Science.gov

Sample records for aircraft cruising altitudes

  1. Cabin cruising altitudes for regular transport aircraft.

    PubMed

    2008-04-01

    The adverse physiological effects of flight, caused by ascent to altitude and its associated reduction in barometric pressure, have been known since the first manned balloon flights in the 19th century. It soon became apparent that the way to protect the occupant of an aircraft from the effects of ascent to altitude was to enclose either the individual, or the cabin, in a sealed or pressurized environment. Of primary concern in commercial airline transport operations is the selection of a suitable cabin pressurization schedule that assures adequate oxygen partial pressures for all intended occupants. For the past several decades, 8000 ft has been accepted as the maximum operational cabin pressure altitude in the airline industry. More recent research findings on the physiological and psycho-physiological effects of mild hypoxia have provided cause for renewed discussion of the "acceptability" of a maximum cabin cruise altitude of 8000 ft; however, we did not find sufficient scientific data to recommend a change in the cabin altitude of transport category aircraft. The Aerospace Medical Association (AsMA) should support further research to evaluate the safety, performance and comfort of occupants at altitudes between 5000 and 10,000 ft. PMID:18457303

  2. First-Order Altitude Effects on the Cruise Efficiency of Subsonic Transport Aircraft

    NASA Technical Reports Server (NTRS)

    Guynn, Mark D.

    2011-01-01

    Aircraft fuel efficiency is a function of many different parameters, including characteristics of the engines, characteristics of the airframe, and the conditions under which the aircraft is operated. For a given vehicle, the airframe and engine characteristics are for the most part fixed quantities and efficiency is primarily a function of operational conditions. One important influence on cruise efficiency is cruise altitude. Various future scenarios have been postulated for cruise altitude, from the freedom to fly at optimum altitudes to altitude restrictions imposed for environmental reasons. This report provides background on the fundamental relationships determining aircraft cruise efficiency and examines the sensitivity of efficiency to cruise altitude. Analytical models of two current aircraft designs are used to derive quantitative results. Efficiency penalties are found to be generally less than 1% when within roughly 2000 ft of the optimum cruise altitude. Even the restrictive scenario of constant altitude cruise is found to result in a modest fuel consumption penalty if the fixed altitude is in an appropriate range.

  3. Advanced combustion techniques for controlling NO sub x emissions of high altitude cruise aircraft

    NASA Technical Reports Server (NTRS)

    Rudey, R. A.; Reck, G. M.

    1976-01-01

    An array of experiments designed to explore the potential of advanced combustion techniques for controlling the emissions of aircraft into the upper atmosphere was discussed. Of particular concern are the oxides of nitrogen (NOx) emissions into the stratosphere. The experiments utilize a wide variety of approaches varying from advanced combustor concepts to fundamental flame tube experiments. Results are presented which indicate that substantial reductions in cruise NOx emissions should be achievable in future aircraft engines. A major NASA program is described which focuses the many fundamental experiments into a planned evolution and demonstration of the prevaporized-premixed combustion technique in a full-scale engine.

  4. Impacts of alternative fuels in aviation on microphysical aerosol properties and predicted ice nuclei concentration at aircraft cruise altitude

    NASA Astrophysics Data System (ADS)

    Weinzierl, B.; D'Ascoli, E.; Sauer, D. N.; Kim, J.; Scheibe, M.; Schlager, H.; Moore, R.; Anderson, B. E.; Ullrich, R.; Mohler, O.; Hoose, C.

    2015-12-01

    In the past decades air traffic has been substantially growing affecting air quality and climate. According to the International Civil Aviation Authority (ICAO), in the next few years world passenger and freight traffic is expected to increase annually by 6-7% and 4-5%, respectively. One possibility to reduce aviation impacts on the atmosphere and climate might be the replacement of fossil fuels by alternative fuels. However, so far the effects of alternative fuels on particle emissions from aircraft engines and their ability to form contrails remain uncertain. To study the effects of alternative fuels on particle emissions and the formation of contrails, the Alternative Fuel Effects on Contrails and Cruise Emissions (ACCESS) field experiment was conducted in California. In May 2014, the DLR Falcon 20 and the NASA HU-25 jet aircraft were instrumented with an extended aerosol and trace gas payload probing different types of fuels including JP-8 and JP-8 blended with HEFA (Hydroprocessed Esters and Fatty Acids) while the NASA DC8 aircraft acted as the source aircraft for ACCESS-2. Emission measurements were taken in the DC8 exhaust plumes at aircraft cruise level between 9-12 km altitude and at distances between 50 m and 20 km behind the DC8 engines. Here, we will present results from the ACCESS-2 aerosol measurements which show a 30-60% reduction of the non-volatile (mainly black carbon) particle number concentration in the aircraft exhaust for the HEFA-blend compared to conventional JP-8 fuel. Size-resolved particle emission indices show the largest reductions for larger particle sizes suggesting that the HEFA blend contains fewer and smaller black carbon particles. We will combine the airborne measurements with a parameterization of deposition nucleation developed during a number of ice nucleation experiments at the AIDA chamber in Karlsruhe and discuss the impact of alternative fuels on the abundance of potential ice nuclei at cruise conditions.

  5. A study of aircraft cruise

    NASA Technical Reports Server (NTRS)

    Menon, P. K. A.

    1986-01-01

    The long range aircraft cruise problem is analyzed using a model intermediate in complexity between energy model and point mass model. It is shown that this formulation imbeds the classical steady state cruise as the central member along with several other oscillatory extremals. The oscillatory cruise trajectories are shown to exist if the Hessian of the function QD/VT with respect to altitude and airspeed is positive definite. An expression for predicting the frequency of oscillation is developed. Qualitative effects of increasing the vehicle thrust and improving the L/D are discussed. Numerical results for two fighter aircraft and a transport aircraft are given. While oscillatory cruise mode exists for the two fighter aircraft, steady state cruise at full throttle is found to be optimal for the transport aircraft. A second variation analysis to bring out the reason for fuel savings is developed. It is shown that whenever the Hessian of the function QD/VT is positive definite, the second variation will be zero along the classical steady state cruise arc, indicating that a neighboring extremal is competitive. Comparisons with the previous point mass and energy modeled results are given.

  6. In situ observations and model calculations of black carbon emission by aircraft at cruise altitude

    NASA Astrophysics Data System (ADS)

    Petzold, A.; DöPelheuer, A.; Brock, C. A.; Schröder, F.

    1999-09-01

    The exhaust aerosol of two aircraft at cruise was extensively characterized in the size range from 0.003 to 2 μm for plume ages ≤2 s. The black carbon (BC) exhaust aerosol of an older technology engine (Rolls-Royce/Snecma M45H Mk501) consisted of a primary BC mode with a modal diameter of 0.035 μm and a mode of coagulated BC particles with a peak near 0.15-0.16 μm in diameter. The total number density at the nozzle exit plane was 3×107 cm-3. In contrast, a modern technology engine (CFM International CFM56-3B1) emitted far smaller BC particles with a primary mode at 0.025 μm and a coagulated mode at 0.15 μm, as well as fewer particles by number with a concentration of 9×106 cm-3. The single-scattering albedo of the jet exhaust aerosol was 0.035 ± 0.02 inside the plume, indicating a dominant contribution of ultrafine (D<0.1 μm) BC particles to light extinction. Black carbon number emission indices EI(N) varied from 3.5×1014 (CFM56-3B1) to 1.7×1015 kg-1 (M45H Mk501) with corresponding mass emission indices EI(BC) of 0.011 and 0.1 g kg-1. Previously reported corresponding values for a CF6-80C2A2 engine were 6×1014 kg-1 and 0.023 g kg-1, respectively. A comparison between EI(BC) values calculated by a new correlation method and measured data shows an excellent agreement, with deviations <10% at cruise conditions. By extending the EI(BC) calculation method to a globally operating aircraft fleet, a fleet-averaged emission index EI(BC) = 0.038 g kg-1 is calculated.

  7. Air Force F-16 Aircraft Engine Aerosol Emissions Under Cruise Altitude Conditions

    NASA Technical Reports Server (NTRS)

    Anderson, Bruce E.; Cofer, W. Randy, III; McDougal, David S.

    1999-01-01

    Selected results from the June 1997 Third Subsonic Assessment Near-Field Interactions Flight (SNIF-III) Experiment are documented. The primary objectives of the SNIF-III experiment were to determine the partitioning and abundance of sulfur species and to examine the formation and growth of aerosol particles in the exhaust of F-16 aircraft as a function of atmospheric and aircraft operating conditions and fuel sulfur concentration. This information is, in turn, being used to address questions regarding the fate of aircraft fuel sulfur impurities and to evaluate the potential of their oxidation products to perturb aerosol concentrations and surface areas in the upper troposphere. SNIF-III included participation of the Vermont and New Jersey Air National Guard F-16's as source aircraft and the Wallops Flight Facility T-39 Sabreliner as the sampling platform. F-16's were chosen as a source aircraft because they are powered by the modern F-100 Series 220 engine which is projected to be representative of future commercial aircraft engine technology. The T-39 instrument suite included sensors for measuring volatile and non-volatile condensation nuclei (CN), aerosol size distributions over the range from 0.1 to 3.0 (micro)m, 3-D winds, temperature, dewpoint, carbon dioxide (CO2), sulfur dioxide (SO2), sulfuric acid (H2SO4), and nitric acid (HNO3).

  8. High altitude reconnaissance aircraft

    NASA Technical Reports Server (NTRS)

    Yazdo, Renee Anna; Moller, David

    1990-01-01

    At the equator the ozone layer ranges from 65,000 to 130,000 plus feet, which is beyond the capabilities of the ER-2, NASA's current high altitude reconnaissance aircraft. The Universities Space Research Association, in cooperation with NASA, is sponsoring an undergraduate program which is geared to designing an aircraft that can study the ozone layer at the equator. This aircraft must be able to cruise at 130,000 feet for six hours at Mach 0.7, while carrying 3,000 lbs. of payload. In addition, the aircraft must have a minimum range of 6,000 miles. In consideration of the novel nature of this project, the pilot must be able to take control in the event of unforeseen difficulties. Three aircraft configurations were determined to be the most suitable - a joined-wing, a biplane, and a twin-boom conventional airplane. The performance of each configuration was analyzed to investigate the feasibility of the project.

  9. High-altitude reconnaissance aircraft

    NASA Technical Reports Server (NTRS)

    Yazdi, Renee Anna

    1991-01-01

    At the equator the ozone layer ranges from 65,000 to 130,000+ ft, which is beyond the capabilities of the ER-2, NASA's current high-altitude reconnaissance aircraft. This project is geared to designing an aircraft that can study the ozone layer. The aircraft must be able to satisfy four mission profiles. The first is a polar mission that ranges from Chile to the South Pole and back to Chile, a total range of 6000 n.m. at 100,000 ft with a 2500-lb payload. The second mission is also a polar mission with a decreased altitude and an increased payload. For the third mission, the aircraft will take off at NASA Ames, cruise at 100,000 ft, and land in Chile. The final mission requires the aircraft to make an excursion to 120,000 ft. All four missions require that a subsonic Mach number be maintained because of constraints imposed by the air sampling equipment. Three aircraft configurations were determined to be the most suitable for meeting the requirements. The performance of each is analyzed to investigate the feasibility of the mission requirements.

  10. Environmental effects of an aircraft at cruise: An update

    NASA Technical Reports Server (NTRS)

    Sundararaman, N.

    1980-01-01

    The status of the calculations of ozone change due to high altitude aircraft is critically reviewed and important areas of uncertainty identified. Laboratory determinations of chemical reaction rates and modeling refinements show that the effect of cruise altitude emissions on stratospheric ozone has changed from one of ozone decrease to one of slight increase. It is concluded that the uncertainties in the present understanding of the effects of high altitude aircraft are such as to warrant continued studies.

  11. Cosmic Rays with Portable Geiger Counters: From Sea Level to Airplane Cruise Altitudes

    ERIC Educational Resources Information Center

    Blanco, Francesco; La Rocca, Paola; Riggi, Francesco

    2009-01-01

    Cosmic ray count rates with a set of portable Geiger counters were measured at different altitudes on the way to a mountain top and aboard an aircraft, between sea level and cruise altitude. Basic measurements may constitute an educational activity even with high school teams. For the understanding of the results obtained, simulations of extensive…

  12. NASA/USRA high altitude reconnaissance aircraft

    NASA Technical Reports Server (NTRS)

    Richardson, Michael; Gudino, Juan; Chen, Kenny; Luong, Tai; Wilkerson, Dave; Keyvani, Anoosh

    1990-01-01

    At the equator, the ozone layer ranges from approximately 80,000 to 130,000+ feet which is beyond the capabilities of the ER-2, NASA's current high altitude reconnaissance aircraft. This project is geared to designing an aircraft that can study the ozone layer at the equator. This aircraft must be able to cruise at 130,000 lbs. of payload. In addition, the aircraft must have a minimum of a 6,000 mile range. The low Mach number, payload, and long cruising time are all constraints imposed by the air sampling equipment. A pilot must be able to take control in the event of unforseen difficulties. Three aircraft configurations were determined to be the most suitable for meeting the above requirements, a joined-wing, a bi-plane, and a twin-boom conventional airplane. The techniques used have been deemed reasonable within the limits of 1990 technology. The performance of each configuration is analyzed to investigate the feasibility of the project requirements. In the event that a requirement can not be obtained within the given constraints, recommendations for proposal modifications are given.

  13. Lift/cruise fan VTOL aircraft

    NASA Technical Reports Server (NTRS)

    Quigley, H. C.; Franklin, J. A.

    1977-01-01

    The paper gives an overview of the technology related to lift/cruise fan VTOL aircraft, covering propulsion systems, thrust deflection, flight dynamics, controls, displays, aerodynamics, and configurations. Piloting problems are discussed, and the need for integration of power management and thrust-vector controls is pointed out. Major components for a high-bypass-ratio lift/cruise fan propulsion system for VTOL aircraft have been tested.

  14. A study of altitude-constrained supersonic cruise transport concepts

    NASA Technical Reports Server (NTRS)

    Tice, David C.; Martin, Glenn L.

    1992-01-01

    The effect of restricting maximum cruise altitude on the mission performance of two supersonic transport concepts across a selection of cruise Mach numbers is studied. Results indicate that a trapezoidal wing concept can be competitive with an arrow wing depending on the altitude and Mach number constraints imposed. The higher wing loading of trapezoidal wing configurations gives them an appreciably lower average cruise altitude than the lower wing loading of the arrow wing configurations, and this advantage increases as the maximum allowable cruise altitude is reduced.

  15. Systems integration studies for supersonic cruise aircraft

    NASA Technical Reports Server (NTRS)

    Mascitti, V. R.

    1975-01-01

    Technical progress in each of the disciplinary research areas affecting the design of supersonic cruise aircraft is discussed. The NASA AST/SCAR Program supported the integration of these technical advances into supersonic cruise aircraft configuration concepts. While the baseline concepts reflect differing design philosophy, all reflect a level of economic performance considerably above the current foreign aircraft as well as the former U.S. SST. Range-payload characteristics of the study configurating show significant improvement, while meeting environmental goals such as takeoff and landing noise and upper atmospheric pollution.

  16. Measurement of aircraft speed and altitude

    NASA Technical Reports Server (NTRS)

    Gracey, W.

    1980-01-01

    Problems involved in measuring speed and altitude with pressure-actuated instruments (altimeter, airspeed indicator, true-airspeed indicator, Machmeter, and vertical-speed indicator) are examined. Equations relating total pressure and static pressure to the five flight quantities are presented, and criteria for the design of total and static pressure tubes are given. Calibrations of typical static pressure installations (fuselage nose, wing tip, vertical fin, and fuselage vent) are presented, various methods for flight calibration of these installations are described, and the calibration of a particular installation by two of the methods is described in detail. Equations are given for estimating the effects of pressure lag and leaks. Test procedures for the laboratory calibration of the five instruments are described, and accuracies of mechanical and electrical instruments are presented. Operational use of the altimeter for terrain clearance and vertical separation of aircraft is discussed, along with flight technical errors and overall altitude errors of aircraft in cruise operations. Altitude-measuring techniques based on a variety of properties of the Earth and the atmosphere are included. Two appendixes present airspeed and altitude tables and sample calculations for determining the various flight parameters from measured total and static pressures.

  17. Cosmic rays with portable Geiger counters: from sea level to airplane cruise altitudes

    NASA Astrophysics Data System (ADS)

    Blanco, Francesco; La Rocca, Paola; Riggi, Francesco

    2009-07-01

    Cosmic ray count rates with a set of portable Geiger counters were measured at different altitudes on the way to a mountain top and aboard an aircraft, between sea level and cruise altitude. Basic measurements may constitute an educational activity even with high school teams. For the understanding of the results obtained, simulations of extensive air showers induced by high-energy primary protons in the atmosphere were also carried out, involving undergraduate and graduate teaching levels.

  18. Variability of cloudiness at airline cruise altitudes from GASP measurements

    NASA Technical Reports Server (NTRS)

    Jasperson, W. H.; Nastrom, G. D.; Davis, R. E.; Holdeman, J. D.

    1985-01-01

    Additional statistics relating to the climatology of cloud cover at airline cruise altitudes are presented. The data were obtained between 1975 and 1979 from commercial airliners participating in the Global Atmospheric Sampling Program (GASP). The statistics describe the seasonal, latitudinal and altitudinal variation in cloudiness parameters as well as differences in the high-altitude cloud structure attributed to cyclone and convective-cloud generation processes. The latitudinal distribution of cloud cover derived form the GASP data was found to agree with high-altitude satellite observations. The relationships between three different measures of cloudiness and the relative vorticity at high altitudes is also discussed.

  19. Loads technology for supersonic cruise aircraft

    NASA Technical Reports Server (NTRS)

    Goetz, R. C.

    1976-01-01

    A flight program to measure atmospheric turbulence at high altitudes (long wavelengths) in a variety of meteorological conditions is described and some results obtained in high altitude wind shear are discussed. Results are also presented from wind tunnel test programs to measure fluctuating pressures associated with over-the-wing configurations. A flexible aircraft take off and landing analysis and an active control landing gear analysis, are developed and their capabilities are described. Efforts to validate these analyses with experimental data are also discussed as well as results obtained from parametric studies.

  20. Lockheed ER-2 #806 high altitude research aircraft in flight

    NASA Technical Reports Server (NTRS)

    1998-01-01

    ER-2 tail number 806, is one of two Airborne Science ER-2s used as science platforms by Dryden. The aircraft are platforms for a variety of high-altitude science missions flown over various parts of the world. They are also used for earth science and atmospheric sensor research and development, satellite calibration and data validation. The ER-2s are capable of carrying a maximum payload of 2,600 pounds of experiments in a nose bay, the main equipment bay behind the cockpit, two wing-mounted superpods and small underbody and trailing edges. Most ER-2 missions last about six hours with ranges of about 2,200 nautical miles. The aircraft typically fly at altitudes above 65,000 feet. On November 19, 1998, the ER-2 set a world record for medium weight aircraft reaching an altitude of 68,700 feet. The aircraft is 63 feet long, with a wingspan of 104 feet. The top of the vertical tail is 16 feet above ground when the aircraft is on the bicycle-type landing gear. Cruising speeds are 410 knots, or 467 miles per hour, at altitude. A single General Electric F-118 turbofan engine rated at 17,000 pounds thrust powers the ER-2.

  1. Lockheed ER-2 high altitude research aircraft in flight

    NASA Technical Reports Server (NTRS)

    1997-01-01

    ER-2 tail number 706, is one of two Airborne Science ER-2s used as science platforms by Dryden. The aircraft are platforms for a variety of high-altitude science missions flown over various parts of the world. They are also used for earth science and atmospheric sensor research and development, satellite calibration and data validation. The ER-2s are capable of carrying a maximum payload of 2,600 pounds of experiments in a nose bay, the main equipment bay behind the cockpit, two wing-mounted superpods and small underbody and trailing edges. Most ER-2 missions last about six hours with ranges of about 2,200 nautical miles. The aircraft typically fly at altitudes above 65,000 feet. On November 19, 1998, the ER-2 set a world record for medium weight aircraft reaching an altitude of 68,700 feet. The aircraft is 63 feet long, with a wingspan of 104 feet. The top of the vertical tail is 16 feet above ground when the aircraft is on the bicycle-type landing gear. Cruising speeds are 410 knots, or 467 miles per hour, at altitude. A single General Electric F-118 turbofan engine rated at 17,000 pounds thrust powers the ER-2.

  2. Lockheed ER-2 #809 high altitude research aircraft in flight

    NASA Technical Reports Server (NTRS)

    1999-01-01

    ER-2 tail number 809, is one of two Airborne Science ER-2s used as science platforms by Dryden. The aircraft are platforms for a variety of high-altitude science missions flown over various parts of the world. They are also used for earth science and atmospheric sensor research and development, satellite calibration and data validation. The ER-2s are capable of carrying a maximum payload of 2,600 pounds of experiments in a nose bay, the main equipment bay behind the cockpit, two wing-mounted superpods and small underbody and trailing edges. Most ER-2 missions last about six hours with ranges of about 2,200 nautical miles. The aircraft typically fly at altitudes above 65,000 feet. On November 19, 1998, the ER-2 set a world record for medium weight aircraft reaching an altitude of 68,700 feet. The aircraft is 63 feet long, with a wingspan of 104 feet. The top of the vertical tail is 16 feet above ground when the aircraft is on the bicycle-type landing gear. Cruising speeds are 410 knots, or 467 miles per hour, at altitude. A single General Electric F118 turbofan engine rated at 17,000 pounds thrust powers the ER-2.

  3. Lockheed ER-2 #809 high altitude research aircraft in flight

    NASA Technical Reports Server (NTRS)

    1998-01-01

    ER-2 tail number 809, is one of two Airborne Science ER-2s used as science platforms by Dryden. The aircraft are platforms for a variety of high-altitude science missions flown over various parts of the world. They are also used for earth science and atmospheric sensor research and development, satellite calibration and data validation. The ER-2s are capable of carrying a maximum payload of 2,600 pounds of experiments in a nose bay, the main equipment bay behind the cockpit, two wing-mounted superpods and small underbody and trailing edges. Most ER-2 missions last about six hours with ranges of about 2,200 nautical miles. The aircraft typically fly at altitudes above 65,000 feet. On November 19, 1998, the ER-2 set a world record for medium weight aircraft reaching an altitude of 68,700 feet. The aircraft is 63 feet long, with a wingspan of 104 feet. The top of the vertical tail is 16 feet above ground when the aircraft is on the bicycle-type landing gear. Cruising speeds are 410 knots, or 467 miles per hour, at altitude. A single General Electric F-118 turbofan engine rated at 17,000 pounds thrust powers the ER-2.

  4. Lockheed ER-2 #806 high altitude research aircraft during landing

    NASA Technical Reports Server (NTRS)

    1998-01-01

    ER-2 tail number 806, is one of two Airborne Science ER-2s used as science platforms by Dryden. The aircraft are platforms for a variety of high-altitude science missions flown over various parts of the world. They are also used for earth science and atmospheric sensor research and development, satellite calibration and data validation. The ER-2s are capable of carrying a maximum payload of 2,600 pounds of experiments in a nose bay, the main equipment bay behind the cockpit, two wing-mounted superpods and small underbody and trailing edges. Most ER-2 missions last about six hours with ranges of about 2,200 nautical miles. The aircraft typically fly at altitudes above 65,000 feet. On November 19, 1998, the ER-2 set a world record for medium weight aircraft reaching an altitude of 68,700 feet. The aircraft is 63 feet long, with a wingspan of 104 feet. The top of the vertical tail is 16 feet above ground when the aircraft is on the bicycle-type landing gear. Cruising speeds are 410 knots, or 467 miles per hour, at altitude. A single General Electric F-118 turbofan engine rated at 17,000 pounds thrust powers the ER-2.

  5. High altitude aircraft flight tests

    NASA Astrophysics Data System (ADS)

    Helmken, Henry; Emmons, Peter; Homeyer, David

    1996-03-01

    In order to make low earth orbit L-band propagation measurements and test new voice communication concepts, a payload was proposed and accepted for flight aboard the COMET (now METEOR) spacecraft. This Low Earth Orbiting EXperiment payload (LEOEX) was designed and developed by Motorola Inc. and sponsored by the Space Communications Technology Center (SCTC), a NASA Center for the Commercial Development of Space (CCDS) located at Florida Atlantic University. In order to verify the LEOEX payload for satellite operation and obtain some preliminary propagation data, a series of 9 high altitude aircraft (SR-71 and ER-2) flight tests were conducted. These flights took place during a period of 7 months, from October 1993 to April 1994. This paper will summarize the operation of the LEOEX payload and the particular configuration used for these flights. The series of flyby tests were very successful and demonstrated how bi-directional, Time Division Multiple Access (TDMA) voice communication will work in space-to-ground L-band channels. The flight tests also acquired propagation data which will be representative of L-band Low Earth Orbiting (LEO) communication systems. In addition to verifying the LEOEX system operation, it also uncovered and ultimately aided the resolution of several key technical issues associated with the payload.

  6. A feasibility study of heat-pipe-cooled leading edges for hypersonic cruise aircraft

    NASA Technical Reports Server (NTRS)

    Silverstein, C. C.

    1971-01-01

    A theoretical study of the use of heat pipe structures for cooling the leading edges of hypersonic cruise aircraft was carried out over a Mach number range of 6 to 12. Preliminary design studies showed that a heat pipe cooling structure with a 33-in. chordwise length could maintain the maximum temperature of a 65 deg sweepback wing with a 0.5-in. leading edge radius below 1600 F during cruise at Mach 8. A few relatively minor changes in the steady-state design of the structure were found necessary to insure satisfactory cooling during the climb to cruise speed and altitude. It was concluded that heat pipe cooling is an attractive, feasible technique for limiting leading edge temperatures of hypersonic cruise aircraft.

  7. Structural design of supersonic cruise aircraft

    NASA Technical Reports Server (NTRS)

    Fischler, J. E.

    1976-01-01

    The major efforts leading to an efficient structural design include: (1) the analysis methods used to improve the structural model optimization and compare the structural concepts, (2) the analysis and description of the fail-safe, crack growth, and residual strength studies and tests, (3) baseline structural trade studies to determine optimum structural weights including effects of geometry changes, strength, fail-safety, aeroelastics and flutter, 6AL-4V annealed titanium in structural efficiency after 70,000 hours at temperature, (5) the study of three structural models for aircraft at 2.0 Mach, 2.2 Mach, and 2.4 Mach cruise speeds, (6) the study of many structural concepts to determine their weight efficiencies; and (7) the determination of the requirements for large-scale structural development testing.

  8. Initiation of Long-Wave Instability of Vortex Pairs at Cruise Altitudes

    NASA Technical Reports Server (NTRS)

    Rossow, Vernon J.

    2011-01-01

    Previous studies have usually attributed the initiation of the long-wave instability of a vortex pair to turbulence in the atmosphere or in the wake of the aircraft. The purpose here is to show by use of observations and photographs of condensation trails shed by aircraft at cruise altitudes that another initiating mechanism is not only possible but is usually the mechanism that initiates the long-wave instability at cruise altitudes. The alternate initiating mechanism comes about when engine thrust is robust enough to form an array of circumferential vortices around each jet-engine-exhaust stream. In those cases, initiation begins when the vortex sheet shed by the wing has rolled up into a vortex pair and descended to the vicinity of the inside bottom of the combined shear-layer vortex arrays. It is the in-and-out (up and down) velocity field between sequential circumferential vortices near the bottom of the array that then impresses disturbance waves on the lift-generated vortex pair that initiate the long-wave instability. A time adjustment to the Crow and Bate estimate for vortex linking is then derived for cases when thrust-based linking occurs.

  9. Jet engine exhaust emissions of high altitude commercial aircraft projected to 1990

    NASA Technical Reports Server (NTRS)

    Grobman, J.; Ingebo, R. D.

    1974-01-01

    Projected minimum levels of engine exhaust emissions that may be practicably achievable for future commercial aircraft operating at high-altitude cruise conditions are presented. The forecasts are based on:(1) current knowledge of emission characteristics of combustors and augmentors; (2) the status of combustion research in emission reduction technology; and (3) predictable trends in combustion systems and operating conditions as required for projected engine designs that are candidates for advanced subsonic or supersonic commercial aircraft fueled by either JP fuel, liquefied natural gas, or hydrogen. Results are presented for cruise conditions in terms of both an emission index (g constituent/kg fuel) and an emission rate (g constituent/hr).

  10. Charts for determining potential minimum sonic-boom overpressures for supersonic cruise aircraft

    NASA Technical Reports Server (NTRS)

    Darden, C. M.

    1981-01-01

    Charts which give an estimation of minimum achievable sonic-boom levels for supersonic cruise aircraft are presented. A minimization method based on modified linear theory was analyzed. Results show several combinations of Mach number, altitude, and aircraft length and weight. Overpressure and impulse values are given for two types of sonic boom signatures for each of these conditions: (1) a flat top or minimum overpressure signature which has a pressure plateau behind the initial shock, and (2) a minimum shock signature which allows a pressure rise after the initial shock. Results are given for the effects of nose shape.

  11. A review of supersonic cruise flight path control experience with the YF-12 aircraft

    NASA Technical Reports Server (NTRS)

    Berry, D. T.; Gilyard, G. B.

    1976-01-01

    Flight research with the YF-12 aircraft indicates that solutions to many handling qualities problems of supersonic cruise are at hand. Airframe/propulsion system interactions in the Dutch roll mode can be alleviated by the use of passive filters or additional feedback loops in the propulsion and flight control systems. Mach and altitude excursions due to atmospheric temperature fluctuations can be minimized by the use of a cruise autothrottle. Autopilot instabilities in the altitude hold mode have been traced to angle of attack-sensitive static ports on the compensated nose boom. For the YF-12, the feedback of high-passed pitch rate to the autopilot resolves this problem. Manual flight path control is significantly improved by the use of an inertial rate of climb display in the cockpit.

  12. The NASA research program on propulsion for supersonic cruise aircraft

    NASA Technical Reports Server (NTRS)

    Weber, R. J.

    1975-01-01

    The objectives and status of the propulsion portion of a program aimed at advancing the technology and establishing a data base appropriate for the possible future development of supersonic cruise aircraft are reviewed. Research related to exhaust nozzles, combustors, and inlets that is covered by the noise, pollution, and dynamics programs is described.

  13. Aerodynamics of heat exchangers for high-altitude aircraft

    NASA Technical Reports Server (NTRS)

    Drela, Mark

    1996-01-01

    Reduction of convective beat transfer with altitude dictates unusually large beat exchangers for piston- engined high-altitude aircraft The relatively large aircraft drag fraction associated with cooling at high altitudes makes the efficient design of the entire heat exchanger installation an essential part of the aircraft's aerodynamic design. The parameters that directly influence cooling drag are developed in the context of high-altitude flight Candidate wing airfoils that incorporate heat exchangers are examined. Such integrated wing-airfoil/heat-exchanger installations appear to be attractive alternatives to isolated heat.exchanger installations. Examples are drawn from integrated installations on existing or planned high-altitude aircraft.

  14. Performance and benefits of an advanced technology supersonic cruise aircraft

    NASA Technical Reports Server (NTRS)

    Fitzsimmons, R. D.

    1976-01-01

    The results of four years research on technology are synthesized in an advanced supersonic cruise aircraft design. Comparisons are presented with the former United States SST and the British-French Concorde, including aerodynamic efficiency, propulsion efficiency, weight efficiency, and community noise. Selected trade study results are presented on the subjects of design cruise Mach number, engine cycle selection, and noise suppression. The critical issue of program timing is addressed and some observations made regarding the impact that timing has on engine selection and minimization of program risk.

  15. System for indicating fuel-efficient aircraft altitude

    NASA Technical Reports Server (NTRS)

    Gary, B. L. (Inventor)

    1984-01-01

    A method and apparatus are provided for indicating the altitude at which an aircraft should fly so the W/d ratio (weight of the aircraft divided by the density of air) more closely approaches the optimum W/d for the aircraft. A passive microwave radiometer on the aircraft is directed at different angles with respect to the horizon to determine the air temperature, and therefore the density of the air, at different altitudes. The weight of the aircraft is known. The altitude of the aircraft is changed to fly the aircraft at an altitude at which is W/d ratio more closely approaches the optimum W/d ratio for that aircraft.

  16. Engine/airframe compatibility studies for supersonic cruise aircraft

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Technology assessment studies were conducted to provide an updated technology base from which an advanced supersonic cruise aircraft can be produced with a high probability of success. An assessment of the gains available through the application of advanced technologies in aerodynamics, propulsion, acoustics, structures, materials, and active controls is developed. The potential market and range requirements as well as economic factors including payload, speed, airline operating costs, and airline profitability are analyzed. The conceptual design of the baseline aircraft to be used in assessing the technology requirements is described.

  17. Lockheed ER-2 #709 high altitude research aircraft during take off

    NASA Technical Reports Server (NTRS)

    1998-01-01

    ER-2 tail number 709, is one of two Airborne Science ER-2s used as science platforms by Dryden. The aircraft are platforms for a variety of high-altitude science missions flown over various parts of the world. They are also used for earth science and atmospheric sensor research and development, satellite calibration and data validation. The ER-2s are capable of carrying a maximum payload of 2,600 pounds of experiments in a nose bay, the main equipment bay behind the cockpit, two wing-mounted superpods and small underbody and trailing edges. Most ER-2 missions last about six hours with ranges of about 2,200 nautical miles. The aircraft typically fly at altitudes above 65,000 feet. On November 19, 1998, the ER-2 set a world record for medium weight aircraft reaching an altitude of 68,700 feet. The aircraft is 63 feet long, with a wingspan of 104 feet. The top of the vertical tail is 16 feet above ground when the aircraft is on the bicycle-type landing gear. Cruising speeds are 410 knots, or 467 miles per hour, at altitude. A single General Electric F-118 turbofan engine rated at 17,000 pounds thrust powers the ER-2.

  18. Supersonic through-flow fan engines for supersonic cruise aircraft

    NASA Technical Reports Server (NTRS)

    Franciscus, L. C.

    1978-01-01

    Engine performance, weight and mission studies were carried out for supersonic through flow fan engine concepts. The mission used was a Mach 2.32 cruise mission. The advantages of supersonic through flow fan engines were evaluated in terms of mission range comparisons between the supersonic through flow fan engines and a more conventional turbofan engine. The specific fuel consumption of the supersonic through flow fan engines was 12 percent lower than the more conventional turbofan. The aircraft mission range was increased by 20 percent with the supersonic fan engines compared to the conventional turbofan.

  19. Design feasibility of an advanced technology supersonic cruise aircraft

    NASA Technical Reports Server (NTRS)

    Rowe, W. T.

    1976-01-01

    Research and development programs provide confidence that technology is in-hand to design an economically attractive, environmentally sound supersonic cruise aircraft for commercial operations. The principal results of studies and tests are described including those which define the selection of significant design features. These typically include the results of: (1) wind-tunnel tests, both subsonic and supersonic, (2) propulsion performance and acoustic tests on noise suppressors, including forward-flight effects, (3) studies of engine/airframe integration, which lead to the selection of engine cycles/sizes to meet future market, economic, and social requirements; and (4) structural testing.

  20. Near-field noise prediction for aircraft in cruising flight: Methods manual. [laminar flow control noise effects analysis

    NASA Technical Reports Server (NTRS)

    Tibbetts, J. G.

    1979-01-01

    Methods for predicting noise at any point on an aircraft while the aircraft is in a cruise flight regime are presented. Developed for use in laminar flow control (LFC) noise effects analyses, they can be used in any case where aircraft generated noise needs to be evaluated at a location on an aircraft while under high altitude, high speed conditions. For each noise source applicable to the LFC problem, a noise computational procedure is given in algorithm format, suitable for computerization. Three categories of noise sources are covered: (1) propulsion system, (2) airframe, and (3) LFC suction system. In addition, procedures are given for noise modifications due to source soundproofing and the shielding effects of the aircraft structure wherever needed. Sample cases, for each of the individual noise source procedures, are provided to familiarize the user with typical input and computed data.

  1. Calibration of infrared satellite images using high altitude aircraft measurements

    NASA Technical Reports Server (NTRS)

    Hammer, Philip D.; Gore, Warren J. Y.; Valero, Francisco P. J.

    1989-01-01

    The use of infrared radiance measurements made from high altitude aircraft for satellite image validation is discussed. Selected examples are presented to illustrate the techniques and the potentials of such validation studies.

  2. The Altitude Laboratory for the Test of Aircraft Engines

    NASA Technical Reports Server (NTRS)

    Dickinson, H C; Boutell, H G

    1920-01-01

    Report presents descriptions, schematics, and photographs of the altitude laboratory for the testing of aircraft engines constructed at the Bureau of Standards for the National Advisory Committee for Aeronautics.

  3. 14 CFR 91.159 - VFR cruising altitude or flight level.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false VFR cruising altitude or flight level. 91.159 Section 91.159 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Flight Rules...

  4. 14 CFR 91.159 - VFR cruising altitude or flight level.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 2 2011-01-01 2011-01-01 false VFR cruising altitude or flight level. 91.159 Section 91.159 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Flight Rules...

  5. Status of noise technology for advanced supersonic cruise aircraft

    NASA Technical Reports Server (NTRS)

    Stone, J. R.; Gutierrez, O. A.

    1980-01-01

    Developments in acoustic technology applicable to advanced supersonic cruise aircraft, particularly those which relate to jet noise and its suppression are reviewed. The noise reducing potential of high radius ratio, inverted velocity profile coannular jets is demonstrated by model scale results from a wide range of nozzle geometries, including some simulated flight cases. These results were verified statistically at large scale on a variable cycle engine (VCE) testbed. A preliminary assessment of potential VCE noise sources such as fan and core noise is made, based on the testbed data. Recent advances in the understanding of flight effects are reviewed. The status of component noise prediction methods is assessed on the basis of recent test data, and the remaining problem areas are outlined.

  6. Status of noise technology for advanced supersonic cruise aircraft

    NASA Astrophysics Data System (ADS)

    Stone, J. R.; Gutierrez, O. A.

    1980-03-01

    Developments in acoustic technology applicable to advanced supersonic cruise aircraft, particularly those which relate to jet noise and its suppression are reviewed. The noise reducing potential of high radius ratio, inverted velocity profile coannular jets is demonstrated by model scale results from a wide range of nozzle geometries, including some simulated flight cases. These results were verified statistically at large scale on a variable cycle engine (VCE) testbed. A preliminary assessment of potential VCE noise sources such as fan and core noise is made, based on the testbed data. Recent advances in the understanding of flight effects are reviewed. The status of component noise prediction methods is assessed on the basis of recent test data, and the remaining problem areas are outlined.

  7. Variability of Cloudiness at Airline Cruise Altitudes from GASP Measurements.

    NASA Astrophysics Data System (ADS)

    Jasperson, William H.; Nastrom, Gregory D.; Davis, Richard E.; Holdeman, James D.

    1985-01-01

    A climatology of high-altitude cloud encounters using data obtained between 1975 and 1979 from commercial airliners participating in the Global Atmospheric Sampling Program (GASP) is presented. The statistics are based on three different measures of cloudiness derived from the GASP data set. This climatology depicts the seasonal, latitudinal and altitudinal variation in the cloudiness parameters, as well as differences in the high-altitude cloud structure attributed to cyclone- and convective cloud-generation mechanisms. A qualitative agreement was found between the latitudinal distribution of cloud cover derived from the GASP data and satellite-derived high-altitude cloud statistics available in the literature. Relationships between the three different measures of cloudiness and the relative vorticity at high altitudes, stratified by season, latitude and distance from the tropopause are also presented. In midlatitudes, for example, the average cloudiness, when stratified by the sign of the relative vorticity, exhibits a seasonal cycle with the 1argest differences occurring in the layer 0-1.5 km below the tropopause. Seasonal and latitudinal patterns can also be seen in the other cloudiness parameters.

  8. The impact of high altitude aircraft on the ozone layer in the stratosphere

    NASA Technical Reports Server (NTRS)

    Tie, Xue XI; Brasseur, Guy; Lin, Xing; Friedlingstein, P.; Granier, Claire; Rasch, Philip

    1994-01-01

    The paper discusses the potential effects on the ozone layer of gases released by the engines of proposed high altitude supersonic aircraft. The major problem arises from the emissions of nitrogen oxides which have the potential to destroy significant quantities of ozone in the stratosphere. The magnitude of the perturbation is highly dependent on the cruise altitude of the aircraft. Furthermore, the depletion of ozone is substantially reduced when heterogeneous conversion of nitrogen oxides into nitric acid on sulfate aerosol particles is taken into account in the calculation. The sensitivity of the aerosol load on stratospheric ozone is investigated. First, the model indicates that the aerosol load induced by the SO2 released by aircraft is increased by about 10-20% above the background aerosols at mid-high latitude of the Northern Hemisphere at 15 km for the NASA emission scenario A (the NASA emission scenarios are explained in Tables I to III). This increase in aerosol has small effects on stratospheric ozone. Second, when the aerosol load is increased following a volcanic eruption similar to the eruption of El Chichon (Mexico, April 1982), the ozone column in spring increases by as much as 9% in response to the injection of NOx from the aircraft with the NASA emission scenario A. Finally, the modeled suggests that significant ozone depletion could result from the formation of additional polar stratospheric clouds produced by the injection of H2O and HNO3 by the aircraft engines.

  9. High altitude aircraft water vapor measurements.

    NASA Technical Reports Server (NTRS)

    Hilsenrath, E.

    1973-01-01

    A hygrometer for water vapor measurements from an aircraft was developed. An aluminum oxide hygrometer mounted in an aircraft Rosemount air temperature scoop was flown on the NASA Convair 990 and on a USAF B-57 aircraft. Water vapor measurements from the Convair 990 were conducted up to 40,000 ft with penetration into the stratosphere. Good agreement was obtained with simultaneously flown remote sounders of water vapor. During transcontinental flights the hygrometer demonstrated adequate response to measure the natural variability of water vapor near the tropopause. Rapid response was demonstrated in pursuit of the jet wake of an F-104 at 35,000 ft.

  10. The Power of Aircraft Engines at Altitude

    NASA Technical Reports Server (NTRS)

    Ragazzi, Paolo

    1939-01-01

    The subject of the present paper is confined to the investigations and methods employed by the Fiat company in their studies on the altitude performance of an air-cooled engine of the production type. The experimental set-up as well as test engine data are provided.

  11. Development of wing and tail configurations for low altitude unmanned research aircraft (LAURA)

    NASA Technical Reports Server (NTRS)

    Mangalam, S. M.; Harvey, W. D.; Siddiqi, S.

    1987-01-01

    The Low Altitude/Airspeed Unmanned Research Aircraft (LAURA) is being developed by the U.S. Navy for flight test research using low-Reynolds number airfoils. This vehicle consists of a standard modular fuselage designed to accept the installation of several wings/tails having low Reynolds number airfoils, and various planform shapes. Design constraints include shipboard storage, long flight endurance at very low airspeeds and sea-skimming cruise altitude. The stringent design constraints require the development of high-performance low Reynolds number (LRN) airfoils, suitable lifting surface configuration, and advanced airframe-propulsion systems. The present paper describes ongoing efforts to develop wing and tail configurations for LAURA using airfoils designed at NASA Langley Research Center.

  12. The effect of sudden depressurization on pilots at cruising altitude.

    PubMed

    Muehlemann, Thomas; Holper, Lisa; Wenzel, Juergen; Wittkowski, Martin; Wolf, Martin

    2013-01-01

    The standard flight level for commercial airliners is ∼12 km (40 kft; air pressure: ∼ 200 hPa), the maximum certification altitude of modern airliners may be as high as 43-45 kft. Loss of structural integrity of an airplane may result in sudden depressurization of the cabin potentially leading to hypoxia with loss of consciousness of the pilots. Specialized breathing masks supply the pilots with oxygen. The aim of this study was to experimentally simulate such sudden depressurization to maximum design altitude in a pressure chamber while measuring the arterial and brain oxygenation saturation (SaO(2) and StO(2)) of the pilots. Ten healthy subjects with a median age of 50 (range 29-70) years were placed in a pressure chamber, breathing air from a cockpit mask. Pressure was reduced from 753 to 148 hPa within 20 s, and the test mask was switched to pure O(2) within 2 s after initiation of depressurization. During the whole procedure SaO(2) and StO(2) were measured by pulse oximetry, respectively near-infrared spectroscopy (NIRS; in-house built prototype) of the left frontal cortex. During the depressurization the SaO(2) dropped from median 93% (range 91-98%) to 78% (62-92%) by 16% (6-30%), while StO(2) decreased from 62% (47-67%) to 57% (43-62%) by 5% (3-14%). Considerable drops in oxygenation were observed during sudden depressurization. The inter-subject variability was high, for SaO(2) depending on the subjects' ability to preoxygenate before the depressurization. The drop in StO(2) was lower than the one in SaO(2) maybe due to compensation in blood flow. PMID:22879031

  13. Project ARES 2: High-altitude battery-powered aircraft

    NASA Technical Reports Server (NTRS)

    1991-01-01

    A high-altitude, battery-powered, propeller-driven aircraft was designed and is being built by undergraduate students at California State University, Northridge. The aircraft will fly at an altitude of 104,000 ft at Mach 0.2 (190 ft/sec) and will be instrumented to record flight performance data, including low Reynolds number propeller and airfoil information. This project will demonstrate the feasibility of electric-powered flight in a low-density, low-temperature Earth environment that models the atmosphere of Mars. Data collected will be used to design a Mars aircraft to investigate the surface of Mars prior to manned missions. The instrumented payload and the mission profile for the high-altitude Earth flight were determined. Detailed aerodynamic and structural analyses were performed. Control, tracking, and data recording subsystems were developed. Materials were obtained and fabrication begun. The aircraft has a 32-ft wing span, a wing area of 105 sq ft, is 17.5 ft long, has a 12-in payload bay, and weighs 42 lb. It is composed primarily of lightweight materials, including Mylar, and composite materials, including graphite/epoxy and aramid core honeycomb sandwich. Low-altitude flight testing to check guidance and control systems and to calibrate data-gathering instruments will take place this summer, followed shortly by the 104,000-ft flight.

  14. Science requirements and feasibility/design studies of a very-high-altitude aircraft for atmospheric research

    NASA Technical Reports Server (NTRS)

    Russell, Philip B.; Lux, David P.; Reed, R. Dale; Loewenstein, Max; Wegener, Steven

    1991-01-01

    The advantages and shortcomings of currently available aircraft for use in very high altitude missions to study such problems as polar ozone or stratosphere-troposphere exchange pose the question of whether to develop advanced aircraft for atmospheric research. To answer this question, NASA conducted a workshop to determine science needs and feasibility/design studies to assess whether and how those needs could be met. It was determined that there was a need for an aircraft that could cruise at an altitude of 30 km with a range of 6,000 miles with vertical profiling down to 10 km and back at remote points and carry a payload of 3,000 lbs.

  15. Aircraft overflight study. Effect of aircraft altitude upon sound levels at the ground

    SciTech Connect

    Anderson, G.S.; Horonjeff, R.D.

    1992-03-01

    The report summarizes that literature review, discussing sound divergence, atmospheric absorption, attenuation due to intervening hills and heavily wooded areas, soft-ground attenuation, and the acoustical descriptors that are of potential concern to the Park Service as the aircraft flies by. Finally, the report concludes with a summary of the effect of aircraft altitude upon sound levels on the ground, taking all these factors into account. Included in the summary is a discussion of the potential acoustical effectiveness of using altitude as a mitigation measure for any adverse effects of aircraft sound within the National Park System.

  16. A fuselage/tank structure study for actively cooled hypersonic cruise vehicles: Aircraft design evaluation

    NASA Technical Reports Server (NTRS)

    Nobe, T.

    1975-01-01

    The effects of fuselage cross sections and structural members on the performance of hypersonic cruise aircraft are evaluated. Representative fuselage/tank area structure was analyzed for strength, stability, fatigue and fracture mechanics. Various thermodynamic and structural tradeoffs were conducted to refine the conceptual designs with the primary objective of minimizing weight and maximizing aircraft range.

  17. Risk assessment of high altitude free flight commercial aircraft operations

    SciTech Connect

    Kimura, C.Y.; Sandquist, G.M.; Slaughter, D.M.; Sanzo, D.L.

    1998-04-23

    A quantitative model is under development to assess the safety and efficiency of commercial aircraft operations under the Free Flight Program proposed for air traffic control for the US National Airspace System. The major objective of the Free Flight Program is to accommodate the dramatic growth anticipated in air traffic in the US. However, the potential impacts upon aircraft safety from implementing the Program have not been fully explored and evaluated. The model is directed at assessing aircraft operations at high altitude over the continental US airspace since this action is the initial step for Free Flight. Sequential steps with analysis, assessment, evaluation, and iteration will be required to satisfactorily accomplish the complete transition of US commercial aircraft traffic operations.

  18. Sun sensing guidance system for high altitude aircraft

    NASA Technical Reports Server (NTRS)

    Reed, R. D. (Principal Investigator)

    1982-01-01

    A sun sensing guidance system for high altitude aircraft is described. The system is characterized by a disk shaped body mounted for rotation aboard the aircraft in exposed relation to solar radiation. The system also has a plurality of mutually isolated chambers; each chamber being characterized by an opening having a photosensor disposed therein and arranged in facing relation with the opening for receiving incident solar radiation and responsively providing a voltage output. Photosensors are connected in paired relation through a bridge circuit for providing heading error signals in response to detected imbalances in intensities of solar radiation.

  19. Measurements of HONO, NO, NOy and SO2 in aircraft exhaust plumes at cruise

    NASA Astrophysics Data System (ADS)

    Jurkat, T.; Voigt, C.; Arnold, F.; Schlager, H.; Kleffmann, J.; Aufmhoff, H.; Schäuble, D.; Schaefer, M.; Schumann, U.

    2011-05-01

    Measurements of gaseous nitrogen and sulfur oxide emissions in young aircraft exhaust plumes give insight into chemical oxidation processes inside aircraft engines. Particularly, the OH-induced formation of nitrous acid (HONO) from nitrogen oxide (NO) and sulfuric acid (H2SO4) from sulfur dioxide (SO2) inside the turbine which is highly uncertain, need detailed analysis to address the climate impact of aviation. We report on airborne in situ measurements at cruise altitudes of HONO, NO, NOy, and SO2 in 9 wakes of 8 different types of modern jet airliners, including for the first time also an A380. Measurements of HONO and SO2 were made with an ITCIMS (Ion Trap Chemical Ionization Mass Spectrometer) using a new ion-reaction scheme involving SF5- reagent ions. The measured molar ratios HONO/NO and HONO/NOy with averages of 0.038 ± 0.010 and 0.027 ± 0.005 were found to decrease systematically with increasing NOx emission-index (EI NOx). We calculate an average EI HONO of 0.31 ± 0.12 g NO2 kg-1. Using reliable measurements of HONO and NOy, which are less adhesive than H2SO4 to the inlet walls, we derive the OH-induced conversion fraction of fuel sulfur to sulfuric acid $\\varepsilon$ with an average of 2.2 ± 0.5 %. $\\varepsilon$ also tends to decrease with increasing EI NOx, consistent with earlier model simulations. The lowest HONO/NO, HONO/NOy and $\\varepsilon$ was observed for the largest passenger aircraft A380.

  20. Design definition study of a lift/cruise fan technology V/STOL aircraft. Volume 1: Navy operational aircraft

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Aircraft were designed and sized to meet Navy mission requirements. Five missions were established for evaluation: anti-submarine warfare (ASW), surface attack (SA), combat search and rescue (CSAR), surveillance (SURV), and vertical on-board delivery (VOD). All missions were performed with a short takeoff and a vertical landing. The aircraft were defined using existing J97-GE gas generators or reasonable growth derivatives in conjunction with turbotip fans reflecting LF460 type technology. The multipurpose aircraft configuration established for U.S. Navy missions utilizes the turbotip driven lift/cruise fan concept for V/STOL aircraft.

  1. Air-breathing hypersonic cruise - Prospects for Mach 4-7 waverider aircraft

    NASA Technical Reports Server (NTRS)

    Blankson, Isaiah M.

    1992-01-01

    In the Mach 4-7 range, waverider aircraft are considered as candidates for both short- and long-range cruise missions, as hypersonic missiles, and as high L/D highly maneuverable craft. The potential for near- and far-term application of airbreathing engines to the waverider vehicle missions and concepts is presented. Attention is focused on the cruise mission and attempts are made to compare and contrast it with the accelerator mission.

  2. Hydrogen Fuel System Design Trades for High-Altitude Long-Endurance Remotely- Operated Aircraft

    NASA Technical Reports Server (NTRS)

    Millis, Marc G.; Tornabene, Robert T.; Jurns, John M.; Guynn, Mark D.; Tomsik, Thomas M.; VanOverbeke, Thomas J.

    2009-01-01

    Preliminary design trades are presented for liquid hydrogen fuel systems for remotely-operated, high-altitude aircraft that accommodate three different propulsion options: internal combustion engines, and electric motors powered by either polymer electrolyte membrane fuel cells or solid oxide fuel cells. Mission goal is sustained cruise at 60,000 ft altitude, with duration-aloft a key parameter. The subject aircraft specifies an engine power of 143 to 148 hp, gross liftoff weight of 9270 to 9450 lb, payload of 440 lb, and a hydrogen fuel capacity of 2650 to 2755 lb stored in two spherical tanks (8.5 ft inside diameter), each with a dry mass goal of 316 lb. Hydrogen schematics for all three propulsion options are provided. Each employs vacuum-jacketed tanks with multilayer insulation, augmented with a helium pressurant system, and using electric motor driven hydrogen pumps. The most significant schematic differences involve the heat exchangers and hydrogen reclamation equipment. Heat balances indicate that mission durations of 10 to 16 days appear achievable. The dry mass for the hydrogen system is estimated to be 1900 lb, including 645 lb for each tank. This tank mass is roughly twice that of the advanced tanks assumed in the initial conceptual vehicle. Control strategies are not addressed, nor are procedures for filling and draining the tanks.

  3. NASA/USRA high altitude research aircraft. Gryphon: Soar like an eagle with the roar of a lion

    NASA Technical Reports Server (NTRS)

    Rivera, Jose; Nunes, Anne; Mcray, Mike; Wong, Walter; Ong, Audrey; Coble, Scott

    1991-01-01

    At the equator, the ozone layer ranges from 65,000 to 130,000+ feet. This is beyond the capabilities of the ER-2, which is NASA's current high altitude reconnaissance aircraft. The Universities Space Research Association, in cooperation with NASA, is sponsoring an undergraduate program which is geared to designing an aircraft that can study the ozoned layer at the equator. This aircraft must be able to satisfy four mission profiles. Mission one is a polar mission which ranges from Chile to the South Pole and back to Chile, a total range of 6000 n. mi. at 100,000 feet with a 2500 lb. payload. The second mission is also a polar mission with a decreased altitude of 70,000 feet and an increased payload of 4000 lb. For the third mission, the aircraft will take-off at NASA Ames, cruise at 100,000 feet carrying a 2500 lb. payload, and land in Puerto Montt, Chile. The final mission requires the aircraft to take-off at NASA Ames, cruise at 100,000 feet with a 1000 lb. payload, make an excursion to 120,000 feet, and land at Howard AFB, Panama. All three missions require that a subsonic Mach number be maintained due to constraints imposed by the air sampling equipment. The aircraft need not be manned for all four missions. Three aircraft configurations were determined to be the most suitable for meeting the above requirements. The performance of each configuration is analyzed to investigate the feasibility of the project requirements. In the event that a requirement can not be obtained within the given constraints, recommendations for proposal modifications are given.

  4. Study of the impact of cruise speed on scheduling and productivity of commercial transport aircraft

    NASA Technical Reports Server (NTRS)

    Bond, E. Q.; Carroll, E. A.; Flume, R. A.

    1977-01-01

    A comparison is made between airplane productivity and utilization levels derived from commercial airline type schedules which were developed for two subsonic and four supersonic cruise speed aircraft. The cruise speed component is the only difference between the schedules which are based on 1995 passenger demand forecasts. Productivity-to-speed relationships were determined for the three discrete route systems: North Atlantic, Trans-Pacific, and North-South America. Selected combinations of these route systems were also studied. Other areas affecting the productivity-to-speed relationship such as aircraft design range and scheduled turn time were examined.

  5. Centurion solar-powered high-altitude aircraft in flight

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Since 1980 AeroVironment, Inc. (founded in 1971 by the ultra-light airplane innovator--Dr. Paul MacCready) has been experimenting with solar-powered aircraft, often in conjunction with the NASA Dryden Flight Research Center, Edwards, California. Thus far, AeroVironment, now headquartered in Monrovia, California, has achieved several altitude records with its Solar Challenger, Pathfinder, and Pathfinder-Plus aircraft. It expects to exceed these records with the newer and larger solar-powered Centurion and its successors the Centelios and Helios vehicles, in the NASA Environmental Research Aircraft and Sensor Technology (ERAST) program. The Centurion is a lightweight, solar-powered, remotely piloted flying wing aircraft that is demonstrating the technology of applying solar power for long-duration, high-altitude flight. It is considered to be a prototype technology demonstrator for a future fleet of solar-powered aircraft that could stay airborne for weeks or months on scientific sampling and imaging missions or while serving as telecommunications relay platforms. Although it shares many of the design concepts of the Pathfinder, the Centurion has a wingspan of 206 feet, more than twice the 98-foot span of the original Pathfinder and 70-percent longer than the Pathfinder-Plus' 121-foot span. At the same time, Centurion maintains the 8-foot chord (front to rear distance) of the Pathfinder wing, giving the wing an aspect ratio (length-to-chord) of 26 to 1. Other visible changes from its predecessor include a modified wing airfoil designed for flight at extreme altitude and four underwing pods to support its landing gear and electronic systems (compared with two such pods on the Pathfinder). The flexible wing is primarily fabricated from carbon fiber, graphite epoxy composites, and kevlar. It is built in five sections, a 44-foot-long center section and middle and outer sections just over 40 feet long. All five sections have an identical thickness--12 percent of the chord

  6. High altitude solar power platform. [aircraft design analysis

    NASA Technical Reports Server (NTRS)

    Bailey, M. D.; Bower, M. V.

    1992-01-01

    Solar power is a preeminent alternative to conventional aircraft propulsion. With the continued advances in solar cells, fuel cells, and composite materials technology, the solar powered airplane is no longer a simple curiosity constrained to flights of several feet in altitude or minutes of duration. A high altitude solar powered platform (HASPP) has several potential missions, including communications and agriculture. In remote areas, a HASPP could be used as a communication link. In large farming areas, a HASPP could perform remote sensing of crops. The impact of HASPP in continuous flight for one year on agricultural monitoring mission is presented. This mission provides farmers with near real-time data twice daily from an altitude which allows excellant resolution on water conditions, crop diseases, and insect infestation. Accurate, timely data will enable farmers to increase their yield and efficiency. A design for HASPP for the foregoing mission is presented. In the design power derived from solar cells covering the wings is used for propulsion, avionics, and sensors. Excess power produced midday will be stored in fuel cells for use at night to maintain altitude and course.

  7. Capabilities of unmanned aircraft vehicles for low altitude weed detection

    NASA Astrophysics Data System (ADS)

    Pflanz, Michael; Nordmeyer, Henning

    2014-05-01

    Sustainable crop production and food security require a consumer and environmental safe plant protection. It is recently known, that precise weed monitoring approaches could help apply pesticides corresponding to field variability. In this regard the site-specific weed management may contribute to an application of herbicides with higher ecologically aware and economical savings. First attempts of precision agriculture date back to the 1980's. Since that time, remote sensing from satellites or manned aircrafts have been investigated and used in agricultural practice, but are currently inadequate for the separation of weeds in an early growth stage from cultivated plants. In contrast, low-cost image capturing at low altitude from unmanned aircraft vehicles (UAV) provides higher spatial resolution and almost real-time processing. Particularly, rotary-wing aircrafts are suitable for precise path or stationary flight. This minimises motion blur and provides better image overlapping for stitching and mapping procedures. Through improved image analyses and the recent increase in the availability of microcontrollers and powerful batteries for UAVs, it can be expected that the spatial mapping of weeds will be enhanced in the future. A six rotors microcopter was equipped with a modified RGB camera taking images from agricultural fields. The hexacopter operates within predefined pathways at adjusted altitudes (from 5 to 10 m) by using GPS navigation. Different scenarios of optical weed detection have been carried out regarding to variable altitude, image resolution, weed and crop growth stages. Our experiences showed high capabilities for site-specific weed control. Image analyses with regard to recognition of weed patches can be used to adapt herbicide application to varying weed occurrence across a field.

  8. Advanced Low NO Sub X Combustors for Supersonic High-Altitude Aircraft Gas Turbines

    NASA Technical Reports Server (NTRS)

    Roberts, P. B.; White, D. J.; Shekleton, J. R.

    1975-01-01

    A test rig program was conducted with the objective of evaluating and minimizing the exhaust emissions, in particular NO sub x, of three advanced aircraft combustor concepts at a simulated, high altitude cruise condition. The three combustor designs, all members of the lean reaction, premixed family, are the Jet Induced Circulation (JIC) combustor, the Vortex Air Blast (VAB) combustor, and a catalytic combustor. They were rig tested in the form of reverse flow can combustors in the 0.127 m. (5.0 in.) size range. Various configuration modifications were applied to each of the initial JIC and VAB combustor model designs in an effort to reduce the emissions levels. The VAB combustor demonstrated a NO sub x level of 1.1 gm NO2/kg fuel with essentially 100% combustion efficiency at the simulated cruise combustor condition of 50.7 N/sq cm (5 atm), 833 K (1500 R) inlet pressure and temperature respectively and 1778 K (3200 R) outlet temperature on Jet-A1 fuel. Early tests on the catalytic combustor were unsuccessful due to a catalyst deposition problem and were discontinued in favor of the JIC and VAB tests. In addition emissions data were obtained on the JIC and VAB combustors at low combustor inlet pressure and temperatures that indicate the potential performance at engine off-design conditions.

  9. Simulation test results for lift/cruise fan research and technology aircraft

    NASA Technical Reports Server (NTRS)

    Bland, M. P.; Konsewicz, R. K.

