Science.gov

Sample records for aircraft crash fires

  1. Mechanism of Start and Development of Aircraft Crash Fires

    NASA Technical Reports Server (NTRS)

    Pinkel, I. Irving; Preston, G. Merritt; Pesman, Gerard J.

    1952-01-01

    Full-scale aircraft crashes, devised to give surge fuel spillage and a high incidence of fire, were made to investigate the mechanism of the start and development of aircraft crash fires. The results are discussed. herein. This investigation revealed the characteristics of the ignition sources, the manner in which the combustibles spread., the mechanism of the union of the combustibles and ignition sources, and the pertinent factors governing the development of a crash fire as observed in this program.

  2. Mechanism of Start and Development of Aircraft Crash Fires

    NASA Technical Reports Server (NTRS)

    Pinkel, I. Irving; Preston, G. Merritt; Pesman, Gerard J.

    1952-01-01

    Full-scale aircraft crashes were made to investigate the mechanism of the start and development of aircraft crash fires. The results are discussed herein. This investigation revealed the characteristics of the ignition sources, the manner in which the combustibles spread, the mechanism of the union of the combustibles and ignition sources, and the pertinent factors governing the development of a crash fire as observed in this program.

  3. Ames T-3 fire test facility - Aircraft crash fire simulation

    NASA Technical Reports Server (NTRS)

    Fish, R. H.

    1976-01-01

    There is a need to characterize the thermal response of materials exposed to aircraft fuel fires. Large scale open fire tests are costly and pollute the local environment. This paper describes the construction and operation of a subscale fire test that simulates the heat flux levels and thermochemistry of typical open pool fires. It has been termed the Ames T-3 Test and has been used extensively by NASA since 1969 to observe the behavior of materials exposed to JP-4 fuel fires.

  4. Origin and Prevention of Crash Fires in Turbojet Aircraft

    NASA Technical Reports Server (NTRS)

    Pinkel, I Irving; Weiss, Solomon; Preston, G Merritt; Pesman, Gerard J

    1957-01-01

    The manner in which the jet engine may start a crash fire was explored in test-stand and full-scale crash studies. On the basis of these studies, a method was devised for inserting and cooling the engine parts that may serve as ignition sources in crash. This method was tried successfully in full-scale crashes of jet-powered airplanes carrying engines in pod nacelles and engines buried within the airplane structure.

  5. An assessment of the crash fire hazard of liquid hydrogen fueled aircraft

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The crash fire hazards of liquid hydrogen fueled aircraft relative to those of mission equivalent aircraft fueled either with conventional fuel or with liquefied methane were evaluated. The aircraft evaluated were based on Lockheed Corporation design for 400 passenger, Mach 0.85, 5500 n. mile aircraft. Four crash scenarios were considered ranging from a minor incident causing some loss of fuel system integrity to a catastrophic crash. Major tasks included a review of hazardous properties of the alternate fuels and of historic crash fire data; a comparative hazard evluation for each of the three fuels under four crash scenarios a comprehensive review and analysis and an identification of areas further development work. The conclusion was that the crash fire hazards are not significantly different when compared in general for the three fuels, although some fuels showed minor advantages in one respect or another.

  6. Origin and Prevention of Crash Fires in Turbojet Aircraft

    NASA Technical Reports Server (NTRS)

    Pinkel, I. Irvin; Weiss, Solomon; Preston, G. Merritt; Pesman, Gerard J.

    1958-01-01

    The tendency for the jet engine rotor to continue to rotate after crash presents the probability that crash-spilled combustibles suspended in the air or puddled on the ground at the engine inlet may be sucked into the engine. Studies with jet engines operating on a test stand and full-scale crashes of turbojet-powered airplanes showed that combustibles drawn into the engine in this way ignite explosively within the engine. Experiment showed that the gas flow through the engine is too rapid to permit the ignition of ingested combustibles on the hot metal in contact with the main gas stream. Ignition will occur on those hot surfaces not in the main gas stream. The portion of the engine airflow is diverted for cooling and ventilation to these zones where the gas moves slowly enough for ignition to occur.

  7. Heat shields for aircraft - A new concept to save lives in crash fires.

    NASA Technical Reports Server (NTRS)

    Neel, C. B.; Parker, J. A.; Fish, R. H.; Henshaw, J.; Newland, J. H.; Tempesta, F. L.

    1971-01-01

    A passenger compartment surrounded by a fire-retardant shell, to protect the occupants long enough for the fire to burn out or for fire-fighting equipment to reach the aircraft and extinguish it, is proposed as a new concept for saving lives in crash fires. This concept is made possible by the recent development of two new fire-retardant materials: a very lightweight foam plastic, called polyisocyanurate foam, and an intumescent paint. Exposed to heat, the intumescent paint expands to many times its original thickness and insulates the surface underneath it. Demonstration tests are illustrated, described and discussed. However, some problems, such as preventing fuselage rupture and protecting windows, must be solved before such a system can be used.

  8. Assessment of crash fire hazard of LH sub 2 fueled aircraft

    NASA Technical Reports Server (NTRS)

    Brewer, G. D.; Wittlin, G.; Versaw, E. F.; Parmley, R.; Cima, R.; Walther, E. G.

    1981-01-01

    The relative safety of passengers in LH2 - fueled aircraft, as well as the safety of people in areas surrounding a crash scene, has been evaluated in an analytical study. Four representative circumstances were postulated involving a transport aircraft in which varying degrees of severity of damage were sustained. Potential hazard to the passengers and to the surroundings posed by the spilled fuel was evaluated for each circumstance. Corresponding aircraft fueled with liquid methane, Jet A, and JP-4 were also studied in order to make comparisons of the relative safety. The four scenarios which were used to provide a basis for the evaluation included: (1) a small fuel leak internal to the aircraft, (2) a survivable crash in which a significant quantity of fuel is spilled in a radial pattern as a result of impact with a stationary object while taxiing at fairly low speed, (3) a survivable crash in which a significant quantity of fuel is spilled in an axial pattern as a result of impact during landing, and (4) a non-survivable crash in which a massive fuel spill occurs instantaneously.

  9. The Cleveland Aircraft Fire Tests

    NASA Technical Reports Server (NTRS)

    Brenneman, James J.; Heine, Donald A.

    1968-01-01

    On June 30 and July 1, 1966, tests were conducted to evaluate high expansion foam's ability to extend the time for which an aircraft passenger cabin environment would remain survivable during a post-crash fire. While some results tend to confirm those of similar tests, others may shed new light on the problem.

  10. Simulation of aircraft crash and its validation

    NASA Technical Reports Server (NTRS)

    Alfaro-Bou, E.; Hayduk, R. J.; Thomson, R. G.; Vaughan, V. L., Jr.

    1975-01-01

    A joint FAA/NASA program is discussed which is aimed at developing a reliable technology for the design of crashworthy light aircraft. This program encompasses the development of analytical methods, the definition of a survivable crash envelope, and the design of improved seat and restraint systems. A facility for full-scale crash-simulation testing is described along with the test method and results of five full-scale crash tests of twin-engine light aircraft. The major goals of the analytical portion of the program are outlined, including the development and validation of the analytical technique using simplified structural specimens that approximate aircraft components, as well as the mathematical modeling of the complete airframe and its subsequent dynamic analysis by substructuring and matrix reduction techniques.

  11. The Pope Air Force Base aircraft crash and burn disaster.

    PubMed

    Mozingo, David W; Barillo, David J; Holcomb, John B

    2005-01-01

    This report describes the initial hospital and burn center management of a mass casualty incident resulting from an aircraft crash and fire. One hundred thirty soldiers were injured, including 10 immediate fatalities. Womack Army Medical Center at Fort Bragg, North Carolina, managed the casualties and began receiving patients 15 minutes after the crash. As a result of repetitive training that included at least two mass casualty drills each year, the triage area and emergency department were cleared of all patients within 2 hours. Fifty patients were transferred to burn centers, including 43 patients to the US Army Institute of Surgical Research. This constitutes the largest single mass casualty incident experienced in the 57-year history of the Institute. All patients of the US Army Institute of Surgical Research survived to hospital discharge, and 34 returned to duty 3 months after the crash. The scenario of an on-ground aircraft explosion and fire approximates what might be seen as a result of an aircraft hijacking, bombing, or intentional crash. Lessons learned from this incident have utility in the planning of future response to such disasters. PMID:15756114

  12. Aircraft fire safety research

    NASA Technical Reports Server (NTRS)

    Botteri, Benito P.

    1987-01-01

    During the past 15 years, very significant progress has been made toward enhancing aircraft fire safety in both normal and hostile (combat) operational environments. Most of the major aspects of the aircraft fire safety problem are touched upon here. The technology of aircraft fire protection, although not directly applicable in all cases to spacecraft fire scenarios, nevertheless does provide a solid foundation to build upon. This is particularly true of the extensive research and testing pertaining to aircraft interior fire safety and to onboard inert gas generation systems, both of which are still active areas of investigation.

  13. Aircraft fires, smoke toxicity, and survival.

    PubMed

    Chaturvedi, A K; Sanders, D C

    1996-03-01

    In-flight fires in modern aircraft are rare, but post-crash fires do occur. Cabin occupants frequently survive initial forces of such crashes but are incapacitated from smoke inhalation. According to an international study, there were 95 fire-related civil passenger aircraft accidents worldwide over a 26-yr period, claiming approximately 2400 lives. Between 1985 and 1991, about 16% (32 accidents) of all U.S. transport aircraft accidents involved fire and 22% (140 fatalities) of the deaths in these accidents resulted from fire/smoke toxicity. Our laboratory analyses of postmortem blood samples (1967-93) indicate that 360 individuals in 134 fatal fire-related civil aircraft (air carrier and general aviation) accidents had carboxyhemoglobin saturation levels (> or = 20%), with or without blood cyanide, high enough to impair performance. Combustion toxicology is now moving from a descriptive to a mechanistic phase. Methods for gas analyses have been developed and combustion/animal-exposure assemblies have been constructed. Material/fire-retardant toxicity and interactions between smoke gases are being studied. Relationships between gas exposure concentrations, blood levels, and incapacitation onset are being established in animal models. Continuing basic research in smoke toxicity will be necessary to understand its complexities, and thus enhance aviation safety and fire survival chances. PMID:8775410

  14. Assessment of aircraft crash frequency for the Hanford site 200 Area tank farms

    SciTech Connect

    OBERG, B.D.

    2003-03-22

    Two factors, the near-airport crash frequency and the non-airport crash frequency, enter into the estimate of the annual aircraft crash frequency at a facility. The near-airport activities, Le., takeoffs and landings from any of the airports in a 23-statute-mile (smi) (20-nautical-mile, [nmi]) radius of the facilities, do not significantly contribute to the annual aircraft crash frequency for the 200 Area tank farms. However, using the methods of DOE-STD-3014-96, the total frequency of an aircraft crash for the 200 Area tank farms, all from non-airport operations, is calculated to be 7.10E-6/yr. Thus, DOE-STD-3014-96 requires a consequence analysis for aircraft crash. This total frequency consists of contributions from general aviation, helicopter activities, commercial air carriers and air taxis, and from large and small military aircraft. The major contribution to this total is from general aviation with a frequency of 6.77E-6/yr. All other types of aircraft have less than 1E-6/yr crash frequencies. The two individual aboveground facilities were in the realm of 1E-7/yr crash frequencies: 204-AR Waste Unloading Facility at 1.56E-7, and 242-T Evaporator at 8.62E-8. DOE-STD-3009-94, ''Preparation Guide for U.S. Department of Energy Nonreactor Nuclear Facility Documented Safety Analyses'', states that external events, such as aircraft crashes, are referred to as design basis accidents (DBA) and analyzed as such: ''if frequency of occurrence is estimated to exceed 10{sup -6}/yr conservatively calculated'' DOE-STD-3014-96 considers its method for estimating aircraft crash frequency as being conservative. Therefore, DOE-STD-3009-94 requires DBA analysis of an aircraft crash into the 200 Area tank farms. DOE-STD-3009-94 also states that beyond-DBAs are not evaluated for external events. Thus, it requires only a DBA analysis of the effects of an aircraft crash into the 200 Area tank farms. There are two attributes of an aircraft crash into a Hanford waste storage tank

  15. Offsite radiological consequence analysis for the bounding aircraft crash accident

    SciTech Connect

    OBERG, B.D.

    2003-03-22

    The purpose of this calculation note is to quantitatively analyze a bounding aircraft crash accident for comparison to the DOE-STD-3009-94, ''Preparation Guide for U.S. Department of Energy Nonreactor Nuclear Facility Documented Safety Analyses'', Appendix A, Evaluation Guideline of 25 rem. The potential of aircraft impacting a facility was evaluated using the approach given in DOE-STD-3014-96, ''Accident Analysis for Aircraft Crash into Hazardous Facilities''. The following aircraft crash frequencies were determined for the Tank Farms in RPP-11736, ''Assessment Of Aircraft Crash Frequency For The Hanford Site 200 Area Tank Farms'': (1) The total aircraft crash frequency is ''extremely unlikely.'' (2) The general aviation crash frequency is ''extremely unlikely.'' (3) The helicopter crash frequency is ''beyond extremely unlikely.'' (4) For the Hanford Site 200 Areas, other aircraft type, commercial or military, each above ground facility, and any other type of underground facility is ''beyond extremely unlikely.'' As the potential of aircraft crash into the 200 Area tank farms is more frequent than ''beyond extremely unlikely,'' consequence analysis of the aircraft crash is required.

  16. Aircraft-crash-locating transmitter features design improvements

    NASA Technical Reports Server (NTRS)

    Manoli, R.; Ulrich, B. R.

    1971-01-01

    Crash locater is automatically ejected from aircraft at time of crash and begins transmitting at emergency radio frequencies monitored by all airports and airport control towers. Advantages are smaller size, simpler design and installation, extended transmitting range and life, greater deployment reliability and increased crash resistance.

  17. Research on antimisting fuel for suppression of postcrash aircraft fires

    NASA Technical Reports Server (NTRS)

    Sarohia, V.; Parikh, P.; Yavrouian, A.; Matthys, E.

    1986-01-01

    Recent experimental results in the field of post-crash aircraft fire suppression are reviewed, with emphasis given to antimisting kerosene fuel (AMK). Findings in three major areas of study are presented, including: rheological studies (skin friction, and heat transfer); fuel breakup processes and nozzle spray combustion; and the development of inline blenders for production of AMK at the refueling point. An interpretation of the results of the FAA/NASA Controlled Impact Demonstration of AMK fuel is also presented. It is concluded that AMK is a sound concept and offers several advantages over conventional fuels in any crash scenario involving post-crash fires.

  18. Structural dynamics research in a full-scale transport aircraft crash test

    NASA Technical Reports Server (NTRS)

    Mccomb, H. G., Jr.; Hayduk, R. J.; Thomson, R. G.

    1986-01-01

    A remotely piloted air-to-ground crash test of a full-scale transport aircraft was conducted for the first time for two purposes: (1) to demonstrate performance of an antimisting fuel additive in suppressing fire in a crash environment, and (2) to obtain structural dynamics data under crash conditions for comparison with analytical predictions. The test, called the Controlled Impact Demonstration (CID), was sponsored by FAA and NASA with cooperation of industry, the Department of Defense, and the British and French governments. The test aircraft was a Boeing 720 jet transport. The aircraft impacted a dry lakebed at Edwards Air Force Base, CA. The purpose of this paper is to discuss the structural aspects of the CID. The fuselage section tests and the CID itself are described. Structural response data from these tests are presented and discussed. Nonlinear analytical modeling efforts are described, and comparisons between analytical results and experimental results are presented.

  19. Aircraft crash caused by stress corrosion cracking

    SciTech Connect

    Kolkman, H.J.; Kool, G.A.; Wanhill, R.J.H.

    1996-01-01

    An aircraft crash in the Netherlands was caused by disintegration of a jet engine. Fractography showed that the chain of events started with stress corrosion cracking (SCC) of a pin attached to a lever arm of the compressor variable vane system. Such a lever arm-pin assembly costs only a few dollars. Investigation of hundreds of pins from the accident and a number of identical engines revealed that this was not an isolated case. Many pins exhibited various amounts of SCC. The failed pin in the accident engine happened to be the first fractured one. SCC requires the simultaneous presence of tensile stress, a corrosive environment, and a susceptible material. In this case the stress was a residual stress arising from the production method. There was a clear correlation between the presence of salt deposits on the levers and SCC of the pins. It was shown that these deposits were able to reach the internal space between the pin and lever arm, thereby initiating SCC in this space. The corrosive environment in Western Europe explains why the problem manifested itself in the Netherlands at a relatively early stage in engine life. The main point is, however, that the manufacturer selected an SCC-prone material in the design stage. The solution has been to change the pin material.

  20. Aircraft subfloor response to crash loadings

    NASA Technical Reports Server (NTRS)

    Carden, H. D.; Hayduk, R. J.

    1981-01-01

    Results are presented of an experimental and analytical study of the dynamic response to crash loadings of five different load-limiting subfloors for general aviation aircraft. These subfloors provide a high-strength structural floor platform to retain the seats and a crushable zone to absorb energy and limit vertical loads. Experimental static load-deflection data and dynamic deceleration response data for the five subfloors indicated that the high-strength floor platform performed well in that structural integrity and residual strength was maintained throughout the loading cycle. The data also indicated that some of the subfloor crush zones were more effective than others in providing nearly constant load for a range of displacement. The analytical data was generated by characterizing the nonlinear crush zones of the subfloor with static load-deflection data and using the DYCAST nonlinear finite element computer program. Comparisons between experimental and analytical data showed good correlation for the subfloors in which the static deformation mode closely approximated the dynamic deformation mode.

  1. Factors associated with pilot fatalities in work-related aircraft crashes--Alaska, 1990-1999.

    PubMed

    2002-04-26

    Despite its large geographic area, Alaska has only 12,200 miles of public roads, and 90% of the state's communities are not connected to a highway system. Commuter and air-taxi flights are essential for transportation of passengers and delivery of goods, services, and mail to outlying communities (Figure 1). Because of the substantial progress in decreasing fatalities in the fishing and logging industries, aviation crashes are the leading cause of occupational death in Alaska. During 1990-1999, aircraft crashes in Alaska caused 107 deaths among workers classified as civilian pilots. This is equivalent to 410 fatalities per 100,000 pilots each year, approximately five times the death rate for all U.S. pilots and approximately 100 times the death rate for all U.S. workers. As part of a collaborative aviation safety initiative that CDC's National Institute for Occupational Safety and Health (NIOSH) is implementing with the Federal Aviation Administration (FAA), the National Transportation Safety Board (NTSB), and the National Weather Service, CDC analyzed data from NTSB crash reports to determine factors associated with pilot fatalities in work-related aviation crashes in Alaska. This report summarizes the result of this analysis, which found that the following factors were associated with pilot fatalities: crashes involving a post-crash fire, flights in darkness or weather conditions requiring instrument use, crashes occurring away from an airport, and crashes in which the pilot was not using a shoulder restraint. Additional pilot training, improved fuel systems that are less likely to ignite in crashes, and company policies that discourage flying in poor weather conditions might help decrease pilot fatalities. More detailed analyses of crash data, collaborations with aircraft operators to improve safety, and evaluation of new technologies are needed. PMID:12004985

  2. Fire resistant aircraft seat program

    NASA Technical Reports Server (NTRS)

    Fewell, L. A.

    1979-01-01

    Foams, textiles, and thermoformable plastics were tested to determine which materials were fire retardant, and safe for aircraft passenger seats. Seat components investigated were the decorative fabric cover, slip covers, fire blocking layer, cushion reinforcement, and the cushioning layer.

  3. NASA technical advances in aircraft occupant safety. [clear air turbulence detectors, fire resistant materials, and crashworthiness

    NASA Technical Reports Server (NTRS)

    Enders, J. H.

    1978-01-01

    NASA's aviation safety technology program examines specific safety problems associated with atmospheric hazards, crash-fire survival, control of aircraft on runways, human factors, terminal area operations hazards, and accident factors simulation. While aircraft occupants are ultimately affected by any of these hazards, their well-being is immediately impacted by three specific events: unexpected turbulence encounters, fire and its effects, and crash impact. NASA research in the application of laser technology to the problem of clear air turbulence detection, the development of fire resistant materials for aircraft construction, and to the improvement of seats and restraint systems to reduce crash injuries are reviewed.

  4. Computational fire modeling for aircraft fire research

    SciTech Connect

    Nicolette, V.F.

    1996-11-01

    This report summarizes work performed by Sandia National Laboratories for the Federal Aviation Administration. The technical issues involved in fire modeling for aircraft fire research are identified, as well as computational fire tools for addressing those issues, and the research which is needed to advance those tools in order to address long-range needs. Fire field models are briefly reviewed, and the VULCAN model is selected for further evaluation. Calculations are performed with VULCAN to demonstrate its applicability to aircraft fire problems, and also to gain insight into the complex problem of fires involving aircraft. Simulations are conducted to investigate the influence of fire on an aircraft in a cross-wind. The interaction of the fuselage, wind, fire, and ground plane is investigated. Calculations are also performed utilizing a large eddy simulation (LES) capability to describe the large- scale turbulence instead of the more common k-{epsilon} turbulence model. Additional simulations are performed to investigate the static pressure and velocity distributions around a fuselage in a cross-wind, with and without fire. The results of these simulations provide qualitative insight into the complex interaction of a fuselage, fire, wind, and ground plane. Reasonable quantitative agreement is obtained in the few cases for which data or other modeling results exist Finally, VULCAN is used to quantify the impact of simplifying assumptions inherent in a risk assessment compatible fire model developed for open pool fire environments. The assumptions are seen to be of minor importance for the particular problem analyzed. This work demonstrates the utility of using a fire field model for assessing the limitations of simplified fire models. In conclusion, the application of computational fire modeling tools herein provides both qualitative and quantitative insights into the complex problem of aircraft in fires.

  5. Factors associated with pilot fatality in work-related aircraft crashes, Alaska, 1990-1999.

    PubMed

    Bensyl, D M; Moran, K; Conway, G A

    2001-12-01

    Work-related aircraft crashes are the leading cause of occupational fatality in Alaska, with civilian pilots having the highest fatality rate (410/100,000/year). To identify factors affecting survivability, the authors examined work-related aircraft crashes that occurred in Alaska in the 1990s (1990-1999), comparing crashes with pilot fatalities to crashes in which the pilot survived. Using data from National Transportation Safety Board reports, the authors carried out logistic regression analysis with the following variables: age, flight experience, use of a shoulder restraint, weather conditions (visual flight vs. instrument flight), light conditions (daylight vs. darkness), type of aircraft (airplane vs. helicopter), postcrash fire, crash location (airport vs. elsewhere), and state of residence. In the main-effects model, significant associations were found between fatality and postcrash fire (adjusted odds ratio (AOR) = 6.43, 95% confidence interval (CI): 2.38, 17.37), poor weather (AOR = 4.11, 95% CI: 2.15, 7.87), and non-Alaska resident status (AOR = 2.10, 95% CI: 1.05, 4.20). Protective effects were seen for shoulder restraint use (AOR = 0.40, 95% CI: 0.21, 0.77) and daylight versus darkness (AOR = 0.50, 95% CI: 0.25, 0.99). The finding that state of residence was associated with survivability offers new information on pilot survivability in work-related aircraft crashes in Alaska. These results may be useful in targeting safety interventions for pilots who fly occupationally in Alaska or in similar environments. PMID:11724720

  6. Aircraft-mounted crash-activated transmitter device

    NASA Technical Reports Server (NTRS)

    Manoli, R.; Ulrich, B. R. (Inventor)

    1976-01-01

    An aircraft crash location transmitter tuned to transmit on standard emergency frequencies is reported that is shock mounted in a sealed circular case atop the tail of an aircraft by means of a shear pin designed to fail under a G loading associated with a crash situation. The antenna for the transmitter is a metallic spring blade coiled like a spiral spring around the outside of the circular case. A battery within the case for powering the transmitter is kept trickle charged from the electrical system of the aircraft through a break away connector on the case. When a crash occurs, the resultant ejection of the case from the tail due to a failure of the shear pin releases the free end of the antenna which automatically uncoils. The accompanying separation of the connector effects closing of the transmitter key and results in commencement of transmission.

  7. Bibliography on aircraft fire hazards and safety. Volume 2: Safety. Part 1: Key numbers 1 to 524

    NASA Technical Reports Server (NTRS)

    Pelouch, J. J., Jr. (Compiler); Hacker, P. T. (Compiler)

    1974-01-01

    Bibliographic citations are presented to describe and define aircraft safety methods, equipment, and criteria. Some of the subjects discussed are: (1) fire and explosion suppression using whiffle balls, (2) ultraviolet flame detecting sensors, (3) evaluation of flame arrestor materials for aircraft fuel systems, (4) crash fire prevention system for supersonic commercial aircraft, and (5) fire suppression for aerospace vehicles.

  8. A review of the analytical simulation of aircraft crash dynamics

    NASA Technical Reports Server (NTRS)

    Fasanella, Edwin L.; Carden, Huey D.; Boitnott, Richard L.; Hayduk, Robert J.

    1990-01-01

    A large number of full scale tests of general aviation aircraft, helicopters, and one unique air-to-ground controlled impact of a transport aircraft were performed. Additionally, research was also conducted on seat dynamic performance, load-limiting seats, load limiting subfloor designs, and emergency-locator-transmitters (ELTs). Computer programs were developed to provide designers with methods for predicting accelerations, velocities, and displacements of collapsing structure and for estimating the human response to crash loads. The results of full scale aircraft and component tests were used to verify and guide the development of analytical simulation tools and to demonstrate impact load attenuating concepts. Analytical simulation of metal and composite aircraft crash dynamics are addressed. Finite element models are examined to determine their degree of corroboration by experimental data and to reveal deficiencies requiring further development.

  9. Facilities and Methods Used in Full-scale Airplane Crash-fire Investigation

    NASA Technical Reports Server (NTRS)

    Black, Dugald O.

    1952-01-01

    The facilities and the techniques employed in the conduct of full scale airplane crash-fire studies currently being conducted at the NACA Lewis laboratory are discussed herein. This investigation is part of a comprehensive study of the airplane crash-fire problem. The crash configuration chosen, the general physical layout of the crash site, the test methods, the instrumentation, the data-recording systems, and the post-crash examination procedure are described

  10. Occupant injury and fatality in general aviation aircraft for which dynamic crash testing is certification-mandated.

    PubMed

    Boyd, Douglas D

    2015-06-01

    Towards further improving general aviation aircraft crashworthiness, multi-axis dynamic tests have been required for aircraft certification (14CFR23.562) since 1985. The objective of this study was to determine if occupants in aircraft certified to these higher crashworthiness standards show a mitigated fraction of fatal accidents and/or injury severity. The NTSB aviation database was queried for accidents occurring between 2002 and 2012 involving aircraft certified to, or immune from, dynamic crash testing and manufactured after 1999. Only operations conducted under 14CFR Part 91 were considered. Statistical analysis employed proportion tests and logistic regression. Off-airport landings are associated with high decelerative forces; however for off-airport landings, the fraction of fatal accidents for aircraft subject to, or exempt from, dynamic crash testing was similar (0.53 and 0.60, respectively). Unexpectedly, for on-airport landings a higher fraction of fatalities was evident for aircraft whose certification mandated dynamic crash testing. Improved crashworthiness standards would be expected to translate into a reduced severity of accident injuries. For all accidents, as well as for those deemed survivable, the fraction of minor and serious injuries was reduced for occupants in aircraft certified to the higher crashworthiness standards. Surprisingly, the fraction of occupants fatally injured was not decreased for aircraft subject to dynamic crash tests. To shed light on this unexpected finding flight history, airman demographics and post-impact fires for aircraft for which dynamic crash testing is mandatory or exempt was examined. For the former cohort the median distance of the accident flight was nearly 44% higher. Aircraft subject to dynamic crash testing were also involved in a greater fraction (0.25 versus 0.12, respectively) of post-impact fires. Our data suggest that while the more stringent crashworthiness standards have mitigated minor and serious

  11. Fire prevention on aircraft

    NASA Technical Reports Server (NTRS)

    Kuhn, Fritz

    1931-01-01

    The following discussion is at first restricted to the light-oil engines now in use. We shall consider how far it is possible to reduce fire hazards by changes in the design of the engines and carburetors and in the arrangement of the fuel pipes.

  12. Potential release of fibers from burning carbon composites. [aircraft fires

    NASA Technical Reports Server (NTRS)

    Bell, V. L.

    1980-01-01

    A comprehensive experimental carbon fiber source program was conducted to determine the potential for the release of conductive carbon fibers from burning composites. Laboratory testing determined the relative importance of several parameters influencing the amounts of single fibers released, while large-scale aviation jet fuel pool fires provided realistic confirmation of the laboratory data. The dimensions and size distributions of fire-released carbon fibers were determined, not only for those of concern in an electrical sense, but also for those of potential interest from a health and environmental standpoint. Fire plume and chemistry studies were performed with large pool fires to provide an experimental input into an analytical modelling of simulated aircraft crash fires. A study of a high voltage spark system resulted in a promising device for the detection, counting, and sizing of electrically conductive fibers, for both active and passive modes of operation.

  13. Crash hit frequency analysis of aircraft overflights of the Nevada Test Site (NTS) and the Device Assembly Facility (DAF)

    SciTech Connect

    Kimura, C. Y.; Sanzo, D. L.; Sharirli, M.

    1998-12-16

    Aircraft crashes are an element of external events required to be analyzed and documented in Facility Safety Analysis Reports (SARs) and Nuclear Explosive Safety Studies (NESS). Aircraft crashes into DOE facilities are of concern due to effects related to impact and fire that can potentially lead to penetration of the facility, disruption of operations, and the potential of release of radioactive and/or hazardous materials subsequent to the aircraft impact. Recent changes in the control of the airspace were not considered in previous safety studies of aircraft flights over the NTS [Refs. 4,5,6]. The Airspace changes have warranted review of the effects of the issued MOU on the Device Assembly Facility (DAF) Authorization Basis Documents [Refs. 4,5], the underlying analysis assumptions, and results relevant to aircraft crash. This report documents the review and analysis of aircraft crash hit frequency on the DAF within NTS. It focuses on the impact of airspace changes based on the MOU. The frequency of an aircraft crashing and hitting the DAF is in the 1 E-7 to E-8 range. While this is considered to be acceptably small, it should not be considered an upper bound. This conclusion should not be interpreted to mean that no further work need be done. The results of the analysis are highly dependent on the assumptions made and the available data. There is considerable uncertainty in the number of overflights which are taking place over the NTS and restricted airspace R-4808N. To reduce this uncertainty, additional follow-on work should be done to activate the monitor in the CP at NTS which is to receive information from the Nellis Range control station, to monitor the level of air activity in R-4808N and to recalculate the aircraft crash hit frequency on the DAF when better overflight estimates are obtained. Finally, to reduce the human error component, the process by which the DOE notifies the USAF of �no-fly� periods for R-4808N during which SNM is present in the

  14. Crash hit frequency analysis of aircraft overflights of the Nevada Test Site (NTS) and the Device Assembly Facility (DAF)

    SciTech Connect

    Kimura, C. Y.; Sanzo, D. L.; Sharirli, M.

    1998-07-09

    Aircraft crashes are an element of external events required to be analyzed and documented in Facility Safety Analysis Reports (SARs) and Nuclear Explosive Safety Studies (NESS). Aircraft crashes into DOE facilities are of concern due to effects related to impact and fire that can potentially lead to penetration of the facility, disruption of operations, and the potential of release of radioactive and/or hazardous materials subsequent to the aircraft impact. Recent changes in the control of the airspace were not considered in previous safety studies of aircraft flights over the NTS [Refs. 4,5,6]. The Airspace changes have warranted review of the effects of the issued MOU on the Device Assembly Facility (DAF) Authorization Basis Documents [Refs. 4,5], the underlying analysis assumptions, and results relevant to aircraft crash. This report documents the review and analysis of aircraft crash hit frequency on the DAF within NTS. It focuses on the impact of airspace changes based on the MOU. The frequency of an aircraft crashing and hitting the DAF is in the 1 E-7 to E-8 range. While this is considered to be acceptably small, it should not be considered an upper bound. This conclusion should not be interpreted to mean that no further work need be done. The results of the analysis are highly dependent on the assumptions made and the available data. There is considerable uncertainty in the number of overflights which are taking place over the NTS and restricted airspace R-4808N. To reduce this uncertainty, additional follow-on work should be done to activate the monitor in the CP at NTS which is to receive information from the Nellis Range control station, to monitor the level of air activity in R-4808N and to recalculate the aircraft crash hit frequency on the DAF when better overflight estimates are obtained. Finally, to reduce the human error component, the process by which the DOE notifies the USAF of "no-fly" periods for R-4808N during which SNM is present in the DAF

  15. A computer simulation of aircraft evacuation with fire

    NASA Technical Reports Server (NTRS)

    Middleton, V. E.

    1983-01-01

    A computer simulation was developed to assess passenger survival during the post-crash evacuation of a transport category aircraft when fire is a major threat. The computer code, FIREVAC, computes individual passenger exit paths and times to exit, taking into account delays and congestion caused by the interaction among the passengers and changing cabin conditions. Simple models for the physiological effects of the toxic cabin atmosphere are included with provision for including more sophisticated models as they become available. Both wide-body and standard-body aircraft may be simulated. Passenger characteristics are assigned stochastically from experimentally derived distributions. Results of simulations of evacuation trials and hypothetical evacuations under fire conditions are presented.

  16. An Approach to Estimate the Localized Effects of an Aircraft Crash on a Facility

    SciTech Connect

    Kimura, C; Sanzo, D; Sharirli, M

    2004-04-19

    Aircraft crashes are an element of external events required to be analyzed and documented in facility Safety Analysis Reports (SARs) and Nuclear Explosive Safety Studies (NESSs). This paper discusses the localized effects of an aircraft crash impact into the Device Assembly Facility (DAF) located at the Nevada Test Site (NTS), given that the aircraft hits the facility. This was done to gain insight into the robustness of the DAF and to account for the special features of the DAF that enhance its ability to absorb the effects of an aircraft crash. For the purpose of this paper, localized effects are considered to be only perforation or scabbing of the facility. This paper presents an extension to the aircraft crash risk methodology of Department of Energy (DOE) Standard 3014. This extension applies to facilities that may find it necessary or desirable to estimate the localized effects of an aircraft crash hit on a facility of nonuniform construction or one that is shielded in certain directions by surrounding terrain or buildings. This extension is not proposed as a replacement to the aircraft crash risk methodology of DOE Standard 3014 but rather as an alternate method to cover situations that were not considered.

  17. Analytical modeling of transport aircraft crash scenarios to obtain floor pulses

    NASA Technical Reports Server (NTRS)

    Wittlin, G.; Lackey, D.

    1983-01-01

    The KRAS program was used to analyze transport aircraft candidate crash scenarios. Aircraft floor pulses and seat/occupant responses are presented. Results show that: (1) longitudinal only pulses can be represented by equivalent step inputs and/or static requirements; (2) the L1649 crash test floor longitudinal pulse for the aft direction (forward inertia) is less than 9g static or an equivalent 5g pulse; aft inertia accelerations are extremely small ((ch76) 3g) for representative crash scenarios; (3) a viable procedure to relate crash scenario floor pulses to standard laboratory dynamic and static test data using state of the art analysis and test procedures was demonstrated; and (4) floor pulse magnitudes are expected to be lower for wide body aircraft than for smaller narrow body aircraft.

  18. Data development technical support document for the aircraft crash risk analysis methodology (ACRAM) standard

    SciTech Connect

    Kimura, C.Y.; Glaser, R.E.; Mensing, R.W.; Lin, T.; Haley, T.A.; Barto, A.B.; Stutzke, M.A.

    1996-08-01

    The Aircraft Crash Risk Analysis Methodology (ACRAM) Panel has been formed by the US Department of Energy Office of Defense Programs (DOE/DP) for the purpose of developing a standard methodology for determining the risk from aircraft crashes onto DOE ground facilities. In order to accomplish this goal, the ACRAM panel has been divided into four teams, the data development team, the model evaluation team, the structural analysis team, and the consequence team. Each team, consisting of at least one member of the ACRAM plus additional DOE and DOE contractor personnel, specializes in the development of the methodology assigned to that team. This report documents the work performed by the data development team and provides the technical basis for the data used by the ACRAM Standard for determining the aircraft crash frequency. This report should be used to provide the generic data needed to calculate the aircraft crash frequency into the facility under consideration as part of the process for determining the aircraft crash risk to ground facilities as given by the DOE Standard Aircraft Crash Risk Assessment Methodology (ACRAM). Some broad guidance is presented on how to obtain the needed site-specific and facility specific data but this data is not provided by this document.

  19. Crash response data system for the controlled impact demonstration (CID) of a full scale transport aircraft

    NASA Astrophysics Data System (ADS)

    Calloway, Raymond S.; Knight, Vernie H., Jr.

    NASA Langley's Crash Response Data System (CRDS) which is designed to acquire aircraft structural and anthropomorphic dummy responses during the full-scale transport CID test is described. Included in the discussion are the system design approach, details on key instrumentation subsystems and operations, overall instrumentation crash performance, and data recovery results. Two autonomous high-environment digital flight instrumentation systems, DAS 1 and DAS 2, were employed to obtain research data from various strain gage, accelerometer, and tensiometric sensors installed in the B-720 test aircraft. The CRDS successfully acquired 343 out of 352 measurements of dynamic crash data.

  20. Crash response data system for the controlled impact demonstration (CID) of a full scale transport aircraft

    NASA Technical Reports Server (NTRS)

    Calloway, Raymond S.; Knight, Vernie H., Jr.

    1986-01-01

    NASA Langley's Crash Response Data System (CRDS) which is designed to acquire aircraft structural and anthropomorphic dummy responses during the full-scale transport CID test is described. Included in the discussion are the system design approach, details on key instrumentation subsystems and operations, overall instrumentation crash performance, and data recovery results. Two autonomous high-environment digital flight instrumentation systems, DAS 1 and DAS 2, were employed to obtain research data from various strain gage, accelerometer, and tensiometric sensors installed in the B-720 test aircraft. The CRDS successfully acquired 343 out of 352 measurements of dynamic crash data.

  1. Soil analyses and evaluations at the impact dynamics research facility for two full-scale aircraft crash tests

    NASA Technical Reports Server (NTRS)

    Cheng, R. Y. K.

    1977-01-01

    The aircraft structural crash behavior and occupant survivability for aircraft crashes on a soil surface was studied. The results of placement, compaction, and maintenance of two soil test beds are presented. The crators formed by the aircraft after each test are described.

  2. Assessment of methodologies for analysis of the dungeness B accidental aircraft crash risk.

    SciTech Connect

    LaChance, Jeffrey L.; Hansen, Clifford W.

    2010-09-01

    The Health and Safety Executive (HSE) has requested Sandia National Laboratories (SNL) to review the aircraft crash methodology for nuclear facilities that are being used in the United Kingdom (UK). The scope of the work included a review of one method utilized in the UK for assessing the potential for accidental airplane crashes into nuclear facilities (Task 1) and a comparison of the UK methodology against similar International Atomic Energy Agency (IAEA), United States (US) Department of Energy (DOE), and the US Nuclear Regulatory Commission (NRC) methods (Task 2). Based on the conclusions from Tasks 1 and 2, an additional Task 3 would provide an assessment of a site-specific crash frequency for the Dungeness B facility using one of the other methodologies. This report documents the results of Task 2. The comparison of the different methods was performed for the three primary contributors to aircraft crash risk at the Dungeness B site: airfield related crashes, crashes below airways, and background crashes. The methods and data specified in each methodology were compared for each of these risk contributors, differences in the methodologies were identified, and the importance of these differences was qualitatively and quantitatively assessed. The bases for each of the methods and the data used were considered in this assessment process. A comparison of the treatment of the consequences of the aircraft crashes was not included in this assessment because the frequency of crashes into critical structures is currently low based on the existing Dungeness B assessment. Although the comparison found substantial differences between the UK and the three alternative methodologies (IAEA, NRC, and DOE) this assessment concludes that use of any of these alternative methodologies would not change the conclusions reached for the Dungeness B site. Performance of Task 3 is thus not recommended.

  3. Study of aircraft crashworthiness for fire protection

    NASA Technical Reports Server (NTRS)

    Cominsky, A.

    1981-01-01

    Impact-survivable postcrash fire accidents were surveyed. The data base developed includes foreign and domestic accidents involving airlines and jet aircraft. The emphasis was placed on domestic accidents, airlines, and jet aircraft due principally to availability of information. Only transport category aircraft in commercial service designed under FAR Part 25 were considered. A matrix was prepared to show the relationships between the accident characteristics and the fire fatalities. Typical postcrash fire scenaries were identified. Safety concepts were developed for three engineering categories: cabin interiors - cabin subsystems; power plant - engines and fuel systems; and structural mechanics - primary and secondary structures. The parameters identified for concept evaluation are cost, effectiveness, and societal concerns. Three concepts were selected for design definition and cost and effectiveness analysis: improved fire-resistant seat materials; anti-misting kerosene; and additional cabin emergency exits.

  4. Impact dynamics research facility for full-scale aircraft crash testing

    NASA Technical Reports Server (NTRS)

    Vaughan, V. L. J.; Alfaro-Bou, E.

    1976-01-01

    An impact dynamics research facility (IDRF) was developed to crash test full-scale general aviation aircraft under free-flight test conditions. The aircraft are crashed into the impact surface as free bodies; a pendulum swing method is used to obtain desired flight paths and velocities. Flight paths up to -60 deg and aircraft velocities along the flight paths up to about 27.0 m/s can be obtained with a combination of swing-cable lengths and release heights made available by a large gantry. Seven twin engine, 2721-kg aircraft were successfully crash tested at the facility, and all systems functioned properly. Acquisition of data from signals generated by accelerometers on board the aircraft and from external and onboard camera coverage was successful in spite of the amount of damage which occurred during each crash. Test parameters at the IDRF are controllable with flight path angles accurate within 8 percent, aircraft velocity accurate within 6 percent, pitch angles accurate to 4.25 deg, and roll and yaw angles acceptable under wind velocities up to 4.5 m/s.

  5. Evaluation of aircraft crash hazard at Los Alamos National Laboratory facilities

    SciTech Connect

    Selvage, R.D.

    1996-07-01

    This report selects a method for use in calculating the frequency of an aircraft crash occurring at selected facilities at the Los Alamos National Laboratory (the Laboratory). The Solomon method was chosen to determine these probabilities. Each variable in the Solomon method is defined and a value for each variable is selected for fourteen facilities at the Laboratory. These values and calculated probabilities are to be used in all safety analysis reports and hazards analyses for the facilities addressed in this report. This report also gives detailed directions to perform aircraft-crash frequency calculations for other facilities. This will ensure that future aircraft-crash frequency calculations are consistent with calculations in this report.

  6. Experimental Photogrammetric Techniques Used on Five Full-Scale Aircraft Crash Tests

    NASA Technical Reports Server (NTRS)

    Littell, Justin D.

    2016-01-01

    Between 2013 and 2015, full-scale crash tests were conducted on five aircraft at the Landing and Impact Research Facility (LandIR) at NASA Langley Research Center (LaRC). Two tests were conducted on CH-46E airframes as part of the Transport Rotorcraft Airframe Crash Testbed (TRACT) project, and three tests were conduced on Cessna 172 aircraft as part of the Emergency Locator Transmitter Survivability and Reliability (ELTSAR) project. Each test served to evaluate a variety of crashworthy systems including: seats, occupants, restraints, composite energy absorbing structures, and Emergency Locator Transmitters. As part of each test, the aircraft were outfitted with a variety of internal and external cameras that were focused on unique aspects of the crash event. A subset of three camera was solely used in the acquisition of photogrammetric test data. Examples of this data range from simple two-dimensional marker tracking for the determination of aircraft impact conditions to entire full-scale airframe deformation to markerless tracking of Anthropomorphic Test Devices (ATDs, a.k.a. crash test dummies) during the crash event. This report describes and discusses the techniques used and implications resulting from the photogrammetric data acquired from each of the five tests.

  7. Fires in P-3 Aircraft Oxygen Systems

    NASA Technical Reports Server (NTRS)

    Stoltzfus, Joel

    2006-01-01

    Fires in three P3 aircraft oxygen systems have occurred: one in the Royal Australian Air Force (RAAF) in 1984 and two in the U.S. Navy in 1998 and 2003. All three fires started in the aluminum manifold and check valve (MCV) assembly and produced similar damages to the aircraft in which they occurred. This paper discusses a failure analysis conducted by the NASA Johnson Space Center White Sands Test Facility (WSTF) Oxygen Hazards and Testing Team on the 2003 U.S. Navy VP62 fire. It was surmised that the fire started due to heat generated by an oxygen leak past a silicone check valve seal or possibly because of particle impact near the seat of one of the MCV assembly check valves. An additional analysis of fires in several check valve poppet seals from other aircraft is discussed. These burned poppet seals came from P3 oxygen systems that had been serviced at the Naval Air Station (NAS) in Jacksonville following standard fill procedures. It was concluded that these seal fires occurred due to the heat from compression heating, particle impact, or the heat generated by an oxygen leak past the silicone check valve seal. The fact that catastrophic fires did not occur in the case of each check valve seal fire was attributed to the protective nature of the aluminum oxide layer on the check valve poppets. To prevent future fires of this nature, the U.S. and Canadian fleets of P3 aircraft have been retrofitted with MCV assemblies with an upgraded design and more burn-resistant materials.

  8. A Combined Water-Bromotrifluoromethane Crash-Fire Protection System for a T-56 Turbopropeller Engine

    NASA Technical Reports Server (NTRS)

    Campbell, John A.; Busch, Arthur M.

    1959-01-01

    A crash-fire protection system is described which will suppress the ignition of crash-spilled fuel that may be ingested by a T-56 turbo-propeller engine. This system includes means for rapidly extinguishing the combustor flame, means for cooling and inerting with water the hot engine parts likely to ignite engine ingested fuel, and means for blanketing with bromotrifluoromethane massive metal parts that may reheat after the engine stops rotating. Combustion-chamber flames were rapidly extinguished at the engine fuel nozzles by a fuel shutoff and drain valve. Hot engine parts were inerted and cooled by 42 pounds of water discharged at seven engine stations. Massive metal parts that could reheat were inerted with 10 pounds of bromotrifluoromethane discharged at two engine stations. Performance trials of the crash-fire protection system were conducted by bringing the engine up to takeoff temperature, actuating the crash-fire protection system, and then spraying fuel into the engine to simulate crash-ingested fuel. No fires occurred during these trials, although fuel was sprayed into the engine from 0.3 second to 15 minutes after actuating the crash-fire protection system.

  9. Measurements of the response of transport aircraft ceiling panels to fuel pool fires

    NASA Technical Reports Server (NTRS)

    Bankston, C. P.; Back, L. H.

    1985-01-01

    Tests were performed to characterize the responses of various aircraft ceiling panel configurations to a simulated post-crash fire. Attention was given to one currently used and four new ceiling configurations exposed to a fuel pool fire in a circulated air enclosure. The tests were controlled to accurately represent conditions in a real fire. The panels were constructed of fiberglass-epoxy, graphite-phenolic resin, fiberglass-phenolic resin, Kevlar-epoxy, and Kevlar-phenolic resin materials. The phenolic resin-backed sheets performed the best under the circumstances, except when combined with Kevlar, which became porous when charred.

  10. Aircraft Engine Sump Fire Mitigation

    NASA Technical Reports Server (NTRS)

    Rosenlieb, J. W.

    1973-01-01

    An investigation was performed of the conditions in which fires can result and be controlled within the bearing sump simulating that of a gas turbine engine; Esso 4040 Turbo Oil, Mobil Jet 2, and Monsanto MCS-2931 lubricants were used. Control variables include the oil inlet temperature, bearing temperature, oil inlet and scavenge rates, hot air inlet temperature and flow rate, and internal sump baffling. In addition to attempting spontaneous combustion, an electric spark and a rub (friction) mechanism were employed to ignite fires. Spontaneous combustion was not obtained; however, fires were readily ignited with the electric spark while using each of the three test lubricants. Fires were also ignited using the rub mechanism with the only test lubricant evaluated, Esso 4040. Major parameters controlling ignitions were: Sump configuration; Bearing and oil temperatures, hot air temperature and flow and bearing speed. Rubbing between stationary parts and rotating parts (eg. labyrinth seal and mating rub strip) is a very potent fire source suggesting that observed accidental fires in gas turbine sumps may well arise from this cause.

  11. Frequency Estimates for Aircraft Crashes into Nuclear Facilities at Los Alamos National Laboratory (LANL)

    SciTech Connect

    George D. Heindel

    1998-09-01

    In October 1996, the Department of Energy (DOE) issued a new standard for evaluating accidental aircraft crashes into hazardous facilities. This document uses the method prescribed in the new standard to evaluate the likelihood of this type of accident occurring at Los Alamos National Laboratory's nuclear facilities.

  12. Fire containment tests of aircraft interior panels

    NASA Technical Reports Server (NTRS)

    Kourtides, D. A.; Parker, J. A.; Leon, H. A.; Williamson, R. B.; Hasegawa, H.; Fisher, F.; Draemel, R.; Marcussen, W. H.; Hilado, C. J.

    1976-01-01

    The paper describes an experimental program carried out to evaluate a possible method for testing the fire-containment qualities of aircraft interior panels. The experimental apparatus consisted of a burner that simulates various fire loads under different ventilation conditions in an enclosure of approximately the same size as an aircraft lavatory module. Two fire-containment tests are discussed in which two adjoining walls of the enclosure were made from state-of-the-art composite panels; rats were exposed to the combustion products in order to evaluate the toxic threat posed by those products. The results show that the burner can be employed to represent various fire-load conditions and that the methodology developed for fire containment can be useful in evaluating the fire resistance of composite panels before conducting large-scale tests. It is concluded that elements of the fire-containment criteria include the temperature rise on the backface of the panels as a function of time, the flame burn-through by either decomposition or severe distortion of the material, and the toxicity of the combustion gases evolved.

  13. Energy absorption studied to reduce aircraft crash forces

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The NASA/FAA aircraft safety reseach programs for general aviation aircraft are discussed. Energy absorption of aircraft subflooring and redesign of interior flooring are being studied. The testing of energy absorbing configurations is described. The three NASA advanced concepts performed at neary the maximum possible amount of energy absorption, and one of two minimum modifications concepts performed well. Planned full scale tests are described. Airplane seat concepts are being considered.

  14. Failure behavior of generic metallic and composite aircraft structural components under crash loads

    NASA Technical Reports Server (NTRS)

    Carden, Huey D.; Robinson, Martha P.

    1990-01-01

    Failure behavior results are presented from crash dynamics research using concepts of aircraft elements and substructure not necessarily designed or optimized for energy absorption or crash loading considerations. To achieve desired new designs incorporating improved energy absorption capabilities often requires an understanding of how more conventional designs behave under crash loadings. Experimental and analytical data are presented which indicate some general trends in the failure behavior of a class of composite structures including individual fuselage frames, skeleton subfloors with stringers and floor beams without skin covering, and subfloors with skin added to the frame-stringer arrangement. Although the behavior is complex, a strong similarity in the static/dynamic failure behavior among these structures is illustrated through photographs of the experimental results and through analytical data of generic composite structural models.

  15. Fire detector response in aircraft applications

    NASA Technical Reports Server (NTRS)

    Wiersma, S. J.; Mckee, R. G.

    1978-01-01

    Photoelectric, ionization, and gas sensors were used to detect the signatures from the radiant heat or flame of various aircraft materials. It was found that both ionization and photoelectric detectors are about equally capable of detecting products of pyrolysis and combustion of synthetic polymers, especially those containing fire-retardant additives. Ionization detectors alone appeared to be sensitive to combustion products of simple cellulosic materials. A gas sensor detector appeared to be insensitive to pyrolysis or combustion products of many of the materials.

  16. Unique failure behavior of metal/composite aircraft structural components under crash type loads

    NASA Technical Reports Server (NTRS)

    Carden, Huey D.

    1990-01-01

    Failure behavior results are presented on some of the crash dynamics research conducted with concepts of aircraft elements and substructure which have not necessarily been designed or optimized for energy absorption or crash loading considerations. To achieve desired new designs which incorporate improved energy absorption capabilities often requires an understanding of how more conventional designs behave under crash type loadings. Experimental and analytical data are presented which indicate some general trends in the failure behavior of a class of composite structures which include individual fuselage frames, skeleton subfloors with stringers and floor beams but without skin covering, and subfloors with skin added to the frame-stringer arrangement. Although the behavior is complex, a strong similarity in the static/dynamic failure behavior among these structures is illustrated through photographs of the experimental results and through analytical data of generic composite structural models. It is believed that the thread of similarity in behavior is telling the designer and dynamists a great deal about what to expect in the crash behavior of these structures and can guide designs for improving the energy absorption and crash behavior of such structures.

  17. An analysis of aircraft accidents involving fires

    NASA Technical Reports Server (NTRS)

    Lucha, G. V.; Robertson, M. A.; Schooley, F. A.

    1975-01-01

    All U. S. Air Carrier accidents between 1963 and 1974 were studied to assess the extent of total personnel and aircraft damage which occurred in accidents and in accidents involving fire. Published accident reports and NTSB investigators' factual backup files were the primary sources of data. Although it was frequently not possible to assess the relative extent of fire-caused damage versus impact damage using the available data, the study established upper and lower bounds for deaths and damage due specifically to fire. In 12 years there were 122 accidents which involved airframe fires. Eighty-seven percent of the fires occurred after impact, and fuel leakage from ruptured tanks or severed lines was the most frequently cited cause. A cost analysis was performed for 300 serious accidents, including 92 serious accidents which involved fire. Personal injury costs were outside the scope of the cost analysis, but data on personnel injury judgements as well as settlements received from the CAB are included for reference.

  18. A History of Full-Scale Aircraft and Rotorcraft Crash Testing and Simulation at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Jackson, Karen E.; Boitnott, Richard L.; Fasanella, Edwin L.; Jones, Lisa E.; Lyle, Karen H.

    2004-01-01

    This paper summarizes 2-1/2 decades of full-scale aircraft and rotorcraft crash testing performed at the Impact Dynamics Research Facility (IDRF) located at NASA Langley Research Center in Hampton, Virginia. The IDRF is a 240-ft.-high steel gantry that was built originally as a lunar landing simulator facility in the early 1960's. It was converted into a full-scale crash test facility for light aircraft and rotorcraft in the early 1970 s. Since the first full-scale crash test was preformed in February 1974, the IDRF has been used to conduct: 41 full-scale crash tests of General Aviation (GA) aircraft including landmark studies to establish baseline crash performance data for metallic and composite GA aircraft; 11 full-scale crash tests of helicopters including crash qualification tests of the Bell and Sikorsky Advanced Composite Airframe Program (ACAP) prototypes; 48 Wire Strike Protection System (WSPS) qualification tests of Army helicopters; 3 vertical drop tests of Boeing 707 transport aircraft fuselage sections; and, 60+ crash tests of the F-111 crew escape module. For some of these tests, nonlinear transient dynamic codes were utilized to simulate the impact response of the airframe. These simulations were performed to evaluate the capabilities of the analytical tools, as well as to validate the models through test-analysis correlation. In September 2003, NASA Langley closed the IDRF facility and plans are underway to demolish it in 2007. Consequently, it is important to document the contributions made to improve the crashworthiness of light aircraft and rotorcraft achieved through full-scale crash testing and simulation at the IDRF.

  19. Crash-Fire Protection System for T-56 Turbopropeller Engine Using Water as Cooling and Inerting Agent

    NASA Technical Reports Server (NTRS)

    Busch, Arthur M.; Campbell, John A.

    1959-01-01

    A crash-fire protection system to suppress the ignition of crash-spilled fuel that may be ingested by a T-56 turbopropeller engine is described. This system includes means for rapidly extinguishing the combustor flame and means for cooling and inerting with water the hot engine parts likely to ignite engine-ingested fuel. Combustion-chamber flames were extinguished in 0.07 second at the engine fuel manifold. Hot engine parts were inerted and cooled by 52 pounds of water discharged at ten engine stations. Performance trials of the crash-fire prevention system were conducted by bringing the engine up to takeoff temperature, stopping the normal fuel flow to the engine, starting the water discharge, and then spraying fuel into the engine to simulate crash-ingested fuel. No fires occurred during these trials, although fuel was sprayed into the engine from 0.3 second to 15 minutes after actuating the crash-fire protection system.

  20. Pool fires in a simulated aircraft cabin interior with ventilation

    NASA Technical Reports Server (NTRS)

    Bankston, C. P.; Back, L. H.; Cho, Y. I.; Shakkottai, P.

    1987-01-01

    Results of experiments conducted at the JPL to evaluate aircraft postcrash fire hazards are presented. The experiments were carried out in a one-third scale simulated aircraft cabin geometry to study pool fire and ventilation flow interactions. It is shown that wind-induced ventilation may significantly affect fire plume orientation, smoke transport, and heat fluxes and thus will affect subsequent fire spread and the immediate survivability of the passengers.

  1. Fire resistant films for aircraft applications

    NASA Technical Reports Server (NTRS)

    Kourtides, D. A.

    1983-01-01

    Alternative sandwich panel decorative films were investigated as replacements for the polyvinyl fluoride currently used in aircraft interiors. Candidate films were studied for flammability, smoke emission, toxic gas emission, flame spread, and suitability as a printing surface for the decorative acrylic ink system. Several of the candidate films tested were flame modified polyvinyl fluoride, polyvinylidene fluoride, polyimide, polyamide, polysulfone, polyphenylsulfone, polyethersulfone, polybenzimidazole, polycarbonate, polyparabanic acid, polyphosphazene, polyetheretherketon, and polyester. The films were evaluated as pure films only, films silk-screened with an acrylic ink, and films adhered to a phenolic fiberglass substrate. Films which exhibited the highest fire resistant properties included PEEK polyetheretherketon, Aramid polyamide, and ISO-BPE polyester.

