Science.gov

Sample records for aircraft corporation model

  1. 75 FR 77524 - Special Conditions: Sikorsky Aircraft Corporation Model S-92A Helicopter; Installation of a...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-13

    ...) weight. (iii) Maximum demonstrated weight. (d) Flight Characteristics. (1) The basic aircraft must meet... recover the aircraft and transition to the normal (Appendix B) IFR flight profile envelope without... Federal Aviation Administration 14 CFR Part 29 Special Conditions: Sikorsky Aircraft Corporation Model...

  2. 77 FR 18969 - Airworthiness Directives; Sikorsky Aircraft Corporation Helicopters

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-29

    ... Directives; Sikorsky Aircraft Corporation Helicopters AGENCY: Federal Aviation Administration (FAA), DOT... (AD) for certain Sikorsky Aircraft Corporation (Sikorsky) Model S-76C helicopters. This proposed AD is... Aircraft Corporation, Attn: Manager, Commercial Technical Support, mailstop s581a, 6900 Main...

  3. 77 FR 49710 - Airworthiness Directives; Sikorsky Aircraft Corporation Helicopters

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-17

    ... Corporation Helicopters AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: We are adopting a new airworthiness directive (AD) for Sikorsky Aircraft Corporation (Sikorsky) Model S... AD, contact Sikorsky Aircraft Corporation, Attn: Manager, Commercial Technical Support,...

  4. 77 FR 23382 - Airworthiness Directives; Sikorsky Aircraft Corporation Helicopters

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-19

    ... Corporation Helicopters AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: We are adopting a new airworthiness directive (AD) for Sikorsky Aircraft Corporation (Sikorsky) Model S.... ADDRESSES: For service information identified in this AD, contact Sikorsky Aircraft Corporation,...

  5. 75 FR 27409 - Airworthiness Directives; Sikorsky Aircraft Corporation (Sikorsky) Model S-92A Helicopters

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-17

    ... Gustafson, Aviation Safety Engineer, Boston Aircraft Certification Office, Engine and Propeller Directorate...-06-AD; Amendment 39-16282; AD 2010-10-03] RIN 2120-AA64 Airworthiness Directives; Sikorsky Aircraft... Sikorsky Aircraft Corporation, Attn: Manager, Commercial Technical Support, mailstop s581a, 6900...

  6. 77 FR 33083 - Airworthiness Directives; WACO Classic Aircraft Corporation Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-05

    ... Aircraft Corporation Airplanes AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule... Aircraft Corporation Models 2T-1A, 2T-1A-1, and 2T-1A-2 airplanes. This AD requires inspection of the front..., contact WACO Classic Aircraft Corporation; 15955 South Airport Rd., Battle Creek, Michigan...

  7. 77 FR 52205 - Airworthiness Directives; Univair Aircraft Corporation Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-29

    ... Corporation Airplanes AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: We are superseding an existing airworthiness directive (AD) for certain Univair Aircraft Corporation Models (ERCO... of a Univair Aircraft Corporation Model ERCO 415-D Ercoupe that crashed after an in-flight ]...

  8. 77 FR 68058 - Airworthiness Directives; Sikorsky Aircraft Corporation Helicopters

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-15

    ... Corporation Helicopters AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule; request for... Aircraft Corporation (Sikorsky) Model S-70, S-70A, S-70C, S-70C(M), and S-70C(M1) helicopters with a... service information identified in this AD, contact Sikorsky Aircraft Corporation, Attn:...

  9. 76 FR 65103 - Special Conditions: Gulfstream Aerospace Corporation, Model GIV-X Airplane; Aircraft Electronic...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-20

    ... Federal Aviation Administration 14 CFR Part 25 Special Conditions: Gulfstream Aerospace Corporation, Model... comments. SUMMARY: These special conditions are issued for the Gulfstream Aerospace Corporation Model GIV-X... connectivity capabilities of the airplane's computer systems and networks, which may allow access by...

  10. 77 FR 67561 - Airworthiness Directives; Univair Aircraft Corporation Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-13

    ... Corporation Airplanes AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule; correction.... That AD applies to certain Univair Aircraft Corporation Models (ERCO) 415-C, 415-CD, 415-D, E, G..., dated September 1, 2008, is made in several places throughout the AD for Univair Aircraft...

  11. 78 FR 1253 - Schweizer Aircraft Corporation, a Subsidiary of Sikorsky Aircraft Corporation, a Division of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-08

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF LABOR Employment and Training Administration Schweizer Aircraft Corporation, a Subsidiary of Sikorsky Aircraft Corporation, a Division of United Technologies, Inc., DBA Sikorsky Military Completion Center, Including...

  12. 76 FR 65105 - Special Conditions: Gulfstream Aerospace Corporation, Model GIV-X Airplane; Isolation or Aircraft...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-20

    ... networks and systems, such as passenger entertainment and information services, than previous Gulfstream airplane models. This may allow the exploitation of network security vulnerabilities and increased risks... Federal Aviation Administration 14 CFR Part 25 Special Conditions: Gulfstream Aerospace Corporation,...

  13. 77 FR 56581 - Airworthiness Directives; Sikorsky Aircraft Corporation Helicopters

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-13

    ... Directives; Sikorsky Aircraft Corporation Helicopters AGENCY: Federal Aviation Administration (FAA), DOT... revising an earlier proposed airworthiness directive (AD) for the Sikorsky Aircraft Corporation (Sikorsky.... For service information identified in this proposed AD, contact Sikorsky Aircraft Corporation,...

  14. 77 FR 68061 - Airworthiness Directives; Sikorsky Aircraft Corporation Helicopters

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-15

    ... Aircraft Corporation Helicopters AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: We are adopting a new airworthiness directive (AD) for the Sikorsky Aircraft Corporation... service information identified in this AD, contact Sikorsky Aircraft Corporation, Attn:...

  15. 76 FR 66207 - Airworthiness Directives; Sikorsky Aircraft Corporation (Sikorsky) Model S-92A Helicopters

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-26

    ... Corporation (Sikorsky) Model S-92A Helicopters AGENCY: Federal Aviation Administration, DOT. ACTION: Notice of... the Sikorsky Model S-92A helicopters. This proposal would require revising the Operating Limitations section of the Sikorsky Model S-92A Rotorcraft Flight Manual (RFM). This proposal is prompted by...

  16. 77 FR 68057 - Airworthiness Directives; Sikorsky Aircraft Corporation Helicopters

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-15

    ... Corporation Helicopters AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: We are adopting a new airworthiness directive (AD) for certain Sikorsky Aircraft Corporation (Sikorsky... service information identified in this AD, contact Sikorsky Aircraft Corporation, Attn:...

  17. 78 FR 44045 - Airworthiness Directives; Sikorsky Aircraft Corporation (Sikorsky) Helicopters

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-23

    ... Corporation (Sikorsky) Helicopters AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of... directive (AD): Sikorsky Aircraft Corporation (Sikorsky): Docket No. FAA-2013-0636; Directorate...

  18. 75 FR 12665 - Airworthiness Directives; Sikorsky Aircraft Corporation Model S-76C Helicopters

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-17

    ... emergency flotation system squib connector (flotation system connector) to determine if a metallic foil... prevent inadvertent activation of a flotation system during installation was still installed in the left-hand flotation system connector of a Model S-76C helicopter. The actions specified in this AD...

  19. Educating with Aircraft Models

    ERIC Educational Resources Information Center

    Steele, Hobie

    1976-01-01

    Described is utilization of aircraft models, model aircraft clubs, and model aircraft magazines to promote student interest in aerospace education. The addresses for clubs and magazines are included. (SL)

  20. Assessment of NDE needs for aging corporate and private aircraft

    NASA Astrophysics Data System (ADS)

    Reinhart, Eugene R.

    1998-03-01

    Considerable attention has been focused on the life extension of ageing military and commercial aircraft by the government and major aircraft fabricators. A vital, but often neglected segment of the aircraft industry is the are of inspecting ageing fleets of corporate and privately-owned aircraft. Many of these aircraft are inspected and maintained by the various FAA-approved repair stations located around the country. Nondestructive inspection (NDI) methods, equipment, and trained inspectors are a key aspect of maintaining these aircraft; however, there are currently several issues that need to be addressed by the private sector NDI community. Personnel training and certification to an accepted standard is critically needed in this industry since experience and capability in NDI can vary considerably between FAA stations and inspectors. Also, the updating of NDI methods are standards is needed. A review of these issues and suggestions for improvement are presented.

  1. 75 FR 81424 - Airworthiness Directives; Sikorsky Aircraft Corporation (Sikorsky) Model S76A, B, and C Helicopters

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-28

    ... directive (EAD) for the specified Sikorsky model helicopters. The EAD requires inspecting the LITEF Attitude..., B, and C helicopters, with LITEF LCR-100, Attitude Heading and Reference System (AHRS) Unit,...

  2. Pressure-Distribution Measurements of a Model of a Davis Wing Section with Fowler Flap Submitted by Consolidated Aircraft Corporation

    NASA Technical Reports Server (NTRS)

    Abbott, Ira H

    1942-01-01

    Wing pressure distribution diagrams for several angles of attack and flap deflections of 0 degrees, 20 degrees, and 40 degrees are presented. The normal force coefficients agree with lift coefficients obtained in previous test of the same model, except for the maximum lifts with flap deflection. Pressure distribution measurements were made at Reynolds Number of about 6,000,000.

  3. 78 FR 23698 - Airworthiness Directives; Sikorsky Aircraft Corporation Helicopters

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-22

    ... Corporation (Sikorsky) Model S-92A helicopters to require modifying the No. 1 engine forward firewall center... condition as failure of the No. 1 engine forward firewall center fire extinguisher discharge tube to...: (1) Modify the No. 1 engine forward firewall center discharge tube in accordance with...

  4. Aircraft cockpit vision: Math model

    NASA Technical Reports Server (NTRS)

    Bashir, J.; Singh, R. P.

    1975-01-01

    A mathematical model was developed to describe the field of vision of a pilot seated in an aircraft. Given the position and orientation of the aircraft, along with the geometrical configuration of its windows, and the location of an object, the model determines whether the object would be within the pilot's external vision envelope provided by the aircraft's windows. The computer program using this model was implemented and is described.

  5. 78 FR 44048 - Airworthiness Directives; Sikorsky Aircraft Corporation (Sikorsky) Helicopters

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-23

    ... Corporation (Sikorsky) Helicopters AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of... Corporation, Attn: Manager, Commercial Technical Support, mailstop s581a, 6900 Main Street, Stratford, CT... Corporation: Docket No. FAA-2013-0637; Directorate Identifier 2013-SW-030-AD. (a) Applicability This...

  6. Aircraft Dynamic Modeling in Turbulence

    NASA Technical Reports Server (NTRS)

    Morelli, Eugene A.; Cunninham, Kevin

    2012-01-01

    A method for accurately identifying aircraft dynamic models in turbulence was developed and demonstrated. The method uses orthogonal optimized multisine excitation inputs and an analytic method for enhancing signal-to-noise ratio for dynamic modeling in turbulence. A turbulence metric was developed to accurately characterize the turbulence level using flight measurements. The modeling technique was demonstrated in simulation, then applied to a subscale twin-engine jet transport aircraft in flight. Comparisons of modeling results obtained in turbulent air to results obtained in smooth air were used to demonstrate the effectiveness of the approach.

  7. Model of aircraft noise adaptation

    NASA Technical Reports Server (NTRS)

    Dempsey, T. K.; Coates, G. D.; Cawthorn, J. M.

    1977-01-01

    Development of an aircraft noise adaptation model, which would account for much of the variability in the responses of subjects participating in human response to noise experiments, was studied. A description of the model development is presented. The principal concept of the model, was the determination of an aircraft adaptation level which represents an annoyance calibration for each individual. Results showed a direct correlation between noise level of the stimuli and annoyance reactions. Attitude-personality variables were found to account for varying annoyance judgements.

  8. Analysis of Aircraft Evasion Strategies in Air-to-Air Missille Effectiveness Models

    DTIC Science & Technology

    1975-08-01

    AD-A015 238 ANALYSIS OF AIRCRAFT EVASION STRATEGIES IN AIR-TO-AIR MISSILE EFFECTIVENESS MObri ’ G. Carpenter, et al Grumman Aerospace Corporation ...overall tep t Es CIS*atiet d) Oft ’IsNA 1tTNG AC ?v I TV ? corpor te author) 2S. REPORT SECUNITY CLASSIrICA TION Unclassified ;rummn Aerospace... Corporation b RoU N/A I NEPOA’ I ?LE nalysis of Aircraft Evasion Strategies in Air-to-Air Missile Effectiveness Models 4 DESCRIP T IVE *40TS ’Type of repct

  9. Propeller aircraft interior noise model

    NASA Technical Reports Server (NTRS)

    Pope, L. D.; Wilby, E. G.; Wilby, J. F.

    1984-01-01

    An analytical model was developed to predict the interior noise of propeller-driven aircraft. The fuselage model is that of a cylinder with a structurally-integral floor. The cabin sidewall is stiffened by stringers and ring frames, and the floor by longitudinal beams. The cabin interior is covered with a sidewall treatments consisting of layers of porous material and an impervious trim septum. Representation of the propeller pressure field is utilized as input data in the form of the propeller noise signature at a series of locations on a grid over the fuselage structure. Results obtained from the analytical model are compared with test data measured by NASA in a scale model cylindrical fuselage excited by a model propeller.

  10. EPA Corporate GHG Goal Evaluation Model

    EPA Pesticide Factsheets

    The EPA Corporate GHG Goal Evaluation Model provides companies with a transparent and publicly available benchmarking resource to help evaluate and establish new or existing GHG goals that go beyond business as usual for their individual sectors.

  11. Airborne Subscale Transport Aircraft Research Testbed: Aircraft Model Development

    NASA Technical Reports Server (NTRS)

    Jordan, Thomas L.; Langford, William M.; Hill, Jeffrey S.

    2005-01-01

    The Airborne Subscale Transport Aircraft Research (AirSTAR) testbed being developed at NASA Langley Research Center is an experimental flight test capability for research experiments pertaining to dynamics modeling and control beyond the normal flight envelope. An integral part of that testbed is a 5.5% dynamically scaled, generic transport aircraft. This remotely piloted vehicle (RPV) is powered by twin turbine engines and includes a collection of sensors, actuators, navigation, and telemetry systems. The downlink for the plane includes over 70 data channels, plus video, at rates up to 250 Hz. Uplink commands for aircraft control include over 30 data channels. The dynamic scaling requirement, which includes dimensional, weight, inertial, actuator, and data rate scaling, presents distinctive challenges in both the mechanical and electrical design of the aircraft. Discussion of these requirements and their implications on the development of the aircraft along with risk mitigation strategies and training exercises are included here. Also described are the first training (non-research) flights of the airframe. Additional papers address the development of a mobile operations station and an emulation and integration laboratory.

  12. Aircraft system modeling error and control error

    NASA Technical Reports Server (NTRS)

    Kulkarni, Nilesh V. (Inventor); Kaneshige, John T. (Inventor); Krishnakumar, Kalmanje S. (Inventor); Burken, John J. (Inventor)

    2012-01-01

    A method for modeling error-driven adaptive control of an aircraft. Normal aircraft plant dynamics is modeled, using an original plant description in which a controller responds to a tracking error e(k) to drive the component to a normal reference value according to an asymptote curve. Where the system senses that (1) at least one aircraft plant component is experiencing an excursion and (2) the return of this component value toward its reference value is not proceeding according to the expected controller characteristics, neural network (NN) modeling of aircraft plant operation may be changed. However, if (1) is satisfied but the error component is returning toward its reference value according to expected controller characteristics, the NN will continue to model operation of the aircraft plant according to an original description.

  13. 75 FR 20518 - Special Conditions: Cirrus Design Corporation Model SF50 Airplane; Full Authority Digital Engine...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-20

    ... Airplane; Full Authority Digital Engine Control (FADEC) System AGENCY: Federal Aviation Administration (FAA... issued for the Cirrus Design Corporation model SF50 airplane. This airplane will have a novel or unusual... Aviation Administration, Aircraft Certification Service, Small Airplane Directorate, ACE-111, 901...

  14. Aircraft vulnerability analysis by modeling and simulation

    NASA Astrophysics Data System (ADS)

    Willers, Cornelius J.; Willers, Maria S.; de Waal, Alta

    2014-10-01

    Infrared missiles pose a significant threat to civilian and military aviation. ManPADS missiles are especially dangerous in the hands of rogue and undisciplined forces. Yet, not all the launched missiles hit their targets; the miss being either attributable to misuse of the weapon or to missile performance restrictions. This paper analyses some of the factors affecting aircraft vulnerability and demonstrates a structured analysis of the risk and aircraft vulnerability problem. The aircraft-missile engagement is a complex series of events, many of which are only partially understood. Aircraft and missile designers focus on the optimal design and performance of their respective systems, often testing only in a limited set of scenarios. Most missiles react to the contrast intensity, but the variability of the background is rarely considered. Finally, the vulnerability of the aircraft depends jointly on the missile's performance and the doctrine governing the missile's launch. These factors are considered in a holistic investigation. The view direction, altitude, time of day, sun position, latitude/longitude and terrain determine the background against which the aircraft is observed. Especially high gradients in sky radiance occur around the sun and on the horizon. This paper considers uncluttered background scenes (uniform terrain and clear sky) and presents examples of background radiance at all view angles across a sphere around the sensor. A detailed geometrical and spatially distributed radiometric model is used to model the aircraft. This model provides the signature at all possible view angles across the sphere around the aircraft. The signature is determined in absolute terms (no background) and in contrast terms (with background). It is shown that the background significantly affects the contrast signature as observed by the missile sensor. A simplified missile model is constructed by defining the thrust and mass profiles, maximum seeker tracking rate, maximum

  15. Review of Idealized Aircraft Wake Vortex Models

    NASA Technical Reports Server (NTRS)

    Ahmad, Nashat N.; Proctor, Fred H.; Duparcmeur, Fanny M. Limon; Jacob, Don

    2014-01-01

    Properties of three aircraft wake vortex models, Lamb-Oseen, Burnham-Hallock, and Proctor are reviewed. These idealized models are often used to initialize the aircraft wake vortex pair in large eddy simulations and in wake encounter hazard models, as well as to define matched filters for processing lidar observations of aircraft wake vortices. Basic parameters for each vortex model, such as peak tangential velocity and circulation strength as a function of vortex core radius size, are examined. The models are also compared using different vortex characterizations, such as the vorticity magnitude. Results of Euler and large eddy simulations are presented. The application of vortex models in the postprocessing of lidar observations is discussed.

  16. Process modeling KC-135 aircraft

    NASA Technical Reports Server (NTRS)

    Workman, Gary L.

    1991-01-01

    Instrumentation will be provided for KC-135 aircraft which will provide a quantitative measure of g-level variation during parabolic flights and its effect on experiments which demonstrate differences in results obtained with differences in convective flow. The flight apparatus will provide video recording of the effects of the g-level variations on varying fluid samples. The apparatus will be constructed to be available to fly on the KC-135 during most missions.

  17. Aircraft

    DTIC Science & Technology

    2002-01-01

    Company, Washington, DC Boeing Commercial Aircraft Division, Seattle, WA and Long Beach, CA Boeing Military Aircraft and Missile Division, St. Louis, MO and... aircraft ; military fixed-wing aircraft ; rotorcraft (helicopters and tiltrotor aircraft ); and aircraft jet engines. Two companies dominate the commercial... aircraft business, Boeing and Airbus. Four companies dominate the military fixed-wing market, Boeing, Lockheed Martin, BAE Systems, and European

  18. Open Vehicle Sketch Pad Aircraft Modeling Strategies

    NASA Technical Reports Server (NTRS)

    Hahn, Andrew S.

    2013-01-01

    Geometric modeling of aircraft during the Conceptual design phase is very different from that needed for the Preliminary or Detailed design phases. The Conceptual design phase is characterized by the rapid, multi-disciplinary analysis of many design variables by a small engineering team. The designer must walk a line between fidelity and productivity, picking tools and methods with the appropriate balance of characteristics to achieve the goals of the study, while staying within the available resources. Identifying geometric details that are important, and those that are not, is critical to making modeling and methodology choices. This is true for both the low-order analysis methods traditionally used in Conceptual design as well as the highest-order analyses available. This paper will highlight some of Conceptual design's characteristics that drive the designer s choices as well as modeling examples for several aircraft configurations using the open source version of the Vehicle Sketch Pad (Open VSP) aircraft Conceptual design geometry modeler.

  19. Rotor systems research aircraft simulation mathematical model

    NASA Technical Reports Server (NTRS)

    Houck, J. A.; Moore, F. L.; Howlett, J. J.; Pollock, K. S.; Browne, M. M.

    1977-01-01

    An analytical model developed for evaluating and verifying advanced rotor concepts is discussed. The model was used during in both open loop and real time man-in-the-loop simulation during the rotor systems research aircraft design. Future applications include: pilot training, preflight of test programs, and the evaluation of promising concepts before their implementation on the flight vehicle.

  20. A path model of aircraft noise annoyance

    NASA Astrophysics Data System (ADS)

    Taylor, S. M.

    1984-09-01

    This paper describes the development and testing of a path model of aircraft noise annoyance by using noise and social survey data collected in the vicinity of Toronto International Airport. Path analysis is used to estimate the direct and indirect effects of seventeen independent variables on individual annoyance. The results show that the strongest direct effects are for speech interference, attitudes toward aircraft operations, sleep interruption and personal sensitivity to noise. The strongest indirect effects are for aircraft Leq(24) and sensitivity. Overall the model explains 41 percent of the variation in the annoyance reported by the 673 survey respondents. The findings both support and extend existing statements in the literature on the antecedents of annoyance.

  1. Computational fire modeling for aircraft fire research

    SciTech Connect

    Nicolette, V.F.

    1996-11-01

    This report summarizes work performed by Sandia National Laboratories for the Federal Aviation Administration. The technical issues involved in fire modeling for aircraft fire research are identified, as well as computational fire tools for addressing those issues, and the research which is needed to advance those tools in order to address long-range needs. Fire field models are briefly reviewed, and the VULCAN model is selected for further evaluation. Calculations are performed with VULCAN to demonstrate its applicability to aircraft fire problems, and also to gain insight into the complex problem of fires involving aircraft. Simulations are conducted to investigate the influence of fire on an aircraft in a cross-wind. The interaction of the fuselage, wind, fire, and ground plane is investigated. Calculations are also performed utilizing a large eddy simulation (LES) capability to describe the large- scale turbulence instead of the more common k-{epsilon} turbulence model. Additional simulations are performed to investigate the static pressure and velocity distributions around a fuselage in a cross-wind, with and without fire. The results of these simulations provide qualitative insight into the complex interaction of a fuselage, fire, wind, and ground plane. Reasonable quantitative agreement is obtained in the few cases for which data or other modeling results exist Finally, VULCAN is used to quantify the impact of simplifying assumptions inherent in a risk assessment compatible fire model developed for open pool fire environments. The assumptions are seen to be of minor importance for the particular problem analyzed. This work demonstrates the utility of using a fire field model for assessing the limitations of simplified fire models. In conclusion, the application of computational fire modeling tools herein provides both qualitative and quantitative insights into the complex problem of aircraft in fires.

  2. 11. VIEW LOOKING EAST AT MODEL AIRCRAFT CONTROL ROOM; MODEL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. VIEW LOOKING EAST AT MODEL AIRCRAFT CONTROL ROOM; MODEL OF BOEING 737 AT TOP OF PHOTOGRAPH IN FULL-SCALE WIND TUNNEL. - NASA Langley Research Center, Full-Scale Wind Tunnel, 224 Hunting Avenue, Hampton, Hampton, VA

  3. Trimming an aircraft model for flight simulation

    NASA Technical Reports Server (NTRS)

    Mcfarland, Richard E.

    1987-01-01

    Real-time piloted aircraft simulations with digital computers have been performed at Ames Research Center (ARC) for over two decades. For the simulation of conventional aircraft models, the establishment of initial vehicle and control orientations at various operational flight regimes has been adequately handled by either analog techniques or simple inversion processes. However, exotic helicopter configurations have been introduced recently that require more sophisticated techniques because of their expanded degrees of freedom and environmental vibration levels. At ARC, these techniques are used for the backward solutions to real-time simulation models as required for the generation of trim points. These techniques are presented in this paper with examples from a blade-element helicopter simulation model.

  4. Identification of aerodynamic models for maneuvering aircraft

    NASA Technical Reports Server (NTRS)

    Chin, Suei; Lan, C. Edward

    1990-01-01

    Due to the requirement of increased performance and maneuverability, the flight envelope of a modern fighter is frequently extended to the high angle-of-attack regime. Vehicles maneuvering in this regime are subjected to nonlinear aerodynamic loads. The nonlinearities are due mainly to three-dimensional separated flow and concentrated vortex flow that occur at large angles of attack. Accurate prediction of these nonlinear airloads is of great importance in the analysis of a vehicle's flight motion and in the design of its flight control system. A satisfactory evaluation of the performance envelope of the aircraft may require a large number of coupled computations, one for each change in initial conditions. To avoid the disadvantage of solving the coupled flow-field equations and aircraft's motion equations, an alternate approach is to use a mathematical modeling to describe the steady and unsteady aerodynamics for the aircraft equations of motion. Aerodynamic forces and moments acting on a rapidly maneuvering aircraft are, in general, nonlinear functions of motion variables, their time rate of change, and the history of maneuvering. A numerical method was developed to analyze the nonlinear and time-dependent aerodynamic response to establish the generalized indicial function in terms of motion variables and their time rates of change.

  5. Modeling aircraft noise induced sleep disturbance

    NASA Astrophysics Data System (ADS)

    McGuire, Sarah M.

    One of the primary impacts of aircraft noise on a community is its disruption of sleep. Aircraft noise increases the time to fall asleep, the number of awakenings, and decreases the amount of rapid eye movement and slow wave sleep. Understanding these changes in sleep may be important as they could increase the risk for developing next-day effects such as sleepiness and reduced performance and long-term health effects such as cardiovascular disease. There are models that have been developed to predict the effect of aircraft noise on sleep. However, most of these models only predict the percentage of the population that is awakened. Markov and nonlinear dynamic models have been developed to predict an individual's sleep structure during the night. However, both of these models have limitations. The Markov model only accounts for whether an aircraft event occurred not the noise level or other sound characteristics of the event that may affect the degree of disturbance. The nonlinear dynamic models were developed to describe normal sleep regulation and do not have a noise effects component. In addition, the nonlinear dynamic models have slow dynamics which make it difficult to predict short duration awakenings which occur both spontaneously and as a result of nighttime noise exposure. The purpose of this research was to examine these sleep structure models to determine how they could be altered to predict the effect of aircraft noise on sleep. Different approaches for adding a noise level dependence to the Markov Model was explored and the modified model was validated by comparing predictions to behavioral awakening data. In order to determine how to add faster dynamics to the nonlinear dynamic sleep models it was necessary to have a more detailed sleep stage classification than was available from visual scoring of sleep data. An automatic sleep stage classification algorithm was developed which extracts different features of polysomnography data including the

  6. A Generic Nonlinear Aerodynamic Model for Aircraft

    NASA Technical Reports Server (NTRS)

    Grauer, Jared A.; Morelli, Eugene A.

    2014-01-01

    A generic model of the aerodynamic coefficients was developed using wind tunnel databases for eight different aircraft and multivariate orthogonal functions. For each database and each coefficient, models were determined using polynomials expanded about the state and control variables, and an othgonalization procedure. A predicted squared-error criterion was used to automatically select the model terms. Modeling terms picked in at least half of the analyses, which totalled 45 terms, were retained to form the generic nonlinear aerodynamic (GNA) model. Least squares was then used to estimate the model parameters and associated uncertainty that best fit the GNA model to each database. Nonlinear flight simulations were used to demonstrate that the GNA model produces accurate trim solutions, local behavior (modal frequencies and damping ratios), and global dynamic behavior (91% accurate state histories and 80% accurate aerodynamic coefficient histories) under large-amplitude excitation. This compact aerodynamics model can be used to decrease on-board memory storage requirements, quickly change conceptual aircraft models, provide smooth analytical functions for control and optimization applications, and facilitate real-time parametric system identification.

  7. Model of aircraft passenger acceptance

    NASA Technical Reports Server (NTRS)

    Jacobson, I. D.

    1978-01-01

    A technique developed to evaluate the passenger response to a transportation system environment is described. Reactions to motion, noise, temperature, seating, ventilation, sudden jolts and descents are modeled. Statistics are presented for the age, sex, occupation, and income distributions of the candidates analyzed. Values are noted for the relative importance of system variables such as time savings, on-time arrival, convenience, comfort, safety, the ability to read and write, and onboard services.

  8. Derivation and definition of a linear aircraft model

    NASA Technical Reports Server (NTRS)

    Duke, Eugene L.; Antoniewicz, Robert F.; Krambeer, Keith D.

    1988-01-01

    A linear aircraft model for a rigid aircraft of constant mass flying over a flat, nonrotating earth is derived and defined. The derivation makes no assumptions of reference trajectory or vehicle symmetry. The linear system equations are derived and evaluated along a general trajectory and include both aircraft dynamics and observation variables.

  9. Aircraft engine mathematical model - linear system approach

    NASA Astrophysics Data System (ADS)

    Rotaru, Constantin; Roateşi, Simona; Cîrciu, Ionicǎ

    2016-06-01

    This paper examines a simplified mathematical model of the aircraft engine, based on the theory of linear and nonlinear systems. The dynamics of the engine was represented by a linear, time variant model, near a nominal operating point within a finite time interval. The linearized equations were expressed in a matrix form, suitable for the incorporation in the MAPLE program solver. The behavior of the engine was included in terms of variation of the rotational speed following a deflection of the throttle. The engine inlet parameters can cover a wide range of altitude and Mach numbers.

  10. The Corporate University Model for Continuous Learning, Training and Development.

    ERIC Educational Resources Information Center

    El-Tannir, Akram A.

    2002-01-01

    Corporate universities typically convey corporate culture and provide systematic curriculum aimed at achieving strategic objectives. Virtual access and company-specific content combine to provide opportunities for continuous and active learning, a model that is becoming pervasive. (Contains 17 references.) (SK)

  11. 77 FR 2437 - Special Conditions: Gulfstream Aerospace Corporation, Model GVI Airplane; Rechargeable Lithium...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-18

    ... Administration 14 CFR Part 25 Special Conditions: Gulfstream Aerospace Corporation, Model GVI Airplane... conditions are issued for the Gulfstream Aerospace Corporation (GAC) Model GVI airplane. This airplane...

  12. An aircraft noise pollution model for trajectory optimization

    NASA Technical Reports Server (NTRS)

    Barkana, A.; Cook, G.

    1976-01-01

    A mathematical model describing the generation of aircraft noise is developed with the ultimate purpose of reducing noise (noise-optimizing landing trajectories) in terminal areas. While the model is for a specific aircraft (Boeing 737), the methodology would be applicable to a wide variety of aircraft. The model is used to obtain a footprint on the ground inside of which the noise level is at or above 70 dB.

  13. Aircraft Noise Definition. Individual Aircraft Technical Data-Model 707

    DTIC Science & Technology

    1973-12-01

    Department of Tranportation in the interest of information exchange. The United States Government assumes no liability for Its contents or we threof...Performance Computer Program". !4 - I;I ;I § I! |I’ i I ~~~I PAG& .....¶ - 2.0 SUMMARY The purpose of this document is to provide the necessary information...bleeds off. The "Intermediate Stage Boeing Proprietary Computer • Program" operates on the certified parameters for each of the above aircraft/engine

  14. Modeling of aircraft unsteady aerodynamic characteristics. Part 1: Postulated models

    NASA Technical Reports Server (NTRS)

    Klein, Vladislav; Noderer, Keith D.

    1994-01-01

    A short theoretical study of aircraft aerodynamic model equations with unsteady effects is presented. The aerodynamic forces and moments are expressed in terms of indicial functions or internal state variables. The first representation leads to aircraft integro-differential equations of motion; the second preserves the state-space form of the model equations. The formulations of unsteady aerodynamics is applied in two examples. The first example deals with a one-degree-of-freedom harmonic motion about one of the aircraft body axes. In the second example, the equations for longitudinal short-period motion are developed. In these examples, only linear aerodynamic terms are considered. The indicial functions are postulated as simple exponentials and the internal state variables are governed by linear, time-invariant, first-order differential equations. It is shown that both approaches to the modeling of unsteady aerodynamics lead to identical models.

  15. Damage Propagation Modeling for Aircraft Engine Prognostics

    NASA Technical Reports Server (NTRS)

    Saxena, Abhinav; Goebel, Kai; Simon, Don; Eklund, Neil

    2008-01-01

    This paper describes how damage propagation can be modeled within the modules of aircraft gas turbine engines. To that end, response surfaces of all sensors are generated via a thermo-dynamical simulation model for the engine as a function of variations of flow and efficiency of the modules of interest. An exponential rate of change for flow and efficiency loss was imposed for each data set, starting at a randomly chosen initial deterioration set point. The rate of change of the flow and efficiency denotes an otherwise unspecified fault with increasingly worsening effect. The rates of change of the faults were constrained to an upper threshold but were otherwise chosen randomly. Damage propagation was allowed to continue until a failure criterion was reached. A health index was defined as the minimum of several superimposed operational margins at any given time instant and the failure criterion is reached when health index reaches zero. Output of the model was the time series (cycles) of sensed measurements typically available from aircraft gas turbine engines. The data generated were used as challenge data for the Prognostics and Health Management (PHM) data competition at PHM 08.

  16. The Aircraft Availability Model: Conceptual Framework and Mathematics

    DTIC Science & Technology

    1983-06-01

    THE AIRCRAFT AVAILABILITY MODEL: CONCEPTUAL FRAMEWORK AND MATHEMATICS June 1983 T. J. O’Malley Prepared pursuant to Department of Defense Contract No...OF REPORT & PERIOD COVERED The Aircraft Availability Model: Model Documentation Conceptual Framework and Mathematics 6. PERFORMING ORG. REPORT NUMBER

  17. Aircraft Anomaly Detection Using Performance Models Trained on Fleet Data

    NASA Technical Reports Server (NTRS)

    Gorinevsky, Dimitry; Matthews, Bryan L.; Martin, Rodney

    2012-01-01

    This paper describes an application of data mining technology called Distributed Fleet Monitoring (DFM) to Flight Operational Quality Assurance (FOQA) data collected from a fleet of commercial aircraft. DFM transforms the data into aircraft performance models, flight-to-flight trends, and individual flight anomalies by fitting a multi-level regression model to the data. The model represents aircraft flight performance and takes into account fixed effects: flight-to-flight and vehicle-to-vehicle variability. The regression parameters include aerodynamic coefficients and other aircraft performance parameters that are usually identified by aircraft manufacturers in flight tests. Using DFM, the multi-terabyte FOQA data set with half-million flights was processed in a few hours. The anomalies found include wrong values of competed variables, (e.g., aircraft weight), sensor failures and baises, failures, biases, and trends in flight actuators. These anomalies were missed by the existing airline monitoring of FOQA data exceedances.

  18. An improved source model for aircraft interior noise studies

    NASA Technical Reports Server (NTRS)

    Mahan, J. R.; Fuller, C. R.

    1985-01-01

    There is concern that advanced turboprop engines currently being developed may produce excessive aircraft cabin noise level. This concern has stimulated renewed interest in developing aircraft interior noise reduction methods that do not significnatly increase take off weight. An existing analytical model for noise transmission into aircraft cabins was utilized to investigate the behavior of an improved propeller source model for use in aircraft interior noise studies. The new source model, a virtually rotating dipole, is shown to adequately match measured fuselage sound pressure distributions, including the correct phase relationships, for published data. The virtually rotating dipole is used to study the sensitivity of synchrophasing effectiveness to the fuselage sound pressure trace velocity distribution. Results of calculations are presented which reveal the importance of correctly modeling the surface pressure phase relations in synchrophasing and other aircraft interior noise studies.

  19. An improved source model for aircraft interior noise studies

    NASA Technical Reports Server (NTRS)

    Mahan, J. R.; Fuller, C. R.

    1985-01-01

    There is concern that advanced turboprop engines currently being developed may produce excessive aircraft cabin noise levels. This concern has stimulated renewed interest in developing aircraft interior noise reduction methods that do not significantly increase take off weight. An existing analytical model for noise transmission into aircraft cabins was utilized to investigate the behavior of an improved propeller source model for use in aircraft interior noise studies. The new source model, a virtually rotating dipole, is shown to adequately match measured fuselage sound pressure distributions, including the correct phase relationships, for published data. The virtually rotating dipole is used to study the sensitivity of synchrophasing effectiveness to the fuselage sound pressure trace velocity distribution. Results of calculations are presented which reveal the importance of correctly modeling the surface pressure phase relations in synchrophasing and other aircraft interior noise studies.

  20. Simulation Tools Model Icing for Aircraft Design

    NASA Technical Reports Server (NTRS)

    2012-01-01

    Here s a simple science experiment to try: Place an unopened bottle of distilled water in your freezer. After 2-3 hours, if the water is pure enough, you will notice that it has not frozen. Carefully pour the water into a bowl with a piece of ice in it. When it strikes the ice, the water will instantly freeze. One of the most basic and commonly known scientific facts is that water freezes at around 32 F. But this is not always the case. Water lacking any impurities for ice crystals to form around can be supercooled to even lower temperatures without freezing. High in the atmosphere, water droplets can achieve this delicate, supercooled state. When a plane flies through clouds containing these droplets, the water can strike the airframe and, like the supercooled water hitting the ice in the experiment above, freeze instantly. The ice buildup alters the aerodynamics of the plane - reducing lift and increasing drag - affecting its performance and presenting a safety issue if the plane can no longer fly effectively. In certain circumstances, ice can form inside aircraft engines, another potential hazard. NASA has long studied ways of detecting and countering atmospheric icing conditions as part of the Agency s efforts to enhance aviation safety. To do this, the Icing Branch at Glenn Research Center utilizes a number of world-class tools, including the Center s Icing Research Tunnel and the NASA 607 icing research aircraft, a "flying laboratory" for studying icing conditions. The branch has also developed a suite of software programs to help aircraft and icing protection system designers understand the behavior of ice accumulation on various surfaces and in various conditions. One of these innovations is the LEWICE ice accretion simulation software. Initially developed in the 1980s (when Glenn was known as Lewis Research Center), LEWICE has become one of the most widely used tools in icing research and aircraft design and certification. LEWICE has been transformed over

  1. 77 FR 64693 - Airworthiness Directives; Hawker Beechcraft Corporation Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-23

    ...-17221; AD 2012-21-05] RIN 2120-AA64 Airworthiness Directives; Hawker Beechcraft Corporation Airplanes... airworthiness directive (AD) for certain Hawker Beechcraft Corporation Model G58 airplanes. This AD was prompted by notification from Hawker Beechcraft Corporation that certain affected aircraft were produced...

  2. Aircraft

    DOEpatents

    Hibbs, B.D.; Lissaman, P.B.S.; Morgan, W.R.; Radkey, R.L.

    1998-09-22

    This disclosure provides a solar rechargeable aircraft that is inexpensive to produce, is steerable, and can remain airborne almost indefinitely. The preferred aircraft is a span-loaded flying wing, having no fuselage or rudder. Travelling at relatively slow speeds, and having a two-hundred foot wingspan that mounts photovoltaic cells on most all of the wing`s top surface, the aircraft uses only differential thrust of its eight propellers to turn. Each of five sections of the wing has one or more engines and photovoltaic arrays, and produces its own lift independent of the other sections, to avoid loading them. Five two-sided photovoltaic arrays, in all, are mounted on the wing, and receive photovoltaic energy both incident on top of the wing, and which is incident also from below, through a bottom, transparent surface. The aircraft is capable of a top speed of about ninety miles per hour, which enables the aircraft to attain and can continuously maintain altitudes of up to sixty-five thousand feet. Regenerative fuel cells in the wing store excess electricity for use at night, such that the aircraft can sustain its elevation indefinitely. A main spar of the wing doubles as a pressure vessel that houses hydrogen and oxygen gases for use in the regenerative fuel cell. The aircraft has a wide variety of applications, which include weather monitoring and atmospheric testing, communications, surveillance, and other applications as well. 31 figs.

  3. Aircraft

    DOEpatents

    Hibbs, Bart D.; Lissaman, Peter B. S.; Morgan, Walter R.; Radkey, Robert L.

    1998-01-01

    This disclosure provides a solar rechargeable aircraft that is inexpensive to produce, is steerable, and can remain airborne almost indefinitely. The preferred aircraft is a span-loaded flying wing, having no fuselage or rudder. Travelling at relatively slow speeds, and having a two-hundred foot wingspan that mounts photovoltaic cells on most all of the wing's top surface, the aircraft uses only differential thrust of its eight propellers to turn. Each of five sections of the wing has one or more engines and photovoltaic arrays, and produces its own lift independent of the other sections, to avoid loading them. Five two-sided photovoltaic arrays, in all, are mounted on the wing, and receive photovoltaic energy both incident on top of the wing, and which is incident also from below, through a bottom, transparent surface. The aircraft is capable of a top speed of about ninety miles per hour, which enables the aircraft to attain and can continuously maintain altitudes of up to sixty-five thousand feet. Regenerative fuel cells in the wing store excess electricity for use at night, such that the aircraft can sustain its elevation indefinitely. A main spar of the wing doubles as a pressure vessel that houses hydrogen and oxygen gasses for use in the regenerative fuel cell. The aircraft has a wide variety of applications, which include weather monitoring and atmospheric testing, communications, surveillance, and other applications as well.

  4. Modeling Public School Partnerships: Merging Corporate and Community Issues.

    ERIC Educational Resources Information Center

    Clark, Cynthia E.; Brill, Dale A.

    This paper describes a model that merges corporate community relations strategy and public relations pedagogy to accelerate the rate at which Internet-based technologies are integrated into the public schools system. The model provides Internet-based training for a select group of Key Contacts drawn from two urban middle schools. Training is…

  5. Analysis and testing of aeroelastic model stability augmentation systems. [for supersonic transport aircraft wing and B-52 aircraft control system

    NASA Technical Reports Server (NTRS)

    Sevart, F. D.; Patel, S. M.

    1973-01-01

    Testing and evaluation of a stability augmentation system for aircraft flight control were performed. The flutter suppression system and synthesis conducted on a scale model of a supersonic wing for a transport aircraft are discussed. Mechanization and testing of the leading and trailing edge surface actuation systems are described. The ride control system analyses for a 375,000 pound gross weight B-52E aircraft are presented. Analyses of the B-52E aircraft maneuver load control system are included.

  6. Infrared Signature Modeling and Analysis of Aircraft Plume

    NASA Astrophysics Data System (ADS)

    Rao, Arvind G.

    2011-09-01

    In recent years, the survivability of an aircraft has been put to task more than ever before. One of the main reasons is the increase in the usage of Infrared (IR) guided Anti-Aircraft Missiles, especially due to the availability of Man Portable Air Defence System (MANPADS) with some terrorist groups. Thus, aircraft IR signatures are gaining more importance as compared to their radar, visual, acoustic, or any other signatures. The exhaust plume ejected from the aircraft is one of the important sources of IR signature in military aircraft that use low bypass turbofan engines for propulsion. The focus of the present work is modelling of spectral IR radiation emission from the exhaust jet of a typical military aircraft and to evaluate the aircraft susceptibility in terms of the aircraft lock-on range due to its plume emission, for a simple case against a typical Surface to Air Missile (SAM). The IR signature due to the aircraft plume is examined in a holistic manner. A comprehensive methodology of computing IR signatures and its affect on aircraft lock-on range is elaborated. Commercial CFD software has been used to predict the plume thermo-physical properties and subsequently an in-house developed code was used for evaluating the IR radiation emitted by the plume. The LOWTRAN code has been used for modeling the atmospheric IR characteristics. The results obtained from these models are in reasonable agreement with some available experimental data. The analysis carried out in this paper succinctly brings out the intricacy of the radiation emitted by various gaseous species in the plume and the role of atmospheric IR transmissivity in dictating the plume IR signature as perceived by an IR guided SAM.

  7. Propeller aircraft interior noise model utilization study and validation

    NASA Technical Reports Server (NTRS)

    Pope, L. D.

    1984-01-01

    Utilization and validation of a computer program designed for aircraft interior noise prediction is considered. The program, entitled PAIN (an acronym for Propeller Aircraft Interior Noise), permits (in theory) predictions of sound levels inside propeller driven aircraft arising from sidewall transmission. The objective of the work reported was to determine the practicality of making predictions for various airplanes and the extent of the program's capabilities. The ultimate purpose was to discern the quality of predictions for tonal levels inside an aircraft occurring at the propeller blade passage frequency and its harmonics. The effort involved three tasks: (1) program validation through comparisons of predictions with scale-model test results; (2) development of utilization schemes for large (full scale) fuselages; and (3) validation through comparisons of predictions with measurements taken in flight tests on a turboprop aircraft. Findings should enable future users of the program to efficiently undertake and correctly interpret predictions.

  8. Modeling Programs Increase Aircraft Design Safety

    NASA Technical Reports Server (NTRS)

    2012-01-01

    Flutter may sound like a benign word when associated with a flag in a breeze, a butterfly, or seaweed in an ocean current. When used in the context of aerodynamics, however, it describes a highly dangerous, potentially deadly condition. Consider the case of the Lockheed L-188 Electra Turboprop, an airliner that first took to the skies in 1957. Two years later, an Electra plummeted to the ground en route from Houston to Dallas. Within another year, a second Electra crashed. In both cases, all crew and passengers died. Lockheed engineers were at a loss as to why the planes wings were tearing off in midair. For an answer, the company turned to NASA s Transonic Dynamics Tunnel (TDT) at Langley Research Center. At the time, the newly renovated wind tunnel offered engineers the capability of testing aeroelastic qualities in aircraft flying at transonic speeds near or just below the speed of sound. (Aeroelasticity is the interaction between aerodynamic forces and the structural dynamics of an aircraft or other structure.) Through round-the-clock testing in the TDT, NASA and industry researchers discovered the cause: flutter. Flutter occurs when aerodynamic forces acting on a wing cause it to vibrate. As the aircraft moves faster, certain conditions can cause that vibration to multiply and feed off itself, building to greater amplitudes until the flutter causes severe damage or even the destruction of the aircraft. Flutter can impact other structures as well. Famous film footage of the Tacoma Narrows Bridge in Washington in 1940 shows the main span of the bridge collapsing after strong winds generated powerful flutter forces. In the Electra s case, faulty engine mounts allowed a type of flutter known as whirl flutter, generated by the spinning propellers, to transfer to the wings, causing them to vibrate violently enough to tear off. Thanks to the NASA testing, Lockheed was able to correct the Electra s design flaws that led to the flutter conditions and return the

  9. Rapid Automated Aircraft Simulation Model Updating from Flight Data

    NASA Technical Reports Server (NTRS)

    Brian, Geoff; Morelli, Eugene A.

    2011-01-01

    Techniques to identify aircraft aerodynamic characteristics from flight measurements and compute corrections to an existing simulation model of a research aircraft were investigated. The purpose of the research was to develop a process enabling rapid automated updating of aircraft simulation models using flight data and apply this capability to all flight regimes, including flight envelope extremes. The process presented has the potential to improve the efficiency of envelope expansion flight testing, revision of control system properties, and the development of high-fidelity simulators for pilot training.

  10. America's First Corporate Public School: Model for Education Reform?

    ERIC Educational Resources Information Center

    Bentley, Carol L.

    In September 1988, the Corporate Community Schools of America (C/CSA) opened its first model school in Chicago's North Lawndale, an innercity neighborhood scarred by deprivation, violence, and hopelessness. After briefly describing the school's laboratory approach, this report defines C/CSA's philosophy, goals, and educational plan and refers to…

  11. Probabilistic Modeling of Aircraft Trajectories for Dynamic Separation Volumes

    NASA Technical Reports Server (NTRS)

    Lewis, Timothy A.

    2016-01-01

    With a proliferation of new and unconventional vehicles and operations expected in the future, the ab initio airspace design will require new approaches to trajectory prediction for separation assurance and other air traffic management functions. This paper presents an approach to probabilistic modeling of the trajectory of an aircraft when its intent is unknown. The approach uses a set of feature functions to constrain a maximum entropy probability distribution based on a set of observed aircraft trajectories. This model can be used to sample new aircraft trajectories to form an ensemble reflecting the variability in an aircraft's intent. The model learning process ensures that the variability in this ensemble reflects the behavior observed in the original data set. Computational examples are presented.

  12. An economic model for evaluating high-speed aircraft designs

    NASA Technical Reports Server (NTRS)

    Vandervelden, Alexander J. M.

    1989-01-01

    A Class 1 method for determining whether further development of a new aircraft design is desirable from all viewpoints is presented. For the manufacturer the model gives an estimate of the total cost of research and development from the preliminary design to the first production aircraft. Using Wright's law of production, one can derive the average cost per aircraft produced for a given break-even number. The model will also provide the airline with a good estimate of the direct and indirect operating costs. From the viewpoint of the passenger, the model proposes a tradeoff between ticket price and cruise speed. Finally all of these viewpoints are combined in a Comparative Aircraft Seat-kilometer Economic Index.

  13. 1/48-scale model of an F-18 aircraft in Flow Visualization Facility (FVF)

    NASA Technical Reports Server (NTRS)

    1985-01-01

    This image shows a plastic 1/48-scale model of an F-18 aircraft inside the 'Water Tunnel' more formally known as the NASA Dryden Flow Visualization Facility. Water is pumped through the tunnel in the direction of normal airflow over the aircraft; then, colored dyes are pumped through tubes with needle valves. The dyes flow back along the airframe and over the airfoils highlighting their aerodynamic characteristics. The aircraft can also be moved through its pitch axis to observe airflow disruptions while simulating actual flight at high angles of attack. The Water Tunnel at NASA's Dryden Flight Research Center, Edwards, CA, became operational in 1983 when Dryden was a Flight Research Facility under the management of the Ames Research Center in Mountain View, CA. As a medium for visualizing fluid flow, water has played a significant role. Its use dates back to Leonardo da Vinci (1452-1519), the Renaissance Italian engineer, architect, painter, and sculptor. In more recent times, water tunnels have assisted the study of complex flows and flow-field interactions on aircraft shapes that generate strong vortex flows. Flow visualization in water tunnels assists in determining the strength of vortices, their location, and possible methods of controlling them. The design of the Dryden Water Tunnel imitated that of the Northrop Corporation's tunnel in Hawthorne, CA. Called the Flow Visualization Facility, the Dryden tunnel was built to assist researchers in understanding the aerodynamics of aircraft configured in such a way that they create strong vortex flows, particularly at high angles of attack. The tunnel provides results that compare well with data from aircraft in actual flight in another fluid-air. Other uses of the tunnel have included study of how such flight hardware as antennas, probes, pylons, parachutes, and experimental fixtures affect airflow. The facility has also been helpful in finding the best locations for emitting smoke from flight vehicles for flow

  14. 1/48-scale model of an F-18 aircraft in Flow Visualization Facility (FVF)

    NASA Technical Reports Server (NTRS)

    1980-01-01

    This short movie clip shows a plastic 1/48-scale model of an F-18 aircraft inside the 'Water Tunnel' more formally known as the NASA Dryden Flow Visualization Facility. Water is pumped through the tunnel in the direction of normal airflow over the aircraft; then, colored dyes are pumped through tubes with needle valves. The dyes flow back along the airframe and over the airfoils highlighting their aerodynamic characteristics. The aircraft can also be moved through its pitch axis to observe airflow disruptions while simulating actual flight at high angles of attack. The Water Tunnel at NASA's Dryden Flight Research Center, Edwards, CA, became operational in 1983 when Dryden was a Flight Research Facility under the management of the Ames Research Center in Mountain View, CA. As a medium for visualizing fluid flow, water has played a significant role. Its use dates back to Leonardo da Vinci (1452-1519), the Renaissance Italian engineer, architect, painter, and sculptor. In more recent times, water tunnels have assisted the study of complex flows and flow-field interactions on aircraft shapes that generate strong vortex flows. Flow visualization in water tunnels assists in determining the strength of vortices, their location, and possible methods of controlling them. The design of the Dryden Water Tunnel imitated that of the Northrop Corporation's tunnel in Hawthorne, CA. Called the Flow Visualization Facility, the Dryden tunnel was built to assist researchers in understanding the aerodynamics of aircraft configured in such a way that they create strong vortex flows, particularly at high angles of attack. The tunnel provides results that compare well with data from aircraft in actual flight in another fluid-air. Other uses of the tunnel have included study of how such flight hardware as antennas, probes, pylons, parachutes, and experimental fixtures affect airflow. The facility has also been helpful in finding the best locations for emitting smoke from flight vehicles

  15. Aircraft

    DTIC Science & Technology

    2003-01-01

    national power. But with the recent events such as the war with Iraq, the Severe Acute Respiratory Syndrome (SARS) outbreak, some major carriers... TITLE AND SUBTITLE 2003 Industry Studies: Aircraft 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER

  16. Composite Aircraft Life Cycle Cost Estimating Model

    DTIC Science & Technology

    2011-03-01

    the new Boeing 787 Dreamliner , the 15 company has become a leader in composite...aircraft manufacturing. Boeing reports that the new 787 Dreamliner will be composed of 80% of composite material by structure and 50% of composites...for Boeing to incorporate composites into a significant percentage of the structure of the 787 Dreamliner . Looking at Figure 1 it is evident

  17. An aircraft model for the AIAA controls design challenge

    NASA Technical Reports Server (NTRS)

    Brumbaugh, Randal W.

    1991-01-01

    A generic, state-of-the-art, high-performance aircraft model, including detailed, full-envelope, nonlinear aerodynamics, and full-envelope thrust and first-order engine response data is described. While this model was primarily developed Controls Design Challenge, the availability of such a model provides a common focus for research in aeronautical control theory and methodology. An implementation of this model using the FORTRAN computer language, associated routines furnished with the aircraft model, and techniques for interfacing these routines to external procedures is also described. Figures showing vehicle geometry, surfaces, and sign conventions are included.

  18. Corporate and philanthropic models of hospital governance: a taxonomic evaluation.

    PubMed Central

    Weiner, B J; Alexander, J A

    1993-01-01

    OBJECTIVE. We assess the theoretical integrity and practical utility of the corporate-philanthropic governance typology frequently invoked in debates about the appropriate form of governance for nonprofit hospitals operating in increasingly competitive health care environments. DATA SOURCES. Data were obtained from a 1985 national mailed survey of nonprofit hospitals conducted by the American Hospital Association (AHA) and the Hospital Research and Educational Trust (HRET). STUDY DESIGN. A sample 1,577 nonprofit community hospitals were selected for study. Representativeness was assessed by comparing the sample with the population of non-profit community hospitals on the dimensions of bed size, ownership type, urban-rural location, multihospital system membership, and census region. DATA COLLECTION. Measurement of governance types was based on hospital governance attributes conforming to those cited in the literature as distinguishing corporate from philanthropic models and classified into six central dimensions of governance: (1) size, (2) committee structure and activity, (3) board member selection, (4) board composition, (5) CEO power and influence, and (6) bylaws and activities. PRINCIPAL FINDINGS. Cluster analysis and ANCOVA indicated that hospital board forms adhered only partially to corporate and philanthropic governance models. Further, board forms varied systematically by specific organizational and environmental conditions. Boards exhibiting more corporate governance forms were more likely to be large, privately owned, urban, and operating in competitive markets than were hospitals showing more philanthropic governance forms. CONCLUSIONS. Findings suggest that the corporate-philanthropic governance distinction must be seen as an ideal rather than an actual depiction of hospital governance forms. Implications for health care governance are discussed. PMID:8344823

  19. 76 FR 71865 - Special Conditions: Gulfstream Aerospace Corporation, Model GVI Airplane; Windshield Coating in...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-21

    ... Administration 14 CFR Part 25 Special Conditions: Gulfstream Aerospace Corporation, Model GVI Airplane... Aerospace Corporation Model GVI airplane. This airplane will have a novel or unusual design feature(s..., Gulfstream Aerospace Corporation (GAC) applied for an FAA type certificate for its new Model GVI...