    1976-01-01

    A flight simulation program was conducted on the flight simulator for advanced aircraft (FSAA). The flight simulation was a part of a contracted effort to provide a lift/cruise fan V/STOL aircraft mathematical model for flight simulation. The simulated aircraft is a configuration of the Lift/Cruise Fan V/STOL research technology aircraft (RTA). The aircraft was powered by three gas generators driving three fans. One lift fan was installed in the nose of the aircraft, and two lift/cruise fans at the wing root. The thrust of these fans was modulated to provide pitch and roll control, and vectored to provide yaw, side force control, and longitudinal translation. Two versions of the RTA were defined. One was powered by the GE J97/LF460 propulsion system which was gas-coupled for power transfer between fans for control. The other version was powered by DDA XT701 gas generators driving 62 inch variable pitch fans. The flight control system in both versions of the RTA was the same.

  10. Study of aerodynamic technology for single-cruise-engine V/STOL fighter/attack aircraft

    NASA Technical Reports Server (NTRS)

    Mark, L.

    1982-01-01

    Conceptual designs and analyses were conducted on two V/STOL supersonic fighter/attack aircraft. These aircraft feature low footprint temperature and pressure thrust augmenting ejectors in the wings for vertical lift, combined with a low wing loading, low wave drag airframe for outstanding cruise and supersonic performance. Aerodynamic, propulsion, performance, and mass properties were determined and are presented for each aircraft. Aerodynamic and Aero/Propulsion characteristics having the most significant effect on the success of the up and away flight mode were identified, and the certainty with which they could be predicted was defined. A wind tunnel model and test program are recommended to resolve the identified uncertainties.

  11. Preliminary design of a supersonic cruise aircraft high-pressure turbine

    NASA Technical Reports Server (NTRS)

    Aceto, L. D.; Calderbank, J. C.

    1983-01-01

    Development of the supersonic cruise aircraft engine continued in this National Aeronautics and Space Administration (NASA) sponsored Pratt and Whitney program for the Preliminary Design of an Advanced High-Pressure Turbine. Airfoil cooling concepts and the technology required to implement these concepts received particular emphasis. Previous supersonic cruise aircraft mission studies were reviewed and the Variable Stream Control Engine (VSCE) was chosen as the candidate or the preliminary turbine design. The design was evaluated for the supersonic cruise mission. The advanced technology to be generated from these designs showed benefits in the supersonic cruise application and subsonic cruise application. The preliminary design incorporates advanced single crystal materials, thermal barrier coatings, and oxidation resistant coatings for both the vane and blade. The 1990 technology vane and blade designs have cooled turbine efficiency of 92.3 percent, 8.05 percent Wae cooling and a 10,000 hour life. An alternate design with 1986 technology has 91.9 percent efficiency and 12.43 percent Wae cooling at the same life. To achieve these performance and life results, technology programs must be pursued to provide the 1990's technology assumed for this study.

  12. Aircraft Low Altitude Wind Shear Detection and Warning System.

    NASA Astrophysics Data System (ADS)

    Sinclair, Peter C.; Kuhn, Peter M.

    1991-01-01

    There is now considerable evidence to substantiate the causal relationship between low altitude wind shear (LAWS) and the recent increase in low-altitude aircraft accidents. The National Research Council has found that for the period 1964 to 1982, LAWS was involved in nearly all the weather-related air carrier fatalities. However, at present, there is no acceptable method, technique, or hardware system that provides the necessary safety margins, for spatial and timely detection of LAWS from an aircraft during the critical phases of landing and takeoff. The Federal Aviation Administration (FAA) has addressed this matter and supports the development of an airborne system for detecting hazardous LAWS with at least a one minute warning of the potential hazard to the pilot. One of the purposes of this paper is to show from some of our preliminary flight measurement research that a forward looking infrared radiometer (FLIR) system can be used to successfully detect the cool downdraft of downbursts [microbursts/macrobursts (MB)] and thunderstorm gust front outflows that are responsible for most of the LAWS events. The FLIR system provides a much greater safety margin for the pilot than that provided by reactive designs such as inertial-air speed systems that require the actual penetration of the MB before a pilot warning can be initiated. Our preliminary results indicate that an advanced airborne FLIR system could provide the pilot with remote indication of MB threat, location, movement, and predicted MB hazards along the flight path ahead of the aircraft.In a proof-of-concept experiment, we have flight tested a prototype FLIR system (nonscanning, fixed range) near and within Colorado MBs with excellent detectability. The results show that a minimum warning time of one-four minutes (5×10 km), depending on aircraft speed, is available to the pilot prior to a MB encounter. Analysis of the flight data with respect to a modified `hazard index' indicates the severe hazard

  13. Propulsion System for Very High Altitude Subsonic Unmanned Aircraft

    NASA Technical Reports Server (NTRS)

    Bents, David J.; Mockler, Ted; Maldonado, Jaime; Harp, James L., Jr.; King, Joseph F.; Schmitz, Paul C.

    1998-01-01

    This paper explains why a spark ignited gasoline engine, intake pressurized with three cascaded stages of turbocharging, was selected to power NASA's contemplated next generation of high altitude atmospheric science aircraft. Beginning with the most urgent science needs (the atmospheric sampling mission) and tracing through the mission requirements which dictate the unique flight regime in which this aircraft has to operate (subsonic flight at greater then 80 kft) we briefly explore the physical problems and constraints, the available technology options and the cost drivers associated with developing a viable propulsion system for this highly specialized aircraft. The paper presents the two available options (the turbojet and the turbocharged spark ignited engine) which are discussed and compared in the context of the flight regime. We then show how the unique nature of the sampling mission, coupled with the economic considerations pursuant to aero engine development, point to the spark ignited engine as the only cost effective solution available. Surprisingly, this solution compares favorably with the turbojet in the flight regime of interest. Finally, some remarks are made about NASA's present state of development, and future plans to flight demonstrate the three stage turbocharged powerplant.

  14. Unsteady features of jets in lift and cruise modes for VTOL aircraft

    NASA Technical Reports Server (NTRS)

    Kibens, V.; Saripalli, K. R.; Wlezien, R. W.; Kegelman, J. T.

    1988-01-01

    Experiments were performed to simulate jet plume effects associated with VTOL aircraft in takeoff and cruise modes. A water facility was used to investigate the influence of inclination angle and separation distance on the three-dimensional fountain flowfield generated by two impinging jets operating at a jet Reynolds number of 250,000. Substantial differences in the flow features were observed for different spacings between the jets. Plume effects in cruise mode were simulated by a supersonic unheated jet parallel to a wall. Variation of the distance between the wall and the edge of the plume is shown to have a major controlling effect on the supersonic screech instability.

  15. A review of several propulsion integration features applicable to supersonic-cruise fighter aircraft

    NASA Technical Reports Server (NTRS)

    Berrier, B. L.

    1976-01-01

    A brief review has been made of the propulsion integration features which may impact the design of a supersonic cruise fighter type aircraft. The data used for this study were obtained from several investigations conducted in the Langley 16-foot transonic and 4 by 4 foot supersonic pressure wind tunnels. Results of this study show: (1) that for conventional nozzle installations, contradictory design guidelines exist between subsonic and supersonic flight condition, (2) that substantial drag penalties can be incurred by use of dry power nozzles during supersonic cruise; and (3) that a new and unique concept, the nonaxisymmetric nozzle, offers the potential for solving many of the current propulsion installation problems.

  16. 3-D Navier-Stokes Analysis of Blade Root Aerodynamics for a Tiltrotor Aircraft In Cruise

    NASA Technical Reports Server (NTRS)

    Romander, Ethan

    2006-01-01

    The blade root area of a tiltrotor aircraft's rotor is constrained by a great many factors, not the least of which is aerodynamic performance in cruise. For this study, Navier-Stokes CFD techniques are used to study the aerodynamic performance in cruise of a rotor design as a function of airfoil thickness along the blade and spinner shape. Reducing airfoil thickness along the entire blade will be shown to have the greatest effect followed by smaller but still significant improvements achieved by reducing the thickness of root airfoils only. Furthermore, altering the shape of the spinner will be illustrated as a tool to tune the aerodynamic performance very near the blade root.

  17. Analytic development of improved supersonic cruise aircraft based on wind tunnel data

    NASA Technical Reports Server (NTRS)

    Roensch, R. L.; Page, G. S.

    1980-01-01

    Data obtained from the MDC/NASA cooperative wing tunnel program were used to develop empirical corrections to theory. These methods were then used to develop a 2.2M supersonic cruise aircraft configuration with a cruise trimmed maximum L/D of 10.2. The empirical corrections to the theory are reviewed, and the configuration alternatives examined in the development of the configuration are presented. The benefits of designing for optimum trimmed performance, including the effects of the nacelles, are discussed.

  18. Flying qualities design criteria applicable to supersonic cruise aircraft

    NASA Technical Reports Server (NTRS)

    Chalk, C. R.

    1980-01-01

    A comprehensive set of flying qualities design criteria was prepared for use in the supersonic cruise research program. The framework for stating the design criteria is established and design criteria are included which address specific failures, approach to dangerous flight conditions, flight at high angle of attack, longitudinal and lateral directional stability and control, the primary flight control system, and secondary flight controls. Examples are given of lateral directional design criteria limiting lateral accelerations at the cockpit, time to roll through 30 deg of bank, and time delay in the pilot's command path. Flight test data from the Concorde certification program are used to substantiate a number of the proposed design criteria.

  19. Mathematical model for lift/cruise fan V/STOL aircraft simulator programming data

    NASA Technical Reports Server (NTRS)

    Bland, M. P.; Fajfar, B.; Konsewicz, R. K.

    1976-01-01

    Simulation data are reported for the purpose of programming the flight simulator for advanced aircraft for tests of the lift/cruise fan V/STOL Research Technology Aircraft. These simulation tests are to provide insight into problem areas which are encountered in operational use of the aircraft. A mathematical model is defined in sufficient detail to represent all the necessary pertinent aircraft and system characteristics. The model includes the capability to simulate two basic versions of an aircraft propulsion system: (1) the gas coupled configuration which uses insulated air ducts to transmit power between gas generators and fans in the form of high energy engine exhaust and (2) the mechanically coupled power system which uses shafts, clutches, and gearboxes for power transmittal. Both configurations are modeled such that the simulation can include vertical as well as rolling takeoff and landing, hover, powered lift flight, aerodynamic flight, and the transition between powered lift and aerodynamic flight.

  20. Advanced technology for controlling pollutant emissions from supersonic cruise aircraft

    NASA Technical Reports Server (NTRS)

    Duerr, R. A.; Diehl, L. A.

    1980-01-01

    Gas turbine engine combustor technology for the reduction of pollutant emissions is summarized. Variations of conventional combustion systems and advanced combustor concepts are discussed. Projected results from far term technology efforts aimed at applying the premixed prevaporized and catalytic combustion techniques to aircraft combustion systems indicate a potential for significant reductions in pollutant emission levels.

  1. Pilot Workload Measurement and Experience on Supersonic Cruise Aircraft

    NASA Technical Reports Server (NTRS)

    Rezek, T. W.

    1978-01-01

    Aircraft parameters and physiological parameters most indicative of crew workload were investigated. Recommendations were used to form the basis for a continuing study in which variations of the interval between heart beats are used as a measure of nonphysical workload. Preliminary results are presented and current efforts in further defining this physiological measure are outlined.

  2. Hypersonic cruise aircraft propulsion integration study, volume 2

    NASA Technical Reports Server (NTRS)

    Morris, R. E.; Brewer, G. D.

    1979-01-01

    Conceptual vehicle configuration and propulsion approach for a Mach 6 transport aircraft capable of carring 200 passengers 9260 km was investigated. Wind tunnel test data for various hypersonic transport configurations were examined. Canidates for baseline reference vehicles were selected. An explanation of technical methods which were used and configuration details which were significant in the final vehicle concept are given.

  3. Design of a MIPAS Instrument for high-altitude aircraft

    SciTech Connect

    Piesch, C.; Gulde, T.; Sartorius, F.F.V.

    1996-11-01

    A new MIPAS (Michelson Interferometer for Passive Atmospheric Sounding) is being designed for remote sensing of atmospheric trace constituents from high-altitude aircraft. The main goal is the measurement of cross sections of stratospheric species relevant to ozone research, such as ClONO{sub 2}, N{sub 2}O{sub 5}, NO, NO{sub 2} and HNO{sub 3}. The instrument measures the mid-infrared thermal emission of the atmosphere by limb- and upward sounding. From the spectra the two-dimensional distribution of the trace species along the flight trajectory can be derived. The instrument development is based on the approved balloon-borne MIPAS-B2 and aircraft MIPAS-FT systems. The system will be located in unpressurized compartments and thus operate under ambient temperature and pressure conditions. Major design constraints are the low mass-budget (max. 200 kg) and the automated operation without personnel intervention. The paper presents the concept and current status of the instrument development. 6 refs., 7 figs., 1 tab.

  4. Evaluation of structural design concepts for an arrow-wing supersonic cruise aircraft

    NASA Technical Reports Server (NTRS)

    Sakata, I. F.; Davis, G. W.

    1977-01-01

    An analytical study was performed to determine the best structural approach for design of primary wing and fuselage structure of a Mach 2.7 arrow wing supersonic cruise aircraft. Concepts were evaluated considering near term start of design. Emphasis was placed on the complex interactions between thermal stress, static aeroelasticity, flutter, fatigue and fail safe design, static and dynamic loads, and the effects of variations in structural arrangements, concepts and materials on these interactions. Results indicate that a hybrid wing structure incorporating low profile convex beaded and honeycomb sandwich surface panels of titanium alloy 6Al-4V were the most efficient. The substructure includes titanium alloy spar caps reinforced with boron polyimide composites. The fuselage shell consists of hat stiffened skin and frame construction of titanium alloy 6Al-4V. A summary of the study effort is presented, and a discussion of the overall logic, design philosophy and interaction between the analytical methods for supersonic cruise aircraft design are included.

  5. Lift/cruise fan V/STOL technology aircraft design definition study. Volume 2: Propulsion transmission system design

    NASA Technical Reports Server (NTRS)

    Obrien, W. J.

    1976-01-01

    Two types of lift/cruise fan technology aircraft were conceptually designed. One aircraft used turbotip fans pneumatically interconnected to three gas generators, and the other aircraft used variable pitch fans mechanically interconnected to three turboshaft engines. The components of each propulsion transmission system were analyzed and designed to the depth necessary to determine areas of risk, development methods, performance, weights and costs. The types of materials and manufacturing processes were identified to show that the designs followed a low cost approach. The lift/cruise fan thrust vectoring hoods, which are applicable to either aircraft configuration, were also evaluated to assure a low cost/low risk approach.

  6. Best-range flight conditions for cruise-climb flight of a jet aircraft

    NASA Technical Reports Server (NTRS)

    Hale, F. J.

    1976-01-01

    The Breguet range equation was developed for cruise climb flight of a jet aircraft to include the climb angle and is then maximized with respect to the no wind true airspeed. The expression for the best range airspeed is a function of the specific fuel consumption and minimum drag airspeed and indicates that an operational airspeed equal to the fourth root of three times the minimum-drag airspeed introduces range penalties of the order of one percent.

  7. Bibliography of Supersonic Cruise Aircraft Research (SCAR) Program from 1972 to Mid-1977

    NASA Technical Reports Server (NTRS)

    Hoffman, S.

    1977-01-01

    This bibliography documents publications of the supersonic cruise aircraft research (SCAR) program that were generated during the first 5 years of effort. The reports are arranged according to systems studies and five SCAR disciplines: propulsion, stratospheric emissions impact, structures and materials, aerodynamic performance, and stability and control. The specific objectives of each discipline are summarized. Annotation is included for all NASA inhouse and low-number contractor reports. There are 444 papers and articles included.

  8. New airfoil sections for general aviation aircraft. [cruising and flap development tests

    NASA Technical Reports Server (NTRS)

    Wentz, W. H., Jr.

    1973-01-01

    A program has been undertaken to develop new airfoil sections suitable for general aviation aircraft, utilizing theoretical and experimental advanced technology developed in recent years primarily for subsonic jet transport and military aircraft. The airfoil development program is one component of the Advanced Technology Light Twin program sponsored by NASA Langley Research Center. Two-dimensional tests of a new airfoil have demonstrated high cruising performance over a fairly wide C sub 1 range, and a C sub 1 max value of 3.69 with Fowler flap and no leading-edge devices. Experimental and theoretical development of additional configurations is under way.

  9. Technology for controlling emissions of oxides of nitrogen from supersonic cruise aircraft

    NASA Technical Reports Server (NTRS)

    Reck, G. M.; Rudey, R. A.

    1976-01-01

    Various experiments are sponsored and conducted by NASA to explore the potential of advanced combustion techniques for controlling aircraft engine emissions into the upper atmosphere. Of particular concern are the oxide of nitrogen (NOx) emissions into the stratosphere. The experiments utilize a wide variety of approaches varying from advanced combustor concepts to fundamental flame tube experiments. Results are presented which indicate that substantial reductions in cruise NOx emissions should be achievable in future aircraft engines. A major NASA program is described which focuses the many fundamental experiments into a planned evolution and demonstration of the prevaporized-premixed combustion technique in a full-scale engine.

  10. Arrow-wing supersonic cruise aircraft structural design concepts evaluation. Volume 2: Sections 7 through 11

    NASA Technical Reports Server (NTRS)

    Sakata, I. F.; Davis, G. W.

    1975-01-01

    The materials and advanced producibility methods that offer potential structural mass savings in the design of the primary structure for a supersonic cruise aircraft are identified and reported. A summary of the materials and fabrication techniques selected for this analytical effort is presented. Both metallic and composite material systems were selected for application to a near-term start-of-design technology aircraft. Selective reinforcement of the basic metallic structure was considered as the appropriate level of composite application for the near-term design.

  11. Preliminary noise tradeoff study of a Mach 2.7 cruise aircraft

    NASA Technical Reports Server (NTRS)

    Mascitti, V. R.; Maglieri, D. J. (Editor); Raney, J. P. (Editor)

    1979-01-01

    NASA computer codes in the areas of preliminary sizing and enroute performance, takeoff and landing performance, aircraft noise prediction, and economics were used in a preliminary noise tradeoff study for a Mach 2.7 design supersonic cruise concept. Aerodynamic configuration data were based on wind-tunnel model tests and related analyses. Aircraft structural characteristics and weight were based on advanced structural design methodologies, assuming conventional titanium technology. The most advanced noise prediction techniques available were used, and aircraft operating costs were estimated using accepted industry methods. The 4-engines cycles included in the study were based on assumed 1985 technology levels. Propulsion data was provided by aircraft manufacturers. Additional empirical data is needed to define both noise reduction features and other operating characteristics of all engine cycles under study. Data on VCE design parameters, coannular nozzle inverted flow noise reduction and advanced mechanical suppressors are urgently needed to reduce the present uncertainties in studies of this type.

  12. Sensitivity of transport aircraft performance and economics to advanced technology and cruise Mach number

    NASA Technical Reports Server (NTRS)

    Ardema, M. D.

    1974-01-01

    Sensitivity data for advanced technology transports has been systematically collected. This data has been generated in two separate studies. In the first of these, three nominal, or base point, vehicles designed to cruise at Mach numbers .85, .93, and .98, respectively, were defined. The effects on performance and economics of perturbations to basic parameters in the areas of structures, aerodynamics, and propulsion were then determined. In all cases, aircraft were sized to meet the same payload and range as the nominals. This sensitivity data may be used to assess the relative effects of technology changes. The second study was an assessment of the effect of cruise Mach number. Three families of aircraft were investigated in the Mach number range 0.70 to 0.98: straight wing aircraft from 0.70 to 0.80; sweptwing, non-area ruled aircraft from 0.80 to 0.95; and area ruled aircraft from 0.90 to 0.98. At each Mach number, the values of wing loading, aspect ratio, and bypass ratio which resulted in minimum gross takeoff weight were used. As part of the Mach number study, an assessment of the effect of increased fuel costs was made.

  13. A brief study of the effects of turbofan-engine bypass ratio on short and long haul cruise aircraft

    NASA Technical Reports Server (NTRS)

    Keith, A. L., Jr.

    1975-01-01

    A brief study of the effects of turbofan-engine bypass ratio on Breguet cruise range and take-off distance for subsonic cruise aircraft showed significant differences between short- and long-haul aircraft designs. Large thrust lapse rates at high bypass ratios caused severe reductions in cruise range for short-haul aircraft because of increases in propulsion system weight. Long-haul aircraft, with a higher fuel fraction (ratio of propulsion weight plus total fuel weight to gross take-off weight), are less sensitive to propulsion-system weight and, accordingly, were not significantly affected by bypass-ratio variations. Both types of aircraft have shorter take-off distances at higher bypass ratios because of higher take-off thrust-weight ratios.

  14. Extrapolating Ground-Based Aircraft Engine Exhaust Emissions to Cruise Conditions: Lessons From the 2013 ACCESS Chase Plane Experiment

    NASA Astrophysics Data System (ADS)

    Moore, R.; Shook, M.; Thornhill, K. L.; Winstead, E.; Anderson, B. E.

    2013-12-01

    Aircraft engine emissions constitute a tiny fraction of the global black carbon mass, but can have a disproportionate climatic impact because they are emitted high in the troposphere and in remote regions with otherwise low aerosol concentrations. Consequently, these particles are likely to strongly influence cirrus and contrail formation by acting as ice nuclei (IN). However, the ice nucleating properties of aircraft exhaust at relevant atmospheric conditions are not well known, and thus, the overall impact of aviation on cloud formation remains very uncertain. While a number of aircraft engine emissions studies have previously been conducted at sea level temperature and pressure (e.g., APEX, AAFEX-1 and 2), it unclear the extent to which exhaust emissions on the ground translate to emissions at cruise conditions with much lower inlet gas temperatures and pressures. To address this need, the NASA Alternative Fuel Effects on Contrails and Cruise Emissions (ACCESS) was conducted in February-April, 2013 to examine the aerosol and gas emissions from the NASA DC-8 under a variety of different fuel types, engine power, and altitude/meteorological conditions. Two different fuel types were studied: a traditional JP-8 fuel and a 50:50 blend of JP-8 and a camelina-based hydro-treated renewable jet (HRJ) fuel. Emissions were sampled using a comprehensive suite of gas- and aerosol-phase instrumentation integrated on an HU-25 Falcon jet that was positioned in the DC-8 exhaust plume at approximately 100-500m distance behind the engines. In addition, a four-hour ground test was carried out with sample probes positioned at 30 m behind each of the inboard engines. Measurements of aerosol concentration, size distribution, soot mass, and hygroscopicity were carried out along with trace gas measurements of CO2, NO, NO2, O3, and water vapor. NOx emissions were reconciled by employing the well-established Boeing method for normalizing engine fuel flow rates to STP; however, comparison

  15. Extrapolating Ground-Based Aircraft Engine Exhaust Emissions to Cruise Conditions: Lessons From the 2013 ACCESS Chase Plane Experiment

    NASA Astrophysics Data System (ADS)

    Moore, R.; Shook, M.; Thornhill, K. L.; Winstead, E.; Anderson, B. E.

    2011-12-01

    Aircraft engine emissions constitute a tiny fraction of the global black carbon mass, but can have a disproportionate climatic impact because they are emitted high in the troposphere and in remote regions with otherwise low aerosol concentrations. Consequently, these particles are likely to strongly influence cirrus and contrail formation by acting as ice nuclei (IN). However, the ice nucleating properties of aircraft exhaust at relevant atmospheric conditions are not well known, and thus, the overall impact of aviation on cloud formation remains very uncertain. While a number of aircraft engine emissions studies have previously been conducted at sea level temperature and pressure (e.g., APEX, AAFEX-1 and 2), it unclear the extent to which exhaust emissions on the ground translate to emissions at cruise conditions with much lower inlet gas temperatures and pressures. To address this need, the NASA Alternative Fuel Effects on Contrails and Cruise Emissions (ACCESS) was conducted in February-April, 2013 to examine the aerosol and gas emissions from the NASA DC-8 under a variety of different fuel types, engine power, and altitude/meteorological conditions. Two different fuel types were studied: a traditional JP-8 fuel and a 50:50 blend of JP-8 and a camelina-based hydro-treated renewable jet (HRJ) fuel. Emissions were sampled using a comprehensive suite of gas- and aerosol-phase instrumentation integrated on an HU-25 Falcon jet that was positioned in the DC-8 exhaust plume at approximately 100-500m distance behind the engines. In addition, a four-hour ground test was carried out with sample probes positioned at 30 m behind each of the inboard engines. Measurements of aerosol concentration, size distribution, soot mass, and hygroscopicity were carried out along with trace gas measurements of CO2, NO, NO2, O3, and water vapor. NOx emissions were reconciled by employing the well-established Boeing method for normalizing engine fuel flow rates to STP; however, comparison

  16. Near-field noise predictions of an aircraft in cruise

    NASA Technical Reports Server (NTRS)

    Rawls, John W., Jr.

    1987-01-01

    The physics of the coupling of sound waves with the boundary layer is not yet well understood. It is believed, however, that for effective coupling of the sound waves and instability waves in the boundary layer, a matching of both frequency and wave number must occur. This requires that the sound field be accurately defined in both space and time. Currently analytical prediction methods lack sufficient accuracy to predict the noise levels from components of a turbofan engine. Although empirical methods do not yield the detail required for an analysis of the receptivity of sound by a boundary layer, valuable insight can be gained as to the changes in noise levels that might be expected under various operating conditions and aircraft configurations.

  17. Dynamics of tilting proprotor aircraft in cruise flight

    NASA Technical Reports Server (NTRS)

    Johnson, W.

    1974-01-01

    A nine degree-of-freedom theoretical model is developed for investigations of the dynamics of a proprotor operating in high inflow axial flight on a cantilever wing. The basic characteristics of the rotor high inflow aerodynamics and the resulting rotor aeroelastic behavior are discussed. The problems of classical whirl flutter, the two-bladed rotor, and the influence of the proprotor on the stability derivatives of the aircraft are treated briefly. The influence of various elements of the theoretical model is discussed, including the modeling used for the blade and wing aerodynamics, and the influence of the rotor lag degree of freedom. The results from tests of two full-scale proprotors - a gimballed, stiff-inplane rotor and a hingeless, soft-inplane rotor - are presented; comparisons with the theoretical results show good correlation.

  18. Radiation measurements aboard nasa ER-2 high altitude aircraft with the liulin-4J portable spectrometer

    NASA Astrophysics Data System (ADS)

    Uchihori, Y.; Benton, E.; Moeller, J.; Bendrick, G.

    The risks to aircrew health posed by prolonged exposure to low levels of ionizing radiation at aircraft altitudes have recently received renewed attention. Civil and military aircraft currently on the drawing board are expected to operate at higher altitudes (>12 km) and fly longer ranges than do existing aircraft, thereby exposing their crews to higher levels of ionizing radiation. for longer periods of time. We are currently carrying out dosimetric measurements of the ionizing radiation environment at ˜20 km altitude using portable Si detectors aboard NASA's two ER-2 high altitude research aircraft. The instruments, Liulin-4J, have been extensively calibrated at several particle accelerators. With these instruments, we can measure not only absorbed dose, but also variation of the absorbed dose as a function of time. We report radiation dose measurements as function of time, altitude, and latitude for several ER-2 missions.

  19. Measurement of EM Field Inside a Cruising Aircraft: Potential Problems for the Use of Mobile Phones on Board

    NASA Astrophysics Data System (ADS)

    Kohmura, A.; Picard, J.; Yonemoto, N.; Yamamoto, K.

    Electromagnetic (EM) emissions from portable electronic devices (PEDs) carried onboard aircraft can interfere with avionic systems. Several onboard systems using EM waves have been planned, such as mobile communications and UWB (ultra-wideband) entertainment services distribution. Manufacturers of this system develop schemes to avoid electromagnetic interference by the transmissions (emissions) of mobile phones with avionic systems; some local-specific problems still remain. The purpose of this chapter is to investigate to what extent non-GSM transmissions from the ground base stations reach inside a cruising aircraft. The EM field at the base station frequency bands is measured in a cruising small aircraft.

  20. Design definition study of NASA/Navy lift/cruise fan V/STOL aircraft. Volume 1: Summary report of Navy multimission aircraft

    NASA Technical Reports Server (NTRS)

    Cavage, R. L.

    1975-01-01

    Results are presented of a study of lift-cruise fan V/STOL aircraft for the 1980-1985 time period. Technical and operating characteristics and technology requirements for the ultimate development of this type aircraft are identified. Aircraft individually optimized to perform the antisubmarine warfare, carrier onboard delivery, combat search and rescue, and surveillance and surface attack missions are considered along with a multi-purpose aircraft concept capable of performing all five missions at minimum total program cost. It is shown that lighter and smaller aircraft could be obtained by optimizing the design and fan selection for specific missions.

  1. Propulsion system mathematical model for a lift/cruise fan V/STOL aircraft

    NASA Technical Reports Server (NTRS)

    Cole, G. L.; Sellers, J. F.; Tinling, B. E.

    1980-01-01

    A propulsion system mathematical model is documented that allows calculation of internal engine parameters during transient operation. A non-realtime digital computer simulation of the model is presented. It is used to investigate thrust response and modulation requirements as well as the impact of duty cycle on engine life and design criteria. Comparison of simulation results with steady-state cycle deck calculations showed good agreement. The model was developed for a specific 3-fan subsonic V/STOL aircraft application, but it can be adapted for use with any similar lift/cruise V/STOL configuration.

  2. Arrow-wing supersonic cruise aircraft structural design concepts evaluation. Volume 1: Sections 1 through 6

    NASA Technical Reports Server (NTRS)

    Sakata, I. F.; Davis, G. W.

    1975-01-01

    The structural approach best suited for the design of a Mach 2.7 arrow-wing supersonic cruise aircraft was investigated. Results, procedures, and principal justification of results are presented. Detailed substantiation data are given. In general, each major analysis is presented sequentially in separate sections to provide continuity in the flow of the design concepts analysis effort. In addition to the design concepts evaluation and the detailed engineering design analyses, supporting tasks encompassing: (1) the controls system development; (2) the propulsion-airframe integration study; and (3) the advanced technology assessment are presented.

  3. Computer-aided methods for analysis and synthesis of supersonic cruise aircraft structures

    NASA Technical Reports Server (NTRS)

    Giles, G. L.

    1976-01-01

    Computer-aided methods are reviewed which are being developed by Langley Research Center in-house work and by related grants and contracts. Synthesis methods to size structural members to meet strength and stiffness (flutter) requirements are emphasized and described. Because of the strong interaction among the aerodynamic loads, structural stiffness, and member sizes of supersonic cruise aircraft structures, these methods are combined into systems of computer programs to perform design studies. The approaches used in organizing these systems to provide efficiency, flexibility of use in an iterative process, and ease of system modification are discussed.

  4. Thermal management for a Mach 5 cruise aircraft using endothermic fuel

    NASA Technical Reports Server (NTRS)

    Petley, Dennis H.; Jones, Stuart C.

    1990-01-01

    The present thermal management system for a carrier-based Mach 5 cruise-capable aircraft whose propulsion system does not entail cryogenic fuels is predicated on the use of the catalytic endothermic reaction of a petroleum-derived hydrocarbon fuel as the heat sink for engine cooling. The insulation of engine flowpath surfaces reduces cooling requirements. The primary elements of this closed-cycle cooling system are a fuel preheater, a catalytic fuel reactor, and engine wall-cooling panels; a silicone-based liquid polymer is used as the coolant. Structural, weight, and thermal analysis results are presented for each of the primary components.

  5. Arrow-wing supersonic cruise aircraft structural design concepts evaluation. Volume 3: Sections 12 through 14

    NASA Technical Reports Server (NTRS)

    Sakata, I. F.; Davis, G. W.

    1975-01-01

    The design of an economically viable supersonic cruise aircraft requires the lowest attainable structural-mass fraction commensurate with the selected near-term structural material technology. To achieve this goal of minimum structural-mass fraction, various combinations of promising wing and fuselage primary structure were analyzed for the load-temperature environment applicable to the arrow wing configuration. This analysis was conducted in accordance with the design criteria specified and included extensive use of computer-aided analytical methods to screen the candidate concepts and select the most promising concepts for the in-depth structural analysis.

  6. Arrow-wing supersonic cruise aircraft structural design concepts evaluation. Volume 4: Sections 15 through 21

    NASA Technical Reports Server (NTRS)

    Sakata, I. F.; Davis, G. W.

    1975-01-01

    The analyses performed to provide structural mass estimates for the arrow wing supersonic cruise aircraft are presented. To realize the full potential for structural mass reduction, a spectrum of approaches for the wing and fuselage primary structure design were investigated. The objective was: (1) to assess the relative merits of various structural arrangements, concepts, and materials; (2) to select the structural approach best suited for the Mach 2.7 environment; and (3) to provide construction details and structural mass estimates based on in-depth structural design studies. Production costs, propulsion-airframe integration, and advanced technology assessment are included.

  7. Wake-Vortex Hazards During Cruise

    NASA Technical Reports Server (NTRS)

    Rossow, Vernon J.; James, Kevin D.; Nixon, David (Technical Monitor)

    1998-01-01

    Even though the hazard posed by lift-generated wakes of subsonic transport aircraft has been studied extensively for approach and departure at airports, only a small amount of effort has gone into the potential hazard at cruise altitude. This paper reports on a studio of the wake-vortex hazard during cruise because encounters may become more prevalent when free-flight becomes available and each aircraft, is free to choose its own route between destinations. In order to address the problem, the various fluid-dynamic stages that vortex wakes usually go through as they age will be described along with estimates of the potential hazard that each stage poses. It appears that a rolling-moment hazard can be just as severe at cruise as for approach at airports, but it only persists for several minutes. However, the hazard posed by the downwash in the wake due to the lift on the generator aircraft persists for tens of minutes in a long narrow region behind the generating aircraft. The hazard consists of severe vertical loads when an encountering aircraft crosses the wake. A technique for avoiding vortex wakes at cruise altitude will be described. To date the hazard posed by lift-generated vortex wakes and their persistence at cruise altitudes has been identified and subdivided into several tasks. Analyses of the loads to be encounter and are underway and should be completed shortly. A review of published literature on the subject has been nearly completed (see text) and photographs of vortex wakes at cruise altitudes have been taken and the various stages of decay have been identified. It remains to study and sort the photographs for those that best illustrate the various stages of decay after they are shed by subsonic transport aircraft at cruise altitudes. The present status of the analysis and the paper are described.

  8. Fabrication methods for YF-12 wing panels for the Supersonic Cruise Aircraft Research Program

    NASA Technical Reports Server (NTRS)

    Hoffman, E. L.; Payne, L.; Carter, A. L.

    1975-01-01

    Advanced fabrication and joining processes for titanium and composite materials are being investigated by NASA to develop technology for the Supersonic Cruise Aircraft Research (SCAR) Program. With Lockheed-ADP as the prime contractor, full-scale structural panels are being designed and fabricated to replace an existing integrally stiffened shear panel on the upper wing surface of the NASA YF-12 aircraft. The program involves ground testing and Mach 3 flight testing of full-scale structural panels and laboratory testing of representative structural element specimens. Fabrication methods and test results for weldbrazed and Rohrbond titanium panels are discussed. The fabrication methods being developed for boron/aluminum, Borsic/aluminum, and graphite/polyimide panels are also presented.

  9. Fabrication and evaluation of advanced titanium structural panels for supersonic cruise aircraft

    NASA Technical Reports Server (NTRS)

    Payne, L.

    1977-01-01

    Flightworthy primary structural panels were designed, fabricated, and tested to investigate two advanced fabrication methods for titanium alloys. Skin-stringer panels fabricated using the weldbraze process, and honeycomb-core sandwich panels fabricated using a diffusion bonding process, were designed to replace an existing integrally stiffened shear panel on the upper wing surface of the NASA YF-12 research aircraft. The investigation included ground testing and Mach 3 flight testing of full-scale panels, and laboratory testing of representative structural element specimens. Test results obtained on full-scale panels and structural element specimens indicate that both of the fabrication methods investigated are suitable for primary structural applications on future civil and military supersonic cruise aircraft.

  10. Advanced technology payoffs for future rotorcraft, commuter aircraft, cruise missile, and APU propulsion systems

    NASA Technical Reports Server (NTRS)

    Turk, M. A.; Zeiner, P. K.

    1986-01-01

    In connection with the significant advances made regarding the performance of larger gas turbines, challenges arise concerning the improvement of small gas turbine engines in the 250 to 1000 horsepower range. In response to these challenges, the NASA/Army-sponsored Small Engine Component Technology (SECT) study was undertaken with the objective to identify the engine cycle, configuration, and component technology requirements for the substantial performance improvements desired in year-2000 small gas turbine engines. In the context of this objective, an American turbine engine company evaluated engines for four year-2000 applications, including a rotorcraft, a commuter aircraft, a supersonic cruise missile, and an auxiliary power unit (APU). Attention is given to reference missions, reference engines, reference aircraft, year-2000 technology projections, cycle studies, advanced engine selections, and a technology evaluation.

  11. Design study of structural concepts for an arrow-wing supersonic-cruise aircraft

    NASA Technical Reports Server (NTRS)

    Sakata, I. F.; Davis, G. W.; Robinson, J. C.; Yates, E. C., Jr.

    1975-01-01

    An analytical study was performed to determine the best structural approach for design of primary wing and fuselage structure of a Mach number 2.7 arrow-wing supersonic cruise aircraft. Concepts were evaluated considering near-term start-of-design. Emphasis was placed on the complex interactions between thermal stress, static aeroelasticity, flutter, fatigue and fail-safe design, static and dynamic loads, and the effects of variations in structural arrangements, concepts and materials on these interactions. Results indicate that a hybrid wing structure incorporating low-profile convex-beaded and honeycomb sandwich surface panels of titanium alloy 6Al-4V were the most efficient. The substructure includes titanium alloy spar caps reinforced with Boron-polyimide composites. The fuselage shell is a closed-hat stiffened skin and frame construction of titanium alloy 6Al-4V. This paper presents an executive summary of the study effort, and includes a discussion of the overall study logic, design philosophy and interaction between the analytical methods for supersonic cruise aircraft design.

  12. Probing Aircraft Flight Test Hazard Mitigation for the Alternative Fuel Effects on Contrails & Cruise Emissions (ACCESS) Research Team

    NASA Technical Reports Server (NTRS)

    Kelly, Michael J.

    2013-01-01

    The Alternative Fuel Effects on Contrails & Cruise Emissions (ACCESS) Project Integration Manager requested in July 2012 that the NASA Engineering and Safety Center (NESC) form a team to independently assess aircraft structural failure hazards associated with the ACCESS experiment and to identify potential flight test hazard mitigations to ensure flight safety. The ACCESS Project Integration Manager subsequently requested that the assessment scope be focused predominantly on structural failure risks to the aircraft empennage raft empennage.

  13. Cruise performance and range prediction reconsidered

    NASA Astrophysics Data System (ADS)

    Torenbeek, Egbert

    1997-05-01

    A unified analytical treatment of the cruise performance of subsonic transport aircraft is derived, valid for gas turbine powerplant installations: turboprop, turbojet and turbofan powered aircraft. Different from the classical treatment the present article deals with compressibility effects on the aerodynamic characteristics. Analytical criteria are derived for optimum cruise lift coefficient and Mach number, with and without constraints on the altitude and engine rating. A simple alternative to the Bréguet range equation is presented which applies to several practical cruising flight techniques: flight at constant altitude and Mach number and stepped cruise/climb. A practical non-iterative procedure for computing mission and reserve fuel loads in the preliminary design stage is proposed.

  14. Noise levels in cockpits of aircraft during normal cruise and considerations of auditory risk.

    PubMed

    Gasaway, D C

    1986-02-01

    Noise data, including A-levels and C-minus-A values, are summarized for exposures associated with normal cruise flight in 13 groups of 593 aircraft; means and standard deviations are reported; degrees of auditory risk using OSHA-1983 criterion are presented; and at-the-ear protected and unprotected exposures are revealed. Mean A-levels were 95.0 for 528 fixed-wing; 100.9 for 65 rotary-wing; and 95.7 for all 593 aircraft. Of 13 sub-groups, the lowest mean A-level (85.5) was exhibited in the cockpits of tail-mounted turbojet/fan-powered aircraft, and the highest (105.0) was found in both reciprocating and turbine-powered twin-rotor helicopters. All mean A-levels exceeded the OSHA damage-risk criterion for 8 h.d-1 exposures. At-the-ear exposures while wearing hearing protection are presented. Results clearly illustrate the potential for auditory damage of unprotected aircrews. Hearing protection must be considered to effectively control routinely encountered exposures. The material and illustrations resulting from this study will help health and safety monitors during indoctrination and counseling of aircrews concerning the need to protect their hearing against noise exposures during normal and routine flight operations. PMID:3954697

  15. Global stratospheric change: Requirements for a Very-High-Altitude Aircraft for Atmospheric Research

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The workshop on Requirements for a Very-High-Altitude Aircraft for Atmospheric Research, sponsored by NASA Ames Research Center, was held July 15 to 16, 1989, at Truckee, CA. The workshop had two purposes: to assess the scientific justification for a new aircraft that will support stratospheric research beyond the altitudes accessible to the NASA ER-2; and to determine the aircraft characteristics (e.g., ceiling altitude, payload accommodations, range, flight duration, operational capabilities) required to perform the stratospheric research referred to in the justification. To accomplish these purposes, the workshop brought together a cross-section of stratospheric scientists with several aircraft design and operations experts. The stratospheric scientists included theoreticians as well as experimenters with experience in remote and in situ measurements from satellites, rockets, balloons, aircraft, and the ground. Discussions of required aircraft characteristics focused on the needs of stratospheric research. It was recognized that an aircraft optimal for stratospheric science would also be useful for other applications, including remote measurements of Earth's surface. A brief description of these other applications was given at the workshop.

  16. Noise and performance calibration study of a Mach 2.2 supersonic cruise aircraft

    NASA Technical Reports Server (NTRS)

    Mascitti, V. R.; Maglieri, D. J.

    1979-01-01

    The baseline configuration of a Mach 2.2 supersonic cruise concept employing a 1980 - 1985 technology level, dry turbojet, mechanically suppressed engine, was calibrated to identify differences in noise levels and performance as determined by the methodology and ground rules used. In addition, economic and noise information is provided consistent with a previous study based on an advanced technology Mach 2.7 configuration, reported separately. Results indicate that the difference between NASA and manufacturer performance methodology is small. Resizing the aircraft to NASA groundrules results in negligible changes in takeoff noise levels (less than 1 EPNdB) but approach noise is reduced by 5.3 EPNdB as a result of increasing approach speed. For the power setting chosen, engine oversizing resulted in no reduction in traded noise. In terms of summated noise level, a 6 EPNdB reduction is realized for a 5% increase in total operating costs.

  17. Insulation systems for liquid methane fuel tanks for supersonic cruise aircraft

    NASA Technical Reports Server (NTRS)

    Brady, H. F.; Delduca, D.

    1972-01-01

    Two insulation systems for tanks containing liquid methane in supersonic cruise-type aircraft were designed and tested after an extensive materials investigation. One system is an external insulation and the other is an internal wet-type insulation system. Tank volume was maximized by making the tank shape approach a rectangular parallelopiped. One tank was designed to use the external insulation and the other tank to use the internal insulation. Performance of the external insulation system was evaluated on a full-scale tank under the temperature environment of -320 F to 700 F and ambient pressures of ground-level atmospheric to 1 psia. Problems with installing the internal insulation on the test tank prevented full-scale evaluation of performance; however, small-scale testing verified thermal conductivity, temperature capability, and installed density.

  18. Nacelle Integration to Reduce the Sonic Boom of Aircraft Designed to Cruise at Supersonic Speeds

    NASA Technical Reports Server (NTRS)

    Mack, Robert J.

    1999-01-01

    An empirical method for integrating the engine nacelles on a wing-fuselage-fin(s) configuration has been described. This method is based on Whitham theory and Seebass and George sonic-boom minimization theory, With it, both reduced sonic-boom as well as high aerodynamic efficiency methods can be applied to the conceptual design of a supersonic-cruise aircraft. Two high-speed civil transport concepts were used as examples to illustrate the application of this engine-nacelle integration methodology: (1) a concept with engine nacelles mounted on the aft-fuselage, the HSCT-1OB; and (2) a concept with engine nacelles mounted under an extended-wing center section, the HSCT-11E. In both cases, the key to a significant reduction in the sonic-boom contribution from the engine nacelles was to use the F-function shape of the concept as a guide to move the nacelles further aft on the configuration.

  19. Biofuel Blending Impacts on Aircraft Engine Particle Emissions at Cruise Conditions

    NASA Astrophysics Data System (ADS)

    Moore, R.

    2015-12-01

    We present measurements of aerosol emissions indices and microphysical properties measured in-situ behind the CFM56-2-C1 engines of the NASA DC-8 aircraft during the 2014 Alternative Fuel Effects on Contrails and Cruise Emissions (ACCESS) project. Aircraft engine emissions can have a disproportionately large climatic impact since they are emitted high in the troposphere and in remote regions with otherwise low aerosol concentrations. This has motivated numerous past ground-based studies focused on quantifying the emissions indices of non-volatile and semi-volatile aerosol species, however, it is unclear the extent to which emissions on the ground translate to emissions at cruise conditions. In addition, the ability of engine-emitted aerosols to nucleate ice crystals and form linear contrails or contrail cirrus clouds remains poorly understood. To better understand these effects, two chase plane experiments were carried out in 2013 and 2014. Three different fuel types are discussed: a low-sulfur JP-8 fuel, a 50:50 blend of JP-8 and a camelina-based HEFA fuel, and the JP-8 fuel doped with sulfur. Emissions were sampled using a large number of aerosol and gas instruments integrated on HU-25 and Falcon 20 jets that were positioned in the DC-8 exhaust plume at approximately 50-500 m distance behind the engines. It was found that the biojet fuel blend substantially decreases the aerosol number and mass emissions indices, while the gas phase emission indices were similar across fuels. The magnitude of the effects of these fuel-induced changes of aerosol emissions and implications for future aviation biofuel blending impacts will be discussed.

  20. High Altitude Platform Aircraft at NASA Past, Present and Future

    NASA Technical Reports Server (NTRS)

    DelFrate, John H.

    2006-01-01

    This viewgraph presentation reviews NASA Dryden Flight Research Center's significant accomplishments from the Environment Research and Sensor Technology (ERAST) project, the present High Altitude Platform (HAP) needs and opportunities, NASA's Aeronautical focus shift, HAP Non-aeronautics challenges, and current HAP Capabilities.

  1. Recommendations for resuscitation after ascent to high altitude and in aircrafts.

    PubMed

    Chalkias, Athanasios; Georgiou, Marios; Böttiger, Bernd; Monsieurs, Koenraad G; Svavarsdóttir, Hildigunnur; Raffay, Violetta; Iacovidou, Nicoletta; Xanthos, Theodoros

    2013-09-01

    Human exposure to high altitude is increasing, through inhabitation of areas of high altitude, expansion of tourism into more remote areas, and air travel exposing passengers to typical altitudes equivalent to 8005 ft (2440 m). With ascent to high altitude, a number of acute and chronic physiological changes occur, influencing all systems of the human body. When considering that cardiac arrest is the second most common cause of death in the mountains and that up to 60% of the elderly have significant heart disease or other health problems, these changes are of particular importance as they may have a significant impact on resuscitation efforts. Current guidelines for resuscitation lack specific recommendations regarding treatment of cardiac arrest after ascent to high altitude or in aircraft. Therefore, we performed a comprehensive search in PubMed, CINAHL, Cochrane Library, and Scopus databases for studies relevant to resuscitation at high altitude. As no randomized trials evaluating the effects of physiological changes after ascent to high altitude on cardiopulmonary resuscitation were identified, our search was expanded to include all studies addressing important aspects on high altitude physiology which could have a potential impact on the resuscitation of cardiac arrest victims. The aim of this review is to discuss the major physiological changes occurring after ascent to high altitude and their potential effects on cardiopulmonary resuscitation. Based on the available data, specific suggestions are proposed regarding resuscitation at high altitude. PMID:23219316

  2. Additional F-Functions Useful for Preliminary Design of Shaped-Signature, Low-Boom, Supersonic-Cruise Aircraft

    NASA Technical Reports Server (NTRS)

    Mack, Robert J.

    1999-01-01

    Two additional low-boom F-functions have been described for use in designing low-boom, shaped-pressure-signature, supersonic-cruise aircraft. Based on the minimization studies of Seebass and George, the drag-nose shock strength trade-off modification of Darden, and the practical modification of Haglund, their use can aid in the design of conceptual low-boom aircraft, provide additional flexibility in the shaping of the low-boom aircraft nose section, and extend the applicability of shaped-pressure-signature methodology.

  3. High altitude perspective. [cost-reimbursable services using NASA U-2 aircraft

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The capabilities of the NASA Ames Center U-2 aircraft for research or experimental programs are described for such areas as Earth resources inventories; remote sensing data interpretation, electronic sensor research and development; satellite investigative support; stratospheric gas studies; and astronomy and astrophysics. The availability of this aircraft on a cost-reimbursable basis for use in high-altitude investigations that cannot be performed by the private sector is discussed.

  4. Cold-flow performance of several variations of a ram-air-cooled plug nozzle for supersonic-cruise aircraft

    NASA Technical Reports Server (NTRS)

    Harrington, D. E.; Nosek, S. M.; Straight, D. M.

    1974-01-01

    Experimental data were obtained with a 21.59 cm (8.5 in.) diameter cold-flow model in a static altitude facility to determine the thrust and pumping characteristics of several variations of a ram-air-cooled plug nozzle. Tests were conducted over a range of nozzle pressure ratios simulating supersonic cruise and takeoff conditions. Primary throat area was also varied to simulate afterburner on and off. Effect of plug size, outer shroud length, primary nozzle geometry, and varying amounts of secondary flow were investigated. At a supersonic cruise pressure ratio of 27, nozzle efficiencies were 99.7 percent for the best configurations.

  5. Exhaust Nozzles for Propulsion Systems with Emphasis on Supersonic Cruise Aircraft

    NASA Technical Reports Server (NTRS)

    Stitt, Leonard E.

    1990-01-01

    This compendium summarizes the contributions of the NASA-Lewis and its contractors to supersonic exhaust nozzle research from 1963 to 1985. Two major research and technology efforts sponsored this nozzle research work; the U.S. Supersonic Transport (SST) Program and the follow-on Supersonic Cruise Research (SCR) Program. They account for two generations of nozzle technology: the first from 1963 to 1971, and the second from 1971 to 1985. First, the equations used to calculate nozzle thrust are introduced. Then the general types of nozzles are presented, followed by a discussion of those types proposed for supersonic aircraft. Next, the first-generation nozzles designed specifically for the Boeing SST and the second-generation nozzles designed under the SCR program are separately reviewed and then compared. A chapter on throttle-dependent afterbody drag is included, since drag has a major effect on the off-design performance of supersonic nozzles. A chapter on the performance of supersonic dash nozzles follows, since these nozzles have similar design problems, Finally, the nozzle test facilities used at NASA-Lewis during this nozzle research effort are identified and discussed. These facilities include static test stands, a transonic wind tunnel, and a flying testbed aircraft. A concluding section points to the future: a third generation of nozzles designed for a new era of high speed civil transports to produce even greater advances in performance, to meet new noise rules, and to ensure the continuity of over two decades of NASA research.

  6. Development of a micro-computer based integrated design system for high altitude long endurance aircraft

    NASA Technical Reports Server (NTRS)

    Hall, David W.; Rogan, J. Edward

    1988-01-01

    A microcomputer-based integration of aircraft design disciplines has been applied theoretically to sailplane, microwave-powered aircraft, and High Altitude Long-Endurance (HALE) aircraft configurational definition efforts. Attention is presently given to the further development of such integrated-disciplines approaches through the incorporation of AI techniques; these are then applied to the aforementioned case of the HALE. The 'windFrame' language used, which is based on HyperTalk, will allow designers to write programs using a highly graphical, user interface-oriented environment.

  7. Development of a microcomputer based integrated design system for high altitude long endurance aircraft

    NASA Technical Reports Server (NTRS)

    Hall, David W.; Rogan, J. Edward

    1989-01-01

    A microcomputer-based integration of aircraft design disciplines has been applied theoretically to sailplane, microwave-powered aircraft, and High Altitude Long-Endurance (HALE) aircraft configurational definition efforts. Attention is presently given to the further development of such integrated-discipline approaches through the incorporation of AI techniques; these are then applied to the aforementioned case of the HALE. The windFrame language used, which is based on HyperTalk, will allow designers to write programs using a highly graphical, user interface-oriented environment.

  8. Wide range operation of advanced low NOx combustors for supersonic high-altitude aircraft gas turbines

    NASA Technical Reports Server (NTRS)

    Roberts, P. B.; Fiorito, R. J.

    1977-01-01

    An initial rig program tested the Jet Induced Circulation (JIC) and Vortex Air Blast (VAB) systems in small can combustor configurations for NOx emissions at a simulated high altitude, supersonic cruise condition. The VAB combustor demonstrated the capability of meeting the NOx goal of 1.0 g NO2/kg fuel at the cruise condition. In addition, the program served to demonstrate the limited low-emissions range available from the lean, premixed combustor. A follow-on effort was concerned with the problem of operating these lean, premixed combustors with acceptable emissions at simulated engine idle conditions. Various techniques have been demonstrated that allow satisfactory operation on both the JIC and VAB combustors at idle with CO emissions below 20 g/kg fuel. The VAB combustor was limited by flashback/autoignition phenomena at the cruise conditions to a pressure of 8 atmospheres. The JIC combustor was operated up to the full design cruise pressure of 14 atmospheres without encountering an autoignition limitation although the NOx levels, in the 2-3 g NO2/kg fuel range, exceeded the program goal.

  9. Analysis of aircraft control strategies for microburst encounter. [low altitude wind shear

    NASA Technical Reports Server (NTRS)

    Stengel, R. F.; Psiaki, M. L.

    1984-01-01

    Analyses have indicated that improved control strategies could reduce the threat posed by the presence of microburst-type wind shear during aircraft takeoffs and landings. The attenuation of flight path response to microburst inputs by feedback control to elevators and throttle was studied for the cases of a jet transport and a general aviation aircraft, using longitudinal equations of motion, root locus analysis, Bode plots of altitude response to wind inputs, and nonlinear numerical simulation. Energy management relative to the airmass, a pitch-up response to the decreasing airspeed, increased phugoid mode damping, and decreased phugoid natural frequency, are found to improve microburst penetration aircraft behavior. Aircraft stall, and throttle saturation, are limiting factors in an aircraft's ability to maintain a given flight path during a microburst encounter.

  10. Perseus A High Altitude Remotely Piloted Aircraft being Towed in Flight

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Perseus A, a remotely piloted, high-altitude research vehicle designed by Aurora Flight Sciences Corp., takes off from Rogers Dry Lake at the Dryden Flight Research Center, Edwards, California. The Perseus was towed into the air by a ground vehicle. At about 700 ft. the aircraft was released and the engine turned the propeller to take the plane to its desired altitude. Perseus B is a remotely piloted aircraft developed as a design-performance testbed under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project. Perseus is one of several flight vehicles involved in the ERAST project. A piston engine, propeller-powered aircraft, Perseus was designed and built by Aurora Flight Sciences Corporation, Manassas, Virginia. The objectives of Perseus B's ERAST flight tests have been to reach and maintain horizontal flight above altitudes of 60,000 feet and demonstrate the capability to fly missions lasting from 8 to 24 hours, depending on payload and altitude requirements. The Perseus B aircraft established an unofficial altitude record for a single-engine, propeller-driven, remotely piloted aircraft on June 27, 1998. It reached an altitude of 60,280 feet. In 1999, several modifications were made to the Perseus aircraft including engine, avionics, and flight-control-system improvements. These improvements were evaluated in a series of operational readiness and test missions at the Dryden Flight Research Center, Edwards, California. Perseus is a high-wing monoplane with a conventional tail design. Its narrow, straight, high-aspect-ratio wing is mounted atop the fuselage. The aircraft is pusher-designed with the propeller mounted in the rear. This design allows for interchangeable scientific-instrument payloads to be placed in the forward fuselage. The design also allows for unobstructed airflow to the sensors and other devices mounted in the payload compartment. The Perseus B that underwent test and development in 1999 was the third generation of the

  11. Radiation Safety Issues in High Altitude Commercial Aircraft

    NASA Technical Reports Server (NTRS)

    Wilson, John W.; Cucinotta, Francis A.; Shinn, Judy L.

    1995-01-01

    The development of a global economy makes the outlook for high speed commercial intercontinental flight feasible, and the development of various configurations operating from 20 to 30 km have been proposed. In addition to the still unresolved issues relating to current commercial operations (12-16 km), the higher dose rates associated with the higher operating altitudes makes il imperative that the uncertainties in the atmospheric radiation environment and the associated health risks be re-examined. Atmospheric radiation associated with the galactic cosmic rays forms a background level which may, under some circumstances, exceed newly recommended allowable exposure limits proposed on the basis of recent evaluations of the A -bomb survivor data (due to increased risk coefficients). These larger risk coefficients, within the context of the methodology for estimating exposure limits, are resulting in exceedingly low estimated allowable exposure limits which may impact even present day flight operations and was the reason for the CEC workshop in Luxembourg (1990). At higher operating altitudes, solar particles events can produce exposures many orders of magnitude above background levels and pose significant health risks to the most sensitive individuals (such as during pregnancy). In this case the appropriate quality factors are undefined, and some evidence exists which indicates that the quality factor for stochastic effects is a substantial underestimate.

  12. Effect of power system technology and mission requirements on high altitude long endurance aircraft

    NASA Technical Reports Server (NTRS)

    Colozza, Anthony J.

    1994-01-01

    An analysis was performed to determine how various power system components and mission requirements affect the sizing of a solar powered long endurance aircraft. The aircraft power system consists of photovoltaic cells and a regenerative fuel cell. Various characteristics of these components, such as PV cell type, PV cell mass, PV cell efficiency, fuel cell efficiency, and fuel cell specific mass, were varied to determine what effect they had on the aircraft sizing for a given mission. Mission parameters, such as time of year, flight altitude, flight latitude, and payload mass and power, were also altered to determine how mission constraints affect the aircraft sizing. An aircraft analysis method which determines the aircraft configuration, aspect ratio, wing area, and total mass, for maximum endurance or minimum required power based on the stated power system and mission parameters is presented. The results indicate that, for the power system, the greatest benefit can be gained by increasing the fuel cell specific energy. Mission requirements also substantially affect the aircraft size. By limiting the time of year the aircraft is required to fly at high northern or southern latitudes, a significant reduction in aircraft size or increase in payload capacity can be achieved.

  13. Thermal design study of an air-cooled plug-nozzle system for a supersonic cruise aircraft

    NASA Technical Reports Server (NTRS)

    Clark, J. S.; Lieberman, A.

    1972-01-01

    A heat-transfer design analysis has been made of an air-cooled plug-nozzle system for a supersonic-cruise aircraft engine. The proposed 10deg half-angle conical plug is sting supported from the turbine frame. Plug cooling is accomplished by convection and film cooling. The flight profile studied includes maximum afterburning from takeoff to Mach 2.7 and supersonic cruise at Mach 2.7 with a low afterburner setting. The calculations indicate that, for maximum afterburning, about 2 percent of the engine primary flow, removed after the second stage of the nine-stage compressor, will adequately cool the plug and sting support. Ram air may be used for cooling during supersonic-cruise operations, however. Therefore, the cycle efficiency penalty paid for air cooling the plug and sting support should be low.

  14. In-situ Measurements of the Cosmic Radiation on the Aircraft Altitude over Korean Peninsula

    NASA Astrophysics Data System (ADS)

    Lee, J.; Park, I.; Lee, J.; Oh, S.; Kim, Y. C.

    2014-12-01

    This study presents the comparison between the measured and modeled cosmic radiation on aircraft altitude over Korean peninsula. We performed the measurement with a radiation spectrometer, Liulin-6K on board a Republic of Korea (ROK) Air Force aircraft accomplishing the high-altitude (above 9 km) flight over Korea, and the modeled data was obtained from the operational modeling program, CARI-6M developed by FAA. A number of measurements for the flight mission at high-altitude have been executed to evaluate the exposed dose of cosmic radiation. Both the measured and the calculated data show that the exposed radiation dose enhances dramatically as the altitude increases. The results reveal that the exposed dose rate of aircrews at high-altitude flight is 2-3 orders of magnitude (1-2 mSv/hour) higher than the exposure rate at sea level. It is inferred that the annual total dose of radiation for the aircrews at high-altitude could be higher than the annually public limit (1 mSv) recommended by ICRP. Finally, since neutrons are the dominant components reflecting among total cosmic radiation above 9 km, we try to analyze the relationship between the neutron count from the neutron monitor on the ground and the effective dose from the on board spectrometer. Based on these results, it is suggested that the annual criterion and the proper managing procedure of exposed dose for the flight aircrews of ROK Air Force should be regulated.

  15. 14 CFR 91.179 - IFR cruising altitude or flight level.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...: (1) When operating below 18,000 feet MSL and— (i) On a magnetic course of zero degrees through 179 degrees, any odd thousand foot MSL altitude (such as 3,000, 5,000, or 7,000); or (ii) On a magnetic course... magnetic course of zero degrees through 179 degrees, any odd flight level (such as 190, 210, or 230);...

  16. 14 CFR 91.159 - VFR cruising altitude or flight level.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... magnetic course of zero degrees through 179 degrees, any odd thousand foot MSL altitude +500 feet (such as 3,500, 5,500, or 7,500); or (2) On a magnetic course of 180 degrees through 359 degrees, any...

  17. 14 CFR 91.159 - VFR cruising altitude or flight level.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... magnetic course of zero degrees through 179 degrees, any odd thousand foot MSL altitude +500 feet (such as 3,500, 5,500, or 7,500); or (2) On a magnetic course of 180 degrees through 359 degrees, any...

  18. 14 CFR 91.179 - IFR cruising altitude or flight level.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...: (1) When operating below 18,000 feet MSL and— (i) On a magnetic course of zero degrees through 179 degrees, any odd thousand foot MSL altitude (such as 3,000, 5,000, or 7,000); or (ii) On a magnetic course... magnetic course of zero degrees through 179 degrees, any odd flight level (such as 190, 210, or 230);...

