mode excitation; in conjunction with high-gain digital control systems, this structural response may result in an aeroservoelastic interaction. One such interaction has been observed during high-alpha flight testing of the X-29A. Data are presented which demonstrate the enhanced modal power in this aircraft's structural accelerometers, the feedback sensors, and the command signals as a function of alpha value. The structural interaction is traced from the aerodynamic buffet to the flight-control surfaces.

  14. Fly-by-light flight control system architectures for tactical military aircraft

    NASA Astrophysics Data System (ADS)

    Corrigan, Jack; Jones, Jack E.; Shaw, Brad

    1995-05-01

    Requirements for future advanced tactical aircraft identify the need for flight control system architectures that provide a higher degree of performance with regard to electromagnetic interference immunity, communication bus data rate, propulsion/utility subsystem integration, and affordability. Evolution of highly centralized, digital, fly-by-wire flight/propulsion/utility control system is achieved as modular functions are implemented and integrated by serial, digital, fiber optics communication links. These adaptable architectures allow the user to configure the fly-by-light system to meet unique safety requirements, system performance, and design to cost targets.

  15. Control of an all-movable foreplane for a three surfaces aircraft wind tunnel model

    NASA Astrophysics Data System (ADS)

    Ricci, S.; Scotti, A.; Zanotti, D.

    2006-07-01

    This article deals with design and realisation of a canard foreplane control system for an aeroelastic demonstrator, suitable for wind tunnel testing. Hardware and software will be described as the methodology adopted to design, implement and realise the software. Specific attention is devoted to PID application, tuning and fuselage vibration control implementation. Results of preliminary test and simulations are presented and show realistic system effectiveness in damping fuselage bending and torsion. This work describes all the activity performed at Politecnico di Milano before wind tunnel testing at VZLU, Prague, as part of Active Aeroelastic Aircraft Structures (3AS) EU project.

  16. Design Challenges Encountered in a Propulsion-Controlled Aircraft Flight Test Program

    NASA Technical Reports Server (NTRS)

    Maine, Trindel; Burken, John; Burcham, Frank; Schaefer, Peter

    1994-01-01

    The NASA Dryden Flight Research Center conducted flight tests of a propulsion-controlled aircraft system on an F-15 airplane. This system was designed to explore the feasibility of providing safe emergency landing capability using only the engines to provide flight control in the event of a catastrophic loss of conventional flight controls. Control laws were designed to control the flightpath and bank angle using only commands to the throttles. Although the program was highly successful, this paper highlights some of the challenges associated with using engine thrust as a control effector. These challenges include slow engine response time, poorly modeled nonlinear engine dynamics, unmodeled inlet-airframe interactions, and difficulties with ground effect and gust rejection. Flight and simulation data illustrate these difficulties.

  17. An Adaptive Control Technology for Safety of a GTM-like Aircraft

    NASA Technical Reports Server (NTRS)

    Matsutani, Megumi; Crespo, Luis G.; Annaswamy, Anuradha; Jang, Jinho

    2010-01-01

    An adaptive control architecture for safe performance of a transport aircraft subject to various adverse conditions is proposed and verified in this report. This architecture combines a nominal controller based on a Linear Quadratic Regulator with integral action, and an adaptive controller that accommodates actuator saturation and bounded disturbances. The effectiveness of the baseline controller and its adaptive augmentation are evaluated using a stand-alone control veri fication methodology. Case studies that pair individual parameter uncertainties with critical flight maneuvers are studied. The resilience of the controllers is determined by evaluating the degradation in closed-loop performance resulting from increasingly larger deviations in the uncertain parameters from their nominal values. Symmetric and asymmetric actuator failures, flight upsets, and center of gravity displacements, are some of the uncertainties considered.

  18. Active control of counter-rotating open rotor interior noise in a Dornier 728 experimental aircraft

    NASA Astrophysics Data System (ADS)

    Haase, Thomas; Unruh, Oliver; Algermissen, Stephan; Pohl, Martin

    2016-08-01

    The fuel consumption of future civil aircraft needs to be reduced because of the CO2 restrictions declared by the European Union. A consequent lightweight design and a new engine concept called counter-rotating open rotor are seen as key technologies in the attempt to reach this ambitious goals. Bearing in mind that counter-rotating open rotor engines emit very high sound pressures at low frequencies and that lightweight structures have a poor transmission loss in the lower frequency range, these key technologies raise new questions in regard to acoustic passenger comfort. One of the promising solutions for the reduction of sound pressure levels inside the aircraft cabin are active sound and vibration systems. So far, active concepts have rarely been investigated for a counter-rotating open rotor pressure excitation on complex airframe structures. Hence, the state of the art is augmented by the preliminary study presented in this paper. The study shows how an active vibration control system can influence the sound transmission of counter-rotating open rotor noise through a complex airframe structure into the cabin. Furthermore, open questions on the way towards the realisation of an active control system are addressed. In this phase, an active feedforward control system is investigated in a fully equipped Dornier 728 experimental prototype aircraft. In particular, the sound transmission through the airframe, the coupling of classical actuators (inertial and piezoelectric patch actuators) into the structure and the performance of the active vibration control system with different error sensors are investigated. It can be shown that the active control system achieves a reduction up to 5 dB at several counter-rotating open rotor frequencies but also that a better performance could be achieved through further optimisations.

  19. Advanced piloted aircraft flight control system design methodology. Volume 1: Knowledge base

    NASA Technical Reports Server (NTRS)

    Mcruer, Duane T.; Myers, Thomas T.

    1988-01-01

    The development of a comprehensive and electric methodology for conceptual and preliminary design of flight control systems is presented and illustrated. The methodology is focused on the design stages starting with the layout of system requirements and ending when some viable competing system architectures (feedback control structures) are defined. The approach is centered on the human pilot and the aircraft as both the sources of, and the keys to the solution of, many flight control problems. The methodology relies heavily on computational procedures which are highly interactive with the design engineer. To maximize effectiveness, these techniques, as selected and modified to be used together in the methodology, form a cadre of computational tools specifically tailored for integrated flight control system preliminary design purposes. While theory and associated computational means are an important aspect of the design methodology, the lore, knowledge and experience elements, which guide and govern applications are critical features. This material is presented as summary tables, outlines, recipes, empirical data, lists, etc., which encapsulate a great deal of expert knowledge. Much of this is presented in topical knowledge summaries which are attached as Supplements. The composite of the supplements and the main body elements constitutes a first cut at a a Mark 1 Knowledge Base for manned-aircraft flight control.

  20. Aircraft Control Using Engine Thrust: A History of Learning TOC Real-Time

    NASA Technical Reports Server (NTRS)

    Cole, Jennifer H.

    2006-01-01

    A history of learning the operation of Throttles Only Control (TOC) to control an aircraft in real time using engine thrust is shown. The topics include: 1) Past TOC Accidents/Incidents; 2) 1972: DC-10 American Airlines; 3) May 1974: USAF B-52H; 4) April 1975: USAF C-5A; 5) April 1975: USAF C-5A; 6) 1981: USAF B-52G; 7) August 1985: JAL 123 B-747; 8) JAL 123 Survivor Story; 9) JAL 123 Investigation Findings; 10) July 1989: UAL 232 DC-10; 11) UAL 232 DC-10; 12) Eastwind 517 B-737; 13) November 2003: DHL A-300; 14) Historically, TOC has saved lives; 15) Automated Throttles-Only Control; 16) PCA Project; 17) Propulsion-Controlled Aircraft; 18) MD-11 PCA System and Flight Test Envelope; 19) MD-11 Simulation, PCA ILS-Soupled Landing Dispersion; 20) Throttles-Only Pitch and Roll Control Power; 21) PCA in Commercial Fleet; 22) Fall 2005: PCAR Project; 23) PCAR Background - TOC; and 24) PCAR Background - TOC.

  1. Linear parameter-varying control of an F-16 aircraft at high angle of attack

    NASA Astrophysics Data System (ADS)

    Lu, Bei

    To improve the aircraft capability at high angle of attack and expand the flight envelope, advanced linear parameter-varying (LPV) control methodologies are studied in this thesis with particular applications of actuator saturation control and switching control. A standard two-step LPV antiwindup control scheme and a systematic switching LPV control approach are derived, and the advantages of LPV control techniques are demonstrated through nonlinear simulations of an F-16 longitudinal autopilot control system. The aerodynamic surface saturation is one of the major issues of flight control in the high angle of attack region. The incorporated unconventional actuators such as thrust vectoring can provide additional control power, but may have a potentially significant pay-off. The proposed LPV antiwindup control scheme is advantageous from the implementation standpoint because it can be thought of as an augmented control algorithm to the existing control system. Moreover, the synthesis condition for an antiwindup compensator is formulated as a linear matrix inequality (LMI) optimization problem and can be solved efficiently. By treating the input saturation as a sector bounded nonlinearity with a tight sector bound, the synthesized antiwindup compensator can stabilize the open-loop exponentially unstable systems. The LPV antiwindup control scheme is applied to the nonlinear F-16 longitudinal model, and compared with the thrust vectoring control approach. The simulation results show that the LPV antiwindup compensator improves the flight quality, and offers advantages over thrust vectoring in a high angle of attack region. For a thrust vectoring augmented aircraft, the actuator sets may be different at low and high angles of attack. Also due to different control objectives, a single controller may not exist over a wide angle of attack region. The proposed switching LPV control approach based on multiple parameter-dependent Lyapunov functions provides a flexible design

  2. Instrument Display Visual Angles for Conventional Aircraft and the MQ-9 Ground Control Station

    NASA Technical Reports Server (NTRS)

    Bendrick, Gregg A.; Kamine, Tovy Haber

    2008-01-01

    Aircraft instrument panels should be designed such that primary displays are in optimal viewing location to minimize pilot perception and response time. Human Factors engineers define three zones (i.e. "cones") of visual location: 1) "Easy Eye Movement" (foveal vision); 2) "Maximum Eye Movement" (peripheral vision with saccades), and 3) "Head Movement" (head movement required). Instrument display visual angles were measured to determine how well conventional aircraft (T-34, T-38, F- 15B, F-16XL, F/A-18A, U-2D, ER-2, King Air, G-III, B-52H, DC-10, B747-SCA) and the MQ-9 ground control station (GCS) complied with these standards, and how they compared with each other. Methods: Selected instrument parameters included: attitude, pitch, bank, power, airspeed, altitude, vertical speed, heading, turn rate, slip/skid, AOA, flight path, latitude, longitude, course, bearing, range and time. Vertical and horizontal visual angles for each component were measured from the pilot s eye position in each system. Results: The vertical visual angles of displays in conventional aircraft lay within the cone of "Easy Eye Movement" for all but three of the parameters measured, and almost all of the horizontal visual angles fell within this range. All conventional vertical and horizontal visual angles lay within the cone of "Maximum Eye Movement". However, most instrument vertical visual angles of the MQ-9 GCS lay outside the cone of "Easy Eye Movement", though all were within the cone of "Maximum Eye Movement". All the horizontal visual angles for the MQ-9 GCS were within the cone of "Easy Eye Movement". Discussion: Most instrument displays in conventional aircraft lay within the cone of "Easy Eye Movement", though mission-critical instruments sometimes displaced less important instruments outside this area. Many of the MQ-9 GCS systems lay outside this area. Specific training for MQ-9 pilots may be needed to avoid increased response time and potential error during flight.