  2. Materials research for aircraft fire safety

    NASA Technical Reports Server (NTRS)

    Kourtides, D. A.; Parker, J. A.; Bricker, R. W.

    1976-01-01

    The thermochemical and flammability characteristics of two polymeric composites currently in use and seven others being considered for use as aircraft interior panels are described. The properties studied included: (1) limiting oxygen index of the composite constituents; (2) fire containment capability of the composite; (3) smoke evolution from the composite; (4) thermogravimetric analysis; (5) composition of the volatile products of thermal degradation; and (6) relative toxicity of the volatile products of pyrolysis. The performance of high-temperature laminating resins such as bismaleimides is compared with the performance of phenolics and epoxies. The relationship of increased fire safety with the use of polymers with high anaerobic char yield is shown. Processing parameters of the state-of-the-art and the advanced bismaleimide composites are detailed.

  3. Impact Analyses and Tests of Metal Cask Considering Aircraft Engine Crash - 12308

    SciTech Connect

    Lee, Sanghoon; Choi, Woo-Seok; Kim, Ki-Young; Jeon, Je-Eon; Seo, Ki-Seog

    2012-07-01

    The structural integrity of a dual purpose metal cask currently under development by the Korea Radioactive Waste Management Cooperation (KRMC) is evaluated through analyses and tests under a high-speed missile impact considering the targeted aircraft crash conditions. The impact conditions were carefully chosen through a survey on accident cases and recommendations from the literature. The missile impact velocity was set at 150 m/s, and two impact orientations were considered. A simplified missile simulating a commercial aircraft engine is designed from an impact load history curve provided in the literature. In the analyses, the focus is on the evaluation of the containment boundary integrity of the metal cask. The analyses results are compared with the results of tests using a 1/3 scale model. The results show very good agreements, and the procedure and methodology adopted in the structural analyses are validated. While the integrity of the cask is maintained in one evaluation where the missile impacts the top side of the free standing cask, the containment boundary is breached in another case in which the missile impacts the center of the cask lid in a perpendicular orientation. A safety assessment using a numerical simulation of an aircraft engine crash into spent nuclear fuel storage systems is performed. A commercially available explicit finite element code is utilized for the dynamic simulation, and the strain rate effect is included in the modeling of the materials used in the target system and missile. The simulation results show very good agreement with the test results. It is noted that this is the first test considering an aircraft crash in Korea. (authors)

  4. Instrumentation and data acquisition for full-scale aircraft crash testing

    NASA Technical Reports Server (NTRS)

    Jones, Lisa E.; Fasanella, Edwin L.

    1993-01-01

    The Landing and Impact Dynamics Branch of the NASA Langley Research Center has been conducting full-scale aircraft crash tests since the 1970s. Using a pendulum method, aircraft are suspended by cables from a 240-ft high gantry and swung into the impact surface at various attitudes and velocities. Instrumentation for these tests include on-board high-speed cameras, strain gages, load cells, displacement transducers, and accelerometers. Transducers in the aircraft are hard-wired through a long umbilical cable to the data acquisition room. Up to 96 channels of data can be collected at a typical rate of 4000 samples per second. Data acquisition using an FM multiplexed analog system and a high-speed personal computer based digital system is described.

  5. An overview of the crash dynamics failure behavior of metal and composite aircraft structures

    NASA Technical Reports Server (NTRS)

    Carden, Huey D.; Boitnott, Richard L.; Fasanella, Edwin L.; Jones, Lisa E.

    1991-01-01

    An overview of failure behavior results is presented from some of the crash dynamics research conducted with concepts of aircraft elements and substructure not necessarily designed or optimized for energy absorption or crash loading considerations. Experimental and analytical data are presented that indicate some general trends in the failure behavior of a class of composite structures that includes fuselage panels, individual fuselage sections, fuselage frames, skeleton subfloors with stringers and floor beams without skin covering, and subfloors with skin added to the frame stringer structure. Although the behavior is complex, a strong similarity in the static/dynamic failure behavior among these structures is illustrated through photographs of the experimental results and through analytical data of generic composite structural models.

  6. Crash Testing and Simulation of a Cessna 172 Aircraft: Pitch Down Impact Onto Soft Soil

    NASA Technical Reports Server (NTRS)

    Fasanella, Edwin L.; Jackson, Karen E.

    2016-01-01

    During the summer of 2015, NASA Langley Research Center conducted three full-scale crash tests of Cessna 172 (C-172) aircraft at the NASA Langley Landing and Impact Research (LandIR) Facility. The first test represented a flare-to-stall emergency or hard landing onto a rigid surface. The second test, which is the focus of this paper, represented a controlled-flight-into-terrain (CFIT) with a nose-down pitch attitude of the aircraft, which impacted onto soft soil. The third test, also conducted onto soil, represented a CFIT with a nose-up pitch attitude of the aircraft, which resulted in a tail strike condition. These three crash tests were performed for the purpose of evaluating the performance of Emergency Locator Transmitters (ELTs) and to generate impact test data for model validation. LS-DYNA finite element models were generated to simulate the three test conditions. This paper describes the model development and presents test-analysis comparisons of acceleration and velocity time-histories, as well as a comparison of the time sequence of events for Test 2 onto soft soil.

  7. Aircraft Engine Sump Fire Mitigation, Phase 2

    NASA Technical Reports Server (NTRS)

    Rosenlieb, J. W.

    1978-01-01

    The effect of changes in the input parameters (air leakage flow rate and temperature and lubricating oil inlet flow rate and temperature) over a specified range on the flammability conditions within an aircraft engine bearing sump was investigated. An analytical study was performed to determine the effect of various parameters on the generation rate of oil vapor from oil droplets in a hot air stream flowing in a cylindrical tube. The ignition of the vapor-air mixture by an ignition source was considered. The experimental investigation demonstrated that fires would be ignited by a spark ignitor over the full range of air and oil flow rates and air temperatures evaluated. However, no fires could be ignited when the oil inlet temperature was maintained below 41.7 K (290 F). The severity of the fires ignited were found to be directly proportional to the hot air flow rate. Reasonably good correlation was found between the mixture temperature in the sump at the ignitor location and the flammability limits as defined by flammability theory; thus a fairly reliable experimental method of determining flammable conditions within a sump was demonstrated. The computerized mathematical model shows that oil droplet size and air temperature have the greatest influence on the generation rate of oil vapor.

  8. Refurbishment of NASA aircraft with fire-retardant materials. [aircraft compartments of commercial aircraft

    NASA Technical Reports Server (NTRS)

    Supkis, D. E.

    1975-01-01

    Selected fire-retardant materials for possible application to commercial aircraft are described. The results of flammability screening tests and information on the physical and chemical properties of both original and newly installed materials after extended use are presented in tabular form, with emphasis on wear properties, strength, puncture and tear resistances, and cleanability.

  9. The annual probability of an aircraft crash on the US Department of Energy reservation in Oak Ridge, Tennessee

    SciTech Connect

    Seigler, R.S.; Luttrell, L.J.

    1992-11-01

    Aircraft hazards were evaluated to determine the total annual probability of an aircraft crash occurring at any structure located on the US Department of Energy (DOE) reservation in Oak Ridge, Tennessee. This report documents the use of an accepted methodology for calculating the probability of an aircraft crash as applied to the three Oak Ridge plant sites including the adjoining facilities. Based on the data contained herein, the evaluation concluded that the probability of an aircraft crash occurrence at a single facility is generally considered ``not credible`` as defined in DOE/OR-901. Additionally, reevaluation of probabilities would be necessary if significant changes were made to local air traffic. The probability of an aircraft crash could increase as a result of the opening of any new airport or heliport in the vicinity; a greater volume of air traffic from McGhee Tyson airport in Knoxville, should the airport status change from feeder airport to hub airport; the rerouting of commercial and/or military flights at the McGhee Tyson airport; and finally, a change in direction or the addition of a federal airway. At one time, DOE planned to establish a zone of prohibited airspace over the Y-12 plant; if the plans are enacted in the future, the probability of an aircraft crash at the Y-12 plant could decrease. Pilots since have been voluntarily requested not to fly below 3000 feet over the Y-12 plant. Also, the Federal Aviation Administration plans to reroute air traffic in the spring of 1993 on federal airway V16. However, the section of V16 which traverses the three plant sites and five adjoining facilities will not be altered. If this plan is implemented, the air traffic over the Oak Ridge facilities would not be affected significantly, and the probability of an aircraft crash as determined herein would be unchanged.

  10. Study to develop improved fire resistant aircraft passenger seat materials

    NASA Technical Reports Server (NTRS)

    Duskin, F. E.; Schutter, K. J.; Sieth, H. H.; Trabold, E. L.

    1980-01-01

    The Phase 3 study of the NASA 'Improved Fire Resistant Aircraft Seat Materials' involved fire tests of improved materials in multilayered combinations representative of cushion configurations. Tests were conducted to determine their thermal, smoke, and fire resistance characteristics. Additionally, a 'Design Guideline' for Fire Resistant Passenger Seats was written outlining general seat design considerations. Finally, a three-abreast 'Tourist Class' passenger seat assembly fabricated from the most advanced fire-resistant materials was delivered.

  11. Fire resistant films for aircraft applications

    NASA Technical Reports Server (NTRS)

    Kourtides, D. A.

    1983-01-01

    Alternative sandwich panel decorative films were investigated as replacements for the polyvinyl fluoride currently used in aircraft interiors. Candidate films were studied for flammability, smoke emission, toxic gas emission, flame spread, and suitability as a printing surface for the decorative acrylic ink system. Several of the candidate films tested were flame modified polyvinyl fluoride, polyvinylidene fluoride, polyimide, polyamide, polysulfone, polyphenylsulfone, polyethersulfone, polybenzimidazole, polycarbonate, polyparabanic acid, polyphosphazene, polyetheretherketon, and polyester. The films were evaluated as pure films only, films silk-screened with an acrylic ink, and films adhered to a phenolic fiberglass substrate. Films which exhibited the highest fire resistant properties included PEEK polyetheretherketon, Aramid polyamide, and ISO-BPE polyester. Previously announced in STAR as N83-22320

  12. Crash Simulation of a Vertical Drop Test of a Commuter-Class Aircraft

    NASA Technical Reports Server (NTRS)

    Jackson, Karen E.; Fasanella, Edwin L.

    2004-01-01

    A finite element model of an ATR42-300 commuter-class aircraft was developed and a crash simulation was executed. Analytical predictions were correlated with data obtained from a 30-ft/s (9.14-m/s) vertical drop test of the aircraft. The purpose of the test was to evaluate the structural response of the aircraft when subjected to a severe, but survivable, impact. The aircraft was configured with seats, dummies, luggage, and other ballast. The wings were filled with 8,700 lb. (3,946 kg) of water to represent the fuel. The finite element model, which consisted of 57,643 nodes and 62,979 elements, was developed from direct measurements of the airframe geometry. The seats, dummies, luggage, fuel, and other ballast were represented using concentrated masses. The model was executed in LS-DYNA, a commercial code for performing explicit transient dynamic simulations. Predictions of structural deformation and selected time-history responses were generated. The simulation was successfully validated through extensive test-analysis correlation.

  13. Safety Analysis of Dual Purpose Metal Cask Subjected to Impulsive Loads due to Aircraft Engine Crash

    NASA Astrophysics Data System (ADS)

    Shirai, Koji; Namba, Kosuke; Saegusa, Toshiari

    In Japan, the first Interim Storage Facility of spent nuclear fuel away from reactor site is being planned to start its commercial operation around 2010, in use of dual-purpose metal cask in the northern part of Main Japan Island. Business License Examination for safety design approval has started since March, 2007. To demonstrate the more scientific and rational performance of safety regulation activities on each phase for the first license procedure, CREPEI has executed demonstration tests with full scale casks, such as drop tests onto real targets without impact limiters(1) and seismic tests subjected to strong earthquake motions(2). Moreover, it is important to develop the knowledge for the inherent security of metal casks under extreme mechanical-impact conditions, especially for increasing interest since the terrorist attacks from 11th September 2001(3)-(6). This paper presents dynamic mechanical behavior of the metal cask lid closure system caused by direct aircraft engine crash and describes calculated results (especially, leak tightness based on relative dynamic displacements between metallic seals). Firstly, the local penetration damage of the interim storage facility building by a big passenger aircraft engine crash (diameter 2.7m, length 4.3m, weight 4.4ton, impact velocity 90m/s) has been examined. The reduced velocity is calculated by the local damage formula for concrete structure with its thickness of 70cm. The load vs. time function for this reduced velocity (60m/s) is estimated by the impact analysis using Finite Element code LS-DYNA with the full scale engine model onto a hypothetically rigid target. Secondly, as the most critical scenarios for the metal cask, two impact scenarios (horizontal impact hitting the cask and vertical impact onto the lid metallic seal system) are chosen. To consider the geometry of all bolts for two lids, the gasket reaction forces and the inner pressure of the cask cavity, the detailed three dimensional FEM models are

  14. Crash Testing and Simulation of a Cessna 172 Aircraft: Hard Landing Onto Concrete

    NASA Technical Reports Server (NTRS)

    Jackson, Karen E.; Fasanella, Edwin L.

    2016-01-01

    A full-scale crash test of a Cessna 172 aircraft was conducted at the Landing and Impact Research Facility at NASA Langley Research Center during the summer of 2015. The purpose of the test was to evaluate the performance of Emergency Locator Transmitters (ELTs) that were mounted at various locations in the aircraft and to generate impact test data for model validation. A finite element model of the aircraft was developed for execution in LSDYNA to simulate the test. Measured impact conditions were 722.4-in/s forward velocity and 276-in/s vertical velocity with a 1.5deg pitch (nose up) attitude. These conditions were intended to represent a survivable hard landing. The impact surface was concrete. During the test, the nose gear tire impacted the concrete, followed closely by impact of the main gear tires. The main landing gear spread outward, as the nose gear stroked vertically. The only fuselage contact with the impact surface was a slight impact of the rearmost portion of the lower tail. Thus, capturing the behavior of the nose and main landing gear was essential to accurately predict the response. This paper describes the model development and presents test-analysis comparisons in three categories: inertial properties, time sequence of events, and acceleration and velocity time-histories.

  15. Aircraft mishap investigation with radiology-assisted autopsy: helicopter crash with control injury.

    PubMed

    Folio, R Les; Harcke, H Theodore; Luzi, Scott A

    2009-04-01

    Radiology-assisted autopsy traditionally has been plain film-based, but now is being augmented by computed tomography (CT). The authors present a two-fatality rotary wing crash scenario illustrating application of advanced radiographic techniques that can guide and supplement the forensic pathologist's physical autopsy. The radiographic findings also have the potential for use by the aircraft mishap investigation board. Prior to forensic autopsy, the two crash fatalities were imaged with conventional two-dimensional radiographs (digital technique) and with multidetector CT The CT data were used for multiplanar two-dimensional and three-dimensional (3D) image reconstruction. The forensic pathologist was provided with information about skeletal fractures, metal fragment location, and other pathologic findings of potential use in the physical autopsy. The radiologic autopsy served as a supplement to the physical autopsy and did not replace the traditional autopsy in these cases. Both individuals sustained severe blunt force trauma with multiple fractures of the skull, face, chest, pelvis, and extremities. Individual fractures differed; however, one individual showed hand and lower extremity injuries similar to those associated with control of the aircraft at the time of impact. The concept of "control injury" has been challenged by Campman et al., who found that control surface injuries have a low sensitivity and specificity for establishing who the pilot was in an accident. The application of new post mortem imaging techniques may help to resolve control injury questions. In addition, the combination of injuries in our cases may contribute to further understanding of control surface injury patterns in helicopter mishaps. PMID:19378913

  16. ED swings into action following helicopter crash. Cooperation with fire department was essential.

    PubMed

    2008-08-01

    The crash landing of an Aero Med helicopter on the roof of a Grand Rapids, MI, hospital required the ED team to spring into action. Here are some lessons you can draw from their experience: You or your staff might need to assist fire or EMS personnel in transporting victims to the ED or evacuating the hospital. Even if your ED is not overwhelmed with patients, it might be necessary to go on lockdown to keep onlookers and other unwanted visitors out. Be prepared to discharge stable patients to make room for others with more urgent needs. PMID:18770940

  17. Optimization of aircraft seat cushion fire blocking layers

    NASA Technical Reports Server (NTRS)

    Kourtides, D. A.; Parker, J. A.; Ling, A. C.; Hovatter, W. R.

    1983-01-01

    This report describes work completed by the National Aeronautics and Space Administration - for the Federal Aviation Administration Technical Center. The purpose of this work was to examine the potential of fire blocking mechanisms for aircraft seat cushions in order to provide an optimized seat configuration with adequate fire protection and minimum weight. Aluminized thermally stable fabrics were found to provide adequate fire protection when used in conjunction with urethane foams, while maintaining minimum weight and cost penalty.

  18. Crash and burn? Vehicle, collision, and driver factors that influence motor vehicle collision fires.

    PubMed

    Bunn, T L; Slavova, S; Robertson, M

    2012-07-01

    A retrospective population-based case-control study was performed to determine the association between vehicle fires, and vehicle, collision, and driver factors on highways with a posted speed limit of at least 55mph. Data were obtained from the Kentucky Collision Report Analysis for Safer Highways (CRASH) electronic files for 2000-2009 from the Kentucky State Police Records Sections. The results from the final multiple logistic regression show that large trucks were at a higher risk for a collision involving a fire than passenger vehicles and pickup trucks. When controlling for all other variables in the model, vehicles 6 years old and older, driving straight down the highway, and single vehicle collisions were also identified as factors that increase the risk of motor vehicle collision fires on roadways with a posted speed limit of ≥55mph. Of the 2096 vehicles that caught fire, there were 632 (30%) non-fatally injured drivers and 224 (11%) fatally injured drivers. The results of this study have the potential to inform public health messages directed to the transportation industry, particularly semi truck drivers, in regard to fire risk. PMID:22405242

  19. Accident-precipitating factors for crashes in turbine-powered general aviation aircraft.

    PubMed

    Boyd, Douglas D; Stolzer, Alan

    2016-01-01

    General aviation (14CFR Part 91) accounts for 83% of civil aviation fatalities. While much research has focused on accident causes/pilot demographics in this aviation sector, studies to identify factors leading up to the crash (accident-precipitating factors) are few. Such information could inform on pre-emptive remedial action. With this in mind and considering the paucity of research on turbine-powered aircraft accidents the study objectives were to identify accident-precipitating factors and determine if the accident rate has changed over time for such aircraft operating under 14CFR Part 91. The NTSB Access database was queried for accidents in airplanes (<12,501lb) powered by 1-2 turbine engines and occurring between 1989 and 2013. We developed and utilized an accident-precipitating factor taxonomy. Statistical analyses employed logistic regression, contingency tables and a generalized linear model with Poisson distribution. The "Checklist/Flight Manual Not Followed" was the most frequent accident-precipitating factor category and carried an excess risk (OR 2.34) for an accident with a fatal and/or serious occupant injury. This elevated risk reflected an over-representation of accidents with fatal and/or serious injury outcomes (p<0.001) in the "non-adherence to V Speeds" sub-category. For accidents grouped in the "Inadequate Pre-Flight Planning/Inspection/Procedure" the "inadequate weather planning" sub-category accounted (p=0.036) for the elevated risk (OR 2.22) of an accident involving fatal and/or serious injuries. The "Violation FARs/AIM Deviation" category was also associated with a greater risk for fatal and/or serious injury (OR 2.59) with "Descent below the MDA/failure to execute the missed approach" representing the largest sub-category. Accidents in multi-engine aircraft are more frequent than their single engine counterparts and the decline (50%) in the turbine aircraft accident rate over the study period was likely due, in part, to a 6-fold

  20. Fire-retardant decorative inks for aircraft interiors

    NASA Technical Reports Server (NTRS)

    Nir, Z.; Mikroyannidis, J. A.; Kourtides, D. A.

    1984-01-01

    Commercial and experimental fire retardants were screened for possible use wiith acrylic printing inks on aircraft interior sandwich panels. The fire retardants were selected according to their physical properties and thermostabilities. Thermostabilities were determined by thermogravimetric analysis and differential scanning calorimetry. A criterion was then established for selecting the more stable agent. Results show that some of the bromine-containing fire retardants are more thermostable than the acrylic ink, alone, used as a control. Also, the bromine-containing fire retardants yield even better limiting oxygen index values when tested after adding carboxy-terminated butadiene acrylonitrile (CTBN) rubber.

  1. Behavior of composite/metal aircraft structural elements and components under crash type loads: What are they telling us

    NASA Technical Reports Server (NTRS)

    Carden, Huey D.; Boitnott, Richard L.; Fasanella, Edwin L.

    1990-01-01

    Failure behavior results are presented from crash dynamics research using concepts of aircraft elements and substructure not necessarily designed or optimized for energy absorption or crash loading considerations. To achieve desired new designs which incorporate improved energy absorption capabilities often requires an understanding of how more conventional designs behave under crash loadings. Experimental and analytical data are presented which indicate some general trends in the failure behavior of a class of composite structures which include individual fuselage frames, skeleton subfloors with stringers and floor beams but without skin covering, and subfloors with skin added to the frame-stringer arrangement. Although the behavior is complex, a strong similarity in the static and dynamic failure behavior among these structures is illustrated through photographs of the experimental results and through analytical data of generic composite structural models. It is believed that the similarity in behavior is giving the designer and dynamists much information about what to expect in the crash behavior of these structures and can guide designs for improving the energy absorption and crash behavior of such structures.

  2. Fire-resistant materials for aircraft passenger seat construction

    NASA Technical Reports Server (NTRS)

    Fewell, L. L.; Tesoro, G. C.; Moussa, A.; Kourtides, D. A.

    1979-01-01

    The thermal response characteristics of fabric and fabric-foam assemblies are described. The various aspects of the ignition behavior of contemporary aircraft passenger seat upholstery fabric materials relative to fabric materials made from thermally stable polymers are evaluated. The role of the polymeric foam backing on the thermal response of the fabric-foam assembly is also ascertained. The optimum utilization of improved fire-resistant fabric and foam materials in the construction of aircraft passenger seats is suggested.

  3. Crash Test of Three Cessna 172 Aircraft at NASA Langley Research Center's Landing and Impact Research Facility

    NASA Technical Reports Server (NTRS)

    Littell, Justin D.

    2015-01-01

    During the summer of 2015, three Cessna 172 aircraft were crash tested at the Landing and Impact Research Facility (LandIR) at NASA Langley Research Center (LaRC). The three tests simulated three different crash scenarios. The first simulated a flare-to-stall emergency or hard landing onto a rigid surface such as a road or runway, the second simulated a controlled flight into terrain with a nose down pitch on the aircraft, and the third simulated a controlled flight into terrain with an attempt to unsuccessfully recover the aircraft immediately prior to impact, resulting in a tail strike condition. An on-board data acquisition system captured 64 channels of airframe acceleration, along with acceleration and load in two onboard Hybrid II 50th percentile Anthropomorphic Test Devices, representing the pilot and co-pilot. Each test contained different airframe loading conditions and results show large differences in airframe performance. This paper presents test methods used to conduct the crash tests and will summarize the airframe results from the test series.

  4. Fire-retardant decorative inks for aircraft interiors

    NASA Technical Reports Server (NTRS)

    Kourtides, D. A.; Nir, Z.; Mikroyannidis, J. A.

    1985-01-01

    Commercial and experimental fire retardants were screened as potential fire retardants for acrylic printing inks used on aircraft interior sandwich panels. The fire retardants are selected according to their physical properties and their thermostabilities. A criterion for selecting a more stable fire retardant is established. Thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) are used to determine thermostabilities. Results show that the fire retardant formulations are more thermally stable than the acrylic ink control. It is determined that an ink formulation containing a brominated phenol and carboxy-terminated butadiene acrylonitrile which has been modified with a brominated polymeric additive (BPA), yields the highest limiting oxygen index (LOI) of all the compounds tested. All of the fire-retardant formulations have a higher oxygen index than the baseline acrylic ink.

  5. Aircraft Cargo Compartment Fire Test Simulation Program

    NASA Technical Reports Server (NTRS)

    Blumke, R. E.

    1977-01-01

    The objective of the test was to assess fire containment and fire extinguishment in the cargo by reducing the ventilation through the cargo compartment. Parameters which were measured included ignition time, burnthrough time, and physical damage to the cargo liner, composition of selected combustible gases, temperature-time histories, heat flux, and detector response. The ignitor load was made of a typical cargo consisting of filled cardboard cartons occupying 50% of the compartment volume.

  6. Optimization of fire blocking layers for aircraft seating

    NASA Technical Reports Server (NTRS)

    Parker, J. A.; Kourtides, D. A.

    1982-01-01

    Ablative materials are used to provide thermal protection for heat sensitive substrates against large jet fuel fires. The present investigation is concerned with the possibility to increase the available egress time for passengers, from a transport aircraft, in which the flexible polyurethane seating is exposed to the action of a large pool fire. Suitable approaches for providing sufficient ablative protection for polyurethane cushioning are considered. The efficiency of any fire blocking layer is defined as the ratio of the incident radiant heating rate, to the rate of production of combustible gas produced per unit area per second, generated by the pyrolysis of the substrate polyurethane foam. It is found that adequate fire blocking protection can be achieved through replacement of cotton batting slip covers with a wide variety of fire blocking layers. Metallized high temperature resistant char forming ablatives appear to provide optimum protection.

  7. Fire safety evaluation of aircraft lavatory and cargo compartments

    NASA Technical Reports Server (NTRS)

    Kourtides, D. A.; Parker, J. A.; Hilado, C. J.; Anderson, R. A.; Tustin, E.; Arnold, D. E.; Gaume, J. G.; Binding, A. T.; Mikeska, J. L.

    1975-01-01

    Large-scale aircraft lavatory and cargo compartment fire tests are described. Tests were conducted to evaluate the effectiveness of these compartments to contain fire and smoke. Two tests were conducted and are detailed. Test 1 involved a production Boeing 747 lavatory of the latest design installed in an enclosure outside the aircraft, to collect gases and expose animals to these gases. Results indicate that the interior of the lavatory was completely burned, evolving smoke and combustion products in the enclosure. Test 2 involved a simulated Douglas DC-10 cargo compartment retro-fitted with standard fiberglass liner. The fire caused excessive damage to the liner and burned through the ceiling in two areas. Test objectives, methods, materials, and results are presented and discussed.

  8. Lightweight, fire-retardant, crashworthy aircraft seat cushioning

    NASA Technical Reports Server (NTRS)

    Haslim, Leonard A.; Mcdonough, Paul T.

    1991-01-01

    A two page discussion of non-aerospace seating applications and the design of NASA's safety seat cushioning (SSC) is presented. The SSC was designed for both safety and comfort in order to replace polyurethane cushioning which is flammable and produces lethal fumes upon combustion. The SSC is composed of advanced fabric reinforced composites and is lightweight, fire-retardent, and crashworthy. The seat design consists of central elliptical tubular spring supports made of fire-resistant and fatigue-durable composites surrounded by a fire-blocking sheath. The cushioning is made crashworthy by incorporating energy-absorbing, viscoelastic layers between the nested, elliptical-hoop springs. The design is intended to provide comfortable seating that meets aircraft-loading requirements without using the conventional polyurethane materials. The designs of an aircraft seat and structural components of the SSC are also presented.

  9. Non-invasive examination of a skull fragment recovered from a World War Two aircraft crash site.

    PubMed

    Gapert, René; Rieder, Kurt

    2013-09-01

    The discovery of human remains dating to the time of the Second World War is a common occurrence in Europe and the Pacific regions. This case report demonstrates the analysis of a bone fragment recovered from a Luftwaffe crash site in Austria during the summer of 2007. Eye-witness statements and official reports were used to reconstruct the historical background of the case. A recovered German military identity tag helped to identify the pilot. Aircraft parts, also discovered at the crash site in 2007, aided the identification of the aircraft type and corroborated the eye-witness reports of the final moments before and during the crash. The bone was analyzed chiefly to establish its human or non-human origin and to identify from which anatomic region the fragment could have arisen. It was identified as part of a human adult skull which exhibited peri-mortem fractures and heat damage as well as post-mortem vegetation staining. The historical background information in connection with the morphological analysis led to the presumptive identification of the cranial fragment as belonging to a downed German pilot. PMID:23238939

  10. Fire safety evaluation of aircraft lavatory and cargo compartments

    NASA Technical Reports Server (NTRS)

    Kourtides, D. A.; Parker, J. A.; Hilado, C. J.; Anderson, R. A.; Tustin, E.; Arnold, D. B.; Gaume, J. G.; Binding, A. T.; Mikeska, J. L.

    1976-01-01

    A program of experimental fires has been carried out to assess fire containment and other fire hazards in lavatory and cargo compartments of wide-body jet aircraft by evaluation of ignition time, burn-through time, fire spread rate, smoke density, evolution of selected combustible and toxic gases, heat flux, and detector response. Two tests were conducted: one involving a standard Boeing 747 lavatory and one involving a simulated DC-10 cargo compartment. A production lavatory module was furnished with conventional materials and was installed in an enclosure. The ignition load was four polyethylene bags containing paper and plastic waste materials representive of a maximum flight cabin waste load. Standard aircraft ventilation conditions were utilized and the lavatory door was closed during the test. Lavatory wall and ceiling panels contained the fire spread during the 30-minute test. Smoke was driven into the enclosure primarily through the ventilation grille in the door and through the gaps between the bifold door and the jamb where the door distorted from the heat earlier in the test. The interior of the lavatory was almost completely destroyed by the fire.

  11. Effect of crash pulse shape on seat stroke requirements for limiting loads on occupants of aircraft

    NASA Technical Reports Server (NTRS)

    Carden, Huey D.

    1992-01-01

    An analytical study was made to provide comparative information on various crash pulse shapes that potentially could be used to test seats under conditions included in Federal Regulations Part 23 Paragraph 23.562(b)(1) for dynamic testing of general aviation seats, show the effects that crash pulse shape can have on the seat stroke requirements necessary to maintain a specified limit loading on the seat/occupant during crash pulse loadings, compare results from certain analytical model pulses with approximations of actual crash pulses, and compare analytical seat results with experimental airplace crash data. Structural and seat/occupant displacement equations in terms of the maximum deceleration, velocity change, limit seat pan load, and pulse time for five potentially useful pulse shapes were derived; from these, analytical seat stroke data were obtained for conditions as specified in Federal Regulations Part 23 Paragraph 23.562(b)(1) for dynamic testing of general aviation seats.

  12. Fire blocking systems for aircraft seat cushions

    NASA Technical Reports Server (NTRS)

    Parker, J. A.; Kourtides, D. A. (Inventor)

    1984-01-01

    A configuration and method for reducing the flammability of bodies of organic materials that thermally decompose to give flammable gases comprises covering the body with a flexible matrix that catalytically cracks the flammable gases to less flammable species. Optionally, the matrix is covered with a gas impermeable outer layer. In a preferred embodiment, the invention takes the form of an aircraft seat in which the body is a poly(urethane) seat cushion, the matrix is an aramid fabric or felt and the outer layer is an aluminum film.

  13. Technical Seminar: "Crash Safety"""

    NASA Video Gallery

    This seminar addresses the history and successful progress in predicting and improving the crash safety characteristics of vehicles, with particular emphasis on rotary wing aircraft and composite s...

  14. Development of assembly techniques for fire resistant aircraft interior panels

    NASA Technical Reports Server (NTRS)

    Lee, S. C. S.

    1978-01-01

    Ten NASA Type A fire resistant aircraft interior panels were fabricated and tested to develop assembly techniques. These techiques were used in the construction of a full scale lavatory test structure for flame propagation testing. The Type A panel is of sandwich construction consisting of Nomex honeycomb filled with quinone dioxime foam, and bismaleimide/glass face sheets bonded to the core with polyimide film adhesive. The materials selected and the assembly techniques developed for the lavatory test structure were designed for obtaining maximum fire containment with minimum smoke and toxic emission.

  15. Fire-Retardant Decorative Inks For Aircraft Interiors

    NASA Technical Reports Server (NTRS)

    Kourtides, D. A.; Nir, Z.; Mikroyannidis, J. A.

    1988-01-01

    Report describes testing of commercial and experimental fire retardants for incorporation into acrylic printing inks used on aircraft-interior sandwich panels. Films of acrylic ink containing fire-retardant additives prepared by casting on glass plates. Solvent evaporated in vacuum, cast films cured at 80 to 100 degree C for 30 minutes in air-circulating oven. Thermochemical properties of films examined by thermogravimetric analysis and differential scanning calorimetry (DSC). Samples of inks cast on sheets of polyvinylfloride (PVF), and their limiting oxygen indices and smoke evolution measured.

  16. Fatal car fires from rear-end crashes: the effects of fuel tank placement before and after regulation.

    PubMed

    Robertson, L S

    1993-08-01

    A federal standard for fuel tank integrity in cars was applied to 1977 and subsequent models. National data indicate that fatalities per 10,000 occupants in rear-end crashes of small cars, where fire was the most harmful event, were reduced by approximately 57% if the fuel tank was located behind the rear axle and 77% if the tank was situated directly above or in front of the rear axle. PMID:8342730

  17. Fatal car fires from rear-end crashes: the effects of fuel tank placement before and after regulation.

    PubMed Central

    Robertson, L S

    1993-01-01

    A federal standard for fuel tank integrity in cars was applied to 1977 and subsequent models. National data indicate that fatalities per 10,000 occupants in rear-end crashes of small cars, where fire was the most harmful event, were reduced by approximately 57% if the fuel tank was located behind the rear axle and 77% if the tank was situated directly above or in front of the rear axle. PMID:8342730

  18. Aircraft Data of the Rodeo/Chediski Fire

    NASA Technical Reports Server (NTRS)

    2002-01-01

    New images of Arizona's Rodeo-Chediski wildfire, which according to news reports is the largest in the state's history, have been acquired by NASA's MODIS Airborne Simulator flying aboard the space agency's ER-2 aircraft. The images show the extent of the burn area-now more than 450,000 acres-and pinpoint areas of active burning as of the morning of July 1. The images below include both true-color images and false-color images designed to highlight the burned areas. They were acquired during a transit of the ER-2 aircraft from NASA's Dryden Flight Research Center, Edwards, Calif. to Key West Naval Air Facility, Fla. in preparation for an upcoming field experiment. The newly acquired wildfire images will be used to validate rapid response wildfire maps produced by NASA's Moderate Resolution Imaging Spectroradiometer (MODIS) instrument aboard the Terra spacecraft. They will also be provided to the U.S. Forest Service for potential use in post-fire damage assessments. The false-color image (top) shows the southern portion of the fire, and reveals that not all the terrain within the fire's perimeter burned to the same degree. Burned areas are red and remaining vegetation is green. In the center of the image, the bright orange pixels are actively burning fire, and the smoke drifting southward from the blaze appears blue. Burned area at the top of the true-color image (bottom) appears charcoal, and a smoke plume drifting southwest from the center of the image reveals the location of actively burning fire. See more images at MODIS Airborne Simulator Images of the Rodeo/Chediski Fire, Arizona and the Earth Observatory's Natural Hazards section. Images courtesy of MODIS Airborne Simulator ER-2 team, NASA GSFC and NASA Dryden Flight Research Center

  19. Probabilistic model, analysis and computer code for take-off and landing related aircraft crashes into a structure

    SciTech Connect

    Glaser, R.

    1996-02-06

    A methodology is presented that allows the calculation of the probability that any of a particular collection of structures will be hit by an aircraft in a take-off or landing related accident during a specified window of time with a velocity exceeding a given critical value. A probabilistic model is developed that incorporates the location of each structure relative to airport runways in the vicinity; the size of the structure; the sizes, types, and frequency of use of commercial, military, and general aviation aircraft which take-off and land at these runways; the relative frequency of take-off and landing related accidents by aircraft type; the stochastic properties of off-runway crashes, namely impact location, impact angle, impact velocity, and the heading, deceleration, and skid distance after impact; and the stochastic properties of runway overruns and runoffs, namely the position at which the aircraft exits the runway, its exit velocity, and the heading and deceleration after exiting. Relevant probability distributions are fitted from extensive commercial, military, and general aviation accident report data bases. The computer source code for implementation of the calculation is provided.

  20. Test-Analysis Correlation of a Crash Simulation of a Vertical Drop Test of a Commuter-Category Aircraft

    NASA Technical Reports Server (NTRS)

    Jackson, Karen E.; Fasanella, Edwin L.

    2004-01-01

    A finite element model of an ATR42-300 commuter-class aircraft was developed and a crash simulation was executed. Analytical predictions were correlated with data obtained from a 30-feet per second (9.14-meters per second) vertical drop test of the aircraft. The purpose of the test was to evaluate the structural response of the aircraft when subjected to a severe, but survivable, impact. The aircraft was configured with seats, dummies, luggage, and other ballast. The wings were filled with 8,700 lb. (3,946 kilograms) of water to represent the fuel. The finite element model, which consisted of 57,643 nodes and 62,979 elements, was developed from direct measurements of the airframe geometry. The seats, dummies, luggage, simulated engines and fuel, and other ballast were represented using concentrated masses. The model was executed in LS-DYNA, a commercial finite element code for performing explicit transient dynamic simulations. Analytical predictions of structural deformation and selected time-history responses were correlated with experimental data from the drop test to validate the simulation.

  1. Evaluating and operationalizing unmanned aircraft for wildland fire use

    NASA Astrophysics Data System (ADS)

    Watts, A.

    2015-12-01

    Many potential uses of unmanned aircraft systems (UAS) related to wildland fire research and operations have been demonstrated, but the vast majority of these have been proof-of-concept or one-time flights. Scientists, practitioners, and firefighting agencies look forward to the widespread adoption of this powerful technology and its regular use. Similarly, the UAS industry awaits opportunities for commercialization. Our collaboration brings together UAS industry, research and management agencies, and universities in the USA and Canada to investigate the perceived effectiveness of UAS for wildland fire use, and the factors affecting their commercial-scale employment. Our current and future activities include market research, training and technology transfer, and deployment of UAS over fires to promote development of sensors as well as their safe integration into fire operations. We will present initial results, and as a part of our presentation we also invite participation of the AGU community for planned future project phases. We anticipate that the outcomes of our work will be useful to potential users who are unfamiliar with UAS, and to researchers and practitioners with experience or an interest in their use in fire and related natural-resource disciplines.

  2. Development of fire resistant, nontoxic aircraft interior materials

    NASA Technical Reports Server (NTRS)

    Haley, G.; Silverman, B.; Tajima, Y.

    1976-01-01

    All available newly developed nonmetallic polymers were examined for possible usage in developing fire resistant, nontoxic nonmetallic parts or assemblies for aircraft interiors. Specifically, feasibility for the development of clear films for new decorative laminates, compression moldings, injection molded parts, thermoformed plastic parts, and flexible foams were given primary considerations. Preliminary data on the flame resistant characteristics of the materials were obtained. Preliminary toxicity data were generated from samples of materials submitted from the contractor. Preliminary data on the physical characteristics of various thermoplastic materials to be considered for either compression molded, injection molded, or thermoformed parts were obtained.

  3. A composite system approach to aircraft cabin fire safety

    NASA Technical Reports Server (NTRS)

    Kourtides, D. A.; Parker, J. A.; Gilwee, W. J., Jr.; Lerner, N. R.; Hilado, C. J.; Labossiere, L. A.; Hsu, M. T. S.

    1976-01-01

    The thermochemical and flammability characteristics of two polymeric composites currently in use and seven others being considered for use as aircraft interior panels are described. The properties studied included: (1) limiting oxygen index of the composite constituents; (2) fire containment capability of the composite; (3) smoke evolution from the composite; (4) thermogravimetric analysis; (5) composition of the volatile products of thermal degradation; and (6) relative toxicity of the volatile products of pyrolysis. The performance of high temperature laminating resins such as bismaleimides is compared with the performance of phenolics and epoxies. The relationship of increased fire safety with the use of polymers with high anaerobic char yield is shown. Processing parameters of one of the baremaleimide composites are detailed.

  4. Development of lightweight fire retardant, low-smoke, high-strength, thermally stable aircraft floor paneling

    NASA Technical Reports Server (NTRS)

    Arnold, D. B.; Burnside, J. V.; Hajari, J. V.

    1976-01-01

    Fire resistance mechanical property tests were conducted on sandwich configurations composed of resin-fiberglass laminates bonded with adhesives to Nomex honeycomb core. The test results were compared to proposed and current requirements for aircraft floor panel applications to demonstrate that the fire safety of the airplane could be improved without sacrificing mechanical performance of the aircraft floor panels.

  5. NASA technical advances in aircraft occupant safety

    NASA Technical Reports Server (NTRS)

    Enders, J. H.

    1978-01-01

    A NASA program to improve aircraft safety is discussed in terms of three areas of concentration: unexpected turbulence encounters, fire, and crash impact. To provide warning of clear air turbulence (CAT) so that the pilot can take evasive action, a laser Doppler system is described, which functions by measuring backscatter frequency radiation occurring in aerosols ahead of the aircraft. The system was found able to detect CAT, but at shorter than optimal ranges (10 km as opposed to 32 km). Fire safety has focused on both the early detection of fires through improved sensing methods, and on the development of fire-retardant materials, i.e., intumescent char-forming protective coatings. Crashworthiness is discussed in terms of the development of a survivable crash envelope and improved seat and restraint systems. To evaluate an aircraft for crashworthiness, finite-element computer programs are currently being developed which analyze both aircraft structural configurations and the intrinsic strength of aircraft materials.

  6. Detecting the Onset of Fire in an Aircraft by Employing Correlation Spectroscopy

    NASA Technical Reports Server (NTRS)

    Goswami, Kisholoy; Saxena, Indu; Egalon, Claudio; Mendoza, Edgar; Lieberman, Robert; Piltch, Nancy D.

    1999-01-01

    The cause of aircraft fire and locations of the fires are numerous. Worldwide, numerous in-flight fires have been passenger initiated, the prime location being the lavatory areas. Most in-flight fires in commercial carriers are of electrical origin and cigarettes. A cargo bay fire can be caused by a variety of reasons. The sheer number of different types of cargo makes it difficult to identify the origin, especially when the fire reaches the catastrophic level. The damage can be minimized, and fire can be suppressed effectively if a warning system for the onset of fire is available for onboard monitoring.

  7. Radiological analysis of hand and foot injuries after small aircraft crashes.

    PubMed

    Kubat, Bela; Korthout, Tessa; van Ingen, Gert; Rietveld, Louk A C; de Bakker, Henri M

    2014-09-01

    Medico-legal investigation of fatal aviation accidents should contribute to the reconstruction of the accident in addition to providing the usual information about cause and manner of death. In cases with more than one fatality, the question of who was flying the plane at the time of the crash may need to be answered. In such cases the identification of "control injuries" plays an important role. This study aims to investigate whether specific patterns of skeletal hand and foot injuries could assist in the identification of the pilot. The analysis of radiological investigations of hands and feet of 27 fatalities from 18 accidents showed that foot injuries are more frequent than hand injuries in pilots and passengers, dislocations of feet were more frequent in passengers, and right-sided injuries were more frequent in pilots. Injuries of the distal parts of the hand were slightly more frequent in the pilot group. The limited numbers in the study do not allow definitive conclusions and further investigations are needed. However, the study yields interesting results and shows that radiological examination should be included in the medico-legal air crash investigation. PMID:24985317

  8. Full-scale aircraft cabin flammability tests of improved fire-resistant materials, test series 2

    NASA Technical Reports Server (NTRS)

    Stuckey, R. N.; Bricker, R. W.; Kuminecz, J. F.; Supkis, D. E.

    1976-01-01

    Full-scale aircraft flammability tests in which the effectiveness of new fire-resistant materials was evaluated by comparing their burning characteristics with those of other fire-resistant aircraft materials were described. New-fire-resistant materials that are more economical and better suited for aircraft use than the previously tested fire-resistant materials were tested. The fuel ignition source for one test was JP-4; a smokeless fuel was used for the other test. Test objectives, methods, materials, and results are presented and discussed. The results indicate that, similar to the fire-resistant materials tested previously, the new materials decompose rather than ignite and do not support fire propagation. Furthermore, the new materials did not produce a flash fire.

  9. Fabrics for fire resistant passenger seats in aircraft

    NASA Technical Reports Server (NTRS)

    Tesoro, G. C.

    1978-01-01

    The essential elements of the problem and of approaches to improved fire resistance in aircraft seats are reviewed. The performance requirements and availability of materials, delay in the ignition of upholstery fabric by a small source are considered a realistic objective. Results of experimental studies on the thermal response of fabrics and fabric/foam combinations suggest significant conclusions regarding: (1) the ignition behavior of a commercial 90/10 wool/nylon upholstery fabric relative to fabrics made from thermally stable polymers; (2) the role of the foam backing; (3) the behavior of seams. These results, coupled with data from other sources, also confirm the importance of materials' interactions in multicomponent assemblies, and the need for system testing prior to materials' selection. The use of an interlinear or thermal barrier between upholstery fabric and foam is a promising and viable approach to improved fire resistance of the seat assembly, but experimental evaluation of specific combinations of materials or systems is an essential part of the selection process.

  10. 78 FR 66317 - Special Conditions: Learjet Inc. Model LJ-200-1A10; Airplane Fuselage Post-Crash Fire Survivability

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-05

    ... Privacy Act Statement can be found in the Federal Register published on April 11, 2000 (65 FR 19477-19478.... Model LJ-200-1A10; Airplane Fuselage Post-Crash Fire Survivability AGENCY: Federal Aviation... conditions for the Learjet Inc. Model LJ-200-1A10 airplane. This airplane will have a novel or unusual...

  11. Full-scale aircraft cabin flammability tests of improved fire-resistant materials

    NASA Technical Reports Server (NTRS)

    Stuckey, R. N.; Surpkis, D. E.; Price, L. J.

    1974-01-01

    Full-scale aircraft cabin flammability tests to evaluate the effectiveness of new fire-resistant materials by comparing their burning characteristics with those of older aircraft materials are described. Three tests were conducted and are detailed. Test 1, using pre-1968 materials, was run to correlate the procedures and to compare the results with previous tests by other organizations. Test 2 included newer, improved fire-resistant materials. Test 3 was essentially a duplicate of test 2, but a smokeless fuel was used. Test objectives, methods, materials, and results are presented and discussed. Results indicate that the pre-1968 materials ignited easily, allowed the fire to spread, produced large amounts of smoke and toxic combustion products, and resulted in a flash fire and major fire damage. The newer fire-resistant materials did not allow the fire to spread. Furthermore, they produced less, lower concentrations of toxic combustion products, and lower temperatures. The newer materials did not produce a flash fire.

  12. Conference on the Development of Fire-Resistant Aircraft Passenger Seats

    NASA Technical Reports Server (NTRS)

    Fewell, L. L.; Kourtides, D. A.; Rosser, R. W.; Parker, J. A.

    1976-01-01

    Papers are presented dealing with the development of aircraft seats with the minimum fire risk. Criteria examined include: flame spread, heat release, and smoke and/or toxic fumes. Materials and performance specifications of all seat material options are provided.

  13. AP1000{sup R} design robustness against extreme external events - Seismic, flooding, and aircraft crash

    SciTech Connect

    Pfister, A.; Goossen, C.; Coogler, K.; Gorgemans, J.

    2012-07-01

    Both the International Atomic Energy Agency (IAEA) and the U.S. Nuclear Regulatory Commission (NRC) require existing and new nuclear power plants to conduct plant assessments to demonstrate the unit's ability to withstand external hazards. The events that occurred at the Fukushima-Dai-ichi nuclear power station demonstrated the importance of designing a nuclear power plant with the ability to protect the plant against extreme external hazards. The innovative design of the AP1000{sup R} nuclear power plant provides unparalleled protection against catastrophic external events which can lead to extensive infrastructure damage and place the plant in an extended abnormal situation. The AP1000 plant is an 1100-MWe pressurized water reactor with passive safety features and extensive plant simplifications that enhance construction, operation, maintenance and safety. The plant's compact safety related footprint and protection provided by its robust nuclear island structures prevent significant damage to systems, structures, and components required to safely shutdown the plant and maintain core and spent fuel pool cooling and containment integrity following extreme external events. The AP1000 nuclear power plant has been extensively analyzed and reviewed to demonstrate that it's nuclear island design and plant layout provide protection against both design basis and extreme beyond design basis external hazards such as extreme seismic events, external flooding that exceeds the maximum probable flood limit, and malicious aircraft impact. The AP1000 nuclear power plant uses fail safe passive features to mitigate design basis accidents. The passive safety systems are designed to function without safety-grade support systems (such as AC power, component cooling water, service water, compressed air or HVAC). The plant has been designed to protect systems, structures, and components critical to placing the reactor in a safe shutdown condition within the steel containment vessel

  14. A Study of Aircraft Fire Hazards Related to Natural Electrical Phenomena

    NASA Technical Reports Server (NTRS)

    Kester, Frank L.; Gerstein, Melvin; Plumer, J. A.

    1960-01-01

    The problems of natural electrical phenomena as a fire hazard to aircraft are evaluated. Assessment of the hazard is made over the range of low level electrical discharges, such as static sparks, to high level discharges, such as lightning strikes to aircraft. In addition, some fundamental work is presented on the problem of flame propagation in aircraft fuel vent systems. This study consists of a laboratory investigation in five parts: (1) a study of the ignition energies and flame propagation rates of kerosene-air and JP-6-air foams, (2) a study of the rate of flame propagation of n-heptane, n-octane, n-nonane, and n-decane in aircraft vent ducts, (3) a study of the damage to aluminum, titanium, and stainless steel aircraft skin materials by lightning strikes, (4) a study of fuel ignition by lightning strikes to aircraft skins, and (5) a study of lightning induced flame propagation in an aircraft vent system.

  15. The optimization of aircraft seat cushion fire-blocking layers. Full Scale: Test description and results

    NASA Technical Reports Server (NTRS)

    Schutter, K. J.; Duskin, F. E.

    1982-01-01

    Full-scale burn tests were conducted on thirteen different seat cushion configurations in a cabin fire simulator. The fire source used was a quartz lamp radiant energy panel with a propane pilot flame. During each test, data were recorded for cushion temperatures, radiant heat flux, rate of weight loss of test specimens, and cabin temperatures. When compared to existing passenger aircraft seat cushions, the test specimens incorporating a fire barrier and those fabricated from advance materials, using improved construction methods, exhibited significantly greater fire resistance.

  16. Fire resistivity and toxicity studies of candidate aircraft passenger seat materials

    NASA Technical Reports Server (NTRS)

    Fewell, L. L.; Trabold, E. L.; Spieth, H.

    1978-01-01

    Fire resistivity studies were conducted on a wide range of candidate nonmetallic materials being considered for the construction of improved fire resistant aircraft passenger seats. These materials were evaluated on the basis of FAA airworthiness burn and smoke generation tests, colorfastness, limiting oxygen index, and animal toxicity tests. Physical, mechanical, and aesthetic properties were also assessed. Candidate seat materials that have significantly improved thermal response to various thermal loads corresponding to reasonable fire threats as they relate to in-flight fire situations, are identified.

  17. Full-scale flammability test data for validation of aircraft fire mathematical models

    NASA Technical Reports Server (NTRS)

    Kuminecz, J. F.; Bricker, R. W.

    1982-01-01

    Twenty-five large scale aircraft flammability tests were conducted in a Boeing 737 fuselage at the NASA Johnson Space Center (JSC). The objective of this test program was to provide a data base on the propagation of large scale aircraft fires to support the validation of aircraft fire mathematical models. Variables in the test program included cabin volume, amount of fuel, fuel pan area, fire location, airflow rate, and cabin materials. A number of tests were conducted with jet A-1 fuel only, while others were conducted with various Boeing 747 type cabin materials. These included urethane foam seats, passenger service units, stowage bins, and wall and ceiling panels. Two tests were also included using special urethane foam and polyimide foam seats. Tests were conducted with each cabin material individually, with various combinations of these materials, and finally, with all materials in the cabin. The data include information obtained from approximately 160 locations inside the fuselage.

  18. Penetrating Fire Extinguisher

    NASA Technical Reports Server (NTRS)

    1985-01-01

    When Feecon Corporation, a manufacturer of fire protection systems, needed a piercing nozzle for larger aircraft, they were assisted by Kennedy Space Center who provided the company with a fire extinguisher with a hard pointed tip that had been developed in case of an orbiter crash landing. The nozzle can penetrate metal skins of aircraft, trains, etc. Feecon obtained a license and now markets its cobra ram piercing nozzle to airport firefighters. Its primary advantage is that the nozzle can be held in one spot during repeated blows of the ram. *This product has been discontinued and is no longer commercially available.

  19. Death and injury in aerial spraying: pre-crash, crash, and post-crash prevention strategies.

    PubMed

    Richter, E D; Gordon, M; Halamish, M; Gribetz, B

    1981-01-01

    To prevent crash-related death and injury among spray pilots, a program including pre-crash, crash and post-crash stages of intervention for aircraft, physical environment, and pilots and ground crews was proposed in accordance with a matrix of options derived from road crash epidemiology. In addition to the dangers of fixed obstacles, low-altitude runs, and heavy work schedules, work hazards included combined exposures to noise, vibration, G forces, heat stress, pesticides, and dehydration. Together, these exposures were believed to have produced slight, but crucial decreases in pilot performance, alertness and skill. For aircraft, the major pre-crash measure was cockpit air cooling, with filter technologies to prevent in-flight pesticide exposure. Crash and post-crash design changes to reduce energy transfers to the pilot's body (thermal, kinetic) were the most important recommendations, because absolute prevention of the crash event was unlikely. For the environment, pre-crash recommendations included marking fixed obstacles, such as power and telephone lines, but preferably their elimination. Other measures included drainage pits with sodium hydroxide points to neutralize parathion and prevent dispersion of parathion-containing mists. Pilot pre-crash measures (more fluid intake, biological monitoring--EMG, urinary alkyl phosphate, cholinesterase testing) required special organizational arrangements. Systematic application of options from the foregoing matrix suggest that the high risk of death and injury from aerial spraying is unnecessary. PMID:7213290

  20. Video-based cargo fire verification system with fuzzy inference engine for commercial aircraft

    NASA Astrophysics Data System (ADS)

    Sadok, Mokhtar; Zakrzewski, Radek; Zeliff, Bob

    2005-02-01

    Conventional smoke detection systems currently installed onboard aircraft are often subject to high rates of false alarms. Under current procedures, whenever an alarm is issued the pilot is obliged to release fire extinguishers and to divert to the nearest airport. Aircraft diversions are costly and dangerous in some situations. A reliable detection system that minimizes false-alarm rate and allows continuous monitoring of cargo compartments is highly desirable. A video-based system has been recently developed by Goodrich Corporation to address this problem. The Cargo Fire Verification System (CFVS) is a multi camera system designed to provide live stream video to the cockpit crew and to perform hotspot, fire, and smoke detection in aircraft cargo bays. In addition to video frames, the CFVS uses other sensor readings to discriminate between genuine events such as fire or smoke and nuisance alarms such as fog or dust. A Mamdani-type fuzzy inference engine is developed to provide approximate reasoning for decision making. In one implementation, Gaussian membership functions for frame intensity-based features, relative humidity, and temperature are constructed using experimental data to form the system inference engine. The CFVS performed better than conventional aircraft smoke detectors in all standardized tests.

  1. Development of fire-resistant, low smoke generating, thermally stable end items for aircraft and spacecraft

    NASA Technical Reports Server (NTRS)

    Gagliani, J.

    1978-01-01

    A new approach to the problem of flammability by the use of materials obtained from foamy polyimide resins is developed. The ability of these materials to provide fire protection is demonstrated. The development of processes for producing resilient cell foam for use in aircraft seating, thermal acoustical insulation, floor and wall panels, coated glass fabrics, and molded hardware.

  2. Evaluation of Materials and Concepts for Aircraft Fire Protection

    NASA Technical Reports Server (NTRS)

    Anderson, R. A.; Price, J. O.; Mcclure, A. H.; Tustin, E. A.

    1976-01-01

    Woven fiberglass fluted-core simulated aircraft interior panels were flame tested and structurally evaluated against the Boeing 747 present baseline interior panels. The NASA-defined panels, though inferior on a strength-to-weight basis, showed better structural integrity after flame testing, due to the woven fiberglass structure.

  3. Application of the relative energy release criteria to enclosure fire testing. [aircraft compartments

    NASA Technical Reports Server (NTRS)

    Roschke, E. J.; Coulbert, C. D.

    1979-01-01

    The five relative energy release criteria (RERC) which are a first step towards formulating a unified concept that can be applied to the development of fires in enclosures, place upper bounds on the rate and amount of energy released during a fire. They are independent, calculated readily, and may be applied generally to any enclosure regardless of size. They are useful in pretest planning and for interpreting experimental data. Data from several specific fire test programs were examined to evaluate the potential use of RERC to provide test planning guidelines. The RERC were compared with experimental data obtained in full-scale enclosures. These results confirm that in general the RERC do identify the proper limiting constraints on enclosure fire development and determine the bounds of the fire development envelope. Plotting actual fire data against the RERC reveals new valid insights into fire behavior and reveals the controlling constraints in fire development. The RERC were calculated and plotted for several descrpitions of full-scale fires in various aircraft compartments.

  4. Development of fire-resistant, low smoke generating, thermally stable end items for aircraft and spacecraft

    NASA Technical Reports Server (NTRS)

    Gagliani, J.; Sorathia, U. A. K.; Wilcoxson, A. L.