  19. 14 CFR 91.179 - IFR cruising altitude or flight level.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...: (1) When operating below 18,000 feet MSL and— (i) On a magnetic course of zero degrees through 179 degrees, any odd thousand foot MSL altitude (such as 3,000, 5,000, or 7,000); or (ii) On a magnetic course... magnetic course of zero degrees through 179 degrees, any odd flight level (such as 190, 210, or 230);...

  20. 14 CFR 91.179 - IFR cruising altitude or flight level.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...: (1) When operating below 18,000 feet MSL and— (i) On a magnetic course of zero degrees through 179 degrees, any odd thousand foot MSL altitude (such as 3,000, 5,000, or 7,000); or (ii) On a magnetic course... magnetic course of zero degrees through 179 degrees, any odd flight level (such as 190, 210, or 230);...

  1. 14 CFR 91.179 - IFR cruising altitude or flight level.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...: (1) When operating below 18,000 feet MSL and— (i) On a magnetic course of zero degrees through 179 degrees, any odd thousand foot MSL altitude (such as 3,000, 5,000, or 7,000); or (ii) On a magnetic course... magnetic course of zero degrees through 179 degrees, any odd flight level (such as 190, 210, or 230);...

  2. Nitrogen oxides from high-altitude aircraft - An update of potential effects on ozone

    NASA Technical Reports Server (NTRS)

    Johnston, Harold S.; Kinnison, Douglas E.; Wuebbles, Donald J.

    1989-01-01

    In the study of fuel consumption rate by stratospheric aircraft, the range of nitric oxide injection is interpreted as an eightfold range of emission index (5-40) with both the one- and the two-dimensional models. Possible effects of future aircraft NO(x) emissions on stratospheric ozone are considered for a broad range in magnitude, altitude, and latitude of the assumed NO(x) emissions. Results of the sensitivity studies using both models are discussed. Large ozone reductions are found to be outside the expected range of validity of these models and are to be anticipated if there should be a large fleet of stratospheric aircraft with NO(x) emission characteristics of current commercial aircraft. Under the test conditions, a global ozone reduction of about 9 percent is estimated for a jet engine emission index of 15 in both models. If engines are redesigned to reduce the emission index to the NASA goal of 5, global average ozone reductions are between 2 and 3 percent, and those of the Northern Hemisphere are about 4 percent. The effects of stratospheric aircraft on ozone could be further reduced through operation at lower altitudes, reduction of aircraft, and efficient fuel consumption.

  3. Lift cruise fan V/STOL aircraft conceptual design study T-39 modification. Volume 1: Technical report

    NASA Technical Reports Server (NTRS)

    Elliott, D. W.

    1976-01-01

    The conversion of two T-39 aircraft into lift cruise fan research and technology vehicles is discussed. The concept is based upon modifying the T-39A (NA265-40) Sabreliner airframe into a V/STOL configuration by incorporating two LCF-459 lift cruise fans and three YJ-97 gas generators. The propulsion concept provides the thrust for horizontal flight or lift for vertical flight by deflection of bifurcated nozzles while maintaining engine out safety throughout the flight envelope. The configuration meets all the study requirements specified for the design with control powers in VTOL and conversion in excess of the requirement making it an excellent vehicle for research and development. The study report consists of two volumes; Volume 1 (Reference a) contains background data detailed description and technical substantiation of the aircraft. Volume 2 includes cost data, scheduling and program planning not addressed in Volume 1.

  4. Application of powered-lift concepts for improved cruise efficiency of long-range aircraft

    NASA Technical Reports Server (NTRS)

    Coe, P. L., Jr.; Fournier, P. G.

    1976-01-01

    Results of studies conducted to explore the use of powered lift concepts for improved low speed performance of long range subsonic and supersonic cruise vehicles are summarized. It is indicated that powered lift can provide significant improvements in low speed performance, as well as substantial increases in cruise efficiency and range for both subsonic and supersonic cruise configurations.

  5. Developments in Stochastic Fuel Efficient Cruise Control and Constrained Control with Applications to Aircraft

    NASA Astrophysics Data System (ADS)

    McDonough, Kevin K.

    The dissertation presents contributions to fuel-efficient control of vehicle speed and constrained control with applications to aircraft. In the first part of this dissertation a stochastic approach to fuel-efficient vehicle speed control is developed. This approach encompasses stochastic modeling of road grade and traffic speed, modeling of fuel consumption through the use of a neural network, and the application of stochastic dynamic programming to generate vehicle speed control policies that are optimized for the trade-off between fuel consumption and travel time. The fuel economy improvements with the proposed policies are quantified through simulations and vehicle experiments. It is shown that the policies lead to the emergence of time-varying vehicle speed patterns that are referred to as time-varying cruise. Through simulations and experiments it is confirmed that these time-varying vehicle speed profiles are more fuel-efficient than driving at a comparable constant speed. Motivated by these results, a simpler implementation strategy that is more appealing for practical implementation is also developed. This strategy relies on a finite state machine and state transition threshold optimization, and its benefits are quantified through model-based simulations and vehicle experiments. Several additional contributions are made to approaches for stochastic modeling of road grade and vehicle speed that include the use of Kullback-Liebler divergence and divergence rate and a stochastic jump-like model for the behavior of the road grade. In the second part of the dissertation, contributions to constrained control with applications to aircraft are described. Recoverable sets and integral safe sets of initial states of constrained closed-loop systems are introduced first and computational procedures of such sets based on linear discrete-time models are given. The use of linear discrete-time models is emphasized as they lead to fast computational procedures. Examples of

  6. Altitude and airspeed effects on the optimum synchrophase angles for a four-engine propeller aircraft

    NASA Astrophysics Data System (ADS)

    Blunt, David M.

    2014-08-01

    Noise and vibration is a serious problem in all types of aircraft. Any techniques that lower cabin noise and vibration levels by even a few decibels with little or no weight or performance penalties are worth pursuing. Propeller synchrophasing is one such technique that has shown potential in aircraft with two or more propellers; however this technique is not being used to its full potential because the synchrophase angles are typically fixed. This paper provides a detailed examination of how the optimum synchrophase angles in a typical four-engine propeller aircraft vary with different altitudes and airspeeds, and how this information could lead to the design of new adaptive propeller synchrophasing systems and potentially yield improvements to other active noise control measures in propeller aircraft.

  7. Preliminary study of VTO thrust requirements for a V/STOL aircraft with lift plus lift/cruise propulsion

    NASA Technical Reports Server (NTRS)

    Turney, G. E.; Allen, J. L.

    1980-01-01

    A preliminary assessment was made of the VTO thrust requirements for a supersonic (Type B) aircraft with a Lift plus Lift/Cruise propulsion system. A baseline aircraft with a takeoff gross weight (TOGW) of 13 608 kg (30,000 lb) was assumed. Pitch, roll, and yaw control thrusts (i.e., the thrusts needed for aircraft attitude control in the flight hover mode) were estimated based on a specified set of maneuver acceleration requirements for V/STOL aircraft. Other effects (such as installation losses, suckdown, reingestion, etc.), which add to the thrust requirements for VTO were also estimated. For the baseline aircraft, the excess thrust required for attitude control of the aircraft during VTO and flight hover was estimated to range from 36.9 to 50.9 percent of the TOGW. It was concluded that the total thrust requirements for the aircraft/propulsion system are large and significant. In order to achieve the performance expected of this aircraft/propulsion system, reductions must be made in the excess thrust requirements.

  8. NASA prepares aircraft for high-altitude hurricane studies

    NASA Technical Reports Server (NTRS)

    1998-01-01

    NASA pilots Dick Ewens and Gordon Fullerton sit at the controls in the cockpit of the Dryden Flight Research Center DC-8 that was on view at Patrick Air Force Base. The DC-8 is one of two aircraft being flown in a hurricane study through September to learn about the storms from top to bottom. Flying at 35,000 to 40,000 feet, the DC-8 is equipped with instruments to measure a hurricane's structure, environment and changes in intensity and tracking. The other plane, a modified U2, and the DC-8 will fly in conjunction with scheduled storm flights of the National Oceanic and Atmospheric Administration (NOAA) out of MacDill Air Force Base in Tampa and the U.S. Air Force 53rd Weather Reconnaissance Squadron from Keesler Air Force Base, Miss. The study is part of NASA's Earth Science enterprise to better understand the total Earth system and the effects of natural and human-induced changes on the global environment.

  9. Computation of Radiation Dose at Aircraft Altitudes from Analysis of Cosmic Ray Neutron Monitor Data

    NASA Astrophysics Data System (ADS)

    Smart, D. F.; Shea, M. A.

    Relativistic solar proton events GLEs those events with protons having sufficient kinetic energy to initiate a nuclear cascade in the atmosphere can make a contribution to radiation dose at aircraft altitudes We show that it is possible to obtain proper estimates of the expected radiation dose at aircraft altitudes from the analysis of ground-level neutron monitor data Assuming a nominal GLE spectrum the radiation dose at 40 000 feet during a 100 increase at polar latitudes will be in the range of 5 to 10 micro Sieverts per hour depending on the spectral slope An analysis of the large GLE s that have occurred during the past two solar cycles shows that there have been no events where the hourly averaged radiation dose at 40 000 feet would have exceeded 20 micro Sieverts per hour In the past improper GLE analysis was used to estimate the radiation dose at aircraft altitudes The old values derived for the early GLE s resulted in the prediction of high dose rates that persist today as urban legends and contribute to the public concept that the radiation dose at aircraft altitudes is dangerous We demonstrate that modern analytical techniques result in computed radiation doses during high-energy solar cosmic ray events that are orders of magnitude lower than those obtained by the old techniques We show that the use of the old technique of using straight line power law spectra to extrapolate the flux derived at 1 GeV results in order of magnitude errors when these flux values are extrapolated to lower energies and used to

  10. Lift/cruise fan V/STOL technology aircraft design definition study. Volume 1: Technology flight vehicle definition

    NASA Technical Reports Server (NTRS)

    Obrien, W. J.

    1976-01-01

    Concept design is presented for two types of lift/cruise fan technology V/STOL aircraft, turbotip fans and the other using mechanically driven fans. The turbotip research technology aircraft reflects maximum usage of existing airframe components. The propulsion system consists of three turbotip fans pneumatically interconnected to three gas generators. Thrust modulation is accomplished by use of energy transfer and control system and thrust reduction modulation. This system can also be operated in the two engine/three fan mode. The mechanical RTA is virtually identical to the turbotip RTA with the exceptions that a different propulsion system and aft fuselage/tail are used. Both aircraft meet or exceed all of the mission performance guidelines and reflect a low cost, low risk approach.

  11. High altitude aircraft remote sensing during the 1988 Yellowstone National Park wildfires

    NASA Technical Reports Server (NTRS)

    Ambrosia, Vincent G.

    1990-01-01

    An overview is presented of the effects of the wildfires that occurred in the Yellowstone National Park during 1988 and the techniques employed to combat these fires with the use of remote sensing. The fire management team utilized King-Air and Merlin aircraft flying night missions with a thermal IR line-scanning system. NASA-Ames Research Center assisted with an ER-2 high altitude aircraft with the ability to down-link active data from the aircraft via a teledetection system. The ER-2 was equipped with a multispectral Thematic Mapper Simulator scanner and the resultant map data and video imagery was provided to the fire command personnel for field evaluation and fire suppression activities. This type of information proved very valuable to the fire control management personnel and to the continuing ecological research goals of NASA-Ames scientists analyzing the effects of burn type and severity on ecosystem recovery and development.

  12. Elastically Shaped Wing Optimization and Aircraft Concept for Improved Cruise Efficiency

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan; Trinh, Khanh; Reynolds, Kevin; Kless, James; Aftosmis, Michael; Urnes, James, Sr.; Ippolito, Corey

    2013-01-01

    This paper presents the findings of a study conducted tn 2010 by the NASA Innovation Fund Award project entitled "Elastically Shaped Future Air Vehicle Concept". The study presents three themes in support of meeting national and global aviation challenges of reducing fuel burn for present and future aviation systems. The first theme addresses the drag reduction goal through innovative vehicle configurations via non-planar wing optimization. Two wing candidate concepts have been identified from the wing optimization: a drooped wing shape and an inflected wing shape. The drooped wing shape is a truly biologically inspired wing concept that mimics a seagull wing and could achieve about 5% to 6% drag reduction, which is aerodynamically significant. From a practical perspective, this concept would require new radical changes to the current aircraft development capabilities for new vehicles with futuristic-looking wings such as this concept. The inflected wing concepts could achieve between 3% to 4% drag reduction. While the drag reduction benefit may be less, the inflected-wing concept could have a near-term impact since this concept could be developed within the current aircraft development capabilities. The second theme addresses the drag reduction goal through a new concept of elastic wing shaping control. By aeroelastically tailoring the wing shape with active control to maintain optimal aerodynamics, a significant drag reduction benefit could be realized. A significant reduction in fuel burn for long-range cruise from elastic wing shaping control could be realized. To realize the potential of the elastic wing shaping control concept, the third theme emerges that addresses the drag reduction goal through a new aerodynamic control effector called a variable camber continuous trailing edge flap. Conventional aerodynamic control surfaces are discrete independent surfaces that cause geometric discontinuities at the trailing edge region. These discontinuities promote

  13. Technology for design of transport aircraft. Lecture notes for MIT courses: Seminar 1.61 freshman seminar in air transportation and graduate course 1.201, transportation systems analysis

    NASA Technical Reports Server (NTRS)

    Simpson, R. W.

    1972-01-01

    The design parameters which determine cruise performance for a conventional subsonic jet transport are discussed. It is assumed that the aircraft burns climb fuel to reach cruising altitude and that aeronautical technology determines the ability to carry a given payload at cruising altitude. It is shown that different sizes of transport aircraft are needed to provide the cost optimal vehicle for different given payload-range objectives.

  14. High-Altitude Aircraft-Based Electric-Field Measurements Above Thunderstorms

    NASA Technical Reports Server (NTRS)

    Bateman, M. G.; Blakeslee, R. J.; Bailey, J. C.; Stewart, M. F.; Blair, A. K.

    1999-01-01

    We have developed a new set of eight electric field mills that were flown on a NASA ER-2 high-altitude aircraft. During the Third Convection And Moisture EXperiment (CAMEX-3; Fall, 1998), measurements of electric field, storm dynamics, and ice microphysics were made over several hurricanes. Concurrently, the TExas-FLorida UNderflights (TEFLUN) program was being conducted to make the same measurements over Gulf Coast thunderstorms. Sample measurements are shown: typical flight altitude is 20km. Our new mills have an internal 16-bit A/D, with a resolution of 0.25V/m per bit at high gain, with a noise level less than the least significant bit. A second, lower gain channel gives us the ability to measure fields as high as 150 kV/m.

  15. First lidar measurements of water vapor and aerosols from a high-altitude aircraft

    NASA Technical Reports Server (NTRS)

    Browell, Edward V.; Ismail, Syed

    1995-01-01

    Water vapor plays an important role in many atmospheric processes related to radiation, climate change, atmospheric dynamics, meteorology, the global hydrologic cycle, and atmospheric chemistry, and yet our knowledge of the global distribution of water vapor is very limited. The differential absorption lidar (DIAL) technique has the potential of providing needed high resolution water vapor measurements from aircraft and from space, and the Lidar Atmospheric Sensing Experiment (LASE) is a key step in the development of this capability. The LASE instrument is the first fully engineered, autonomous DIAL system, and it is designed to operate from a high-altitude aircraft (ER-2) and to make water vapor and aerosol profile measurements across the troposphere. The LASE system was flown from the NASA Wallops Flight Facility in a series of engineering flights during September 1994. This paper discusses the characteristics of the LASE system and presents the first LASE measurements of water vapor and aerosol profiles.

  16. Minimum-Cost Aircraft Descent Trajectories with a Constrained Altitude Profile

    NASA Technical Reports Server (NTRS)

    Wu, Minghong G.; Sadovsky, Alexander V.

    2015-01-01

    An analytical formula for solving the speed profile that accrues minimum cost during an aircraft descent with a constrained altitude profile is derived. The optimal speed profile first reaches a certain speed, called the minimum-cost speed, as quickly as possible using an appropriate extreme value of thrust. The speed profile then stays on the minimum-cost speed as long as possible, before switching to an extreme value of thrust for the rest of the descent. The formula is applied to an actual arrival route and its sensitivity to winds and airlines' business objectives is analyzed.

  17. Real-time testing of titanium sheet and extrusion coupon specimens subjected to Mach 2.7 supersonic cruise aircraft wing stresses and temperatures

    NASA Technical Reports Server (NTRS)

    Lunde, T.

    1977-01-01

    The accuracy of three accelerated flight-by-flight test methods for material selection, and fatigue substantiation of supersonic cruise aircraft structure was studied. The real time stresses and temperatures applied to the specimens were representative of the service conditions in the lower surface of a Mach 2.7 supersonic cruise aircraft wing root structure. Each real time flight lasted about 65 minutes, including about one hour at (500 F) in the cruise condition. Center notched coupon specimens from six titanium materials were tested: mill-annealed, duplex-annealed, and triplex-annealed Ti-8Al-1Mo-1V sheets; mill-annealed Ti-8Al-1Mo-1V extrusion; mill-annealed Ti-6Al-4V sheet; and solution-treated and aged Ti-6Al-4V extrusion. For duplex-annealed Ti-8Al-1Mo-1V sheet, specimens with single spotweld were also tested. The test results were studied in conjunction with other related data from the literature for: material selection, structural fabrication, fatigue resistance of supersonic cruise aircraft structure, and fatigue test acceleration procedures for supersonic cruise aircraft.

  18. Comparison of the space radiation environment at Foton M3 satellite altitudes and on aircraft altitudes for minimum of solar activity

    NASA Astrophysics Data System (ADS)

    Ploc, Ondrej; Dachev, Tsvetan; Spurny, Frantisek; Tomov, Borislav; Dimitrov, Plamen; Matviichuk, Yury; Bankov, Nikolay

    The space radiation environments at Foton M3 and aircraft altitudes were measured by using of practically equal silicon detector based on a deposited energy spectrometers in the fall of 2007. The aircraft measurements were performed on commercial flights of CSA airlines, while the Foton M3 measurements were inside of the ESA Biopan 6 experiment. Foton M3 orbit was close to circular between 260 and 289 km altitude and about 63° inclination. The relatively high inclination and small shielding of the detector (0.81 g/cm2 ) allow us to observe doses by electrons in the outer radiation belt as high as 2.3 mGy/hour. The comparison of the total GCR deposited doses for the Foton M3 time interval, which coincides with the absolute cycle 23 minimum of the solar activity is about 15% higher than the measured during the Foton M2 satellite doses in 2005. Comparisons of the latitudinal profiles for ISS in 2001, Foton 2 and 3 satellites and aircrafts show that the ratio of doses is as 1:2:3. Aircraft measurements are characterised through average values of exposure during frequent, statistically well based measurements on the routes Prague - New York. Dose absorbed in Si-detector per flight on these routes was about 8% higher in 2007 than in 2005. Different comparisons with the existing models for the radiation environment on aircraft and spacecraft altitudes are presented in the paper also and discussed.

  19. Computer simulation of aircraft motions and propulsion system dynamics for the YF-12 aircraft at supersonic cruise conditions

    NASA Technical Reports Server (NTRS)

    Brown, S. C.

    1973-01-01

    A computer simulation of the YF-12 aircraft motions and propulsion system dynamics is presented. The propulsion system was represented in sufficient detail so that interactions between aircraft motions and the propulsion system dynamics could be investigated. Six degree-of-freedom aircraft motions together with the three-axis stability augmentation system were represented. The mixed compression inlets and their controls were represented in the started mode for a range of flow conditions up to the inlet unstart boundary. Effects of inlet moving geometry on aircraft forces and movements as well as effects of aircraft motions on the inlet behavior were simulated. The engines, which are straight subjects, were represented in the afterburning mode, with effects of changes in aircraft flight conditions included. The simulation was capable of operating in real time.

  20. How simulated fluence of photons from terrestrial gamma ray flashes at aircraft and balloon altitudes depends on initial parameters

    NASA Astrophysics Data System (ADS)

    Hansen, R. S.; ØStgaard, N.; Gjesteland, T.; Carlson, B.

    2013-05-01

    Up to a few years ago, terrestrial gamma ray flashes (TGFs) were only observed by spaceborne instruments. The aircraft campaign ADELE was able to observe one TGF, and more attempts on aircraft observations are planned. There is also a planned campaign with stratospheric balloons, COBRAT. In this context an important question that arises is what count rates we can expect and how these estimates are affected by the initial properties of the TGFs. Based on simulations of photon propagation in air we find the photon fluence at different observation points at aircraft and balloon altitudes. The observed fluence is highly affected by the initial parameters of the simulated TGFs. One of the most important parameters is the number of initial photons in a TGF. In this paper, we give a semi-analytical approach to find the initial number of photons with an order of magnitude accuracy. The resulting number varies over several orders of magnitude, depending mostly on the production altitude of the TGF. The initial production altitude is also one of the main parameters in the simulations. Given the same number of initial photons, the fluence at aircraft and balloon altitude from a TGF produced at 10 km altitude is 2-3 orders of magnitude smaller then a TGF originating from 20 km altitude. Other important parameters are altitude distribution, angular distribution and amount of feedback. The differences in altitude, altitude distribution and amount of feedback are especially important for the fluence of photons observed at altitudes less than 20 km, and for instruments with a low-energy threshold larger than 100 keV. We find that the maximum radius of observation in 14 km for a TGF with the intensity of an average RHESSI TGF is smaller than the results reported by Smith et al. (2011), and our results support the conclusion in Gjesteland et al. (2012) and Østgaard et al. (2012) that TGFs probably are a more common phenomenon than previously reported.

  1. System for providing an integrated display of instantaneous information relative to aircraft attitude, heading, altitude, and horizontal situation

    NASA Technical Reports Server (NTRS)

    James, R. (Inventor)

    1981-01-01

    A display device is disclosed which is particularly suited for providing the pilot of an aircraft with combined inflight attitude, heading, altitude, and horizontal situation information previously available only by using two or three devices providing separate displays. The preferred embodiment combines a commonly used and commercially available flight director-type device for providing a display in combination with a miniature aircraft supported for angular displacement from a vertical orientation to indicate heading error, or heading offset, and an extended course deviation indicator bar which projects into juxtaposition with the miniature aircraft for providing a true picture of the aircraft's horizontal situation relative to a selective VOR, ILS, or MLS course.

  2. Altus II high altitude science aircraft decending toward U.S. Navy's Pacific Missile Range Facility

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Altus II descends towards the Navy's Pacific Missile Range Facility, Kauai, Hawaii. The Altus II was flown as a performance and propulsion testbed for future high-altitude science platform aircraft under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) program at the Dryden Flight Research Center, Edwards, Calif. The rear-engined Altus II and its sister ship, the Altus I, were built by General Atomics/Aeronautical Systems, Inc., of San Diego, Calif. They are designed for high-altitude, long-duration scientific sampling missions, and are powered by turbocharged piston engines. The Altus I, built for the Naval Postgraduate School, reached over 43,500 feet with a single-stage turbocharger feeding its four-cylinder Rotax engine in 1997, while the Altus II, incorporating a two-stage turbocharger built by Thermo-Mechanical Systems, reached and sustained an altitudeof 55,000 feet for four hours in 1999. A pilot in a control station on the ground flies the craft by radio signals, using visual cues from a video camera in the nose of the Altus and information from the craft's air data system.

  3. Altus II high altitude science aircraft decending toward U.S. Navy's Pacific Missile Range Facility

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Altus II descending from a flight over Kauai, Hawaii. The Altus II was flown as a performance and propulsion testbed for future high-altitude science platform aircraft under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) program at the Dryden Flight Research Center, Edwards, Calif. The rear-engined Altus II and its sister ship, the Altus I, were built by General Atomics/Aeronautical Systems, Inc., of San Diego, Calif. They are designed for high-altitude, long-duration scientific sampling missions, and are powered by turbocharged piston engines. The Altus I, built for the Naval Postgraduate School, reached over 43,500 feet with a single-stage turbocharger feeding its four-cylinder Rotax engine in 1997, while the Altus II, incorporating a two-stage turbocharger built by Thermo-Mechanical Systems, reached and sustained an altitudeof 55,000 feet for four hours in 1999. A pilot in a control station on the ground flies the craft by radio signals, using visual cues from a video camera in the nose of the Altus and information from the craft's air data system.

  4. Calculations and observations of solar particle enhancements to the radiation environment at aircraft altitudes.

    PubMed

    Dyer, C S; Lei, F; Clucas, S N; Smart, D F; Shea, M A

    2003-01-01

    Solar particle events can give greatly enhanced radiation at aircraft altitudes, but are both difficult to predict and to calculate retrospectively. This enhanced radiation can give significant dose to aircrew and greatly increase the rate of single event effects in avionics. Validation of calculations is required but only very few events have been measured in flight. The CREAM detector on Concorde detected the event of 29 September 1989 and also four periods of enhancement during the events of 19-24 October 1989. Instantaneous rates were enhanced by up to a factor ten compared with quiet-time cosmic rays, while flight-averages were enhanced by up to a factor six. Calculations are described for increases in radiation at aircraft altitudes using solar particle spectra in conjunction with Monte Carlo radiation transport codes. In order to obtain solar particle spectra with sufficient accuracy over the required energy range it is necessary to combine space data with measurements from a wide range of geomagnetically dispersed, ground-level neutron monitors. Such spectra have been obtained for 29 September 1989 and 24 October 1989 and these are used to calculate enhancements that are compared with the data from CREAM on Concorde. The effect of cut-off rigidity suppression by geomagnetic activity is shown to be significant. For the largest event on record on 23 February 1956, there are no space data but there are data from a number of ground-level cosmic-ray detectors. Predictions for all events show very steep dependencies on both latitude and altitude. At high latitude and altitude (17 km) calculated increases with respect to cosmic rays are a factor 70 and 500 respectively for 29 September 1989 and 23 February 1956. The levels of radiation for high latitude, subsonic routes are calculated, using London to Los Angeles as an example, and can exceed 1 mSv, which is significantly higher than for Concorde routes from Europe to New York. The sensitivity of the calculations

  5. Calculations and observations of solar particle enhancements to the radiation environment at aircraft altitudes

    NASA Astrophysics Data System (ADS)

    Dyer, C. S.; Lei, F.; Clucas, S. N.; Smart, D. F.; Shea, M. A.

    Solar particle events can give greatly enhanced radiation at aircraft altitudes, but are both difficult to predict and to calculate retrospectively. This enhanced radiation can give significant dose to aircrew and greatly increase the rate of single event effects in avionics. Validation of calculations is required but only very few events have been measured in flight. The CREAM detector on Concorde detected the event of 29 September 1989 and also four periods of enhancement during the events of 19-24 October 1989. Instantaneous rates were enhanced by up to a factor ten compared with quiet-time cosmic rays, while flight-averages were enhanced by up to a factor six. Calculations are described for increases in radiation at aircraft altitudes using solar particle spectra in conjunction with Monte Carlo radiation transport codes. In order to obtain solar particle spectra with sufficient accuracy over the required energy range it is necessary to combine space data with measurements from a wide range of geomagnetically dispersed, ground-level neutron monitors. Such spectra have been obtained for 29 September 1989 and 24 October 1989 and these are used to calculate enhancements that are compared with the data from CREAM on Concorde. The effect of cut-off rigidity suppression by geomagnetic activity is shown to be significant. For the largest event on record on 23 February 1956, there are no space data but there are data from a number of ground-level cosmic-ray detectors. Predictions for all events show very steep dependencies on both latitude and altitude. At high latitude and altitude (17 km) calculated increases with respect to cosmic rays are a factor 70 and 500 respectively for 29 September 1989 and 23 February 1956. The levels of radiation for high latitude, subsonic routes are calculated, using London to Los Angeles as an example, and can exceed 1 mSv, which is significantly higher than for Concorde routes from Europe to New York. The sensitivity of the calculations

  6. The EDOP radar system on the high-altitude NASA ER-2 aircraft

    USGS Publications Warehouse

    Heymsfield, G.M.; Bidwell, S.W.; Caylor, I.J.; Ameen, S.; Nicholson, S.; Boncyk, W.; Miller, L.; Vandemark, D.; Racette, P.E.; Dod, L.R.

    1996-01-01

    The NASA ER-2 high-altitude (20 km) aircraft that emulates a satellite view of precipitation systems carries a variety of passive and active (lidar) remote sensing instruments. A new Doppler weather radar system at X band (9.6 GHz) called the ER-2 Doppler radar (EDOP) has been developed and flown on the ER-2 aircraft. EDOP is a fully coherent Doppler weather radar with fixed nadir and forward pointing (33?? off nadir) beams that map out Doppler winds and reflectivities in the vertical plane along the aircraft motion vector. Doppler winds from the two beams can be used to derive vertical and along-track air motions. In addition, the forward beam provides linear depolarization measurements that are useful in discriminating microphysical characteristics of the precipitation. This paper deals with a general description of the EDOP instrument including the measurement concept, the system configuration and hardware, and recently obtained data examples from the instrument. The combined remote sensing package on the ER-2, along with EDOP, provides a unique platform for simulating spaceborne remote sensing of precipitation.

  7. Detection of high altitude aircraft wake vortices using infrared Doppler lidar: An assessment

    NASA Astrophysics Data System (ADS)

    Estes, Michael J.

    1990-12-01

    The feasibility is studied of air-to-air detection of high altitude aircraft wake vortices at long ranges using infrared Doppler lidar. The purpose of this technique is to detect otherwise stealthy aircraft. Three laser wavelengths were analyzed: 1.064, 2.091, and 9.115 microns. Analysis revealed that the spectral width of the return signal from an aircraft wake presented a good signature for detection. Based on the analysis, a minimum signal-to-noise ratio of 0 db was established. Detection performance was then analyzed using signal-to-noise ratio calculations for backscatter by ambient atmospheric aerosols, jet engine exhaust soot particles, and condensation trail ice particles. Results indicated that atmospheric aerosols alone were not sufficient for detection in clean atmospheric regions. Backscatter enhancement by soot particles did, however, appear to be sufficient for detection out to 80 km. Enhancement by condensed ice particles in wake contrails provided detection well beyond 100 km in range. Interestingly, the shorter wavelength lidars did not perform as well as the 9.115 micron lidar due to degradations from shot noise, wavefront mismatch, refractive turbulence, and atmospheric extinction.

  8. A fuselage/tank structure study for actively cooled hypersonic cruise vehicles, summary. [aircraft design of aircraft fuel systems

    NASA Technical Reports Server (NTRS)

    Pirrello, C. J.; Baker, A. H.; Stone, J. E.

    1976-01-01

    A detailed analytical study was made to investigate the effects of fuselage cross section (circular and elliptical) and the structural arrangement (integral and nonintegral tanks) on aircraft performance. The vehicle was a 200 passenger, liquid hydrogen fueled Mach 6 transport designed to meet a range goal of 9.26 Mn (5000 NM). A variety of trade studies were conducted in the area of configuration arrangement, structural design, and active cooling design in order to maximize the performance of each of three point design aircraft: (1) circular wing-body with nonintegral tanks, (2) circular wing-body with integral tanks and (3) elliptical blended wing-body with integral tanks. Aircraft range and weight were used as the basis for comparison. The resulting design and performance characteristics show that the blended body integral tank aircraft weights the least and has the greatest range capability, however, producibility and maintainability factors favor nonintegral tank concepts.

  9. Comparison of the space radiation environments at aircraft altitudes and on International Space Station for April - August 2001

    NASA Astrophysics Data System (ADS)

    Dachev, T.; Spurny, F.; Reitz, G.; Beaujean, R.; Burmeister, S.; Shurshakov, S.; Tomov, B.; Dimitrov, P.; Matviichuk, Y.; Bankov, N.

    The space radiation environments at aircraft altitudes and on the International Space Station (ISS) were measured by using of practically equal silicon detector based de- posited energy spectrometers in April-August 2001. The aircraft measurements were performed on commercial flights of CSA airlines, while the measurements on the ISS was inside of the "Dosimetric mapping" experiment. Different cases of comparison are presented in the paper and discussed.

  10. Weather Avoidance Guidelines for NASA Global Hawk High-Altitude Unmanned Aircraft Systems (UAS)

    NASA Technical Reports Server (NTRS)

    Cecil, Daniel J.; Zipser, Edward J.; Velden, Chris S.; Monette, Sarah A.; Heymsfield, Gerald M.; Braun, Scott A.; Newman, Paul A.; Black, Peter G.; Black, Michael L.; Dunion, Jason P.

    2014-01-01

    The current Global Hawk flight rules would probably not have been effective in the single event of greatest concern (the Emily encounter). The cloud top had not reached 50,000 ft until minutes before the encounter. The TOT and lightning data would not have been available until near the overflight time since this was a rapidly growing cell. This case would have required a last-minute diversion when lightning became frequent. Avoiding such a cell probably requires continual monitoring of the forward camera and storm scope, whether or not cloud tops have been exceeding specific limits. However, the current overflight rules as strictly interpreted would have prohibited significant fractions of the successful Global Hawk overpasses of Karl and Matthew that proved not to be hazardous. Many other high altitude aircraft (ER-2 and Global Hawk) flights in NASA tropical cyclone field programs have successfully overflown deep convective clouds without incident.The convective cell that caused serious concern about the safety of the ER-2 in Emily was especially strong for a tropical cyclone environment, probably as strong or stronger than any that was overflown by the ER-2 in 20 previous flights over tropical cyclones. Specifically, what made that cell a safety concern was the magnitude of the vertical velocity of the updraft, at least 20 m/s (4000 ft/minute) at the time the ER-2 overflew it. Such a strong updraft can generate strong gravity waves at and above the tropopause, posing a potential danger to aircraft far above the maximum altitude of the updraft itself or its associated cloud top. Indeed, the ER-2 was probably at least 9000 ft above that cloud top. Cloud-top height, by itself, is not an especially good indicator of the intensity of convection and the likelihood of turbulence. Nor is overflying high cloud tops (i.e. > 50,000 ft) of particular concern unless there is other evidence of very strong convective updrafts beneath those tops in the path of the aircraft

  11. Transonic aerodynamic characteristics of a supersonic cruise aircraft research model with the engines suspended above the wing

    NASA Technical Reports Server (NTRS)

    Mercer, C. E.; Carson, G. T., Jr.

    1979-01-01

    The influence of upper-surface nacelle exhaust flow on the aerodynamic characteristics of a supersonic cruise aircraft research configuration was investigated in a 16 foot transonic tunnel over a range of Mach numbers from 0.60 to 1.20. The arrow-wing transport configuration with engines suspended over the wing was tested at angles of attack from -4 deg to 6 deg and jet total pressure ratios from 1 to approximately 13. Wing-tip leading edge flap deflections of -10 deg to 10 deg were tested with the wing-body configuration. Various nacelle locations (chordwise, spanwise, and vertical) were tested over the ranges of Mach numbers, angles of attack, and jet total-pressure ratios. The results show that reflecting the wing-tip leading edge flap from 0 deg to -10 deg increased the maximum lift-drag ratio by 1.0 at subsonic speeds. Jet exhaust interference effects were negligible.

  12. High-Altitude Aircraft-Based Electric-Field Measurements above Thunderstorms

    NASA Technical Reports Server (NTRS)

    Bateman, M. G.; Blakeslee, R. J.; Bailey, J. C.; Stewart, M. F.; Blair, A. K.

    1999-01-01

    We have developed a new set of eight electric field mills that were flown on a NASA ER-2 high-altitude aircraft. During the Third Convection And Moisture EXperiment (CAMEX- 3; Fall, 1998), measurements of electric field, storm dynamics, and ice microphysics were made over several hurricanes. Concurrently, the TExas-FLorida UNderflights (TEFLUN) program was being conducted to make the same measurements over Gulf Coast thunderstorms. Sample measurements will be shown. Our new mills have an internal 16-bit A/D, with a resolution of 0.25 V/m per bit at high gain, with a noise level less than the least significant bit. A second, lower gain channel gives us the ability to measure fields as high as 150 kV/m.

  13. Preliminary C3 Loading Analysis for Future High-Altitude Unmanned Aircraft in the NAS

    NASA Technical Reports Server (NTRS)

    Ho, Yan-Shek; Gheorghisor, Izabela; Box, Frank

    2006-01-01

    This document provides a preliminary assessment and summary of the command, control, and communications (C(sup 3)) loading requirements of a generic future high-altitude, long-endurance unmanned aircraft (UA) operating at in the National Airspace System. Two principal types of C(sup 3) traffic are considered in our analysis: communications links providing air traffic services (ATS) to the UA and its human pilot, and the command and control data links enabling the pilot to operate the UA remotely. we have quantified the loading requirements of both types of traffic for two different assumed levels of UA autonomy. Our results indicate that the potential use of UA-borne relays for the ATS links, and the degree of autonomy exercised by the UA during the departure and arrival phases of its flight, will be among the key drivers of C(sup 3) loading and bandwidth requirements.

  14. Global Sentry: NASA/USRA high altitude reconnaissance aircraft design, volume 2

    NASA Technical Reports Server (NTRS)

    Alexandru, Mona-Lisa; Martinez, Frank; Tsou, Jim; Do, Henry; Peters, Ashish; Chatsworth, Tom; Yu, YE; Dhillon, Jaskiran

    1990-01-01

    The Global Sentry is a high altitude reconnaissance aircraft design for the NASA/USRA design project. The Global Sentry uses proven technologies, light-weight composites, and meets the R.F.P. requirements. The mission requirements for the Global Sentry are described. The configuration option is discussed and a description of the final design is given. Preliminary sizing analyses and the mass properties of the design are presented. The aerodynamic features of the Global Sentry are described along with the stability and control characteristics designed into the flight control system. The performance characteristics are discussed as is the propulsion installation and system layout. The Global Sentry structural design is examined, including a wing structural analysis. The cockpit, controls and display layouts are covered. Manufacturing is covered and the life cost estimation. Reliability is discussed. Conclusions about the current Global Sentry design are presented, along with suggested areas for future engineering work.

  15. Benefits of Hybrid-Electric Propulsion to Achieve 4x Increase in Cruise Efficiency for a VTOL Aircraft

    NASA Technical Reports Server (NTRS)

    Fredericks, William J.; Moore, Mark D.; Busan, Ronald C.

    2013-01-01

    Electric propulsion enables radical new vehicle concepts, particularly for Vertical Takeoff and Landing (VTOL) aircraft because of their significant mismatch between takeoff and cruise power conditions. However, electric propulsion does not merely provide the ability to normalize the power required across the phases of flight, in the way that automobiles also use hybrid electric technologies. The ability to distribute the thrust across the airframe, without mechanical complexity and with a scale-free propulsion system, is a new degree of freedom for aircraft designers. Electric propulsion is scale-free in terms of being able to achieve highly similar levels of motor power to weight and efficiency across a dramatic scaling range. Applying these combined principles of electric propulsion across a VTOL aircraft permits an improvement in aerodynamic efficiency that is approximately four times the state of the art of conventional helicopter configurations. Helicopters typically achieve a lift to drag ratio (L/D) of between 4 and 5, while the VTOL aircraft designed and developed in this research were designed to achieve an L/D of approximately 20. Fundamentally, the ability to eliminate the problem of advancing and retreating rotor blades is shown, without resorting to unacceptable prior solutions such as tail-sitters. This combination of concept and technology also enables a four times increase in range and endurance while maintaining the full VTOL and hover capability provided by a helicopter. Also important is the ability to achieve low disc-loading for low ground impingement velocities, low noise and hover power minimization (thus reducing energy consumption in VTOL phases). This combination of low noise and electric propulsion (i.e. zero emissions) will produce a much more community-friendly class of vehicles. This research provides a review of the concept brainstorming, configuration aerodynamic and mission analysis, as well as subscale prototype construction and

  16. Visible and near-infrared channel calibration of the GOES-6 VISSR using high-altitude aircraft measurements

    NASA Technical Reports Server (NTRS)

    Smith, Gilbert R.; Levin, Robert H.; Koyanagi, Robert S.; Wrigley, Robert C.

    1989-01-01

    Present and future visible and near-infrared wavelength sensors mounted on operational satellites do not have on-board absolute calibration devices. One means of establishing an in-orbit calibration for a satellite sensor is to make simultaneous measurements of a bright, relatively uniform scene along the satellite view vector from a calibrated instrument on board a high altitude aircraft. Aircraft data were recorded over White Sands, New Mexico, and the coincident aircraft and orbiting satellite data is compared for the visible and near-infrared wavelength channel of the GOES-6 Visible Infrared Spin-Scan Radiometer.

  17. Design definition study of a lift/cruise fan technology V/STOL aircraft. Volume 2: Technology aircraft

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Technology flight vehicles were defined for three different approaches which demonstrate the concept and characteristics of the multipurpose aircraft established for Navy missions. The propulsion system used for the various technology flight vehicles was representative of that established for the multipurpose aircraft. Existing J97-GE100 gas generators were selected based on cost, availability and exhaust characteristics. The LF459 fans were also selected and are compatible with both technology and operational vehicles. To comply with the design guideline safety criteria, it was determined that three gas generators were required to provide engine out safety in the hover flight mode. The final propulsion system established for the technology aircraft was three existing J97 gas generators powering three LF459 fans. Different aircraft candidates were evaluated for application to the three designated design approaches. Each configuration was evaluated on the basis of (1) propulsion system integration, (2) modification required, (3) pilot's visibility, (4) payload volume, and (5) adaptability to compatible location of center-of-gravity/aerodynamic center and thrust center.

  18. Classification of Tropical Oceanic Precipitation using High-Altitude Aircraft Microwave and Electric Field Measurements

    NASA Technical Reports Server (NTRS)

    Hood, Robbie E.; Cecil, Daniel J.; LaFontaine, Frank J.; Blakeslee, Richard J.; Mach, Douglas m.; Heymsfield, Gerald M.; Marks, Frank D., Jr.; Zipser, Edward J.

    2004-01-01

    During the 1998 and 2001 hurricane seasons of the western Atlantic Ocean and Gulf of Mexico, the Advanced Microwave Precipitation Radiometer (AMPR), the ER-2 Doppler (EDOP) radar, and the Lightning Instrument Package (LIP) were flown aboard the NASA ER-2 high-altitude aircraft as part of the Third Convection and Moisture Experiment (CAMEX-3) and the Fourth Convection and Moisture Experiment (CAMEX-4). Several hurricanes, tropical storms, and other precipitation systems were sampled during these experiments. An oceanic rainfall screening technique has been developed using AMPR passive microwave observations of these systems collected at frequencies of 10.7, 19.35, 37.1, and 85.5 GHz. This technique combines the information content of the four AMPR frequencies regarding the gross vertical structure of hydrometeors into an intuitive and easily executable precipitation mapping format. The results have been verified using vertical profiles of EDOP reflectivity and lower-altitude horizontal reflectivity scans collected by the NOAA WP3D Orion radar. Matching the rainfall classification results with coincident electric field information collected by the LIP readily identifies convective rain regions within the precipitation fields. This technique shows promise as a real-time research and analysis tool for monitoring vertical updraft strength and convective intensity from airborne platforms such as remotely operated or uninhabited aerial vehicles. The technique is analyzed and discussed for a wide variety of precipitation types using the 26 August 1998 observations of Hurricane Bonnie near landfall.

  19. Classification of Tropical Oceanic Precipitation using High Altitude Aircraft: Microwave and Electric Field Measurements

    NASA Technical Reports Server (NTRS)

    Hood, Robbie E.; Cecil, Daniel; LaFontaine, Frank J.; Blakeslee, Richard; Mach, Douglas; Heymsfield, Gerald; Marks, Frank, Jr.; Zipser, Edward

    2004-01-01

    During the 1998 and 2001 hurricane seasons of the western Atlantic Ocean and Gulf of Mexico, the Advanced Microwave Precipitation Radiometer (AMPR), the ER-2 Doppler (EDOP) radar, and the Lightning Instrument Package (LIP) were flown aboard the National Aeronautics and Space Administration ER-2 high altitude aircraft as part of the Third Convection and Moisture Experiment (CAMEX-3) and the Fourth Convection and Moisture Experiment (CAMEX-4). Several hurricanes, tropical storms, and other precipitation systems were sampled during these experiments. An oceanic rainfall screening technique has been developed using AMPR passive microwave observations of these systems collected at frequencies of 10.7, 19.35,37.1, and 85.5 GHz. This technique combines the information content of the four AMPR frequencies regarding the gross vertical structure of hydrometeors into an intuitive and easily executable precipitation mapping format. The results have been verified using vertical profiles of EDOP reflectivity and lower altitude horizontal reflectivity scans collected by the National Oceanic and Atmospheric Administration WP-3D Orion radar. Matching the rainfall classification results with coincident electric field information collected by the LIP readily identifies convective rain regions within the precipitation fields. This technique shows promise as a real-time research and analysis tool for monitoring vertical updraft strength and convective intensity from airborne platforms such as remotely operated or uninhabited aerial vehicles. The technique is analyzed and discussed for a wide variety of precipitation types using the 26 August 1998 observations of Hurricane Bonnie near landfall.

  20. Tropical Cyclone Precipitation Types and Electrical Field Information Observed by High Altitude Aircraft Instrumentation

    NASA Technical Reports Server (NTRS)

    Hood, Robbie E.; Blakeslee, Richard; Cecil, Daniel; LaFontaine, Frank J.; Heymsfield, Gerald; Marks, Frank

    2004-01-01

    During the 1998 and 200 1 hurricane seasons of the Atlantic Ocean Basin, the Advanced Microwave Precipitation Radiometer (AMPR), the ER-2 Doppler (EDOP) radar, and the Lightning Instrument Package (LIP) were flown aboard the National Aeronautics and Space Administration (NASA) ER-2 high altitude aircraft as part of the Third Convection And Moisture Experiment (CAMEX-3) and the Fourth Convection And Moisture Experiment (CAMEX-4). Several hurricanes and tropical storms were sampled during these experiments. A rainfall screening technique has been developed using AMPR passive microwave observations of these tropical cyclones (TC) collected at frequencies of 10.7, 19.35,37.1, and 85.5 GHz and verified using vertical profiles of EDOP reflectivity and lower altitude horizontal reflectivity scam collected by the National Oceanic and Atmospheric Administration (NOM) P-3 radar. Matching the rainfall classification results with coincident electrical field information collected by the LIP readily identifl convective rain regions within the TC precipitation fields. Strengths and weaknesses of the rainfall classification procedure will be discussed as well as its potential as a real-time analysis tool for monitoring vertical updrafl strength and convective intensity from a remotely operated or uninhabited aerial vehicle.

  1. Study of aerodynamic technology for single-cruise-engine VSTOL fighter/attack aircraft, phase 1

    NASA Technical Reports Server (NTRS)

    Foley, W. H.; Sheridan, A. E.; Smith, C. W.

    1982-01-01

    A conceptual design and analysis on a single engine VSTOL fighter/attack aircraft is completed. The aircraft combines a NASA/deHavilland ejector with vectored thrust and is capable of accomplishing the mission and point performance of type Specification 169, and a flight demonstrator could be built with an existing F101/DFE engine. The aerodynamic, aero/propulsive, and propulsive uncertainties are identified, and a wind tunnel program is proposed to address those uncertainties associated with wing borne flight.

  2. A comparison of land-use determinations using data from ERTS-1 and high altitude aircraft

    NASA Technical Reports Server (NTRS)

    Lundelius, M. A.; Chestnutwood, C. M.; Garcia, J. G.; Erb, R. B.

    1973-01-01

    A manual interpretation of ERTS-1 MSS system corrected imagery has been performed on a study area within the Houston Area Test Site to classify land use using the Level 1 categories proposed by the Department of the Interior. The two types of imagery used included: (1) black and white transparencies of each band enlarged to a scale of approximately 1:250,000 and (2) color transparencies composited from the computer compatible tapes using the film recorder on a multispectral data analysis station. The results of this interpretation have been compared with the 1970 land use inventory of HATS which was compiled using color ektachrome imagery from high altitude aircraft (scale 1:120,000). Urban data from the same scene was also analyzed using a computer-aided (clustering) technique. The resulting clusters, representing areas of similar content, were compared with existing land use patterns in Houston. A technique was developed to correlate the spectral clusters to specific urban features on aircraft imagery by the location of specific, high contrast objects in particular resolution elements. It was concluded that ERTS-1 data could be used to develop Level 1 and many Level 2 land use categories for regional inventories and perhaps to some degree on a local level.

  3. Effects of nacelle shape on drag and weight of a supersonic cruising aircraft

    NASA Technical Reports Server (NTRS)

    Bonner, E.; Mairs, R. Y.; Tyson, R. M.

    1975-01-01

    The quantitive relationship of cruise drag and nacelle shape was investigated for a representative advanced supersonic transport configuration. Nacelle shape parameters were systematically varied, and the effects of these variations on wave and friction drag were determined. The effects of changes in vehicle drag, propulsion weight, and specific fuel consumption on vehicle takeoff gross weight were computed. Generally, it was found that nacelle shapes such that the maximum cross-sectional area occurred at or near the nozzle exit resulted in the lowest wave drag. In fact, nacelle shapes were found that produce favorable interference effects (drag reduction) of such magnitude as to nearly offset the friction drag of the nacelle.

  4. A study of high-altitude manned research aircraft employing strut-braced wings of high-aspect-ratio

    NASA Technical Reports Server (NTRS)

    Smith, P. M.; Deyoung, J.; Lovell, W. A.; Price, J. E.; Washburn, G. F.

    1981-01-01

    The effect of increased wing aspect ratio of subsonic aircraft on configurations with and without strut bracing. Results indicate that an optimum cantilever configuration, with a wing aspect ratio of approximately 26, has a 19% improvement in cruise range when compared to a baseline concept with a wing aspect ratio of approximately 10. An optimum strut braced configuration, with a wing aspect ratio of approximately 28, has a 31% improvment in cruise range when compared to the same baseline concept. This improvement is mainly due to the estimated reduction in wing weight resulting from use of lifting struts. All configurations assume the same mission payload and fuel. The drag characteristics of the wings are enhanced with the use of laminar flow airfoils. A method for determining the extent of attainable natural laminar flow, and methods for preliminary structural design and for aerodynamic analysis of wings lifting struts are presented.

  5. Reduction of Aircraft Cruise Drag By Using Boundary Layer Heating To Minimize Fuselage Skin Friction

    NASA Technical Reports Server (NTRS)

    Kramer, Brian R.

    1997-01-01

    The data reduction and results of the F-15B Flight Test Fixture experiment conducted at NASA Dryden are discussed. In addition, the feasibility of using the Orbital Sciences L-1011 was studied and a cost estimate prepared. Initial discussions have begun with Edwards Flight Research to explore the possibility of using their T-39 aircraft for the second flight experiment.

  6. Zoom-climb altitude maximization of the F-4C and F-15 aircraft for stratospheric sampling missions

    NASA Technical Reports Server (NTRS)

    Hague, D. S.; Merz, A. W.; Page, W. A.

    1976-01-01

    Some predictions indicate that byproducts of aerosol containers may lead to a modification of the ultraviolet-radiation shielding properties of the upper atmosphere. NASA currently monitors atmospheric properties to 70,000 feet using U-2 aircraft. Testing is needed at about 100,000 feet for adequate monitoring of possible aerosol contaminants during the next decade. To study this problem the F-4C and F-15 aircraft were analyzed to determine their maximum altitude ability in zoom-climb maneuvers. These trajectories must satisfy realistic dynamic pressure and Mach number constraints. Maximum altitudes obtained for the F4-C are above 90,000 feet, and for the F-15 above 100,000 feet. Sensitivities of the zoom-climb altitudes were found with respect to several variables including vehicle thrust, initial weight, stratospheric winds and the constraints. A final decision on aircraft selection must be based on mission modification costs and operational considerations balanced against their respective zoom altitude performance capabilities.

  7. Experimental characterization of the COndensation PArticle counting System for high altitude aircraft-borne application

    NASA Astrophysics Data System (ADS)

    Weigel, R.; Hermann, M.; Curtius, J.; Voigt, C.; Walter, S.; Böttger, T.; Lepukhov, B.; Belyaev, G.; Borrmann, S.

    2008-11-01

    This study aims at a detailed characterization of an ultra-fine aerosol particle counting system for operation on board the Russian high altitude research aircraft M-55 "Geophysica" (maximum ceiling of 21 km). The COndensation PArticle counting Systems (COPAS) consists of an aerosol inlet and two dual-channel continuous flow Condensation Particle Counters (CPCs). The aerosol inlet, adapted for COPAS measurements on board the M-55 "Geophysica", is described concerning aspiration, transmission, and transport losses. The counting efficiencies of the CPCs using the chlorofluorocarbon FC-43 as the working fluid are studied experimentally at two pressure conditions, 300 hPa and 70 hPa. Three COPAS channels are operated with different temperature differences between the saturator and the condenser block yielding smallest detectable particle sizes (dp50 - as 50% detection "cut off" diameters) of 6 nm, 11 nm, and 15 nm, respectively, at ambient pressure of 70 hPa. The fourth COPAS channel is operated with an aerosol heating line (250°C) for a determination of the non-volatile number of particles. The heating line is experimentally proven to volatilize pure H2SO4-H2O particles for a particle diameter (dp) range of 11 nmaircraft plume crossing analysis.

  8. A Mission-Adaptive Variable Camber Flap Control System to Optimize High Lift and Cruise Lift-to-Drag Ratios of Future N+3 Transport Aircraft

    NASA Technical Reports Server (NTRS)

    Urnes, James, Sr.; Nguyen, Nhan; Ippolito, Corey; Totah, Joseph; Trinh, Khanh; Ting, Eric

    2013-01-01

    Boeing and NASA are conducting a joint study program to design a wing flap system that will provide mission-adaptive lift and drag performance for future transport aircraft having light-weight, flexible wings. This Variable Camber Continuous Trailing Edge Flap (VCCTEF) system offers a lighter-weight lift control system having two performance objectives: (1) an efficient high lift capability for take-off and landing, and (2) reduction in cruise drag through control of the twist shape of the flexible wing. This control system during cruise will command varying flap settings along the span of the wing in order to establish an optimum wing twist for the current gross weight and cruise flight condition, and continue to change the wing twist as the aircraft changes gross weight and cruise conditions for each mission segment. Design weight of the flap control system is being minimized through use of light-weight shape memory alloy (SMA) actuation augmented with electric actuators. The VCCTEF program is developing better lift and drag performance of flexible wing transports with the further benefits of lighter-weight actuation and less drag using the variable camber shape of the flap.

  9. Tropical deep convective life cycle: Cb-anvil cloud microphysics from high altitude aircraft observations

    NASA Astrophysics Data System (ADS)

    Frey, W.; Borrmann, S.; Fierli, F.; Weigel, R.; Mitev, V.; Matthey, R.; Ravegnani, F.; Sitnikov, N. M.; Ulanovsky, A.; Cairo, F.

    2014-05-01

    The case study presented here focusses on the life cycle of clouds in a tropical deep convective system. During the SCOUT-O3 campaign from Darwin, Northern Australia, the Hector storm system has been probed by the Geophysica high altitude aircraft. Clouds were observed by in situ particle probes, a backscatter sonde, and a miniature lidar. Additionally, aerosol number concentrations have been measured. On 30 November 2005 a double flight took place and Hector was probed throughout its life cycle in its developing, mature, and dissipating stage. The two flights were four hours apart and focussed on the anvil region of Hector in altitudes between 10.5 km and 18.8 km (i.e. above 350 K potential temperature). Trajectory calculations and ozone measurements have been used to identify that the same cloud air masses have been probed in both flights. The size distributions derived from the measurements not only show a change with increasing altitude but also with the evolution of Hector. Clearly different aerosol to cloud particle ratios as well as varying ice crystal morphology have been found for the different development stages of Hector, indicating a change in freezing mechanisms. The development phase exhibits the smallest ice particles (up to 300 μm) with a rather uniform morphology. This is indicative for rapid glaciation during Hector's development. Sizes of ice crystals are largest in the mature stage (larger 1.6 mm) and even exceed those of some continental tropical deep convective clouds, also in their number concentrations. The backscatter properties and particle images show a change from frozen droplets in the developing phase to rimed and aggregated particles. The clouds in the dissipating stage have a large vertical extend (roughly 6 km) though optically thin and persist for at least 6 h. This poses a high potential for affecting the tropical tropopause layer background conditions regarding humidity, e.g. through facilitating subvisible cirrus formation, and

  10. Tropical deep convective life cycle: Cb-anvil cloud microphysics from high-altitude aircraft observations

    NASA Astrophysics Data System (ADS)

    Frey, W.; Borrmann, S.; Fierli, F.; Weigel, R.; Mitev, V.; Matthey, R.; Ravegnani, F.; Sitnikov, N. M.; Ulanovsky, A.; Cairo, F.

    2014-12-01

    The case study presented here focuses on the life cycle of clouds in the anvil region of a tropical deep convective system. During the SCOUT-O3 campaign from Darwin, Northern Australia, the Hector storm system has been probed by the Geophysica high-altitude aircraft. Clouds were observed by in situ particle probes, a backscatter sonde, and a miniature lidar. Additionally, aerosol number concentrations have been measured. On 30 November 2005 a double flight took place and Hector was probed throughout its life cycle in its developing, mature, and dissipating stage. The two flights were four hours apart and focused on the anvil region of Hector in altitudes between 10.5 and 18.8 km (i.e. above 350 K potential temperature). Trajectory calculations, satellite imagery, and ozone measurements have been used to ensure that the same cloud air masses have been probed in both flights. The size distributions derived from the measurements show a change not only with increasing altitude but also with the evolution of Hector. Clearly different cloud to aerosol particle ratios as well as varying ice crystal morphology have been found for the different development stages of Hector, indicating different freezing mechanisms. The development phase exhibits the smallest ice particles (up to 300 μm) with a rather uniform morphology. This is indicative for rapid glaciation during Hector's development. Sizes of ice crystals are largest in the mature stage (larger than 1.6 mm) and even exceed those of some continental tropical deep convective clouds, also in their number concentrations. The backscatter properties and particle images show a change in ice crystal shape from the developing phase to rimed and aggregated particles in the mature and dissipating stages; the specific shape of particles in the developing phase cannot be distinguished from the measurements. Although optically thin, the clouds in the dissipating stage have a large vertical extent (roughly 6 km) and persist for at

  11. Study of aerodynamic technology for single-cruise-engine V/STOL fighter/attack aircraft

    NASA Technical Reports Server (NTRS)

    Hess, J. R.; Bear, R. L.

    1982-01-01

    A viable, single engine, supersonic V/STOL fighter/attack aircraft concept was defined. This vectored thrust, canard wing configuration utilizes an advanced technology separated flow engine with fan stream burning. The aerodynamic characteristics of this configuration were estimated and performance evaluated. Significant aerodynamic and aerodynamic propulsion interaction uncertainties requiring additional investigation were identified. A wind tunnel model concept and test program to resolve these uncertainties and validate the aerodynamic prediction methods were defined.

  12. The feasibility of a high-altitude aircraft platform with consideration of technological and societal constraints. Thesis - Kansas Univ.

    NASA Technical Reports Server (NTRS)

    Graves, E. B.

    1982-01-01

    The feasibility of remotely piloted aircraft performing year around missions at an altitude of 70,000 feet is determined. Blimp and airplane type vehicles employing solar-voltaic, microwave, or nuclear propulsion systems were considered. A payload weighing 100 pounds and requiring 1000 watts of continuous power was assumed for analysis purposes. Results indicate that a solar powered aircraft requires more solar cell area than is available on conventional aircraft configurations if designed for the short days and high wind speeds associated with the winter season. A conventionally shaped blimp that uses solar power appears feasible if maximum airspeed is limited to about 100 ft/s. No viable airplane configuration that uses solar power and designed to withstand the winter environment was found. Both a conventionally shaped blimp and airplane appear feasible using microwave power. Nuclear powered aircraft of these type are also feasible. Societal attitudes toward the use of solar power in high altitude aircraft appear favorable. The use of microwave power for this purpose is controversial, even though the ground station required would transmit power at levels comparable to existing satellite communications stations.

  13. Preliminary performance of a vertical-attitude takeoff and landing, supersonic cruise aircraft concept having thrust vectoring integrated into the flight control system

    NASA Technical Reports Server (NTRS)

    Robins, A. W.; Beissner, F. L., Jr.; Domack, C. S.; Swanson, E. E.

    1985-01-01

    A performance study was made of a vertical attitude takeoff and landing (VATOL), supersonic cruise aircraft concept having thrust vectoring integrated into the flight control system. Those characteristics considered were aerodynamics, weight, balance, and performance. Preliminary results indicate that high levels of supersonic aerodynamic performance can be achieved. Further, with the assumption of an advanced (1985 technology readiness) low bypass ratio turbofan engine and advanced structures, excellent mission performance capability is indicated.

  14. Probing Aircraft Flight Test Hazard Mitigation for the Alternative Fuel Effects on Contrails and Cruise Emissions (ACCESS) Research Team . Volume 2; Appendices

    NASA Technical Reports Server (NTRS)

    Kelly, Michael J.

    2013-01-01

    The Alternative Fuel Effects on Contrails and Cruise Emissions (ACCESS) Project Integration Manager requested in July 2012 that the NASA Engineering and Safety Center (NESC) form a team to independently assess aircraft structural failure hazards associated with the ACCESS experiment and to identify potential flight test hazard mitigations to ensure flight safety. The ACCESS Project Integration Manager subsequently requested that the assessment scope be focused predominantly on structural failure risks to the aircraft empennage (horizontal and vertical tail). This report contains the Appendices to Volume I.

  15. Utilization of GPS Surface Reflected Signals to Provide Aircraft Altitude Verification for SVS

    NASA Technical Reports Server (NTRS)

    Gance, George G.; Young, Steven D.