  20. Combustion system CFD modeling at GE Aircraft Engines

    NASA Technical Reports Server (NTRS)

    Burrus, D.; Mongia, H.; Tolpadi, Anil K.; Correa, S.; Braaten, M.

    1995-01-01

    This viewgraph presentation discusses key features of current combustion system CFD modeling capabilities at GE Aircraft Engines provided by the CONCERT code; CONCERT development history; modeling applied for designing engine combustion systems; modeling applied to improve fundamental understanding; CONCERT3D results for current production combustors; CONCERT3D model of NASA/GE E3 combustor; HYBRID CONCERT CFD/Monte-Carlo modeling approach; and future modeling directions.

  1. Automatic Dynamic Aircraft Modeler (ADAM) for the Computer Program NASTRAN

    NASA Technical Reports Server (NTRS)

    Griffis, H.

    1985-01-01

    Large general purpose finite element programs require users to develop large quantities of input data. General purpose pre-processors are used to decrease the effort required to develop structural models. Further reduction of effort can be achieved by specific application pre-processors. Automatic Dynamic Aircraft Modeler (ADAM) is one such application specific pre-processor. General purpose pre-processors use points, lines and surfaces to describe geometric shapes. Specifying that ADAM is used only for aircraft structures allows generic structural sections, wing boxes and bodies, to be pre-defined. Hence with only gross dimensions, thicknesses, material properties and pre-defined boundary conditions a complete model of an aircraft can be created.

  2. Modeling procedures for handling qualities evaluation of flexible aircraft

    NASA Technical Reports Server (NTRS)

    Govindaraj, K. S.; Eulrich, B. J.; Chalk, C. R.

    1981-01-01

    This paper presents simplified modeling procedures to evaluate the impact of flexible modes and the unsteady aerodynamic effects on the handling qualities of Supersonic Cruise Aircraft (SCR). The modeling procedures involve obtaining reduced order transfer function models of SCR vehicles, including the important flexible mode responses and unsteady aerodynamic effects, and conversion of the transfer function models to time domain equations for use in simulations. The use of the modeling procedures is illustrated by a simple example.

  3. A corporate workplace model for ergonomic assessments and improvements.

    PubMed

    Törnström, Linda; Amprazis, Joakim; Christmansson, Marita; Eklund, Jörgen

    2008-03-01

    Several companies have developed their own company-specific models for ergonomic improvements. This study aims to describe and identify factors supporting and hindering the implementation and application of one such corporate model for ergonomic assessment and improvement. The model has been developed by Volvo Car Corporation and implemented at an assembly plant in Göteborg, Sweden. The model is unique as it is intended to be used by production engineers and safety representatives in cooperation. The process for assessment of musculoskeletal risks is standardised and participatory, which also supports identification of solutions. Interviews, questionnaires, observation and document studies were used to evaluate the use of the model. The model was found to improve participation and collaboration among stakeholders; provide a more effective ergonomic improvement process; visually represent the ergonomics situation in the company; and give legitimacy to and awareness of ergonomics. However, the model was found to be rather resource demanding and dependent on support from management and unions. In particular, a substantial training programme and regular use of the model are needed.

  4. Calculations of hot gas ingestion for a STOVL aircraft model

    NASA Technical Reports Server (NTRS)

    Fricker, David M.; Holdeman, James D.; Vanka, Surya P.

    1992-01-01

    Hot gas ingestion problems for Short Take-Off, Vertical Landing (STOVL) aircraft are typically approached with empirical methods and experience. In this study, the hot gas environment around a STOVL aircraft was modeled as multiple jets in crossflow with inlet suction. The flow field was calculated with a Navier-Stokes, Reynolds-averaged, turbulent, 3D computational fluid dynamics code using a multigrid technique. A simple model of a STOVL aircraft with four choked jets at 1000 K was studied at various heights, headwind speeds, and thrust splay angles in a modest parametric study. Scientific visualization of the computed flow field shows a pair of vortices in front of the inlet. This and other qualitative aspects of the flow field agree well with experimental data.

  5. Model Order Reduction of Aeroservoelastic Model of Flexible Aircraft

    NASA Technical Reports Server (NTRS)

    Wang, Yi; Song, Hongjun; Pant, Kapil; Brenner, Martin J.; Suh, Peter

    2016-01-01

    This paper presents a holistic model order reduction (MOR) methodology and framework that integrates key technological elements of sequential model reduction, consistent model representation, and model interpolation for constructing high-quality linear parameter-varying (LPV) aeroservoelastic (ASE) reduced order models (ROMs) of flexible aircraft. The sequential MOR encapsulates a suite of reduction techniques, such as truncation and residualization, modal reduction, and balanced realization and truncation to achieve optimal ROMs at grid points across the flight envelope. The consistence in state representation among local ROMs is obtained by the novel method of common subspace reprojection. Model interpolation is then exploited to stitch ROMs at grid points to build a global LPV ASE ROM feasible to arbitrary flight condition. The MOR method is applied to the X-56A MUTT vehicle with flexible wing being tested at NASA/AFRC for flutter suppression and gust load alleviation. Our studies demonstrated that relative to the fullorder model, our X-56A ROM can accurately and reliably capture vehicles dynamics at various flight conditions in the target frequency regime while the number of states in ROM can be reduced by 10X (from 180 to 19), and hence, holds great promise for robust ASE controller synthesis and novel vehicle design.

  6. Modeling of Wake-vortex Aircraft Encounters. Appendix B

    NASA Technical Reports Server (NTRS)

    Smith, Sonya T.

    1999-01-01

    There are more people passing through the world's airports today than at any other time in history. With this increase in civil transport, airports are becoming capacity limited. In order to increase capacity and thus meet the demands of the flying public, the number of runways and number of flights per runway must be increased. In response to the demand, the National Aeronautics and Space Administration (NASA), in conjunction with the Federal Aviation Administration (FAA), airport operators, and the airline industry are taking steps to increase airport capacity without jeopardizing safety. Increasing the production per runway increases the likelihood that an aircraft will encounter the trailing wake-vortex of another aircraft. The hazard of a wake-vortex encounter is that heavy load aircraft can produce high intensity wake turbulence, through the development of its wing-tip vortices. A smaller aircraft following in the wake of the heavy load aircraft will experience redistribution of its aerodynamic load. This creates a safety hazard for the smaller aircraft. Understanding this load redistribution is of great importance, particularly during landing and take-off. In this research wake-vortex effects on an encountering 10% scale model of the B737-100 aircraft are modeled using both strip theory and vortex-lattice modeling methods. The models are then compared to wind tunnel data that was taken in the 30ft x 60ft wind tunnel at NASA Langley Research Center (LaRC). Comparisons are made to determine if the models will have acceptable accuracy when parts of the geometry are removed, such as the horizontal stabilizer and the vertical tail. A sensitivity analysis was also performed to observe how accurately the models could match the experimental data if there was a 10% error in the circulation strength. It was determined that both models show accurate results when the wing, horizontal stabilizer, and vertical tail were a part of the geometry. When the horizontal

  7. Chemical Leasing business models and corporate social responsibility.

    PubMed

    Moser, Frank; Jakl, Thomas; Joas, Reihard; Dondi, Francesco

    2014-11-01

    Chemical Leasing is a service-oriented business model that shifts the focus from increasing sales volume of chemicals towards a value-added approach. Recent pilot projects have shown the economic benefits of introducing Chemical Leasing business models in a broad range of sectors. A decade after its introduction, the promotion of Chemical Leasing is still predominantly done by the public sector and international organizations. We show in this paper that awareness-raising activities to disseminate information on this innovative business model mainly focus on the economic benefits. We argue that selling Chemical Leasing business models solely on the grounds of economic and ecological considerations falls short of branding it as a corporate social responsibility initiative, which, for this paper, is defined as a stakeholder-oriented concept that extends beyond the organization's boundaries and is driven by an ethical understanding of the organization's responsibility for the impact of its business activities. For the analysis of Chemical Leasing business models, we introduce two case studies from the water purification and metal degreasing fields, focusing on employees and local communities as two specific stakeholder groups of the company introducing Chemical Leasing. The paper seeks to demonstrate that Chemical Leasing business models can be branded as a corporate social responsibility initiative by outlining the vast potential of Chemical Leasing to improve occupational health and safety and to strengthen the ability of companies to protect the environment from the adverse effects of the chemicals they apply.

  8. Modeling Aircraft Wing Loads from Flight Data Using Neural Networks

    NASA Technical Reports Server (NTRS)

    Allen, Michael J.; Dibley, Ryan P.

    2003-01-01

    Neural networks were used to model wing bending-moment loads, torsion loads, and control surface hinge-moments of the Active Aeroelastic Wing (AAW) aircraft. Accurate loads models are required for the development of control laws designed to increase roll performance through wing twist while not exceeding load limits. Inputs to the model include aircraft rates, accelerations, and control surface positions. Neural networks were chosen to model aircraft loads because they can account for uncharacterized nonlinear effects while retaining the capability to generalize. The accuracy of the neural network models was improved by first developing linear loads models to use as starting points for network training. Neural networks were then trained with flight data for rolls, loaded reversals, wind-up-turns, and individual control surface doublets for load excitation. Generalization was improved by using gain weighting and early stopping. Results are presented for neural network loads models of four wing loads and four control surface hinge moments at Mach 0.90 and an altitude of 15,000 ft. An average model prediction error reduction of 18.6 percent was calculated for the neural network models when compared to the linear models. This paper documents the input data conditioning, input parameter selection, structure, training, and validation of the neural network models.

  9. 76 FR 485 - Airworthiness Directives; Lockheed Martin Corporation/Lockheed Martin Aeronautics Company Model...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-05

    ... Corporation/Lockheed Martin Aeronautics Company Model 382, 382B, 382E, 382F, and 382G Airplanes AGENCY... Martin Corporation/Lockheed Martin Aeronautics Company, Airworthiness Office, Dept. 6A0M, Zone 0252...) and adding the following new AD: Lockheed Martin Corporation/Lockheed Martin Aeronautics...

  10. 76 FR 48049 - Airworthiness Directives; Lockheed Martin Corporation/Lockheed Martin Aeronautics Company Model L...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-08

    ... Corporation/Lockheed Martin Aeronautics Company Model L-1011 Series Airplanes AGENCY: Federal Aviation... Martin Corporation/Lockheed Martin Aeronautics Company, Airworthiness Office, Dept. 6A0M, Zone 0252... Martin Corporation/Lockheed Martin Aeronautics Company: Docket No. FAA-2011-0723; Directorate...

  11. Travelers Edge: A Model on the Cutting Edge of Corporate College Access and Success Support

    ERIC Educational Resources Information Center

    Pell Institute for the Study of Opportunity in Higher Education, 2012

    2012-01-01

    It is intuitive for businesses and corporations to be worried about the nation's economic competitiveness in the globalized marketplace. To help close this income-based degree attainment gap, models of college access and success programs continue to emerge among the corporate sector. For years, many corporations have established internship and/or…

  12. Flight dynamics and control modelling of damaged asymmetric aircraft

    NASA Astrophysics Data System (ADS)

    Ogunwa, T. T.; Abdullah, E. J.

    2016-10-01

    This research investigates the use of a Linear Quadratic Regulator (LQR) controller to assist commercial Boeing 747-200 aircraft regains its stability in the event of damage. Damages cause an aircraft to become asymmetric and in the case of damage to a fraction (33%) of its left wing or complete loss of its vertical stabilizer, the loss of stability may lead to a fatal crash. In this study, aircraft models for the two damage scenarios previously mentioned are constructed using stability derivatives. LQR controller is used as a direct adaptive control design technique for the observable and controllable system. Dynamic stability analysis is conducted in the time domain for all systems in this study.

  13. Finite-difference modeling of commercial aircraft using TSAR

    SciTech Connect

    Pennock, S.T.; Poggio, A.J.

    1994-11-15

    Future aircraft may have systems controlled by fiber optic cables, to reduce susceptibility to electromagnetic interference. However, the digital systems associated with the fiber optic network could still experience upset due to powerful radio stations, radars, and other electromagnetic sources, with potentially serious consequences. We are modeling the electromagnetic behavior of commercial transport aircraft in support of the NASA Fly-by-Light/Power-by-Wire program, using the TSAR finite-difference time-domain code initially developed for the military. By comparing results obtained from TSAR with data taken on a Boeing 757 at the Air Force Phillips Lab., we hope to show that FDTD codes can serve as an important tool in the design and certification of U.S. commercial aircraft, helping American companies to produce safe, reliable air transportation.

  14. Video Analysis of the Flight of a Model Aircraft

    ERIC Educational Resources Information Center

    Tarantino, Giovanni; Fazio, Claudio

    2011-01-01

    A video-analysis software tool has been employed in order to measure the steady-state values of the kinematics variables describing the longitudinal behaviour of a radio-controlled model aircraft during take-off, climbing and gliding. These experimental results have been compared with the theoretical steady-state configurations predicted by the…

  15. A Small Aircraft Transportation System (SATS) Demand Model

    NASA Technical Reports Server (NTRS)

    Long, Dou; Lee, David; Johnson, Jesse; Kostiuk, Peter; Yackovetsky, Robert (Technical Monitor)

    2001-01-01

    The Small Aircraft Transportation System (SATS) demand modeling is a tool that will be useful for decision-makers to analyze SATS demands in both airport and airspace. We constructed a series of models following the general top-down, modular principles in systems engineering. There are three principal models, SATS Airport Demand Model (SATS-ADM), SATS Flight Demand Model (SATS-FDM), and LMINET-SATS. SATS-ADM models SATS operations, by aircraft type, from the forecasts in fleet, configuration and performance, utilization, and traffic mixture. Given the SATS airport operations such as the ones generated by SATS-ADM, SATS-FDM constructs the SATS origin and destination (O&D) traffic flow based on the solution of the gravity model, from which it then generates SATS flights using the Monte Carlo simulation based on the departure time-of-day profile. LMINET-SATS, an extension of LMINET, models SATS demands at airspace and airport by all aircraft operations in US The models use parameters to provide the user with flexibility and ease of use to generate SATS demand for different scenarios. Several case studies are included to illustrate the use of the models, which are useful to identify the need for a new air traffic management system to cope with SATS.

  16. 76 FR 19903 - Special Conditions: Diamond Aircraft Industry Model DA-40NG; Diesel Cycle Engine

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-11

    ... Conditions: Diamond Aircraft Industry Model DA-40NG; Diesel Cycle Engine AGENCY: Federal Aviation... conditions are issued for the Diamond Aircraft Industry (DAI) GmbH model DA-40NG the Austro Engine GmbH model... the postcard and mail it back to you. Background On May 11, 2010 Diamond Aircraft Industry...

  17. On comparison of modeled surface flux variations to aircraft observations.

    SciTech Connect

    Song, J.; Wesely, M. L.; Environmental Research; Northern Illinois Univ.

    2003-07-30

    Evaluation of models of air-surface exchange is facilitated by an accurate match of areas simulated with those seen by micrometeorological flux measurements. Here, spatial variations in fluxes estimated with the parameterized subgrid-scale surface (PASS) flux model were compared to flux variations seen aboard aircraft above the Walnut River Watershed (WRW) in Kansas. Despite interference by atmospheric eddies, the areas where the modeled sensible and latent heat fluxes were most highly correlated with the aircraft flux estimates were upwind of the flight segments. To assess whether applying a footprint function to the surface values would improve the model evaluation, a two-dimensional correlation distribution was used to identify the locations and relative importance of contributing modeled surface pixels upwind of each segment of the flight path. The agreement between modeled surface fluxes and aircraft measurements was improved when upwind fluxes were weighted with an optimized footprint parameter {var_phi}, which can be estimated from wind profiler data and surface eddy covariance. Variations of the flight-observed flux were consistently greater than those modeled at the surface, perhaps because of the smoothing effect of using 1 km pixels in the model. In addition, limited flight legs prevented sufficient filtering of the effects of atmospheric convection, possibly accounting for some of the more prominent changes in fluxes measured along the flight paths.

  18. Aerodynamic Effects and Modeling of Damage to Transport Aircraft

    NASA Technical Reports Server (NTRS)

    Shah, Gautam H.

    2008-01-01

    A wind tunnel investigation was conducted to measure the aerodynamic effects of damage to lifting and stability/control surfaces of a commercial transport aircraft configuration. The modeling of such effects is necessary for the development of flight control systems to recover aircraft from adverse, damage-related loss-of-control events, as well as for the estimation of aerodynamic characteristics from flight data under such conditions. Damage in the form of partial or total loss of area was applied to the wing, horizontal tail, and vertical tail. Aerodynamic stability and control implications of damage to each surface are presented, to aid in the identification of potential boundaries in recoverable stability or control degradation. The aerodynamic modeling issues raised by the wind tunnel results are discussed, particularly the additional modeling requirements necessitated by asymmetries due to damage, and the potential benefits of such expanded modeling.

  19. Integrated Model Reduction and Control of Aircraft with Flexible Wings

    NASA Technical Reports Server (NTRS)

    Swei, Sean Shan-Min; Zhu, Guoming G.; Nguyen, Nhan T.

    2013-01-01

    This paper presents an integrated approach to the modeling and control of aircraft with exible wings. The coupled aircraft rigid body dynamics with a high-order elastic wing model can be represented in a nite dimensional state-space form. Given a set of desired output covariance, a model reduction process is performed by using the weighted Modal Cost Analysis (MCA). A dynamic output feedback controller, which is designed based on the reduced-order model, is developed by utilizing output covariance constraint (OCC) algorithm, and the resulting OCC design weighting matrix is used for the next iteration of the weighted cost analysis. This controller is then validated for full-order evaluation model to ensure that the aircraft's handling qualities are met and the uttering motion of the wings suppressed. An iterative algorithm is developed in CONDUIT environment to realize the integration of model reduction and controller design. The proposed integrated approach is applied to NASA Generic Transport Model (GTM) for demonstration.

  20. Flight Dynamics Modeling and Simulation of a Damaged Transport Aircraft

    NASA Technical Reports Server (NTRS)

    Shah, Gautam H.; Hill, Melissa A.

    2012-01-01

    A study was undertaken at NASA Langley Research Center to establish, demonstrate, and apply methodology for modeling and implementing the aerodynamic effects of MANPADS damage to a transport aircraft into real-time flight simulation, and to demonstrate a preliminary capability of using such a simulation to conduct an assessment of aircraft survivability. Key findings from this study include: superpositioning of incremental aerodynamic characteristics to the baseline simulation aerodynamic model proved to be a simple and effective way of modeling damage effects; the primary effect of wing damage rolling moment asymmetry may limit minimum airspeed for adequate controllability, but this can be mitigated by the use of sideslip; combined effects of aerodynamics, control degradation, and thrust loss can result in significantly degraded controllability for a safe landing; and high landing speeds may be required to maintain adequate control if large excursions from the nominal approach path are allowed, but high-gain pilot control during landing can mitigate this risk.

  1. Corporate psychopathy and the full-range leadership model.

    PubMed

    Mathieu, Cynthia; Neumann, Craig; Babiak, Paul; Hare, Robert D

    2015-06-01

    The B-Scan 360 is a relatively new, purpose-built measure of corporate psychopathy that addresses many of the issues inherent in studying psychopathy in organizations. The primary goal of the present study was to measure the relationship between employees' perception of psychopathic features in their supervisor and their rating of their supervisor on the Full-Range Model of Leadership. The second goal of the study was to test the B-Scan 360's factor structure and test its interrater reliability in an organizational sample. A total of 491 civic employees and 116 employees from a branch of a large financial company completed the B-Scan 360 as well as the Multifactor Leadership Questionnaire on their direct supervisor. The B-Scan 360 and all of its four factors were positively correlated with passive leadership (Laissez-Faire leadership) and negatively correlated with positive leadership (both Transactional and Transformational leadership). Furthermore, results revealed the same four-factor structure and good interrater reliability for the B-Scan 360 in this business sample as previously reported for a general population. Overall, the results provide additional support for the B-Scan 360 as a measure of psychopathic traits in corporate settings.

  2. Finite Element Model Development For Aircraft Fuselage Structures

    NASA Technical Reports Server (NTRS)

    Buehrle, Ralph D.; Fleming, Gary A.; Pappa, Richard S.; Grosveld, Ferdinand W.

    2000-01-01

    The ability to extend the valid frequency range for finite element based structural dynamic predictions using detailed models of the structural components and attachment interfaces is examined for several stiffened aircraft fuselage structures. This extended dynamic prediction capability is needed for the integration of mid-frequency noise control technology. Beam, plate and solid element models of the stiffener components are evaluated. Attachment models between the stiffener and panel skin range from a line along the rivets of the physical structure to a constraint over the entire contact surface. The finite element models are validated using experimental modal analysis results.

  3. Modeling Materials: Design for Planetary Entry, Electric Aircraft, and Beyond

    NASA Technical Reports Server (NTRS)

    Thompson, Alexander; Lawson, John W.

    2014-01-01

    NASA missions push the limits of what is possible. The development of high-performance materials must keep pace with the agency's demanding, cutting-edge applications. Researchers at NASA's Ames Research Center are performing multiscale computational modeling to accelerate development times and further the design of next-generation aerospace materials. Multiscale modeling combines several computationally intensive techniques ranging from the atomic level to the macroscale, passing output from one level as input to the next level. These methods are applicable to a wide variety of materials systems. For example: (a) Ultra-high-temperature ceramics for hypersonic aircraft-we utilized the full range of multiscale modeling to characterize thermal protection materials for faster, safer air- and spacecraft, (b) Planetary entry heat shields for space vehicles-we computed thermal and mechanical properties of ablative composites by combining several methods, from atomistic simulations to macroscale computations, (c) Advanced batteries for electric aircraft-we performed large-scale molecular dynamics simulations of advanced electrolytes for ultra-high-energy capacity batteries to enable long-distance electric aircraft service; and (d) Shape-memory alloys for high-efficiency aircraft-we used high-fidelity electronic structure calculations to determine phase diagrams in shape-memory transformations. Advances in high-performance computing have been critical to the development of multiscale materials modeling. We used nearly one million processor hours on NASA's Pleiades supercomputer to characterize electrolytes with a fidelity that would be otherwise impossible. For this and other projects, Pleiades enables us to push the physics and accuracy of our calculations to new levels.

  4. Identification of aerodynamic models for maneuvering aircraft

    NASA Technical Reports Server (NTRS)

    Lan, C. Edward; Hu, C. C.

    1992-01-01

    The method based on Fourier functional analysis and indicial formulation for aerodynamic modeling as proposed by Chin and Lan is extensively examined and improved for the purpose of general applications to realistic airplane configurations. Improvement is made to automate the calculation of model coefficients, and to evaluate more accurately the indicial integral. Test data of large angle-of-attack ranges for two different models, a 70 deg. delta wing and an F-18 model, are used to further verify the applicability of Fourier functional analysis and validate the indicial formulation. The results show that the general expression for harmonic motions throughout a range of k is capable of accurately modeling the nonlinear responses with large phase lag except in the region where an inconsistent hysteresis behavior from one frequency to the other occurs. The results by the indicial formulation indicate that more accurate results can be obtained when the motion starts from a low angle of attack where hysteresis effect is not important.

  5. Electromagnetic resonances of cylinders and aircraft model with resistive wires

    NASA Technical Reports Server (NTRS)

    Wood, G. W.; Trost, T. F.

    1984-01-01

    The natural frequencies of the electromagnetic resonances of conducting bodies with attached wires were determined. The bodies included twp cylinders and an approximate scale model of the NASA F-106B aircraft. All were three feet in length. Time domain waveforms of B-dot and D-dot were obtained from a sampling oscilloscope, and Prony analysis was used to extract the natural frequencies. The first four natural frequencies of the cylinders (and wires) were determined, and a comparison with calculated results of other investigators shows reasonable agreement. Seven natural frequencies were determined for the F-106B model (with wires), and these were compared with results obtained by NASA in 1982 during direct lightning strikes to the aircraft. The agreement between the corresponding natural frequencies of the model and the aircraft is fairly good and is better than that obtained in the previous work using wires with less resistance. The frequencies lie between 6.5 MHz and 41 MHz, and all of the normalized damping rates are between 0.14 and 0.27.

  6. Validation of Aircraft Noise Models at Lower Levels of Exposure

    NASA Technical Reports Server (NTRS)

    Page, Juliet A.; Plotkin, Kenneth J.; Carey, Jeffrey N.; Bradley, Kevin A.

    1996-01-01

    Noise levels around airports and airbases in the United States arc computed via the FAA's Integrated Noise Model (INM) or the Air Force's NOISEMAP (NMAP) program. These models were originally developed for use in the vicinity of airports, at distances which encompass a day night average sound level in decibels (Ldn) of 65 dB or higher. There is increasing interest in aircraft noise at larger distances from the airport. including en-route noise. To evaluate the applicability of INM and NMAP at larger distances, a measurement program was conducted at a major air carrier airport with monitoring sites located in areas exposed to an Ldn of 55 dB and higher. Automated Radar Terminal System (ARTS) radar tracking data were obtained to provide actual flight parameters and positive identification of aircraft. Flight operations were grouped according to aircraft type. stage length, straight versus curved flight tracks, and arrival versus departure. Sound exposure levels (SEL) were computed at monitoring locations, using the INM, and compared with measured values. While individual overflight SEL data was characterized by a high variance, analysis performed on an energy-averaging basis indicates that INM and similar models can be applied to regions exposed to an Ldn of 55 dB with no loss of reliability.

  7. Identification of aerodynamic models for maneuvering aircraft

    NASA Technical Reports Server (NTRS)

    Lan, C. Edward; Hu, C. C.

    1992-01-01

    A Fourier analysis method was developed to analyze harmonic forced-oscillation data at high angles of attack as functions of the angle of attack and its time rate of change. The resulting aerodynamic responses at different frequencies are used to build up the aerodynamic models involving time integrals of the indicial type. An efficient numerical method was also developed to evaluate these time integrals for arbitrary motions based on a concept of equivalent harmonic motion. The method was verified by first using results from two-dimensional and three-dimensional linear theories. The developed models for C sub L, C sub D, and C sub M based on high-alpha data for a 70 deg delta wing in harmonic motions showed accurate results in reproducing hysteresis. The aerodynamic models are further verified by comparing with test data using ramp-type motions.

  8. Wind Shear Modeling for Aircraft Hazard Definition.

    DTIC Science & Technology

    1978-02-01

    11 . Lewellen , W. S., G. G. Will iamson , and N. E . Teske . “Es tima tes of the Low Level Win d Shear and Turbulence in the Vicinity of Kennedy...E. Teske . “Model Predictions of Wind and Turbines Profiles Associated wi th an Ensemble of Aircraf t Accidents ,” NASA CR-2884, July 1977. 37 2—21

  9. LINEAR - DERIVATION AND DEFINITION OF A LINEAR AIRCRAFT MODEL

    NASA Technical Reports Server (NTRS)

    Duke, E. L.

    1994-01-01

    The Derivation and Definition of a Linear Model program, LINEAR, provides the user with a powerful and flexible tool for the linearization of aircraft aerodynamic models. LINEAR was developed to provide a standard, documented, and verified tool to derive linear models for aircraft stability analysis and control law design. Linear system models define the aircraft system in the neighborhood of an analysis point and are determined by the linearization of the nonlinear equations defining vehicle dynamics and sensors. LINEAR numerically determines a linear system model using nonlinear equations of motion and a user supplied linear or nonlinear aerodynamic model. The nonlinear equations of motion used are six-degree-of-freedom equations with stationary atmosphere and flat, nonrotating earth assumptions. LINEAR is capable of extracting both linearized engine effects, such as net thrust, torque, and gyroscopic effects and including these effects in the linear system model. The point at which this linear model is defined is determined either by completely specifying the state and control variables, or by specifying an analysis point on a trajectory and directing the program to determine the control variables and the remaining state variables. The system model determined by LINEAR consists of matrices for both the state and observation equations. The program has been designed to provide easy selection of state, control, and observation variables to be used in a particular model. Thus, the order of the system model is completely under user control. Further, the program provides the flexibility of allowing alternate formulations of both the state and observation equations. Data describing the aircraft and the test case is input to the program through a terminal or formatted data files. All data can be modified interactively from case to case. The aerodynamic model can be defined in two ways: a set of nondimensional stability and control derivatives for the flight point of

  10. A Los Angeles Basin 1100 Aircraft Traffic Model,

    DTIC Science & Technology

    1981-01-01

    air traffic model of the Los Angeles basin for the same year, described in Reference 1. LAX-1100 revises that model by using current air traffic...summarizes the relevant methodology of the original LAX-1840 model. Section 2.2 summarizes the new forecasts used for revising LAX-1840. Section 2.3...ve i’, ’ Lad 1(174, 1096 and 1105 aircraft respectively. 1, 1c ,rc rf t mo.’ was chosen as the revised Los Angeles ’* d CIr va named LAX-i 1(11. L 4

  11. Modeling flight attendants' exposures to pesticide in disinsected aircraft cabins.

    PubMed

    Zhang, Yong; Isukapalli, Sastry; Georgopoulos, Panos; Weisel, Clifford

    2013-12-17

    Aircraft cabin disinsection is required by some countries to kill insects that may pose risks to public health and native ecological systems. A probabilistic model has been developed by considering the microenvironmental dynamics of the pesticide in conjunction with the activity patterns of flight attendants, to assess their exposures and risks to pesticide in disinsected aircraft cabins under three scenarios of pesticide application. Main processes considered in the model are microenvironmental transport and deposition, volatilization, and transfer of pesticide when passengers and flight attendants come in contact with the cabin surfaces. The simulated pesticide airborne mass concentration and surface mass loadings captured measured ranges reported in the literature. The medians (means ± standard devitions) of daily total exposure intakes were 0.24 (3.8 ± 10.0), 1.4 (4.2 ± 5.7), and 0.15 (2.1 ± 3.2) μg day(-1) kg(-1) of body weight for scenarios of residual application, preflight, and top-of-descent spraying, respectively. Exposure estimates were sensitive to parameters corresponding to pesticide deposition, body surface area and weight, surface-to-body transfer efficiencies, and efficiency of adherence to skin. Preflight spray posed 2.0 and 3.1 times higher pesticide exposure risk levels for flight attendants in disinsected aircraft cabins than top-of-descent spray and residual application, respectively.

  12. Modeling Flight Attendants’ Exposures to Pesticide in Disinsected Aircraft Cabins

    PubMed Central

    Zhang, Yong; Isukapalli, Sastry; Georgopoulos, Panos; Weisel, Clifford

    2014-01-01

    Aircraft cabin disinsection is required by some countries to kill insects that may pose risks to public health and native ecological systems. A probabilistic model has been developed by considering the microenvironmental dynamics of the pesticide in conjunction with the activity patterns of flight attendants, to assess their exposures and risks to pesticide in disinsected aircraft cabins under three scenarios of pesticide application. Main processes considered in the model are microenvironmental transport and deposition, volatilization, and transfer of pesticide when passengers and flight attendants come in contact with the cabin surfaces. The simulated pesticide airborne mass concentration and surface mass loadings captured measured ranges reported in the literature. The medians (means±standard devitions) of daily total exposures intakes were 0.24 (3.8±10.0), 1.4 (4.2±5.7) and 0.15 (2.1±3.2) μg/(day kg BW) for scenarios of Residual Application, Preflight and Top-of-Descent spraying, respectively. Exposure estimates were sensitive to parameters corresponding to pesticide deposition, body surface area and weight, surface-to-body transfer efficiencies, and efficiency of adherence to skin. Preflight spray posed 2.0 and 3.1 times higher pesticide exposure risk levels for flight attendants in disinsected aircraft cabins than Top-of-Descent spray and Residual Application, respectively. PMID:24251734

  13. 75 FR 32863 - Airworthiness Directives; PILATUS AIRCRAFT LTD. Model PC-12/47E Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-10

    ... flight of civil aircraft in air commerce by prescribing regulations for practices, methods, and... October 15, 2009, into the normal procedures section of the aircraft flight manual (AFM). (ii) Within 12... Directives; PILATUS AIRCRAFT LTD. Model PC-12/47E Airplanes AGENCY: Federal Aviation Administration...

  14. 76 FR 72087 - Special Conditions: Diamond Aircraft Industries, Model DA-40NG; Electronic Engine Control (EEC...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-22

    ... Federal Aviation Administration 14 CFR Part 23 Special Conditions: Diamond Aircraft Industries, Model DA...: Final special conditions. SUMMARY: These special conditions are issued for the Diamond Aircraft...: Background On May 11, 2010, Diamond Aircraft Industry GmbH applied for an ] amendment to Type Certificate...

  15. 76 FR 55293 - Special Conditions: Diamond Aircraft Industries, Model DA-40NG; Electronic Engine Control (EEC...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-07

    ... TRANSPORTATION Federal Aviation Administration 14 CFR Part 23 Special Conditions: Diamond Aircraft Industries... Diamond Aircraft Industries (DAI), model DA-40NG airplane. This airplane will have a novel or unusual... stamped and returned to the commenter. Background On May 11, 2010 Diamond Aircraft Industry GmbH...

  16. 75 FR 262 - Airworthiness Directives; Lockheed Martin Corporation/Lockheed Martin Aeronautics Company Model...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-05

    ...; Lockheed Martin Corporation/Lockheed Martin Aeronautics Company Model 382, 382B, 382E, 382F, and 382G.../Lockheed Martin Aeronautics Company Model 382, 382B, 382E, 382F, and 382G airplanes. This proposed AD would... identified in this proposed AD, contact Lockheed Martin Corporation/Lockheed Martin Aeronautics...

  17. 76 FR 721 - Airworthiness Directives; Gulfstream Aerospace Corporation Model G-1159 Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-06

    ... Aerospace Corporation Model G-1159 Airplanes AGENCY: Federal Aviation Administration, DOT. ACTION: Proposed... Aerospace Corporation Model G-1159 airplanes. The existing AD requires an inspection to detect cracks or... is withdrawn. FOR FURTHER INFORMATION CONTACT: Carey O'Kelley, Aerospace Engineer, Airframe...

  18. Numerical modeling of runback water on ice protected aircraft surfaces

    NASA Technical Reports Server (NTRS)

    Al-Khalil, Kamel M.; Keith, Theo G., Jr.; Dewitt, Kenneth J.

    1992-01-01

    A numerical simulation for 'running wet' aircraft anti-icing systems is developed. The model includes breakup of the water film, which exists in regions of direct impingement, into individual rivulets. The wetness factor distribution resulting from the film breakup and the rivulet configuration on the surface are predicted in the numerical solution procedure. The solid wall is modeled as a multilayer structure and the anti-icing system used is of the thermal type utilizing hot air and/or electrical heating elements embedded with the layers. Details of the calculation procedure and the methods used are presented.

  19. Finite Element Model Development and Validation for Aircraft Fuselage Structures

    NASA Technical Reports Server (NTRS)

    Buehrle, Ralph D.; Fleming, Gary A.; Pappa, Richard S.; Grosveld, Ferdinand W.

    2000-01-01

    The ability to extend the valid frequency range for finite element based structural dynamic predictions using detailed models of the structural components and attachment interfaces is examined for several stiffened aircraft fuselage structures. This extended dynamic prediction capability is needed for the integration of mid-frequency noise control technology. Beam, plate and solid element models of the stiffener components are evaluated. Attachment models between the stiffener and panel skin range from a line along the rivets of the physical structure to a constraint over the entire contact surface. The finite element models are validated using experimental modal analysis results. The increased frequency range results in a corresponding increase in the number of modes, modal density and spatial resolution requirements. In this study, conventional modal tests using accelerometers are complemented with Scanning Laser Doppler Velocimetry and Electro-Optic Holography measurements to further resolve the spatial response characteristics. Whenever possible, component and subassembly modal tests are used to validate the finite element models at lower levels of assembly. Normal mode predictions for different finite element representations of components and assemblies are compared with experimental results to assess the most accurate techniques for modeling aircraft fuselage type structures.

  20. MRAC Control with Prior Model Knowledge for Asymmetric Damaged Aircraft

    PubMed Central

    Xu, Xieyu; Yang, Lingyu; Zhang, Jing

    2015-01-01

    This paper develops a novel state-tracking multivariable model reference adaptive control (MRAC) technique utilizing prior knowledge of plant models to recover control performance of an asymmetric structural damaged aircraft. A modification of linear model representation is given. With prior knowledge on structural damage, a polytope linear parameter varying (LPV) model is derived to cover all concerned damage conditions. An MRAC method is developed for the polytope model, of which the stability and asymptotic error convergence are theoretically proved. The proposed technique reduces the number of parameters to be adapted and thus decreases computational cost and requires less input information. The method is validated by simulations on NASA generic transport model (GTM) with damage. PMID:26180839

  1. Some Remarks on CFD Drag Prediction of an Aircraft Model

    NASA Astrophysics Data System (ADS)

    Peng, S. H.; Eliasson, P.

    Observed in CFD drag predictions for the DLR-F6 aircraft model with various configurations, some issues are addressed. The emphasis is placed on the effect of turbulence modeling and grid resolution. With several different turbulence models, the predicted flow feature around the aircraft is highlighted. It is shown that the prediction of the separation bubble in the wing-body junction is closely related to the inherent modeling mechanism of turbulence production. For the configuration with an additional fairing, which has effectively removed the separation bubble, it is illustrated that the drag prediction may be altered even for attached turbulent boundary layer when different turbulence models are used. Grid sensitivity studies are performed with two groups of subsequently refined grids. It is observed that, in contrast to the lift, the drag prediction is rather sensitive to the grid refinement, as well as to the artificial diffusion added for solving the turbulence transport equation. It is demonstrated that an effective grid refinement should drive the predicted drag components monotonically and linearly converged to a finite value.

  2. Modeling Pilot State in Next Generation Aircraft Alert Systems

    NASA Technical Reports Server (NTRS)

    Carlin, Alan S.; Alexander, Amy L.; Schurr, Nathan

    2011-01-01

    The Next Generation Air Transportation System will introduce new, advanced sensor technologies into the cockpit that must convey a large number of potentially complex alerts. Our work focuses on the challenges associated with prioritizing aircraft sensor alerts in a quick and efficient manner, essentially determining when and how to alert the pilot This "alert decision" becomes very difficult in NextGen due to the following challenges: 1) the increasing number of potential hazards, 2) the uncertainty associated with the state of potential hazards as well as pilot slate , and 3) the limited time to make safely-critical decisions. In this paper, we focus on pilot state and present a model for anticipating duration and quality of pilot behavior, for use in a larger system which issues aircraft alerts. We estimate pilot workload, which we model as being dependent on factors including mental effort, task demands. and task performance. We perform a mathematically rigorous analysis of the model and resulting alerting plans. We simulate the model in software and present simulated results with respect to manipulation of the pilot measures.

  3. Equivalent plate modeling for conceptual design of aircraft wing structures

    NASA Technical Reports Server (NTRS)

    Giles, Gary L.

    1995-01-01

    This paper describes an analysis method that generates conceptual-level design data for aircraft wing structures. A key requirement is that this data must be produced in a timely manner so that is can be used effectively by multidisciplinary synthesis codes for performing systems studies. Such a capability is being developed by enhancing an equivalent plate structural analysis computer code to provide a more comprehensive, robust and user-friendly analysis tool. The paper focuses on recent enhancements to the Equivalent Laminated Plate Solution (ELAPS) analysis code that significantly expands the modeling capability and improves the accuracy of results. Modeling additions include use of out-of-plane plate segments for representing winglets and advanced wing concepts such as C-wings along with a new capability for modeling the internal rib and spar structure. The accuracy of calculated results is improved by including transverse shear effects in the formulation and by using multiple sets of assumed displacement functions in the analysis. Typical results are presented to demonstrate these new features. Example configurations include a C-wing transport aircraft, a representative fighter wing and a blended-wing-body transport. These applications are intended to demonstrate and quantify the benefits of using equivalent plate modeling of wing structures during conceptual design.

  4. Multidisciplinary optimization in aircraft design using analytic technology models

    NASA Technical Reports Server (NTRS)

    Malone, Brett; Mason, W. H.

    1991-01-01

    An approach to multidisciplinary optimization is presented which combines the Global Sensitivity Equation method, parametric optimization, and analytic technology models. The result is a powerful yet simple procedure for identifying key design issues. It can be used both to investigate technology integration issues very early in the design cycle, and to establish the information flow framework between disciplines for use in multidisciplinary optimization projects using much more computational intense representations of each technology. To illustrate the approach, an examination of the optimization of a short takeoff heavy transport aircraft is presented for numerous combinations of performance and technology constraints.

  5. Integrating Cloud-Computing-Specific Model into Aircraft Design

    NASA Astrophysics Data System (ADS)

    Zhimin, Tian; Qi, Lin; Guangwen, Yang

    Cloud Computing is becoming increasingly relevant, as it will enable companies involved in spreading this technology to open the door to Web 3.0. In the paper, the new categories of services introduced will slowly replace many types of computational resources currently used. In this perspective, grid computing, the basic element for the large scale supply of cloud services, will play a fundamental role in defining how those services will be provided. The paper tries to integrate cloud computing specific model into aircraft design. This work has acquired good results in sharing licenses of large scale and expensive software, such as CFD (Computational Fluid Dynamics), UG, CATIA, and so on.

  6. 76 FR 36392 - Airworthiness Directives; Gulfstream Aerospace Corporation Model GV and GV-SP Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-22

    ... Aerospace Corporation Model GV and GV-SP Airplanes AGENCY: Federal Aviation Administration (FAA), DOT... Gulfstream Aerospace Corporation, Technical Publications Dept., P.O. Box 2206, Savannah, Georgia 31402-2206..., Aerospace Engineer, Continued Operational Safety and Certificate Management Branch, ACE- 102A, FAA,...

  7. Cultural, Human, and Social Capital as Determinants of Corporal Punishment: Toward an Integrated Theoretical Model.

    ERIC Educational Resources Information Center

    Xu, Xiaohe; Tung, Yuk-Ying; Dunaway, R. Gregory

    2000-01-01

    This article constructs a model to predict the likelihood of parental use of corporal punishment on children in two-parent families. Reports that corporal punishment is primarily determined by cultural, human, and social capital that are available to, or already acquired by parents. Discusses an integrated, resource-based theory for predicting use…

  8. 75 FR 28506 - Airworthiness Directives; Hawker Beechcraft Corporation (Type Certificate No. A00010WI Previously...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-21

    ... with deficient armature insulating materials may have been installed on certain airplanes. We are... Corporation (Type Certificate No. A00010WI Previously Held by Raytheon Aircraft Company) Model 390 Airplanes... Hawker Beechcraft Corporation Model 390 airplanes. This proposed AD would require inspecting...

  9. Numerical modelling methods for predicting antenna performance on aircraft

    NASA Astrophysics Data System (ADS)

    Kubina, S. J.

    1983-09-01

    Typical case studies that involve the application of Moment Methods to the prediction of the radiation characteristics of antennas in the HF frequency band are examined. The examples consist of the analysis of a shorted transmission line HF antenna on a CHSS-2/Sea King helicopter, wire antennas on the CP-140/Aurora patrol aircraft and a long dipole antenna on the Space Shuttle Orbiter spacecraft. In each of these cases the guidelines for antenna modeling by the use of the program called the Numerical Electromagnetic Code are progressively applied and results are compared to measurements made by the use of scale-model techniques. In complex examples of this type comparisons based on individual radiation patterns are insufficient for the validation of computer models. A volumetric method of radiation pattern comparison is used based on criteria that result from pattern integration and that are related to communication system performance. This is supplemented by hidden-surface displays of an entire set of conical radiation patterns resulting from measurements and computations. Antenna coupling considerations are discussed for the case of the dual HF installation on the CP-140/Aurora aircraft.

  10. Learning the Task Management Space of an Aircraft Approach Model

    NASA Technical Reports Server (NTRS)

    Krall, Joseph; Menzies, Tim; Davies, Misty

    2014-01-01

    Validating models of airspace operations is a particular challenge. These models are often aimed at finding and exploring safety violations, and aim to be accurate representations of real-world behavior. However, the rules governing the behavior are quite complex: nonlinear physics, operational modes, human behavior, and stochastic environmental concerns all determine the responses of the system. In this paper, we present a study on aircraft runway approaches as modeled in Georgia Tech's Work Models that Compute (WMC) simulation. We use a new learner, Genetic-Active Learning for Search-Based Software Engineering (GALE) to discover the Pareto frontiers defined by cognitive structures. These cognitive structures organize the prioritization and assignment of tasks of each pilot during approaches. We discuss the benefits of our approach, and also discuss future work necessary to enable uncertainty quantification.

  11. Comparison of Predictive Modeling Methods of Aircraft Landing Speed

    NASA Technical Reports Server (NTRS)

    Diallo, Ousmane H.

    2012-01-01

    Expected increases in air traffic demand have stimulated the development of air traffic control tools intended to assist the air traffic controller in accurately and precisely spacing aircraft landing at congested airports. Such tools will require an accurate landing-speed prediction to increase throughput while decreasing necessary controller interventions for avoiding separation violations. There are many practical challenges to developing an accurate landing-speed model that has acceptable prediction errors. This paper discusses the development of a near-term implementation, using readily available information, to estimate/model final approach speed from the top of the descent phase of flight to the landing runway. As a first approach, all variables found to contribute directly to the landing-speed prediction model are used to build a multi-regression technique of the response surface equation (RSE). Data obtained from operations of a major airlines for a passenger transport aircraft type to the Dallas/Fort Worth International Airport are used to predict the landing speed. The approach was promising because it decreased the standard deviation of the landing-speed error prediction by at least 18% from the standard deviation of the baseline error, depending on the gust condition at the airport. However, when the number of variables is reduced to the most likely obtainable at other major airports, the RSE model shows little improvement over the existing methods. Consequently, a neural network that relies on a nonlinear regression technique is utilized as an alternative modeling approach. For the reduced number of variables cases, the standard deviation of the neural network models errors represent over 5% reduction compared to the RSE model errors, and at least 10% reduction over the baseline predicted landing-speed error standard deviation. Overall, the constructed models predict the landing-speed more accurately and precisely than the current state-of-the-art.

  12. A mathematical model for Vertical Attitude Takeoff and Landing (VATOL) aircraft simulation. Volume 2: Model equations and base aircraft data

    NASA Technical Reports Server (NTRS)

    Fortenbaugh, R. L.

    1980-01-01

    Equations incorporated in a VATOL six degree of freedom off-line digital simulation program and data for the Vought SF-121 VATOL aircraft concept which served as the baseline for the development of this program are presented. The equations and data are intended to facilitate the development of a piloted VATOL simulation. The equation presentation format is to state the equations which define a particular model segment. Listings of constants required to quantify the model segment, input variables required to exercise the model segment, and output variables required by other model segments are included. In several instances a series of input or output variables are followed by a section number in parentheses which identifies the model segment of origination or termination of those variables.

  13. Composite Structure Modeling and Analysis of Advanced Aircraft Fuselage Concepts

    NASA Technical Reports Server (NTRS)

    Mukhopadhyay, Vivek; Sorokach, Michael R.

    2015-01-01

    NASA Environmentally Responsible Aviation (ERA) project and the Boeing Company are collabrating to advance the unitized damage arresting composite airframe technology with application to the Hybrid-Wing-Body (HWB) aircraft. The testing of a HWB fuselage section with Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) construction is presently being conducted at NASA Langley. Based on lessons learned from previous HWB structural design studies, improved finite-element models (FEM) of the HWB multi-bay and bulkhead assembly are developed to evaluate the performance of the PRSEUS construction. In order to assess the comparative weight reduction benefits of the PRSEUS technology, conventional cylindrical skin-stringer-frame models of a cylindrical and a double-bubble section fuselage concepts are developed. Stress analysis with design cabin-pressure load and scenario based case studies are conducted for design improvement in each case. Alternate analysis with stitched composite hat-stringers and C-frames are also presented, in addition to the foam-core sandwich frame and pultruded rod-stringer construction. The FEM structural stress, strain and weights are computed and compared for relative weight/strength benefit assessment. The structural analysis and specific weight comparison of these stitched composite advanced aircraft fuselage concepts demonstrated that the pressurized HWB fuselage section assembly can be structurally as efficient as the conventional cylindrical fuselage section with composite stringer-frame and PRSEUS construction, and significantly better than the conventional aluminum construction and the double-bubble section concept.

  14. V/STOL tilt rotor aircraft study mathematical model for a real time simulation of a tilt rotor aircraft (Boeing Vertol Model 222), volume 8

    NASA Technical Reports Server (NTRS)

    Rosenstein, H.; Mcveigh, M. A.; Mollenkof, P. A.

    1973-01-01

    A mathematical model for a real time simulation of a tilt rotor aircraft was developed. The mathematical model is used for evaluating aircraft performance and handling qualities. The model is based on an eleven degree of freedom total force representation. The rotor is treated as a point source of forces and moments with appropriate response time lags and actuator dynamics. The aerodynamics of the wing, tail, rotors, landing gear, and fuselage are included.

  15. Model Evaluation and Sensitivity Studies for Determining Aircraft Effects on the Global Atmosphere

    NASA Technical Reports Server (NTRS)

    Wuebbles, Donald J.

    1997-01-01

    This project, started in July 1995 and ending in July 1996, related: to evaluation of the possible importance of soot and sulfur dioxide emissions from subsonic and supersonic aircraft; to research contributions and special responsibilities for NASA AEAP assessments of subsonic aircraft and High Speed Civil Transport aircraft; and to science team responsibilities supporting the development of the three-dimensional atmospheric chemistry model of the Global Modeling Initiative.

  16. The Simulation of a Jumbo Jet Transport Aircraft. Volume 2: Modeling Data

    NASA Technical Reports Server (NTRS)

    Hanke, C. R.; Nordwall, D. R.

    1970-01-01

    The manned simulation of a large transport aircraft is described. Aircraft and systems data necessary to implement the mathematical model described in Volume I and a discussion of how these data are used in model are presented. The results of the real-time computations in the NASA Ames Research Center Flight Simulator for Advanced Aircraft are shown and compared to flight test data and to the results obtained in a training simulator known to be satisfactory.

  17. A trade-off analysis design tool. Aircraft interior noise-motion/passenger satisfaction model

    NASA Technical Reports Server (NTRS)

    Jacobson, I. D.

    1977-01-01

    A design tool was developed to enhance aircraft passenger satisfaction. The effect of aircraft interior motion and noise on passenger comfort and satisfaction was modelled. Effects of individual aircraft noise sources were accounted for, and the impact of noise on passenger activities and noise levels to safeguard passenger hearing were investigated. The motion noise effect models provide a means for tradeoff analyses between noise and motion variables, and also provide a framework for optimizing noise reduction among noise sources. Data for the models were collected onboard commercial aircraft flights and specially scheduled tests.

  18. Jet Noise Modeling for Suppressed and Unsuppressed Aircraft in Simulated Flight

    NASA Technical Reports Server (NTRS)

    Stone, James R.; Krejsa, Eugene A.; Clark, Bruce J; Berton, Jeffrey J.

    2009-01-01

    This document describes the development of further extensions and improvements to the jet noise model developed by Modern Technologies Corporation (MTC) for the National Aeronautics and Space Administration (NASA). The noise component extraction and correlation approach, first used successfully by MTC in developing a noise prediction model for two-dimensional mixer ejector (2DME) nozzles under the High Speed Research (HSR) Program, has been applied to dual-stream nozzles, then extended and improved in earlier tasks under this contract. Under Task 6, the coannular jet noise model was formulated and calibrated with limited scale model data, mainly at high bypass ratio, including a limited-range prediction of the effects of mixing-enhancement nozzle-exit chevrons on jet noise. Under Task 9 this model was extended to a wider range of conditions, particularly those appropriate for a Supersonic Business Jet, with an improvement in simulated flight effects modeling and generalization of the suppressor model. In the present task further comparisons are made over a still wider range of conditions from more test facilities. The model is also further generalized to cover single-stream nozzles of otherwise similar configuration. So the evolution of this prediction/analysis/correlation approach has been in a sense backward, from the complex to the simple; but from this approach a very robust capability is emerging. Also from these studies, some observations emerge relative to theoretical considerations. The purpose of this task is to develop an analytical, semi-empirical jet noise prediction method applicable to takeoff, sideline and approach noise of subsonic and supersonic cruise aircraft over a wide size range. The product of this task is an even more consistent and robust model for the Footprint/Radius (FOOTPR) code than even the Task 9 model. The model is validated for a wider range of cases and statistically quantified for the various reference facilities. The possible

  19. Multi-level systems modeling and optimization for novel aircraft

    NASA Astrophysics Data System (ADS)

    Subramanian, Shreyas Vathul

    This research combines the disciplines of system-of-systems (SoS) modeling, platform-based design, optimization and evolving design spaces to achieve a novel capability for designing solutions to key aeronautical mission challenges. A central innovation in this approach is the confluence of multi-level modeling (from sub-systems to the aircraft system to aeronautical system-of-systems) in a way that coordinates the appropriate problem formulations at each level and enables parametric search in design libraries for solutions that satisfy level-specific objectives. The work here addresses the topic of SoS optimization and discusses problem formulation, solution strategy, the need for new algorithms that address special features of this problem type, and also demonstrates these concepts using two example application problems - a surveillance UAV swarm problem, and the design of noise optimal aircraft and approach procedures. This topic is critical since most new capabilities in aeronautics will be provided not just by a single air vehicle, but by aeronautical Systems of Systems (SoS). At the same time, many new aircraft concepts are pressing the boundaries of cyber-physical complexity through the myriad of dynamic and adaptive sub-systems that are rising up the TRL (Technology Readiness Level) scale. This compositional approach is envisioned to be active at three levels: validated sub-systems are integrated to form conceptual aircraft, which are further connected with others to perform a challenging mission capability at the SoS level. While these multiple levels represent layers of physical abstraction, each discipline is associated with tools of varying fidelity forming strata of 'analysis abstraction'. Further, the design (composition) will be guided by a suitable hierarchical complexity metric formulated for the management of complexity in both the problem (as part of the generative procedure and selection of fidelity level) and the product (i.e., is the mission

  20. 14 CFR 61.319 - Can I operate a make and model of aircraft other than the make and model aircraft for which I...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... CERTIFICATION: PILOTS, FLIGHT INSTRUCTORS, AND GROUND INSTRUCTORS Sport Pilots § 61.319 Can I operate a make and... you hold a sport pilot certificate you may operate any make and model of light-sport aircraft in...

  1. Survey of contemporary aircraft flight dynamics models for use in airspace simulation

    NASA Astrophysics Data System (ADS)

    McGovern, Seamus M.; Cohen, Seth B.

    2007-04-01

    As part of the development of any computer simulation of procedures, equipment, or airspace, an appropriate model of aircraft must be selected. Due to the complexity and aviation safety-critical nature of these development efforts, a detailed survey of the current state-of-the-art in aircraft flight dynamic models is desired. Options include basic 3-D performance envelopes of various aircraft (e.g., acceleration, deceleration, turn rate, and climb rate), high-fidelity models (e.g., proprietary aircraft manufacturer models), commercial-off-the-shelf models (e.g., Laminar Research's X-Plane and Microsoft's Flight Simulator), Government models (e.g., NASA or FAA), and originally developed six degree-of-freedom mathematical models. Here, the simple kinematics model (using basic kinematic relationships without considering the impact of aerodynamics), the small perturbation theory model (which uses only the known, non-dimensional aerodynamic properties of the aircraft), the total forces and moments method (which solves the complete set of nonlinear differential equations and requiring large tables describing aircraft parameters in different flight regimes), and blade element theory (which makes use of the aircraft's physical structure to calculate the aerodynamic forces and moments on thin strips of the aircraft) are reviewed.