    1977-01-01

    Materials were developed to improve aircraft interior materials by modifying existing polymer structures, refining the process parameters, and by the use of mechanical configurations designed to overcome specific deficiencies. The optimization, selection, and fabrication of five fire resistant, low smoke emitting open cell foams are described for five different types of aircraft cabin structures. These include: resilient foams, laminate floor and wall paneling, thermal/acoustical insulation, molded shapes, and coated fabrics. All five have been produced from essentially the same polyimide precursor and have resulted in significant benefits from transfer of technology between the various tasks.

  5. Study of thermal stability and degradation of fire resistant candidate polymers for aircraft interiors

    NASA Technical Reports Server (NTRS)

    Hsu, M. T. S.

    1976-01-01

    The thermochemistry of bismaleimide resins and phenolphthalein polycarbonate was studied. Both materials are fire-resistant polymers and may be suitable for aircraft interiors. The chemical composition of the polymers has been determined by nuclear magnetic resonance and infrared spectroscopy and by elemental analysis. Thermal properties of these polymers have been characterized by thermogravimetric analyses. Qualitative evaluation of the volatile products formed in pyrolysis under oxidative and non-oxidative conditions has been made using infrared spectrometry. The residues after pyrolysis were analyzed by elemental analysis. The thermal stability of composite panel and thermoplastic materials for aircraft interiors was studied by thermogravimetric analyses.

  6. Preliminary analysis of University of North Dakota aircraft data from the FIRE Cirrus IFO-2

    NASA Technical Reports Server (NTRS)

    Poellot, Michael R.

    1993-01-01

    This report describes the progress and performance by the University of North Dakota under NASA Research Award NAG-1-1351, 'Preliminary Analysis of University of North Dakota Aircraft Data from the FIRE Cirrus IFO-II,' for the period October 15, 1992 to April 14, 1993. Included is a summary of the data archival status and preliminary analysis efforts. During this reporting period, data archival efforts were directed toward providing reduced data for the FIRE data archive and fulfilling special requests for reduced and valued and value-added data.

  7. Impact Landing Dynamics Facility Crash Test

    NASA Technical Reports Server (NTRS)

    1975-01-01

    By 1972 the Lunar Landing Research Facility was no longer in use for its original purpose. The 400-foot high structure was swiftly modified to allow engineers to study the dynamics of aircraft crashes. 'The Impact Dynamics Research Facility is used to conduct crash testing of full-scale aircraft under controlled conditions. The aircraft are swung by cables from an A-frame structure that is approximately 400 ft. long and 230 foot high. The impact runway can be modified to simulate other grand crash environments, such as packed dirt, to meet a specific test requirement.' 'In 1972, NASA and the FAA embarked on a cooperative effort to develop technology for improved crashworthiness and passenger survivability in general aviation aircraft with little or no increase in weight and acceptable cost. Since then, NASA has 'crashed' dozens of GA aircraft by using the lunar excursion module (LEM) facility originally built for the Apollo program.' This photograph shows Crash Test No. 7.

  8. Study to develop improved fire resistant aircraft passenger seat materials, phase 1

    NASA Technical Reports Server (NTRS)

    Trabold, E. L.

    1977-01-01

    The procurement and testing of a wide range of candidate materials is reported. Improved fire resistant nonmetallic materials were subjected to tests to evaluate their thermal characteristics, such as burn, smoke generation, heat release rate and toxicity. In addition, candidate materials were evaluated for mechanical, physical and aesthetic properties. Other properties considered included safety, comfort, durability and maintainability. The fiscal year 1977 and the projected 1980 cost data were obtained for aircraft seat materials.

  9. Statistical aspects of carbon fiber risk assessment modeling. [fire accidents involving aircraft

    NASA Technical Reports Server (NTRS)

    Gross, D.; Miller, D. R.; Soland, R. M.

    1980-01-01

    The probabilistic and statistical aspects of the carbon fiber risk assessment modeling of fire accidents involving commercial aircraft are examined. Three major sources of uncertainty in the modeling effort are identified. These are: (1) imprecise knowledge in establishing the model; (2) parameter estimation; and (3)Monte Carlo sampling error. All three sources of uncertainty are treated and statistical procedures are utilized and/or developed to control them wherever possible.

  10. Development of lightweight, fire-retardant, low-smoke, high-strength, thermally stable aircraft floor paneling

    NASA Technical Reports Server (NTRS)

    Anderson, R. A.; Ougland, R. M.; Karch, R. J.

    1978-01-01

    Extensive fire resistance and mechanical property tests were conducted on sandwich configurations composed of resin-fiberglass laminates bonded with adhesive to Nomex honeycomb and foam core. The test results were used to select a combination of materials that would improve the fire safety of the airplane without sacrificing mechanical performance of the aircraft floor panels. A test panel is being service evaluated in a commercial aircraft.

  11. Ikhana: Unmanned Aircraft System Western States Fire Missions. Monographs in Aerospace History, Number 44

    NASA Technical Reports Server (NTRS)

    Merlin, Peter W.

    2009-01-01

    In 2006, NASA Dryden Flight Research Center, Edwards, Calif., obtained a civil version of the General Atomics MQ-9 unmanned aircraft system and modified it for research purposes. Proposed missions included support of Earth science research, development of advanced aeronautical technology, and improving the utility of unmanned aerial systems in general. The project team named the aircraft Ikhana a Native American Choctaw word meaning intelligent, conscious, or aware in order to best represent NASA research goals. Building on experience with these and other unmanned aircraft, NASA scientists developed plans to use the Ikhana for a series of missions to map wildfires in the western United States and supply the resulting data to firefighters in near-real time. A team at NASA Ames Research Center, Mountain View, Calif., developed a multispectral scanner that was key to the success of what became known as the Western States Fire Missions. Carried out by team members from NASA, the U.S. Department of Agriculture Forest Service, National Interagency Fire Center, National Oceanic and Atmospheric Administration, Federal Aviation Administration, and General Atomics Aeronautical Systems Inc., these flights represented an historic achievement in the field of unmanned aircraft technology.

  12. The application of EOQ and lead time crashing cost models in material with limited life time (Case study: CN-235 Aircraft at PT Dirgantara Indonesia)

    NASA Astrophysics Data System (ADS)

    Agustina Hidayat, Yosi; Ria Kasanah, Aprilia; Yudhistira, Titah

    2016-02-01

    PT. Dirgantara Indonesia, one of State Owned Enterprises engaging in the aerospace industry, targets to control 30% of world market for light and medium sized aircraft. One type of the aircrafts produced by PT. DI every year is CN-235. Currently, the cost of material procurement reaches 50% of the total cost of production. Material has a variety of characteristics, one of which is having a lifetime. The demand characteristic of the material with expiration for the CN-235 aircraft is deterministic. PT DI does not have any scientific background for its procurement of raw material policy. In addition, there are two methods of transportation used for delivering materials, i.e. by land and air. Each method has different lead time. Inventory policies used in this research are deterministic and probabilistic. Both deterministic and probabilistic single and multi-item inventory policies have order quantity, time to order, reorder point, and lead time as decision variables. The performance indicator for this research is total inventory cost. Inventory policy using the single item EOQ and considering expiration factor inventory results in a reduction in total costs up to 69.58% and multi item results in a decrease in total costs amounted to 71.16%. Inventory policy proposal using the model of a single item by considering expiration factor and lead time crashing cost results in a decrease in total costs amounted to 71.5% and multi item results in a decrease in total costs amounted to 71.62%. Subsequently, wasted expired materials, with the proposed models have been successfully decreased to 95%.

  13. Development of an LS-DYNA Model of an ATR42-300 Aircraft for Crash Simulation

    NASA Technical Reports Server (NTRS)

    Jackson, Karen E.; Fasanella, Edwin L.

    2004-01-01

    This paper describes the development of an LS-DYNA simulation of a vertical drop test of an ATR42-300 twin-turboprop high-wing commuter-class airplane. A 30-ft/s drop test of this aircraft was performed onto a concrete impact surface at the FAA Technical Center on July 30, 2003. The purpose of the test was to evaluate the structural response of a commuter-class aircraft when subjected to a severe, but survivable, impact. The aircraft was configured with crew and passenger seats, anthropomorphic test dummies, forward and aft luggage, instrumentation, and onboard data acquisition systems. The wings were filled with approximately 8,700 lb. of water to represent the fuel and the aircraft weighed a total of 33,200 lb. The model, which consisted of 57,643 nodes and 62,979 elements, was developed from direct measurements of the airframe geometry, over a period of approximately 8 months. The seats, dummies, luggage, fuel, and other ballast were represented using concentrated masses. Comparisons were made of the structural deformation and failure behavior of the airframe, as well as selected acceleration time history responses.

  14. Nonlinear transient analysis by energy minimization: A theoretical basis for the ACTION computer code. [predicting the response of a lightweight aircraft during a crash

    NASA Technical Reports Server (NTRS)

    Kamat, M. P.

    1980-01-01

    The formulation basis for establishing the static or dynamic equilibrium configurations of finite element models of structures which may behave in the nonlinear range are provided. With both geometric and time independent material nonlinearities included, the development is restricted to simple one and two dimensional finite elements which are regarded as being the basic elements for modeling full aircraft-like structures under crash conditions. Representations of a rigid link and an impenetrable contact plane are added to the deformation model so that any number of nodes of the finite element model may be connected by a rigid link or may contact the plane. Equilibrium configurations are derived as the stationary conditions of a potential function of the generalized nodal variables of the model. Minimization of the nonlinear potential function is achieved by using the best current variable metric update formula for use in unconstrained minimization. Powell's conjugate gradient algorithm, which offers very low storage requirements at some slight increase in the total number of calculations, is the other alternative algorithm to be used for extremely large scale problems.

  15. The search and rescue satellite mission - A basis for international cooperation. [in aircraft crash and marine distress

    NASA Technical Reports Server (NTRS)

    Redisch, W. N.; Trudell, B. J.

    1978-01-01

    The use of geostationary and polar-orbiting satellites to monitor and locate signals of the Emergency Locator Transmitter (ELT) and Emergency Position Indicating Radio Beacon (EPIB) of general aviation aircraft and inspected marine vessels respectively is described. The joint U.S. Canada/France SARSAT demonstration program will require a minimum of four minutes of mutual visibility of distress transmitter, local user terminal and satellite to obtain a location by Doppler tracking. The program consisting of placing instrumentation on-board three of the Tiros-N series of NOAA operational satellites is attracting interest also from other countries including the USSR, Norway, Australia, and Japan.

  16. Impact Landing Dynamics Facility Crash Test

    NASA Technical Reports Server (NTRS)

    1975-01-01

    By 1972 the Lunar Landing Research Facility was no longer in use for its original purpose. The 400-foot high structure was swiftly modified to allow engineers to study the dynamics of aircraft crashes. The Impact Dynamics Research Facility is used to conduct crash testing of full- scale aircraft under controlled conditions. The aircraft are swung by cables from an A-frame structure that is approximately 400 ft. long and 230 foot high. The impact runway can be modified to simulate other grand crash environments, such as packed dirt, to meet a specific test requirement. In 1972, NASA and the FAA embarked on a cooperative effort to develop technology for improved crashworthiness and passenger survivability in general aviation aircraft with little or no increase in weight and cceptable cost. Since then, NASA has 'crashed' dozens of GA aircraft by using the lunar excursion module (LEM) facility originally built for the Apollo program.

  17. Zero Gravity Aircraft Testing of a Prototype Portable Fire Extinguisher for Use in Spacecraft

    NASA Astrophysics Data System (ADS)

    Butz, J.; Carriere, T.; Abbud-Madrid, A.; Easton, J.

    2012-01-01

    For the past five years ADA Technologies has been developing a portable fire extinguisher (PFE) for use in microgravity environments. This technology uses fine water mist (FWM) to effectively and efficiently extinguish fires representative of spacecraft hazards. Recently the FWM PFE was flown on a Zero-G (reduced gravity) aircraft to validate the performance of the technology in a microgravity environment. Test results demonstrated that droplet size distributions generated in the reduced gravity environment were in the same size range as data collected during normal gravity (1-g) discharges from the prototype PFE. Data taken in an obscured test configuration showed that the mist behind the obstacle was more dense in the low-g environment when compared to 1-g discharges. The mist behind the obstacle tended to smaller droplet sizes in both the low-g and 1-g test conditions.

  18. Aircraft Instrument, Fire Protection, Warning, Communication, Navigation and Cabin Atmosphere Control System (Course Outline), Aviation Mechanics 3 (Air Frame): 9067.04.

    ERIC Educational Resources Information Center

    Dade County Public Schools, Miami, FL.

    This document presents an outline for a 135-hour course designed to familiarize the student with manipulative skills and theoretical knowledge concerning aircraft instrument systems like major flight and engine instruments; fire protection and fire fighting systems; warning systems and navigation systems; aircraft cabin control systems, such as…

  19. A study of marine stratocumulus using lidar and other FIRE aircraft observations

    NASA Technical Reports Server (NTRS)

    Jensen, Jorgen B.; Lenschow, Donald H.

    1990-01-01

    The National Center for Atmospheric Research (NCAR) airborne infrared lidar system (NAILS) used in the 1987 First ISCCP Regional Experiment (FIRE) off the coast of California is a 10.6 microns wavelength carbon dioxide lidar system constructed by Ron Schwiesow and co-workers at NCAR. The lidar is particularly well suited for detailed observations of cloud shapes; i.e., height of cloud top (when flying above cloud and looking down) and cloud base (when flying below cloud and looking up) along the flight path. A brief summary of the lidar design characteristics is given. The lidar height resolution of plus or minus 3 m allows for the distance between the aircraft and cloud edge to be determined with this accuracy; however, the duration of the emitted pulse is approximately 3 microseconds, which corresponds to a 500 m pulse length. Therefore, variations in backscatter intensities within the clouds can normally not be resolved. Hence the main parameter obtainable from the lidar is distance to cloud; in some cases the cloud depth can also be determined. During FIRE the lidar was operational on 7 of the 10 Electra flights, and data were taken when the distance between cloud and aircraft (minimum range) was at least 500 m. The lidar was usually operated at 8 Hz, which at a flight speed of 100 m s(-1) translates into a horizontal resolution of about 12 m. The backscatter as function of time (equivalent to distance) for each laser pulse is stored in digital form on magnetic tape. Currently, three independent variables are available to the investigators on the FIRE Electra data tapes: lidar range to cloud, strength of return (relative power), and pulse width of return, which is related to penetration depth.

  20. A Study of Transport Airplane Crash-Resistant Fuel Systems

    NASA Technical Reports Server (NTRS)

    Jones, Lisa (Technical Monitor); Robertson, S. H.; Johnson, N. B.; Hall, D. S.; Rimson, I. J.

    2002-01-01

    This report presents the results of a study, funded by the Federal Aviation Administration (FAA), of transport airplane crash-resistant fuel system (CRFS). The report covers the historical studies related to aircraft crash fires and fuel containment concepts undertaken by the FAA, NASA, and the U.S. Army, which ultimately led to the current state of the art in CRFS technology. It describes the basic research, testing, field investigations and production efforts which have led to the highly successful military CRFS, which has saved many lives and reduced costs of accidents. Current CRFS technology used in transport category airplanes is defined and compared to the available state-of-the-art technology. The report provides information to the FAA and other government organizations which can help them plan their efforts to improve the state of crash fire protection in the transport airplane fleet. The report provides guidance to designers looking for information about CRFS design problems, analysis tools to use for product improvement, and a summary of current and proposed regulations for transport category airplane fuel systems.

  1. An assessment of the risk arising from electrical effects associated with carbon fibers released from commercial aircraft fires

    NASA Technical Reports Server (NTRS)

    Kalelkar, A. S.; Fiksel, J.; Rosenfield, D.; Richardson, D. L.; Hagopian, J.

    1980-01-01

    The risks associated with electrical effects arising from carbon fibers released from commercial aviation aircraft fires were estimated for 1993. The expected annual losses were estimated to be about $470 (1977 dollars) in 1993. The chances of total losses from electrical effects exceeding $100,000 (1977 dollars) in 1993 were established to be about one in ten thousand.

  2. Survey of Fire Detection Technologies and System Evaluation/Certification Methodologies and Their Suitability for Aircraft Cargo Compartments

    NASA Technical Reports Server (NTRS)

    Cleary, T.; Grosshandler, W.

    1999-01-01

    As part of the National Aeronautics and Space Administration (NASA) initiated program on global civil aviation, NIST is assisting Federal Aviation Administration in its research to improve fire detection in aircraft cargo compartments. Aircraft cargo compartment detection certification methods have been reviewed. The Fire Emulator-Detector Evaluator (FE/DE) has been designed to evaluate fire detection technologies such as new sensors, multi-element detectors, and detectors that employ complex algorithms. The FE/DE is a flow tunnel that can reproduce velocity, temperature, smoke, and Combustion gas levels to which a detector might be exposed during a fire. A scientific literature survey and patent search have been conducted relating to existing and emerging fire detection technologies, and the potential use of new fire detection strategies in cargo compartment areas has been assessed. In the near term, improved detector signal processing and multi-sensor detectors based on combinations of smoke measurements, combustion gases and temperature are envisioned as significantly impacting detector system performance.

  3. CID Aircraft slap-down

    NASA Technical Reports Server (NTRS)

    1984-01-01

    In this photograph the B-720 is seen during the moments of initial impact. The left wing is digging into the lakebed while the aircraft continues sliding towards wing openers. In 1984 NASA Dryden Flight Research Facility and the Federal Aviation Administration (FAA) teamed-up in a unique flight experiment called the Controlled Impact Demonstration (CID). The test involved crashing a Boeing 720 aircraft with four JT3C-7 engines burning a mixture of standard fuel with an additive, Anti-misting Kerosene (AMK), designed to supress fire. In a typical aircraft crash, fuel spilled from ruptured fuel tanks forms a fine mist that can be ignited by a number of sources at the crash site. In 1984 the NASA Dryden Flight Research Facility (after 1994 a full-fledged Center again) and the Federal Aviation Administration (FAA) teamed-up in a unique flight experiment called the Controlled Impact Demonstration (CID), to test crash a Boeing 720 aircraft using standard fuel with an additive designed to supress fire. The additive, FM-9, a high-molecular-weight long-chain polymer, when blended with Jet-A fuel had demonstrated the capability to inhibit ignition and flame propagation of the released fuel in simulated crash tests. This anti-misting kerosene (AMK) cannot be introduced directly into a gas turbine engine due to several possible problems such as clogging of filters. The AMK must be restored to almost Jet-A before being introduced into the engine for burning. This restoration is called 'degradation' and was accomplished on the B-720 using a device called a 'degrader.' Each of the four Pratt & Whitney JT3C-7 engines had a 'degrader' built and installed by General Electric (GE) to break down and return the AMK to near Jet-A quality. In addition to the AMK research the NASA Langley Research Center was involved in a structural loads measurement experiment, which included having instrumented dummies filling the seats in the passenger compartment. Before the final flight on December 1

  4. An evaluation of the relative fire hazards of jet A and jet B for commercial flight

    NASA Technical Reports Server (NTRS)

    Hibbard, R. R.; Hacker, P. T.

    1973-01-01

    The relative fire hazards of Jet A and Jet B aircraft fuels are evaluated. The evaluation is based on a consideration of the presence of and/or the generation of flammable mixtures in fuel systems, the ignition characteristics, and the flame propagation rates for the two fuel types. Three distinct aircraft operating regimes where fuel type may be a factor in fire hazards are considered. These are: (1) ground handling and refueling, (2) flight, and (3) crash. The evaluation indicates that the overall fire hazards for Jet A are less than for Jet B fuel.

  5. Retrieval of cirrus cloud properties from comparative analyses of aircraft and satellite measurements made during the 1986 FIRE IFO

    NASA Technical Reports Server (NTRS)

    Hammer, Philip D.; Valero, Francisco P. J.; Kinne, Stefan; Hein, Paul F.

    1990-01-01

    Results are presented of a comparison of cirrus cloud properties obtained from aircraft measurements made during the FIRE Intensive Field Observations and Landsat 5 and NOAA-9 observations carried out during several near coincident overpasses by these satellites. Results of the analyses of these measurements and a comparison between measurements and model calculations were used to determine particle sizes within cirrus clouds and the IR optical depths.

  6. Vertical velocities within a Cirrus cloud from Doppler lidar and aircraft measurements during FIRE: Implications for particle growth

    NASA Technical Reports Server (NTRS)

    Gultepe, Ismail; Heymsfield, Andrew J.

    1990-01-01

    A large and comprehensive data set taken by the NOAA CO2 Doppler lidar, the NCAR King Air, and rawinsondes on 31 October 1986 during the FIRE (First ISCCP Regional Experiment) field program which took place in Wisconsin are presented. Vertical velocities are determined from the Doppler lidar data, and are compared with velocities derived from the aircraft microphysical data. The data are used for discussion of particle growth and dynamical processes operative within the cloud.

  7. Development of aircraft lavatory compartments with improved fire resistance characteristics, phase 1: Fire containment test of a wide body aircraft lavatory module

    NASA Technical Reports Server (NTRS)

    Anderson, R. A.; Arnold, D. B.; Johnson, G. A.; Tustin, E. A.

    1978-01-01

    A test was conducted to evaluate the fire containment characteristics of a Boeing 747 lavatory module. Results showed that the fire was contained within the lavatory during the 30-minute test period with the door closed. The resistance of the lavatory wall and ceiling panels and general lavatory construction to burn-through under the test conditions was demonstrated.

  8. 33 CFR 334.630 - Tampa Bay south of MacDill Air Force Base, Fla.; small-arms firing range and aircraft jettison, U...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Force Base, Fla.; small-arms firing range and aircraft jettison, U.S. Air Force, MacDill Air Force Base... Force Base, Fla.; small-arms firing range and aircraft jettison, U.S. Air Force, MacDill Air Force Base...″, longitude 82°33′02.44″; and thence to a point on the shore line of MacDill Air Force Base at latitude...

  9. 33 CFR 334.630 - Tampa Bay south of MacDill Air Force Base, Fla.; small-arms firing range and aircraft jettison, U...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Force Base, Fla.; small-arms firing range and aircraft jettison, U.S. Air Force, MacDill Air Force Base... Force Base, Fla.; small-arms firing range and aircraft jettison, U.S. Air Force, MacDill Air Force Base...″, longitude 82°33′02.44″; and thence to a point on the shore line of MacDill Air Force Base at latitude...

  10. 33 CFR 334.630 - Tampa Bay south of MacDill Air Force Base, Fla.; small-arms firing range and aircraft jettison, U...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Force Base, Fla.; small-arms firing range and aircraft jettison, U.S. Air Force, MacDill Air Force Base... Force Base, Fla.; small-arms firing range and aircraft jettison, U.S. Air Force, MacDill Air Force Base...″, longitude 82°33′02.44″; and thence to a point on the shore line of MacDill Air Force Base at latitude...

  11. 33 CFR 334.630 - Tampa Bay south of MacDill Air Force Base, Fla.; small-arms firing range and aircraft jettison, U...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Force Base, Fla.; small-arms firing range and aircraft jettison, U.S. Air Force, MacDill Air Force Base... Force Base, Fla.; small-arms firing range and aircraft jettison, U.S. Air Force, MacDill Air Force Base...″, longitude 82°33′02.44″; and thence to a point on the shore line of MacDill Air Force Base at latitude...

  12. 33 CFR 334.630 - Tampa Bay south of MacDill Air Force Base, Fla.; small-arms firing range and aircraft jettison, U...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Force Base, Fla.; small-arms firing range and aircraft jettison, U.S. Air Force, MacDill Air Force Base... Force Base, Fla.; small-arms firing range and aircraft jettison, U.S. Air Force, MacDill Air Force Base...″, longitude 82°33′02.44″; and thence to a point on the shore line of MacDill Air Force Base at latitude...

  13. Aircraft

    DOEpatents

    Hibbs, B.D.; Lissaman, P.B.S.; Morgan, W.R.; Radkey, R.L.

    1998-09-22

    This disclosure provides a solar rechargeable aircraft that is inexpensive to produce, is steerable, and can remain airborne almost indefinitely. The preferred aircraft is a span-loaded flying wing, having no fuselage or rudder. Travelling at relatively slow speeds, and having a two-hundred foot wingspan that mounts photovoltaic cells on most all of the wing`s top surface, the aircraft uses only differential thrust of its eight propellers to turn. Each of five sections of the wing has one or more engines and photovoltaic arrays, and produces its own lift independent of the other sections, to avoid loading them. Five two-sided photovoltaic arrays, in all, are mounted on the wing, and receive photovoltaic energy both incident on top of the wing, and which is incident also from below, through a bottom, transparent surface. The aircraft is capable of a top speed of about ninety miles per hour, which enables the aircraft to attain and can continuously maintain altitudes of up to sixty-five thousand feet. Regenerative fuel cells in the wing store excess electricity for use at night, such that the aircraft can sustain its elevation indefinitely. A main spar of the wing doubles as a pressure vessel that houses hydrogen and oxygen gases for use in the regenerative fuel cell. The aircraft has a wide variety of applications, which include weather monitoring and atmospheric testing, communications, surveillance, and other applications as well. 31 figs.

  14. Aircraft

    DOEpatents

    Hibbs, Bart D.; Lissaman, Peter B. S.; Morgan, Walter R.; Radkey, Robert L.

    1998-01-01

    This disclosure provides a solar rechargeable aircraft that is inexpensive to produce, is steerable, and can remain airborne almost indefinitely. The preferred aircraft is a span-loaded flying wing, having no fuselage or rudder. Travelling at relatively slow speeds, and having a two-hundred foot wingspan that mounts photovoltaic cells on most all of the wing's top surface, the aircraft uses only differential thrust of its eight propellers to turn. Each of five sections of the wing has one or more engines and photovoltaic arrays, and produces its own lift independent of the other sections, to avoid loading them. Five two-sided photovoltaic arrays, in all, are mounted on the wing, and receive photovoltaic energy both incident on top of the wing, and which is incident also from below, through a bottom, transparent surface. The aircraft is capable of a top speed of about ninety miles per hour, which enables the aircraft to attain and can continuously maintain altitudes of up to sixty-five thousand feet. Regenerative fuel cells in the wing store excess electricity for use at night, such that the aircraft can sustain its elevation indefinitely. A main spar of the wing doubles as a pressure vessel that houses hydrogen and oxygen gasses for use in the regenerative fuel cell. The aircraft has a wide variety of applications, which include weather monitoring and atmospheric testing, communications, surveillance, and other applications as well.

  15. Aircraft measurements of the mean and turbulent structure of marine stratocumulus clouds during FIRE

    NASA Technical Reports Server (NTRS)

    Albrecht, Bruce A.; Kloesel, Kevin A.; Moyer, Kerry A.; Nucciarone, Jefferey J.; Young, George

    1990-01-01

    The mean and turbulent structure of marine stratocumulus clouds is defined from data that were collected from 10 flights made with the National Center for Atmospheric Research (NCAR) Electra during the First ISCCP Regional Experiment (FIRE). The number of cases sampled is sufficiently large that researchers can compare the boundary layer structure obtained (1) for solid and broken cloud conditions, (2) for light and strong surface wind conditions, (3) for different sea-surface temperatures, and (4) on day and night flights. Researchers will describe the cloud and synoptic conditions present at the time of the Electra flights and show how those flights were coordinated with the operations of other aircraft and with satellite overpasses. Mean thermodynamic and wind profiles and the heat, moisture, and momentum fluxes obtained from data collected during these flights will be compared. Variations in the cloud-top structure will be quantified using LIDAR data collected during several of the Electra flights. The spatial structure of cloud-top height and the cloud-base height will be compared with the turbulent structure in the boundary layer as defined by spectra and cospectra of the wind, temperature, and moisture.

  16. FIRE aircraft observations of horizontal and vertical transport in marine stratocumulus

    NASA Technical Reports Server (NTRS)

    Paluch, Ilga R.; Lenschow, Donald H.

    1990-01-01

    A major goal of research on marine stratocumulus is to try to understand the processes that generate and dissipate them. One approach to studying this problem is to investigate the boundary layer structure in the vicinity of a transition from a cloudy to a cloud-free region to document the differences in structure on each side of the transition. Since stratiform clouds have a major impact on the radiation divergence in the boundary layer, the transition from a cloudy to a clear boundary layer is a region of large horizontal inhomogeneity in air temperature and turbulence intensity. This leads to a considerable difference in horizontal and vertical transports between the cloudy and cloud-free regions. Measurements are used from the NCAR Electra aircraft during flights 5 (7 July 1987) and 10 (18 July 1987) of FIRE for this purpose. Flight 5 coincided with a LANDSAT overflight, and was designed to investigate the transition across a well-defined N-S cloud boundary, since the LANDSAT image can document the cloud cover in considerable detail. Turbulence legs were flown about 60 km on both sides of the cloud boundary. Flight 10 was flown at night in an area of scattered small cumuli and broken cloud patches.

  17. Crash involvement of drivers with multiple crashes.

    PubMed

    Chandraratna, Susantha; Stamatiadis, Nikiforos; Stromberg, Arnold

    2006-05-01

    A goal for any licensing agency is the ability to identify high-risk drivers. Kentucky data show that a significant number of drivers are repeatedly involved in crashes. The objective of this study is the development of a crash prediction model that can be used to estimate the likelihood of a driver being at fault for a near future crash occurrence. Multiple logistic regression techniques were employed using the available data for the Kentucky licensed drivers. This study considers as crash predictors the driver's total number of previous crashes, citations accumulated, the time gap between the latest two crashes, crash type, and demographic factors. The driver's total number of previous crashes was further disaggregated into the drivers' total number of previous at-fault and not-at-fault crashes. The model can be used to correctly classify at-fault drivers up to 74.56% with an overall efficiency of 63.34%. The total number of previous at-fault crash involvements, and having previous driver license suspensions and traffic school referrals are strongly associated with a driver being responsible for a subsequent crash. In addition, a driver's likelihood to be at fault in a crash is higher for very young or very old, males, drivers with both speeding and non-speeding citations, and drivers that had a recent crash involvement. Thus, the model presented here enables agencies to more actively monitor the likelihood of a driver to be at fault in a crash. PMID:16405858

  18. Best Practices for Crash Modeling and Simulation

    NASA Technical Reports Server (NTRS)

    Fasanella, Edwin L.; Jackson, Karen E.

    2002-01-01

    Aviation safety can be greatly enhanced by the expeditious use of computer simulations of crash impact. Unlike automotive impact testing, which is now routine, experimental crash tests of even small aircraft are expensive and complex due to the high cost of the aircraft and the myriad of crash impact conditions that must be considered. Ultimately, the goal is to utilize full-scale crash simulations of aircraft for design evaluation and certification. The objective of this publication is to describe "best practices" for modeling aircraft impact using explicit nonlinear dynamic finite element codes such as LS-DYNA, DYNA3D, and MSC.Dytran. Although "best practices" is somewhat relative, it is hoped that the authors' experience will help others to avoid some of the common pitfalls in modeling that are not documented in one single publication. In addition, a discussion of experimental data analysis, digital filtering, and test-analysis correlation is provided. Finally, some examples of aircraft crash simulations are described in several appendices following the main report.

  19. Aircraft accident report: NASA 712, Convair 990, N712NA, March Air Force Base, California, July 17, 1985, facts and analysis

    NASA Technical Reports Server (NTRS)

    Batthauer, Byron E.; Mccarthy, G. T.; Hannah, Michael; Hogan, Robert J.; Marlow, Frank J.; Reynard, William D.; Stoklosa, Janis H.; Yager, Thomas J.

    1986-01-01

    On July 17, l985, at 1810 P.d.t., NASA 712, a Convair 990 aircraft, was destroyed by fire at March Air Force Base, California. The fire started during the rollout after the pilot rejected the takeoff on runway 32. The rejected takeoff was initiated during the takeoff roll because of blown tires on the right landing gear. During the rollout, fragments of either the blown tires or the wheel/brake assemblies penetrated a right-wing fuel tank forward of the right main landing gear. Leaking fuel ignited while the aircraft was rolling, and fire engulfed the right wing and the fuselage after the aircraft was stopped on the runway. The 4-man flightcrew and the 15 scientists and technicians seated in the cabin evacuated the aircraft without serious injury. The fire was not extinguished by crash/rescue efforts and the aircraft was destroyed.

  20. Crash Tests of Protective Airplane Floors

    NASA Technical Reports Server (NTRS)

    Carden, H. D.

    1986-01-01

    Energy-absorbing floors reduce structural buckling and impact forces on occupants. 56-page report discusses crash tests of energy-absorbing aircraft floors. Describes test facility and procedures; airplanes, structural modifications, and seats; crash dynamics; floor and seat behavior; and responses of anthropometric dummies seated in airplanes. Also presents plots of accelerations, photographs and diagrams of test facility, and photographs and drawings of airplanes before, during, and after testing.

  1. Spacecraft Fire Safety

    NASA Technical Reports Server (NTRS)

    Margle, Janice M. (Editor)

    1987-01-01

    Fire detection, fire standards and testing, fire extinguishment, inerting and atmospheres, fire-related medical science, aircraft fire safety, Space Station safety concerns, microgravity combustion, spacecraft material flammability testing, and metal combustion are among the topics considered.

  2. Study to develop improved fire resistant aircraft passenger seat materials, phase 2

    NASA Technical Reports Server (NTRS)

    Duskin, F. E.; Shook, W. H.; Trabold, E. L.; Spieth, H. H.

    1978-01-01

    Fire tests are reported of improved materials in multilayered combinations representative of cushion configurations. Tests were conducted to determine their thermal, smoke, and fire resistance characteristics. Additionally, a source fire consisting of one and one-half pounds of newspaper in a tented configuration was developed. Finally, a preliminary seat specification was written based upon materials data and general seat design criteria.

  3. A comparison of vertical velocity in cirrus obtained from aircraft and lidar divergence measurements during FIRE. [First ISCCP Regional Experiment

    NASA Technical Reports Server (NTRS)

    Gultepe, Ismail; Heymsfield, A. J.; Lenschow, D. H.

    1990-01-01

    Techniques are presented to obtain vertical velocity in cirrus clouds from in situ aircraft lateral wind measurements and from ground-based remote Doppler lidar measurements. The approach used is to calculate w from the integral of the divergence of the horizontal velocity around a closed path. Divergence measurements from both aircraft and Doppler lidar are discussed. The principal errors in the calculation of w from aircraft lateral wind measurements are bias in the lateral wind, ground speed errors, and error due to vertical shear of the horizontal wind. For Doppler lidar measurements the principal errors are in the estimate of mean terminal velocity and the zeroth order coefficients of the Fourier series that is fitted to the data. The technique is applied to a cirrus cloud investigated during the FIRE (First International Satellite Cloud Climatology Regional Experiment) Cirrus Intensive Field Observation Program. The results indicate that the error in w is about + or - 14 cm/s from the aircraft technique; this can be reduced to about + or - 2 to 3 cm/s with technical improvements in both ground speed and lateral velocity measurements. The error in w from Doppler lidar measurements, which is about + or - 8 cm/s, can be reduced to about + or - 5 cm/s by improvements in the Doppler velocity measurements with technology that is currently available.

  4. United States Navy - Canadian forces solid state flight data recorder/crash position locator experiment on the B-720 controlled impact demonstration

    NASA Technical Reports Server (NTRS)

    Watters, D. M.

    1986-01-01

    The operation of a radio beacon position locator during and after the remotely controlled transport aircraft is discussed. The radio beacon transmission was actuated and was picked up by the Navy P-3A chase aircraft for a short time, after which reception was lost. The pilot reported that he received a signal on both 121.5 MHz and 243 MHz for a period of approximately 5 seconds. Five minutes after the crash a portable direction finding unit located on the roof of the NASA Dryden Flight Research Facility, 4 miles distant from the crash, was unable to pick up the beacon transmission. The fire crews started fighting the fires approximately 90 seconds after the time of impact. Navy personnel access to the crash site was allowed on the morning of December 2, 1984. Radio beacon locator was found resting top side up, 15 feet forward and 13 feet perpendicular from the tray location the starboard side of the aircraft. An immediate inspection indicated the airfoil suffered moderate fire damage with paint peeling but not intumescing. The visual marker strobe lamp housings were intact but extensively burned such that it was impossible to see if the lamps had survived. The airfoil suffered minor structural damage, with assorted dents, etc. The extended plunger on the ARU-21 release unit indicated that the pyrotechnic deployment system operated. The radio beacon base (tray) suffered some heat and fire damage, and was charred and blackened by smoke. The frangible switch in the nose survived and the switch in the belly was recovered and found to have actuated. It is assumed that this switch fired the ARU-21 squib. There were no other release switches installed in the normally open system in the aircraft.

  5. 14 CFR 29.952 - Fuel system crash resistance.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Fuel system crash resistance. 29.952 Section 29.952 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System § 29.952 Fuel system crash resistance. Unless other means...

  6. 14 CFR 27.952 - Fuel system crash resistance.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Fuel system crash resistance. 27.952 Section 27.952 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Fuel System § 27.952 Fuel system crash resistance. Unless other means acceptable...

  7. End-to-end testing. [to verify electrical equipment failure due to carbon fibers released in aircraft-fuel fires

    NASA Technical Reports Server (NTRS)

    Pride, R. A.

    1979-01-01

    The principle objective of the kinds of demonstration tests that are discussed is to try to verify whether or not carbon fibers that are released by burning composite parts in an aircraft-fuel fires can produce failures in electrical equipment. A secondary objective discussed is to experimentally validate the analytical models for some of the key elements in the risk analysis. The approach to this demonstration testing is twofold: limited end-to-end test are to be conducted in a shock tube; and planning for some large outdoor burn tests is being done.

  8. On the reverse flow ceiling jet in pool fire-ventilation crossflow interactions in a simulated aircraft cabin interior

    NASA Technical Reports Server (NTRS)

    Kwack, E. Y.; Bankston, C. P.; Shakkottai, P.; Back, L. H.

    1989-01-01

    The behavior of the reverse flow ceiling jet against the ventilation flow from 0.58 to 0.87 m/s was investigated in a 1/3 scale model of a wide body aircraft interior. For all tests, strong reverse-flow ceiling jets of hot gases were detected well upstream of the fire. Both thicknesses of the reverse-flow ceiling jet and the smoke layer increased with the fire-crossflow parameter. The thickness of the smoke layer where the smoke flows along the main flow below the reverse-flow ceiling jet was almost twice that of the reverse-flow ceiling jet. Detailed spatial and time-varying temperatures of the gas in the test section were measured, and velocity profiles were also measured using a temperature compensated hot film.

  9. ELT antenna gain distributions under simulated crash conditions

    NASA Technical Reports Server (NTRS)

    Estep, H.

    1984-01-01

    A study of the relative merits of ELT antenna positions, when mounted on a small aircraft, is presented. The gain distribution of the best antenna position together with the worst crash scenario is also given.

  10. Large-scale fiber release and equipment exposure experiments. [aircraft fires

    NASA Technical Reports Server (NTRS)

    Pride, R. A.

    1980-01-01

    Outdoor tests were conducted to determine the amount of fiber released in a full scale fire and trace its dissemination away from the fire. Equipment vulnerability to fire released fibers was assessed through shock tests. The greatest fiber release was observed in the shock tube where the composite was burned with a continuous agitation to total consumption. The largest average fiber length obtained outdoors was 5 mm.

  11. Large Unmanned Aircraft System Operations in the National Airspace System - the NASA 2007 Western States Fire Missions

    NASA Technical Reports Server (NTRS)

    Buoni, Gregory P.; Howell, Kathleen M.

    2008-01-01

    The National Aeronautics and Space Administration (NASA) Dryden Flight Research Center (DFRC) Ikhana (ee-kah-nah) project executed the 2007 Western States Fire Missions over several of the western United States using an MQ-9 unmanned aircraft system (UAS) in partnership with the NASA Ames Research Center, the United States Forest Service, and the National Interagency Fire Center. The missions were intended to supply infrared imagery of wildfires to firefighters on the ground within 10 minutes of data acquisition. For each of the eight missions, the NASA DFRC notified the Federal Aviation Administration (FAA) of specific flight plans within three or fewer days of the flight. The FAA Certificate of Waiver or Authorization (commonly referred to as a COA ) process was used to obtain access to the United States National Airspace System. Significant time and resources were necessary to develop the COA application, perform mission planning, and define and approve emergency landing sites. Unique aspects of flying unmanned aircraft created challenges to mission operations. Close coordination with FAA headquarters and air traffic control resulted in safe and successful missions that assisted firefighters by providing near-real-time imagery of selected wildfires.

  12. Overview Of Structural Behavior and Occupant Responses from Crash Test of a Composite Airplane

    NASA Technical Reports Server (NTRS)

    Jones, Lisa E.; Carden, Huey D.

    1995-01-01

    As part of NASA's composite structures crash dynamics research, a general aviation aircraft with composite wing, fuselage and empennage (but with metal subfloor structure) was crash tested at the NASA Langley Research Center Impact Research Facility. The test was conducted to determine composite aircraft structural behavior for crash loading conditions and to provide a baseline for a similar aircraft test with a modified subfloor. Structural integrity and cabin volume were maintained. Lumbar loads for dummy occupants in energy absorbing seats wer substantially lower than those in standard aircraft seats; however, loads in the standard seats were much higher that those recorded under similar conditions for an all-metallic aircraft.

  13. An assessment of the risk arising from electrical effects associated with the release of carbon fibers from general aviation aircraft fires

    NASA Technical Reports Server (NTRS)

    Rosenfield, D.; Fiksel, J.

    1980-01-01

    A Poisson type model was developed and exercised to estimate the risk of economic losses through 1993 due to potential electric effects of carbon fibers released from United States general aviation aircraft in the aftermath of a fire. Of the expected 354 annual general aviation aircraft accidents with fire projected for 1993, approximately 88 could involve carbon fibers. The average annual loss was estimated to be about $250 (1977 dollars) and the likelihood of exceeding $107,000 (1977 dollars) in annual loss in any one year was estimated to be at most one in ten thousand.

  14. Carbon fiber plume sampling for large scale fire tests at Dugway Proving Ground. [fiber release during aircraft fires

    NASA Technical Reports Server (NTRS)

    Chovit, A. R.; Lieberman, P.; Freeman, D. E.; Beggs, W. C.; Millavec, W. A.

    1980-01-01

    Carbon fiber sampling instruments were developed: passive collectors made of sticky bridal veil mesh, and active instruments using a light emitting diode (LED) source. These instruments measured the number or number rate of carbon fibers released from carbon/graphite composite material when the material was burned in a 10.7 m (35 ft) dia JP-4 pool fire for approximately 20 minutes. The instruments were placed in an array suspended from a 305 m by 305 m (1000 ft by 1000 ft) Jacob's Ladder net held vertically aloft by balloons and oriented crosswind approximately 140 meters downwind of the pool fire. Three tests were conducted during which released carbon fiber data were acquired. These data were reduced and analyzed to obtain the characteristics of the released fibers including their spatial and size distributions and estimates of the number and total mass of fibers released. The results of the data analyses showed that 2.5 to 3.5 x 10 to the 8th power single carbon fibers were released during the 20 minute burn of 30 to 50 kg mass of initial, unburned carbon fiber material. The mass released as single carbon fibers was estimated to be between 0.1 and 0.2% of the initial, unburned fiber mass.

  15. Advanced risk assessment of the effects of graphite fibers on electronic and electric equipment, phase 1. [simulating vulnerability to airports and communities from fibers released during aircraft fires

    NASA Technical Reports Server (NTRS)

    Pocinki, L. S.; Kaplan, L. D.; Cornell, M. E.; Greenstone, R.

    1979-01-01

    A model was developed to generate quantitative estimates of the risk associated with the release of graphite fibers during fires involving commercial aircraft constructed with graphite fiber composite materials. The model was used to estimate the risk associated with accidents at several U.S. airports. These results were then combined to provide an estimate of the total risk to the nation.

  16. Designing for aircraft structural crashworthiness

    NASA Technical Reports Server (NTRS)

    Thomson, R. G.; Caiafa, C.

    1981-01-01

    This report describes structural aviation crash dynamics research activities being conducted on general aviation aircraft and transport aircraft. The report includes experimental and analytical correlations of load-limiting subfloor and seat configurations tested dynamically in vertical drop tests and in a horizontal sled deceleration facility. Computer predictions using a finite-element nonlinear computer program, DYCAST, of the acceleration time-histories of these innovative seat and subfloor structures are presented. Proposed application of these computer techniques, and the nonlinear lumped mass computer program KRASH, to transport aircraft crash dynamics is discussed. A proposed FAA full-scale crash test of a fully instrumented radio controlled transport airplane is also described.

  17. Fires

    MedlinePlus

    Whether a fire happens in your home or in the wild, it can be very dangerous. Fire spreads quickly. There is no time to gather ... a phone call. In just two minutes, a fire can become life-threatening. In five minutes, a ...

  18. Development of a Minimum Performance Standard for Hand-Held Fire Extinguishers as a Replacement for Halon 1211 on Civilian Transport Category Aircraft

    NASA Astrophysics Data System (ADS)

    Webster, Harry

    2002-08-01

    One or more Halon 1211 hand-held fire extinguishers are specified in Federal Aviation Regulation (FAR) Part 25.851 as a requirement on transport category aircraft with 31 or more seats. Halon 1211 has been linked to the destruction of the ozone layer and production of new Halon 1211 has been halted per the Montreal Protocol in 1993. The phase out of Halon 1211, as the hand-held firefighting agent of choice, for civilian transport category aircraft has necessitated the development of a Minimum Performance Standard (MPS) to evaluate replacement agents. The purpose of the MPS is to insure that there is no reduction in safety, both in terms of effectiveness in fighting onboard fires and toxicity to the passengers and crew. The MPS specifies two new tests that replacement agents must pass in addition to requiring national certifications such as provided by Underwriters Laboratories. The first test evaluates the "flooding" characteristics of the agent against a hidden in-flight fire. This test determines the ability of a streaming agent to function as a flooding agent. The second test evaluates the performance of the agent in fighting a terrorist fire scenario and the associated toxicity hazard. This test measures the agent's ability to extinguish a triple-seat fire in an aircraft cabin under in-flight conditions and the toxicity characteristics of both the neat agent and the products of decomposition. This MPS will insure that the replacement agents will meet or exceed the performance of Halon 1211 both in fighting fires and maintaining a safe breathing environment in aircraft cabins.

  19. Crash Rates of Scheduled Commuter and Air Carrier Flights Before and After a Regulatory Change

    PubMed Central

    Baker, Susan P.; Groff, Loren; Haaland, Wren; Qiang, Yandong; Rebok, George W.; Li, Guohua

    2010-01-01

    Introduction In 1997, in an effort to reduce the crash rate of scheduled commuter flights, the FAA required aircraft with 10–30 passenger seats to operate under stricter rules. Training and other requirements of 14 CFR Part 121 rules were applied to these midsize commuters, which previously had operated under the less strict Part 135 rules. Published crash rates obscured changes related to aircraft size. This research was undertaken to determine whether the rule change affected crash rates of aircraft with 10–30 passenger seats. Method We determined the number of passenger seats on each Part 135 or Part 121 aircraft that crashed between 1983 and 2007. For aircraft with < 10, 10–30, and > 30 seats, we estimated the numbers of departures and crash rates, adjusting for changes in total departures and numbers of in-service aircraft. Results The Part 135 crash rate tripled in 1997 when commuters with 10–30 seats were excluded, reflecting the administrative change. However, the crash rate of aircraft with 10–30 passenger seats began to decline 4 yr before the rule change; thereafter, their rate was lower than for larger aircraft. The fleet size of aircraft with 10–30 passenger seats increased from 1983 to 1997, then declined as they were replaced with larger aircraft in response to the rule change. Discussion No effect of the rule change on crash rates of 10–30-seat aircraft was apparent. The decline in their crash rates began before the rule change and may have been related to the 1992 requirement for ground proximity warning devices. PMID:19378909

  20. The relative fire resistance of select thermoplastic materials. [for aircraft interiors

    NASA Technical Reports Server (NTRS)

    Kourtides, D. A.; Parker, J. A.

    1978-01-01

    The relative thermal stability, flammability, and related thermochemical properties of some thermoplastic materials currently used in aircraft interiors as well as of some candidate thermoplastics were investigated. Currently used materials that were evaluated include acrylonitrile butadiene styrene, bisphenol A polycarbonate, polyphenylene oxide, and polyvinyl fluoride. Candidate thermoplastic materials evaluated include: 9,9-bis(4-hydroxyphenyl)fluorene polycarbonate-poly(dimethylsiloxane) block polymer, chlorinated polyvinylchloride homopolymer, phenolphthalein polycarbonate, polyethersulfone, polyphenylene sulfide, polyarylsulfone, and polyvinylidene fluoride.

  1. Preliminary analysis of University of North Dakota aircraft data from the FIRE Cirrus IFO-2

    NASA Technical Reports Server (NTRS)

    Poellot, Michael R.

    1995-01-01

    The stated goals of the First ISCCP (International Satellite Cloud Climatology Project) Regional Experiment (FIRE) are 'to promote the development of improved cloud and radiation parameterization for use in climate models, and to provide for assessment and improvement of ISCCP projects'. FIRE Phase 2 has focused on the formation, maintenance and dissipation of cirrus and marine stratocumulus cloud systems. These objectives have been approached through a combination of modeling, extended-time observations and intensive field observation (IFO) periods. The work under this grant was associated with the FIRE Cirrus IFO 2. This field measurement program was conducted to obtain observations of cirrus cloud systems on a range of scales from the synoptic to the microscale, utilizing simultaneous measurements from a variety of ground-based, satellite and airborne platforms. By combining these remote and in situ measurements a more complete picture of cirrus systems can be obtained. The role of the University of North Dakota in Phase 2 was three-fold: to collect in situ microphysical data during the Cirrus IFO 2; to process and archive these data; and to collaborate in analyses of IFO data. This report will summarize the activities and findings of the work performed under this grant; detailed description of the data sets available and of the analyses are contained in the Semi-annual Status Reports submitted to NASA.

  2. CID-720 aircraft Langley Research Center preflight hardware tests: Development, flight acceptance and qualification

    NASA Technical Reports Server (NTRS)

    Pride, J. D.

    1986-01-01

    The testing conducted on LaRC-developed hardware for the controlled impact demonstration transport aircraft is discussed. To properly develop flight qualified crash systems, two environments were considered: the aircraft flight environment with the focus on vibration and temperature effects, and the crash environment with the long pulse shock effects. Also with the large quantity of fuel in the wing tanks the possibility of fire was considered to be a threat to data retrieval and thus fire tests were included in the development test process. The aircraft test successfully demonstrated the performance of the LaRC developed heat shields. Good telemetered data (S-band) was received during the impact and slide-out phase, and even after the aircraft came to rest. The two onboard DAS tape recorders were protected from the intense fire and high quality tape data was recovered. The complete photographic system performed as planned throughout the 40.0 sec of film supply. The four photo power distribution pallets remained in good condition and all ten onboard 16 mm high speed (400 frames/sec) cameras produced good film data.

  3. NASA/FAA general aviation crash dynamics program

    NASA Technical Reports Server (NTRS)

    Thomson, R. G.; Hayduk, R. J.; Carden, H. D.

    1981-01-01

    The program involves controlled full scale crash testing, nonlinear structural analyses to predict large deflection elastoplastic response, and load attenuating concepts for use in improved seat and subfloor structure. Both analytical and experimental methods are used to develop expertise in these areas. Analyses include simplified procedures for estimating energy dissipating capabilities and comprehensive computerized procedures for predicting airframe response. These analyses are developed to provide designers with methods for predicting accelerations, loads, and displacements on collapsing structure. Tests on typical full scale aircraft and on full and subscale structural components are performed to verify the analyses and to demonstrate load attenuating concepts. A special apparatus was built to test emergency locator transmitters when attached to representative aircraft structure. The apparatus is shown to provide a good simulation of the longitudinal crash pulse observed in full scale aircraft crash tests.

  4. CID Aircraft post-impact lakebed skid

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Moments after hitting and sliding through the wing openers the aircraft burst into flame, with a spectacular fireball seen emanating from the right inboard engine area. In a typical aircraft crash, fuel spilled from ruptured fuel tanks forms a fine mist that can be ignited by a number of sources at the crash site. In 1984 the NASA Dryden Flight Research Facility (after 1994 a full-fledged Center again) and the Federal Aviation Administration (FAA) teamed-up in a unique flight experiment called the Controlled Impact Demonstration (CID), to test crash a Boeing 720 aircraft using standard fuel with an additive designed to supress fire. The additive, FM-9, a high-molecular-weight long-chain polymer, when blended with Jet-A fuel had demonstrated the capability to inhibit ignition and flame propagation of the released fuel in simulated crash tests. This anti-misting kerosene (AMK) cannot be introduced directly into a gas turbine engine due to several possible problems such as clogging of filters. The AMK must be restored to almost Jet-A before being introduced into the engine for burning. This restoration is called 'degradation' and was accomplished on the B-720 using a device called a 'degrader.' Each of the four Pratt & Whitney JT3C-7 engines had a 'degrader' built and installed by General Electric (GE) to break down and return the AMK to near Jet-A quality. In addition to the AMK research the NASA Langley Research Center was involved in a structural loads measurement experiment, which included having instrumented dummies filling the seats in the passenger compartment. Before the final flight on December 1, 1984, more than four years of effort passed trying to set-up final impact conditions considered survivable by the FAA. During those years while 14 flights with crews were flown the following major efforts were underway: NASA Dryden developed the remote piloting techniques necessary for the B-720 to fly as a drone aircraft; General Electric installed and tested four

  5. Carbon/graphite fiber risk analysis and assessment study: An assessment of the risk to Douglas commercial transport aircraft

    NASA Technical Reports Server (NTRS)

    Schjelderup, H. C.; Cook, C. Q.; Snyder, E.; Henning, B.; Hosford, J.; Gilles, D. L.; Swanstrom, C. W.

    1980-01-01

    The potential hazard to electrical and electronic devices should there be a release of free carbon fibers due to an aircraft crash and fire was assessed. Exposure and equipment sensitivity data were compiled for a risk analysis. Results are presented in the following areas: DC-9/DC-10 electrical/electronic component characterization; DC-9 and DC-10 fiber transfer functions; potential for transport aircraft equipment exposure to carbon fibers; and equipment vulnerability assessment. Results reflect only a negligible increase in risk for the DC-9 and DC-10 fleets either now or projected to 1993.

  6. Estimate of air carrier and air taxi crash frequencies from high altitude en route flight operations

    SciTech Connect

    Sanzo, D.; Kimura, C.Y.; Prassinos, P.G.

    1996-06-03

    In estimating the frequency of an aircraft crashing into a facility, it has been found convenient to break the problem down into two broad categories. One category estimates the aircraft crash frequency due to air traffic from nearby airports, the so-called near-airport environment. The other category estimates the aircraft crash frequency onto facilities due to air traffic from airways, jet routes, and other traffic flying outside the near-airport environment The total aircraft crash frequency is the summation of the crash frequencies from each airport near the facility under evaluation and from all airways, jet routes, and other traffic near the facility of interest. This paper will examine the problems associated with the determining the aircraft crash frequencies onto facilities outside the near-airport environment. This paper will further concentrate on the estimating the risk of aircraft crashes to ground facilities due to high altitude air carrier and air taxi traffic. High altitude air carrier and air taxi traffic will be defined as all air carrier and air taxi flights above 18,000 feet Mean Sea Level (MSL).

  7. Evaluation of the propensity of replacements for halon 1301 to induce stress-corrosion cracking in alloys used in aircraft fire-suppressant storage and distribution systems

    NASA Astrophysics Data System (ADS)

    Stoudt, M. R.; Fink, J. L.; Ricker, R. E.

    1996-08-01

    The fire-suppressant agents halon 1301 and halon 1211 have both been determined to possess sufficient ozone layer depletion potential to warrant strict limitations on their production and use. The service conditions aboard jet aircraft subject engine fire-suppressant storage vessels to the agents for long durations at elevated temperatures and pressures. Stress-corrosion cracking (SCC) of the materials of the vessel wall and/or rupture disk assembly (agent release valve) could prevent proper operation. Therefore, the compatibility of potential replacements with the materials used in the fire-suppressant storage and distribution systems is a serious concern. An evaluation of the relative SCC propensity of 12 halon replacement candidates was conducted to enable the selection of three of these compounds for further study. The slow-strain-rate (SSR) tensile test was selected, and a statistical method was developed for ranking the relative susceptibility of each alloy in each agent from the SSR test results. The results revealed that most agents had little tendency to cause SCC, but that some agent/alloy combinations were undesirable. The statistical technique allowed relative comparison, ranking, and combination of these results with other types of tests for the identification of three agents suitable for development and evaluation as aircraft fire suppressants.

  8. Post-crash fuel dispersal

    SciTech Connect

    Tieszen, S.R.

    1997-03-01

    This paper is a brief overview of work over the last several decades in understanding what occurs to jet fuel stored in aircraft fuel tanks on impact with the ground. Fuel dispersal is discussed in terms of the overall crash dynamics process and impact regimes are identified. In a generic sense, the types of flow regimes which can occur are identified and general descriptions of the processes are given. Examples of engineering level tools, both computational and experimental, which have applicability to analyzing the complex environments are presented. Finally, risk based decision is discussed as a quick means of identifying requirements for development of preventative or mitigation strategies, such as further work on the development of an anti-misting agent.