  3. Lyapunov-based control of limit cycle oscillations in uncertain aircraft systems

    NASA Astrophysics Data System (ADS)

    Bialy, Brendan

    Store-induced limit cycle oscillations (LCO) affect several fighter aircraft and is expected to remain an issue for next generation fighters. LCO arises from the interaction of aerodynamic and structural forces, however the primary contributor to the phenomenon is still unclear. The practical concerns regarding this phenomenon include whether or not ordnance can be safely released and the ability of the aircrew to perform mission-related tasks while in an LCO condition. The focus of this dissertation is the development of control strategies to suppress LCO in aircraft systems. The first contribution of this work (Chapter 2) is the development of a controller consisting of a continuous Robust Integral of the Sign of the Error (RISE) feedback term with a neural network (NN) feedforward term to suppress LCO behavior in an uncertain airfoil system. The second contribution of this work (Chapter 3) is the extension of the development in Chapter 2 to include actuator saturation. Suppression of LCO behavior is achieved through the implementation of an auxiliary error system that features hyperbolic functions and a saturated RISE feedback control structure. Due to the lack of clarity regarding the driving mechanism behind LCO, common practice in literature and in Chapters 2 and 3 is to replicate the symptoms of LCO by including nonlinearities in the wing structure, typically a nonlinear torsional stiffness. To improve the accuracy of the system model a partial differential equation (PDE) model of a flexible wing is derived (see Appendix F) using Hamilton's principle. Chapters 4 and 5 are focused on developing boundary control strategies for regulating the bending and twisting deformations of the derived model. The contribution of Chapter 4 is the construction of a backstepping-based boundary control strategy for a linear PDE model of an aircraft wing. The backstepping-based strategy transforms the original system to a exponentially stable system. A Lyapunov-based stability

  4. Nonlinear stability and control study of highly maneuverable high performance aircraft, phase 2

    NASA Technical Reports Server (NTRS)

    Mohler, R. R.

    1992-01-01

    This research should lead to the development of new nonlinear methodologies for the adaptive control and stability analysis of high angle-of-attack aircraft such as the F18 (HARV). The emphasis has been on nonlinear adaptive control, but associated model development, system identification, stability analysis and simulation is performed in some detail as well. Various models under investigation for different purposes are summarized in tabular form. Models and simulation for the longitudinal dynamics have been developed for all types except the nonlinear ordinary differential equation model. Briefly, studies completed indicate that nonlinear adaptive control can outperform linear adaptive control for rapid maneuvers with large changes in alpha. The transient responses are compared where the desired alpha varies from 5 degrees to 60 degrees to 30 degrees and back to 5 degrees in all about 16 sec. Here, the horizontal stabilator is the only control used with an assumed first-order linear actuator with a 1/30 sec time constant.

  5. Application of modern control design methodology to oblique wing research aircraft

    NASA Technical Reports Server (NTRS)

    Vincent, James H.

    1991-01-01

    A Linear Quadratic Regulator synthesis technique was used to design an explicit model following control system for the Oblique Wing Research Aircraft (OWRA). The forward path model (Maneuver Command Generator) was designed to incorporate the desired flying qualities and response decoupling. The LQR synthesis was based on the use of generalized controls, and it was structured to provide a proportional/integral error regulator with feedforward compensation. An unexpected consequence of this design approach was the ability to decouple the control synthesis into separate longitudinal and lateral directional designs. Longitudinal and lateral directional control laws were generated for each of the nine design flight conditions, and gain scheduling requirements were addressed. A fully coupled 6 degree of freedom open loop model of the OWRA along with the longitudinal and lateral directional control laws was used to assess the closed loop performance of the design. Evaluations were performed for each of the nine design flight conditions.

  6. Lateral-directional stability and control characteristics of the Quiet Short-Haul Research Aircraft (QSRA)

    NASA Technical Reports Server (NTRS)

    Stephenson, Jack D.; Jeske, James A.; Hardy, Gordon H.

    1990-01-01

    The results are presented of flight experiments to determine the lateral-directional stability and control characteristics of the Quiet Short-Haul Research Aircraft (QSRA), an experimental aircraft designed to furnish information on various aerodynamic characteristics of a transport type of airplane that makes use of the upper-surface blown (USB) flap technology to achieve short takeoff and landing (STOL) performance. The flight program designed to acquire the data consisted of maneuvers produced by rudder and control-wheel inputs with the airplane in several configurations that had been proposed for landing approach and takeoff operation. The normal stability augmentation system was not engaged during these maneuvers. Time-history records from the maneuvers were analyzed with a parameter estimation procedure to extract lateral-directional stability and control derivatives. For one aircraft configuration in which the USB flaps were deflected 50 deg, several maneuvers were performed to determine the effects of varying the average angle of attack, varying the thrust coefficient, and setting the airplane's upper surface spoilers at a 13 deg symmetrical bias angle . The effects on the lateral characteristics of deflecting the spoilers were rather small and generally favorable. The data indicate that for one test, conducted at low thrust (a thrust coefficient of 0.38), compared with results from tests at thrust coefficients of 0.77 and larger, there was a significant decrease in the lateral control effectiveness, in the yaw damping and in the directional derivative. The directional derivative was also decreased (by about 30 percent) when the average angle of attack of the test was increased from 3 to 16 deg.

  7. Robust active noise control in the loadmaster area of a military transport aircraft.

    PubMed

    Kochan, Kay; Sachau, Delf; Breitbach, Harald

    2011-05-01

    The active noise control (ANC) method is based on the superposition of a disturbance noise field with a second anti-noise field using loudspeakers and error microphones. This method can be used to reduce the noise level inside the cabin of a propeller aircraft. However, during the design process of the ANC system, extensive measurements of transfer functions are necessary to optimize the loudspeaker and microphone positions. Sometimes, the transducer positions have to be tailored according to the optimization results to achieve a sufficient noise reduction. The purpose of this paper is to introduce a controller design method for such narrow band ANC systems. The method can be seen as an extension of common transducer placement optimization procedures. In the presented method, individual weighting parameters for the loudspeakers and microphones are used. With this procedure, the tailoring of the transducer positions is replaced by adjustment of controller parameters. Moreover, the ANC system will be robust because of the fact that the uncertainties are considered during the optimization of the controller parameters. The paper describes the necessary theoretic background for the method and demonstrates the efficiency in an acoustical mock-up of a military transport aircraft. PMID:21568404

  8. Continued Development and Application of Circulation Control Pneumatic Technology to Advanced Transport Aircraft

    NASA Technical Reports Server (NTRS)

    Englar, Robert J.

    1998-01-01

    Personnel of the Georgia Tech Research Institute (GTRI) Aerospace and Transportation Lab have completed a four-year grant program to develop and evaluate the pneumatic aerodynamic technology known as Circulation Control (CC) or Circulation Control Wing (CCW) for advanced transport aircraft. This pneumatic technology, which employs low-level blowing from tangential slots over round or near-round trailing edges of airfoils, greatly augments the circulation around a lifting or control surface and thus enhances the aerodynamic forces and moments generated by that surface. Two-dimensional force augmentations as high as 80 times the input blowing momentum coefficient have been recorded experimentally for these blown devices, thus providing returns of 8000% on the jet momentum expended. A further benefit is the absence of moving parts such as mechanical flaps, slats, spoilers, ailerons, elevators and rudders from these pneumatic surfaces, or the use of only very small, simple, blown aerodynamic surfaces on synergistic designs which integrate the lift, drag and control surfaces. The application of these devices to advanced aircraft can offer significant benefits in their performance, efficiency, simplicity, reliability, economic cost of operation, noise reduction, and safety of flight. To further develop and evaluate this potential, this research effort was conducted by GTRI under grant for the NASA Langley Research Center, Applied Aerodynamics Division, Subsonic Aerodynamics Branch, between June 14, 1993 and May 31, 1997.

  9. Planform, aero-structural, and flight control optimization for tailless morphing aircraft

    NASA Astrophysics Data System (ADS)

    Molinari, Giulio; Arrieta, Andres F.; Ermanni, Paolo

    2015-04-01

    Tailless airplanes with swept wings rely on variations of the spanwise lift distribution to provide controllability in roll, pitch and yaw. Conventionally, this is achieved utilizing multiple control surfaces, such as elevons, on the wing trailing edge. As every flight condition requires different control moments (e.g. to provide pitching moment equilibrium), these surfaces are practically permanently displaced. Due to their nature, causing discontinuities, corners and gaps, they bear aerodynamic penalties, mostly in terms of shape drag. Shape adaptation, by means of chordwise morphing, has the potential of varying the lift of a wing section by deforming its profile in a way that minimizes the resulting drag. Furthermore, as the shape can be varied differently along the wingspan, the lift distribution can be tailored to each specific flight condition. For this reason, tailless aircraft appear as a prime choice to apply morphing techniques, as the attainable benefits are potentially significant. In this work, we present a methodology to determine the optimal planform, profile shape, and morphing structure for a tailless aircraft. The employed morphing concept is based on a distributed compliance structure, actuated by Macro Fiber Composite (MFC) piezoelectric elements. The multidisciplinary optimization is performed considering the static and dynamic aeroelastic behavior of the resulting structure. The goal is the maximization of the aerodynamic efficiency while guaranteeing the controllability of the plane, by means of morphing, in a set of flight conditions.