    2005-01-01

    The Global Positioning System (GPS) consists of a constellation of Earth orbiting satellites that transmit continuous electromagnetic signals to users on or near the Earth surface. At any moment of time, at least four GPS satellites, and sometimes nine or more, are visible from any point. The electromagnetic signal transmitted from the satellites is reflected to at least some degree from virtually every place on the Earth. When this signal is received by a specially constructed receiver, its characteristics can be used to determine information about the reflected surface. One piece of information collected is the time delay encountered by the reflected signal versus the direct signal. This time delay can be used to determine the altitude (or height) above the local terrain when the terrain in the reflection area is level. However, given the potential of simultaneously using multiple reflections, it should be possible to also determine the elevation above even terrains where the reflecting area is not level. Currently an effort is underway to develop the technology to characterize the reflected signal that is received by the GPS Surface Reflection Experiment (GSRE) instrument. Recent aircraft sorties have been flown to collect data that can be used to refine the technology. This paper provides an update on the status of the instrument development to enable determination of terrain proximity using the GPS Reflected signal. Results found in the data collected to date are also discussed.

  16. Aircraft

    DOEpatents

    Hibbs, B.D.; Lissaman, P.B.S.; Morgan, W.R.; Radkey, R.L.

    1998-09-22

    This disclosure provides a solar rechargeable aircraft that is inexpensive to produce, is steerable, and can remain airborne almost indefinitely. The preferred aircraft is a span-loaded flying wing, having no fuselage or rudder. Travelling at relatively slow speeds, and having a two-hundred foot wingspan that mounts photovoltaic cells on most all of the wing`s top surface, the aircraft uses only differential thrust of its eight propellers to turn. Each of five sections of the wing has one or more engines and photovoltaic arrays, and produces its own lift independent of the other sections, to avoid loading them. Five two-sided photovoltaic arrays, in all, are mounted on the wing, and receive photovoltaic energy both incident on top of the wing, and which is incident also from below, through a bottom, transparent surface. The aircraft is capable of a top speed of about ninety miles per hour, which enables the aircraft to attain and can continuously maintain altitudes of up to sixty-five thousand feet. Regenerative fuel cells in the wing store excess electricity for use at night, such that the aircraft can sustain its elevation indefinitely. A main spar of the wing doubles as a pressure vessel that houses hydrogen and oxygen gases for use in the regenerative fuel cell. The aircraft has a wide variety of applications, which include weather monitoring and atmospheric testing, communications, surveillance, and other applications as well. 31 figs.

  17. Aircraft

    DOEpatents

    Hibbs, Bart D.; Lissaman, Peter B. S.; Morgan, Walter R.; Radkey, Robert L.

    1998-01-01

    This disclosure provides a solar rechargeable aircraft that is inexpensive to produce, is steerable, and can remain airborne almost indefinitely. The preferred aircraft is a span-loaded flying wing, having no fuselage or rudder. Travelling at relatively slow speeds, and having a two-hundred foot wingspan that mounts photovoltaic cells on most all of the wing's top surface, the aircraft uses only differential thrust of its eight propellers to turn. Each of five sections of the wing has one or more engines and photovoltaic arrays, and produces its own lift independent of the other sections, to avoid loading them. Five two-sided photovoltaic arrays, in all, are mounted on the wing, and receive photovoltaic energy both incident on top of the wing, and which is incident also from below, through a bottom, transparent surface. The aircraft is capable of a top speed of about ninety miles per hour, which enables the aircraft to attain and can continuously maintain altitudes of up to sixty-five thousand feet. Regenerative fuel cells in the wing store excess electricity for use at night, such that the aircraft can sustain its elevation indefinitely. A main spar of the wing doubles as a pressure vessel that houses hydrogen and oxygen gasses for use in the regenerative fuel cell. The aircraft has a wide variety of applications, which include weather monitoring and atmospheric testing, communications, surveillance, and other applications as well.

  18. The NASA Airborne Tropical TRopopause EXperiment (ATTREX):High-Altitude Aircraft Measurements in the Tropical Western Pacific

    NASA Technical Reports Server (NTRS)

    Jensen, E. J.; Pfister, L.; Jordan, D. E.; Bui, T. V.; Ueyama, R.; Singh, H. B.; Lawson, P.; Thornberry, T.; Diskin, G.; McGill, M.; Pittman, J.; Atlas, E.; Kim, J.

    2016-01-01

    The February through March 2014 deployment of the NASA Airborne Tropical TRopopause EXperiment (ATTREX) provided unique in situ measurements in the western Pacific Tropical Tropopause Layer (TTL). Six flights were conducted from Guam with the long-range, high-altitude, unmanned Global Hawk aircraft. The ATTREX Global Hawk payload provided measurements of water vapor, meteorological conditions, cloud properties, tracer and chemical radical concentrations, and radiative fluxes. The campaign was partially coincident with the CONTRAST and CAST airborne campaigns based in Guam using lower-altitude aircraft The ATTREX dataset is being used for investigations of TTL cloud, transport, dynamical, and chemical processes as well as for evaluation and improvement of global-model representations of TTL processes.

  19. Three-dimensional canard-wing shape optimization in aircraft cruise and maneuver environments

    NASA Technical Reports Server (NTRS)

    De Silva, B. M. E.; Carmichael, R. L.

    1978-01-01

    This paper demonstrates a numerical technique for canard-wing shape optimization at two operating conditions. For purposes of simplicity, a mean surface wing paneling code is employed for the aerodynamic calculations. The optimization procedures are based on the method of feasible directions. The shape functions for describing the thickness, camber, and twist are based on polynomial representations. The primary design requirements imposed restrictions on the canard and wing volumes and on the lift coefficients at the operating conditions. Results indicate that significant improvements in minimum drag and lift-to-drag ratio are possible with reasonable aircraft geometries. Calculations were done for supersonic speeds with Mach numbers ranging from 1 to 6. Planforms were mainly of a delta shape with aspect ratio of 1.

  20. Experimental characterization of the COndensation PArticle counting System for high altitude aircraft-borne application

    NASA Astrophysics Data System (ADS)

    Weigel, R.; Hermann, M.; Curtius, J.; Voigt, C.; Walter, S.; Böttger, T.; Lepukhov, B.; Belyaev, G.; Borrmann, S.

    2009-06-01

    A characterization of the ultra-fine aerosol particle counter COPAS (COndensation PArticle counting System) for operation on board the Russian high altitude research aircraft M-55 Geophysika is presented. The COPAS instrument consists of an aerosol inlet and two dual-channel continuous flow Condensation Particle Counters (CPCs) operated with the chlorofluorocarbon FC-43. It operates at pressures between 400 and 50 hPa for aerosol detection in the particle diameter (dp) range from 6 nm up to 1 μm. The aerosol inlet, designed for the M-55, is characterized with respect to aspiration, transmission, and transport losses. The experimental characterization of counting efficiencies of three CPCs yields dp50 (50% detection particle diameter) of 6 nm, 11 nm, and 15 nm at temperature differences (ΔT) between saturator and condenser of 17°C, 30°C, and 33°C, respectively. Non-volatile particles are quantified with a fourth CPC, with dp50=11 nm. It includes an aerosol heating line (250°C) to evaporate H2SO4-H2O particles of 11 nm

  1. Regenerative fuel cells for High Altitude Long Endurance Solar Powered Aircraft

    NASA Astrophysics Data System (ADS)

    Mitlitsky, F.; Colella, N. J.; Myers, B.; Anderson, C. J.

    1993-06-01

    High Altitude Long Endurance (HALE) unmanned missions appear to be feasible using a lightweight, high efficiency, span-loaded, Solar Powered Aircraft (SPA) which includes a Regenerative Fuel Cell (RFC) system and novel tankage for energy storage. An existing flightworthy electric powered flying wing design was modified to incorporate present and near-term technologies in energy storage, power electronics, aerodynamics, and guidance and control in order to substantiate feasibility. The design philosophy was to work with vendors to identify affordable near-term technological opportunities that could be applied to existing designs in order to reduce weight, increase reliability, and maintain adequate efficiency of components for delivery within 18 months. The energy storage subsystem for a HALE SPA is a key driver for the entire vehicle because it can represent up to half of the vehicle weight and most missions of interest require the specific energy to be considerably higher than 200 W-hr/kg for many cycles. This stringent specific energy requirement precludes the use of rechargeable batteries or flywheels and suggests examination of various RFC designs. An RFC system using lightweight tankage, a single fuel cell (FC) stack, and a single electrolyzer (EC) stack separated by the length of a spar segment (up to 39 ft), has specific energy of approximately 300 W-hr/kg with 45% efficiency, which is adequate for HALE SPA requirements. However, this design has complexity and weight penalties associated with thermal management, electrical wiring, plumbing, and structural weight. A more elegant solution is to use unitized RFC stacks (reversible stacks that act as both FC's and EC's) because these systems have superior specific energy, scale to smaller systems more favorably, and have intrinsically simpler thermal management.

  2. Regenerative fuel cells for High Altitude Long Endurance Solar Powered Aircraft

    SciTech Connect

    Mitlitsky, F.; Colella, N.J.; Myers, B.; Anderson, C.J.

    1993-06-02

    High Altitude Long Endurance (HALE) unmanned missions appear to be feasible using a lightweight, high efficiency, span-loaded, Solar Powered Aircraft (SPA) which includes a Regenerative Fuel Cell (RFC) system and novel tankage for energy storage. An existing flightworthy electric powered flying wing design was modified to incorporate present and near-term technologies in energy storage, power electronics, aerodynamics, and guidance and control in order to design philosophy was to work with vendors to identify affordable near-term technological opportunities that could be applied to existing designs in order to reduce weight, increase reliability, and maintain adequate efficiency of components for delivery within 18 months. The energy storage subsystem for a HALE SPA is a key driver for the entire vehicle because it can represent up to half of the vehicle weight and most missions of interest require the specific energy to be considerably higher than 200 W-hr/kg for many cycles. This stringent specific energy requirement precludes the use of rechargeable batteries or flywheels and suggests examination of various RFC designs. An RFC system using lightweight tankage, a single fuel cell (FC) stack, and a single electrolyzer (EC) stack separated by the length of a spar segment (up to 39 ft), has specific energy of {approximately}300 W-hr/kg with 45% efficiency, which is adequate for HALE SPA requirements. However, this design has complexity and weight penalties associated with thermal management, electrical wiring, plumbing, and structural weight. A more elegant solution is to use unitized RFC stacks (reversible stacks that act as both FCs and ECs) because these systems have superior specific energy, scale to smaller systems more favorably, and have intrinsically simpler thermal management.

  3. Wind tunnel and ground static investigation of a large scale model of a lift/cruise fan V/STOL aircraft

    NASA Technical Reports Server (NTRS)

    1976-01-01

    An investigation was conducted in a 40 foot by 80 foot wind tunnel to determine the aerodynamic/propulsion characteristics of a large scale powered model of a lift/cruise fan V/STOL aircraft. The model was equipped with three 36 inch diameter turbotip X376B fans powered by three T58 gas generators. The lift fan was located forward of the cockpit area and the two lift/cruise fans were located on top of the wing adjacent to the fuselage. The three fans with associated thrust vectoring systems were used to provide vertical, and short, takeoff and landing capability. For conventional cruise mode operation, only the lift/cruise fans were utilized. The data that were obtained include lift, drag, longitudinal and lateral-directional stability characteristics, and control effectiveness. Data were obtained up to speeds of 120 knots at one model height of 20 feet for the conventional aerodynamic lift configuration and at several thrust vector angles for the powered lift configuration.

  4. Analytical study of the cruise performance of a class of remotely piloted, microwave-powered, high-altitude airplane platforms

    NASA Technical Reports Server (NTRS)

    Morris, C. E. K., Jr.

    1981-01-01

    Each cycle of the flight profile consists of climb while the vehicle is tracked and powered by a microwave beam, followed by gliding flight back to a minimum altitude. Parameter variations were used to define the effects of changes in the characteristics of the airplane aerodynamics, the power transmission systems, the propulsion system, and winds. Results show that wind effects limit the reduction of wing loading and increase the lift coefficient, two effective ways to obtain longer range and endurance for each flight cycle. Calculated climb performance showed strong sensitivity to some power and propulsion parameters. A simplified method of computing gliding endurance was developed.

  5. Analysis of atmospheric ozone levels at commercial airplane cruise altitudes in winter and spring 1976-77. Technical paper

    SciTech Connect

    Holdeman, J.D.; Nastrom, G.D.

    1981-04-01

    It has been speculated that the ozone sickness experienced by some airline passengers and crew members during the winter and spring of 1976-77 were induced by abnormally high concentrations of ambient atmospheric ozone. To investigate the possibility that 1976-77 was anomalous, ozone measurements from balloons for up to 13 years and from Global Atmospheric Sampling Program (GASP) equipped aircraft for 3 years have been studied. The analyses show that the winter and spring seasons of 1976-77 were averaged statistically, and no evidence was found to suggest that there was more than a usual variation in the frequency that commercial airplanes encountered high ambient ozone concentrations.

  6. Preliminary results for an aeromagnetic survey flown over Italy using the HALO (High Altitude and LOng range) research aircraft

    NASA Astrophysics Data System (ADS)

    Lesur, V.; Schachtschneider, R.; Gebler, A.

    2013-12-01

    In June 2012 the GEOHALO mission was flown over Italy using the high altitude and long-range German research aircraft HALO (Gulfstream jet - G550). One goal of the mission was to demonstrate the feasibility of using geodetic and geophysical instrumentation on such fast flying aircraft. The magnetic data were collected through two independent acquisition chains placed inside under-wing containers. Each chain included a total intensity cesium magnetometer, a three-component fluxgate magnetometer, several temperature censors and a digitizer. Seven parallel profiles, each around 1000 km long, were flown over the Apennine peninsula from north-west to south-east. The flight altitude was about 3500 m and the survey line spacing around 40 km. These long profiles were complemented by four crossing profiles, and a repeated flight line at a higher altitude (approx. 10500 m). The measured magnetic data appear to be consistent with the expected signal. Here we present preliminary results of the data processing. From the calibration maneuvers we have been able to correct the data for most of the plane generated signal. High frequency noise, probably associated with the plane engines, has been filtered out. Along profile data are compared with the Italian aeromagnetic grid as provided by the last version of the WDMAM (World Digital Magnetic Anomaly Map).

  7. Preliminary results for an aeromagnetic survey flown over Italy using the HALO (High Altitude and LOng range) research aircraft

    NASA Astrophysics Data System (ADS)

    Lesur, V.; Gebler, A.; Schachtschneider, R.

    2012-12-01

    In June 2012 the GEOHALO mission was flown over Italy using the high altitude and long-range German research aircraft HALO (Gulfstream jet - G550). One goal of the mission was to demonstrate the feasibility of using geodetic and geophysical instrumentation on such fast flying aircraft. Several types of data were acquired including gravity, GNSS signals (reflectometry, spectrometry and occultation), laser altimetry and magnetic data. The magnetic data were collected through two independent acquisition chains placed inside under-wing containers. Each chain included a total intensity cesium magnetometer, a three-component fluxgate magnetometer, several temperature censors and a digitizer. Magnetic and temperature data were collected at a 10 Hz sampling rate. Seven parallel profiles, each around 1000 km long, were flown over the Apennine peninsula from north-west to south-east. The flight altitude was about 3500 m and the survey line spacing around 40 km. These long profiles were complemented by four crossing profiles, and a repeated flight line at a higher altitude (approx. 10500 m). The ground speed during the flight was generally around 125 m/s (450 km/h). The output from the first steps of the magnetic data processing will be shown. The measured magnetic data appear to be consistent with the expected signal.

  8. Radar Observations of Convective Systems from a High-Altitude Aircraft

    NASA Technical Reports Server (NTRS)

    Heymsfield, G.; Geerts, B.; Tian, L.

    1999-01-01

    Reflectivity data collected by the precipitation radar on board the tropical Rainfall Measuring Mission (TRMM) satellite, orbiting at 350 km altitude, are compared to reflectivity data collected nearly simultaneously by a doppler radar aboard the NASA ER-2 flying at 19-20 km altitude, i.e. above even the deepest convection. The TRMM precipitation radar is a scanning device with a ground swath width of 215 km, and has a resolution of about a4.4 km in the horizontal and 250 m in the vertical (125 m in the core swath 48 km wide). The TRMM radar has a wavelength of 217 cm (13.8 GHz) and the Nadir mirror echo below the surface is used to correct reflectivity for loss by attenuation. The ER-2 Doppler radar (EDOP) has two antennas, one pointing to the nadir, 34 degrees forward. The forward pointing beam receives both the normal and the cross-polarized echos, so the linear polarization ratio field can be monitored. EDOP has a wavelength of 3.12 cm (9.6 GHz), a vertical resolution of 37.5 m and a horizontal along-track resolution of about 100 m. The 2-D along track airflow field can be synthesized from the radial velocities of both beams, if a reflectivity-based hydrometer fall speed relation can be assumed. It is primarily the superb vertical resolution that distinguishes EDOP from other ground-based or airborne radars. Two experiments were conducted during 1998 into validate TRMM reflectivity data over convection and convectively-generated stratiform precipitation regions. The Teflun-A (TEXAS-Florida Underflight) experiment, was conducted in April and May and focused on mesoscale convective systems mainly in southeast Texas. TEFLUN-B was conducted in August-September in central Florida, in coordination with CAMEX-3 (Convection and Moisture Experiment). The latter was focused on hurricanes, especially during landfall, whereas TEFLUN-B concentrated on central; Florida convection, which is largely driven and organized by surface heating and ensuing sea breeze circulations

  9. Aircraft Range Optimization Using Singular Perturbations

    NASA Technical Reports Server (NTRS)

    Oconnor, Joseph Taffe

    1973-01-01

    An approximate analytic solution is developed for the problem of maximizing the range of an aircraft for a fixed end state. The problem is formulated as a singular perturbation and solved by matched inner and outer asymptotic expansions and the minimum principle of Pontryagin. Cruise in the stratosphere, and on transition to and from cruise at constant Mach number are discussed. The state vector includes altitude, flight path angle, and mass. Specific fuel consumption becomes a linear function of power approximating that of the cruise values. Cruise represents the outer solution; altitude and flight path angle are constants, and only mass changes. Transitions between cruise and the specified initial and final conditions correspond to the inner solutions. The mass is constant and altitude and velocity vary. A solution is developed which is valid for cruise but which is not for the initial and final conditions. Transforming of the independent variable near the initial and final conditions result in solutions which are valid for the two inner solutions but not for cruise. The inner solutions can not be obtained without simplifying the state equations. The singular perturbation approach overcomes this difficulty. A quadratic approximation of the state equations is made. The resulting problem is solved analytically, and the two inner solutions are matched to the outer solution.

  10. Comparison of Several Methods of Predicting the Pressure Loss at Altitude Across a Baffled Aircraft-Engine Cylinder

    NASA Technical Reports Server (NTRS)

    Neustein, Joseph; Schafer, Louis J , Jr

    1946-01-01

    Several methods of predicting the compressible-flow pressure loss across a baffled aircraft-engine cylinder were analytically related and were experimentally investigated on a typical air-cooled aircraft-engine cylinder. Tests with and without heat transfer covered a wide range of cooling-air flows and simulated altitudes from sea level to 40,000 feet. Both the analysis and the test results showed that the method based on the density determined by the static pressure and the stagnation temperature at the baffle exit gave results comparable with those obtained from methods derived by one-dimensional-flow theory. The method based on a characteristic Mach number, although related analytically to one-dimensional-flow theory, was found impractical in the present tests because of the difficulty encountered in defining the proper characteristic state of the cooling air. Accurate predictions of altitude pressure loss can apparently be made by these methods, provided that they are based on the results of sea-level tests with heat transfer.

  11. Advanced hypersonic aircraft design

    NASA Technical Reports Server (NTRS)

    Utzinger, Rob; Blank, Hans-Joachim; Cox, Craig; Harvey, Greg; Mckee, Mike; Molnar, Dave; Nagy, Greg; Petersen, Steve

    1992-01-01

    The objective of this design project is to develop the hypersonic reconnaissance aircraft to replace the SR-71 and to complement existing intelligence gathering devices. The initial design considerations were to create a manned vehicle which could complete its mission with at least two airborne refuelings. The aircraft must travel between Mach 4 and Mach 7 at an altitude of 80,000 feet for a maximum range of 12,000 nautical miles. The vehicle should have an air breathing propulsion system at cruise. With a crew of two, the aircraft should be able to take off and land on a 10,000 foot runway, and the yearly operational costs were not to exceed $300 million. Finally, the aircraft should exhibit stealth characteristics, including a minimized radar cross-section (RCS) and a reduced sonic boom. The technology used in this vehicle should allow for production between the years 1993 and 1995.

  12. Sea Surface Slope Statistics for Intermediate and Shore Scale Ocean Waves Measured Using a Low-Altitude Aircraft

    NASA Technical Reports Server (NTRS)

    Vandemack, Douglas; Crawford, Tim; Dobosy, Ron; Elfouhaily, Tanos; Busalacchi, Antonio J. (Technical Monitor)

    1999-01-01

    Ocean surface remote sensing techniques often rely on scattering or emission linked to shorter- scale gravity-capillary ocean wavelets. However, it is increasingly apparent that slightly longer wavelengths of O(10 to 500 cm) are vital components in the robust sea surface description needed to link varied global remote sensing data sets. This paper describes a sensor suite developed to examine sea surface slope variations in the field using an aircraft flying at very low altitude (below 30 m) and will also provide preliminary measurements detailing changes in slope characteristics versus sea state and friction velocity. Two-dimensional surface slope is measured using simultaneous range measurements from three compact short-range laser altimeters mounted in an equilateral triangle arrangement with spacing of about 1 m. In addition, all three lasers provide independent wave elevation profiles after GPS-aided correction for aircraft altitude. Laser range precision is 1 cm rms while vertical motion correction is 15 cm rms. The measurements are made along-track at approximately 1 m intervals setting the spatial scale of the measurement to cover waves of intermediate to long scale. Products available for this array then include surface elevation, two-dimensional slope distribution, and the cross- and along-track 1-D slope distributions. To complement the laser, a down-looking mm-wave radar scatterometer is centered within the laser array to measure radar backscatter simultaneously with the laser slope. The radar's footprint is nominally 1 m in diameter. Near-vertical radar backscatter is inversely proportional to the small-scale surface slope variance and to the tilt of the underlying (laser-measured) surface facet. Together the laser and radar data provide information on wave roughness from the longest scales down to about 1 cm. These measurements are complemented by aircraft turbulence probe data that provides robust surface flux information.

  13. New method of calculating the power at altitude of aircraft engines equipped with superchargers on the basis of tests made under sea-level conditions

    NASA Technical Reports Server (NTRS)

    Sarracino, Marcello

    1941-01-01

    The present article deals with what is considered to be a simpler and more accurate method of determining, from the results of bench tests under approved rating conditions, the power at altitude of a supercharged aircraft engine, without application of correction formulas. The method of calculating the characteristics at altitude, of supercharged engines, based on the consumption of air, is a more satisfactory and accurate procedure, especially at low boost pressures.

  14. The design of sport and touring aircraft

    NASA Technical Reports Server (NTRS)

    Eppler, R.; Guenther, W.

    1984-01-01

    General considerations concerning the design of a new aircraft are discussed, taking into account the objective to develop an aircraft can satisfy economically a certain spectrum of tasks. Requirements related to the design of sport and touring aircraft included in the past mainly a high cruising speed and short take-off and landing runs. Additional requirements for new aircraft are now low fuel consumption and optimal efficiency. A computer program for the computation of flight performance makes it possible to vary automatically a number of parameters, such as flight altitude, wing area, and wing span. The appropriate design characteristics are to a large extent determined by the selection of the flight altitude. Three different wing profiles are compared. Potential improvements with respect to the performance of the aircraft and its efficiency are related to the use of fiber composites, the employment of better propeller profiles, more efficient engines, and the utilization of suitable instrumentation for optimal flight conduction.

  15. Low Reynolds number, long endurance aircraft design

    SciTech Connect

    Foch, R.J.; Ailinger, K.G. )

    1992-02-01

    Airplanes are typically designed to maximize range at the highest practical cruising speed. However, several missions require extended duration rather than range, and favor the slowest possible cruise speed. Such missions include surveillance, radio relay, and ship's electronic decoy. These missions are ideally suited for advanced technology unmanned aircraft, either remotely piloted or autonomous. Feasibility studies have been conducted and flight demonstrator prototypes of such unique aircraft have been under steady research and development at the Naval Research Laboratory since 1978. This paper discusses the design aspects and tradeoffs unique to small, slow speed long endurance unmanned aircraft operating at wing chord Reynolds numbers between 150,000 and 500,000. Additionally, many of these low Reynolds number-driven design features have applicability to high altitude, long endurance aircraft. 6 refs.

  16. Reference energy-altitude descent guidance: Simulator evaluation. [aircraft descent and fuel conservation

    NASA Technical Reports Server (NTRS)

    Abbot, K. H.; Knox, C. E.

    1985-01-01

    Descent guidance was developed to provide a pilot with information to ake a fuel-conservative descent and cross a designated geographical waypoint at a preselected altitude and airspeed. The guidance was designed to reduce fuel usage during the descent and reduce the mental work load associated with planning a fuel-conservative descent. A piloted simulation was conducted to evaluate the operational use of this guidance concept. The results of the simulation tests show that the use of the guidance reduced fuel consumption and mental work load during the descent. Use of the guidance also decreased the airspeed error, but had no effect on the altitude error when the designated waypoint was crossed. Physical work load increased with the use of the guidance, but remained well within acceptable levels. The pilots found the guidance easy to use as presented and reported that it would be useful in an operational environment.

  17. System Analysis Applied to Autonomy: Application to High-Altitude Long-Endurance Remotely Operated Aircraft

    NASA Technical Reports Server (NTRS)

    Young, Larry A.; Yetter, Jeffrey A.; Guynn, Mark D.

    2006-01-01

    Maturation of intelligent systems technologies and their incorporation into aerial platforms are dictating the development of new analysis tools and incorporation of such tools into existing system analysis methodologies in order to fully capture the trade-offs of autonomy on vehicle and mission success. A first-order "system analysis of autonomy" methodology is outlined in this paper. Further, this analysis methodology is subsequently applied to notional high-altitude long-endurance (HALE) aerial vehicle missions.

  18. Design definition study of a life/cruise fan technology V/STOL aircraft. Volume 2, addendum 2: Program risk assessment

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The results are presented of a risk assessment study conducted on two technology aircraft. The aircraft system components were reviewed and assessed for risk based on: (1) complexity relative to state-of-the-art, (2) manufacturing and qualification testing, (3) availability and delays, and (4) cost/schedule impact. These assessments were based on five risk nomenclatures: low, minor, moderate, high, and extreme. Each aircraft system was assigned an overall risk rating depending upon its contribution to the capability of the aircraft to achieve the performance goals. The slightly lower Sabreliner performance margin is due to the restricted flight envelope, the fixed landing gear, and internal fuel capacity. The Sabreliner with retractable gear and allowed to fly at its best speed and altitude would reflect performance margins similar to the New Airframe. These significant margins, inherent with the MCAIR three gas generator/three fan propulsion system, are major modifiers to risk assessment of both aircraft. The estimated risk and the associated key system and performance areas are tabulated.

  19. Supersonic Cruise Research 1979, part 1

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Aerodynamics, stability and control, propulsion, and environmental factors of the supersonic cruise aircraft are discussed. Other topics include airframe structures and materials, systems integration, and economics.

  20. SHARP: Subsonic High Altitude Research Platform

    NASA Technical Reports Server (NTRS)

    Beals, Todd; Burton, Craig; Cabatan, Aileen; Hermano, Christine; Jones, Tom; Lee, Susan; Radloff, Brian

    1991-01-01

    The Universities Space Research Association is sponsoring an undergraduate program which is geared to designing an aircraft that can study the ozone layer at the equator. This aircraft must be able to satisfy four mission profiles. Mission one is a polar mission that ranges from Chile to the South Pole and back to Chile, a total range of 6000 n.mi. at 100,000 ft with a 2500 lb payload. The second mission is also a polar mission, with an altitude of 70,000 ft and an increased payload of 4000 lbs. For the third mission, the aircraft will takeoff at NASA Ames, cruise at 100,000 ft carrying a 2500 lb payload, and land at Puerto Montt, Chile. The final mission requires the aircraft to take off at NASA Ames, cruise at 100,000 ft with a 1000 lb payload, make an excursion to 120,000 ft, and land at Howard AFB, Panama. Three missions require that a subsonic Mach number be maintained due to constraints imposed by the air sampling equipment. The aircraft need not be manned for all four missions. Three aircraft configurations have been determined to be the most suitable for meeting the above requirements. In the event that a requirement cannot be obtained within the given constraints, recommendations for proposal modifications are given.

  1. Lean, premixed, prevaporized combustion for aircraft gas turbine engines

    NASA Technical Reports Server (NTRS)

    Mularz, E. J.

    1979-01-01

    The application of lean, premixed, prevaporized combustion to aircraft turbine engine systems can result in benefits in terms of superior combustion performance, improved combustor and turbine durability, and environmentally acceptable pollutant emissions. Lean, premixed prevaporized combustion is particularly attractive for reducing the oxides of nitrogen emissions during high altitude cruise. The NASA stratospheric cruise emission reduction program will evolve and demonstrate lean, premixed, prevaporized combustion technology for aircraft engines. This multiphased program is described. In addition, the various elements of the fundamental studies phase of the program are reviewed, and results to date of many of these studies are summarized.

  2. Remotely piloted aircraft in the civil environment

    NASA Technical Reports Server (NTRS)

    Gregory, T. J.; Nelms, W. P.; Karmarkar, J. S.

    1977-01-01

    Improved remotely piloted aircraft (RPAs), i.e., incorporating reductions in size, weight, and cost, are becoming available for civilian applications. Existing RPA programs are described and predicted into the future. Attention is given to the NASA Mini-Sniffer, which will fly to altitudes of more than 20,000 m, sample the atmosphere behind supersonic cruise aircraft, and telemeter the data to ground stations. Design and operating parameters of the aircraft are given, especially the optical sensing systems, and civilian RPA uses are outlined, including airborne research, remote mapping, rescue, message relay, and transportation of need materials. Civil regulatory factors are also dealt with.

  3. Aircraft operator - Would you buy higher DOC to lower noise and fuel use. [Direct Operating Cost tradeoff

    NASA Technical Reports Server (NTRS)

    Corning, G.; Hall, J. F.

    1977-01-01

    A method of optimization of the direct operating cost (DOC) and the effective perceived noise (in units of EPNdB) in aircraft is proposed. A computer program was used to generate a variety of aircraft designs meeting certain specifications, where wing loading, aspect ratio, cruise altitude, wing sweepback, and speed was varied, and DOC for each case was calculated. The higher aspect ratio, in combination with the appropriate wing loadings, cruise altitudes and wing sweep, is found to reduce the noise and the fuel used.

  4. Measurement and prediction of noise from low-altitude military aircraft operations

    NASA Astrophysics Data System (ADS)

    Barry, Bernard F.; Payne, Richard C.; Harris, Anthony L.; Weston, Ralph J.

    1992-04-01

    In response to the rapid growth in demand for information on noise levels around military airfields in the UK, NPL developed AIRNOISE, a mathematical model for computing aircraft noise contours. Since its first applications in 1981, the model has been used to determine zones of eligibility within the MoD compensation scheme. The model has been subject to continuous development, e.g., the incorporation of Harrier V/STOL operations. We have now extended the model to include noise from high-speed, low-level operations. The model predicts not only maximum levels but the complete time-history, so that the time-onset rate can be estimated. To aid refinement and validation of the model, a special exercise has been conducted in which Tornado, Harrier, Jaguar, Hawk, F-15 and F-16 aircraft have flown straight and level at heights between about 100 and 400 feet, at various speeds and engine power settings over an array of microphones. This paper describes the trial and the results obtained. The prediction model is outlined and comparisons made between predictions and measurements.

  5. Some analyses of the variability of atmospheric parameters at low altitudes significant for aircraft propagation

    NASA Technical Reports Server (NTRS)

    Chang, D. T.

    1972-01-01

    The results are discussed in terms of the meteorological data acquisition procedures necessary to monitor changes in atmospheric parameters to support aircraft flyover noise measurements and aircraft noise certification programs. The data consisted primarily of sequential radiosonde ascents to approximately 5000 ft spaced some half-hour to an hour apart. The weather covered by the data sample was predominantly that of clear skies and calm-to-light surface winds associated with well established high-pressure systems. Under these restrictive weather conditions, the study shows that the largest variabilities in temperature and humidity occur during the early morning hours resulting from the effects of direct solar heating of the surface. These rapid changes apparently do not penetrate above approximately 1000 ft. In the late morning hours, the atmosphere appears to become stabilized so that net changes in temperatures and relative humidities at all levels are insignificant even in time periods exceeding three hours. By noon, however, turbulent fluctuations in surface wind and the wind speed itself increase to levels which would make the microphone recording of acoustic signals in the field difficult.

  6. Lift/cruise fan V/STOL technology aircraft design definition study. Volume 3: Development program and budgetary estimates

    NASA Technical Reports Server (NTRS)

    Obrien, W. J.

    1976-01-01

    The aircraft development program, budgetary estimates in CY 1976 dollars, and cost reduction program variants are presented. Detailed cost matrices are also provided for the mechanical transmission system, turbotip transmission system, and the thrust vector hoods and yaw doors.

  7. Low altitude temperature and humidity profile data for application to aircraft noise propagation

    NASA Technical Reports Server (NTRS)

    Connor, A. B.; Copeland, W. L.; Fulbright, D. C.

    1975-01-01

    A data search of the weather statistics from 11 widely dispersed geographical locations within the continental United States was conducted. The sites, located long both sea-coasts and in the interior, span the northern, southern, and middle latitudes. The weather statistics, retrieved from the records of these 11 sites, consist of two daily observations taken over a 10-year period. The data were sorted with respect to precipitation and surface winds and classified into temperature intervals of 5 C and relative humidity intervals of 10 percent for the lower 1400 meters of the atmosphere. These data were assembled in a statistical format and further classified into altitude increments of 200 meters. The data are presented as sets of tables for each site by season of the year and include both daily observations.

  8. An Empirical Approach to the Measurement of the Cosmic Radiation Field at Jet Aircraft Altitudes

    NASA Astrophysics Data System (ADS)

    Bennett, L. G. I.; Lewis, B. J.; Kitching, F.; Green, A. R.; Butler, A.

    With the publication number 60 of the International Commission on Radiological Protection (ICRP) in 1990 and the subsequent recognition that jet aircrew are routinely and occupationally exposed to elevated levels of cosmic radiation, various research groups (in Canada and in the European Union) have been involved in the survey of aircrew and measurement of cosmic radiation at jet altitudes. The group at the Royal Military College of Canada (RMC) first surveyed air force pilots and then aircrew of six Canadian airlines, using neutron-sensitive bubble detectors. In addition, equipment was flown in the cargo area on several scientific flights, including one in which a multi-sphere neutron spectrometer was used to measure the neutron spectrum at altitude. Successive flights included a more portable equipment suite consisting of passive and active (battery-operated) equipment, such as bubble detectors and TLDs, and an ion chamber and neutron counters, respectively, along with a tissue equivalent proportional counter (TEPC). The summation of the low and high LET results from the former equipment compared successfully to those from the TEPC on each flight. The data from numerous flights worldwide were then encapsulated into a program that calculates the radiation dose for any flight in the world at any period in the solar cycle. This experimentally-based program, Predictive Code for AIrcrew Radiation Exposure (PCAIRE) has been designed to be used by the airline industry to meet national dosimetry requirements. In Canada, for example, such a code can be used, supported by periodic measurements. With this latter requirement in mind and a desire to decrease equipment size, the LIULIN instrument has been flown and compared to the TEPC. Our evaluation of the LIULIN will be presented.

  9. An empirical approach to the measurement of the cosmic radiation field at jet aircraft altitudes

    NASA Astrophysics Data System (ADS)

    Green, A. R.; Bennett, L. G. I.; Lewis, B. J.; Kitching, F.; McCall, M. J.; Desormeaux, M.; Butler, A.

    Researchers at the Royal Military College of Canada have accumulated extensive dose measurements performed at jet altitudes on over 160 flights and with a wide variety of detectors including a tissue equivalent proportional counter (TEPC), a smart wide energy neutron detection instrument (SWENDI), bubble detectors, thermoluminescent detectors (TLD) and an ion chamber. The summation of the individual low and high LET results from the latter equipment compared successfully to those from the TEPC on each flight. The data from these numerous worldwide flights have been encapsulated into a program that calculates the radiation dose for any flight in the world at any period in the solar cycle. This experimentally based program, Predictive Code for AIRcrew Exposure (PCAIRE) has been designed to be used by the airline industry to meet national dosimetry requirements. In Canada, for example, such a code can be used, supported by periodic measurements. With this latter requirement in mind and a desire to decrease equipment size, the silicon-based LIULIN-4N LET (linear energy transfer) spectrometer has been assessed to determine its suitability as a mixed field instrument and possible code verification tool. Data obtained from the LIULIN and TEPC in ground-based experiments at the CERN-EC Reference-field Facility (CERF) and on 42 jet-altitude flights have been compared. Analysis of these data has resulted in two different mathematical correlations which can be used to determine the ambient dose equivalent, H∗(10), from the LIULIN absorbed dose output. With either calibration factor, the LIULIN instrument could now be used as a simple, compact and portable detector for routine monitoring.

  10. Effect of fuel properties on performance of single aircraft turbojet combustor at simulated idle, cruise, and takeoff conditions

    NASA Technical Reports Server (NTRS)

    Butze, H. F.; Smith, A. L.

    1977-01-01

    The performance of a single-can JT8D combustor was investigated with a number of fuels exhibiting wide variations in chemical composition and volatility. Performance parameters investigated were combustion efficiency, emissions of CO, unburned hydrocarbons and nitrogen oxides, as well as liner temperatures and smoke. The most pronounced effects of changes in fuel composition were observed at simulated cruise and takeoff conditions where smoke and liner temperatures increased significantly as the hydrogen content of the fuel decreased. At the simulated idle condition, emissions of CO and unburned hydrocarbons increased slightly and, accordingly, combustion efficiencies decreased slightly as the hydrogen content of the fuels decreased.

  11. Vertical Cloud Climatology During TC4 Derived from High-Altitude Aircraft Merged Lidar and Radar Profiles

    NASA Technical Reports Server (NTRS)

    Hlavka, Dennis; Tian, Lin; Hart, William; Li, Lihua; McGill, Matthew; Heymsfield, Gerald

    2009-01-01

    Aircraft lidar works by shooting laser pulses toward the earth and recording the return time and intensity of any of the light returning to the aircraft after scattering off atmospheric particles and/or the Earth s surface. The scattered light signatures can be analyzed to tell the exact location of cloud and aerosol layers and, with the aid of a few optical assumptions, can be analyzed to retrieve estimates of optical properties such as atmospheric transparency. Radar works in a similar fashion except it sends pulses toward earth at a much larger wavelength than lidar. Radar records the return time and intensity of cloud or rain reflection returning to the aircraft. Lidar can measure scatter from optically thin cirrus and aerosol layers whose particles are too small for the radar to detect. Radar can provide reflection profiles through thick cloud layers of larger particles that lidar cannot penetrate. Only after merging the two instrument products can accurate measurements of the locations of all layers in the full atmospheric column be achieved. Accurate knowledge of the vertical distribution of clouds is important information for understanding the Earth/atmosphere radiative balance and for improving weather/climate forecast models. This paper describes one such merged data set developed from the Tropical Composition, Cloud and Climate Coupling (TC4) experiment based in Costa Rica in July-August 2007 using the nadir viewing Cloud Physics Lidar (CPL) and the Cloud Radar System (CRS) on board the NASA ER-2 aircraft. Statistics were developed concerning cloud probability through the atmospheric column and frequency of the number of cloud layers. These statistics were calculated for the full study area, four sub-regions, and over land compared to over ocean across all available flights. The results are valid for the TC4 experiment only, as preferred cloud patterns took priority during mission planning. The TC4 Study Area was a very cloudy region, with cloudy

  12. Large-area Ice Sheet and Sea Ice mapping from High-altitude Aircraft: Examples from the LVIS Sensor

    NASA Astrophysics Data System (ADS)

    Blair, J. B.; Hofton, M. A.; Rabine, D. L.

    2010-12-01

    High altitude airborne surveys of remote polar regions is a relatively recent addition to the remote sensing capabilities serving the Cryospheric science community. The NASA/GSFC-developed airborne sensor, LVIS (Land, Vegetation, and Ice Sensor) is a wide-swath, full-waveform laser altimeter system that produces large-area topographic maps with the highest levels of accuracy and precision. Recent data collections in support of NASA's Operation IceBridge over Antarctica and Greenland have demonstrated the extraordinary mapping capability of the LVIS sensor. Areal coverage is accumulated at a rate of > 1,000 sq. km/hr with repeatability of the surface elevation measurements at the decimeter level. With this new capability come new applications, new insights, the ability to fully capture the spatial extent and variability of changes occurring in highly dynamic areas, and enhanced input into ice sheet models. One example is over 7,000 sq. km collected over the Antarctic Peninsula in just 7 hours from 40,000 ft on the NASA DC-8 aircraft. The wide swath and dense coverage enabled by the LVIS sensor results in significant overlap with legacy ICESat data permitting statistically powerful comparisons and eliminate the need for interpolation or slope corrections. Several examples of ICESat comparisons and change detection between LVIS data takes and other topographic data sets will be presented . Further, a description of the LVIS waveform vector data product and examples of advanced data products and analysis techniques with be shown. A fully-autonomous version of LVIS is now under development (LVIS-GH) for use in the Global Hawk aircraft. Long duration flights over remote areas will be possible with this sensor. Testing on the Global Hawk UAV is scheduled for the Summer of 2011. The LVIS data are freely available from the NSIDC website (http://nsidc.org/data/icebridge/) and the LVIS website (https://lvis.gsfc.nasa.gov).

  13. High Altitude Long Endurance (HALE) Unmanned Aircraft System (UAS): Pilot Knowledge, Skills and Abilities

    NASA Technical Reports Server (NTRS)

    2005-01-01

    This report summarizes the initial work accomplished by the ACCESS 5 Human System Integration (HSI) team to identify Unmanned Aircraft System (UAS) Pilot Knowledge, Skill and Ability (KSA), Training and Medical requirements. To derive this information the following tasks were accomplished: a) Mission and Function analyses were performed; b) Applicable FARs and FAA Advisory Circulars (ACs) were reviewed; c) Meetings were conducted with NASA and FAA Human Factors personnel; d) Surveys were completed by ACCESS 5 HSI Working group UA Pilots; e) Coordination meetings were conducted with the ACCESS 5 Policy IPT. The results of these efforts were used to develop a summary of the current qualifications. for an individual to function as a Pilot In Command (PIC) for UAs currently flown by UNITE companies, to develop preliminary Pilot KSAs for each phase of flight, and to delineate preliminary Pilot Training and Medical requirements. These results are to be provided to the Policy IPT to support their development of recommendations for UA Pilot Rating Criteria, training and medical qualifications. It is expected that the initially an instrument rated pilot will be required to serve as the PIC. However, as operational experience is gained, and automation is applied to accomplish various system functions, it is expected that pilot rating criteria could be lessened.

  14. [Flight and altitude medicine for anesthetists-part 3: emergencies on board commercial aircraft].

    PubMed

    Graf, Jürgen; Stüben, Uwe; Pump, Stefan

    2013-04-01

    The demographic trend of industrialized societies is also reflected in commercial airlines' passengers: passengers are older nowadays and long-haul flights are routine mode of transport despite considerable chronic and acute medical conditions. Moreover, duration of non-stop flight routes and the number of passengers on board increase. Thus, the probability of a medical incident during a particular flight event increases, too.Due to international regulations minimum standards for medical equipment on board, and first aid training of the crews are set. However, it is often difficult to assess whether a stopover at a nearby airport can improve the medical care of a critically ill passenger. Besides flight operations and technical aspects, the medical infrastructure on the ground has to be considered carefully.Regardless of the amount of experience of a physician medical emergencies on board an aircraft usually represent a particular challenge. This is mainly due to the unfamiliar surroundings, the characteristics of the cabin atmosphere, the often existing cultural and language barriers and legal liability concerns. PMID:23633251

  15. Investigation of thermoelastic stresses induced at high altitudes on aircraft external fuel tanks

    NASA Astrophysics Data System (ADS)

    Mousseau, Stephanie Lynn Steber

    As composite technology has grown over the past several decades, the use of composite materials in military applications has become more feasible and widely accepted. Although composite materials provide many benefits, including strength optimization and reduced weight, damage and repair of these materials creates an additional challenge, especially when operating in a marine environment, such as on a carrier deck. This is evident within the Navy, as excessive damage often leads to the scrapping of F/A-18 External Fuel Tanks. This damage comes in many forms, the most elusive of which is delamination. Often the delamination found on the tanks is beyond repairable limits and the cause unknown, making it difficult to predict and prevent. The purpose of this investigation was to study the structure of the Navy's 330 gallon External Fuel Tanks and investigate one potential cause of delamination, stresses induced at high altitudes by cold temperatures. A stress analysis was completed using finite element software, and validation of the model was accomplished through testing of a scale model specimen. Due to the difficulties in modeling and predicting delamination, such as unknown presence of voids and understanding failure criteria, delamination was not modeled in Abaqus, rather stresses were observed and characteristics were studied to understand the potential for delamination within the layup. In addition, studies were performed to understand the effect of material properties and layup sequence on the stress distribution within the tank. Alternative design solutions are presented which could reduce the radial stresses within the tank, and recommendations are made for further study to understand the trade-offs between stress, cost, and manufacturability.

  16. Ecological Risk Assessment Framework for Low-Altitude Overflights by Fixed-Wing and Rotary-Wing Military Aircraft

    SciTech Connect

    Efroymson, R.A.

    2001-01-12

    This is a companion report to the risk assessment framework proposed by Suter et al. (1998): ''A Framework for Assessment of Risks of Military Training and Testing to Natural Resources,'' hereafter referred to as the ''generic framework.'' The generic framework is an ecological risk assessment methodology for use in environmental assessments on Department of Defense (DoD) installations. In the generic framework, the ecological risk assessment framework of the US Environmental Protection Agency (EPA 1998) is modified for use in the context of (1) multiple and diverse stressors and activities at a military installation and (2) risks resulting from causal chains, e.g., effects on habitat that indirectly impact wildlife. Both modifications are important if the EPA framework is to be used on military installations. In order for the generic risk assessment framework to be useful to DoD environmental staff and contractors, the framework must be applied to specific training and testing activities. Three activity-specific ecological risk assessment frameworks have been written (1) to aid environmental staff in conducting risk assessments that involve these activities and (2) to guide staff in the development of analogous frameworks for other DoD activities. The three activities are: (1) low-altitude overflights by fixed-wing and rotary-wing aircraft (this volume), (2) firing at targets on land, and (3) ocean explosions. The activities were selected as priority training and testing activities by the advisory committee for this project.

  17. A computer program for the prediction of near field noise of aircraft in cruising flight: User's guide

    NASA Technical Reports Server (NTRS)

    Tibbetts, J. G.

    1980-01-01

    Detailed instructions for using the near field cruise noise prediction program, a program listing, and a sample case with output are presented. The total noise for free field lossless conditions at selected observer locations is obtained by summing the contributions from up to nine acoustic sources. These noise sources, selected at the user's option, include the fan/compressor, turbine, core (combustion), jet, shock, and airframe (trailing edge and turbulent boundary layers). The effects of acoustic suppression materials such as engine inlet treatment may also be included in the noise prediction. The program is available for use on the NASA/Langley Research Center CDC computer. Comparisons of the program predictions with measured data are also given, and some possible reasons for their lack of agreement presented.

  18. Design study: A 186 kW lightweight diesel aircraft engine

    NASA Technical Reports Server (NTRS)

    Brouwers, A. P.

    1980-01-01

    The design of an aircraft engine capable of developing 186 kW shaft power at a 7620 m altitude is described. The 186 kW design takes into account expected new developments in aircraft designs resulting in a reassessment of the power requirements at the cruise mode operation. Based on the results of this analysis a three phase technology development program is projected resulting in production dates of 1985, 1992, and 2000.

  19. Testing of lift/cruise fan exhaust deflector. [for a tip turbine lift fan in short takeoff aircraft

    NASA Technical Reports Server (NTRS)

    Schlundt, D. W.

    1975-01-01

    A lift/cruise exhaust deflector system for the LF336/A tip turbine lift fan was designed, built, and tested to determine the design and performance characteristics of a large-scale, single swivel nozzle thrust vectoring system. The exhaust deflector static testing was performed at the Ames Research Center outside static test stand facilities. The test hardware was installed on a hydraulic lift platform to permit both in and out of ground effect testing. The exhaust flow of the LF336/A lift fan was vectored from 0 degrees through 130 degrees during selected fan speeds to obtain performance at different operating conditions. The system was operated with and without flow vanes installed in the small radius bends to evaluate the system performance based on a proposed method of improving the internal flow losses. The program also included testing at different ground heights, to the nozzle exhaust plane, to obtain ground effect data, and the testing of two methods of thrust spoiling using a duct bypass door system and nozzle flap system.

  20. Results of a low-speed wind tunnel test of the MDC 2.2M supersonic cruise aircraft configuration

    NASA Technical Reports Server (NTRS)

    Yip, L. P.; Parlett, L. P.; Roensch, R. L.; Felix, J. E.; Welge, H. R.

    1980-01-01

    Results of a low speed test conducted in the Full Scale Tunnel at NASA Langley using an advanced supersonic cruise vehicle configuration are presented. These tests used a 10 percent scale model of a configuration that had demonstrated high aerodynamic performance at Mach 2.2 during a previous test program. The low speed model has leading and trailing edge flaps designed to improve low speed lift to drag ratios at high lift and includes devices for longitudinal and lateral/directional control. The results obtained during the low speed test program have shown that full span leading edge flaps are required for maximum performance. The amount of deflection of the leading edge flap must increase with C sub L to obtain the maximum benefit. Over 80 percent of full leading edge suction was obtained up to lift off C sub L's of 0.65. A mild pitch up occurred at about 6 deg angle of attack with and without the leading edge flap deflected. The pitch up is controllable with the horizontal tail. Spoilers were found to be preferable to spoiler/deflectors at low speeds. The vertical tail maintained effectiveness up to the highest angle of attack tested but the tail on directional stability deteriorated at high angles of attack. Lateral control was adequate for landing at 72 m/sec in a 15.4 m/sec crosswind.

  1. Calibration of the visible and near-infrared channels of the NOAA-9 AVHRR using high-altitude aircraft measurements from August 1985 and October 1986

    NASA Technical Reports Server (NTRS)

    Smith, Gilbert R.; Levin, Robert H.; Koyanagi, Robert S.; Wrigley, Robert C.

    1989-01-01

    Visible and near infrared wavelength sensors mounted on operational satellites now in use do not have onboard absolute calibration devices. One means of establishing an in-orbit calibration for a satellite sensor is to make simultaneous measurement of a bright, relatively uniform scene along the satellite view vector from a calibrated instrument on board a high altitude aircraft. Herein, aircraft data were recorded over White Sands, New Mexico at satellite overpass time. Comparison of the coincident aircraft and orbiting satellite data for the visible and near infrared wavelength channels of the NOAA-9 Advanced Very High Resolution Radiometer shows that the calibration of the visible channel was unchanged from prelaunch values, but that the near infrared channel has degraded 6 percent by Aug. 1985. By Oct. 1986 the visible channel had degraded 13 percent and the near infrared channel had degraded 19 percent.

  2. The effects of aircraft on climate and pollution. Part II: 20-year impacts of exhaust from all commercial aircraft worldwide treated individually at the subgrid scale.

    PubMed

    Jacobson, M Z; Wilkerson, J T; Naiman, A D; Lele, S K

    2013-01-01

    This study examines the 20-year impacts of emissions from all commercial aircraft flights worldwide on climate, cloudiness, and atmospheric composition. Aircraft emissions from each individual flight worldwide were modeled to evolve from the subgrid to grid scale with the global model described and evaluated in Part I of this study. Simulations with and without aircraft emissions were run for 20 years. Aircraft emissions were found to be responsible for -6% of Arctic surface global warming to date, -1.3% of total surface global warming, and -4% of global upper tropospheric warming. Arctic warming due to aircraft slightly decreased Arctic sea ice area. Longer simulations should result in more warming due to the further increase in CO2. Aircraft increased atmospheric stability below cruise altitude and decreased it above cruise altitude. The increase in stability decreased cumulus convection in favor of increased stratiform cloudiness. Aircraft increased total cloud fraction on average. Aircraft increased surface and upper tropospheric ozone by -0.4% and -2.5%, respectively and surface and upper-tropospheric peroxyacetyl nitrate (PAN) by -0.1% and -5%, respectively. Aircraft emissions increased tropospheric OH, decreasing column CO and CH4 by -1.7% and -0.9%, respectively. Aircraft emissions increased human mortality worldwide by -620 (-240 to 4770) deaths per year, with half due to ozone and the rest to particulate matter less than 2.5 micrometers in diameter (PM2.5). PMID:24601012

  3. Effects of plume-scale versus grid-scale treatment of aircraft exhaust photochemistry

    NASA Astrophysics Data System (ADS)

    Cameron, Mary A.; Jacobson, Mark Z.; Naiman, Alexander D.; Lele, Sanjiva K.

    2013-11-01

    is a study to examine the impact of modeling photochemistry from aircraft emissions in an expanding plume versus at the grid scale in an atmospheric model. Differences in model treatments for a single flight occurred at all altitudes during takeoff, cruise, and landing. After 10 h, the plume treatment decreased grid-scale ozone production by 33%, methane destruction by 30%, and carbon monoxide destruction by 32% at cruise altitude compared with the grid-scale treatment. The plume treatment changed the odd nitrogen partitioning by ~10%. For multiple overlapping flights at cruise altitude, final ozone, methane, and carbon monoxide perturbations decreased by 77, 68, and 74%, respectively, compared with the grid-scale treatment. Enhanced mixing with ambient air reduced the plume-scale and grid-scale differences. The persistent differences in photochemical activity indicate that individual plume treatment should be incorporated into 3-D modeling studies.

  4. CONDOR: Long endurance high altitude vehicle, volume 5

    NASA Technical Reports Server (NTRS)

    Andrews, L. Cullen; Augsburger, Bill; Cote, Thomas; Ghitea, Mihael; Lee, Il Sik; Lee, Susik; Leong, Gary

    1988-01-01

    The results of a design study resulting in the proposed CONDOR aircraft are presented. The basic requirements are for the aircraft to maintain continuous altitude at or above 45,000 feet for at least a 3-day mission, be able to comfortably support a two-man crew during this period with their field of vision not obstructed to a significant degree, carry a payload of 200 pounds, and provide a power supply to the payload of 2000 watts. The take-off and landing distances must be below 5000. feet, and time to reach cruise altitude must not exceed 3 hours. The subjects discussed are configuration selection, structural analysis, stability and control, crew and payload accomodations, and economic estimates.

  5. Parametric Analyses of Potential Effects on Upper Tropospheric/Lower Stratospheric Ozone Chemistry by a Future Fleet of High Speed Civil Transport (HSCT) Type Aircraft

    NASA Technical Reports Server (NTRS)

    Dutta, Mayurakshi; Patten, Kenneth O.; Wuebbles,Donald J.

    2005-01-01

    This report analyzed the potential impact of projected fleets of HSCT aircraft (currently not under development) through a series of parametric analyses that examine the envelope of potential effects on ozone over a range of total fuel burns, emission indices of nitrogen oxides, and cruise altitudes.

  6. Structural modeling and optimization of a joined-wing configuration of a High-Altitude Long-Endurance (HALE) aircraft

    NASA Astrophysics Data System (ADS)

    Kaloyanova, Valentina B.

    Recent research trends have indicated an interest in High-Altitude, Long-Endurance (HALE) aircraft as a low-cost alternative to certain space missions, such as telecommunication relay, environmental sensing and military reconnaissance. HALE missions require a light vehicle flying at low speed in the stratosphere at altitudes of 60,000-80,000 ft, with a continuous loiter time of up to several days. To provide high lift and low drag at these high altitudes, where the air density is low, the wing area should be increased, i.e., high-aspect-ratio wings are necessary. Due to its large span and lightweight, the wing structure is very flexible. To reduce the structural deformation, and increase the total lift in a long-spanned wing, a sensorcraft model with a joined-wing configuration, proposed by AFRL, is employed. The joined-wing encompasses a forward wing, which is swept back with a positive dihedral angle, and connected with an aft wing, which is swept forward. The joined-wing design combines structural strength, high aerodynamic performance and efficiency. As a first step to study the joined-wing structural behavior an 1-D approximation model is developed. The 1-D approximation is a simple structural model created using ANSYS BEAM4 elements to present a possible approach for the aerodynamics-structure coupling. The pressure loads from the aerodynamic analysis are integrated numerically to obtain the resultant aerodynamic forces and moments (spanwise lift and pitching moment distributions, acting at the aerodynamic center). These are applied on the 1-D structural model. A linear static analysis is performed under this equivalent load, and the deformed shape of the 1-D model is used to obtain the deformed shape of the actual 3-D joined wing, i.e. deformed aerodynamic surface grid. To date in the existing studies, only simplified structural models have been examined. In the present work, in addition to the simple 1-D beam model, a semi-monocoque structural model is

  7. The HAMMER: High altitude multiple mission environmental researcher

    NASA Technical Reports Server (NTRS)

    Hayashi, Darren; Zylla, Cara; Amaro, Ernesto; Colin, Phil; Klause, Thomas; Lopez, Bernardo; Williamson, Danna

    1991-01-01

    At the equator, the ozone layer ranges from 65,000 to 130,000+ feet which is beyond the capabilities of the ER-2, NASA's current high altitude reconnaissance aircraft. The Universities Space Research Association, in cooperation with NASA, is sponsoring an undergraduate program which is geared to designing an aircraft that can study the ozone layer at the equator. This aircraft must be able to satisfy four mission profiles. Mission one is a polar mission which ranges from Chile to the South Pole and back to Chile, a total range of 6000 n. mi. at 100,000 feet with a 2500 lb. payload. The second mission is also a polar mission with a decreased altitude of 70,000 feet and an increased payload of 4000 lb. For the third mission, the aircraft will take-off at NASA Ames, cruise at 100,000 feet carrying a 2500 lb. payload, and land in Puerto Montt, Chile. The final mission requires the aircraft to take-off at NASA Ames, cruise at 100,000 feet with a 1000 lb. payload, make an excursion to 120,000 feet, and land at Howard AFB, Panama. All three missions require that a subsonic Mach number is maintained due to constraints imposed by the air sampling equipment. The aircraft need not be manned for all four missions. Three aircraft configurations were determined to be the most suitable for meeting the above requirements. The performance of each configuration is analyzed to investigate the feasibility of the project requirements. In the event that a requirement can not be obtained within the given constraints, recommendations for proposal modifications are given.

  8. The Radiation Dose at Commercial Aircraft Altitudes During the January 2005 High-Energy Solar Cosmic ray Event and the Effects of the Solar Cosmic ray Anisotropy

    NASA Astrophysics Data System (ADS)

    Smart, D. F.; Shea, M. A.; Friedberg, W.; Copeland, K.; Sauer, H. H.

    2005-12-01

    The radiation dose to aircrews and passengers is a phenomenon of societal interest. There is a requirement to provide alerts whenever the radiation dose exceeds 20 micro-sieverts per hour at flight altitudes. The possibility that this might occur during a large high-energy solar cosmic ray event has resulted in much speculation. During the 20 January 2005 ground-level event the FAA Solar Radiation Alert System would have issued such an alert for aircraft at high latitudes for flight altitudes above 40,000 feet. Analysis of the GOES high-energy proton data results in a predicted dose rate of 23 micro Sv per hour at 60,000 feet for the first hour of the event. We also predict that the maximum peak dose rate would have been higher at the geographical position corresponding to the peak anisotropic flux intensity and would be correspondingly lower at geographical positions receiving a lower high energy solar cosmic ray flux. The solar high-energy flux anisotropy is extremely variable among the observed solar cosmic ray ground-level events. The 20 January 2005 event had one of the most extreme anisotropies yet observed by ground-level cosmic ray neutron monitors. We discuss the effects of this anisotropy with respect to aircraft radiation dose.

  9. Transient altitude-induced compartment syndrome associated with fiberglass casts using waterproof cast padding.

    PubMed

    Kadzielski, John; Bae, Donald S

    2013-01-01

    Changes in aircraft cabin pressure and its interplay with a fixed diameter fiberglass cylindrical cast and the closed air cells in waterproof cast padding may cause a transient altitude-induced compartment syndrome. In this case series, 2 patients reported transient compartment syndromes that resolved with aircraft decent. As proof of concept, this work displays photographic and video evidence showing the difference in air cell volume from experimental data in a vacuum chamber as well as real-world volume changes at cruise altitude in a commercial airliner. Transient altitude-induced compartment syndromes associated with fiberglass casts using waterproof cast padding are real and surgeons and patients should be advised of this potentially devastating complication. PMID:23431541

  10. Atmospheric mercury measurements onboard the CARIBIC passenger aircraft

    NASA Astrophysics Data System (ADS)

    Slemr, Franz; Weigelt, Andreas; Ebinghaus, Ralf; Kock, Hans H.; Bödewadt, Jan; Brenninkmeijer, Carl A. M.; Rauthe-Schöch, Armin; Weber, Stefan; Hermann, Markus; Becker, Julia; Zahn, Andreas; Martinsson, Bengt

    2016-05-01

    Goal of the project CARIBIC (Civil Aircraft for the Regular Investigation of the atmosphere Based on an Instrumented Container) is to carry out regular and detailed observations of atmospheric composition (particles and gases) at cruising altitudes of passenger aircraft, i.e. at 9-12 km. Mercury has been measured since May 2005 by a modified Tekran instrument (Tekran Model 2537 A analyser, Tekran Inc., Toronto, Canada) during monthly intercontinental flights between Europe and South and North America, Africa, and Asia. Here we describe the instrument modifications, the post-flight processing of the raw instrument signal, and the fractionation experiments.

  11. Ozone contamination in aircraft cabins - Results from GASP data and analyses

    NASA Technical Reports Server (NTRS)

    Holdeman, J. D.; Nastrom, G. D.