  2. Who does it better? The corporate versus the nonprofit governance model.

    PubMed

    Larson, Laurie

    2005-05-01

    Weighing the corporate against the nonprofit governance model, the answer may be "neither." Both systems can learn from each other, experts say, and best practices in public companies do not automatically translate to health care boards.

  3. Bayesian model selection for a finite element model of a large civil aircraft

    SciTech Connect

    Hemez, F. M.; Rutherford, A. C.

    2004-01-01

    Nine aircraft stiffness parameters have been varied and used as inputs to a finite element model of an aircraft to generate natural frequency and deflection features (Goge, 2003). This data set (147 input parameter configurations and associated outputs) is now used to generate a metamodel, or a fast running surrogate model, using Bayesian model selection methods. Once a forward relationship is defined, the metamodel may be used in an inverse sense. That is, knowing the measured output frequencies and deflections, what were the input stiffness parameters that caused them?

  4. 75 FR 22517 - Airworthiness Directives; British Aerospace Regional Aircraft Model Jetstream Series 3101 and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-29

    ... Aerospace Regional Aircraft Model Jetstream Series 3101 and Jetstream Model 3201 Airplanes AGENCY: Federal... CONTACT: Taylor Martin, Aerospace Engineer, FAA, Small Airplane Directorate, 901 Locust, Room 301, Kansas... the following new AD: 2010-09-02 British Aerospace Regional Aircraft: Amendment 39-16267; Docket...

  5. 76 FR 37684 - Airworthiness Directives; Diamond Aircraft Industries GmbH Model (Diamond) DA 40 Airplanes...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-28

    ... Federal Aviation Administration 14 CFR Part 39 RIN 2120-AA64 Airworthiness Directives; Diamond Aircraft Industries GmbH Model (Diamond) DA 40 Airplanes Equipped With Certain Cabin Air Conditioning Systems AGENCY... inspections of the Diamond Model DA 40 airplanes equipped with a VCS installed per Premier Aircraft...

  6. Process-Model Feminism in the Corporate University

    ERIC Educational Resources Information Center

    Spitzer-Hanks, D. T.

    2016-01-01

    In a period characterised by worries over the rise of the corporate university, it is important to ask what role feminism plays in the academy, and whether that role is commensurate with feminist values and ethics. Commercial and political pressures brought to bear on the encounter between instructor and student can rob teaching of its efficacy,…

  7. An Extensible, Interchangeable and Sharable Database Model for Improving Multidisciplinary Aircraft Design

    NASA Technical Reports Server (NTRS)

    Lin, Risheng; Afjeh, Abdollah A.

    2003-01-01

    Crucial to an efficient aircraft simulation-based design is a robust data modeling methodology for both recording the information and providing data transfer readily and reliably. To meet this goal, data modeling issues involved in the aircraft multidisciplinary design are first analyzed in this study. Next, an XML-based. extensible data object model for multidisciplinary aircraft design is constructed and implemented. The implementation of the model through aircraft databinding allows the design applications to access and manipulate any disciplinary data with a lightweight and easy-to-use API. In addition, language independent representation of aircraft disciplinary data in the model fosters interoperability amongst heterogeneous systems thereby facilitating data sharing and exchange between various design tools and systems.

  8. Lumped mass modelling for the dynamic analysis of aircraft structures

    NASA Technical Reports Server (NTRS)

    Abu-Saba, Elias G.; Shen, Ji Yao; Mcginley, William M.; Montgomery, Raymond C.

    1992-01-01

    Aircraft structures may be modelled by lumping the masses at particular strategic points and the flexibility or stiffness of the structure is obtained with reference to these points. Equivalent moments of inertia for the section at these positions are determined. The lumped masses are calculated based on the assumption that each point will represent the mass spread on one half of the space on each side. Then these parameters are used in the differential equation of motion and the eigen characteristics are determined. A comparison is made with results obtained by other established methods. The lumped mass approach in the dynamic analysis of complicated structures provides an easier means of predicting the dynamic characteristics of these structures. It involves less computer time and avoids computational errors that are inherent in the numerical solution of complicated systems.

  9. An Extended Combustion Model for the Aircraft Turbojet Engine

    NASA Astrophysics Data System (ADS)

    Rotaru, Constantin; Andres-Mihăilă, Mihai; Matei, Pericle Gabriel

    2014-08-01

    The paper consists in modelling and simulation of the combustion in a turbojet engine in order to find optimal characteristics of the burning process and the optimal shape of combustion chambers. The main focus of this paper is to find a new configuration of the aircraft engine combustion chambers, namely an engine with two main combustion chambers, one on the same position like in classical configuration, between compressor and turbine and the other, placed behind the turbine but not performing the role of the afterburning. This constructive solution could allow a lower engine rotational speed, a lower temperature in front of the first stage of the turbine and the possibility to increase the turbine pressure ratio by extracting the flow stream after turbine in the inner nozzle. Also, a higher thermodynamic cycle efficiency and thrust in comparison to traditional constant-pressure combustion gas turbine engines could be obtained.

  10. NAIRAS aircraft radiation model development, dose climatology, and initial validation

    PubMed Central

    Mertens, Christopher J; Meier, Matthias M; Brown, Steven; Norman, Ryan B; Xu, Xiaojing

    2013-01-01

    [1] The Nowcast of Atmospheric Ionizing Radiation for Aviation Safety (NAIRAS) is a real-time, global, physics-based model used to assess radiation exposure to commercial aircrews and passengers. The model is a free-running physics-based model in the sense that there are no adjustment factors applied to nudge the model into agreement with measurements. The model predicts dosimetric quantities in the atmosphere from both galactic cosmic rays (GCR) and solar energetic particles, including the response of the geomagnetic field to interplanetary dynamical processes and its subsequent influence on atmospheric dose. The focus of this paper is on atmospheric GCR exposure during geomagnetically quiet conditions, with three main objectives. First, provide detailed descriptions of the NAIRAS GCR transport and dosimetry methodologies. Second, present a climatology of effective dose and ambient dose equivalent rates at typical commercial airline altitudes representative of solar cycle maximum and solar cycle minimum conditions and spanning the full range of geomagnetic cutoff rigidities. Third, conduct an initial validation of the NAIRAS model by comparing predictions of ambient dose equivalent rates with tabulated reference measurement data and recent aircraft radiation measurements taken in 2008 during the minimum between solar cycle 23 and solar cycle 24. By applying the criterion of the International Commission on Radiation Units and Measurements (ICRU) on acceptable levels of aircraft radiation dose uncertainty for ambient dose equivalent greater than or equal to an annual dose of 1 mSv, the NAIRAS model is within 25% of the measured data, which fall within the ICRU acceptable uncertainty limit of 30%. The NAIRAS model predictions of ambient dose equivalent rate are generally within 50% of the measured data for any single-point comparison. The largest differences occur at low latitudes and high cutoffs, where the radiation dose level is low. Nevertheless, analysis

  11. NAIRAS aircraft radiation model development, dose climatology, and initial validation.

    PubMed

    Mertens, Christopher J; Meier, Matthias M; Brown, Steven; Norman, Ryan B; Xu, Xiaojing

    2013-10-01

    [1] The Nowcast of Atmospheric Ionizing Radiation for Aviation Safety (NAIRAS) is a real-time, global, physics-based model used to assess radiation exposure to commercial aircrews and passengers. The model is a free-running physics-based model in the sense that there are no adjustment factors applied to nudge the model into agreement with measurements. The model predicts dosimetric quantities in the atmosphere from both galactic cosmic rays (GCR) and solar energetic particles, including the response of the geomagnetic field to interplanetary dynamical processes and its subsequent influence on atmospheric dose. The focus of this paper is on atmospheric GCR exposure during geomagnetically quiet conditions, with three main objectives. First, provide detailed descriptions of the NAIRAS GCR transport and dosimetry methodologies. Second, present a climatology of effective dose and ambient dose equivalent rates at typical commercial airline altitudes representative of solar cycle maximum and solar cycle minimum conditions and spanning the full range of geomagnetic cutoff rigidities. Third, conduct an initial validation of the NAIRAS model by comparing predictions of ambient dose equivalent rates with tabulated reference measurement data and recent aircraft radiation measurements taken in 2008 during the minimum between solar cycle 23 and solar cycle 24. By applying the criterion of the International Commission on Radiation Units and Measurements (ICRU) on acceptable levels of aircraft radiation dose uncertainty for ambient dose equivalent greater than or equal to an annual dose of 1 mSv, the NAIRAS model is within 25% of the measured data, which fall within the ICRU acceptable uncertainty limit of 30%. The NAIRAS model predictions of ambient dose equivalent rate are generally within 50% of the measured data for any single-point comparison. The largest differences occur at low latitudes and high cutoffs, where the radiation dose level is low. Nevertheless, analysis

  12. A simple-source model of military jet aircraft noise

    NASA Astrophysics Data System (ADS)

    Morgan, Jessica; Gee, Kent L.; Neilsen, Tracianne; Wall, Alan T.

    2010-10-01

    The jet plumes produced by military jet aircraft radiate significant amounts of noise. A need to better understand the characteristics of the turbulence-induced aeroacoustic sources has motivated the present study. The purpose of the study is to develop a simple-source model of jet noise that can be compared to the measured data. The study is based off of acoustic data collected near a tied-down F-22 Raptor. The simplest model consisted of adjusting the origin of a monopole above a rigid planar reflector until the locations of the predicted and measured interference nulls matched. The model has developed into an extended Rayleigh distribution of partially correlated monopoles which fits the measured data from the F-22 significantly better. The results and basis for the model match the current prevailing theory that jet noise consists of both correlated and uncorrelated sources. In addition, this simple-source model conforms to the theory that the peak source location moves upstream with increasing frequency and lower engine conditions.

  13. Economics of technological change - A joint model for the aircraft and airline industries

    NASA Technical Reports Server (NTRS)

    Kneafsey, J. T.; Taneja, N. K.

    1981-01-01

    The principal focus of this econometric model is on the process of technological change in the U.S. aircraft manufacturing and airline industries. The problem of predicting the rate of introduction of current technology aircraft into an airline's fleet during the period of research, development, and construction for new technology aircraft arises in planning aeronautical research investments. The approach in this model is a statistical one. It attempts to identify major factors that influence transport aircraft manufacturers and airlines, and to correlate them with the patterns of delivery of new aircraft to the domestic trunk carriers. The functional form of the model has been derived from several earlier econometric models on the economics of innovation, acquisition, and technological change.

  14. Fuel dispersal modeling for aircraft-runway impact scenarios

    SciTech Connect

    Tieszen, S.R.

    1995-11-01

    A fuel dispersal model for C-141 transport accidents was developed for the Defense Nuclear Agency`s Fuel Fire Technology Base Program to support Weapon System Safety Assessments. The spectrum of accidents resulting from aircraft impact on a runway was divided into three fuel dispersal regimes: low, intermediate, and high-velocity impact. Sufficient data existed in the accident, crash test, and fuel-filled bomb literature to support development of a qualitative framework for dispersal models, but not quantitative models for all regimes. Therefore, a test series at intermediate scale was conducted to generate data on which to base the model for the high-velocity regime. Tests were conducted over an impact velocity range from 12 m/s to 91 m/s and angles of impact from 22.5{degrees} to 67.5{degrees}. Dependent variables were area covered by dispersed fuel, amount of mass in that area, and location of the area relative to the impact line. Test results showed that no liquid pooling occurred for impact velocities greater than 61 m/s, independent of the angle of impact. Some pooling did occur at lower velocities, but in no test was the liquid-layer thickness greater than 5.25 mm.

  15. A new tire model for aircraft landing gear dynamics

    NASA Astrophysics Data System (ADS)

    Lindsley, Ned J.

    1999-12-01

    The aircraft landing gear is, by nature of its function and subsequent design, a complex, multi-degree-of-freedom system. The stability of such a system requires further study, particularly at the tire-runway boundary condition. Presented here is an extensive literature search on previous work concerning the shimmy phenomenon, followed by a course of work defining the role which the tire plays. The tasks performed included deriving and discretizing the equations of motion for the tire, developing an empirical model for the tire's inflation loading characteristics, loading and rolling the tire in the vertical plane, laterally deflecting and twisting the tire's vertical plane, and discussing interaction of the tire model with landing gear dynamics models. Given identical inflation pressure and target vertical load, the dominant factor on out-of-plane stability response is the nonlinear softening effect of increasing air vehicle velocity. The most significant contribution of this work is the development of the tire model into a physically accurate, computationally inexpensive and fast desktop computer product for use as a landing gear system component in air vehicle ground operations simulations.

  16. General Models for Assessing Hazards Aircraft Pose to Surface Facilities

    SciTech Connect

    G.E. Ragan

    2002-11-18

    This paper derives formulas for estimating the frequency of accidental aircraft crashes into surface facilities. Objects unintentionally dropped from aircraft are also considered. The approach allows the facility to be well within the flight area; inside the flight area, but close to the edge; or completely outside the flight area.

  17. Mathematical model for lift/cruise fan V/STOL aircraft simulator programming data

    NASA Technical Reports Server (NTRS)

    Bland, M. P.; Fajfar, B.; Konsewicz, R. K.

    1976-01-01

    Simulation data are reported for the purpose of programming the flight simulator for advanced aircraft for tests of the lift/cruise fan V/STOL Research Technology Aircraft. These simulation tests are to provide insight into problem areas which are encountered in operational use of the aircraft. A mathematical model is defined in sufficient detail to represent all the necessary pertinent aircraft and system characteristics. The model includes the capability to simulate two basic versions of an aircraft propulsion system: (1) the gas coupled configuration which uses insulated air ducts to transmit power between gas generators and fans in the form of high energy engine exhaust and (2) the mechanically coupled power system which uses shafts, clutches, and gearboxes for power transmittal. Both configurations are modeled such that the simulation can include vertical as well as rolling takeoff and landing, hover, powered lift flight, aerodynamic flight, and the transition between powered lift and aerodynamic flight.

  18. Math modeling and computer mechanization for real time simulation of rotary-wing aircraft

    NASA Technical Reports Server (NTRS)

    Howe, R. M.

    1979-01-01

    Mathematical modeling and computer mechanization for real time simulation of rotary wing aircraft is discussed. Error analysis in the digital simulation of dynamic systems, such as rotary wing aircraft is described. The method for digital simulation of nonlinearities with discontinuities, such as exist in typical flight control systems and rotor blade hinges, is discussed.

  19. 75 FR 82335 - Airworthiness Directives; APEX Aircraft Model CAP 10 Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-30

    ... CAP 10 Airplanes AGENCY: Federal Aviation Administration (FAA), Department of Transportation (DOT... DAROIS-France, telephone: (33) 380 35 65 10; fax: (33) 380 35 65 15; e- mail: apex-aircraft.com . You may...) None. Applicability (c) This AD applies to APEX Aircraft Model CAP 10 airplanes, all serial...

  20. 75 FR 7405 - Airworthiness Directives; British Aerospace Regional Aircraft Model Jetstream Series 3101 and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-19

    ... Directives; British Aerospace Regional Aircraft Model Jetstream Series 3101 and Jetstream Model 3201... available in the AD docket shortly after receipt. FOR FURTHER INFORMATION CONTACT: Taylor Martin, Aerospace... AD docket. Relevant Service Information BAE Systems has issued British Aerospace Jetstream...

  1. Creating a Test Validated Structural Dynamic Finite Element Model of the X-56A Aircraft

    NASA Technical Reports Server (NTRS)

    Pak, Chan-Gi; Truong, Samson

    2014-01-01

    Small modeling errors in the finite element model will eventually induce errors in the structural flexibility and mass, thus propagating into unpredictable errors in the unsteady aerodynamics and the control law design. One of the primary objectives of the Multi Utility Technology Test-bed, X-56A aircraft, is the flight demonstration of active flutter suppression, and therefore in this study, the identification of the primary and secondary modes for the structural model tuning based on the flutter analysis of the X-56A aircraft. The ground vibration test-validated structural dynamic finite element model of the X-56A aircraft is created in this study. The structural dynamic finite element model of the X-56A aircraft is improved using a model tuning tool. In this study, two different weight configurations of the X-56A aircraft have been improved in a single optimization run. Frequency and the cross-orthogonality (mode shape) matrix were the primary focus for improvement, while other properties such as center of gravity location, total weight, and offdiagonal terms of the mass orthogonality matrix were used as constraints. The end result was a more improved and desirable structural dynamic finite element model configuration for the X-56A aircraft. Improved frequencies and mode shapes in this study increased average flutter speeds of the X-56A aircraft by 7.6% compared to the baseline model.

  2. Creating a Test-Validated Finite-Element Model of the X-56A Aircraft Structure

    NASA Technical Reports Server (NTRS)

    Pak, Chan-Gi; Truong, Samson

    2014-01-01

    Small modeling errors in a finite-element model will eventually induce errors in the structural flexibility and mass, thus propagating into unpredictable errors in the unsteady aerodynamics and the control law design. One of the primary objectives of the X-56A Multi-Utility Technology Testbed aircraft is the flight demonstration of active flutter suppression and, therefore, in this study, the identification of the primary and secondary modes for the structural model tuning based on the flutter analysis of the X-56A aircraft. The ground-vibration test-validated structural dynamic finite-element model of the X-56A aircraft is created in this study. The structural dynamic finite-element model of the X-56A aircraft is improved using a model-tuning tool. In this study, two different weight configurations of the X-56A aircraft have been improved in a single optimization run. Frequency and the cross-orthogonality (mode shape) matrix were the primary focus for improvement, whereas other properties such as c.g. location, total weight, and off-diagonal terms of the mass orthogonality matrix were used as constraints. The end result was an improved structural dynamic finite-element model configuration for the X-56A aircraft. Improved frequencies and mode shapes in this study increased average flutter speeds of the X-56A aircraft by 7.6% compared to the baseline model.

  3. Adaptive Failure Compensation for Aircraft Tracking Control Using Engine Differential Based Model

    NASA Technical Reports Server (NTRS)

    Liu, Yu; Tang, Xidong; Tao, Gang; Joshi, Suresh M.

    2006-01-01

    An aircraft model that incorporates independently adjustable engine throttles and ailerons is employed to develop an adaptive control scheme in the presence of actuator failures. This model captures the key features of aircraft flight dynamics when in the engine differential mode. Based on this model an adaptive feedback control scheme for asymptotic state tracking is developed and applied to a transport aircraft model in the presence of two types of failures during operation, rudder failure and aileron failure. Simulation results are presented to demonstrate the adaptive failure compensation scheme.

  4. Modeled Impact of Cirrus Cloud Increases Along Aircraft Flight Paths

    NASA Technical Reports Server (NTRS)

    Rind, David; Lonergan, P.; Shah, K.

    1999-01-01

    The potential impact of contrails and alterations in the lifetime of background cirrus due to subsonic airplane water and aerosol emissions has been investigated in a set of experiments using the GISS GCM connected to a q-flux ocean. Cirrus clouds at a height of 12-15km, with an optical thickness of 0.33, were input to the model "x" percentage of clear-sky occasions along subsonic aircraft flight paths, where x is varied from .05% to 6%. Two types of experiments were performed: one with the percentage cirrus cloud increase independent of flight density, as long as a certain minimum density was exceeded; the other with the percentage related to the density of fuel expenditure. The overall climate impact was similar with the two approaches, due to the feedbacks of the climate system. Fifty years were run for eight such experiments, with the following conclusions based on the stable results from years 30-50 for each. The experiments show that adding cirrus to the upper troposphere results in a stabilization of the atmosphere, which leads to some decrease in cloud cover at levels below the insertion altitude. Considering then the total effect on upper level cloud cover (above 5 km altitude), the equilibrium global mean temperature response shows that altering high level clouds by 1% changes the global mean temperature by 0.43C. The response is highly linear (linear correlation coefficient of 0.996) for high cloud cover changes between 0. 1% and 5%. The effect is amplified in the Northern Hemisphere, more so with greater cloud cover change. The temperature effect maximizes around 10 km (at greater than 40C warming with a 4.8% increase in upper level clouds), again more so with greater warming. The high cloud cover change shows the flight path influence most clearly with the smallest warming magnitudes; with greater warming, the model feedbacks introduce a strong tropical response. Similarly, the surface temperature response is dominated by the feedbacks, and shows

  5. Highly integrated digital electronic control: Digital flight control, aircraft model identification, and adaptive engine control

    NASA Technical Reports Server (NTRS)

    Baer-Riedhart, Jennifer L.; Landy, Robert J.

    1987-01-01

    The highly integrated digital electronic control (HIDEC) program at NASA Ames Research Center, Dryden Flight Research Facility is a multiphase flight research program to quantify the benefits of promising integrated control systems. McDonnell Aircraft Company is the prime contractor, with United Technologies Pratt and Whitney Aircraft, and Lear Siegler Incorporated as major subcontractors. The NASA F-15A testbed aircraft was modified by the HIDEC program by installing a digital electronic flight control system (DEFCS) and replacing the standard F100 (Arab 3) engines with F100 engine model derivative (EMD) engines equipped with digital electronic engine controls (DEEC), and integrating the DEEC's and DEFCS. The modified aircraft provides the capability for testing many integrated control modes involving the flight controls, engine controls, and inlet controls. This paper focuses on the first two phases of the HIDEC program, which are the digital flight control system/aircraft model identification (DEFCS/AMI) phase and the adaptive engine control system (ADECS) phase.

  6. Propeller aircraft interior noise model: User's manual for computer program

    NASA Technical Reports Server (NTRS)

    Wilby, E. G.; Pope, L. D.

    1985-01-01

    A computer program entitled PAIN (Propeller Aircraft Interior Noise) has been developed to permit calculation of the sound levels in the cabin of a propeller-driven airplane. The fuselage is modeled as a cylinder with a structurally integral floor, the cabin sidewall and floor being stiffened by ring frames, stringers and floor beams of arbitrary configurations. The cabin interior is covered with acoustic treatment and trim. The propeller noise consists of a series of tones at harmonics of the blade passage frequency. Input data required by the program include the mechanical and acoustical properties of the fuselage structure and sidewall trim. Also, the precise propeller noise signature must be defined on a grid that lies in the fuselage skin. The propeller data are generated with a propeller noise prediction program such as the NASA Langley ANOPP program. The program PAIN permits the calculation of the space-average interior sound levels for the first ten harmonics of a propeller rotating alongside the fuselage. User instructions for PAIN are given in the report. Development of the analytical model is presented in NASA CR 3813.

  7. An economic model of the manufacturers' aircraft production and airline earnings potential, volume 3

    NASA Technical Reports Server (NTRS)

    Kneafsey, J. T.; Hill, R. M.

    1978-01-01

    A behavioral explanation of the process of technological change in the U. S. aircraft manufacturing and airline industries is presented. The model indicates the principal factors which influence the aircraft (airframe) manufacturers in researching, developing, constructing and promoting new aircraft technology; and the financial requirements which determine the delivery of new aircraft to the domestic trunk airlines. Following specification and calibration of the model, the types and numbers of new aircraft were estimated historically for each airline's fleet. Examples of possible applications of the model to forecasting an individual airline's future fleet also are provided. The functional form of the model is a composite which was derived from several preceding econometric models developed on the foundations of the economics of innovation, acquisition, and technological change and represents an important contribution to the improved understanding of the economic and financial requirements for aircraft selection and production. The model's primary application will be to forecast the future types and numbers of new aircraft required for each domestic airline's fleet.

  8. Dynamic Modeling Accuracy Dependence on Errors in Sensor Measurements, Mass Properties, and Aircraft Geometry

    NASA Technical Reports Server (NTRS)

    Grauer, Jared A.; Morelli, Eugene A.

    2013-01-01

    A nonlinear simulation of the NASA Generic Transport Model was used to investigate the effects of errors in sensor measurements, mass properties, and aircraft geometry on the accuracy of dynamic models identified from flight data. Measurements from a typical system identification maneuver were systematically and progressively deteriorated and then used to estimate stability and control derivatives within a Monte Carlo analysis. Based on the results, recommendations were provided for maximum allowable errors in sensor measurements, mass properties, and aircraft geometry to achieve desired levels of dynamic modeling accuracy. Results using other flight conditions, parameter estimation methods, and a full-scale F-16 nonlinear aircraft simulation were compared with these recommendations.

  9. Study of materials performance model for aircraft interiors

    NASA Technical Reports Server (NTRS)

    Leary, K.; Skratt, J.

    1980-01-01

    A demonstration version of an aircraft interior materials computer data library was developed and contains information on selected materials applicable to aircraft seats and wall panels, including materials for the following: panel face sheets, bond plies, honeycomb, foam, decorative film systems, seat cushions, adhesives, cushion reinforcements, fire blocking layers, slipcovers, decorative fabrics and thermoplastic parts. The information obtained for each material pertains to the material's performance in a fire scenario, selected material properties and several measures of processability.

  10. 75 FR 3127 - Airworthiness Directives; Thrush Aircraft, Inc. Model 600 S2D and S2R Series Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-20

    ...-036-AD; Amendment 39-16150; AD 2009-26-11] RIN 2120-AA64 Airworthiness Directives; Thrush Aircraft...: Final rule. SUMMARY: We are adopting a new airworthiness directive (AD) to supersede AD (AD) 2006-07-15... previously held by Quality Aerospace, Inc. and Ayres Corporation). AD 2006-07-15 currently...

  11. Analytical model for investigation of interior noise characteristics in aircraft with multiple propellers including synchrophasing

    NASA Technical Reports Server (NTRS)

    Fuller, C. R.

    1986-01-01

    A simplified analytical model of transmission of noise into the interior of propeller-driven aircraft has been developed. The analysis includes directivity and relative phase effects of the propeller noise sources, and leads to a closed form solution for the coupled motion between the interior and exterior fields via the shell (fuselage) vibrational response. Various situations commonly encountered in considering sound transmission into aircraft fuselages are investigated analytically and the results obtained are compared to measurements in real aircraft. In general the model has proved successful in identifying basic mechanisms behind noise transmission phenomena.

  12. Improving the Aircraft Design Process Using Web-Based Modeling and Simulation

    NASA Technical Reports Server (NTRS)

    Reed, John A.; Follen, Gregory J.; Afjeh, Abdollah A.; Follen, Gregory J. (Technical Monitor)

    2000-01-01

    Designing and developing new aircraft systems is time-consuming and expensive. Computational simulation is a promising means for reducing design cycle times, but requires a flexible software environment capable of integrating advanced multidisciplinary and multifidelity analysis methods, dynamically managing data across heterogeneous computing platforms, and distributing computationally complex tasks. Web-based simulation, with its emphasis on collaborative composition of simulation models, distributed heterogeneous execution, and dynamic multimedia documentation, has the potential to meet these requirements. This paper outlines the current aircraft design process, highlighting its problems and complexities, and presents our vision of an aircraft design process using Web-based modeling and simulation.

  13. Improving the Aircraft Design Process Using Web-based Modeling and Simulation

    NASA Technical Reports Server (NTRS)

    Reed, John A.; Follen, Gregory J.; Afjeh, Abdollah A.

    2003-01-01

    Designing and developing new aircraft systems is time-consuming and expensive. Computational simulation is a promising means for reducing design cycle times, but requires a flexible software environment capable of integrating advanced multidisciplinary and muitifidelity analysis methods, dynamically managing data across heterogeneous computing platforms, and distributing computationally complex tasks. Web-based simulation, with its emphasis on collaborative composition of simulation models, distributed heterogeneous execution, and dynamic multimedia documentation, has the potential to meet these requirements. This paper outlines the current aircraft design process, highlighting its problems and complexities, and presents our vision of an aircraft design process using Web-based modeling and simulation.

  14. Aircraft Ducting

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Templeman Industries developed the Ultra-Seal Ducting System, an environmental composite air duct with a 50 percent weight savings over current metallic ducting, but could not find a commercial facility with the ability to test it. Marshall Space Flight Center conducted a structural evaluation of the duct, equivalent to 86 years of take-offs and landings in an aircraft. Boeing Commercial Airplane Group and McDonnell Douglas Corporation are currently using the ducts.

  15. Roll paper pilot. [mathematical model for predicting pilot rating of aircraft in roll task

    NASA Technical Reports Server (NTRS)

    Naylor, F. R.; Dillow, J. D.; Hannen, R. A.

    1973-01-01

    A mathematical model for predicting the pilot rating of an aircraft in a roll task is described. The model includes: (1) the lateral-directional aircraft equations of motion; (2) a stochastic gust model; (3) a pilot model with two free parameters; and (4) a pilot rating expression that is a function of rms roll angle and the pilot lead time constant. The pilot gain and lead time constant are selected to minimize the pilot rating expression. The pilot parameters are then adjusted to provide a 20% stability margin and the adjusted pilot parameters are used to compute a roll paper pilot rating of the aircraft/gust configuration. The roll paper pilot rating was computed for 25 aircraft/gust configurations. A range of actual ratings from 2 to 9 were encountered and the roll paper pilot ratings agree quite well with the actual ratings. In addition there is good correlation between predicted and measured rms roll angle.

  16. 78 FR 75453 - Special Conditions: Cessna Model 750 Series Airplanes; Aircraft Electronic System Security...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-12

    ... data network and design integration may result in security vulnerabilities from intentional or... than previous airplane models. This may allow the exploitation of network security vulnerabilities and... Airplanes; Aircraft Electronic System Security Isolation or Protection From Internal Access AGENCY:...

  17. Wind tunnel study of wake downwash behind A 6% scale model B1-B aircraft

    SciTech Connect

    Strickland, J.H.; Tadios, E.L.; Powers, D.A.

    1990-05-01

    Parachute system performance issues such a turnover and wake recontact may be strongly influenced by velocities induced by the wake of the delivering aircraft, especially if the aircraft is maneuvering at the time of parachute deployment. The effect of the aircraft on the parachute system is a function of the aircraft size, weight, and flight path. In order to provide experimental data for validation of a computer code to predict aircraft wake velocities, a test was conducted in the NASA 14 {times} 22 ft wind tunnel using a 5.78% model of the B-1B strategic bomber. The model was strut mounted through the top of its fuselage by a mechanism which was capable of pitching the model at moderate rates. In this series of tests, the aircraft was pitched at 10{degree}/sec from a cruise angle of attack of 5.3{degree} to an angle of attack of 11{degree} in order to simulate a 2.2g pullup. Data were also taken for the subsequent pitch down sequence back to the cruise angle of attack. Instantaneous streamwise and vertical velocities were measured in the wake at a number of points using a hot wire anemometer. These data have been reduced to the form of downwash coefficients which are a function of the aircraft angle of attack time-history. Unsteady effects are accounted for by use of a wake convection lag-time correlation. 12 refs., 59 figs., 4 tabs.

  18. Flight dynamics simulation modeling and control of a large flexible tiltrotor aircraft

    NASA Astrophysics Data System (ADS)

    Juhasz, Ondrej

    A high order rotorcraft mathematical model is developed and validated against the XV-15 and a Large Civil Tiltrotor (LCTR) concept. The mathematical model is generic and allows for any rotorcraft configuration, from single main rotor helicopters to coaxial and tiltrotor aircraft. Rigid-body and inflow states, as well as flexible wing and blade states are used in the analysis. The separate modeling of each rotorcraft component allows for structural flexibility to be included, which is important when modeling large aircraft where structural modes affect the flight dynamics frequency ranges of interest, generally 1 to 20 rad/sec. Details of the formulation of the mathematical model are given, including derivations of structural, aerodynamic, and inertial loads. The linking of the components of the aircraft is developed using an approach similar to multibody analyses by exploiting a tree topology, but without equations of constraints. Assessments of the effects of wing flexibility are given. Flexibility effects are evaluated by looking at the nature of the couplings between rigid-body modes and wing structural modes and vice versa. The effects of various different forms of structural feedback on aircraft dynamics are analyzed. A proportional-integral feedback on the structural acceleration is deemed to be most effective at both improving the damping and reducing the overall excitation of a structural mode. A model following control architecture is then implemented on full order flexible LCTR models. For this aircraft, the four lowest frequency structural modes are below 20 rad/sec, and are thus needed for control law development and analysis. The impact of structural feedback on both Attitude-Command, Attitude-Hold (ACAH) and Translational Rate Command (TRC) response types are investigated. A rigid aircraft model has optimistic performance characteristics, and a control system designed for a rigid aircraft could potentially destabilize a flexible one. The various

  19. Propeller aircraft interior noise model. II - Scale-model and flight-test comparisons

    NASA Technical Reports Server (NTRS)

    Willis, C. M.; Mayes, W. H.

    1987-01-01

    A program for predicting the sound levels inside propeller driven aircraft arising from sidewall transmission of airborne exterior noise is validated through comparisons of predictions with both scale-model test results and measurements obtained in flight tests on a turboprop aircraft. The program produced unbiased predictions for the case of the scale-model tests, with a standard deviation of errors of about 4 dB. For the case of the flight tests, the predictions revealed a bias of 2.62-4.28 dB (depending upon whether or not the data for the fourth harmonic were included) and the standard deviation of the errors ranged between 2.43 and 4.12 dB. The analytical model is shown to be capable of taking changes in the flight environment into account.

  20. Modeling of the aircraft in-trail-following task during profile descent

    NASA Technical Reports Server (NTRS)

    Goka, T.; Sorensen, J. A.; Phatak, A. V.

    1981-01-01

    The cockpit display of traffic information (CDTI) system concepts enable the pilot to observe the surrounding air traffic pattern. The impact of such a system is far reaching in terms of improved safety, pilot and controller workload, and aircraft fuel efficiency. One direct payoff is the ability to distribute the ATC workload to the pilot in such tasks as merging and spacing. The CDTI application of spacing approach aircraft in the terminal area is addressed. In-trail-following/CDTI experiments were performed using realistic cockpit simulators and profile descent approach scenarios. Based on collected experimental simulator data, pilot models were developed which include state estimation, decision making and flight control aspects. These models were coupled with models of aircraft and CDTI equipment to study the dynamic phenomena and stability of strings of aircraft along various approach patterns.

  1. Optimization in fractional aircraft ownership

    NASA Astrophysics Data System (ADS)

    Septiani, R. D.; Pasaribu, H. M.; Soewono, E.; Fayalita, R. A.

    2012-05-01

    Fractional Aircraft Ownership is a new concept in flight ownership management system where each individual or corporation may own a fraction of an aircraft. In this system, the owners have privilege to schedule their flight according to their needs. Fractional management companies (FMC) manages all aspects of aircraft operations, including utilization of FMC's aircraft in combination of outsourced aircrafts. This gives the owners the right to enjoy the benefits of private aviations. However, FMC may have complicated business requirements that neither commercial airlines nor charter airlines faces. Here, optimization models are constructed to minimize the number of aircrafts in order to maximize the profit and to minimize the daily operating cost. In this paper, three kinds of demand scenarios are made to represent different flight operations from different types of fractional owners. The problems are formulated as an optimization of profit and a daily operational cost to find the optimum flight assignments satisfying the weekly and daily demand respectively from the owners. Numerical results are obtained by Genetic Algorithm method.

  2. Modeling, design and energy management of fuel cell systems for aircraft

    NASA Astrophysics Data System (ADS)

    Bradley, Thomas Heenan

    Fuel cell powered aircraft have been of long term interest to the aviation community because of their potential for improved performance and environmental compatibility. Only recently have improvements in the technological readiness of fuel cell powerplants enabled the first aviation applications of fuel cell technology. Based on the results of conceptual design studies and a few technology demonstration projects, there has emerged a widespread understanding of the importance of fuel cell powerplants for near-term and future aviation applications. Despite this, many aspects of the performance, design and construction of robust and optimized fuel cell powered aircraft have not been fully explored. This goal of this research then is to develop an improved understanding of the performance, design characteristics, design tradeoffs and viability of fuel cell powerplants for aviation applications. To accomplish these goals, new modeling, design, and experimental tools are developed, validated and applied to the design of fuel cell powered unmanned aerial vehicles. First, a general sub-system model of fuel cell powerplant performance, mass and geometry is derived from experimental and theoretical investigations of a fuel cell powerplant that is developed in hardware. These validated fuel cell subsystem models are then incorporated into a computer-based, application-integrated, parametric, and optimizeable design environment that allows for the concurrent design of the aircraft and fuel cell powerplant. The advanced modeling and design techniques required for modern aircraft design (including multi-disciplinary analysis, performance optimization under uncertainty and system performance validation), are applied at the fuel cell subsystem level and are linked to aircraft performance and design metrics. These tools and methods are then applied to the analysis and design of fuel cell powered aircraft in a series of case studies and design experiments. Based on the results of

  3. Model experiments to evaluate vortex dissipation devices proposed for installation on or near aircraft runways

    NASA Technical Reports Server (NTRS)

    Kohl, R. E.

    1973-01-01

    The effectiveness of various vortex dissipation devices proposed for installation on or near aircraft runways is evaluated on basis of results of experiments conducted with a 0.03-scale model of a Boeing 747 transport aircraft in conjunction with a simulated runway. The test variables included type of vortex dissipation device, mode of operation of the powered devices, and altitude, lift coefficient and speed of the generating aircraft. A total of fifteen devices was investigated. The evaluation is based on time sequence photographs taken in the vertical and horizontal planes during each run.

  4. Digital adaptive model following flight control. [using fighter aircraft mathematical model-following algorithm

    NASA Technical Reports Server (NTRS)

    Alag, G. S.; Kaufman, H.

    1974-01-01

    Simple mechanical linkages are often unable to cope with the many control problems associated with high performance aircraft maneuvering over a wide flight envelope. One procedure for retaining uniform handling qualities over such an envelope is to implement a digital adaptive controller. Towards such an implementation an explicit adaptive controller, which makes direct use of online parameter identification, has been developed and applied to the linearized equations of motion for a typical fighter aircraft. The system is composed of an online weighted least squares identifier, a Kalman state filter, and a single stage real model following control law. The corresponding control gains are readily adjustable in accordance with parameter changes to ensure asymptotic stability if the conditions for perfect model following are satisfied and stability in the sense of boundedness otherwise.

  5. Development and validation of a general purpose linearization program for rigid aircraft models

    NASA Technical Reports Server (NTRS)

    Duke, E. L.; Antoniewicz, R. F.

    1985-01-01

    A FORTRAN program that provides the user with a powerful and flexible tool for the linearization of aircraft models is discussed. The program LINEAR numerically determines a linear systems model using nonlinear equations of motion and a user-supplied, nonlinear aerodynamic model. The system model determined by LINEAR consists of matrices for both the state and observation equations. The program has been designed to allow easy selection and definition of the state, control, and observation variables to be used in a particular model. Also, included in the report is a comparison of linear and nonlinear models for a high performance aircraft.

  6. Models and techniques for evaluating the effectiveness of aircraft computing systems

    NASA Technical Reports Server (NTRS)

    Meyer, J. F.

    1982-01-01

    Models, measures, and techniques for evaluating the effectiveness of aircraft computing systems were developed. By "effectiveness" in this context we mean the extent to which the user, i.e., a commercial air carrier, may expect to benefit from the computational tasks accomplished by a computing system in the environment of an advanced commercial aircraft. Thus, the concept of effectiveness involves aspects of system performance, reliability, and worth (value, benefit) which are appropriately integrated in the process of evaluating system effectiveness. Specifically, the primary objectives are: the development of system models that provide a basis for the formulation and evaluation of aircraft computer system effectiveness, the formulation of quantitative measures of system effectiveness, and the development of analytic and simulation techniques for evaluating the effectiveness of a proposed or existing aircraft computer.

  7. 76 FR 41667 - Airworthiness Directives; Hawker Beechcraft Corporation Models B300 and B300C (C-12W) Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-15

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF TRANSPORTATION... Corporation Models B300 and B300C (C-12W) Airplanes AGENCY: Federal Aviation Administration (FAA), DOT. ACTION... Corporation Models B300 and B300C (C-12W) airplanes. This AD was prompted by an error found in the...

  8. 78 FR 36084 - Special Conditions: Cirrus Design Corporation Model SF50 Airplane; Function and Reliability...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-17

    ... introductory material also stated the service test requirement was removed for airplanes of 6,000 pounds... Airplane; Function and Reliability Testing; Withdrawal AGENCY: Federal Aviation Administration (FAA), DOT... notice granting special conditions for the Cirrus Design Corporation model SF50 airplane. We...

  9. 75 FR 21528 - Airworthiness Directives; McDonnell Douglas Corporation Model MD-90-30 Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-26

    ... certain Model MD-90-30 airplanes. This proposed AD would require inspecting for corrosion of the retract... system. We are proposing this AD to prevent corrosion and damage that could compromise the integrity of... Corporation MD-80 series airplanes. This condition, if not corrected, could result in corrosion and...

  10. Integrated Flight Mechanic and Aeroelastic Modelling and Control of a Flexible Aircraft Considering Multidimensional Gust Input

    DTIC Science & Technology

    2000-05-01

    INTEGRATED FLIGHT MECHANIC AND AEROELASTIC MODELLING AND CONTROL OF A FLEXIBLE AIRCRAFT CONSIDERING MULTIDIMENSIONAL GUST INPUT Patrick Teufel, Martin Hanel...the lateral separation distance have been developed by ’ = matrix of two dimensional spectrum function Eichenbaum 4 and are described by Bessel...Journal of Aircraft, Vol. 30, No. 5, Sept.-Oct. 1993 Relations to Risk Sensitivity, System & Control Letters 11, [4] Eichenbaum F.D., Evaluation of 3D

  11. Modeling Aircraft Emissions for Regional-scale Air Quality: Adapting a New Global Aircraft Emissions Database for the U.S

    NASA Astrophysics Data System (ADS)

    Arunachalam, S.; Baek, B. H.; Vennam, P. L.; Woody, M. C.; Omary, M.; Binkowski, F.; Fleming, G.

    2012-12-01

    Commercial aircraft emit substantial amounts of pollutants during their complete activity cycle that ranges from landing-and-takeoff (LTO) at airports to cruising in upper elevations of the atmosphere, and affect both air quality and climate. Since these emissions are not uniformly emitted over the earth, and have substantial temporal and spatial variability, it is vital to accurately evaluate and quantify the relative impacts of aviation emissions on ambient air quality. Regional-scale air quality modeling applications do not routinely include these aircraft emissions from all cycles. Federal Aviation Administration (FAA) has developed the Aviation Environmental Design Tool (AEDT), a software system that dynamically models aircraft performance in space and time to calculate fuel burn and emissions from gate-to-gate for all commercial aviation activity from all airports globally. To process in-flight aircraft emissions and to provide a realistic representation of these for treatment in grid-based air quality models, we have developed an interface processor called AEDTproc that accurately distributes full-flight chorded emissions in time and space to create gridded, hourly model-ready emissions input data. Unlike the traditional emissions modeling approach of treating aviation emissions as ground-level sources or processing emissions only from the LTO cycles in regional-scale air quality studies, AEDTproc distributes chorded inventories of aircraft emissions during LTO cycles and cruise activities into a time-variant 3-D gridded structure. We will present results of processed 2006 global emissions from AEDT over a continental U.S. modeling domain to support a national-scale air quality assessment of the incremental impacts of aircraft emissions on surface air quality. This includes about 13.6 million flights within the U.S. out of 31.2 million flights globally. We will focus on assessing spatio-temporal variability of these commercial aircraft emissions, and

  12. A mathematical simulation model of a 1985-era tilt-rotor passenger aircraft

    NASA Technical Reports Server (NTRS)

    Mcveigh, M. A.; Widdison, C. A.

    1976-01-01

    A mathematical model for use in real-time piloted simulation of a 1985-era tilt rotor passenger aircraft is presented. The model comprises the basic six degrees-of-freedom equations of motion, and a large angle of attack representation of the airframe and rotor aerodynamics, together with equations and functions used to model turbine engine performance, aircraft control system and stability augmentation system. A complete derivation of the primary equations is given together with a description of the modeling techniques used. Data for the model is included in an appendix.

  13. Aircraft/Air Traffic Management Functional Analysis Model. Version 2.0; User's Guide

    NASA Technical Reports Server (NTRS)

    Etheridge, Melvin; Plugge, Joana; Retina, Nusrat

    1998-01-01

    The Aircraft/Air Traffic Management Functional Analysis Model, Version 2.0 (FAM 2.0), is a discrete event simulation model designed to support analysis of alternative concepts in air traffic management and control. FAM 2.0 was developed by the Logistics Management Institute (LMI) a National Aeronautics and Space Administration (NASA) contract. This document provides a guide for using the model in analysis. Those interested in making enhancements or modification to the model should consult the companion document, Aircraft/Air Traffic Management Functional Analysis Model, Version 2.0 Technical Description.

  14. Dynamic Model of Aircraft Passenger Seats for Vibration Comfort Evaluation and Control

    NASA Astrophysics Data System (ADS)

    Šika, Z.; Valášek, Michael; Vampola, T.; Füllekrug, U.; Klimmek, T.

    The paper deals with the development of the seat dynamical model for vibration comfort evaluation and control. The aircraft seats have been tested extensively by vibrations on the 6 DOF vibrating platform. The importance of the careful comfort control together with the flight mechanics control is namely stressed for the blended wing body (BWB) aircrafts. They have a very large fuselage, where the mechanical properties (accelerations, angular accelerations) vary considerably for different seat places. The model have been improved by adding of dynamical models of the aircraft passenger seats identified by the measurements on the 6 DOF vibrating platform. The experiments, their results and the identification of the dynamical seat model are described. The model is further modified by adding of the comfort evaluation norms represented by dynamical filters. The structure and identification of the seat model is briefly described and discussed.

  15. Capture Conditions for Merging Trajectory Segments to Model Realistic Aircraft Descents

    NASA Technical Reports Server (NTRS)

    Zhao, Yiyuan; Slattery, Rhonda A.

    1996-01-01

    A typical commercial aircraft trajectory consists of a series of flight segments. An aircraft switches from one segment to another when certain specified variables reach their desired values. Trajectory synthesis for air traffic control automation must be consistent with practical pilot procedures. We examine capture conditions for merging trajectory segments to model commercial aircraft descent in trajectory synthesis. These conditions translate into bounds on measurements of atmospheric wind, pressure, and temperature. They also define ranges of thrust and drag feasible for a descent trajectory. Capture conditions are derived for the Center-TRACON Automation System developed at NASA Ames Research Center for automated air traffic control. Various uses of capture conditions are discussed. A Boeing 727-200 aircraft is used to provide numerical examples of capture conditions.

  16. Design Sensitivity for a Subsonic Aircraft Predicted by Neural Network and Regression Models

    NASA Technical Reports Server (NTRS)

    Hopkins, Dale A.; Patnaik, Surya N.

    2005-01-01

    A preliminary methodology was obtained for the design optimization of a subsonic aircraft by coupling NASA Langley Research Center s Flight Optimization System (FLOPS) with NASA Glenn Research Center s design optimization testbed (COMETBOARDS with regression and neural network analysis approximators). The aircraft modeled can carry 200 passengers at a cruise speed of Mach 0.85 over a range of 2500 n mi and can operate on standard 6000-ft takeoff and landing runways. The design simulation was extended to evaluate the optimal airframe and engine parameters for the subsonic aircraft to operate on nonstandard runways. Regression and neural network approximators were used to examine aircraft operation on runways ranging in length from 4500 to 7500 ft.

  17. Fuzzy Model-based Pitch Stabilization and Wing Vibration Suppression of Flexible Wing Aircraft.

    NASA Technical Reports Server (NTRS)

    Ayoubi, Mohammad A.; Swei, Sean Shan-Min; Nguyen, Nhan T.

    2014-01-01

    This paper presents a fuzzy nonlinear controller to regulate the longitudinal dynamics of an aircraft and suppress the bending and torsional vibrations of its flexible wings. The fuzzy controller utilizes full-state feedback with input constraint. First, the Takagi-Sugeno fuzzy linear model is developed which approximates the coupled aeroelastic aircraft model. Then, based on the fuzzy linear model, a fuzzy controller is developed to utilize a full-state feedback and stabilize the system while it satisfies the control input constraint. Linear matrix inequality (LMI) techniques are employed to solve the fuzzy control problem. Finally, the performance of the proposed controller is demonstrated on the NASA Generic Transport Model (GTM).

  18. Application of triggered lightning numerical models to the F106B and extension to other aircraft

    NASA Technical Reports Server (NTRS)

    Ng, Poh H.; Dalke, Roger A.; Horembala, Jim; Rudolph, Terence; Perala, Rodney A.

    1988-01-01

    The goal of the F106B Thunderstorm Research Program is to characterize the lightning environment for aircraft in flight. This report describes the application of numerical electromagnetic models to this problem. Topics include: (1) Extensive application of linear triggered lightning to F106B data; (2) Electrostatic analysis of F106B field mill data; (3) Application of subgrid modeling to F106B nose region, including both static and nonlinear models; (4) Extension of F106B results to other aircraft of varying sizes and shapes; and (5) Application of nonlinear model to interaction of F106B with lightning leader-return stroke event.

  19. Activities of NASA's Global Modeling Initiative (GMI) in the Assessment of Subsonic Aircraft Impact

    NASA Technical Reports Server (NTRS)

    Rodriquez, J. M.; Logan, J. A.; Rotman, D. A.; Bergmann, D. J.; Baughcum, S. L.; Friedl, R. R.; Anderson, D. E.

    2004-01-01

    The Intergovernmental Panel on Climate Change estimated a peak increase in ozone ranging from 7-12 ppbv (zonal and annual average, and relative to a baseline with no aircraft), due to the subsonic aircraft in the year 2015, corresponding to aircraft emissions of 1.3 TgN/year. This range of values presumably reflects differences in model input (e.g., chemical mechanism, ground emission fluxes, and meteorological fields), and algorithms. The model implemented by the Global Modeling Initiative allows testing the impact of individual model components on the assessment calculations. We present results of the impact of doubling the 1995 aircraft emissions of NOx, corresponding to an extra 0.56 TgN/year, utilizing meteorological data from NASA's Data Assimilation Office (DAO), the Goddard Institute for Space Studies (GISS), and the Middle Atmosphere Community Climate Model, version 3 (MACCM3). Comparison of results to observations can be used to assess the model performance. Peak ozone perturbations ranging from 1.7 to 2.2 ppbv of ozone are calculated using the different fields. These correspond to increases in total tropospheric ozone ranging from 3.3 to 4.1 Tg/Os. These perturbations are consistent with the IPCC results, due to the difference in aircraft emissions. However, the range of values calculated is much smaller than in IPCC.

  20. Model Assessment of the Impact on Ozone of Subsonic and Supersonic Aircraft

    NASA Technical Reports Server (NTRS)

    Ko, Malcolm; Weisenstein, Debra; Danilin, Michael; Scott, Courtney; Shia, Run-Lie

    2000-01-01

    This is the final report for work performed between June 1999 through May 2000. The work represents continuation of the previous contract which encompasses five areas: (1) continued refinements and applications of the 2-D chemistry-transport model (CTM) to assess the ozone effects from aircraft operation in the stratosphere; (2) studying the mechanisms that determine the evolution of the sulfur species in the aircraft plume and how such mechanisms affect the way aircraft sulfur emissions should be introduced into global models; (3) the development of diagnostics in the AER 3-wave interactive model to assess the importance of the dynamics feedback and zonal asymmetry in model prediction of ozone response to aircraft operation; (4) the development of a chemistry parameterization scheme in support of the global modeling initiative (GMI); and (5) providing assessment results for preparation of national and international reports which include the "Aviation and the Global Atmosphere" prepared by the Intergovernmental Panel on Climate Change, "Assessment of the effects of high-speed aircraft in the stratosphere: 1998" by NASA, and the "Model and Measurements Intercomparison II" by NASA. Part of the work was reported in the final report. We participated in the SAGE III Ozone Loss and Validation Experiment (SOLVE) campaign and we continue with our analyses of the data.

  1. Parameter Uncertainty for Aircraft Aerodynamic Modeling using Recursive Least Squares

    NASA Technical Reports Server (NTRS)

    Grauer, Jared A.; Morelli, Eugene A.

    2016-01-01

    A real-time method was demonstrated for determining accurate uncertainty levels of stability and control derivatives estimated using recursive least squares and time-domain data. The method uses a recursive formulation of the residual autocorrelation to account for colored residuals, which are routinely encountered in aircraft parameter estimation and change the predicted uncertainties. Simulation data and flight test data for a subscale jet transport aircraft were used to demonstrate the approach. Results showed that the corrected uncertainties matched the observed scatter in the parameter estimates, and did so more accurately than conventional uncertainty estimates that assume white residuals. Only small differences were observed between batch estimates and recursive estimates at the end of the maneuver. It was also demonstrated that the autocorrelation could be reduced to a small number of lags to minimize computation and memory storage requirements without significantly degrading the accuracy of predicted uncertainty levels.

  2. Rapid Prototyping of an Aircraft Model in an Object-Oriented Simulation

    NASA Technical Reports Server (NTRS)

    Kenney, P. Sean

    2003-01-01

    A team was created to participate in the Mars Scout Opportunity. Trade studies determined that an aircraft provided the best opportunity to complete the science objectives of the team. A high fidelity six degree of freedom flight simulation was required to provide credible evidence that the aircraft design fulfilled mission objectives and to support the aircraft design process by providing performance evaluations. The team created the simulation using the Langley Standard Real-Time Simulation in C++ (LaSRS++) application framework. A rapid prototyping approach was necessary because the team had only three months to both develop the aircraft simulation model and evaluate aircraft performance as the design and mission parameters matured. The design of LaSRS++ enabled rapid-prototyping in several ways. First, the framework allowed component models to be designed, implemented, unit-tested, and integrated quickly. Next, the framework provides a highly reusable infrastructure that allowed developers to maximize code reuse while concentrating on aircraft and mission specific features. Finally, the framework reduces risk by providing reusable components that allow developers to build a quality product with a compressed testing cycle that relies heavily on unit testing of new components.

  3. A system safety model for developmental aircraft programs

    NASA Technical Reports Server (NTRS)

    Amberboy, E. J.; Stokeld, R. L.

    1982-01-01

    Basic tenets of safety as applied to developmental aircraft programs are presented. The integration of safety into the project management aspects of planning, organizing, directing and controlling is illustrated by examples. The basis for project management use of safety and the relationship of these management functions to 'real-world' situations is presented. The rationale which led to the safety-related project decision and the lessons learned as they may apply to future projects are presented.

  4. Survivability Modeling & Simulation(Aircraft Survivability, Fall 2009)

    DTIC Science & Technology

    2009-01-01

    Mumford Please welcome Carey "Chip" Mumford to the...capabilities and updated penetration equations. COVART Chip Mumford A ir cr af t S ur vi va bi li ty • Fa ll 2 00 9 • h tt ps :/ /j as po .w pa fb...Beach, FL MAY JASP Aircraft Combat Survivability Short Course 4–7 May 2010 NPS, Monterey, CA SpecOps West 2010 10–12 May 2010 Ft. Lewis , WA

  5. CFD Modeling & Verification in an Aircraft Paint Hangar

    DTIC Science & Technology

    2011-05-01

    Collaboration •Navy Bureau of Medicine and Surgery (BUMED), IH Division –Assists CNO with health and safety of Navy aircraft artisans –Quarterly monitoring...levels • Handling paint particulates and vapors 10 E2S2. Verification Pitfalls • Artisans change process in the weeks between baseline and...verification – Added a fabric blanket in front of filter to save filter bank blocking exhaust airflow during sanding • Learn how to go w/o sleep

  6. Quantifying Confidence in Model Predictions for Hypersonic Aircraft Structures

    DTIC Science & Technology

    2015-03-01

    Government drawings, specifications, or other data included in this document for any purpose other than Government procurement does not in any way...holder or any other person or corporation; or convey any rights or permission to manufacture, use, or sell any patented invention that may relate to them...Aerospace Systems Directorate This report is published in the interest of scientific and technical information exchange , and its

  7. 78 FR 73995 - Special Conditions: Cessna Model 680 Series Airplanes; Aircraft Electronic System Security...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-10

    ... data busses and networks. A separate Cessna Model 680 project special condition addresses aircraft.... Discussion The integrated network configurations in the Cessna Model 680 series airplanes may allow increased... passenger entertainment and information services than previous airplane models. This may allow...