  10. Flow visualization of the wake of a transport aircraft model with lateral-control oscillations

    NASA Technical Reports Server (NTRS)

    Jordan, F. L., Jr.

    1983-01-01

    An exploratory flow visualization study conducted in the Langley Vortex Research Facility to investigate the effectiveness of lateral control surface oscillations as a potential method for wake vortex attenuation on a 0.03 scale model of a wide body jet transport aircraft is described. Effects of both asymmetric surface oscillation (control surfaces move as with normal lateral control inputs) and symmetric surface oscillation (control surfaces move in phase) are presented. The asymmetric case simulated a flight maneuver which was previously investigated on the transport aircraft during NASA/FAA flight tests and which resulted in substantial wake vortex attenuation. Effects on the model wake vortex systems were observed by propelling the model through a two dimensional smoke screen perpendicular to the model flight path. Results are presented as photographic time histories of the wake characteristics recorded with high speed still cameras. Effects of oscillation on the wake roll up are described in some detail, and the amount of vortex attenuation observed is discussed in comparative terms. Findings were consistent with flight test results in that only a small amount of rotation was observed in the wake for the asymmetric case. A possible aerodynamic mechanism contributing to this attenuation is suggested.

  11. Spitzer IRAC Photometry for Time Series in Crowded Fields

    NASA Astrophysics Data System (ADS)

    Calchi Novati, S.; Gould, A.; Yee, J. C.; Beichman, C.; Bryden, G.; Carey, S.; Fausnaugh, M.; Gaudi, B. S.; Henderson, C. B.; Pogge, R. W.; Shvartzvald, Y.; Wibking, B.; Zhu, W.; Spitzer Team; Udalski, A.; Poleski, R.; Pawlak, M.; Szymański, M. K.; Skowron, J.; Mróz, P.; Kozłowski, S.; Wyrzykowski, Ł.; Pietrukowicz, P.; Pietrzyński, G.; Soszyński, I.; Ulaczyk, K.; OGLE Group

    2015-12-01

    We develop a new photometry algorithm that is optimized for the Infrared Array Camera (IRAC) Spitzer time series in crowded fields and that is particularly adapted to faint or heavily blended targets. We apply this to the 170 targets from the 2015 Spitzer microlensing campaign and present the results of three variants of this algorithm in an online catalog. We present detailed accounts of the application of this algorithm to two difficult cases, one very faint and the other very crowded. Several of Spitzer's instrumental characteristics that drive the specific features of this algorithm are shared by Kepler and WFIRST, implying that these features may prove to be a useful starting point for algorithms designed for microlensing campaigns by these other missions.

  12. Spitzer IRAC Sparsely Sampled Phase Curve of WASP-14b

    NASA Astrophysics Data System (ADS)

    Krick, Jessica; Ingalls, James G.; Carey, Sean; von Braun, Kaspar; Ciardi, David; Kane, Stephen

    2015-08-01

    We present a new technique of sparsely sampling phase curves of hot jupiters with Spitzer IRAC. Snapshot phase curves are enabled by technical advances of precision pointing as well as careful characterization of a portion of the central pixel on the array. This method allows for observations which are a factor of ~2 more efficient than full phase curve observations, and are easy to schedule. We present the first results from this program using the exoplanet WASP-14b. As our pilot study, this planet has data taken both as a sparsely sampled phase curve as well as a staring mode phase curve as proof of technique. We successfully recover physical parameters for the transit and eclipse depths as well as phase curve shape of this slightly eccentric hot jupiter.

  13. Design and verification by nonlinear simulation of a Mach/CAS control law for the NASA TCV B737 aircraft

    NASA Technical Reports Server (NTRS)

    Bruce, Kevin R.

    1986-01-01

    A Mach/CAS control system using an elevator was designed and developed for use on the NASA TCV B737 aircraft to support research in profile descent procedures and approach energy management. The system was designed using linear analysis techniques primarily. The results were confirmed and the system validated at additional flight conditions using a nonlinear 737 aircraft simulation. All design requirements were satisfied.

  14. MIMO Sliding Mode Control for a Tailless Fighter Aircraft, An Alternative to Reconfigurable Architectures

    NASA Technical Reports Server (NTRS)

    Wells, S. R.; Hess, R. A.

    2002-01-01

    A frequency-domain procedure for the design of sliding mode controllers for multi-input, multi-output (MIMO) systems is presented. The methodology accommodates the effects of parasitic dynamics such as those introduced by unmodeled actuators through the introduction of multiple asymptotic observers and model reference hedging. The design procedure includes a frequency domain approach to specify the sliding manifold, the observer eigenvalues, and the hedge model. The procedure is applied to the development of a flight control system for a linear model of the Innovative Control Effector (ICE) fighter aircraft. The stability and performance robustness of the resulting design is demonstrated through the introduction of significant degradation in the control effector actuators and variation in vehicle dynamics.

  15. Eigenvalue assignment based on standard characteristic polynominal in design of aircraft control systems

    NASA Astrophysics Data System (ADS)

    Li, Aijun; Lv, Yang; Wang, Changqing

    2008-10-01

    Design method of eigenvalue assignment based on standard characteristic polynomial, as well as mathematical solving process of the method, is proposed in this paper so as to resolve the uncertainty of ideal eigenvalue choice in modern control theory and the difficultly in engineering implementation of modern control system design methods. Longitudinal stability holding control system of an aircraft was designed and simulated by employing proposed method. Dynamic character and robust performance simulation of the system are given. Simulation results show that the method achieves the control quality and has better robustness than another method. There is only one design parameter which is easy to calculate. So, the method is characterized as simple design, logical structure, easy programming and convenient for engineering implementation.

  16. Modeling and control of a trailing wire antenna towed by an orbiting aircraft

    NASA Astrophysics Data System (ADS)

    Clifton, James M.

    1992-09-01

    A model of the dynamics of a long trailing-wire antenna towed behind an orbiting aircraft was developed and then an investigation was made of several candidate schemes to control the wire's steady-state shape and oscillations due to wind gradients. A computer simulation was developed using the classic vibrating chain with free/fixed boundary conditions superimposed upon the wire's steady-state shape and tension distribution. Several forms of restorative and dissipative forces were considered in the analysis. The validity of the superposition approach was demonstrated for a wide operating range. A control law was developed which modulated the towplane orbit radius and demonstrated a potential for a 50 percent or better reduction in all oscillations. A second scheme using a controllable drogue at the trailing end of the wire was investigated. The controllable drogue had a limited success in oscillation reduction, but was found useful in tailoring the steady state shape of the wire.

  17. Aircraft ride quality controller design using new robust root clustering theory for linear uncertain systems

    NASA Technical Reports Server (NTRS)

    Yedavalli, R. K.

    1992-01-01

    The aspect of controller design for improving the ride quality of aircraft in terms of damping ratio and natural frequency specifications on the short period dynamics is addressed. The controller is designed to be robust with respect to uncertainties in the real parameters of the control design model such as uncertainties in the dimensional stability derivatives, imperfections in actuator/sensor locations and possibly variations in flight conditions, etc. The design is based on a new robust root clustering theory developed by the author by extending the nominal root clustering theory of Gutman and Jury to perturbed matrices. The proposed methodology allows to get an explicit relationship between the parameters of the root clustering region and the uncertainty radius of the parameter space. The current literature available for robust stability becomes a special case of this unified theory. The bounds derived on the parameter perturbation for robust root clustering are then used in selecting the robust controller.

  18. Flight control system development and flight test experience with the F-111 mission adaptive wing aircraft

    NASA Technical Reports Server (NTRS)

    Larson, R. R.

    1986-01-01

    The wing on the NASA F-111 transonic aircraft technology airplane was modified to provide flexible leading and trailing edge flaps. This wing is known as the mission adaptive wing (MAW) because aerodynamic efficiency can be maintained at all speeds. Unlike a conventional wing, the MAW has no spoilers, external flap hinges, or fairings to break the smooth contour. The leading edge flaps and three-segment trailing edge flaps are controlled by a redundant fly-by-wire control system that features a dual digital primary system architecture providing roll and symmetric commands to the MAW control surfaces. A segregated analog backup system is provided in the event of a primary system failure. This paper discusses the design, development, testing, qualification, and flight test experience of the MAW primary and backup flight control systems.

  19. A New Spitzer IRAC Technique to Characterize Exoplanet Atmospheres

    NASA Astrophysics Data System (ADS)

    Krick, Jessica; Ingalls, J.; Carey, S.; von Braun, K.

    2012-05-01

    Spitzer’s extended warm mission gives us the opportunity to contribute to its legacy by performing comparative science on atmospheres of extrasolar planets. Observation of phase curves produce maps of the longitudinal brightness/temperature distributions in the planetary atmospheres, which are then used to calculate energy redistribution efficiencies between the hot dayside and cooler nightside - exoplanetary weather. Recent improvements in the calibration of IRAC make possible a new observing technique which will be much more efficient than standard staring mode observations by using snapshot observations to emulate a full phase curve. The challenge with using snapshot observations is in making sure all observing epochs can be tied together with high enough photometric precision. The dominant source of error in this task is intrapixel gain variations on sub pixel levels. We have effectively removed this source of error by using the Pointing Calibration and Reference Sensor (PCRS) onboard Spitzer for pointing repeatability that is significantly better than random pointing. Because we have achieved this excellent repeatability, we are able to build up a map of the intrapixel gain, which is then used to independently correct IRAC photometry as a function of position on the pixel. We discuss additional sources of noise below the gain variations, at the sub percent level, such as pixel-wise nonlinearities, and our efforts to remove them. We present preliminary 4.5 micron data of HD209458 where we compare staring mode observations to snapshots taken with this new technique, corrected by the gain and residual nonlinearity map, and comment on the scientific implications of the resultant phase curve.