  9. CID Aircraft pre-impact lakebed skid

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The B-720 is seen viewed moments after impact and just before hitting the wing openers. In a typical aircraft crash, fuel spilled from ruptured fuel tanks forms a fine mist that can be ignited by a number of sources at the crash site. In 1984 the NASA Dryden Flight Research Facility (after 1994 a full-fledged Center again) and the Federal Aviation Administration (FAA) teamed-up in a unique flight experiment called the Controlled Impact Demonstration (CID), to test crash a Boeing 720 aircraft using standard fuel with an additive designed to supress fire. The additive, FM-9, a high-molecular-weight long-chain polymer, when blended with Jet-A fuel had demonstrated the capability to inhibit ignition and flame propagation of the released fuel in simulated crash tests. This anti-misting kerosene (AMK) cannot be introduced directly into a gas turbine engine due to several possible problems such as clogging of filters. The AMK must be restored to almost Jet-A before being introduced into the engine for burning. This restoration is called 'degradation' and was accomplished on the B-720 using a device called a 'degrader.' Each of the four Pratt & Whitney JT3C-7 engines had a 'degrader' built and installed by General Electric (GE) to break down and return the AMK to near Jet-A quality. In addition to the AMK research the NASA Langley Research Center was involved in a structural loads measurement experiment, which included having instrumented dummies filling the seats in the passenger compartment. Before the final flight on December 1, 1984, more than four years of effort passed trying to set-up final impact conditions considered survivable by the FAA. During those years while 14 flights with crews were flown the following major efforts were underway: NASA Dryden developed the remote piloting techniques necessary for the B-720 to fly as a drone aircraft; General Electric installed and tested four degraders (one on each engine); and the FAA refined AMK (blending, testing, and

  10. Critical market crashes

    NASA Astrophysics Data System (ADS)

    Sornette, D.

    2003-04-01

    This review presents a general theory of financial crashes and of stock market instabilities that his co-workers and the author have developed over the past seven years. We start by discussing the limitation of standard analyses for characterizing how crashes are special. The study of the frequency distribution of drawdowns, or runs of successive losses shows that large financial crashes are “outliers”: they form a class of their own as can be seen from their statistical signatures. If large financial crashes are “outliers”, they are special and thus require a special explanation, a specific model, a theory of their own. In addition, their special properties may perhaps be used for their prediction. The main mechanisms leading to positive feedbacks, i.e., self-reinforcement, such as imitative behavior and herding between investors are reviewed with many references provided to the relevant literature outside the narrow confine of Physics. Positive feedbacks provide the fuel for the development of speculative bubbles, preparing the instability for a major crash. We demonstrate several detailed mathematical models of speculative bubbles and crashes. A first model posits that the crash hazard drives the market price. The crash hazard may sky-rocket at some times due to the collective behavior of “noise traders”, those who act on little information, even if they think they “know”. A second version inverses the logic and posits that prices drive the crash hazard. Prices may skyrocket at some times again due to the speculative or imitative behavior of investors. According the rational expectation model, this entails automatically a corresponding increase of the probability for a crash. We also review two other models including the competition between imitation and contrarian behavior and between value investors and technical analysts. The most important message is the discovery of robust and universal signatures of the approach to crashes. These precursory

  11. Analysis of Firetruck Crashes and Associated Firefighter Injuries in the United States

    PubMed Central

    Donoughe, Kelly; Whitestone, Jennifer; Gabler, Hampton C.

    2012-01-01

    Motor vehicle crashes are the second leading cause of death for on-duty firefighters. Firetruck crashes, occurring at a rate of approximately 30,000 crashes per year, have potentially dire consequences for the vehicle occupants and for the community if the firetruck was traveling to provide emergency services. Data from the United States Fire Administration and the National Highway Traffic Safety Administration shows that firefighters neglect to buckle their seatbelts while traveling in a fire apparatus, thus putting themselves at a high risk for injuries if the truck crashes, especially in rollover crashes. Despite national regulations and departmental guidelines aiming to improve safety on fire apparatuses, belt use among firefighters remains dangerously low. The results from this study indicate that further steps need to be taken to improve belt use. One promising solution would be to redesign firetruck seatbelts to improve the ease of buckling and to accommodate wider variations in firefighter sizes. PMID:23169118

  12. Analysis of firetruck crashes and associated firefighter injuries in the United States.

    PubMed

    Donoughe, Kelly; Whitestone, Jennifer; Gabler, Hampton C

    2012-01-01

    Motor vehicle crashes are the second leading cause of death for on-duty firefighters. Firetruck crashes, occurring at a rate of approximately 30,000 crashes per year, have potentially dire consequences for the vehicle occupants and for the community if the firetruck was traveling to provide emergency services. Data from the United States Fire Administration and the National Highway Traffic Safety Administration shows that firefighters neglect to buckle their seatbelts while traveling in a fire apparatus, thus putting themselves at a high risk for injuries if the truck crashes, especially in rollover crashes. Despite national regulations and departmental guidelines aiming to improve safety on fire apparatuses, belt use among firefighters remains dangerously low. The results from this study indicate that further steps need to be taken to improve belt use. One promising solution would be to redesign firetruck seatbelts to improve the ease of buckling and to accommodate wider variations in firefighter sizes. PMID:23169118

  13. Survey of NASA research on crash dynamics

    NASA Technical Reports Server (NTRS)

    Thomson, R. G.; Carden, H. D.; Hayduk, R. J.

    1984-01-01

    Ten years of structural crash dynamics research activities conducted on general aviation aircraft by the National Aeronautics and Space Administration (NASA) are described. Thirty-two full-scale crash tests were performed at Langley Research Center, and pertinent data on airframe and seat behavior were obtained. Concurrent with the experimental program, analytical methods were developed to help predict structural behavior during impact. The effects of flight parameters at impact on cabin deceleration pulses at the seat/occupant interface, experimental and analytical correlation of data on load-limiting subfloor and seat configurations, airplane section test results for computer modeling validation, and data from emergency-locator-transmitter (ELT) investigations to determine probable cause of false alarms and nonactivations are assessed. Computer programs which provide designers with analytical methods for predicting accelerations, velocities, and displacements of collapsing structures are also discussed.

  14. Pilot ejection, parachute, and helicopter crash injuries.

    PubMed

    McBratney, Colleen M; Rush, Stephen; Kharod, Chetan U

    2014-01-01

    USAF Pararescuemen (PJs) respond to downed aircrew as a fundamental mission for personnel recovery (PR), one of the Air Force's core functions. In addition to responding to these in Military settings, the PJs from the 212 Rescue Squadron routinely respond to small plane crashes in remote regions of Alaska. While there is a paucity of information on the latter, there have been articles detailing injuries sustained from helicopter crashes and while ejecting or parachuting from fixed wing aircraft. The following represents a new chapter added to the Pararescue Medical Operations Handbook, Sixth Edition (2014, editors Matt Wolf, MD, and Stephen Rush, MD, in press). It was designed to be a quick reference for PJs and their Special Operations flight surgeons to help with understanding of mechanism of injury with regard to pilot ejection, parachute, and helicopter accident injuries. It outlines the nature of the injuries sustained in such mishaps and provides an epidemiologic framework from which to approach the problem. PMID:25399374

  15. Fire-Retardant, Decorative Inks

    NASA Technical Reports Server (NTRS)

    Kourtides, D.; Nir, Z.; Mikroyannidis, J.

    1987-01-01

    Effectiveness of fire-retardant additives evaluated. Fire retardance of decorative acrylic printing inks for aircraft interiors enhanced by certain commercial and experimental fire-retardant additives, according to study.

  16. Solid state crash survivable flight data recorders for mishap investigation

    NASA Astrophysics Data System (ADS)

    Ask, H. R.

    1981-11-01

    The state of the art in solid state memories, microprocessors and crash survival is reviewed. Flight recorders for small and large civil transport aircraft are described. Heat flow problems with crash survivable designs are solved, using an intumescent outer layer for the enclosure. This provides heat absorbtion during a phase change, followed by creation of a passive insulation layer formed by the charred residue. An aluminum alloy housing under the intumescent layer is the primary rigid structure for penetration, shock and static crush resistance. The small aircraft system has a 131 kbit memory, providing 30 min of prior flight data with 100% reserve, using data compression. It protects airborne and on ground signal goodness data and is nondeployable. The large aircraft system stores the 21 min of raw input data and the last 15 hr of data in memory with data compression possible. It protects in memory two flight cycles of any duration, with total elapsed time 25 hr possible.

  17. Thermal performance of aircraft polyurethane seat cushions

    NASA Technical Reports Server (NTRS)

    Kourtides, D. A.; Parker, J. A.

    1982-01-01

    Measurements were conducted on 7.6 x 7.6 cm samples of polyurethane seat cushion material in a modified National Bureau of Standards smoke density chamber to simulate real life conditions for an onboard aircraft fire or post-crash fire. In this study, a non-flaming heat radiation condition was simulated. Two aluminized polymeric fabrics (Norfab 11HT-26-A and Preox 1100-4) and one neoprene type material in two thicknesses (Vonar 2 and 3) were tested as heat blocking layers to protect the urethane foam from rapid heat degradation. Thermogravimetric analysis and differential scanning calorimetry were performed to characterize thermally the materials tested. It was found that Vonar 2 or 3 provided approximately equal thermal protection to F.R. urethane as the aluminized fabrics, but at a significant weight penalty. The efficiency of the foams to absorb heat per unit mass loss when protected with the heat blocking layer decreases in the heating range of 2.5-5.0 W/sq cm, but remains unchanged or slightly increases in the range of 5.0-7.5 W/sq cm. The results show that at all heat flux ranges tested the usage of a heat blocking layer in aircraft seats significantly improves their thermal performance.

  18. Fire response test methods for aerospace materials

    NASA Technical Reports Server (NTRS)

    Hilado, C. J.

    1978-01-01

    Fire response methods which may be suitable for materials intended for aircraft and aerospace applications are presented. They address ignitability, smolder susceptibility, oxygen requirement, flash fire propensity, fire spread, heat release, fire containment, smoke evolution, and toxic gas evolution.

  19. Annoyance by aircraft noise and fear of overflying aircraft in relation to attitudes toward the environment and community

    NASA Technical Reports Server (NTRS)

    Loeb, M.; Moran, S. V.

    1977-01-01

    It has been suggested that expressions of annoyance attributable to aircraft noise may reflect in part fear of aircraft overflights and possible crashes. If this is true, then residents of areas where crashes have occurred should express more annoyance. To test this hypothesis, 50 residents of an Albany, New York area where an aircraft crash producing fatalities recently occurred and 50 residents of a comparable nearby area without such a history, were asked to respond to a 'Quality of Life Questionnaire.' Among the items were some designed to test annoyance by noise and fear of aircraft overflights. It was predicted that those in the crash area would express more fear and would more often identify aircraft as a noise source. These hypotheses were sustained. A near-replication was carried out in Louisville, Kentucky; results were much the same. Analyses indicated that for the crash-area groups, there was associating of aircraft fear and noise annoyance responses; this was true to an apparently lesser extent for non-crash groups. The greater annoyance of crash groups by aircraft community noise apparently does not carry over to situations in which aircraft noise is assessed in the laboratory.

  20. Pilot Age and Error in Air-Taxi Crashes

    PubMed Central

    Rebok, George W.; Qiang, Yandong; Baker, Susan P.; Li, Guohua

    2010-01-01

    Introduction The associations of pilot error with the type of flight operations and basic weather conditions are well documented. The correlation between pilot characteristics and error is less clear. This study aims to examine whether pilot age is associated with the prevalence and patterns of pilot error in air-taxi crashes. Methods Investigation reports from the National Transportation Safety Board for crashes involving non-scheduled Part 135 operations (i.e., air taxis) in the United States between 1983 and 2002 were reviewed to identify pilot error and other contributing factors. Crash circumstances and the presence and type of pilot error were analyzed in relation to pilot age using Chi-square tests. Results Of the 1751 air-taxi crashes studied, 28% resulted from mechanical failure, 25% from loss of control at landing or takeoff, 7% from visual flight rule conditions into instrument meteorological conditions, 7% from fuel starvation, 5% from taxiing, and 28% from other causes. Crashes among older pilots were more likely to occur during the daytime rather than at night and off airport than on airport. The patterns of pilot error in air-taxi crashes were similar across age groups. Of the errors identified, 27% were flawed decisions, 26% were inattentiveness, 23% mishandled aircraft kinetics, 15% mishandled wind and/or runway conditions, and 11% were others. Conclusions Pilot age is associated with crash circumstances but not with the prevalence and patterns of pilot error in air-taxi crashes. Lack of age-related differences in pilot error may be attributable to the “safe worker effect.” PMID:19601508

  1. Reading as Wedding Crashing

    ERIC Educational Resources Information Center

    Newkirk, Thomas

    2014-01-01

    Grappling with difficult texts can make readers feel as though they're crashing a party that wasn't meant for them. They don't know the occasion. They don't know the guests. They have a hard time fitting in. In this article, Thomas Newkirk suggests several reasons why students find texts difficult to understand. Students may be…

  2. General aviation crash safety program at Langley Research Center

    NASA Technical Reports Server (NTRS)

    Thomson, R. G.

    1976-01-01

    The purpose of the crash safety program is to support development of the technology to define and demonstrate new structural concepts for improved crash safety and occupant survivability in general aviation aircraft. The program involves three basic areas of research: full-scale crash simulation testing, nonlinear structural analyses necessary to predict failure modes and collapse mechanisms of the vehicle, and evaluation of energy absorption concepts for specific component design. Both analytical and experimental methods are being used to develop expertise in these areas. Analyses include both simplified procedures for estimating energy absorption capabilities and more complex computer programs for analysis of general airframe response. Full-scale tests of typical structures as well as tests on structural components are being used to verify the analyses and to demonstrate improved design concepts.

  3. Analysis of Aircraft, Radiosonde and Radar Observations in Cirrus Clouds Observed During FIRE II: The Interactions Between Environmental Structure, Turbulence and Cloud Microphysical Properties

    NASA Technical Reports Server (NTRS)

    Smith, Samantha A.; DelGenio, Anthony D.

    1999-01-01

    Ways to determine the turbulence intensity and the horizontal variability in cirrus clouds have been investigated using FIRE-II aircraft, radiosonde and radar data. Higher turbulence intensities were found within some, but not all, of the neutrally stratified layers. It was also demonstrated that the stability of cirrus layers with high extinction values decrease in time, possibly as a result of radiative destabilization. However, these features could not be directly related to each other in any simple manner. A simple linear relationship was observed between the amount of horizontal variability in the ice water content and its average value. This was also true for the extinction and ice crystal number concentrations. A relationship was also suggested between the variability in cloud depth and the environmental stability across the depth of the cloud layer, which requires further investigation.

  4. Effects of boron and glass hybrid epoxy-composites on graphite-fiber release in an aircraft fire

    NASA Technical Reports Server (NTRS)

    Tompkins, S. S.; Brewer, W. D.

    1979-01-01

    Recent studies have shown that the benefits gained by using graphite-epoxy composite structures may not be realized without some risk. The graphite fibers are very good electrical conductors and fibers released into the environment during a fire create a possible hazard to electrical equipment. Several graphite-epoxy hybrids were exposed to a fire and simulated explosion and their graphite fiber retention characteristics were examined. Several low melting-temperature glasses which wet and clump graphite-fibers and a glass/graphite fabric which reduced impact damage were identified as promising hybridizing components to minimize graphite fiber release.

  5. Sikorski - (ACAP) - helicopter crash test

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Sikorsky - Advanced Composite Airframe Program (ACAP) - helicopter crash test. Roof instrument panel between pilot stations - left view. Photographed at the Impact Dynamics Research Facility, building 1297.

  6. Sikorski - (ACAP) - helicopter crash test

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Sikorsky - Advanced Composite Airframe Program (ACAP) - helicopter crash test. Roof instrument panel between pilot stations, right view. Photographed at the Impact Dynamics Research Facility, building 1297.

  7. Sikorsky - (ACAP) - helicopter crash test

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Sikorsky - Advanced Composite Airframe Program (ACAP) - helicopter crash test. Left view of cockpit showing manikin head against panel. Photographed at the Impact Dynamics Research Facility, building 1297.

  8. Sikorsky - (ACAP) - helicopter crash test

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Sikorsky - Advanced Composite Airframe Program (ACAP) - helicopter crash test. Right view of cabin showing troop seat fabric failure. Photographed at the Impact Dynamics Research Facility, building 1297.

  9. Sikorsky - (ACAP) - helicopter crash test

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Sikorsky - Advanced Composite Airframe Program (ACAP) - helicopter crash test. Sub-floor, inside view showing details of limited crushing. Photographed at the Impact Dynamics Research Facility, building 1297.

  10. Quantifying the Impact of BOReal Forest Fires on Tropospheric Oxidants Over the Atlantic Using Aircraft and Satellites (BORTAS) Experiment: Design, Execution, and Science Overview

    NASA Technical Reports Server (NTRS)

    Palmer, Paul I.; Parrington, Mark; Lee, James D.; Lewis, Alistair C.; Richard, Andrew R.; Bernath, Peter F.; Pawson, Steven; daSilva, Arlindo M.; Duck, Thomas J.; Waugh, David L.; Tarasick, Daivd W.; Andrews, Stephen; Aruffo, Eleonora; Bailey, Loren J.; Barrett, Lucy; Bauguitte, Stephan J.-B.; Curry, Kevin R.; DiCarlo, Piero; Chisholm, Lucy; Dan, Lin; Forster, Grant; Franklin, Jonathan E.; Gibson, Mark D.; Griffin, Debora; Moore, David P.

    2013-01-01

    We describe the design and execution of the BORTAS (Quantifying the impact of BOReal forest fires on Tropospheric oxidants using Aircraft and Satellites) experiment, which has the overarching objective of understanding the chemical aging of airmasses that contain the emission products from seasonal boreal wildfires and how these airmasses subsequently impact downwind atmospheric composition. The central focus of the experiment was a two-week deployment of the UK BAe-146-301 Atmospheric Research Aircraft (ARA) over eastern Canada. The planned July 2010 deployment of the ARA was postponed by 12 months because of activities related to the dispersal of material emitted by the Eyjafjallaj¨okull volcano. However, most other planned model and measurement activities, including ground-based measurements at the Dalhousie University Ground Station (DGS), enhanced ozonesonde launches, and measurements at the Pico Atmospheric Observatory in the Azores, went ahead and constituted phase A of the experiment. Phase B of BORTAS in July 2011 included the same measurements, but included the ARA, special satellite observations and a more comprehensive measurement suite at the DGS. Integrating these data helped us to describe pyrogenic plumes from wildfires on a wide spectrum of temporal and spatial scales. We interpret these data using a range of chemistry models, from a near-explicit gas-phase chemical mechanism to regional and global models of atmospheric transport and lumped chemistry. We also present an overview of some of the new science that has originated from this project.

  11. Delamination Modeling of Composites for Improved Crash Analysis

    NASA Technical Reports Server (NTRS)

    Fleming, David C.

    1999-01-01

    Finite element crash modeling of composite structures is limited by the inability of current commercial crash codes to accurately model delamination growth. Efforts are made to implement and assess delamination modeling techniques using a current finite element crash code, MSC/DYTRAN. Three methods are evaluated, including a straightforward method based on monitoring forces in elements or constraints representing an interface; a cohesive fracture model proposed in the literature; and the virtual crack closure technique commonly used in fracture mechanics. Results are compared with dynamic double cantilever beam test data from the literature. Examples show that it is possible to accurately model delamination propagation in this case. However, the computational demands required for accurate solution are great and reliable property data may not be available to support general crash modeling efforts. Additional examples are modeled including an impact-loaded beam, damage initiation in laminated crushing specimens, and a scaled aircraft subfloor structures in which composite sandwich structures are used as energy-absorbing elements. These examples illustrate some of the difficulties in modeling delamination as part of a finite element crash analysis.

  12. Compressible magnetohydrodynamic sawtooth crash

    NASA Astrophysics Data System (ADS)

    Sugiyama, Linda E.

    2014-02-01

    In a toroidal magnetically confined plasma at low resistivity, compressible magnetohydrodynamic (MHD) predicts that an m = 1/n = 1 sawtooth has a fast, explosive crash phase with abrupt onset, rate nearly independent of resistivity, and localized temperature redistribution similar to experimental observations. Large scale numerical simulations show that the 1/1 MHD internal kink grows exponentially at a resistive rate until a critical amplitude, when the plasma motion accelerates rapidly, culminating in fast loss of the temperature and magnetic structure inside q < 1, with somewhat slower density redistribution. Nonlinearly, for small effective growth rate the perpendicular momentum rate of change remains small compared to its individual terms ∇p and J × B until the fast crash, so that the compressible growth rate is determined by higher order terms in a large aspect ratio expansion, as in the linear eigenmode. Reduced MHD fails completely to describe the toroidal mode; no Sweet-Parker-like reconnection layer develops. Important differences result from toroidal mode coupling effects. A set of large aspect ratio compressible MHD equations shows that the large aspect ratio expansion also breaks down in typical tokamaks with rq =1/Ro≃1/10 and a /Ro≃1/3. In the large aspect ratio limit, failure extends down to much smaller inverse aspect ratio, at growth rate scalings γ =O(ɛ2). Higher order aspect ratio terms, including B˜ϕ, become important. Nonlinearly, higher toroidal harmonics develop faster and to a greater degree than for large aspect ratio and help to accelerate the fast crash. The perpendicular momentum property applies to other transverse MHD instabilities, including m ≥ 2 magnetic islands and the plasma edge.

  13. Resisting "Crash Diet" Staff Development

    ERIC Educational Resources Information Center

    Dana, Nancy Fichtman; Yendol-Hoppey, Diane

    2008-01-01

    People often respond to the pressure of attending a high school reunion or their child's wedding by going on a crash diet to get quick results. In response, friends may marvel about how good they look on the outside. But what folks don't acknowledge is that, in the name of getting results, crash dieters have done some very unhealthy things to…

  14. The 27-28 October 1986 FIRE IFO Cirrus case study: Comparison of radiative transfer theory with observations by satellite and aircraft

    NASA Technical Reports Server (NTRS)

    Wielicki, Bruce A.; Suttles, J. T.; Heymsfield, Andrew J.; Welch, Ronald M.; Spinhirne, James D.; Wu, Man-Li C.; Starr, David OC.; Parker, Lindsay; Arduini, Robert F.

    1989-01-01

    Observations of cirrus and altocumulus clouds during the First International Satellite Cloud Climatology Project Regional Experiment (FIRE) are compared to theoretical models of cloud radiative properties. Three tests are performed. First, LANDSAT radiances are used to compare the relationship between nadir reflectance ot 0.83 micron and beam emittance at 11.5 microns with that predicted for model calculations using spherical and nonspherical phase functions. Good agreement is found between observations and theory when water droplets dominate. Poor agreement is found when ice particles dominate, especially using scattering phase functions for spherical particles. Even when compared to a laboratory measured ice particle phase function, the observations show increased side scattered radiation relative to the theoretical calculations. Second, the anisotropy of conservatively scattered radiation is examined using simultaneous multiple angle views of the cirrus from LANDSAT and ER-2 aircraft radiometers. Observed anisotropy gives good agreement with theoretical calculations using the laboratory measured ice particle phase function and poor agreement with a spherical particle phase function. Third, Landsat radiances at 0.83, 1.65, and 2.21 microns are used to infer particle phase and particle size. For water droplets, good agreement is found with King Air FSSP particle probe measurements in the cloud. For ice particles, the LANDSAT radiance observations predict an effective radius of 60 microns versus aircraft observations of about 200 microns. It is suggested that this descrepancy may be explained by uncertainty in the imaginary index of ice and by inadequate measurements of small ice particles by microphysical probes.

  15. Development of aircraft lavatory compartments with improved fire resistance characteristics. Phase 4: Sandwich panel decorative ink development

    NASA Technical Reports Server (NTRS)

    Jayarajan, A.; Johnson, G. A.; Korver, G. L.; Anderson, R. A.

    1983-01-01

    Five chemically different resin systems with improved fire resistance properties were studied for a possible screenprinting ink application. Fire resistance is hereby defined as the cured ink possessing improvements in flammability, smoke emission, and thermal stability. The developed ink is for application to polyvinyl fluoride film. Only clear inks without pigments were considered. Five formulations were evaluated compared with KC4900 clear acrylic ink, which was used as a baseline. The tests used in the screening evaluation included viscosity, smoke and toxic gas emission, limiting oxygen index (LOI), and polyvinyl fluoride film (PVF) printability. A chlorofluorocarbon resin (FPC461) was selected for optimization studies. The parameters for optimization included screenprinting process performance, quality of coating, and flammability of screenprinted 0.051-mm (0.002-in.) white Tedlar. The quality of the screenprinted coating on Tedlar is dependent on viscosity, curing time, adhesion to polyvinyl fluoride film, drying time (both inscreen and as an applied film), and silk screen mesh material and porosity.

  16. Bibliography on aircraft fire hazards and safety. Volume 1: Hazards. Part 1: Key numbers 1 to 817

    NASA Technical Reports Server (NTRS)

    Pelouch, J. J., Jr. (Compiler); Hacker, P. T. (Compiler)

    1974-01-01

    Ignition temperatures of n-hexane, n-octane, n-decane, JP-6 jet fuel, and aircraft engine oil MIL-7-7808 (0-60-18) were determined in air using heated Pyrex cylinders and Nichrome wires, rods, or tubes. Ignition temperature varied little with fuel-air ratio, but increased as the size of the heat source was decreased. Expressions are given which define the variation of the hot surface ignition temperatures of these combustibles with the radius and the surface area of the heat source. The expressions are applicable to stagnant or low velocity flow conditions (less than 0.2 in./sec.). In addition, the hot gas ignition temperatures of the combustible vapor-air mixtures were determined with jets of hot air. These ignition temperatures also varied little with fuel-air ratio and increased as the diameter of the heat sources was decreased.

  17. Fire extinguishing apparatus having a slidable mass for a penetrator nozzle. [for penetrating aircraft and shuttle orbiter skin

    NASA Technical Reports Server (NTRS)

    Gray, N. C.; Senseny, R. M.; Bolton, P. N.

    1980-01-01

    A fire extinguishing apparatus for delivering an extinguishing agent through a tarrier surrounding a structure into its interior includes an elongated tubular nozzle body which has a pointed penetrating head carried on one end of the tubular body. A source of extinguishing agent coupled to the opposite end of the tubular body is fed through and passes through passages adjacent the head for delivering the extinguishing agent to the interior of the structure. A slidable mass is carried on the tubular body on a remote end of the tubular body from the penetrating head. By manipulating the slidable mass and bringing such in contact with an abutment the force imparted to the tubular body causes the head to penetrate the structure.

  18. Sikorsky - (ACAP) - helicopter crash test

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Sikorsky - Advanced Composite Airframe Program (ACAP) - helicopter crash test. Top view from gantry, showing helicopter in final position after sliding 23 feet from initial impact. Photographed at the Impact Dynamics Research Facility, building 1297.

  19. Sikorsky - (ACAP) - helicopter crash test

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Sikorsky - Advanced Composite Airframe Program (ACAP) - helicopter crash test. Overall view of the nose landing gear (originally from Sikorsky S-76 helicopter). Photographed at the Impact Dynamics Research Facility, building 1297.

  20. Sikorsky - (ACAP) - helicopter crash test

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Sikorsky - Advanced Composite Airframe Program (ACAP) - helicopter crash test. Sub-floor, inside view between station 175 and 143, showing limited crushing. Photographed at the Impact Dynamics Research Facility, building 1297.

  1. Distracted Driving Raises Crash Risk

    MedlinePlus

    ... Raises Crash Risk Video technology and in-vehicle sensors showed that distracted driving, especially among new drivers, ... whenever the cars were moving. A suite of sensors recorded acceleration, sudden braking or swerving, and other ...

  2. Suicide by use of aircraft in the United States, 1979-1989.

    PubMed

    Ungs, T J

    1994-10-01

    Intentional aircraft crashes are a dramatic cause of death. The entire set of fatalities due to this cause of death in the United States has not been described. Mortality data from aircraft crashes determined as being due to suicide were obtained from National Center for Health Statistics (NCHS) and National Transportation Safety Board (NTSB) data sources. The NCHS reported that, between 1979 and 1989, ten persons committed suicide by aircraft crashes. Twenty aircraft crash fatalities were also reported during the period in which the intent of death could not be determined as either suicide, homicide, or accidental. White middle-aged males accounted for the majority of deaths. The NTSB reported, for the years 1979-89, that nine fatal aircraft accidents were suicide. All fatalities were male pilots operating small fixed wing aircraft. NTSB investigations identified evidence for important adverse psychologic factors in most pilots. PMID:7832739

  3. The 27-28 October 1986 FIRE IFO cirrus case study: Comparison of satellite and aircraft derived particle size

    NASA Technical Reports Server (NTRS)

    Wielicki, Bruce A.; Suttles, J. T.; Heymsfield, Andrew J.; Welch, Ronald M.; Spinhirne, James D.; Wu, Man-Li C.; Starr, David; Parker, Lindsay; Arduini, Robert F.

    1990-01-01

    Theoretical calculations predict that cloud reflectance in near infrared windows such as those at 1.6 and 2.2 microns should give lower reflectances than at visible wavelengths. The reason for this difference is that ice and liquid water show significant absorption at those wavelengths, in contrast to the nearly conservative scattering at wavelengths shorter than 1 micron. In addition, because the amount of absorption scales with the path length of radiation through the particle, increasing cloud particle size should lead to decreasing reflectances at 1.6 and 2.2 microns. Measurements at these wavelengths to date, however, have often given unpredicted results. Twomey and Cocks found unexpectedly high absorption (factors of 3 to 5) in optically thick liquid water clouds. Curran and Wu found expectedly low absorption in optically thick high clouds, and postulated the existence of supercooled small water droplets in place of the expected large ice particles. The implications of the FIRE data for optically thin cirrus are examined.

  4. Comparison of radiation and cloud parameters derived from satellite and aircraft measurements during FIRE 2 cirrus IFO

    NASA Technical Reports Server (NTRS)

    Heck, Patrick W.; Mayor, Shalini; Young, David F.; Minnis, Patrick; Takano, Yoshihide; Liou, Kuo-Nan; Spinhirne, James D.

    1993-01-01

    Meteorological satellite instrument pixel sizes are often much greater than the individual cloud elements in a given scene. Partially cloud-filled pixels can be misinterpreted in many analysis schemes because the techniques usually assume that all of the cloudy pixels are cloud filled. Coincident Landsat and Geostationary Operational Environmental Satellite (GOES) data and degraded-resolution Landsat data were used to study the effects of both sensor resolution and analysis techniques on satellite-derived cloud parameters. While extremely valuable for advancing the understanding of these effects, these previous studies were relatively limited in the number of cloud conditions that were observed and by the limited viewing and illumination conditions. During the First ISCCP Regional Experiment (FIRE) Phase 2 (13 Nov. - 7 Dec. 1991), the NASA ER-2 made several flights over a wide range of cloud fields and backgrounds with several high resolution sensors useful for a variety of purposes including serving as ground truth for satellite-based cloud retrievals. This paper takes a first look at utilizing the ER-2 for validating cloud parameters derived from GOES and NOAA-11 Advanced Very High Resolution Radiometer (AVHRR) data.

  5. Development and use of computational techniques in Army Aviation research and development programs for crash resistant helicopter technology

    NASA Astrophysics Data System (ADS)

    Burrows, Leroy T.

    1993-08-01

    During the 1960's over 30 full-scale aircraft crash tests were conducted by the Flight Safety Foundation under contract to the Aviation Applied Technology Directorate (AATD) of the U.S. Army Aviation Systems Command (AVSCOM). The purpose of these tests were to conduct crash injury investigations that would provide a basis for the formulation of sound crash resistance design criteria for light fixed-wing and rotary wing aircraft. This resulted in the Crash Survival Design Criteria Designer's Guide which was first published in 1967 and has been revised numerous times, the last being in 1989. Full-scale aircraft crash testing is an expensive way to investigate structural deformations of occupied spaces and to determine the decelerative loadings experienced by occupants in a crash. This gave initial impetus to the U.S. Army to develop analytical methods to predict the dynamic response of aircraft structures in a crash. It was believed that such analytical tools could be very useful in the preliminary design stage of a new helicopter system which is required to demonstrate a level of crash resistance and had to be more cost effective than full-scale crash tests or numerous component design support tests. From an economic point of view, it is more efficient to optimize for the incorporation of crash resistance features early in the design stage. However, during preliminary design it is doubtful if sufficient design details, which influence the exact plastic deformation shape of structural elements, will be available. The availability of simple procedures to predict energy absorption and load-deformation characteristics will allow the designer to initiate valuable cost, weight, and geometry tradeoff studies. The development of these procedures will require some testing of typical specimens. This testing should, as a minimum, verify the validity of proposed procedures for providing pertinent nonlinear load-deformation data. It was hoped that through the use of these

  6. Development and use of computational techniques in Army Aviation research and development programs for crash resistant helicopter technology

    NASA Technical Reports Server (NTRS)

    Burrows, Leroy T.

    1993-01-01

    During the 1960's over 30 full-scale aircraft crash tests were conducted by the Flight Safety Foundation under contract to the Aviation Applied Technology Directorate (AATD) of the U.S. Army Aviation Systems Command (AVSCOM). The purpose of these tests were to conduct crash injury investigations that would provide a basis for the formulation of sound crash resistance design criteria for light fixed-wing and rotary wing aircraft. This resulted in the Crash Survival Design Criteria Designer's Guide which was first published in 1967 and has been revised numerous times, the last being in 1989. Full-scale aircraft crash testing is an expensive way to investigate structural deformations of occupied spaces and to determine the decelerative loadings experienced by occupants in a crash. This gave initial impetus to the U.S. Army to develop analytical methods to predict the dynamic response of aircraft structures in a crash. It was believed that such analytical tools could be very useful in the preliminary design stage of a new helicopter system which is required to demonstrate a level of crash resistance and had to be more cost effective than full-scale crash tests or numerous component design support tests. From an economic point of view, it is more efficient to optimize for the incorporation of crash resistance features early in the design stage. However, during preliminary design it is doubtful if sufficient design details, which influence the exact plastic deformation shape of structural elements, will be available. The availability of simple procedures to predict energy absorption and load-deformation characteristics will allow the designer to initiate valuable cost, weight, and geometry tradeoff studies. The development of these procedures will require some testing of typical specimens. This testing should, as a minimum, verify the validity of proposed procedures for providing pertinent nonlinear load-deformation data. It was hoped that through the use of these

  7. Full-Scale Crash Tests and Analyses of Three High-Wing Single

    NASA Technical Reports Server (NTRS)

    Annett, Martin S.; Littell, Justin D.; Stimson, Chad M.; Jackson, Karen E.; Mason, Brian H.

    2015-01-01

    The NASA Emergency Locator Transmitter Survivability and Reliability (ELTSAR) project was initiated in 2014 to assess the crash performance standards for the next generation of ELT systems. Three Cessna 172 aircraft have been acquired to conduct crash testing at NASA Langley Research Center's Landing and Impact Research Facility. Testing is scheduled for the summer of 2015 and will simulate three crash conditions; a flare to stall while emergency landing, and two controlled flight into terrain scenarios. Instrumentation and video coverage, both onboard and external, will also provide valuable data of airframe response. Full-scale finite element analyses will be performed using two separate commercial explicit solvers. Calibration and validation of the models will be based on the airframe response under these varying crash conditions.

  8. How Common are Noise Sources on the Crash Arc of Malaysian Flight 370

    SciTech Connect

    Fenimore, Edward E.; Kunkle, Thomas David; Stead, Richard J.

    2014-10-21

    Malaysian Flight 370 disappeared nearly without a trace. Besides some communication handshakes to the INMASAT satellite, the Comprehensive Test Ban Treaty monitoring system could have heard the aircraft crash into the southern Indian Ocean. One noise event from Cape Leeuwin has been suggested by Stead as the crash and occurs within the crash location suggested by Kunkle at el. We analyze the hydrophone data from Cape Leeuwin to understand how common such noise events are on the arc of possible locations where Malaysian Flight 370 might have crashed. Few other noise sources were found on the arc. The noise event found by Stead is the strongest. No noise events are seen within the Australian Transportation Safety Board (ATSB) new search location until the 10th strongest event, an event which is very close to the noise level.

  9. Fireworthiness of transport aircraft interior systems

    NASA Technical Reports Server (NTRS)

    Parker, J. A.; Kourtides, D. A.

    1982-01-01

    The fire worthiness of air transport interiors was evaluated. The effect of interior systems on the survival of passengers and crew in an uncontrolled transport aircraft fire is addressed. Modification of aircraft interior subsystem components which provide improvements in aircraft fire safety are examined. Three specific subsystem components, interior panels, seats and windows, offer the most immediate and highest payoff by modifying interior materials of existing aircrafts. It is shown that the new materials modifications reduce the fire hazards because of significant reduction in their characteristic flame spread, heat release, and smoke and toxic gas emissions.

  10. Aurora Flight Sciences' Perseus B Remotely Piloted Aircraft in Flight

    NASA Technical Reports Server (NTRS)

    1998-01-01

    project. The Perseus Proof-Of-Concept aircraft first flew in November 1991 and made three low-altitude flights within a month to validate the Perseus aerodynamic model and flight control systems. Next came the redesigned Perseus A, which incorporated a closed-cycle combustion system that mixed oxygen carried aboard the aircraft with engine exhaust to compensate for the thin air at high altitudes. The Perseus A was towed into the air by a ground vehicle and its engine started after it became airborne. Prior to landing, the engine was stopped, the propeller locked in horizontal position, and the Perseus A glided to a landing on its unique bicycle-type landing gear. Two Perseus A aircraft were built and made 21 flights in 1993-1994. One of the Perseus A aircraft reached over 50,000 feet in altitude on its third test flight. Although one of the Perseus A aircraft was destroyed in a crash after a vertical gyroscope failed in flight, the other aircraft completed its test program and remains on display at Aurora's facility in Manassas. Perseus B first flew Oct. 7, 1994, and made two flights in 1996 before being damaged in a hard landing on the dry lakebed after a propeller shaft failure. After a number of improvements and upgrades-including extending the original 58.5-foot wingspan to 71.5 feet to enhance high-altitude performance--the Perseus B returned to Dryden in the spring of 1998 for a series of four flights. Thereafter, a series of modifications were made including external fuel pods on the wing that more than doubled the fuel capacity to 100 gallons. Engine power was increased by more than 20 percent by boosting the turbocharger output. Fuel consumption was reduced with fuel control modifications and a leaner fuel-air mixture that did not compromise power. The aircraft again crashed on Oct. 1, 1999, near Barstow, California, suffering moderate damage to the aircraft but no property damage, fire, or injuries in the area of the crash. Perseus B is flown remotely by a pilot

  11. Application of Probability Methods to Assess Crash Modeling Uncertainty

    NASA Technical Reports Server (NTRS)

    Lyle, Karen H.; Stockwell, Alan E.; Hardy, Robin C.

    2003-01-01

    Full-scale aircraft crash simulations performed with nonlinear, transient dynamic, finite element codes can incorporate structural complexities such as: geometrically accurate models; human occupant models; and advanced material models to include nonlinear stress-strain behaviors, and material failure. Validation of these crash simulations is difficult due to a lack of sufficient information to adequately determine the uncertainty in the experimental data and the appropriateness of modeling assumptions. This paper evaluates probabilistic approaches to quantify the effects of finite element modeling assumptions on the predicted responses. The vertical drop test of a Fokker F28 fuselage section will be the focus of this paper. The results of a probabilistic analysis using finite element simulations will be compared with experimental data.

  12. Application of Probability Methods to Assess Crash Modeling Uncertainty

    NASA Technical Reports Server (NTRS)

    Lyle, Karen H.; Stockwell, Alan E.; Hardy, Robin C.

    2007-01-01

    Full-scale aircraft crash simulations performed with nonlinear, transient dynamic, finite element codes can incorporate structural complexities such as: geometrically accurate models; human occupant models; and advanced material models to include nonlinear stress-strain behaviors, and material failure. Validation of these crash simulations is difficult due to a lack of sufficient information to adequately determine the uncertainty in the experimental data and the appropriateness of modeling assumptions. This paper evaluates probabilistic approaches to quantify the effects of finite element modeling assumptions on the predicted responses. The vertical drop test of a Fokker F28 fuselage section will be the focus of this paper. The results of a probabilistic analysis using finite element simulations will be compared with experimental data.

  13. "Crashing the gates" - selection criteria for television news reporting of traffic crashes.

    PubMed

    De Ceunynck, Tim; De Smedt, Julie; Daniels, Stijn; Wouters, Ruud; Baets, Michèle

    2015-07-01

    This study investigates which crash characteristics influence the probability that the crash is reported in the television news. To this purpose, all news items from the period 2006-2012 about traffic crashes from the prime time news of two Belgian television channels are linked to the official injury crash database. Logistic regression models are built for the database of all injury crashes and for the subset of fatal crashes to identify crash characteristics that correlate with a lower or higher probability of being reported in the news. A number of significant biases in terms of crash severity, time, place, types of involved road users and victims' personal characteristics are found in the media reporting of crashes. More severe crashes are reported in the media more easily than less severe crashes. Significant fluctuations in media reporting probability through time are found in terms of the year and month in which the crash took place. Crashes during week days are generally less reported in the news. The geographical area (province) in which the crash takes place also has a significant impact on the probability of being reported in the news. Crashes on motorways are significantly more represented in the news. Regarding the age of the involved victims, a clear trend of higher media reporting rates of crashes involving young victims or young fatalities is observed. Crashes involving female fatalities are also more frequently reported in the news. Furthermore, crashes involving a bus have a significantly higher probability of being reported in the news, while crashes involving a motorcycle have a significantly lower probability. Some models also indicate a lower reporting rate of crashes involving a moped, and a higher reporting rate of crashes involving heavy goods vehicles. These biases in media reporting can create skewed perceptions in the general public about the prevalence of traffic crashes and eventually may influence people's behaviour. PMID:25909390

  14. Design and analysis of the federal aviation administration next generation fire test burner

    NASA Astrophysics Data System (ADS)

    Ochs, Robert Ian

    The United States Federal Aviation Administration makes use of threat-based fire test methods for the certification of aircraft cabin materials to enhance the level of safety in the event of an in-flight or post-crash fire on a transport airplane. The global nature of the aviation industry results in these test methods being performed at hundreds of laboratories around the world; in some cases testing identical materials at multiple labs but yielding different results. Maintenance of this standard for an elevated level of safety requires that the test methods be as well defined as possible, necessitating a comprehensive understanding of critical test method parameters. The tests have evolved from simple Bunsen burner material tests to larger, more complicated apparatuses, requiring greater understanding of the device for proper application. The FAA specifies a modified home heating oil burner to simulate the effects of large, intense fires for testing of aircraft seat cushions, cargo compartment liners, power plant components, and thermal acoustic insulation. Recently, the FAA has developed a Next Generation (NexGen) Fire Test burner to replace the original oil burner that has become commercially unavailable. The NexGen burner design is based on the original oil burner but with more precise control of the air and fuel flow rates with the addition of a sonic nozzle and a pressurized fuel system. Knowledge of the fundamental flow properties created by various burner configurations is desired to develop an updated and standardized burner configuration for use around the world for aircraft materials fire testing and airplane certification. To that end, the NexGen fire test burner was analyzed with Particle Image Velocimetry (PIV) to resolve the non-reacting exit flow field and determine the influence of the configuration of burner components. The correlation between the measured flow fields and the standard burner performance metrics of flame temperature and

  15. Watch for those fragments of evidence: the use of an automatic timepiece to help correlate a helicopter crash site from the Vietnam War.

    PubMed

    Tuller, Hugh; Paolello, Josephine M

    2012-01-01

    This case study illustrates the use of the date function on an automatic wristwatch to help identify a Vietnam War helicopter crash site. The location of a crash incident can sometimes be uncertain because of inadequate or inaccurate wartime records and the passage of time. Artifacts recovered from a prospective crash scene are regularly used to correlate the loss incident. In this case study, a recovered automatic watch displayed a date 2 days later than the reported loss incident. Although the date conflicts with the aircraft crash incident report, it is observed that a fully wound automatic watch continues to work for c. 2 days after movement of the watch ceases. Thus, the watch's date in fact correlates with the aircraft crash incident report. It is noted that automatic watches may also be used to date scenes of crime. PMID:21939442

  16. CID Aircraft in practice flight above target impact site with wing cutters

    NASA Technical Reports Server (NTRS)

    1984-01-01

    In this photograph the B-720 is seen making a practice close approach over the prepared impact site. The wing openers, designed to tear open the wings and spill the fuel, are clearly seen on the ground just at the start of the bed of rocks. In a typical aircraft crash, fuel spilled from ruptured fuel tanks forms a fine mist that can be ignited by a number of sources at the crash site. In 1984 the NASA Dryden Flight Research Facility (after 1994 a full-fledged Center again) and the Federal Aviation Administration (FAA) teamed-up in a unique flight experiment called the Controlled Impact Demonstration (CID), to test crash a Boeing 720 aircraft using standard fuel with an additive designed to supress fire. The additive, FM-9, a high-molecular-weight long-chain polymer, when blended with Jet-A fuel had demonstrated the capability to inhibit ignition and flame propagation of the released fuel in simulated crash tests. This anti-misting kerosene (AMK) cannot be introduced directly into a gas turbine engine due to several possible problems such as clogging of filters. The AMK must be restored to almost Jet-A before being introduced into the engine for burning. This restoration is called 'degradation' and was accomplished on the B-720 using a device called a 'degrader.' Each of the four Pratt & Whitney JT3C-7 engines had a 'degrader' built and installed by General Electric (GE) to break down and return the AMK to near Jet-A quality. In addition to the AMK research the NASA Langley Research Center was involved in a structural loads measurement experiment, which included having instrumented dummies filling the seats in the passenger compartment. Before the final flight on December 1, 1984, more than four years of effort passed trying to set-up final impact conditions considered survivable by the FAA. During those years while 14 flights with crews were flown the following major efforts were underway: NASA Dryden developed the remote piloting techniques necessary for the B-720

  17. CDC Vital Signs: Motor Vehicle Crash Deaths

    MedlinePlus

    ... Press Kit Read the MMWR Science Clips Motor Vehicle Crash Deaths How is the US doing? Language: ... Sweden, Switzerland, and the United Kingdom. Problem Motor vehicle crash deaths in the US are still too ...

  18. New fire retardant foams and intumescents

    NASA Technical Reports Server (NTRS)

    Parker, J. A.

    1972-01-01

    The development of fire retardant foams and intumescent paints for protection of commercial aircraft passengers in the event of fire is discussed. Recommended materials and methods for evaluating the effectiveness of the materials are presented. Typical problems resulting from aircraft fires and the basic protective mechanisms to cope with these problems are examined.

  19. Unmanned Aircraft: A Pilot's Perspective

    NASA Technical Reports Server (NTRS)

    Pestana, Mark E.

    2010-01-01

    This slide presentation reviews some of the challenges of "piloting" a unmanned aircraft. The topic include the pilot-vehicle interact design, the concept of pilot/operator, and role of NASA's Ikhana UAS in the western states fire mission.

  20. General Models for Assessing Hazards Aircraft Pose to Surface Facilities

    SciTech Connect

    G.E. Ragan

    2002-11-18

    This paper derives formulas for estimating the frequency of accidental aircraft crashes into surface facilities. Objects unintentionally dropped from aircraft are also considered. The approach allows the facility to be well within the flight area; inside the flight area, but close to the edge; or completely outside the flight area.

  1. Can-Filled Crash Barrier

    NASA Technical Reports Server (NTRS)

    Wilson, A. H.

    1983-01-01

    Crash barrier composed largely of used aluminum beverage cans protects occupants of cars in collisions with poles or trees. Lightweight, can-filled barrier very effective in softening impact of an automobile in head-on and off-angle collisions. Preliminary results indicate barrier is effective in collisions up to 40 mi/h (64 km/h).

  2. Development of fire test methods for airplane interior materials

    NASA Technical Reports Server (NTRS)

    Tustin, E. A.

    1978-01-01

    Fire tests were conducted in a 737 airplane fuselage at NASA-JSC to characterize jet fuel fires in open steel pans (simulating post-crash fire sources and a ruptured airplane fuselage) and to characterize fires in some common combustibles (simulating in-flight fire sources). Design post-crash and in-flight fire source selections were based on these data. Large panels of airplane interior materials were exposed to closely-controlled large scale heating simulations of the two design fire sources in a Boeing fire test facility utilizing a surplused 707 fuselage section. Small samples of the same airplane materials were tested by several laboratory fire test methods. Large scale and laboratory scale data were examined for correlative factors. Published data for dangerous hazard levels in a fire environment were used as the basis for developing a method to select the most desirable material where trade-offs in heat, smoke and gaseous toxicant evolution must be considered.

  3. IDENTIFICATION OF AIRCRAFT HAZARDS

    SciTech Connect

    K.L. Ashley

    2005-03-23

    Aircraft hazards were determined to be potentially applicable to a repository at Yucca Mountain in the ''Monitored Geological Repository External Events Hazards Screening Analysis'' (BSC 2004, Section 6.4.1). That determination was conservatively based on limited knowledge of flight data in the area of concern and on crash data for aircraft of the type flying near Yucca Mountain. The purpose of this report is to identify specific aircraft hazards that may be applicable to a Monitored Geologic Repository (MGR) at Yucca Mountain using NUREG-0800, ''Standard Review Plan for the Review of Safety Analysis Reports for Nuclear Power Plants'' (NRC 1987, Section 3.5.1.6), as guidance for the inclusion or exclusion of identified aircraft hazards. NUREG-0800 is being used here as a reference because some of the same considerations apply. The intended use of this report is to provide inputs for further screening and analysis of the identified aircraft hazards based on the criteria that apply to Category 1 and 2 event sequence analyses as defined in 10 CFR 63.2 (see Section 4). The scope of this technical report includes the evaluation of military, private, and commercial use of airspace in the 100-mile regional setting of the MGR at Yucca Mountain with the potential for reducing the regional setting to a more manageable size after consideration of applicable screening criteria (see Section 7).

  4. Identification of Aircraft Hazards

    SciTech Connect

    K. Ashley

    2006-12-08

    Aircraft hazards were determined to be potentially applicable to a repository at Yucca Mountain in ''Monitored Geological Repository External Events Hazards Screening Analysis'' (BSC 2005 [DIRS 174235], Section 6.4.1). That determination was conservatively based upon limited knowledge of flight data in the area of concern and upon crash data for aircraft of the type flying near Yucca Mountain. The purpose of this report is to identify specific aircraft hazards that may be applicable to a monitored geologic repository (MGR) at Yucca Mountain, using NUREG-0800, ''Standard Review Plan for the Review of Safety Analysis Reports for Nuclear Power Plants'' (NRC 1987 [DIRS 103124], Section 3.5.1.6), as guidance for the inclusion or exclusion of identified aircraft hazards. The intended use of this report is to provide inputs for further screening and analysis of identified aircraft hazards based upon the criteria that apply to Category 1 and Category 2 event sequence analyses as defined in 10 CFR 63.2 [DIRS 176544] (Section 4). The scope of this report includes the evaluation of military, private, and commercial use of airspace in the 100-mile regional setting of the repository at Yucca Mountain with the potential for reducing the regional setting to a more manageable size after consideration of applicable screening criteria (Section 7).

  5. Full-scale crash test of a CH-47C helicopter

    NASA Technical Reports Server (NTRS)

    Castle, C. B.

    1976-01-01

    A full-scale crash test of a large troop/cargo carrying CH-47C helicopter was conducted at the Langley impact dynamics research facility. The crash test of this large helicopter was performed as part of a joint U.S. Army-NASA helicopter test program to provide dynamic structural and seat response data. The test, the procedures employed, the instrumentation, a general assessment of the resulting damage, and typical levels of accelerations experienced during the crash are reported. Various energy-absorbing seating systems for crew and troops were installed and instrumented to provide data for use in the development of design criteria for future aircraft. The crash conditions were selected to simulate known crash conditions and are representative of the 95th percentile accident environment for an autorotating helicopter. Visual examination of the crashed test specimen indicated irreparable damage to many of the structural components. The highest accelerations were recorded by the accelerometers located on the cabin floor in the aft section of the helicopter, directly above the primary impact location and on the floor of the cockpit above the secondary impact location(s).

  6. Fighting Forest Fires

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Firefly is an airborne system for imaging forest fires. It uses satellite-based navigation for greater positioning accuracy and offers timeliness in fire location data delivery with on board data processing and a direct aircraft-to-fire camp communications link. Developed by Jet Propulsion Laboratory and the USFS, it has an infrared line scanner to identify fire boundaries and an infrared sensor system that can penetrate smoke to image the ground. Firefly is an outgrowth of a previous collaboration that produced FLAME, an airborne fire mapping instrument. Further refinements are anticipated by NASA and the United States Forest Service (USFS).

  7. Impact of pavement conditions on crash severity.

    PubMed

    Li, Yingfeng; Liu, Chunxiao; Ding, Liang

    2013-10-01

    Pavement condition has been known as a key factor related to ride quality, but it is less clear how exactly pavement conditions are related to traffic crashes. The researchers used Geographic Information System (GIS) to link Texas Department of Transportation (TxDOT) Crash Record Information System (CRIS) data and Pavement Management Information System (PMIS) data, which provided an opportunity to examine the impact of pavement conditions on traffic crashes in depth. The study analyzed the correlation between several key pavement condition ratings or scores and crash severity based on a large number of crashes in Texas between 2008 and 2009. The results in general suggested that poor pavement condition scores and ratings were associated with proportionally more severe crashes, but very poor pavement conditions were actually associated with less severe crashes. Very good pavement conditions might induce speeding behaviors and therefore could have caused more severe crashes, especially on non-freeway arterials and during favorable driving conditions. In addition, the results showed that the effects of pavement conditions on crash severity were more evident for passenger vehicles than for commercial vehicles. These results provide insights on how pavement conditions may have contributed to crashes, which may be valuable for safety improvement during pavement design and maintenance. Readers should notice that, although the study found statistically significant effects of pavement variables on crash severity, the effects were rather minor in reality as suggested by frequency analyses. PMID:23892046

  8. Airborne forest fire research

    NASA Technical Reports Server (NTRS)

    Mattingly, G. S.

    1974-01-01

    The research relating to airborne fire fighting systems is reviewed to provide NASA/Langley Research Center with current information on the use of aircraft in forest fire operations, and to identify research requirements for future operations. A literature survey, interview of forest fire service personnel, analysis and synthesis of data from research reports and independent conclusions, and recommendations for future NASA-LRC programs are included.

  9. Full-Scale Crash Test of an MD-500 Helicopter

    NASA Technical Reports Server (NTRS)

    Littell, Justin

    2011-01-01

    A full-scale crash test was successfully conducted in March 2010 of an MD-500 helicopter at NASA Langley Research Center s Landing and Impact Research Facility. The reasons for conducting this test were threefold: 1 To generate data to be used with finite element computer modeling efforts, 2 To study the crashworthiness features typically associated with a small representative helicopter, and 3 To compare aircraft response to data collected from a previously conducted MD-500 crash test, which included an externally deployable energy absorbing (DEA) concept. Instrumentation on the airframe included accelerometers on various structural components of the airframe; and strain gages on keel beams, skid gear and portions of the skin. Three Anthropomorphic Test Devices and a specialized Human Surrogate Torso Model were also onboard to collect occupant loads for evaluation with common injury risk criteria. This paper presents background and results from this crash test conducted without the DEA concept. These results showed accelerations of approximately 30 to 50 g on the airframe at various locations, little energy attenuation through the airframe, and moderate to high probability of occupant injury for a variety of injury criteria.

  10. Naturalistic Assessment of Novice Teenage Crash Experience

    PubMed Central

    Lee, Suzanne E.; Simons-Morton, Bruce G.; Klauer, Sheila E.; Ouimet, Marie Claude; Dingus, Thomas A.

    2011-01-01

    Background Crash risk is highest during the first months after licensure. Current knowledge about teenagers’ driving exposure and the factors increasing their crash risk is based on self-reported data and crash database analyses. While these research tools are useful, new developments in naturalistic technologies have allowed researchers to examine newly-licensed teenagers’ exposure and crash risk factors in greater detail. The Naturalistic Teenage Driving Study (NTDS) described in this paper is the first study to follow a group of newly-licensed teenagers continuously for 18 months after licensure. The goals of this paper are to compare the crash and near-crash experience of drivers in the NTDS to national trends, to describe the methods and lessons learned in the NTDS, and to provide initial data on driving exposure for these drivers. Methods A data acquisition system was installed in the vehicles of 42 newly-licensed teenage drivers 16 years of age during their first 18 months of independent driving. It consisted of cameras, sensors (accelerometers, GPS, yaw, front radar, lane position, and various sensors obtained via the vehicle network), and a computer with removable hard drive. Data on the driving of participating parents was also collected when they drove the instrumented vehicle. Findings The primary findings after 18 months included the following: (1) crash and near-crash rates among teenage participants were significantly higher during the first six months of the study than the final 12 months, mirroring the national trends; (2) crash and near-crash rates were significantly higher for teenage than adult (parent) participants, also reflecting national trends; (3) teenaged driving exposure averaged between 507-710 kilometers (315-441 miles) per month over the study period, but varied substantially between participants with standard errors representing 8-14 percent of the mean; and (4) crash and near-crash types were very similar for male and female

  11. Fireworthiness of transport aircraft interior systems

    NASA Technical Reports Server (NTRS)

    Parker, J. A.; Kourtides, D. A.

    1981-01-01

    The key materials question is addressed concerning the effect of interior systems on the survival of passengers and crew in the case of an uncontrolled transport aircraft fire. Technical opportunities are examined which are available through the modification of aircraft interior subsystem components, modifications that may reasonably be expected to provide improvements in aircraft fire safety. Subsystem components discussed are interior panels, seats, and windows. By virtue of their role in real fire situations and as indicated by the results of large scale simulation tests, these components appear to offer the most immediate and highest payoff possible by modifying interior materials of existing aircraft. These modifications have the potential of reducing the rate of fire growth, with a consequent reduction of heat, toxic gas, and smoke emission throughout the habitable interior of an aircraft, whatever the initial source of the fire.