  8. Modeling and assessment of civil aircraft evacuation based on finer-grid

    NASA Astrophysics Data System (ADS)

    Fang, Zhi-Ming; Lv, Wei; Jiang, Li-Xue; Xu, Qing-Feng; Song, Wei-Guo

    2016-04-01

    Studying civil aircraft emergency evacuation process by using computer model is an effective way. In this study, the evacuation of Airbus A380 is simulated using a Finer-Grid Civil Aircraft Evacuation (FGCAE) model. In this model, the effect of seat area and others on escape process and pedestrian's "hesitation" before leaving exits are considered, and an optimized rule of exit choice is defined. Simulations reproduce typical characteristics of aircraft evacuation, such as the movement synchronization between adjacent pedestrians, route choice and so on, and indicate that evacuation efficiency will be determined by pedestrian's "preference" and "hesitation". Based on the model, an assessment procedure of aircraft evacuation safety is presented. The assessment and comparison with the actual evacuation test demonstrate that the available exit setting of "one exit from each exit pair" used by practical demonstration test is not the worst scenario. The half exits of one end of the cabin are all unavailable is the worst one, that should be paid more attention to, and even be adopted in the certification test. The model and method presented in this study could be useful for assessing, validating and improving the evacuation performance of aircraft.

  9. 77 FR 71087 - Airworthiness Directives; Sikorsky Aircraft Corporation (Sikorsky) Model Helicopters

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-29

    ... reducing or establishing life limits for the main rotor blade, tail rotor blade, planetary carrier assembly, tail rotor servo, elastomeric sleeve bearing, main landing gear shock strut piston cylinder, crossfeed... attach bolt, $40,000 for the main rotor hub, $12,000 for the main landing gear shock strut piston...

  10. 75 FR 47197 - Airworthiness Directives; Schweizer Aircraft Corporation (Schweizer) Model 269D Helicopters

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-05

    ... Housing Blade Containment Shielding Kit on each helicopter. This amendment is prompted by 21 reports of the blades of the oil cooler impeller separating, one of which punctured the engine and transmission... protect the oil cooler from uncontained oil cooler impeller blades that could damage the oil cooler...

  11. 75 FR 5684 - Airworthiness Directives; Sikorsky Aircraft Corporation Model S-92A Helicopters

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-04

    ... corrosion. If you do not find a crack, the AD requires applying a corrosion preventive compound. If you find a crack, the AD requires replacing the MGB before further flight. If you find corrosion, bubbled... assembly mounting foot pad and rib for a crack and corrosion. If you do not find a crack, the AD...

  12. 78 FR 37160 - Airworthiness Directives; Sikorsky Aircraft Corporation (Sikorsky) Model Helicopters

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-20

    ... fold cuff assembly for a crack. If there is a crack, this proposed AD would require replacing the cracked part. If there is no crack, this AD would require applying white paint to the inspection area to enhance the existing inspection procedure. This proposed AD is prompted by the discovery of cracks in...

  13. 76 FR 66615 - Airworthiness Directives; Sikorsky Aircraft Corporation (Sikorsky) Model S-92A Helicopters

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-27

    ...-lock keys that did not meet the specified minimum hardness requirements. This condition, if not... specified minimum hardness requirements, which could lead to a landing gear collapse following a...

  14. 76 FR 31796 - Airworthiness Directives; Sikorsky Aircraft Corporation (Sikorsky) Model S-92A Helicopters

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-02

    ... hours time-in-service (TIS). If there is a crack, this AD requires replacing the MGB upper housing.... If there is a crack, the AD requires replacing the MGB upper housing assembly with an airworthy MGB... Current or FPI, of the left, right, and forward MGB mounting foot ribs for a crack. (f) If there is...

  15. 78 FR 31863 - Airworthiness Directives; Sikorsky Aircraft Corporation-Manufactured (Sikorsky) Model Helicopters...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-28

    ... shaft, P/N 6435-20078-104, for a crack, paying particular attention to the lower spline area. (7) Within..., paying particular attention to the lower spline area. (8) Within 150 hours TIS or before reaching...

  16. 75 FR 70812 - Airworthiness Directives; Sikorsky Aircraft Corporation (Sikorsky) Model S-92A Helicopters

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-19

    ... (MGB) assembly mounting foot pad and rib for a crack and corrosion. If you do not find a crack, the AD requires applying a corrosion preventive compound. If you find a crack, the AD requires replacing the MGB before further flight. If you find corrosion, bubbled paint, or paint discoloration, the AD requires...

  17. 76 FR 66209 - Airworthiness Directives; Sikorsky Aircraft Corporation (Sikorsky) Model S-92A Helicopters

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-26

    ... (blade) for mislocated aluminum wire mesh in the blade skin. This proposal is prompted by the discovery that blades were manufactured with aluminum wire mesh mislocated, leaving portions of the graphite... for mislocated aluminum wire mesh in the blade skin. This proposal is prompted by the discovery...

  18. 75 FR 4308 - Airworthiness Directives; Sikorsky Aircraft Corporation (Sikorsky) Model S-92A Helicopters

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-27

    ... visually inspecting it for damage. If the primary filter element has ``wavy'' pleats, internal buckling, or... filter element has ``wavy'' pleats, internal buckling, or indented dimples, before further...

  19. 76 FR 66205 - Airworthiness Directives; Sikorsky Aircraft Corporation Model S-76A Helicopters

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-26

    ... through Friday, except Federal holidays. You may get the service information identified in this proposed... holidays. The Docket Operations office (telephone (800) 647-5527) is located in Room W12-140 on the ground...) 76070-55023- 011; a circuit modification kit, P/N 76070-55033-012; and a manifold, relay box,...

  20. 75 FR 26885 - Airworthiness Directives; Sikorsky Aircraft Corporation Model S-76A, B, and C Helicopters

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-13

    ... inspecting the hydraulic fluid for contamination; removing the requirement to reduce the interval for...: ``When checking servo actuators for contamination and leakage, the inspections must be redundant enough... ``inspection'' that must be performed by a mechanic, not a ``check'' that we sometimes allow a pilot to...

  1. 75 FR 42340 - Airworthiness Directives; Sikorsky Aircraft Corporation (Sikorsky) Model S-92A Helicopters

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-21

    ... section of the Instructions ] for Continued Airworthiness (ICA) to reduce the life limit of the main gearbox housing and replacing any main gearbox housing that exceeds the life limit. This proposal is... beginning of your comments. We specifically invite comments on the overall regulatory,...

  2. 78 FR 65163 - Airworthiness Directives; Sikorsky Aircraft Corporation-Manufactured (Sikorsky) Model Helicopters...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-31

    ... required inspecting and reworking the main gearbox (MGB) assembly second stage lower planetary plate (plate..., September 12, 1997), which required inspecting and reworking the MGB assembly plate. Since AD 97-19-10 was... gearbox second stage lower planetary plate and second stage planetary plate assembly assuming...

  3. 78 FR 44052 - Airworthiness Directives; Sikorsky Aircraft Corporation (Sikorsky) Model Helicopters

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-23

    ..., which proposed establishing new fatigue life limits for certain GE engine gas generator turbine (GGT... limits need to be based on low cycle fatigue (LCF) events instead of hours time-in- service. This action... rotor part. The proposed actions are intended to prevent fatigue failure of a GGT rotor part,...

  4. 77 FR 55166 - Airworthiness Directives; Sikorsky Aircraft Corporation (Sikorsky) Model Helicopters

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-07

    ... determination that these life limits need to be based on low cycle fatigue events instead of hours time-in-service. The proposed actions are intended to establish new fatigue life limits for certain GGT rotor parts to prevent fatigue failure of a GGT rotor part, engine failure, and subsequent loss of control...

  5. 75 FR 12464 - Airworthiness Directives; McDonnell Douglas Corporation Model MD-11 and MD-11F Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-16

    ... Directives; McDonnell Douglas Corporation Model MD- 11 and MD-11F Airplanes AGENCY: Federal Aviation... Management, 3855 Lakewood Boulevard, MC D800-0019, Long Beach, California 90846- 0001; telephone 206-544-5000.... The FAA amends Sec. 39.13 by adding the following new AD: McDonnell Douglas Corporation: Docket...

  6. Twist Model Development and Results from the Active Aeroelastic Wing F/A-18 Aircraft

    NASA Technical Reports Server (NTRS)

    Lizotte, Andrew M.; Allen, Michael J.

    2007-01-01

    Understanding the wing twist of the active aeroelastic wing (AAW) F/A-18 aircraft is a fundamental research objective for the program and offers numerous benefits. In order to clearly understand the wing flexibility characteristics, a model was created to predict real-time wing twist. A reliable twist model allows the prediction of twist for flight simulation, provides insight into aircraft performance uncertainties, and assists with computational fluid dynamic and aeroelastic issues. The left wing of the aircraft was heavily instrumented during the first phase of the active aeroelastic wing program allowing deflection data collection. Traditional data processing steps were taken to reduce flight data, and twist predictions were made using linear regression techniques. The model predictions determined a consistent linear relationship between the measured twist and aircraft parameters, such as surface positions and aircraft state variables. Error in the original model was reduced in some cases by using a dynamic pressure-based assumption. This technique produced excellent predictions for flight between the standard test points and accounted for nonlinearities in the data. This report discusses data processing techniques and twist prediction validation, and provides illustrative and quantitative results.

  7. Twist Model Development and Results From the Active Aeroelastic Wing F/A-18 Aircraft

    NASA Technical Reports Server (NTRS)

    Lizotte, Andrew; Allen, Michael J.

    2005-01-01

    Understanding the wing twist of the active aeroelastic wing F/A-18 aircraft is a fundamental research objective for the program and offers numerous benefits. In order to clearly understand the wing flexibility characteristics, a model was created to predict real-time wing twist. A reliable twist model allows the prediction of twist for flight simulation, provides insight into aircraft performance uncertainties, and assists with computational fluid dynamic and aeroelastic issues. The left wing of the aircraft was heavily instrumented during the first phase of the active aeroelastic wing program allowing deflection data collection. Traditional data processing steps were taken to reduce flight data, and twist predictions were made using linear regression techniques. The model predictions determined a consistent linear relationship between the measured twist and aircraft parameters, such as surface positions and aircraft state variables. Error in the original model was reduced in some cases by using a dynamic pressure-based assumption and by using neural networks. These techniques produced excellent predictions for flight between the standard test points and accounted for nonlinearities in the data. This report discusses data processing techniques and twist prediction validation, and provides illustrative and quantitative results.

  8. Static Aeroelastic and Longitudinal Trim Model of Flexible Wing Aircraft Using Finite-Element Vortex-Lattice Coupled Solution

    NASA Technical Reports Server (NTRS)

    Ting, Eric; Nguyen, Nhan; Trinh, Khanh

    2014-01-01

    This paper presents a static aeroelastic model and longitudinal trim model for the analysis of a flexible wing transport aircraft. The static aeroelastic model is built using a structural model based on finite-element modeling and coupled to an aerodynamic model that uses vortex-lattice solution. An automatic geometry generation tool is used to close the loop between the structural and aerodynamic models. The aeroelastic model is extended for the development of a three degree-of-freedom longitudinal trim model for an aircraft with flexible wings. The resulting flexible aircraft longitudinal trim model is used to simultaneously compute the static aeroelastic shape for the aircraft model and the longitudinal state inputs to maintain an aircraft trim state. The framework is applied to an aircraft model based on the NASA Generic Transport Model (GTM) with wing structures allowed to flexibly deformed referred to as the Elastically Shaped Aircraft Concept (ESAC). The ESAC wing mass and stiffness properties are based on a baseline "stiff" values representative of current generation transport aircraft.

  9. Concurrent airline fleet allocation and aircraft design with profit modeling for multiple airlines

    NASA Astrophysics Data System (ADS)

    Govindaraju, Parithi

    A "System of Systems" (SoS) approach is particularly beneficial in analyzing complex large scale systems comprised of numerous independent systems -- each capable of independent operations in their own right -- that when brought in conjunction offer capabilities and performance beyond the constituents of the individual systems. The variable resource allocation problem is a type of SoS problem, which includes the allocation of "yet-to-be-designed" systems in addition to existing resources and systems. The methodology presented here expands upon earlier work that demonstrated a decomposition approach that sought to simultaneously design a new aircraft and allocate this new aircraft along with existing aircraft in an effort to meet passenger demand at minimum fleet level operating cost for a single airline. The result of this describes important characteristics of the new aircraft. The ticket price model developed and implemented here enables analysis of the system using profit maximization studies instead of cost minimization. A multiobjective problem formulation has been implemented to determine characteristics of a new aircraft that maximizes the profit of multiple airlines to recognize the fact that aircraft manufacturers sell their aircraft to multiple customers and seldom design aircraft customized to a single airline's operations. The route network characteristics of two simple airlines serve as the example problem for the initial studies. The resulting problem formulation is a mixed-integer nonlinear programming problem, which is typically difficult to solve. A sequential decomposition strategy is applied as a solution methodology by segregating the allocation (integer programming) and aircraft design (non-linear programming) subspaces. After solving a simple problem considering two airlines, the decomposition approach is then applied to two larger airline route networks representing actual airline operations in the year 2005. The decomposition strategy serves

  10. Assessing total fungal concentrations on commercial passenger aircraft using mixed-effects modeling.

    PubMed

    McKernan, Lauralynn Taylor; Hein, Misty J; Wallingford, Kenneth M; Burge, Harriet; Herrick, Robert

    2008-01-01

    The primary objective of this study was to compare airborne fungal concentrations onboard commercial passenger aircraft at various in-flight times with concentrations measured inside and outside airport terminals. A secondary objective was to investigate the use of mixed-effects modeling of repeat measures from multiple sampling intervals and locations. Sequential triplicate culturable and total spore samples were collected on wide-body commercial passenger aircraft (n = 12) in the front and rear of coach class during six sampling intervals: boarding, midclimb, early cruise, midcruise, late cruise, and deplaning. Comparison samples were collected inside and outside airport terminals at the origin and destination cities. The MIXED procedure in SAS was used to model the mean and the covariance matrix of the natural log transformed fungal concentrations. Five covariance structures were tested to determine the appropriate models for analysis. Fixed effects considered included the sampling interval and, for samples obtained onboard the aircraft, location (front/rear of coach section), occupancy rate, and carbon dioxide concentrations. Overall, both total culturable and total spore fungal concentrations were low while the aircraft were in flight. No statistical difference was observed between measurements made in the front and rear sections of the coach cabin for either culturable or total spore concentrations. Both culturable and total spore concentrations were significantly higher outside the airport terminal compared with inside the airport terminal (p-value < 0.0001) and inside the aircraft (p-value < 0.0001). On the aircraft, the majority of total fungal exposure occurred during the boarding and deplaning processes, when the aircraft utilized ancillary ventilation and passenger activity was at its peak.

  11. Status of Computational Aerodynamic Modeling Tools for Aircraft Loss-of-Control

    NASA Technical Reports Server (NTRS)

    Frink, Neal T.; Murphy, Patrick C.; Atkins, Harold L.; Viken, Sally A.; Petrilli, Justin L.; Gopalarathnam, Ashok; Paul, Ryan C.

    2016-01-01

    A concerted effort has been underway over the past several years to evolve computational capabilities for modeling aircraft loss-of-control under the NASA Aviation Safety Program. A principal goal has been to develop reliable computational tools for predicting and analyzing the non-linear stability & control characteristics of aircraft near stall boundaries affecting safe flight, and for utilizing those predictions for creating augmented flight simulation models that improve pilot training. Pursuing such an ambitious task with limited resources required the forging of close collaborative relationships with a diverse body of computational aerodynamicists and flight simulation experts to leverage their respective research efforts into the creation of NASA tools to meet this goal. Considerable progress has been made and work remains to be done. This paper summarizes the status of the NASA effort to establish computational capabilities for modeling aircraft loss-of-control and offers recommendations for future work.

  12. Dependence of Dynamic Modeling Accuracy on Sensor Measurements, Mass Properties, and Aircraft Geometry

    NASA Technical Reports Server (NTRS)

    Grauer, Jared A.; Morelli, Eugene A.

    2013-01-01

    The NASA Generic Transport Model (GTM) nonlinear simulation was used to investigate the effects of errors in sensor measurements, mass properties, and aircraft geometry on the accuracy of identified parameters in mathematical models describing the flight dynamics and determined from flight data. Measurements from a typical flight condition and system identification maneuver were systematically and progressively deteriorated by introducing noise, resolution errors, and bias errors. The data were then used to estimate nondimensional stability and control derivatives within a Monte Carlo simulation. Based on these results, recommendations are provided for maximum allowable errors in sensor measurements, mass properties, and aircraft geometry to achieve desired levels of dynamic modeling accuracy. Results using additional flight conditions and parameter estimation methods, as well as a nonlinear flight simulation of the General Dynamics F-16 aircraft, were compared with these recommendations

  13. A 3D Model to Compute Lightning and HIRF Coupling Effects on Avionic Equipment of an Aircraft

    NASA Astrophysics Data System (ADS)

    Perrin, E.; Tristant, F.; Guiffaut, C.; Terrade, F.; Reineix, A.

    2012-05-01

    This paper describes the 3D FDTD model of an aircraft developed to compute the lightning and HIRF (High Intentity Radiated Fields) coupling effects on avionic equipment and all the wire harness associated. This virtual prototype aims at assisting the aircraft manufacturer during the lightning and HIRF certification processes. The model presented here permits to cover a frequency range from lightning spectrum to the low frequency HIRF domain, i.e. 0 to 100 MHz. Moreover, the entire aircraft, including the frame, the skin, the wire harness and the equipment are taken into account in only one model. Results obtained are compared to measurements on a real aircraft.

  14. Influence of Transport on Two-Dimensional Model Simulation: 2. Stratospheric Aircraft Perturbations. 2; Stratospheric Aircraft Perturbations

    NASA Technical Reports Server (NTRS)

    Fleming, Eric L.; Jackman, Charles H.; Considine, David B.

    1999-01-01

    We have adopted the transport scenarios used in Part 1 to examine the sensitivity of stratospheric aircraft perturbations to transport changes in our 2-D model. Changes to the strength of the residual circulation in the upper troposphere and stratosphere and changes to the lower stratospheric K(sub zz) had similar effects in that increasing the transport rates decreased the overall stratospheric residence time and reduced the magnitude of the negative perturbation response in total ozone. Increasing the stratospheric K(sub yy) increased the residence time and enhanced the global scale negative total ozone response. However, increasing K(sub yy) along with self-consistent increases in the corresponding planetary wave drive, which leads to a stronger residual circulation, more than compensates for the K(sub yy)-effect, and results in a significantly weaker perturbation response, relative to the base case, throughout the stratosphere. We found a relatively minor model perturbation response sensitivity to the magnitude of K(sub yy) in the tropical stratosphere, and only a very small sensitivity to the magnitude of the horizontal mixing across the tropopause and to the strength of the mesospheric gravity wave drag and diffusion. These transport simulations also revealed a generally strong correlation between passive NO(sub y) accumulation and age of air throughout the stratosphere, such that faster transport rates resulted in a younger mean age and a smaller NO(y) mass accumulation. However, specific variations in K(sub yy) and mesospheric gravity wave strength exhibited very little NO(sub y)-age correlation in the lower stratosphere, similar to 3-D model simulations performed in the recent NASA "Models and Measurements" II analysis. The base model transport, which gives the most favorable overall comparison with inert tracer observations, simulated a global/annual mean total ozone response of -0.59%, with only a slightly larger response in the northern compared to the

  15. Aircraft Flight Envelope Determination using Upset Detection and Physical Modeling Methods

    NASA Technical Reports Server (NTRS)

    Keller, Jeffrey D.; McKillip, Robert M. Jr.; Kim, Singwan

    2009-01-01

    The development of flight control systems to enhance aircraft safety during periods of vehicle impairment or degraded operations has been the focus of extensive work in recent years. Conditions adversely affecting aircraft flight operations and safety may result from a number of causes, including environmental disturbances, degraded flight operations, and aerodynamic upsets. To enhance the effectiveness of adaptive and envelope limiting controls systems, it is desirable to examine methods for identifying the occurrence of anomalous conditions and for assessing the impact of these conditions on the aircraft operational limits. This paper describes initial work performed toward this end, examining the use of fault detection methods applied to the aircraft for aerodynamic performance degradation identification and model-based methods for envelope prediction. Results are presented in which a model-based fault detection filter is applied to the identification of aircraft control surface and stall departure failures/upsets. This application is supported by a distributed loading aerodynamics formulation for the flight dynamics system reference model. Extensions for estimating the flight envelope due to generalized aerodynamic performance degradation are also described.

  16. A corporate supersonic transport

    NASA Technical Reports Server (NTRS)

    Greene, Randall; Seebass, Richard

    1996-01-01

    This talk address the market and technology for a corporate supersonic transport. It describes a candidate configuration. There seems to be a sufficient market for such an aircraft, even if restricted to supersonic operation over water. The candidate configuration's sonic boom overpressure may be small enough to allow overland operation as well.

  17. User's manual for LINEAR, a FORTRAN program to derive linear aircraft models

    NASA Technical Reports Server (NTRS)

    Duke, Eugene L.; Patterson, Brian P.; Antoniewicz, Robert F.

    1987-01-01

    This report documents a FORTRAN program that provides a powerful and flexible tool for the linearization of aircraft models. The program LINEAR numerically determines a linear system model using nonlinear equations of motion and a user-supplied nonlinear aerodynamic model. The system model determined by LINEAR consists of matrices for both state and observation equations. The program has been designed to allow easy selection and definition of the state, control, and observation variables to be used in a particular model.

  18. Computer simulation incorporating a helicopter model for evaluation of aircraft avionics systems

    NASA Technical Reports Server (NTRS)

    Ostroff, A. J.; Wood, R. B.

    1977-01-01

    A computer program was developed to integrate avionics research in navigation, guidance, controls, and displays with a realistic aircraft model. A user oriented program is described that allows a flexible combination of user supplied models to perform research in any avionics area. A preprocessor technique for selecting various models without significantly changing the memory storage is included. Also included are mathematical models for several avionics error models and for the CH-47 helicopter used in this program.

  19. Tailings Pile Seepage Model The Atlas Corporation Moab Mill Moab, Utah

    SciTech Connect

    Easterly, CE

    2001-11-05

    The project described in this report was conducted by personnel from Oak Ridge National Laboratory's Grand Junction Office (ORNL/GJ). This report has been prepared as a companion report to the Limited Groundwater Investigation of the Atlas Corporation Moab Mill, Moab, Utah. The purpose of this report is to present the results of the tailings pile seepage modeling effort tasked by the U.S. Nuclear Regulatory Commission (NRC).

  20. Numerical Modelling and Damage Assessment of Rotary Wing Aircraft Cabin Door Using Continuum Damage Mechanics Model

    NASA Astrophysics Data System (ADS)

    Boyina, Gangadhara Rao T.; Rayavarapu, Vijaya Kumar; V. V., Subba Rao

    2017-02-01

    The prediction of ultimate strength remains the main challenge in the simulation of the mechanical response of composite structures. This paper examines continuum damage model to predict the strength and size effects for deformation and failure response of polymer composite laminates when subjected to complex state of stress. The paper also considers how the overall results of the exercise can be applied in design applications. The continuum damage model is described and the resulting prediction of size effects are compared against the standard benchmark solutions. The stress analysis for strength prediction of rotary wing aircraft cabin door is carried out. The goal of this study is to extend the proposed continuum damage model such that it can be accurately predict the failure around stress concentration regions. The finite element-based continuum damage mechanics model can be applied to the structures and components of arbitrary configurations where analytical solutions could not be developed.

  1. Active control of aircraft cabin noise and vibration using a physical model

    NASA Astrophysics Data System (ADS)

    Li, Desheng

    In this thesis, active noise and vibration control of aircraft cabins is investigated, in which aircraft cabins are modeled as a cylindrical shell with a floor partition. As the first step toward a successful control strategy, a structural acoustic coupling analysis of the investigated structure is carried out. A new method called "Radiation Efficiency Analysis of Structural Modes (REASM)", suitable for enclosures with irregular shapes, is proposed and applied in the current analysis. Then, the optimal design of control systems consisting of PZT actuators and PVDF error sensors is discussed. A novel design method for PVDF error sensors called "GA-based method" is introduced and shown to be very effective when complex structures are involved. Finally, an active control system is implemented on a scaled laboratory aircraft-cabin model. Both the simulation and experimental results show the great potential of using piezoelectric transducers in noise control and the significant performance improvement achieved through optimal design.

  2. Prediction of flow separation from aircraft tails using a RSM turbulence model

    NASA Astrophysics Data System (ADS)

    Masi, Andrea; Benton, Jeremy; Tucker, Paul G.

    2014-11-01

    Enhancing engineers' capability to predict flow separation would generate important benefits in aircraft design. In this study the attention is focused on the vertical tail plane (VTP), which consists of a fixed part (the fin) and a moveable control surface (the rudder). For standard two-engine aircraft configurations, the size of the VTP is driven by the condition of loss of an engine during takeoff and low speed climb: in this condition the fin and the rudder have to be sufficient in size to balance the aircraft. Due to uncertainties in prediction of VTP effectiveness, aircraft designers keep to a conservative approach, risking specifying a larger size for the VTP than it is probably necessary. Uncertainties come from difficulties in predicting the separation of the flow from the surfaces of the aircraft using current CFD techniques, which are based on the use of RANS equations with eddy viscosity turbulence models. The CFD simulations presented in this study investigate the use of a RSM turbulence model with RANS and URANS. The introduction of a time-dependency gives benefits in the accuracy of the flow solution in presence of massive flow separation. This leads to the investigation of hybrid RANS/LES techniques with the aim of improving the solution of the detached flow. EU FP7 project ANADE (Grant Agreement Number 289428).

  3. Life and dynamic capacity modeling for aircraft transmissions

    NASA Technical Reports Server (NTRS)

    Savage, Michael

    1991-01-01

    A computer program to simulate the dynamic capacity and life of parallel shaft aircraft transmissions is presented. Five basic configurations can be analyzed: single mesh, compound, parallel, reverted, and single plane reductions. In execution, the program prompts the user for the data file prefix name, takes input from a ASCII file, and writes its output to a second ASCII file with the same prefix name. The input data file includes the transmission configuration, the input shaft torque and speed, and descriptions of the transmission geometry and the component gears and bearings. The program output file describes the transmission, its components, their capabilities, locations, and loads. It also lists the dynamic capability, ninety percent reliability, and mean life of each component and the transmission as a system. Here, the program, its input and output files, and the theory behind the operation of the program are described.

  4. ADAM: An Axisymmetric Duct Aeroacoustic Modeling system. [aircraft turbofan engines

    NASA Technical Reports Server (NTRS)

    Abrahamson, A. L.

    1983-01-01

    An interconnected system of computer programs for analyzing the propagation and attenuation of sound in aeroengine ducts containing realistic compressible subsonic mean flows, ADAM was developed primarily for research directed towards the reduction of noise emitted from turbofan aircraft engines. The two basic components are a streamtube curvature program for determination of the mean flow, and a finite element code for solution of the acoustic propagation problem. The system, which has been specifically tailored for ease of use, is presently installed at NASA Langley Reseach Center on a Control Data Cyber 175 Computer under the NOS Operating system employing a Tektronix terminal for interactive graphics. The scope and organization of the ADAM system is described. A users guide, examples of input data, and results for selected cases are included.

  5. Multilevel modelling of aircraft noise on performance tests in schools around Heathrow Airport London

    PubMed Central

    Haines, M; Stansfeld, S; Head, J; Job, R

    2002-01-01

    Design: This is a cross sectional study using the National Standardised Scores (SATs) in mathematics, science, and English (11 000 scores from children aged 11 years). The analyses used multilevel modelling to determine the effects of chronic aircraft noise exposure on childrens' school performance adjusting for demographic, socioeconomic and school factors in 123 primary schools around Heathrow Airport. Schools were assigned aircraft noise exposure level from the 1994 Civil Aviation Authority aircraft noise contour maps. Setting: Primary schools. Participants: The sample were approximately 11 000 children in year 6 (approximately 11 years old) from 123 schools in the three boroughs surrounding Heathrow Airport. Main results: Chronic exposure to aircraft noise was significantly related to poorer reading and mathematics performance. After adjustment for the average socioeconomic status of the school intake (measured by percentage of pupils eligible for free school meals) these associations were no longer statistically significant. Conclusions: Chronic exposure to aircraft noise is associated with school performance in reading and mathematics in a dose-response function but this association is confounded by socioeconomic factors. PMID:11812814

  6. Application of H-Infinity Fault Detection to Model-Scale Autonomous Aircraft

    NASA Astrophysics Data System (ADS)

    Vasconcelos, J. F.; Rosa, P.; Kerr, Murray; Latorre Sierra, Antonio; Recupero, Cristina; Hernandez, Lucia

    2015-09-01

    This paper describes the development of a fault detection system for a model scale autonomous aircraft. The considered fault scenario is defined by malfunctions in the elevator, namely bias and stuck-in-place of the surface. The H∞ design methodology is adopted, with an LFT description of the aircraft longitudinal dynamics, that allows for fault detection explicitly synthesized for a wide range of operating airspeeds. The obtained filter is validated in two stages: in a Functional Engineering Simulator (FES), providing preliminary results of the filter performance; and with experimental data, collected in field tests with actual injection of faults in the elevator surface.

  7. Validation of Aircraft Noise Prediction Models at Low Levels of Exposure

    NASA Technical Reports Server (NTRS)

    Page, Juliet A.; Hobbs, Christopher M.; Plotkin, Kenneth J.; Stusnick, Eric; Shepherd, Kevin P. (Technical Monitor)

    2000-01-01

    Aircraft noise measurements were made at Denver International Airport for a period of four weeks. Detailed operational information was provided by airline operators which enabled noise levels to be predicted using the FAA's Integrated Noise Model. Several thrust prediction techniques were evaluated. Measured sound exposure levels for departure operations were found to be 4 to 10 dB higher than predicted, depending on the thrust prediction technique employed. Differences between measured and predicted levels are shown to be related to atmospheric conditions present at the aircraft altitude.

  8. 75 FR 52235 - Airworthiness Directives; Hawker Beechcraft Corporation (Type Certificate No. A00010WI Previously...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-25

    ... materials may have been installed on Hawker Beechcraft Corporation Model 390 airplanes. This proposal was... deficient armature insulating materials may have been installed on certain airplanes. We are issuing this AD... Certificate No. A00010WI Previously Held by Raytheon Aircraft Company) Model 390 Airplanes AGENCY:...

  9. Output model-following control synthesis for an oblique-wing aircraft

    NASA Technical Reports Server (NTRS)

    Pahle, Joseph W.

    1990-01-01

    Recent interest in oblique-wing aircraft has focused on the potential aerodynamic performance advantage of a variable-skew oblique wing over a conventional or symmetric sweep wing. Unfortunately, the resulting asymmetric configuration has significant aerodynamic and inertial cross-coupling between the aircraft longitudinal and lateral-directional axes. Presented here is a decoupling control law synthesis technique that integrates stability augmentation, decoupling, and the direct incorporation of desired handling qualities into an output feedback controller. The proposed design technique uses linear quadratic regulator concepts in the framework of explicit model following. The output feedback strategy used is a suboptimal projection from the state space to the output space. Dynamics are then introduced into the controller to improve steady-state performance and increase system robustness. Closed-loop performance is shown by application of the control laws to the linearized equations of motion and nonlinear simulation of an oblique-wing aircraft.

  10. Full-scale flammability test data for validation of aircraft fire mathematical models

    NASA Technical Reports Server (NTRS)

    Kuminecz, J. F.; Bricker, R. W.

    1982-01-01

    Twenty-five large scale aircraft flammability tests were conducted in a Boeing 737 fuselage at the NASA Johnson Space Center (JSC). The objective of this test program was to provide a data base on the propagation of large scale aircraft fires to support the validation of aircraft fire mathematical models. Variables in the test program included cabin volume, amount of fuel, fuel pan area, fire location, airflow rate, and cabin materials. A number of tests were conducted with jet A-1 fuel only, while others were conducted with various Boeing 747 type cabin materials. These included urethane foam seats, passenger service units, stowage bins, and wall and ceiling panels. Two tests were also included using special urethane foam and polyimide foam seats. Tests were conducted with each cabin material individually, with various combinations of these materials, and finally, with all materials in the cabin. The data include information obtained from approximately 160 locations inside the fuselage.

  11. Multi-sensor fusion with interacting multiple model filter for improved aircraft position accuracy.

    PubMed

    Cho, Taehwan; Lee, Changho; Choi, Sangbang

    2013-03-27

    The International Civil Aviation Organization (ICAO) has decided to adopt Communications, Navigation, and Surveillance/Air Traffic Management (CNS/ATM) as the 21st century standard for navigation. Accordingly, ICAO members have provided an impetus to develop related technology and build sufficient infrastructure. For aviation surveillance with CNS/ATM, Ground-Based Augmentation System (GBAS), Automatic Dependent Surveillance-Broadcast (ADS-B), multilateration (MLAT) and wide-area multilateration (WAM) systems are being established. These sensors can track aircraft positions more accurately than existing radar and can compensate for the blind spots in aircraft surveillance. In this paper, we applied a novel sensor fusion method with Interacting Multiple Model (IMM) filter to GBAS, ADS-B, MLAT, and WAM data in order to improve the reliability of the aircraft position. Results of performance analysis show that the position accuracy is improved by the proposed sensor fusion method with the IMM filter.

  12. Multi-Sensor Fusion with Interacting Multiple Model Filter for Improved Aircraft Position Accuracy

    PubMed Central

    Cho, Taehwan; Lee, Changho; Choi, Sangbang

    2013-01-01

    The International Civil Aviation Organization (ICAO) has decided to adopt Communications, Navigation, and Surveillance/Air Traffic Management (CNS/ATM) as the 21st century standard for navigation. Accordingly, ICAO members have provided an impetus to develop related technology and build sufficient infrastructure. For aviation surveillance with CNS/ATM, Ground-Based Augmentation System (GBAS), Automatic Dependent Surveillance-Broadcast (ADS-B), multilateration (MLAT) and wide-area multilateration (WAM) systems are being established. These sensors can track aircraft positions more accurately than existing radar and can compensate for the blind spots in aircraft surveillance. In this paper, we applied a novel sensor fusion method with Interacting Multiple Model (IMM) filter to GBAS, ADS-B, MLAT, and WAM data in order to improve the reliability of the aircraft position. Results of performance analysis show that the position accuracy is improved by the proposed sensor fusion method with the IMM filter. PMID:23535715

  13. 14 CFR 60.21 - Interim qualification of FSTDs for new aircraft types or models.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Interim qualification of FSTDs for new aircraft types or models. 60.21 Section 60.21 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIRMEN FLIGHT SIMULATION TRAINING DEVICE INITIAL AND CONTINUING QUALIFICATION AND USE § 60.21...

  14. 76 FR 12845 - Airworthiness Directives; APEX Aircraft Model CAP 10 B Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-09

    ...-063-AD; Amendment 39-16625; AD 2011-06-01] RIN 2120-AA64 Airworthiness Directives; APEX Aircraft Model... was the improper locking of a turnbuckle (locking clip missing) of the flight control cables, and the... was the improper locking of a turnbuckle (locking clip missing) of the flight control cables, and...

  15. Design study of test models of maneuvering aircraft configurations for the National Transonic Facility (NTF)

    NASA Technical Reports Server (NTRS)

    Griffin, S. A.; Madsen, A. P.; Mcclain, A. A.

    1984-01-01

    The feasibility of designing advanced technology, highly maneuverable, fighter aircraft models to achieve full scale Reynolds number in the National Transonic Facility (NTF) is examined. Each of the selected configurations are tested for aeroelastic effects through the use of force and pressure data. A review of materials and material processes is also included.

  16. 14 CFR 60.21 - Interim qualification of FSTDs for new aircraft types or models.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 2 2011-01-01 2011-01-01 false Interim qualification of FSTDs for new aircraft types or models. 60.21 Section 60.21 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIRMEN FLIGHT SIMULATION TRAINING DEVICE INITIAL AND...

  17. Aircraft/Air Traffic Management Functional Analysis Model: Technical Description. 2.0

    NASA Technical Reports Server (NTRS)

    Etheridge, Melvin; Plugge, Joana; Retina, Nusrat

    1998-01-01

    The Aircraft/Air Traffic Management Functional Analysis Model, Version 2.0 (FAM 2.0), is a discrete event simulation model designed to support analysis of alternative concepts in air traffic management and control. FAM 2.0 was developed by the Logistics Management Institute (LMI) under a National Aeronautics and Space Administration (NASA) contract. This document provides a technical description of FAM 2.0 and its computer files to enable the modeler and programmer to make enhancements or modifications to the model. Those interested in a guide for using the model in analysis should consult the companion document, Aircraft/Air Traffic Management Functional Analysis Model, Version 2.0 Users Manual.

  18. Statistical aspects of carbon fiber risk assessment modeling. [fire accidents involving aircraft

    NASA Technical Reports Server (NTRS)

    Gross, D.; Miller, D. R.; Soland, R. M.

    1980-01-01

    The probabilistic and statistical aspects of the carbon fiber risk assessment modeling of fire accidents involving commercial aircraft are examined. Three major sources of uncertainty in the modeling effort are identified. These are: (1) imprecise knowledge in establishing the model; (2) parameter estimation; and (3)Monte Carlo sampling error. All three sources of uncertainty are treated and statistical procedures are utilized and/or developed to control them wherever possible.

  19. Mathematical description of nonstationary aerodynamic characteristics of a passenger aircraft model in longitudinal motion at large angles of attack

    NASA Astrophysics Data System (ADS)

    Petoshin, V. I.; Chasovnikov, E. A.

    2011-05-01

    Aerodynamic loads in problems of flight dynamics of passenger aircraft in stalled flow regimes are described using a mathematical model that includes an ordinary linear first-order differential equation. A procedure for determining the parameters of the mathematical model is proposed which is based on approximating experimental frequency characteristics with the frequency characteristics of the linearized mathematical model. The mathematical model was verified by tests of a modern passenger aircraft model in a wind tunnel.

  20. 14 CFR 47.9 - Corporations not U.S. citizens.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Corporations not U.S. citizens. 47.9... AIRCRAFT REGISTRATION General § 47.9 Corporations not U.S. citizens. (a) Each corporation applying for... corporation that registers an aircraft pursuant to 49 U.S.C. 44102 shall maintain, and make available...

  1. Research on motion model for the hypersonic boost-glide aircraft

    NASA Astrophysics Data System (ADS)

    Xu, Shenda; Wu, Jing; Wang, Xueying

    2015-11-01

    A motion model for the hypersonic boost-glide aircraft(HBG) was proposed in this paper, which also analyzed the precision of model through simulation. Firstly the trajectory of HBG was analyzed, and a scheme which divide the trajectory into two parts then build the motion model on each part. Secondly a restrained model of boosting stage and a restrained model of J2 perturbation were established, and set up the observe model. Finally the analysis of simulation results show the feasible and high-accuracy of the model, and raise a expectation for intensive research.

  2. An experimental radio-controlled model aircraft casts two unique shadows as it flies inside a Dryden

    NASA Technical Reports Server (NTRS)

    2002-01-01

    An experimental radio-controlled model aircraft casts two unique shadows as it flies inside a Dryden hangar using two spotlights as energy sources. This phase of testing was used to develop procedures and operations for 'handing off' the aircraft between different sources of power.

  3. 75 FR 52292 - Airworthiness Directives; Diamond Aircraft Industries GmbH Models DA 40 and DA 40F Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-25

    ... Directives; Diamond Aircraft Industries GmbH Models DA 40 and DA 40F Airplanes AGENCY: Federal Aviation...: We propose to adopt a new airworthiness directive (AD) for all Diamond Aircraft Industries GmbH... Federal holidays. For service information identified in this proposed AD, contact Diamond...

  4. Integrated Mode Choice, Small Aircraft Demand, and Airport Operations Model User's Guide

    NASA Technical Reports Server (NTRS)

    Yackovetsky, Robert E. (Technical Monitor); Dollyhigh, Samuel M.

    2004-01-01

    A mode choice model that generates on-demand air travel forecasts at a set of GA airports based on changes in economic characteristics, vehicle performance characteristics such as speed and cost, and demographic trends has been integrated with a model to generate itinerate aircraft operations by airplane category at a set of 3227 airports. Numerous intermediate outputs can be generated, such as the number of additional trips diverted from automobiles and schedule air by the improved performance and cost of on-demand air vehicles. The total number of transported passenger miles that are diverted is also available. From these results the number of new aircraft to service the increased demand can be calculated. Output from the models discussed is in the format to generate the origin and destination traffic flow between the 3227 airports based on solutions to a gravity model.

  5. Analysis of Acoustic Modeling and Sound Propagation in Aircraft Noise Prediction

    NASA Technical Reports Server (NTRS)

    Plotkin, Kenneth J.; Shepherd, Kevin P. (Technical Monitor)

    2006-01-01

    An analysis has been performed of measured and predicted aircraft noise levels around Denver International Airport. A detailed examination was made of 90 straight-out departures that yielded good measurements on multiple monitors. Predictions were made with INM 5, INM 6 and the simulation model NMSIM. Predictions were consistently lower than measurements, less so for the simulation model than for the integrated models. Lateral directivity ("installation effect") patterns were seen which are consistent with other recent measurements. Atmospheric absorption was determined to be a significant factor in the underprediction. Calculations of atmospheric attenuation were made over a full year of upper air data at seven locations across the United States. It was found that temperature/humidity effects could cause variations of up to +/-4 dB, depending on season, for the sites examined. It was concluded that local temperature and humidity should be accounted for in aircraft noise modeling.

  6. A Feasibility Study of Life-Extending Controls for Aircraft Turbine Engines Using a Generic Air Force Model (Preprint)

    DTIC Science & Technology

    2006-12-01

    engine model is a detailed, physics-based engine model of a two-spool, non-augmented, low bypass ratio engine developed using MATLAB/ Simulink ® [9]. The...AFRL-PR-WP-TP-2007-218 A FEASIBILITY STUDY OF LIFE- EXTENDING CONTROLS FOR AIRCRAFT TURBINE ENGINES USING A GENERIC AIR FORCE MODEL (PREPRINT...SUBTITLE A FEASIBILITY STUDY OF LIFE-EXTENDING CONTROLS FOR AIRCRAFT TURBINE ENGINES USING A GENERIC AIR FORCE MODEL (PREPRINT) 5c. PROGRAM ELEMENT

  7. A complex of analytical models for predicting noise in an aircraft cabin

    NASA Astrophysics Data System (ADS)

    Efimtsov, B. M.; Lazarev, L. A.

    2012-07-01

    A series of analytical calculated models for predicting the noise in an aircraft cabin is developed: an orthotropic model, a model with discrete frames, a model with discrete stringers, a model with isolated cells, and a model with a cross system of discrete ribs. The analytical solution is constructed on the basis of the method of space harmonic expansion. Vibrations are represented in the form of double trigonometric series. Strict periodicity allows dividing the series into a large number of independent groups, which makes it possible to effectively perform calculations for large fragments of the fuselage in the entire frequency region both for deterministic and random external force fields.

  8. Modelling of the automatic stabilization system of the aircraft course by a fuzzy logic method

    NASA Astrophysics Data System (ADS)

    Mamonova, T.; Syryamkin, V.; Vasilyeva, T.

    2016-04-01

    The problem of the present paper concerns the development of a fuzzy model of the system of an aircraft course stabilization. In this work modelling of the aircraft course stabilization system with the application of fuzzy logic is specified. Thus the authors have used the data taken for an ordinary passenger plane. As a result of the study the stabilization system models were realised in the environment of Matlab package Simulink on the basis of the PID-regulator and fuzzy logic. The authors of the paper have shown that the use of the method of artificial intelligence allows reducing the time of regulation to 1, which is 50 times faster than the time when standard receptions of the management theory are used. This fact demonstrates a positive influence of the use of fuzzy regulation.

  9. Aeroelastic instability of aircraft wings modelled as anisotropic composite thin-walled beams in incompressible flow

    NASA Astrophysics Data System (ADS)

    Qin, Z.; Librescu, L.

    2003-08-01

    An encompassing aeroelastic model developed toward investigating the influence of directionality property of advanced composite materials and non-classical effects such as transverse shear and warping restraint on the aeroelastic instability of composite aircraft wings is presented. Within the model developed herein, both divergence and flutter instabilities are simultaneously addressed. The aircraft wing is modelled as an anisotropic composite thin-walled beam featuring circumferentially asymmetric stiffness lay-up that generates, for the problem at hand, elastic coupling among plunging, pitching and transverse shear motions. The unsteady incompressible aerodynamics used here is based on the concept of indicial functions. Issues related to aeroelastic instability are discussed, the influence of warping restraint and transverse shear on the critical speed are evaluated, and pertinent conclusions are outlined.

  10. Current Methods for Modeling and Simulating Icing Effects on Aircraft Performance, Stability and Control

    NASA Technical Reports Server (NTRS)

    Ralvasky, Thomas P.; Barnhart, Billy P.; Lee, Sam

    2008-01-01

    Icing alters the shape and surface characteristics of aircraft components, which results in altered aerodynamic forces and moments caused by air flow over those iced components. The typical effects of icing are increased drag, reduced stall angle of attack, and reduced maximum lift. In addition to the performance changes, icing can also affect control surface effectiveness, hinge moments, and damping. These effects result in altered aircraft stability and control and flying qualities. Over the past 80 years, methods have been developed to understand how icing affects performance, stability and control. Emphasis has been on wind tunnel testing of two-dimensional subscale airfoils with various ice shapes to understand their effect on the flow field and ultimately the aerodynamics. This research has led to wind tunnel testing of subscale complete aircraft models to identify the integrated effects of icing on the aircraft system in terms of performance, stability, and control. Data sets of this nature enable pilot in the loop simulations to be performed for pilot training, or engineering evaluation of system failure impacts or control system design.

  11. Current Methods Modeling and Simulating Icing Effects on Aircraft Performance, Stability, Control

    NASA Technical Reports Server (NTRS)

    Ratvasky, Thomas P.; Barnhart, Billy P.; Lee, Sam

    2010-01-01

    Icing alters the shape and surface characteristics of aircraft components, which results in altered aerodynamic forces and moments caused by air flow over those iced components. The typical effects of icing are increased drag, reduced stall angle of attack, and reduced maximum lift. In addition to the performance changes, icing can also affect control surface effectiveness, hinge moments, and damping. These effects result in altered aircraft stability and control and flying qualities. Over the past 80 years, methods have been developed to understand how icing affects performance, stability, and control. Emphasis has been on wind-tunnel testing of two-dimensional subscale airfoils with various ice shapes to understand their effect on the flowfield and ultimately the aerodynamics. This research has led to wind-tunnel testing of subscale complete aircraft models to identify the integrated effects of icing on the aircraft system in terms of performance, stability, and control. Data sets of this nature enable pilot-in-the-loop simulations to be performed for pilot training or engineering evaluation of system failure impacts or control system design.

  12. A Study on the Models for Corporate Social Responsibility of Small and Medium Enterprises

    NASA Astrophysics Data System (ADS)

    Ma, Jun

    The role of small and medium enterprises (SMEs) in corporate social responsibility (CSR) has attracted increasing attention and interest in recent years. The purpose of this study is to build some relevant models of CSR which are the foundations of empirical study later. The paper begins by an overview of the CSR literature in the context of seven step model for CSR and differences between corporate and small businesses. Noting the general lack of theoretical framework in the literature, the paper then presents relevant theoretical models of CSR that could be useful in conducting further research on CSR and SMEs. The study is qualitative in nature, capitalizing on a comparative research design to highlight differences in CSR orientations between SMEs and MNCs. The research is presented and implications are drawn regarding the peculiar relational attributes of SMEs in the context of CSR generally, and developing countries more specifically, and how this inclination can be further nurtured and leveraged. Further research can seek to highlight how to leverage this natural affinity to CSR among SMEs detected in this study in pursuit of more systematic engagement and more benefits.

  13. Development of the Transport Class Model (TCM) Aircraft Simulation From a Sub-Scale Generic Transport Model (GTM) Simulation

    NASA Technical Reports Server (NTRS)

    Hueschen, Richard M.

    2011-01-01

    A six degree-of-freedom, flat-earth dynamics, non-linear, and non-proprietary aircraft simulation was developed that is representative of a generic mid-sized twin-jet transport aircraft. The simulation was developed from a non-proprietary, publicly available, subscale twin-jet transport aircraft simulation using scaling relationships and a modified aerodynamic database. The simulation has an extended aerodynamics database with aero data outside the normal transport-operating envelope (large angle-of-attack and sideslip values). The simulation has representative transport aircraft surface actuator models with variable rate-limits and generally fixed position limits. The simulation contains a generic 40,000 lb sea level thrust engine model. The engine model is a first order dynamic model with a variable time constant that changes according to simulation conditions. The simulation provides a means for interfacing a flight control system to use the simulation sensor variables and to command the surface actuators and throttle position of the engine model.

  14. User's manual for interactive LINEAR: A FORTRAN program to derive linear aircraft models

    NASA Technical Reports Server (NTRS)

    Antoniewicz, Robert F.; Duke, Eugene L.; Patterson, Brian P.

    1988-01-01

    An interactive FORTRAN program that provides the user with a powerful and flexible tool for the linearization of aircraft aerodynamic models is documented in this report. The program LINEAR numerically determines a linear system model using nonlinear equations of motion and a user-supplied linear or nonlinear aerodynamic model. The nonlinear equations of motion used are six-degree-of-freedom equations with stationary atmosphere and flat, nonrotating earth assumptions. The system model determined by LINEAR consists of matrices for both the state and observation equations. The program has been designed to allow easy selection and definition of the state, control, and observation variables to be used in a particular model.

  15. Analysis of wind tunnel test results for a 9.39-per cent scale model of a VSTOL fighter/attack aircraft. Volume 1: Study overview. [aerodynamic characteristics

    NASA Technical Reports Server (NTRS)

    Lummus, J. R.; Joyce, G. T.; Omalley, C. D.

    1980-01-01

    The ability of current methodologies to accurately predict the aerodynamic characteristics identified as uncertainties was evaluated for two aircraft configurations. The two wind tunnel models studied horizontal altitude takeoff and landing V/STOL fighter aircraft derivatives.

  16. 75 FR 53846 - Airworthiness Directives; Thielert Aircraft Engines GmbH (TAE) Models TAE 125-01 and TAE 125-02...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-02

    ... To, Diamond Aircraft Industries Model DA 42 Airplanes; Correction AGENCY: Federal Aviation... TAE 125-02-99 reciprocating engines, installed in, but not limited to, Diamond Aircraft Industries..., installed in, but not limited to, Diamond Aircraft Industries model DA 42 airplanes. We need to make...

  17. 75 FR 29962 - Special Conditions: Cirrus Design Corporation Model SF50 Airplane; Function and Reliability Testing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-28

    ... Airplane Directorate, Aircraft Certification Service, 901 Locust, Room 301, Kansas City, MO 64106... low-wing, five-plus-two-place (2 children), single-engine turbofan- powered aircraft. It incorporates.... The turbofan engine is mounted on the upper fuselage/tail cone along the aircraft centerline. It...

  18. Turbulence Model Comparisons for a High-Speed Aircraft

    NASA Technical Reports Server (NTRS)

    Rivers, Melissa B.; Wahls, Richard A.

    1999-01-01

    Four turbulence models are described and evaluated for transonic flows over the High-Speed Research/industry baseline configuration known as Reference H by using the thin-layer, upwind, Navier-Stokes solver known as CFL3D. The turbulence models studied are the equilibrium model of Baldwin-Lomax (B-L) with the Degani-Schiff (D-S) modifications, the one-equation Baldwin-Barth (B-B) model, the one-equation Spalart-Allmaras (S-A) model, and Menter's two-equation Shear Stress Transport (SST) model. The flow conditions, which correspond to tests performed in the National Transonic Facility (NTF) at Langley Research Center, are a Mach number of 0.90 and a Reynolds number of 30 x 10 (exp. 6) based on mean aerodynamic chord for angles of attack of 1 deg., 5 deg., and 10 deg. The effects of grid topology and the representation of the actual wind tunnel model geometry are also investigated. Computed forces and surface pressures compare reasonably well with the experimental data for all four turbulence models.

  19. A Comparison of Modeled Pollutant Profiles With MOZAIC Aircraft Measurements

    EPA Science Inventory

    In this study, we use measurements performed under the MOZAIC program to evaluate vertical profiles of meteorological parameters, CO, and ozone that were simulated for the year 2006 with several versions of the WRF/CMAQ modeling system. Model updates, including WRF nudging strate...

  20. Corporate Entrepreneurship Training Evaluation: A Model and a New Research Perspective

    ERIC Educational Resources Information Center

    Byrne, Janice; Fayolle, Alain

    2009-01-01

    This paper looks at corporate entrepreneurship (CE) training and proposes some insights for its evaluation. The literature review begins by outlining what corporate entrepreneurship entails and the rationale for a firm adopting a more entrepreneurial posture. Subsequently, organizational devices for encouraging corporate entrepreneurship are…

  1. Aerodynamic Modeling of Transonic Aircraft Using Vortex Lattice Coupled with Transonic Small Disturbance for Conceptual Design

    NASA Technical Reports Server (NTRS)

    Chaparro, Daniel; Fujiwara, Gustavo E. C.; Ting, Eric; Nguyen, Nhan

    2016-01-01

    The need to rapidly scan large design spaces during conceptual design calls for computationally inexpensive tools such as the vortex lattice method (VLM). Although some VLM tools, such as Vorview have been extended to model fully-supersonic flow, VLM solutions are typically limited to inviscid, subcritical flow regimes. Many transport aircraft operate at transonic speeds, which limits the applicability of VLM for such applications. This paper presents a novel approach to correct three-dimensional VLM through coupling of two-dimensional transonic small disturbance (TSD) solutions along the span of an aircraft wing in order to accurately predict transonic aerodynamic loading and wave drag for transport aircraft. The approach is extended to predict flow separation and capture the attenuation of aerodynamic forces due to boundary layer viscosity by coupling the TSD solver with an integral boundary layer (IBL) model. The modeling framework is applied to the NASA General Transport Model (GTM) integrated with a novel control surface known as the Variable Camber Continuous Trailing Edge Flap (VCCTEF).

  2. Developing an Accurate CFD Based Gust Model for the Truss Braced Wing Aircraft

    NASA Technical Reports Server (NTRS)

    Bartels, Robert E.

    2013-01-01

    The increased flexibility of long endurance aircraft having high aspect ratio wings necessitates attention to gust response and perhaps the incorporation of gust load alleviation. The design of civil transport aircraft with a strut or truss-braced high aspect ratio wing furthermore requires gust response analysis in the transonic cruise range. This requirement motivates the use of high fidelity nonlinear computational fluid dynamics (CFD) for gust response analysis. This paper presents the development of a CFD based gust model for the truss braced wing aircraft. A sharp-edged gust provides the gust system identification. The result of the system identification is several thousand time steps of instantaneous pressure coefficients over the entire vehicle. This data is filtered and downsampled to provide the snapshot data set from which a reduced order model is developed. A stochastic singular value decomposition algorithm is used to obtain a proper orthogonal decomposition (POD). The POD model is combined with a convolution integral to predict the time varying pressure coefficient distribution due to a novel gust profile. Finally the unsteady surface pressure response of the truss braced wing vehicle to a one-minus-cosine gust, simulated using the reduced order model, is compared with the full CFD.