  20. Time Delay Fault Tolerant Controller for Actuator Failures during Aircraft Autolanding

    NASA Astrophysics Data System (ADS)

    Lee, Jangho; Choi, Hyoung Sik; Lee, Sangjong; Kim, Eung Tai; Shin, Dongho

    A time delay control methodology is adopted to cope with degraded control performance due to control surface damage of unmanned aerial vehicles, especially in the case of the automatic landing phase. It is a crucial challenge to maintain consistent control performance even under fault environments such as stuck and/or incipient actuator faults. Flight control systems designed using conventional feedback control methods in such cases may result in unsatisfactory performance, and even worse, may not guarantee the closed-loop stability, which is fatal for aircraft in the state of auto-landing. To overcome the shortfalls of the conventional approach, the time delay control scheme is adopted. This scheme is known to be robust against disturbance, model uncertainties and so on. Motivated by the fact that the abrupt and/or incipient actuator faults focused on in this paper could be considered as model uncertainties, we consider the application of the time delay controller to designing a fault tolerant control system. To show the effectiveness of the time delay control method, a nonlinear 6-DOF simulation is performed under model uncertainties and wind disturbances, and control performance is compared with that of conventional controllers in the case of multiple and single actuator faults.

  1. Modal control theory and application to aircraft lateral handling qualities design

    NASA Technical Reports Server (NTRS)

    Srinathkumar, S.

    1978-01-01

    A multivariable synthesis procedure based on eigenvalue/eigenvector assignment is reviewed and is employed to develop a systematic design procedure to meet the lateral handling qualities design objectives of a fighter aircraft over a wide range of flight conditions. The closed loop modal characterization developed provides significant insight into the design process and plays a pivotal role in the synthesis of robust feedback systems. The simplicity of the synthesis algorithm yields an efficient computer aided interactive design tool for flight control system synthesis.

  2. Evaluation of detectability and distinguishability of aircraft control element failures using flight test data

    NASA Technical Reports Server (NTRS)

    Weiss, J. L.; Eterno, J. S.; Hsu, J. Y.

    1986-01-01

    This paper examines the detectability and distinguishability of control element failures on the B-737 aircraft. The results of Weiss (1985) are used to define decentralized residuals from analytic redundancy relationships, and the results of Weiss et al. (1984) are used to define the probabilistic distance measures which provide bounds on the minimum achievable probabilities or error. The residual signals are then generated using data which were recorded during a landing approach of the NASA-Langley Advanced Transport Operations (ATOPS) transportation systems research vehicle (TSRV). The distance measures are computed using estimates of the statistics of these residual signals.

  3. The SIFT computer and its development. [Software Implemented Fault Tolerance for aircraft control

    NASA Technical Reports Server (NTRS)

    Goldberg, J.

    1981-01-01

    Software Implemented Fault Tolerance (SIFT) is an aircraft control computer designed to allow failure probability of less than 10 to the -10th/hour. The system is based on advanced fault-tolerance computing and validation methodology. Since confirmation of reliability by observation is essentially impossible, system reliability is estimated by a Markov model. A mathematical proof is used to justify the validity of the Markov model. System design is represented by a hierarchy of abstract models, and the design proof comprises mathematical proofs that each model is, in fact, an elaboration of the next more abstract model.

  4. Moving-Base Simulation Evaluation of Control/Display Integration Issues for ASTOVL Aircraft

    NASA Technical Reports Server (NTRS)

    Franklin, James A.

    1997-01-01

    A moving-base simulation has been conducted on the Vertical Motion Simulator at Ames Research Center using a model of an advanced, short takeoff and vertical landing (STOVL) lift fan fighter aircraft. This experiment expanded on investigations during previous simulations with this STOVL configuration with the objective of evaluating (1) control law modifications over the low speed flight envelope, (2) integration of the throttle inceptor with flight control laws that provide direct thrust command for conventional flight, vertical and short takeoff, and flightpath or vertical velocity command for transition, hover, and vertical landing, (3) control mode blending for pitch, roll, yaw, and flightpath control during transition from wing-borne to jet-borne flight, and (4) effects of conformal versus nonconformal presentation of flightpath and pursuit guidance symbology on the out-the-window display for low speed STOVL operations. Assessments were made for takeoff, transition, hover, and landing, including precision hover and landing aboard an LPH-type amphibious assault ship in the presence of winds and rough seas. Results yielded Level 1 pilot ratings for the flightpath and vertical velocity command modes for a range of land-based and shipboard operation and were consistent with previous experience with earlier control laws and displays for this STOVL concept. Control mode blending was performed over speed ranges in accord with the pilot's tasks and with the change of the basic aircraft's characteristics between wing-borne and hover flight. Blending of yaw control from heading command in hover to sideslip command in wing-borne flight performed over a broad speed range helped reduce yaw transients during acceleration through the low speed regime. Although the pilots appreciated conformality of flightpath and guidance symbols with the external scene during the approach, increased sensitivity of the symbols for lateral path tracking elevated the pilots' control activity

  5. Instrument Display Visual Angles for Conventional Aircraft and the MQ-9 Ground Control Station

    NASA Technical Reports Server (NTRS)

    Kamine, Tovy Haber; Bendrick, Gregg A.

    2008-01-01

    Aircraft instrument panels should be designed such that primary displays are in optimal viewing location to minimize pilot perception and response time. Human Factors engineers define three zones (i.e. cones ) of visual location: 1) "Easy Eye Movement" (foveal vision); 2) "Maximum Eye Movement" (peripheral vision with saccades), and 3) "Head Movement (head movement required). Instrument display visual angles were measured to determine how well conventional aircraft (T-34, T-38, F- 15B, F-16XL, F/A-18A, U-2D, ER-2, King Air, G-III, B-52H, DC-10, B747-SCA) and the MQ-9 ground control station (GCS) complied with these standards, and how they compared with each other. Selected instrument parameters included: attitude, pitch, bank, power, airspeed, altitude, vertical speed, heading, turn rate, slip/skid, AOA, flight path, latitude, longitude, course, bearing, range and time. Vertical and horizontal visual angles for each component were measured from the pilot s eye position in each system. The vertical visual angles of displays in conventional aircraft lay within the cone of "Easy Eye Movement" for all but three of the parameters measured, and almost all of the horizontal visual angles fell within this range. All conventional vertical and horizontal visual angles lay within the cone of Maximum Eye Movement. However, most instrument vertical visual angles of the MQ-9 GCS lay outside the cone of Easy Eye Movement, though all were within the cone of Maximum Eye Movement. All the horizontal visual angles for the MQ-9 GCS were within the cone of "Easy Eye Movement". Most instrument displays in conventional aircraft lay within the cone of Easy Eye Movement, though mission-critical instruments sometimes displaced less important instruments outside this area. Many of the MQ-9 GCS systems lay outside this area. Specific training for MQ-9 pilots may be needed to avoid increased response time and potential error during flight. The learning objectives include: 1) Know three

  6. Tiltrotor noise reduction through flight trajectory management and aircraft configuration control

    NASA Astrophysics Data System (ADS)

    Gervais, Marc

    A tiltrotor can hover, takeoff and land vertically as well as cruise at high speeds and fly long distances. Because of these unique capabilities, tiltrotors are envisioned as an aircraft that could provide a solution to the issue of airport gridlock by operating on stub runways, helipads, or from smaller regional airports. However, during an approach-to-land a tiltrotor is susceptible to radiating strong impulsive noise, in particular, Blade-Vortex Interaction noise (BVI), a phenomenon highly dependent on the vehicle's performance-state. A mathematical model was developed to predict the quasi-static performance characteristics of a tiltrotor during a converting approach in the longitudinal plane. Additionally, a neural network was designed to model the acoustic results from a flight test of the XV-15 tiltrotor as a function of the aircraft's performance parameters. The performance model was linked to the neural network to yield a combined performance/acoustic model that is capable of predicting tiltrotor noise emitted during a decelerating approach. The model was then used to study noise trends associated with different combinations of airspeed, nacelle tilt, and flight path angle. It showed that BVI noise is the dominant noise source during a descent and that its strength increases with steeper descent angles. Strong BVI noise was observed at very steep flight path angles, suggesting that the tiltrotor's high downwash prevents the wake from being pushed above the rotor, even at such steep descent angles. The model was used to study the effects of various aircraft configuration and flight trajectory parameters on the rotor inflow, which adequately captured the measured BVI noise trends. Flight path management effectively constrained the rotor inflow during a converting approach and thus limited the strength of BVI noise. The maximum deceleration was also constrained by controlling the nacelle tilt-rate during conversion. By applying these constraints, low BVI noise

  7. Analytical study of interior noise control by fuselage design techniques on high-speed, propeller-driven aircraft

    NASA Technical Reports Server (NTRS)

    Revell, J. D.; Balena, F. J.; Koval, L. R.

    1980-01-01

    The acoustical treatment mass penalties required to achieve an interior noise level of 80 dBA for high speed, fuel efficient propfan-powered aircraft are determined. The prediction method used is based on theory developed for the outer shell dynamics, and a modified approach for add-on noise control element performance. The present synthesis of these methods is supported by experimental data. Three different sized aircraft are studied, including a widebody, a narrowbody and a business sized aircraft. Noise control penalties are calculated for each aircraft for two kinds of noise control designs: add-on designs, where the outer wall structure cannot be changed, and advanced designs where the outer wall stiffness level and the materials usage can be altered. For the add-on designs, the mass penalties range from 1.7 to 2.4 percent of the takeoff gross weight (TOGW) of the various aircraft, similar to preliminary estimates. Results for advanced designs show significant reductions of the mass penalties. For the advanced aluminum designs the penalties are 1.5% of TOGW, and for an all composite aircraft the penalties range from 0.74 to 1.4% of TOGW.