  12. Deployable System for Crash-Load Attenuation

    NASA Technical Reports Server (NTRS)

    Kellas, Sotiris; Jackson, Karen E.

    2007-01-01

    An externally deployable honeycomb structure is investigated with respect to crash energy management for light aircraft. The new concept utilizes an expandable honeycomb-like structure to absorb impact energy by crushing. Distinguished by flexible hinges between cell wall junctions that enable effortless deployment, the new energy absorber offers most of the desirable features of an external airbag system without the limitations of poor shear stability, system complexity, and timing sensitivity. Like conventional honeycomb, once expanded, the energy absorber is transformed into a crush efficient and stable cellular structure. Other advantages, afforded by the flexible hinge feature, include a variety of deployment options such as linear, radial, and/or hybrid deployment methods. Radial deployment is utilized when omnidirectional cushioning is required. Linear deployment offers better efficiency, which is preferred when the impact orientation is known in advance. Several energy absorbers utilizing different deployment modes could also be combined to optimize overall performance and/or improve system reliability as outlined in the paper. Results from a series of component and full scale demonstration tests are presented as well as typical deployment techniques and mechanisms. LS-DYNA analytical simulations of selected tests are also presented.

  13. Re-visiting crash-speed relationships: A new perspective in crash modelling.

    PubMed

    Imprialou, Maria-Ioanna M; Quddus, Mohammed; Pitfield, David E; Lord, Dominique

    2016-01-01

    Although speed is considered to be one of the main crash contributory factors, research findings are inconsistent. Independent of the robustness of their statistical approaches, crash frequency models typically employ crash data that are aggregated using spatial criteria (e.g., crash counts by link termed as a link-based approach). In this approach, the variability in crashes between links is explained by highly aggregated average measures that may be inappropriate, especially for time-varying variables such as speed and volume. This paper re-examines crash-speed relationships by creating a new crash data aggregation approach that enables improved representation of the road conditions just before crash occurrences. Crashes are aggregated according to the similarity of their pre-crash traffic and geometric conditions, forming an alternative crash count dataset termed as a condition-based approach. Crash-speed relationships are separately developed and compared for both approaches by employing the annual crashes that occurred on the Strategic Road Network of England in 2012. The datasets are modelled by injury severity using multivariate Poisson lognormal regression, with multivariate spatial effects for the link-based model, using a full Bayesian inference approach. The results of the condition-based approach show that high speeds trigger crash frequency. The outcome of the link-based model is the opposite; suggesting that the speed-crash relationship is negative regardless of crash severity. The differences between the results imply that data aggregation is a crucial, yet so far overlooked, methodological element of crash data analyses that may have direct impact on the modelling outcomes. PMID:26571206

  14. Crash energy absorption of two-segment crash box with holes under frontal load

    NASA Astrophysics Data System (ADS)

    Choiron, Moch. Agus; Sudjito, Hidayati, Nafisah Arina

    2016-03-01

    Crash box is one of the passive safety components which designed as an impact energy absorber during collision. Crash box designs have been developed in order to obtain the optimum crashworthiness performance. Circular cross section was first investigated with one segment design, it rather influenced by its length which is being sensitive to the buckling occurrence. In this study, the two-segment crash box design with additional holes is investigated and deformation behavior and crash energy absorption are observed. The crash box modelling is performed by finite element analysis. The crash test components were impactor, crash box, and fixed rigid base. Impactor and the fixed base material are modelled as a rigid, and crash box material as bilinear isotropic hardening. Crash box length of 100 mm and frontal crash velocity of 16 km/jam are selected. Crash box material of Aluminum Alloy is used. Based on simulation results, it can be shown that holes configuration with 2 holes and ¾ length locations have the largest crash energy absorption. This condition associated with deformation pattern, this crash box model produces axisymmetric mode than other models.

  15. Identification of a crash model

    NASA Astrophysics Data System (ADS)

    Mizzi, J. P.; Jezequel, L.

    1992-11-01

    Our knowledge of the behaviour of passenger cars and road safety systems during a crash trial is based on experimental studies. A survey was carried out on the modelling of the front compartment of a passenger car: the model will make it possible to enlarge the conclusions drawn from a test by extending the results to different situations. We have designed a mathematical spring-masses model which simulates the behaviour of a passenger car during various frontal crash configurations. However, the main difficulty is to know perfectly the laws of behaviour of the springs. That is why an identification methodology was envisaged from the configuration of the experimental results. To know the vehicle's real behaviour during a crash trial, it is necessary to have experimental devices which make it possible to rebuild the space kinematics of the components. We thus designed, in each case, suitable acquisition and processing software. Different non-parametric and parametric identification methods were then tested on simple and then complex models. The results have permitted us to determine which is the best adapted to solve our problem.

  16. 14 CFR 33.17 - Fire protection.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fire protection. 33.17 Section 33.17... STANDARDS: AIRCRAFT ENGINES Design and Construction; General § 33.17 Fire protection. (a) The design and... fire during normal operation and failure conditions, and must minimize the effect of such a fire....

  17. 14 CFR 33.17 - Fire protection.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Fire protection. 33.17 Section 33.17... STANDARDS: AIRCRAFT ENGINES Design and Construction; General § 33.17 Fire protection. (a) The design and... fire during normal operation and failure conditions, and must minimize the effect of such a fire....

  18. 14 CFR 33.17 - Fire protection.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Fire protection. 33.17 Section 33.17... STANDARDS: AIRCRAFT ENGINES Design and Construction; General § 33.17 Fire protection. (a) The design and... fire during normal operation and failure conditions, and must minimize the effect of such a fire....

  19. 14 CFR 33.17 - Fire protection.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fire protection. 33.17 Section 33.17... STANDARDS: AIRCRAFT ENGINES Design and Construction; General § 33.17 Fire protection. (a) The design and... fire during normal operation and failure conditions, and must minimize the effect of such a fire....

  20. 14 CFR 33.17 - Fire protection.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Fire protection. 33.17 Section 33.17... STANDARDS: AIRCRAFT ENGINES Design and Construction; General § 33.17 Fire protection. (a) The design and... fire during normal operation and failure conditions, and must minimize the effect of such a fire....

  1. Crash Types: Markers of Increased Risk of Alcohol-Involved Crashes Among Teen Drivers*

    PubMed Central

    Bingham, C. Raymond; Shope, Jean T.; Parow, Julie E.; Raghunathan, Trivellore E.

    2009-01-01

    Objective: Teens drink/drive less often than adults but are more likely to crash when they do drink/drive. This study identified alcohol-related crash types for which teen drivers were at greater risk compared with adults. Method: Michigan State Police crash records for drivers ages 16-19 (teens) and 45-65 years (adults) who experienced at least one crash from 1989 to 1996 were used to create alcohol crash types consisting of alcohol-related crashes that included specific combinations of other crash characteristics, such as drinking and driving at night (i.e., alcohol/nighttime). These data were combined with data from the 1990 and 1995 National Personal Travel Surveys and the 2001 National Household Travel Survey to estimate rates and rate ratios of alcohol-related crash types based on person-miles driven. Results: Teens were relatively less likely than adults to be involved in alcohol-related crashes but were significantly more likely to be in alcohol-related crashes that included other crash characteristics. Teen males' crash risk was highest when drinking and driving with a passenger, at night, at night with a passenger, and at night on the weekend, and casualties were more likely to result from alcohol-related nighttime crashes. All the highest risk alcohol-related crash types for teen female drinking drivers involved casualties and were most likely to include speeding, passenger presence, and nighttime driving. Conclusions: The frequency with which passengers, nighttime or weekend driving, and speeding occurred in the highest risk alcohol-related crash types for teens suggests that these characteristics should be targeted by policies, programs, and enforcement to reduce teen alcohol-related crash rates. PMID:19515292

  2. Simulation of Aircraft Landing Gears with a Nonlinear Dynamic Finite Element Code

    NASA Technical Reports Server (NTRS)

    Lyle, Karen H.; Jackson, Karen E.; Fasanella, Edwin L.

    2000-01-01

    Recent advances in computational speed have made aircraft and spacecraft crash simulations using an explicit, nonlinear, transient-dynamic, finite element analysis code more feasible. This paper describes the development of a simple landing gear model, which accurately simulates the energy absorbed by the gear without adding substantial complexity to the model. For a crash model, the landing gear response is approximated with a spring where the force applied to the fuselage is computed in a user-written subroutine. Helicopter crash simulations using this approach are compared with previously acquired experimental data from a full-scale crash test of a composite helicopter.

  3. Crash pulse recorder--validation in full scale crash tests.

    PubMed

    Kullgren, A; Lie, A; Tingvall, C

    1995-10-01

    Estimation of the accident severity is a fundamental requirement in accident reconstruction and analysis. Accident severity can be measured in many different ways, but in frontal collisions change of velocity, energy equivalent speed or equivalent barrier speed are frequently used parameters. These parameters are most often estimated from vehicle deformation. It is known, however, that the quality of these estimates is limited if compared with these obtained in laboratory test conditions. To be able to achieve almost the same measurements and measurement accuracy in real-life accidents as in the laboratory, where the acceleration time history is measured, an on-board measurement technique is required. This presentation gives results of tests of a low cost device for measuring the crash pulse for a car involved in an accident, concerning systematic and random error. The device, called the Crash Pulse Recorder (CPR), has been tested previously in several sled tests. The CPR is based on measurement of the movement of the mass in a spring mass system in a collision. A brief description of its construction is also included. The CPR is an integral part of a large accident data collection system including interior and exterior deformation measurements and evaluation of injury outcome. This report presents the results of several full-scale crash tests, undertaken to evaluate the accuracy and precision of the CPR in cars in different impact modes. The tests comprised both offset and angled collisions. Most of the tests were car to car collisions, but barrier tests were also performed. The random error of the CPR was found to be 2.2 km/hr for the delta V measurements and 0.6 g for mean acceleration. PMID:8579702

  4. A multivariate spatial crash frequency model for identifying sites with promise based on crash types.

    PubMed

    Jonathan, Aguero-Valverde; Wu, Kun-Feng Ken; Donnell, Eric T

    2016-02-01

    Many studies have proposed the use of a systemic approach to identify sites with promise (SWiPs). Proponents of the systemic approach to road safety management suggest that it is more effective in reducing crash frequency than the traditional hot spot approach. The systemic approach aims to identify SWiPs by crash type(s) and, therefore, effectively connects crashes to their corresponding countermeasures. Nevertheless, a major challenge to implementing this approach is the low precision of crash frequency models, which results from the systemic approach considering subsets (crash types) of total crashes leading to higher variability in modeling outcomes. This study responds to the need for more precise statistical output and proposes a multivariate spatial model for simultaneously modeling crash frequencies for different crash types. The multivariate spatial model not only induces a multivariate correlation structure between crash types at the same site, but also spatial correlation among adjacent sites to enhance model precision. This study utilized crash, traffic, and roadway inventory data on rural two-lane highways in Pennsylvania to construct and test the multivariate spatial model. Four models with and without the multivariate and spatial correlations were tested and compared. The results show that the model that considers both multivariate and spatial correlation has the best fit. Moreover, it was found that the multivariate correlation plays a stronger role than the spatial correlation when modeling crash frequencies in terms of different crash types. PMID:26615494

  5. CDC Vital Signs: Motor Vehicle Crash Injuries: Costly but Preventable

    MedlinePlus

    ... Press Kit Read the MMWR Science Clips Motor Vehicle Crash Injuries Costly but Preventable Language: English Español ( ... and how to prevent future crashes. Problem Motor vehicle crashes are a leading cause of injury in ...

  6. Analysis of Multiengine Transport Airplane Fire Records

    NASA Technical Reports Server (NTRS)

    Pesman, Gerard J.

    1950-01-01

    An analysis has been made of Civil Aeronautics Administration and Civil Aeronautics Board commercial airplane fire records collected during the 10-year period ending July 1, 1948. The results of the analysis show that: 1. Gasoline was most frequently the initial combustible ignited in flight and ground fires and is considered to be the most hazardous of the combustibles carried. 2. Although electrical-ignition sources are the most frequent flight-fire ignition source by a small margin, the exhaust system is concluded to be the most hazardous ignition source because it is necessarily located near the lubricating-oil and gasoline-plumbing systems and the resulting fires are relatively severe. The electrical-ignition sources usually involve only the electrical insulation and result in small-volume fires. The exhaust system was found to be the most frequent ground-fire ignition source. 3. Engine failures were the most frequent cause of the union of combustible and ignition source that resulted in flight fires. 4. Fuel-plumbing-system failures were the most frequent cause of fires occurring during ground operation. 5. The evidence concerning crash fires was not sufficiently extensive to provide information concerning the factors that affect the start and the spread of fire. In order that future records may be more useful, all crash accidents should be studied to determine why fire does or does not occur and to establish data that relate the occurrence and the spread of fire to airplane design and operation.

  7. Crash tests of three identical low-wing single-engine airplane

    NASA Technical Reports Server (NTRS)

    Castle, C. B.; Alfaro-Bou, E.

    1983-01-01

    Three identical four place, low wing single engine airplane specimens with nominal masses of 1043 kg were crash tested under controlled free flight conditions. The tests were conducted at the same nominal velocity of 25 m/sec along the flight path. Two airplanes were crashed on a concrete surface (at 10 and 30 deg pitch angles), and one was crashed on soil (at a -30 deg pitch angle). The three tests revealed that the specimen in the -30 deg test on soil sustained massive structural damage in the engine compartment and fire wall. Also, the highest longitudinal cabin floor accelerations occurred in this test. Severe damage, but of lesser magnitude, occurred in the -30 deg test on concrete. The highest normal cabin floor accelerations occurred in this test. The least structural damage and lowest accelerations occurred in the 10 deg test on concrete.

  8. Perseus A High Altitude Remotely Piloted Aircraft being Towed in Flight

    NASA Technical Reports Server (NTRS)

    1994-01-01

    aircraft again crashed on Oct. 1, 1999, near Barstow, California, suffering moderate damage to the aircraft but no property damage, fire, or injuries in the area of the crash. Perseus B is flown remotely by a pilot from a mobile flight control station on the ground. A Global Positioning System (GPS) unit provides navigation data for continuous and precise location during flight. The ground control station features dual independent consoles for aircraft control and systems monitoring. A flight termination system, required for all remotely piloted aircraft being flown in military-restricted airspace, includes a parachute system deployed on command plus a C-Band radar beacon and a Mode-C transponder to aid in location. Dryden has provided hanger and office space for the Perseus B aircraft and for the flight test development team when on site for flight or ground testing. NASA's ERAST project is developing aeronautical technologies for a new generation of remotely piloted and autonomous aircraft for a variety of upper-atmospheric science missions and commercial applications. Dryden is the lead center in NASA for ERAST management and operations. Perseus B is approximately 25 feet long, has a wingspan of 71.5 feet, and stands 12 feet high. Perseus B is powered by a Rotax 914, four-cylinder piston engine mounted in the mid-fuselage area and integrated with an Aurora-designed three-stage turbocharger, connected to a lightweight two-blade propeller.

  9. Seat Design for Crash Worthiness

    NASA Technical Reports Server (NTRS)

    Pinkel, I Irving; Rosenberg, Edmund G

    1957-01-01

    A study of many crash deceleration records suggested a simplified model of a crash deceleration pulse, which incorporates the essential properties of the pulse. The model pulse is considered to be composed of a base pulse on which are superimposed one or more secondary pulses of shorter duration. The results of a mathematical analysis of the seat-passenger deceleration in response to the airplane deceleration pulse are provided. On the basis of this information, presented as working charts, the maximum deceleration loads experienced by the seat and passenger in response to the airplane deceleration pulse can be computed. This maximum seat-passenger deceleration is found to depend on the natural frequency of the seat containing the passenger, considered as a mass-spring system. A method is presented that shows how to arrive at a combination of seat strength, natural frequency, and ability to absorb energy in deformation beyond the elastic limit that will allow the seat to serve without failure during an airplane deceleration pulse taken as the design requirement.

  10. US Commercial Air Tour Crashes, 2000–2011: Burden, Fatal Risk Factors, and FIA Score Validation

    PubMed Central

    Ballard, Sarah-Blythe; Beaty, Leland P.; Baker, Susan P.

    2013-01-01

    Introduction This study provides new public health data concerning the US commercial air tour industry. Risk factors for fatality in air tour crashes were analyzed to determine the value of the FIA score in predicting fatal outcomes. Methods Using the Federal Aviation Administration’s (FAA) General Aviation and Air Taxi Survey and National Transportation Safety Board data, the incidence of commercial air tour crashes from 2000 through 2010 was calculated. Fatality risk factors for crashes occurring from 2000 through 2011 were analyzed using regression methods. The FIA score, Li and Baker’s fatality risk index, was validated using receiver operating characteristic (ROC) curves. Results The industry-wide commercial air tour crash rate was 2.7 per 100,000 flight hours. The incidence rates of Part 91 and 135 commercial air tour crashes were 3.4 and 2.3 per 100,000 flight hours, respectively (relative risk [RR] 1.5, 95% confidence interval [CI] 1.1–2.1, P=0.015). Of the 152 air tour crashes that occurred from 2000 through 2011, 30 (20%) involved at least one fatality and, on average, 3.5 people died per fatal crash. Fatalities were associated with three major risk factors: fire (Adjusted odds ratio [AOR] 5.1, 95% CI 1.5–16.7, P=0.008), instrument meteorological conditions (AOR 5.4, 95% CI 1.1–26.4, P=0.038), and off-airport location (AOR 7.2, 95% CI 1.6–33.2, P=0.011). The area under the FIA Score’s ROC curve was 0.79 (95% CI 0.71–0.88). Discussion Commercial air tour crash rates were high relative to similar commercial aviation operations. Disparities between Part 91 and 135 air tour crash rates reflect regulatory disparities that require FAA action. The FIA Score appeared to be a valid measurement of fatal risk in air tour crashes. The FIA should prioritize interventions that address the three major risk factors identified by this study. PMID:23631935

  11. Estimation of rear-end vehicle crash frequencies in urban road tunnels.

    PubMed

    Meng, Qiang; Qu, Xiaobo

    2012-09-01

    According to The Handbook of Tunnel Fire Safety, over 90% (55 out of 61 cases) of fires in road tunnels are caused by vehicle crashes (especially rear-end crashes). It is thus important to develop a proper methodology that is able to estimate the rear-end vehicle crash frequency in road tunnels. In this paper, we first analyze the time to collision (TTC) data collected from two road tunnels of Singapore and conclude that Inverse Gaussian distribution is the best-fitted distribution to the TTC data. An Inverse Gaussian regression model is hence used to establish the relationship between the TTC and its contributing factors. We then proceed to introduce a new concept of exposure to traffic conflicts as the mean sojourn time in a given time period that vehicles are exposed to dangerous scenarios, namely, the TTC is lower than a predetermined threshold value. We further establish the relationship between the proposed exposure to traffic conflicts and crash count by using negative binomial regression models. Based on the limited data samples used in this study, the negative binomial regression models perform well although a further study using more data is needed. PMID:22664688

  12. The 27-28 October 1986 FIRE Cirrus case study - Retrieval of cloud particle sizes and optical depths from comparative analyses of aircraft and satellite-based infrared measurements

    NASA Technical Reports Server (NTRS)

    Hammer, Philip D.; Valero, Francisco P. J.; Kinne, Stefan

    1991-01-01

    Infrared radiance measurements were acquired from a narrow-field nadir-viewing radiometer based on the NASA ER-2 aircraft during a coincident Landsat 5 overpass on October 28, 1986 as part of the FIRE Cirrus IFO in the vicinity of Lake Michigan. The spectral bandpasses are 9.90-10.87 microns for the ER-2-based radiometer and 10.40-12.50 microns for the Landsat thematic mapper band. After adjusting for spatial and temporal differences, a comparative study using data from these two instruments is undertaken in order to retrieve cirrus cloud ice-crystal sizes and optical depths. Retrieval is achieved by analysis of measurement correlations between the two spectral bands and comparison to multistream radiative transfer model calculations. The results indicate that the equivalent sphere radii of the cirrus ice crystals were typically less than 30 microns. Such particles were too small to be measured by the available in situ instrumentation. Cloud optical depths at a reference wavelength of 11.4 microns ranged from 0.3 to 2.0 for this case study. Supplemental results in support of this study are described using radiation measurements from the King Air aircraft, which was also in near coincidence with the Landsat overpass.

  13. Causes and risk factors for fatal accidents in non-commercial twin engine piston general aviation aircraft.

    PubMed

    Boyd, Douglas D

    2015-04-01

    Accidents in twin-engine aircraft carry a higher risk of fatality compared with single engine aircraft and constitute 9% of all general aviation accidents. The different flight profile (higher airspeed, service ceiling, increased fuel load, and aircraft yaw in engine failure) may make comparable studies on single-engine aircraft accident causes less relevant. The objective of this study was to identify the accident causes for non-commercial operations in twin engine aircraft. A NTSB accident database query for accidents in twin piston engine airplanes of 4-8 seat capacity with a maximum certified weight of 3000-8000lbs. operating under 14CFR Part 91 for the period spanning 2002 and 2012 returned 376 accidents. Accident causes and contributing factors were as per the NTSB final report categories. Total annual flight hour data for the twin engine piston aircraft fleet were obtained from the FAA. Statistical analyses employed Chi Square, Fisher's Exact and logistic regression analysis. Neither the combined fatal/non-fatal accident nor the fatal accident rate declined over the period spanning 2002-2012. Under visual weather conditions, the largest number, n=27, (27%) of fatal accidents was attributed to malfunction with a failure to follow single engine procedures representing the most common contributing factor. In degraded visibility, poor instrument approach procedures resulted in the greatest proportion of fatal crashes. Encountering thunderstorms was the most lethal of all accident causes with all occupants sustaining fatal injuries. At night, a failure to maintain obstacle/terrain clearance was the most common accident cause leading to 36% of fatal crashes. The results of logistic regression showed that operations at night (OR 3.7), off airport landings (OR 14.8) and post-impact fire (OR 7.2) all carried an excess risk of a fatal flight. This study indicates training areas that should receive increased emphasis for twin-engine training/recency. First, increased

  14. Adverse Pregnancy Outcomes Following Motor Vehicle Crashes

    PubMed Central

    Vladutiu, Catherine J.; Marshall, Stephen W.; Poole, Charles; Casteel, Carri; Menard, M. Kathryn; Weiss, Harold B.

    2013-01-01

    Background Motor vehicle crashes are a leading cause of serious trauma during pregnancy, but little is known about their relationships with pregnancy outcomes. Purpose To estimate the association between motor vehicle crashes and adverse pregnancy outcomes. Methods A retrospective cohort study of 878,546 pregnant women, aged 16–46 years, who delivered a singleton infant in North Carolina (NC) from 2001 to 2008. Pregnant drivers in crashes were identified by probabilistic linkage of vital records and crash reports. Poisson regression modeled the association among crashes, vehicle safety features, and adverse pregnancy outcomes. Analyses were conducted in 2012. Results In 2001–2008, 2.9% of pregnant NC women were drivers in one or more crashes. After a single crash, compared to not being in a crash, pregnant drivers had slightly elevated rates of preterm birth (adjusted rate ratio, aRR=1.23, 95% CI=1.19, 1.28); placental abruption (aRR=1.34, 95% CI=1.15, 1.56); and premature rupture of the membranes (PROM; aRR=1.32, 95% CI=1.21, 1.43). Following a second or subsequent crash, pregnant drivers had more highly elevated rates of preterm birth (aRR=1.54, 95% CI=1.24, 1.90); stillbirth (aRR=4.82, 95% CI=2.85, 8.14); placental abruption (aRR=2.97, 95% CI=1.60, 5.53); and PROM (aRR=1.95, 95% CI=1.27, 2.99). Stillbirth rates were elevated following crashes involving unbelted pregnant drivers (aRR=2.77, 95% CI=1.22, 6.28) compared to belted pregnant drivers. Conclusions Crashes while driving during pregnancy were associated with elevated rates of adverse pregnancy outcomes, and multiple crashes were associated with even higher rates of adverse pregnancy outcomes. Crashes were especially harmful if drivers were unbelted. PMID:24139777

  15. Factors Contributing to Crashes among Young Drivers

    PubMed Central

    Bates, Lyndel J.; Davey, Jeremy; Watson, Barry; King, Mark J.; Armstrong, Kerry

    2014-01-01

    Young drivers are the group of drivers most likely to crash. There are a number of factors that contribute to the high crash risk experienced by these drivers. While some of these factors are intrinsic to the young driver, such as their age, gender or driving skill, others relate to social factors and when and how often they drive. This article reviews the factors that affect the risk of young drivers crashing to enable a fuller understanding of why this risk is so high in order to assist in developing effective countermeasures. PMID:25097763

  16. Fire Accident Testing Evaluation (FATE)

    NASA Technical Reports Server (NTRS)

    Ross, H. D.; Mell, W.; Pettegrew, R.; Hicks, M.; Urban, D.

    2001-01-01

    By performing parametric experiments both in normal gravity and reduced gravity on the KC-135 aircraft, as well as developing and analyzing related modeling, generality of the interpretation of the experimental findings will be pursued along with direct recommendations for fire safety practices and policies for fire safety on spacecraft and in Martian habitats. This is the principal value of the research.

  17. Statistical Detection of Atypical Aircraft Flights

    NASA Technical Reports Server (NTRS)

    Statler, Irving; Chidester, Thomas; Shafto, Michael; Ferryman, Thomas; Amidan, Brett; Whitney, Paul; White, Amanda; Willse, Alan; Cooley, Scott; Jay, Joseph; Rosenthal, Loren; Swickard, Andrea; Bates, Derrick; Scherrer, Chad; Webb, Bobbie-Jo; Lawrence, Robert; Mosbrucker, Chris; Prothero, Gary; Andrei, Adi; Romanowski, Tim; Robin, Daniel; Prothero, Jason; Lynch, Robert; Lowe, Michael

    2006-01-01

    A computational method and software to implement the method have been developed to sift through vast quantities of digital flight data to alert human analysts to aircraft flights that are statistically atypical in ways that signify that safety may be adversely affected. On a typical day, there are tens of thousands of flights in the United States and several times that number throughout the world. Depending on the specific aircraft design, the volume of data collected by sensors and flight recorders can range from a few dozen to several thousand parameters per second during a flight. Whereas these data have long been utilized in investigating crashes, the present method is oriented toward helping to prevent crashes by enabling routine monitoring of flight operations to identify portions of flights that may be of interest with respect to safety issues.

  18. Assessment of aircraft impact possibilities at the Idaho Chemical Processing Plant on the INEL Site

    SciTech Connect

    Lee, L.G.; Mines, J.M.; Webb, B.B.

    1993-08-01

    The concern of this study was the possibility of an aircraft collision with facilities at the Idaho Chemical Processing Plant (ICPP). Two sets of data were combined in calculating the probability of this event. The first was from the Nuclear Regulatory Commission. The Nuclear Regulatory Commission data is used to check the adequacy of nuclear power plant location relative to aircraft crashes. For neighboring airport scenarios, the accepted rate unit is fatal crashes per square mile. For in-flight crash scenarios, a total loss of control crash rate (where the pilot was completely out of control) is used for evaluating nuclear reactors. Numbers were given per linear mile of flight. The other set of data was obtained from the National Transportation Safety Board`s annual review. These data points show higher crash frequencies because crashes in which the pilot maintained some control have not been excluded. By including this data set, the evaluation gained two advantages. First, the data are separated by type of aircraft, which makes frequencies for specific flight paths more meaningful. Second, the data are given year by year over a ten-year time span. Therefore, it is possible to gain a sense of the variability in crash frequencies from one year to another.

  19. Cost of crashes related to road conditions, United States, 2006.

    PubMed

    Zaloshnja, Eduard; Miller, Ted R

    2009-10-01

    This is the first study to estimate the cost of crashes related to road conditions in the U.S. To model the probability that road conditions contributed to the involvement of a vehicle in the crash, we used 2000-03 Large Truck Crash Causation Study (LTCCS) data, the only dataset that provides detailed information whether road conditions contributed to crash occurrence. We applied the logistic regression results to a costed national crash dataset in order to calculate the probability that road conditions contributed to the involvement of a vehicle in each crash. In crashes where someone was moderately to seriously injured (AIS-2-6) in a vehicle that harmfully impacted a large tree or medium or large non-breakaway pole, or if the first harmful event was collision with a bridge, we changed the calculated probability of being road-related to 1. We used the state distribution of costs of fatal crashes where road conditions contributed to crash occurrence or severity to estimate the respective state distribution of non-fatal crash costs. The estimated comprehensive cost of traffic crashes where road conditions contributed to crash occurrence or severity was $217.5 billion in 2006. This represented 43.6% of the total comprehensive crash cost. The large share of crash costs related to road design and conditions underlines the importance of these factors in highway safety. Road conditions are largely controllable. Road maintenance and upgrading can prevent crashes and reduce injury severity. PMID:20184840

  20. Crash Videos Spark Inelastic Collisions Interest

    NASA Astrophysics Data System (ADS)

    Bart, George R.

    2006-12-01

    There are many popular dramatic crash videos available on the Internet. Introductory physics student interest about the details of inelastic collisions can be significantly aroused by the use of these videos. Sources of the videos will be provided and some of truck crashes will be shown. One dramatic one will be analyzed. It involves MJ of kinetic energy and MN of force. More detail with references is found at http://faculty.ccc.edu/gbart/crashvideo/.

  1. Fuel dispersal modeling for aircraft-runway impact scenarios

    SciTech Connect

    Tieszen, S.R.

    1995-11-01

    A fuel dispersal model for C-141 transport accidents was developed for the Defense Nuclear Agency`s Fuel Fire Technology Base Program to support Weapon System Safety Assessments. The spectrum of accidents resulting from aircraft impact on a runway was divided into three fuel dispersal regimes: low, intermediate, and high-velocity impact. Sufficient data existed in the accident, crash test, and fuel-filled bomb literature to support development of a qualitative framework for dispersal models, but not quantitative models for all regimes. Therefore, a test series at intermediate scale was conducted to generate data on which to base the model for the high-velocity regime. Tests were conducted over an impact velocity range from 12 m/s to 91 m/s and angles of impact from 22.5{degrees} to 67.5{degrees}. Dependent variables were area covered by dispersed fuel, amount of mass in that area, and location of the area relative to the impact line. Test results showed that no liquid pooling occurred for impact velocities greater than 61 m/s, independent of the angle of impact. Some pooling did occur at lower velocities, but in no test was the liquid-layer thickness greater than 5.25 mm.

  2. Marijuana Use and Motor Vehicle Crashes

    PubMed Central

    Li, Mu-Chen; Brady, Joanne E.; DiMaggio, Charles J.; Lusardi, Arielle R.; Tzong, Keane Y.; Li, Guohua

    2012-01-01

    Since 1996, 16 states and the District of Columbia in the United States have enacted legislation to decriminalize marijuana for medical use. Although marijuana is the most commonly detected nonalcohol drug in drivers, its role in crash causation remains unsettled. To assess the association between marijuana use and crash risk, the authors performed a meta-analysis of 9 epidemiologic studies published in English in the past 2 decades identified through a systematic search of bibliographic databases. Estimated odds ratios relating marijuana use to crash risk reported in these studies ranged from 0.85 to 7.16. Pooled analysis based on the random-effects model yielded a summary odds ratio of 2.66 (95% confidence interval: 2.07, 3.41). Analysis of individual studies indicated that the heightened risk of crash involvement associated with marijuana use persisted after adjustment for confounding variables and that the risk of crash involvement increased in a dose-response fashion with the concentration of 11-nor-9-carboxy-delta-9-tetrahydrocannabinol detected in the urine and the frequency of self-reported marijuana use. The results of this meta-analysis suggest that marijuana use by drivers is associated with a significantly increased risk of being involved in motor vehicle crashes. PMID:21976636

  3. A disaggregate approach to crash rate analysis.

    PubMed

    Kam, Booi Hon

    2003-09-01

    This paper presents a disaggregate approach to crash rate analysis. Enumerating crash rates on a per trip-kilometer basis, the proposed method removes the linearity assumption inherent in the conventional quotient indicator of accidents per unit travel distance. The approach involves combining two disparate datasets on a geographic information systems (GIS) platform by matching accident records to a defined travel corridor. As an illustration of the methodology, travel information from the Victorian Activity and Travel Survey (VATS) and accident records contained in CrashStat were used to estimate the crash rates of Melbourne residents in different age-sex groups according to time of the day and day of the week. The results show a polynomial function of a cubic order when crash rates are plotted against age group, which contrasts distinctly with the U-shape curve generated by using the conventional aggregate quotient approach. Owing to the validity of the many assumptions adopted in the computation, this study does not claim that the results obtained are conclusive. The methodology, however, is seen as providing a framework upon which future crash risk measures could be based as the use of spatial tracking devises become prevalent in travel surveys. PMID:12850070

  4. Full-Scale Crash Test and Finite Element Simulation of a Composite Prototype Helicopter

    NASA Technical Reports Server (NTRS)

    Jackson, Karen E.; Fasanella, Edwin L.; Boitnott, Richard L.; Lyle, Karen H.

    2003-01-01

    A full-scale crash test of a prototype composite helicopter was performed at the Impact Dynamics Research Facility at NASA Langley Research Center in 1999 to obtain data for validation of a finite element crash simulation. The helicopter was the flight test article built by Sikorsky Aircraft during the Advanced Composite Airframe Program (ACAP). The composite helicopter was designed to meet the stringent Military Standard (MIL-STD-1290A) crashworthiness criteria and was outfitted with two crew and two troop seats and four anthropomorphic dummies. The test was performed at 38-ft/s vertical and 32.5-ft/s horizontal velocity onto a rigid surface. An existing modal-vibration model of the Sikorsky ACAP helicopter was converted into a model suitable for crash simulation. A two-stage modeling approach was implemented and an external user-defined subroutine was developed to represent the complex landing gear response. The crash simulation was executed with a nonlinear, explicit transient dynamic finite element code. Predictions of structural deformation and failure, the sequence of events, and the dynamic response of the airframe structure were generated and the numerical results were correlated with the experimental data to validate the simulation. The test results, the model development, and the test-analysis correlation are described.

  5. Occupant Responses in a Full-Scale Crash Test of the Sikorsky ACAP Helicopter

    NASA Technical Reports Server (NTRS)

    Jackson, Karen E.; Fasanella, Edwin L.; Boitnott, Richard; McEntire, Joseph; Lewis, Alan

    2002-01-01

    A full-scale crash test of the Sikorsky Advanced Composite Airframe Program (ACAP) helicopter was performed in 1999 to generate experimental data for correlation with a crash simulation developed using an explicit nonlinear, transient dynamic finite element code. The airframe was the residual flight test hardware from the ACAP program. For the test, the aircraft was outfitted with two crew and two troop seats, and four anthropomorphic test dummies. While the results of the impact test and crash simulation have been documented fairly extensively in the literature, the focus of this paper is to present the detailed occupant response data obtained from the crash test and to correlate the results with injury prediction models. These injury models include the Dynamic Response Index (DRI), the Head Injury Criteria (HIC), the spinal load requirement defined in FAR Part 27.562(c), and a comparison of the duration and magnitude of the occupant vertical acceleration responses with the Eiband whole-body acceleration tolerance curve.

  6. The microburst - Hazard to aircraft

    NASA Technical Reports Server (NTRS)

    Mccarthy, J.; Serafin, R.

    1984-01-01

    In encounters with microbursts, low altitude aircraft first encounter a strong headwind which increases their wing lift and altitude; this phenomenon is followed in short succession by a decreasing headwind component, a downdraft, and finally a strong tailwind that catastrophically reduces wing lift and precipitates a crash dive. It is noted that the potentially lethal low altitude wind shear of a microburst may lie in apparently harmless, rain-free air beneath a cloud base. Occasionally, such tell-tale signs as localized blowing of ground dust may be sighted in time. Microbursts may, however, occur in the heavy rain of a thunderstorm, where they will be totally obscured from view. Wind shear may be detected by an array of six anemometers and vanes situated in the vicinity of an airport, and by Doppler radar equipment at the airport or aboard aircraft.

  7. Aircraft-assisted pilot suicides in the United States, 1993-2002.

    PubMed

    Lewis, Russell J; Johnson, Robert D; Whinnery, James E; Forster, Estrella M

    2007-01-01

    Our laboratory was interested in epidemiological and toxicological findings from aircraft-assisted pilot suicides. Between 1993-2002 there were 3,648 fatal aviation accidents. The NTSB determined that 16 were aircraft-assisted suicides; 15 from intentional crashing of an aircraft and 1 from exiting the aircraft while in-flight. All pilots involved in these aircraft-assisted suicides were male, with a median age of 40 years. Seven of the 14 pilots for which specimens were available were positive for disqualifying substances. Based on the few cases conclusively attributed to suicide, death by the intentional crashing of an aircraft appears to be an infrequent and uncommon event. PMID:17453693

  8. Forest Fire Mapping

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The Fire Logistics Airborne Mapping Equipment (FLAME) system, mounted in a twin-engine and airplane operated by the U.S. Forest Service (USFS) of the U.S. Department of Agriculture (USDA), is an airborne instrument for detecting and pinpointing forest fires that might escape ground detection. The FLAME equipment rack includes the operator interface, a video monitor, the system's control panel and film output. FLAME's fire detection sensor is an infrared line scanner system that identifies fire boundaries. Sensor's information is correlated with the aircraft's position and altitude at the time the infrared imagery is acquired to fix the fire's location on a map. System can be sent to a fire locale anywhere in the U.S. at the request of a regional forester. USFS felt a need for a more advanced system to deliver timely fire information to fire management personnel in the decade of the 1990s. The Jet Propulsion Laboratory (JPL) conducted a study, jointly sponsored by NASA and USDA, on what advanced technologies might be employed to produce an end-to-end thermal infrared fire detection and mapping system. That led to initiation of the Firefly system, currently in development at JPL and targeted for operational service beginning in 1992. Firefly will employ satellite-reference position fixing and provide performance superior to FLAME.

  9. Vehicular crash data used to rank intersections by injury crash frequency and severity.

    PubMed

    Liu, Yi; Li, Zongzhi; Liu, Jingxian; Patel, Harshingar

    2016-09-01

    This article contains data on research conducted in "A double standard model for allocating limited emergency medical service vehicle resources ensuring service reliability" (Liu et al., 2016) [1]. The crash counts were sorted out from comprehensive crash records of over one thousand major signalized intersections in the city of Chicago from 2004 to 2010. For each intersection, vehicular crashes were counted by crash severity levels, including fatal, injury Types A, B, and C for major, moderate, and minor injury levels, property damage only (PDO), and unknown. The crash data was further used to rank intersections by equivalent injury crash frequency. The top 200 intersections with the highest number of crash occurrences identified based on crash frequency- and severity-based scenarios are shared in this brief. The provided data would be a valuable source for research in urban traffic safety analysis and could also be utilized to examine the effectiveness of traffic safety improvement planning and programming, intersection design enhancement, incident and emergency management, and law enforcement strategies. PMID:27508245

  10. Aviation Engine Test Facilities (AETF) fire protection study

    NASA Astrophysics Data System (ADS)

    Beller, R. C.; Burns, R. E.; Leonard, J. T.

    1989-07-01

    An analysis is presented to the effectiveness of various types of fire fighting agents in extinguishing the kinds of fires anticipated in Aviation Engine Test Facilities (AETF), otherwise known as Hush Houses. The agents considered include Aqueous Film-Forming Foam, Halon 1301, Halon 1211 and water. Previous test work has shown the rapidity with which aircraft, especially high performance aircraft, can be damaged by fire. Based on this, tentative criteria for this evaluation included a maximum time of 20 s from fire detection to extinguishment and a period of 30 min in which the agent would prevent reignition. Other issues examined included: toxicity, corrosivity, ease of personnel egress, system reliability, and cost effectiveness. The agents were evaluated for their performance in several fire scenarios, including: under frame fire, major engine fire, engine disintegration fire, high-volume pool fire with simultaneous spill fire, internal electrical fire, and runaway engine fire.

  11. Risk to the public from carbon fibers released in civil aircraft accidents

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Because carbon fibers are strong, stiff, and lightweight, they are attractive for use in composite structures. Because they also have high electrical conductivity, free carbon fibers settling on electrical conductors can cause malfunctions. If released from the composite by burning, the fibers may become a hazard to exposed electrical and electronic equipment. As part of a Federal study of the potential hazard associated with the use of carbon fibers, NASA assessed the public risk associated with crash fire accidents of civil aircraft. The NASA study projected a dramatic increase in the use of carbon composites in civil aircraft and developed technical data to support the risk assessment. Personal injury was found to be extremely unlikely. In 1993, the year chosen as a focus for the study, the expected annual cost of damage caused by released carbon fibers is only $1000. Even the worst-case carbon fiber incident simulated (costing $178,000 once in 34,000 years) was relatively low-cost compared with the usual air transport accident cost. On the basis of these observations, the NASA study concluded that exploitation of composites should continue, that additional protection of avionics is unnecessary, and that development of alternate materials specifically to overcome this problem is not justified.

  12. Carbon fiber counting. [aircraft structures

    NASA Technical Reports Server (NTRS)

    Pride, R. A.

    1980-01-01

    A method was developed for characterizing the number and lengths of carbon fibers accidentally released by the burning of composite portions of civil aircraft structure in a jet fuel fire after an accident. Representative samplings of carbon fibers collected on transparent sticky film were counted from photographic enlargements with a computer aided technique which also provided fiber lengths.

  13. Assessment of aircraft impact probabilities at the Idaho Chemical Processing Plant. Revision 1

    SciTech Connect

    Lee, L.G.; Mines, J.M.; Webb, B.B.

    1994-06-01

    The purpose of this study is to evaluate the possibility of an aircraft crash into a facility at the Idaho Chemical Processing Plant (ICPP). The ICPP is part of the Idaho National Engineering Laboratory (INEL). Based on the data used in this study, an air crash into any single facility at the ICPP is incredible. An air crash into aggregate areas incorporating the following is extremely unlikely: (1) ICPP radiological materials storage facilities, (2) ICPP major processing facilities, and (3) the ICPP land surface area, which excludes buildings. According to Westinghouse Idaho Nuclear Company safety analysis procedures, if the probability of a radiological release event is determined to be incredible, no further review is required. Therefore, an aircraft crash scenario is not required in the safety analysis for a single facility but should be discussed relative to the ICPP aggregate areas.

  14. Thoracolumbar Spine Fractures in Frontal Impact Crashes

    PubMed Central

    Pintar, Frank A.; Yoganandan, Narayan; Maiman, Dennis J.; Scarboro, Mark; Rudd, Rodney W.

    2012-01-01

    There is currently no injury assessment for thoracic or lumbar spine fractures in the motor vehicle crash standards throughout the world. Compression-related thoracolumbar fractures are occurring in frontal impacts and yet the mechanism of injury is poorly understood. The objective of this investigation was to characterize these injuries using real world crash data from the US-DOT-NHTSA NASS-CDS and CIREN databases. Thoracic and lumbar AIS vertebral body fracture codes were searched for in the two databases. The NASS database was used to characterize population trends as a function of crash year and vehicle model year. The CIREN database was used to examine a case series in more detail. From the NASS database there were 2000–4000 occupants in frontal impacts with thoracic and lumbar vertebral body fractures per crash year. There was an increasing trend in incidence rate of thoracolumbar fractures in frontal impact crashes as a function of vehicle model year from 1986 to 2008; this was not the case for other crash types. From the CIREN database, the thoracolumbar spine was most commonly fractured at either the T12 or L1 level. Major, burst type fractures occurred predominantly at T12, L1 or L5; wedge fractures were most common at L1. Most CIREN occupants were belted; there were slightly more females involved; they were almost all in bucket seats; impact location occurred approximately half the time on the road and half off the road. The type of object struck also seemed to have some influence on fractured spine level, suggesting that the crash deceleration pulse may be influential in the type of compression vector that migrates up the spinal column. Future biomechanical studies are required to define mechanistically how these fractures are influenced by these many factors. PMID:23169137

  15. 14 CFR 25.859 - Combustion heater fire protection.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Combustion heater fire protection. 25.859... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Design and Construction Fire Protection § 25.859 Combustion heater fire protection. (a) Combustion heater fire zones. The following...

  16. 14 CFR 29.859 - Combustion heater fire protection.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Combustion heater fire protection. 29.859... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Design and Construction Fire Protection § 29.859 Combustion heater fire protection. (a) Combustion heater fire zones. The following...

  17. 14 CFR 29.859 - Combustion heater fire protection.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Combustion heater fire protection. 29.859... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Design and Construction Fire Protection § 29.859 Combustion heater fire protection. (a) Combustion heater fire zones. The following...

  18. 14 CFR 25.859 - Combustion heater fire protection.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Combustion heater fire protection. 25.859... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Design and Construction Fire Protection § 25.859 Combustion heater fire protection. (a) Combustion heater fire zones. The following...

  19. Development of fire-resistant, low smoke generating, thermally stable end items for commercial aircraft and spacecraft using a basic polyimide resin

    NASA Technical Reports Server (NTRS)

    Gagliani, J.; Lee, R.; Sorathia, U. A.; Wilcoxson, A. L.

    1980-01-01

    A terpolyimide precursor was developed which can be foamed by microwave methods and yields foams possessing the best seating properties. A continuous process, based on spray drying techniques, permits production of polyimide powder precursors in large quantities. The constrained rise foaming process permits fabrication of rigid foam panels with improved mechanical properties and almost unlimited density characteristics. Polyimide foam core rigid panels were produced by this technique with woven fiberglass fabric bonded to each side of the panel in a one step microwave process. The fire resistance of polyimide foams was significantly improved by the addition of ceramic fibers to the powder precursors. Foams produced from these compositions are flexible, possess good acoustical attenuation and meet the minimum burnthrough requirements when impinged by high flux flame sources.

  20. The sensitivity and specificity of control surface injuries in aircraft accident fatalities.

    PubMed

    Campman, Steven C; Luzi, Scott A

    2007-06-01

    Among the important determinations that aircraft crash investigators try to make is which occupant of an aircraft was attempting to control the aircraft at the time of the crash. The presence or absence of certain injuries of the extremities is used to help make this determination. These "control surface injuries" reportedly occur when crash forces are applied to a pilot's hands and feet through the aircraft's controls. We sought to clarify the significance of these injuries and the frequency with which their presence indicates that the decedent was the person that might have been trying to control the aircraft, questions that are frequently asked of the examining pathologist. We studied sequential fatalities of airplane and helicopter crashes in which autopsies were performed by the Office of the Armed Forces Medical Examiner, excluding those that were known to have been incapacitated before the crash and those that were known to have attempted to escape from the aircraft, collecting 100 "qualified" crash decedents. The incidence of control surface injuries was determined for both pilots and passengers. The sensitivity and specificity of control surface injuries were calculated by classifying the decedents into a 4-cell diagnostic matrix. The positive and negative predictive values for control surface injuries were also calculated. Injuries that met the published definitions of control surface injuries had high incidences in passengers, as well as pilots, giving the term control surface injury a diagnostically unacceptable sensitivity and specificity for indicating "a pilot attempting to control an aircraft." We offer caveats and refinements to the definition of these injuries that help to increase the sensitivity and specificity of this term. PMID:17525559

  1. Measuring Wildfires From Aircraft And Satellites

    NASA Technical Reports Server (NTRS)

    Brass, J. A.; Arvesen, J. C.; Ambrosia, V. G.; Riggan, P. J.; Meyers, J. S.

    1991-01-01

    Aircraft and satellite systems yield wide-area views, providing total coverage of affected areas. System developed for use aboard aircraft includes digital scanner that records data in 12 channels. Transmits data to ground station for immediate use in fighting fires. Enables researchers to estimate gaseous and particulate emissions from fires. Provides information on temperatures of flame fronts and soils, intensities and rate of spread of fires, characteristics of fuels and smoke plumes, energy-release rates, and concentrations and movements of trace gases. Data relates to heating and cooling of soils, loss of nutrients, and effects on atmospheric, terrestrial, and aquatic systems.

  2. The Elimination of Fire Hazard Due to Back Fires

    NASA Technical Reports Server (NTRS)

    Theodorsen, Theodore; Freeman, Ira M

    1933-01-01

    A critical study was made of the operation of a type of back-fire arrester used to reduce the fire hazard of aircraft engines. A flame arrester consisting of a pack or plug of alternate flat and corrugated plates of thin metal was installed in the intake pipe of a gasoline engines; an auxiliary spark plug inserted in the intake manifold permitted the production of artificial back fires at will. It was found possible to design a plug which prevented all back fires from reaching the carburetor.

  3. Gasoline prices and their relationship to drunk-driving crashes.

    PubMed

    Chi, Guangqing; Zhou, Xuan; McClure, Timothy E; Gilbert, Paul A; Cosby, Arthur G; Zhang, Li; Robertson, Angela A; Levinson, David

    2011-01-01

    This study investigates the relationship between changing gasoline prices and drunk-driving crashes. Specifically, we examine the effects of gasoline prices on drunk-driving crashes in Mississippi by several crash types and demographic groups at the monthly level from 2004 to 2008, a period experiencing great fluctuation in gasoline prices. An exploratory visualization by graphs shows that higher gasoline prices are generally associated with fewer drunk-driving crashes. Higher gasoline prices depress drunk-driving crashes among young and adult drivers, among male and female drivers, and among white and black drivers. Results from negative binomial regression models show that when gas prices are higher, there are fewer drunk-driving crashes, particularly among property-damage-only crashes. When alcohol consumption levels are higher, there are more drunk-driving crashes, particularly fatal and injury crashes. The effects of gasoline prices and alcohol consumption are stronger on drunk-driving crashes than on all crashes. The findings do not vary much across different demographic groups. Overall, gasoline prices have greater effects on less severe crashes and alcohol consumption has greater effects on more severe crashes. PMID:21094313

  4. Effect of electronic stability control on automobile crash risk.

    PubMed

    Farmer, Charles

    2004-12-01

    Per vehicle crash involvement rates were compared for otherwise identical vehicle models with and without electronic stability control (ESC) systems. ESC was found to affect single-vehicle crashes to a greater extent than multiple-vehicle crashes, and crashes with fatal injuries to a greater extent than less severe crashes. Based on all police-reported crashes in 7 states over 2 years, ESC reduced single-vehicle crash involvement risk by approximately 41 percent (95 percent confidence limits 3348) and single-vehicle injury crash involvement risk by 41 percent (2752). This translates to an estimated 7 percent reduction in overall crash involvement risk (310) and a 9 percent reduction in overall injury crash involvement risk (314). Based on all fatal crashes in the United States over 3 years, ESC was found to have reduced single-vehicle fatal crash involvement risk by 56 percent (3968). This translates to an estimated 34 percent reduction in overall fatal crash involvement risk (2145). PMID:15545069

  5. Emergency Locator Transmitter System Performance During Three Full-Scale General Aviation Crash Tests

    NASA Technical Reports Server (NTRS)

    Littell, Justin D.; Stimson, Chad M.

    2016-01-01

    Full-scale crash tests were conducted on three Cessna 172 aircraft at NASA Langley Research Center's Landing and Impact Research facility during the summer of 2015. The purpose of the three tests was to evaluate the performance of commercially available Emergency Locator Transmitter (ELT) systems and support development of enhanced installation guidance. ELTs are used to provide location information to Search and Rescue (SAR) organizations in the event of an aviation distress situation, such as a crash. The crash tests simulated three differing severe but survivable crash conditions, in which it is expected that the onboard occupants have a reasonable chance of surviving the accident and would require assistance from SAR personnel. The first simulated an emergency landing onto a rigid surface, while the second and third simulated controlled flight into terrain. Multiple ELT systems were installed on each airplane according to federal regulations. The majority of the ELT systems performed nominally. In the systems which did not activate, post-test disassembly and inspection offered guidance for non-activation cause in some cases, while in others, no specific cause could be found. In a subset of installations purposely disregarding best practice guidelines, failure of the ELT-to-antenna cabling connections were found. Recommendations for enhanced installation guidance of ELT systems will be made to the Radio Technical Commission for Aeronautics (RTCA) Special Committee 229 for consideration for adoption in a future release of ELT minimum operational performance specifications. These recommendations will be based on the data gathered during this test series as well as a larger series of crash simulations using computer models that will be calibrated based on these data

  6. Motor vehicle-bicycle crashes in Beijing: irregular maneuvers, crash patterns, and injury severity.

    PubMed

    Yan, Xinping; Ma, Ming; Huang, Helai; Abdel-Aty, Mohamed; Wu, Chaozhong

    2011-09-01

    This research presents a comprehensive analysis of motor vehicle-bicycle crashes using 4 years of reported crash data (2004-2007) in Beijing. The interrelationship of irregular maneuvers, crash patterns and bicyclist injury severity are investigated by controlling for a variety of risk factors related to bicyclist demographics, roadway geometric design, road environment, etc. Results show that different irregular maneuvers are correlated with a number of risk factors at different roadway locations such as the bicyclist age and gender, weather and traffic condition. Furthermore, angle collisions are the leading pattern of motor vehicle-bicycle crashes, and different irregular maneuvers may lead to some specific crash patterns such as head-on or rear-end crashes. Orthokinetic scrape is more likely to result in running over bicyclists, which may lead to more severe injury. Moreover, bicyclist injury severity level could be elevated by specific crash patterns and risk factors including head-on and angle collisions, occurrence of running over bicyclists, night without streetlight, roads without median/division, higher speed limit, heavy vehicle involvement and older bicyclists. This study suggests installation of median, division between roadway and bikeway, and improvement of illumination on road segments. Reduced speed limit is also recommended at roadway locations with high bicycle traffic volume. Furthermore, it may be necessary to develop safety campaigns aimed at male, teenage and older bicyclists. PMID:21658503

  7. Predicting crash risk and identifying crash precursors on Korean expressways using loop detector data.

    PubMed

    Kwak, Ho-Chan; Kho, Seungyoung

    2016-03-01

    In order to improve traffic safety on expressways, it is important to develop proactive safety management strategies with consideration for segment types and traffic flow states because crash mechanisms have some differences by each condition. The primary objective of this study is to develop real-time crash risk prediction models for different segment types and traffic flow states on expressways. The mainline of expressways is divided into basic segment and ramp vicinity, and the traffic flow states are classified into uncongested and congested conditions. Also, Korean expressways have irregular intervals between loop detector stations. Therefore, we investigated on the effect and application of the detector stations at irregular intervals for the crash risk prediction on expressways. The most significant traffic variables were selected by conditional logistic regression analysis which could control confounding factors. Based on the selected traffic variables, separate models to predict crash risk were developed using genetic programming technique. The model estimation results showed that the traffic flow characteristics leading to crashes are differed by segment type and traffic flow state. Especially, the variables related to the intervals between detector stations had a significant influence on crash risk prediction under the uncongested condition. Finally, compared with the single model for all crashes and the logistic models used in previous studies, the proposed models showed higher prediction performance. The results of this study can be applied to develop more effective proactive safety management strategies for different segment types and traffic flow states on expressways with loop detector stations at irregular intervals. PMID:26710266

  8. Fire and materials modeling for transportation systems

    SciTech Connect

    Skocypec, R.D.; Gritzo, L.A.; Moya, J.L.; Nicolette, V.F.; Tieszen, S.R.; Thomas, R.

    1994-10-01

    Fire is an important threat to the safety of transportation systems. Therefore, understanding the effects of fire (and its interaction with materials) on transportation systems is crucial to quantifying and mitigating the impact of fire on the safety of those systems. Research and development directed toward improving the fire safety of transportation systems must address a broad range of phenomena and technologies, including: crash dynamics, fuel dispersion, fire environment characterization, material characterization, and system/cargo thermal response modeling. In addition, if the goal of the work is an assessment and/or reduction of risk due to fires, probabilistic risk assessment technology is also required. The research currently underway at Sandia National Laboratories in each of these areas is summarized in this paper.

  9. Drinking-Driving and Fatal Crashes: A New Perspective

    ERIC Educational Resources Information Center

    Zylman, Richard

    1975-01-01

    Discusses the relationship between alcohol and fatal automobile crashes. Stresses the need for controlled studies in order to determine the correlation between drunk drivers and fatal accidents and to obtain dependable statistics on alcohol-related crashes. (BD)

  10. ATD Occupant Responses from Three Full-Scale General Aviation Crash Tests

    NASA Technical Reports Server (NTRS)

    Littell, Justin D.; Annett, Martin S.

    2016-01-01

    During the summer of 2015, three Cessna 172 General Aviation (GA) aircraft were crash tested at the Landing and Impact Research (LandIR) Facility at NASA Langley Research Center (LaRC). Three different crash scenarios were represented. The first test simulated a flare-to-stall emergency or hard landing onto a rigid surface such as a road or runway. The second test simulated a controlled flight into terrain with a nose down pitch of the aircraft, and the third test simulated a controlled flight into terrain with an attempt to unsuccessfully recover the aircraft immediately prior to impact, resulting in a tail strike condition. An on-board data acquisition system (DAS) captured 64 channels of airframe acceleration, along with accelerations and loads in two onboard Hybrid II 50th percentile Anthropomorphic Test Devices (ATDs) representing the pilot and copilot. Each of the three tests contained different airframe loading conditions and different types of restraints for both the pilot and co-pilot ATDs. The results show large differences in occupant response and restraint performance with varying likelihoods of occupant injury.

  11. Ball lightning risk to aircraft

    NASA Astrophysics Data System (ADS)

    Doe, R.; Keul, A.