  3. Aeroservoelastic Modeling and Validation of a Thrust-Vectoring F/A-18 Aircraft

    NASA Technical Reports Server (NTRS)

    Brenner, Martin J.

    1996-01-01

    An F/A-18 aircraft was modified to perform flight research at high angles of attack (AOA) using thrust vectoring and advanced control law concepts for agility and performance enhancement and to provide a testbed for the computational fluid dynamics community. Aeroservoelastic (ASE) characteristics had changed considerably from the baseline F/A-18 aircraft because of structural and flight control system amendments, so analyses and flight tests were performed to verify structural stability at high AOA. Detailed actuator models that consider the physical, electrical, and mechanical elements of actuation and its installation on the airframe were employed in the analysis to accurately model the coupled dynamics of the airframe, actuators, and control surfaces. This report describes the ASE modeling procedure, ground test validation, flight test clearance, and test data analysis for the reconfigured F/A-18 aircraft. Multivariable ASE stability margins are calculated from flight data and compared to analytical margins. Because this thrust-vectoring configuration uses exhaust vanes to vector the thrust, the modeling issues are nearly identical for modem multi-axis nozzle configurations. This report correlates analysis results with flight test data and makes observations concerning the application of the linear predictions to thrust-vectoring and high-AOA flight.

  4. Visualization techniques to experimentally model flow and heat transfer in turbine and aircraft flow passages

    NASA Technical Reports Server (NTRS)

    Russell, Louis M.; Hippensteele, Steven A.

    1991-01-01

    Increased attention to fuel economy and increased thrust requirements have increased the demand for higher aircraft gas turbine engine efficiency through the use of higher turbine inlet temperatures. These higher temperatures increase the importance of understanding the heat transfer patterns which occur throughout the turbine passages. It is often necessary to use a special coating or some form of cooling to maintain metal temperatures at a level which the metal can withstand for long periods of time. Effective cooling schemes can result in significant fuel savings through higher allowable turbine inlet temperatures and can increase engine life. Before proceeding with the development of any new turbine it is economically desirable to create both mathematical and experimental models to study and predict flow characteristics and temperature distributions. Some of the methods are described used to physically model heat transfer patterns, cooling schemes, and other complex flow patterns associated with turbine and aircraft passages.

  5. Flow visualization studies of VTOL aircraft models during Hover in ground effect

    NASA Technical Reports Server (NTRS)

    Mourtos, Nikos J.; Couillaud, Stephane; Carter, Dale; Hange, Craig; Wardwell, Doug; Margason, Richard J.

    1995-01-01

    A flow visualization study of several configurations of a jet-powered vertical takeoff and landing (VTOL) aircraft model during hover in ground effect was conducted. A surface oil flow technique was used to observe the flow patterns on the lower surfaces of the model. There were significant configuration effects. Wing height with respect to fuselage, the presence of an engine inlet duct beside the fuselage, and nozzle pressure ratio are seen to have strong effects on the surface flow angles on the lower surface of the wing. This test was part of a program to improve the methods for predicting the hot gas ingestion (HGI) for jet-powered vertical/short takeoff and landing (V/STOL) aircraft. The tests were performed at the Jet Calibration and Hover Test (JCAHT) Facility at Ames Research Center.

  6. A linear stochastic model of the human operator. [pilot control of an aircraft

    NASA Technical Reports Server (NTRS)

    Durrett, J. C.

    1973-01-01

    A linear stochastic model of the human operator is developed and applied to the problem of piloted control of an aircraft. The pilot and aircraft are modeled as linear time-invariant systems containing both process and measurement noise. The loop closure by the pilot is determined by formulating the problem as an optimal stochastic control problem. The solution to the optimal control problem yields not only the pilot's optimal control output which he uses to control the vehicle, but also the optimal combination of his observations of the vehicle states upon which the pilot bases his control. A method is presented so that, using experimental pilot vehicle data, the cost functional which is minimized in the optimal control problem will be numerically equal to the pilot rating that the pilot would associate with the given vehicle and task.

  7. Modeling of the Mode S tracking system in support of aircraft safety research

    NASA Technical Reports Server (NTRS)

    Sorensen, J. A.; Goka, T.

    1982-01-01

    This report collects, documents, and models data relating the expected accuracies of tracking variables to be obtained from the FAA's Mode S Secondary Surveillance Radar system. The data include measured range and azimuth to the tracked aircraft plus the encoded altitude transmitted via the Mode S data link. A brief summary is made of the Mode S system status and its potential applications for aircraft safety improvement including accident analysis. FAA flight test results are presented demonstrating Mode S range and azimuth accuracy and error characteristics and comparing Mode S to the current ATCRBS radar tracking system. Data are also presented that describe the expected accuracy and error characteristics of encoded altitude. These data are used to formulate mathematical error models of the Mode S variables and encoded altitude. A brief analytical assessment is made of the real-time tracking accuracy available from using Mode S and how it could be improved with down-linked velocity.

  8. Computer formulations of aircraft models for simulation studies

    NASA Technical Reports Server (NTRS)

    Howard, J. C.

    1979-01-01

    Recent developments in formula manipulation compilers and the design of several symbol manipulation languages, enable computers to be used for symbolic mathematical computation. A computer system and language that can be used to perform symbolic manipulations in an interactive mode are used to formulate a mathematical model of an aeronautical system. The example demonstrates that once the procedure is established, the formulation and modification of models for simulation studies can be reduced to a series of routine computer operations.

  9. Modeling the impact of improved aircraft operations technologies on the environment and airline behavior

    NASA Astrophysics Data System (ADS)

    Foley, Ryan Patrick

    The overall goal of this thesis is to determine if improved operations technologies are economically viable for US airlines, and to determine the level of environmental benefits available from such technologies. Though these operational changes are being implemented primarily with the reduction of delay and improvement of throughput in mind, economic factors will drive the rate of airline adoption. In addition, the increased awareness of environmental impacts makes these effects an important aspect of decision-making. Understanding this relationship may help policymakers make decisions regarding implementation of these advanced technologies at airports, and help airlines determine appropriate levels of support to provide for these new technologies. In order to do so, the author models the behavior of a large, profit-seeking airline in response to the introduction of advanced equipage allowing improved operations procedures. The airline response included changes in deployed fleet, assignment of aircraft to routes, and acquisition of new aircraft. From these responses, changes in total fleet-level CO2 emissions and airline profit were tallied. As awareness of the environmental impact of aircraft emissions has grown, several agencies (ICAO, NASA) have moved to place goals for emissions reduction. NASA, in particular, has set goals for emissions reduction through several areas of aircraft technology. Among these are "Operational Improvements," technologies available in the short-term through avionics and airport system upgrades. The studies in this thesis make use of the Fleet-Level Environmental Evaluation Tool (FLEET), a simulation tool developed by Purdue University in support of a NASA-sponsored research effort. This tool models the behavior of a large, profit-seeking airline through an allocation problem. The problem is contained within a systems dynamics type approach that allows feedback between passenger demand, ticket price, and the airline fleet composition

  10. A Coupled Probabilistic Wake Vortex and Aircraft Response Prediction Model

    NASA Technical Reports Server (NTRS)

    Gloudemans, Thijs; Van Lochem, Sander; Ras, Eelco; Malissa, Joel; Ahmad, Nashat N.; Lewis, Timothy A.

    2016-01-01

    Wake vortex spacing standards along with weather and runway occupancy time, restrict terminal area throughput and impose major constraints on the overall capacity and efficiency of the National Airspace System (NAS). For more than two decades, the National Aeronautics and Space Administration (NASA) has been conducting research on characterizing wake vortex behavior in order to develop fast-time wake transport and decay prediction models. It is expected that the models can be used in the systems level design of advanced air traffic management (ATM) concepts that safely increase the capacity of the NAS. It is also envisioned that at a later stage of maturity, these models could potentially be used operationally, in groundbased spacing and scheduling systems as well as on the flight deck.

  11. Evaluation of atmospheric chemical models using aircraft data (Invited)

    NASA Astrophysics Data System (ADS)

    Freeman, S.; Grossberg, N.; Pierce, R.; Lee, P.; Ngan, F.; Yates, E. L.; Iraci, L. T.; Lefer, B. L.

    2013-12-01

    Air quality prediction is an important and growing field, as the adverse health effects of ozone (O3) are becoming more important to the general public. Two atmospheric chemical models, the Realtime Air Quality Modeling System (RAQMS) and the Community Multiscale Air Quality modeling system (CMAQ) are evaluated during NASA's Student Airborne Research Project (SARP) and the NASA Alpha Jet Atmospheric eXperiment (AJAX) flights. CO, O3, and NOx data simulated by the models are interpolated using an inverse distance weighting in space and a linear interpolation in time to both the SARP and AJAX flight tracks and compared to the CO, O3, and NOx observations at those points. Results for the seven flights included show moderate error in O3 during the flights, with RAQMS having a high O3 bias (+15.7 ppbv average) above 6 km and a low O3 bias (-17.5 ppbv average) below 4km. CMAQ was found to have a low O3 bias (-13.0 ppbv average) everywhere. Additionally, little bias (-5.36% RAQMS, -11.8% CMAQ) in the CO data was observed with the exception of a wildfire smoke plume that was flown through on one SARP flight, as CMAQ lacks any wildfire sources and RAQMS resolution is too coarse to resolve narrow plumes. This indicates improvement in emissions inventories compared to previous studies. CMAQ additionally incorrectly predicted a NOx plume due to incorrectly vertically advecting it from the surface, which caused NOx titration to occur, limiting the production of ozone. This study shows that these models perform reasonably well in most conditions; however more work must be done to assimilate wildfires, improve emissions inventories, and improve meteorological forecasts for the models.

  12. Improved ceramic slip casting technique. [application to aircraft model fabrication

    NASA Technical Reports Server (NTRS)

    Buck, Gregory M. (Inventor); Vasquez, Peter (Inventor)

    1993-01-01

    A primary concern in modern fluid dynamics research is the experimental verification of computational aerothermodynamic codes. This research requires high precision and detail in the test model employed. Ceramic materials are used for these models because of their low heat conductivity and their survivability at high temperatures. To fabricate such models, slip casting techniques were developed to provide net-form, precision casting capability for high-purity ceramic materials in aqueous solutions. In previous slip casting techniques, block, or flask molds made of plaster-of-paris were used to draw liquid from the slip material. Upon setting, parts were removed from the flask mold and cured in a kiln at high temperatures. Casting detail was usually limited with this technique -- detailed parts were frequently damaged upon separation from the flask mold, as the molded parts are extremely delicate in the uncured state, and the flask mold is inflexible. Ceramic surfaces were also marred by 'parting lines' caused by mold separation. This adversely affected the aerodynamic surface quality of the model as well. (Parting lines are invariably necessary on or near the leading edges of wings, nosetips, and fins for mold separation. These areas are also critical for flow boundary layer control.) Parting agents used in the casting process also affected surface quality. These agents eventually soaked into the mold, the model, or flaked off when releasing the case model. Different materials were tried, such as oils, paraffin, and even an algae. The algae released best, but some of it remained on the model and imparted an uneven texture and discoloration on the model surface when cured. According to the present invention, a wax pattern for a shell mold is provided, and an aqueous mixture of a calcium sulfate-bonded investment material is applied as a coating to the wax pattern. The coated wax pattern is then dried, followed by curing to vaporize the wax pattern and leave a shell

  13. An Evaluation Technique for an F/A-18 Aircraft Loads Model Using F/A-18 Systems Research Aircraft Flight Data

    NASA Technical Reports Server (NTRS)

    Olney, Candida D.; Hillebrandt, Heather; Reichenbach, Eric Y.

    2000-01-01

    A limited evaluation of the F/A-18 baseline loads model was performed on the Systems Research Aircraft at NASA Dryden Flight Research Center (Edwards, California). Boeing developed the F/A-18 loads model using a linear aeroelastic analysis in conjunction with a flight simulator to determine loads at discrete locations on the aircraft. This experiment was designed so that analysis of doublets could be used to establish aircraft aerodynamic and loads response at 20 flight conditions. Instrumentation on the right outboard leading edge flap, left aileron, and left stabilator measured the hinge moment so that comparisons could be made between in-flight-measured hinge moments and loads model-predicted values at these locations. Comparisons showed that the difference between the loads model-predicted and in-flight-measured hinge moments was up to 130 percent of the flight limit load. A stepwise regression technique was used to determine new loads derivatives. These derivatives were placed in the loads model, which reduced the error to within 10 percent of the flight limit load. This paper discusses the flight test methodology, a process for determining loads coefficients, and the direct comparisons of predicted and measured hinge moments and loads coefficients.

  14. A nonlinear computational aeroelasticity model for aircraft wings

    NASA Astrophysics Data System (ADS)

    Feng, Zhengkun

    Cette these presente le developpement d'un code d'aeroelasticite nonlineaire base sur un solveur CFD robuste afin de l'appliquer aux ailes flexibles en ecoulement transsonique. Le modele mathematique complet est base sur les equations du mouvement des structures et les equations d'Euler pour les ecoulements transsoniques non-visqueux. La strategie de traiter tel systeme complexe par un couplage etage presente des avantages pour le developpement d'un code modulaire et facile a faire evoluer. La non-correspondance entre les deux grilles de calcul a l'interface fluide-structure, due aux differences des tailles et des types des elements utilises par la resolution de l'ecoulement et de la structure, est resolue par l'ajout d'un module specifique. Les transferts des informations entre ces deux grilles satisfont la loi de la conservation de l'energie. Le modele nonlineaire de la dynamique du fluide base sur la description Euler-Lagrange est discretise dans le maillage mobile. Le modele pour le calcul des structures est suppose lineaire dans lequel la methode de superposition modale est appliquee pour reduire le temps de calcul et la dimension de la memoire. Un autre modele pour la structure base directement sur la methode des elements finis est aussi developpe. Il est egalement couple dans le code pour prouver son extension future aux applications plus generales. La nonlinearite est une autre source de complexite du systeme bien que celle-ci est prevue uniquement dans le modele aerodynamique. L'algorithme GMRES nonlineaire avec le preconditioneur ILUT est implemente dans le solveur CFD ou un capteur de choc pour les ecoulements transsoniques et la technique de stabilisation numerique SUPG pour des ecoulements domines par la convection sont appliques. Un schema du second ordre est utilise pour la discretisation temporelle. Les composants de ce code sont valides par des tests numeriques. Le modele complet est applique et valide sur l'aile aeroelastique AGARD 445.6 dans le

  15. A Model-Following Technique for Insensitive Aircraft Control Systems.

    DTIC Science & Technology

    1981-01-01

    Harvey and Pope(131 and Vinkler[301 compared several different methods in their works, while Shenkar [261 and Ashkenazi[2i extended the most promising...Following for In- sensitive Control works, let us consider the simple, first-order system used by Shenkar [261. The plant is described by x -(1 + Ar)x + u...representative of the methods of Vinkler, Asikenazi, and Shenkar ), and Model Following for Insensitive Control (MrIC). For the LQR design, we assume that our

  16. A non-gaussian model of continuous atmospheric turbulence for use in aircraft design

    NASA Technical Reports Server (NTRS)

    Reeves, P. M.; Joppa, R. G.; Ganzer, V. M.

    1976-01-01

    A non-Gaussian model of atmospheric turbulence is presented and analyzed. The model is restricted to the regions of the atmosphere where the turbulence is steady or continuous, and the assumptions of homogeneity and stationarity are justified. Also spatial distribution of turbulence is neglected, so the model consists of three independent, stationary stochastic processes which represent the vertical, lateral, and longitudinal gust components. The non-Gaussian and Gaussian models are compared with experimental data, and it is shown that the Gaussian model underestimates the number of high velocity gusts which occur in the atmosphere, while the non-Gaussian model can be adjusted to match the observed high velocity gusts more satisfactorily. Application of the proposed model to aircraft response is investigated, with particular attention to the response power spectral density, the probability distribution, and the level crossing frequency. A numerical example is presented which illustrates the application of the non-Gaussian model to the study of an aircraft autopilot system. Listings and sample results of a number of computer programs used in working with the model are included.

  17. A model and plan for a longitudinal study of community response to aircraft noise

    NASA Technical Reports Server (NTRS)

    Gunn, W. J.; Patterson, H. P.; Cornog, J.; Klaus, P.; Connor, W. K.

    1975-01-01

    A new approach is discussed for the study of the effects of aircraft noise on people who live near large airports. The approach was an outgrowth of a planned study of the reactions of individuals exposed to changing aircraft noise conditions around the Dallas-Ft. Worth (DFW) regional airport. The rationale, concepts, and methods employed in the study are discussed. A critical review of major past studies traces the history of community response research in an effort to identify strengths and limitations of the various approaches and methodologies. A stress-reduction model is presented to provide a framework for studying the dynamics of human response to a changing noise environment. The development of the survey instrument is detailed, and preliminary results of pretest data are discussed.

  18. The effectiveness of FE model for increasing accuracy in stretch forming simulation of aircraft skin panels

    NASA Astrophysics Data System (ADS)

    Kono, A.; Yamada, T.; Takahashi, S.

    2013-12-01

    In the aerospace industry, stretch forming has been used to form the outer surface parts of aircraft, which are called skin panels. Empirical methods have been used to correct the springback by measuring the formed panels. However, such methods are impractical and cost prohibitive. Therefore, there is a need to develop simulation technologies to predict the springback caused by stretch forming [1]. This paper reports the results of a study on the influences of the modeling conditions and parameters on the accuracy of an FE analysis simulating the stretch forming of aircraft skin panels. The effects of the mesh aspect ratio, convergence criteria, and integration points are investigated, and better simulation conditions and parameters are proposed.

  19. A user's manual for the method of moments Aircraft Modeling Code (AMC)

    NASA Technical Reports Server (NTRS)

    Peters, M. E.; Newman, E. H.

    1989-01-01

    This report serves as a user's manual for the Aircraft Modeling Code or AMC. AMC is a user-oriented computer code, based on the method of moments (MM), for the analysis of the radiation and/or scattering from geometries consisting of a main body or fuselage shape with attached wings and fins. The shape of the main body is described by defining its cross section at several stations along its length. Wings, fins, rotor blades, and radiating monopoles can then be attached to the main body. Although AMC was specifically designed for aircraft or helicopter shapes, it can also be applied to missiles, ships, submarines, jet inlets, automobiles, spacecraft, etc. The problem geometry and run control parameters are specified via a two character command language input format. The input command language is described and several examples which illustrate typical code inputs and outputs are also included.

  20. A users manual for the method of moments Aircraft Modeling Code (AMC), version 2

    NASA Technical Reports Server (NTRS)

    Peters, M. E.; Newman, E. H.

    1994-01-01

    This report serves as a user's manual for Version 2 of the 'Aircraft Modeling Code' or AMC. AMC is a user-oriented computer code, based on the method of moments (MM), for the analysis of the radiation and/or scattering from geometries consisting of a main body or fuselage shape with attached wings and fins. The shape of the main body is described by defining its cross section at several stations along its length. Wings, fins, rotor blades, and radiating monopoles can then be attached to the main body. Although AMC was specifically designed for aircraft or helicopter shapes, it can also be applied to missiles, ships, submarines, jet inlets, automobiles, spacecraft, etc. The problem geometry and run control parameters are specified via a two character command language input format. This report describes the input command language and also includes several examples which illustrate typical code inputs and outputs.

  1. Effect of motion frequency spectrum on subjective comfort response. [modeling passenger reactions to commercial aircraft flights

    NASA Technical Reports Server (NTRS)

    Jacobson, I. D.; Schoultz, M. B.; Blake, J. C.

    1973-01-01

    In order to model passenger reaction to present and future aircraft environments, it is necessary to obtain data in several ways. First, of course, is the gathering of environmental and passenger reaction data on commercial aircraft flights. In addition, detailed analyses of particular aspects of human reaction to the environment are best studied in a controllable experimental situation. Thus the use of simulators, both flight and ground based, is suggested. It is shown that there is a reasonably high probability that the low frequency end of the spectrum will not be necessary for simulation purposes. That is, the fidelity of any simulation which omits the very low frequency content will not yield results which differ significantly from the real environment. In addition, there does not appear to be significant differences between the responses obtained in the airborne simulator environment versus those obtained on commercial flights.

  2. Computational models for the viscous/inviscid analysis of jet aircraft exhaust plumes

    NASA Astrophysics Data System (ADS)

    Dash, S. M.; Pergament, H. S.; Thorpe, R. D.

    1980-05-01

    Computational models which analyze viscous/inviscid flow processes in jet aircraft exhaust plumes are discussed. These models are component parts of an NASA-LaRC method for the prediction of nozzle afterbody drag. Inviscid/shock processes are analyzed by the SCIPAC code which is a compact version of a generalized shock capturing, inviscid plume code (SCIPPY). The SCIPAC code analyzes underexpanded jet exhaust gas mixtures with a self-contained thermodynamic package for hydrocarbon exhaust products and air. A detailed and automated treatment of the embedded subsonic zones behind Mach discs is provided in this analysis. Mixing processes along the plume interface are analyzed by two upgraded versions of an overlaid, turbulent mixing code (BOAT) developed previously for calculating nearfield jet entrainment. The BOATAC program is a frozen chemistry version of BOAT containing the aircraft thermodynamic package as SCIPAC; BOATAB is an afterburning version with a self-contained aircraft (hydrocarbon/air) finite-rate chemistry package. The coupling of viscous and inviscid flow processes is achieved by an overlaid procedure with interactive effects accounted for by a displacement thickness type correction to the inviscid plume interface.

  3. Computational models for the viscous/inviscid analysis of jet aircraft exhaust plumes. [predicting afterbody drag

    NASA Technical Reports Server (NTRS)

    Dash, S. M.; Pergament, H. S.; Thorpe, R. D.

    1980-01-01

    Computational models which analyze viscous/inviscid flow processes in jet aircraft exhaust plumes are discussed. These models are component parts of an NASA-LaRC method for the prediction of nozzle afterbody drag. Inviscid/shock processes are analyzed by the SCIPAC code which is a compact version of a generalized shock capturing, inviscid plume code (SCIPPY). The SCIPAC code analyzes underexpanded jet exhaust gas mixtures with a self-contained thermodynamic package for hydrocarbon exhaust products and air. A detailed and automated treatment of the embedded subsonic zones behind Mach discs is provided in this analysis. Mixing processes along the plume interface are analyzed by two upgraded versions of an overlaid, turbulent mixing code (BOAT) developed previously for calculating nearfield jet entrainment. The BOATAC program is a frozen chemistry version of BOAT containing the aircraft thermodynamic package as SCIPAC; BOATAB is an afterburning version with a self-contained aircraft (hydrocarbon/air) finite-rate chemistry package. The coupling of viscous and inviscid flow processes is achieved by an overlaid procedure with interactive effects accounted for by a displacement thickness type correction to the inviscid plume interface.

  4. Aerodynamics on a transport aircraft type wing-body model

    NASA Technical Reports Server (NTRS)

    Schmitt, V.

    1982-01-01

    The DFLR-F4 wing-body combination is studied. The 1/38 model is formed by a 9.5 aspect ratio transonic wing and an Airbus A 310 fuselage. The F4 wing geometrical characteristics are described and the main experimental results obtained in the S2MA wind tunnel are discussed. Both wing-fuselage interferences and viscous effects, which are important on the wing due to a high rear loading, are investigated by performing 3D calculations. An attempt is made to find their limitations.

  5. 76 FR 17757 - Airworthiness Directives; Thielert Aircraft Engines GmbH Models TAE 125-01, TAE 125-02-99, and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-31

    ... versions allow--under certain conditions and on DA 42 aircraft only--the initiation of a FADEC self test... DA 42 aircraft only--the initiation of a FADEC self test during flight that causes an engine in...); APEX (Robin) DR 400 series (EASA STC No. A.S.01380); and Diamond Aircraft Industries Models DA 40,...

  6. 75 FR 7996 - Airworthiness Directives; Thielert Aircraft Engines GmbH (TAE) Models TAE 125-01 and TAE 125-02...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-23

    ... Limited to, Diamond Aircraft Industries Model DA 42 Airplanes AGENCY: Federal Aviation Administration (FAA... reported on Diamond Aircraft Industries DA 42 airplanes equipped with TAE 125 engines. The investigations...-flight shutdown incidents have been reported on Diamond Aircraft Industries DA 42 airplanes equipped...

  7. V/STOL tilt rotor study. Volume 5: A mathematical model for real time flight simulation of the Bell model 301 tilt rotor research aircraft

    NASA Technical Reports Server (NTRS)

    Harendra, P. B.; Joglekar, M. J.; Gaffey, T. M.; Marr, R. L.

    1973-01-01

    A mathematical model for real-time flight simulation of a tilt rotor research aircraft was developed. The mathematical model was used to support the aircraft design, pilot training, and proof-of-concept aspects of the development program. The structure of the mathematical model is indicated by a block diagram. The mathematical model differs from that for a conventional fixed wing aircraft principally in the added requirement to represent the dynamics and aerodynamics of the rotors, the interaction of the rotor wake with the airframe, and the rotor control and drive systems. The constraints imposed on the mathematical model are defined.

  8. Automation of reverse engineering process in aircraft modeling and related optimization problems

    NASA Technical Reports Server (NTRS)

    Li, W.; Swetits, J.

    1994-01-01

    During the year of 1994, the engineering problems in aircraft modeling were studied. The initial concern was to obtain a surface model with desirable geometric characteristics. Much of the effort during the first half of the year was to find an efficient way of solving a computationally difficult optimization model. Since the smoothing technique in the proposal 'Surface Modeling and Optimization Studies of Aerodynamic Configurations' requires solutions of a sequence of large-scale quadratic programming problems, it is important to design algorithms that can solve each quadratic program in a few interactions. This research led to three papers by Dr. W. Li, which were submitted to SIAM Journal on Optimization and Mathematical Programming. Two of these papers have been accepted for publication. Even though significant progress has been made during this phase of research and computation times was reduced from 30 min. to 2 min. for a sample problem, it was not good enough for on-line processing of digitized data points. After discussion with Dr. Robert E. Smith Jr., it was decided not to enforce shape constraints in order in order to simplify the model. As a consequence, P. Dierckx's nonparametric spline fitting approach was adopted, where one has only one control parameter for the fitting process - the error tolerance. At the same time the surface modeling software developed by Imageware was tested. Research indicated a substantially improved fitting of digitalized data points can be achieved if a proper parameterization of the spline surface is chosen. A winning strategy is to incorporate Dierckx's surface fitting with a natural parameterization for aircraft parts. The report consists of 4 chapters. Chapter 1 provides an overview of reverse engineering related to aircraft modeling and some preliminary findings of the effort in the second half of the year. Chapters 2-4 are the research results by Dr. W. Li on penalty functions and conjugate gradient methods for

  9. Computational fluid dynamics modeling of transport and deposition of pesticides in an aircraft cabin

    NASA Astrophysics Data System (ADS)

    Isukapalli, Sastry S.; Mazumdar, Sagnik; George, Pradeep; Wei, Binnian; Jones, Byron; Weisel, Clifford P.

    2013-04-01

    Spraying of pesticides in aircraft cabins is required by some countries as part of a disinsection process to kill insects that pose a public health threat. However, public health concerns remain regarding exposures of cabin crew and passengers to pesticides in aircraft cabins. While large scale field measurements of pesticide residues and air concentrations in aircraft cabins scenarios are expensive and time consuming, Computational Fluid Dynamics (CFD) models provide an effective alternative for characterizing concentration distributions and exposures. This study involved CFD modeling of a twin-aisle 11 row cabin mockup with heated manikins, mimicking a part of a fully occupied Boeing 767 cabin. The model was applied to study the flow and deposition of pesticides under representative scenarios with different spraying patterns (sideways and overhead) and cabin air exchange rates (low and high). Corresponding spraying experiments were conducted in the cabin mockup, and pesticide deposition samples were collected at the manikin's lap and seat top for a limited set of five seats. The CFD model performed well for scenarios corresponding to high air exchange rates, captured the concentration profiles for middle seats under low air exchange rates, and underestimated the concentrations at window seats under low air exchange rates. Additionally, both the CFD and experimental measurements showed no major variation in deposition characteristics between sideways and overhead spraying. The CFD model can estimate concentration fields and deposition profiles at very high resolutions, which can be used for characterizing the overall variability in air concentrations and surface loadings. Additionally, these model results can also provide a realistic range of surface and air concentrations of pesticides in the cabin that can be used to estimate potential exposures of cabin crew and passengers to these pesticides.

  10. Computational fluid dynamics modeling of transport and deposition of pesticides in an aircraft cabin.

    PubMed

    Isukapalli, Sastry S; Mazumdar, Sagnik; George, Pradeep; Wei, Binnian; Jones, Byron; Weisel, Clifford P

    2013-04-01

    Spraying of pesticides in aircraft cabins is required by some countries as part of a disinsection process to kill insects that pose a public health threat. However, public health concerns remain regarding exposures of cabin crew and passengers to pesticides in aircraft cabins. While large scale field measurements of pesticide residues and air concentrations in aircraft cabins scenarios are expensive and time consuming, Computational Fluid Dynamics (CFD) models provide an effective alternative for characterizing concentration distributions and exposures. This study involved CFD modeling of a twin-aisle 11 row cabin mockup with heated manikins, mimicking a part of a fully occupied Boeing 767 cabin. The model was applied to study the flow and deposition of pesticides under representative scenarios with different spraying patterns (sideways and overhead) and cabin air exchange rates (low and high). Corresponding spraying experiments were conducted in the cabin mockup, and pesticide deposition samples were collected at the manikin's lap and seat top for a limited set of five seats. The CFD model performed well for scenarios corresponding to high air exchange rates, captured the concentration profiles for middle seats under low air exchange rates, and underestimated the concentrations at window seats under low air exchange rates. Additionally, both the CFD and experimental measurements showed no major variation in deposition characteristics between sideways and overhead spraying. The CFD model can estimate concentration fields and deposition profiles at very high resolutions, which can be used for characterizing the overall variability in air concentrations and surface loadings. Additionally, these model results can also provide a realistic range of surface and air concentrations of pesticides in the cabin that can be used to estimate potential exposures of cabin crew and passengers to these pesticides.

  11. Computational fluid dynamics modeling of transport and deposition of pesticides in an aircraft cabin

    PubMed Central

    Isukapalli, Sastry S.; Mazumdar, Sagnik; George, Pradeep; Wei, Binnian; Jones, Byron; Weisel, Clifford P.

    2015-01-01

    Spraying of pesticides in aircraft cabins is required by some countries as part of a disinsection process to kill insects that pose a public health threat. However, public health concerns remain regarding exposures of cabin crew and passengers to pesticides in aircraft cabins. While large scale field measurements of pesticide residues and air concentrations in aircraft cabins scenarios are expensive and time consuming, Computational Fluid Dynamics (CFD) models provide an effective alternative for characterizing concentration distributions and exposures. This study involved CFD modeling of a twin-aisle 11 row cabin mockup with heated manikins, mimicking a part of a fully occupied Boeing 767 cabin. The model was applied to study the flow and deposition of pesticides under representative scenarios with different spraying patterns (sideways and overhead) and cabin air exchange rates (low and high). Corresponding spraying experiments were conducted in the cabin mockup, and pesticide deposition samples were collected at the manikin’s lap and seat top for a limited set of five seats. The CFD model performed well for scenarios corresponding to high air exchange rates, captured the concentration profiles for middle seats under low air exchange rates, and underestimated the concentrations at window seats under low air exchange rates. Additionally, both the CFD and experimental measurements showed no major variation in deposition characteristics between sideways and overhead spraying. The CFD model can estimate concentration fields and deposition profiles at very high resolutions, which can be used for characterizing the overall variability in air concentrations and surface loadings. Additionally, these model results can also provide a realistic range of surface and air concentrations of pesticides in the cabin that can be used to estimate potential exposures of cabin crew and passengers to these pesticides. PMID:25642134

  12. The influence of female social models in corporate STEM initiatives on girls' math and science attitudes

    NASA Astrophysics Data System (ADS)

    Medeiros, Donald J.

    The United States' Science, Technology, Engineering, and Mathematics (STEM) workforce is growing slower than in the past, in comparison to demand, and in comparison to other countries. Competitive talent conditions require the United States to develop a strong pipeline of STEM talent within its own citizens. Given the number of female college graduates and their underrepresentation in the STEM workforce, women provide the greatest opportunity for fulfilling this need. The term social model represents the individuals and media that shape children's self-perceptions. Social models have been shown to positively influence girl's perceptions of the value of math and science as well as their expectations of success. This study examined differences in attitudes towards math and science among student participants in corporate STEM programs. Differences were measured based on participant gender and ethnicity, their mentor's gender and ethnicity, and program design differences. The research purpose was to inform the design of corporate STEM programs to improve female participants' attitudes towards math and science and eventually increase the number of women in the STEM workforce. Over three hundred students in differing corporate STEM programs completed math and science attitudinal scales at the start and end of their programs. Study results revealed, prior to program start, female participants had a better attitude towards math and science than male participants. Analysis of the Trends in International Mathematics and Science Study data showed similar results. Overall program results demonstrated higher post program math and science attitudes with no differences based on gender, age, or ethnicity of the participant or mentor. Participants with high program or mentor satisfaction were found to have higher attitudes towards math and science. These results may suggest improving female academic choice requires more focus on their expectations of success than perceived task

  13. Estimating the Term Structure With a Semiparametric Bayesian Hierarchical Model: An Application to Corporate Bonds.

    PubMed

    Cruz-Marcelo, Alejandro; Ensor, Katherine B; Rosner, Gary L

    2011-06-01

    The term structure of interest rates is used to price defaultable bonds and credit derivatives, as well as to infer the quality of bonds for risk management purposes. We introduce a model that jointly estimates term structures by means of a Bayesian hierarchical model with a prior probability model based on Dirichlet process mixtures. The modeling methodology borrows strength across term structures for purposes of estimation. The main advantage of our framework is its ability to produce reliable estimators at the company level even when there are only a few bonds per company. After describing the proposed model, we discuss an empirical application in which the term structure of 197 individual companies is estimated. The sample of 197 consists of 143 companies with only one or two bonds. In-sample and out-of-sample tests are used to quantify the improvement in accuracy that results from approximating the term structure of corporate bonds with estimators by company rather than by credit rating, the latter being a popular choice in the financial literature. A complete description of a Markov chain Monte Carlo (MCMC) scheme for the proposed model is available as Supplementary Material.

  14. Analytical modeling of the structureborne noise path on a small twin-engine aircraft

    NASA Technical Reports Server (NTRS)

    Cole, J. E., III; Stokes, A. Westagard; Garrelick, J. M.; Martini, K. F.

    1988-01-01

    The structureborne noise path of a six passenger twin-engine aircraft is analyzed. Models of the wing and fuselage structures as well as the interior acoustic space of the cabin are developed and used to evaluate sensitivity to structural and acoustic parameters. Different modeling approaches are used to examine aspects of the structureborne path. These approaches are guided by a number of considerations including the geometry of the structures, the frequency range of interest, and the tractability of the computations. Results of these approaches are compared with experimental data.

  15. Turbulence modeling of free shear layers for high-performance aircraft

    NASA Technical Reports Server (NTRS)

    Sondak, Douglas L.

    1993-01-01

    The High Performance Aircraft (HPA) Grand Challenge of the High Performance Computing and Communications (HPCC) program involves the computation of the flow over a high performance aircraft. A variety of free shear layers, including mixing layers over cavities, impinging jets, blown flaps, and exhaust plumes, may be encountered in such flowfields. Since these free shear layers are usually turbulent, appropriate turbulence models must be utilized in computations in order to accurately simulate these flow features. The HPCC program is relying heavily on parallel computers. A Navier-Stokes solver (POVERFLOW) utilizing the Baldwin-Lomax algebraic turbulence model was developed and tested on a 128-node Intel iPSC/860. Algebraic turbulence models run very fast, and give good results for many flowfields. For complex flowfields such as those mentioned above, however, they are often inadequate. It was therefore deemed that a two-equation turbulence model will be required for the HPA computations. The k-epsilon two-equation turbulence model was implemented on the Intel iPSC/860. Both the Chien low-Reynolds-number model and a generalized wall-function formulation were included.

  16. Supplemental Modeling and Analysis Report, Atlas Corporation Moab Mill, Moab, Utah

    SciTech Connect

    Easterly, CE

    2001-11-05

    The purpose of this report is to provide additional numerical modeling and data evaluation for the Atlas tailings pile near Moab, Utah. A previous report (Tailings Pile Seepage Model: The Atlas Corporation Moab Mill, Moab, Utah, January 9, 1998) prepared for the Nuclear Regulatory Commission (NRC) by Oak Ridge National Laboratory/Grand Junction (ORNL/GJ) presented the results of steady-state modeling of water flow and subsequent discharge to the underlying groundwater system. At the request of the Fish and Wildlife Service (FWS), this model was expanded to evaluate the impact of drainage from the tailings pile in addition to recharge from precipitation in a transient mode simulation. In addition, the FWS requested transient simulations of contaminant transport in the alluvial aquifer. Subsequently, NRC requested an evaluation of additional hydrologic issues related to the results presented in the Tailings Pile Seepage Model (ORNL/GJ 1998a) and the Limited Groundwater Investigation (ORNL/GJ 1998b). Funding for the report was provided by the U.S. Department of Energy. The following section lists the individual tasks with subsequent sections providing the results. A map for the Atlas Moab Mill site is presented in Fig. 1.1.

  17. Bayesian-MCMC-based parameter estimation of stealth aircraft RCS models

    NASA Astrophysics Data System (ADS)

    Xia, Wei; Dai, Xiao-Xia; Feng, Yuan

    2015-12-01

    When modeling a stealth aircraft with low RCS (Radar Cross Section), conventional parameter estimation methods may cause a deviation from the actual distribution, owing to the fact that the characteristic parameters are estimated via directly calculating the statistics of RCS. The Bayesian-Markov Chain Monte Carlo (Bayesian-MCMC) method is introduced herein to estimate the parameters so as to improve the fitting accuracies of fluctuation models. The parameter estimations of the lognormal and the Legendre polynomial models are reformulated in the Bayesian framework. The MCMC algorithm is then adopted to calculate the parameter estimates. Numerical results show that the distribution curves obtained by the proposed method exhibit improved consistence with the actual ones, compared with those fitted by the conventional method. The fitting accuracy could be improved by no less than 25% for both fluctuation models, which implies that the Bayesian-MCMC method might be a good candidate among the optimal parameter estimation methods for stealth aircraft RCS models. Project supported by the National Natural Science Foundation of China (Grant No. 61101173), the National Basic Research Program of China (Grant No. 613206), the National High Technology Research and Development Program of China (Grant No. 2012AA01A308), the State Scholarship Fund by the China Scholarship Council (CSC), and the Oversea Academic Training Funds, and University of Electronic Science and Technology of China (UESTC).

  18. Theoretical vibro-acoustic modeling of acoustic noise transmission through aircraft windows

    NASA Astrophysics Data System (ADS)

    Aloufi, Badr; Behdinan, Kamran; Zu, Jean

    2016-06-01

    In this paper, a fully vibro-acoustic model for sound transmission across a multi-pane aircraft window is developed. The proposed model is efficiently applied for a set of window models to perform extensive theoretical parametric studies. The studied window configurations generally simulate the passenger window designs of modern aircraft classes which have an exterior multi-Plexiglas pane, an interior single acrylic glass pane and a dimmable glass ("smart" glass), all separated by thin air cavities. The sound transmission loss (STL) characteristics of three different models, triple-, quadruple- and quintuple-paned windows identical in size and surface density, are analyzed for improving the acoustic insulation performances. Typical results describing the influence of several system parameters, such as the thicknesses, number and spacing of the window panes, on the transmission loss are then investigated. In addition, a comparison study is carried out to evaluate the acoustic reduction capability of each window model. The STL results show that the higher frequencies sound transmission loss performance can be improved by increasing the number of window panels, however, the low frequency performance is decreased, particularly at the mass-spring resonances.

  19. A mathematical model of a tilt-wing aircraft for piloted simulation

    NASA Technical Reports Server (NTRS)

    Totah, Joseph J.

    1992-01-01

    A mathematical model of a tilt-wing aircraft that was used in a piloted, six-degree-of-freedom flight simulation application is described. Two types of control systems developed for the math model are discussed: a conventional, programmed-flap wing-tilt control system and a geared-flap wing-tilt control system. The primary objective was to develop the capability to study tilt-wing aircraft. Experienced Tilt-wing pilots subjectively evaluated the model using programmed-flap control to assess the quality of the simulation. The math model was then applied to study geared-flap control to investigate the possibility of eliminating the need for auxilary pitch-control devices (such as the horizontal tail rotor or tail jet used in earlier tilt-wing designs). This investigation was performed in the moving-base simulation environment, and the vehicle responses with programmed-flap and geared-flap control were compared. The results of the evaluation of the math model are discussed.

  20. Lateral-Directional Parameter Estimation on the X-48B Aircraft Using an Abstracted, Multi-Objective Effector Model

    NASA Technical Reports Server (NTRS)

    Ratnayake, Nalin A.; Waggoner, Erin R.; Taylor, Brian R.

    2011-01-01

    The problem of parameter estimation on hybrid-wing-body aircraft is complicated by the fact that many design candidates for such aircraft involve a large number of aerodynamic control effectors that act in coplanar motion. This adds to the complexity already present in the parameter estimation problem for any aircraft with a closed-loop control system. Decorrelation of flight and simulation data must be performed in order to ascertain individual surface derivatives with any sort of mathematical confidence. Non-standard control surface configurations, such as clamshell surfaces and drag-rudder modes, further complicate the modeling task. In this paper, time-decorrelation techniques are applied to a model structure selected through stepwise regression for simulated and flight-generated lateral-directional parameter estimation data. A virtual effector model that uses mathematical abstractions to describe the multi-axis effects of clamshell surfaces is developed and applied. Comparisons are made between time history reconstructions and observed data in order to assess the accuracy of the regression model. The Cram r-Rao lower bounds of the estimated parameters are used to assess the uncertainty of the regression model relative to alternative models. Stepwise regression was found to be a useful technique for lateral-directional model design for hybrid-wing-body aircraft, as suggested by available flight data. Based on the results of this study, linear regression parameter estimation methods using abstracted effectors are expected to perform well for hybrid-wing-body aircraft properly equipped for the task.

  1. 75 FR 50853 - Special Conditions: Cirrus Design Corporation Model SF50 Airplane; Function and Reliability Testing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-18

    ... Administration, Small Airplane Directorate, Aircraft Certification Service, 901 Locust, Room 301, Kansas City, MO... aircraft. It incorporates an Electronic Flight Information System (EFIS), pressurized cabin, retractable gear, and a V-tail. The turbofan engine is mounted on the upper fuselage/tail cone along the...

  2. 77 FR 64051 - 2017 and Later Model Year Light-Duty Vehicle Greenhouse Gas Emissions and Corporate Average Fuel...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-18

    ... established fuel economy standards for light-duty vehicles under the Energy Policy and Conservation Act (EPCA), as amended by the Energy Independence and Security Act (EISA), 49 U.S.C. 32901 et seq. DATES... Model Year Light-Duty Vehicle Greenhouse Gas Emissions and Corporate Average Fuel Economy...

  3. Silicon and Ivy: Enhancing California's Workforce and Educational Goals through the Corporate College Model.

    ERIC Educational Resources Information Center

    Thompson, Ingrid

    Employers have begun to see that one of the keys to corporate success is a workforce of adaptable and agile learners who are constantly upgrading skills. While a gap currently exists between employer needs and qualified employees in the marketplace, businesses have shown themselves to be willing to fill unmet needs. Over 1,000 corporate colleges…

  4. Modeling of aircraft unsteady aerodynamic characteristics. Part 2: Parameters estimated from wind tunnel data

    NASA Technical Reports Server (NTRS)

    Klein, Vladislav; Noderer, Keith D.

    1995-01-01

    Aerodynamic equations with unsteady effects were formulated for an aircraft in one-degree-of-freedom, small-amplitude, harmonic motion. These equations were used as a model for aerodynamic parameter estimation from wind tunnel oscillatory data. The estimation algorithm was based on nonlinear least squares and was applied in three examples to the oscillatory data in pitch and roll of 70 deg triangular wing and an X-31 model, and in-sideslip oscillatory data of the High Incidence Research Model 2 (HIRM 2). All three examples indicated that a model using a simple indicial function can explain unsteady effects observed in measured data. The accuracy of the estimated parameters and model verification were strongly influenced by the number of data points with respect to the number of unknown parameters.

  5. Comparison of two propeller source models for aircraft interior noise studies

    NASA Technical Reports Server (NTRS)

    Mahan, J. R.; Fuller, C. R.

    1986-01-01

    The sensitivity of the predicted synchrophasing (SP) effectiveness trends to the propeller source model issued is investigated with reference to the development of advanced turboprop engines for transport aircraft. SP effectiveness is shown to be sensitive to the type of source model used. For the virtually rotating dipole source model, the SP effectiveness is sensitive to the direction of rotation at some frequencies but not at others. The SP effectiveness obtained from the virtually rotating dipole model is not very sensitive to the radial location of the source distribution within reasonable limits. Finally, the predicted SP effectiveness is shown to be more sensitive to the details of the source model used for the case of corotation than for the case of counterrotation.

  6. A Backward Modeling Study of Intercontinental Pollution Transport Using Aircraft Measurements

    NASA Astrophysics Data System (ADS)

    Stohl, A.; Forster, C.; Eckhardt, S.; Huntrieser, H.; Heland, J.; Schlager, H.; Aufmhoff, H.; Arnold, F.; Cooper, O.

    2002-12-01

    In this paper we present simulations with a Lagrangian particle dispersion model to study the intercontinental transport of pollution from North America during an aircraft measurement campaign over Europe. The model was used for both the flight planning and a detailed source analysis after the campaign, which is described here with examples from two episodes. First, forward calculations of emission tracers from North America, Europe and Asia were made to understand the transport processes. Both episodes were preceded by stagnant conditions over North America, leading to the accumulation of pollutants in the North American boundary layer. This pollution was then exported by warm conveyor belts to the middle and upper troposphere, and transported rapidly to Europe. Concentrations of many chemical trace species (CO, NOy, CO2, acetone, and several VOCs; O3 in one case) measured aboard the research aircraft were clearly enhanced in the pollution plumes compared to the conditions outside the plumes. Backward simulations with the particle model were introduced as an indispensable tool for a more detailed analysis of the plume's source region. They make trajectory analyses, which to date were mainly used to interpret aircraft measurement data, obsolete for establishing source-receptor relationships. Using an emission inventory, we could decompose the tracer mixing ratios at the receptors (i.e., along the flight tracks) into contributions from every grid cell of the inventory. For both North America plumes, we found that emission sources contributing to the tracer concentrations over Europe were distributed over large areas in North America. In one case, the region around New York was clearly the largest contributor, but in the other case, sources in California, Texas, and Florida contributed almost equally. Smaller contributions were made by sources reaching from the Yucatan peninsula to Canada in this case.

  7. Vibrational behavior of adaptive aircraft wing structures modelled as composite thin-walled beams

    NASA Technical Reports Server (NTRS)

    Song, O.; Librescu, L.; Rogers, C. A.

    1992-01-01

    The vibrational behavior of cantilevered aircraft wings modeled as thin-walled beams and incorporating piezoelectric effects is studied. Based on the converse piezoelectric effect, the system of piezoelectric actuators conveniently located on the wing yield the control of its associated vertical and lateral bending eigenfrequencies. The possibility revealed by this study enabling one to increase adaptively the eigenfrequencies of thin-walled cantilevered beams could play a significant role in the control of the dynamic response and flutter of wing and rotor blade structures.

  8. Large-Scale Wind-Tunnel Tests of Inverting Flaps on a STOL Utility Aircraft Model.

    DTIC Science & Technology

    1980-06-01

    the same basic wing contour for cruise and have been tested in the Ames 40- by 80-Foot Wind Tunnel using this sarme STOL utility aircraft model with...inverting flap are seen to be quite evenly matched at a descent angle of approximately 130 to 140 , corresponding to a theoretical "no-flare" landing distance...to a T of 2.4, with a maneuvering reserve capability of about 0.6 rad /sec 2 . A slightly larger horizontal tail would be required to provide adequate

  9. Formal Modeling and Analysis of a Preliminary Small Aircraft Transportation System (SATS)Concept

    NASA Technical Reports Server (NTRS)

    Carrreno, Victor A.; Gottliebsen, Hanne; Butler, Ricky; Kalvala, Sara

    2004-01-01

    New concepts for automating air traffic management functions at small non-towered airports raise serious safety issues associated with the software implementations and their underlying key algorithms. The criticality of such software systems necessitates that strong guarantees of the safety be developed for them. In this paper we present a formal method for modeling and verifying such systems using the PVS theorem proving system. The method is demonstrated on a preliminary concept of operation for the Small Aircraft Transportation System (SATS) project at NASA Langley.

  10. Aircraft interior noise models - Sidewall trim, stiffened structures, and cabin acoustics with floor partition

    NASA Technical Reports Server (NTRS)

    Pope, L. D.; Wilby, E. G.; Willis, C. M.; Mayes, W. H.

    1983-01-01

    As part of the continuing development of an aircraft interior noise prediction model, in which a discrete modal representation and power flow analysis are used, theoretical results are considered for inclusion of sidewall trim, stiffened structures, and cabin acoustics with floor partition. For validation purposes, predictions of the noise reductions for three test articles (a bare ring-stringer stiffened cylinder, an unstiffened cylinder with floor and insulation, and a ring-stringer stiffened cylinder with floor and sidewall trim) are compared with measurements.

  11. Noise Reduction in an Aircraft Fuselage Model Using Active Trim Panels

    NASA Technical Reports Server (NTRS)

    Silcox, Richard J.; Lyle, Karen H.

    1996-01-01

    An experiment was conducted to evaluate the use of force actuators on a model aircraft interior trim panel as the control element for active control of interior noise. The trim panel, designed specifically for this study, was constructed in three large identical sections and hard mounted to the ring frames of the primary structure. Piezoceramic actuators were bonded to the outer surface of the trim panels. Studies of the interior pressure response due to both the primary source alone and control sources alone were conducted as well as the control cases. A single acoustic loudspeaker, centered at the axial midpoint, generated the acoustic field to be controlled.

  12. Model calculations for the retrieval of aerosols from satellite and aircraft radiances

    NASA Astrophysics Data System (ADS)

    Hickman, George D.; Souders, C.; Shettle, Eric P.; Duggin, Michael J.; Sweet, J. A.

    1993-09-01

    Model calculations of upwelling spectral radiances at aircraft and satellite altitudes have been made to assess the capability of different current and planned sensors to extract information on the atmospheric aerosols. The visible and near infrared channels on the AVHRR, CZCS, and SeaWiFS satellite sensors were used, as well as hypothetical multichannel instruments covering 400 - 1000 nm with bandwidths of 100, 20, or 10 nm. The sensitivity to the aerosol and environmental properties increased as the bandwidth of the channel decreased.

  13. Constructing an Efficient Self-Tuning Aircraft Engine Model for Control and Health Management Applications

    NASA Technical Reports Server (NTRS)

    Armstrong, Jeffrey B.; Simon, Donald L.

    2012-01-01

    Self-tuning aircraft engine models can be applied for control and health management applications. The self-tuning feature of these models minimizes the mismatch between any given engine and the underlying engineering model describing an engine family. This paper provides details of the construction of a self-tuning engine model centered on a piecewise linear Kalman filter design. Starting from a nonlinear transient aerothermal model, a piecewise linear representation is first extracted. The linearization procedure creates a database of trim vectors and state-space matrices that are subsequently scheduled for interpolation based on engine operating point. A series of steady-state Kalman gains can next be constructed from a reduced-order form of the piecewise linear model. Reduction of the piecewise linear model to an observable dimension with respect to available sensed engine measurements can be achieved using either a subset or an optimal linear combination of "health" parameters, which describe engine performance. The resulting piecewise linear Kalman filter is then implemented for faster-than-real-time processing of sensed engine measurements, generating outputs appropriate for trending engine performance, estimating both measured and unmeasured parameters for control purposes, and performing on-board gas-path fault diagnostics. Computational efficiency is achieved by designing multidimensional interpolation algorithms that exploit the shared scheduling of multiple trim vectors and system matrices. An example application illustrates the accuracy of a self-tuning piecewise linear Kalman filter model when applied to a nonlinear turbofan engine simulation. Additional discussions focus on the issue of transient response accuracy and the advantages of a piecewise linear Kalman filter in the context of validation and verification. The techniques described provide a framework for constructing efficient self-tuning aircraft engine models from complex nonlinear

  14. 78 FR 52870 - Airworthiness Directives; Beechcraft Corporation Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-27

    ... Directives; Beechcraft Corporation Airplanes AGENCY: Federal Aviation Administration (FAA), DOT. ACTION... certain Beechcraft Corporation (type certificate previously held by Hawker Beechcraft Corporation) Models... identified in this proposed AD, contact Beechcraft Corporation at address: 10511 E. Central, Wichita,...

  15. Digital redesign of the control system for the Robotics Research Corporation model K-1607 robot

    NASA Technical Reports Server (NTRS)

    Carroll, Robert L.

    1989-01-01

    The analog control system for positioning each link of the Robotics Research Corporation Model K-1607 robot manipulator was redesigned for computer control. In order to accomplish the redesign, a linearized model of the dynamic behavior of the robot was developed. The parameters of the model were determined by examination of the input-output data collected in closed-loop operation of the analog control system. The robot manipulator possesses seven degrees of freedom in its motion. The analog control system installed by the manufacturer of the robot attempts to control the positioning of each link without feedback from other links. Constraints on the design of a digital control system include: the robot cannot be disassembled for measurement of parameters; the digital control system must not include filtering operations if possible, because of lack of computer capability; and criteria of goodness of control system performing is lacking. The resulting design employs sampled-data position and velocity feedback. The criteria of the design permits the control system gain margin and phase margin, measured at the same frequencies, to be the same as that provided by the analog control system.

  16. A Comparative Study of a 1/4-Scale Gulfstream G550 Aircraft Nose Gear Model

    NASA Technical Reports Server (NTRS)

    Khorrami, Mehdi R.; Neuhart, Dan H.; Zawodny, Nikolas S.; Liu, Fei; Yardibi, Tarik; Cattafesta, Louis; Van de Ven, Thomas

    2009-01-01

    A series of fluid dynamic and aeroacoustic wind tunnel experiments are performed at the University of Florida Aeroacoustic Flow Facility and the NASA-Langley Basic Aerodynamic Research Tunnel Facility on a high-fidelity -scale model of Gulfstream G550 aircraft nose gear. The primary objectives of this study are to obtain a comprehensive aeroacoustic dataset for a nose landing gear and to provide a clearer understanding of landing gear contributions to overall airframe noise of commercial aircraft during landing configurations. Data measurement and analysis consist of mean and fluctuating model surface pressure, noise source localization maps using a large-aperture microphone directional array, and the determination of far field noise level spectra using a linear array of free field microphones. A total of 24 test runs are performed, consisting of four model assembly configurations, each of which is subjected to three test section speeds, in two different test section orientations. The different model assembly configurations vary in complexity from a fully-dressed to a partially-dressed geometry. The two model orientations provide flyover and sideline views from the perspective of a phased acoustic array for noise source localization via beamforming. Results show that the torque arm section of the model exhibits the highest rms pressures for all model configurations, which is also evidenced in the sideline view noise source maps for the partially-dressed model geometries. Analysis of acoustic spectra data from the linear array microphones shows a slight decrease in sound pressure levels at mid to high frequencies for the partially-dressed cavity open model configuration. In addition, far field sound pressure level spectra scale approximately with the 6th power of velocity and do not exhibit traditional Strouhal number scaling behavior.