  8. Aircraft Loss-of-Control: Analysis and Requirements for Future Safety-Critical Systems and Their Validation

    NASA Technical Reports Server (NTRS)

    Belcastro, Christine M.

    2011-01-01

    Loss of control remains one of the largest contributors to fatal aircraft accidents worldwide. Aircraft loss-of-control accidents are complex, resulting from numerous causal and contributing factors acting alone or more often in combination. Hence, there is no single intervention strategy to prevent these accidents. This paper summarizes recent analysis results in identifying worst-case combinations of loss-of-control accident precursors and their time sequences, a holistic approach to preventing loss-of-control accidents in the future, and key requirements for validating the associated technologies.

  9. A Survey of Intelligent Control and Health Management Technologies for Aircraft Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Litt, Jonathan S.; Simon, Donald L.; Garg, Sanjay; Guo, Ten-Heui; Mercer, Carolyn; Behbahani, Alireza; Bajwa, Anupa; Jensen, Daniel T.

    2005-01-01

    Intelligent Control and Health Management technology for aircraft propulsion systems is much more developed in the laboratory than in practice. With a renewed emphasis on reducing engine life cycle costs, improving fuel efficiency, increasing durability and life, etc., driven by various government programs, there is a strong push to move these technologies out of the laboratory and onto the engine. This paper describes the existing state of engine control and on-board health management, and surveys some specific technologies under development that will enable an aircraft propulsion system to operate in an intelligent way--defined as self-diagnostic, self-prognostic, self-optimizing, and mission adaptable. These technologies offer the potential for creating extremely safe, highly reliable systems. The technologies will help to enable a level of performance that far exceeds that of today s propulsion systems in terms of reduction of harmful emissions, maximization of fuel efficiency, and minimization of noise, while improving system affordability and safety. Technologies that are discussed include various aspects of propulsion control, diagnostics, prognostics, and their integration. The paper focuses on the improvements that can be achieved through innovative software and algorithms. It concentrates on those areas that do not require significant advances in sensors and actuators to make them achievable, while acknowledging the additional benefit that can be realized when those technologies become available. The paper also discusses issues associated with the introduction of some of the technologies.

  10. The measurement of aircraft performance and stability and control after flight through natural icing conditions

    NASA Technical Reports Server (NTRS)

    Ranaudo, R. J.; Mikkelsen, K. L.; Mcknight, R. C.; Ide, R. F.; Reehorst, A. L.; Jordan, J. L.; Schinstock, W. C.; Platz, S. J.

    1986-01-01

    The effects of airframe icing on the performance and stability and control of a twin-engine commuter-class aircraft were measured by the NASA Lewis Research Center. This work consisted of clear air tests with artificial ice shapes attached to the horizontal tail, and natural icing flight tests in measured icing clouds. The clear air tests employed static longitudinal flight test methods to determine degradation in stability margins for four simulated ice shapes. The natural icing flight tests employed a data acquisition system, which was provided under contract to NASA by Kohlman Systems Research Incorporated. This system used a performance modeling method and modified maximum likelihood estimation (MMLE) technique to determine aircraft performance degradation and stability and control. Flight test results with artificial ice shapes showed that longitudinal, stick-fixed, static margins are reduced on the order of 5 percent with flaps up. Natural icing tests with the KSR system corroborated these results and showed degradation in the elevator control derivatives on the order of 8 to 16 percent depending on wing flap configuration. Performance analyses showed the individual contributions of major airframe components to the overall degration in lift and drag.

  11. The measurement of aircraft performance and stability and control after flight through natural icing conditions

    NASA Technical Reports Server (NTRS)

    Ranaudo, R. J.; Mikkelsen, K. L.; Mcknight, R. C.; Ide, R. F.; Reehorst, A. L.

    1986-01-01

    The effects of airframe icing on the performance and stability and control of a twin-engine commuter-class aircraft were measured by the NASA Lewis Research Center. This work consisted of clear air tests with artificial ice shapes attached to the horizontal tail, and natural icing flight tests in measured icing clouds. The clear air tests employed static longitudinal flight test methods to determine degradation in stability margins for four simulated ice shapes. The natural icing flight tests employed a data acquisition system, which was provided under contract to NASA by Kohlman Systems Research Incorporated. This system used a performance modeling method and modified maximum likelihood estimation (MMLE) technique to determine aircraft performance degradation and stability and control. Flight test results with artificial ice shapes showed that longitudinal, stick-fixed, static margins are reduced on the order of 5 percent with flaps up. Natural icing tests with the KSR system corroborated these results and showed degradation in the elevator control derivatives on the order of 8 to 16 percent depending on wing flap configuration. Performance analyses showed the individual contributions of major airframe components to the overall degradation in lift and drag.

  12. Artificial feel system using magneto-rheological fluid on aircraft control stick

    NASA Astrophysics Data System (ADS)

    Manoharan, Vignesh; Kim, Daewon

    2016-04-01

    The conventional feel system in aircraft occupies large space in the cockpit and has complicated designs. The primary objective of this research is to develop an artificial feel force system that can overcome some drawbacks of the current system. A novel feel system using magneto-rheological (MR) fluid is constructed to precisely control the shear stress under the magnetic field. To validate the functionality of the MR artificial feel system, the final system is fabricated and multiple tests are performed to acquire force-velocity characteristics that are compared to the mathematical model derived. In addition, the PID closed loop control algorithm is developed to simulate the dynamic system model. Both experimental and simulation results are compared to validate the derived system model. The system response time and sampling rates are evaluated and compared to the conventional system at the end. It is concluded that the developed artificial feel system can precisely control and acts as a fail proof system when incorporated with a modern fly-by-wire aircraft system.

  13. Maximum likelihood identification and optimal input design for identifying aircraft stability and control derivatives

    NASA Technical Reports Server (NTRS)

    Stepner, D. E.; Mehra, R. K.

    1973-01-01

    A new method of extracting aircraft stability and control derivatives from flight test data is developed based on the maximum likelihood cirterion. It is shown that this new method is capable of processing data from both linear and nonlinear models, both with and without process noise and includes output error and equation error methods as special cases. The first application of this method to flight test data is reported for lateral maneuvers of the HL-10 and M2/F3 lifting bodies, including the extraction of stability and control derivatives in the presence of wind gusts. All the problems encountered in this identification study are discussed. Several different methods (including a priori weighting, parameter fixing and constrained parameter values) for dealing with identifiability and uniqueness problems are introduced and the results given. The method for the design of optimal inputs for identifying the parameters of linear dynamic systems is also given. The criterion used for the optimization is the sensitivity of the system output to the unknown parameters. Several simple examples are first given and then the results of an extensive stability and control dervative identification simulation for a C-8 aircraft are detailed.

  14. Active control of aircraft engine inlet noise using compact sound sources and distributed error sensors

    NASA Technical Reports Server (NTRS)

    Burdisso, Ricardo (Inventor); Fuller, Chris R. (Inventor); O'Brien, Walter F. (Inventor); Thomas, Russell H. (Inventor); Dungan, Mary E. (Inventor)

    1994-01-01

    An active noise control system using a compact sound source is effective to reduce aircraft engine duct noise. The fan noise from a turbofan engine is controlled using an adaptive filtered-x LMS algorithm. Single multi channel control systems are used to control the fan blade passage frequency (BPF) tone and the BPF tone and the first harmonic of the BPF tone for a plane wave excitation. A multi channel control system is used to control any spinning mode. The multi channel control system to control both fan tones and a high pressure compressor BPF tone simultaneously. In order to make active control of turbofan inlet noise a viable technology, a compact sound source is employed to generate the control field. This control field sound source consists of an array of identical thin, cylindrically curved panels with an inner radius of curvature corresponding to that of the engine inlet. These panels are flush mounted inside the inlet duct and sealed on all edges to prevent leakage around the panel and to minimize the aerodynamic losses created by the addition of the panels. Each panel is driven by one or more piezoelectric force transducers mounted on the surface of the panel. The response of the panel to excitation is maximized when it is driven at its resonance; therefore, the panel is designed such that its fundamental frequency is near the tone to be canceled, typically 2000-4000 Hz.

  15. Active control of aircraft engine inlet noise using compact sound sources and distributed error sensors

    NASA Technical Reports Server (NTRS)

    Burdisso, Ricardo (Inventor); Fuller, Chris R. (Inventor); O'Brien, Walter F. (Inventor); Thomas, Russell H. (Inventor); Dungan, Mary E. (Inventor)

    1996-01-01

    An active noise control system using a compact sound source is effective to reduce aircraft engine duct noise. The fan noise from a turbofan engine is controlled using an adaptive filtered-x LMS algorithm. Single multi channel control systems are used to control the fan blade passage frequency (BPF) tone and the BPF tone and the first harmonic of the BPF tone for a plane wave excitation. A multi channel control system is used to control any spinning mode. The multi channel control system to control both fan tones and a high pressure compressor BPF tone simultaneously. In order to make active control of turbofan inlet noise a viable technology, a compact sound source is employed to generate the control field. This control field sound source consists of an array of identical thin, cylindrically curved panels with an inner radius of curvature corresponding to that of the engine inlet. These panels are flush mounted inside the inlet duct and sealed on all edges to prevent leakage around the panel and to minimize the aerodynamic losses created by the addition of the panels. Each panel is driven by one or more piezoelectric force transducers mounted on the surface of the panel. The response of the panel to excitation is maximized when it is driven at its resonance; therefore, the panel is designed such that its fundamental frequency is near the tone to be canceled, typically 2000-4000 Hz.

  16. Advanced piloted aircraft flight control system design methodology. Volume 2: The FCX flight control design expert system

    NASA Technical Reports Server (NTRS)

    Myers, Thomas T.; Mcruer, Duane T.