    2009-04-01

    Lightning is a rare but regular phenomenon for air traffic. Aircraft are designed to withstand lightning strikes. Research on lightning and aircraft can be called detailed and effective. In the last 57 years, 18 reported lightning aviation disasters with a fatality figure of at least 714 persons occurred. For comparison, the last JACDEC ten-year average fatality figure was 857. The majority encountered lightning in the climb, descent, approach and/or landing phase. Ball lightning, a metastable, rare lightning type, is also seen from and even within aircraft, but former research only reported individual incidents and did not generate a more detailed picture to ascertain whether it constitutes a significant threat to passenger and aircraft safety. Lacking established incident report channels, observations were often only passed on as "air-travel lore". In an effort to change this unsatisfactory condition, the authors have collected a first international dataset of 38 documented ball lightning aircraft incidents from 1938 to 2001 involving 13 reports over Europe, 13 over USA/Canada, and 7 over Russia. 18 (47%) reported ball lightning outside the aircraft, 18 (47%) inside, 2 cases lacked data. 8 objects caused minor damage, 8 major damage (total: 42%), only one a crash. No damage was reported in 18 cases. 3 objects caused minor crew injury. In most cases, ball lightning lasted several seconds. 11 (29%) incidents ended with an explosion of the object. A cloud-aircraft lightning flash was seen in only 9 cases (24%) of the data set. From the detailed accounts of air personnel in the last 70 years, it is evident that ball lightning is rarely, but consistently observed in connection with aircraft and can also occur inside the airframe. Reports often came from multiple professional witnesses and in several cases, damages were investigated by civil or military authorities. Although ball lightning is no main air traffic risk, the authors suggest that incident and accident

  12. Factors Affecting Ejection Risk in Rollover Crashes

    PubMed Central

    Funk, James R.; Cormier, Joseph M.; Bain, Charles E.; Wirth, Jeffrey L.; Bonugli, Enrique B.; Watson, Richard A.

    2012-01-01

    Ejection greatly increases the risk of injury and fatality in a rollover crash. The purpose of this study was to determine the crash, vehicle, and occupant characteristics that affect the risk of ejection in rollovers. Information from real world rollover crashes occurring from 2000 – 2010 was obtained from the National Automotive Sampling System (NASS) in order to analyze the effect of the following parameters on ejection risk: seatbelt use, rollover severity, vehicle type, seating position, roof crush, side curtain airbag deployment, glazing type, and occupant age, gender, and size. Seatbelt use was found to reduce the risk of partial ejection and virtually eliminate the risk of complete ejection. For belted occupants, the risk of partial ejection risk was significantly increased in rollover crashes involving more roof inversions, light trucks and vans (LTVs), and larger occupants. For unbelted occupants, the risk of complete ejection was significantly increased in rollover crashes involving more roof inversions, LTVs, far side occupants, and higher levels of roof crush. Roof crush was not a significant predictor of ejection after normalizing for rollover severity. Curtain airbag deployment was associated with reduced rates of partial and complete ejection, but the effect was not statistically significant, perhaps due to the small sample size (n = 89 raw cases with curtain deployments). A much greater proportion of occupants who were ejected in spite of curtain airbag deployment passed through the sunroof and other portals as opposed to the adjacent side window compared to occupants who were ejected in rollovers without a curtain airbag deployment. The primary factors that reduce ejection risk in rollover crashes are, in generally decreasing order of importance: seatbelt use, fewer roof inversions, passenger car body type, curtain airbag deployment, near side seating position, and small occupant size. PMID:23169130

  13. Conscientious personality and young drivers’ crash risk

    PubMed Central

    Ehsani, Johnathon P.; Li, Kaigang; Simons-Morton, Bruce; Tree-McGrath, Cheyenne Fox; Perlus, Jessamyn; O’Brien, Fearghal; Klauer, Sheila G.

    2015-01-01

    Introduction Personality characteristics are associated with many risk behaviors. However, the relationship between personality traits, risky driving behavior, and crash risk is poorly understood. The purpose of this study was to examine the association between personality, risky driving behavior and crashes and near-crashes, using naturalistic driving research methods. Method Participants’ driving exposure, kinematic risky driving (KRD), high-risk secondary task engagement, and the frequency of crashes and near-crashes (CNC) were assessed over the first 18 months of licensure using naturalistic driving methods. A personality survey (NEO-Five Factor Inventory) was administered at baseline. The association between personality characteristics, KRD rate, secondary task engagement rate and CNC rate was estimated using a linear regression model. Mediation analysis was conducted to examine if participants’ KRD rate or secondary task engagement rate mediated the relationship between personality and CNC. Data were collected as part of the Naturalistic Teen Driving Study. Results Conscientiousness was marginally negatively associated with CNC (path c = −0.034, p = .09) and both potential mediators KRD (path a = −0.040, p = .09) and secondary task engagement while driving (path a = −0.053, p = .03). KRD, but not secondary task engagement, was found to mediate (path b = 0.376, p = .02) the relationship between conscientiousness and CNC (path c’ = −0.025, p = .20). Conclusions Using objective measures of driving behavior and a widely used personality construct, these findings present a causal pathway through which personality and risky driving are associated with CNC. Specifically, more conscientious teenage drivers engaged in fewer risky driving maneuvers, suffered fewer CNC. Practical Applications Part of the variability in crash-risk observed among newly licensed teenage drivers can be explained by personality. Parents and driving instructors may take teenage

  14. Factors affecting ejection risk in rollover crashes.

    PubMed

    Funk, James R; Cormier, Joseph M; Bain, Charles E; Wirth, Jeffrey L; Bonugli, Enrique B; Watson, Richard A

    2012-01-01

    Ejection greatly increases the risk of injury and fatality in a rollover crash. The purpose of this study was to determine the crash, vehicle, and occupant characteristics that affect the risk of ejection in rollovers. Information from real world rollover crashes occurring from 2000 - 2010 was obtained from the National Automotive Sampling System (NASS) in order to analyze the effect of the following parameters on ejection risk: seatbelt use, rollover severity, vehicle type, seating position, roof crush, side curtain airbag deployment, glazing type, and occupant age, gender, and size. Seatbelt use was found to reduce the risk of partial ejection and virtually eliminate the risk of complete ejection. For belted occupants, the risk of partial ejection risk was significantly increased in rollover crashes involving more roof inversions, light trucks and vans (LTVs), and larger occupants. For unbelted occupants, the risk of complete ejection was significantly increased in rollover crashes involving more roof inversions, LTVs, far side occupants, and higher levels of roof crush. Roof crush was not a significant predictor of ejection after normalizing for rollover severity. Curtain airbag deployment was associated with reduced rates of partial and complete ejection, but the effect was not statistically significant, perhaps due to the small sample size (n = 89 raw cases with curtain deployments). A much greater proportion of occupants who were ejected in spite of curtain airbag deployment passed through the sunroof and other portals as opposed to the adjacent side window compared to occupants who were ejected in rollovers without a curtain airbag deployment. The primary factors that reduce ejection risk in rollover crashes are, in generally decreasing order of importance: seatbelt use, fewer roof inversions, passenger car body type, curtain airbag deployment, near side seating position, and small occupant size. PMID:23169130

  15. Costs of Alcohol-Involved Crashes, United States, 2010

    PubMed Central

    Zaloshnja, Eduard; Miller, Ted R.; Blincoe, Lawrence J.

    2013-01-01

    This paper estimates total and unit costs of alcohol-involved crashes in the U.S. in 2010. With methods from earlier studies, we estimated costs per crash survivor by MAIS, body part, and fracture/dislocation involvement. We multiplied them times 2010 crash incidence estimates from NHTSA data sets, with adjustments for underreporting of crashes and their alcohol involvement. The unit costs are lifetime costs discounted at 3%. To develop medical costs, we combined 2008 Health Care Utilization Program national data for hospitalizations and ED visits of crash survivors with prior estimates of post-discharge costs. Productivity losses drew on Current Population Survey and American Time Use Survey data. Quality of life losses came from a 2011 AAAM paper and property damage from insurance data. We built a hybrid incidence file comprised of 2008–2010 and 1984–86 NHTSA crash surveillance data, weighted with 2010 General Estimates System weights. Fatality data came from the 2010 FARS. An estimated 12% of 2010 crashes but only 0.9% of miles driven were alcohol-involved (BAC > .05). Alcohol-involved crashes cost an estimated $125 billion. That is 22.5% of the societal cost of all crashes. Alcohol-attributable crashes accounted for an estimated 22.5% of US auto liability insurance payments. Alcohol-involved crashes cost $0.86 per drink. Above the US BAC limit of .08, crash costs were $8.37 per mile driven; 1 in 788 trips resulted in a crash and 1 in 1,016 trips in an arrest. Unit costs for crash survivors by severity are higher for impaired driving than for other crashes. That suggests national aggregate impaired driving cost estimates in other countries are substantial underestimates if they are based on all-crash unit costs. PMID:24406941

  16. Application of Probabilistic Analysis to Aircraft Impact Dynamics

    NASA Technical Reports Server (NTRS)

    Lyle, Karen H.; Padula, Sharon L.; Stockwell, Alan E.

    2003-01-01

    Full-scale aircraft crash simulations performed with nonlinear, transient dynamic, finite element codes can incorporate structural complexities such as: geometrically accurate models; human occupant models; and advanced material models to include nonlinear stressstrain behaviors, laminated composites, and material failure. Validation of these crash simulations is difficult due to a lack of sufficient information to adequately determine the uncertainty in the experimental data and the appropriateness of modeling assumptions. This paper evaluates probabilistic approaches to quantify the uncertainty in the simulated responses. Several criteria are used to determine that a response surface method is the most appropriate probabilistic approach. The work is extended to compare optimization results with and without probabilistic constraints.

  17. Aircraft Design

    NASA Technical Reports Server (NTRS)

    Bowers, Albion H. (Inventor); Uden, Edward (Inventor)

    2016-01-01

    The present invention is an aircraft wing design that creates a bell shaped span load, which results in a negative induced drag (induced thrust) on the outer portion of the wing; such a design obviates the need for rudder control of an aircraft.

  18. Aircraft Noise

    NASA Astrophysics Data System (ADS)

    Michel, Ulf; Dobrzynski, Werner; Splettstoesser, Wolf; Delfs, Jan; Isermann, Ullrich; Obermeier, Frank

    Aircraft industry is exposed to increasing public pressure aiming at a continuing reduction of aircraft noise levels. This is necessary to both compensate for the detrimental effect on noise of the expected increase in air traffic and improve the quality of living in residential areas around airports.

  19. Investigative and autopsy findings in sport aircraft-related deaths in southwest Florida.

    PubMed

    Wolf, Barbara C; Harding, Brett E

    2008-09-01

    Aircraft designated for sport or recreational use only, including ultralights, experimental aircraft and light-sport aircraft, have become increasingly popular. Because of their relative safety and the rarity of fatalities resulting from crashes of these aircraft, the forensic literature contains little information concerning the pathologic findings in such deaths. We report 9 deaths resulting from 6 sport aircraft crashes in southwest Florida, 6 pilots and 3 passengers. The vehicles involved 3 experimental aircraft, 1 ultralight and 2 "ultralight-like" aircraft. The patterns of injuries included trauma predominantly to the chest (3 cases), abdomen (1) or head (1), as well as multiple blunt force injuries involving the chest and abdomen (1) or the head and torso (3). Extremity fractures were found in only 2 cases, whereas injuries to the symphysis pubis were found in six. No "control-type" injuries were identified. These cases illustrate the varied pathologies associated with deaths due to crashes of sport aircraft and reveal the lack of uniformity associated with the investigations of such deaths. PMID:18725774

  20. Child Passengers Injured in Motor Vehicle Crashes

    PubMed Central

    Romano, Eduardo; Kelley-Baker, Tara

    2015-01-01

    Introduction—During 2010, 171,000 children aged 0-14 were injured in motor vehicle crashes. Despite the severity of the problem, research has been limited, and most of what we know about these children emanates from fatal crash databases. Method—Using information from the General Estimates System, this effort examines the occurrence of non-fatal crashes among children aged 0-14 over the last decade. Results—We found about 1% of the non-injured children in the file had been driven by a driver who was positive for alcohol. This percentage climbed to about 2% among children who had suffered injuries. Compared with the proportion of alcohol-positive drivers at the time of the crash, the proportion of drivers who sped or failed to obey a traffic signal were significantly higher. Practical Applications—The finding that drinking and driving with children did not decrease over time questions the adequacy of the extant child endangerment laws. PMID:25662876

  1. Robotics and Design: An Interdisciplinary Crash Course

    ERIC Educational Resources Information Center

    Bonarini, A.; Romero, M.

    2013-01-01

    The authors designed and ran a crash course on emotional robotics involving students from both the Information Engineering School and the Design School of Politecnico di Milano, Milan, Italy. The course consisted of two intensive days of short introductory lessons and lab activity, done in interdisciplinary groups and supported by a well-equipped…

  2. Analysis of Large Truck Rollover Crashes

    PubMed Central

    McKnight, A. James; Bahouth, George T.

    2008-01-01

    The Large Truck Crash Causation Study undertaken by the Federal Motor Carrier Safety Administration describes 239 crashes in which a truck rolled over. In-depth analysis revealed almost half resulted from failing to adjust speed to curves in the road, (mostly on-and off-ramps), the load being carried, condition of the brakes, road surface, and intersection conditions. A second major crash contributor involved attention: simply being inattentive, dozing or falling asleep, and distraction, all leading to situations where a sudden direction change resulted in a rollover. The third large crash contributor involved steering: over-steering to the point of rolling over, not steering enough to stay in lane, and overcorrecting to the point of having to counter-steer to remain on the road. Finally, loads are a frequent problem when drivers fail to take account of their weight, height or security, or when loading takes place before they are assigned. Instruction in rollover prevention, like most truck driver training, comes through printed publications. The use of video would help drivers recognize incipient rollovers while currently available simulation would allow drivers to experience the consequences of mistakes without risk. PMID:19026244

  3. CRASH3: cosmological radiative transfer through metals

    NASA Astrophysics Data System (ADS)

    Graziani, L.; Maselli, A.; Ciardi, B.

    2013-05-01

    Here we introduce CRASH3, the latest release of the 3D radiative transfer code CRASH. In its current implementation, CRASH3 integrates into the reference algorithm the code CLOUDY to evaluate the ionization states of metals, self-consistently with the radiative transfer through H and He. The feedback of the heavy elements on the calculation of the gas temperature is also taken into account, making CRASH3 the first 3D code for cosmological applications which treats self-consistently the radiative transfer through an inhomogeneous distribution of metal-enriched gas with an arbitrary number of point sources and/or a background radiation. The code has been tested in idealized configurations, as well as in a more realistic case of multiple sources embedded in a polluted cosmic web. Through these validation tests, the new method has been proven to be numerically stable and convergent. We have studied the dependence of the results on a number of physical quantities such as the source characteristics (spectral range and shape, intensity), the metal composition, the gas number density and metallicity.

  4. Forest Fire Observation

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Conditions on the perimeter of a forest fire can be obtained by use of airborne remote sensing techniques demonstrated by Ames Research Center. An Ames U-2 high-altitude survey aircraft served as an aerial fire observation system. Equipped with two types of sensors, the U-2 produces real-time infrared images of fireground scenes. Information acquired by the U-2's scanners defines the fire boundary and aids fire management decisions by showing the size, shape and direction of burn and the locations of hot spots in the fire zone. U-2 sends sensor date in digital form to an antenna at Ames Research Center. There the data is computer processed into images which are overlaid on U.S. Geological Survey topographical maps of the fire area. Maps are then transmitted by telecopy machine directly to fire control center. Whole process takes less than 10 minutes and the U-2 can provide information for up to five hours. Ames antenna can pick up signals from the U-2 anywhere within a 300 mile radius from Ames.

  5. Survivors’ experiences from a train crash

    PubMed Central

    Saveman, Britt-Inger

    2011-01-01

    Rarely described are people's lived experiences from severe injury events such as train crashes. The number of train crashes named disasters with ≥10 killed and/or ≥100 nonfatally injured grows globally and the trend shows that more people survive these disasters today than did so in the past. This results in an increased number of survivors needing care. The aim of the study was to explore survivors’ experiences from a train crash. Narrative interviews were performed with 14 passengers 4 years after a train crash event. Qualitative content analysis was used to analyse the interviews. Experiences were captured in three main themes: (1) Living in the mode of existential threat describes how the survivors first lost control, then were thrown into a state of unimaginable chaos as they faced death. (2) Dealing with the unthinkable described how survivors restored control, the central role of others, and the importance of reconstructing the event to move forward in their processing. (3) Having cheated death shows how some became shackled by their history, whereas others overcame the haunting of unforgettable memories. Furthermore, the result shows how all experienced a second chance in life. Experiencing a train crash meant that the passengers experienced severe vulnerability and a threat to life and interdependence turned out to play a crucial role. Focusing on helping other passengers on site was one way to regain the loss of control and kept the chaos at bay. Family, friends, and fellow passengers turned out to be extremely important during the recovery process why such closeness should be promoted and facilitated. PMID:22125573

  6. Defining and screening crash surrogate events using naturalistic driving data.

    PubMed

    Wu, Kun-Feng; Jovanis, Paul P

    2013-12-01

    Naturalistic driving studies provide an excellent opportunity to better understand crash causality and to supplement crash observations with a much larger number of near crash events. The goal of this research is the development of a set of diagnostic procedures to define, screen, and identify crash and near crash events that can be used in enhanced safety analyses. A way to better understand crash occurrence and identify potential countermeasures to improve safety is to learn from and use near crash events, particularly those near crashes that have a common etiology to crash outcomes. This paper demonstrates that a multi-stage modeling framework can be used to search through naturalistic driving data, extracting statistically similar crashes and near crashes. The procedure is tested using data from the VTTI 100-car study for road departure events. A total of 63 events are included in this application. While the sample size is limited in this empirical study, the authors believe the procedure is ready for testing in other applications. PMID:23177902

  7. Characteristics of the Injury Environment in Far-Side Crashes

    PubMed Central

    Digges, K.; Gabler, H; Mohan, P.; Alonso, B.

    2005-01-01

    The population of occupants in far-side crashes that are documented in the US National database (NASS/CDS) was studied. The annual number of front seat occupants with serious or fatal injuries in far-side planar and rollover crashes was 17,194. The crash environment that produces serious and fatal injuries to belted front seat occupants in planar far-side crashes was investigated in detail. It was found that both the change in velocity and extent of damage were important factors that relate to crash severity. The median severity for crashes with serious or fatal injuries was a lateral delta-V of 28 kph and an extent of damage of CDC 3.6. Vehicle-to-vehicle impacts were simulated by finite element models to determine the intrusion characteristics associated with the median crash condition. These simulations indicated that the side damage caused by the IIHS barrier was representative of the damage in crashes that produce serious injuries in far-side crashes. Occupant simulations of the IIHS barrier crash at 28 kph showed that existing dummies lack biofidelity in upper body motion. The analysis suggested test conditions for studying far-side countermeasures and supported earlier studies that showed the need for an improved dummy to evaluate safety performance in the far-side crash environment. PMID:16179148

  8. How similar are two-unit bicycle and motorcycle crashes?

    PubMed

    Haworth, Narelle; Debnath, Ashim Kumar

    2013-09-01

    This paper explores the similarities and differences between bicycle and motorcycle crashes with other motor vehicles. If similar treatments can be effective for both bicycle and motorcycle crashes, then greater benefits in terms of crash costs saved may be possible for the same investment in treatments. To reduce the biases associated with under-reporting of these crashes to police, property damage and minor injury crashes were excluded. The most common crash type for both bicycles (31.1%) and motorcycles (24.5%) was intersection from adjacent approaches. Drivers of other vehicles were coded most at fault in the majority of two-unit bicycle (57.0%) and motorcycle crashes (62.7%). The crash types, patterns of fault and factors affecting fault were generally similar for bicycle and motorcycle crashes. This confirms the need to combat the factors contributing to failure of other drivers to yield right of way to two-wheelers, and suggest that some of these actions should prove beneficial to the safety of both motorized and non-motorized two-wheelers. In contrast, child bicyclists were more often at fault, particularly in crashes involving a vehicle leaving the driveway or footpath. The greater reporting of violations by riders and drivers in motorcycle crashes also deserves further investigation. PMID:23689202

  9. Real World Crash Evaluation of Vehicle Stability Control (VSC) Technology

    PubMed Central

    Bahouth, G.

    2005-01-01

    This study quantifies the effect of Vehicle Stability Control (VSC) in reducing crash involvement rates for a subset of vehicles in the US fleet. Crash rates for a variety of impact types before and after VSC technology was implemented are compared. Police-reported crashes from six available US state files from 1998–2002 were analyzed including 13,987 crash-involved study vehicles not equipped with the technology and 5,671 crashes of vehicles equipped with VSC as a standard feature. Overall, an 11.2% (95% CI: 2.4%, 21.1%) reduction in multi-vehicle frontal crash involvement was identified for VSC-equipped vehicles. A 52.6% (95% CI: 42.5%, 62.7%) reduction in single-vehicle crash rates was found. PMID:16179137

  10. A review of Boeing interior materials and fire test methods development programs

    NASA Technical Reports Server (NTRS)

    Bara, E.

    1979-01-01

    Total materials systems requirements, and government and industry programs are outlined along with a new fire test methodology, and the potential decrease in post crash fire hazards. The flammability, smoke and toxicity goals, and the scope of materials systems are tabulated.

  11. A model of traffic crashes in New Zealand.

    PubMed

    Scuffham, P A; Langley, J D

    2002-09-01

    The aim of this study was to examine the changes in the trend and seasonal patterns in fatal crashes in New Zealand in relation to changes in economic conditions between 1970 and 1994. The Harvey and Durbin (Journal of the Royal Statistical Society 149 (3) (1986) 187-227) structural time series model (STSM), an 'unobserved components' class of model, was used to estimate models for quarterly fatal traffic crashes. The dependent variable was modelled as the number of crashes and three variants of the crash rate (crashes per 10,000 km travelled, crashes per 1,000 vehicles, and crashes per 1000 population). Independent variables included in the models were unemployment rate (UER), real gross domestic product per capita, the proportion of motorcycles, the proportion of young males in the population, alcohol consumption per capita, the open road speed limit, and dummy variables for the 1973 and 1979 oil crises and seat belt wearing laws. UERs, real GDP per capita, and alcohol consumption were all significant and important factors in explaining the short-run dynamics of the models. In the long-run, real GDP per capita was directly related to the number of crashes but after controlling for distance travelled was not significant. This suggests increases in income are associated with a short-run reduction in risk but increases in exposure to a crash (i.e. distance travelled) in the long-run. A 1% increase in the open road speed limit was associated with a long-run 0.5% increase in fatal crashes. Substantial reductions in fatal crashes were associated with the 1979 oil crisis and seat belt wearing laws. The 1984 universal seat belt wearing law was associated with a sustained 15.6% reduction in fatal crashes. These road policy factors appeared to have a greater influence on crashes than the role of demographic and economic factors. PMID:12214962

  12. Gender and Age Differences among Teen Drivers in Fatal Crashes.

    PubMed

    Swedler, David I; Bowman, Stephen M; Baker, Susan P

    2012-01-01

    To identify age and gender differences among teen drivers in fatal crashes, we analyzed FARS data for 14,026crashes during 2007-2009. Compared with female teenagers, crashes of male teenagers were significantly more likely to involve BACs of 0.08% or more (21% vs. 12%), speeding (38% vs. 25%), reckless driving (17% vs. 14%), night driving (41% vs. 36%) and felony crashes (hit-and-run, homicide, or manslaughter) (8% vs. 6%) (all χ(2) p<0.001). Conversely, crashes of female teenagers were more likely to involve right angle ("t-bone") crashes (23% vs. 17%). Some crash characteristics associated with males and known to play a major role in crash causation also are more common in the youngest teenagers; for example, crashes of drivers age 15 or 16 were more likely than crashes of older teens to involve speeding or reckless driving. Crashes of drivers with BACs of 0.08% or higher increased with age in both genders. Some age effects differed by gender: for example, the proportion of crashes of female teens that involved speeding dropped from 38% to 22% between ages 15 and 19, while for males about 38% of crashes at each age involved speeding. The gender and age differences observed in teen drivers suggest opportunities for targeted driver training - for example, simulator training modules specifically tailored for male or female teenagers. Technology-based tools could also be developed to help parents to focus on the reckless driving tendencies of their sons. Insurance companies should consider ways to incentivize young males to drive more responsibly. PMID:23169121

  13. Database improvements for motor vehicle/bicycle crash analysis

    PubMed Central

    Lusk, Anne C; Asgarzadeh, Morteza; Farvid, Maryam S

    2015-01-01

    Background Bicycling is healthy but needs to be safer for more to bike. Police crash templates are designed for reporting crashes between motor vehicles, but not between vehicles/bicycles. If written/drawn bicycle-crash-scene details exist, these are not entered into spreadsheets. Objective To assess which bicycle-crash-scene data might be added to spreadsheets for analysis. Methods Police crash templates from 50 states were analysed. Reports for 3350 motor vehicle/bicycle crashes (2011) were obtained for the New York City area and 300 cases selected (with drawings and on roads with sharrows, bike lanes, cycle tracks and no bike provisions). Crashes were redrawn and new bicycle-crash-scene details were coded and entered into the existing spreadsheet. The association between severity of injuries and bicycle-crash-scene codes was evaluated using multiple logistic regression. Results Police templates only consistently include pedal-cyclist and helmet. Bicycle-crash-scene coded variables for templates could include: 4 bicycle environments, 18 vehicle impact-points (opened-doors and mirrors), 4 bicycle impact-points, motor vehicle/bicycle crash patterns, in/out of the bicycle environment and bike/relevant motor vehicle categories. A test of including these variables suggested that, with bicyclists who had minor injuries as the control group, bicyclists on roads with bike lanes riding outside the lane had lower likelihood of severe injuries (OR, 0.40, 95% CI 0.16 to 0.98) compared with bicyclists riding on roads without bicycle facilities. Conclusions Police templates should include additional bicycle-crash-scene codes for entry into spreadsheets. Crash analysis, including with big data, could then be conducted on bicycle environments, motor vehicle potential impact points/doors/mirrors, bicycle potential impact points, motor vehicle characteristics, location and injury. PMID:25835304

  14. Rollover crashes: predicting serious injury based on occupant, vehicle, and crash characteristics.

    PubMed

    Conroy, Carol; Hoyt, David B; Eastman, A Brent; Erwin, Steve; Pacyna, Sharon; Holbrook, Troy Lisa; Vaughan, Teresa; Sise, Michael; Kennedy, Frank; Velky, Tom

    2006-09-01

    The purpose of this research was to determine occupant, vehicle, and crash characteristics predicting serious injury during rollover crashes. We compared 27 case occupants with serious or greater severity injuries with 606 control occupants without injury or with only minor or moderate injury. Odds ratios (OR) for individual variables and logistic regression were used to identify predictive variables for serious injury associated with rollovers. Cases more often had thorax, spine, or head injury compared to controls that more often had extremity injuries. Intrusion (especially roof rail or B-pillar intrusion) at the occupant's position, the vehicle interior side and roof as sources of injury, and improper safety belt use were significantly associated with serious injury. Even when safety belt use or proper use was controlled for, occupants with greater magnitude of intrusion at their seat position were about 10 times more likely to receive serious injury. Although prevention of rollover crashes is the ultimate goal, it is important to develop safer vehicles and safety systems to better protect occupants who are involved in rollover crashes. This also requires improvement in data collection systems documenting these types of crashes. PMID:16540073

  15. Explaining Differences in Crash and Injury Crash Outcomes in Red Light Camera Studies.

    PubMed

    Langland-Orban, Barbara; Pracht, Etienne E; Large, John T; Zhang, Nanhua; Tepas, Joseph T

    2016-06-01

    Evaluations of red light camera (RLC) traffic safety programs have produced mixed results. Some conclude RLCs were associated with significant increases in motor vehicle crashes and injury crashes, whereas other research reports safety benefits. To understand the difference in findings, the present analysis assessed whether standards required for internal validity in quasi-experimental public health program evaluations were adhered to in frequently cited RLC analyses. Four evaluation standards were identified and used to assess the RLC analyses: lack of bias in the selection of both (a) treated sites and (b) comparison sites, (c) integration of relevant control variables in the analysis, and (d) full disclosure of results of the statistical analysis. Six leading RLC studies were then critiqued. Only two of the six studies adhered to the four standards and both concluded RLCs were associated with significant increases in crashes and injury or possible injury crashes. A third study reported an increase in fatal/injury crashes but did not test for statistical significance. Three studies reported equivocal findings; however, each failed to adhere to most standards. Differences in findings were attributed to the evaluation methods used. If implementing an RLC program, communities should use sound public health evaluation methods to assess effectiveness. PMID:25007792

  16. Predicting severe head injury after light motor vehicle crashes: implications for automatic crash notification systems.

    PubMed

    Talmor, Daniel; Thompson, Kimberly M; Legedza, Anna T R; Nirula, Ram

    2006-07-01

    Motor vehicle crashes (MVC) are a leading public health problem. Improving notification times and the ability to predict which crashes will involve severe injuries may improve trauma system utilization. This study was undertaken to develop and validate a model to predict severe head injury following MVC using information readily incorporated into an automatic crash notification system. A cross-sectional study with derivation and validation sets was performed. The cohort was drawn from drivers of vehicles involved in MVC obtained from the National Automotive Sampling System (NASS). Independent multivariable predictors of severe head injury were identified. The model was able to stratify drivers according to their risk of severe head injury indicating its validity. The areas under the receiver-operating characteristic (ROC) curves were 0.7928 in the derivation set and 0.7940 in the validation set. We have developed a prediction model for head injury in MVC. As the development of automatic crash notification systems improves, models such as this one will be necessary to permit triage of what would be an overwhelming increase in crash notifications to pre-hospital responders. PMID:16530717

  17. Dynamic model for automotive side impact crashes

    NASA Astrophysics Data System (ADS)

    Sun, Ludong; Taghvaeeyan, Saber; Rajamani, Rajesh

    2014-07-01

    A rigid body model to represent a side impact crash is constructed using five degrees-of-freedom (dof) for the vehicle and three dof for each occupant in the vehicle. Nonlinear stiffness and damping elements and the presence of physical gaps between several components make the model highly nonlinear. The model is validated using experimental crash test data from a National Highway Traffic Safety Administration (NHTSA) database. To simplify the parameter identification process and reduce the number of parameters to be identified at each stage, a two-step process is adopted in which the vehicle is first assumed to be unaffected by the presence of the occupants, and its model parameters are identified. Subsequently, the parameters in the occupant models are identified. The active set method with a performance index that includes both the L2 and L∞ norms is used for parameter identification. A challenge is posed by the fact that the optimisation problem involved is non-convex. To overcome this challenge, a large set of random initial values of parameter estimates is generated and the optimisation method is applied with all these initial conditions. The values of parameters that provide the minimal performance index from the entire set of initial conditions are then chosen as the best parameter values. The optimal parameters values thus identified are shown to significantly improve the match between the model responses and the experimentally measured sensor signals from the NHTSA crash test.

  18. Modeling situation awareness and crash risk.

    PubMed

    Fisher, Donald L; Strayer, David L

    2014-01-01

    In this article we develop a model of the relationship between crash risk and a driver's situation awareness. We consider a driver's situation awareness to reflect the dynamic mental model of the driving environment and to be dependent upon several psychological processes including Scanning the driving environment, Predicting and anticipating hazards, Identifying potential hazards in the driving scene as they occur, Deciding on an action, and Executing an appropriate Response (SPIDER). Together, SPIDER is important for establishing and maintaining good situation awareness of the driving environment and good situation awareness is important for coordinating and scheduling the SPIDER-relevant processes necessary for safe driving. An Order-of-Processing (OP) model makes explicit the SPIDER-relevant processes and how they predict the likelihood of a crash when the driver is or is not distracted by a secondary task. For example, the OP model shows how a small decrease in the likelihood of any particular SPIDER activity being completed successfully (because of a concurrent secondary task performance) would lead to a large increase in the relative risk of a crash. PMID:24776225

  19. Safer Roadside Crash Walls Would Limit Deceleration

    NASA Technical Reports Server (NTRS)

    Schneider, William C.; Locke, James P.

    2003-01-01

    The figure depicts the aspects of a proposed deceleration-limiting design for crash walls at the sides of racetracks and highways. The proposal is intended to overcome the disadvantages of both rigid barriers and kinetic-energy-absorbing barriers of prior design. Rigid barriers can keep high-speed crashing motor vehicles from leaving roadways and thereby prevent injury to nearby persons and objects, but they can also subject the occupants of the vehicles to deceleration levels high enough to cause injury or death. Kinetic-energy-absorbing barriers of prior design reduce deceleration levels somewhat, but are not designed to soften impacts optimally; moreover, some of them allow debris to bounce back onto roadways or onto roadside areas, and, in cases of glancingly incident vehicles, some of them can trap the vehicles in such a manner as to cause more injury than would occur if the vehicles were allowed to skid along the rigid barriers. The proposed crash walls would (1) allow tangentially impacting vehicles to continue sliding along the racetrack without catching them, (2) catch directly impacting vehicles to prevent them from injuring nearby persons and objects, and (3) absorb kinetic energy in a more nearly optimum way to limit decelerations to levels that human occupants could survive.

  20. Modeling Situation Awareness and Crash Risk

    PubMed Central

    Fisher, Donald L.; Strayer, David. L.

    2014-01-01

    In this article we develop a model of the relationship between crash risk and a driver’s situation awareness. We consider a driver’s situation awareness to reflect the dynamic mental model of the driving environment and to be dependent upon several psychological processes including Scanning the driving environment, Predicting and anticipating hazards, Identifying potential hazards in the driving scene as they occur, Deciding on an action, and Executing an appropriate Response (SPIDER). Together, SPIDER is important for establishing and maintaining good situation awareness of the driving environment and good situation awareness is important for coordinating and scheduling the SPIDER-relevant processes necessary for safe driving. An Order-of-Processing (OP) model makes explicit the SPIDER-relevant processes and how they predict the likelihood of a crash when the driver is or is not distracted by a secondary task. For example, the OP model shows how a small decrease in the likelihood of any particular SPIDER activity being completed successfully (because of a concurrent secondary task performance) would lead to a large increase in the relative risk of a crash. PMID:24776225

  1. The Stock Market Crashes of 1929 and 1987: Linking History and Personal Finance Education

    ERIC Educational Resources Information Center

    Lopus, Jane S.

    2005-01-01

    This article discusses two twentieth-century stock market crashes: the crash of 1929 and the crash of 1987. When this material is presented to students, they see important parallels between the two historical events. But despite remarkable similarities in the severity and many other aspects of the two crashes, the crash of 1929 was followed by the…

  2. Suggested Guide for Fire Service Standard Operating Procedures.

    ERIC Educational Resources Information Center

    Gillett, Merl; Hertzler, Simon L.

    Suggested guidelines for the development of fire service standard operating procedures are presented in this document. Section topics are as follow: chain of command; communications; emergency response; apparatus; fire service training; disaster response; aircraft fire safety; mutual aid; national reporting system (example reporting forms);…

  3. 14 CFR 29.859 - Combustion heater fire protection.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Combustion heater fire protection. 29.859 Section 29.859 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Design and Construction Fire Protection § 29.859 Combustion heater fire protection....

  4. 14 CFR 25.859 - Combustion heater fire protection.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Combustion heater fire protection. 25.859 Section 25.859 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Design and Construction Fire Protection § 25.859 Combustion heater fire protection....

  5. 14 CFR 25.1181 - Designated fire zones; regions included.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Designated fire zones; regions included. 25.1181 Section 25.1181 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Powerplant Fire Protection § 25.1181 Designated fire zones;...

  6. 14 CFR 25.854 - Lavatory fire protection.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Lavatory fire protection. 25.854 Section 25.854 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Design and Construction Fire Protection § 25.854 Lavatory fire protection. For airplanes with...

  7. Identifying Critical Road Geometry Parameters Affecting Crash Rate and Crash Type

    PubMed Central

    Othman, Sarbaz; Thomson, Robert; Lannér, Gunnar

    2009-01-01

    The objective of this traffic safety investigation was to find critical road parameters affecting crash rate (CR). The study was based on crash and road maintenance data from Western Sweden. More than 3000 crashes, reported from 2000 to 2005 on median-separated roads, were collected and combined with road geometric and surface data. The statistical analysis showed variations in CR when road elements changed confirming that road characteristics affect CR. The findings indicated that large radii right-turn curves were more dangerous than left curves, in particular, during lane changing manoeuvres. However sharper curves are more dangerous in both left and right curves. Moreover, motorway carriageways with no or limited shoulders have the highest CR when compared to other carriageway widths, while one lane carriageway sections on 2+1 roads were the safest. Road surface results showed that both wheel rut depth and road roughness have negative impacts on traffic safety. PMID:20184841

  8. A tree-structured crash surrogate measure for freeways.

    PubMed

    Kuang, Yan; Qu, Xiaobo; Wang, Shuaian

    2015-04-01

    In this paper, we propose a novel methodology to define and estimate a surrogate measure. By imposing a hypothetical disturbance to the leading vehicle, the following vehicle's action is represented as a probabilistic causal model. After that, a tree is built to describe the eight possible conflict types under the model. The surrogate measure, named Aggregated Crash Index (ACI), is thus proposed to measure the crash risk. This index reflects the accommodability of freeway traffic state to a traffic disturbance. We further apply this measure to evaluate the crash risks in a freeway section of Pacific Motorway, Australia. The results show that the proposed indicator outperforms the three traditional crash surrogate measures (i.e., Time to Collision, Proportion of Stopping Distance, and Crash Potential Index) in representing rear-end crash risks. The applications of this measure are also discussed. PMID:25710638

  9. STOL Aircraft

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Michael E. Fisher, President of AeroVisions International, has introduced the Culex light twin engine aircraft which offers economy of operation of a single engine plane, the ability to fly well on one engine, plus the capability of flying from short, unimproved fields of takeoff and landing distances less than 35 feet. Key element of design is an airfoil developed by Langley. Culex was originally intended to be factory built aircraft for special utility markets. However, it is now offered as a build-it-yourself kit plane.

  10. Fire behavior and risk analysis in spacecraft

    NASA Technical Reports Server (NTRS)

    Friedman, Robert; Sacksteder, Kurt R.

    1988-01-01

    Practical risk management for present and future spacecraft, including space stations, involves the optimization of residual risks balanced by the spacecraft operational, technological, and economic limitations. Spacecraft fire safety is approached through three strategies, in order of risk: (1) control of fire-causing elements, through exclusion of flammable materials for example; (2) response to incipient fires through detection and alarm; and (3) recovery of normal conditions through extinguishment and cleanup. Present understanding of combustion in low gravity is that, compared to normal gravity behavior, fire hazards may be reduced by the absence of buoyant gas flows yet at the same time increased by ventilation flows and hot particle expulsion. This paper discusses the application of low-gravity combustion knowledge and appropriate aircraft analogies to fire detection, fire fighting, and fire-safety decisions for eventual fire-risk management and optimization in spacecraft.

  11. Safer Aircraft Possible With Nitrogen Generation

    NASA Technical Reports Server (NTRS)

    Palaszewski, Bryan A.

    2001-01-01

    A system named On-Board Inert Gas Generation System/On-Board Oxygen Generation System (OBIGGS/OBOGS) was studied with Boeing. The study established the requirements for nitrogen purge (for fuel tank inerting and cargo compartment fire suppression) and oxygen (for passengers and crew). The nitrogen would be used for suppressing fires and fuel tank explosions on the aircraft, and the oxygen would be used for breathing gas during high-altitude or emergency operations.

  12. Study of materials performance model for aircraft interiors

    NASA Technical Reports Server (NTRS)

    Leary, K.; Skratt, J.

    1980-01-01

    A demonstration version of an aircraft interior materials computer data library was developed and contains information on selected materials applicable to aircraft seats and wall panels, including materials for the following: panel face sheets, bond plies, honeycomb, foam, decorative film systems, seat cushions, adhesives, cushion reinforcements, fire blocking layers, slipcovers, decorative fabrics and thermoplastic parts. The information obtained for each material pertains to the material's performance in a fire scenario, selected material properties and several measures of processability.

  13. Fire safety applications for spacecraft

    NASA Technical Reports Server (NTRS)

    Friedman, Robert; Olson, Sandra L.

    1989-01-01

    Fire safety for spacecraft is reviewed by first describing current practices, many of which are adapted directly from aircraft. Then, current analyses and experimental knowledge in low-gravity combustion, with implications for fire safety are discussed. In orbiting spacecraft, the detection and suppression of flames are strongly affected by the large reduction in buoyant flows under low gravity. Generally, combustion intensity is reduced in low gravity. There are some notable exceptions, however, one example being the strong enhancement of flames by low-velocity ventilation flows in space. Finally, the future requirements in fire safety, particularly the needs of long-duration space stations in fire prevention, detection, extinguishment, and atmospheric control are examined. The goal of spacecraft fire-safety investigations is the establishment of trade-offs that promote maximum safety without hampering the useful human and scientific activities in space.

  14. Relating crash frequency and severity: evaluating the effectiveness of shoulder rumble strips on reducing fatal and major injury crashes.

    PubMed

    Wu, Kun-Feng; Donnell, Eric T; Aguero-Valverde, Jonathan

    2014-06-01

    To approach the goal of "Toward Zero Deaths," there is a need to develop an analysis paradigm to better understand the effects of a countermeasure on reducing the number of severe crashes. One of the goals in traffic safety research is to search for an effective treatment to reduce fatal and major injury crashes, referred to as severe crashes. To achieve this goal, the selection of promising countermeasures is of utmost importance, and relies on the effectiveness of candidate countermeasures in reducing severe crashes. Although it is important to precisely evaluate the effectiveness of candidate countermeasures in reducing the number of severe crashes at a site, the current state-of-the-practice often leads to biased estimates. While there have been a few advanced statistical models developed to mitigate the problem in practice, these models are computationally difficult to estimate because severe crashes are dispersed spatially and temporally, and cannot be integrated into the Highway Safety Manual framework, which develops a series of safety performance functions and crash modification factors to predict the number of crashes. Crash severity outcomes are generally integrated into the Highway Safety Manual using deterministic distributions rather than statistical models. Accounting for the variability in crash severity as a function geometric design, traffic flow, and other roadway and roadside features is afforded by estimating statistical models. Therefore, there is a need to develop a new analysis paradigm to resolve the limitations in the current Highway Safety Manual methods. We propose an approach which decomposes the severe crash frequency into a function of the change in the total number of crashes and the probability of a crash becoming a severe crash before and after a countermeasure is implemented. We tested this approach by evaluating the effectiveness of shoulder rumble strips on reducing the number of severe crashes. A total of 310 segments that have

  15. Crash Culpability and the Role of Driver Blood Alcohol Levels

    PubMed Central

    Kufera, Joseph A.; Soderstrom, Carl A.; Dischinger, Patricia C.; Ho, Shiu M.; Shepard, Angela

    2006-01-01

    Twenty years ago the American Medical Association reported the relationship between blood alcohol concentration (BAC) and crash causation. This study addresses culpability, age, gender and BAC in a population of drivers injured in motor vehicle crashes. Five years of hospital and crash data were linked, using probabilistic techniques. Trends in culpability were analyzed by BAC category. Given BAC level, the youngest and oldest drivers were more likely to have caused their crash. Women drivers had significantly higher odds of culpability at the highest BAC levels. Seatbelt use was also associated with culpability, perhaps as a marker for risk-taking among drinkers. PMID:16968631

  16. Older driver population and crash involvement trends, 1974-1988.

    PubMed

    Stutts, J C; Martell, C

    1992-08-01

    North Carolina motor vehicle crash data for even-numbered years 1974-1988, inclusive, are analyzed in conjunction with North Carolina population, licensed driver, and mileage data to examine trends in motor vehicle crash involvement by driver age, sex, and race. Crash rates per licensed driver are presented along with crash rates per estimated vehicle miles travelled calculated on the basis of induced exposure. Results focus particularly on older drivers. They show that older drivers' representation in the licensed driver population has increased at a greater rate than their representation in either the census or crash involvement populations. These trends are particularly strong for females and for nonwhites. Furthermore, crash rates have declined more for drivers aged 55 and older than for younger drivers. The greatest declines, both in terms of crashes per licensed driver and crashes per estimated miles travelled, have been experienced by drivers age 65 and older, particularly nonwhites. Males show higher overall crash rates per miles travelled than females, but this effect decreases with age and disappears entirely in the oldest age categories. Results are discussed in light of the changing nature of the overall driving population and the cohort of older drivers in particular. PMID:1605814

  17. Development of crashworthy passenger seats for general-aviation aircraft

    NASA Technical Reports Server (NTRS)

    Reilly, M. J.; Tanner, A. E.

    1979-01-01

    Two types of energy absorbing passenger seat concepts suitable for installation in light twin-engine fixed wing aircraft were developed. An existing passenger seat for such an aircraft was used to obtain the envelope constraints. Ceiling suspended and floor supported seat concept designs were developed. A restraint system suitable for both concepts was designed. Energy absorbing hardware for both concepts was fabricated and tension and compression tests were conducted to demonstrate the stroking capability and the force deflection characteristics. Crash impact analysis was made and seat loads developed. The basic seat structures were analyzed to determine the adequacy of their strength under impact loading.

  18. Aircraft cybernetics

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The use of computers for aircraft control, flight simulation, and inertial navigation is explored. The man-machine relation problem in aviation is addressed. Simple and self-adapting autopilots are described and the assets and liabilities of digital navigation techniques are assessed.

  19. 49 CFR 175.9 - Special aircraft operations.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... aircraft. Operators must have all applicable requirements prescribed in 14 CFR part 133 approved by the FAA... activation devices, lighting equipment, oxygen cylinders, flotation devices, smoke grenades, flares, or... aircraft. (4) Hazardous materials are carried and used during dedicated air ambulance, fire fighting,...

  20. 49 CFR 175.9 - Special aircraft operations.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... aircraft. Operators must have all applicable requirements prescribed in 14 CFR Part 133 approved by the FAA... activation devices, lighting equipment, oxygen cylinders, flotation devices, smoke grenades, flares, or... aircraft. (4) Hazardous materials are carried and used during dedicated air ambulance, fire fighting,...

  1. 49 CFR 175.9 - Special aircraft operations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... aircraft. Operators must have all applicable requirements prescribed in 14 CFR Part 133 approved by the FAA... activation devices, lighting equipment, oxygen cylinders, flotation devices, smoke grenades, flares, or... aircraft. (4) Hazardous materials are carried and used during dedicated air ambulance, fire fighting,...

  2. Crash protection of stock car racing drivers--application of biomechanical analysis of Indy car crash research.

    PubMed

    Melvin, John W; Begeman, Paul C; Faller, Ronald K; Sicking, Dean L; McClellan, Scott B; Maynard, Edwin; Donegan, Michael W; Mallott, Annette M; Gideon, Thomas W

    2006-11-01

    Biomechanical analysis of Indy car crashes using on-board impact recorders (Melvin et al. 1998, Melvin et al. 2001) indicates that Indy car driver protection in high-energy crashes can be achieved in frontal, side, and rear crashes with severities in the range of 100 to 135 G peak deceleration and velocity changes in the range of 50 to 70 mph. These crashes were predominantly single-car impacts with the rigid concrete walls of oval tracks. This impressive level of protection was found to be due to the unique combination of a very supportive and tight-fitting cockpit-seating package, a six-point belt restraint system, and effective head padding with an extremely strong chassis that defines the seat and cockpit of a modern Indy car. In 2000 and 2001, a series of fatal crashes in stock car racing created great concern for improving the crash protection for drivers in those racecars. Unlike the Indy car, the typical racing stock car features a more spacious driver cockpit due to its resemblance to the shape of a passenger car. The typical racing seat used in stock cars did not have the same configuration or support characteristics of the Indy car seat, and five-point belt restraints were used. The tubular steel space frame chassis of a stock car also differs from an Indy car's composite chassis structure in both form and mechanical behavior. This paper describes the application of results of the biomechanical analysis of the Indy car crash studies to the unique requirements of stock car racing driver crash protection. Sled test and full-scale crash test data using both Hybrid III frontal crash anthropomorphic test devices (ATDs) and BioSID side crash ATDs for the purpose of evaluating countermeasures involving restraint systems, seats and head/neck restraints has been instrumental in guiding these developments. In addition, the development of deformable walls for oval tracks (the SAFER Barrier) is described as an adjunct to improved occupant restraint through control

  3. 75 FR 13646 - Public Meeting With Interested Persons To Discuss the Proposed AC 20-42D, Hand Fire Extinguishers...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-22

    ..., Hand Fire Extinguishers for Use in Aircraft ACTION: Notice of public meeting. SUMMARY: The Federal... received regarding proposed advisory circular (AC) 20-42D, Hand Fire Extinguishers for use in Aircraft... guidance for the fire-fighting effectiveness, selection, location, mounting and safe-use of hand...

  4. Female involvement in U.S. nonfatal crashes under a three-level hierarchical crash model.

    PubMed

    Kelley-Baker, Tara; Romano, Eduardo

    2010-11-01

    Men have long held the lead in motor-vehicle crashes; however, research indicates that women are closing the gap. To further investigate this problem, we applied a hierarchical model to investigate female involvement in fatal crashes in the United States. The hierarchical model recognizes that decisions at higher levels affect the decisions at lower levels. At the top level, the model assumes that the driver's condition (e.g., inattention, fatigue, impairment) affects the next level (e.g., speeding or other failures to obey traffic laws), which subsequently affects the basic maneuvering skills (i.e., the lowest level) were either nonexistent, or largely explained by gender differences in alcohol consumption. We found that although female involvement in skill-related crashes was not different from that of males, females were more likely than males to apply wrong maneuvers when speeding was involved. We also found that the most important contributing factor to gender differences in nonfatal crashes can be traced back to gender-based differences in alcohol consumption. PMID:20728655

  5. Planar impacts in rollover crashes: significance, distribution and injury epidemiology.

    PubMed

    Bose, Dipan; Kerrigan, Jason R; Foster, Jonathan B; Crandall, Jeff R; Tobaru, Shigeo

    2011-01-01

    While one third of all fatal motor vehicle crashes involve rollover of the vehicle, a substantially large portion of these rollover crashes involve planar impacts (e.g., frontal, side or rear impact) that influence the crash kinematics and subsequently the injury outcome. The objective of the study was to evaluate the distribution of planar impacts in rollover crashes, and in particular, to describe the differences in the underlying crash kinematics, injury severity and the regional distribution of injuries when compared to the rollover-dominated crashes without significant planar impact (i.e., primary rollovers). Sampled cases (n=6,900) from the U.S. National Automotive Sampling System - Crashworthiness Data System, representing approximately 3.3 million belted drivers involved in a rollover crash in years 1998-2008, were analyzed. Single vehicle rollover crashes with significant planar impact (21% of all rollover crashes) were in general more likely to result in occupant fatality and involved higher incidence of moderate to severe injuries compared to single vehicle primary rollovers (p<0.05). A substantial proportion of the planar impact rollovers ended in single quarter turn crashes (30%), mostly resulting from a frontal impact (59%). While chest was the most frequently injured body region among all rollover victims sustaining severe injuries, severe injuries sustained in primary rollovers were more isolated (single body region) in comparison to the ones sustained in rollovers with planar impacts. The results emphasize the higher risk of rollover victims sustaining an injury and the differences in distribution of injuries sustained when a planar impact is associated with the rollover crash. PMID:22105400

  6. Planar Impacts in Rollover Crashes: Significance, Distribution and Injury Epidemiology

    PubMed Central

    Bose, Dipan; Kerrigan, Jason R.; Foster, Jonathan B.; Crandall, Jeff R.; Tobaru, Shigeo

    2011-01-01

    While one third of all fatal motor vehicle crashes involve rollover of the vehicle, a substantially large portion of these rollover crashes involve planar impacts (e.g., frontal, side or rear impact) that influence the crash kinematics and subsequently the injury outcome. The objective of the study was to evaluate the distribution of planar impacts in rollover crashes, and in particular, to describe the differences in the underlying crash kinematics, injury severity and the regional distribution of injuries when compared to the rollover-dominated crashes without significant planar impact (i.e., primary rollovers). Sampled cases (n=6,900) from the U.S. National Automotive Sampling System – Crashworthiness Data System, representing approximately 3.3 million belted drivers involved in a rollover crash in years 1998–2008, were analyzed. Single vehicle rollover crashes with significant planar impact (21% of all rollover crashes) were in general more likely to result in occupant fatality and involved higher incidence of moderate to severe injuries compared to single vehicle primary rollovers (p<0.05). A substantial proportion of the planar impact rollovers ended in single quarter turn crashes (30%), mostly resulting from a frontal impact (59%). While chest was the most frequently injured body region among all rollover victims sustaining severe injuries, severe injuries sustained in primary rollovers were more isolated (single body region) in comparison to the ones sustained in rollovers with planar impacts. The results emphasize the higher risk of rollover victims sustaining an injury and the differences in distribution of injuries sustained when a planar impact is associated with the rollover crash. PMID:22105400

  7. Comparisons of cloud ice mass content retrieved from the radar-infrared radiometer method with aircraft data during the second international satellite cloud climatology project regional experiment (FIRE-II)

    SciTech Connect

    Matrosov, S.Y. |; Heymsfield, A.J.; Kropfli, R.A.; Snider, J.B.

    1996-04-01

    Comparisons of remotely sensed meteorological parameters with in situ direct measurements always present a challenge. Matching sampling volumes is one of the main problems for such comparisons. Aircraft usually collect data when flying along a horizontal leg at a speed of about 100 m/sec (or even greater). The usual sampling time of 5 seconds provides an average horizontal resolution of the order of 500 m. Estimations of vertical profiles of cloud microphysical parameters from aircraft measurements are hampered by sampling a cloud at various altitudes at different times. This paper describes the accuracy of aircraft horizontal and vertical coordinates relative to the location of the ground-based instruments.

  8. Foam composite structures. [for fire retardant airframe materials

    NASA Technical Reports Server (NTRS)

    Delano, C. B.; Milligan, R. J.

    1976-01-01

    The need to include fire resistant foams into state of the art aircraft interior paneling to increase passenger safety in aircraft fires was studied. Present efforts were directed toward mechanical and fire testing of panels with foam inclusions. Skinned foam filled honeycomb and PBI structural foams were the two constructions investigated with attention being directed toward weight/performance/cost trade-off. All of the new panels demonstrated improved performance in fire and some were lighter weight but not as strong as the presently used paneling. Continued efforts should result in improved paneling for passenger safety. In particular the simple partial filling (fire side) of state-of-the-art honeycomb with fire resistant foams with little sacrifice in weight would result in panels with increased fire resistance. More important may be the retarded rate of toxic gas evolution in the fire due to the protection of the honeycomb by the foam.

  9. Effect of bus size and operation to crash occurrences.

    PubMed

    Chimba, Deo; Sando, Thobias; Kwigizile, Valerian

    2010-11-01

    This paper evaluates roadway and operational factors considered to influence crashes involving buses. Factors evaluated included those related to bus sizes and operation services. Negative binomial (NB) and multinomial logit (MNL) models were used in linearizing and quantifying these factors with respect to crash frequency and injury severities, respectively. The results showed that position of the bus travel lane, presence or absence of on-street shoulder parking, posted speed limit, lane width, median width, number of lanes per direction and number of vehicles per lane has a higher influence on bus crashes compared to other roadway and traffic factors. Wider lanes and medians were found to reduce probability of bus crashes while more lanes and higher volume per lane were found to increase the likelihood of occurrences of bus-related crashes. Roadways with higher posted speed limits excluding freeways were found to have high probability of crashes compared to low speed limit roadways. Buses traveling on the inner lanes and making left turns were found to have higher probability of crashes compared to those traveling on the right most lanes. The same factors were found to influence injury severity though with varying magnitudes compared to crash frequency. PMID:20728663

  10. Innovative Anti Crash Absorber for a Crashworthy Landing Gear

    NASA Astrophysics Data System (ADS)

    Guida, Michele; Marulo, Francesco; Montesarchio, Bruno; Bruno, Massimiliano

    2014-06-01

    This paper defines an innovative concept to anti-crash absorber in composite material to be integrated on the landing gear as an energy-absorbing device in crash conditions to absorb the impact energy. A composite cylinder tube in carbon fiber material is installed coaxially to the shock absorber cylinder and, in an emergency landing gear condition, collapses in order to enhance the energy absorption performance of the landing system. This mechanism has been developed as an alternative solution to a high-pressure chamber installed on the Agusta A129 CBT helicopter, which can be considered dangerous when the helicopter operates in hard and/or crash landing. The characteristics of the anti-crash device are presented and the structural layout of a crashworthy landing gear adopting the developed additional energy absorbing stage is outlined. Experimental and numerical results relevant to the material characterization and the force peaks evaluation of the system development are reported. The anti-crash prototype was designed, analysed, optimized, made and finally the potential performances of a landing gear with the additional anti-crash absorber system are tested by drop test and then correlated with a similar test without the anti-crash system, showing that appreciable energy absorbing capabilities and efficiencies can be obtained in crash conditions.