    1981-01-01

    The paper reviews results from the NASA Global Atmospheric Sampling Program (GASP) pertaining to the problem of ozone contamination in commercial aircraft cabins. Specifically, analyses of GASP data have (1) confirmed the high ozone levels in aircraft cabins and documented the ratio of ozone inside and outside the cabins of two B747 airliners, including the effects of air conditioning modifications on that ratio; (2) defined ambient ozone climatology at commercial aircraft cruise altitudes, including tabulation of encounter frequency data; and (3) outlined procedures for estimating the frequency of flights encountering high cabin ozone levels using climatological ambient ozone data and verified these procedures against cabin measurements.

  12. Feasibility study for a microwave-powered ozone sniffer aircraft. B.S. Thesis

    NASA Technical Reports Server (NTRS)

    Botros, David F.; Cody, Charlotte K.; Forden, Noah P.; Helsing, Martin A.; Jutras, Thomas H.; Kim, Dohoon; Labarre, Christopher; Odin, Ethan M.; Sandler, Scott B.

    1990-01-01

    The preliminary design of a high-altitude, remotely-piloted, atmospheric-sampling aircraft powered by microwave energy beamed from ground-based antenna was completed. The vehicle has a gross weight of 6720 pounds and is sized to carry a 1000 pound payload at an altitude of 100,000 feet. The underside of the wing serves as the surface of a rectenna designed to receive microwave energy at a power density of 700 watts per square meter and the wing has a planform area of 3634 square feet to absorb the required power at an optimum Mach number M = 0.44. The aircraft utilizes a horizontal tail and a canard for longitudinal control and to enhance the structural rigidity of the twin fuselage configuration. The wing structure is designed to withstand a gust-induced load factor n = 3 at cruise altitude but the low-wing loading of the aircraft makes it very sensitive to gusts at low altitudes, which may induce load factors in excess of 20. A structural load alleviation system is therefore proposed to limit actual loads to the designed structural limit. Losses will require transmitted power on the order of megawatts to be radiated to the aircraft from the ground station, presenting environmental problems. Since the transmitting antenna would have a diameter of several hundred feet, it would not be readily transportable, so we propose that a single antenna be constructed at a site from which the aircraft is flown. The aircraft would be towed aloft to an initial altitude at which the microwave power would be utilized. The aircraft would climb to cruise altitude in a spiral flight path and orbit the transmitter in a gentle turn.

  13. High Altitude Emissions

    NASA Technical Reports Server (NTRS)

    Bulzan, Dan

    2007-01-01

    An overview of emissions related research being conducted as part of the Fundamental Aeronautics Supersonics Project is presented. The overview includes project objectives, milestones, and descriptions of major research areas. The overview also includes information on the emissions research being conducted under NASA Research Announcements. Technical challenges include: 1) Environmental impact of supersonic cruise emissions is greater due to higher flight altitudes which makes emissions reduction increasingly important. 2) Accurate prediction tools to enable combustor designs that reduce emissions at supersonic cruise are needed as well as intelligent systems to minimize emissions. 3) Combustor operating conditions at supersonic cruise are different than at subsonic cruise since inlet fuel and air temperatures are considerably increased.

  14. Alternative-Fuel Effects on Contrails & Cruise Emissions (ACCESS-2) Flight Experiment

    NASA Technical Reports Server (NTRS)

    Anderson, Bruce E.

    2015-01-01

    Although the emission performance of gas-turbine engines burning renewable aviation fuels have been thoroughly documented in recent ground-based studies, there is still great uncertainty regarding how the fuels effect aircraft exhaust composition and contrail formation at cruise altitudes. To fill this information gap, the NASA Aeronautics Research Mission Directorate sponsored the ACCESS flight series to make detailed measurements of trace gases, aerosols and ice particles in the near-field behind the NASA DC-8 aircraft as it burned either standard petroleum-based fuel of varying sulfur content or a 50:50 blend of standard fuel and a hydro-treated esters and fatty acid (HEFA) jet fuel produced from camelina plant oil. ACCESS 1, conducted in spring 2013 near Palmdale CA, focused on refining flight plans and sampling techniques and used the instrumented NASA Langley HU-25 aircraft to document DC-8 emissions and contrails on five separate flights of approx.2 hour duration. ACCESS 2, conducted from Palmdale in May 2014, engaged partners from the Deutsches Zentrum fuer Luft- und Raumfahrt (DLR) and National Research Council-Canada to provide additional scientific expertise and sampling aircraft (Falcon 20 and CT-133, respectively) with more extensive trace gas, particle, or air motion measurement capability. Eight, muliti-aircraft research flights of 2 to 4 hour duration were conducted to document the emissions and contrail properties of the DC-8 as it 1) burned low sulfur Jet A, high sulfur Jet A or low sulfur Jet A/HEFA blend, 2) flew at altitudes between 6 and 11 km, and 3) operated its engines at three different fuel flow rates. This presentation further describes the ACCESS flight experiments, examines fuel type and thrust setting impacts on engine emissions, and compares cruise-altitude observations with similar data acquired in ground tests.

  15. NASA Alternative-Fuel Effects on Contrails and Cruise Emissions (ACCESS) Flight Experiments

    NASA Astrophysics Data System (ADS)

    Anderson, B. E.; Moore, R.; Beyersdorf, A. J.; Thornhill, K. L., II; Shook, M.; Winstead, E.; Ziemba, L. D.; Bulzan, D. L.; Brown, A.; Beaton, B.; Schlager, H.

    2014-12-01

    Although the emission performance of gas-turbine engines burning renewable aviation fuels have been thoroughly documented in recent ground-based studies, there is still great uncertainty regarding how the fuels effect aircraft exhaust composition and contrail formation at cruise altitudes. To fill this information gap, the NASA Aeronautics Research Mission Directorate sponsored the ACCESS flight series to make detailed measurements of trace gases, aerosols and ice particles in the near-field behind the NASA DC-8 aircraft as it burned either standard petroleum-based fuel of varying sulfur content or a 50:50 blend of standard fuel and a hydro-treated esters and fatty acid (HEFA) jet fuel produced from camelina plant oil. ACCESS 1, conducted in spring 2013 near Palmdale CA, focused on refining flight plans and sampling techniques and used the instrumented NASA Langley HU-25 aircraft to document DC-8 emissions and contrails on five separate flights of ~2 hour duration. ACCESS 2, conducted from Palmdale in May 2014, engaged partners from the Deutsches Zentrum für Luft- und Raumfahrt (DLR) and National Research Council-Canada to provide additional scientific expertise and sampling aircraft (Falcon 20 and CT-133, respectively) with more extensive trace gas, particle, or air motion measurement capability. Eight, muliti-aircraft research flights of 2 to 4 hour duration were conducted to document the emissions and contrail properties of the DC-8 as it 1) burned low sulfur Jet A, high sulfur Jet A or low sulfur Jet A/HEFA blend, 2) flew at altitudes between 6 and 11 km, and 3) operated its engines at three different fuel flow rates. This presentation further describes the ACCESS flight experiments, examines fuel type and thrust setting impacts on engine emissions, and compares cruise-altitude observations with similar data acquired in ground-test venues.

  16. Unmanned Aircraft System (UAS) Traffic Management (UTM): Enabling Civilian Low-Altitude Airspace and Unmanned Aerial System Operations

    NASA Technical Reports Server (NTRS)

    Kopardekar, Parimal Hemchandra

    2016-01-01

    Just a year ago we laid out the UTM challenges and NASA's proposed solutions. During the past year NASA's goal continues to be to conduct research, development and testing to identify airspace operations requirements to enable large-scale visual and beyond visual line-of-sight UAS operations in the low-altitude airspace. Significant progress has been made, and NASA is continuing to move forward.

  17. Sonic-boom measurements for SR-71 aircraft operating at Mach numbers to 3.0 and altitudes to 24384 meters

    NASA Technical Reports Server (NTRS)

    Maglieri, D. J.; Huckel, V.; Henderson, H. R.

    1972-01-01

    Sonic-boom pressure signatures produced by the SR-71 aircraft at altitudes from 10,668 to 24,384 meters and Mach numbers 1.35 to 3.0 were obtained as an adjunct to the sonic boom evaluation program relating to structural and subjective response which was conducted in 1966-1967 time period. Approximately 2000 sonic-boom signatures from 33 flights of the SR-71 vehicle and two flights of the F-12 vehicle were recorded. Measured ground-pressure signatures for both on-track and lateral measuring station locations are presented and the statistical variations of the overpressure, positive impulse, wave duration, and shock-wave rise time are illustrated.

  18. Weather Requirements and Procedures for Step 1: High Altitude Long Endurance (HALE) Unmanned Aircraft System (UAS) Flight Operations in the National Air Space (NAS)

    NASA Technical Reports Server (NTRS)

    2007-01-01

    This cover sheet is for version 2 of the weather requirements document along with Appendix A. The purpose of the requirements document was to identify and to list the weather functional requirements needed to achieve the Access 5 vision of "operating High Altitude, Long Endurance (HALE) Unmanned Aircraft Systems (UAS) routinely, safely, and reliably in the National Airspace System (NAS) for Step 1." A discussion of the Federal Aviation Administration (FAA) references and related policies, procedures, and standards is provided as basis for the recommendations supported within this document. Additional procedures and reference documentation related to weather functional requirements is also provided for background. The functional requirements and related information are to be proposed to the FAA and various standards organizations for consideration and approval. The appendix was designed to show that sources of flight weather information are readily available to UAS pilots conducting missions in the NAS. All weather information for this presentation was obtained from the public internet.

  19. Aircraft measurements of ozone, NOx, CO, and aerosol concentrations in biomass burning smoke over Indonesia and Australia in October 1997: Depleted ozone layer at low altitude over Indonesia

    NASA Astrophysics Data System (ADS)

    Tsutsumi, Yukitomo; Sawa, Yousuke; Makino, Yukio; Jensen, Jørgen B.; Gras, John L.; Ryan, Brian F.; Diharto, Sri; Harjanto, Hery

    The 1997 El Niño unfolded as one of the most sever El Niño Southern Oscillation (ENSO) events in this century and it coincided with massive biomass burning in the equatorial western Pacific region. To assess the influence on the atmosphere, aircraft observations of trace gases and aerosol were conducted over Kalimantan in Indonesia and Australia. Over Kalimantan in Indonesia, high concentrations of O3, NOx, CO, and aerosols were observed during the flight. Although the aerosol and NOx decreased with altitude, the O3 had the maximum concentration (80.5 ppbv) in the middle layer of the smoke haze and recorded very low concentrations (˜20 ppbv) in the lower smoke layer. This feature was not observed in the Australian smoke. We proposed several hypotheses for the low O3 concentration at low levels over Kalimantan. The most likely are lack of solar radiation and losses at the surface of aerosol particles.

  20. A preliminary assessment of the impact of 2-D exhaust-nozzle geometry on the cruise range of a hypersonic aircraft with top-mounted ramjet propulsion

    NASA Technical Reports Server (NTRS)

    Vahl, W. A.; Weidner, J. P.

    1980-01-01

    A theoretical study of full length and shortened, two dimensional, isentropic, exhaust nozzles integrated with top mounted ramjet propulsion nacelles were conducted. Both symmetric and asymmetric contoured nozzles with a range of angular orientations were considered. Performance comparisons to determine optimum installations for a representative hypersonic vehicle at Mach 5 cruise conditions are presented on the basis of cruise range, propulsive specific impulse, inlet area requirements, and overall lift drag ratio. The effect of approximating the nozzle internal contours with planar surfaces and the determination of viscous and frozen flow effects are also presented.

  1. Use of optimization to predict the effect of selected parameters on commuter aircraft performance

    NASA Technical Reports Server (NTRS)

    Wells, V. L.; Shevell, R. S.

    1982-01-01

    An optimizing computer program determined the turboprop aircraft with lowest direct operating cost for various sets of cruise speed and field length constraints. External variables included wing area, wing aspect ratio and engine sea level static horsepower; tail sizes, climb speed and cruise altitude were varied within the function evaluation program. Direct operating cost was minimized for a 150 n.mi typical mission. Generally, DOC increased with increasing speed and decreasing field length but not by a large amount. Ride roughness, however, increased considerably as speed became higher and field length became shorter.

  2. Quantum dosimetry and online visualization of X-ray and charged particle radiation in commercial aircraft at operational flight altitudes with the pixel detector Timepix

    NASA Astrophysics Data System (ADS)

    Granja, Carlos; Pospisil, Stanislav

    2014-07-01

    We investigate the application of the hybrid semiconductor pixel detector Timepix for precise characterization, quantum sensitivity dosimetry and visualization of the charged particle radiation and X-ray field inside commercial aircraft at operational flight altitudes. The quantum counting capability and granularity of Timepix provides the composition and spectral-characteristics of the X-ray and charged-particle field with high sensitivity, wide dynamic range, high spatial resolution and particle type resolving power. For energetic charged particles the direction of trajectory and linear energy transfer can be measured. The detector is operated by the integrated readout interface FITPix for power, control and data acquisition together with the software package Pixelman for online visualization and real-time data processing. The compact and portable radiation camera can be deployed remotely being controlled simply by a laptop computer. The device performs continuous monitoring and accurate time-dependent measurements in wide dynamic range of particle fluxes, deposited energy, absorbed dose and equivalent dose rates. Results are presented for in-flight measurements at altitudes up to 12 km in various flights selected in the period 2006-2013.

  3. The impact of emissions standards on the design of aircraft gas turbine engine combustors

    NASA Technical Reports Server (NTRS)

    Rudey, R. A.

    1976-01-01

    Effective emission control techniques have been identified and a wide spectrum of potential applications for these techniques to existing and advanced engines are being considered. Results from advanced combustor concept evaluations and from fundamental experiments are presented and discussed and comparisons are made with existing EPA emission standards and recommended levels for high altitude cruise. The impact that the advanced low emission concepts may impose on future aircraft engine combustor designs and related engine components is discussed.

  4. TRAGEN: Computer program to simulate an aircraft steered to follow a specified verticle profile. User's guide

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The longitudinal dynamics of a medium range twin-jet or tri-jet transport aircraft are simulated. For the climbing trajectory, the thrust is constrained to maximum value, and for descent, the thrust is set at idle. For cruise, the aircraft is held in the trim condition. For climb or descent, the aircraft is steered to follow either (a) a fixed profile which is input to the program or (b) a profile computed at the beginning of that segment of the run. For climb, the aircraft is steered to maintain the given airspeed as a function of altitude. For descent, the aircraft is steered to maintain the given altitude as a function of range-to-go. In both cases, the control variable is angle-of-attack. The given output trajectory is presented and compared with the input trajectory. Step climb is treated just as climb. For cruise, the Breguet equations are used to compute the fuel burned to achieve a given range and to connect given initial and final values of altitude and Mach number.

  5. A study to define the research and technology requirements for advanced turbo/propfan transport aircraft

    NASA Technical Reports Server (NTRS)

    Goldsmith, I. M.

    1981-01-01

    The feasibility of the propfan relative to the turbofan is summarized, using the Douglas DC-9 Super 80 (DS-8000) as the actual operational base aircraft. The 155 passenger economy class aircraft (31,775 lb 14,413 kg payload), cruise Mach at 0.80 at 31,000 ft (8,450 m) initial altitude, and an operational capability in 1985 was considered. Three propfan arrangements, wing mounted, conventional horizontal tail aft mounted, and aft fuselage pylon mounted are selected for comparison with the DC-9 Super 80 P&WA JT8D-209 turbofan powered aircraft. The configuration feasibility, aerodynamics, propulsion, structural loads, structural dynamics, sonic fatigue, acoustics, weight maintainability, performance, rough order of magnitude economics, and airline coordination are examined. The effects of alternate cruise Mach number, mission stage lengths, and propfan design characteristics are considered. Recommendations for further study, ground testing, and flight testing are included.

  6. Aerodynamic characteristics of a fixed arrow-wing supersonic cruise aircraft at Mach numbers of 2.30, 2.70, and 2.95. [Langley Unitary Plan wind tunnel tests

    NASA Technical Reports Server (NTRS)

    Morris, O. A.; Fuller, D. E.; Watson, C. B.

    1978-01-01

    Tests were conducted in the Langley Unitary Plan wind tunnel at Mach numbers of 2.30. 2.70, and 2.95 to determine the performance, static stability, and control characteristics of a model of a fixed-wing supersonic cruise aircraft with a design Mach Number of 2.70 (SCAT 15-F-9898). The configuration had a 74 deg swept warped wing with a reflexed trailing edge and four engine nacelles mounted below the reflexed portion of the wing. A number of variations in the basic configuration were investigated; they included the effect of wing leading edge radius, the effect of various model components, and the effect of model control deflections.

  7. Comparisons of total currents based on storm location, polarity, and flash rates derived from high-altitude aircraft overflights

    NASA Astrophysics Data System (ADS)

    Mach, Douglas M.; Blakeslee, Richard J.; Bateman, Monte G.; Bailey, Jeffrey C.

    2010-01-01

    We determined total conduction (Wilson) currents and flash rates for 850 overflights of electrified clouds spanning regions including the southeastern United States, the western Atlantic Ocean, the Gulf of Mexico, Central America and adjacent oceans, central Brazil, and the South Pacific. The overflights included storms over land and ocean, with and without lightning, and with positive (i.e., upward directed) and negative Wilson currents. The mean current for oceanic storms with lightning was 1.6 A whereas the mean current for land storms with lightning was 1.0 A. The mean current for oceanic storms without lightning was 0.39 A, and the mean current for land storms without lightning was 0.13 A. On average, land storms with or without lightning had about half the mean current as their corresponding oceanic storm counterparts, while ocean (land) storms with lightning produced 4.1 (7.7) times the mean current as storms without lightning. About 78% of the land storms had detectable lightning, while only 43% of the oceanic storms did. When only lightning storms are considered, land storms had 2.8 times the mean flash rate as oceanic storms (2.2 versus 0.8 flashes min-1, respectively). Approximately 7% (56) of the overflights had negative (or downward directed) Wilson currents. The mean and median total Wilson currents for negative polarity storms were -0.30 and -0.26 A whereas the mean and median currents for positive polarity storms were 1.0 and 0.35 A. We found no significant regional- or latitudinal-based patterns in our total Wilson currents. At 20 km altitude, the full width at half maximum in the electric field profile varied between 12 and 16 km. At 15 km altitude, the full width at half maximum in the electric field profile varied between 1.7 and 3.5 km. Our results indicate that simple scaling laws between cloud top height and lightning flash rates or total storm current output may not be universally applicable. Our results also indicate that some clouds

  8. Control integration concept for hypersonic cruise-turn maneuvers

    NASA Technical Reports Server (NTRS)

    Raney, David L.; Lallman, Frederick J.

    1992-01-01

    Piloting difficulties associated with conducting aircraft maneuvers in hypersonic flight are caused in part by the nonintuitive nature of the aircraft response and the stringent constraints anticipated on allowable angle of attack and dynamic pressure variations. An approach is documented that provides precise, coordinated maneuver control during excursions from a hypersonic cruise flight path and the necessary flight condition constraints. The approach is to achieve specified guidance commands by resolving altitude and cross range errors into a load factor and bank angle command by using a coordinate transformation that acts as an interface between outer and inner loop flight controls. This interface, referred to as a 'resolver', applies constraints on angle of attack and dynamic pressure perturbations while prioritizing altitude regulation over cross range. An unpiloted test simulation, in which the resolver was used to drive inner loop flight controls, produced time histories of responses to guidance commands and atmospheric disturbances at Mach numbers of 6, 10, 15, and 20. Angle of attack and throttle perturbation constraints, combined with high speed flight effects and the desire to maintain constant dynamic pressure, significantly impact the maneuver envelope for a hypersonic vehicle.

  9. Stratospheric Horizontal Wavenumber Spectra of Winds, Potential Temperature, and Atmospheric Tracers Observed by High-Altitude Aircraft

    NASA Technical Reports Server (NTRS)

    Bacmeister, Julio T.; Eckermann, Stephen D.; Newman, Paul A.; Lait, Leslie; Chan, K. R.; Loewenstein, Max; Proffitt, Michael H.; Gary, Bruce L.

    1996-01-01

    Horizontal wavenumber power spectra of vertical and horizontal wind velocities, potential temperatures, and ozone and N(2)O mixing ratios, as measured in the mid-stratosphere during 73 ER-2 flights (altitude approx. 20km) are presented. The velocity and potential temperature spectra in the 100 to 1-km wavelength range deviate significantly from the uniform -5/3 power law expected for the inverse energy-cascade regime of two-dimensional turbulence and also for inertial-range, three-dimensional turbulence. Instead, steeper spectra approximately consistent with a -3 power law are observed at horizontal scales smaller than 3 km for all velocity components as well as potential temperature. Shallower spectra are observed at scales longer than 6 km. For horizontal velocity and potential temperature the spectral indices at longer scales are between -1.5 and -2.0. For vertical velocity the spectrum at longer scales become flat. It is argued that the observed velocity and potential temperature spectra are consistent with gravity waves. At smaller scales, the shapes are also superficially consistent with a Lumley-Shur-Weinstock buoyant subrange of turbulence and/or nonlinear gravity waves. Contemporaneous spectra of ozone and N(sub 2)O mixing ratio in the 100 to 1-km wavelength range do conform to an approximately uniform -5/3 power law. It is argued that this may reflect interactions between gravity wave air-parcel displacements and laminar or filamentary structures in the trace gas mixing ratio field produced by enstropy-cascading two-dimensional turbulence.

  10. Optimum Climb to Cruise Noise Trajectories for the High Speed Civil Transport

    NASA Technical Reports Server (NTRS)

    Berton, Jeffrey J.

    2003-01-01

    By entraining large quantities of ambient air into advanced ejector nozzles, the jet noise of the proposed High Speed Civil Transport (HSCT) is expected to be reduced to levels acceptable for airport-vicinity noise certification. Away from the airport, however, this entrained air is shut off and the engines are powered up from their cutback levels to provide better thrust for the climb to cruise altitude. Unsuppressed jet noise levels propagating to the ground far from the airport are expected to be high. Complicating this problem is the HSCT's relative noise level with respect to the subsonic commercial fleet of 2010, which is expected to be much quieter than it is today after the retirement of older, louder, domestic stage II aircraft by the year 2000. In this study, the classic energy state approximation theory is extended to calculate trajectories that minimize the climb to cruise noise of the HSCT. The optimizer dynamically chooses the optimal altitude velocity trajectory, the engine power setting, and whether the ejector should be stowed or deployed with respect to practical aircraft climb constraints and noise limits.

  11. Altus I aircraft on lakebed

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The remotely-piloted Altus I aircraft climbs away after takeoff from Rogers Dry Lake adjacent to NASA's Dryden Flight Research Center, Edwards, Calif. The short series of test flights sponsored by the Naval Postgraduate School in early August, 1997, were designed to demonstrate the ability of the experimental craft to cruise at altitudes above 40,000 feet for sustained durations. On its final flight Aug. 15, the Altus I reached an altitude of 43,500 feet. The Altus I and its sister ship, the Altus II, are variants of the Predator surveillance drone built by General Atomics/Aeronautical Systems, Inc. They are designed for high-altitude, long-duration scientific sampling missions, and are powered by turbocharged piston engines. The Altus I incorporates a single-stage turbocharger, while the Altus II, built for NASA's Environmental Research Aircraft and Sensor Technology program, sports a two-stage turbocharger to enable the craft to fly at altitudes above 55,000 feet. The Altus II, the first of the two craft to be completed, made its first flight on May 1, 1996. With its engine augmented by a single-stage turbocharger, the Altus II reached an altitude of 37,000 ft during its first series of development flights at Dryden in Aug., 1996. In Oct. of that year, the Altus II was flown in an Atmospheric Radiation Measurement study for the Department of Energy's Sandia National Laboratory in Oklahoma. During the course of those flights, the Altus II set a single-flight endurance record for remotely-operated aircraft of more than 26 hours. The Altus I, completed in 1997, flew a series of development flights at Dryden that summer. Those test flights culminated with the craft reaching an altitude of 43,500 ft while carrying a simulated 300-lb payload, a record for an unmanned aircraft powered by a piston engine augmented with a single-stage turbocharger. The Altus II sustained an altitudeof 55,000 feet for four hours in 1999. A pilot in a control station on the ground flies the

  12. The impact of emission standards on the design of aircraft gas turbine engine combustors

    NASA Technical Reports Server (NTRS)

    Rudey, R. A.

    1976-01-01

    The advent of environmental standards for controlling aircraft gas turbine engine emissions has led to a reevaluation of combustor design techniques. Effective emission control techniques have been identified and a wide spectrum of potential applications for these techniques to existing and advanced engines are being considered. Results from advanced combustor concept evaluations and from fundamental experiments are presented and discussed and comparisons are made with existing EPA emission standards and recommended levels for high altitude cruise. The impact that the advanced low emission concepts may impose on future aircraft engine combustor designs and related engine components is discussed.

  13. Hypersonic reconnaissance aircraft

    NASA Technical Reports Server (NTRS)

    Bulk, Tim; Chiarini, David; Hill, Kevin; Kunszt, Bob; Odgen, Chris; Truong, Bon

    1992-01-01

    A conceptual design of a hypersonic reconnaissance aircraft for the U.S. Navy is discussed. After eighteen weeks of work, a waverider design powered by two augmented turbofans was chosen. The aircraft was designed to be based on an aircraft carrier and to cruise 6,000 nautical miles at Mach 4;80,000 feet and above. As a result the size of the aircraft was only allowed to have a length of eighty feet, fifty-two feet in wingspan, and roughly 2,300 square feet in planform area. Since this is a mainly cruise aircraft, sixty percent of its 100,000 pound take-off weight is JP fuel. At cruise, the highest temperature that it will encounter is roughly 1,100 F, which can be handled through the use of a passive cooling system.

  14. Annoyance caused by aircraft en route noise

    NASA Technical Reports Server (NTRS)

    Mccurdy, David A.

    1992-01-01

    A laboratory experiment was conducted to quantify the annoyance response of people on the ground to enroute noise generated by aircraft at cruise conditions. The en route noises were ground level recordings of eight advanced turboprop aircraft flyovers and six conventional turbofan flyovers. The eight advanced turboprop enroute noises represented the NASA Propfan Test Assessment aircraft operating at different combinations of altitude, aircraft Mach number, and propeller tip speed. The conventional turbofan en route noises represented six different commercial airliners. The overall durations of the en route noises varied from approximately 40 to 160 sec. In the experiment, 32 subjects judged the annoyance of the en route noises as well as recordings of the takeoff and landing noises of each of 5 conventional turboprop and 5 conventional turbofan aircraft. Each of the noises was presented at three sound pressure levels to the subjects in an anechoic listening room. Analysis of the judgments found small differences in annoyance between three combinations of aircraft type and operation. Current tone and corrections did not significantly improve en route annoyance prediction. The optimum duration-correction magnitude for en route noise was approximately 1 dB per doubling of effective duration.

  15. High Altitude Long Endurance Remotely Operated Aircraft - National Airspace System Integration - Simulation IPT: Detailed Airspace Operations Simulation Plan. Version 1.0

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The primary goal of Access 5 is to allow safe, reliable and routine operations of High Altitude-Long Endurance Remotely Operated Aircraft (HALE ROAs) within the National Airspace System (NAS). Step 1 of Access 5 addresses the policies, procedures, technologies and implementation issues of introducing such operations into the NAS above pressure altitude 40,000 ft (Flight Level 400 or FL400). Routine HALE ROA activity within the NAS represents a potentially significant change to the tasks and concerns of NAS users, service providers and other stakeholders. Due to the complexity of the NAS, and the importance of maintaining current high levels of safety in the NAS, any significant changes must be thoroughly evaluated prior to implementation. The Access 5 community has been tasked with performing this detailed evaluation of routine HALE-ROA activities in the NAS, and providing to key NAS stakeholders a set of recommended policies and procedures to achieve this goal. Extensive simulation, in concert with a directed flight demonstration program are intended to provide the required supporting evidence that these recommendations are based on sound methods and offer a clear roadmap to achieving safe, reliable and routine HALE ROA operations in the NAS. Through coordination with NAS service providers and policy makers, and with significant input from HALE-ROA manufacturers, operators and pilots, this document presents the detailed simulation plan for Step 1 of Access 5. A brief background of the Access 5 project will be presented with focus on Steps 1 and 2, concerning HALE-ROA operations above FL400 and FL180 respectively. An overview of project management structure follows with particular emphasis on the role of the Simulation IPT and its relationships to other project entities. This discussion will include a description of work packages assigned to the Simulation IPT, and present the specific goals to be achieved for each simulation work package, along with the associated

  16. Wide range operation of advanced low NOx aircraft gas turbine combustors

    NASA Technical Reports Server (NTRS)

    Roberts, P. B.; Fiorito, R. J.; Butze, H. F.

    1978-01-01

    The paper summarizes the results of an experimental test rig program designed to define and demonstrates techniques which would allow the jet-induced circulation and vortex air blast combustors to operate stably with acceptable emissions at simulated engine idle without compromise to the low NOx emissions under the high-altitude supersonic cruise condition. The discussion focuses on the test results of the key combustor modifications for both the simulated engine idle and cruise conditions. Several range-augmentation techniques are demonstrated that allow the lean-reaction premixed aircraft gas turbine combustor to operate with low NOx emissons at engine cruise and acceptable CO and UHC levels at engine idle. These techniques involve several combinations, including variable geometry and fuel switching designs.

  17. CAT altitude avoidance system

    NASA Technical Reports Server (NTRS)

    Gary, B. L. (Inventor)

    1982-01-01

    A method and apparatus are provided for indicating the altitude of the tropopause or of an inversion layer wherein clear air turbulence (CAT) may occur, and the likely severity of any such CAT, includes directing a passive microwave radiometer on the aircraft at different angles with respect to the horizon. The microwave radiation measured at a frequency of about 55 GHz represents the temperature of the air at an ""average'' range of about 3 kilometers, so that the sine of the angle of the radiometer times 3 kilometers equals the approximate altitude of the air whose temperature is measured. A plot of altitude (with respect to the aircraft) versus temperature of the air at that altitude, can indicate when an inversion layer is present and can indicate the altitude of the tropopause or of such an inversion layer. The plot can also indicate the severity of any CAT in an inversion layer. If CAT has been detected in the general area, then the aircraft can be flown at an altitude to avoid the tropopause or inversion layer.

  18. Evaluation of Contrail Reduction Strategies Based on Aircraft Flight Distances

    NASA Technical Reports Server (NTRS)

    Chen, Neil Y.; Sridhar, Banavar; Li, Jinhua; Ng, Hok Kwan

    2012-01-01

    This paper evaluates a set of contrail reduction strategies based on the flight range of aircraft as contrail reduction strategies have different impacts on aircraft depending on how they plan to fly. In general, aircraft with longer flight distances cruise at the altitudes where contrails are more likely to form. The concept of the contrail frequency index is used to quantify contrail impacts. The strategy for reducing the persistent contrail formation is to minimize the contrail frequency index by altering the aircraft's cruising altitude. A user-defined factor is used to trade off between contrail reduction and extra CO2 emissions. A higher value of tradeoff factor results in more contrail reduction and extra CO2 emissions. Results show that contrail reduction strategies using various tradeo factors behave differently from short-range flights to long-range ights. Analysis shows that short-distance flights (less than 500 miles) are the most frequent flights but contribute least to contrail reduction. Therefore these aircraft have the lowest priority when applying contrail reduction strategies. Medium-distance flights (500 to 1000 miles) have a higher priority if the goal is to achieve maximum contrail reduction in total; long-distance flights (1000 to 1500 miles) have a higher priority if the goal is to achieve maximum contrail reduction per flight. The characteristics of transcontinental flights (greater than 1500 miles) vary with different weather days so the priority of applying contrail reduction strategies to the group needs to be evaluated based on the locations of the contrail areas during any given day. For the days tested, medium-distance ights contribute up to 42.6% of the reduction among the groups during a day. The contrail frequency index per 1,000 miles for medium-distance, long-distance, and transcontinental flights can be reduced by an average of 75%. The results provide a starting point for developing operational policies to reduce the impact of

  19. NASA aircraft trailing vortex research

    NASA Technical Reports Server (NTRS)

    Mcgowan, W. A.

    1971-01-01

    A brief description is given of NASA's comprehensive program to study the aircraft trailing vortex problem. Wind tunnel experiments are used to develop the detailed processes of wing tip vortex formation and explore different means to either prevent trailing vortices from forming or induce early break-up. Flight tests provide information on trailing vortex system behavior behind large transport aircraft, both near the ground, as in the vicinity of the airport, and at cruise/holding pattern altitudes. Results from some flight tests are used to show how pilots might avoid the dangerous areas when flying in the vicinity of large transport aircraft. Other flight tests will be made to verify and evaluate trailing vortex elimination schemes developed in the model tests. Laser Doppler velocimeters being developed for use in the research program and to locate and measure vortex winds in the airport area are discussed. Field tests have shown that the laser Doppler velocimeter measurements compare well with those from cup anemometers.

  20. Design of a 4-seat, general aviation, electric aircraft

    NASA Astrophysics Data System (ADS)

    Rajagopalan, Arvindhakshan

    Range and payload of current electric aircraft is limited primarily due to low energy density of batteries. However, recent advances in battery technology promise storage of more than 1 kWh of energy per kilogram of weight in the near future. This kind of energy storage makes possible the design of an electric aircraft comparable to, if not better than existing state-of-the art general aviation aircraft powered by internal combustion engines. This thesis explores through parametric studies the effect of lift-to-drag ratio, flight speed, and cruise altitude on required thrust power and battery energy and presents the conceptual and preliminary design of a four-seat, general aviation electric aircraft with a takeoff weight of 1750 kg, a range of 800 km, and a cruise speed of 200 km/h. An innovative configuration design will take full advantage of the electric propulsion system, while a Lithium-Polymer battery and a DC brush less motor will provide the power. Advanced aerodynamics will explore the greatest possible extend of laminar flow on the fuselage, the wing, and the empennage surfaces to minimize drag, while advanced composite structures will provide the greatest possible savings on empty weight. The proposed design is intended to be certifiable under current FAR 23 requirements.

  1. Certification and safety aspects relating to the transport of passengers on high altitude balloons in Europe

    NASA Astrophysics Data System (ADS)

    Schoenmaker, Annelie

    2014-07-01

    High-altitude balloons typically fly between 25 and 50 km in altitude, which, while below the Karman line of 100 km, is yet far above the altitudes typically flown by aircraft. For example, the highest-flying commercial aircraft - the Concorde - had a maximum cruising altitude of only 18 km. zero2infinity, a Spanish company, is currently developing a pressurized pod named “bloon” which will be capable of lifting six people, including two pilot crew members and four paying passengers, to an altitude of 36 km through the use of high-altitude balloons. The boundary between Airspace and Outer Space has never been legally defined, mostly because of the lack of activities taking place between the altitude where airplanes fly and the lowest orbiting spacecraft. High-altitude balloons do fly at these in-between altitudes and the prospect of commercializing access to these parts of the stratosphere poses some questions in a new light. Given the relatively low altitude at which they fly, it may well be that these types of balloons would be considered to operate exclusively within air space. However, given the technology involved in crewed high altitude balloon flights, which is more similar to spacecraft engineering than to traditional hot-air or gas ballooning, it is necessary to evaluate the various legal regimes, codes, and regulations that would apply to such flights, especially regarding licenses and liabilities. For high altitude balloon flights commencing in Europe, the European Aviation Safety Agency (EASA) would very likely be the competent certification or licensing agency for these flights, although there would likely be input from various national aviation authorities as well. However, because the European Commission (EC) has not yet issued regulations regarding commercial spaceflight, particularly the use of high altitude balloons, new rules and regulations governing such flights may still need to be drafted and promulgated. With the development of

  2. Advanced missile technology. A review of technology improvement areas for cruise missiles. [including missile design, missile configurations, and aerodynamic characteristics

    NASA Technical Reports Server (NTRS)

    Cronvich, L. L.; Liepman, H. P.

    1979-01-01

    Technology assessments in the areas of aerodynamics, propulsion, and structures and materials for cruise missile systems are discussed. The cruise missiles considered cover the full speed, altitude, and target range. The penetrativity, range, and maneuverability of the cruise missiles are examined and evaluated for performance improvements.

  3. Altus I aircraft in flight, retracting landing gear after takeoff

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The landing gear of the remotely piloted Altus I aircraft retracts into the fuselage after takeoff from Rogers Dry Lake adjacent to NASA's Dryden Flight Research Center, Edwards, Calif. The short series of test flights sponsored by the Naval Postgraduate School in early August, 1997, was designed to demonstrate the ability of the experimental craft to cruise at altitudes above 40,000 feet for sustained durations. On its final flight Aug. 15, the Altus I reached an altitude of 43,500 feet. The Altus I and its sister ship, the Altus II, are variants of the Predator surveillance drone built by General Atomics/Aeronautical Systems, Inc. They are designed for high-altitude, long-duration scientific sampling missions. The Altus I incorporates a single-stage turbocharger, while the Altus II, built for NASA's Environmental Research Aircraft and Sensor Technology project, sports a two-stage turbocharger to enable the craft to fly at altitudes above 55,000 feet.

  4. Altus I aircraft taking off from lakebed runway

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The remotely-piloted Altus I aircraft takes off from Rogers Dry Lake adjacent to NASA's Dryden Flight Research Center, Edwards, Calif. The short series of test flights sponsored by the Naval Postgraduate School in early August, 1997, were designed to demonstrate the ability of the experimental craft to cruise at altitudes above 40,000 feet for sustained durations. On its final flight Aug. 15, the Altus I reached an altitude of 43,500 feet. The Altus I and its sister ship, the Altus II, are variants of the Predator surveillance drone built by General Atomics/Aeronautical Systems, Inc. They are designed for high-altitude, long-duration scientific sampling missions, and are powered by turbocharged piston engines. The Altus I incorporates a single-stage turbocharger, while the Altus II, built for NASA's Environmental Research Aircraft and Sensor Technology program, sports a two-stage turbocharger to enable the craft to fly at altitudes above 55,000 feet.

  5. Predicted aircraft effects on stratospheric ozone

    NASA Technical Reports Server (NTRS)

    Ko, Malcolm K. W.; Wofsy, Steve; Kley, Dieter; Zhadin, Evgeny A.; Johnson, Colin; Weisenstein, Debra; Prather, Michael J.; Wuebbles, Donald J.

    1991-01-01

    The possibility that the current fleet of subsonic aircraft may already have caused detectable changes in both the troposphere and stratosphere has raised concerns about the impact of such operations on stratospheric ozone and climate. Recent interest in the operation of supersonic aircraft in the lower stratosphere has heightened such concerns. Previous assessments of impacts from proposed supersonic aircraft were based mostly on one-dimensional model results although a limited number of multidimensional models were used. In the past 15 years, our understanding of the processes that control the atmospheric concentrations of trace gases has changed dramatically. This better understanding was achieved through accumulation of kinetic data and field observations as well as development of new models. It would be beneficial to start examining the impact of subsonic aircraft to identify opportunities to study and validate the mechanisms that were proposed to explain the ozone responses. The two major concerns are the potential for a decrease in the column abundance of ozone leading to an increase in ultraviolet radiation at the ground, and redistribution of ozone in the lower stratosphere and upper troposphere leading to changes in the Earth's climate. Two-dimensional models were used extensively for ozone assessment studies, with a focus on responses to chlorine perturbations. There are problems specific to the aircraft issues that are not adequately addressed by the current models. This chapter reviews the current status of the research on aircraft impact on ozone with emphasis on immediate model improvements necessary for extending our understanding. The discussion will be limited to current and projected commercial aircraft that are equipped with air-breathing engines using conventional jet fuel. The impacts are discussed in terms of the anticipated fuel use at cruise altitude.

  6. Laser aircraft. [using kerosene

    NASA Technical Reports Server (NTRS)

    Hertzberg, A.; Sun, K.; Jones, W. S.

    1979-01-01

    The concept of a laser-powered aircraft is discussed. Laser flight would be completely compatible with existing airports and air-traffic control, with the airplane using kerosene only power, up to a cruising altitude of 9 km where the laser satellite would lock on and beam laser energy to it. Two major components make up the laser turbofan, a heat exchanger for converting laser radiation into thermal energy, and conventional turbomachinery. The laser power satellite would put out 42 Mw using a solar-powered thermal engine to generate electrical power for the closed-cycle supersonic electric discharge CO laser, whose radiators, heat exchangers, supersonic diffuser, and ducting will amount to 85% of the total subsystem mass. Relay satellites will be used to intercept the beam from the laser satellite, correct outgoing beam aberrations, and direct the beam to the next target. A 300-airplane fleet with transcontinental range is projected to save enough kerosene to equal the energy content of the entire system, including power and relay satellites, in one year.

  7. Lightweight diesel engine designs for commuter type aircraft

    NASA Technical Reports Server (NTRS)

    Brouwers, A. P.

    1981-01-01

    Conceptual designs and performance of advanced technology lightweight diesel engines, suitable for commuter type aircraft power plants are defined. Two engines are discussed, a 1491 kW (2000 SHP) eight-cylinder engine and a 895 kW (1200 SHP) six-cylinder engine. High performance and related advanced technologies are proposed such as insulated cylinders, very high injection pressures and high compressor and turbine efficiencies. The description of each engine includes concept drawings, a performance analysis, and weight data. Fuel flow data are given for full and partial power up to 7620m altitude. The performance data are also extrapolated over a power range from 671 kW(900SHP) to 1864 kW (2500 SHP). The specific fuel consumption of the 1491 kW (2000 SHP) engine is 182 g/hWh (.299 lb/HPh) at cruise altitude, its weight 620 kg (1365 lb.) and specific weight .415 kg/kW (.683 lb/HP). The specific fuel consumption of the 895 kW (1200 SHP) engine is 187 g/hWh (.308 lb/HPh) at cruise altitude, its weight 465 kg (1025 lb.) and specific weight .520 kg/kW (.854 lb/HP).

  8. Altitude characteristics of selected air quality analyzers

    NASA Technical Reports Server (NTRS)

    White, J. H.; Strong, R.; Tommerdahl, J. B.

    1979-01-01

    The effects of altitude (pressure) on the operation and sensitivity of various air quality analyzers frequently flown on aircraft were analyzed. Two ozone analyzers were studied at altitudes from 600 to 7500 m and a nitrogen oxides chemiluminescence detector and a sulfur dioxide flame photometric detector were studied at altitudes from 600 to 3000 m. Calibration curves for altitude corrections to the sensitivity of the instruments are presented along with discussion of observed instrument behavior.

  9. RECON 6: A real-time, wide-angle, solid-state reconnaissance camera system for high-speed, low-altitude aircraft

    NASA Technical Reports Server (NTRS)

    Labinger, R. L.

    1976-01-01

    The maturity of self-scanned, solid-state, multielement photosensors makes the realization of "real time" reconnaissance photography viable and practical. A system built around these sensors which can be constructed to satisfy the requirements of the tactical reconnaissance scenario is described. The concept chosen is the push broom strip camera system -- RECON 6 -- which represents the least complex and most economical approach for an electronic camera capable of providing a high level of performance over a 140 deg wide, continuous swath at altitudes from 200 to 3,000 feet and at minimum loss in resolution at higher altitudes.

  10. Descent strategy comparisons for TNAV-equipped aircraft under airplane-preferred operating conditions

    NASA Technical Reports Server (NTRS)

    Izumi, K. H.

    1989-01-01

    Three 4-D descent strategies were evaluated which were employed by TNAV-equipped aircraft in an advanced metering air traffic control environment. The Flow Management Evaluation Model (FMEM) was used to assess performance using three criteria when traffic enters the simulation under preferred cruise operating conditions (altitude and speed): throughput, fuel usage, and conflict probability. In comparison to an evaluation previously performed under NASA contract, the current analysis indicates that the optimal descent strategy is preferred over the clean-idle and constant descent angle (CFPA) strategies when all three criteria are considered.

  11. Ozone contamination in aircraft cabins: Results from GASP data and analyses

    NASA Technical Reports Server (NTRS)

    Holdeman, J. D.; Nastrom, G. D.

    1981-01-01

    The global atmospheric sampling program pertaining to the problem of ozone contamination in commercial airplane cabins is described. Specifically, analyses of GASP data have: confirmed the occurrence of high ozone levels in aircraft cabins and documented the ratio of ozone inside and outside the cabins of two B747 airliners, including the effects of air conditioning modifications on that ratio; defined ambient ozone climatology at commercial airplane cruise altitudes, including tabulation of encounter frequency data which were not available before GASP; and outlined procedures for estimating the frequency of flights encountering high cabin ozone levels using climatological ambient ozone data, and verified these procedures against cabin measurements.

  12. Design of a Low Cost Short Takeoff-vertical Landing Export Fighter/attack Aircraft

    NASA Technical Reports Server (NTRS)

    Belcher, Anne; Bodeker, Dan, III; Miu, Steve; Petro, Laura; Senf, Cary Taylor; Woeltjen, Donald

    1990-01-01

    The design of a supersonic short takeoff and vertical landing (STOVL) aircraft is presented that is suitable for export. An advanced four poster, low bypass turbofan engine is to be used for propulsion. Preliminary aerodynamic analysis is presented covering a determination of CD versus CL, CD versus Mach number, as well as best cruise Mach number and altitude. Component locations are presented and center of gravity determined. Cost minimization is achieved through the use of developed subsystems and standard fabrication techniques using nonexotic materials. Conclusions regarding the viability of the STOVL design are presented.

  13. Infections on Cruise Ships.

    PubMed

    Kak, Vivek

    2015-08-01

    The modern cruise ship is a small city on the seas, with populations as large as 5,000 seen on large ships. The growth of the cruise ship industry has continued in the twenty-first century, and it was estimated that nearly 21.3 million passengers traveled on cruise ships in 2013, with the majority of these sailing from North America. The presence of large numbers of individuals in close proximity to each other facilitates transmission of infectious diseases, often through person-to-person spread or via contaminated food or water. An infectious agent introduced into the environment of a cruise ship has the potential to be distributed widely across the ship and to cause significant morbidity. The median cruise ship passenger is over 45 years old and often has chronic medical problems, so it is important that, to have a safe cruise ship experience, any potential for the introduction of an infecting agent as well as its transmission be minimized. The majority of cruise ship infections involve respiratory and gastrointestinal infections. This article discusses infectious outbreaks on cruise ships and suggests preventative measures for passengers who plan to travel on cruise ships. PMID:26350312

  14. Practical Possibilities of High-Altitude Flight with Exhaust-Gas Turbines in Connection with Spark Ignition Engines Comparative Thermodynamic and Flight Mechanical Investigations

    NASA Technical Reports Server (NTRS)

    Weise, A.

    1947-01-01

    As a means of preparing for high-altitude flight with spark-ignition engines in conjunction with exhaust-gas turbosuperchargers, various methods of modifying the exhaust-gas temperatures, which are initially higher than a turbine can withstand are mathematically compared. The thermodynamic results first obtained are then examined with respect to the effect on flight speed, climbing speed, ceiling, economy, and cruising range. The results are so presented in a generalized form that they may be applied to every appropriate type of aircraft design and a comparison with the supercharged engine without exhaust-gas turbine can be made.

  15. Ozone and ozone byproducts in the cabins of commercial aircraft.

    PubMed

    Weisel, Clifford; Weschler, Charles J; Mohan, Kris; Vallarino, Jose; Spengler, John D

    2013-05-01

    The aircraft cabin represents a unique indoor environment due to its high surface-to-volume ratio, high occupant density, and the potential for high ozone concentrations at cruising altitudes. Ozone was continuously measured and air was sampled on sorbent traps, targeting carbonyl compounds, on 52 transcontinental U.S. or international flights between 2008 and 2010. The sampling was predominantly on planes that did not have ozone scrubbers (catalytic converters). Peak ozone levels on aircraft without catalytic convertors exceeded 100 ppb, with some flights having periods of more than an hour when the ozone levels were >75 ppb. Ozone was greatly reduced on relatively new aircraft with catalytic convertors, but ozone levels on two flights whose aircraft had older convertors were similar to those on planes without catalytic convertors. Hexanal, heptanal, octanal, nonanal, decanal, and 6-methyl-5-hepten-2-one (6-MHO) were detected in the aircraft cabin at sub- to low ppb levels. Linear regression models that included the log transformed mean ozone concentration, percent occupancy, and plane type were statistically significant and explained between 18 and 25% of the variance in the mixing ratio of these carbonyls. Occupancy was also a significant factor for 6-MHO, but not the linear aldehydes, consistent with 6-MHO's formation from the reaction between ozone and squalene, which is present in human skin oils. PMID:23517299

  16. ERAST Program Proteus Aircraft in Flight

    NASA Technical Reports Server (NTRS)

    1999-01-01

    monitor at the show only moments after they were taken. This was the second successful demonstration of the ARTIS camera. The aircraft is designed to cruise at altitudes from 59,000 to more than 65,000 feet for up to 18 hours. It was designed and built by Burt Rutan, president of Scaled Composites, Inc., to carry an 18-foot diameter telecommunications antenna system for relay of broadband data over major cities. The design allows for Proteus to be reconfigured at will for a variety of other missions such as atmospheric research, reconnaissance, commercial imaging, and launch of small space satellites. It is designed for extreme reliability and low operating costs, and to operate out of general aviation airports with minimal support. The aircraft consists of an all composite airframe with graphite-epoxy sandwich construction. It has a wingspan of 77 feet 7 inches, expandable to 92 feet with removable wingtips installed. It is 56.3 feet long and 17.6 feet high and weighs 5,900 pounds, empty. Proteus is powered by two Williams-Rolls FJ44-2 turbofan engines developing 2,300 pounds of thrust each.

  17. An economic study of an advanced technology supersonic cruise vehicle

    NASA Technical Reports Server (NTRS)

    Smith, C. L.; Williams, L. J.

    1975-01-01

    A description is given of the methods used and the results of an economic study of an advanced technology supersonic cruise vehicle. This vehicle was designed for a maximum range of 4000 n.mi. at a cruise speed of Mach 2.7 and carrying 292 passengers. The economic study includes the estimation of aircraft unit cost, operating cost, and idealized cash flow and discounted cash flow return on investment. In addition, it includes a sensitivity study on the effects of unit cost, manufacturing cost, production quantity, average trip length, fuel cost, load factor, and fare on the aircraft's economic feasibility.

  18. 14 CFR 91.217 - Data correspondence between automatically reported pressure altitude data and the pilot's...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... maintain flight altitude, with that altimeter referenced to 29.92 inches of mercury for altitudes from sea level to the maximum operating altitude of the aircraft; or (c) Unless the altimeters and digitizers...

  19. Development of Techniques for the In Situ Observation of OH and HO2 for Studies of the Impact of High-Altitude Supersonic Aircraft on the Stratosphere

    NASA Technical Reports Server (NTRS)

    Anderson, James G.

    1994-01-01

    This three-year project supported the construction, calibration, and deployment of a new instrument to measure the OH and HO2 radicals on the NASA ER-2 aircraft. The instrument has met and exceeded all of its design goals. The instrumentation represents a true quantum leap in performance over that achieved in previous HO(x) instruments built in our group. Sensitivity for OH was enhanced by over two orders of magnitude as the weight fell from approximately 1500 to less than 200 Kg. Reliability has been very high: HO(x) data are available for all flights during the first operational mission, the Stratospheric Photochemistry, Aerosols, and Dynamics Expedition (SPADE). The results of that experiment have been reported in the scientific literature and at conferences. Additionally, measurements of H2O and O3 were made and have been reported in the scientific literature. The measurements demonstrate the important role that OH and HO2 play in determining the concentration of ozone in the lower stratosphere. During the SPADE campaign, the measurements demonstrate that the catalytic removal is dominated by processes involving the odd-hydrogen and halogen radical extremely important constraint for photochemical models that are being used to assess the potential deleterious effects of super-sonic aircraft effluent on the burden of stratospheric ozone. A list of the papers that came from this research are included, along with a copy of the paper, 'Aircraft-borne, laser-induced fluorescence instrument for the in situ detection of hydroxyl and hydroperoxyl radicals'.

  20. Design considerations for high-altitude, long-endurance, microwave-powered aircraft. M.S. Thesis - George Washington Univ., Washington, D.C.

    NASA Technical Reports Server (NTRS)

    Nguyen, H. Q.

    1985-01-01

    The sizing and performance analyses have been conducted in the design of long-endurance, high-altitude airplanes. These airplanes receive power either continuously beamed from a phased array transmitter or intermittently beamed from a dish transmitter. Results are presented for the cases of flight in zero wind speed and nonzero wind speed. Sensitivity studies indicate that the vehicle size is relatively insensitive to changes in the transmitter size. Cost estimates were made using models that excluded the airplane cost. Using a reference payload, results obtained from array and dish configurations were compared. Comparisons showed savings in cost as well as smaller vehicle sizes when an array transmitter was used.

  1. Supersonic Cruise Technology

    NASA Technical Reports Server (NTRS)

    Mclean, F. Edward

    1985-01-01

    The history and status of supersonic cruise research is covered. The early research efforts of the National Advisory Committee for Aeronautics and efforts during the B-70 and SST phase are included. Technological progress made during the NASA Supersonic Cruise Research and Variable Cycle Engine programs are presented. While emphasis is on NASA's contributions to supersonic cruise research in the U.S., also noted are developments in England, France, and Russia. Written in nontechnical language, this book presents the most critical technology issues and research findings.

  2. The US Cruise Ship Industry.

    ERIC Educational Resources Information Center

    Miller, Willis H.

    1985-01-01

    The cruise ship industry relates directly to many features of the natural and cultural environments. The U.S. cruise ship industry is analyzed. Discusses the size of the industry, precruise passenger liners, current cruise ships, cruise regions and routes, ports of call, major ports, passengers, and future prospects. (RM)

  3. A preliminary design and analysis of an advanced heat-rejection system for an extreme altitude advanced variable cycle diesel engine installed in a high-altitude advanced research platform

    NASA Technical Reports Server (NTRS)

    Johnston, Richard P.

    1992-01-01

    Satellite surveillance in such areas as the Antarctic indicates that from time to time concentration of ozone grows and shrinks. An effort to obtain useful atmospheric data for determining the causes of ozone depletion would require a flight capable of reaching altitudes of at least 100,000 ft and flying subsonically during the sampling portion of the mission. A study of a heat rejection system for an advanced variable cycle diesel (AVCD) engine was conducted. The engine was installed in an extreme altitude, high altitude advanced research platform. Results indicate that the waste heat from an AVCD engine propulsion system can be rejected at the maximum cruise altitude of 120,000 ft. Fifteen performance points, reflecting the behavior of the engine as the vehicle proceeded through the mission, were used to characterize the heat exchanger operation. That portion of the study is described in a appendix titled, 'A Detailed Study of the Heat Rejection System for an Extreme Altitude Atmospheric Sampling Aircraft,' by a consultant, Mr. James Bourne, Lytron, Incorporated.

  4. The extreme solar cosmic ray particle event on 20 January 2005 and its influence on the radiation dose rate at aircraft altitude.

    PubMed

    Bütikofer, R; Flückiger, E O; Desorgher, L; Moser, M R

    2008-03-01

    In January 2005 toward the end of solar activity cycle 23 the Sun was very active. Between 15 and 20 January 2005, the solar active region NOAA AR 10720 produced five powerful solar flares. In association with this major solar activity several pronounced variations in the ground-level cosmic ray intensity were observed. The fifth of these flares (X7.1) produced energetic solar cosmic rays that caused a giant increase in the count rates of the ground-based cosmic ray detectors (neutron monitors). At southern polar neutron monitor stations the increase of the count rate reached several thousand percent. From the recordings of the worldwide network of neutron monitors, we determined the characteristics of the solar particle flux near Earth. In the initial phase of the event, the solar cosmic ray flux near Earth was extremely anisotropic. The energy spectrum of the solar cosmic rays was fairly soft during the main and the decay phase. We investigated also the flux of different secondary particle species in the atmosphere and the radiation dosage at flight altitude. Our analysis shows a maximum increment of the effective dose rate due to solar cosmic rays in the south polar region around 70 degrees S and 130 degrees E at flight altitude of almost three orders of magnitude. PMID:18031791

  5. CARETS: A prototype regional environmental information system. Volume 6: Cost, accuracy and consistency comparisons of land use maps made from high-altitude aircraft photography and ERTS imagery

    NASA Technical Reports Server (NTRS)

    Alexander, R. H. (Principal Investigator); Fitzpatrick, K. A.

    1975-01-01

    The author has identified the following significant results. Level 2 land use maps produced at three scales (1:24,000, 1:100,000, and 1:250,000) from high altitude photography were compared with each other and with point data obtained in the field. The same procedures were employed to determine the accuracy of the Level 1 land use maps produced at 1:250,000 from high altitude photography and color composite ERTS imagery. Accuracy of the Level 2 maps was 84.9 percent at 1:24,000, 77.4 percent at 1:100,000 and 73.0 percent at 1:250,000. Accuracy of the Level 1 1:250,000 maps was 76.5 percent for aerial photographs and 69.5 percent for ERTS imagery. The cost of Level 2 land use mapping at 1:24,000 was found to be high ($11.93 per sq km). The cost of mapping at 1:100,000 ($1.75) was about two times as expensive as mapping at 1:250,000 ($.88), and the accuracy increased by only 4.4 percent.

  6. Cruise-Efficient Short Takeoff and Landing (CESTOL): Potential Impact on Air Traffic Operations

    NASA Technical Reports Server (NTRS)

    Couluris, G. J.; Signor, D.; Phillips, J.

    2010-01-01

    The National Aeronautics and Space Administration (NASA) is investigating technological and operational concepts for introducing Cruise-Efficient Short Takeoff and Landing (CESTOL) aircraft into a future US National Airspace System (NAS) civil aviation environment. CESTOL is an aircraft design concept for future use to increase capacity and reduce emissions. CESTOL provides very flexible takeoff, climb, descent and landing performance capabilities and a high-speed cruise capability. In support of NASA, this study is a preliminary examination of the potential operational impact of CESTOL on airport and airspace capacity and delay. The study examines operational impacts at a subject site, Newark Liberty Intemational Airport (KEWR), New Jersey. The study extends these KEWR results to estimate potential impacts on NAS-wide network traffic operations due to the introduction of CESTOL at selected major airports. These are the 34 domestic airports identified in the Federal Aviation Administration's Operational Evolution Plan (OEP). The analysis process uses two fast-time simulation tools to separately model local and NAS-wide air traffic operations using predicted flight schedules for a 24-hour study period in 2016. These tools are the Sen sis AvTerminal model and NASA's Airspace Concept Evaluation System (ACES). We use both to simulate conventional-aircraft-only and CESTOL-mixed-with-conventional-aircraft operations. Both tools apply 4-dimension trajectory modeling to simulate individual flight movement. The study applies AvTerminal to model traffic operations and procedures for en route and terminal arrival and departures to and from KEWR. These AvTerminal applications model existing arrival and departure routes and profiles and runway use configurations, with the assumption jet-powered, large-sized civil CESTOL aircraft use a short runway and standard turboprop arrival and departure procedures. With these rules, the conventional jet and CESTOL aircraft are procedurally

  7. OVRhyp, Scramjet Test Aircraft

    NASA Technical Reports Server (NTRS)

    Aslan, J.; Bisard, T.; Dallinga, S.; Draper, K.; Hufford, G.; Peters, W.; Rogers, J.

    1990-01-01

    A preliminary design for an unmanned hypersonic research vehicle to test scramjet engines is presented. The aircraft will be launched from a carrier aircraft at an altitude of 40,000 feet at Mach 0.8. The vehicle will then accelerate to Mach 6 at an altitude of 100,000 feet. At this stage the prototype scramjet will be employed to accelerate the vehicle to Mach 10 and maintain Mach 10 flight for 2 minutes. The aircraft will then decelerate and safely land.

  8. Development of techniques for the in situ observation of OH and HO2 for studies of the impact of high-altitude supersonic aircraft on the stratosphere

    NASA Technical Reports Server (NTRS)

    Anderson, James G.

    1994-01-01

    This three-year project supported the construction, calibration, and deployment of a new instrument to measure the OH and HO2 radicals on the NASA ER-2 aircraft. The instrument has met and exceeded all of its design goals. The instrumentation represents a true quantum leap in performance over that achieved in previous HO(x) instruments built in our group. Sensitivity for OH was enhanced by over two orders of magnitude as the weight fell from approximately 1500 to less than 200 Kg. Reliability has been very high: HO(x) data are available for all flights during the first operational mission, the Stratospheric Photochemistry, Aerosols, and Dynamics Expedition (SPADE). The results of that experiment have been reported in the scientific literature and at conferences. Additionally, measurements of H2O and O3 were made and have been reported in the scientific literature. The measurements demonstrated the important role that OH and HO2 play in determining the concentration of ozone in the lower stratosphere. During the SPADE, campaign the measurements demonstrated that the catalytic removal is dominated by processes involving the odd-hydrogen and halogen radicals-and extremely important constraint for photochemical models that are being used to assess the potential deleterious effects of super-sonic aircraft effluent on the burden of stratospheric ozone.

  9. Development of techniques for the In Situ observation of OH and HO2 for studies of the impact of high-altitude supersonic aircraft on the stratosphere

    NASA Technical Reports Server (NTRS)

    Anderson, James G.

    1994-01-01

    This three-year project supported the construction, calibration, and deployment of a new instrument to measure the OH and HO2 radicals on the NASA Er-2 aircraft. The instrument has met and exceeded all of its design goals. The instrumentation represents a true quantum leap in performance over that achieved in previous HO(x) instruments built in our group. Sensitivity of OH was enhanced by over two orders of magnitude as the weight fell from approximately 1500 to less than 200 Kg. Reliability has been very high: HO(x) data are available for all flights during the first operational mission, the Stratospheric Photochemistry, aerosols, and Dynamics Expedition (SPADE). The results of that experiment have been reported in the scientific literature and at conferences. Additionally, measurements of H2O and O3 were made and have been reported in the scientific literature. The measurements demonstrate the important role that OH and HO2 play in determining the concentration of ozone in the lower stratosphere. During the SPADE campaign, the measurements demonstrate that the catalytic removal is dominated by processes involving the odd-hydrogen and halogen radicals-an extremely important constraint for photochemical models that are being used to assess the potential deleterious effects of super-sonic aircraft effluent on the burden of stratospheric ozone.