  17. Vehicle Sketch Pad: a Parametric Geometry Modeler for Conceptual Aircraft Design

    NASA Technical Reports Server (NTRS)

    Hahn, Andrew S.

    2010-01-01

    The conceptual aircraft designer is faced with a dilemma, how to strike the best balance between productivity and fidelity? Historically, handbook methods have required only the coarsest of geometric parameterizations in order to perform analysis. Increasingly, there has been a drive to upgrade analysis methods, but these require considerably more precise and detailed geometry. Attempts have been made to use computer-aided design packages to fill this void, but their cost and steep learning curve have made them unwieldy at best. Vehicle Sketch Pad (VSP) has been developed over several years to better fill this void. While no substitute for the full feature set of computer-aided design packages, VSP allows even novices to quickly become proficient in defining three-dimensional, watertight aircraft geometries that are adequate for producing multi-disciplinary meta-models for higher order analysis methods, wind tunnel and display models, as well as a starting point for animation models. This paper will give an overview of the development and future course of VSP.

  18. Modeling flight attendants' exposure to secondhand smoke in commercial aircraft: historical trends from 1955 to 1989.

    PubMed

    Liu, Ruiling; Dix-Cooper, Linda; Hammond, S Katharine

    2015-01-01

    Flight attendants were exposed to elevated levels of secondhand smoke (SHS) in commercial aircraft when smoking was allowed on planes. During flight attendants' working years, their occupational SHS exposure was influenced by various factors, including the prevalence of active smokers on planes, fliers' smoking behaviors, airplane flight load factors, and ventilation systems. These factors have likely changed over the past six decades and would affect SHS concentrations in commercial aircraft. However, changes in flight attendants' exposure to SHS have not been examined in the literature. This study estimates the magnitude of the changes and the historic trends of flight attendants' SHS exposure in U.S. domestic commercial aircraft by integrating historical changes of contributing factors. Mass balance models were developed and evaluated to estimate flight attendants' exposure to SHS in passenger cabins, as indicated by two commonly used tracers (airborne nicotine and particulate matter (PM)). Monte Carlo simulations integrating historical trends and distributions of influence factors were used to simulate 10,000 flight attendants' exposure to SHS on commercial flights from 1955 to 1989. These models indicate that annual mean SHS PM concentrations to which flight attendants were exposed in passenger cabins steadily decreased from approximately 265 μg/m(3) in 1955 and 1960 to 93 μg/m(3) by 1989, and airborne nicotine exposure among flight attendants also decreased from 11.1 μg/m(3) in 1955 to 6.5 μg/m(3) in 1989. Using duration of employment as an indicator of flight attendants' cumulative occupational exposure to SHS in epidemiological studies would inaccurately assess their lifetime exposures and thus bias the relationship between the exposure and health effects. This historical trend should be considered in future epidemiological studies.

  19. A mathematical examination of the press model for atmospheric turbulence. [aircraft design/random processes

    NASA Technical Reports Server (NTRS)

    Sidwell, K.

    1975-01-01

    The random process used to model atmospheric turbulence in aircraft response problems is examined. The first, second, and higher order probability density and characteristic functions were developed. The concepts of the Press model lead to an approximate procedure for the analysis of the response of linear dynamic systems to a class of non-Gaussian random processes. The Press model accounts for both the Gaussian and non-Gaussian forms of measured turbulence data. The nonstationary aspects of measured data are explicitly described by the transition properties of the random process. The effects of the distribution of the intensity process upon calculated exceedances are examined. It is concluded that the press model with a Gaussian intensity distribution gives a conservative prediction of limit load values.

  20. Real-Time Aircraft Cosmic Ray Radiation Exposure Predictions from the NAIRAS Model

    NASA Astrophysics Data System (ADS)

    Mertens, C. J.; Tobiska, W.; Kress, B. T.; Xu, X.

    2012-12-01

    The Nowcast of Atmospheric Ionizing Radiation for Aviation Safety (NAIRAS) is a prototype operational model for predicting commercial aircraft radiation exposure from galactic and solar cosmic rays. NAIRAS predictions are currently streaming live from the project's public website, and the exposure rate nowcast is also available on the SpaceWx smartphone app for iPhone, IPad, and Android. Cosmic rays are the primary source of human exposure to high linear energy transfer radiation at aircraft altitudes, which increases the risk of cancer and other adverse health effects. Thus, the NAIRAS model addresses an important national need with broad societal, public health and economic benefits. There is also interest in extending NAIRAS to the LEO environment to address radiation hazard issues for the emerging commercial spaceflight industry. The processes responsible for the variability in the solar wind, interplanetary magnetic field, solar energetic particle spectrum, and the dynamical response of the magnetosphere to these space environment inputs, strongly influence the composition and energy distribution of the atmospheric ionizing radiation field. Real-time observations are required at a variety of locations within the geospace environment. The NAIRAS model is driven by real-time input data from ground-, atmospheric-, and space-based platforms. During the development of the NAIRAS model, new science questions and observational data gaps were identified that must be addressed in order to obtain a more reliable and robust operational model of atmospheric radiation exposure. The focus of this talk is to present the current capabilities of the NAIRAS model, discuss future developments in aviation radiation modeling and instrumentation, and propose strategies and methodologies of bridging known gaps in current modeling and observational capabilities.

  1. Development of Longitudinal Equivalent System Models for Selected U.S. Navy Tactical Aircraft

    DTIC Science & Technology

    1981-08-01

    revaraa side II nacaaaary and Identlly by block number) Aircraft Longitudinal Flying Qualities Equivalent Systems Frequency Response Matching...is a twin turbofan powered, land and carrier based, subsonic, anti- submarine warfare aircraft . Longitudinal control is accomplished via a...based, supersonic fighter aircraft . Longitudinal control is accomplished via an irreversible mechanical flight control system which transmits

  2. Impact of new aircraft observations Mode-S MRAR in a mesoscale NWP model

    NASA Astrophysics Data System (ADS)

    Strajnar, B.; Žagar, N.; Berre, L.

    2015-05-01

    The impact of recently available high-resolution Mode-S Meteorological Routine Air Report (MRAR) wind and temperature observations is evaluated in the mesoscale numerical weather prediction (NWP) model Aire Limitée Adaptation dynamique Développement InterNational (ALADIN). Data available from the airspace communicating with the Ljubljana Airport in Slovenia are assimilated by using the three-dimensional variational assimilation procedure on top of all other observations assimilated operationally. A data selection method based on aircraft type was shown to be important for the first application of the new observations in ALADIN. The evaluation of Mode-S MRAR impact included both winter and summer periods. In both seasons a clear improvement of wind and temperature forecasts was found for in the short forecast range, 1-3 h. The impact in the 24 h forecast range depends on season, with a consistent positive improvement of the boundary layer temperature forecasts obtained for the stable anticyclonic winter situations. In summer, the impact was mixed and it was found to be sensitive to the multivariate aspects of the moisture analysis. Overall presented results suggest that the new aircraft-derived observations Mode-S MRAR have a significant potential for mesoscale NWP and improved data assimilation modeling.

  3. Experimental study of UTM-LST generic half model transport aircraft

    NASA Astrophysics Data System (ADS)

    Ujang, M. I.; Mat, S.; Perumal, K.; Mohd. Nasir, M. N.

    2016-10-01

    This paper presents the experimental results from the investigation carried out at the UTM Low Speed wind tunnel facility (UTM-LST) on a half model generic transport aircraft at several configurations of primary control surfaces (flap, aileron and elevator). The objective is to measure the aerodynamic forces and moments due to the configuration changes. The study is carried out at two different speeds of 26.1 m/s and 43.1 m/s at corresponding Reynolds number of 1 × 106 and 2 × 106, respectively. Angle of attack of the model is varied between -2o to 20o. For the flaps, the deflection applied is 0o, 5o and 10o. Meanwhile, for aileron and elevator, the deflection applied is between -10o and 10o. The results show the differences in aerodynamic characteristics of the aircraft at different control surfaces configurations. The results obtained indicate that a laminar separation bubble developed on the surface of the wing at lower angles of attack and show that the separation process is delayed when the Reynolds number is increased.

  4. 76 FR 74853 - 2017 and Later Model Year Light-Duty Vehicle Greenhouse Gas Emissions and Corporate Average Fuel...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-01

    ...EPA and NHTSA, on behalf of the Department of Transportation, are issuing this joint proposal to further reduce greenhouse gas emissions and improve fuel economy for light-duty vehicles for model years 2017-2025. This proposal extends the National Program beyond the greenhouse gas and corporate average fuel economy standards set for model years 2012-2016. On May 21, 2010, President Obama......

  5. Development of an improved model for runback water on aircraft surfaces

    NASA Technical Reports Server (NTRS)

    Al-Khalil, Kamel M.; Keith, Theo G., Jr.; De Witt, Kenneth J.

    1992-01-01

    A computer simulation for 'running wet' and evaporative aircraft anti-icing systems is developed. The model is based on the analysis of the liquid water film which forms in the regions of direct impingement and, then, breaks up near the impingement limits into rivulets. The wetness factor distribution resulting from the film breakup and the rivulet configuration on the surface are predicted using a stability analysis theory and the laws of mass energy conservation. The solid structure is modeled as a multiple layer wall. The anti-icing system modeled is of the thermal type utilizing hot air and/or electrical heating elements embedded within the wall layers. Experimental observations revealing some of the basic physics of the water flow on the surface are presented. Detailed qualitative documentation of the tests are given. Several numerical examples are considered, and the effect of some of the involved parameters on the system performance are investigated.

  6. Modeling XV-15 tilt-rotor aircraft dynamics by frequency and time-domain identification techniques

    NASA Technical Reports Server (NTRS)

    Tischler, Mark B.; Kaletka, Juergen

    1987-01-01

    Models of the open-loop hover dynamics of the XV-15 Tilt-Rotor Aircraft are extracted from flight data using two approaches: frequency domain and time-domain identification. Both approaches are reviewed and the identification results are presented and compared in detail. The extracted models are compared favorably, with the differences associated mostly with the inherent weighing of each technique. Step responses are used to show that the predictive capability of the models from both techniques is excellent. Based on the results of this study, the relative strengths and weaknesses of the frequency and time-domain techniques are summarized and a proposal for a coordinated parameter identification approach is presented.

  7. Modeling XV-15 tilt-rotor aircraft dynamics by frequency and time-domain identification techniques

    NASA Technical Reports Server (NTRS)

    Tischler, Mark B.; Kaletka, Juergen

    1986-01-01

    Models of the open-loop hover dynamics of the XV-15 Tilt-Rotor Aircraft are extracted from flight data using two approaches: frequency-domain and time-domain identification. Both approaches are reviewed and the identification results are presented and compared in detail. The extracted models compare favorable, with the differences associated mostly with the inherent weighting of each technique. Step responses are used to show that the predictive capability of the models from both techniques is excellent. Based on the results of this study, the relative strengths and weaknesses of the frequency- and time-domain techniques are summarized, and a proposal for a coordinated parameter identification approach is presented.

  8. Coupled Vortex-Lattice Flight Dynamic Model with Aeroelastic Finite-Element Model of Flexible Wing Transport Aircraft with Variable Camber Continuous Trailing Edge Flap for Drag Reduction

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan; Ting, Eric; Nguyen, Daniel; Dao, Tung; Trinh, Khanh

    2013-01-01

    This paper presents a coupled vortex-lattice flight dynamic model with an aeroelastic finite-element model to predict dynamic characteristics of a flexible wing transport aircraft. The aircraft model is based on NASA Generic Transport Model (GTM) with representative mass and stiffness properties to achieve a wing tip deflection about twice that of a conventional transport aircraft (10% versus 5%). This flexible wing transport aircraft is referred to as an Elastically Shaped Aircraft Concept (ESAC) which is equipped with a Variable Camber Continuous Trailing Edge Flap (VCCTEF) system for active wing shaping control for drag reduction. A vortex-lattice aerodynamic model of the ESAC is developed and is coupled with an aeroelastic finite-element model via an automated geometry modeler. This coupled model is used to compute static and dynamic aeroelastic solutions. The deflection information from the finite-element model and the vortex-lattice model is used to compute unsteady contributions to the aerodynamic force and moment coefficients. A coupled aeroelastic-longitudinal flight dynamic model is developed by coupling the finite-element model with the rigid-body flight dynamic model of the GTM.

  9. A Systematic Approach for Model-Based Aircraft Engine Performance Estimation

    NASA Technical Reports Server (NTRS)

    Simon, Donald L.; Garg, Sanjay

    2010-01-01

    A requirement for effective aircraft engine performance estimation is the ability to account for engine degradation, generally described in terms of unmeasurable health parameters such as efficiencies and flow capacities related to each major engine module. This paper presents a linear point design methodology for minimizing the degradation-induced error in model-based aircraft engine performance estimation applications. The technique specifically focuses on the underdetermined estimation problem, where there are more unknown health parameters than available sensor measurements. A condition for Kalman filter-based estimation is that the number of health parameters estimated cannot exceed the number of sensed measurements. In this paper, the estimated health parameter vector will be replaced by a reduced order tuner vector whose dimension is equivalent to the sensed measurement vector. The reduced order tuner vector is systematically selected to minimize the theoretical mean squared estimation error of a maximum a posteriori estimator formulation. This paper derives theoretical estimation errors at steady-state operating conditions, and presents the tuner selection routine applied to minimize these values. Results from the application of the technique to an aircraft engine simulation are presented and compared to the estimation accuracy achieved through conventional maximum a posteriori and Kalman filter estimation approaches. Maximum a posteriori estimation results demonstrate that reduced order tuning parameter vectors can be found that approximate the accuracy of estimating all health parameters directly. Kalman filter estimation results based on the same reduced order tuning parameter vectors demonstrate that significantly improved estimation accuracy can be achieved over the conventional approach of selecting a subset of health parameters to serve as the tuner vector. However, additional development is necessary to fully extend the methodology to Kalman filter

  10. Aircraft Conflict Analysis and Real-Time Conflict Probing Using Probabilistic Trajectory Modeling

    NASA Technical Reports Server (NTRS)

    Yang, Lee C.; Kuchar, James K.

    2000-01-01

    Methods for maintaining separation between aircraft in the current airspace system have been built from a foundation of structured routes and evolved procedures. However, as the airspace becomes more congested and the chance of failures or operational error become more problematic, automated conflict alerting systems have been proposed to help provide decision support and to serve as traffic monitoring aids. The problem of conflict detection and resolution has been tackled from a number of different ways, but in this thesis, it is recast as a problem of prediction in the presence of uncertainties. Much of the focus is concentrated on the errors and uncertainties from the working trajectory model used to estimate future aircraft positions. The more accurate the prediction, the more likely an ideal (no false alarms, no missed detections) alerting system can be designed. Additional insights into the problem were brought forth by a review of current operational and developmental approaches found in the literature. An iterative, trial and error approach to threshold design was identified. When examined from a probabilistic perspective, the threshold parameters were found to be a surrogate to probabilistic performance measures. To overcome the limitations in the current iterative design method, a new direct approach is presented where the performance measures are directly computed and used to perform the alerting decisions. The methodology is shown to handle complex encounter situations (3-D, multi-aircraft, multi-intent, with uncertainties) with relative ease. Utilizing a Monte Carlo approach, a method was devised to perform the probabilistic computations in near realtime. Not only does this greatly increase the method's potential as an analytical tool, but it also opens up the possibility for use as a real-time conflict alerting probe. A prototype alerting logic was developed and has been utilized in several NASA Ames Research Center experimental studies.

  11. Simulation Modeling Requirements for Loss-of-Control Accident Prevention of Turboprop Transport Aircraft

    NASA Technical Reports Server (NTRS)

    Crider, Dennis; Foster, John V.

    2012-01-01

    In-flight loss of control remains the leading contributor to aviation accident fatalities, with stall upsets being the leading causal factor. The February 12, 2009. Colgan Air, Inc., Continental Express flight 3407 accident outside Buffalo, New York, brought this issue to the forefront of public consciousness and resulted in recommendations from the National Transportation Safety Board to conduct training that incorporates stalls that are fully developed and develop simulator standards to support such training. In 2010, Congress responded to this accident with Public Law 11-216 (Section 208), which mandates full stall training for Part 121 flight operations. Efforts are currently in progress to develop recommendations on implementation of stall training for airline pilots. The International Committee on Aviation Training in Extended Envelopes (ICATEE) is currently defining simulator fidelity standards that will be necessary for effective stall training. These recommendations will apply to all civil transport aircraft including straight-wing turboprop aircraft. Government-funded research over the previous decade provides a strong foundation for stall/post-stall simulation for swept-wing, conventional tail jets to respond to this mandate, but turboprops present additional and unique modeling challenges. First among these challenges is the effect of power, which can provide enhanced flow attachment behind the propellers. Furthermore, turboprops tend to operate for longer periods in an environment more susceptible to ice. As a result, there have been a significant number of turboprop accidents as a result of the early (lower angle of attack) stalls in icing. The vulnerability of turboprop configurations to icing has led to studies on ice accumulation and the resulting effects on flight behavior. Piloted simulations of these effects have highlighted the important training needs for recognition and mitigation of icing effects, including the reduction of stall margins

  12. Apprenticeship as a Model of Vocational "Formation" and "Reformation": The Use of Foundation Degrees in the Aircraft Engineering Industry

    ERIC Educational Resources Information Center

    Guile, David

    2011-01-01

    This article argues that once apprenticeship is conceptualised as a social model of learning, then it no longer follows that apprenticeship is an age- or phase-specific model of vocational formation. The article explores this claim through drawing on a case study of the design of a Foundation Degree (FD) in aircraft engineering, which was…

  13. Aerodynamic Measurements of a Gulfstream Aircraft Model With and Without Noise Reduction Concepts

    NASA Technical Reports Server (NTRS)

    Neuhart, Dan H.; Hannon, Judith A.; Khorrami, Mehdi R.

    2014-01-01

    Steady and unsteady aerodynamic measurements of a high-fidelity, semi-span 18% scale Gulfstream aircraft model are presented. The aerodynamic data were collected concurrently with acoustic measurements as part of a larger aeroacoustic study targeting airframe noise associated with main landing gear/flap components, gear-flap interaction noise, and the viability of related noise mitigation technologies. The aeroacoustic tests were conducted in the NASA Langley Research Center 14- by 22-Foot Subsonic Wind Tunnel with the facility in the acoustically treated open-wall (jet) mode. Most of the measurements were obtained with the model in landing configuration with the flap deflected at 39º and the main landing gear on and off. Data were acquired at Mach numbers of 0.16, 0.20, and 0.24. Global forces (lift and drag) and extensive steady and unsteady surface pressure measurements were obtained. Comparison of the present results with those acquired during a previous test shows a significant reduction in the lift experienced by the model. The underlying cause was traced to the likely presence of a much thicker boundary layer on the tunnel floor, which was acoustically treated for the present test. The steady and unsteady pressure fields on the flap, particularly in the regions of predominant noise sources such as the inboard and outboard tips, remained unaffected. It is shown that the changes in lift and drag coefficients for model configurations fitted with gear/flap noise abatement technologies fall within the repeatability of the baseline configuration. Therefore, the noise abatement technologies evaluated in this experiment have no detrimental impact on the aerodynamic performance of the aircraft model.

  14. The limitations of using vertical cutoff rigidities determined from the IGRF magnetic field models for computing aircraft radiation dose.

    PubMed

    Smart, D F; Shea, M A

    2003-01-01

    Vertical cutoff rigidities derived from the International Geomagnetic Reference Fields (IGRF) are normally used to compute the radiation dose at a specific location and to organize the radiation dose measurements acquired at aircraft altitudes. This paper presents some of the usually ignored limits on the accuracy of the vertical cutoff rigidity models and describes some of the computational artifacts present in these models. It is noted that recent aircraft surveys of the radiation dose experienced along specific flight paths is sufficiently precise that the secular variation of the geomagnetic field is observable.

  15. Mapping evapotranspiration with high resolution aircraft imagery over vineyards using one and two source modeling schemes

    NASA Astrophysics Data System (ADS)

    Xia, T.; Kustas, W. P.; Anderson, M. C.; Alfieri, J. G.; Gao, F.; McKee, L.; Prueger, J. H.; Geli, H. M. E.; Neale, C. M. U.; Sanchez, L.; Mar Alsina, M.; Wang, Z.

    2015-11-01

    Thermal and multispectral remote sensing data from low-altitude aircraft can provide high spatial resolution necessary for sub-field (≤ 10 m) and plant canopy (≤ 1m) scale evapotranspiration (ET) monitoring. In this study, high resolution aircraft sub-meter scale thermal infrared and multispectral shortwave data are used to map ET over vineyards in central California with the Two Source Energy Balance (TSEB) model and with a simple model called DATTUTDUT (Deriving Atmosphere Turbulent Transport Useful To Dummies Using Temperature) which uses contextual information within the image to scale between radiometric land surface temperature (TR) values representing hydrologic limits of potential ET and a non-evaporative surface. Imagery from five days throughout the growing season is used for mapping ET at the sub-field scale. The performance of the two models is evaluated using tower-based energy flux measurements of sensible (H) and latent heat (LE) or ET. The comparison indicates that TSEB was able to derive reasonable ET estimates under varying conditions, likely due to the physically based treatment of the energy and the surface temperature partitioning between the soil/cover crop inter-row and vine canopy elements. On the other hand, DATTUTDUT performance was somewhat degraded presumably because the simple scaling scheme does not consider differences in the two sources (vine and inter-row) of heat and temperature contributions or the effect of surface roughness on the efficiency of heat exchange. Maps of the evaporative fraction (EF = LE/(H + LE)) from the two models had similar spatial patterns but different magnitudes in some areas within the fields on certain days. Large EF discrepancies between the models were found on two of the five days (DOY 162 and 219) when there were significant differences with the tower-based ET measurements, particularly using the DATTUTDUT model. These differences in EF between the models translate to significant variations in

  16. Acoustic characteristics of a large scale wind-tunnel model of a jet flap aircraft

    NASA Technical Reports Server (NTRS)

    Falarski, M. D.; Aiken, T. N.; Aoyagi, K.

    1975-01-01

    The expanding-duct jet flap (EJF) concept is studied to determine STOL performance in turbofan-powered aircraft. The EJF is used to solve the problem of ducting the required volume of air into the wing by providing an expanding cavity between the upper and lower surfaces of the flap. The results are presented of an investigation of the acoustic characteristics of the EJF concept on a large-scale aircraft model powered by JT15D engines. The noise of the EJF is generated by acoustic dipoles as shown by the sixth power dependence of the noise on jet velocity. These sources result from the interaction of the flow turbulence with flap of internal and external surfaces and the trailing edges. Increasing the trailing edge jet from 70 percent span to 100 percent span increased the noise 2 db for the equivalent nozzle area. Blowing at the knee of the flap rather than the trailing edge reduced the noise 5 to 10 db by displacing the jet from the trailing edge and providing shielding from high-frequency noise. Deflecting the flap and varying the angle of attack modified the directivity of the underwing noise but did not affect the peak noise. A forward speed of 33.5 m/sec (110 ft/sec) reduced the dipole noise less than 1 db.

  17. Near-Field Characterization of Methane Emission Variability from a Compressor Station Using a Model Aircraft.

    PubMed

    Nathan, Brian J; Golston, Levi M; O'Brien, Anthony S; Ross, Kevin; Harrison, William A; Tao, Lei; Lary, David J; Johnson, Derek R; Covington, April N; Clark, Nigel N; Zondlo, Mark A

    2015-07-07

    A model aircraft equipped with a custom laser-based, open-path methane sensor was deployed around a natural gas compressor station to quantify the methane leak rate and its variability at a compressor station in the Barnett Shale. The open-path, laser-based sensor provides fast (10 Hz) and precise (0.1 ppmv) measurements of methane in a compact package while the remote control aircraft provides nimble and safe operation around a local source. Emission rates were measured from 22 flights over a one-week period. Mean emission rates of 14 ± 8 g CH4 s(-1) (7.4 ± 4.2 g CH4 s(-1) median) from the station were observed or approximately 0.02% of the station throughput. Significant variability in emission rates (0.3-73 g CH4 s(-1) range) was observed on time scales of hours to days, and plumes showed high spatial variability in the horizontal and vertical dimensions. Given the high spatiotemporal variability of emissions, individual measurements taken over short durations and from ground-based platforms should be used with caution when examining compressor station emissions. More generally, our results demonstrate the unique advantages and challenges of platforms like small unmanned aerial vehicles for quantifying local emission sources to the atmosphere.

  18. Modeling and Design Analysis Methodology for Tailoring of Aircraft Structures with Composites

    NASA Technical Reports Server (NTRS)

    Rehfield, Lawrence W.

    2004-01-01

    Composite materials provide design flexibility in that fiber placement and orientation can be specified and a variety of material forms and manufacturing processes are available. It is possible, therefore, to 'tailor' the structure to a high degree in order to meet specific design requirements in an optimum manner. Common industrial practices, however, have limited the choices designers make. One of the reasons for this is that there is a dearth of conceptual/preliminary design analysis tools specifically devoted to identifying structural concepts for composite airframe structures. Large scale finite element simulations are not suitable for such purposes. The present project has been devoted to creating modeling and design analysis methodology for use in the tailoring process of aircraft structures. Emphasis has been given to creating bend-twist elastic coupling in high aspect ratio wings or other lifting surfaces. The direction of our work was in concert with the overall NASA effort Twenty- First Century Aircraft Technology (TCAT). A multi-disciplinary team was assembled by Dr. Damodar Ambur to work on wing technology, which included our project.

  19. Model-based aviation advice on distal volcanic ash clouds by assimilating aircraft in situ measurements

    NASA Astrophysics Data System (ADS)

    Fu, Guangliang; Heemink, Arnold; Lu, Sha; Segers, Arjo; Weber, Konradin; Lin, Hai-Xiang

    2016-07-01

    The forecast accuracy of distal volcanic ash clouds is important for providing valid aviation advice during volcanic ash eruption. However, because the distal part of volcanic ash plume is far from the volcano, the influence of eruption information on this part becomes rather indirect and uncertain, resulting in inaccurate volcanic ash forecasts in these distal areas. In our approach, we use real-life aircraft in situ observations, measured in the northwestern part of Germany during the 2010 Eyjafjallajökull eruption, in an ensemble-based data assimilation system combined with a volcanic ash transport model to investigate the potential improvement on the forecast accuracy with regard to the distal volcanic ash plume. We show that the error of the analyzed volcanic ash state can be significantly reduced through assimilating real-life in situ measurements. After a continuous assimilation, it is shown that the aviation advice for Germany, the Netherlands and Luxembourg can be significantly improved. We suggest that with suitable aircrafts measuring once per day across the distal volcanic ash plume, the description and prediction of volcanic ash clouds in these areas can be greatly improved.

  20. Formaldehyde columns from the Ozone Monitoring Instrument: Urban versus background levels and evaluation using aircraft data and a global model

    NASA Astrophysics Data System (ADS)

    Boeke, Nicholas L.; Marshall, Julian D.; Alvarez, Sergio; Chance, Kelly V.; Fried, Alan; Kurosu, Thomas P.; Rappenglück, Bernhard; Richter, Dirk; Walega, James; Weibring, Petter; Millet, Dylan B.

    2011-03-01

    We combine aircraft measurements (Second Texas Air Quality Study, Megacity Initiative: Local and Global Research Observations, Intercontinental Chemical Transport Experiment: Phase B) over the United States, Mexico, and the Pacific with a 3-D model (GEOS-Chem) to evaluate formaldehyde column (ΩHCHO) retrievals from the Ozone Monitoring Instrument (OMI) and assess the information they provide on HCHO across local to regional scales and urban to background regimes. OMI ΩHCHO correlates well with columns derived from aircraft measurements and GEOS-Chem (R = 0.80). For the full data ensemble, OMI's mean bias is -3% relative to aircraft-derived ΩHCHO (-17% where ΩHCHO > 5 × 1015 molecules cm-2) and -8% relative to GEOS-Chem, within expected uncertainty for the retrieval. Some negative bias is expected for the satellite and model, given the plume sampling of many flights and averaging over the satellite and model footprints. Major axis regression for OMI versus aircraft and model columns yields slopes (95% confidence intervals) of 0.80 (0.62-1.03) and 0.98 (0.73-1.35), respectively, with no significant intercept. Aircraft measurements indicate that the normalized vertical HCHO distribution, required by the satellite retrieval, is well captured by GEOS-Chem, except near Mexico City. Using measured HCHO profiles in the retrieval algorithm does not improve satellite-aircraft agreement, suggesting that use of a global model to specify shape factors does not substantially degrade retrievals over polluted areas. While the OMI measurements show that biogenic volatile organic compounds dominate intra-annual and regional ΩHCHO variability across the United States, smaller anthropogenic ΩHCHO gradients are detectable at finer spatial scales (˜20-200 km) near many urban areas.

  1. Evaluation of a load cell model for dynamic calibration of the rotor systems research aircraft

    NASA Technical Reports Server (NTRS)

    Duval, R. W.; Bahrami, H.; Wellman, B.

    1985-01-01

    The Rotor Systems Research Aircraft uses load cells to isolate the rotor/transmission system from the fuselage. An analytical model of the relationship between applied rotor loads and the resulting load cell measurements is derived by applying a force-and-moment balance to the isolated rotor/transmission system. The model is then used to estimate the applied loads from measured load cell data, as obtained from a ground-based shake test. Using nominal design values for the parameters, the estimation errors, for the case of lateral forcing, were shown to be on the order of the sensor measurement noise in all but the roll axis. An unmodeled external load appears to be the source of the error in this axis.

  2. Development of an algorithm to model an aircraft equipped with a generic CDTI display

    NASA Technical Reports Server (NTRS)

    Driscoll, W. C.; Houck, J. A.

    1986-01-01

    A model of human pilot performance of a tracking task using a generic Cockpit Display of Traffic Information (CDTI) display is developed from experimental data. The tracking task is to use CDTI in tracking a leading aircraft at a nominal separation of three nautical miles over a prescribed trajectory in space. The analysis of the data resulting from a factorial design of experiments reveals that the tracking task performance depends on the pilot and his experience at performing the task. Performance was not strongly affected by the type of control system used (velocity vector control wheel steering versus 3D automatic flight path guidance and control). The model that is developed and verified results in state trajectories whose difference from the experimental state trajectories is small compared to the variation due to the pilot and experience factors.

  3. Development of test methods for scale model simulation of aerial applications in the NASA Langley Vortex Research Facility. [agricultural aircraft

    NASA Technical Reports Server (NTRS)

    Jordan, F. L., Jr.

    1980-01-01

    As part of basic research to improve aerial applications technology, methods were developed at the Langley Vortex Research Facility to simulate and measure deposition patterns of aerially-applied sprays and granular materials by means of tests with small-scale models of agricultural aircraft and dynamically-scaled test particles. Interactions between the aircraft wake and the dispersed particles are being studied with the objective of modifying wake characteristics and dispersal techniques to increase swath width, improve deposition pattern uniformity, and minimize drift. The particle scaling analysis, test methods for particle dispersal from the model aircraft, visualization of particle trajectories, and measurement and computer analysis of test deposition patterns are described. An experimental validation of the scaling analysis and test results that indicate improved control of chemical drift by use of winglets are presented to demonstrate test methods.

  4. The NASA-Langley Wake Vortex Modelling Effort in Support of an Operational Aircraft Spacing System

    NASA Technical Reports Server (NTRS)

    Proctor, Fred H.

    1998-01-01

    Two numerical modelling efforts, one using a large eddy simulation model and the other a numerical weather prediction model, are underway in support of NASA's Terminal Area Productivity program. The large-eddy simulation model (LES) has a meteorological framework and permits the interaction of wake vortices with environments characterized by crosswind shear, stratification, humidity, and atmospheric turbulence. Results from the numerical simulations are being used to assist in the development of algorithms for an operational wake-vortex aircraft spacing system. A mesoscale weather forecast model is being adapted for providing operational forecast of winds, temperature, and turbulence parameters to be used in the terminal area. This paper describes the goals and modelling approach, as well as achievements obtained to date. Simulation results will be presented from the LES model for both two and three dimensions. The 2-D model is found to be generally valid for studying wake vortex transport, while the 3-D approach is necessary for realistic treatment of decay via interaction of wake vortices and atmospheric boundary layer turbulence. Meteorology is shown to have an important affect on vortex transport and decay. Presented are results showing that wake vortex transport is unaffected by uniform fog or rain, but wake vortex transport can be strongly affected by nonlinear vertical change in the ambient crosswind. Both simulation and observations show that atmospheric vortices decay from the outside with minimal expansion of the core. Vortex decay and the onset three-dimensional instabilities are found to be enhanced by the presence of ambient turbulence.

  5. On fluttering modes for aircraft wing model in subsonic air flow.

    PubMed

    Shubov, Marianna A

    2014-12-08

    The paper deals with unstable aeroelastic modes for aircraft wing model in subsonic, incompressible, inviscid air flow. In recent author's papers asymptotic, spectral and stability analysis of the model has been carried out. The model is governed by a system of two coupled integrodifferential equations and a two-parameter family of boundary conditions modelling action of self-straining actuators. The Laplace transform of the solution is given in terms of the 'generalized resolvent operator', which is a meromorphic operator-valued function of the spectral parameter λ, whose poles are called the aeroelastic modes. The residues at these poles are constructed from the corresponding mode shapes. The spectral characteristics of the model are asymptotically close to the ones of a simpler system, which is called the reduced model. For the reduced model, the following result is shown: for each value of subsonic speed, there exists a radius such that all aeroelastic modes located outside the circle of this radius centred at zero are stable. Unstable modes, whose number is always finite, can occur only inside this 'circle of instability'. Explicit estimate of the 'instability radius' in terms of model parameters is given.

  6. On fluttering modes for aircraft wing model in subsonic air flow

    PubMed Central

    Shubov, Marianna A.

    2014-01-01

    The paper deals with unstable aeroelastic modes for aircraft wing model in subsonic, incompressible, inviscid air flow. In recent author’s papers asymptotic, spectral and stability analysis of the model has been carried out. The model is governed by a system of two coupled integrodifferential equations and a two-parameter family of boundary conditions modelling action of self-straining actuators. The Laplace transform of the solution is given in terms of the ‘generalized resolvent operator’, which is a meromorphic operator-valued function of the spectral parameter λ, whose poles are called the aeroelastic modes. The residues at these poles are constructed from the corresponding mode shapes. The spectral characteristics of the model are asymptotically close to the ones of a simpler system, which is called the reduced model. For the reduced model, the following result is shown: for each value of subsonic speed, there exists a radius such that all aeroelastic modes located outside the circle of this radius centred at zero are stable. Unstable modes, whose number is always finite, can occur only inside this ‘circle of instability’. Explicit estimate of the ‘instability radius’ in terms of model parameters is given. PMID:25484610

  7. The scaling of model test results to predict intake hot gas reingestion for STOVL aircraft with augmented vectored thrust engines

    NASA Technical Reports Server (NTRS)

    Penrose, C. J.

    1987-01-01

    The difficulties of modeling the complex recirculating flow fields produced by multiple jet STOVL aircraft close to the ground have led to extensive use of experimental model tests to predict intake Hot Gas Reingestion (HGR). Model test results reliability is dependent on a satisfactory set of scaling rules which must be validated by fully comparable full scale tests. Scaling rules devised in the U.K. in the mid 60's gave good model/full scale agreement for the BAe P1127 aircraft. Until recently no opportunity has occurred to check the applicability of the rules to the high energy exhaust of current ASTOVL aircraft projects. Such an opportunity has arisen following tests on a Tethered Harrier. Comparison of this full scale data and results from tests on a model configuration approximating to the full scale aircraft geometry has shown discrepancies between HGR levels. These discrepancies although probably due to geometry and other model/scale differences indicate some reexamination of the scaling rules is needed. Therefore the scaling rules are reviewed, further scaling studies planned are described and potential areas for further work are suggested.

  8. A backward modeling study of intercontinental pollution transport using aircraft measurements

    NASA Astrophysics Data System (ADS)

    Stohl, A.; Forster, C.; Eckhardt, S.; Spichtinger, N.; Huntrieser, H.; Heland, J.; Schlager, H.; Wilhelm, S.; Arnold, F.; Cooper, O.

    2003-06-01

    In this paper we present simulations with a Lagrangian particle dispersion model to study the intercontinental transport of pollution from North America during an aircraft measurement campaign over Europe. The model was used for both the flight planning and a detailed source analysis after the campaign, which is described here with examples from two episodes. Forward calculations of emission tracers from North America, Europe, and Asia were made in order to understand the transport processes. Both episodes were preceded by stagnant conditions over North America, leading to the accumulation of pollutants in the North American boundary layer. Both anthropogenic sources and, to a lesser extent, forest fire emissions contributed to this pollution, which was then exported by warm conveyor belts to the middle and upper troposphere, where it was transported rapidly to Europe. Concentrations of many trace gases (CO, NOy, CO2, acetone, and several volatile organic compounds; O3 in one case) and of ambient atmospheric ions measured aboard the research aircraft were clearly enhanced in the pollution plumes compared to the conditions outside the plumes. Backward simulations with the particle model were introduced as an indispensable tool for a more detailed analysis of the plume's source region. They make trajectory analyses (which, to date, were mainly used to interpret aircraft measurement data) obsolete. Using an emission inventory, we could decompose the tracer mixing ratios at the receptors (i.e., along the flight tracks) into contributions from every grid cell of the inventory. For both plumes we found that emission sources contributing to the tracer concentrations over Europe were distributed over large areas in North America. In one case, sources in California, Texas, and Florida contributed almost equally, and smaller contributions were also made by other sources located between the Yucatan Peninsula and Canada. In the other case, sources in eastern North America

  9. Choosing Meteorological Input for the Global Modeling Initiative Assessment of High Speed Aircraft

    NASA Technical Reports Server (NTRS)

    Douglas, A. R.; Prather, M. P.; Hall, T. M.; Strahan, S. E.; Rasch, P. J.; Sparling, L. C.; Coy, L.; Rodriquez, J. M.

    1998-01-01

    The Global Modeling Initiative (GMI) science team is developing a three dimensional chemistry and transport model (CTM) to be used in assessment of the atmospheric effects of aviation. Requirements are that this model be documented, be validated against observations, use a realistic atmospheric circulation, and contain numerical transport and photochemical modules representing atmospheric processes. The model must also retain computational efficiency to be tractable to use for multiple scenarios and sensitivity studies. To meet these requirements, a facility model concept was developed in which the different components of the CTM are evaluated separately. The first use of the GMI model will be to evaluate the impact of the exhaust of supersonic aircraft on the stratosphere. The assessment calculations will depend strongly on the wind and temperature fields used by the CTM. Three meteorological data sets for the stratosphere are available to GMI: the National Center for Atmospheric Research Community Climate Model (CCM2), the Goddard Earth Observing System Data Assimilation System (GEOS DAS), and the Goddard Institute for Space Studies general circulation model (GISS). Objective criteria were established by the GMI team to identify the data set which provides the best representation of the stratosphere. Simulations of gases with simple chemical control were chosen to test various aspects of model transport. The three meteorological data sets were evaluated and graded based on their ability to simulate these aspects of stratospheric measurements. This paper describes the criteria used in grading the meteorological fields. The meteorological data set which has the highest score and therefore was selected for GMI is CCM2. This type of objective model evaluation establishes a physical basis for interpretation of differences between models and observations. Further, the method provides a quantitative basis for defining model errors, for discriminating between different

  10. 14 CFR 61.323 - How do I obtain privileges to operate a make and model of light-sport aircraft in the same...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... make and model of light-sport aircraft in the same category and class within a different set of... TRANSPORTATION (CONTINUED) AIRMEN CERTIFICATION: PILOTS, FLIGHT INSTRUCTORS, AND GROUND INSTRUCTORS Sport Pilots § 61.323 How do I obtain privileges to operate a make and model of light-sport aircraft in the...

  11. Direct data-based model predictive control with applications to structures, robotic swarms, and aircraft

    NASA Astrophysics Data System (ADS)

    Barlow, Jonathan S.

    A direct method to design data-based model predictive controllers is presented. The design method uses system identification techniques to identify model predictive controller gains directly from a set of excitation input and disturbance corrupted output. The design is direct in that the controller gains can be designed directly from input and disturbance corrupted output data without an intermediate identification step. The direct design is simpler than previous two-step designs and reduces computation time for the design of the controller. The direct design also enables an adaptive implementation capable of identifying controller gains online. The direct data-based controllers can be used for vibration suppression, disturbance rejection, tracking and is applied to structures, robot swarms and aircraft. For the cases of vibration suppression and disturbance rejection, the data-based controller has the advantage that any disturbances present in the design data are automatically rejected without needing to know the details of the disturbances. For the case of robot swarms, extensions are made for formation control and obstacle avoidance, and the controller can be implemented as a decentralized controller in real time and in parallel on individual vehicles with communication limited to past input and past output data. A formulation for improving the robustness of the controller to parametric variations is also developed. Finally, the adaptive implementation is shown to be useful for the control of linear time-varying systems and has been successfully implemented to control a linear time-varying model of a Cruise Efficient Short Take-Off and Landing (CESTOL) type aircraft.

  12. Comparison of CMAQ Modeling Study with Discover-AQ 2014 Aircraft Measurements over Colorado

    NASA Astrophysics Data System (ADS)

    Tang, Y.; Pan, L.; Lee, P.; Tong, D.; Kim, H. C.; Artz, R. S.

    2014-12-01

    NASA and NCAR jointly led a recent multiple platform-based (space, air and ground) measurement intensive to study air quality and to validate satellite data. The Discover-AQ/FRAPPE field experiment took place along the Colorado Front Range in July and August, 2014. The air quality modeling team of the NOAA Air Resources Laboratory was one of the three teams that provided real-time air quality forecasting for the campaign. The U.S. EPA Community Multi-scale Air Quality (CMAQ) Model was used with emission inventories based on the data set used by the NOAA National Air Quality Forecasting Capacity (NAQFC). By analyzing the forecast results calculated using aircraft measurements, it was found that CO emissions tended to be overestimated, while ethane emissions were underestimated. Biogenic VOCs were also underpredicted. Due to their relatively high altitude, ozone concentrations in Denver and the surrounding areas are affected by both local emissions and transported ozone. The modeled ozone was highly dependent on the meteorological predictions over this region. The complex terrain over the Rocky Mountains also contributed to the model uncertainty. This study discussed the causes of model biases, the forecast performance under different meteorology, and results from using different model grid resolutions. Several data assimilation techniques were further tested to improve the "post-analysis" performance of the modeling system for the period.

  13. A Model-Based Anomaly Detection Approach for Analyzing Streaming Aircraft Engine Measurement Data

    NASA Technical Reports Server (NTRS)

    Simon, Donald L.; Rinehart, Aidan Walker

    2015-01-01

    This paper presents a model-based anomaly detection architecture designed for analyzing streaming transient aircraft engine measurement data. The technique calculates and monitors residuals between sensed engine outputs and model predicted outputs for anomaly detection purposes. Pivotal to the performance of this technique is the ability to construct a model that accurately reflects the nominal operating performance of the engine. The dynamic model applied in the architecture is a piecewise linear design comprising steady-state trim points and dynamic state space matrices. A simple curve-fitting technique for updating the model trim point information based on steadystate information extracted from available nominal engine measurement data is presented. Results from the application of the model-based approach for processing actual engine test data are shown. These include both nominal fault-free test case data and seeded fault test case data. The results indicate that the updates applied to improve the model trim point information also improve anomaly detection performance. Recommendations for follow-on enhancements to the technique are also presented and discussed.

  14. A Model-Based Anomaly Detection Approach for Analyzing Streaming Aircraft Engine Measurement Data

    NASA Technical Reports Server (NTRS)

    Simon, Donald L.; Rinehart, Aidan W.

    2014-01-01

    This paper presents a model-based anomaly detection architecture designed for analyzing streaming transient aircraft engine measurement data. The technique calculates and monitors residuals between sensed engine outputs and model predicted outputs for anomaly detection purposes. Pivotal to the performance of this technique is the ability to construct a model that accurately reflects the nominal operating performance of the engine. The dynamic model applied in the architecture is a piecewise linear design comprising steady-state trim points and dynamic state space matrices. A simple curve-fitting technique for updating the model trim point information based on steadystate information extracted from available nominal engine measurement data is presented. Results from the application of the model-based approach for processing actual engine test data are shown. These include both nominal fault-free test case data and seeded fault test case data. The results indicate that the updates applied to improve the model trim point information also improve anomaly detection performance. Recommendations for follow-on enhancements to the technique are also presented and discussed.

  15. Model-Based Control of an Aircraft Engine using an Optimal Tuner Approach

    NASA Technical Reports Server (NTRS)

    Connolly, Joseph W.; Chicatelli, Amy; Garg, Sanjay

    2012-01-01

    This paper covers the development of a model-based engine control (MBEC) method- ology applied to an aircraft turbofan engine. Here, a linear model extracted from the Commercial Modular Aero-Propulsion System Simulation 40,000 (CMAPSS40k) at a cruise operating point serves as the engine and the on-board model. The on-board model is up- dated using an optimal tuner Kalman Filter (OTKF) estimation routine, which enables the on-board model to self-tune to account for engine performance variations. The focus here is on developing a methodology for MBEC with direct control of estimated parameters of interest such as thrust and stall margins. MBEC provides the ability for a tighter control bound of thrust over the entire life cycle of the engine that is not achievable using traditional control feedback, which uses engine pressure ratio or fan speed. CMAPSS40k is capable of modeling realistic engine performance, allowing for a verification of the MBEC tighter thrust control. In addition, investigations of using the MBEC to provide a surge limit for the controller limit logic are presented that could provide benefits over a simple acceleration schedule that is currently used in engine control architectures.

  16. High Re wall-modeled LES of aircraft wake vortices in ground effect

    NASA Astrophysics Data System (ADS)

    Thiry, Olivier; Winckelmans, Gregoire; Duponcheel, Matthieu

    2014-11-01

    We have been able to perform wall-resolved LES, using a fourth order code, to simulate (aircraft) wake vortices interacting with the ground, also with cross or head winds, up to Reynolds numbers of the order of Re = Γ / ν = 2 ×104 . The present work aims at providing higher Re simulations, and also simulations with rough walls (e.g., grass), through the use of LES with near wall modeling. Various types of models are compared: point-wise and averaged algebraic models, and two-layers models. When using averaged models, the averaging methodology is of importance, since there is essentially no homogeneous direction in the case of wake vortices in ground effects. Uni- and multi-directional averaging strategies, with and without additional time averaging will be considered. When two-layer models are used, a RANS sub-layer will be compared to a simpler approach based on simplified turbulent boundary layer equations. The approaches are first validated on simpler flows, channel flow or wake flow, for which reference wall-resolved LES or DNS results are available. Research fellow (Ph.D. student) at the F.R.S.-FNRS (Belgium)

  17. A model for nocturnal frost formation on a wing section: Aircraft takeoff performance penalties

    NASA Technical Reports Server (NTRS)

    Dietenberger, M. A.

    1983-01-01

    The nocturnal frost formation on a wing section, to explain the hazard associated with frost during takeoff was investigated. A model of nocturnal frost formation on a wing section which predicts when the nocturnal frost will form and also its thickness and density as a function of time was developed. The aerodynamic penalities as related to the nocturnal frost formation properties were analyzed to determine how much the takeoff performance would be degraded by a specific frost layer. With an aircraft takeoff assuming equations representing a steady climbing flight, it is determined that a reduction in the maximum gross weight or a partial frost clearance and a reduction in the takeoff angle of attack is needed to neutralize drag and life penalities which are due to frost. Atmospheric conditions which produce the most hazardous frost buildup are determined.

  18. Active aeroelastic control aspects of an aircraft wing by using synthetic jet actuators: modeling, simulations, experiments

    NASA Astrophysics Data System (ADS)

    O'Donnell, K.; Schober, S.; Stolk, M.; Marzocca, P.; De Breuker, R.; Abdalla, M.; Nicolini, E.; Gürdal, Z.

    2007-04-01

    This paper discusses modeling, simulations and experimental aspects of active aeroelastic control on aircraft wings by using Synthetic Jet Actuators (SJAs). SJAs, a particular class of zero-net mass-flux actuators, have shown very promising results in numerous aeronautical applications, such as boundary layer control and delay of flow separation. A less recognized effect resulting from the SJAs is a momentum exchange that occurs with the flow, leading to a rearrangement of the streamlines around the airfoil modifying the aerodynamic loads. Discussions pertinent to the use of SJAs for flow and aeroelastic control and how these devices can be exploited for flutter suppression and for aerodynamic performances improvement are presented and conclusions are outlined.

  19. Development of an annoyance model based upon elementary auditory sensations for steady-state aircraft interior noise containing tonal components

    NASA Technical Reports Server (NTRS)

    Angerer, James R.; Mccurdy, David A.; Erickson, Richard A.

    1991-01-01

    The purpose of this investigation was to develop a noise annoyance model, superior to those already in use, for evaluating passenger response to sounds containing tonal components which may be heard within current and future commercial aircraft. The sound spectra investigated ranged from those being experienced by passengers on board turbofan powered aircraft now in service to those cabin noise spectra passengers may experience within advanced propeller-driven aircraft of the future. A total of 240 sounds were tested in this experiment. Sixty-six of these 240 sounds were steady state, while the other 174 varied temporally due to tonal beating. Here, the entire experiment is described, but the analysis is limited to those responses elicited by the 66 steady-state sounds.

  20. A maintenance model for k-out-of-n subsystems aboard a fleet of advanced commercial aircraft

    NASA Technical Reports Server (NTRS)

    Miller, D. R.

    1978-01-01

    Proposed highly reliable fault-tolerant reconfigurable digital control systems for a future generation of commercial aircraft consist of several k-out-of-n subsystems. Each of these flight-critical subsystems will consist of n identical components, k of which must be functioning properly in order for the aircraft to be dispatched. Failed components are recoverable; they are repaired in a shop. Spares are inventoried at a main base where they may be substituted for failed components on planes during layovers. Penalties are assessed when failure of a k-out-of-n subsystem causes a dispatch cancellation or delay. A maintenance model for a fleet of aircraft with such control systems is presented. The goals are to demonstrate economic feasibility and to optimize.

  1. 75 FR 7947 - Airworthiness Directives; Thielert Aircraft Engines GmbH (TAE) Model TAE 125-01 Reciprocating...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-23

    ... Engines GmbH (TAE) Model TAE 125-01 Reciprocating Engines AGENCY: Federal Aviation Administration (FAA.... The MCAI describes the unsafe condition as: An in-flight engine shutdown incident was reported on an aircraft equipped with a TAE 125-01 engine. This was found to be mainly the result of a blockage of...

  2. 78 FR 68985 - Special Conditions: Boeing Model 777-200, -300, and -300ER Series Airplanes; Aircraft Electronic...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-18

    ... maintenance of the airplane. The existing regulations and guidance material did not anticipate these types of... Series Airplanes; Aircraft Electronic System Security Protection From Unauthorized Internal Access AGENCY... conditions are issued for the Boeing Model 777- 200, -300, and -300ER series airplanes. These airplanes,...

  3. Modeling, Simulation, and Flight Test for Automatic Flight Control of the Condor Hybrid-Electric Remote Piloted Aircraft

    DTIC Science & Technology

    2012-03-01

    13 2.4.2 Wind Axes and Euler Angles .................................................................. 14...frame can be seen below in Figure 7. Figure 7: Body-Fixed Reference Frame 14 2.4.2 Wind Axes and Euler Angles The wind axes for the aircraft...resources necessary to determine the fundamental stability parameters. The lack of wind - tunnel testing and detailed modeling available for small RPA

  4. Resistance and Spray Characteristics of a 1/13-Scale Model of the Consolidated Vultee Skate 7 Seaplane, TED No. NACA DE 338

    NASA Technical Reports Server (NTRS)

    McKann, Robert E.; Coffee, Claude W.; Arabian, Donald D.

    1949-01-01

    A model of a Consolidated Vultee Aircraft Corporation Skate 7 sea-plane:was tested in Langley tank no= 2. Resistance data, 'spray photographs, and underwater photographs,are given in this report without discussion.

  5. Turbulence Model Comparisons and Reynolds Number Effects Over a High-Speed Aircraft at Transonic Speeds

    NASA Technical Reports Server (NTRS)

    Rivers, Melissa B.; Wahls, Richard A.

    1999-01-01

    This paper gives the results of a grid study, a turbulence model study, and a Reynolds number effect study for transonic flows over a high-speed aircraft using the thin-layer, upwind, Navier-Stokes CFL3D code. The four turbulence models evaluated are the algebraic Baldwin-Lomax model with the Degani-Schiff modifications, the one-equation Baldwin-Barth model, the one-equation Spalart-Allmaras model, and Menter's two-equation Shear-Stress-Transport (SST) model. The flow conditions, which correspond to tests performed in the NASA Langley National Transonic Facility (NTF), are a Mach number of 0.90 and a Reynolds number of 30 million based on chord for a range of angle-of-attacks (1 degree to 10 degrees). For the Reynolds number effect study, Reynolds numbers of 10 and 80 million based on chord were also evaluated. Computed forces and surface pressures compare reasonably well with the experimental data for all four of the turbulence models. The Baldwin-Lomax model with the Degani-Schiff modifications and the one-equation Baldwin-Barth model show the best agreement with experiment overall. The Reynolds number effects are evaluated using the Baldwin-Lomax with the Degani-Schiff modifications and the Baldwin-Barth turbulence models. Five angles-of-attack were evaluated for the Reynolds number effect study at three different Reynolds numbers. More work is needed to determine the ability of CFL3D to accurately predict Reynolds number effects.

  6. 78 FR 35747 - Special Conditions: Cirrus Design Corporation, Model SF50; Fire Extinguishing for Upper Aft...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-14

    ..., Small Airplane Directorate, Aircraft Certification Service, 901 Locust, Room 301, Kansas City, MO 64106..., retractable gear, carbon composite, airplane with one turbofan engine mounted partially in the upper aft.... Issued in Kansas City, Missouri on June 5, 2013. Earl Lawrence, Small Airplane Directorate,...

  7. 76 FR 73483 - Airworthiness Directives; Gulfstream Aerospace Corporation Model GV and GV-SP Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-29

    ... http:// ] www.regulations.gov; or in person at the Docket Management Facility between 9 a.m. and 5 p.m...) is Document Management Facility, U.S. Department of Transportation, Docket Operations, M-30, West... Management Branch, ACE- 102A, FAA, Atlanta Aircraft Certification Office (ACO) 1701 Columbia Avenue,...

  8. A Model for Predicting Learning Flow and Achievement in Corporate e-Learning

    ERIC Educational Resources Information Center

    Joo, Young Ju; Lim, Kyu Yon; Kim, Su Mi

    2012-01-01

    The primary objective of this study was to investigate the determinants of learning flow and achievement in corporate online training. Self-efficacy, intrinsic value, and test anxiety were selected as learners' motivational factors, while perceived usefulness and ease of use were also selected as learning environmental factors. Learning flow was…

  9. Massachusetts Corporation for Educational Telecommunications: Models of Collaboration for the Integration of Telecommunications in Education.

    ERIC Educational Resources Information Center

    Flores, John G.