    1988-01-01

    The development of a comprehensive and electric methodology for conceptual and preliminary design of flight control systems is presented and illustrated. The methodology is focused on the design states starting with the layout of system requirements and ending when some viable competing system architectures (feedback control structures) are defined. The approach is centered on the human pilot and the aircraft as both the sources of, and the keys to the solution of, many flight control problems. The methodology relies heavily on computational procedures which are highly interactive with the design engineer. To maximize effectiveness, these techniques, as selected and modified to be used together in the methodology, form a cadre of computational tools specifically tailored for integrated flight control system preliminary design purposes. The FCX expert system as presently developed is only a limited prototype capable of supporting basic lateral-directional FCS design activities related to the design example used. FCX presently supports design of only one FCS architecture (yaw damper plus roll damper) and the rules are largely focused on Class IV (highly maneuverable) aircraft. Despite this limited scope, the major elements which appear necessary for application of knowledge-based software concepts to flight control design were assembled and thus FCX represents a prototype which can be tested, critiqued and evolved in an ongoing process of development.

  17. Output feedback non-linear decoupled control synthesis and observer design for manoeuvring aircraft

    NASA Technical Reports Server (NTRS)

    Singh, S. N.; Schy, A. A.

    1980-01-01

    A study of the applicability of nonlinear decoupling theory to the design of control systems using output feedback for maneuvering aircraft is presented. The response variables chosen for decoupled control were angular velocity components along roll, pitch, and yaw axes, angle of attack (p), and angle of sideslip, using aileron, rudder, and elevator controls. An observer design for a class of nonlinear systems was presented and this method was used to estimate angle of attack and sideslip; an approximate observer was obtained by neglecting derivatives of p and aileron deflection angles and it was used in a simulation study. A simulation study showed that precise rapid combined lateral and longitudinal maneuvers can be performed; it was also demonstrated that a bank-angle-command outer loop could be designed for precise bank angles changes and simultaneous large lift maneuvers.

  18. An improved filter-u least mean square vibration control algorithm for aircraft framework.

    PubMed

    Huang, Quanzhen; Luo, Jun; Gao, Zhiyuan; Zhu, Xiaojin; Li, Hengyu

    2014-09-01

    Active vibration control of aerospace vehicle structures is very a hot spot and in which filter-u least mean square (FULMS) algorithm is one of the key methods. But for practical reasons and technical limitations, vibration reference signal extraction is always a difficult problem for FULMS algorithm. To solve the vibration reference signal extraction problem, an improved FULMS vibration control algorithm is proposed in this paper. Reference signal is constructed based on the controller structure and the data in the algorithm process, using a vibration response residual signal extracted directly from the vibration structure. To test the proposed algorithm, an aircraft frame model is built and an experimental platform is constructed. The simulation and experimental results show that the proposed algorithm is more practical with a good vibration suppression performance. PMID:25273765

  19. Flight Evaluation of an Aircraft with Side and Center Stick Controllers and Rate-Limited Ailerons

    NASA Technical Reports Server (NTRS)

    Deppe, P. R.; Chalk, C. R.; Shafer, M. F.

    1996-01-01

    As part of an ongoing government and industry effort to study the flying qualities of aircraft with rate-limited control surface actuators, two studies were previously flown to examine an algorithm developed to reduce the tendency for pilot-induced oscillation when rate limiting occurs. This algorithm, when working properly, greatly improved the performance of the aircraft in the first study. In the second study, however, the algorithm did not initially offer as much improvement. The differences between the two studies caused concern. The study detailed in this paper was performed to determine whether the performance of the algorithm was affected by the characteristics of the cockpit controllers. Time delay and flight control system noise were also briefly evaluated. An in-flight simulator, the Calspan Learjet 25, was programmed with a low roll actuator rate limit, and the algorithm was programmed into the flight control system. Side- and center-stick controllers, force and position command signals, a rate-limited feel system, a low-frequency feel system, and a feel system damper were evaluated. The flight program consisted of four flights and 38 evaluations of test configurations. Performance of the algorithm was determined to be unaffected by using side- or center-stick controllers or force or position command signals. The rate-limited feel system performed as well as the rate-limiting algorithm but was disliked by the pilots. The low-frequency feel system and the feel system damper were ineffective. Time delay and noise were determined to degrade the performance of the algorithm.

  20. Application of parameter estimation to aircraft stability and control: The output-error approach

    NASA Technical Reports Server (NTRS)

    Maine, Richard E.; Iliff, Kenneth W.

    1986-01-01

    The practical application of parameter estimation methodology to the problem of estimating aircraft stability and control derivatives from flight test data is examined. The primary purpose of the document is to present a comprehensive and unified picture of the entire parameter estimation process and its integration into a flight test program. The document concentrates on the output-error method to provide a focus for detailed examination and to allow us to give specific examples of situations that have arisen. The document first derives the aircraft equations of motion in a form suitable for application to estimation of stability and control derivatives. It then discusses the issues that arise in adapting the equations to the limitations of analysis programs, using a specific program for an example. The roles and issues relating to mass distribution data, preflight predictions, maneuver design, flight scheduling, instrumentation sensors, data acquisition systems, and data processing are then addressed. Finally, the document discusses evaluation and the use of the analysis results.

  1. Study of the Application of Separation Control by Unsteady Excitation to Civil Transport Aircraft

    NASA Technical Reports Server (NTRS)

    McLean, J. D.; Crouch, J. D.; Stoner, R. C.; Sakurai, S.; Seidel, G. E.; Feifel, W. M.; Rush, H. M.

    1999-01-01

    This study provides a preliminary assessment of the potential benefits of applying unsteady separation control to transport aircraft. Estimates are given for some of the costs associated with a specific application to high-lift systems. High-leverage areas for future research were identified during the course of the study. The study was conducted in three phases. Phase 1 consisted of a coarse screening of potential applications within the aerodynamics discipline. Potential benefits were identified and in some cases quantified in a preliminary way. Phase 2 concentrated on the application to the wing high-lift system, deemed to have the greatest potential benefit for commercial transports. A team of experts, including other disciplines (i.e. hydraulic, mechanical, and electrical systems, structures, configurations, manufacturing, and finance), assessed the feasibility, benefits, and costs to arrive at estimates of net benefits. In both phases of the study, areas of concern and areas for future research were identified. In phase 3 of this study, the high-leverage areas for future research were prioritized as a guide for future efforts aimed at the application of active flow control to commercial transport aircraft.

  2. Aircraft Loss of Control: Problem Analysis for the Development and Validation of Technology Solutions

    NASA Technical Reports Server (NTRS)

    Belcastro, Christine M.; Newman, Richard L.; Crider, Dennis A.; Klyde, David H.; Foster, John V.; Groff, Loren

    2016-01-01

    Aircraft loss of control (LOC) is a leading cause of fatal accidents across all transport airplane and operational classes. LOC can result from a wide spectrum of precursors (or hazards), often occurring in combination. Technologies developed for LOC prevention and recovery must therefore be effective under a wide variety of conditions and uncertainties, including multiple hazards, and the validation process must provide a means of assessing system effectiveness and coverage of these hazards. This paper provides a detailed description of a methodology for analyzing LOC as a dynamics and control problem for the purpose of developing effective technology solutions. The paper includes a definition of LOC based on several recent publications, a detailed description of a refined LOC accident analysis process that is illustrated via selected example cases, and a description of planned follow-on activities for identifying future potential LOC risks and the development of LOC test scenarios. Some preliminary considerations for LOC of Unmanned Aircraft Systems (UAS) and for their safe integration into the National Airspace System (NAS) are also discussed.

  3. Experiments in aircraft roll-yaw control using forebody tangential blowing

    NASA Astrophysics Data System (ADS)

    Pedreiro, Nelson

    Flight at high angles of attack can provide improved maneuverability for fighter aircraft and increased lift capabilities for future supersonic and hypersonic transport aircraft during take-off and landing. At high angles of attack the aerodynamics of the vehicle are dominated by separation, vortex shedding and breakdown, which compromise the effectiveness of conventional control surfaces. As a result, controlled flight at high angles of attack is not feasible for current aircraft configurations. Alternate means to augment the control of the vehicle at these flight regimes are therefore necessary. In this work, the feasibility of using Forebody Tangential Blowing to control the roll-yaw motion of a wind tunnel model at high angles of attack is demonstrated. The method consists of injecting a thin sheet of air tangentially to the forebody of the vehicle to change the separation lines over the forebody and alter the aerodynamic loads. A unique model was developed that describes the unsteady aerodynamic moments generated by both vehicle motion and the applied blowing. This aerodynamic model is sufficiently detailed to predict transient motion of the wind-tunnel model, and is simple enough to be suitable for control logic design and implementation. Successful closed-loop control was demonstrated experimentally for a delta wing body model with a cone-cylinder fuselage. Experiments were performed at 45 degrees nominal angle of attack. At this condition, the natural motion of the system is divergent. A discrete vortex method was developed to help understand the main physics of the flow. The method correctly captures the interactions between forebody and wing vortices. Moreover, the trends in static loads and flow structure are correctly represented. Flow visualization results revealed the vortical structure of the flow to be asymmetric even for symmetric flight conditions. The effects of blowing, roll and yaw angles on the flow structure were determined. It was shown that

  4. Aircraft mishap investigation with radiology-assisted autopsy: helicopter crash with control injury.

    PubMed

    Folio, R Les; Harcke, H Theodore; Luzi, Scott A

    2009-04-01

    Radiology-assisted autopsy traditionally has been plain film-based, but now is being augmented by computed tomography (CT). The authors present a two-fatality rotary wing crash scenario illustrating application of advanced radiographic techniques that can guide and supplement the forensic pathologist's physical autopsy. The radiographic findings also have the potential for use by the aircraft mishap investigation board. Prior to forensic autopsy, the two crash fatalities were imaged with conventional two-dimensional radiographs (digital technique) and with multidetector CT The CT data were used for multiplanar two-dimensional and three-dimensional (3D) image reconstruction. The forensic pathologist was provided with information about skeletal fractures, metal fragment location, and other pathologic findings of potential use in the physical autopsy. The radiologic autopsy served as a supplement to the physical autopsy and did not replace the traditional autopsy in these cases. Both individuals sustained severe blunt force trauma with multiple fractures of the skull, face, chest, pelvis, and extremities. Individual fractures differed; however, one individual showed hand and lower extremity injuries similar to those associated with control of the aircraft at the time of impact. The concept of "control injury" has been challenged by Campman et al., who found that control surface injuries have a low sensitivity and specificity for establishing who the pilot was in an accident. The application of new post mortem imaging techniques may help to resolve control injury questions. In addition, the combination of injuries in our cases may contribute to further understanding of control surface injury patterns in helicopter mishaps. PMID:19378913

  5. Thermal Characterization of Defects in Aircraft Structures Via Spatially Controlled Heat Application

    NASA Technical Reports Server (NTRS)

    Cramer, K. Elliott; Winfree, William P.