  11. Analyzing angle crashes at unsignalized intersections using machine learning techniques.

    PubMed

    Abdel-Aty, Mohamed; Haleem, Kirolos

    2011-01-01

    A recently developed machine learning technique, multivariate adaptive regression splines (MARS), is introduced in this study to predict vehicles' angle crashes. MARS has a promising prediction power, and does not suffer from interpretation complexity. Negative Binomial (NB) and MARS models were fitted and compared using extensive data collected on unsignalized intersections in Florida. Two models were estimated for angle crash frequency at 3- and 4-legged unsignalized intersections. Treating crash frequency as a continuous response variable for fitting a MARS model was also examined by considering the natural logarithm of the crash frequency. Finally, combining MARS with another machine learning technique (random forest) was explored and discussed. The fitted NB angle crash models showed several significant factors that contribute to angle crash occurrence at unsignalized intersections such as, traffic volume on the major road, the upstream distance to the nearest signalized intersection, the distance between successive unsignalized intersections, median type on the major approach, percentage of trucks on the major approach, size of the intersection and the geographic location within the state. Based on the mean square prediction error (MSPE) assessment criterion, MARS outperformed the corresponding NB models. Also, using MARS for predicting continuous response variables yielded more favorable results than predicting discrete response variables. The generated MARS models showed the most promising results after screening the covariates using random forest. Based on the results of this study, MARS is recommended as an efficient technique for predicting crashes at unsignalized intersections (angle crashes in this study). PMID:21094345

  12. Effect of vehicular size on chain-reaction crash

    NASA Astrophysics Data System (ADS)

    Nagatani, Takashi

    2015-11-01

    We present the dynamic model of the chain-reaction crash to take account of the vehicular size. Drivers brake according to taillights of the forward vehicle. We investigate the effect of the vehicular size on the chain-reaction crash (multiple-vehicle collision) in the traffic flow controlled by taillights. In the multiple-vehicle collision, the first crash induces more collisions. We investigate how the first collision induces the chain-reaction crash numerically. We derive, analytically, the transition points and the region maps for the chain-reaction crash in the traffic flow of vehicles with finite sizes. We clarify the effect of the vehicular size on the multiple-vehicle collision.

  13. Understory Fires

    NASA Video Gallery

    The flames of understory fires in the southern Amazon reach on average only a few feet tall, but the fire type can claim anywhere from 10 to 50 percent of a burn area's trees. Credit: NASA/Doug Morton

  14. Texas Fires

    Atmospheric Science Data Center

    2014-05-15

    article title:  Wind-Whipped Fires in East Texas     View Larger Image ... western side of the storm stoked fires throughout eastern Texas, which was already suffering from the worst one-year drought on record ...

  15. Remote Multispectral Imaging of Wildland Fires (Invited)

    NASA Astrophysics Data System (ADS)

    Vodacek, A.; Kremens, R.

    2010-12-01

    Wildland fires produce a variety of signal phenomenology that are remotely observable. These signals span a large portion of the electromagnetic spectrum and can be related to a variety of properties of wildland fires as they propagate. The deployment of multispectral sensors from aircraft provides a unique perspective on the fire and its interactions in the environment by repeated imaging over time. We describe a set of airborne imaging experiments, image processing methodologies and a workflow system for near real-time extraction of information on the fire and the immediate environment.

  16. Comprehensive and Human Capital Crash Costs by Maximum Police-Reported Injury Severity Within Selected Crash Types

    PubMed Central

    Zaloshnja, Eduard; Miller, Ted; Council, Forrest; Persaud, Bhagwant

    2004-01-01

    This paper presents estimates for both the economic and comprehensive costs per crash for three police-coded severity groupings within 16 selected crash types and within two speed limit categories (<=45 and >=50 mph). The economic costs are hard dollar costs. The comprehensive costs include economic costs and quality of life losses. We merged previously developed costs per victim keyed on the Abbreviated Injury Scale (AIS) into US crash data files that scored injuries in both the AIS and police-coded severity scales to produce per crash estimates. The most costly crashes were non-intersection fatal/disabling injury crashes on a road with a speed limit of 50 miles per hour or higher where multiple vehicles crashed head-on or a single vehicle struck a human (over 1.69 and $1.16 million per crash, respectively). The annual cost of police-reported run-off-road collisions, which include both rollovers and object impacts, represented 34% of total costs. PMID:15319129

  17. Common Sleep Disorders Increase Risk of Motor Vehicle Crashes and Adverse Health Outcomes in Firefighters

    PubMed Central

    Barger, Laura K.; Rajaratnam, Shantha M.W.; Wang, Wei; O'Brien, Conor S.; Sullivan, Jason P.; Qadri, Salim; Lockley, Steven W.; Czeisler, Charles A.

    2015-01-01

    Study Objectives: Heart attacks and motor vehicle crashes are the leading causes of death in US firefighters. Given that sleep disorders are an independent risk factor for both of these, we examined the prevalence of common sleep disorders in a national sample of firefighters and their association with adverse health and safety outcomes. Methods: Firefighters (n = 6,933) from 66 US fire departments were assessed for common sleep disorders using validated screening tools, as available. Firefighters were also surveyed about health and safety, and documentation was collected for reported motor vehicle crashes. Results: A total of 37.2% of firefighters screened positive for any sleep disorder including obstructive sleep apnea (OSA), 28.4%; insomnia, 6.0%; shift work disorder, 9.1%; and restless legs syndrome, 3.4%. Compared with those who did not screen positive, firefighters who screened positive for a sleep disorder were more likely to report a motor vehicle crash (adjusted odds ratio 2.00, 95% CI 1.29–3.12, p = 0.0021) and were more likely to self-report falling asleep while driving (2.41, 2.06–2.82, p < 0.0001). Firefighters who screened positive for a sleep disorder were more likely to report having cardiovascular disease (2.37, 1.54–3.66, p < 0.0001), diabetes (1.91, 1.31–2.81, p = 0.0009), depression (3.10, 2.49–3.85, p < 0.0001), and anxiety (3.81, 2.87–5.05, p < 0.0001), and to report poorer health status (p < 0.0001) than those who did not screen positive. Adverse health and safety associations persisted when OSA and non-OSA sleep disorders were examined separately. Conclusions: Sleep disorders are prevalent in firefighters and are associated with increased risk of adverse health and safety outcomes. Future research is needed to assess the efficacy of occupational sleep disorders prevention, screening, and treatment programs in fire departments to reduce these safety and health risks. Citation: Barger LK, Rajaratnam SM, Wang W, O'Brien CS

  18. Fire Detector

    NASA Technical Reports Server (NTRS)

    1978-01-01

    An early warning fire detection sensor developed for NASA's Space Shuttle Orbiter is being evaluated as a possible hazard prevention system for mining operations. The incipient Fire Detector represents an advancement over commercially available smoke detectors in that it senses and signals the presence of a fire condition before the appearance of flame and smoke, offering an extra margin of safety.

  19. Annoyance and acceptability judgements of noise produced by three types of aircraft by residents living near JFK Airport

    NASA Technical Reports Server (NTRS)

    Borsky, P. N.

    1974-01-01

    A random sample of selected communities near JFK Airport were interviewed. Subsamples, with differing feelings of fear of aircraft crashes and different locations of residence were invited to participate in a laboratory experiment. The subjects were exposed to tape recordings of simulated flyovers of aircraft in approach and departure operations at nominal distances from the airport. The subjects judged the extent of noise annoyance and acceptability of the aircraft noises. Results indicate that level of noise is most significant in affecting annoyance judgements. Subjects with feelings of high fear report significantly more annoyance and less acceptability of aircraft noise than subjects with feelings of low fear.

  20. 20. DETAIL WITH FIRE HYDRANT, LOOKING NORTHEAST Kodiak Naval ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. DETAIL WITH FIRE HYDRANT, LOOKING NORTHEAST - Kodiak Naval Operating Base, Aircraft Storehouse, U.S. Coast Guard Station, Albatross Avenue near Cape Spencer Street, Kodiak, Kodiak Island Borough, AK

  1. Modeling Programs Increase Aircraft Design Safety

    NASA Technical Reports Server (NTRS)

    2012-01-01

    Flutter may sound like a benign word when associated with a flag in a breeze, a butterfly, or seaweed in an ocean current. When used in the context of aerodynamics, however, it describes a highly dangerous, potentially deadly condition. Consider the case of the Lockheed L-188 Electra Turboprop, an airliner that first took to the skies in 1957. Two years later, an Electra plummeted to the ground en route from Houston to Dallas. Within another year, a second Electra crashed. In both cases, all crew and passengers died. Lockheed engineers were at a loss as to why the planes wings were tearing off in midair. For an answer, the company turned to NASA s Transonic Dynamics Tunnel (TDT) at Langley Research Center. At the time, the newly renovated wind tunnel offered engineers the capability of testing aeroelastic qualities in aircraft flying at transonic speeds near or just below the speed of sound. (Aeroelasticity is the interaction between aerodynamic forces and the structural dynamics of an aircraft or other structure.) Through round-the-clock testing in the TDT, NASA and industry researchers discovered the cause: flutter. Flutter occurs when aerodynamic forces acting on a wing cause it to vibrate. As the aircraft moves faster, certain conditions can cause that vibration to multiply and feed off itself, building to greater amplitudes until the flutter causes severe damage or even the destruction of the aircraft. Flutter can impact other structures as well. Famous film footage of the Tacoma Narrows Bridge in Washington in 1940 shows the main span of the bridge collapsing after strong winds generated powerful flutter forces. In the Electra s case, faulty engine mounts allowed a type of flutter known as whirl flutter, generated by the spinning propellers, to transfer to the wings, causing them to vibrate violently enough to tear off. Thanks to the NASA testing, Lockheed was able to correct the Electra s design flaws that led to the flutter conditions and return the

  2. Daedalus Project's Light Eagle - Human powered aircraft

    NASA Technical Reports Server (NTRS)

    1987-01-01

    autopilot that could be used on high altitude or human powered aircraft, and determining the power required to fly the Daedalus aircraft. The research flights began in late December 1987 with a shake-down of the Light Eagle instrumentation and data transfer links. The first flight of the Daedalus 87 also occurred during this time. On February 7, 1988, the Daedalus 87 aircraft crashed on Rogers Dry Lakebed. The Daedalus 88, which later set the world record, was then shipped from MIT to replace the 87's research flights, and for general checkout procedures. Due to the accident, flight testing was extended four weeks and thus ended in mid-March 1988 after having achieved the major goals of the program; exploring the dynamics of low Reynolds number aircraft, and investigating the aeroelastic behavior of lightweight aircraft. The information obtained from this program had direct applications to the later design of many high-altitude, long endurance aircraft.

  3. A reexamination of the small overlap frontal crash.

    PubMed

    Scullion, Paul; Morgan, Richard M; Mohan, Pradeep; Kan, Cing-Dao; Shanks, Kurt; Jin, Wook; Tangirala, Ravi

    2010-01-01

    The objective of this study was to examine and rank the Small Overlap Frontal Crash as one of the eight-group taxonomy proposed by Ford. The Ford taxonomy classifies real-world frontal-impact crashes based on the National Automotive Sampling System (NASS). Frontally-impacted vehicles were identified for 1985 - 2008 model year passenger vehicles with Collision Deformation Classification (CDC) data from the 1995 - 2008 years of NASS. Small overlap frontal cases were identified where there was no engagement of the vehicle frame rails, and the direct damage was located entirely outside of the vehicle frame rails. The results are that full engagement and offset (offset category means the direct damage overlaps the vehicle frame rail, with the center of direct damage between the frame rails) were the most frequent crashes contributing 35% each. The frequency of the small overlap frontal was 6%. The risks of injury (AIS ≥ 2) for the full engagement, offset, and small overlap were 8%, 6%, and 3% respectively. For this study, the number of small overlap vehicles was 1,118 and the number of injured nearside occupants was 100. This study-following the Ford approach and reasonably identifying the location of the longitudinal rails based on CDC-suggests that the small overlap is at worst a moderately dangerous crash in the overall scheme of frontal crashes. The implications of this study are that the safety community should reexamine the significance of the small overlap frontal crash against an overall taxonomy of crashes. PMID:21050598

  4. Requirements for the Crash Protection of Older Vehicle Passengers

    PubMed Central

    Morris, Andrew; Welsh, Ruth; Hassan, Ahamedali

    2003-01-01

    This study compares injury outcomes in vehicle crashes involving different age groups of belted passengers. Two datasets were considered. Firstly, UK national data revealed that younger passengers are much more likely to be involved in crashes per million miles travelled compared to older passengers although older passengers are much more likely to be killed or seriously injured compared to younger passengers. Secondly, in-depth vehicle crash injury data were examined to determine some of the underlying reasons for the enhanced injury risk amongst older passengers. In crashes of approximately equal severity, the older passenger group were significantly more likely to be fatally injured in frontal crashes (p<0.001). However young passengers were as equally likely to be killed in struck-side crashes compared to the older group. The results also showed that older passengers sustained more serious injuries to the chest region in frontal crashes compared with the younger aged group (p<0.0001) and it is this body region that is particularly problematic. When the data were analysed further, it was found that a large proportion of passengers were female and that in the majority of cases, the seat belt was responsible for injury. Since by the year 2030, 1 in 4 persons will be aged over 65 in most OECD countries, the results suggest a need for intervention through vehicle design including in-vehicle crashworthiness systems that take into account reduced tolerance to impact with ageing. PMID:12941224

  5. Driver air bag effectiveness by severity of the crash.

    PubMed Central

    Segui-Gomez, M

    2000-01-01

    OBJECTIVES: This analysis provided effectiveness estimates of the driver-side air bag while controlling for severity of the crash and other potential confounders. METHODS: Data were from the National Automotive Sampling System (1993-1996). Injury severity was described on the basis of the Abbreviated Injury Scale, Injury Severity Score, Functional Capacity Index, and survival. Ordinal, linear, and logistic multivariate regression methods were used. RESULTS: Air bag deployment in frontal or near-frontal crashes decreases the probability of having severe and fatal injuries (e.g., Abbreviated Injury Scale score of 4-6), including those causing a long-lasting high degree of functional limitation. However, air bag deployment in low-severity crashes increases the probability that a driver (particularly a woman) will sustain injuries of Abbreviated Injury Scale level 1 to 3. Air bag deployment exerts a net injurious effect in low-severity crashes and a net protective effect in high-severity crashes. The level of crash severity at which air bags are protective is higher for female than for male drivers. CONCLUSIONS: Air bag improvement should minimize the injuries induced by their deployment. One possibility is to raise their deployment level so that they deploy only in more severe crashes. PMID:11029991

  6. Educating with Aircraft Models

    ERIC Educational Resources Information Center

    Steele, Hobie

    1976-01-01

    Described is utilization of aircraft models, model aircraft clubs, and model aircraft magazines to promote student interest in aerospace education. The addresses for clubs and magazines are included. (SL)

  7. Overview of the Transport Rotorcraft Airframe Crash Testbed (TRACT) Full Scale Crash Tests

    NASA Technical Reports Server (NTRS)

    Annett, Martin; Littell, Justin

    2015-01-01

    The Transport Rotorcraft Airframe Crash Testbed (TRACT) full-scale tests were performed at NASA Langley Research Center's Landing and Impact Research Facility in 2013 and 2014. Two CH-46E airframes were impacted at 33-ft/s forward and 25-ft/s vertical combined velocities onto soft soil, which represents a severe, but potentially survivable impact scenario. TRACT 1 provided a baseline set of responses, while TRACT 2 included retrofits with composite subfloors and other crash system improvements based on TRACT 1. For TRACT 2, a total of 18 unique experiments were conducted to evaluate Anthropomorphic Test Devices (ATD) responses, seat and restraint performance, cargo restraint effectiveness, patient litter behavior, and activation of emergency locator transmitters and crash sensors. Combinations of Hybrid II, Hybrid III, and ES-2 ATDs were placed in forward and side facing seats and occupant results were compared against injury criteria. The structural response of the airframe was assessed based on accelerometers located throughout the airframe and using three-dimensional photogrammetric techniques. Analysis of the photogrammetric data indicated regions of maximum deflection and permanent deformation. The response of TRACT 2 was noticeably different in the horizontal direction due to changes in the cabin configuration and soil surface, with higher acceleration and damage occurring in the cabin. Loads from ATDs in energy absorbing seats and restraints were within injury limits. Severe injury was likely for ATDs in forward facing passenger seats.

  8. Evaluation of the Second Transport Rotorcraft Airframe Crash Testbed (TRACT 2) Full Scale Crash Test

    NASA Technical Reports Server (NTRS)

    Annett, Martin; Littell, Justin

    2015-01-01

    Two Transport Rotorcraft Airframe Crash Testbed (TRACT) full-scale tests were performed at NASA Langley Research Center's Landing and Impact Research Facility in 2013 and 2014. Two CH-46E airframes were impacted at 33-ft/s forward and 25-ft/s vertical combined velocities onto soft soil, which represents a severe, but potentially survivable impact scenario. TRACT 1 provided a baseline set of responses, while TRACT 2 included retrofits with composite subfloors and other crash system improvements based on TRACT 1. For TRACT 2, a total of 18 unique experiments were conducted to evaluate ATD responses, seat and restraint performance, cargo restraint effectiveness, patient litter behavior, and activation of emergency locator transmitters and crash sensors. Combinations of Hybrid II, Hybrid III, and ES-2 Anthropomorphic Test Devices (ATDs) were placed in forward and side facing seats and occupant results were compared against injury criteria. The structural response of the airframe was assessed based on accelerometers located throughout the airframe and using three-dimensional photogrammetric techniques. Analysis of the photogrammetric data indicated regions of maximum deflection and permanent deformation. The response of TRACT 2 was noticeably different in the longitudinal direction due to changes in the cabin configuration and soil surface, with higher acceleration and damage occurring in the cabin. Loads from ATDs in energy absorbing seats and restraints were within injury limits. Severe injury was likely for ATDs in forward facing passenger seats.

  9. Temperature of aircraft cargo flame exposure during accidents involving fuel spills

    SciTech Connect

    Mansfield, J.A.

    1993-01-01

    This report describes an evaluation of flame exposure temperatures of weapons contained in alert (parked) bombers due to accidents that involve aircraft fuel fires. The evaluation includes two types of accident, collisions into an alert aircraft by an aircraft that is on landing or take-off, and engine start accidents. Both the B-1B and B-52 alert aircraft are included in the evaluation.

  10. Crash test for the Copenhagen problem.

    PubMed

    Nagler, Jan

    2004-06-01

    The Copenhagen problem is a simple model in celestial mechanics. It serves to investigate the behavior of a small body under the gravitational influence of two equally heavy primary bodies. We present a partition of orbits into classes of various kinds of regular motion, chaotic motion, escape and crash. Collisions of the small body onto one of the primaries turn out to be unexpectedly frequent, and their probability displays a scale-free dependence on the size of the primaries. The analysis reveals a high degree of complexity so that long term prediction may become a formidable task. Moreover, we link the results to chaotic scattering theory and the theory of leaking Hamiltonian systems. PMID:15244719

  11. Countermeasures for Reducing Alcohol-Related Crashes.

    PubMed

    Voas, R B

    2000-01-01

    Programs to prevent alcohol-related crashes occur at several levels. Although most of the public thinks of drunk-driving prevention only in terms of the criminal justice system, much can be done to prevent alcohol-related highway deaths before the drinking-and-driving offender gets on the road. In recent years, the field of alcohol safety has merged with the area of public health concerned with preventing alcohol- and drug-related traumatic injury and death. This paper provides an overview of the status of road safety programs directed at reducing impaired driving. It covers ten topics falling into the three levels of prevention: primary programs to reduce alcohol consumption; secondary programs to prevent driving after drinking; and tertiary programs to prevent recidivism among convicted drinking drivers. PMID:26256029

  12. Crash Testing of Helicopter Airframe Fittings

    NASA Technical Reports Server (NTRS)

    Clarke, Charles W.; Townsend, William; Boitnott, Richard

    2004-01-01

    As part of the Rotary Wing Structures Technology Demonstration (RWSTD) program, a surrogate RAH-66 seat attachment fitting was dynamically tested to assess its response to transient, crash impact loads. The dynamic response of this composite material fitting was compared to the performance of an identical fitting subjected to quasi-static loads of similar magnitude. Static and dynamic tests were conducted of both smaller bench level and larger full-scale test articles. At the bench level, the seat fitting was supported in a steel fixture, and in the full-scale tests, the fitting was integrated into a surrogate RAH-66 forward fuselage. Based upon the lessons learned, an improved method to design, analyze, and test similar composite material fittings is proposed.

  13. Effect of horizontal curves on urban arterial crashes.

    PubMed

    Banihashemi, Mohamadreza

    2016-10-01

    The crash prediction models of the Highway Safety Manual (HSM), 2010 estimate the expected number of crashes for different facility types. Models in Part C Chapter 12 of the first edition of the HSM include crash prediction models for divided and undivided urban arterials. Each of the HSM crash prediction models for highway segments is comprised of a "Safety Performance Function," a function of AADT and segment length, plus, a series of "Crash Modification Factors" (CMFs). The SPF estimates the expected number of crashes for the site if the site features are of base condition. The effects of the other features of the site, if their values are different from base condition, are carried out through use of CMFs. The existing models for urban arterials do not have any CMF for horizontal curvature. The goal of this research is to investigate if the horizontal alignment has any significant effect on crashes on any of these types of facilities and if so, to develop a CMF for this feature. Washington State cross sectional data from the Highway Safety Information System (HSIS), 2014 was used in this research. Data from 2007 to 2009 was used to conduct the investigation. The 2010 data was used to validate the results. As the results showed, the horizontal curvature has significant safety effect on two-lane undivided urban arterials with speed limits of 35 mph and higher and using a CMF for horizontal curvature in the crash prediction model of this type of facility improves the prediction of crashes significantly, for both tangent and curve segments. PMID:27376485

  14. Emerging technology for vehicular safety and emergency response to roadway crashes.

    PubMed

    Champion, H R; Cushing, B

    1999-12-01

    Emerging technology for vehicular safety and emergency response to roadway crashes is the topic of this article. Reduction in emergency medical services system notification time, improvements in vehicular safety, crash avoidance and protection, post-crash injury control, triage, national automatic crash notification systems, and technologic improvements in emergency diagnostics and treatment during the past year are discussed. PMID:10625974

  15. 41 CFR 102-34.295 - To whom do we send crash reports?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION PERSONAL PROPERTY 34-MOTOR VEHICLE MANAGEMENT Motor Vehicle Crash Reporting § 102-34.295 To whom do we send crash reports? Send crash reports as... agency directives. (b) If the motor vehicle is leased from GSA Fleet, report the crash to GSA...

  16. Use of Real-Time Ground-To-Air Video during Aeromedical Response to Traffic Crashes

    NASA Astrophysics Data System (ADS)

    Perina, D.

    2002-08-01

    The purpose of this feasibility study was to determine whether the use of ground-based video imaging by local rescue squad personnel, along with real-time transmission of this information to the Pegasus helicopter medical crew, is technically feasible and of sufficient quality to be used as a tool to improve pre-hospital care provided to crash victims. The scope of this project was to investigate various types of existing technology and equipment that may allow for the desired communication linkage between aircraft and ground responders either as is or with achievable modifications. Additionally, other stakeholder entities in this project would be identified and approached to solicit cooperation in the subsequent deployment of the equipment.

  17. Energy Absorbing Seat System for an Agricultural Aircraft

    NASA Technical Reports Server (NTRS)

    Kellas, Sotiris; Jones, Lisa E. (Technical Monitor)

    2002-01-01

    A task was initiated to improve the energy absorption capability of an existing aircraft seat through cost-effective retrofitting, while keeping seat-weight increase to a minimum. This task was undertaken as an extension of NASA ongoing safety research and commitment to general aviation customer needs. Only vertical crash scenarios have been considered in this task which required the energy absorbing system to protect the seat occupant in a range of crash speeds up to 31 ft/sec. It was anticipated that, the forward and/or side crash accelerations could be attenuated with the aid of airbags, the technology of which is currently available in automobiles and military helicopters. Steps which were followed include, preliminary crush load determination, conceptual design of cost effective energy absorbers, fabrication and testing (static and dynamic) of energy absorbers, system analysis, design and fabrication of dummy seat/rail assembly, dynamic testing of dummy seat/rail assembly, and finally, testing of actual modified seat system with a dummy occupant. A total of ten full scale tests have been performed including three of the actual aircraft seat. Results from full-scale tests indicated that occupant loads were attenuated successfully to survivable levels.

  18. Overview of microphysical and state parameter measurements from FIRE 2

    NASA Technical Reports Server (NTRS)

    Heymsfield, Andrew J.; Miloshevich, Larry M.

    1993-01-01

    In this article we present data collected by the NCAR King Air and Sabreliner aircraft in the FIRE 2 cirrus project over southeastern Kansas and northeastern Oklahoma in Nov. and Dec. of 1991. We present state parameter and microphysical measurements in summary form for the dates which have been selected by the FIRE Science Team for intensive analysis, 25 and 26 Nov. and 5 and 6 Dec. We will also evaluate the performance of 'key' aircraft instrumentation.

  19. Projecting Fatalities in Crashes Involving Older Drivers, 2000-2025

    SciTech Connect

    Hu, P.S.

    2001-03-23

    As part of this research effort, we developed a new methodology for projecting elderly traffic crash fatalities. This methodology separates exposure to crashes from crash risk per se, and further divides exposure into two components, the number of miles driven and the likelihood of being a driver. This component structure permits conceptually different determinants of traffic fatalities to be projected separately and has thorough motivation in behavioral theory. It also permits finer targeting of particular aspects of projections that need improvement and closer linking of projections to possible policy instruments for influencing them.

  20. Crash Certification by Analysis - Are We There Yet?

    NASA Technical Reports Server (NTRS)

    Jackson, Karen E.; Fasanella, Edwin L.; Lyle, Karen H.

    2006-01-01

    This paper addresses the issue of crash certification by analysis. This broad topic encompasses many ancillary issues including model validation procedures, uncertainty in test data and analysis models, probabilistic techniques for test-analysis correlation, verification of the mathematical formulation, and establishment of appropriate qualification requirements. This paper will focus on certification requirements for crashworthiness of military helicopters; capabilities of the current analysis codes used for crash modeling and simulation, including some examples of simulations from the literature to illustrate the current approach to model validation; and future directions needed to achieve "crash certification by analysis."

  1. Crash tests of four low-wing twin-engine airplanes with truss-reinforced fuselage structure

    NASA Technical Reports Server (NTRS)

    Williams, M. S.; Fasanella, E. L.

    1982-01-01

    Four six-place, low-wing, twin-engine, general aviation airplane test specimens were crash tested under controlled free flight conditions. All airplanes were impacted on a concrete test surface at a nomial flight path velocity of 27 m/sec. Two tests were conducted at a -15 deg flight path angle (0 deg pitch angle and 15 deg pitch angle), and two were conducted at a -30 deg flight path angle (-30 deg pitch angle). The average acceleration time histories (crash pulses) in the cabin area for each principal direction were calculated for each crash test. In addition, the peak floor accelerations were calculated for each test as a function of aircraft fuselage longitudinal station number. Anthropomorphic dummy accelerations were analyzed using the dynamic response index and severity index (SI) models. Parameters affecting the dummy restraint system were studied; these parameters included the effect of no upper torso restraint, measurement of the amount of inertia-reel strap pullout before locking, measurement of dummy chest forward motion, and loads in the restraints. With the SI model, the dummies with no shoulder harness received head impacts above the concussive threshold.

  2. Crash Simulation of a Vertical Drop Test of a B737 Fuselage Section with Overhead Bins and Luggage

    NASA Technical Reports Server (NTRS)

    Jackson, Karen E.; Fasanella, Edwin L.

    2004-01-01

    The focus of this paper is to describe a crash simulation of a 30-ft/s vertical drop test of a Boeing 737 (B737) fuselage section. The drop test of the 10-ft. long fuselage section of a B737 aircraft was conducted in November of 2000 at the FAA Technical Center in Atlantic City, NJ. The fuselage section was outfitted with two different commercial overhead stowage bins. In addition, 3,229-lbs. of luggage were packed in the cargo hold to represent a maximum take-off weight condition. The main objective of the test was to evaluate the response and failure modes of the overhead stowage bins in a narrow-body transport fuselage section when subjected to a severe, but survivable, impact. A secondary objective of the test was to generate experimental data for correlation with the crash simulation. A full-scale 3-dimensional finite element model of the fuselage section was developed and a crash simulation was conducted using the explicit, nonlinear transient dynamic code, MSC.Dytran. Pre-test predictions of the fuselage and overhead bin responses were generated for correlation with the drop test data. A description of the finite element model and an assessment of the analytical/experimental correlation are presented. In addition, suggestions for modifications to the model to improve correlation are proposed.

  3. Evaluation of the First Transport Rotorcraft Airframe Crash Testbed (TRACT 1) Full-Scale Crash Test

    NASA Technical Reports Server (NTRS)

    Annett, Martin S.; Littell, Justin D.; Jackson, Karen E.; Bark, Lindley W.; DeWeese, Rick L.; McEntire, B. Joseph

    2014-01-01

    In 2012, the NASA Rotary Wing Crashworthiness Program initiated the Transport Rotorcraft Airframe Crash Testbed (TRACT) research program by obtaining two CH-46E helicopters from the Navy CH-46E Program Office (PMA-226) at the Navy Flight Readiness Center in Cherry Point, North Carolina. Full-scale crash tests were planned to assess dynamic responses of transport-category rotorcraft under combined horizontal and vertical impact loading. The first crash test (TRACT 1) was performed at NASA Langley Research Center's Landing and Impact Research Facility (LandIR), which enables the study of critical interactions between the airframe, seat, and occupant during a controlled crash environment. The CH-46E fuselage is categorized as a medium-lift rotorcraft with fuselage dimensions comparable to a regional jet or business jet. The first TRACT test (TRACT 1) was conducted in August 2013. The primary objectives for TRACT 1 were to: (1) assess improvements to occupant loads and displacement with the use of crashworthy features such as pre-tensioning active restraints and energy absorbing seats, (2) develop novel techniques for photogrammetric data acquisition to measure occupant and airframe kinematics, and (3) provide baseline data for future comparison with a retrofitted airframe configuration. Crash test conditions for TRACT 1 were 33-ft/s forward and 25-ft/s vertical combined velocity onto soft soil, which represent a severe, but potentially survivable impact scenario. The extraordinary value of the TRACT 1 test was reflected by the breadth of meaningful experiments. A total of 8 unique experiments were conducted to evaluate ATD responses, seat and restraint performance, cargo restraint effectiveness, patient litter behavior, and photogrammetric techniques. A combination of Hybrid II, Hybrid III, and ES-2 Anthropomorphic Test Devices (ATDs) were placed in forward and side facing seats and occupant results were compared against injury criteria. Loads from ATDs in energy

  4. Fire safety concerns in space operations

    NASA Technical Reports Server (NTRS)

    Friedman, Robert

    1987-01-01

    This paper reviews the state-of-the-art in fire control techniques and identifies important issues for continuing research, technology, and standards. For the future permanent orbiting facility, the space station, fire prevention and control calls for not only more stringent fire safety due to the long-term and complex missions, but also for simplified and flexible safety rules to accommodate the variety of users. Future research must address a better understanding of the microgravity space environment as it influences fire propagation and extinction and the application of the technology of fire detection, extinguishment, and material assessment. Spacecraft fire safety should also consider the adaptation of methods and concepts derived from aircraft and undersea experience.

  5. Effect of Advanced Location Methods on Search and Rescue Duration for General Aviation Aircraft Accidents in the Contiguous United States

    ERIC Educational Resources Information Center

    Wallace, Ryan J.

    2013-01-01

    The purpose of this study was to determine the impact of advanced search and rescue devices and techniques on search duration for general aviation aircraft crashes. The study assessed three categories of emergency locator transmitters, including 121.5 MHz, 406 MHz, and GPS-Assisted 406 MHz devices. The impact of the COSPAS-SARSAT organization…

  6. Fire clay

    USGS Publications Warehouse

    Virta, R.L.

    2006-01-01

    In 2005, six companies mined fire clay in Missouri, Ohio and South Carolina. Production was estimate to be 300 kt with a value of $8.3 million. Missouri was the leading producer state followed by Ohio and South Carolina. For the third consecutive year, sales and use of fire clays have been relatively unchanged. For the next few years, sales of fire clay is forecasted to remain around 300 kt/a.

  7. Fire clay

    USGS Publications Warehouse

    Virta, R.L.

    2011-01-01

    The article discusses the latest developments in the fire clay industry, particularly in the U.S., as of June 2011. It claims that the leading fire clay producer in the U.S. is the state of Missouri. The other major producers include California, Texas and Washington. It reports that the use of heavy clay products made of fire clay like brick, cement and lightweight aggregate has increased slightly in 2010.

  8. Frequency Analysis of Aircraft hazards for License Application

    SciTech Connect

    K. Ashley

    2006-10-24

    The preclosure safety analysis for the monitored geologic repository at Yucca Mountain must consider the hazard that aircraft may pose to surface structures. Relevant surface structures are located beneath the restricted airspace of the Nevada Test Site (NTS) on the eastern slope of Yucca Mountain, near the North Portal of the Exploratory Studies Facility Tunnel (Figure 1). The North Portal is located several miles from the Nevada Test and Training Range (NTTR), which is used extensively by the U.S. Air Force (USAF) for training and test flights (Figure 1). The NTS airspace, which is controlled by the U.S. Department of Energy (DOE) for NTS activities, is not part of the NTTR. Agreements with the DOE allow USAF aircraft specific use of the airspace above the NTS (Reference 2.1.1 [DIRS 103472], Section 3.1.1 and Appendix A, Section 2.1; and Reference 2.1.2 [DIRS 157987], Sections 1.26 through 1.29). Commercial, military, and general aviation aircraft fly within several miles to the southwest of the repository site in the Beatty Corridor, which is a broad air corridor that runs approximately parallel to U.S. Highway 95 and the Nevada-California border (Figure 2). These aircraft and other aircraft operations are identified and described in ''Identification of Aircraft Hazards'' (Reference 2.1.3, Sections 6 and 8). The purpose of this analysis is to estimate crash frequencies for aircraft hazards identified for detailed analysis in ''Identification of Aircraft Hazards'' (Reference 2.1.3, Section 8). Reference 2.1.3, Section 8, also identifies a potential hazard associated with electronic jamming, which will be addressed in this analysis. This analysis will address only the repository and not the transportation routes to the site. The analysis is intended to provide the basis for: (1) Categorizing event sequences related to aircraft hazards; (2) Identifying design or operational requirements related to aircraft hazards.

  9. The Behavioral Contributors to Highway Crashes of Youthful Drivers.

    PubMed Central

    McKnight, A. James; McKnight, A. Scott

    2000-01-01

    The per-mile crash rate of drivers under age 20 is over five times that of the adult population in general, while that of 16-year-old novices is approximately ten times that of adults. Reports of over 2,000 non-fatal crashes involving young drivers were analyzed for behavioral crash contributors as a step in orienting preventive efforts. The great majority of non-fatal crashes resulted from errors in attention, visual search, speed relative to conditions, hazard recognition, and emergency maneuvers, with high speeds and patently risky behavior accounting from but a small minority. The pattern of errors for novices did not differ significantly from that of more experienced youth. PMID:11558091

  10. Crash in Australian outback ends NASA ballooning season

    NASA Astrophysics Data System (ADS)

    Harris, Margaret

    2010-06-01

    NASA has temporarily suspended all its scientific balloon launches after the balloon-borne Nuclear Compton Tele scope (NCT) crashed during take-off, scattering a trail of debris across the remote launch site and overturning a nearby parked car.

  11. Methodology for estimating thoracic impact response in frontal crash tests.

    PubMed

    Thor, Craig P; Gabler, Hampton C

    2007-01-01

    This study has investigated the feasibility of estimating chest acceleration from the pelvic acceleration and shoulder belt forces measured on a vehicle occupant exposed to a frontal crash. The method of estimating chest acceleration is based upon a simple two-mass one-dimensional model of a vehicle occupant in which pelvic acceleration and shoulder belt force are applied as forcing functions. The predictive power of the model was evaluated by comparing the estimated and measured chest acceleration of 18 Hybrid-III crash test dummies subjected to 56 km/hr full frontal barrier crash tests. The crashtest dummies were restrained by airbags and three-point belt systems with pretensioners and load-limiting shoulder belts. The combined loads exerted on the chest by the pelvis and the shoulder belts were shown to be a reasonable estimate of force on the chest early in the crash event prior to significant airbag loading. PMID:17487104

  12. Why Do Markets Crash? Bitcoin Data Offers Unprecedented Insights

    PubMed Central

    Donier, Jonathan; Bouchaud, Jean-Philippe

    2015-01-01

    Crashes have fascinated and baffled many canny observers of financial markets. In the strict orthodoxy of the efficient market theory, crashes must be due to sudden changes of the fundamental valuation of assets. However, detailed empirical studies suggest that large price jumps cannot be explained by news and are the result of endogenous feedback loops. Although plausible, a clear-cut empirical evidence for such a scenario is still lacking. Here we show how crashes are conditioned by the market liquidity, for which we propose a new measure inspired by recent theories of market impact and based on readily available, public information. Our results open the possibility of a dynamical evaluation of liquidity risk and early warning signs of market instabilities, and could lead to a quantitative description of the mechanisms leading to market crashes. PMID:26448333

  13. Why Do Markets Crash? Bitcoin Data Offers Unprecedented Insights.

    PubMed

    Donier, Jonathan; Bouchaud, Jean-Philippe

    2015-01-01

    Crashes have fascinated and baffled many canny observers of financial markets. In the strict orthodoxy of the efficient market theory, crashes must be due to sudden changes of the fundamental valuation of assets. However, detailed empirical studies suggest that large price jumps cannot be explained by news and are the result of endogenous feedback loops. Although plausible, a clear-cut empirical evidence for such a scenario is still lacking. Here we show how crashes are conditioned by the market liquidity, for which we propose a new measure inspired by recent theories of market impact and based on readily available, public information. Our results open the possibility of a dynamical evaluation of liquidity risk and early warning signs of market instabilities, and could lead to a quantitative description of the mechanisms leading to market crashes. PMID:26448333

  14. Heavy Vehicle Crash Characteristics in Oman 2009–2011

    PubMed Central

    Al-Bulushi, Islam; Edwards, Jason; Davey, Jeremy; Armstrong, Kerry; Al-Reesi, Hamed; Al-Shamsi, Khalid

    2015-01-01

    In recent years, Oman has seen a shift in the burden of diseases towards road accidents. The main objective of this paper, therefore, is to describe key characteristics of heavy vehicle crashes in Oman and identify the key driving behaviours that influence fatality risks. Crash data from January 2009 to December 2011 were examined and it was found that, of the 22,543 traffic accidents that occurred within this timeframe, 3,114 involved heavy vehicles. While the majority of these crashes were attributed to driver behaviours, a small proportion was attributed to other factors. The results of the study indicate that there is a need for a more thorough crash investigation process in Oman. Future research should explore the reporting processes used by the Royal Oman Police, cultural influences on heavy vehicle operations in Oman and improvements to the current licensing system. PMID:26052451

  15. Bayesian log-periodic model for financial crashes

    NASA Astrophysics Data System (ADS)

    Rodríguez-Caballero, Carlos Vladimir; Knapik, Oskar

    2014-10-01

    This paper introduces a Bayesian approach in econophysics literature about financial bubbles in order to estimate the most probable time for a financial crash to occur. To this end, we propose using noninformative prior distributions to obtain posterior distributions. Since these distributions cannot be performed analytically, we develop a Markov Chain Monte Carlo algorithm to draw from posterior distributions. We consider three Bayesian models that involve normal and Student's t-distributions in the disturbances and an AR(1)-GARCH(1,1) structure only within the first case. In the empirical part of the study, we analyze a well-known example of financial bubble - the S&P 500 1987 crash - to show the usefulness of the three methods under consideration and crashes of Merval-94, Bovespa-97, IPCMX-94, Hang Seng-97 using the simplest method. The novelty of this research is that the Bayesian models provide 95% credible intervals for the estimated crash time.

  16. Structure and dynamics of sawteeth crashes in ASDEX Upgrade

    SciTech Connect

    Igochine, V.; Guenter, S.; Lackner, K.; Pereverzev, G.; Zohm, H.; Boom, J.; Classen, I.; Dumbrajs, O.

    2010-12-15

    The crash phase of the sawteeth in ASDEX Upgrade tokamak [Herrmann et al., Fusion Sci. Technol. 44(3), 569 (2003)] is investigated in detail in this paper by means of soft x-ray (SXR) and electron cyclotron emission (ECE) diagnostics. Analysis of precursor and postcursor (1,1) modes shows that the crash does not affect the position of the resonant surface q=1. Our experimental results suggest that sawtooth crash models should contain two ingredients to be consistent with experimental observations: (1) the (1,1) mode structure should survive the crash and (2) the flux changes should be small to preserve the position of the q=1 surface close to its original location. Detailed structure of the reconnection point was investigated with ECE imaging diagnostic. It is shown that reconnection starts locally. The expelled core is hot which is consistent with SXR tomography results. The observed results can be explained in the framework of a stochastic model.

  17. Structure and dynamics of sawteeth crashes in ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Igochine, V.; Boom, J.; Classen, I.; Dumbrajs, O.; Günter, S.; Lackner, K.; Pereverzev, G.; Zohm, H.; ASDEX Upgrade Team

    2010-12-01

    The crash phase of the sawteeth in ASDEX Upgrade tokamak [Herrmann et al., Fusion Sci. Technol. 44(3), 569 (2003)] is investigated in detail in this paper by means of soft x-ray (SXR) and electron cyclotron emission (ECE) diagnostics. Analysis of precursor and postcursor (1,1) modes shows that the crash does not affect the position of the resonant surface q =1. Our experimental results suggest that sawtooth crash models should contain two ingredients to be consistent with experimental observations: (1) the (1,1) mode structure should survive the crash and (2) the flux changes should be small to preserve the position of the q =1 surface close to its original location. Detailed structure of the reconnection point was investigated with ECE imaging diagnostic. It is shown that reconnection starts locally. The expelled core is hot which is consistent with SXR tomography results. The observed results can be explained in the framework of a stochastic model.

  18. Relationship between organisational safety culture dimensions and crashes.

    PubMed

    Varmazyar, Sakineh; Mortazavi, Seyed Bagher; Arghami, Shirazeh; Hajizadeh, Ebrahim

    2016-01-01

    Knowing about organisational safety culture in public transportation system can provide an appropriate guide to establish effective safety measures and interventions to improve safety at work. The aim of this study was investigation of association between safety culture dimensions (leadership styles and company values, usage of crashes information and prevention programmes, management commitment and safety policy, participation and control) with involved self-reported crashes. The associations were considered through Spearman correlation, Pearson chi-square test and logistic regression. The results showed an association among self-reported crashes (occurrence or non-occurrence) and factors including leadership styles and company values; management commitment and safety policy; and control. Moreover, it was found a negative correlation and an odds ratio less than one between control and self-reported crashes. PMID:25494102

  19. Fire clay

    USGS Publications Warehouse

    Virta, R.L.

    2013-01-01

    Four companies mined fire clay in three states in 2012. Production, based on a preliminary survey of the fire clay industry, was estimated to be 230 kt (254,000 st) valued at $6.98 million, an increase from 215 kt (237,000 st) valued at $6.15 million in 2011. Missouri was the leading producing state, followed by Colorado and Texas, in decreasing order by quantity. The number of companies mining fire clay declined in 2012 because several common clay producers that occasionally mine fire clay indicated that they did not do so in 2012.

  20. Risks, designs, and research for fire safety in spacecraft

    NASA Technical Reports Server (NTRS)

    Friedman, Robert; Sacksteder, Kurt R.; Urban, David

    1991-01-01

    Current fire protection for spacecraft relies mainly on fire prevention through the use of nonflammable materials and strict storage controls of other materials. The Shuttle also has smoke detectors and fire extinguishers, using technology similar to aircraft practices. While experience has shown that the current fire protection is adequate, future improvements in fire safety technology to meet the challenges of long duration space missions, such as the Space Station Freedom, are essential. All spacecraft fire protection systems, however, must deal with the unusual combustion characteristics and operational problems in the low gravity environment. The features of low gravity combustion that affect spacecraft fire safety, and the issues in fire protection for Freedom that must be addressed eventually to provide effective and conservative fire protection systems are discussed.

  1. A study on crashes related to visibility obstruction due to fog and smoke.

    PubMed

    Abdel-Aty, Mohamed; Ekram, Al-Ahad; Huang, Helai; Choi, Keechoo

    2011-09-01

    Research on weather effects has focused on snow- or rain-related crashes. However, there is a lack of understanding of crashes that occur during fog or smoke (FS). This study presents a comprehensive examination of FS-related crashes using crash data from Florida between 2003 and 2007. A two-stage research strategy was implemented (1) to examine FS-related crash characteristics with respect to temporal distribution, influential factors and crash types and (2) to estimate the effects of various factors on injury severity given that a FS-related crash has occurred. The morning hours from December to February are the prevalent times for FS-related crashes. Compared to crashes under clear-visibility conditions, FS-related crashes tend to result in more severe injuries and involve more vehicles. Head-on and rear-end crashes are the two most common crash types in terms of crash risk and severity. These crashes were more prevalent on high-speed roads, undivided roads, roads with no sidewalks and two-lane rural roads. Moreover, FS-related crashes were more likely to occur at night without street lighting, leading to more severe injuries. PMID:21658500

  2. Light airplane crash tests at three pitch angles

    NASA Technical Reports Server (NTRS)

    Vaughan, V. L., Jr.; Alfaro-Bou, E.

    1979-01-01

    Three similar twin-engine general aviation airplane specimens were crash tested at an impact dynamics research facility at 27 m/sec, a flight path angle of -15 deg, and pitch angles of -15 deg, 0 deg, and 15 deg. Other crash parameters were held constant. The test facility, instrumentation, test specimens, and test method are briefly described. Structural damage and accelerometer data for each of the three impact conditions are presented and discussed.

  3. Generalized nonlinear models for rear-end crash risk analysis.

    PubMed

    Lao, Yunteng; Zhang, Guohui; Wang, Yinhai; Milton, John

    2014-01-01

    A generalized nonlinear model (GNM)-based approach for modeling highway rear-end crash risk is formulated using Washington State traffic safety data. Previous studies majorly focused on causal factor identification and crash risk modeling using Generalized linear Models (GLMs), such as Poisson regression, Logistic regression, etc. However, their basic assumption of a generalized linear relationship between the dependent variable (for example, crash rate) and independent variables (for example, contribute factors to crashes) established via a link function can be often violated in reality. Consequently, the GLM-based modeling results could provide biased findings and conclusions. In this research, a GNM-based approach is developed to utilize a nonlinear regression function to better elaborate non-monotonic relationships between the independent and dependent variables using the rear end accident data collected from 10 highway routes from 2002 through 2006. The results show for example that truck percentage and grade have a parabolic impact: they increase crash risks initially, but decrease them after the certain thresholds. Such non-monotonic relationships cannot be captured by regular GLMs which further demonstrate the flexibility of GNM-based approaches in the nonlinear relationship among data and providing more reasonable explanations. The superior GNM-based model interpretations help better understand the parabolic impacts of some specific contributing factors for selecting and evaluating rear-end crash safety improvement plans. PMID:24125803

  4. Car insurance and the risk of car crash injury.

    PubMed

    Blows, Stephanie; Ivers, Rebecca Q; Connor, Jennie; Ameratunga, Shanthi; Norton, Robyn

    2003-11-01

    Despite speculation about the role of vehicle insurance in road traffic accidents, there is little research estimating the direction or extent of the risk relationship. Data from the Auckland Car Crash Injury Study (1998-1999) were used to examine the association between driving an uninsured motor vehicle and car crash injury. Cases were all cars involved in crashes in which at least one occupant was hospitalized or killed anywhere in the Auckland region. Controls were 588 drivers of randomly selected cars on Auckland roads. Participants completed a structured interview. Uninsured drivers had significantly greater odds of car crash injury compared to insured drivers after adjustment for age, sex, level of education, and driving exposure (odds ratio 4.77, 95% confidence interval 2.94-7.75). The causal mechanism for insurance and car crash injury is not easily determined. Although we examined the effects of multiple potential confounders in our analysis including socioeconomic status and risk-taking behaviours, both of which have been previously observed to be associated with both insurance status and car crash injury, residual confounding may partly explain this association. The estimated proportion of drivers who are uninsured is between 5 and 15% in developed countries, representing a significant public health problem worthy of further investigation. PMID:12971933

  5. Macroscopic spatial analysis of pedestrian and bicycle crashes.

    PubMed

    Siddiqui, Chowdhury; Abdel-Aty, Mohamed; Choi, Keechoo

    2012-03-01

    This study investigates the effect of spatial correlation using a Bayesian spatial framework to model pedestrian and bicycle crashes in Traffic Analysis Zones (TAZs). Aggregate models for pedestrian and bicycle crashes were estimated as a function of variables related to roadway characteristics, and various demographic and socio-economic factors. It was found that significant differences were present between the predictor sets for pedestrian and bicycle crashes. The Bayesian Poisson-lognormal model accounting for spatial correlation for pedestrian crashes in the TAZs of the study counties retained nine variables significantly different from zero at 95% Bayesian credible interval. These variables were - total roadway length with 35 mph posted speed limit, total number of intersections per TAZ, median household income, total number of dwelling units, log of population per square mile of a TAZ, percentage of households with non-retired workers but zero auto, percentage of households with non-retired workers and one auto, long term parking cost, and log of total number of employment in a TAZ. A separate distinct set of predictors were found for the bicycle crash model. In all cases the Bayesian models with spatial correlation performed better than the models that did not account for spatial correlation among TAZs. This finding implies that spatial correlation should be considered while modeling pedestrian and bicycle crashes at the aggregate or macro-level. PMID:22269522

  6. Three Cases of Spine Fractures after an Airplane Crash.

    PubMed

    Lee, Han Joo; Moon, Bong Ju; Pennant, William A; Shin, Dong Ah; Kim, Keung Nyun; Yoon, Do Heum; Ha, Yoon

    2015-10-01

    While injuries to the spine after an airplane crash are not rare, most crashes result in fatal injuries. As such, few studies exist that reported on spine fractures sustained during airplane accidents. In this report, we demonstrate three cases of spine fractures due to crash landing of a commercial airplane. Three passengers perished from injuries after the crash landing, yet most of the passengers and crew on board survived, with injuries ranging from minor to severe. Through evaluating our three spine fracture patients, it was determined that compression fracture of the spine was the primary injury related to the airplane accident. The first patient was a 20-year-old female who sustained a T6-8 compression fracture without neurologic deterioration. The second patient was a 33-year-old female with an L2 compression fracture, and the last patient was a 49-year-old male patient with a T8 compression fracture. All three patients were managed conservatively and required spinal orthotics. During the crash, each of these patients were subjected to direct, downward high gravity z-axis (Gz) force, which gave rise to load on the spine vertically, thereby causing compression fracture. Therefore, new safety methods should be developed to prevent excessive Gz force during airplane crash landings. PMID:27169094

  7. Three Cases of Spine Fractures after an Airplane Crash

    PubMed Central

    Lee, Han Joo; Moon, Bong Ju; Pennant, William A.; Shin, Dong Ah; Kim, Keung Nyun; Yoon, Do Heum

    2015-01-01

    While injuries to the spine after an airplane crash are not rare, most crashes result in fatal injuries. As such, few studies exist that reported on spine fractures sustained during airplane accidents. In this report, we demonstrate three cases of spine fractures due to crash landing of a commercial airplane. Three passengers perished from injuries after the crash landing, yet most of the passengers and crew on board survived, with injuries ranging from minor to severe. Through evaluating our three spine fracture patients, it was determined that compression fracture of the spine was the primary injury related to the airplane accident. The first patient was a 20-year-old female who sustained a T6-8 compression fracture without neurologic deterioration. The second patient was a 33-year-old female with an L2 compression fracture, and the last patient was a 49-year-old male patient with a T8 compression fracture. All three patients were managed conservatively and required spinal orthotics. During the crash, each of these patients were subjected to direct, downward high gravity z-axis (Gz) force, which gave rise to load on the spine vertically, thereby causing compression fracture. Therefore, new safety methods should be developed to prevent excessive Gz force during airplane crash landings. PMID:27169094

  8. Aircraft Electric Secondary Power

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Technologies resulted to aircraft power systems and aircraft in which all secondary power is supplied electrically are discussed. A high-voltage dc power generating system for fighter aircraft, permanent magnet motors and generators for aircraft, lightweight transformers, and the installation of electric generators on turbine engines are among the topics discussed.

  9. World commercial aircraft accidents

    SciTech Connect

    Kimura, C.Y.

    1993-01-01

    This report is a compilation of all accidents world-wide involving aircraft in commercial service which resulted in the loss of the airframe or one or more fatality, or both. This information has been gathered in order to present a complete inventory of commercial aircraft accidents. Events involving military action, sabotage, terrorist bombings, hijackings, suicides, and industrial ground accidents are included within this list. Included are: accidents involving world commercial jet aircraft, world commercial turboprop aircraft, world commercial pistonprop aircraft with four or more engines and world commercial pistonprop aircraft with two or three engines from 1946 to 1992. Each accident is presented with information in the following categories: date of the accident, airline and its flight numbers, type of flight, type of aircraft, aircraft registration number, construction number/manufacturers serial number, aircraft damage, accident flight phase, accident location, number of fatalities, number of occupants, cause, remarks, or description (brief) of the accident, and finally references used. The sixth chapter presents a summary of the world commercial aircraft accidents by major aircraft class (e.g. jet, turboprop, and pistonprop) and by flight phase. The seventh chapter presents several special studies including a list of world commercial aircraft accidents for all aircraft types with 100 or more fatalities in order of decreasing number of fatalities, a list of collision accidents involving commercial aircrafts, and a list of world commercial aircraft accidents for all aircraft types involving military action, sabotage, terrorist bombings, and hijackings.

  10. 14 CFR 23.1181 - Designated fire zones; regions included.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Designated fire zones; regions included. 23.1181 Section 23.1181 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Powerplant Fire Protection §...

  11. Arizona Fires

    Atmospheric Science Data Center

    2014-05-15

    ... the second largest fire in Arizona history. More than 2,000 people are working to contain the fire, which is being driven by high winds and ... bright desert background. The areas with no data (shown in black and present at the oblique angles) are locations where the variable ...

  12. Returning Fire

    ERIC Educational Resources Information Center

    Gould, Jon B.

    2007-01-01

    Last December saw another predictable report from the Foundation for Individual Rights in Education (FIRE), a self-described watchdog group, highlighting how higher education is supposedly under siege from a politically correct plague of so-called hate-speech codes. In that report, FIRE declared that as many as 96 percent of top-ranked colleges…

  13. Fire Power

    ERIC Educational Resources Information Center

    Denker, Deb; West, Lee

    2009-01-01

    For education administrators, campus fires are not only a distressing loss, but also a stark reminder that a campus faces risks that require special vigilance. In many ways, campuses resemble small communities, with areas for living, working and relaxing. A residence hall fire may raise the specter of careless youth, often with the complication of…

  14. Siberian Fires

    Atmospheric Science Data Center

    2013-04-16

    ... of fires across Siberia and the Russian Far East, northeast China and northern Mongolia. Fires in Eastern Siberia have been increasing in ... spatial contrast. The heights correspond to elevations above sea level. Taking into account the surface elevation, the smoke plumes range ...

  15. Analysis of Pregnant Occupant Crash Exposure and the Potential Effectiveness of Four-Point Seatbelts in Far Side Crashes

    PubMed Central

    Duma, Stefan M.; Moorcroft, David M.; Gabler, Hampton C.; Manoogian, Sarah M.; Stitzel, Joel D.; Duma, Greg G.

    2006-01-01

    The purpose of this paper is to present the crash exposure patterns of pregnant occupants and to evaluate the effectiveness of restraint systems, including four-point seatbelts, in far side crashes. The NASS CDS database revealed that 53.0 % of pregnant occupants are exposed to frontal crashes while 13.5 % are exposed to far side impacts. Given that far side crashes were the second leading crash mode after frontal impacts, a previously validated MADYMO computer model of a 30 week pregnant occupant was utilized to investigate pregnant occupant biomechanics in far side crashes. Three impact speeds (5, 15, and 25 mph) were simulated with four restraint conditions: unbelted, lap-belt only, three-point belt, and a four-point belt. Direct abdominal contact from the shoulder strap of the three-point or four-point belt caused uterine-placental strain in contrast to the inertial loading induced strain in the lap-belt and unbelted cases. Overall, the three-point and four-point belt systems provide superior restraint effectiveness for the pregnant occupant compared to the lap-belt and no restraint cases. The four-point resulted in slightly better performance than the three-point belt by reducing the fetal injury risk and occupant excursion. PMID:16968637

  16. Wealth inhomogeneity applied to crash rate theory.

    PubMed

    Shuler, Robert L

    2015-11-01

    A crash rate theory based on corporate economic utility maximization is applied to individual behavior in U.S. and German motorway death rates, by using wealth inhomogeneity data in ten-percentile bins to account for variations of utility maximization in the population. Germany and the U.S. have similar median wealth figures, a well-known indicator of accident risk, but different motorway death rates. It is found that inhomogeneity in roughly the 10(th) to 30(th) percentile, not revealed by popular measures such as the Gini index which focus on differences at the higher percentiles, provides a satisfactory explanation of the data. The inhomogeneity analysis reduces data disparity from a factor of 2.88 to 1.75 as compared with median wealth assumed homogeneity, and further to 1.09 with average wealth assumed homogeneity. The first reduction from 2.88 to 1.75 is attributable to inequality at lower percentiles and suggests it may be as important in indicating socioeconomic risk as extremes in the upper percentile ranges, and that therefore the U.S. socioeconomic risk may be higher than generally realized. PMID:27441226

  17. Modeling Composite Laminate Crushing for Crash Analysis

    NASA Technical Reports Server (NTRS)

    Fleming, David C.; Jones, Lisa (Technical Monitor)

    2002-01-01

    Crash modeling of composite structures remains limited in application and has not been effectively demonstrated as a predictive tool. While the global response of composite structures may be well modeled, when composite structures act as energy-absorbing members through direct laminate crushing the modeling accuracy is greatly reduced. The most efficient composite energy absorbing structures, in terms of energy absorbed per unit mass, are those that absorb energy through a complex progressive crushing response in which fiber and matrix fractures on a small scale dominate the behavior. Such failure modes simultaneously include delamination of plies, failure of the matrix to produce fiber bundles, and subsequent failure of fiber bundles either in bending or in shear. In addition, the response may include the significant action of friction, both internally (between delaminated plies or fiber bundles) or externally (between the laminate and the crushing surface). A figure shows the crushing damage observed in a fiberglass composite tube specimen, illustrating the complexity of the response. To achieve a finite element model of such complex behavior is an extremely challenging problem. A practical crushing model based on detailed modeling of the physical mechanisms of crushing behavior is not expected in the foreseeable future. The present research describes attempts to model composite crushing behavior using a novel hybrid modeling procedure. Experimental testing is done is support of the modeling efforts, and a test specimen is developed to provide data for validating laminate crushing models.