    1997-01-01

    The Massachusetts Corporation for Educational Telecommunications (MCET), a quasi-public agency, plays a leadership role in distance education and the integration of telecommunications and education locally and nationally. Operator of the Mass LearnPike satellite network and the Mass Ed OnLine LearnNet computer network, MCET provides expanded…

  10. Valuing the Adult Learner in E-Learning: A Conceptual Model for Corporate Settings

    ERIC Educational Resources Information Center

    Waight, Consuelo L.; Stewart, Barbara

    2005-01-01

    The framework describes that e-Learning engagement, learning and transfer within corporate settings can possibly be achieved if antecedents such as needs assessment, learner analysis, for example, and moderators such as return on investment, learning theories, for example, are adhered. The realization of antecedents and moderators, however, are…

  11. Cotton growth modeling and assessment using unmanned aircraft system visual-band imagery

    NASA Astrophysics Data System (ADS)

    Chu, Tianxing; Chen, Ruizhi; Landivar, Juan A.; Maeda, Murilo M.; Yang, Chenghai; Starek, Michael J.

    2016-07-01

    This paper explores the potential of using unmanned aircraft system (UAS)-based visible-band images to assess cotton growth. By applying the structure-from-motion algorithm, the cotton plant height (ph) and canopy cover (cc) information were retrieved from the point cloud-based digital surface models (DSMs) and orthomosaic images. Both UAS-based ph and cc follow a sigmoid growth pattern as confirmed by ground-based studies. By applying an empirical model that converts the cotton ph to cc, the estimated cc shows strong correlation (R2=0.990) with the observed cc. An attempt for modeling cotton yield was carried out using the ph and cc information obtained on June 26, 2015, the date when sigmoid growth curves for both ph and cc tended to decline in slope. In a cross-validation test, the correlation between the ground-measured yield and the estimated equivalent derived from the ph and/or cc was compared. Generally, combining ph and cc, the performance of the yield estimation is most comparable against the observed yield. On the other hand, the observed yield and cc-based estimation produce the second strongest correlation, regardless of the complexity of the models.

  12. Experimental evidence for modifying the current physical model for ice accretion on aircraft surfaces

    NASA Technical Reports Server (NTRS)

    Olsen, W.; Walker, E.

    1986-01-01

    Closeup movies, still photographs, and other experimental data suggest that the current physical model for ice accretion needs significant modification. At aircraft airspeeds there was no flow of liquid over the surface of the ice after a short initial flow, even at barely subfreezing temperatures. Instead, there were very large stationary drops on the ice surface that lose water from their bottoms by freezing and replenish their liquid by catching the microscopic cloud droplets. This observation disagrees with the existing physical model, which assumes there is a thin liquid film continuously flowing over the ice surface. With no such flow, the freezing-fraction concept of the model fails when a mass balance is performed on the surface water. Rime ice does, as the model predicts, form when the air temperature is low enough to cause the cloud droplets to freeze almost immediately on impact. However, the characteristic shapes of horn-glaze ice or rime ice are primarily caused by the ice shape affecting the airflow locally and consequently the droplet catch and the resulting ice shape. Ice roughness greatly increases the heat transfer coefficient, stops the movement of drops along the surface, and may also affect the airflow initially and thereby the droplet catch. At high subreezing temperatures the initial flow and shedding of surface drops have a large effect on the ice shape. At the incipient freezing limit, no ice forms.

  13. 75 FR 50869 - Airworthiness Directives; Pilatus Aircraft Ltd. Model PC-12/47E Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-18

    ... requirements.'' Under that section, Congress charges the FAA with promoting safe flight of civil aircraft in..., 2009, into the normal procedures section of the aircraft flight manual (AFM). (ii) Within 12 months...-028-AD; Amendment 39-16401; AD 2010-17-09] RIN 2120-AA64 Airworthiness Directives; Pilatus...

  14. 76 FR 14346 - Airworthiness Directives; Diamond Aircraft Industries GmbH Model DA 42 Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-16

    ... Federal Aviation Administration 14 CFR Part 39 RIN 2120-AA64 Airworthiness Directives; Diamond Aircraft... identified in this proposed AD, contact Diamond Aircraft Industries GmbH, N.A. Otto-Stra e 5, A-2700 Wiener Neustadt, Austria, telephone: +43 2622 26700; fax: +43 2622 26780; e-mail: office@diamond-air.at ;...

  15. 76 FR 31457 - Airworthiness Directives; Diamond Aircraft Industries GmbH Model DA 42 Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-01

    ...-003-AD; Amendment 39-16706; AD 2011-11-07] RIN 2120-AA64 Airworthiness Directives; Diamond Aircraft...., Washington, DC 20590. For service information identified in this AD, contact Diamond Aircraft Industries GmbH...; e- mail: office@diamond-air.at ; Internet: http://www.diamond-air.at . You may review copies of...

  16. Mapping evapotranspiration with high resolution aircraft imagery over vineyards using one and two source modeling schemes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Thermal and multispectral remote sensing data from low-altitude aircraft can provide high spatial resolution necessary for sub-field (= 10 m) and plant canopy (= 1 m) scale evapotranspiration (ET) monitoring. In this study, high resolution aircraft sub-meter scale thermal infrared and multispectral...

  17. 76 FR 11174 - Airworthiness Directives; Sikorsky Aircraft Corporation Model S-76A, S-76B, and S-76C Helicopters...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-01

    ...-41A. Remove the safety pin, P/N ASI-700-80. Remove and discard any ball bearings, and clean all... safety pin. Release the cable from the broom closet. Reinstall the cable to the handle with the clevis... (handle assembly), P/N ASI-700-41A. (h) Remove the safety pin, P/N ASI-700-80. (i) Remove and discard...

  18. 75 FR 55453 - Airworthiness Directives; Sikorsky Aircraft Corporation Model S-76A, S-76B, and S-76C Helicopters

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-13

    ..., which could lead to increased vibrations, a fatigue crack, loss of a portion of the vertical stabilizer... the vibration measurements. Also, proposed was requiring, on or before December 31, 2010, installing a... and correct an unbalanced or out-of-track tail rotor, which could lead to increased vibrations,...

  19. 75 FR 26888 - Airworthiness Directives; Sikorsky Aircraft Corporation (Sikorsky) Model S-70A and S-70C Helicopters

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-13

    ... a crack. If you find a crack, replacing the gear with an airworthy gear before further flight would be required. This proposal is prompted by three gear cracking incidents, one of which resulted in the... detect a crack in the gear to prevent a tail rotor separating, loss of tail rotor control, and...

  20. 75 FR 70101 - Airworthiness Directives; Sikorsky Aircraft Corporation (Sikorsky) Model S-70A and S-70C Helicopters

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-17

    ...-70A and S-70C helicopters. This AD requires an ultrasonic test (UT) inspection of the tail gearbox... Level II Ultrasonic Testing Technician or equivalent, ultransonic inspect the gear for a crack. Ultrasonic inspect the gear by following paragraphs A.(5)a. through A(5)n. of Special Service Instructions...

  1. 76 FR 20894 - Airworthiness Directives; Univair Aircraft Corporation Models (ERCO) 415-C, 415-CD, 415-D, E, G...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-14

    ..., including the aileron hinges, screws and control system, the ailerons for cracks in support structure and... the the assembly for cracks in the effective date of this AD, support structure and skin. whichever... Service Memorandums ailerons for cracks in the support service (TIS) after the effective No. 56 and...

  2. 76 FR 39254 - Airworthiness Directives; Schweizer Aircraft Corporation (Schweizer) Model 269A, A-1, B, C, C-1...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-06

    ... prompted by a locknut working loose from a bolt attaching the tailboom support strut at the aft cluster... attaching the tailboom support strut at the aft cluster fitting. Further investigation revealed that the... helicopters with an Aft Cluster Fitting Modification Kit, part number (P/N) SA-269K-106,...

  3. Vibro-acoustic modelling of aircraft double-walls with structural links using Statistical Energy Analysis

    NASA Astrophysics Data System (ADS)

    Campolina, Bruno L.

    The prediction of aircraft interior noise involves the vibroacoustic modelling of the fuselage with noise control treatments. This structure is composed of a stiffened metallic or composite panel, lined with a thermal and acoustic insulation layer (glass wool), and structurally connected via vibration isolators to a commercial lining panel (trim). The goal of this work aims at tailoring the noise control treatments taking design constraints such as weight and space optimization into account. For this purpose, a representative aircraft double-wall is modelled using the Statistical Energy Analysis (SEA) method. Laboratory excitations such as diffuse acoustic field and point force are addressed and trends are derived for applications under in-flight conditions, considering turbulent boundary layer excitation. The effect of the porous layer compression is firstly addressed. In aeronautical applications, compression can result from the installation of equipment and cables. It is studied analytically and experimentally, using a single panel and a fibrous uniformly compressed over 100% of its surface. When compression increases, a degradation of the transmission loss up to 5 dB for a 50% compression of the porous thickness is observed mainly in the mid-frequency range (around 800 Hz). However, for realistic cases, the effect should be reduced since the compression rate is lower and compression occurs locally. Then the transmission through structural connections between panels is addressed using a four-pole approach that links the force-velocity pair at each side of the connection. The modelling integrates experimental dynamic stiffness of isolators, derived using an adapted test rig. The structural transmission is then experimentally validated and included in the double-wall SEA model as an equivalent coupling loss factor (CLF) between panels. The tested structures being flat, only axial transmission is addressed. Finally, the dominant sound transmission paths are

  4. V/STOL tilt rotor aircraft study: Wind tunnel tests of a full scale hingeless prop/rotor designed for the Boeing Model 222 tilt rotor aircraft

    NASA Technical Reports Server (NTRS)

    Magee, J. P.; Alexander, H. R.

    1973-01-01

    The rotor system designed for the Boeing Model 222 tilt rotor aircraft is a soft-in-plane hingeless rotor design, 26 feet in diameter. This rotor has completed two test programs in the NASA Ames 40' X 80' wind tunnel. The first test was a windmilling rotor test on two dynamic wing test stands. The rotor was tested up to an advance ratio equivalence of 400 knots. The second test used the NASA powered propeller test rig and data were obtained in hover, transition and low speed cruise flight. Test data were obtained in the areas of wing-rotor dynamics, rotor loads, stability and control, feedback controls, and performance to meet the test objectives. These data are presented.

  5. A Risk Assessment Model for Reduced Aircraft Separation: A Quantitative Method to Evaluate the Safety of Free Flight

    NASA Technical Reports Server (NTRS)

    Cassell, Rick; Smith, Alex; Connors, Mary; Wojciech, Jack; Rosekind, Mark R. (Technical Monitor)

    1996-01-01

    As new technologies and procedures are introduced into the National Airspace System, whether they are intended to improve efficiency, capacity, or safety level, the quantification of potential changes in safety levels is of vital concern. Applications of technology can improve safety levels and allow the reduction of separation standards. An excellent example is the Precision Runway Monitor (PRM). By taking advantage of the surveillance and display advances of PRM, airports can run instrument parallel approaches to runways separated by 3400 feet with the same level of safety as parallel approaches to runways separated by 4300 feet using the standard technology. Despite a wealth of information from flight operations and testing programs, there is no readily quantifiable relationship between numerical safety levels and the separation standards that apply to aircraft on final approach. This paper presents a modeling approach to quantify the risk associated with reducing separation on final approach. Reducing aircraft separation, both laterally and longitudinally, has been the goal of several aviation R&D programs over the past several years. Many of these programs have focused on technological solutions to improve navigation accuracy, surveillance accuracy, aircraft situational awareness, controller situational awareness, and other technical and operational factors that are vital to maintaining flight safety. The risk assessment model relates different types of potential aircraft accidents and incidents and their contribution to overall accident risk. The framework links accident risks to a hierarchy of failsafe mechanisms characterized by procedures and interventions. The model will be used to assess the overall level of safety associated with reducing separation standards and the introduction of new technology and procedures, as envisaged under the Free Flight concept. The model framework can be applied to various aircraft scenarios, including parallel and in

  6. On-Line Mu Method for Robust Flutter Prediction in Expanding a Safe Flight Envelope for an Aircraft Model Under Flight Test

    NASA Technical Reports Server (NTRS)

    Lind, Richard C. (Inventor); Brenner, Martin J.

    2001-01-01

    A structured singular value (mu) analysis method of computing flutter margins has robust stability of a linear aeroelastic model with uncertainty operators (Delta). Flight data is used to update the uncertainty operators to accurately account for errors in the computed model and the observed range of aircraft dynamics of the aircraft under test caused by time-varying aircraft parameters, nonlinearities, and flight anomalies, such as test nonrepeatability. This mu-based approach computes predict flutter margins that are worst case with respect to the modeling uncertainty for use in determining when the aircraft is approaching a flutter condition and defining an expanded safe flight envelope for the aircraft that is accepted with more confidence than traditional methods that do not update the analysis algorithm with flight data by introducing mu as a flutter margin parameter that presents several advantages over tracking damping trends as a measure of a tendency to instability from available flight data.

  7. 75 FR 32253 - Airworthiness Directives; Thielert Aircraft Engines GmbH (TAE) Models TAE 125-01 and TAE 125-02...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-08

    ... to, Diamond Aircraft Industries Model DA 42 Airplanes AGENCY: Federal Aviation Administration (FAA... Diamond Aircraft Industries DA 42 airplanes equipped with TAE 125 engines. The investigations showed that.... The MCAI states that: Engine in-flight shutdown incidents have been reported on Diamond...

  8. Progress in Space Weather Modeling and Observations Needed to Improve the Operational NAIRAS Model Aircraft Radiation Exposure Predictions

    NASA Astrophysics Data System (ADS)

    Mertens, C. J.; Kress, B. T.; Wiltberger, M. J.; Tobiska, W.; Xu, X.

    2011-12-01

    The Nowcast of Atmospheric Ionizing Radiation for Aviation Safety (NAIRAS) is a prototype operational model for predicting commercial aircraft radiation exposure from galactic and solar cosmic rays. NAIRAS predictions are currently streaming live from the project's public website, and the exposure rate nowcast is also available on the SpaceWx smartphone app for iPhone, IPad, and Android. Cosmic rays are the primary source of human exposure to high linear energy transfer radiation at aircraft altitudes, which increases the risk of cancer and other adverse health effects. Thus, the NAIRAS model addresses an important national need with broad societal, public health and economic benefits. The processes responsible for the variability in the solar wind, interplanetary magnetic field, solar energetic particle spectrum, and the dynamical response of the magnetosphere to these space environment inputs, strongly influence the composition and energy distribution of the atmospheric ionizing radiation field. During the development of the NAIRAS model, new science questions were identified that must be addressed in order to obtain a more reliable and robust operational model of atmospheric radiation exposure. Addressing these science questions require improvements in both space weather modeling and observations. The focus of this talk is to present these science questions, the proposed methodologies for addressing these science questions, and the anticipated improvements to the operational predictions of atmospheric radiation exposure. The overarching goal of this work is to provide a decision support tool for the aviation industry that will enable an optimal balance to be achieved between minimizing health risks to passengers and aircrew while simultaneously minimizing costs to the airline companies.

  9. Modeling and Detection of Ice Particle Accretion in Aircraft Engine Compression Systems

    NASA Technical Reports Server (NTRS)

    May, Ryan D.; Simon, Donald L.; Guo, Ten-Huei

    2012-01-01

    The accretion of ice particles in the core of commercial aircraft engines has been an ongoing aviation safety challenge. While no accidents have resulted from this phenomenon to date, numerous engine power loss events ranging from uneventful recoveries to forced landings have been recorded. As a first step to enabling mitigation strategies during ice accretion, a detection scheme must be developed that is capable of being implemented on board modern engines. In this paper, a simple detection scheme is developed and tested using a realistic engine simulation with approximate ice accretion models based on data from a compressor design tool. These accretion models are implemented as modified Low Pressure Compressor maps and have the capability to shift engine performance based on a specified level of ice blockage. Based on results from this model, it is possible to detect the accretion of ice in the engine core by observing shifts in the typical sensed engine outputs. Results are presented in which, for a 0.1 percent false positive rate, a true positive detection rate of 98 percent is achieved.

  10. A first-principles model for estimating the prevalence of annoyance with aircraft noise exposure.

    PubMed

    Fidell, Sanford; Mestre, Vincent; Schomer, Paul; Berry, Bernard; Gjestland, Truls; Vallet, Michel; Reid, Timothy

    2011-08-01

    Numerous relationships between noise exposure and transportation noise-induced annoyance have been inferred by curve-fitting methods. The present paper develops a different approach. It derives a systematic relationship by applying an a priori, first-principles model to the findings of forty three studies of the annoyance of aviation noise. The rate of change of annoyance with day-night average sound level (DNL) due to aircraft noise exposure was found to closely resemble the rate of change of loudness with sound level. The agreement of model predictions with the findings of recent curve-fitting exercises (cf. Miedma and Vos, 1998) is noteworthy, considering that other analyses have relied on different analytic methods and disparate data sets. Even though annoyance prevalence rates within individual communities consistently grow in proportion to duration-adjusted loudness, variability in annoyance prevalence rates across communities remains great. The present analyses demonstrate that 1) community-specific differences in annoyance prevalence rates can be plausibly attributed to the joint effect of acoustic and non-DNL related factors and (2) a simple model can account for the aggregate influences of non-DNL related factors on annoyance prevalence rates in different communities in terms of a single parameter expressed in DNL units-a "community tolerance level."

  11. Improvements in Numerical Modeling Methodology of Dry Woven Fabrics for Aircraft Engine Containment Systems

    NASA Astrophysics Data System (ADS)

    Fein, Jonathan

    Woven fabric composite materials are widely used in the construction of aircraft engine fan containment systems, mostly due to their high strength to weight ratios and ease of implementation. The development of a predictive model for fan blade containment would provide great benefit to engine manufactures in shortened development cycle time, less risk in certification and fewer dollars lost to redesign/recertification cycles. A mechanistic user-defined material model subroutine has been developed at Arizona State University (ASU) that captures the behavioral response of these fabrics, namely Kevlar ® 49, under ballistic loading. Previously developed finite element models used to validate the consistency of this material model neglected the effects of the physical constraints imposed on the test setup during ballistic testing performed at NASA Glenn Research Center (NASA GRC). Part of this research was to explore the effects of these boundary conditions on the results of the numerical simulations. These effects were found to be negligible in most instances. Other material models for woven fabrics are available in the LS-DYNA finite element code. One of these models, MAT234: MAT_VISCOELASTIC_LOOSE_FABRIC (Ivanov & Tabiei, 2004) was studied and implemented in the finite element simulations of ballistic testing associated with the FAA ASU research. The results from these models are compared to results obtained from the ASU UMAT as part of this research. The results indicate an underestimation in the energy absorption characteristics of the Kevlar 49 fabric containment systems. More investigation needs to be performed in the implementation of MAT234 for Kevlar 49 fabric. Static penetrator testing of Kevlar® 49 fabric was performed at ASU in conjunction with this research. These experiments are designed to mimic the type of loading experienced during fan blade out events. The resulting experimental strains were measured using a non-contact optical strain measurement

  12. Corporal punishment.

    PubMed

    Zolotor, Adam J

    2014-10-01

    Corporal punishment is used for discipline in most homes in the United States. It is also associated with a long list of adverse developmental, behavioral, and health-related consequences. Primary care providers, as trusted sources for parenting information, have an opportunity to engage parents in discussions about discipline as early as infancy. These discussions should focus on building parents' skills in the use of other behavioral techniques, limiting (or eliminating) the use of corporal punishment and identifying additional resources as needed.

  13. Impact of aircraft NOx emissions on tropospheric ozone calculated with a chemistry-general circulation model: Sensitivity to higher hydrocarbon chemistry

    NASA Astrophysics Data System (ADS)

    Kentarchos, A. S.; Roelofs, G. J.

    2002-07-01

    A three-dimensional chemistry-general circulation model has been employed to estimate the impact of current aircraft NOx emissions on tropospheric ozone. The model contains a representation of higher hydrocarbon chemistry, implemented by means of the Carbon Bond Mechanism 4 (CBM4), in order to investigate the potential effect of higher hydrocarbons on aircraft-induced ozone changes. Aircraft NOx emissions increase background NOX (= NO + NO2 + NO3 + 2N2O5 + HNO4) concentrations by 50-70 pptv in the upper troposphere over the Northern Hemisphere, and contribute up to 3 ppbv to upper tropospheric background ozone levels. When higher hydrocarbon chemistry is considered in the simulation, the aircraft-induced ozone perturbations are higher by ~12% during summer and the aircraft-induced ozone production efficiency per NOx molecule increases by ~20%, when compared to a simulation without higher hydrocarbon chemistry.

  14. A linear input-varying framework for modeling and control of morphing aircraft

    NASA Astrophysics Data System (ADS)

    Grant, Daniel T.

    2011-12-01

    Morphing, which changes the shape and configuration of an aircraft, is being adopted to expand mission capabilities of aircraft. The introduction of biological-inspired morphing is particularly attractive in that highly-agile birds present examples of desired shapes and configurations. A previous study adopted such morphing by designing a multiple-joint wing that represented the shoulder and elbow joints of a bird. The resulting variable-gull aircraft could rotate the wing section vertically at these joints to alter the flight dynamics. This paper extends that multiple-joint concept to allow a variable-sweep wing with independent inboard and outboard sections. The aircraft is designed and analyzed to demonstrate the range of flight dynamics which result from the morphing. In particular, the vehicle is shown to have enhanced crosswind rejection which is a certainly critical metric for the urban environments in which these aircraft are anticipated to operate. Mission capability can be enabled by morphing an aircraft to optimize its aerodynamics and associated flight dynamics for each maneuver. Such optimization often consider the steady-state behavior of the configuration; however, the transient behavior must also be analyzed. In particular, the time-varying inertias have an effect on the flight dynamics that can adversely affect mission performance if not properly compensated. These inertia terms cause coupling between the longitudinal and lateral-directional dynamics even for maneuvers around trim. A simulation of a variable-sweep aircraft undergoing a symmetric morphing for an altitude change shows a noticeable lateral translation in the flight path because of the induced asymmetry. The flight dynamics of morphing aircraft must be analyzed to ensure shape-changing trajectories have the desired characteristics. The tools for describing flight dynamics of fixed-geometry aircraft are not valid for time-varying systems such as morphing aircraft. This paper introduces

  15. Fractional Crystallization Model of Multicomponent Aluminum Alloys: A Case Study of Aircraft Recycling

    NASA Astrophysics Data System (ADS)

    Muñiz-Lerma, Jose Alberto; Paliwal, Manas; Jung, In-Ho; Brochu, Mathieu

    2017-01-01

    A one-dimensional numerical solidification model has been developed to predict the recovery and refining efficiency of fractional crystallization applied to a blend of aircraft Al scraps with variations of Fe and Si. The model incorporates the effective partition coefficient depending on the degree of melt stirring. Moreover, the kinetic factors that affect the formation of primary Al FCC during fractional crystallization such as solidification velocity, thermal gradient, cooling rate, and solute back-diffusion are taken into account. The simulation results suggest that the optimum solidification velocities that are able to yield the highest refining can be ranged between 1.0 × 10-6 and 1.0 × 10-5 m/s with medium to high stirring levels. The maximum recovery of refined Al has been estimated to be 31 wt pct of the initial scrap when the process is carried out at 1 × 10-6 m/s and the initial concentrations of Fe and Si are 1 and 2 pct, respectively.

  16. Fractional Crystallization Model of Multicomponent Aluminum Alloys: A Case Study of Aircraft Recycling

    NASA Astrophysics Data System (ADS)

    Muñiz-Lerma, Jose Alberto; Paliwal, Manas; Jung, In-Ho; Brochu, Mathieu

    2017-04-01

    A one-dimensional numerical solidification model has been developed to predict the recovery and refining efficiency of fractional crystallization applied to a blend of aircraft Al scraps with variations of Fe and Si. The model incorporates the effective partition coefficient depending on the degree of melt stirring. Moreover, the kinetic factors that affect the formation of primary Al FCC during fractional crystallization such as solidification velocity, thermal gradient, cooling rate, and solute back-diffusion are taken into account. The simulation results suggest that the optimum solidification velocities that are able to yield the highest refining can be ranged between 1.0 × 10-6 and 1.0 × 10-5 m/s with medium to high stirring levels. The maximum recovery of refined Al has been estimated to be 31 wt pct of the initial scrap when the process is carried out at 1 × 10-6 m/s and the initial concentrations of Fe and Si are 1 and 2 pct, respectively.

  17. Two-dimensional modeling of an aircraft engine structural bladed disk-casing modal interaction

    NASA Astrophysics Data System (ADS)

    Legrand, Mathias; Pierre, Christophe; Cartraud, Patrice; Lombard, Jean-Pierre

    2009-01-01

    In modern turbo machines such as aircraft jet engines, structural contacts between the casing and bladed disk may occur through a variety of mechanisms: coincidence of vibration modes, thermal deformation of the casing, rotor imbalance due to design uncertainties to name a few. These nonlinear interactions may result in severe damage to both structures and it is important to understand the physical circumstances under which they occur. In this study, we focus on a modal coincidence during which the vibrations of each structure take the form of a k-nodal diameter traveling wave characteristic of axi-symmetric geometries. A realistic two-dimensional model of the casing and bladed disk is introduced in order to predict the occurrence of this very specific interaction phenomenon versus the rotation speed of the engine. The equations of motion are solved using an explicit time integration scheme in conjunction with the Lagrange multiplier method where friction is accounted for. This model is validated from the comparison with an analytical solution. The numerical results show that the structures may experience different kinds of behaviors (namely damped, sustained and divergent motions) mainly depending on the rotational velocity of the bladed disk.

  18. Aeroacoustic Study of a High-Fidelity Aircraft Model. Part 2; Unsteady Surface Pressures

    NASA Technical Reports Server (NTRS)

    Khorrami, Mehdi R.; Neuhart, Danny H.

    2012-01-01

    In this paper, we present unsteady surface pressure measurements for an 18%-scale, semi-span Gulfstream aircraft model. This high-fidelity model is being used to perform detailed studies of airframe noise associated with main landing gear, flap components, and gear-flap interaction noise, as well as to evaluate novel noise reduction concepts. The aerodynamic segment of the tests, conducted in the NASA Langley Research Center 14- by 22-Foot Subsonic Tunnel, was completed in November 2010. To discern the characteristics of the surface pressure fluctuations in the vicinity of the prominent noise sources, unsteady sensors were installed on the inboard and outboard flap edges, and on the main gear wheels, struts, and door. Various configurations were tested, including flap deflections of 0?, 20?, and 39?, with and without the main landing gear. The majority of unsteady surface pressure measurements were acquired for the nominal landing configuration where the main gear was deployed and the flap was deflected 39?. To assess the Mach number variation of the surface pressure amplitudes, measurements were obtained at Mach numbers of 0.16, 0.20, and 0.24. Comparison of the unsteady surface pressures with the main gear on and off shows significant interaction between the gear wake and the inboard flap edge, resulting in higher amplitude fluctuations when the gear is present.

  19. Adaptive Flight Control Design with Optimal Control Modification on an F-18 Aircraft Model

    NASA Technical Reports Server (NTRS)

    Burken, John J.; Nguyen, Nhan T.; Griffin, Brian J.

    2010-01-01

    In the presence of large uncertainties, a control system needs to be able to adapt rapidly to regain performance. Fast adaptation is referred to as the implementation of adaptive control with a large adaptive gain to reduce the tracking error rapidly; however, a large adaptive gain can lead to high-frequency oscillations which can adversely affect the robustness of an adaptive control law. A new adaptive control modification is presented that can achieve robust adaptation with a large adaptive gain without incurring high-frequency oscillations as with the standard model-reference adaptive control. The modification is based on the minimization of the Y2 norm of the tracking error, which is formulated as an optimal control problem. The optimality condition is used to derive the modification using the gradient method. The optimal control modification results in a stable adaptation and allows a large adaptive gain to be used for better tracking while providing sufficient robustness. A damping term (v) is added in the modification to increase damping as needed. Simulations were conducted on a damaged F-18 aircraft (McDonnell Douglas, now The Boeing Company, Chicago, Illinois) with both the standard baseline dynamic inversion controller and the adaptive optimal control modification technique. The results demonstrate the effectiveness of the proposed modification in tracking a reference model.

  20. A Global Circuit Tool for Modeling Lightning Indirect Effects on Aircraft

    NASA Astrophysics Data System (ADS)

    Moussa, H.; Abdi, M.; Issac, F.; Prost, D.

    The topic of this study is electromagnetic environment and electromagnetic interference (EMI) effects, specifically the modeling of lightning indirect effects on aircraft electrical systems present on embedded and highly exposed equipments, such as nose landing gear (NLG) and nacelles, through a circuit approach. The main goal of the presented work, funded by a French national project, PREFACE, is to propose a simple equivalent electrical circuit to represent a geometrical structure, taking into account mutual, self-inductances, and resistances, which play a fundamental role in the lightning current distribution. Then this model is intended to be coupled to a functional one, describing a power train chain composed of a converter, a shielded power harness, and a motor or a set of resistors used as a load for the converter. The novelty here is to provide a pre-sizing qualitative approach allowing playing on integration in pre-design phases. This tool intends to offer a user-friendly way for replying rapidly to calls for tender, taking into account the lightning constraints.

  1. Aircraft wing structural design optimization based on automated finite element modelling and ground structure approach

    NASA Astrophysics Data System (ADS)

    Yang, Weizhu; Yue, Zhufeng; Li, Lei; Wang, Peiyan

    2016-01-01

    An optimization procedure combining an automated finite element modelling (AFEM) technique with a ground structure approach (GSA) is proposed for structural layout and sizing design of aircraft wings. The AFEM technique, based on CATIA VBA scripting and PCL programming, is used to generate models automatically considering the arrangement of inner systems. GSA is used for local structural topology optimization. The design procedure is applied to a high-aspect-ratio wing. The arrangement of the integral fuel tank, landing gear and control surfaces is considered. For the landing gear region, a non-conventional initial structural layout is adopted. The positions of components, the number of ribs and local topology in the wing box and landing gear region are optimized to obtain a minimum structural weight. Constraints include tank volume, strength, buckling and aeroelastic parameters. The results show that the combined approach leads to a greater weight saving, i.e. 26.5%, compared with three additional optimizations based on individual design approaches.

  2. Simulators for corporate pilot training and evaluation

    NASA Technical Reports Server (NTRS)

    Treichel, Curt

    1992-01-01

    Corporate aviation relies heavily on simulation to meet training and evaluation requirements. It appreciates the savings in fuel, money, noise, and time, and the added safety it provides. Also, simulation provides opportunities to experience many emergencies that cannot be safely practiced in the aircraft. There is a need to focus on the advantages of simulator training over aircraft training and to provide appropriate changes in the regulations to allow the community to make it possible for users to take full advantage of simulation.

  3. Simulation model of the integrated flight/propulsion control system, displays, and propulsion system for ASTOVL lift-fan aircraft

    NASA Technical Reports Server (NTRS)

    Chung, W. Y. William; Borchers, Paul F.; Franklin, James A.

    1995-01-01

    A simulation model has been developed for use in piloted evaluations of takeoff, transition, hover, and landing characteristics of an advanced, short takeoff, vertical landing lift fan fighter aircraft. The flight/propulsion control system includes modes for several response types which are coupled to the aircraft's aerodynamic and propulsion system effectors through a control selector tailored to the lift fan propulsion system. Head-up display modes for approach and hover, tailored to their corresponding control modes are provided in the simulation. Propulsion system components modeled include a remote lift and a lift/cruise engine. Their static performance and dynamic response are represented by the model. A separate report describes the subsonic, power-off aerodynamics and jet induced aerodynamics in hover and forward flight, including ground effects.

  4. NASA Langley Distributed Propulsion VTOL Tilt-Wing Aircraft Testing, Modeling, Simulation, Control, and Flight Test Development

    NASA Technical Reports Server (NTRS)

    Rothhaar, Paul M.; Murphy, Patrick C.; Bacon, Barton J.; Gregory, Irene M.; Grauer, Jared A.; Busan, Ronald C.; Croom, Mark A.

    2014-01-01

    Control of complex Vertical Take-Off and Landing (VTOL) aircraft traversing from hovering to wing born flight mode and back poses notoriously difficult modeling, simulation, control, and flight-testing challenges. This paper provides an overview of the techniques and advances required to develop the GL-10 tilt-wing, tilt-tail, long endurance, VTOL aircraft control system. The GL-10 prototype's unusual and complex configuration requires application of state-of-the-art techniques and some significant advances in wind tunnel infrastructure automation, efficient Design Of Experiments (DOE) tunnel test techniques, modeling, multi-body equations of motion, multi-body actuator models, simulation, control algorithm design, and flight test avionics, testing, and analysis. The following compendium surveys key disciplines required to develop an effective control system for this challenging vehicle in this on-going effort.

  5. Impact imaging of aircraft composite structure based on a model-independent spatial-wavenumber filter.

    PubMed

    Qiu, Lei; Liu, Bin; Yuan, Shenfang; Su, Zhongqing

    2016-01-01

    The spatial-wavenumber filtering technique is an effective approach to distinguish the propagating direction and wave mode of Lamb wave in spatial-wavenumber domain. Therefore, it has been gradually studied for damage evaluation in recent years. But for on-line impact monitoring in practical application, the main problem is how to realize the spatial-wavenumber filtering of impact signal when the wavenumber of high spatial resolution cannot be measured or the accurate wavenumber curve cannot be modeled. In this paper, a new model-independent spatial-wavenumber filter based impact imaging method is proposed. In this method, a 2D cross-shaped array constructed by two linear piezoelectric (PZT) sensor arrays is used to acquire impact signal on-line. The continuous complex Shannon wavelet transform is adopted to extract the frequency narrowband signals from the frequency wideband impact response signals of the PZT sensors. A model-independent spatial-wavenumber filter is designed based on the spatial-wavenumber filtering technique. Based on the designed filter, a wavenumber searching and best match mechanism is proposed to implement the spatial-wavenumber filtering of the frequency narrowband signals without modeling, which can be used to obtain a wavenumber-time image of the impact relative to a linear PZT sensor array. By using the two wavenumber-time images of the 2D cross-shaped array, the impact direction can be estimated without blind angle. The impact distance relative to the 2D cross-shaped array can be calculated by using the difference of time-of-flight between the frequency narrowband signals of two different central frequencies and the corresponding group velocities. The validations performed on a carbon fiber composite laminate plate and an aircraft composite oil tank show a good impact localization accuracy of the model-independent spatial-wavenumber filter based impact imaging method.

  6. Comparison of Aircraft Models and Integration Schemes for Interval Management in the TRACON

    NASA Technical Reports Server (NTRS)

    Neogi, Natasha; Hagen, George E.; Herencia-Zapana, Heber

    2012-01-01

    Reusable models of common elements for communication, computation, decision and control in air traffic management are necessary in order to enable simulation, analysis and assurance of emergent properties, such as safety and stability, for a given operational concept. Uncertainties due to faults, such as dropped messages, along with non-linearities and sensor noise are an integral part of these models, and impact emergent system behavior. Flight control algorithms designed using a linearized version of the flight mechanics will exhibit error due to model uncertainty, and may not be stable outside a neighborhood of the given point of linearization. Moreover, the communication mechanism by which the sensed state of an aircraft is fed back to a flight control system (such as an ADS-B message) impacts the overall system behavior; both due to sensor noise as well as dropped messages (vacant samples). Additionally simulation of the flight controller system can exhibit further numerical instability, due to selection of the integration scheme and approximations made in the flight dynamics. We examine the theoretical and numerical stability of a speed controller under the Euler and Runge-Kutta schemes of integration, for the Maintain phase for a Mid-Term (2035-2045) Interval Management (IM) Operational Concept for descent and landing operations. We model uncertainties in communication due to missed ADS-B messages by vacant samples in the integration schemes, and compare the emergent behavior of the system, in terms of stability, via the boundedness of the final system state. Any bound on the errors incurred by these uncertainties will play an essential part in a composable assurance argument required for real-time, flight-deck guidance and control systems,. Thus, we believe that the creation of reusable models, which possess property guarantees, such as safety and stability, is an innovative and essential requirement to assessing the emergent properties of novel airspace

  7. Aeroacoustic Study of a High-Fidelity Aircraft Model: Part 1- Steady Aerodynamic Measurements

    NASA Technical Reports Server (NTRS)

    Khorrami, Mehdi R.; Hannon, Judith A.; Neuhart, Danny H.; Markowski, Gregory A.; VandeVen, Thomas

    2012-01-01

    In this paper, we present steady aerodynamic measurements for an 18% scale model of a Gulfstream air-craft. The high fidelity and highly-instrumented semi-span model was developed to perform detailed aeroacoustic studies of airframe noise associated with main landing gear/flap components and gear-flap interaction noise, as well as to evaluate novel noise reduction concepts. The aeroacoustic tests, being conducted in the NASA Langley Research Center 14- by 22-Foot Subsonic Tunnel, are split into two entries. The first entry, completed November 2010, was entirely devoted to the detailed mapping of the aerodynamic characteristics of the fabricated model. Flap deflections of 39?, 20?, and 0? with the main landing gear on and off were tested at Mach numbers of 0.16, 0.20, and 0.24. Additionally, for each flap deflection, the model was tested with the tunnel both in the closed-wall and open-wall (jet) modes. During this first entry, global forces (lift and drag) and extensive steady and unsteady surface pressure measurements were obtained. Preliminary analysis of the measured forces indicates that lift, drag, and stall characteristics compare favorably with Gulfstream?s high Reynolds number flight data. The favorable comparison between wind-tunnel and flight data allows the semi-span model to be used as a test bed for developing/evaluating airframe noise reduction concepts under a relevant environment. Moreover, initial comparison of the aerodynamic measurements obtained with the tunnel in the closed- and open-wall configurations shows similar aerodynamic behavior. This permits the acoustic and off-surface flow measurements, planned for the second entry, to be conducted with the tunnel in the open-jet mode.

  8. Light shaping diffusers{trademark} improve aircraft inspection

    SciTech Connect

    Shagam, R.N.; Shie, R.; Lerner, J.

    1994-11-01

    Physical Optical Corporation has introduced a Light Shaping Diffuser{trademark} (LSD) for the specialized illumination requirements of aircraft inspection. Attached to a handheld, battery-powered flashlight, this light-weight, holographic diffuser element provides bright, even illumination as aircraft inspectors perform the important task of visually examining aircraft for possible structural defects. Field trials conducted by the Aging Aircraft Program at Sandia National Laboratories confirm that the LSD-equipped flashlights are preferred by visual inspectors over stock flashlights.

  9. Experimental investigation and modeling of an aircraft Otto engine operating with gasoline and heavier fuels

    NASA Astrophysics Data System (ADS)

    Saldivar Olague, Jose

    A Continental "O-200" aircraft Otto-cycle engine has been modified to burn diesel fuel. Algebraic models of the different processes of the cycle were developed from basic principles applied to a real engine, and utilized in an algorithm for the simulation of engine performance. The simulation provides a means to investigate the performance of the modified version of the Continental engine for a wide range of operating parameters. The main goals of this study are to increase the range of a particular aircraft by reducing the specific fuel consumption of the engine, and to show that such an engine can burn heavier fuels (such as diesel, kerosene, and jet fuel) instead of gasoline. Such heavier fuels are much less flammable during handling operations making them safer than aviation gasoline and very attractive for use in flight operations from naval vessels. The cycle uses an electric spark to ignite the heavier fuel at low to moderate compression ratios, The stratified charge combustion process is utilized in a pre-chamber where the spray injection of the fuel occurs at a moderate pressure of 1200 psi (8.3 MPa). One advantage of fuel injection into the combustion chamber instead of into the intake port, is that the air-to-fuel ratio can be widely varied---in contrast to the narrower limits of the premixed combustion case used in gasoline engines---in order to obtain very lean combustion. Another benefit is that higher compression ratios can be attained in the modified cycle with heavier fuels. The combination of injection into the chamber for lean combustion, and higher compression ratios allow to limit the peak pressure in the cylinder, and to avoid engine damage. Such high-compression ratios are characteristic of Diesel engines and lead to increase in thermal efficiency without pre-ignition problems. In this experimental investigation, operations with diesel fuel have shown that considerable improvements in the fuel efficiency are possible. The results of

  10. Using Fly-By-Wire Technology in Future Models of the UH-60 and Other Rotary Wing Aircraft

    NASA Technical Reports Server (NTRS)

    Solem, Courtney K.

    2011-01-01

    Several fixed-winged airplanes have successfully used fly-by-wire (FBW) technology for the last 40 years. This technology is now beginning to be incorporated into rotary wing aircraft. By using FBW technology, manufacturers are expecting to improve upon the weight, maintenance time and costs, handling and reliability of the aircraft. Before mass production of this new system begins in new models such as the UH-60MU, testing must be conducted to insure the safety of this technology as well as to reassure others it will be worth the time and money to make such a dramatic change to a perfectly functional machine. The RASCAL JUH-60A has been modified for these purposes. This Black Hawk helicopter has already been equipped with the FBW technology and can be configured as a near perfect representation of the UH-60MU. Because both machines have very similar qualities, the data collected from the RASCAL can be used to make future decisions about the UH-60MU. The U.S. Army AFDD Flight Project Office oversees all the design modifications for every hardware system used in the RASCAL aircraft. This project deals with specific designs and analyses of unique RASCAL aircraft subsystems and their modifications to conduct flight mechanics research.

  11. Development of an LS-DYNA Model of an ATR42-300 Aircraft for Crash Simulation

    NASA Technical Reports Server (NTRS)

    Jackson, Karen E.; Fasanella, Edwin L.

    2004-01-01

    This paper describes the development of an LS-DYNA simulation of a vertical drop test of an ATR42-300 twin-turboprop high-wing commuter-class airplane. A 30-ft/s drop test of this aircraft was performed onto a concrete impact surface at the FAA Technical Center on July 30, 2003. The purpose of the test was to evaluate the structural response of a commuter-class aircraft when subjected to a severe, but survivable, impact. The aircraft was configured with crew and passenger seats, anthropomorphic test dummies, forward and aft luggage, instrumentation, and onboard data acquisition systems. The wings were filled with approximately 8,700 lb. of water to represent the fuel and the aircraft weighed a total of 33,200 lb. The model, which consisted of 57,643 nodes and 62,979 elements, was developed from direct measurements of the airframe geometry, over a period of approximately 8 months. The seats, dummies, luggage, fuel, and other ballast were represented using concentrated masses. Comparisons were made of the structural deformation and failure behavior of the airframe, as well as selected acceleration time history responses.

  12. Probabilistic model, analysis and computer code for take-off and landing related aircraft crashes into a structure

    SciTech Connect

    Glaser, R.

    1996-02-06

    A methodology is presented that allows the calculation of the probability that any of a particular collection of structures will be hit by an aircraft in a take-off or landing related accident during a specified window of time with a velocity exceeding a given critical value. A probabilistic model is developed that incorporates the location of each structure relative to airport runways in the vicinity; the size of the structure; the sizes, types, and frequency of use of commercial, military, and general aviation aircraft which take-off and land at these runways; the relative frequency of take-off and landing related accidents by aircraft type; the stochastic properties of off-runway crashes, namely impact location, impact angle, impact velocity, and the heading, deceleration, and skid distance after impact; and the stochastic properties of runway overruns and runoffs, namely the position at which the aircraft exits the runway, its exit velocity, and the heading and deceleration after exiting. Relevant probability distributions are fitted from extensive commercial, military, and general aviation accident report data bases. The computer source code for implementation of the calculation is provided.

  13. Low-order nonlinear dynamic model of IC engine-variable pitch propeller system for general aviation aircraft

    NASA Technical Reports Server (NTRS)

    Richard, Jacques C.

    1995-01-01

    This paper presents a dynamic model of an internal combustion engine coupled to a variable pitch propeller. The low-order, nonlinear time-dependent model is useful for simulating the propulsion system of general aviation single-engine light aircraft. This model is suitable for investigating engine diagnostics and monitoring and for control design and development. Furthermore, the model may be extended to provide a tool for the study of engine emissions, fuel economy, component effects, alternative fuels, alternative engine cycles, flight simulators, sensors, and actuators. Results show that the model provides a reasonable representation of the propulsion system dynamics from zero to 10 Hertz.

  14. The Development and Use of a Flight Optimization System Model of a C-130E Transport Aircraft

    NASA Technical Reports Server (NTRS)

    Desch, Jeremy D.

    1995-01-01

    The Systems Analysis Branch at NASA Langley Research Center conducts a variety of aircraft design and analyses studies. These studies include the prediction of characteristics of a particular conceptual design, analyses of designs that already exist, and assessments of the impact of technology on current and future aircraft. The FLight OPtimization System (FLOPS) is a tool used for aircraft systems analysis and design. A baseline input model of a Lockheed C-130E was generated for the Flight Optimization System. This FLOPS model can be used to conduct design-trade studies and technology impact assessments. The input model was generated using standard input data such as basic geometries and mission specifications. All of the other data needed to determine the airplane performance is computed internally by FLOPS. The model was then calibrated to reproduce the actual airplane performance from flight test data. This allows a systems analyzer to change a specific item of geometry or mission definition in the FLOPS input file and evaluate the resulting change in performance from the output file. The baseline model of the C-130E was used to analyze the effects of implementing upper wing surface blowing on the airplane. This involved removing the turboprop engines that were on the C-130E and replacing them with turbofan engines. An investigation of the improvements in airplane performance with the new engines could be conducted within the Flight Optimization System. Although a thorough analysis was not completed, the impact of this change on basic mission performance was investigated.

  15. Analytical modeling of transport aircraft crash scenarios to obtain floor pulses

    NASA Technical Reports Server (NTRS)

    Wittlin, G.; Lackey, D.

    1983-01-01

    The KRAS program was used to analyze transport aircraft candidate crash scenarios. Aircraft floor pulses and seat/occupant responses are presented. Results show that: (1) longitudinal only pulses can be represented by equivalent step inputs and/or static requirements; (2) the L1649 crash test floor longitudinal pulse for the aft direction (forward inertia) is less than 9g static or an equivalent 5g pulse; aft inertia accelerations are extremely small ((ch76) 3g) for representative crash scenarios; (3) a viable procedure to relate crash scenario floor pulses to standard laboratory dynamic and static test data using state of the art analysis and test procedures was demonstrated; and (4) floor pulse magnitudes are expected to be lower for wide body aircraft than for smaller narrow body aircraft.

  16. 75 FR 66700 - Airworthiness Directives; Cessna Aircraft Company (Cessna) Model 402C Airplanes Modified by...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-29

    ... ``Docket No. FAA-2010-1084; Directorate Identifier 2010-CE-056-AD'' at the beginning of your comments. We... following new airworthiness directive (AD): Cessna Aircraft Company: Docket No. FAA-2010-1084;...

  17. 78 FR 75451 - Special Conditions: Cessna Model 750 Series Airplanes; Aircraft Electronic System Security...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-12

    ... systems and networks. Connectivity to, or access by, external systems and networks may result in security... configuration may allow the exploitation of network security vulnerabilities resulting in intentional or...; Aircraft Electronic System Security Protection From Unauthorized External Access AGENCY: Federal...

  18. Progressive Aerodynamic Model Identification From Dynamic Water Tunnel Test of the F-16XL Aircraft

    NASA Technical Reports Server (NTRS)

    Murphy, Patrick C.; Klein, Vladislav; Szyba, Nathan M.

    2004-01-01

    Development of a general aerodynamic model that is adequate for predicting the forces and moments in the nonlinear and unsteady portions of the flight envelope has not been accomplished to a satisfactory degree. Predicting aerodynamic response during arbitrary motion of an aircraft over the complete flight envelope requires further development of the mathematical model and the associated methods for ground-based testing in order to allow identification of the model. In this study, a general nonlinear unsteady aerodynamic model is presented, followed by a summary of a linear modeling methodology that includes test and identification methods, and then a progressive series of steps suggesting a roadmap to develop a general nonlinear methodology that defines modeling, testing, and identification methods. Initial steps of the general methodology were applied to static and oscillatory test data to identify rolling-moment coefficient. Static measurements uncovered complicated dependencies of the aerodynamic coefficient on angle of attack and sideslip in the stall region making it difficult to find a simple analytical expression for the measurement data. In order to assess the effect of sideslip on the damping and unsteady terms, oscillatory tests in roll were conducted at different values of an initial offset in sideslip. Candidate runs for analyses were selected where higher order harmonics were required for the model and where in-phase and out-of-phase components varied with frequency. From these results it was found that only data in the angle-of-attack range of 35 degrees to 37.5 degrees met these requirements. From the limited results it was observed that the identified models fit the data well and both the damping-in-roll and the unsteady term gain are decreasing with increasing sideslip and motion amplitude. Limited similarity between parameter values in the nonlinear model and the linear model suggest that identifiability of parameters in both terms may be a

  19. Characterization of dust emission from alluvial sources using aircraft observations and high-resolution modeling

    NASA Astrophysics Data System (ADS)

    Schepanski, Kerstin; Flamant, Cyrille; Chaboureau, Jean-Pierre; Kocha, Cecile; Banks, Jamie; Brindley, Helen; Lavaysse, Christophe; Marnas, Fabien; Pelon, Jacques; Tulet, Pierre

    2013-04-01

    We investigate mineral dust emission from alluvial sediments within the upland region in northern Mauritania in the vicinity of a decaying nocturnal low-level jet (LLJ). For the first time, the impact of valleys that are embedded in a rather homogeneous surrounding is investigated with regard to their role as dust source. Measures for local atmospheric dust burden were retrieved from airborne observations, satellite observations, and model simulations and analyzed in order to provide complementary information at different horizontal scales. Observations by the LNG backscatter lidar system flying aboard the SAFIRE Falcon 20 aircraft were taken along five parallel flight legs perpendicular to the orientation of the main valley system dominating the topography of the study area. Results from a comparison of lidar-derived extinction coefficients with topography and aerial photographs confirm the relevance of (1) alluvial sediments at the valley bottoms as a dust source, and (2) the break-down of the nocturnal LLJ as a trigger for dust emission in this region. An evaluation of the AROME regional model, forecasting dust at high resolution (5 km grid), points towards an underrepresentation of alluvial dust sources in this region. This is also evident from simulations by the MesoNH research model. Although MesoNH simulations show higher dust loadings than AROME which are more comparable to the observations, both models understimate the dust concentrations within the boundary layer compared to lidar observations. A sensitivity study on the impact of horizontal grid spacing (5 km versus 1 km) highlights the importance of spatial resolution on simulated dust loadings.

  20. Extracting dimensional geometric parameters from B-spline surface models of aircraft

    NASA Technical Reports Server (NTRS)

    Jayaram, U.; Myklebust, Arvid; Gelhausen, P.

    1992-01-01

    Research that creates techniques to automatically obtain dimensional geometric parameters from the nonuniform B-spline surface description of an object is presented. These techniques have been implemented successfully in the aircraft design software, ACSYNT, a computer-aided design system for conceptual aircraft design created at Virginia Tech and NASA Ames. The techniques created and implemented in this research are also of significance to general-purpose design.

  1. Experimental results and numerical modeling of solidification during aircraft high-g arcs

    NASA Technical Reports Server (NTRS)

    Curreri, P. A.; Ramachandran, N.; Downey, J. P.; Jones, J. C.

    1992-01-01

    The question of how the Coriolis and gravity gradient forces during high-gravity maneuvers compare to that for common centrifuges is addressed. Microstructural examination of samples solidified during high-gravity arcs reveals no evidence of convection dampening. As a first approximation, the high-gravity arc is modeled as a centrifuge with a radius of 20,480 ft and angular speed of 0.318 rpm. Scaling analysis indicates that the Coriolis and gravity gradient expected on the aircraft high gravity arc are less than that for the centrifuges by a factor of 100. Detailed Navier-Stokes analysis of the fluid flow and thermal fields during solidification of aluminum and Cd-Te during KC-135 high gravity show that convective flows of about 1 mm/s are induced. The thermal field is only slightly modified by the convection. Coriolis and gravity gradient during solidification in KC-135 high-gravity arcs, even at accelerations that have been shown to produce significant convective flow dampening in the centrifuge systems, are found to have no significant influence on the melt thermal and flowfields.

  2. Aerodynamic characteristics of a 1/6-scale powered model of the rotor systems research aircraft

    NASA Technical Reports Server (NTRS)

    Mineck, R. E.; Freeman, C. E.

    1977-01-01

    A wind-tunnel investigation was conducted to determine the effects of the main-rotor wake on the aerodynamic characteristics of the rotor systems research aircraft (RSRA). For the investigation, a 1/6-scale model with a four-blade articulated main rotor was used. Tests were conducted with and without the main rotor. Both the helicopter and the compound helicopter were tested. The latter configuration included the auxiliary thrust engines and the variable-incidence wing. Data were obtained over ranges of angle of attack, angle of sideslip, and main-rotor collective pitch angle at several main-rotor advance ratios. Results are presented for the total loads on the airframe as well as the loads on the rotor, the wing, and the tail. The results indicated that without the effect of the rotor wake, the RSRA had static longitudinal and directional stability and positive effective dihedral. With the effect of the main rotor and its wake, the RSRA exhibited longitudinal instability but retained static directional stability and positive effective dihedral.

  3. Quasi-Static Viscoelastic Finite Element Model of an Aircraft Tire

    NASA Technical Reports Server (NTRS)

    Johnson, Arthur R.; Tanner, John A.; Mason, Angela J.

    1999-01-01

    An elastic large displacement thick-shell mixed finite element is modified to allow for the calculation of viscoelastic stresses. Internal strain variables are introduced at the element's stress nodes and are employed to construct a viscous material model. First order ordinary differential equations relate the internal strain variables to the corresponding elastic strains at the stress nodes. The viscous stresses are computed from the internal strain variables using viscous moduli which are a fraction of the elastic moduli. The energy dissipated by the action of the viscous stresses is included in the mixed variational functional. The nonlinear quasi-static viscous equilibrium equations are then obtained. Previously developed Taylor expansions of the nonlinear elastic equilibrium equations are modified to include the viscous terms. A predictor-corrector time marching solution algorithm is employed to solve the algebraic-differential equations. The viscous shell element is employed to computationally simulate a stair-step loading and unloading of an aircraft tire in contact with a frictionless surface.

  4. Acoustic and aerodynamic study of a pusher-propeller aircraft model

    NASA Technical Reports Server (NTRS)

    Soderman, Paul T.; Horne, W. Clifton

    1990-01-01

    An aerodynamic and acoustic study was made of a pusher-propeller aircraft model in the NASA-Ames 7 x 10 ft Wind Tunnel. The test section was changed to operate as an open jet. The 591 mm diameter unswept propeller was operated alone and in the wake of three empennages: an I tail, Y tail, and a V tail. The radiated noise and detailed wake properties were measured. Results indicate that the unsteady blade loading caused by the blade interactions with the wake mean velocity distribution had a strong effect on the harmonics of blade passage noise. The blade passage harmonics above the first were substantially increased in all horizontal directions by the empennage/propeller interaction. Directivity in the plane of the propeller was maximum perpendicular to the blade surface. Increasing the tail loading caused the propeller harmonics to increase 3 to 5 dB for an empennage/propeller spacing of 0.38 mean empennage chords. The interaction noise became weak as empennage propeller spacing was increased beyond 1.0 mean empennage chord lengths. Unlike the mean wake deficit, the wake turbulence had only a small effect on the propeller noise, that effect being a small increase in the broadband noise.

  5. Resin Film Infusion (RFI) Process Modeling for Large Transport Aircraft Wing Structures

    NASA Technical Reports Server (NTRS)

    Knott, Tamara W.; Loos, Alfred C.