    1997-01-01

    Recent advances in thermal imaging technology have spawned a number of new thermal NDE techniques that provide quantitative information about flaws in aircraft structures. Thermography has a number of advantages as an inspection technique. It is a totally noncontacting, nondestructive, imaging technology capable of inspecting a large area in a matter of a few seconds. The development of fast, inexpensive image processors have aided in the attractiveness of thermography as an NDE technique. These image processors have increased the signal to noise ratio of thermography and facilitated significant advances in post-processing. The resulting digital images enable archival records for comparison with later inspections thus providing a means of monitoring the evolution of damage in a particular structure. The National Aeronautics and Space Administration's Langley Research Center has developed a thermal NDE technique designed to image a number of potential flaws in aircraft structures. The technique involves injecting a small, spatially controlled heat flux into the outer surface of an aircraft. Images of fatigue cracking, bond integrity and material loss due to corrosion are generated from measurements of the induced surface temperature variations. This paper will present a discussion of the development of the thermal imaging system as well as the techniques used to analyze the resulting thermal images. Spatial tailoring of the heat coupled with the analysis techniques represent a significant improvement in the delectability of flaws over conventional thermal imaging. Results of laboratory experiments on fabricated crack, disbond and material loss samples will be presented to demonstrate the capabilities of the technique. An integral part of the development of this technology is the use of analytic and computational modeling. The experimental results will be compared with these models to demonstrate the utility of such an approach.

  6. Self-organizing radial basis function networks for adaptive flight control and aircraft engine state estimation

    NASA Astrophysics Data System (ADS)

    Shankar, Praveen

    The performance of nonlinear control algorithms such as feedback linearization and dynamic inversion is heavily dependent on the fidelity of the dynamic model being inverted. Incomplete or incorrect knowledge of the dynamics results in reduced performance and may lead to instability. Augmenting the baseline controller with approximators which utilize a parametrization structure that is adapted online reduces the effect of this error between the design model and actual dynamics. However, currently existing parameterizations employ a fixed set of basis functions that do not guarantee arbitrary tracking error performance. To address this problem, we develop a self-organizing parametrization structure that is proven to be stable and can guarantee arbitrary tracking error performance. The training algorithm to grow the network and adapt the parameters is derived from Lyapunov theory. In addition to growing the network of basis functions, a pruning strategy is incorporated to keep the size of the network as small as possible. This algorithm is implemented on a high performance flight vehicle such as F-15 military aircraft. The baseline dynamic inversion controller is augmented with a Self-Organizing Radial Basis Function Network (SORBFN) to minimize the effect of the inversion error which may occur due to imperfect modeling, approximate inversion or sudden changes in aircraft dynamics. The dynamic inversion controller is simulated for different situations including control surface failures, modeling errors and external disturbances with and without the adaptive network. A performance measure of maximum tracking error is specified for both the controllers a priori. Excellent tracking error minimization to a pre-specified level using the adaptive approximation based controller was achieved while the baseline dynamic inversion controller failed to meet this performance specification. The performance of the SORBFN based controller is also compared to a fixed RBF network

  7. An experimental study of concurrent methods for adaptively controlling vertical tail buffet in high performance aircraft

    NASA Astrophysics Data System (ADS)

    Roberts, Patrick J.

    High performance twin-tail aircraft, like the F-15 and F/A-18, encounter a condition known as tail buffet. At high angles of attack, vortices are generated at the wing fuselage interface (shoulder) or other leading edge extensions. These vortices are directed toward the twin vertical tails. When the flow interacts with the vertical tail it creates pressure variations that can oscillate the vertical tail assembly. This results in fatigue cracks in the vertical tail assembly that can decrease the fatigue life and increase maintenance costs. Recently, an offset piezoceramic stack actuator was used on an F-15 wind tunnel model to control buffet induced vibrations at high angles of attack. The controller was based on the acceleration feedback control methods, In this thesis a procedure for designing the offset piezoceramic stack actuators is developed. This design procedure includes determining the quantity and type of piezoceramic stacks used in these actuators. The changes of stresses, in the vertical tail caused by these actuators during an active control, are investigated. In many cases, linear controllers are very effective in reducing vibrations. However, during flight, the natural frequencies of the vertical tail structural system changes as the airspeed increases. This in turn, reduces the effectiveness of a linear controller. Other causes such as the unmodeled dynamics and nonlinear effects due to debonds also reduce the effectiveness of linear controllers. In this thesis, an adaptive neural network is used to augment the linear controller to correct these effects.

  8. Development and evaluation of automatic landing control laws for light wing loading STOL aircraft

    NASA Technical Reports Server (NTRS)

    Feinreich, B.; Degani, O.; Gevaert, G.

    1981-01-01

    Automatic flare and decrab control laws were developed for NASA's experimental Twin Otter. This light wing loading STOL aircraft was equipped with direct lift control (DLC) wing spoilers to enhance flight path control. Automatic landing control laws that made use of the spoilers were developed, evaluated in a simulation and the results compared with these obtained for configurations that did not use DLC. The spoilers produced a significant improvement in performance. A simulation that could be operated faster than real time in order to provide statistical landing data for a large number of landings over a wide spectrum of disturbances in a short time was constructed and used in the evaluation and refinement of control law configurations. A longitudinal control law that had been previously developed and evaluated in flight was also simulated and its performance compared with that of the control laws developed. Runway alignment control laws were also defined, evaluated, and refined to result in a final recommended configuration. Good landing performance, compatible with Category 3 operation into STOL runways, was obtained.

  9. The insertion of human dynamics models in the flight control loops of V/STOL research aircraft. Appendix 2: The optimal control model of a pilot in V/STOL aircraft control loops

    NASA Technical Reports Server (NTRS)

    Zipf, Mark E.

    1989-01-01

    An overview is presented of research work focussed on the design and insertion of classical models of human pilot dynamics within the flight control loops of V/STOL aircraft. The pilots were designed and configured for use in integrated control system research and design. The models of human behavior that were considered are: McRuer-Krendel (a single variable transfer function model); and Optimal Control Model (a multi-variable approach based on optimal control and stochastic estimation theory). These models attempt to predict human control response characteristics when confronted with compensatory tracking and state regulation tasks. An overview, mathematical description, and discussion of predictive limitations of the pilot models is presented. Design strategies and closed loop insertion configurations are introduced and considered for various flight control scenarios. Models of aircraft dynamics (both transfer function and state space based) are developed and discussed for their use in pilot design and application. Pilot design and insertion are illustrated for various flight control objectives. Results of pilot insertion within the control loops of two V/STOL research aricraft (Sikorski Black Hawk UH-60A, McDonnell Douglas Harrier II AV-8B) are presented and compared against actual pilot flight data. Conclusions are reached on the ability of the pilot models to adequately predict human behavior when confronted with similar control objectives.

  10. Simulation evaluation of the advanced control concept for the NASA V/STOL research aircraft (VSRA)

    NASA Technical Reports Server (NTRS)

    Moralez, E.; Merrick, V. K.; Schroeder, J. A.

    1987-01-01

    Two candidate control systems for the Vertical/Short Takeoff and Landing (V/STOL) Research Aircraft (VSRA) are described, both of which are limited-authority, digital, fly-by wire variants of the original YAV-8B Harrier control system. The performance of these systems was compared with that of an ideal, full-authority system in simulated, adverse-weather V/STOL shipboard operations using the Ames Research Center's Vertical Motion Simulator. Both systems showed some performance degradation relative to the ideal, but both were adequate to meet VSRA program objectives. The favored system, selected because of safety considerations, was further simulated using a precision visual hovering task that verified its acceptability.

  11. Automation effects in a stereotypical multiloop manual control system. [for aircraft

    NASA Technical Reports Server (NTRS)

    Hess, R. A.; Mcnally, B. D.

    1984-01-01

    The increasing reliance of state-of-the art, high performance aircraft on high authority stability and command augmentation systems, in order to obtain satisfactory performance and handling qualities, has made critical the achievement of a better understanding of human capabilities, limitations, and preferences during interactions with complex dynamic systems that involve task allocation between man and machine. An analytical and experimental study has been undertaken to investigate human interaction with a simple, multiloop dynamic system in which human activity was systematically varied by changing the levels of automation. Task definition has led to a control loop structure which parallels that for any multiloop manual control system, and may therefore be considered a stereotype.

  12. A review of supersonic cruise flight path control experience with the YF-12 aircraft

    NASA Technical Reports Server (NTRS)

    Berry, D. T.; Gilyard, G. B.

    1976-01-01

    Flight research with the YF-12 aircraft indicates that solutions to many handling qualities problems of supersonic cruise are at hand. Airframe/propulsion system interactions in the Dutch roll mode can be alleviated by the use of passive filters or additional feedback loops in the propulsion and flight control systems. Mach and altitude excursions due to atmospheric temperature fluctuations can be minimized by the use of a cruise autothrottle. Autopilot instabilities in the altitude hold mode have been traced to angle of attack-sensitive static ports on the compensated nose boom. For the YF-12, the feedback of high-passed pitch rate to the autopilot resolves this problem. Manual flight path control is significantly improved by the use of an inertial rate of climb display in the cockpit.