  10. Cruise Missile Engines

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Williams International's F107 fanjet engine is used in two types of cruise missiles, Navy-sponsored Tomahawk and the Air Force AGM-86B Air Launched Cruise Missile (ALCM). Engine produces about 600 pounds thrust, is one foot in diameter and weighs only 141 pounds. Design was aided by use of a COSMIC program in calculating airflows in engine's internal ducting, resulting in a more efficient engine with increased thrust and reduced fuel consumption.

  11. An Optical Altitude Indicator for Night Landing

    NASA Technical Reports Server (NTRS)

    Warner, John A C

    1923-01-01

    One of the most ingenious of the devices intended for use in night landing, especially emergency landing, is a very simple optical instrument known as the Jenkins night altitude indicator. The design and operation of this instrument, which allows a pilot to determine the altitude of the aircraft, is discussed. The author discusses various modifications and improvements that might be made to the instrument.

  12. Mars Reconnaissance Orbiter Interplanetary Cruise Navigation

    NASA Technical Reports Server (NTRS)

    You, Tung-Han; Graat, Eric; Halsell, Allen; Highsmith, Dolan; Long, Stacia; Bhat, Ram; Demcak, Stuart; Higa, Earl; Mottinger, Neil; Jah, Moriba

    2007-01-01

    Carrying six science instruments and three engineering payloads, the Mars Reconnaissance Orbiter (MRO) is the first mission in a low Mars orbit to characterize the surface, subsurface, and atmospheric properties with unprecedented detail. After a seven-month interplanetary cruise, MRO arrived at Mars executing a 1.0 km/s Mars Orbit Insertion (MOI) maneuver. MRO achieved a 430 km periapsis altitude with the final orbit solution indicating that only 10 km was attributable to navigation prediction error. With the last interplanetary maneuver performed four months before MOI, this was a significant accomplishment. This paper describes the navigation analyses and results during the 210-day interplanetary cruise. As of August 2007 MRO has returned more than 18 Terabits of scientific data in support of the objectives set by the Mars Exploration Program (MEP). The robust and exceptional interplanetary navigation performance paved the way for a successful MRO mission.

  13. Aircraft Trajectory Optimization and Contrails Avoidance in the Presence of Winds

    NASA Technical Reports Server (NTRS)

    Ng, Hok K.; Chen, Neil Y.

    2010-01-01

    There are indications that persistent contrails can lead to adverse climate change, although the complete effect on climate forcing is still uncertain. A flight trajectory optimization algorithm with fuel and contrails models, which develops alternative flight paths, provides policy makers the necessary data to make tradeoffs between persistent contrails mitigation and aircraft fuel consumption. This study develops an algorithm that calculates wind-optimal trajectories for cruising aircraft while avoiding the regions of airspace prone to persistent contrails formation. The optimal trajectories are developed by solving a non-linear optimal control problem with path constraints. The regions of airspace favorable to persistent contrails formation are modeled as penalty areas that aircraft should avoid and are adjustable. The tradeoff between persistent contrails formation and additional fuel consumption is investigated, with and without altitude optimization, for 12 city-pairs in the continental United States. Without altitude optimization, the reduction in contrail travel times is gradual with increase in total fuel consumption. When altitude is optimized, a two percent increase in total fuel consumption can reduce the total travel times through contrail regions by more than six times. Allowing further increase in fuel consumption does not seem to result in proportionate decrease in contrail travel times.

  14. Measurement of Altitude in Blind Flying

    NASA Technical Reports Server (NTRS)

    Brombacher, W G

    1934-01-01

    In this note, instruments for measuring altitude and rate of change of altitude in blind flying and landing of aircraft and their performance are discussed. Of those indicating the altitude above ground level, the sonic altimeter is the most promising. Its present bulk, intermittent operation, and more or less unsatisfactory means of indication are serious drawbacks to its use. The sensitive type aneroid altimeter is also discussed and errors in flying at a pressure level and in landing are discussed in detail.

  15. Altus I aircraft landing on Edwards lakebed runway 23

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The remotely-piloted Altus I aircraft lands on Rogers Dry Lake adjacent to NASA's Dryden Flight Research Center, Edwards, Calif. The short series of test flights sponsored by the Naval Postgraduate School in early August, 1997, were designed to demonstrate the ability of the experimental craft to cruise at altitudes above 40,000 feet for sustained durations. On its final flight Aug. 15, the Altus I reached an altitude of 43,500 feet. The Altus I and its sister ship, the Altus II, are variants of the Predator surveillance drone built by General Atomics/Aeronautical Systems, Inc. They are designed for high-altitude, long-duration scientific sampling missions, and are powered by turbocharged piston engines. The Altus I incorporates a single-stage turbocharger, while the Altus II, built for NASA's Environmental Research Aircraft and Sensor Technology program, sports a two-stage turbocharger to enable the craft to fly at altitudes above 55,000 feet. The Altus II, the first of the two craft to be completed, made its first flight on May 1, 1996. With its engine augmented by a single-stage turbocharger, the Altus II reached an altitude of 37,000 ft during its first series of development flights at Dryden in Aug., 1996. In Oct. of that year, the Altus II was flown in an Atmospheric Radiation Measurement study for the Department of Energy's Sandia National Laboratory in Oklahoma. During the course of those flights, the Altus II set a single-flight endurance record for remotely-operated aircraft of more than 26 hours. The Altus I, completed in 1997, flew a series of development flights at Dryden that summer. Those test flights culminated with the craft reaching an altitude of 43,500 ft while carrying a simulated 300-lb payload, a record for an unmanned aircraft powered by a piston engine augmented with a single-stage turbocharger. The Altus II sustained an altitudeof 55,000 feet for four hours in 1999. A pilot in a control station on the ground flies the craft by radio

  16. Solar powered multipurpose remotely powered aircraft

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Environmental problems such as the depletion of the ozone layer and air pollution demand a change in traditional means of propulsion that is sensitive to the ecology. Solar-powered propulsion is a favorable alternative that is both ecologically harmless as well as cost effective. Integration of solar energy into designs ranging from futuristic vehicles to heating is, therefore, beneficial to society. The design and construction of a Multipurpose Remotely Piloted Vehicle (MPRPV) seeks to verify the feasibility of using solar propulsion as a primary fuel source. This task has been a year-long effort by a group of eight students, divided into four teams, each dealing with different aspects of the design. The aircraft was designed to take off, climb to the design altitude, fly in a sustained figure-eight flight path, and cruise for approximately one hour. This mission requires flight at Reynolds numbers between 150,000 and 200,000 and demands special considerations in the aerodynamic design to achieve flight in this regime. Optimal performance requires a lightweight configuration with both structural integrity and maximum power availability. The structural design and choice of solar cells for the propulsion were governed by weight, efficiency, and cost considerations. The final design is an MPRPV weighing 35 N that cruises at 7 m/s at the design altitude of 50 m. The configuration includes a wing composed of balsa and foam NACA 6409 airfoil sections and carbon fiber spars, a tail of similar construction, and a truss structure fuselage. The propulsion system consists of 98 12.5 percent-efficient solar cells donated by Mobil Solar, a NiCad battery for energy storage, and a folding propeller regulated by a lightweight and efficient control system. The airfoils and propeller chosen for the design were researched and tested during the design process.

  17. A Whitham-Theory Sonic-Boom Analysis of the TU-144 Aircraft at a Mach Number of 2.2

    NASA Technical Reports Server (NTRS)

    Mack, Robert J.

    1999-01-01

    . Therefore, an analysis of the Tu-144 was made to obtain predictions of pressure signature shape and shock strengths at cruise conditions so that the range and characteristics of the required pressure gages could be determined well in advance of the tests. Cancellation of the sonic-boom signature measurement part of the tests removed the need for these pressure gages. Since CFD methods would be used to analyze the aerodynamic performance of the Tu-144 and make similar pressure signature predictions, the relatively quick and simple Whitham-theory pressure signature predictions presented in this paper could be used for comparisons. Pressure signature predictions of sonic-boom disturbances from the Tu- 144 aircraft were obtained from geometry derived from a three-view description of the production aircraft. The geometry was used to calculate aerodynamic performance characteristics at supersonic-cruise conditions. These characteristics and Whitham/Walkden sonic-boom theory were employed to obtain F-functions and flow-field pressure signature predictions at a Mach number of 2.2, at a cruise altitude of 61000 feet, and at a cruise weight of 350000 pounds.

  18. The SOFIA aircraft and its modification

    NASA Astrophysics Data System (ADS)

    Kunz, Nans

    2003-02-01

    The primary focus of this paper is to describe the development of a highly modified aircraft that carries a twenty ton telescope to the stratosphere and then loiters at this desired altitude to act as the observatory platform and dome. When the aircraft has reached its nominal cruise condition of Mach 0.84 in the stratosphere, a large cavity door opens (the dome opens), exposing a large portion of the interior of the fuselage that contains the telescope optics directly to the Universe. The topics covered in this paper include: the relevant criteria and the evaluation process that resulted in the selection of a Boeing 747-SP, the evolution of the design concept, the description of the structural modification including the analysis methods and tools, the aerodynamic issues associated with an open port cavity and how they were addressed, and the aeroloads/ disturbances imparted to the telescope and how they were measured in the wind tunnel and extrapolated to full size. This paper is complementary to a previous paper presented at the 2000 Airborne Telescope Systems conference which describes the challenges associated with the development of the SOFIA Telescope. For completeness, this paper also provides a brief overview of the SOFIA project including the joint project arrangement between NASA and DLR, a top level overview of the requirements, and finally the current project status.

  19. The 1979 Southeastern Virginia Urban Plume Study. Volume 2: Data listings for NASA Cessna aircraft

    NASA Technical Reports Server (NTRS)

    Gregory, G. L.; Lee, R. B., III; Mathis, J. J., Jr.

    1981-01-01

    The data reported are these measured onboard the NASA Langley chartered Cessna aircraft. Data include ozone, nitrogen oxides, light scattering coefficient, temperature, dewpoint, and aircraft altitude.

  20. Impact of aircraft NOx emissions on the atmosphere - tradeoffs to reduce the impact

    NASA Astrophysics Data System (ADS)

    Gauss, M.; Isaksen, I. S. A.; Lee, D. S.; Søvde, O. A.

    2006-05-01

    Within the EU-project TRADEOFF, the impact of NOx (=NO+NO2) emissions from subsonic aviation upon the chemical composition of the atmosphere has been calculated with focus on changes in reactive nitrogen and ozone. We apply a 3-D chemical transport model that includes comprehensive chemistry for both the troposphere and the stratosphere and uses various aircraft emission scenarios developed during TRADEOFF for the year 2000. The environmental effects of enhanced air traffic along polar routes and of possible changes in cruising altitude are investigated, taking into account effects of flight route changes on fuel consumption and emissions.

    In a reference case including both civil and military aircraft the model predicts aircraft-induced maximum increases of zonal-mean NOy (=total reactive nitrogen) between 156 pptv (August) and 322 pptv (May) in the tropopause region of the Northern Hemisphere. Resulting maximum increases in zonal-mean ozone vary between 3.1 ppbv in September and 7.7 ppbv in June.

    Enhanced use of polar routes implies substantially larger zonal-mean ozone increases in high Northern latitudes during summer, while the effect is negligible in winter.

    Lowering the flight altitude leads to smaller ozone increases in the lower stratosphere and upper troposphere, and to larger ozone increases at altitudes below. Regarding total ozone change, the degree of cancellation between these two effects depends on latitude and season, but annually and globally averaged the contribution from higher altitudes dominates, mainly due to washout of NOy in the troposphere, which weakens the tropospheric increase.

    Raising flight altitudes increases the ozone burden both in the troposphere and the lower stratosphere, primarily due to a more efficient accumulation of pollutants in the stratosphere.

  1. Ozone and Ozone By-Products in the Cabins of Commercial Aircraft

    PubMed Central

    Weisel, Clifford; Weschler, Charles J.; Mohan, Kris; Vallarino, Jose; Spengler, John D.

    2013-01-01

    The aircraft cabin represents a unique indoor environment due to its high surface-to-volume ratio, high occupant density and the potential for high ozone concentrations at cruising altitudes. Ozone was continuously measured and air was sampled on sorbent traps, targeting carbonyl compounds, on 52 transcontinental U.S. or international flights between 2008 and 2010. The sampling was predominantly on planes that did not have ozone scrubbers (catalytic converters). Peak ozone levels on aircraft without catalytic convertors exceeded 100 ppb, with some flights having periods of more than an hour when the ozone levels were > 75ppb. Ozone was greatly reduced on relatively new aircraft with catalytic convertors, but ozone levels on two flights whose aircraft had older convertors were similar to those on planes without catalytic convertors. Hexanal, heptanal, octanal, nonanal, decanal and 6-methyl-5-hepten-2-one (6-MHO) were detected in the aircraft cabin at sub- to low ppb levels. Linear regression models that included the log transformed mean ozone concentration, percent occupancy and plane type were statistically significant and explained between 18 and 25% of the variance in the mixing ratio of these carbonyls. Occupancy was also a significant factor for 6-MHO, but not the linear aldehydes, consistent with 6-MHO’s formation from the reaction between ozone and squalene, which is present in human skin oils. PMID:23517299

  2. Wind tunnel performance of four energy efficient propellers designed for Mach 0.8 cruise. [Lewis 8x6 foot wind tunnel studies for noise reduction in high speed turboprop aircraft

    NASA Technical Reports Server (NTRS)

    Jeracki, R. J.; Mikkelson, D. C.; Blaha, B. J.

    1979-01-01

    Several advanced aerodynamic and acoustic concepts were investigated in recent wind tunnel tests performed in the NASA-Lewis Research Center 8x6 foot wind tunnel. These concepts included aerodynamically integrated propeller/nacelles, area-ruling, blade sweep, reduced blade thickness, and power (disk) loadings several times higher than conventional designs. Four eight-bladed propeller models were tested to determine aerodynamic performance. Relative noise measurements were made on three of the models at cruise conditions. Three of the models were designed with swept blades and one with straight blades. At the design Mach number of 0.8, power coefficient of 1.7, and advance ratio of 3.06, the straight bladed model had the lowest net efficiency of 75.8 percent. Increasing the sweep to 30 deg improved the performance to near 77 percent. Installation of an area-ruled spinner on a 30 deg sweep model further improved the efficiency to about 78 percent. The model with the highest blade sweep (45 deg) and an area-ruled spinner had the highest net efficiency of 78.7 percent, and at lower power loadings the efficiency exceeded 80 percent. At lower Mach numbers the 30 deg swept model had the highest efficiency. Values near 81 percent were obtained for the design loading at speeds to Mach 0.7. Relative noise measurements indicated that the acoustically designed 45 deg sweep model reduced the near field cruise noise by between 5 and 6 dB.

  3. The impact of nitrogen oxides emissions from aircraft upon the atmosphere at flight altitudes—results from the aeronox project

    NASA Astrophysics Data System (ADS)

    Schumann, U.

    The AERONOX project investigated the emissions of nitrogen oxides (NO x) from aircraft engines and global air traffic at cruising altitudes, the resultant increase in NO x concentrations, and the effects on the composition of the atmosphere, in particular with respect to ozone formation in the upper troposphere and lower stratosphere. The project was structured into three subprojects: Engine exhaust emissions, physics and chemistry in the aircraft wake, and global atmospheric model simulations. A complementary program of work by aviation experts has provided detailed information on air traffic data which was combined with data on aircraft performance and emissions to produce a global emissions inventory. This summary gives an overview of the results of this project. Further details are given in the following papers of this issue and the final project report of 1995. The work resulted in improved predictive equations to determine NO x emissions at cruise conditions based on available data for aircraft/engine combinations, and NO x emission measurements on two engines in cruise conditions. This information was combined with a traffic database to provide a new global NO x emissions inventory. It was found that only minor chemical changes occur during the vortex regime of the emission plume; however, this result does not exclude the possibility of further changes in the dispersion phase. A variety of global models was set up to investigate the changes in NO x concentrations and photochemistry. Although aviation contributes only a small proportion (about 3%) of the total global NO x from all anthropogenic sources, the models show that aviation contributes a large fraction to the concentrations of NOX in the upper troposphere, in particular north of 30°N.

  4. Design integration and noise studies for jet STOL aircraft. Task 7C: Augmentor wing cruise blowing valveless system. Volume 2: Small-scale development testing of augmentor wing critical ducting components

    NASA Technical Reports Server (NTRS)

    Runnels, J. N.; Gupfa, A.

    1973-01-01

    Augmentor wing ducting system studies conducted on a valveless system configuration that provides cruise thrust from the augmentor nozzles have shown that most of the duct system pressure loss would occur in the strut-wing duct y-junction and the wing duct-augmentor lobe nozzles. These components were selected for development testing over a range of duct Mach numbers and pressure ratios to provide a technical basis for predicting installed wing thrust loading and for evaluating design wing loading of a particular wing aspect ratios. The flow characteristics of ducting components with relatively high pressure loss coefficients were investigated. The turbulent pressure fluctuations associated with flows at high Mach numbers were analyzed to evaluate potential duct fatigue problems.

  5. Advanced Low NOx Combustors for Aircraft Gas Turbines

    NASA Technical Reports Server (NTRS)

    Roberts, P. B.; White, D. J.; Shekleton, J. R.; Butze, H. F.

    1976-01-01

    A test rig program was conducted with the objective of evaluating and minimizing the exhaust emissions, in particular NOx, of two advanced aircraft combustor concepts at a simulated high-altitude cruise condition. The two pre-mixed, lean-reaction designs are known as the Jet Induced Circulation (JIC) combustor and the Vortex Air Blast (VAB) combustor and were rig tested in the form of reverse flow can combustors in the 0.13 ni (5.0 in. ) size range. Various configuration modifications were applied to the JIC and VAB combustor designs in an effort to reduce the emissions levels. The VAB combustor demonstrated a NOx level of 1.11 gm NO2/kg fuel with essentially 100 percent combustion efficiency at the simulated cruise combustor condition of 507 kPa (5 atm), 833 K (1500 R), inlet pressure and temperature respectively, and 1778 K (3200 R) outlet temperature on Jet-Al fuel. These configuration screening tests were carried out on essentially reaction zones only, in order to simplify the construction and modification of the combustors and to uncouple any possible effects on the emissions produced by the dilution flow. Tests were also conducted however at typical engine idle conditions on both combustors equipped with dilution ports in order to better define the problem areas involved in the operation of such concepts over a complete engine operational envelope. Versions of variable-geometry, JIC and VAB annular combustors are proposed.

  6. The ANCAT/EC global inventory of NO x emissions from aircraft

    NASA Astrophysics Data System (ADS)

    Gardner, R. M.; Adams, K.; Cook, T.; Deidewig, F.; Ernedal, S.; Falk, R.; Fleuti, E.; Herms, E.; Johnson, C. E.; Lecht, M.; Lee, D. S.; Leech, M.; Lister, D.; Massé, B.; Metcalfe, M.; Newton, P.; Schmitt, A.; Vandenbergh, C.; van Drimmelen, R.

    A three dimensional global emissions inventory for NO, from civil and military aviation has been formulated by a joint European Civil Aviation Conference/European Commission working group in support of the AERONOX project " The Impact of NO x Emissions from Aircraft Upon the Atmosphere at Flight Altitudes 8-15 km". The inventory was compiled on a resolution of 2.8 by 2.8° by 1 km in altitude for a 12 month period spanning mid-1991 to mid-1992. Traffic movement data were compiled from Air Traffic Control recorded movements and timetables for January, April, July and October and combined with an airframe emissions performance model. The global emission of aircraft NO x was estimated to be 2.78 Tg NO 2 yr -1 and the overall emission index for NO x in g NO x kg -1 fuel burnt was 16.8. The estimated NO x emissions are higher than the most comparable inventory (NASA, 1990) by a factor of almost 2. The vertical distribution shows that 60% of the global NO x is emitted at cruise altitudes of 10-12 km. There is a pronounced latitudinal bias with 93 % of the global emissions being in the Northern Hemisphere and 70% between 30 and 60°N The spatial distributions of NO x emissions show some seasonality. Emissions of CO 2 H 2O and SO 2 have also been estimated at 528, 216 and 0.165 Tg yr -1, respectively. Although not quantified, the uncertainties in the emissions estimate of NO x from aircraft are discussed and a small overestimation in the traffic movement data base was identified. However, the uncertainties are probably smaller than those for natural sources of NO x which are injected into the top of the troposphere. More work is required to refine emission inventories from aircraft.

  7. 50 CFR 27.34 - Aircraft.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 6 2010-10-01 2010-10-01 false Aircraft. 27.34 Section 27.34 Wildlife and... WILDLIFE REFUGE SYSTEM PROHIBITED ACTS Disturbing Violations: With Vehicles § 27.34 Aircraft. The unauthorized operation of aircraft, including sail planes, and hang gliders, at altitudes resulting...

  8. Minimum energy, liquid hydrogen supersonic cruise vehicle study

    NASA Technical Reports Server (NTRS)

    Brewer, G. D.; Morris, R. E.

    1975-01-01

    The potential was examined of hydrogen-fueled supersonic vehicles designed for cruise at Mach 2.7 and at Mach 2.2. The aerodynamic, weight, and propulsion characteristics of a previously established design of a LH2 fueled, Mach 2.7 supersonic cruise vehicle (SCV) were critically reviewed and updated. The design of a Mach 2.2 SCV was established on a corresponding basis. These baseline designs were then studied to determine the potential of minimizing energy expenditure in performing their design mission, and to explore the effect of fuel price and noise restriction on their design and operating performance. The baseline designs of LH2 fueled aircraft were than compared with equivalent designs of jet A (conventional hydrocarbon) fueled SCV's. Use of liquid hydrogen for fuel for the subject aircraft provides significant advantages in performance, cost, noise, pollution, sonic boom, and energy utilization.

  9. Subsonic longitudinal aerodynamic characteristics and engine pressure distributions for an aircraft with an integrated scramjet designed for Mach 6 cruise. [conducted in Langley 7 by 10 foot high speed tunnel

    NASA Technical Reports Server (NTRS)

    Huffman, J. K.; Fox, C. H., Jr.; Johnston, P. J.

    1977-01-01

    A 1/10-scale model of a proposed hypersonic aircraft with an integrated scramjet was tested. The investigation took place over a Mach number range from 0.2 to 0.7 and an angle of attack range from 2 deg to approximately 17 deg at a sideslip angle of 0 deg. The primary configuration variables studied were engine location, internal engine geometry, and external engine geometry. The results are presented without analysis.

  10. Analysis of various descent trajectories for a hypersonic-cruise, cold-wall research airplane

    NASA Technical Reports Server (NTRS)

    Lawing, P. L.

    1975-01-01

    The probable descent operating conditions for a hypersonic air-breathing research airplane were examined. Descents selected were cruise angle of attack, high dynamic pressure, high lift coefficient, turns, and descents with drag brakes. The descents were parametrically exercised and compared from the standpoint of cold-wall (367 K) aircraft heat load. The descent parameters compared were total heat load, peak heating rate, time to landing, time to end of heat pulse, and range. Trends in total heat load as a function of cruise Mach number, cruise dynamic pressure, angle-of-attack limitation, pull-up g-load, heading angle, and drag-brake size are presented.

  11. X-36 Tailless Fighter Agility Research Aircraft in flight

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The tailless X-36 technology demonstrator research aircraft cruises over the California desert at low altitude during a 1997 research flight. The NASA/Boeing X-36 Tailless Fighter Agility Research Aircraft program successfully demonstrated the tailless fighter design using advanced technologies to improve the maneuverability and survivability of possible future fighter aircraft. The program met or exceeded all project goals. For 31 flights during 1997 at the Dryden Flight Research Center, Edwards, California, the project team examined the aircraft's agility at low speed / high angles of attack and at high speed / low angles of attack. The aircraft's speed envelope reached up to 206 knots (234 mph). This aircraft was very stable and maneuverable. It handled very well. The X-36 vehicle was designed to fly without the traditional tail surfaces common on most aircraft. Instead, a canard forward of the wing was used as well as split ailerons and an advanced thrust-vectoring nozzle for directional control. The X-36 was unstable in both pitch and yaw axes, so an advanced, single-channel digital fly-by-wire control system (developed with some commercially available components) was put in place to stabilize the aircraft. Using a video camera mounted in the nose of the aircraft and an onboard microphone, the X-36 was remotely controlled by a pilot in a ground station virtual cockpit. A standard fighter-type head-up display (HUD) and a moving-map representation of the vehicle's position within the range in which it flew provided excellent situational awareness for the pilot. This pilot-in-the-loop approach eliminated the need for expensive and complex autonomous flight control systems and the risks associated with their inability to deal with unknown or unforeseen phenomena in flight. Fully fueled the X-36 prototype weighed approximately 1,250 pounds. It was 19 feet long and three feet high with a wingspan of just over 10 feet. A Williams International F112 turbofan engine

  12. Adaptive Cruise Control (ACC)

    NASA Astrophysics Data System (ADS)

    Reif, Konrad

    Die adaptive Fahrgeschwindigkeitsregelung (ACC, Adaptive Cruise Control) ist eine Weiterentwicklung der konventionellen Fahrgeschwindigkeitsregelung, die eine konstante Fahrgeschwindigkeit einstellt. ACC überwacht mittels eines Radarsensors den Bereich vor dem Fahrzeug und passt die Geschwindigkeit den Gegebenheiten an. ACC reagiert auf langsamer vorausfahrende oder einscherende Fahrzeuge mit einer Reduzierung der Geschwindigkeit, sodass der vorgeschriebene Mindestabstand zum vorausfahrenden Fahrzeug nicht unterschritten wird. Hierzu greift ACC in Antrieb und Bremse ein. Sobald das vorausfahrende Fahrzeug beschleunigt oder die Spur verlässt, regelt ACC die Geschwindigkeit wieder auf die vorgegebene Sollgeschwindigkeit ein (Bild 1). ACC steht somit für eine Geschwindigkeitsregelung, die sich dem vorausfahrenden Verkehr anpasst.

  13. BENCAL Cruise Report

    NASA Technical Reports Server (NTRS)

    Hooker, Stanford B. (Editor); Firestone, Elaine R. (Editor); Barlow, Ray; Sessions, Heather; Silulwane, Nonkqubela; Engel, Hermann; Aiken, James; Fishwick, James; Martinez-Vicente, Victor; Morel, Andre

    2003-01-01

    This report documents the scientific activities on board the South African Fisheries Research Ship (FRS) Africana during an ocean color calibration and validation cruise in the Benguela upwelling ecosystem (BEN-CAL), 4-17 October 2002. The cruise, denoted Afncana voyage 170, was staged in the southern Benguela between Cape Town and the Orange River within the region 14-18.5 deg E,29-34 deg S, with 15 scientists participat- ing from seven different international organizations. Uniquely in October 2002, four high-precision ocean color sensors were operational, and these included the Moderate Resolution Imaging Spectroradiometer (MODIS) instruments on the Aqua and Terra spacecraft, the Medium Resolution Imaging Spectrometer (MERIS), and the Sea-viewing Wide Field-of-view Sensor (SeaWiFS). SeaWiFS imagery was transmitted daily to the ship to assist in choosing the vessel's course and selecting stations for bio-optical deployments. There were four primary objectives of the cruise. The first was to conduct bio-optical measurements with above- and in-water optical instruments to vicariously calibrate the satellite sensors. The second was to interrelate diverse measurements of the apparent optical properties (AOPs) at satellite sensor wavelengths with inherent optical properties (IOPs) and bio-optically active constituents of seawater such as particles, pigments, and dissolved compounds. The third was to determine the interrelationships between optical properties, phytoplankton pigment composition, photosynthetic rates, and primary production, while the fourth objective was to collect samples for a second pigment round-robin intercalibration experiment. Weather conditions were generally very favorable, and a range of hyperspectral and fixed wavelength AOP instruments were deployed during daylight hours. Various IOP instruments were used to determine the absorption, attenuation, scattering, and backscattering properties of particulate matter and dissolved substances, while

  14. Teacher Techniques: Exploring Timber Cruising.

    ERIC Educational Resources Information Center

    Rillo, Thomas J.

    A timber cruise is an estimate of the timber in a stand to see what kinds of trees are growing, how many are marketable, and whether good forest management practices are followed. The objectives of timber cruising are to secure information to recommend good management practices to the land owner and to determine the commercial value of the trees.…

  15. Oceanographic Mower Cruise

    NASA Astrophysics Data System (ADS)

    Valencia, J.; Ercilla, G.; Hernández-Molina, F. J.; Casas, D.

    2015-04-01

    The MOWER Cruise has executed a geophysics and geologic expedition in the Gulf of Cádiz (sector adjacent to the Strait of Gibraltar) and west off Portugal, in the framework of the coordinate research project MOWER "Erosive features and associated sandy deposits generated by the Mediterranean Outflow Water (MOW) around Iberia: paleoceanographic, sedimentary & economic implications" (CTM 2012-39599-C03). The main aim of this project is to identify and study the erosional features (terraces and channels) and associated sedimentary deposits (sandy contourites) generated by the Mediterranean Water Masses around the middle continental slope of Iberia (The Mediterranean Outflow Water - MOW - in the Atlantic margins), their Pliocene and Quaternary evolution and their paleoceanographic, sedimentary and economic implications. This objective directly involves the study of alongslope (contourite) processes associated with the MOW and across-slope (turbiditic flows, debris flows, etc.) processes in the sedimentary stacking pattern and evolution of the Iberian margins. The MOWER project and cruise are related to the Integrated Ocean Drilling Program (IODP) Expedition 339 (Mediterranean Outflow). It is also linked and coordinated with CONDRIBER Project "Contourite drifts and associated mass-transport deposits along the SW Iberia margin - implications to slope stability and tsunami hazard assessment" (2013-2015) funded by the Fundação para a Ciência e Tecnologia, Portugal (PTDC/GEO-GEO/4430/2012).

  16. V/STOL tilt rotor aircraft study. Volume 5: Definition of stowed rotor research aircraft

    NASA Technical Reports Server (NTRS)

    Soule, V. A.

    1973-01-01

    The results of a study of folding tilt rotor (stowed rotor) aircraft are presented. The effects of design cruise speed on the gross weight of a conceptual design stowed rotor aircraft are shown and a comparison is made with a conventional (non-folding) tilt rotor aircraft. A flight research stowed rotor design is presented. The program plans, including costs and schedules, are shown for the research aircraft development and a wind tunnel plan is presented for a full scale test of the aircraft.

  17. Wind tunnel performance of four energy efficient propellers designed for Mach 0.8 cruise

    NASA Technical Reports Server (NTRS)

    Jeracki, R. J.; Mikkelson, D. C.; Blaha, B. J.

    1979-01-01

    For the advanced turboprop to be competitive with proposed advanced turbofan-powered aircraft, it must have high propulsive efficiency at Mach 0.8 cruise above 9.144-km altitude with an acceptable cabin noise environment. Four 8-bladed propeller models are designed employing various concepts to reduce compressibility losses. Wind tunnel tests are conducted at zero model incidence to the free-stream flow. Aerodynamic and acoustic test results are presented and discussed. It is shown that the aeroacoustically designed configuration (SR-3) with 45 deg of tip sweep and an area-ruled spinner yields the highest propulsive efficiency (78.7% at Mach 0.8, 3.06 advance ratio, and 1.7 power coefficient), with an improvement of about 3% over the straight bladed configuration (SR-2, with zero-degree sweep). The phase-interference concept for noise reduction used in SR-3 yields about 5-6 dB reduction as compared to SR-2.

  18. Advanced structures technology applied to a supersonic cruise arrow-wing configuration

    NASA Technical Reports Server (NTRS)

    Sakata, I. F.; Davis, G. W.

    1976-01-01

    The application of advanced technology to a promising aerodynamic configuration was explored to investigate the improved payload range characteristics over the configuration postulated during the National SST Program. The results of an analytical study performed to determine the best structural approach for design of a Mach number 2.7 arrow-wing supersonic cruise aircraft are highlighted. The data conducted under the auspices of the Structures Directorate of the National Aeronautics and Space Administration, Langley Research Center, established firm technical bases from which further trend studies were conducted to quantitatively assess the benefits and feasibility of using advanced structures technology to arrive at a viable advanced supersonic cruise aircraft.

  19. High-Altitude Illness

    MedlinePlus

    ... altitude illness: Acute mountain sickness High-altitude pulmonary edema (also called HAPE), which affects the lungs High-altitude cerebral edema (also called HACE), which affects the brain These ...

  20. Cruise missiles should not stop START

    SciTech Connect

    Tsipis, K.

    1988-11-01

    A method for verifying a cruise-missile agreement that would be acceptable to the military, industrial, and intelligence communities in both nations must be as unintrusive as possible, while remaining immune to cheating of any significance. This is the goal of the technical solutions outlined here. The elements of a verification regime described do not require routine, intrusive, on-site visits to naval vessels, aircraft, air bases, or weapons magazines where missiles may be stored. They do not interfere with the operational readiness of the missiles, and they protect legitimate military secrets of the inspected nation. If supported by competent national technical means of verification such as those both sides already employ, with a small number of on-site challenge inspections, a combination of technical solutions and procedures such as these could be effective. They would adequately safeguard the national security and sovereignty of the participating nations while providing policymakers with the option of a treaty that limits the number of long-range nuclear cruise missiles or eliminates them completely. As discussed, there are problems that remain to be addressed, but they should not be allowed to block a U.S.-Soviet agreement significantly reducing strategic nuclear arsenals.

  1. Tailless aircraft performance improvements with relaxed static stability

    NASA Technical Reports Server (NTRS)

    Ashkenas, Irving L.; Klyde, David H.

    1989-01-01

    The purpose is to determine the tailless aircraft performance improvements gained from relaxed static stability, to quantify this potential in terms of range-payload improvements, and to identify other possible operational and handling benefits or problems. Two configurations were chosen for the study: a modern high aspect ratio, short-chord wing proposed as a high-altitude long endurance (HALE) remotely piloted vehicle; a wider, lower aspect ratio, high volume wing suitable for internal stowage of all fuel and payload required for a manned long-range reconnaissance mission. Flying at best cruise altitude, both unstable configurations were found to have a 14 percent improvement in range and a 7 to 9 percent improvement in maximum endurance compared to the stable configurations. The unstable manned configuration also shows a 15 percent improvement in the 50 ft takeoff obstacle distance and an improved height response to elevator control. However, it is generally more deficient in control power due to its larger adverse aileron yaw and its higher takeoff and landing lift coefficient C(sub L), both due to the downward trimmed (vs. upward trimmed for stable configurations) trailing edge surfaces.

  2. CMO: Cruise Metadata Organizer for JAMSTEC Research Cruises

    NASA Astrophysics Data System (ADS)

    Fukuda, K.; Saito, H.; Hanafusa, Y.; Vanroosebeke, A.; Kitayama, T.

    2011-12-01

    JAMSTEC's Data Research Center for Marine-Earth Sciences manages and distributes a wide variety of observational data and samples obtained from JAMSTEC research vessels and deep sea submersibles. Generally, metadata are essential to identify data and samples were obtained. In JAMSTEC, cruise metadata include cruise information such as cruise ID, name of vessel, research theme, and diving information such as dive number, name of submersible and position of diving point. They are submitted by chief scientists of research cruises in the Microsoft Excel° spreadsheet format, and registered into a data management database to confirm receipt of observational data files, cruise summaries, and cruise reports. The cruise metadata are also published via "JAMSTEC Data Site for Research Cruises" within two months after end of cruise. Furthermore, these metadata are distributed with observational data, images and samples via several data and sample distribution websites after a publication moratorium period. However, there are two operational issues in the metadata publishing process. One is that duplication efforts and asynchronous metadata across multiple distribution websites due to manual metadata entry into individual websites by administrators. The other is that differential data types or representation of metadata in each website. To solve those problems, we have developed a cruise metadata organizer (CMO) which allows cruise metadata to be connected from the data management database to several distribution websites. CMO is comprised of three components: an Extensible Markup Language (XML) database, an Enterprise Application Integration (EAI) software, and a web-based interface. The XML database is used because of its flexibility for any change of metadata. Daily differential uptake of metadata from the data management database to the XML database is automatically processed via the EAI software. Some metadata are entered into the XML database using the web

  3. Program to compute the positions of the aircraft and of the aircraft sensor footprints

    NASA Technical Reports Server (NTRS)

    Paris, J. F. (Principal Investigator)

    1982-01-01

    The positions of the ground track of the aircraft and of the aircraft sensor footprints, in particular the metric camera and the radar scatterometer on the C-130 aircraft, are estimated by a program called ACTRK. The program uses the altitude, speed, and attitude informaton contained in the radar scatterometer data files to calculate the positions. The ACTRK program is documented.

  4. Summary of Lift and Lift/Cruise Fan Powered Lift Concept Technology

    NASA Technical Reports Server (NTRS)

    Cook, Woodrow L.

    1993-01-01

    A summary is presented of some of the lift and lift/cruise fan technology including fan performance, fan stall, ground effects, ingestion and thrust loss, design tradeoffs and integration, control effectiveness and several other areas related to vertical short takeoff and landing (V/STOL) aircraft conceptual design. The various subjects addressed, while not necessarily pertinent to specific short takeoff/vertical landing (STOVL) supersonic designs being considered, are of interest to the general field of lift and lift/cruise fan aircraft designs and may be of importance in the future. The various wind tunnel and static tests reviewed are: (1) the Doak VZ-4 ducted fan, (2) the 0.57 scale model of the Bell X-22 ducted fan aircraft, (3) the Avrocar, (4) the General Electric lift/cruise fan, (5) the vertical short takeoff and landing (V/STOL) lift engine configurations related to ingestion and consequent thrust loss, (6) the XV-5 and other fan-in-wing stall consideration, (7) hybrid configurations such as lift fan and lift/cruise fan or engines, and (8) the various conceptual design studies by air-frame contractors. Other design integration problems related to small and large V/STOL transport aircraft are summarized including lessons learned during more recent conceptual design studies related to a small executive V/STOL transport aircraft.

  5. An assessment of the effect of supersonic aircraft operations on the stratospheric ozone content

    NASA Technical Reports Server (NTRS)

    Poppoff, I. G.; Whitten, R. C.; Turco, R. P.; Capone, L. A.

    1978-01-01

    An assessment of the potential effect on stratospheric ozone of an advanced supersonic transport operations is presented. This assessment, which was undertaken because of NASA's desire for an up-to-date evaluation to guide programs for the development of supersonic technology and improved aircraft engine designs, uses the most recent chemical reaction rate data. From the results of the present assessment it would appear that realistic fleet sizes should not cause concern with regard to the depletion of the total ozone overburden. For example, the NOx emission of one type designed to cruise at 20 km altitude will cause the ozone overburden to increase by 0.03% to 0.12%, depending upon which vertical transport is used. These ozone changes can be compared with the predictions of a 1.74% ozone decrease (for 100 Large SST's flying at 20 km) made in 1974 by the FAA's Climatic Impact Assessment Program.

  6. Intensive probing of clear air convective fields by radar and instrumented drone aircraft.

    NASA Technical Reports Server (NTRS)

    Rowland, J. R.

    1972-01-01

    Clear air convective fields were probed in three summer experiments (1969, 1970, and 1971) on an S-band monopulse tracking radar at Wallops Island, Virginia, and a drone aircraft with a takeoff weight of 5.2 kg, wingspan of 2.5 m, and cruising glide speed of 10.3 m/sec. The drone was flown 23.2 km north of the radar and carried temperature, pressure/altitude, humidity, and vertical and airspeed velocity sensors. Extensive time-space convective field data were obtained by taking a large number of RHI and PPI pictures at short intervals of time. The rapidly changing overall convective field data obtained from the radar could be related to the meteorological information telemetered from the drone at a reasonably low cost by this combined technique.

  7. 10 CFR 862.6 - Voluntary minimum altitude.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Voluntary minimum altitude. 862.6 Section 862.6 Energy DEPARTMENT OF ENERGY RESTRICTIONS ON AIRCRAFT LANDING AND AIR DELIVERY AT DEPARTMENT OF ENERGY NUCLEAR SITES § 862.6 Voluntary minimum altitude. In addition to complying with all applicable FAA prohibitions...

  8. 14 CFR 91.515 - Flight altitude rules.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Flight altitude rules. 91.515 Section 91...) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Large and Turbine-Powered Multiengine Airplanes and Fractional Ownership Program Aircraft § 91.515 Flight altitude rules....

  9. Users guide to high altitude imagery of Michigan

    NASA Technical Reports Server (NTRS)

    1973-01-01

    A guide to the high altitude imagery of Michigan outlines the areas of the state covered by selected recent high altitude aircraft and Earth Resources Technology Satellite flights. The types of remote sensing used are described. Maps of the flight coverage areas are included along with price lists of available imagery.

  10. 14 CFR 91.177 - Minimum altitudes for IFR operations.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... pilot operating the aircraft of that distance); or (2) If no applicable minimum altitude is prescribed... mountainous area in part 95 of this chapter, an altitude of 2,000 feet above the highest obstacle within a horizontal distance of 4 nautical miles from the course to be flown; or (ii) In any other case, an...

  11. Multi-fuel rotary engine for general aviation aircraft

    NASA Technical Reports Server (NTRS)

    Jones, C.; Ellis, D. R.; Meng, P. R.

    1983-01-01

    Design studies of advanced multifuel general aviation and commuter aircraft rotary stratified charge engines are summarized. Conceptual design studies were performed at two levels of technology, on advanced general aviation engines sized to provide 186/250 shaft kW/hp under cruise conditions at 7620 (25000 m/ft) altitude. A follow on study extended the results to larger (2500 hp max.) engine sizes suitable for applications such as commuter transports and helicopters. The study engine designs were derived from relevant engine development background including both prior and recent engine test results using direct injected unthrottled rotary engine technology. Aircraft studies, using these resultant growth engines, define anticipated system effects of the performance and power density improvements for both single engine and twin engine airplanes. The calculated results indicate superior system performance and 27 to 33 percent fuel economy improvement for the rotary engine airplanes as compared to equivalent airframe concept designs with current baseline engines. The research and technology activities required to attain the projected engine performance levels are also discussed.

  12. Planned Improvements for the WB-57F Aircraft

    NASA Astrophysics Data System (ADS)

    Baccus, S.; Roberts, A.; Ross, M.

    2003-12-01

    NASA WB-57F aircraft have supported the atmospheric science community for over 30 years. Recent attention has focused on the chemistry and dynamics of the UTLS region of the atmosphere and several NASA sponsored field campaigns (ACCENT, CRYSTAL-FACE) have made critical use of the WB-57F's unique ability to carry large (3 ton) payloads during extended cruise at all altitudes from the lower troposphere to the lower stratosphere (20 km ceiling). In addition, the WB-57F's robust structure permits a large number and variety of instruments to be carried at inlet-favorable locations on the aircraft. In order to further improve the WB-57F's performance and unique utility to the atmospheric research and spacecraft validation communities, NASA is planning several upgrades to the WB-57F including state-of-the-art avionics and autopilot, landing gear replacement, maximum gross weight increase, engine replacement, and ultrapod installation. We will review the present WB-57F performance, plans for upcoming science campaigns, and plans for increased WB-57F payload, range, endurance, and ceiling resulting from the upgrades.

  13. Multi-Fuel Rotary Engine for General Aviation Aircraft

    NASA Technical Reports Server (NTRS)

    Jones, C.; Ellis, D. R.; Meng, P. R.

    1983-01-01

    Design studies, conducted for NASA, of Advanced Multi-fuel General Aviation and Commuter Aircraft Rotary Stratified Charge Engines are summarized. Conceptual design studies of an advanced engine sized to provide 186/250 shaft KW/HP under cruise conditions at 7620/25,000 m/ft. altitude were performed. Relevant engine development background covering both prior and recent engine test results of the direct injected unthrottled rotary engine technology, including the capability to interchangeably operate on gasoline, diesel fuel, kerosene, or aviation jet fuel, are presented and related to growth predictions. Aircraft studies, using these resultant growth engines, define anticipated system effects of the performance and power density improvements for both single engine and twin engine airplanes. The calculated results indicate superior system performance and 30 to 35% fuel economy improvement for the Rotary-engine airplanes as compared to equivalent airframe concept designs with current baseline engines. The research and technology activities required to attain the projected engine performance levels are also discussed.

  14. Developmental Continuity? Crawling, Cruising, and Walking

    ERIC Educational Resources Information Center

    Adolph, Karen E.; Berger, Sarah E.; Leo, Andrew J.

    2011-01-01

    This research examined developmental continuity between "cruising" (moving sideways holding onto furniture for support) and walking. Because cruising and walking involve locomotion in an upright posture, researchers have assumed that cruising is functionally related to walking. Study 1 showed that most infants crawl and cruise concurrently prior…

  15. Impact of Cabin Ozone Concentrations on Passenger Reported Symptoms in Commercial Aircraft

    PubMed Central

    Bekö, Gabriel; Allen, Joseph G.; Weschler, Charles J.; Vallarino, Jose; Spengler, John D.

    2015-01-01

    Due to elevated ozone concentrations at high altitudes, the adverse effect of ozone on air quality, human perception and health may be more pronounced in aircraft cabins. The association between ozone and passenger-reported symptoms has not been investigated under real conditions since smoking was banned on aircraft and ozone converters became more common. Indoor environmental parameters were measured at cruising altitude on 83 US domestic and international flights. Passengers completed a questionnaire about symptoms and satisfaction with the indoor air quality. Average ozone concentrations were relatively low (median: 9.5 ppb). On thirteen flights (16%) ozone levels exceeded 60 ppb, while the highest peak level reached 256 ppb for a single flight. The most commonly reported symptoms were dry mouth or lips (26%), dry eyes (22.1%) and nasal stuffiness (18.9%). 46% of passengers reported at least one symptom related to the eyes or mouth. A third of the passengers reported at least one upper respiratory symptom. Using multivariate logistic (individual symptoms) and linear (aggregated continuous symptom variables) regression, ozone was consistently associated with symptoms related to the eyes and certain upper respiratory endpoints. A concentration-response relationship was observed for nasal stuffiness and eye and upper respiratory symptom indicators. Average ozone levels, as opposed to peak concentrations, exhibited slightly weaker associations. Medium and long duration flights were significantly associated with more symptoms compared to short flights. The relationship between ultrafine particles and ozone on flights without meal service was indicative of ozone-initiated chemistry. PMID:26011001

  16. Impact of cabin ozone concentrations on passenger reported symptoms in commercial aircraft.

    PubMed

    Bekö, Gabriel; Allen, Joseph G; Weschler, Charles J; Vallarino, Jose; Spengler, John D

    2015-01-01

    Due to elevated ozone concentrations at high altitudes, the adverse effect of ozone on air quality, human perception and health may be more pronounced in aircraft cabins. The association between ozone and passenger-reported symptoms has not been investigated under real conditions since smoking was banned on aircraft and ozone converters became more common. Indoor environmental parameters were measured at cruising altitude on 83 US domestic and international flights. Passengers completed a questionnaire about symptoms and satisfaction with the indoor air quality. Average ozone concentrations were relatively low (median: 9.5 ppb). On thirteen flights (16%) ozone levels exceeded 60 ppb, while the highest peak level reached 256 ppb for a single flight. The most commonly reported symptoms were dry mouth or lips (26%), dry eyes (22.1%) and nasal stuffiness (18.9%). 46% of passengers reported at least one symptom related to the eyes or mouth. A third of the passengers reported at least one upper respiratory symptom. Using multivariate logistic (individual symptoms) and linear (aggregated continuous symptom variables) regression, ozone was consistently associated with symptoms related to the eyes and certain upper respiratory endpoints. A concentration-response relationship was observed for nasal stuffiness and eye and upper respiratory symptom indicators. Average ozone levels, as opposed to peak concentrations, exhibited slightly weaker associations. Medium and long duration flights were significantly associated with more symptoms compared to short flights. The relationship between ultrafine particles and ozone on flights without meal service was indicative of ozone-initiated chemistry. PMID:26011001

  17. Pathfinder aircraft in flight

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The unique Pathfinder solar-powered flying wing, is shown during a checkout flight from the Dryden Flight Research Center, Edwards, California. This two-hour low-altitude flight over Rogers Dry Lake, Nov. 19, 1996, served to test aircraft systems and functional procedures, according to officials of AeroVironment, Inc., Pathfinder's developer and operator. Pathfinder was a lightweight, solar-powered, remotely piloted flying wing aircraft used to demonstrate the use of solar power for long-duration, high-altitude flight. Its name denotes its mission as the 'Pathfinder' or first in a series of solar-powered aircraft that will be able to remain airborne for weeks or months on scientific sampling and imaging missions. Solar arrays covered most of the upper wing surface of the Pathfinder aircraft. These arrays provided up to 8,000 watts of power at high noon on a clear summer day. That power fed the aircraft's six electric motors as well as its avionics, communications, and other electrical systems. Pathfinder also had a backup battery system that could provide power for two to five hours, allowing for limited-duration flight after dark. Pathfinder flew at airspeeds of only 15 to 20 mph. Pitch control was maintained by using tiny elevators on the trailing edge of the wing while turns and yaw control were accomplished by slowing down or speeding up the motors on the outboard sections of the wing. On September 11, 1995, Pathfinder set a new altitude record for solar-powered aircraft of 50,567 feet above Edwards Air Force Base, California, on a 12-hour flight. On July 7, 1997, it set another, unofficial record of 71,500 feet at the Pacific Missile Range Facility, Kauai, Hawaii. In 1998, Pathfinder was modified into the longer-winged Pathfinder Plus configuration. (See the Pathfinder Plus photos and project description.)

  18. 76 FR 30231 - Civil Supersonic Aircraft Panel Discussion

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-24

    ... advancements in supersonic aircraft technology aimed at reducing the intensity of sonic boom. DATES: The public... Whisper'', the aerospace company's latest effort to provide a solution to the traditional sonic boom. A supersonic aircraft such as the Concorde in cruise produces a traditional jagged ``N-wave'' sonic...

  19. Staying Healthy on a Cruise

    MedlinePlus

    ... get the most out of your cruise vacation. Zika Travel Information The 2016 Olympics in Brazil, Reggae ... the summer is full of great international celebrations! Zika has been reported in many popular event destinations ...

  20. Impact of Airspace Charges on Transatlantic Aircraft Trajectories

    NASA Technical Reports Server (NTRS)

    Sridhar, Banavar; Ng, Hok K.; Linke, Florian; Chen, Neil Y.

    2015-01-01

    Aircraft flying over the airspace of different countries are subject to over-flight charges. These charges vary from country to country. Airspace charges, while necessary to support the communication, navigation and surveillance services, may lead to aircraft flying routes longer than wind-optimal routes and produce additional carbon dioxide and other gaseous emissions. This paper develops an optimal route between city pairs by modifying the cost function to include an airspace cost whenever an aircraft flies through a controlled airspace without landing or departing from that airspace. It is assumed that the aircraft will fly the trajectory at a constant cruise altitude and constant speed. The computationally efficient optimal trajectory is derived by solving a non-linear optimal control problem. The operational strategies investigated in this study for minimizing aircraft fuel burn and emissions include flying fuel-optimal routes and flying cost-optimal routes that may completely or partially reduce airspace charges en route. The results in this paper use traffic data for transatlantic flights during July 2012. The mean daily savings in over-flight charges, fuel cost and total operation cost during the period are 17.6 percent, 1.6 percent, and 2.4 percent respectively, along the cost- optimal trajectories. The transatlantic flights can potentially save $600,000 in fuel cost plus $360,000 in over-flight charges daily by flying the cost-optimal trajectories. In addition, the aircraft emissions can be potentially reduced by 2,070 metric tons each day. The airport pairs and airspace regions that have the highest potential impacts due to airspace charges are identified for possible reduction of fuel burn and aircraft emissions for the transatlantic flights. The results in the paper show that the impact of the variation in fuel price on the optimal routes is to reduce the difference between wind-optimal and cost-optimal routes as the fuel price increases. The

  1. On the effect of emissions from aircraft engines on the state of the atmosphere

    NASA Astrophysics Data System (ADS)

    Schumann, U.

    1994-05-01

    Emissions from aircraft engines include carbon dioxide, water vapour, nitrogen oxides, sulphur components and various other gases and particles. Such emissions from high-flying global civil subsonic air traffic may cause anthropogenic climate changes by an increase of ozone and cloudiness in the upper troposphere, and by an enhanced greenhouse effect. The absolute emissions by air traffic are small (a few percent of the total) compared to surface emissions. However, the greenhouse effect of emitted water and of nitrogen oxides at cruise altitude is potentially large compared to that of the same emissions near the earth's surface because of relatively large residence times at flight altitudes, low background concentrations, low temperature, and large radiative efficiency. Model computations indicate that emission of nitrogen oxides has doubled the background concentration in the upper troposphere between 40°N and 60°N. Models also indicate that this causes an increase of ozone by about 5-20%. Regionally, the observed annual mean change in cloudiness is 0.4%. It is estimated that the resultant greenhouse effect of changes in ozone and thin cirrus cloud cover causes a climatic surface temperature change of 0.01-0.1 K. These temperature changes are small compared to the natural variability. Recent research indicates that the emissions at cruise altitude may increase the amount of stratospheric aerosols and polar stratospheric clouds and thereby have an impact on the atmospheric environment. Air traffic is increasing about 5-6% per year, fuel consumption by about 3%, hence the effects of the related emissions are expected to grow. This paper surveys the state of knowledge and describes several results from recent and ongoing research.

  2. Propulsion integration for military aircraft

    NASA Technical Reports Server (NTRS)

    Henderson, William P.

    1989-01-01

    The transonic aerodynamic characteristics for high-performance aircraft are significantly affected by shock-induced flow interactions as well as other local flow interference effects which usually occur at transonic speeds. These adverse interactions can not only cause high drag, but can cause unusual aerodynamic loadings and/or severe stability and control problems. Many new programs are underway to develop methods for reducing the adverse effects, as well as to develop an understanding of the basic flow conditions which are the primary contributors. It is anticipated that these new programs will result in technologies which can reduce the aircraft cruise drag through improved integration as well as increased aircraft maneuverability throughh the application of thrust vectoring. This paper will identify some of the primary propulsion integration problems for high performance aircraft at transonic speeds, and demonstrate several methods for reducing or eliminating the undesirable characteristics, while enhancing configuration effectiveness.

  3. Central coast designs: The Eightball Express. Taking off with convention, cruising with improvements and landing with absolute success

    NASA Technical Reports Server (NTRS)

    Davis, Ryan Edwin; Dawson, Anne Marie; Fecht, Paul Hans; Fry, Roman Zyabash; Vantriet, Robert; Macabantad, Dominique Dujale; Miller, Robert Glenn; Perez, Gustavo, Jr.; Weise, Timothy Michael

    1994-01-01

    The airline industry is very competitive, resulting in most U.S. and many international airlines being unprofitable. Because of this competition the airlines have been engaging in fare wars (which reduce revenue generated by transporting passengers) while inflation has increased. This situation of course is not developing revenue for the airlines. To revive the airlines to profitability, the difference between revenue received and airline operational cost must be improved. To solve these extreme conditions, the Eightball Express was designed with the main philosophy of developing an aircraft with a low direct operating cost and acquisition cost. Central Coast Designs' (CCD) aircraft utilizes primarily aluminum in the structure to minimize manufacturing cost, supercritical airfoil sections to minimize drag, and fuel efficient engines to minimize fuel burn. Furthermore, the aircraft was designed using Total Quality Management and Integrated Product Development to minimize development and manufacturing costs. Using these primary cost reduction techniques, the Eightball Express was designed to meet the Lockheed/AIAA Request for Proposal (RFP) requirements of a low cost, 153 passenger, 3000 nm. range transport. The Eightball Express is able to takeoff on less than a 7000 ft. runway, cruise at Mach 0.82 at an altitude of 36,000 ft. for a range of 3,000 nm., and lands on a 5,000 ft. runway. lt is able to perform this mission at a direct operating cost of 3.51 cents/available seat mile in 1992 dollars while the acquisition cost is only $28 million in 1992 dollars. By utilizing and improving on proven technologies, CCD has produced an efficient low cost commercial transport for the future.

  4. Energy efficient aircraft engines

    NASA Technical Reports Server (NTRS)

    Chamberlin, R.; Miller, B.

    1979-01-01

    The three engine programs that constitute the propulsion portion of NASA's Aircraft Energy Efficiency Program are described, their status indicated, and anticipated improvements in SFC discussed. The three engine programs are (1) Engine Component Improvement--directed at current engines, (2) Energy Efficiency Engine directed at new turbofan engines, and (3) Advanced Turboprops--directed at technology for advanced turboprop--powered aircraft with cruise speeds to Mach 0.8. Unique propulsion system interactive ties to the airframe resulting from engine design features to reduce fuel consumption are discussed. Emphasis is placed on the advanced turboprop since it offers the largest potential fuel savings of the three propulsion programs and also has the strongest interactive ties to the airframe.

  5. Energy efficient aircraft engines

    NASA Technical Reports Server (NTRS)

    Chamberlin, R.; Miller, B.

    1979-01-01

    The three engine programs that constitute the propulsion portion of NASA's Aircraft Energy Efficiency Program are described, their status indicated, and anticipated improvements in SFC discussed. The three engine programs are: (1) engine component improvement, directed at current engines, (2) energy efficient engine, directed at new turbofan engines, and (3) advanced turboprops, directed at technology for advanced turboprop-powered aircraft with cruise speeds to Mach 0.8. Unique propulsion system interactive ties to the airframe resulting from engine design features to reduce fuel consumption are discussed. Emphasis is placed on the advanced turboprop since it offers the largest potential fuel savings of the three propulsion programs and also has the strongest interactive ties to the airframe.

  6. Experimental clean combustor program, phase 1. [aircraft exhaust/gas analysis - gas turbine engines

    NASA Technical Reports Server (NTRS)

    Roberts, R.; Peduzzi, A.; Vitti, G. E.

    1975-01-01

    A program of screening three low emission combustors for conventional takeoff and landing, by testing and analyzing thirty-two configurations is presented. Configurations were tested that met the emission goals at idle operating conditions for carbon monoxide and for unburned hydrocarbons (emission index values of 20 and 4, respectively). Configurations were also tested that met a smoke number goal of 15 at sea-level take-off conditions. None of the configurations met the goal for oxides of nitrogen emissions at sea-level take-off conditions. The best configurations demonstrated oxide of nitrogen emission levels that were approximately 61 percent lower than those produced by the JT9D-7 engine, but these levels were still approximately 24 percent above the goal of an emission index level of 10. Additional combustor performance characteristics, including lean blowout, exit temperature pattern factor and radial profile, pressure loss, altitude stability, and altitude relight characteristics were documented. The results indicate the need for significant improvement in the altitude stability and relight characteristics. In addition to the basic program for current aircraft engine combustors, seventeen combustor configurations were evaluated for advanced supersonic technology applications. The configurations were tested at cruise conditions, and a conceptual design was evolved.

  7. Cueing light configuration for aircraft navigation

    NASA Technical Reports Server (NTRS)

    Kaiser, Mary K. (Inventor); Johnson, Walter J. (Inventor)

    1994-01-01

    A pattern of light is projected from multiple sources located on an aircraft to form two clusters. The pattern of each cluster changes as the aircraft flies above and below a predetermined nominal altitude. The initial patterns are two horizontal, spaced apart lines. Each is capable of changing to a delta formation as either the altitude or the terrain varies. The direction of the delta cues the pilot as to the direction of corrective action.

  8. Design, fabrication and testing of a liquid hydrogen fuel tank for a long duration aircraft

    NASA Astrophysics Data System (ADS)

    Mills, Gary L.; Buchholtz, Brian; Olsen, Al

    2012-06-01

    Liquid hydrogen has distinct advantages as an aircraft fuel. These include a specific heat of combustion 2.8 times greater than gasoline or jet fuel and zero carbon emissions. It can be utilized by fuel cells, turbine engines and internal combustion engines. The high heat of combustion is particularly important in the design of long endurance aircraft with liquid hydrogen enabling cruise endurance of several days. However, the mass advantage of the liquid hydrogen fuel will result in a mass advantage for the fuel system only if the liquid hydrogen tank and insulation mass is a small fraction of the hydrogen mass. The challenge is producing a tank that meets the mass requirement while insulating the cryogenic liquid hydrogen well enough to prevent excessive heat leak and boil off. In this paper, we report on the design, fabrication and testing of a liquid hydrogen fuel tank for a prototype high altitude long endurance (HALE) demonstration aircraft. Design options on tank geometry, tank wall material and insulation systems are discussed. The final design is an aluminum sphere insulated with spray on foam insulation (SOFI). Several steps and organizations were involved in the tank fabrication and test. The tank was cold shocked, helium leak checked and proof pressure tested. The overall thermal performance was verified with a boil off test using liquid hydrogen.

  9. Atmospheric effects of stratospheric aircraft - A status report from NASA's High-Speed Research Program

    NASA Technical Reports Server (NTRS)

    Wesoky, Howard L.; Prather, Michael J.

    1991-01-01

    Studies have indicated that, with sufficient technology development, future high-speed civil transport aircraft could be economically competitive with long-haul subsonic aircraft. However, uncertainty about atmospheric pollution, along with community noise and sonic boom, continues to be a major concern which is being addressed in the planned six-year High-Speed Research Program begun in 1990. Building on NASA's research in atmospheric science and emissions reduction, current analytical predictions indicate that an operating range may exist at altitudes below 20 km (i.e., corresponding to a cruise Mach number of approximately 2.4) where the goal level of 5 gm equivalent NO2 emissions/kg fuel will deplete less than one percent of column ozone. Because it will not be possible to directly measure the impact of an aircraft fleet on the atmosphere, the only means of assessment will be prediction. The process of establishing credibility for the predicted effects will likely be complex and involve continued model development and testing against climatological patterns. In particular, laboratory simulation of heterogeneous chemistry and other effects, and direct measurements of well understood tracers in the troposphere and stratosphere are being used to improve the current models.

  10. Simulation study of gust alleviation in a tilt rotor aircraft, volume 1

    NASA Technical Reports Server (NTRS)

    Amos, A. K.; Alexander, H. R.

    1977-01-01

    The response to vertical turbulence in cruise of the HTR XV-15 design is studied using simulation techniques. This design is a modified version of the XV-15 with a hingeless fiberglass soft-in-plane rotor system. The parameters of a gust alleviation system are determined and the performance of the system is evaluated over a range of cruise velocities and altitudes.