  18. Posttraumatic Growth After Motor Vehicle Crashes.

    PubMed

    Wu, Kitty K; Leung, Patrick W L; Cho, Valda W; Law, Lawrence S C

    2016-06-01

    The relationship between sub-dimensions of posttraumatic growth (PTG) and distress was investigated for survivors of motor vehicle crashes (MVC). PTG and symptoms of posttraumatic stress disorder (PTSD) for 1045 MVC survivors who attended the Accident and Emergency Services were examined with the Chinese versions of the Posttraumatic Growth Inventory (PTGI) and the Impact of Event Scale-Revised 1 week after the experience of a MVC. A factor structure, which was different from both the original English version of the PTGI and the Chinese version of PTGI for cancer survivors, was identified. Factors extracted were: (1) Life and Self Appreciation; (2) New Commitments; (3) Enlightenment; and (4) Relating to Others. However, correlation analyses indicated a functional similarity between factors from this study and those from previous studies. Relations between PTG sub-dimensions and PTSD symptoms were identified. Results from hierarchical multiple regression analysis and structural equation modeling show that there were different predictors for different PTG sub-dimensions. Findings suggest that different modes of relationship between PTSD symptoms and PTG sub-dimensions may co-exist. PMID:27040687

  19. Cervical spine response in frontal crash.

    PubMed

    Panzer, Matthew B; Fice, Jason B; Cronin, Duane S

    2011-11-01

    Predicting neck response and injury resulting from motor vehicle accidents is essential to improving occupant protection. A detailed human cervical spine finite element model has been developed, with material properties and geometry determined a priori of any validation, for the evaluation of global kinematics and tissue-level response. Model validation was based on flexion/extension response at the segment level, tension response of the whole ligamentous cervical spine, head kinematic response from volunteer frontal impacts, and soft tissue response from cadaveric whole cervical spine frontal impacts. The validation responses were rated as 0.79, assessed using advanced cross-correlation analysis, indicating the model exhibits good biofidelity. The model was then used to evaluate soft tissue response in frontal impact scenarios ranging from 8G to 22G in severity. Disc strains were highest in the C4-C5-C6 segments, and ligament strains were greatest in the ISL and LF ligaments. Both ligament and disc fiber strain levels exceeded the failure tolerances in the 22G case, in agreement with existing data. This study demonstrated that a cervical spine model can be developed at the tissue level and provide accurate biofidelic kinematic and local tissue response, leading to injury prediction in automotive crash scenarios. PMID:21665513

  20. Flight-crash events in turbulence.

    PubMed

    Xu, Haitao; Pumir, Alain; Falkovich, Gregory; Bodenschatz, Eberhard; Shats, Michael; Xia, Hua; Francois, Nicolas; Boffetta, Guido

    2014-05-27

    The statistical properties of turbulence differ in an essential way from those of systems in or near thermal equilibrium because of the flux of energy between vastly different scales at which energy is supplied and at which it is dissipated. We elucidate this difference by studying experimentally and numerically the fluctuations of the energy of a small fluid particle moving in a turbulent fluid. We demonstrate how the fundamental property of detailed balance is broken, so that the probabilities of forward and backward transitions are not equal for turbulence. In physical terms, we found that in a large set of flow configurations, fluid elements decelerate faster than accelerate, a feature known all too well from driving in dense traffic. The statistical signature of rare "flight-crash" events, associated with fast particle deceleration, provides a way to quantify irreversibility in a turbulent flow. Namely, we find that the third moment of the power fluctuations along a trajectory, nondimensionalized by the energy flux, displays a remarkable power law as a function of the Reynolds number, both in two and in three spatial dimensions. This establishes a relation between the irreversibility of the system and the range of active scales. We speculate that the breakdown of the detailed balance characterized here is a general feature of other systems very far from equilibrium, displaying a wide range of spatial scales. PMID:24794529

  1. A crash-prediction model for road tunnels.

    PubMed

    Caliendo, Ciro; De Guglielmo, Maria Luisa; Guida, Maurizio

    2013-06-01

    Considerable research has been carried out into open roads to establish relationships between crashes and traffic flow, geometry of infrastructure and environmental factors, whereas crash-prediction models for road tunnels, have rarely been investigated. In addition different results have been sometimes obtained regarding the effects of traffic and geometry on crashes in road tunnels. However, most research has focused on tunnels where traffic and geometric conditions, as well as driving behaviour, differ from those in Italy. Thus, in this paper crash prediction-models that had not yet been proposed for Italian road tunnels have been developed. For the purpose, a 4-year monitoring period extending from 2006 to 2009 was considered. The tunnels investigated are single-tube ones with unidirectional traffic. The Bivariate Negative Binomial regression model, jointly applied to non-severe crashes (accidents involving material-damage only) and severe crashes (fatal and injury accidents only), was used to model the frequency of accident occurrence. The year effect on severe crashes was also analyzed by the Random Effects Binomial regression model and the Negative Multinomial regression model. Regression parameters were estimated by the Maximum Likelihood Method. The Cumulative Residual Method was used to test the adequacy of the regression model through the range of annual average daily traffic per lane. The candidate set of variables was: tunnel length (L), annual average daily traffic per lane (AADTL), percentage of trucks (%Tr), number of lanes (NL), and the presence of a sidewalk. Both for non-severe crashes and severe crashes, prediction-models showed that significant variables are: L, AADTL, %Tr, and NL. A significant year effect consisting in a systematic reduction of severe crashes over time was also detected. The analysis developed in this paper appears to be useful for many applications such as the estimation of accident reductions due to improvement in existing

  2. 46 CFR 28.315 - Fire pumps, fire mains, fire hydrants, and fire hoses.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Fire pumps, fire mains, fire hydrants, and fire hoses... After September 15, 1991, and That Operate With More Than 16 Individuals on Board § 28.315 Fire pumps, fire mains, fire hydrants, and fire hoses. (a) Each vessel 36 feet (11.8 meters) or more in length...

  3. 46 CFR 28.820 - Fire pumps, fire mains, fire hydrants, and fire hoses.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 1 2014-10-01 2014-10-01 false Fire pumps, fire mains, fire hydrants, and fire hoses... REQUIREMENTS FOR COMMERCIAL FISHING INDUSTRY VESSELS Aleutian Trade Act Vessels § 28.820 Fire pumps, fire mains, fire hydrants, and fire hoses. (a) Each vessel must be equipped with a self-priming, power driven...

  4. 46 CFR 28.820 - Fire pumps, fire mains, fire hydrants, and fire hoses.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 1 2013-10-01 2013-10-01 false Fire pumps, fire mains, fire hydrants, and fire hoses... REQUIREMENTS FOR COMMERCIAL FISHING INDUSTRY VESSELS Aleutian Trade Act Vessels § 28.820 Fire pumps, fire mains, fire hydrants, and fire hoses. (a) Each vessel must be equipped with a self-priming, power driven...

  5. Techno-economic requirements for composite aircraft components

    NASA Technical Reports Server (NTRS)

    Palmer, Ray

    1993-01-01

    The primary reason for use of composites is to save structural weight. A well designed composite aircraft structure will usually save 25-30 percent of a well designed metal structure. The weight savings then translates into improved performance of the aircraft in measures of greater payload, increased flying range or improved efficiency - less use of fuel. Composite materials offer technical advantages. Key technical advantages that composites offer are high stiffness, tailored strength capability, fatigue resistance, and corrosion resistance. Low thermal expansion properties produce dimensionally stable structures over a wide range of temperature. Specialty resin 'char' forming characteristics in a fire environment offer potential fire barrier application and safer aircraft. The materials and processes of composite fabrication offer the potential for lower cost structures in the near future. The application of composite materials to aircraft are discussed.

  6. A Reexamination of the Small Overlap Frontal Crash

    PubMed Central

    Scullion, Paul; Morgan, Richard M.; Mohan, Pradeep; Kan, Cing-Dao; Shanks, Kurt; Jin, Wook; Tangirala, Ravi

    2010-01-01

    The objective of this study was to examine and rank the Small Overlap Frontal Crash as one of the eight-group taxonomy proposed by Ford. The Ford taxonomy classifies real-world frontal-impact crashes based on the National Automotive Sampling System (NASS). Frontally-impacted vehicles were identified for 1985 – 2008 model year passenger vehicles with Collision Deformation Classification (CDC) data from the 1995 – 2008 years of NASS. Small overlap frontal cases were identified where there was no engagement of the vehicle frame rails, and the direct damage was located entirely outside of the vehicle frame rails. The results are that full engagement and offset (offset category means the direct damage overlaps the vehicle frame rail, with the center of direct damage between the frame rails) were the most frequent crashes contributing 35% each. The frequency of the small overlap frontal was 6%. The risks of injury (AIS ≥ 2) for the full engagement, offset, and small overlap were 8%, 6%, and 3% respectively. For this study, the number of small overlap vehicles was 1,118 and the number of injured nearside occupants was 100. This study—following the Ford approach and reasonably identifying the location of the longitudinal rails based on CDC—suggests that the small overlap is at worst a moderately dangerous crash in the overall scheme of frontal crashes. The implications of this study are that the safety community should reexamine the significance of the small overlap frontal crash against an overall taxonomy of crashes. PMID:21050598

  7. Mopeds and Scooters: Crash Outcomes in a High Traffic State

    PubMed Central

    Miggins, Makesha; Lottenberg, Lawrence; Liu, Huazhi; Moldawer, Lyle; Efron, Philip; Ang, Darwin

    2014-01-01

    Background Moped and scooter crash outcomes in the United States were last reported over 20 years ago. These vehicles have experienced resurgence in popularity with sales that have increased up to 60% in recent years. The purpose of this study is to identify risk factors between severe and non-severe driver related injuries and to identify modifiable risk factors. Methods The Florida Traffic Crash Records Database (FTCRD) was used to identify all crashes involving mopeds and scooters occurring between 2002 and 2008. A total of 5,660 moped crashes were evaluated. Multivariate logistic regression was used to determine the strength of association of severe injury for each risk factor. Results Over 90% of drivers involved in moped or scooter crashes were uninsured. Only 17% of all drivers wore helmets. Alcohol and drug use was a significant risk factor severe and lethal crashes OR 2.09, 95% CI (1.64, 2.66). Risk factors amenable for state intervention and associated with increased severe or lethal injury were unpaved roads OR 1.57, 95% CI (1.30, 1.88); driving speeds > 20 mph OR 2.02, 95% CI (1.73, 2.36); posted speed limits >30 mph OR 1.40, 95% CI (1.22, 1.62); major roadways with 4 or more lanes OR 1.83, 95% CI (1.04, 3.21); and poor lighting conditions OR 1.69, 95% CI (1.23, 2.32). Conclusions These results suggest that most of the traffic infrastructure does not accommodate the safety of moped and scooter drivers. Focused interventions and further investigation into statewide traffic rules may improve moped crash outcomes. PMID:21399547

  8. Compulsive Cell Phone Use and History of Motor Vehicle Crash

    PubMed Central

    O’Connor, Stephen S.; Whitehill, Jennifer M.; King, Kevin M.; Kernic, Mary A.; Boyle, Linda Ng; Bresnahan, Brian; Mack, Christopher D.; Ebel, Beth E.

    2013-01-01

    Introduction Few studies have examined the psychological factors underlying the association between cell phone use and motor vehicle crash. We sought to examine the factor structure and convergent validity of a measure of problematic cell phone use and explore whether compulsive cell phone use is associated with a history of motor vehicle crash. Methods We recruited a sample of 383 undergraduate college students to complete an on-line assessment that included cell phone use and driving history. We explored the dimensionality of the Cell Phone Overuse Scale (CPOS) using factor analytic methods. Ordinary least squares regression models were used to examine associations between identified subscales and measures of impulsivity, alcohol use, and anxious relationship style to establish convergent validity. We used negative binomial regression models to investigate associations between the CPOS and motor vehicle crash incidence. Results We found the CPOS to be comprised of four subscales: anticipation, activity interfering, emotional reaction, and problem recognition. Each displayed significant associations with aspects of impulsivity, problematic alcohol use, and anxious relationship style characteristics. Only the anticipation subscale demonstrated statistically significant associations with reported motor vehicle crash incidence, controlling for clinical and demographic characteristics (RR 1.13, CI 1.01 to 1.26). For each one-point increase on the 6-point anticipation subscale, risk for previous motor vehicle crash increased by 13%. Conclusions Crash risk is strongly associated with heightened anticipation about incoming phone calls or messages. The mean score on the CPOS is associated with increased risk of motor vehicle crash but does not reach statistical significance. PMID:23910571

  9. Spatial regression analysis of traffic crashes in Seoul.

    PubMed

    Rhee, Kyoung-Ah; Kim, Joon-Ki; Lee, Young-ihn; Ulfarsson, Gudmundur F

    2016-06-01

    Traffic crashes can be spatially correlated events and the analysis of the distribution of traffic crash frequency requires evaluation of parameters that reflect spatial properties and correlation. Typically this spatial aspect of crash data is not used in everyday practice by planning agencies and this contributes to a gap between research and practice. A database of traffic crashes in Seoul, Korea, in 2010 was developed at the traffic analysis zone (TAZ) level with a number of GIS developed spatial variables. Practical spatial models using available software were estimated. The spatial error model was determined to be better than the spatial lag model and an ordinary least squares baseline regression. A geographically weighted regression model provided useful insights about localization of effects. The results found that an increased length of roads with speed limit below 30 km/h and a higher ratio of residents below age of 15 were correlated with lower traffic crash frequency, while a higher ratio of residents who moved to the TAZ, more vehicle-kilometers traveled, and a greater number of access points with speed limit difference between side roads and mainline above 30 km/h all increased the number of traffic crashes. This suggests, for example, that better control or design for merging lower speed roads with higher speed roads is important. A key result is that the length of bus-only center lanes had the largest effect on increasing traffic crashes. This is important as bus-only center lanes with bus stop islands have been increasingly used to improve transit times. Hence the potential negative safety impacts of such systems need to be studied further and mitigated through improved design of pedestrian access to center bus stop islands. PMID:26994374

  10. Fluid-Solid Interactive Methodology for Prognosis of Passenger Jet Structural Damage in Water Crash Landing

    NASA Astrophysics Data System (ADS)

    Bayandor, Javid

    2010-11-01

    Today, crashworthiness studies constitute a major part of modern aerospace design and certification processes. Of important consideration is the assessment of structural damage tolerance in terms of the extent of progressive damage and failure caused by aircraft emergency ditching on soft terrain or on water. Although a certification requirement, full scale crash landings are rarely tested using fully functional prototypes due to their high associated costs. This constraint makes it difficult for all crashworthy features of the design to be identified and fine-tuned before the commencement of the manufacturing phase. The current study presents aspects of a numerical methodology that can drastically subside the dependency of the certification assessments to full scale field trials. Interactive, fully nonlinear, solid-structure and fluid- structure analyses have been proposed using coupled Lagrangian- Eulerian and independent meshless Lagrangian approaches that run on a combined finite element-computational fluid dynamics platform. Detailed analysis of a key landing scenario pertaining to a large passenger jet will be provided to determine the relevance and accuracy of the proposed method. The work further identifies state-of-the-art computational approaches for modeling fluid-solid interactive systems that can help improve aircraft structural responses to soft impact and water ditching.

  11. Innovations in Aircraft Design

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The Boeing 777 carries with it basic and applied research, technology, and aerodynamic knowledge honed at several NASA field centers. Several Langley Research Center innovations instrumental to the development of the aircraft include knowledge of how to reduce engine and other noise for passengers and terminal residents, increased use of lightweight aerospace composite structures for increased fuel efficiency and range, and wind tunnel tests confirming the structural integrity of 777 wing-airframe integration. Test results from Marshall Space Flight Center aimed at improving the performance of the Space Shuttle engines led to improvements in the airplane's new, more efficient jet engines. Finally, fostered by Ames Research Center, the Boeing 777 blankets that protect areas of the plane from high temperatures and fire have a lineage to Advanced Flexible Reusable Surface Insulation used on certain areas of the Space Shuttle. According to Boeing Company estimates, the 777 has captured three-quarters of new orders for airplanes in its class since the program was launched.

  12. 14 CFR 25.1187 - Drainage and ventilation of fire zones.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Powerplant Fire Protection § 25.1187 Drainage and ventilation of fire zones. (a) There must be complete drainage of each part... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Drainage and ventilation of fire zones....

  13. 14 CFR 29.861 - Fire protection of structure, controls, and other parts.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fire protection of structure, controls, and... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Design and Construction Fire Protection § 29.861 Fire protection of structure, controls, and other parts. Each part of the...

  14. 14 CFR 27.861 - Fire protection of structure, controls, and other parts.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Fire protection of structure, controls, and... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Design and Construction Fire Protection § 27.861 Fire protection of structure, controls, and other parts. Each part of the...

  15. 14 CFR 29.861 - Fire protection of structure, controls, and other parts.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Fire protection of structure, controls, and... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Design and Construction Fire Protection § 29.861 Fire protection of structure, controls, and other parts. Each part of the...

  16. 14 CFR 27.861 - Fire protection of structure, controls, and other parts.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fire protection of structure, controls, and... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Design and Construction Fire Protection § 27.861 Fire protection of structure, controls, and other parts. Each part of the...

  17. Signs of an Impending Hard Disk Crash

    ERIC Educational Resources Information Center

    Goldborough, Reid

    2004-01-01

    If you have worked with computers for any length of time, you have undoubtedly heard the warnings and the recommendations. Data stored on PCs can disappear in a nanosecond. You need to back up any crucial data you cannot risk losing. Ideally, you should store at least one set of crucial back-up data off-site in case of a fire, flood or other…

  18. Light weight fire resistant graphite composites

    NASA Technical Reports Server (NTRS)

    Kourtides, D. A.; Parker, J. A.; Hsu, M. T. S.

    1986-01-01

    Composite structures with a honeycomb core and characterized by lightweight and excellent fire resistance are provided. These sandwich structures employ facesheets made up of bismaleimide-vinyl styrylpyridine copolymers with fiber reinforcement such as carbon fiber reinforcement. In preferred embodiments the facesheets are over layered with a decorative film. The properties of these composites make them attractive materials of construction aircraft and spacecraft.

  19. 14 CFR 125.119 - Fire precautions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Fire precautions. 125.119 Section 125.119...: AIRPLANES HAVING A SEATING CAPACITY OF 20 OR MORE PASSENGERS OR A MAXIMUM PAYLOAD CAPACITY OF 6,000 POUNDS OR MORE; AND RULES GOVERNING PERSONS ON BOARD SUCH AIRCRAFT Special Airworthiness Requirements §...

  20. 14 CFR 125.119 - Fire precautions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Fire precautions. 125.119 Section 125.119...: AIRPLANES HAVING A SEATING CAPACITY OF 20 OR MORE PASSENGERS OR A MAXIMUM PAYLOAD CAPACITY OF 6,000 POUNDS OR MORE; AND RULES GOVERNING PERSONS ON BOARD SUCH AIRCRAFT Special Airworthiness Requirements §...

  1. 14 CFR 125.119 - Fire precautions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Fire precautions. 125.119 Section 125.119...: AIRPLANES HAVING A SEATING CAPACITY OF 20 OR MORE PASSENGERS OR A MAXIMUM PAYLOAD CAPACITY OF 6,000 POUNDS OR MORE; AND RULES GOVERNING PERSONS ON BOARD SUCH AIRCRAFT Special Airworthiness Requirements §...

  2. Correlation and assessment of structural airplane crash data with flight parameters at impact

    NASA Technical Reports Server (NTRS)

    Carden, H. D.

    1982-01-01

    Crash deceleration pulse data from a crash dynamics program on general aviation airplanes and from transport crash data were analyzed. Structural airplane crash data and flight parameters at impact were correlated. Uncoupled equations for the normal and longitudinal floor impulses in the cabin area of the airplane were derived, and analytical expressions for structural crushing during impact and horizontal slide out were also determined. Agreement was found between experimental and analytical data for general aviation and transport airplanes over a relatively wide range of impact parameter. Two possible applications of the impulse data are presented: a postcrash evaluation of crash test parameters and an assumed crash scenario.

  3. Multisensor cargo bay fire detection system

    NASA Astrophysics Data System (ADS)

    Snyder, Brian L.; Anderson, Kaare J.; Renken, Christopher H.; Socha, David M.; Miller, Mark S.

    2004-08-01

    Current aircraft cargo bay fire detection systems are generally based on smoke detection. Smoke detectors in modern aircraft are predominately photoelectric particle detectors that reliably detect smoke, but also detect dust, fog, and most other small particles. False alarms caused by these contaminants can be very costly to the airlines because they can cause flights to be diverted needlessly. To minimize these expenses, a new approach to cargo bay fire detection is needed. This paper describes a novel fire detection system developed by the Goodrich Advanced Sensors Technical Center. The system uses multiple sensors of different technologies to provide a way of discriminating between real fire events and false triggers. The system uses infrared imaging along with multiple, distributed chemical sensors and smoke detectors, all feeding data to a digital signal processor. The processor merges data from the chemical sensors, smoke detectors, and processed images to determine if a fire (or potential fire) is present. Decision algorithms look at all this data in real-time and make the final decision about whether a fire is present. In the paper, we present a short background of the problem we are solving, the reasons for choosing the technologies used, the design of the system, the signal processing methods and results from extensive system testing. We will also show that multiple sensing technologies are crucial to reducing false alarms in such systems.

  4. Next generation fire suppressants

    NASA Technical Reports Server (NTRS)

    Brown, Jerry A.

    1995-01-01

    Spectrex, Inc., located in Cedar Grove, NJ is a manufacturer of fire detection and suppression equipment. Spectrex is one of the original pioneers in high speed fire detection and suppression systems for combat vehicles. Spectrex has installed fire suppressions systems in thousands of combat vehicles and ships throughout the world. Additionally, they manufacture flame explosion detectors, ship damage control systems, and optical gas and vapor detectors. The culmination of several years of research and development has recently produced an innovative electro-optical continuous monitoring systems called SharpEye 20/20I IR(sup 3) and SAFEYE that provide fast and reliable gas, vapor, aerosol, flame, and explosion detection. SharpEye 20/20I IR(sup 3) is a self-contained triple spectrum flame detector which scans for oscillating IR radiation (1 to 10 Hz) in the spectral bands ranging from 4.0 to 5.0 microns and uses programmed algorithms to check the ratio and correlation of data received by the three sensors to make the system highly immune to false alarms. It is extremely sensitive as it can detect a 1 x 1 square foot gasoline pan fire at 200 feet in less than 3 seconds. The sensitivity is user programmable, offering 4 ranges of detection. SAFEYE is comprised of a selected number of multispectral ban microprocessors controlled detectors which are in communication with one or more radiation sources that is projected along a 600 feet optical path. The signals from the selected narrow bands are processed and analyzed by highly sophisticated algorithms. It is ideal for high risk, remote, large areas such as petroleum and chemical manufacturing sites, waste dumps, aircraft cargo bays, and ship compartments. The SAFEYE will perform direct readings of the presence or rate of rise of concentrations of gases, vapors, or aerosols at the range of parts per million and provide alarms at various set points at different levels of concentrations.

  5. Next generation fire suppressants

    SciTech Connect

    Brown, J.A.

    1995-03-01

    Spectrex, Inc., located in Cedar Grove, NJ is a manufacturer of fire detection and suppression equipment. Spectrex is one of the original pioneers in high speed fire detection and suppression systems for combat vehicles. Spectrex has installed fire suppressions systems in thousands of combat vehicles and ships throughout the world. Additionally, they manufacture flame explosion detectors, ship damage control systems, and optical gas and vapor detectors. The culmination of several years of research and development has recently produced an innovative electro-optical continuous monitoring systems called SharpEye 20/20I IR(sup 3) and SAFEYE that provide fast and reliable gas, vapor, aerosol, flame, and explosion detection. SharpEye 20/20I IR(sup 3) is a self-contained triple spectrum flame detector which scans for oscillating IR radiation (1 to 10 Hz) in the spectral bands ranging from 4.0 to 5.0 microns and uses programmed algorithms to check the ratio and correlation of data received by the three sensors to make the system highly immune to false alarms. It is extremely sensitive as it can detect a 1 x 1 square foot gasoline pan fire at 200 feet in less than 3 seconds. The sensitivity is user programmable, offering 4 ranges of detection. SAFEYE is comprised of a selected number of multispectral band microprocessor controlled detectors which are in communication with one or more radiation sources that is projected along a 600 feet optical path. The signals from the selected narrow bands are processed and analyzed by highly sophisticated algorithms. It is ideal for high risk, remote, large areas such as petroleum and chemical manufacturing sites, waste dumps, aircraft cargo bays, and ship compartments. The SAFEYE will perform direct readings of the presence or rate of rise of concentrations of gases, vapors, or aerosols at the range of parts per million and provide alarms at various set points at different levels of concentrations.

  6. Propulsion controlled aircraft computer

    NASA Technical Reports Server (NTRS)

    Cogan, Bruce R. (Inventor)

    2010-01-01

    A low-cost, easily retrofit Propulsion Controlled Aircraft (PCA) system for use on a wide range of commercial and military aircraft consists of an propulsion controlled aircraft computer that reads in aircraft data including aircraft state, pilot commands and other related data, calculates aircraft throttle position for a given maneuver commanded by the pilot, and then displays both current and calculated throttle position on a cockpit display to show the pilot where to move throttles to achieve the commanded maneuver, or is automatically sent digitally to command the engines directly.

  7. Motor Vehicle Crash Severity Estimations by Physicians and Prehospital Personnel

    PubMed Central

    Cleveland, Nathan; Colwell, Christopher; Douglass, Erica; Hopkins, Emily; Haukoos, Jason S.

    2016-01-01

    Objective To determine whether emergency physicians (EPs) and prehospital emergency medical services (EMS) personnel differ in their assessment of motor vehicle crash (MVC) severity and the potential for serious injury when viewing crash scene photographs. Methods Attending and resident EPs, paramedics, and emergency medical technicians (EMTs) from a single emergency medicine system used a web-based survey platform to rate the severity of 100 crash photographs on a 10-point Likert scale (Crash Score) and the potential for serious injury on a 0–100% scale (Injury Score). Serious injury was defined as skull fracture or intracranial bleeding, spine fracture or spinal cord injury, intrathoracic or intraabdominal injury, or long bone fracture. Crash and Injury Scores were stratified into EP and paramedic/EMT (EMS) groups and the mean score was calculated for each photo. Spearman rank correlation coefficients with 95% confidence intervals (95% CI) and Bland-Altman plots were constructed to assess agreement. Secondary analyses were performed after categorizing data into quartiles based on participants’ estimations of MVC severity. Results A total of 54 attending and 53 resident EPs, 156 paramedics, and 34 EMTs were invited to participate in the survey. Of these, 39 (72%) attending and 46 (87%) resident EPs, 107 (69%) paramedics, and 17 (50%) EMTs completed the survey. A total of 183 (88%) surveys were completed in full. The overall Crash Score correlation coefficient between EPs and EMS was 0.98 (95% CI, 0.97–0.99). The Crash Score correlation coefficients for each quartile were 0.86 (0.57–0.97), 0.93 (0.85–0.96), 0.58 (0.16–0.85), and 0.88 (0.66–0.97), respectively. The overall Injury Score correlation coefficient between EPs and EMS was 0.98 (0.88–0.97). The Injury Score correlation coefficients for each quartile were 0.94 (0.48–0.91), 0.76 (0.50–0.92), 0.80 (0.69–1.00), and 0.94 (0.57–0.97), respectively. Conclusion Although overall agreement

  8. Potential Occupant Injury Reduction in Pre-Crash System Equipped Vehicles in the Striking Vehicle of Rear-end Crashes.

    PubMed

    Kusano, Kristofer D; Gabler, Hampton C

    2010-01-01

    To mitigate the severity of rear-end and other collisions, Pre-Crash Systems (PCS) are being developed. These active safety systems utilize radar and/or video cameras to determine when a frontal crash, such as a front-to-back rear-end collisions, is imminent and can brake autonomously, even with no driver input. Of these PCS features, the effects of autonomous pre-crash braking are estimated. To estimate the maximum potential for injury reduction due to autonomous pre-crash braking in the striking vehicle of rear-end crashes, a methodology is presented for determining 1) the reduction in vehicle crash change in velocity (ΔV) due to PCS braking and 2) the number of injuries that could be prevented due to the reduction in collision severity. Injury reduction was only performed for belted drivers, as unbelted drivers have an unknown risk of being thrown out of position. The study was based on 1,406 rear-end striking vehicles from NASS / CDS years 1993 to 2008. PCS parameters were selected from realistic values and varied to examine the effect on system performance. PCS braking authority was varied from 0.5 G's to 0.8 G's while time to collision (TTC) was held at 0.45 seconds. TTC was then varied from 0.3 second to 0.6 seconds while braking authority was held constant at 0.6 G's. A constant braking pulse (step function) and ramp-up braking pulse were used. The study found that automated PCS braking could reduce the crash ΔV in rear-end striking vehicles by an average of 12% - 50% and avoid 0% - 14% of collisions, depending on PCS parameters. Autonomous PCS braking could potentially reduce the number of injured drivers who are belted by 19% to 57%. PMID:21050603

  9. Potential Occupant Injury Reduction in Pre-Crash System Equipped Vehicles in the Striking Vehicle of Rear-end Crashes

    PubMed Central

    Kusano, Kristofer D.; Gabler, Hampton C.

    2010-01-01

    To mitigate the severity of rear-end and other collisions, Pre-Crash Systems (PCS) are being developed. These active safety systems utilize radar and/or video cameras to determine when a frontal crash, such as a front-to-back rear-end collisions, is imminent and can brake autonomously, even with no driver input. Of these PCS features, the effects of autonomous pre-crash braking are estimated. To estimate the maximum potential for injury reduction due to autonomous pre-crash braking in the striking vehicle of rear-end crashes, a methodology is presented for determining 1) the reduction in vehicle crash change in velocity (ΔV) due to PCS braking and 2) the number of injuries that could be prevented due to the reduction in collision severity. Injury reduction was only performed for belted drivers, as unbelted drivers have an unknown risk of being thrown out of position. The study was based on 1,406 rear-end striking vehicles from NASS / CDS years 1993 to 2008. PCS parameters were selected from realistic values and varied to examine the effect on system performance. PCS braking authority was varied from 0.5 G’s to 0.8 G’s while time to collision (TTC) was held at 0.45 seconds. TTC was then varied from 0.3 second to 0.6 seconds while braking authority was held constant at 0.6 G’s. A constant braking pulse (step function) and ramp-up braking pulse were used. The study found that automated PCS braking could reduce the crash ΔV in rear-end striking vehicles by an average of 12% – 50% and avoid 0% – 14% of collisions, depending on PCS parameters. Autonomous PCS braking could potentially reduce the number of injured drivers who are belted by 19% to 57%. PMID:21050603

  10. Injury Differences Between Small and Large Overlap Frontal Crashes

    PubMed Central

    Hallman, Jason J.; Yoganandan, Narayan; Pintar, Frank A.; Maiman, Dennis J.

    2011-01-01

    Because small overlap impacts have recently emerged as a crash mode posing great injury risk to occupants, a detailed analysis of US crash data was conducted using the NASS/CDS and CIREN databases. Frontal crashes were subcategorized into small overlap impact (SOI) and large overlap impact (LOI) using crash and crush characteristics from the datasets. Injuries to head, spine, chest, hip and pelvis, and lower extremities were parsed and compared between crash types. MAIS 3+ occupants in NASS/CDS and CIREN demonstrated increased incidence of head, chest, spine, and hip/pelvis injuries in SOI compared to LOI. In NASS/CDS, subgaleal hematoma represented 48.6% of SOI head injury codes but 27.6% in LOI. Cervical spine posterior element fractures also represented greater proportions of SOI spine injuries (e.g., facet fractures: 27.8 vs. 14.0%), and proximal femur fractures represented a greater proportion of hip/pelvis injuries (e.g., intertrochanteric fracture: 32.5 vs. 11.8%). Tarsal/metatarsal fractures were a lesser proportion of lower extremity injuries in SOI compared to LOI. Occupant contact points inducing these injuries were observed in CIREN cases in some instances without compartment intrusion. These injuries suggest the substantial role of occupant kinematics in SOI which may induce suboptimal occupant restraint interaction. PMID:22105392

  11. The tole of towing services at motor vehicle crashes.

    PubMed

    Dean, L; Jame, W; Ryan, G A

    1975-08-16

    A survey of tow truck services operating in a defined area of the south-east suburbs of Melbourne was undertaken to determine their potential for delivering emergency medical care at the scene of crashes. Most towing firms have an association with a panel-beating shop, and operate within a limited area of one to three miles radius. The rapid response of tow trucks to crash scenes is due to their well-developed intelligence network of "spotters" and the short distances the trucks travel. Very little first aid is provided by the drivers, although one-fifth had some first aid training at some time. In about one-half of the calls to crashes a damaged vehicle is still at the scene, in about 20% an ambulance is called, and in about 5% a hospital admission occurs. Direct observation of 22 crashes suggests that on average, tow trucks arrive at a crash scene five minutes before the ambulance, and fifteen minutes before the police. There is a good case for making first aid training a preerequisite for issue of a tow truck operator's license. PMID:1160789

  12. Motor vehicle drivers' injuries in train-motor vehicle crashes.

    PubMed

    Zhao, Shanshan; Khattak, Aemal

    2015-01-01

    The objectives of this research were to: (1) identify a more suitable model for modeling injury severity of motor vehicle drivers involved in train-motor vehicle crashes at highway-rail grade crossings from among three commonly used injury severity models and (2) to investigate factors associated with injury severity levels of motor vehicle drivers involved in train-motor vehicle crashes at such crossings. The 2009-2013 highway-rail grade crossing crash data and the national highway-rail crossing inventory data were combined to produce the analysis dataset. Four-year (2009-2012) data were used for model estimation while 2013 data were used for model validation. The three injury severity levels-fatal, injury and no injury-were based on the reported intensity of motor-vehicle drivers' injuries at highway-rail grade crossings. The three injury severity models evaluated were: ordered probit, multinomial logit and random parameter logit. A comparison of the three models based on different criteria showed that the random parameter logit model and multinomial logit model were more suitable for injury severity analysis of motor vehicle drivers involved in crashes at highway-rail grade crossings. Some of the factors that increased the likelihood of more severe crashes included higher train and vehicle speeds, freight trains, older drivers, and female drivers. Where feasible, reducing train and motor vehicle speeds and nighttime lighting may help reduce injury severities of motor vehicle drivers. PMID:25463957

  13. Urban sprawl as a risk factor in motor vehicle crashes

    USGS Publications Warehouse

    Ewing, Reid; Hamidi, Shima; Grace, James B.

    2016-01-01

    A decade ago, compactness/sprawl indices were developed for metropolitan areas and counties which have been widely used in health and other research. In this study, we first update the original county index to 2010, then develop a refined index that accounts for more relevant factors, and finally seek to test the relationship between sprawl and traffic crash rates using structural equation modelling. Controlling for covariates, we find that sprawl is associated with significantly higher direct and indirect effects on fatal crash rates. The direct effect is likely due to the higher traffic speeds in sprawling areas, and the indirect effect is due to greater vehicle miles driven in such areas. Conversely, sprawl has negative direct relationships with total crashes and non-fatal injury crashes, and these offset (and sometimes overwhelm) the positive indirect effects of sprawl on both types of crashes through the mediating effect of increased vehicle miles driven. The most likely explanation is the greater prevalence of fender benders and other minor accidents in the low speed, high conflict traffic environments of compact areas, negating the lower vehicle miles travelled per capita in such areas.

  14. Mexico Fires

    Atmospheric Science Data Center

    2013-04-18

    article title:  Smoke from Fires in Southern Mexico     View Larger Image ... southern Mexico sent smoke drifting northward over the Gulf of Mexico. These views from the Multi-angle Imaging SpectroRadiometer (MISR) ...

  15. California Fires

    Atmospheric Science Data Center

    2014-05-15

    ... title:  Smoke from Station Fire Blankets Southern California     View Larger Image ... that had not burned in decades, and years of extended drought contributed to the explosive growth of wildfires throughout southern ...

  16. Injury Risk Functions in Frontal Impacts Using Data from Crash Pulse Recorders

    PubMed Central

    Stigson, Helena; Kullgren, Anders; Rosén, Erik

    2012-01-01

    Knowledge of how crash severity influences injury risk in car crashes is essential in order to create a safe road transport system. Analyses of real-world crashes increase the ability to obtain such knowledge. The aim of this study was to present injury risk functions based on real-world frontal crashes where crash severity was measured with on-board crash pulse recorders. Results from 489 frontal car crashes (26 models of four car makes) with recorded acceleration-time history were analysed. Injury risk functions for restrained front seat occupants were generated for maximum AIS value of two or greater (MAIS2+) using multiple logistic regression. Analytical as well as empirical injury risk was plotted for several crash severity parameters; change of velocity, mean acceleration and peak acceleration. In addition to crash severity, the influence of occupant age and gender was investigated. A strong dependence between injury risk and crash severity was found. The risk curves reflect that small changes in crash severity may have a considerable influence on the risk of injury. Mean acceleration, followed by change of velocity, was found to be the single variable that best explained the risk of being injured (MAIS2+) in a crash. Furthermore, all three crash severity parameters were found to predict injury better than age and gender. However, age was an important factor. The very best model describing MAIS2+ injury risk included delta V supplemented by an interaction term of peak acceleration and age. PMID:23169136

  17. Fire clay

    USGS Publications Warehouse

    Virta, R.L.

    2012-01-01

    Five companies mined fire clay in four states in 2011. Production, based on a preliminary survey of the fire clay industry, was estimated to be 240 kt (265,000 st), valued at $7.68 million, an increase from 216 kt (238,000 st), valued at $6.12 million in 2010. Missouri was the leading producing state, followed by Texas, Washington and Ohio, in decreasing order by quantity.

  18. The ARCTAS aircraft mission: design and execution

    NASA Astrophysics Data System (ADS)

    Jacob, D. J.; Crawford, J. H.; Maring, H. B.; Clarke, A. D.; Dibb, J. E.; Ferrare, R. A.; Hostetler, C. A.; Russell, P. B.; Singh, H. B.; Thompson, A. M.; Shaw, G. E.; McCauley, E.; Pederson, J. R.; Fisher, J. A.

    2009-12-01

    We present an overview of the NASA Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) mission, conducted in two 3-week deployments based in Alaska (April 2008) and western Canada (June-July 2008). The goal of ARCTAS was to better understand the factors driving current changes in Arctic atmospheric composition and climate, including (1) transport of mid-latitude pollution, (2) boreal forest fires, (3) aerosol radiative forcing, and (4) chemical processes. ARCTAS involved three aircraft: a DC-8 with detailed chemical payload, a P-3 with extensive aerosol payload, and a B-200 with aerosol remote sensing instrumentation. The aircraft augmented satellite observations of Arctic atmospheric composition, in particular from the NASA A-Train, by (1) validating the data, (2) improving constraints on retrievals, (3) making correlated observations, and (4) characterizing chemical and aerosol processes. The April flights (ARCTAS-A) sampled pollution plumes from all three mid-latitude continents, fire plumes from Siberia and Southeast Asia, and halogen radical events. The June-July flights (ARCTAS-B) focused on boreal forest fire influences and sampled fresh fire plumes from northern Saskatchewan as well as older fire plumes from Canada, Siberia, and California. The June-July deployment was preceded by one week of flights over California sponsored by the California Air Resources Board (ARCTAS-CARB). The ARCTAS-CARB goals were to (1) improve state emission inventories for greenhouse gases and aerosols, (2) provide observations to test and improve models of ozone and aerosol pollution. Extensive sampling across southern California and the Central Valley characterized emissions from urban centers, offshore shipping lanes, agricultural crops, feedlots, industrial sources, and wildfires.

  19. AIRCRAFT DEPAINTING TECHNOLOGY

    EPA Science Inventory

    Chemical paint strippers historically used for aircraft contained toxic and hazardous components; aircraft depainting operations are a major source of hazardous waste generation in DOD. Federal and state agencies have begun to restrict using these hazardous materials and Governme...

  20. Impact and Injury Patterns in Between-Rails Frontal Crashes of Vehicles with Good Ratings for Frontal Crash Protection

    PubMed Central

    Morgan, Richard M.; Cui, Chongzhen; Digges, Kennerly H.; Cao, Libo; Kan, Cing-Dao (Steve)

    2012-01-01

    This research investigated (1) what are the key attributes of the between-rail, frontal crash, (2) what are the types of object contacted, and (3) what is the type of resulting trauma. The method was to study with both weighted and in-depth case reviews of NASS-CDS crash data with direct damage between the longitudinal rails in frontal crashes. Individual case selection was limited to belted occupants in between-rail, frontal impacts of good-rated, late-model vehicles equipped with air bags. This paper evaluates the risk of trauma for drivers in cars and LTVs in between-rail, frontal crashes, and suggests the between-rail impact is more dangerous to car drivers. Using weighted data—representing 227,305 tow-away crashes—the resulting trauma to various body regions was analyzed to suggest greatest injury is to the chest, pelvis/thigh/knee/leg, and foot/ankle. This study analyzed the type of object that caused the direct damage between the rails, including small tree or post, large tree or pole, and another vehicle; and found that the struck object was most often another vehicle or a large tree/pole. Both the extent of damage and the occupant compartment intrusion were explored, and suggest that 64% of the serious injuries are associated with increasing intrusion. Individual NASS cases were reviewed to gain a deeper understanding of the mechanical particulars in the between-rail crash. PMID:23169135

  1. Estimating national road crash fatalities using aggregate data.

    PubMed

    Ahmed, Anwaar; Khan, Beenish Akbar; Khurshid, Muhammad Bilal; Khan, Muhammad Babar; Waheed, Abdul

    2016-09-01

    Injuries and fatalities from road traffic crashes have emerged a major public health challenge in Pakistan. Reliable estimates of road crash fatalities (RCF) of a country, is a vital element needed for identification and control of key risk factors, road-safety improvement efforts and prioritizing national health. Reliability of current annual RCF estimates for Pakistan becomes highly questionable due to serious underreporting. This study aimed to predict annual RCF for Pakistan using data from World Health Organization and International Road Federation sources. An ordinary least square (OLS) regression model that relates fatality rate with different explanatory variables was developed. RCF were predicted for Pakistan for year 2012 and 2013, and results were compared with national police reported estimates. Study results indicated that there is serious underreporting of RCF in Pakistan and immediate measures are needed to improve the existing road crash recording and reporting system at the national and subnational levels. PMID:25571957

  2. Chain-reaction crash on a highway in high visibility

    NASA Astrophysics Data System (ADS)

    Nagatani, Takashi

    2016-05-01

    We study the chain-reaction crash (multiple-vehicle collision) in high-visibility condition on a highway. In the traffic situation, drivers control their vehicles by both gear-changing and braking. Drivers change the gears according to the headway and brake according to taillights of the forward vehicle. We investigate whether or not the first collision induces the chain-reaction crash numerically. It is shown that dynamic transitions occur from no collisions, through a single collision, to multiple collisions with decreasing the headway. Also, we find that the dynamic transition occurs from the finite chain reaction to the infinite chain reaction when the headway is less than the critical value. We compare the multiple-vehicle collisions in high-visibility with that in low-visibility. We derive the transition points and the region maps for the chain-reaction crash in high visibility.

  3. An improved human display model for occupant crash simulation programs

    NASA Technical Reports Server (NTRS)

    Willmert, K. D.; Potter, T. E.

    1975-01-01

    An improved three-dimensional display model of a human being which can be used to display the results of three-dimensional simulation programs that predict the positions of an occupant during impact of a vehicle was presented. The model allows the user to view the occupant from any orientation in any position during the crash. The display model assumes the usual break up of the body into rigid segments which is normal for occupant crash simulation programs, but the shape of the segments in the display model are not necessarily the same as those used in the crash simulation. The display model is proportioned so as to produce a realistic drawing of the human body in any position. Joints connecting the segments are also drawn to improve realism.

  4. Option pricing during post-crash relaxation times

    NASA Astrophysics Data System (ADS)

    Dibeh, Ghassan; Harmanani, Haidar M.

    2007-07-01

    This paper presents a model for option pricing in markets that experience financial crashes. The stochastic differential equation (SDE) of stock price dynamics is coupled to a post-crash market index. The resultant SDE is shown to have stock price and time dependent volatility. The partial differential equation (PDE) for call prices is derived using risk-neutral pricing. European call prices are then estimated using Monte Carlo and finite difference methods. Results of the model show that call option prices after the crash are systematically less than those predicted by the Black-Scholes model. This is a result of the effect of non-constant volatility of the model that causes a volatility skew.

  5. Evaluation of Test/Analysis Correlation Methods for Crash Applications

    NASA Technical Reports Server (NTRS)

    Lyle, Karen H.; Bark, Lindley W.; Jackson, Karen E.

    2001-01-01

    A project has been initiated to improve crash test and analysis correlation. The work in this paper concentrated on the test and simulation results for a fuselage section. Two drop tests of the section were conducted. The first test was designed to excite the linear structural response for comparison with finite element modal analysis results. The second test was designed to provide data for correlation with crash simulations. An MSC.Dytran model was developed to generate nonlinear transient dynamic results. Following minor modifications, the same model was executed in MSC.Nastran to generate modal analysis results. The results presented in this paper concentrate on evaluation of correlation methodologies for crash test data and finite element simulation results.

  6. Road traffic crashes managed by Rescue 1122 in Lahore, Pakistan.

    PubMed

    Tahir, Navid; Naseer, Rizwan; Khan, Samina Mohsin; Macassa, Gloria; Hashmi, Waseem; Durrani, Mohsin

    2012-01-01

    The objective of this retrospective study was to describe demographic characteristics, injury patterns and causes of road traffic crashes (RTCs) managed by Rescue 1122 in Lahore, Pakistan during the period 2005-2010. In total 123,268 RTCs were reported and responded by Rescue 1122 ambulance service during the study period. Of the 132,504 victims of RTCs, there were 67% male and 33% female subjects, and the maximum share (65%) was reported among people aged 16-35 years. Motorcyclists were involved in 45% of crashes, with over-speeding (40%) found to be the major reason of these collisions. Similarly, minor injuries (65%) and fractures (25%) were the most reported outcome of these crashes. It is concluded that data from ambulance services, if appropriately collected, can provide valuable epidemiological information to monitor RTCs in developing countries. However, in Pakistan, the collection of data as well as the registration process needs further improvement. PMID:22047006

  7. 46 CFR 28.820 - Fire pumps, fire mains, fire hydrants, and fire hoses.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... water from a hose connected to the highest outlet. The minimum capacity of the power fire pump shall be... 46 Shipping 1 2012-10-01 2012-10-01 false Fire pumps, fire mains, fire hydrants, and fire hoses... REQUIREMENTS FOR COMMERCIAL FISHING INDUSTRY VESSELS Aleutian Trade Act Vessels § 28.820 Fire pumps, fire...

  8. 46 CFR 28.820 - Fire pumps, fire mains, fire hydrants, and fire hoses.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... water from a hose connected to the highest outlet. The minimum capacity of the power fire pump shall be... 46 Shipping 1 2011-10-01 2011-10-01 false Fire pumps, fire mains, fire hydrants, and fire hoses... REQUIREMENTS FOR COMMERCIAL FISHING INDUSTRY VESSELS Aleutian Trade Act Vessels § 28.820 Fire pumps, fire...

  9. 46 CFR 28.820 - Fire pumps, fire mains, fire hydrants, and fire hoses.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    .../capacity, and is properly equipped to handle both fire fighting and flood control. (b) Each vessel must... 46 Shipping 1 2010-10-01 2010-10-01 false Fire pumps, fire mains, fire hydrants, and fire hoses... REQUIREMENTS FOR COMMERCIAL FISHING INDUSTRY VESSELS Aleutian Trade Act Vessels § 28.820 Fire pumps, fire...

  10. U.S. Car Crash Deaths Down, but Still Surpass Other Nations

    MedlinePlus

    ... https://medlineplus.gov/news/fullstory_159736.html U.S. Car Crash Deaths Down, But Still Surpass Other Nations ... 6, 2016 WEDNESDAY, July 6, 2016 (HealthDay News) -- Car crash deaths on American roads fell nearly one- ...

  11. U.S. Car Crash Deaths Down, but Still Surpass Other Nations

    MedlinePlus

    ... medlineplus/news/fullstory_159736.html U.S. Car Crash Deaths Down, But Still Surpass Other Nations Decline of ... WEDNESDAY, July 6, 2016 (HealthDay News) -- Car crash deaths on American roads fell nearly one-third over ...

  12. High altitude aircraft remote sensing during the 1988 Yellowstone National Park wildfires

    NASA Technical Reports Server (NTRS)

    Ambrosia, Vincent G.

    1990-01-01

    An overview is presented of the effects of the wildfires that occurred in the Yellowstone National Park during 1988 and the techniques employed to combat these fires with the use of remote sensing. The fire management team utilized King-Air and Merlin aircraft flying night missions with a thermal IR line-scanning system. NASA-Ames Research Center assisted with an ER-2 high altitude aircraft with the ability to down-link active data from the aircraft via a teledetection system. The ER-2 was equipped with a multispectral Thematic Mapper Simulator scanner and the resultant map data and video imagery was provided to the fire command personnel for field evaluation and fire suppression activities. This type of information proved very valuable to the fire control management personnel and to the continuing ecological research goals of NASA-Ames scientists analyzing the effects of burn type and severity on ecosystem recovery and development.

  13. Modeling crash spatial heterogeneity: random parameter versus geographically weighting.

    PubMed

    Xu, Pengpeng; Huang, Helai

    2015-02-01

    The widely adopted techniques for regional crash modeling include the negative binomial model (NB) and Bayesian negative binomial model with conditional autoregressive prior (CAR). The outputs from both models consist of a set of fixed global parameter estimates. However, the impacts of predicting variables on crash counts might not be stationary over space. This study intended to quantitatively investigate this spatial heterogeneity in regional safety modeling using two advanced approaches, i.e., random parameter negative binomial model (RPNB) and semi-parametric geographically weighted Poisson regression model (S-GWPR). Based on a 3-year data set from the county of Hillsborough, Florida, results revealed that (1) both RPNB and S-GWPR successfully capture the spatially varying relationship, but the two methods yield notably different sets of results; (2) the S-GWPR performs best with the highest value of Rd(2) as well as the lowest mean absolute deviance and Akaike information criterion measures. Whereas the RPNB is comparable to the CAR, in some cases, it provides less accurate predictions; (3) a moderately significant spatial correlation is found in the residuals of RPNB and NB, implying the inadequacy in accounting for the spatial correlation existed across adjacent zones. As crash data are typically collected with reference to location dimension, it is desirable to firstly make use of the geographical component to explore explicitly spatial aspects of the crash data (i.e., the spatial heterogeneity, or the spatially structured varying relationships), then is the unobserved heterogeneity by non-spatial or fuzzy techniques. The S-GWPR is proven to be more appropriate for regional crash modeling as the method outperforms the global models in capturing the spatial heterogeneity occurring in the relationship that is model, and compared with the non-spatial model, it is capable of accounting for the spatial correlation in crash data. PMID:25460087

  14. Variability in Crash and Near-Crash Risk among Novice Teenage Drivers: A Naturalistic Study

    PubMed Central

    Guo, Feng; Simons-Morton, Bruce G.; Klauer, Sheila E.; Ouimet, Marie Claude; Dingus, Thomas A.; Lee, Suzanne E.

    2013-01-01

    Objective Using video monitoring technologies, we investigated teenage driving risk variation during the first 18 months of independent driving. Study design Driving data were collected on 42 teenagers whose vehicles were instrumented with sophisticated video and data recording devices. Surveys on demographic and personality characteristics were administered at baseline. Drivers were classified into three risk groups using a K-mean clustering method based on crash and near-crash (CNC) rate. The change in CNC rates over time was evaluated by mixed-effect Poisson models. Results Compared with the first three months after licensure (first quarter), the CNC rate for participants during the third, fourth and fifth quarters decreased significantly to 59%, 62%, and 48%, respectively. Three distinct risk groups were identified with CNC rates of 21.8 (high-risk), 8.3 (moderate-risk), and 2.1 (low-risk) per 10000 kilometers traveled. High- and low-risk drivers showed no significant change in CNC rates throughout the 18-month study period. CNC rates for moderate-risk drivers decreased substantially from 8.8 per 10000 kilometers in the first quarter to 0.8 and 3.2 in the fourth and fifth quarters, respectively. The three groups were not distinguishable with respect to personality characteristics. Conclusion Teenage CNC rates varied substantially, with distinct high-, moderate-, and low-risk groups. Risk declined over time only in the moderate-risk group. The high-risk drivers appeared to be insensitive to experience, with CNC rates consistently high throughout the 18-month study period, and the moderate-risk group appeared to learn from experience. PMID:23992677

  15. Aircraft noise problems

    NASA Astrophysics Data System (ADS)

    1981-01-01

    The problems related to aircraft noise were studied. Physical origin (sound), human reaction (noise), quantization of noise and sound sources of aircraft noise are discussed. Noise abatement at the source, technical, fleet-political and air traffic measures are explained. The measurements and future developments are also discussed. The position of Lufthansa as regards aircraft noise problems is depicted.

  16. Unmanned aircraft systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Unmanned platforms have become increasingly more common in recent years for acquiring remotely sensed data. These aircraft are referred to as Unmanned Airborne Vehicles (UAV), Remotely Piloted Aircraft (RPA), Remotely Piloted Vehicles (RPV), or Unmanned Aircraft Systems (UAS), the official term used...

  17. A fuzzy logic approach to modeling a vehicle crash test

    NASA Astrophysics Data System (ADS)

    Pawlus, Witold; Karimi, Hamid; Robbersmyr, Kjell

    2013-03-01

    This paper presents an application of fuzzy approach to vehicle crash modeling. A typical vehicle to pole collision is described and kinematics of a car involved in this type of crash event is thoroughly characterized. The basics of fuzzy set theory and modeling principles based on fuzzy logic approach are presented. In particular, exceptional attention is paid to explain the methodology of creation of a fuzzy model of a vehicle collision. Furthermore, the simulation results are presented and compared to the original vehicle's kinematics. It is concluded which factors have influence on the accuracy of the fuzzy model's output and how they can be adjusted to improve the model's fidelity.

  18. Modular disposable can (MODCAN) crash cushion: A concept investigation

    NASA Technical Reports Server (NTRS)

    Knoell, A.; Wilson, A.

    1976-01-01

    A conceptual design investigation of an improved highway crash cushion system is presented. The system is referred to as a modular disposable can (MODCAN) crash system. It is composed of a modular arrangement of disposable metal beverage cans configured to serve as an effective highway impact attenuation system. Experimental data, design considerations, and engineering calculations supporting the design development are presented. Design performance is compared to that of a conventional steel drum system. It is shown that the MODCAN concepts offers the potential for smoother and safer occupant deceleration for a larger class of vehicle impact weights than the steel drum device.

  19. Analysis of NTSB Aircraft-Assisted Pilot Suicides: 1982-2014.

    PubMed

    Politano, P Michael; Walton, Robert O

    2016-04-01

    On March 24, 2015, a Germanwings aircraft crashed in the Alps. The suicidal copilot killed himself and 150 others. Pilot suicide is rare, but does happen. This research analyzed the National Transportation Safety Board's accident database (eADMS) looking for pilots who died by suicide in flight. Fifty-one suicides were identified. Gender, age, and other characteristics were examined. Average age of suicidal pilots was 38, significantly different from the average age of 45 for all male pilots involved in aircraft accidents. A discriminant function accurately identified suicidal incidents at 96%. There was a high false-positive rate limiting the usefulness of the discriminant function. PMID:27094027

  20. Understanding Fire Through Improved Technology

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Aztec(TradeMark) is the commercial name for Southwest Sciences laser. The laser has coarse tuning ranges of 10 nanometers (nm) to 30 nm at wavelengths ranging from 630 nm to 2,300 nm, making it the only commercially available external cavity diode laser with wavelengths beyond 1,650 nm. The laser's high-speed tuning in both coarse and fine wavelength regimes allows for increased trace gas detection. With the automated coarse tuning option, the Aztec sweeps through its wavelength range in less than 1 millisecond. While some diode lasers can only detect one type, or species, of a trace gas, the Aztec's broad wavelength tuning provides access to multiple trace gas species. The Aztec has a wide range of applications for both NASA and commercial users, from protecting astronauts in space to improving combustion processes on Earth. It may serve as a new tool for planetary exploration, as it can detect a wide range of multiple gas species in planetary atmospheres. The laser could optically detect gaseous indicators of incipient fires on the International Space Station and Space Shuttle, as well as detect low concentrations of potentially toxic gases in spacecraft crew habitats. The laser could also provide more accurate fire detection in aircraft cargo compartments. Since the Aztec can detect several gases that only evolve during an actual fire, its implementation could reduce the large number of commercial aircraft landings that currently occur due to false alarms. Other applications include environmental and industrial process monitoring.