  13. The Development of Human Factor Guidelines for Unmanned Aircraft System Control Stations

    NASA Technical Reports Server (NTRS)

    Hobbs, Alan

    2014-01-01

    Despite being referred to as unmanned some of the major challenges confronting unmanned aircraft systems (UAS) relate to human factors. NASA is conducting research to address the human factors relevant to UAS access to non-segregated airspace. This work covers the issues of pilot performance, interaction with ATC, and control station design. A major outcome of this research will be recommendations for human factors design guidelines for UAS control stations to support routine beyond-line-of-sight operations in the US national airspace system (NAS). To be effective, guidelines must be relevant to a wide range of systems, must not be overly prescriptive, and must not impose premature standardization on evolving technologies. In developing guidelines, we recognize that existing regulatory and guidance material may already provide adequate coverage of certain issues. In other cases suitable guidelines may be found in existing military or industry human factors standards. In cases where appropriate existing standards cannot be identified, original guidelines will be proposed.

  14. Demonstration results of fly-by-light flight control system architectures for tactical military aircraft

    NASA Astrophysics Data System (ADS)

    Corrigan, Jack; Shaw, Brad; Jones, Jack E.

    1996-10-01

    Requirements for future advanced tactical aircraft identify the need for flight control system architectures that provide a higher degree of performance with regard to electromagnetic interference immunity, communication bus data rate, propulsion/utility subsystem integration, and affordability. Evolution for highly centralized, digital, fly-by-light flight/propulsion/utility control system is achieved as modular functions are implemented and integrated by serial digital fiberoptic communication links. These adaptable architectures allow the user to configure the fly- by-light system to meet unique safety requirements, system performance, and design-to-cost targets. This paper presents results of the open and closed loop system demonstrations of Fly-By-Light Advanced System Hardware architecture building blocks integrated with SAE AS-1773 communication bus at MDA.

  15. Application of active control landing gear technology to the A-10 aircraft

    NASA Technical Reports Server (NTRS)

    Ross, I.; Edson, R.

    1983-01-01

    Two concepts which reduce the A-10 aircraft's wing/gear interface forces as a result of applying active control technology to the main landing gear are described. In the first concept, referred to as the alternate concept a servovalve in a closed pressure control loop configuration effectively varies the size of the third stage spool valve orifice which is embedded in the strut. This action allows the internal energy in the strut to shunt hydraulic flow around the metering orifice. The command signal to the loop is reference strut pressure which is compared to the measured strut pressure, the difference being the loop error. Thus, the loop effectively varies the spool valve orifice size to maintain the strut pressure, and therefore minimizes the wing/gear interface force referenced.

  16. Preliminary control law and hardware designs for a ride quality augmentation system for commuter aircraft. Phase 2

    NASA Technical Reports Server (NTRS)

    Davis, D. J.; Linse, D. J.; Suikat, R.; Entz, D. P.

    1986-01-01

    The continued investigation of the design of Ride Quality Augmentation Systems (RQAS) for commuter aircraft is described. The purpose of these RQAS is the reduction of the vertical and lateral acceleration response of the aircraft due to atmospheric turbulence by the application of active control. The current investigations include the refinement of the sample data feedback control laws based on the control-rate-weighting and output-weighting optimal control design techniqes. These control designs were evaluated using aircraft time simulations driven by Dryden spectra turbulence. Fixed gain controllers were tested throughout the aircrft operating envelope. The preliminary design of the hardware modifications necessary to implement and test the RQAS on a commuter aircraft is included. These include a separate surface elevator and the flap modifications to provide both direct lift and roll control. A preliminary failure mode investigation was made for the proposed configuration. The results indicate that vertical acceleration reductions of 45% and lateral reductions of more than 50% are possible. A fixed gain controller appears to be feasible with only minor response degradation.

  17. Topological structures of vortex flow on a flying wing aircraft, controlled by a nanosecond pulse discharge plasma actuator

    NASA Astrophysics Data System (ADS)

    Du, Hai; Shi, Zhiwei; Cheng, Keming; Wei, Dechen; Li, Zheng; Zhou, Danjie; He, Haibo; Yao, Junkai; He, Chengjun

    2016-06-01

    Vortex control is a thriving research area, particularly in relation to flying wing or delta wing aircraft. This paper presents the topological structures of vortex flow on a flying wing aircraft controlled by a nanosecond plasma dielectric barrier discharge actuator. Experiments, including oil flow visualization and two-dimensional particle image velocimetry (PIV), were conducted in a wind tunnel with a Reynolds number of 0.5 × 106. Both oil and PIV results show that the vortex can be controlled. Oil topological structures on the aircraft surface coincide with spatial PIV flow structures. Both indicate vortex convergence and enhancement when the plasma discharge is switched on, leading to a reduced region of separated flow.

  18. Model-Based Control of an Aircraft Engine using an Optimal Tuner Approach

    NASA Technical Reports Server (NTRS)

    Connolly, Joseph W.; Chicatelli, Amy; Garg, Sanjay

    2012-01-01

    This paper covers the development of a model-based engine control (MBEC) method- ology applied to an aircraft turbofan engine. Here, a linear model extracted from the Commercial Modular Aero-Propulsion System Simulation 40,000 (CMAPSS40k) at a cruise operating point serves as the engine and the on-board model. The on-board model is up- dated using an optimal tuner Kalman Filter (OTKF) estimation routine, which enables the on-board model to self-tune to account for engine performance variations. The focus here is on developing a methodology for MBEC with direct control of estimated parameters of interest such as thrust and stall margins. MBEC provides the ability for a tighter control bound of thrust over the entire life cycle of the engine that is not achievable using traditional control feedback, which uses engine pressure ratio or fan speed. CMAPSS40k is capable of modeling realistic engine performance, allowing for a verification of the MBEC tighter thrust control. In addition, investigations of using the MBEC to provide a surge limit for the controller limit logic are presented that could provide benefits over a simple acceleration schedule that is currently used in engine control architectures.

  19. VizieR Online Data Catalog: IRAC HUDF and GOODS ultradeep surveys (Labbe+, 2015)

    NASA Astrophysics Data System (ADS)

    Labbe, I.; Oesch, P. A.; Illingworth, G. D.; van Dokkum, P. G.; Bouwens, R. J.; Franx, M.; Carollo, C. M.; Trenti, M.; Holden, B.; Smit, R.; Gonzalez, V.; Magee, D.; Stiavelli, M.; Stefanon, M.

    2016-01-01

    The IRAC ultradeep field and IRAC Legacy over GOODS programs are two ultradeep imaging surveys at 3.6 and 4.5μm with the Spitzer Infrared Array Camera (IRAC). The primary aim is to directly detect the infrared light of reionization epoch galaxies at z>7 and to constrain their stellar populations. The observations cover the Hubble Ultra Deep Field (HUDF), including the two HUDF parallel fields, and the CANDELS/GOODS-South, and are combined with archival data from all previous deep programs into one ultradeep data set. The resulting imaging reaches unprecedented coverage in IRAC 3.6 and 4.5μm ranging from >50hr over 150arcmin2, >100hr over 60sq arcmin2, to ~200hr over 5-10arcmin2. This paper presents the survey description, data reduction, and public release of reduced mosaics on the same astrometric system as the CANDELS/GOODS-South Wide Field Camera 3 (WFC3) data. To facilitate prior-based WFC3+IRAC photometry, we introduce a new method to create high signal-to-noise PSFs from the IRAC data and reconstruct the complex spatial variation due to survey geometry. The PSF maps are included in the release, as are registered maps of subsets of the data to enable reliability and variability studies. Simulations show that the noise in the ultradeep IRAC images decreases approximately as the square root of integration time over the range 20-200hr, well below the classical confusion limit, reaching 1σ point-source sensitivities as faint as 15nJy (28.5 AB) at 3.6μm and 18nJy (28.3 AB) at 4.5μm. The value of such ultradeep IRAC data is illustrated by direct detections of z=7-8 galaxies as faint as HAB=28. (1 data file).

  20. IDENTIFYING LUMINOUS ACTIVE GALACTIC NUCLEI IN DEEP SURVEYS: REVISED IRAC SELECTION CRITERIA

    SciTech Connect

    Donley, J. L.; Koekemoer, A. M.; Brusa, M.; Salvato, M.; Capak, P.; Cardamone, C. N.; Civano, F.; Ilbert, O.; Impey, C. D.; Kartaltepe, J. S.; Miyaji, T.; Sanders, D. B.; Trump, J. R.

    2012-04-01

    Spitzer/IRAC selection is a powerful tool for identifying luminous active galactic nuclei (AGNs). For deep IRAC data, however, the AGN selection wedges currently in use are heavily contaminated by star-forming galaxies, especially at high redshift. Using the large samples of luminous AGNs and high-redshift star-forming galaxies in COSMOS, we redefine the AGN selection criteria for use in deep IRAC surveys. The new IRAC criteria are designed to be both highly complete and reliable, and incorporate the best aspects of the current AGN selection wedges and of infrared power-law selection while excluding high-redshift star-forming galaxies selected via the BzK, distant red galaxy, Lyman-break galaxy, and submillimeter galaxy criteria. At QSO luminosities of log L{sub 2-10keV}(erg s{sup -1}) {>=}44, the new IRAC criteria recover 75% of the hard X-ray and IRAC-detected XMM-COSMOS sample, yet only 38% of the IRAC AGN candidates have X-ray counterparts, a fraction that rises to 52% in regions with Chandra exposures of 50-160 ks. X-ray stacking of the individually X-ray non-detected AGN candidates leads to a hard X-ray signal indicative of heavily obscured to mildly Compton-thick obscuration (log N{sub H} (cm{sup -2}) = 23.5 {+-} 0.4). While IRAC selection recovers a substantial fraction of luminous unobscured and obscured AGNs, it is incomplete to low-luminosity and host-dominated AGNs.