    2000-01-01

    Resin film infusion (RFI) is a cost-effective method for fabricating stiffened aircraft wing structures. The RFI process lends itself to the use of near net shape textile preforms manufactured through a variety of automated textile processes such as knitting and braiding. Often, these advanced fiber architecture preforms have through-the-thickness stitching for improved damage tolerance and delamination resistance. The challenge presently facing RFI is to refine the process to ensure complete infiltration and cure of a geometrically complex shape preform with the high fiber volume fraction needed for structural applications. An accurate measurement of preform permeability is critical for successful modeling of the RFI resin infiltration process. Small changes in the permeability can result in very different infiltration behavior and times. Therefore, it is important to accurately measure the permeabilities of the textile preforms used in the RFI process. The objective of this investigation was to develop test methods that can be used to measure the compaction behavior and permeabilities of high fiber volume fraction, advanced fiber architecture textile preforms. These preforms are often highly compacted due to through-the-thickness stitching used to improve damage tolerance. Test fixtures were designed and fabricated and used to measure both transverse and in-plane permeabilities. The fixtures were used to measure the permeabilities of multiaxial warp knit and triaxial braided preforms at fiber volume fractions from 55% to 65%. In addition, the effects of stitching characteristics, thickness, and batch variability on permeability and compaction behavior were investigated.

  6. Analysis of the effects of meteorology on aircraft exhaust dispersion and deposition using a Lagrangian particle model.

    PubMed

    Pecorari, Eliana; Mantovani, Alice; Franceschini, Chiara; Bassano, Davide; Palmeri, Luca; Rampazzo, Giancarlo

    2016-01-15

    The risk of air quality degradation is of considerable concern particularly for those airports that are located near urban areas. The ability to quantitatively predict the effects of air pollutants originated by airport operations is important for assessing air quality and the related impacts on human health. Current emission regulations have focused on local air quality in the proximity of airports. However, an integrated study should consider the effects of meteorological events, at both regional and local level, that can affect the dispersion and the deposition of exhausts. Rigorous scientific studies and extensive experimental data could contribute to the analysis of the impacts of airports expansion plans. This paper is focused on the analysis of the effects of meteorology on aircraft emission for the Marco Polo Airport in Venice. This is the most important international airport in the eastern part of the Po' Valley, one of the most polluted area in Europe. Air pollution is exacerbated by meteorology that is a combination of large and local scale effects that do not allow significant dispersion. Moreover, the airport is located near Venice, a city of noteworthy cultural and architectural relevance, and nearby the lagoon that hosts several areas of outstanding ecological importance at European level (Natura 2000 sites). Dispersion and deposit of the main aircraft exhausts (NOx, HC and CO) have been evaluated by using a Lagrangian particle model. Spatial and temporal aircraft exhaust dispersion has been analyzed for LTO cycle. Aircraft taxiing resulted to be the most impacting aircraft operation especially for the airport working area and its surroundings, however occasionally peaks may be observed even at high altitudes when cruise mode starts. Mixing height can affect concentrations more significantly than the concentrations in the exhausts themselves. An increase of HC and CO concentrations (15-50%) has been observed during specific meteorological events.

  7. The atmospheric effects of stratospheric aircraft. Report of the 1992 Models and Measurements Workshop. Volume 1: Workshop objectives and summary

    NASA Technical Reports Server (NTRS)

    Prather, Michael J. (Editor); Remsburg, Ellis E. (Editor)

    1993-01-01

    This Workshop on Stratospheric Models and Measurements (M&M) marks a significant expansion in the history of model intercomparisons. It provides a foundation for establishing the credibility of stratospheric models used in environmental assessments of chlorofluorocarbons, aircraft emissions, and climate-chemistry interactions. The core of the M&M comparisons involves the selection of observations of the current stratosphere (i.e., within the last 15 years): these data are believed to be accurate and representative of certain aspects of stratospheric chemistry and dynamics that the models should be able to simulate.

  8. The atmospheric effects of stratospheric aircraft. Report of the 1992 Models and Measurements Workshop. Volume 3: Special diagnostic studies

    NASA Technical Reports Server (NTRS)

    Prather, Michael J. (Editor); Remsberg, Ellis E. (Editor)

    1993-01-01

    This Workshop on Stratospheric Models and Measurements (M&M) marks a significant expansion in the history of model intercomparisons. It provides a foundation for establishing the credibility of stratospheric models used in environmental assessments of chlorofluorocarbons, aircraft emissions, and climate-chemistry interactions. The core of the M&M comparisons involves the selection of observations of the current stratosphere (i.e., within the last 15 years): these data are believed to be accurate and representative of certain aspects of stratospheric chemistry and dynamics that the models should be able to simulate.

  9. Characterization of dust emission from alluvial sediments using aircraft observations and modeling

    NASA Astrophysics Data System (ADS)

    Schepanski, K.; Flamant, C.; Chaboureau, J.; Kocha, C.; Banks, J.; Brindley, H. E.; Lavaysse, C.; Marnas, F.; Pelon, J.; Tulet, P.

    2013-12-01

    Recent studies using satellite observations show that numerous dust sources are located in the foothills of arid and semi-arid mountain regions such as over North Africa. Alluvial sediments deposited on the valley bottoms and flood plains are very prone to wind erosion and frequently serve as dust source. High surface wind speeds related to the break-down of the nocturnal low-level jet (LLJ) during the morning hours are identified as a frequent driving mechanism for dust uplift. We investigate dust emission from alluvial dust sources located within the upland region in northern Mauritania and discuss the impact of valleys with regard to their role as dust source. Measures for local atmospheric dust burden were retrieved from airborne observations, MSG SEVIR dust AOD fields and MesoNH model simulations, and analyzed in order to provide complementary information on dust source activation and local dust transport at different horizontal scales. Vertical distribution of atmospheric mineral dust was obtained from the LNG backscatter lidar system flying aboard the French Falcon-20 aircraft. Lidar extinction coefficients were compared to topography, aerial photographs, and dust AOD fields to confirm the relevance of alluvial sediments at the valley bottoms as dust source. The observed dust emission event was further evaluated using the regional model MesoNH. A sensitivity study on the impact of the horizontal grid spacing highlights the importance of the spatial resolution on simulated dust loadings. The results further illustrate the importance of an explicit representation of alluvial dust sources in such models to better capture the spatial-temporal distribution of airborne dust concentrations.

  10. 76 FR 23921 - Airworthiness Directives; Hawker Beechcraft Corporation Models B300 and B300C (C-12W) Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-29

    ... receipt. ] FOR FURTHER INFORMATION CONTACT: Jason Brys, Flight Test Engineer, FAA, Wichita Aircraft... that section, Congress charges the FAA with promoting safe flight of civil aircraft in air commerce by... Drawing 130M000030 or Kit Drawing 130-4014 that incorporate Aircraft Flight Manual P/N 130-...

  11. Preliminary Work for Modeling the Propellers of an Aircraft as a Noise Source in an Acoustic Boundary Element Analysis

    NASA Technical Reports Server (NTRS)

    Vlahopoulos, Nickolas; Lyle, Karen H.; Burley, Casey L.

    1998-01-01

    An algorithm for generating appropriate velocity boundary conditions for an acoustic boundary element analysis from the kinematics of an operating propeller is presented. It constitutes the initial phase of Integrating sophisticated rotorcraft models into a conventional boundary element analysis. Currently, the pressure field is computed by a linear approximation. An initial validation of the developed process was performed by comparing numerical results to test data for the external acoustic pressure on the surface of a tilt-rotor aircraft for one flight condition.

  12. The stochastic control of the F-8C aircraft using the Multiple Model Adaptive Control (MMAC) method

    NASA Technical Reports Server (NTRS)

    Athans, M.; Dunn, K. P.; Greene, E. S.; Lee, W. H.; Sandel, N. R., Jr.

    1975-01-01

    The purpose of this paper is to summarize results obtained for the adaptive control of the F-8C aircraft using the so-called Multiple Model Adaptive Control method. The discussion includes the selection of the performance criteria for both the lateral and the longitudinal dynamics, the design of the Kalman filters for different flight conditions, the 'identification' aspects of the design using hypothesis testing ideas, and the performance of the closed loop adaptive system.

  13. 75 FR 61989 - Airworthiness Directives; McDonnell Douglas Corporation Model DC-8-31, DC-8-32, DC-8-33, DC-8-41...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-07

    ... Corporation Model DC- 8-31, DC-8-32, DC-8-33, DC-8-41, DC-8-42, and DC-8-43 Airplanes; Model DC-8-50 Series Airplanes; Model DC-8F-54 and DC-8F-55 Airplanes; Model DC-8-60 Series Airplanes; Model DC-8-60F Series Airplanes; Model DC-8- 70 Series Airplanes; and Model DC-8-70F Series Airplanes AGENCY:......

  14. Why E-Business Must Evolve beyond Market Orientation: Applying Human Interaction Models to Computer-Mediated Corporate Communications.

    ERIC Educational Resources Information Center

    Johnston, Kevin McCullough

    2001-01-01

    Considers the design of corporate communications for electronic business and discusses the increasing importance of corporate interaction as companies work in virtual environments. Compares sociological and psychological theories of human interaction and relationship formation with organizational interaction theories of corporate relationship…

  15. Full-scale testing and progressive damage modeling of sandwich composite aircraft fuselage structure

    NASA Astrophysics Data System (ADS)

    Leone, Frank A., Jr.

    A comprehensive experimental and computational investigation was conducted to characterize the fracture behavior and structural response of large sandwich composite aircraft fuselage panels containing artificial damage in the form of holes and notches. Full-scale tests were conducted where panels were subjected to quasi-static combined pressure, hoop, and axial loading up to failure. The panels were constructed using plain-weave carbon/epoxy prepreg face sheets and a Nomex honeycomb core. Panel deformation and notch tip damage development were monitored during the tests using several techniques, including optical observations, strain gages, digital image correlation (DIC), acoustic emission (AE), and frequency response (FR). Additional pretest and posttest inspections were performed via thermography, computer-aided tap tests, ultrasound, x-radiography, and scanning electron microscopy. The framework to simulate damage progression and to predict residual strength through use of the finite element (FE) method was developed. The DIC provided local and full-field strain fields corresponding to changes in the state-of-damage and identified the strain components driving damage progression. AE was monitored during loading of all panels and data analysis methodologies were developed to enable real-time determination of damage initiation, progression, and severity in large composite structures. The FR technique has been developed, evaluating its potential as a real-time nondestructive inspection technique applicable to large composite structures. Due to the large disparity in scale between the fuselage panels and the artificial damage, a global/local analysis was performed. The global FE models fully represented the specific geometries, composite lay-ups, and loading mechanisms of the full-scale tests. A progressive damage model was implemented in the local FE models, allowing the gradual failure of elements in the vicinity of the artificial damage. A set of modifications

  16. Estimation of energetic efficiency of heat supply in front of the aircraft at supersonic accelerated flight. Part 1. Mathematical models

    NASA Astrophysics Data System (ADS)

    Latypov, A. F.

    2008-12-01

    Fuel economy at boost trajectory of the aerospace plane was estimated during energy supply to the free stream. Initial and final flight velocities were specified. The model of a gliding flight above cold air in an infinite isobaric thermal wake was used. The fuel consumption rates were compared at optimal trajectory. The calculations were carried out using a combined power plant consisting of ramjet and liquid-propellant engine. An exergy model was built in the first part of the paper to estimate the ramjet thrust and specific impulse. A quadratic dependence on aerodynamic lift was used to estimate the aerodynamic drag of aircraft. The energy for flow heating was obtained at the expense of an equivalent reduction of the exergy of combustion products. The dependencies were obtained for increasing the range coefficient of cruise flight for different Mach numbers. The second part of the paper presents a mathematical model for the boost interval of the aircraft flight trajectory and the computational results for the reduction of fuel consumption at the boost trajectory for a given value of the energy supplied in front of the aircraft.

  17. Three dimensional model calculations of the global dispersion of high speed aircraft exhaust and implications for stratospheric ozone loss

    NASA Technical Reports Server (NTRS)

    Douglass, Anne R.; Rood, Richard B.; Jackman, Charles H.; Weaver, Clark J.

    1994-01-01

    Two-dimensional (zonally averaged) photochemical models are commonly used for calculations of ozone changes due to various perturbations. These include calculating the ozone change expected as a result of change in the lower stratospheric composition due to the exhaust of a fleet of supersonic aircraft flying in the lower stratosphere. However, zonal asymmetries are anticipated to be important to this sort of calculation. The aircraft are expected to be restricted from flying over land at supersonic speed due to sonic booms, thus the pollutant source will not be zonally symmetric. There is loss of pollutant through stratosphere/troposphere exchange, but these processes are spatially and temporally inhomogeneous. Asymmetry in the pollutant distribution contributes to the uncertainty in the ozone changes calculated with two dimensional models. Pollutant distributions for integrations of at least 1 year of continuous pollutant emissions along flight corridors are calculated using a three dimensional chemistry and transport model. These distributions indicate the importance of asymmetry in the pollutant distributions to evaluation of the impact of stratospheric aircraft on ozone. The implications of such pollutant asymmetries to assessment calculations are discussed, considering both homogeneous and heterogeneous reactions.

  18. The insertion of human dynamics models in the flight control loops of V/STOL research aircraft. Appendix 2: The optimal control model of a pilot in V/STOL aircraft control loops

    NASA Technical Reports Server (NTRS)

    Zipf, Mark E.

    1989-01-01

    An overview is presented of research work focussed on the design and insertion of classical models of human pilot dynamics within the flight control loops of V/STOL aircraft. The pilots were designed and configured for use in integrated control system research and design. The models of human behavior that were considered are: McRuer-Krendel (a single variable transfer function model); and Optimal Control Model (a multi-variable approach based on optimal control and stochastic estimation theory). These models attempt to predict human control response characteristics when confronted with compensatory tracking and state regulation tasks. An overview, mathematical description, and discussion of predictive limitations of the pilot models is presented. Design strategies and closed loop insertion configurations are introduced and considered for various flight control scenarios. Models of aircraft dynamics (both transfer function and state space based) are developed and discussed for their use in pilot design and application. Pilot design and insertion are illustrated for various flight control objectives. Results of pilot insertion within the control loops of two V/STOL research aricraft (Sikorski Black Hawk UH-60A, McDonnell Douglas Harrier II AV-8B) are presented and compared against actual pilot flight data. Conclusions are reached on the ability of the pilot models to adequately predict human behavior when confronted with similar control objectives.

  19. 75 FR 56858 - Exclusions From Gross Income of Foreign Corporations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-17

    ... foreign corporations from the international operation of ships or aircraft. The final regulations adopt... determine if it is eligible to exclude its income from the international operation of ships or aircraft from... to exclude from gross income certain income from the international operation of ships or...

  20. Insights on TTL Dehydration Mechanisms from Microphysical Modelling of Aircraft Observations

    NASA Technical Reports Server (NTRS)

    Ueyama, R.; Pfister, L.; Jensen, E.

    2014-01-01

    The Tropical Tropopause Layer (TTL), a transition layer between the upper troposphere and lower stratosphere in the tropics, serves as the entryway of various trace gases into the stratosphere. Of particular interest is the transport of water vapor through the TTL, as WV is an important greenhouse gas and also plays a significant role in stratospheric chemistry by affecting polar stratospheric cloud formation and the ozone budget. While the dominant control of stratospheric water vapor by tropical cold point temperatures via the "freeze-drying" process is generally well understood, the details of the TTL dehydration mechanisms, including the relative roles of deep convection, atmospheric waves and cloud microphysical processes, remain an active area of research. The dynamical and microphysical processes that influence TTL water vapor concentrations are investigated in simulations of cloud formation and dehydration along air parcel trajectories. We first confirm the validity of our Lagrangian models in a case study involving measurements from the Airborne Tropical TRopopause EXperiment (ATTREX) flights over the central and eastern tropical Pacific in Oct-Nov 2011 and Jan-Feb 2013. ERA-Interim winds and seasonal mean heating rates from Yang et al. (2010) are used to advance parcels back in time from the flight tracks, and time-varying vertical profiles of water vapor along the diabatic trajectories are calculated in a one-dimensional cloud model as in Jensen and Pfister (2004) but with more reliable temperature field, wave and convection schemes. The simulated water vapor profiles demonstrate a significant improvement over estimates based on the Lagrangian Dry Point, agreeing well with aircraft observations when the effects of cloud microphysics, subgrid-scale gravity waves and convection are included. Following this approach, we examine the dynamical and microphysical control of TTL water vapor in the 30ºS-30ºN latitudinal belt and elucidate the dominant processes

  1. A zonal method for modeling powered-lift aircraft flow fields

    NASA Technical Reports Server (NTRS)

    Roberts, D. W.

    1989-01-01

    A zonal method for modeling powered-lift aircraft flow fields is based on the coupling of a three-dimensional Navier-Stokes code to a potential flow code. By minimizing the extent of the viscous Navier-Stokes zones the zonal method can be a cost effective flow analysis tool. The successful coupling of the zonal solutions provides the viscous/inviscid interations that are necessary to achieve convergent and unique overall solutions. The feasibility of coupling the two vastly different codes is demonstrated. The interzone boundaries were overlapped to facilitate the passing of boundary condition information between the codes. Routines were developed to extract the normal velocity boundary conditions for the potential flow zone from the viscous zone solution. Similarly, the velocity vector direction along with the total conditions were obtained from the potential flow solution to provide boundary conditions for the Navier-Stokes solution. Studies were conducted to determine the influence of the overlap of the interzone boundaries and the convergence of the zonal solutions on the convergence of the overall solution. The zonal method was applied to a jet impingement problem to model the suckdown effect that results from the entrainment of the inviscid zone flow by the viscous zone jet. The resultant potential flow solution created a lower pressure on the base of the vehicle which produces the suckdown load. The feasibility of the zonal method was demonstrated. By enhancing the Navier-Stokes code for powered-lift flow fields and optimizing the convergence of the coupled analysis a practical flow analysis tool will result.

  2. Observations and modelling of the boundary layer using remotely piloted aircraft

    NASA Astrophysics Data System (ADS)

    Cayez, Gregoire; Dralet, Jean-Philippe; Seity, Yann; Momboisse, Geraud; Hattenberger, Gautier; Bronz, Murat; Roberts, Greg

    2014-05-01

    Over the past decade, the scientific community considers the RPAS (remotely piloted aircraft system) as a tool which can help to improve their knowledge of climate and atmospheric phenomena. RPAS equipped with instruments can now conduct measurements in areas that are too hazardous or remote for a manned plane. RPAS are especially adapted system for observing the atmospheric boundary layer processes at high vertical and temporal resolution. The main objectives of VOLTIGE (Vecteur d'Observation de La Troposphère pour l'Investigation et la Gestion de l'Environnement) are to study the life cycle of fog with micro-RPAS, encourage direct participation of the students on the advancement and development of novel observing systems, and assess the feasibility of deploying RPAS in Météo-France's operational network. The instrumented RPAS flights successfully observed the evolution of small-scale meteorological events. Before the arrival of the warm pseudo-front, profiles show a temperature inversion of a hundred meters, which overlaps a cold and wet atmospheric layer. Subsequent profiles show the combination of the arrival of a marine air mass as well as the arrival of a higher level warm pseudo-front. A third case study characterizes the warm sector of the disturbance. Two distinct air masses are visible on the vertical profiles, and show a dry air above an air almost saturated and slightly colder. The temperature and the relative humidity profiles show < 1 meter vertical resolution with a difference between ascent and descent profiles within ± 0.5°C and ± 6 % RH. These results comply with the Météo-France standard limits of quality control. The RPAS profiles were compared with those of the Arome forecast model (an operational model at Météo France). The temperature and wind in the Arome model profiles generally agree with those of the RPAS (less for relative humidity profiles). The Arome model also suggests transitions between air masses occurred at a higher

  3. Crack propagation monitoring in a full-scale aircraft fatigue test based on guided wave-Gaussian mixture model

    NASA Astrophysics Data System (ADS)

    Qiu, Lei; Yuan, Shenfang; Bao, Qiao; Mei, Hanfei; Ren, Yuanqiang

    2016-05-01

    For aerospace application of structural health monitoring (SHM) technology, the problem of reliable damage monitoring under time-varying conditions must be addressed and the SHM technology has to be fully validated on real aircraft structures under realistic load conditions on ground before it can reach the status of flight test. In this paper, the guided wave (GW) based SHM method is applied to a full-scale aircraft fatigue test which is one of the most similar test status to the flight test. To deal with the time-varying problem, a GW-Gaussian mixture model (GW-GMM) is proposed. The probability characteristic of GW features, which is introduced by time-varying conditions is modeled by GW-GMM. The weak cumulative variation trend of the crack propagation, which is mixed in time-varying influence can be tracked by the GW-GMM migration during on-line damage monitoring process. A best match based Kullback-Leibler divergence is proposed to measure the GW-GMM migration degree to reveal the crack propagation. The method is validated in the full-scale aircraft fatigue test. The validation results indicate that the reliable crack propagation monitoring of the left landing gear spar and the right wing panel under realistic load conditions are achieved.

  4. A Model Stitching Architecture for Continuous Full Flight-Envelope Simulation of Fixed-Wing Aircraft and Rotorcraft from Discrete Point Linear Models

    DTIC Science & Technology

    2016-04-01

    AND ROTORCRAFT FROM DISCRETE-POINT LINEAR MODELS Eric L. Tobias and Mark B. Tischler Aviation Development Directorate Aviation and Missile...Wing Aircraft and Rotorcraft from Discrete-Point Linear Models Eric L. Tobias San Jose State University U.S. Army Aviation Development Directorate...AMRDEC) Moffett Field, CA Mark B. Tischler U.S. Army Aviation Development Directorate (AMRDEC) Moffett Field, CA April 2016 Abstract A comprehensive model

  5. Predictions of F-111 TACT aircraft buffet response and correlations of fluctuating pressures measured on aluminum and steel models and the aircraft

    NASA Technical Reports Server (NTRS)

    Coe, Charles F.; Cunningham, Atlee M., Jr.

    1987-01-01

    Results of buffet research that was conducted as part of the joint USAF/NASA F-111 TACT Research Program are presented. The correlation of wind tunnel and flight measurements of buffet excitation showed that there generally was good agreement between measurements of pressure fluctuations on the models and aircraft in regions of separated flow. At shock-wave boundaries of the separated flow, correlations of pressure fluctuations were not so good, due to Reynolds number and static elastic effects. The buffet prediction method, which applies a forcing function that is obtained by real-time integration of pressure time histories with the natural modes, is described. The generalized forces, including the effects of wing and tail, correlations of predicted and measured damping, and correlations of predicted and measured buffet response are presented. All presented data are for a Mach number of 0.8 with wing-sweep angles of 26 and 35 deg for a range of angles-of-attack that include buffet onset to high intensity buffeting. Generally, the buffet predictions were considered to be quite good particularly in light of past buffet-prediction experience.

  6. Quantifying the Effects of Aircraft on Climate With a Model That Treats the Subgrid Evolution of Contrails From All Commercial Flights Worldwide

    NASA Astrophysics Data System (ADS)

    Jacobson, M. Z.; Wilkerson, J. T.; Naiman, A. D.; Lele, S. K.

    2009-12-01

    This study quantifies the modeled effects of aircraft on global climate, cloudiness, and atmospheric composition by treating, for the first time, exhaust from all commercial aircraft flights worldwide at the subgrid scale. Speciated gas and particle emission data for individual commercial aircraft flights in 2004 were obtained from the Volpe National Transportation Systems Center. Algorithms were developed for the global-local nested model GATOR-GCMOM to solve for the evolution of emissions within each subgrid exhaust plume of each segment of each flight. Processes solved included time-dependent spreading and shearing of individual subgrid line contrail cross sections and discrete size-resolved aerosol-hydrometeor ice nucleation, condensation/evaporation, deposition/sublimation, and coagulation among and between aerosol and contrail particles within each plume. When contrails sublimated/evaporated, they were added to the grid scale where they affected externally- and internally-mixed grid-scale size-resolved aerosols and stratus clouds and subgrid cumulus clouds. Baseline model results were analyzed against data. A nine-year sensitivity simulation indicated that aircraft exhaust caused a linear contrail cloud fraction of ~0.0012, comparable with results from other studies. Whereas aircraft increased cirrus fraction where contrails were most abundant, they decreased cirrus fraction in several locations by increasing tropospheric temperatures, reducing relative humidities in such locations. As such, aircraft can reduce cirrus when modeled microphysical and meteorological feedbacks are considered. Aircraft exhaust increased average global surface air temperatures by ~0.03 K (~4% of observed surface global warming since 1850) and upper tropospheric temperatures by ~0.06 K (~9% of observed upper-tropospheric warming from 1958-2002), increasing tropospheric stability. A second pair of global simulations with two additional model layers supported the first pair but

  7. Mechanical testing and modelling of carbon-carbon composites for aircraft disc brakes

    NASA Astrophysics Data System (ADS)

    Bradley, Luke R.

    The objective of this study is to improve the understanding of the stress distributions and failure mechanisms experienced by carbon-carbon composite aircraft brake discs using finite element (FE) analyses. The project has been carried out in association with Dunlop Aerospace as an EPSRC CASE studentship. It therefore focuses on the carbon-carbon composite brake disc material produced by Dunlop Aerospace, although it is envisaged that the approach will have broader applications for modelling and mechanical testing of carbon-carbon composites in general. The disc brake material is a laminated carbon-carbon composite comprised of poly(acrylonitrile) (PAN) derived carbon fibres in a chemical vapour infiltration (CVI) deposited matrix, in which the reinforcement is present in both continuous fibre and chopped fibre forms. To pave the way for the finite element analysis, a comprehensive study of the mechanical properties of the carbon-carbon composite material was carried out. This focused largely, but not entirely, on model composite materials formulated using structural elements of the disc brake material. The strengths and moduli of these materials were measured in tension, compression and shear in several orientations. It was found that the stress-strain behaviour of the materials were linear in directions where there was some continuous fibre reinforcement, but non-linear when this was not the case. In all orientations, some degree of non-linearity was observed in the shear stress-strain response of the materials. However, this non-linearity was generally not large enough to pose a problem for the estimation of elastic moduli. Evidence was found for negative Poisson's ratio behaviour in some orientations of the material in tension. Additionally, the through-thickness properties of the composite, including interlaminar shear strength, were shown to be positively related to bulk density. The in-plane properties were mostly unrelated to bulk density over the range of

  8. Loftin Collection - Boeing Aircraft

    NASA Technical Reports Server (NTRS)

    1933-01-01

    Either a F2B-1 or F3B-1, both aircraft were built by Boeing and both were powered by Pratt and Whitney Wasp engines. These fighters were intended for Navy shipboard use. Boeing F3B-1: While most Boeing F3B-1s served the U. S. Navy aircraft carriers the Lexington and the Saratoga, this example flew in NACA hands at the Langley Memorial Aeronautical Laboratory in the late 1920's. Also known as the Boeing Model 77, the aircraft was the next to last F3B-1 build in November 1928.

  9. Flow-Field Investigation of Gear-Flap Interaction on a Gulfstream Aircraft Model

    NASA Technical Reports Server (NTRS)

    Yao, Chung-Sheng; Jenkins, Luther N.; Bartram, Scott M.; Harris, Jerome; Khorrami, Mehdi R.; Mace, W. Derry

    2014-01-01

    Off-surface flow measurements of a high-fidelity 18% scale Gulfstream aircraft model in landing configuration with the main landing gear deployed are presented. Particle Image Velocimetry (PIV) and Laser Velocimetry (LV) were used to measure instantaneous velocities in the immediate vicinity of the main landing gear and its wake and near the inboard tip of the flap. These measurements were made during the third entry of a series of tests conducted in the NASA Langley Research Center (LaRC) 14- by 22-Foot Subsonic Tunnel (14 x 22) to obtain a comprehensive set of aeroacoustic measurements consisting of both aerodynamic and acoustic data. The majority of the off-body measurements were obtained at a freestream Mach number of 0.2, angle of attack of 3 degrees, and flap deflection angle of 39 degrees with the landing gear on. A limited amount of data was acquired with the landing gear off. LV was used to measure the velocity field in two planes upstream of the landing gear and to measure two velocity profiles in the landing gear wake. Stereo and 2-D PIV were used to measure the velocity field over a region extending from upstream of the landing gear to downstream of the flap trailing edge. Using a special traverse system installed under the tunnel floor, the velocity field was measured at 92 locations to obtain a comprehensive picture of the pertinent flow features and characteristics. The results clearly show distinct structures in the wake that can be associated with specific components on the landing gear and give insight into how the wake is entrained by the vortex at the inboard tip of the flap.

  10. Carbon flux estimation for Siberia by inverse modeling constrained by aircraft and tower CO2 measurements

    NASA Astrophysics Data System (ADS)

    Saeki, T.; Maksyutov, S.; Sasakawa, M.; Machida, T.; Arshinov, M.; Tans, P. P.; Conway, T. J.; Saito, M.; Valsala, V.; Oda, T.; Andres, R. J.

    2012-12-01

    Despite Siberian ecosystems being one of the largest carbon reservoirs in the world, the Siberian carbon sink remains poorly understood due to the limited numbers of observations. We present the first results of atmospheric CO2 inversions utilizing measurements from a Siberian tower network (Japan-Russia Siberian Tall Tower Inland Observation Network; JR-STATION) and four aircraft sites, in addition to surface background flask measurements by the National Oceanic and Atmospheric Administration (NOAA). The inverse model estimates monthly fluxes for 68 regions globally. Our inversion with only the NOAA data yielded a boreal Eurasian CO2 flux of -0.56 ± 0.79 GtC yr-1, whereas we obtained a weaker uptake of -0.35 ± 0.61 GtC yr-1 when the Siberian data were also included. This difference is mainly explained by a weakened summer uptake, especially in East Siberia. We also found the inclusion of the Siberian data had significant impacts on inversion results over northeastern Europe as well as boreal Eurasia. The inversion with the Siberian data reduced the regional uncertainty by 22 % on average in boreal Eurasia, and further uncertainty reductions up to 80 % were found in eastern and western Siberia. Larger interannual variability was clearly seen in the inversion including the Siberia data than the inversion without the Siberia data. In the inversion with NOAA plus Siberia data, East Siberia showed larger interannual variability than that in West and Central Siberia. Finally, we conducted forward simulations using estimated fluxes and confirmed that the fit to independent measurements over Central Siberia, which were not included in the inversions, was visibly improved.

  11. 75 FR 82333 - Airworthiness Directives; McDonnell Douglas Corporation Model DC-10-10, DC-10-10F, and MD-10-10F...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-30

    ... Corporation Model DC- 10-10, DC-10-10F, and MD-10-10F Airplanes AGENCY: Federal Aviation Administration (FAA... directive (AD) for certain Model DC-10-10, DC-10-10F, and MD-10-10F airplanes. This proposed AD would...., Washington, DC 20590. Hand Delivery: U.S. Department of Transportation, Docket Operations, M-30,...

  12. A simple dynamic engine model for use in a real-time aircraft simulation with thrust vectoring

    NASA Technical Reports Server (NTRS)

    Johnson, Steven A.

    1990-01-01

    A simple dynamic engine model was developed at the NASA Ames Research Center, Dryden Flight Research Facility, for use in thrust vectoring control law development and real-time aircraft simulation. The simple dynamic engine model of the F404-GE-400 engine (General Electric, Lynn, Massachusetts) operates within the aircraft simulator. It was developed using tabular data generated from a complete nonlinear dynamic engine model supplied by the manufacturer. Engine dynamics were simulated using a throttle rate limiter and low-pass filter. Included is a description of a method to account for axial thrust loss resulting from thrust vectoring. In addition, the development of the simple dynamic engine model and its incorporation into the F-18 high alpha research vehicle (HARV) thrust vectoring simulation. The simple dynamic engine model was evaluated at Mach 0.2, 35,000 ft altitude and at Mach 0.7, 35,000 ft altitude. The simple dynamic engine model is within 3 percent of the steady state response, and within 25 percent of the transient response of the complete nonlinear dynamic engine model.

  13. Modeling of gas turbine - solid oxide fuel cell systems for combined propulsion and power on aircraft

    NASA Astrophysics Data System (ADS)

    Waters, Daniel Francis

    This dissertation investigates the use of gas turbine (GT) engine integrated solid oxide fuel cells (SOFCs) to reduce fuel burn in aircraft with large electrical loads like sensor-laden unmanned air vehicles (UAVs). The concept offers a number of advantages: the GT absorbs many SOFC balance of plant functions (supplying fuel, air, and heat to the fuel cell) thereby reducing the number of components in the system; the GT supplies fuel and pressurized air that significantly increases SOFC performance; heat and unreacted fuel from the SOFC are recaptured by the GT cycle offsetting system-level losses; good transient response of the GT cycle compensates for poor transient response of the SOFC. The net result is a system that can supply more electrical power more efficiently than comparable engine-generator systems with only modest (<10%) decrease in power density. Thermodynamic models of SOFCs, catalytic partial oxidation (CPOx) reactors, and three GT engine types (turbojet, combined exhaust turbofan, separate exhaust turbofan) are developed that account for equilibrium gas phase and electrochemical reaction, pressure losses, and heat losses in ways that capture `down-the-channel' effects (a level of fidelity necessary for making meaningful performance, mass, and volume estimates). Models are created in a NASA-developed environment called Numerical Propulsion System Simulation (NPSS). A sensitivity analysis identifies important design parameters and translates uncertainties in model parameters into uncertainties in overall performance. GT-SOFC integrations reduce fuel burn 3-4% in 50 kW systems on 35 kN rated engines (all types) with overall uncertainty <1%. Reductions of 15-20% are possible at the 200 kW power level. GT-SOFCs are also able to provide more electric power (factors >3 in some cases) than generator-based systems before encountering turbine inlet temperature limits. Aerodynamic drag effects of engine-airframe integration are by far the most important

  14. Extending acoustic data measured with small-scale supersonic model jets to practical aircraft exhaust jets

    NASA Astrophysics Data System (ADS)

    Kuo, Ching-Wen

    2010-06-01

    Modern military aircraft jet engines are designed with variable geometry nozzles to provide optimum thrust in different operating conditions within the flight envelope. However, the acoustic measurements for such nozzles are scarce, due to the cost involved in making full-scale measurements and the lack of details about the exact geometry of these nozzles. Thus the present effort at The Pennsylvania State University and the NASA Glenn Research Center, in partnership with GE Aviation, is aiming to study and characterize the acoustic field produced by supersonic jets issuing from converging-diverging military style nozzles. An equally important objective is to develop a scaling methodology for using data obtained from small- and moderate-scale experiments which exhibits the independence of the jet sizes to the measured noise levels. The experimental results presented in this thesis have shown reasonable agreement between small-scale and moderate-scale jet acoustic data, as well as between heated jets and heat-simulated ones. As the scaling methodology is validated, it will be extended to using acoustic data measured with small-scale supersonic model jets to the prediction of the most important components of full-scale engine noise. When comparing the measured acoustic spectra with a microphone array set at different radial locations, the characteristics of the jet noise source distribution may induce subtle inaccuracies, depending on the conditions of jet operation. A close look is taken at the details of the noise generation region in order to better understand the mismatch between spectra measured at various acoustic field radial locations. A processing methodology was developed to correct the effect of the noise source distribution and efficiently compare near-field and far-field spectra with unprecedented accuracy. This technique then demonstrates that the measured noise levels in the physically restricted space of an anechoic chamber can be appropriately

  15. Predicting Visibility of Aircraft

    PubMed Central

    Watson, Andrew; Ramirez, Cesar V.; Salud, Ellen

    2009-01-01

    Visual detection of aircraft by human observers is an important element of aviation safety. To assess and ensure safety, it would be useful to be able to be able to predict the visibility, to a human observer, of an aircraft of specified size, shape, distance, and coloration. Examples include assuring safe separation among aircraft and between aircraft and unmanned vehicles, design of airport control towers, and efforts to enhance or suppress the visibility of military and rescue vehicles. We have recently developed a simple metric of pattern visibility, the Spatial Standard Observer (SSO). In this report we examine whether the SSO can predict visibility of simulated aircraft images. We constructed a set of aircraft images from three-dimensional computer graphic models, and measured the luminance contrast threshold for each image from three human observers. The data were well predicted by the SSO. Finally, we show how to use the SSO to predict visibility range for aircraft of arbitrary size, shape, distance, and coloration. PMID:19462007

  16. Predicting visibility of aircraft.

    PubMed

    Watson, Andrew; Ramirez, Cesar V; Salud, Ellen

    2009-05-20

    Visual detection of aircraft by human observers is an important element of aviation safety. To assess and ensure safety, it would be useful to be able to be able to predict the visibility, to a human observer, of an aircraft of specified size, shape, distance, and coloration. Examples include assuring safe separation among aircraft and between aircraft and unmanned vehicles, design of airport control towers, and efforts to enhance or suppress the visibility of military and rescue vehicles. We have recently developed a simple metric of pattern visibility, the Spatial Standard Observer (SSO). In this report we examine whether the SSO can predict visibility of simulated aircraft images. We constructed a set of aircraft images from three-dimensional computer graphic models, and measured the luminance contrast threshold for each image from three human observers. The data were well predicted by the SSO. Finally, we show how to use the SSO to predict visibility range for aircraft of arbitrary size, shape, distance, and coloration.

  17. The Proposal Concept of Development and Implementation in Strategy of Sustainable Corporate Social Responsibility in the Context of the HCS Model 3E

    NASA Astrophysics Data System (ADS)

    Sakál, Peter; Hrdinová, Gabriela

    2016-06-01

    This article is the result of a conceptual design methodology for the development of a sustainable strategy of sustainable corporate social responsibility (SCSR) in the context of the HCS model 3E formed, as a co-author within the stated grants and dissertation. On the basis of the use of propositional logic, the SCSR procedure is proposed for incorporation into the corporate strategy of sustainable development and the integrated management system (IMS) of the industrial enterprise. The aim of this article is the proposal of the concept of development and implementation strategy of SCSR in the context of the HCS model 3E.

  18. Evaluation of optimal control type models for the human gunner in an Anti-Aircraft Artillery (AAA) system

    NASA Technical Reports Server (NTRS)

    Phatak, A. V.; Kessler, K. M.

    1975-01-01

    The selection of the structure of optimal control type models for the human gunner in an anti aircraft artillery system is considered. Several structures within the LQG framework may be formulated. Two basic types are considered: (1) kth derivative controllers; and (2) proportional integral derivative (P-I-D) controllers. It is shown that a suitable criterion for model structure determination can be based on the ensemble statistics of the tracking error. In the case when the ensemble tracking steady state error is zero, it is suggested that a P-I-D controller formulation be used in preference to the kth derivative controller.

  19. Effects of engine emissions from high-speed civil transport aircraft: A two-dimensional modeling study, part 2

    NASA Technical Reports Server (NTRS)

    Ko, Malcolm K. W.; Weisenstein, Debra K.; Sze, Nein Dak; Shia, Run-Lie; Rodriguez, Jose M.; Heisey, Curtis

    1991-01-01

    The AER two-dimensional chemistry-transport model is used to study the effect of supersonic and subsonic aircraft operation in the 2010 atmosphere on stratospheric ozone (O3). The results show that: (1) the calculated O3 response is smaller in the 2010 atmosphere compared to previous calculations performed in the 1980 atmosphere; (2) with the emissions provided, the calculated decrease in O3 column is less than 1 percent; and (3) the effect of model grid resolution on O3 response is small provided that the physics is not modified.

  20. Corporate dentistry in 2032?

    PubMed

    Watson, Michael

    2012-07-01

    During the last 20 years, there has been considerable growth in the number of dental practices owned by corporate bodies. At present, well over 800 practices are owned by such bodies and they employ over 3000 dentists. This paper describes the factors that have led to this growth and explores the advantages and disadvantages of 'corporate' dentistry for patients, dentists, and the dental team. It then considers how and why dental practice may change over the next 20 years and concludes that by 2032 the small one-dentist practice may well be in the past. It is likely that smaller practices will have to work in some form of association if they are to survive. Although their current model is unstable, corporates are likely to adapt to a changing environment. By 2032, in some cases, dentistry may well be taken out of its conventional setting, into supermarkets or a school environment.

  1. 75 FR 17295 - Airworthiness Directives; Aircraft Industries a.s. Model L 23 Super Blanik Gliders

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-06

    ... AD docket. Relevant Service Information Aircraft Industries a.s. has issued Mandatory Bulletin MB No... government and the States, or on the distribution of power and responsibilities among the various levels of.... Mandatory Bulletin MB No.: L23/052a, dated March 2, 2010. (2) If, as a result of the inspection required...

  2. 75 FR 75882 - Airworthiness Directives; British Aerospace Regional Aircraft Models Jetstream Series 3101 and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-07

    ...-049-AD; Amendment 39-16535; AD 2010-25-02] RIN 2120-AA64 Airworthiness Directives; British Aerospace... by reference, Safety. Adoption of the Amendment 0 Accordingly, under the authority delegated to me by... Aerospace Regional Aircraft: Amendment 39-16535; Docket No. FAA-2010-0942; Directorate Identifier...

  3. 75 FR 66655 - Airworthiness Directives; PILATUS Aircraft Ltd. Model PC-7 Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-29

    ... occurrence when an aircraft had a partial in-flight separation of the aileron outboard bearing support. The aileron outboard bearing supports are attached with two forward attachment bolts and two aft attachment... bolts. If the aileron outboard bearing supports have been removed, it is possible that during...

  4. Airframe Noise Prediction of a Full Aircraft in Model and Full Scale Using a Lattice Boltzmann Approach

    NASA Technical Reports Server (NTRS)

    Fares, Ehab; Duda, Benjamin; Khorrami, Mehdi R.

    2016-01-01

    Unsteady flow computations are presented for a Gulfstream aircraft model in landing configuration, i.e., flap deflected 39deg and main landing gear deployed. The simulations employ the lattice Boltzmann solver PowerFLOW(Trademark) to simultaneously capture the flow physics and acoustics in the near field. Sound propagation to the far field is obtained using a Ffowcs Williams and Hawkings acoustic analogy approach. Two geometry representations of the same aircraft are analyzed: an 18% scale, high-fidelity, semi-span model at wind tunnel Reynolds number and a full-scale, full-span model at half-flight Reynolds number. Previously published and newly generated model-scale results are presented; all full-scale data are disclosed here for the first time. Reynolds number and geometrical fidelity effects are carefully examined to discern aerodynamic and aeroacoustic trends with a special focus on the scaling of surface pressure fluctuations and farfield noise. An additional study of the effects of geometrical detail on farfield noise is also documented. The present investigation reveals that, overall, the model-scale and full-scale aeroacoustic results compare rather well. Nevertheless, the study also highlights that finer geometrical details that are typically not captured at model scales can have a non-negligible contribution to the farfield noise signature.

  5. Aircraft Design

    NASA Technical Reports Server (NTRS)

    Bowers, Albion H. (Inventor); Uden, Edward (Inventor)

    2016-01-01

    The present invention is an aircraft wing design that creates a bell shaped span load, which results in a negative induced drag (induced thrust) on the outer portion of the wing; such a design obviates the need for rudder control of an aircraft.

  6. Census U.S. Civil Aircraft Calendar Year 1991

    DTIC Science & Technology

    1991-12-31

    146 U.S. REGISTERED CIVIL AIRCRAFT BY MANUFACTURER, MODEL AND SERIES-NUMBER OF SEATS AMATEUR/EXPERIMENTAL-PISTON AS OF DECEMBER 31, 1991 Designation...aircraft and an inventory of registered aircraft by manufacturer and model , and general aviation aircraft by state and county of the owner. 17. Key...aviation aircraft by owner’s state and county, and registered aircraft by make and model . Reporting period

  7. Creating a Test Validated Structural Dynamic Finite Element Model of the Multi-Utility Technology Test Bed Aircraft

    NASA Technical Reports Server (NTRS)

    Pak, Chan-Gi; Truong, Samson S.

    2014-01-01

    Small modeling errors in the finite element model will eventually induce errors in the structural flexibility and mass, thus propagating into unpredictable errors in the unsteady aerodynamics and the control law design. One of the primary objectives of Multi Utility Technology Test Bed, X-56A, aircraft is the flight demonstration of active flutter suppression, and therefore in this study, the identification of the primary and secondary modes for the structural model tuning based on the flutter analysis of X-56A. The ground vibration test validated structural dynamic finite element model of the X-56A is created in this study. The structural dynamic finite element model of the X-56A is improved using a model tuning tool. In this study, two different weight configurations of the X-56A have been improved in a single optimization run.

  8. Aircraft Hydraulic Systems Dynamic Analysis

    DTIC Science & Technology

    1977-10-01

    technical report has been reviewed and is approved for publication. Project Engineer 0 Acting Technical Area Manager FOR THE COMMANDER STEPHEN P...by the McDonnell Aircraft Company, Design Engineering Power and Fluid Subsystem Department, McDonnell Douglas Corporation under contract F33615-74-C...34 (Pennsylvania State University Graduate School of Mechanical Engineering , June 1970), gave predicted variation in the fluid velocity at three different

  9. 75 FR 47242 - Airworthiness Directives; McDonnell Douglas Corporation Model DC-9-14, DC-9-15, and DC-9-15F...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-05

    ... Corporation Model DC- 9-14, DC-9-15, and DC-9-15F Airplanes; and Model DC-9-20, DC-9-30, DC- 9-40, and DC-9-50... airworthiness directive (AD) that applies to certain Model DC-9-14 and DC-9-15 airplanes; and Model DC-9-20, DC-9-30, DC-9-40, and DC-9-50 series airplanes. The existing AD currently......

  10. A simple dynamic engine model for use in a real-time aircraft simulation with thrust vectoring

    NASA Technical Reports Server (NTRS)

    Johnson, Steven A.

    1990-01-01

    A simple dynamic engine model was developed for use in thrust vectoring control law development and real-time aircraft simulation. Engine dynamics were simulated using a throttle rate limiter and low-pass filter. This paper includes a description of a method to account for axial thrust loss resulting from thrust vectoring and the development of the simple dynamic engine model and its incorporation into the F-18 high alpha research vehicle (HARV) thrust vectoring simulation. The simple dynamic engine model was evaluated at Mach 0.2, 35,000-ft altitude and at Mach 0.7, 35,000-ft altitude. The simple dynamic engine model is within 3 percent of the steady state response, and within 25 percent of the transient response of the complete nonlinear dynamic engine model.

  11. A flight-test methodology for identification of an aerodynamic model for a V/STOL aircraft

    NASA Technical Reports Server (NTRS)

    Bach, R. E., Jr.; Mcnally, B. D.

    1989-01-01

    This paper describes a flight-test methodology for developing a data base to be used to identify an aerodynamic model of a V/STOL fighter aircraft. The aircraft serves as a test bed at NASA Ames for ongoing research in advanced V/STOL control and display concepts. The flight envelope to be modeled includes hover, transition to conventional flight and back to hover, STOL operation, and normal cruise. Although the aerodynamic model is highly nonlinear, it has been formulated to be linear in the parameters to be identified. Motivation for the flight-test methodology advocated in this paper is based on the choice of a linear least-squares method for model identification. The paper covers elements of the methodology from maneuver design to the completed data base. Major emphasis is placed on the use of state estimation with tracking data to ensure consistency among maneuver variables prior to their entry into the data base. The design and processing of a typical maneuver are illustrated.

  12. A flight-test methodology for identification of an aerodynamic model for a V/STOL aircraft

    NASA Technical Reports Server (NTRS)

    Bach, Ralph E., Jr.; Mcnally, B. David

    1988-01-01

    Described is a flight test methodology for developing a data base to be used to identify an aerodynamic model of a vertical and short takeoff and landing (V/STOL) fighter aircraft. The aircraft serves as a test bed at Ames for ongoing research in advanced V/STOL control and display concepts. The flight envelope to be modeled includes hover, transition to conventional flight, and back to hover, STOL operation, and normaL cruise. Although the aerodynamic model is highly nonlinear, it has been formulated to be linear in the parameters to be identified. Motivation for the flight test methodology advocated in this paper is based on the choice of a linear least-squares method for model identification. The paper covers elements of the methodology from maneuver design to the completed data base. Major emphasis is placed on the use of state estimation with tracking data to ensure consistency among maneuver variables prior to their entry into the data base. The design and processing of a typical maneuver is illustrated.

  13. Modeling of Aircraft Unsteady Aerodynamic Characteristics/Part 3 - Parameters Estimated from Flight Data. Part 3; Parameters Estimated from Flight Data

    NASA Technical Reports Server (NTRS)

    Klein, Vladislav; Noderer, Keith D.

    1996-01-01

    A nonlinear least squares algorithm for aircraft parameter estimation from flight data was developed. The postulated model for the analysis represented longitudinal, short period motion of an aircraft. The corresponding aerodynamic model equations included indicial functions (unsteady terms) and conventional stability and control derivatives. The indicial functions were modeled as simple exponential functions. The estimation procedure was applied in five examples. Four of the examples used simulated and flight data from small amplitude maneuvers to the F-18 HARV and X-31A aircraft. In the fifth example a rapid, large amplitude maneuver of the X-31 drop model was analyzed. From data analysis of small amplitude maneuvers ft was found that the model with conventional stability and control derivatives was adequate. Also, parameter estimation from a rapid, large amplitude maneuver did not reveal any noticeable presence of unsteady aerodynamics.

  14. PIV Measurements of Chevrons on F400 Tactical Aircraft Nozzle Model

    NASA Technical Reports Server (NTRS)

    Bridges, James; Wernet, Mark; Frate, Franco

    2010-01-01

    Previous talks at this meeting have covered our collaborative work on high-energy jets such as present in tactical aircraft (those with supersonic plumes). The emphasis of this work is improving our understanding of flow physics and our prediction tools. In this presentation we will discuss recent flow diagnostics acquired using Particle Image Velocimetry (PIV) made on an underexpanded shocked jet plume from a tactical aircraft nozzle. In this presentation we show cross-sectional and streamwise cuts of both mean and turbulent velocities of an F404 engine nozzle with various chevron designs applied. The impact of chevron penetration, length, and width are documented. The impact of the parameters is generally nonlinear in measures considered here, a surprising result given the relatively smooth behavior of the noise to variations in these chevron parameters.

  15. Effects of forward velocity on sound radiation from convecting monopole and dipole sources in jet flow. [subsonic aircraft model

    NASA Technical Reports Server (NTRS)

    Dash, R.

    1979-01-01

    A theoretical model is presented of the effects of forward velocity of an aircraft at arbitrary subsonic speed on sound radiated from convecting monopole and dipole sources embedded in the jet flow. It is found that with increasing forward velocity there is a steadily increasing amplification (over the static case) of the sound radiated into the forward arc and a large reduction of the sound which is radiated into the rearward arc. The same trend is also shown to result when there is a reduction in the exhaust velocity, with, however, a further rise in amplification in the forward quadrant and a drop in attenuation in the aft quadrant.

  16. Force Reconstruction from Ejection Tests of Stores from Aircraft Used for Model Predictions and Missing/Bad Gages

    SciTech Connect

    Ross, Michael; Cap, Jerome S.; Starr, Michael J.; Urbina, Angel; Brink, Adam Ray

    2015-12-01

    One of the more severe environments for a store on an aircraft is during the ejection of the store. During this environment it is not possible to instrument all component responses, and it is also likely that some instruments may fail during the environment testing. This work provides a method for developing these responses from failed gages and uninstrumented locations. First, the forces observed by the store during the environment are reconstructed. A simple sampling method is used to reconstruct these forces given various parameters. Then, these forces are applied to a model to generate the component responses. Validation is performed on this methodology.

  17. Analysis of aeroelastic model stability augmentation systems. [for application to supersonic transport aircraft

    NASA Technical Reports Server (NTRS)

    Sevart, F. D.

    1971-01-01

    An analytical and mechanization study was conducted for two flutter stability augmentation systems. One concept uses only the wing trailing edge control surface. Another concept uses leading and trailing edge control surfaces operating simultaneously. The combined use of leading and trailing edge control surfaces should improve the surface coupling (controllability) with vertical bending and torsional structural modes and decrease the coupling between bending and torsional modes. The study was directed toward stability augmentation systems characteristics for the supersonic transport aircraft.

  18. Commercial Aircraft Airframe Fuel Systems Survey and Analysis.

    DTIC Science & Technology

    1982-02-01

    Fairchild Swearingen Corporation Pratt & Whitney Aircraft of Canada Ltd. P.O. Box 894 Box 10 San Antonio, Texas 78284 Longueuil , Quebec J4K 4X9 Mr...Antimisting Fuel Engineering and Development Plan, FAA-ED-18-4. The objective was to study the fuel systems of a representative sample of commercial aircraft

  19. Application of digital human modeling and simulation for vision analysis of pilots in a jet aircraft: a case study.

    PubMed

    Karmakar, Sougata; Pal, Madhu Sudan; Majumdar, Deepti; Majumdar, Dhurjati

    2012-01-01

    Ergonomic evaluation of visual demands becomes crucial for the operators/users when rapid decision making is needed under extreme time constraint like navigation task of jet aircraft. Research reported here comprises ergonomic evaluation of pilot's vision in a jet aircraft in virtual environment to demonstrate how vision analysis tools of digital human modeling software can be used effectively for such study. Three (03) dynamic digital pilot models, representative of smallest, average and largest Indian pilot population were generated from anthropometric database and interfaced with digital prototype of the cockpit in Jack software for analysis of vision within and outside the cockpit. Vision analysis tools like view cones, eye view windows, blind spot area, obscuration zone, reflection zone etc. were employed during evaluation of visual fields. Vision analysis tool was also used for studying kinematic changes of pilot's body joints during simulated gazing activity. From present study, it can be concluded that vision analysis tool of digital human modeling software was found very effective in evaluation of position and alignment of different displays and controls in the workstation based upon their priorities within the visual fields and anthropometry of the targeted users, long before the development of its physical prototype.

  20. Aerosol-Cloud Interactions Over the North Pacific Ocean: an Integrated Assessment Using Aircraft, Satellites and a Global Model

    NASA Astrophysics Data System (ADS)

    Wilcox, E. M.; Mauger, G.; Lariviere, O.; Roberts, G.; Ramanathan, V.; Ming, Y.

    2004-12-01

    Interactions between aerosols and the cloud systems of the North Pacific Ocean were observed by aircraft during the Cloud Indirect Forcing Experiment (CIFEX) in April 2004. The CIFEX project seeks to determine the impact of aerosol indirect effects on the radiative forcing of highly reflective North Pacific clouds under the influence of aerosols traveling across the ocean basin from Asia. Toward this end, CIFEX aircraft observations from the Northeast Pacific of aerosol and cloud microphysics are blended with coincident satellite observations of cloud properties from MODIS and cloud radiative forcing from CERES. The satellite observations are then compared with global model simulations of aerosol indirect forcing over the entire North Pacific basin. During April 2004 the U. Wyoming King Air research aircraft sampled aerosol and cloud microphysical parameters including aerosol and cloud particle sizes and concentrations, cloud liquid water amounts, and cloud structure using the Wyoming Cloud Radar. A range of clean and polluted conditions were observed by the aircraft during the period, in addition to two major Asian dust storm events. CN concentrations below stratus clouds varied from 25 to 300 cm-3. A variety of cloud systems were sampled as well, ranging from shallow stratus and stratocumulus clouds to mixed-phase precipitating cumulus. Under pristine conditions, many shallow clouds were observed to be drizzling, suggesting that Northern Pacific Ocean cloud systems may be highly susceptible to the influence of aerosols. Clouds in this region are responsible for a large cooling of the ocean surface. The magnitude of shortwave cloud radiative cooling exceeded -80 W m-2 over much of the North Pacific during the experiment. Stratus cloud drop concentrations varied from 25 to 150 cm-3 and are correlated with the concentration of accumulation mode aerosols below cloud base. Mean cloud albedos vary from 0.3 to 0.5 for these same clouds, and MODIS observations of cloud