  11. Controller Strategies for Managing Air Traffic in High Altitude Arrival Sectors

    NASA Technical Reports Server (NTRS)

    Smith, Nancy; Palmer, Everett; Prevot, Thomas

    1998-01-01

    Substantial increases in the volume of air traffic in the National Airspace System (NAS) are forecast for the next decade, with the number of passengers travelling on U.S. airlines expected to increase by as much as 60%. This increased demand on system capacity will be accompanied by increases in traffic complexity as air traffic service providers routinely accommodate user preferred routing requests. Changes to the NAS to meet these new demands are currently underway, including development of new decision support tools to aid controllers in monitoring and managing air traffic, and increased air-to-air and air-to-ground information exchange. Changes in roles and responsibilities of pilots and controllers in flight path management will accompany these changes in traffic patterns and information technology, however the ultimate responsibility for maintaining aircraft separation will remain with the air traffic controller. A thorough understanding of the methods controllers use to manage air traffic will help ensure that changes to the NAS are implemented in a way that maintains the controller's ability to separate aircraft as the system evolves. This presentation describes the strategies controllers use today to manage arrival traffic in its descent from cruise altitude to the Terminal Radar Approach Control (TRACON) boundary. Factors that increase the complexity of this task include the presence of overflight traffic, varying aircraft performance characteristics, winds aloft, ground speed variations with altitude, the need to merge arrival traffic into a single stream, and, when arrival traffic exceeds airport runway capacity, the added task of metering flow into the TRACON. Because of the limited information available to controllers to manage arrival traffic, their strategies are often driven by the need to reduce the task's complexity, which can result in de-optimized flight paths for individual aircraft (e.g., sub-optimal descent or speed profiles). Understanding

  12. ERAST Program Proteus Aircraft in Flight over the Mojave Desert in California

    NASA Technical Reports Server (NTRS)

    1999-01-01

    monitor at the show only moments after they were taken. This was the second successful demonstration of the ARTIS camera. The aircraft is designed to cruise at altitudes from 59,000 to more than 65,000 feet for up to 18 hours. It was designed and built by Burt Rutan, president of Scaled Composites, Inc., to carry an 18-foot diameter telecommunications antenna system for relay of broadband data over major cities. The design allows for Proteus to be reconfigured at will for a variety of other missions such as atmospheric research, reconnaissance, commercial imaging, and launch of small space satellites. It is designed for extreme reliability and low operating costs, and to operate out of general aviation airports with minimal support. The aircraft consists of an all composite airframe with graphite-epoxy sandwich construction. It has a wingspan of 77 feet 7 inches, expandable to 92 feet with removable wingtips installed. It is 56.3 feet long and 17.6 feet high and weighs 5,900 pounds, empty. Proteus is powered by two Williams-Rolls FJ44-2 turbofan engines developing 2,300 pounds of thrust each.

  13. Maneuver Design for the Juno Mission: Inner Cruise

    NASA Technical Reports Server (NTRS)

    Pavlak, Thomas A.; Frauenholz, Raymond B.; Bordi, John J.; Kangas, Julie A.; Helfrich, Clifford E.

    2014-01-01

    The Juno spacecraft launched in August 2011 and, following a successful Earth flyby in October 2013, is on course for a nominal orbit insertion at Jupiter in July 2016. This paper examines the design and execution of deterministic and statistical trajectory correction maneuvers during the first approximately 27 months of post-launch operations that defined the "Inner Cruise" phase of the Juno mission. Topics of emphasis include the two deep space maneuvers, Earth flyby altitude biasing strategy, and the sequence of trajectory correction maneuvers executed in the weeks prior to the successful Earth gravity assist.

  14. An experimental measurement of galactic cosmic radiation dose in conventional aircraft between San Francisco and London compared to theoretical values for conventional and supersonic aircraft

    NASA Technical Reports Server (NTRS)

    Wallace, R.; Boyer, M. F.

    1972-01-01

    These direct measurements are in fair agreement with computations made using a program which considers both basic cosmic ray atmospheric physics and the focusing effect of the earth's magnetic field. These measurements also agree with those made at supersonic jet aircraft altitudes in Rb-57 aircraft. It is concluded that experiments and theory show that the doses received at conventional jet aircraft altitudes are slightly higher than those encountered in supersonic flights at much higher altitudes.

  15. Ears and Altitude

    MedlinePlus

    ... Meeting Calendar Find an ENT Doctor Near You Ears and Altitude Ears and Altitude Patient Health Information ... uncomfortable feeling of fullness or pressure. Why do ears pop? Normally, swallowing causes a little click or ...

  16. Fulminant high altitude blindness.

    PubMed

    Mashkovskiy, Evgeny; Szawarski, Piotr; Ryzhkov, Pavel; Goslar, Tomaz; Mrak, Irena

    2016-06-01

    Prolonged altitude exposure even with acclimatization continues to present a physiological challenge to all organ systems including the central nervous system. We describe a case of a 41-year-old Caucasian female climber who suffered severe visual loss that was due to possible optic nerve pathology occurring during a high altitude expedition in the Himalayas. This case is atypical of classic high altitude cerebral oedema and highlights yet another danger of prolonged sojourn at extreme altitudes. PMID:27601532

  17. Recent Progress in V/STOL Aircraft Technology

    NASA Technical Reports Server (NTRS)

    Roberts, L.; Deckert, W.; Hickey, D.

    1981-01-01

    Results from wind tunnel and flight tests investigations for V/STOL aircraft are reviewed. Primary emphasis is given to technical results relating to three types of subsonic aircraft: a quiet STOL aircraft; a tilt rotor aircraft; and a turbofan V/STOL aircraft. Comparison and correlation between theoretical and experimental results and between wind tunnel and flight test results, is made. The quiet STOL aircraft technology results are primarily those derived from the NASA/Boeing Quiet Short Haul Technology (QSRA) program. The QSRA aircraft uses an upper surface blown flap and develops a usable engine-out landing approach lift coefficient of 5.5 and landing distances less than 1,000 ft. The tilt rotor aircraft technology results are those obtained from the NASA/Army/Navy/Bell (XV-15-TRRA) aircraft flight investigations. The TRRA is a twin rotor research aircraft capable of vertical takeoff and landing and cruise speeds of 300 knots. The turbofan V/STOL aircraft technology results are from static ground facility and wind tunnel investigations of a NASA/NAVY/Grumman full scale lift/cruise fan aircraft model, which features two tilting nacelles with TF-34 engines.

  18. Reconfiguration control system for an aircraft wing

    NASA Technical Reports Server (NTRS)

    Wakayama, Sean R. (Inventor)

    2008-01-01

    Independently deflectable control surfaces are located on the trailing edge of the wing of a blended wing-body aircraft. The reconfiguration control system of the present invention controls the deflection of each control surface to optimize the spanwise lift distribution across the wing for each of several flight conditions, e.g., cruise, pitch maneuver, and high lift at low speed. The control surfaces are deflected and reconfigured to their predetermined optimal positions when the aircraft is in each of the aforementioned flight conditions. With respect to cruise, the reconfiguration control system will maximize the lift to drag ratio and keep the aircraft trimmed at a stable angle of attack. In a pitch maneuver, the control surfaces are deflected to pitch the aircraft and increase lift. Moreover, this increased lift has its spanwise center of pressure shifted inboard relative to its location for cruise. This inboard shifting reduces the increased bending moment about the aircraft's x-axis occasioned by the increased pitch force acting normal to the wing. To optimize high lift at low speed, during take-off and landing for example, the control surfaces are reconfigured to increase the local maximum coefficient of lift at stall-critical spanwise locations while providing pitch trim with control surfaces that are not stall critical.

  19. Pathfinder aircraft flight

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The Pathfinder research aircraft's wing structure is clearly defined as it soars under a clear blue sky during a test flight from Dryden Flight Research Center, Edwards, California, in November of 1996. Pathfinder was a lightweight, solar-powered, remotely piloted flying wing aircraft used to demonstrate the use of solar power for long-duration, high-altitude flight. Its name denotes its mission as the 'Pathfinder' or first in a series of solar-powered aircraft that will be able to remain airborne for weeks or months on scientific sampling and imaging missions. Solar arrays covered most of the upper wing surface of the Pathfinder aircraft. These arrays provided up to 8,000 watts of power at high noon on a clear summer day. That power fed the aircraft's six electric motors as well as its avionics, communications, and other electrical systems. Pathfinder also had a backup battery system that could provide power for two to five hours, allowing for limited-duration flight after dark. Pathfinder flew at airspeeds of only 15 to 20 mph. Pitch control was maintained by using tiny elevators on the trailing edge of the wing while turns and yaw control were accomplished by slowing down or speeding up the motors on the outboard sections of the wing. On September 11, 1995, Pathfinder set a new altitude record for solar-powered aircraft of 50,567 feet above Edwards Air Force Base, California, on a 12-hour flight. On July 7, 1997, it set another, unofficial record of 71,500 feet at the Pacific Missile Range Facility, Kauai, Hawaii. In 1998, Pathfinder was modified into the longer-winged Pathfinder Plus configuration. (See the Pathfinder Plus photos and project description.)

  20. NASA/Navy life/cruise fan preliminary design report

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Preliminary design studies were performed to define a turbotip lift/cruise fan propulsion system for a Navy multimission aircraft. The fan is driven by the exhausts of the YJ97-GE-100 turbojet or a 20 percent Growth J97 configuration as defined during the studies. The LCF459 fan configuration defined has a tip diameter of 1.50 meters (59.0 inches) and develops a design point thrust of 75,130 N (16,890 lbs) at a fan pressure ratio of 1.319. The fan has an estimated weight of 386 kg (850 lbs). Trade studies performed to define the selected configuration are described.

  1. ERAST Program Proteus Aircraft in Flight over the Tehachapi Mountains in Southern California

    NASA Technical Reports Server (NTRS)

    1999-01-01

    show only moments after they were taken. This was the second successful demonstration of the ARTIS camera. The aircraft is designed to cruise at altitudes from 59,000 to more than 65,000 feet for up to 18 hours. It was designed and built by Burt Rutan, president of Scaled Composites, Inc., to carry an 18-foot diameter telecommunications antenna system for relay of broadband data over major cities. The design allows for Proteus to be reconfigured at will for a variety of other missions such as atmospheric research, reconnaissance, commercial imaging, and launch of small space satellites. It is designed for extreme reliability and low operating costs, and to operate out of general aviation airports with minimal support. The aircraft consists of an all composite airframe with graphite-epoxy sandwich construction. It has a wingspan of 77 feet 7 inches, expandable to 92 feet with removable wingtips installed. It is 56.3 feet long and 17.6 feet high and weighs 5,900 pounds,empty. Proteus is powered by two Williams-Rolls FJ44-2 turbofan engines developing 2,300 pounds of thrust each.

  2. ERAST Program Proteus Aircraft in Flight over the Mojave Desert in California

    NASA Technical Reports Server (NTRS)

    1999-01-01

    aircraft is designed to cruise at altitudes from 59,000 to more than 65,000 feet for up to 18 hours. It was designed and built by Burt Rutan, president of Scaled Composites, Inc., to carry an 18-foot diameter telecommunications antenna system for relay of broadband data over major cities. The design allows for Proteus to be reconfigured at will for a variety of other missions such as atmospheric research, reconnaissance, commercial imaging, and launch of small space satellites. It is designed for extreme reliability and low operating costs, and to operate out of general aviation airports with minimal support. The aircraft consists of an all composite airframe with graphite-epoxy sandwich construction. It has a wingspan of 77 feet 7 inches, expandable to 92 feet with removable wingtips installed. It is 56.3 feet long and 17.6 feet high and weighs 5,900 pounds, empty. Proteus is powered by two Williams-Rolls FJ44-2 turbofan engines developing 2,300 pounds of thrust each.

  3. ERAST Program Proteus Aircraft on Runway at Mojave Airport in Mojave, California

    NASA Technical Reports Server (NTRS)

    1999-01-01

    cruise at altitudes from 59,000 to more than 65,000 feet for up to 18 hours. It was designed and built by Burt Rutan, president of Scaled Composites, Inc., to carry an 18-foot diameter telecommunications antenna system for relay of broadband data over major cities. The design allows for Proteus to be reconfigured at will for a variety of other missions such as atmospheric research, reconnaissance, commercial imaging, and launch of small space satellites. It is designed for extreme reliability and low operating costs, and to operate out of general aviation airports with minimal support. The aircraft consists of an all composite airframe with graphite-epoxy sandwich construction. It has a wingspan of 77 feet 7 inches, expandable to 92 feet with removable wingtips installed. It is 56.3 feet long and 17.6 feet high and weighs 5,900 pounds, empty. Proteus is powered by two Williams-Rolls FJ44-2 turbofan engines developing 2,300 pounds of thrust each.

  4. ERAST Program Proteus Aircraft Taking Off from Mojave Airport in Mojave, California

    NASA Technical Reports Server (NTRS)

    1999-01-01

    camera. The aircraft is designed to cruise at altitudes from 59,000 to more than 65,000 feet for up to 18 hours. It was designed and built by Burt Rutan, president of Scaled Composites, Inc., to carry an 18-foot diameter telecommunications antenna system for relay of broadband data over major cities. The design allows for Proteus to be reconfigured at will for a variety of other missions such as atmospheric research, reconnaissance, commercial imaging, and launch of small space satellites. It is designed for extreme reliability and low operating costs, and to operate out of general aviation airports with minimal support. The aircraft consists of an all composite airframe with graphite-epoxy sandwich construction. It has a wingspan of 77 feet 7 inches, expandable to 92 feet with removable wingtips installed. It is 56.3 feet long and 17.6 feet high and weighs 5,900 pounds, empty. Proteus is powered by two Williams-Rolls FJ44-2 turbofan engines developing 2,300 pounds of thrust each.

  5. ERAST Program Proteus Aircraft Taxiing on Runway at Mojave Airport in Mojave, California

    NASA Technical Reports Server (NTRS)

    1999-01-01

    . The aircraft is designed to cruise at altitudes from 59,000 to more than 65,000 feet for up to 18 hours. It was designed and built by Burt Rutan, president of Scaled Composites, Inc., to carry an 18-foot diameter telecommunications antenna system for relay of broadband data over major cities. The design allows for Proteus to be reconfigured at will for a variety of other missions such as atmospheric research, reconnaissance, commercial imaging, and launch of small space satellites. It is designed for extreme reliability and low operating costs, and to operate out of general aviation airports with minimal support. The aircraft consists of an all composite airframe with graphite-epoxy sandwich construction. It has a wingspan of 77 feet 7 inches, expandable to 92 feet with removable wingtips installed. It is 56.3 feet long and 17.6 feet high and weighs 5,900 pounds, empty. Proteus is powered by two Williams-Rolls FJ44-2 turbofan engines developing 2,300 pounds of thrust each.

  6. High altitude decelerator systems

    NASA Technical Reports Server (NTRS)

    Silbert, Mendel N.; Moltedo, A. David; Gilbertson, Gaylord S.

    1989-01-01

    High Altitude Decelerator Systems are used to provide a stable descending platform when deployed from a sounding rocket at altitudes greater than 40 kilometers allowing a scientific mission to be conducted in a specific altitude region. The High Altitude Decelerator is designed to provide a highly stable, high drag area system packed in a minimum volume to deploy successfully from a sounding rocket. Deployment altitudes greater than 100 kilometers have been successfully demonstrated at dynamic pressures as low as 0.004 pounds per square foot.

  7. High-altitude headache.

    PubMed

    Marmura, Michael J; Hernandez, Pablo Bandres

    2015-05-01

    High-altitude headache is one of many neurological symptoms associated with the ascent to high altitudes. Cellular hypoxia due to decreased barometric pressure seems to be the common final pathway for headache as altitude increases. Susceptibility to high-altitude headache depends on genetic factors, history of migraine, and acclimatization, but symptoms of acute mountain sickness are universal at very high altitudes. This review summarizes the pathophysiology of acute mountain sickness and high-altitude headache as well as the evidence for treatment and prevention with different drugs and devices which may be useful for regular and novice mountaineers. This includes an examination of other headache disorders which may mimic high-altitude headache. PMID:25795155

  8. Improving the efficiency of smaller transport aircraft

    NASA Technical Reports Server (NTRS)

    Jones, R. T.

    1984-01-01

    Considered apart from its propulsive system the high altitude airplane itself adapted to higher flight altitudes than those in current use. Scaling on the assumption of constant aircraft density indicates that this conclusion applies most importantly to smaller transport aircraft. Climb to 60,000 ft could save time and energy for trips as short as 500 miles. A discussion of the effect of winglets on aircraft efficiency is presented. A 10% reduction of induced drag below that of a comparable elliptic wing can be achieved either by horizontal or vertical wing tip extensions.

  9. DLR HABLEG- High Altitude Balloon Launched Experimental Glider

    NASA Astrophysics Data System (ADS)

    Wlach, S.; Schwarzbauch, M.; Laiacker, M.

    2015-09-01

    The group Flying Robots at the DLR Institute of Robotics and Mechatronics in Oberpfaffenhofen conducts research on solar powered high altitude aircrafts. Due to the high altitude and the almost infinite mission duration, these platforms are also denoted as High Altitude Pseudo-Satellites (HAPS). This paper highlights some aspects of the design, building, integration and testing of a flying experimental platform for high altitudes. This unmanned aircraft, with a wingspan of 3 m and a mass of less than 10 kg, is meant to be launched as a glider from a high altitude balloon in 20 km altitude and shall investigate technologies for future large HAPS platforms. The aerodynamic requirements for high altitude flight included the development of a launch method allowing for a safe transition to horizontal flight from free-fall with low control authority. Due to the harsh environmental conditions in the stratosphere, the integration of electronic components in the airframe is a major effort. For regulatory reasons a reliable and situation dependent flight termination system had to be implemented. In May 2015 a flight campaign was conducted. The mission was a full success demonstrating that stratospheric research flights are feasible with rather small aircrafts.

  10. ANALYSIS OF AIRCRAFT MOTIONS

    NASA Technical Reports Server (NTRS)

    Wingrove, R. C.

    1994-01-01

    This program was developed by Ames Research Center, in cooperation with the National Transportation Safety Board, as a technique for deriving time histories of an aircraft's motion from Air Traffic Control (ATC) radar records. This technique uses the radar range and azimuth data, along with the downlinked altitude data, to derive an expanded set of data which includes airspeed, lift, attitude angles (pitch, roll, and heading), etc. This technique should prove useful as a source of data in the investigation of commercial airline accidents and in the analysis of accidents involving aircraft which do not have onboard data recorders (e.g., military, short-haul, and general aviation). The technique used to determine the aircraft motions involves smoothing of raw radar data. These smoothed results, in combination with other available information (wind profiles and aircraft performance data), are used to derive the expanded set of data. This program uses a cubic least-square fit to smooth the raw data. This moving-arc procedure provides a smoothed time history of the aircraft position, the inertial velocities, and accelerations. Using known winds, these inertial data are transformed to aircraft stability axes to provide true airspeed, thrust-drag, lift, and roll angle. Further derivation, based on aircraft dependent performance data, can determine the aircraft angle of attack, pitch, and heading angle. Results of experimental tests indicate that values derived from ATC radar records using this technique agree favorably with airborne measurements. This program is written in FORTRAN IV to be executed in the batch mode, and has been implemented on a CDC 6000 series computer with a central memory requirement of 64k (octal) of 60 bit words.

  11. Physiology in medicine: acute altitude exposure in patients with pulmonary and cardiovascular disease.

    PubMed

    Seccombe, Leigh M; Peters, Matthew J

    2014-03-01

    Travel is more affordable and improved high-altitude airports, railways, and roads allow rapid access to altitude destinations without acclimatization. The physiology of exposure to altitude has been extensively described in healthy individuals; however, there is a paucity of data pertaining to those who have reduced reserve. This Physiology in Medicine article discusses the physiological considerations relevant to the safe travel to altitude and by commercial aircraft in patients with pulmonary and/or cardiac disease. PMID:24371015

  12. Infrared reflectance of high altitude clouds.

    PubMed

    Hovis, W A; Blaine, L R; Forman, M L

    1970-03-01

    The spectral reflectance characteristics of cirrostratus, cirrus clouds, and a jet contrail, in the 0.68-2.4-micro spectral interval, are of interest for remote sensing of cloud types from orbiting satellites. Measurements made with a down-looking spectrometer from a high altitude aircraft show differences between the signatures of naturally formed ice clouds, a fresh jet contrail, and a snow covered surface. PMID:20076243

  13. SR-71B - in Flight with F-18 Chase Aircraft - View from Air Force Tanker

    NASA Technical Reports Server (NTRS)

    1996-01-01

    NASA 831, an SR-71B operated by the Dryden Flight Research Center, Edwards, California, cruises over the Mojave Desert with an F/A-18 Hornet flying safety chase. They were photographed on a 1996 mission from an Air Force refueling tanker The F/A-18 Hornet is used primarily as a safety chase and support aircraft at Dryden. As support aircraft, the F-18s are used for safety chase, pilot proficiency and aerial photography. Two SR-71 aircraft have been used by NASA as testbeds for high-speed and high-altitude aeronautical research. The aircraft, an SR-71A and an SR-71B pilot trainer aircraft, have been based here at NASA's Dryden Flight Research Center, Edwards, California. They were transferred to NASA after the U.S. Air Force program was cancelled. As research platforms, the aircraft can cruise at Mach 3 for more than one hour. For thermal experiments, this can produce heat soak temperatures of over 600 degrees Fahrenheit (F). This operating environment makes these aircraft excellent platforms to carry out research and experiments in a variety of areas -- aerodynamics, propulsion, structures, thermal protection materials, high-speed and high-temperature instrumentation, atmospheric studies, and sonic boom characterization. The SR-71 was used in a program to study ways of reducing sonic booms or over pressures that are heard on the ground, much like sharp thunderclaps, when an aircraft exceeds the speed of sound. Data from this Sonic Boom Mitigation Study could eventually lead to aircraft designs that would reduce the 'peak' overpressures of sonic booms and minimize the startling affect they produce on the ground. One of the first major experiments to be flown in the NASA SR-71 program was a laser air data collection system. It used laser light instead of air pressure to produce airspeed and attitude reference data, such as angle of attack and sideslip, which are normally obtained with small tubes and vanes extending into the airstream. One of Dryden's SR-71s was used

  14. Sound propagation elements in evaluation of en route noise of advanced turbofan aircraft

    NASA Technical Reports Server (NTRS)

    Sutherland, Louis C.; Wesler, John

    1990-01-01

    Cruise noise from an advanced turboprop aircraft is reviewed on the basis of available wind tunnel data to estimate the aircraft noise signature at the source. Available analytical models are used to evaluate the sound levels at the ground. The analysis allows reasonable estimates to be made of the community noise levels that might be generated during cruise by such aircraft, provides the basis for preliminary comparisons with available data on noise of existing aircraft during climb and helps to identify the dominant elements of the sound propagation models applicable to this situation.

  15. The Elite: A high speed, low-cost general aviation aircraft for Aeroworld

    NASA Technical Reports Server (NTRS)

    Rueter, Amy; Fay, Jonathan; Staudmeister, Douglas; Avis, Daniel; Le, Tuan; Stem, Steven

    1994-01-01

    The Elite is a six passenger, general aviation aircraft targeted at the upper middle class private pilot. The Elite is a low wing, conventional monoplane utilizing rudder, ailerons, and a stabilator. The Elite will create a new class of aircraft in Aeroworld. This class of aircraft will demonstrate a substantial improvement in cruise speed over the current existing commercial fleet of aircraft in Aeroworld. This new class will be capable of servicing all existing airstrips in Aeroworld, including rough and short airways. The drivers of this design were aesthetics, a high cruise speed, and take-off distance.

  16. PIV Measurements of Chevrons on F400-Series Tactical Aircraft Nozzle Model

    NASA Technical Reports Server (NTRS)

    Bridges, James; Wernet, Mark P.; Frate, Franco C.

    2011-01-01

    Reducing noise of tactical jet aircraft has taken on fresh urgency as core engine technologies allow higher specific-thrust engines and as society become more concerned for the health of its military workforce. Noise reduction on this application has lagged the commercial field as incentives for quieting military aircraft have not been as strong as in their civilian counterparts. And noise reduction strategies employed on civilian engines may not be directly applicable due to the differences in exhaust system architecture and mission. For instance, the noise reduction technology of chevrons, examined in this study, will need to be modified to take into account the special features of tactical aircraft nozzles. In practice, these nozzles have divergent slats that are tied to throttle position, and at take off the jet flow is highly overexpanded as the nozzle is optimized for cruise altitude rather than sea level. In simple oil flow visualization experiments conducted at the onset of the current test program flow barely stays attached at end of nozzle at takeoff conditions. This adds a new twist to the design of chevrons. Upon reaching the nozzle exit the flow shrinks inward radially, meaning that for a chevron to penetrate the flow it must extend much farther away from the baseline nozzle streamline. Another wrinkle is that with a variable divergence angle on the nozzle, the effective penetration will differ with throttle position and altitude. The final note of realism introduced in these experiments was to simulate the manner in which bypass flow is bled into the nozzle wall in real engines to cool the nozzle, which might cause very fat boundary layer at exit. These factors, along with several other issues specific to the application of chevrons to convergent-divergent nozzles have been explored with particle image velocimetry measurements and are presented in this paper.

  17. Pathfinder Aircraft in Flight

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The Pathfinder research aircraft's wing structure was clearly defined as it soared under a clear blue sky during a test flight July 27, 1995, from Dryden Flight Research Center, Edwards, California. The center section and outer wing panels of the aircraft had ribs constructed of thin plastic foam, while the ribs in the inner wing panels are fabricated from lightweight composite material. Developed by AeroVironment, Inc., the Pathfinder was one of several unmanned aircraft being evaluated under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) program. Pathfinder was a lightweight, solar-powered, remotely piloted flying wing aircraft used to demonstrate the use of solar power for long- duration, high-altitude flight. Its name denotes its mission as the 'Pathfinder' or first in a series of solar-powered aircraft that will be able to remain airborne for weeks or months on scientific sampling and imaging missions. Solar arrays covered most of the upper wing surface of the Pathfinder aircraft. These arrays provided up to 8,000 watts of power at high noon on a clear summer day. That power fed the aircraft's six electric motors as well as its avionics, communications, and other electrical systems. Pathfinder also had a backup battery system that could provide power for two to five hours, allowing for limited-duration flight after dark. Pathfinder flew at airspeeds of only 15 to 20 mph. Pitch control was maintained by using tiny elevators on the trailing edge of the wing while turns and yaw control were accomplished by slowing down or speeding up the motors on the outboard sections of the wing. On September 11, 1995, Pathfinder set a new altitude record for solar- powered aircraft of 50,567 feet above Edwards Air Force Base, California, on a 12-hour flight. On July 7, 1997, it set another, unofficial record of 71,500 feet at the Pacific Missile Range Facility, Kauai, Hawaii. In 1998, Pathfinder was modified into the longer-winged Pathfinder Plus

  18. Pathfinder aircraft in flight

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The Pathfinder research aircraft's wing structure was clearly defined as it soared under a clear blue sky during a test flight July 27, 1995, from Dryden Flight Research Center, Edwards, California. The center section and outer wing panels of the aircraft had ribs constructed of thin plastic foam, while the ribs in the inner wing panels are fabricated from lightweight composite material. Developed by AeroVironment, Inc., the Pathfinder was one of several unmanned aircraft being evaluated under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) program. Pathfinder was a lightweight, solar-powered, remotely piloted flying wing aircraft used to demonstrate the use of solar power for long-duration, high-altitude flight. Its name denotes its mission as the 'Pathfinder' or first in a series of solar-powered aircraft that will be able to remain airborne for weeks or months on scientific sampling and imaging missions. Solar arrays covered most of the upper wing surface of the Pathfinder aircraft. These arrays provided up to 8,000 watts of power at high noon on a clear summer day. That power fed the aircraft's six electric motors as well as its avionics, communications, and other electrical systems. Pathfinder also had a backup battery system that could provide power for two to five hours, allowing for limited-duration flight after dark. Pathfinder flew at airspeeds of only 15 to 20 mph. Pitch control was maintained by using tiny elevators on the trailing edge of the wing while turns and yaw control were accomplished by slowing down or speeding up the motors on the outboard sections of the wing. On September 11, 1995, Pathfinder set a new altitude record for solar-powered aircraft of 50,567 feet above Edwards Air Force Base, California, on a 12-hour flight. On July 7, 1997, it set another, unofficial record of 71,500 feet at the Pacific Missile Range Facility, Kauai, Hawaii. In 1998, Pathfinder was modified into the longer-winged Pathfinder Plus

  19. The microburst - Hazard to aircraft

    NASA Technical Reports Server (NTRS)

    Mccarthy, J.; Serafin, R.

    1984-01-01

    In encounters with microbursts, low altitude aircraft first encounter a strong headwind which increases their wing lift and altitude; this phenomenon is followed in short succession by a decreasing headwind component, a downdraft, and finally a strong tailwind that catastrophically reduces wing lift and precipitates a crash dive. It is noted that the potentially lethal low altitude wind shear of a microburst may lie in apparently harmless, rain-free air beneath a cloud base. Occasionally, such tell-tale signs as localized blowing of ground dust may be sighted in time. Microbursts may, however, occur in the heavy rain of a thunderstorm, where they will be totally obscured from view. Wind shear may be detected by an array of six anemometers and vanes situated in the vicinity of an airport, and by Doppler radar equipment at the airport or aboard aircraft.

  20. Experimental investigations of thrust vectoring systems for VTOL aircraft

    NASA Technical Reports Server (NTRS)

    Rolls, L. S.; Aoyagi, K.

    1977-01-01

    This paper presents a summary of two technology programs sponsored by NASA to investigate the characteristics of two thrust vectoring schemes for V/STOL aircraft. The operational capability of the VTOL aircraft is dependent on maximum utilization of the installed thrust in both the cruise and powered lift modes of flight. An effective thrust vectoring system on the cruise propulsion unit is therefore essential to provide maximum payload in hover and STOL plus minimum specific fuel consumption in loiter and cruise. Introducing a high by-pass ratio fan system, augmenting the gas generator thrust, as the propulsion system for VTOL aircraft places increased significance on the performance of the relatively short coupled thrust vectoring systems. The two programs discussed herein include both large-scale and small-scale tests of a vectoring hood system with a vented, internal-lip and swivel nozzle systems. These tests indicated that a satisfactory thrust vectoring system can be developed.

  1. Shelf Edge Exchange Processes, II: SEEP2-08, R/V ENDEAVOR cruise 188

    SciTech Connect

    Wilson, C.; Behrens, W.J.; Flagg, C.N.; Wallace, D.W.R.; Wilke, R.J.; Wyman, K.D.

    1989-12-01

    The Shelf Edge Exchange Processes (SEEP) program sponsored by the United States Department of Energy is a multi-institutional effort designed to investigate the flux of suspended material from the continental shelf to the waters of the upper slope, and then possibly into the slope sediments. Phase I of SEEP consisted of a series of nine cruises and a mooring array across the outer continental shelf of New England during 1983--1984 (Behrens and Flagg, 1986). Phase II focused specifically on the shelf/slope frontal region of the mid-Atlantic bight off the Delmarva Peninsula. This project consisted of a series of ten cruises, a mooring array, and a series of over-flights by NASA aircraft. Hydrographic data were collected on eight of the cruises, six of which were primarily mooring deployment or recovery cruises. The cruises were consecutively designated SEEP2-01 to SEEP2-10. Two cruises (SEEP2-04 and SEEP2-07) were dedicated to investigating benthic processes and hydrographic data were not collected.

  2. Application of trajectory optimization techniques to upper atmosphere sampling flights using the F-15 Eagle aircraft

    NASA Technical Reports Server (NTRS)

    Hague, D. S.; Merz, A. W.

    1976-01-01

    Atmospheric sampling has been carried out by flights using an available high-performance supersonic aircraft. Altitude potential of an off-the-shelf F-15 aircraft is examined. It is shown that the standard F-15 has a maximum altitude capability in excess of 100,000 feet for routine flight operation by NASA personnel. This altitude is well in excess of the minimum altitudes which must be achieved for monitoring the possible growth of suspected aerosol contaminants.

  3. The radiation protection problems of high altitude and space flight

    SciTech Connect

    Fry, R.J.M.

    1993-01-01

    This paper considers the radiation environment in aircraft at high altitudes and spacecraft in low earth orbit and in deep space and the factors that influence the dose equivalents. Altitude, latitude and solar cycle are the major influences for flights below the radiation belts. In deep space, solar cycle and the occurrence of solar particle events are the factors of influence. The major radiation effects of concern are cancer and infertility in males. In high altitude aircraft the radiation consists mainly of protons and neutrons, with neutrons contributing about half the equivalent dose. The average dose rate at altitudes of transcontinental flights that approach the polar regions are greater by a factor of about 2.5 than on routes at low latitudes. Current estimates of does to air crews suggest they are well within the ICRP (1990) recommended dose limits for radiation workers.

  4. The radiation protection problems of high altitude and space flight

    SciTech Connect

    Fry, R.J.M.

    1993-04-01

    This paper considers the radiation environment in aircraft at high altitudes and spacecraft in low earth orbit and in deep space and the factors that influence the dose equivalents. Altitude, latitude and solar cycle are the major influences for flights below the radiation belts. In deep space, solar cycle and the occurrence of solar particle events are the factors of influence. The major radiation effects of concern are cancer and infertility in males. In high altitude aircraft the radiation consists mainly of protons and neutrons, with neutrons contributing about half the equivalent dose. The average dose rate at altitudes of transcontinental flights that approach the polar regions are greater by a factor of about 2.5 than on routes at low latitudes. Current estimates of does to air crews suggest they are well within the ICRP (1990) recommended dose limits for radiation workers.

  5. Toward scramjet aircraft. [progress in engine development

    NASA Technical Reports Server (NTRS)

    Jones, R. A.; Huber, P. W.

    1978-01-01

    The possibility for civil, military, and remotely-piloted aviation above Mach 5 is discussed with reference to the scramjet. Actively cooled aircraft structures of low weight are described, together with jet nozzle design and combustion parameters. The scramjet is seen as operating alone or in tandem with ramjet propulsion, which would power an aircraft up to scramjet speeds. Attention is given to the specific impulse of the scramjet engine, with hydrogen as the primary fuel. Applications include: advanced reconnaissance and interceptor aircraft, strategic cruise (both aircraft and missiles), highly-maneuverable interceptor missiles, transports, aircraft-type launch vehicles, first stages for Space Shuttle launching craft, and single-stage-to-orbit vehicles. Research has focused on increasing the propulsion power of the scramjet engine, while reducing drag on the accompanying airframe.

  6. Altus aircraft on runway

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The remotely piloted Altus aircraft flew several developmental test flights from Rogers Dry Lake adjacent to NASA's Dryden Flight Research Center, Edwards, Calif., in 1996. The Altus--the word is Latin for 'high'--is a variant of the Predator surveillance drone built by General Atomics/Aeronautical Systems, Inc. It is designed for high-altitude, long-duration scientific sampling missions, and is powered by a turbocharged four-cylinder piston engine. The first Altus was developed under NASA's Environmental Research Aircraft and Sensor Technology program, while a second Altus was built for a Naval Postgraduate School/Department of Energy program. A pilot in a control station on the ground flew the craft by radio signals, using visual cues from a video camera in the nose of the Altus and information from the craft's air data system. Equipped with a single-stage turbocharger during the 1996 test flights, the first Altus reached altitudes in the 37,000-foot range, while the similarly-equipped second Altus reached 43,500 feet during developmental flights at Dryden in the summer of 1997. The NASA Altus also set an endurance record of more than 26 hours while flying a science mission in late 1996 and still had an estimated 10 hours of fuel remaining when it landed. Now equipped with a two-stage turbocharger, the NASA Altus maintained an altitude of 55,000 feet for four hours during flight tests in 1999.

  7. Supersonic cruise research aircraft structural studies: Methods and results

    NASA Technical Reports Server (NTRS)

    Sobieszczanski-Sobieski, J.; Gross, D.; Kurtze, W.; Newsom, J.; Wrenn, G.; Greene, W.

    1981-01-01

    NASA Langley Research Center SCAR in-house structural studies are reviewed. In methods development, advances include a new system of integrated computer programs called ISSYS, progress in determining aerodynamic loads and aerodynamically induced structural loads (including those due to gusts), flutter optimization for composite and metal airframe configurations using refined and simplified mathematical models, and synthesis of active controls. Results given address several aspects of various SCR configurations. These results include flutter penalties on composite wing, flutter suppression using active controls, roll control effectiveness, wing tip ground clearance, tail size effect on flutter, engine weight and mass distribution influence on flutter, and strength and flutter optimization of new configurations. The ISSYS system of integrated programs performed well in all the applications illustrated by the results, the diversity of which attests to ISSYS' versatility.

  8. Advanced materials and fabrication processes for supersonic cruise aircraft

    NASA Technical Reports Server (NTRS)

    Guess, M. K.; Kaneko, R. S.; Wald, G. G.

    1981-01-01

    Research and development programs to develop high-strength aluminum alloys and low-cost materials and fabrication techniques for titanium alloys are being conducted. Thirteen aluminum alloy compositions are being evaluated. A section of a production component was fabricated using superplastic forming and diffusion bonding (SPF/DB) and fabrication studies are being conducted on three low temperature forming beta titanium alloys. Cost studies indicate substantial structural cost reduction potentials resulting from the use of both aluminum alloys and low-cost titanium fabrication techniques. Lowest overall costs are indicated for a composite/aluminum or composite titanium structure.

  9. Variable-cycle engines for supersonic cruise aircraft

    NASA Technical Reports Server (NTRS)

    Willis, E.

    1976-01-01

    Progress and the current status of the Variable Cycle Engine (VCE) study are reviewed with emphasis placed on the impact of technology advancements and design specifications. A large variety of VCE concepts are also examined.

  10. Preliminary design of a supersonic Short-Takeoff and Vertical-Landing (STOVL) fighter aircraft

    NASA Technical Reports Server (NTRS)

    1990-01-01

    A preliminary study of a supersonic short takeoff and vertical landing (STOVL) fighter is presented. Three configurations (a lift plus lift/cruise concept, a hybrid fan vectored thrust concept, and a mixed flow vectored thrust concept) were initially investigated with one configuration selected for further design analysis. The selected configuration, the lift plus lift/cruise concept, was successfully integrated to accommodate the powered lift short takeoff and vertical landing requirements as well as the demanding supersonic cruise and point performance requirements. A supersonic fighter aircraft with a short takeoff and vertical landing capability using the lift plus lift/cruise engine concept seems a viable option for the next generation fighter.

  11. A concept for adaptive performance optimization on commercial transport aircraft

    NASA Technical Reports Server (NTRS)

    Jackson, Michael R.; Enns, Dale F.

    1995-01-01

    An adaptive control method is presented for the minimization of drag during flight for transport aircraft. The minimization of drag is achieved by taking advantage of the redundant control capability available in the pitch axis, with the horizontal tail used as the primary surface and symmetric deflection of the ailerons and cruise flaps used as additional controls. The additional control surfaces are excited with sinusoidal signals, while the altitude and velocity loops are closed with guidance and control laws. A model of the throttle response as a function of the additional control surfaces is formulated and the parameters in the model are estimated from the sensor measurements using a least squares estimation method. The estimated model is used to determine the minimum drag positions of the control surfaces. The method is presented for the optimization of one and two additional control surfaces. The adaptive control method is extended to optimize rate of climb with the throttle fixed. Simulations that include realistic disturbances are presented, as well as the results of a Monte Carlo simulation analysis that shows the effects of changing the disturbance environment and the excitation signal parameters.

  12. Perspectives on African Ozone from Sondes, Dobson and Aircraft Measurements

    NASA Technical Reports Server (NTRS)

    Thompson, A. M.; Witte, J. C.; Chatfield, R. B.; Diab, R. D.; Thouret, V.; Sauvage, B.

    2004-01-01

    We have been studying variability in ozone over Africa using data from ozonesondes (vertical profiles from surface to stratosphere), aircraft (the MOZAIC dataset with cruise altitude and landing/takeoff profiles) and the ground (Dobson spectrophotometer total ozone column measurement). The following may give context for ozone investigations during AMMA: 1. Total ozone measurements since 1989 show considerable variability in mean value among the African stations in Algeria, Kenya, Egypt, South Africa, as well as in seasonal cycles and year-to-year. Trends are not evident. 2. The impacts of convection, stratospheric injection, biomass burning and lightning appear in ozone sounding profile data. Time-series analysis and case studies point to periodic influences of long-range interactions with the Atlantic ("ozone paradox," wave-one") and Indian Oceans. 3. Tropospheric ozone variations, observed in tropospheric profiles and integrated column amount, follow general seasonal patterns but short- term variability is so strong that simple averages are inadequate for describing "climatology" and statistical classification approaches may be required.

  13. Delirium at high altitude.

    PubMed

    Basnyat, Buddha

    2002-01-01

    A 35-year-old man on a trek to the Mount Everest region of Nepal presented with a sudden, acute confusional state at an altitude of about 5000 m. Although described at higher altitudes, delirium presenting alone has not been documented at 5000 m or at lower high altitudes. The differential diagnosis which includes acute mountain sickness and high altitude cerebral edema is discussed. Finally, the importance of travelling with a reliable partner and using proper insurance is emphasized in treks to the Himalayas. PMID:12006167

  14. An Analysis of Ball Lightning-Aircraft Incidents

    NASA Astrophysics Data System (ADS)

    Doe, R. K.; Keul, A. G.; Bychkov, V.

    2009-12-01

    Lightning is a rare but regular phenomenon for air traffic. Research and design have created aircraft that withstand average lightning strikes. Ball lightning (BL), a metastable, rare lightning type, is also observed from (and within) aircraft. Science and the media focused on individual BL incidents and did not analyze general patterns. Lacking established incident reporting channels, most BL observations are still passed on as “aviation lore”. To overcome this unsatisfactory condition, the authors collected and analyzed an international data bank of 87 BL-aircraft case histories from 1938 to 2007. 37 Russian military and civil BL reports were provided by the third author. Of the whole sample, 36 (41%) cases occurred over Russia/RF/SU, 24 (28%) over USA/Canada, 23 (26%) over Europe, and 4 (5%) over Asia/Pacific. Various types of military (US: C-54/141, B-52, KC-97/135 Stratotankers, C130, P-3 Orion, RF/SU: PO-2, IL, SU, TU, MIG; Nimrod, Saab-105) and civilian aircraft (US: DC-3/6, Metroliner, B-727/737/757/777, RF/SU: AN, TU; VC-10, Fokker F-28, CRJ-200), as well as general aviation (C-172, Falcon-20), were involved. BL reports show a flat annual April to August maximum. At BL impact, 15 aircraft were climbing, 7 descending; most were at cruising altitude. 42 (48%) reported BL outside the aircraft, 37 (43%) inside, 7 (8%) both in-and outside. No damage was reported in 34 (39%) cases, 39 objects (45%) caused minor damage, 11 major damage (13%), 3 even resulted in military aircraft losses. 3 objects caused minor, 1 major crew injury. 23 damage cases were associated with BL inside the fuselage; all 4 crew injury cases were of that BL type. Mean size is described as 25 cm, sometimes over 1 m, color 30% in the yellow-red, 10% in the blue-green spectral region, 8% white, duration around 10 seconds, sometimes over 1 minute. 33 (38%) incidents ended with an explosion of the object. Thunderstorm conditions were reported by 25 (29%) of the observers, 9 (10%) said there

  15. Development and analysis of a STOL supersonic cruise fighter concept

    NASA Technical Reports Server (NTRS)

    Dollyhigh, S. M.; Foss, W. E., Jr.; Morris, S. J., Jr.; Walkley, K. B.; Swanson, E. E.; Robins, A. W.

    1984-01-01

    The application of advanced and emerging technologies to a fighter aircraft concept is described. The twin-boom fighter (TBF-1) relies on a two dimensional vectoring/reversing nozzle to provide STOL performance while also achieving efficient long range supersonic cruise. A key feature is that the propulsion package is placed so that the nozzle hinge line is near the aircraft center-of-gravity to allow large vector angles and, thus, provide large values of direct lift while minimizing the moments to be trimmed. The configurations name is derived from the long twin booms extending aft of the engine to the twin vertical tails which have a single horizontal tail mounted atop and between them. Technologies utilized were an advanced engine (1985 state-of-the-art), superplastic formed/diffusion bonded titanium structure, advanced controls/avionics/displays, supersonic wing design, and conformal weapons carriage. The integration of advanced technologies into this concept indicate that large gains in takeoff and landing performance, maneuver, acceleration, supersonic cruise speed, and range can be acieved relative to current fighter concepts.

  16. Benefits of VTOL aircraft in offshore petroleum logistics support

    NASA Technical Reports Server (NTRS)

    Wilcox, D. E.; Shovlin, M. D.

    1975-01-01

    The mission suitability and potential economic benefits of advanced VTOL aircraft were investigated for logistics support of petroleum operations in the North Sea and the Gulf of Mexico. Concepts such as the tilt rotor and lift/cruise fan are promising for future operations beyond 150 miles offshore, where their high cruise efficiency provides savings in trip time, fuel consumption, and capital investment. Depending upon mission requirements, the aircraft operating costs are reduced by as much as 20 percent to 50 percent from those of current helicopters.

  17. En route position and time control of aircraft using Kalman filtering of radio aid data

    NASA Technical Reports Server (NTRS)

    Mcgee, L. A.; Christensen, J. V.

    1973-01-01

    Fixed-time-of-arrival (FTA) guidance and navigation is investigated as a possible technique capable of operation within much more stringent en route separation standards and offering significant advantages in safety, higher traffic densities, and improved scheduling reliability, both en route and in the terminal areas. This study investigated the application of FTA guidance previously used in spacecraft guidance. These FTA guidance techniques have been modified and are employed to compute the velocity corrections necessary to return an aircraft to a specified great-circle reference path in order to exercise en route time and position control throughout the entire flight. The necessary position and velocity estimates to accomplish this task are provided by Kalman filtering of data from Loran-C, VORTAC/TACAN, Doppler radar, radio or barometric altitude,and altitude rate. The guidance and navigation system was evaluated using a digital simulation of the cruise phase of supersonic and subsonic flights between San Francisco and New York City, and between New York City and London.

  18. Fly on the wings of the sun - a study of solar-powered aircraft

    SciTech Connect

    Hall, D.W.

    1985-06-01

    Solar High Altitude Powered Platform (Solar HAPP) aircraft are unmanned remote sensing vehicles designed for cruises lasting up to one year at 20-km altitude, while carrying up to 250 pounds of cameras and electrooptic sensors in an underslung payload pod. It is anticipated that real time IR and UV images of earth features may be more inexpensively and accurately obtained by this means than by the conventional geosynchronous earth resources satellites. Solar HAPPs, with wing spans of over 300 ft and weights of only 2000 lb, require ultralight composite structures with external wire bracing. Solar cells will cover both sides of the vertical wing stabilizers and wing tips, which hinge up in daytime to capture the maximum amount of sunlight. A 15-hp electric propulsion unit drives a low-rpm, large diameter propeller; power will be derived from the solar cells diurnally, and from hydrogen-oxygen fuel cells nocturnally. The fuel gases will be generated in a water electrolyzer during the day by excess solar cell output.

  19. Aircraft engine exhaust emissions and other airport-related contributions to ambient air pollution: A review

    NASA Astrophysics Data System (ADS)

    Masiol, Mauro; Harrison, Roy M.

    2014-10-01

    Civil aviation is fast-growing (about +5% every year), mainly driven by the developing economies and globalisation. Its impact on the environment is heavily debated, particularly in relation to climate forcing attributed to emissions at cruising altitudes and the noise and the deterioration of air quality at ground-level due to airport operations. This latter environmental issue is of particular interest to the scientific community and policymakers, especially in relation to the breach of limit and target values for many air pollutants, mainly nitrogen oxides and particulate matter, near the busiest airports and the resulting consequences for public health. Despite the increased attention given to aircraft emissions at ground-level and air pollution in the vicinity of airports, many research gaps remain. Sources relevant to air quality include not only engine exhaust and non-exhaust emissions from aircraft, but also emissions from the units providing power to the aircraft on the ground, the traffic due to the airport ground service, maintenance work, heating facilities, fugitive vapours from refuelling operations, kitchens and restaurants for passengers and operators, intermodal transportation systems, and road traffic for transporting people and goods in and out to the airport. Many of these sources have received inadequate attention, despite their high potential for impact on air quality. This review aims to summarise the state-of-the-art research on aircraft and airport emissions and attempts to synthesise the results of studies that have addressed this issue. It also aims to describe the key characteristics of pollution, the impacts upon global and local air quality and to address the future potential of research by highlighting research needs.

  20. In flight measurement of steady and unsteady blade surface pressure of a single rotation large scale advanced prop-fan installed on the PTA aircraft

    NASA Technical Reports Server (NTRS)

    Parzych, D.; Boyd, L.; Meissner, W.; Wyrostek, A.

    1991-01-01

    An experiment was performed by Hamilton Standard, Division of United Technologies Corporation, under contract by LeRC, to measure the blade surface pressure of a large scale, 8 blade model prop-fan in flight. The test bed was the Gulfstream 2 Prop-Fan Test Assessment (PTA) aircraft. The objective of the test was to measure the steady and periodic blade surface pressure resulting from three different Prop-Fan air inflow angles at various takeoff and cruise conditions. The inflow angles were obtained by varying the nacelle tilt angles, which ranged from -3 to +2 degrees. A range of power loadings, tip speeds, and altitudes were tested at each nacelle tilt angle over the flight Mach number range of 0.30 to 0.80. Unsteady blade pressure data tabulated as Fourier coefficients for the first 35 harmonics of shaft rotational frequency and the steady (non-varying) pressure component are presented.

  1. Greenhouse gas analysis of air samples collected onboard the CARIBIC passenger aircraft

    NASA Astrophysics Data System (ADS)

    Schuck, T. J.; Brenninkmeijer, C. A. M.; Slemr, F.; Xueref-Remy, I.; Zahn, A.

    2009-03-01

    CARIBIC (Civil Aircraft for the Regular Investigation of the Atmosphere Based on an Instrument Container) is a long-term atmospheric measurement program based on the use of a comprehensive scientific instrument package aboard a passenger aircraft. In addition to real time measurements, whole air sampling is performed regularly at cruising altitude in the upper troposphere and the extra-tropical UT/LS region. Air samples are analysed for greenhouse gases, NMHCs, halocarbons, and isotopic composition. The routinely performed greenhouse gas analysis comprises gas chromatography measurements of CO2, CH4, N2O and SF6. The sampling procedure, the GC system used for greenhouse gas analysis and its performance are described. Comparisons with other laboratories have shown good agreement of results as has a comparison with results from a CO2 in-situ analyser that is also part of the CARIBIC instrumentation. The timeseries of CO2 obtained from the collection of 684 samples at latitudes between 30° N and 56° N on 21 roundtrips out of Germany to different destinations in Asia between November 2005 and October 2008 is shown. A timeshift in the seasonal cyle of about one month was observed between the upper troposphere and the tropopause region. For two sets of return flights from Germany to the Philippines the relations between the four greenhouse gases CO2, CH4, N2O and SF6 are discussed in more detail. Distinct seasonal changes in the correlation between CH4 and CO2 are observed.

  2. Greenhouse gas analysis of air samples collected onboard the CARIBIC passenger aircraft

    NASA Astrophysics Data System (ADS)

    Schuck, T. J.; Brenninkmeijer, C. A. M.; Slemr, F.; Xueref-Remy, I.; Zahn, A.

    2009-08-01

    CARIBIC (Civil Aircraft for the Regular Investigation of the atmosphere Based on an Instrument Container) is a long-term atmospheric measurement program based on the use of a comprehensive scientific instrument package aboard a commercial passenger aircraft. In addition to real-time measurements, whole air sampling is performed regularly at cruising altitudes in the tropical middle troposphere and the extra-tropical UT/LS region. Air samples are analyzed for greenhouse gases, NMHCs, halocarbons, and trace gas isotopic composition. The routinely performed greenhouse gas analysis comprises gas chromatography measurements of CO2, CH4, N2O and SF6. The air sampling procedure, the GC system and its performance are described. Comparisons with similar systems employed in other laboratories and a comparison with results from a CO2 in-situ analyzer that is also part of the CARIBIC instrumentation are shown. In addition, the time series of CO2, obtained from the collection of 684 samples at latitudes between 30° N and 56° N on 21 round trips out of Germany to different destinations in Asia between November 2005 and October 2008, is presented. A time shift in the seasonal cycle of about one month was observed between the upper troposphere and the tropopause region. For two sets of return flights from Germany to the Philippines the relationship between the four greenhouse gases is briefly discussed.

  3. Ground-based aircraft exhaust measurements of a Lufthansa Airbus A340 using FTIR emission spectrometry

    NASA Astrophysics Data System (ADS)

    Schaefer, Klaus; Heland, Joerg

    1999-01-01

    The emission inventories of aircraft emissions are being set up using flight routing data and test rig measurements of the engine manufacturers for certification purposes which have to be extrapolated with respect to the actual parameters at cruise altitude. Precise data from in-service engines are not existing. FTIR-emission-spectroscopy as a remote sensing multi-component exhaust gas analysis method has been further developed to specify the traceable molecules in aircraft exhausts, to determine the detection limits, and to obtain reliable statements concerning its accuracy. The first measurement with the Airbus A340 engine CFM56-5C2 during run up tests at ground level showed the overall ability of the FTIR-emission system to analyze the exhausts of modern gas turbines with high bypass ratio and mixing of fan air into the exhausts before the nozzle exit. Good quality spectra were measured and analyzed with respect to the mixing rations of CO2, H2O, CO, NO, and N2O, and the emission indices of CO, NO, and N2O. Total measurement times at one thrust level should be about 15 minutes to obtain reliable result which can be compared to the ICAO data of this engine.

  4. Application of the joined wing to tiltrotor aircraft

    NASA Technical Reports Server (NTRS)

    Wolkovitch, Julian; Wainfan, Barnaby; Ben-Harush, Yitzhak; Johnson, Wayne

    1989-01-01

    A study was made to determine the potential speed improvements and other benefits resulting from the application of the joined wing concept to tiltrotor aircraft. Using the XV-15 as a baseline, the effect of replacing the cantilever wing by a joined-wing pair was studied. The baseline XV-15 cantilever wing has a thickness/chord ratio of 23 percent. It was found that this wing could be replaced by a joined-wing pair of the same span and total area employing airfoils of 12 percent thickness/chord ratio. The joined wing meets the same static strength requirements as the cantilever wing, but increases the limiting Mach Number of the aircraft from M=0.575 to M=0.75, equivalent to an increase of over 100 knots in maximum speed. The joined wing configuration studied is lighter than the cantilever and has approximately 11 percent less wing drag in cruise. Its flutter speed of 245 knots EAS is not high enough to allow the potential Mach number improvement to be attained at low altitude. The flutter speed can be raised either by employing rotors which can be stopped and folded in flight at speeds below 245 knots EAS, or by modifying the airframe to reduce adverse coupling with the rotor dynamics. Several modifications of wing geometry and nacelle mass distribution were investigated, but none produced a flutter speed above 260 knots EAS. It was concluded that additional research is required to achieve a more complete understanding of the mechanism of rotor/wing coupling.

  5. Analysis of the effects of meteorology on aircraft exhaust dispersion and deposition using a Lagrangian particle model.

    PubMed

    Pecorari, Eliana; Mantovani, Alice; Franceschini, Chiara; Bassano, Davide; Palmeri, Luca; Rampazzo, Giancarlo

    2016-01-15

    The risk of air quality degradation is of considerable concern particularly for those airports that are located near urban areas. The ability to quantitatively predict the effects of air pollutants originated by airport operations is important for assessing air quality and the related impacts on human health. Current emission regulations have focused on local air quality in the proximity of airports. However, an integrated study should consider the effects of meteorological events, at both regional and local level, that can affect the dispersion and the deposition of exhausts. Rigorous scientific studies and extensive experimental data could contribute to the analysis of the impacts of airports expansion plans. This paper is focused on the analysis of the effects of meteorology on aircraft emission for the Marco Polo Airport in Venice. This is the most important international airport in the eastern part of the Po' Valley, one of the most polluted area in Europe. Air pollution is exacerbated by meteorology that is a combination of large and local scale effects that do not allow significant dispersion. Moreover, the airport is located near Venice, a city of noteworthy cultural and architectural relevance, and nearby the lagoon that hosts several areas of outstanding ecological importance at European level (Natura 2000 sites). Dispersion and deposit of the main aircraft exhausts (NOx, HC and CO) have been evaluated by using a Lagrangian particle model. Spatial and temporal aircraft exhaust dispersion has been analyzed for LTO cycle. Aircraft taxiing resulted to be the most impacting aircraft operation especially for the airport working area and its surroundings, however occasionally peaks may be observed even at high altitudes when cruise mode starts. Mixing height can affect concentrations more significantly than the concentrations in the exhausts themselves. An increase of HC and CO concentrations (15-50%) has been observed during specific meteorological events

  6. [Mountaineering and altitude sickness].

    PubMed

    Maggiorini, M

    2001-06-01

    Almost every second trekker or climber develops two to three symptoms of the high altitude illness after a rapid ascent (> 300 m/day) to an altitude above 4000 m. We distinguish two forms of high altitude illness, a cerebral form called acute mountain sickness and a pulmonary form called high altitude pulmonary edema. Essentially, acute mountain sickness is self-limiting and benign. Its symptoms are mild to moderate headache, loss of appetite, nausea, dizziness and insomnia. Nausea rarely progresses to vomiting, but if it does, this may anticipate a progression of the disease into the severe form of acute mountain sickness, called high altitude cerebral edema. Symptoms and signs of high altitude cerebral edema are severe headache, which is not relieved by acetaminophen, loss of movement coordination, ataxia and mental deterioration ending in coma. The mechanisms leading to acute mountain sickness are not very well understood; the loss of cerebral autoregulation and a vasogenic type of cerebral edema are being discussed. High altitude pulmonary edema presents in roughly twenty percent of the cases with mild symptoms of acute mountain sickness or even without any symptoms at all. Symptoms associated with high altitude pulmonary edema are incapacitating fatigue, chest tightness, dyspnoe at the minimal effort that advances to dyspnoe at rest and orthopnoe, and a dry non-productive cough that progresses to cough with pink frothy sputum due to hemoptysis. The hallmark of high altitude pulmonary edema is an exaggerated hypoxic pulmonary vasoconstriction. Successful prophylaxis and treatment of high altitude pulmonary edema using nifedipine, a pulmonary vasodilator, indicates that pulmonary hypertension is crucial for the development of high altitude pulmonary edema. The primary treatment of high altitude illness consists in improving hypoxemia and acclimatization. For prophylaxis a slow ascent at a rate of 300 m/day is recommended, if symptoms persist, acetazolamide at a

  7. Conceptual design for a laminar-flying-wing aircraft

    NASA Astrophysics Data System (ADS)

    Saeed, T. I.

    The laminar-flying-wing aircraft appears to be an attractive long-term prospect for reducing the environmental impact of commercial aviation. In assessing its potential, a relatively straightforward initial step is the conceptual design of a version with restricted sweep angle. Such a design is the topic of this thesis. Subject to constraints, this research aims to; provide insight into the parameters affecting practical laminar-flow-control suction power requirements; identify a viable basic design specification; and, on the basis of this, an assessment of the fuel efficiency through a detailed conceptual design study. It is shown that there is a minimum power requirement independent of the suction system design, associated with the stagnation pressure loss in the boundary layer. This requirement increases with aerofoil section thickness, but depends only weakly on Mach number and (for a thick, lightly-loaded laminar flying wing) lift coefficient. Deviation from the optimal suction distribution, due to a practical chamber-based architecture, is found to have very little effect on the overall suction coefficient. In the spanwise direction, through suitable choice of chamber depth, the pressure drop due to frictional and inertial effects may be rendered negligible. Finally, it is found that the pressure drop from the aerofoil surface to the pump collector ducts determines the power penalty. To identify the viable basic design specification, a high-level exploration of the laminar flying wing design space is performed. The characteristics of the design are assessed as a function of three parameters: thickness-to-chord ratio, wingspan, and unit Reynolds number. A feasible specification, with 20% thickness-to-chord, 80 m span and a unit Reynolds number of 8 x 106 m-1, is identified; it corresponds to a 187 tonne aircraft which cruises at Mach 0.67 and altitude 22,500 ft, with lift coefficient 0.14. On the basis of this specification, a detailed conceptual design is

  8. Application of advanced technology to future long-range aircraft

    NASA Technical Reports Server (NTRS)

    Schrader, O. E.

    1976-01-01

    The objective of this paper is to provide an overview assessment of three separate programs at Langley Research Center that have incorporated advanced technology into the design of long-range passenger and cargo aircraft. The first technology centers around the use of an span-loaded cargo aircraft with the payload distributed along the wing. This concept has the potential for reduced structural weights. The second technology is the application of laminar flow control (LFC) to the aircraft to reduce the aerodynamic drag. The use of LFC can reduce the fuel requirements during long-range cruise. The last program evaluates the production of alternate aircraft fuels from coal and the use of liquid hydrogen as an aircraft fuel. Coal-derived hydrogen as an aircraft fuel offers both the prospect for reduced dependence on petroleum fuels and improved performance for long-range aircraft.

  9. Aircraft Wake RCS Measurement

    NASA Technical Reports Server (NTRS)

    Gilson, William H.

    1994-01-01

    A series of multi-frequency radar measurements of aircraft wakes at altitudes of 5,000 to 25,00 ft. were performed at Kwajalein, R.M.I., in May and June of 1990. Two aircraft were tested, a Learjet 35 and a Lockheed C-5A. The cross-section of the wake of the Learjet was too small for detection at Kwajalein. The wake of the C-5A, although also very small, was detected and measured at VHF, UHF, L-, S-, and C-bands, at distances behind the aircraft ranging from about one hundred meters to tens of kilometers. The data suggest that the mechanism by which aircraft wakes have detectable radar signatures is, contrary to previous expectations, unrelated to engine exhaust but instead due to turbulent mixing by the wake vortices of pre-existing index of refraction gradients in the ambient atmosphere. These measurements were of necessity performed with extremely powerful and sensitive instrumentation radars, and the wake cross-section is too small for most practical applications.

  10. Study Of Radiation Effects Electronics at Atmospheric Altitudes

    NASA Technical Reports Server (NTRS)

    Wilkins, Richard

    1998-01-01

    A test bed for the in situ evaluation of electronic devices for high altitude aircraft was developed. A prototype of the test bed, suitable for operation on a research aircraft, was built and readied for ground tests. The principle investigator established a working relationship with the Project APEX team at Dryden with the intent of flying the test bed "piggyback" on an Project APEX balloon in 1998. Contact was also established with NASA contractors charged with operating the ER-2 aircraft now at Dryden.

  11. Ear - blocked at high altitudes

    MedlinePlus

    High altitudes and blocked ears; Flying and blocked ears; Eustachian tube dysfunction - high altitude ... you are going up or coming down from high altitudes. Chewing gum the entire time you are changing ...

  12. A proposed criterion for aircraft flight in turbulence

    NASA Technical Reports Server (NTRS)

    Porter, R. F.; Robinson, A. C.

    1971-01-01

    A proposed criterion for aircraft flight in turbulent conditions is presented. Subjects discussed are: (1) the problem of flight safety in turbulence, (2) new criterion for turbulence flight where existing ones seem adequate, and (3) computational problems associated with new criterion. Primary emphasis is placed on catastrophic occurrences in subsonic cruise with the aircraft under automatic control. A Monte Carlo simulation is used in the formulation and evaluation of probabilities of survival of an encounter with turbulence.

  13. Aero acoustic analysis and community noise. HSCT climb to cruise noise assessment

    NASA Technical Reports Server (NTRS)

    Mortlock, Alan K.

    1992-01-01

    The widely accepted industry High Speed Civil Transport (HSCT) design goal for exterior noise is to achieve Federal Aviation Regulation (FAR) Part 36 Stage 3 noise limits currently required for new subsonic aircraft. The three phases of the concern are as follows: (1) airport noise abatement at communities close to the airport, (2) climb power opening-up procedures, and (3) the climb to cruise phase affecting communities far from the airport.

  14. Aero acoustic analysis and community noise. HSCT climb to cruise noise assessment

    NASA Astrophysics Data System (ADS)

    Mortlock, Alan K.

    1992-04-01

    The widely accepted industry High Speed Civil Transport (HSCT) design goal for exterior noise is to achieve Federal Aviation Regulation (FAR) Part 36 Stage 3 noise limits currently required for new subsonic aircraft. The three phases of the concern are as follows: (1) airport noise abatement at communities close to the airport, (2) climb power opening-up procedures, and (3) the climb to cruise phase affecting communities far from the airport.

  15. Supersonic Cruise Research 1979, part 2. [airframe structures and materials, systems integration, economic analysis

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Advances in airframe structure and materials technology for supersonic cruise aircraft are reported with emphasis on titanium and composite structures. The operation of the Concorde is examined as a baseline for projections into the future. A market survey of U.S. passenger attitudes and preferences, the impact of advanced air transport technology and the integration of systems for the advanced SST and for a smaller research/business jet vehicle are also discussed.

  16. Design definition study of a lift/cruise fan technology V/STOL airplane: Summary

    NASA Technical Reports Server (NTRS)

    Zabinsky, J. M.; Higgins, H. C.

    1975-01-01

    A two-engine three-fan V/STOL airplane was designed to fulfill naval operational requirements. A multimission airplane was developed from study of specific point designs. Based on the multimission concept, airplanes were designed to demonstrate and develop the technology and operational procedures for this class of aircraft. Use of interconnected variable pitch fans led to a good balance between high thrust with responsive control and efficient thrust at cruise speeds. The airplanes and their characteristics are presented.

  17. A fuselage/tank structure study for actively cooled hypersonic cruise vehicles: Structural analysis

    NASA Technical Reports Server (NTRS)

    Baker, A. H.

    1975-01-01

    The effects of fuselage cross-section (circular and elliptical) and structural arrangement (integral and nonintegral tanks) on the performance of actively cooled hypersonic cruise vehicles was evaluated. It was found that integrally machined stiffening of the tank walls, while providing the most weight-efficient use of materials, results in higher production costs. Fatigue and fracture mechanics appeared to have little effect on the weight of the three study aircraft. The need for thermal strain relief through insulation is discussed. Aircraft size and magnitude of the internal pressure are seen to be significant factors in tank design.

  18. High-Altitude Aircraft and Balloon-Borne Observations of OH, HO2, ClO, BrO, NO2, ClONO2, ClOOCl, H2O, and O3 in Earth's Stratosphere

    NASA Technical Reports Server (NTRS)

    Anderson, James G.

    1999-01-01

    Using observations from balloon-borne instruments and aircraft-borne instruments the investigation arrived at the following developments.: (1) Determination of the dominant catalytic cycles that destroy ozone in the lower stratosphere; (2) The partial derivatives of the rate limiting steps are observables in the lower stratosphere; (3) Recognition that the "Low NOx" condition is the regime that holds the greatest potential for misjudgement of Ozone loss rates; (4) Mapping of the Bromine radical contribution to the ozone destruction rate in the lower stratosphere; (5) Observation of OH, HO2 and ClO in the plume of the Concorde SST in the stratosphere; (6) Determination of the diurnal behavior of OH in the lower stratosphere; (7) Observed OH and H02 in the Troposphere and the interrelationship between Ozone and OH, HO2, CO and NO; (8) Analysis of the Catalytic Production of Ozone and Reactions that Couple OH and H02 in the Troposphere; (9) The continuing development of the understanding of the Tropopause temperatures, water vapor mixing ratios, and vertical advection and the mixing in of mid-latitude air; (10) Performed Multiple Tracer Analyses as a diagnostic of water vapor intrusion into the "Middle World" (i.e., the lowermost stratsophere); (11) Flight testing of a new instrument for the In Situ detection of ClON02 from the ER-2; (12) Laser induced fluorescence detection of NO2. There is included an in depth discussion of each of these developments and observations.

  19. Endurance training at altitude.

    PubMed

    Saunders, Philo U; Pyne, David B; Gore, Christopher J

    2009-01-01

    Since the 1968 Olympic Games when the effects of altitude on endurance performance became evident, moderate altitude training ( approximately 2000 to 3000 m) has become popular to improve competition performance both at altitude and sea level. When endurance athletes are exposed acutely to moderate altitude, a number of physiological responses occur that can comprise performance at altitude; these include increased ventilation, increased heart rate, decreased stroke volume, reduced plasma volume, and lower maximal aerobic power ((.)Vo(2max)) by approximately 15% to 20%. Over a period of several weeks, one primary acclimatization response is an increase in the volume of red blood cells and consequently of (.)Vo(2max). Altitudes > approximately 2000 m for >3 weeks and adequate iron stores are required to elicit these responses. However, the primacy of more red blood cells for superior sea-level performance is not clear-cut since the best endurance athletes in the world, from Ethiopia (approximately 2000 to 3000 m), have only marginally elevated hemoglobin concentrations. The substantial reduction in (.)Vo(2max) of athletes at moderate altitude implies that their training should include adequate short-duration (approximately 1 to 2 min), high-intensity efforts with long recoveries to avoid a reduction in race-specific fitness. At the elite level, athlete performance is not dependent solely on (.)Vo(2max), and the "smallest worthwhile change" in performance for improving race results is as little as 0.5%. Consequently, contemporary statistical approaches that utilize the concept of the smallest worthwhile change are likely to be more appropriate than conventional statistical methods when attempting to understand the potential benefits and mechanisms of altitude training. PMID:19519223

  20. North Atlantic air traffic within the lower stratosphere: Cruising times and corresponding emissions

    SciTech Connect

    Hoinka, K.P.; Reinhardt, M.E.; Metz, W. |

    1993-12-01

    This study estimates cruising times and related pollutant emissions (NO(x), CO, HC) and H2O of today`s aircraft fleet within the troposphere and stratosphere performed for the North Atlantic region in between 45 deg N, 65 deg N, 10 deg W, and 50 deg W for the years 1989, 1990, and 1991. The tropopause surface distribution is determined through analysis of assimilated data. Both conventional lapse rate and potential vorticity criteria are employed to determine the location of the tropopause surface. These data combined with air traffic statistics are used to evaluate cruising times within the troposphere and stratosphere separately. The study shows an average of about 44% of the cruising time of the aircraft above the North Atlantic flown within the stratosphere. Based on emission indices of aircraft engines, the emission rates of NO(x) (in mass units of NO2) into the stratosphere and troposphere in the given region result in 0.26 and 0.33 x 10(exp -12) kg/sq m/s, respectively.

  1. Quality factor of secondary cosmic radiation at flight altitudes

    NASA Astrophysics Data System (ADS)

    Burda, O.; Sato, T.; Wissmann, F.

    2013-06-01

    Dosimetry at aviation altitudes requires instruments that are able to measure the dose contributions of all field components. Tissue-equivalent proportional counters (TEPCs) are well suited for this task. From the measured lineal energy distribution, the absorbed dose and the dose equivalent can be obtained. The ratio of both quantities is named the quality factor, which is a measure of the biological effectiveness of the radiation field. The results of this work show that the mean quality factors obtained by using a TEPC are independent of the altitude, at least at altitudes between flight level (FL) 300 and FL 400, but show a significant dependence on the vertical cutoff rigidity. From a numerical simulation of the radiation field inside an aircraft, the influence of the aircraft structure can be shown.

  2. Quality factor of secondary cosmic radiation at flight altitudes.

    PubMed

    Burda, O; Sato, T; Wissmann, F

    2013-06-01

    Dosimetry at aviation altitudes requires instruments that are able to measure the dose contributions of all field components. Tissue-equivalent proportional counters (TEPCs) are well suited for this task. From the measured lineal energy distribution, the absorbed dose and the dose equivalent can be obtained. The ratio of both quantities is named the quality factor, which is a measure of the biological effectiveness of the radiation field. The results of this work show that the mean quality factors obtained by using a TEPC are independent of the altitude, at least at altitudes between flight level (FL) 300 and FL 400, but show a significant dependence on the vertical cutoff rigidity. From a numerical simulation of the radiation field inside an aircraft, the influence of the aircraft structure can be shown. PMID:23480894

  3. A review of advanced turboprop transport aircraft

    NASA Astrophysics Data System (ADS)

    Lange, Roy H.

    The application of advanced technologies shows the potential for significant improvement in the fuel efficiency and operating costs of future transport aircraft envisioned for operation in the 1990s time period. One of the more promising advanced technologies is embodied in an advanced turboprop concept originated by Hamilton Standard and NASA and known as the propfan. The propfan concept features a highly loaded multibladed, variable pitch propeller geared to a high pressure ratio gas turbine engine. The blades have high sweepback and advanced airfoil sections to achieve 80 percent propulsive efficiency at M=0.80 cruise speed. Aircraft system studies have shown improvements in fuel efficiency of 15-20 percent for propfan advanced transport aircraft as compared to equivalent turbofan transports. Beginning with the Lockheed C-130 and Electra turboprop aircraft, this paper presents an overview of the evolution of propfan aircraft design concepts and system studies. These system studies include possible civil and military transport applications and data on the performance, community and far-field noise characteristics and operating costs of propfan aircraft design concepts. NASA Aircraft Energy Efficiency (ACEE) program propfan projects with industry are reviewed with respect to system studies of propfan aircraft and recommended flight development programs.

  4. HiMAT highly maneuverable aircraft technology, flight report

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Flight verification of a primary flight control system, designed to control the unstable HiMAT aircraft is presented. The initial flight demonstration of a maneuver autopilot in the level cruise mode and the gathering of a limited amount of airspeed calibration data.

  5. In-Flight Chemical Composition Observations of Aircraft Emissions using a High-Resolution Time-of-Flight Aerosol Mass Spectrometer

    NASA Astrophysics Data System (ADS)

    Ziemba, L. D.; Martin, R.; Moore, R.; Shook, M.; Thornhill, K. L., II; Winstead, E.; Anderson, B. E.

    2015-12-01

    Commercial aircraft are an important source of aerosols to the upper troposphere. The microphysical and chemical properties of these emitted aerosols govern their ability to act as ice nuclei, both in near-field contrails and for cirrus formation downstream. During the ACCESS-II (Alternative Fuel Effects on Contrails and Cruise Emissions) campaign, NASA DC-8 CFM56-2-C1 engine emissions were sampled systematically at a range of cruise-relevant thrust levels and at several altitudes. Sampling was done aboard the NASA HU-25 Falcon aircraft, which was equipped with a suite of aerosol and gas-phase instruments focused on assessing the effects of burning different fuel mixtures on aerosol properties and their associated contrails. Here we present in-flight measurements of particle chemical composition made by a High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS). The AMS was able to sufficiently resolve near-field (within 100m) aircraft emissions plumes. Low-sulfur HEFA (hydro-processed esters and fatty-acids) and JetA fuels yielded particles that contained 11 and 8% sulfate, respectively, compared to 30% sulfate contribution for traditional JetA fuel. Each of the fuels produced organic aerosol with similarly low oxygen content. Lubrication oils, which are not a combustion product but result from leaks in the engine, were likely a dominant fraction of the measured organic mass based on mass-spectral marker analysis. These results are compared to similar engine conditions from ground-based testing.

  6. High-altitude solar power platform

    SciTech Connect

    Bailey, M.D.; Bower, M.V.

    1992-04-01

    Solar power is a preeminent alternative to conventional aircraft propulsion. With the continued advances in solar cells, fuel cells, and composite materials technology, the solar powered airplane is no longer a simple curiosity constrained to flights of several feet in altitude or minutes of duration. A high altitude solar powered platform (HASPP) has several potential missions, including communications and agriculture. In remote areas, a HASPP could be used as a communication link. In large farming areas, a HASPP could perform remote sensing of crops. The impact of HASPP in continuous flight for one year on agricultural monitoring mission is presented. This mission provides farmers with near real-time data twice daily from an altitude which allows excellant resolution on water conditions, crop diseases, and insect infestation. Accurate, timely data will enable farmers to increase their yield and efficiency. A design for HASPP for the foregoing mission is presented. In the design power derived from solar cells covering the wings is used for propulsion, avionics, and sensors. Excess power produced midday will be stored in fuel cells for use at night to maintain altitude and course.

  7. 32 CFR 705.23 - Guest cruises.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 5 2010-07-01 2010-07-01 false Guest cruises. 705.23 Section 705.23 National Defense Department of Defense (Continued) DEPARTMENT OF THE NAVY UNITED STATES NAVY REGULATIONS AND OFFICIAL RECORDS PUBLIC AFFAIRS REGULATIONS § 705.23 Guest cruises. (a) General policy. (1) The embarkation of civilian guests in Navy ships...

  8. 32 CFR 705.23 - Guest cruises.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 5 2011-07-01 2011-07-01 false Guest cruises. 705.23 Section 705.23 National Defense Department of Defense (Continued) DEPARTMENT OF THE NAVY UNITED STATES NAVY REGULATIONS AND OFFICIAL RECORDS PUBLIC AFFAIRS REGULATIONS § 705.23 Guest cruises. (a) General policy. (1) The embarkation of civilian guests in Navy ships...

  9. Evaluation of a ducted-fan power plant designed for high output and good cruise fuel economy

    NASA Technical Reports Server (NTRS)

    Behun, M; Rom, F E; Hensley, R V

    1950-01-01

    Theoretical analysis of performance of a ducted-fan power plant designed both for high-output, high-altitude operation at low supersonic Mach numbers and for good fuel economy at lower fight speeds is presented. Performance of ducted fan is compared with performance (with and without tail-pipe burner) of two hypothetical turbojet engines. At maximum power, the ducted fan has propulsive thrust per unit of frontal area between thrusts obtained by turbojet engines with and without tail-pipe burners. At cruise, the ducted fan obtains lowest thrust specific fuel consumption. For equal maximum thrusts, the ducted fan obtains cruising flight duration and range appreciably greater than turbojet engines.

  10. Aircraft Design

    NASA Technical Reports Server (NTRS)

    Bowers, Albion H. (Inventor); Uden, Edward (Inventor)

    2016-01-01

    The present invention is an aircraft wing design that creates a bell shaped span load, which results in a negative induced drag (induced thrust) on the outer portion of the wing; such a design obviates the need for rudder control of an aircraft.

  11. Aircraft Noise

    NASA Astrophysics Data System (ADS)

    Michel, Ulf; Dobrzynski, Werner; Splettstoesser, Wolf; Delfs, Jan; Isermann, Ullrich; Obermeier, Frank

    Aircraft industry is exposed to increasing public pressure aiming at a continuing reduction of aircraft noise levels. This is necessary to both compensate for the detrimental effect on noise of the expected increase in air traffic and improve the quality of living in residential areas around airports.

  12. Altitude Modulates Concussion Incidence

    PubMed Central

    Smith, David W.; Myer, Gregory D.; Currie, Dustin W.; Comstock, R. Dawn; Clark, Joseph F.; Bailes, Julian E.

    2013-01-01

    Background: Recent research indicates that the volume and/or pressure of intracranial fluid, a physiology affected by one’s altitude (ie, elevation above sea level), may be associated with the likelihood and/or severity of a concussion. The objective was to employ an epidemiological field investigation to evaluate the relationship between altitude and concussion rate in high school sports. Hypothesis: Because of the physiologies that occur during acclimatization, including a decline in intracranial compliance (a “tighter fit”), increased altitude may be related to a reduction in concussion rates in high school athletes. Study Design: Cohort study; Level of evidence, 3. Methods: Data on concussions and athlete exposures (AEs) between 2005-2006 and 2011-2012 were obtained from a large national sample of high schools (National High School Sports-Related Injury Surveillance System [High School RIO]) and were used to calculate total, competition, and practice concussion rates for aggregated sports and for football only. Results: Altitude of participating schools ranged from 7 to 6903 ft (median, 600 ft), and a total of 5936 concussions occurred in 20,618,915 exposures (2.88 per 10,000 AEs). When concussion rates were dichotomized by altitude using the median, elevated altitude was associated with a reduction in concussion rates overall (rate ratio [RR], 1.31; P < .001), in competition (RR, 1.31; P < .001), and in practice (RR, 1.29; P < .001). Specifically, high school sports played at higher altitude demonstrated a 31% reduction (95% confidence interval [CI], 25%-38%) in the incidence of total reported concussions. Likewise, concussion rates at increased altitude were reduced 30% for overall exposures, 27% for competition exposures, and 28% for practice exposures in football players (P < .001). Conclusion: The results of this epidemiological investigation indicate increased physiological responses to altitude may be associated with a reduction in sports

  13. High Altitude Medical Problems

    PubMed Central

    Hultgren, Herbert N.

    1979-01-01

    Increased travel to high altitude areas by mountaineers and nonclimbing tourists has emphasized the clinical problems associated with rapid ascent. Acute mountain sickness affects most sojourners at elevations above 10,000 feet. Symptoms are usually worse on the second or third day after arrival. Gradual ascent, spending one to three days at an intermediate altitude, and the use of acetazolamide (Diamox) will prevent or ameliorate symptoms in most instances. Serious and potentially fatal problems, such as high altitude pulmonary edema or cerebral edema, occur in approximately 0.5 percent to 1.0 percent of visitors to elevations above 10,000 feet—especially with heavy physical exertion on arrival, such as climbing or skiing. Early recognition, high flow oxygen therapy and prompt descent are crucially important in management. Our knowledge of the causes of these and other high altitude problems, such as retinal hemorrhage, systemic edema and pulmonary hypertension, is still incomplete. Even less is known of the effect of high altitudes on medical conditions common at sea level or on the action of commonly used drugs. ImagesFigure 2. PMID:483805

  14. SR-71A in Flight with Test Fixture Mounted Atop the Aft Section of the Aircraft

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This close-up, head-on view of NASA's SR-71A Blackbird in flight shows the aircraft with an experimental test fixture mounted on the back of the airplane. Two SR-71 aircraft have been used by NASA as testbeds for high-speed and high-altitude aeronautical research. The aircraft, an SR-71A and an SR-71B pilot trainer aircraft, have been based here at NASA's Dryden Flight Research Center, Edwards, California. They were transferred to NASA after the U.S. Air Force program was cancelled. As research platforms, the aircraft can cruise at Mach 3 for more than one hour. For thermal experiments, this can produce heat soak temperatures of over 600 degrees Fahrenheit (F). This operating environment makes these aircraft excellent platforms to carry out research and experiments in a variety of areas -- aerodynamics, propulsion, structures, thermal protection materials, high-speed and high-temperature instrumentation, atmospheric studies, and sonic boom characterization. The SR-71 was used in a program to study ways of reducing sonic booms or over pressures that are heard on the ground, much like sharp thunderclaps, when an aircraft exceeds the speed of sound. Data from this Sonic Boom Mitigation Study could eventually lead to aircraft designs that would reduce the 'peak' overpressures of sonic booms and minimize the startling affect they produce on the ground. One of the first major experiments to be flown in the NASA SR-71 program was a laser air data collection system. It used laser light instead of air pressure to produce airspeed and attitude reference data, such as angle of attack and sideslip, which are normally obtained with small tubes and vanes extending into the airstream. One of Dryden's SR-71s was used for the Linear Aerospike Rocket Engine, or LASRE Experiment. Another earlier project consisted of a series of flights using the SR-71 as a science camera platform for NASA's Jet Propulsion Laboratory in Pasadena, California. An upward-looking ultraviolet video camera

  15. Antifreeze Polysaccharide Coating Study for De-icing Aircraft

    NASA Astrophysics Data System (ADS)

    Morita, Katsuaki; Sakaue, Hirotaka; Ando, Azuma; Matsuda, Yoshiyuki; Kawahara, Hidehisa

    2015-11-01

    Anti-icing or deicing of an aircraft is necessary for a safe flight operation. Mechanical processes, such as heating and deicer boot, are widely used. Deicing fluids, such as propyrene glycol and ethylene glycol, are used to coat the aircraft. However, these should be coated every time before the take-off, since the fluids come off from the aircraft while cruising. We study an antifreeze polysaccharide (AFPS) coating as a deicer for an aircraft. It is designed to coat on the aircraft without removal. Since an AFPS coating removes ice by reducing the interfacial energy, it would be an alternative way to prevent ice on the aircraft. We provide a temperature-controlled room, which can control its temperature under icing conditions (-8 and -4 °C). Ice adhesion tests are performed for AFPS coating and compared with a fundamental specimen without the coating.

  16. Active Tailoring of Lift Distribution to Enhance Cruise Performance

    NASA Technical Reports Server (NTRS)

    Flamm, Jeffrey D. (Technical Monitor); Pfeiffer, Neal J.; Christians, Joel G.

    2005-01-01

    During Phase I of this project, Raytheon Aircraft Company (RAC) has analytically and experimentally evaluated key components of a system that could be implemented for active tailoring of wing lift distribution using low-drag, trailing-edge modifications. Simple systems such as those studied by RAC could be used to enhance the cruise performance of a business jet configuration over a range of typical flight conditions. The trailing-edge modifications focus on simple, deployable mechanisms comprised of extendable small flap panels over portions of the span that could be used to subtly but positively optimize the lift and drag characteristics. The report includes results from low speed wind tunnel testing of the trailing-edge devices, descriptions of potential mechanisms for automation, and an assessment of the technology.

  17. Art concept of Magellan spacecraft in cruise configuration

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Magellan spacecraft cruise configuration is illustrated in this artist concept. With solar panels deployed and having jettisoned the inertial upper stage (IUS), Magellan approaches the sun which it will orbit approximately 1.6 times before encountering Venus. Magellan, named after the 16th century Portuguese explorer, will orbit Venus about once every three hours, acquiring radar data for 37 minutes of each orbit when it is closest to the surface. Using an advanced instrument called a synthetic aperture radar (SAR), it will map more than 90 per cent of the surface with resolution ten times better than the best from prior spacecraft. Magellan is managed by the Jet Propulsion Laboratory (JPL); Martin Marietta Aerospace is developing the spacecraft and Hughes Aircraft Company, the advanced imaging radar. Magellan will be deployed from payload bay (PLB) of Atlantis, Orbiter Vehicle (OV) 104, during the STS-30 mission.

  18. Aircraft type influence on contrail properties

    NASA Astrophysics Data System (ADS)

    Jeßberger, P.; Voigt, C.; Schumann, U.; Sölch, I.; Schlager, H.; Kaufmann, S.; Petzold, A.; Schäuble, D.; Gayet, J.-F.

    2013-05-01

    The investigation of the impact of aircraft parameters on contrail properties helps to better understand the climate impact from aviation. Yet, in observations, it is a challenge to separate aircraft and meteorological influences on contrail formation. During the CONCERT campaign in November 2008, contrails from 3 Airbus passenger aircraft of type A319-111, A340-311 and A380-841 were probed at cruise under similar meteorological conditions with in-situ instruments on board the DLR research aircraft Falcon. Within the 2 min old contrails detected near ice saturation, we find similar effective diameters Deff (5.2-5.9 μm), but differences in particle number densities nice (162-235 cm-3) and in vertical contrail extensions (120-290 m), resulting in large differences in contrail optical depths τ (0.25-0.94). Hence larger aircraft produce optically thicker contrails. Based on the observations, we apply the EULAG-LCM model with explicit ice microphysics and in addition the Contrail and Cirrus Prediction model CoCiP to calculate the aircraft type impact on young contrails under identical meteorological conditions. The observed increase in τ for heavier aircraft is confirmed by the models, yet for generally smaller τ. An aircraft dependence of climate relevant contrail properties persists during contrail lifetime, adding importance to aircraft dependent model initialization. We finally derive an analytical relationship between contrail, aircraft and meteorological parameters. Near ice saturation, contrail width × τ scales linearly with fuel flow rate as confirmed by observations. For higher saturation ratios approximations from theory suggest a non-linear increase in the form (RHI-1)2/3. Summarized our combined results could help to more accurately assess the climate impact from aviation using an aircraft dependent contrail parameterization.

  19. Aircraft type influence on contrail properties

    NASA Astrophysics Data System (ADS)

    Jeßberger, P.; Voigt, C.; Schumann, U.; Sölch, I.; Schlager, H.; Kaufmann, S.; Petzold, A.; Schäuble, D.; Gayet, J.-F.

    2013-12-01

    The investigation of the impact of aircraft parameters on contrail properties helps to better understand the climate impact from aviation. Yet, in observations, it is a challenge to separate aircraft and meteorological influences on contrail formation. During the CONCERT campaign in November 2008, contrails from 3 Airbus passenger aircraft of types A319-111, A340-311 and A380-841 were probed at cruise under similar meteorological conditions with in situ instruments on board DLR research aircraft Falcon. Within the 2 min-old contrails detected near ice saturation, we find similar effective diameters Deff (5.2-5.9 μm), but differences in particle number densities nice (162-235 cm-3) and in vertical contrail extensions (120-290 m), resulting in large differences in contrail optical depths τ at 550 nm (0.25-0.94). Hence larger aircraft produce optically thicker contrails. Based on the observations, we apply the EULAG-LCM model with explicit ice microphysics and, in addition, the Contrail and Cirrus Prediction (CoCiP) model to calculate the aircraft type impact on young contrails under identical meteorological conditions. The observed increase in τ for heavier aircraft is confirmed by the models, yet for generally smaller τ. CoCiP model results suggest that the aircraft dependence of climate-relevant contrail properties persists during contrail lifetime, adding importance to aircraft-dependent model initialization. We finally derive an analytical relationship between contrail, aircraft and meteorological parameters. Near ice saturation, contrail width × τ scales linearly with the fuel flow rate, as confirmed by observations. For higher relative humidity with respect to ice (RHI), the analytical relationship suggests a non-linear increase in the form (RHI-12/3. Summarized, our combined results could help to more accurately assess the climate impact from aviation using an aircraft-dependent contrail parameterization.

  20. Shelf Edge Exchange Processes, II: SEEP2-08, R/V ENDEAVOR cruise 188. Hydrographic data report

    SciTech Connect

    Wilson, C.; Behrens, W.J.; Flagg, C.N.; Wallace, D.W.R.; Wilke, R.J.; Wyman, K.D.

    1989-12-01

    The Shelf Edge Exchange Processes (SEEP) program sponsored by the United States Department of Energy is a multi-institutional effort designed to investigate the flux of suspended material from the continental shelf to the waters of the upper slope, and then possibly into the slope sediments. Phase I of SEEP consisted of a series of nine cruises and a mooring array across the outer continental shelf of New England during 1983--1984 (Behrens and Flagg, 1986). Phase II focused specifically on the shelf/slope frontal region of the mid-Atlantic bight off the Delmarva Peninsula. This project consisted of a series of ten cruises, a mooring array, and a series of over-flights by NASA aircraft. Hydrographic data were collected on eight of the cruises, six of which were primarily mooring deployment or recovery cruises. The cruises were consecutively designated SEEP2-01 to SEEP2-10. Two cruises (SEEP2-04 and SEEP2-07) were dedicated to investigating benthic processes and hydrographic data were not collected.

  1. The Altitude Wind Tunnel (AWT): A unique facility for propulsion system and adverse weather testing

    NASA Technical Reports Server (NTRS)

    Chamberlin, R.

    1985-01-01

    A need has arisen for a new wind tunnel facility with unique capabilities for testing propulsion systems and for conducting research in adverse weather conditions. New propulsion system concepts, new aircraft configurations with an unprecedented degree of propulsion system/aircraft integration, and requirements for aircraft operation in adverse weather dictate the need for a new test facility. Required capabilities include simulation of both altitude pressure and temperature, large size, full subsonic speed range, propulsion system operation, and weather simulation (i.e., icing, heavy rain). A cost effective rehabilitation of the NASA Lewis Research Center's Altitude Wind Tunnel (AWT) will provide a facility with all these capabilities.

  2. Development of SCR Aircraft takeoff and landing procedures for community noise abatement and their impact on flight safety

    NASA Technical Reports Server (NTRS)

    Grantham, W. D.; Smith, P. M.

    1980-01-01

    Piloted simulator studies to determine takeoff and landing procedures for a supersonic cruise transport concept that result in predicted community noise levels which meet current Federal Aviation Administration (FAA) standards are discussed. The results indicate that with the use of advanced procedures, the subject simulated aircraft meets the FAA traded noise levels during takeoff and landing utilizing average flight crew skills. The advanced takeoff procedures developed involved violating three of the current Federal Aviation Regulations (FAR) noise test conditions. These were: (1) thrust cutbacks at altitudes below 214 meters (700 ft); (2) thrust cutback level below those presently allowed; and (3) configuration change, other than raising the landing gear. It was not necessary to violate any FAR noise test conditions during landing approach. It was determined that the advanced procedures developed do not compromise flight safety. Automation of some of the aircraft functions reduced pilot workload, and the development of a simple head-up display to assist in the takeoff flight mode proved to be adequate.

  3. Noise reduction studies of several aircraft to reduce their aural detection distances

    NASA Technical Reports Server (NTRS)

    Dingeldein, R. C.; Connor, A. B.; Hilton, D. A.

    1975-01-01

    A study was conducted to assess the extent to which practicable reductions of the external noise level of various aircraft could be achieved by different methods. The aircraft included in the study are the O-1, O-2, U-10, OV-1, and A-6. The noise signatures obtained from field measurements and the estimated aural detection distance of aircraft operating in low speed cruising flight are presented. The characteristics of each aircraft and the modifications made to reduce the aerodynamic noise are explained. Tables of data are included to show the effectiveness of the noise reduction modifications for each aircraft.

  4. Improved Tracking of Research Cruises

    NASA Astrophysics Data System (ADS)

    Urban, Ed; Sathyendranath, Shubha; de Leeuw, Jan

    2009-02-01

    Every year, several hundred ocean research cruises are conducted by academic institutions and government agencies worldwide, with major expenditures of finances and human resources. Ships may be in the same ocean area at the same time without prior knowledge of one another's activities, missing opportunities for joint work. Some ships go to sea with empty berths, which might have been filled if scientists from other institutions or countries had known about the availability of space. Many scientists using in situ instruments have missed opportunities to deploy them in seldom visited parts of the ocean because the scientists did not realize a ship was going to that area, and opportunities for ``sea truthing'' of satellite observations in remote regions are missed.

  5. Flight test evaluation of an RAF high altitude partial pressure protective assembly

    NASA Technical Reports Server (NTRS)

    Ashworth, G. R.; Putnam, T. W.; Dana, W. J.; Enevoldson, E. K.; Winter, W. R.

    1979-01-01

    A partial pressure suit was evaluated during tests in an F-104 and F-15 as a protective garment for emergency descents. The garment is an pressure jerkin and modified anti-g suit combined with an oronasal mask. The garment can be donned and doffed at the aircraft to minimize thermal buildup. The oronasal mask was favored by the pilots due to its immobility on the face during high g-loading. The garment was chosen to provide optimum dexterity for the pilot, which is not available in a full pressure suit, while protecting the pilot at altitudes up to 18,288 meters, during a cabin decompression, and subsequent aircraft descent. During cabin decompressions in the F-104 and F-15, cabin pressure altitude was measured at various aircraft angles of attack, Mach numbers, and altitudes to determine the effect of the aerodynamic slipstream on the cabin altitude.

  6. Fuel conservation merits of advanced turboprop transport aircraft

    NASA Technical Reports Server (NTRS)

    Revell, J. D.; Tullis, R. H.

    1977-01-01

    The advantages of a propfan powered aircraft for the commercial air transportation system were assessed by the comparison with an equivalent turbofan transport. Comparisons were accomplished on the basis of fuel utilization and operating costs, as well as aircraft weight and size. Advantages of the propfan aircraft, concerning fuel utilization and operating costs, were accomplished by considering: (1) incorporation of propfan performance and acoustic data; (2) revised mission profiles (longer design range and reduction in; and cruise speed) (3) utilization of alternate and advanced technology engines.

  7. A methodology for designing aircraft to low sonic boom constraints

    NASA Technical Reports Server (NTRS)

    Mack, Robert J.; Needleman, Kathy E.

    1991-01-01

    A method for designing conceptual supersonic cruise aircraft to meet low sonic boom requirements is outlined and described. The aircraft design is guided through a systematic evolution from initial three view drawing to a final numerical model description, while the designer using the method controls the integration of low sonic boom, high supersonic aerodynamic efficiency, adequate low speed handling, and reasonable structure and materials technologies. Some experience in preliminary aircraft design and in the use of various analytical and numerical codes is required for integrating the volume and lift requirements throughout the design process.

  8. Dynamics of aircraft exhaust plumes in the jet-regime

    NASA Astrophysics Data System (ADS)

    Kärcher, B.; Fabian, P.

    1994-10-01

    A computational model describing the two-dimensional, turbulent mixing of a single jet of exhaust gas from aircraft engines with the ambient atmosphere is presented. The underlying assumptions and governing equations are examined and supplemented by a discussion of analytical solutions. As an application, the jet dynamics of a B747-400 aircraft engine in cruise and its dependence on key parameters is investigated in detail. The computer code for this dynamical model is computationally fast and can easily be coupled to complex chemical and microphysical models in order to perform comprehensive studies of atmospheric effects from aircraft exhaust emissions in the jet regime.

  9. Gaseous exhaust emissions from a JT8D-109 turbofan engine at simulated cruise flight conditions

    NASA Technical Reports Server (NTRS)

    Diehl, L. A.; Holdeman, J. D.

    1975-01-01

    Gaseous emissions from a JT8D-109 turbofan engine were measured in an altitude facility at four simulated cruise flight conditions: Mach 0.8 at altitudes of 9.1, 10, 7, and 12.2 km and Mach 0.9 at 10.7 km. Engine inlet air temperature was held constant at 283 K for all tests. Emissions measurements were made at nominally 6 cm intervals across the horizontal diameter of the engine exhaust nozzle with a single-point traversing gas sample probe. Measured emissions of decreased with increasing altitude from an emission index of 10.4 to one of 8.3, while carbon monoxide increased with increasing altitude from an emission index of 1.6 to one of 4.4. Unburned hydrocarbon emissions were essentially negligible for all flight conditions. Since the engine inlet air temperatures were not correctly simulated, the NOx emission indices were corrected to true altitude conditions by using correlating parameters for changes in combustor inlet temperature, pressure, and temperature rise. The correction was small at the lowest altitude. At the 10.7 and 12.2 km, Mach 0.8 test conditions the correction decreased the measured values by 1 emission index.

  10. Evaluating the Effectiveness of Infrared Signature Suppression of Aircraft Skin

    NASA Astrophysics Data System (ADS)

    Lu, Jian Wei; Wang, Qiang; Kwon, Oh Joon

    During typical supersonic cruising, the temperature of the aircraft skin rises above 300 K due to aerodynamic heating. In this situation, aircraft-skin infrared (IR) suppression, used to minimize the radiation contrast from the background is a crucial survival technology. In the present study, a technique to evaluate the effectiveness of IR suppression of aircraft skin is proposed. For this purpose, a synthetic procedure based on numerical simulations has been developed. In this procedure, the thermal status of aircraft skin is obtained using a computational fluid dynamics (CFD) method for complex aircraft geometries. An IR signature model is proposed using a reverse Monte Carlo (RMC) technique. The detection range and the IR contrast are adopted as the performance indicators for the evaluation of the aircraft IR suppression. The influence of these factors related to the aircraft-skin radiation, such as aircraft-skin emissivity, surface temperature distribution and flight speed, on the IR contrast and the detection range is also studied. As a test case, the effectiveness of various IR suppression schemes was analyzed for a typical air combat situation. Then, the method is applied to clarify the contribution of each aircraft component to the IR suppression of the overall IR radiation. The results show that aircraft-skin temperature control and emissivity control are effective means to reduce the IR radiation and to achieve lower detection. The results can be used as a practical guide for designing future stealth aircraft.

  11. TRADEOFFs in climate effects through aircraft routing: forcing due to radiatively active gases

    NASA Astrophysics Data System (ADS)

    Stordal, F.; Gauss, M.; Myhre, G.; Mancini, E.; Hauglustaine, D. A.; Köhler, M. O.; Berntsen, T.; . G Stordal, E. J.; Iachetti, D.; Pitari, G.; Isaksen, I. S. A.

    2006-10-01

    We have estimated impacts of alternative aviation routings on the radiative forcing. Changes in ozone and OH have been estimated in four Chemistry Transport Models (CTMs) participating in the TRADEOFF project. Radiative forcings due to ozone and methane have been calculated accordingly. In addition radiative forcing due to CO2 is estimated based on fuel consumption. Three alternative routing cases are investigated; one scenario assuming additional polar routes and two scenarios assuming aircraft cruising at higher (+2000 ft) and lower (-6000 ft) altitudes. Results from the base case in year 2000 are included as a reference. Taking first a steady state backward looking approach, adding the changes in the forcing from ozone, CO2 and CH4, the ranges of the models used in this work are -0.8 to -1.8 and 0.3 to 0.6 m Wm-2 in the lower (-6000 ft) and higher (+2000 ft) cruise levels, respectively. In relative terms, flying 6000ft lower reduces the forcing by 5-10% compared to the current flight pattern, whereas flying higher, while saving fuel and presumably flying time, increases the forcing by about 2-3%. Taking next a forward looking approach we have estimated the integrated forcing (m Wm-2 yr) over 20 and 100 years time horizons. The relative contributions from each of the three climate gases are somewhat different from the backward looking approach. The differences are moderate adopting 100 year time horizon, whereas under the 20 year horizon CO2 naturally becomes less important relatively. Thus the forcing agents impact climate differently on various time scales. Also, we have found significant differences between the models for ozone and methane. We conclude that we are not yet at a point where we can include non-CO2 effects of aviation in emission trading schemes. Nevertheless, the rerouting cases that have been studied here yield relatively small changes in the radiative forcing due to the radiatively active gases.

  12. GaAs/Ge Solar Powered Aircraft

    NASA Technical Reports Server (NTRS)

    Colozza, Anthony J.; Scheiman, David A.; Brinker, David J.

    1998-01-01

    Unmanned Aerial Vehicles (UAV) are being proposed for many applications for many applications including surveillance, mapping and atmospheric studies. These applications require a lightweight, low speed, medium to long duration aircraft. Due to the weight, speed, and altitude constraints imposed on such an aircraft, solar array generated electric power can be a viable alternative to air-breathing engines for certain missions. Development of such an aircraft is currently being funded under the Environmental Research Aircraft and Sensor Technology (ERAST) program. NASA Lewis Research Center (LeRC) has built a Solar Electric Airplane to demonstrate UAV technology. This aircraft utilizes high efficiency Applied Solar Energy Corporation (ASEC) GaAs/Ge space solar cells. The cells have been provided by the Air Force through the ManTech Office.

  13. Variable pitch fan system for NASA/Navy research and technology aircraft

    NASA Technical Reports Server (NTRS)

    Ryan, W. P.; Black, D. M.; Yates, A. F.

    1977-01-01

    Preliminary design of a shaft driven, variable-pitch lift fan and lift-cruise fan was conducted for a V/STOL Research and Technology Aircraft. The lift fan and lift-cruise fan employed a common rotor of 157.5 cm diameter, 1.18 pressure ratio variable-pitch fan designed to operate at a rotor-tip speed of 284 mps. Fan performance maps were prepared and detailed aerodynamic characteristics were established. Cost/weight/risk trade studies were conducted for the blade and fan case. Structural sizing was conducted for major components and weights determined for both the lift and lift-cruise fans.

  14. Two YF-12 aircraft in flight

    NASA Technical Reports Server (NTRS)

    1975-01-01

    of the program, with 146 flights between 11 December 1969 and 7 November 1979. The second YF-12A, 936, made 62 flights. It was lost in a non-fatal crash on 24 June 1971. It was replaced by the so-called YF-12C (SR-71A 61-7951, modified with YF-12A inlets and engines and a bogus tail number 06937). The Lockheed A-12 family, known as the Blackbirds, were designed by Clarence 'Kelly' Johnson. They were constructed mostly of titanium to withstand aerodynamic heating. Fueled by JP-7, the Blackbirds were capable of cruising at Mach 3.2 and attaining altitudes in excess of 80,000 feet. The first version, a CIA reconnaissance aircraft that first flew in April 1962 was called the A-12. An interceptor version was developed in 1963 under the designation YF-12A. A USAF reconnaissance variant, called the SR-71, was first flown in 1964. The A-12 and SR-71 designs included leading and trailing edges made of high-temperature fiberglass-asbestos laminates. The NASA YF-12 research program was ambitious; the aircraft flew an average of once a week unless down for extended maintenance or modification. Program expenses averaged $3.1 million per year just to run the flight tests. NASA crews for the YF-12 included pilots Fitzhugh Fulton and Donald Mallick, anf flight test engineers Victor Horton and Ray Young. Other NASA test pilots checked out in the YF-12A included John Manke, William Dana, Gary Krier, Einar Enevoldson, Tom McMurtry, Steve Ishmael, and Michael Swann. The YF-12C was only flown by Fulton, Mallick, Horton, and Ray.

  15. Developmental Continuity? Crawling, Cruising, and Walking

    PubMed Central

    Adolph, Karen E.; Berger, Sarah E.; Leo, Andrew J.

    2010-01-01

    This research examined developmental continuity between “cruising” (moving sideways holding onto furniture for support) and walking. Because cruising and walking involve locomotion in an upright posture, researchers have assumed that cruising is functionally related to walking. Study 1 showed that most infants crawl and cruise concurrently prior to walking, amassing several weeks of experience with both skills. Study 2 showed that cruising infants perceive affordances for locomotion over an adjustable gap in a handrail used for manual support, but despite weeks of cruising experience, cruisers are largely oblivious to the dangers of gaps in the floor beneath their feet. Study 3 replicated the floor-gap findings for infants taking their first independent walking steps, and showed that new walkers also misperceive affordances for locomoting between gaps in a handrail. The findings suggest that weeks of cruising do not teach infants a basic fact about walking: the necessity of a floor to support their body. Moreover, this research demonstrated that developmental milestones that are temporally contiguous and structurally similar might have important functional discontinuities. PMID:21399716

  16. Identification and verification of frequency-domain models for XV-15 tilt-rotor aircraft dynamics

    NASA Technical Reports Server (NTRS)

    Tischler, M. B.; Leung, J. G. M.; Dugan, D. C.

    1984-01-01

    Frequency-domain methods are used to extract the open-loop dynamics of the XV-15 tilt-rotor aircraft from flight test data for the cruise condition (V = 170 knots). The frequency responses are numerically fitted with transfer-function forms to identify equivalent model characteristics. The associated handling quality parameters meet or exceed Level 2, Category A, requirements for fixed-wing military aircraft. Step response matching is used to verify the time-domain fidelity of the transfer-function models for the cruise and hover flight conditions. The transient responses of the model and aircraft are in close agreement in all cases, except for the normal acceleration response to elevator deflection in cruise. This discrepancy is probably due to the unmodeled rotor rpm dynamics. The utility of the frequency-domain approach for dynamics identification and analysis is clearly demonstrated.

  17. Aeroelastic Analysis of Aircraft: Wing and Wing/Fuselage Configurations

    NASA Technical Reports Server (NTRS)

    Chen, H. H.; Chang, K. C.; Tzong, T.; Cebeci, T.

    1997-01-01

    A previously developed interface method for coupling aerodynamics and structures is used to evaluate the aeroelastic effects for an advanced transport wing at cruise and under-cruise conditions. The calculated results are compared with wind tunnel test data. The capability of the interface method is also investigated for an MD-90 wing/fuselage configuration. In addition, an aircraft trim analysis is described and applied to wing configurations. The accuracy of turbulence models based on the algebraic eddy viscosity formulation of Cebeci and Smith is studied for airfoil flows at low Mach numbers by using methods based on the solutions of the boundary-layer and Navier-Stokes equations.

  18. Ear - blocked at high altitudes

    MedlinePlus

    ... ears; Flying and blocked ears; Eustachian tube dysfunction - high altitude ... the middle ear and the back of the nose and upper throat. ... down from high altitudes. Chewing gum the entire time you are ...

  19. Autonomous intelligent cruise control system

    NASA Astrophysics Data System (ADS)

    Baret, Marc; Bomer, Thierry T.; Calesse, C.; Dudych, L.; L'Hoist, P.

    1995-01-01

    Autonomous intelligent cruise control (AICC) systems are not only controlling vehicles' speed but acting on the throttle and eventually on the brakes they could automatically maintain the relative speed and distance between two vehicles in the same lane. And more than just for comfort it appears that these new systems should improve the safety on highways. By applying a technique issued from the space research carried out by MATRA, a sensor based on a charge coupled device (CCD) was designed to acquire the reflected light on standard-mounted car reflectors of pulsed laser diodes emission. The CCD is working in a unique mode called flash during transfer (FDT) which allows identification of target patterns in severe optical environments. It provides high accuracy for distance and angular position of targets. The absence of moving mechanical parts ensures high reliability for this sensor. The large field of view and the high measurement rate give a global situation assessment and a short reaction time. Then, tracking and filtering algorithms have been developed in order to select the target, on which the equipped vehicle determines its safety distance and speed, taking into account its maneuvering and the behaviors of other vehicles.

  20. Solar altitude frequency tables

    NASA Astrophysics Data System (ADS)

    McDowell, R. S.

    1983-02-01

    A table is presented that gives the total number of hours in the year during which the sun's altitude exceeds a given value h, for h = 0-88 deg in 2 deg increments and for latitudes from the Equator to the North Pole in 2 deg increments. The table also gives corrections to these figures for the effect of atmospheric refraction and the total hours of daylight at each latitude.

  1. SAGE II aerosol validation - Selected altitude measurements, including particle micromeasurements

    NASA Technical Reports Server (NTRS)

    Oberbeck, Verne R.; Russell, Philip B.; Pueschel, Rudolf F.; Snetsinger, Kenneth G.; Ferry, Guy V.; Livingston, John M.; Rosen, James N.; Osborn, Mary T.; Kritz, Mark A.

    1989-01-01

    The validity of particulate extinction coefficients derived from limb path solar radiance measurements obtained during the Stratospheric Aerosol and Gas Experiment (SAGE) II is tested. The SAGE II measurements are compared with correlative aerosol measurements taken during January 1985, August 1985, and July 1986 with impactors, laser spectrometers, and filter samplers on a U-2 aircraft, an upward pointing lidar on a P-3 aircraft, and balloon-borne optical particle counters. The data for July 29, 1986 are discussed in detail. The aerosol measurements taken on this day at an altitude of 20.5 km produce particulate extinction values which validate the SAGE II values for similar wavelengths.

  2. Analysis of wind tunnel test results for a 9.39-per cent scale model of a VSTOL fighter/attack aircraft. Volume 1: Study overview. [aerodynamic characteristics

    NASA Technical Reports Server (NTRS)

    Lummus, J. R.; Joyce, G. T.; Omalley, C. D.

    1980-01-01

    The ability of current methodologies to accurately predict the aerodynamic characteristics identified as uncertainties was evaluated for two aircraft configurations. The two wind tunnel models studied horizontal altitude takeoff and landing V/STOL fighter aircraft derivatives.

  3. O-THREE: A high altitude, remotely piloted vehicle

    NASA Technical Reports Server (NTRS)

    1990-01-01

    A conceptual design for a remotely piloted vehicle to be used for ozone research above 80,000 feet was developed as part of the one-semester NASA/Universities Space Research Association Aerospace Design course at Case Western Reserve University in Fall 1989. The O-Three design team chose as its mission requirements a cruise altitude of 100,000 ft, a range of 1000 n.m., an endurance of 6 hrs., a 1000 lb payload, and a power to payload of 2 kW. These are based on the Boeing requirements for an ozone research vehicle. In addition, the vehicle should not be restricted to operation over any particular global location. Efforts were made to minimize atmospheric contamination that might increase the rate of ozone depletion and cause discrepancies in data accuracy. Design was not limited to today's level of technology. The design team was divided into four groups: aerodynamics, structures, stability, and control. The specifications and performance estimates for cruise at altitude are given in tabular form.

  4. In-flight adaptive performance optimization (APO) control using redundant control effectors of an aircraft

    NASA Technical Reports Server (NTRS)

    Gilyard, Glenn B. (Inventor)

    1999-01-01

    Practical application of real-time (or near real-time) Adaptive Performance Optimization (APO) is provided for a transport aircraft in steady climb, cruise, turn descent or other flight conditions based on measurements and calculations of incremental drag from a forced response maneuver of one or more redundant control effectors defined as those in excess of the minimum set of control effectors required to maintain the steady flight condition in progress. The method comprises the steps of applying excitation in a raised-cosine form over an interval of from 100 to 500 sec. at the rate of 1 to 10 sets/sec of excitation, and data for analysis is gathered in sets of measurements made during the excitation to calculate lift and drag coefficients C.sub.L and C.sub.D from two equations, one for each coefficient. A third equation is an expansion of C.sub.D as a function of parasitic drag, induced drag, Mach and altitude drag effects, and control effector drag, and assumes a quadratic variation of drag with positions .delta..sub.i of redundant control effectors i=1 to n. The third equation is then solved for .delta..sub.iopt the optimal position of redundant control effector i, which is then used to set the control effector i for optimum performance during the remainder of said steady flight or until monitored flight conditions change by some predetermined amount as determined automatically or a predetermined minimum flight time has elapsed.

  5. STOL Aircraft

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Michael E. Fisher, President of AeroVisions International, has introduced the Culex light twin engine aircraft which offers economy of operation of a single engine plane, the ability to fly well on one engine, plus the capability of flying from short, unimproved fields of takeoff and landing distances less than 35 feet. Key element of design is an airfoil developed by Langley. Culex was originally intended to be factory built aircraft for special utility markets. However, it is now offered as a build-it-yourself kit plane.

  6. Improving the efficiency of smaller transport aircraft

    NASA Technical Reports Server (NTRS)

    Jones, R. T.

    1984-01-01

    The efficiency of small transport aircraft can be improved through the adaptation of high altitude turbine engines, and that flights reaching altitudes of 40,000, 60,000, and 80,000 feet can show savings in both flight time and fuel consumption even for trips as short as 500 miles. Studies for a 40-passenger high altitude transport are presented. An increase in structural weight due to larger wing areas, larger engines, and larger engine frontal areas would make the ratio of gross weight to payload look less favorable, but the efficiency of the plane in passenger miles per gallon would increase with altitude. It is also suggested that supercritical airfoils be designed to achieve higher lift coefficients and speeds. A reduction of reduced drag through the use of horizontal or vertical wing tip extensions is also discussed.

  7. Uav Borne Low Altitude Photogrammetry System

    NASA Astrophysics Data System (ADS)

    Lin, Z.; Su, G.; Xie, F.

    2012-07-01

    In this paper,the aforementioned three major aspects related to the Unmanned Aerial Vehicles (UAV) system for low altitude aerial photogrammetry, i.e., flying platform, imaging sensor system and data processing software, are discussed. First of all, according to the technical requirements about the least cruising speed, the shortest taxiing distance, the level of the flight control and the performance of turbulence flying, the performance and suitability of the available UAV platforms (e.g., fixed wing UAVs, the unmanned helicopters and the unmanned airships) are compared and analyzed. Secondly, considering the restrictions on the load weight of a platform and the resolution pertaining to a sensor, together with the exposure equation and the theory of optical information, the principles of designing self-calibration and self-stabilizing combined wide-angle digital cameras (e.g., double-combined camera and four-combined camera) are placed more emphasis on. Finally, a software named MAP-AT, considering the specialty of UAV platforms and sensors, is developed and introduced. Apart from the common functions of aerial image processing, MAP-AT puts more effort on automatic extraction, automatic checking and artificial aided adding of the tie points for images with big tilt angles. Based on the recommended process for low altitude photogrammetry with UAVs in this paper, more than ten aerial photogrammetry missions have been accomplished, the accuracies of Aerial Triangulation, Digital orthophotos(DOM)and Digital Line Graphs(DLG) of which meet the standard requirement of 1:2000, 1:1000 and 1:500 mapping.

  8. Studies of advanced transport aircraft

    NASA Technical Reports Server (NTRS)

    Nagel, A. L.

    1978-01-01

    Concepts for possible future airplanes are studied that include all-wing distributed-load airplanes, multi-body airplanes, a long-range laminar flow control airplane, a nuclear powered airplane designed for towing conventionally powered airplanes during long range cruise, and an aerial transportation system comprised of continuously flying liner airplanes operated in conjunction with short range feeder airplanes. Results indicate that each of these concepts has the potential for important performance and economic advantages, provided certain suggested research tasks are successfully accomplished. Indicated research areas include all-wing airplane aerodynamics, aerial rendezvous, nuclear aircraft engines, air-cushion landing systems, and laminar flow control, as well as the basic research discipline areas of aerodynamics, structures, propulsion, avionics, and computer applications.

  9. Studies of advanced transport aircraft

    NASA Technical Reports Server (NTRS)

    Nagel, A. L.

    1978-01-01

    Several concepts for possible future airplanes, including all-wing distributed-load airplanes, multibody airplanes, a long-range laminar flow control airplane, a nuclear-powered airplane designed for towing conventionally powered airplanes during long-range cruise, and an aerial transportation system comprised of continuously flying liner airplanes operated in conjunction with short-range feeder airplanes are described. Performance and economic advantages of each concept are indicated. Further research is recommended in the following areas: all-wing airplane aerodynamics, aerial rendezvous, nuclear aircraft engines, air-cushion landing systems, and laminar flow control, as well as the basic research discipline areas of aerodynamics, structures, propulsion, avionics, and computer applications.

  10. Robust predictive cruise control for commercial vehicles

    NASA Astrophysics Data System (ADS)

    Junell, Jaime; Tumer, Kagan

    2013-10-01

    In this paper we explore learning-based predictive cruise control and the impact of this technology on increasing fuel efficiency for commercial trucks. Traditional cruise control is wasteful when maintaining a constant velocity over rolling hills. Predictive cruise control (PCC) is able to look ahead at future road conditions and solve for a cost-effective course of action. Model- based controllers have been implemented in this field but cannot accommodate many complexities of a dynamic environment which includes changing road and vehicle conditions. In this work, we focus on incorporating a learner into an already successful model- based predictive cruise controller in order to improve its performance. We explore back propagating neural networks to predict future errors then take actions to prevent said errors from occurring. The results show that this approach improves the model based PCC by up to 60% under certain conditions. In addition, we explore the benefits of classifier ensembles to further improve the gains due to intelligent cruise control.

  11. Aircraft cybernetics

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The use of computers for aircraft control, flight simulation, and inertial navigation is explored. The man-machine relation problem in aviation is addressed. Simple and self-adapting autopilots are described and the assets and liabilities of digital navigation techniques are assessed.

  12. Satellite altitude determination uncertainties

    NASA Technical Reports Server (NTRS)

    Siry, J. W.

    1972-01-01

    Satellite altitude determination uncertainties will be discussed from the standpoint of the GEOS-C satellite, from the longer range viewpoint afforded by the Geopause concept. Data are focused on methods for short-arc tracking which are essentially geometric in nature. One uses combinations of lasers and collocated cameras. The other method relies only on lasers, using three or more to obtain the position fix. Two typical locales are looked at, the Caribbean area, and a region associated with tracking sites at Goddard, Bermuda and Canada which encompasses a portion of the Gulf Stream in which meanders develop.

  13. DC-9/JT8D refan, Phase 1. [technical and economic feasibility of retrofitting DC-9 aircraft with refan engine to achieve desired acoustic levels

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Analyses and design studies were conducted on the technical and economic feasibility of installing the JT8D-109 refan engine on the DC-9 aircraft. Design criteria included minimum change to the airframe to achieve desired acoustic levels. Several acoustic configurations were studied with two selected for detailed investigations. The minimum selected acoustic treatment configuration results in an estimated aircraft weight increase of 608 kg (1,342 lb) and the maximum selected acoustic treatment configuration results in an estimated aircraft weight increase of 809 kg (1,784 lb). The range loss for the minimum and maximum selected acoustic treatment configurations based on long range cruise at 10 668 m (35,000 ft) altitude with a typical payload of 6 804 kg (15,000 lb) amounts to 54 km (86 n. mi.) respectively. Estimated reduction in EPNL's for minimum selected treatment show 8 EPNdB at approach, 12 EPNdB for takeoff with power cutback, 15 EPNdB for takeoff without power cutback and 12 EPNdB for sideline using FAR Part 36. Little difference was estimated in EPNL between minimum and maximum treatments due to reduced performance of maximum treatment. No major technical problems were encountered in the study. The refan concept for the DC-9 appears technically feasible and economically viable at approximately $1,000,000 per airplane. An additional study of the installation of JT3D-9 refan engine on the DC-8-50/61 and DC-8-62/63 aircraft is included. Three levels of acoustic treatment were suggested for DC-8-50/61 and two levels for DC-8-62/63. Results indicate the DC-8 technically can be retrofitted with refan engines for approximately $2,500,000 per airplane.

  14. Radiation environment at aviation altitudes and in space.

    PubMed

    Sihver, L; Ploc, O; Puchalska, M; Ambrožová, I; Kubančák, J; Kyselová, D; Shurshakov, V

    2015-06-01

    On the Earth, protection from cosmic radiation is provided by the magnetosphere and the atmosphere, but the radiation exposure increases with increasing altitude. Aircrew and especially space crew members are therefore exposed to an increased level of ionising radiation. Dosimetry onboard aircraft and spacecraft is however complicated by the presence of neutrons and high linear energy transfer particles. Film and thermoluminescent dosimeters, routinely used for ground-based personnel, do not reliably cover the range of particle types and energies found in cosmic radiation. Further, the radiation field onboard aircraft and spacecraft is not constant; its intensity and composition change mainly with altitude, geomagnetic position and solar activity (marginally also with the aircraft/spacecraft type, number of people aboard, amount of fuel etc.). The European Union Council directive 96/29/Euroatom of 1996 specifies that aircrews that could receive dose of >1 mSv y(-1) must be evaluated. The dose evaluation is routinely performed by computer programs, e.g. CARI-6, EPCARD, SIEVERT, PCAire, JISCARD and AVIDOS. Such calculations should however be carefully verified and validated. Measurements of the radiation field in aircraft are thus of a great importance. A promising option is the long-term deployment of active detectors, e.g. silicon spectrometer Liulin, TEPC Hawk and pixel detector Timepix. Outside the Earth's protective atmosphere and magnetosphere, the environment is much harsher than at aviation altitudes. In addition to the exposure to high energetic ionising cosmic radiation, there are microgravity, lack of atmosphere, psychological and psychosocial components etc. The milieu is therefore very unfriendly for any living organism. In case of solar flares, exposures of spacecraft crews may even be lethal. In this paper, long-term measurements of the radiation environment onboard Czech aircraft performed with the Liulin since 2001, as well as measurements and

  15. Meteorological Support of the Helios World Record High Altitude Flight to 96,863 Feet

    NASA Technical Reports Server (NTRS)

    Teets, Edward H., Jr.; Donohue, Casey J.; Wright, Patrick T.; DelFrate, John (Technical Monitor)

    2002-01-01

    In characterizing and understanding atmospheric behavior when conducting high altitude solar powered flight research flight planning engineers and meteorologists are able to maximize the use of available airspace and coordinate aircraft maneuvers with pilots to make the best use of changing sun elevation angles. The result of this cooperative research produced a new world record for absolute altitude of a non-rocket powered aircraft of 96,863 ft (29,531.4 m). The Helios prototype solar powered aircraft, with a wingspan of 247 ft (75.0m), reached this altitude on August 13, 2001, off the coast of Kauai, Hawaii. The analyses of the weather characterization, the planning efforts, and the weather-of-the-day summary that led to at record flight are described in this paper.

  16. Stratospheric aircraft: Impact on the stratosphere?

    SciTech Connect

    Johnston, H.

    1992-02-01

    The steady-state distribution of natural stratospheric ozone is primarily maintained through production by ultraviolet photolysis of molecular oxygen, destruction by a catalytic cycle involving nitrogen oxides (NO{sub x}), and relocation by air motions within the stratosphere. Nitrogen oxides from the exhausts of a commercially viable fleet of supersonic transports would exceed the natural source of stratospheric nitrogen oxides if the t should be equipped with 1990 technology jet engines. This model-free comparison between a vital natural global ingredient and a proposed new industrial product shows that building a large fleet of passenger stratospheric aircraft poses a significant global problem. NASA and aircraft industries have recognized this problem and are studying the redesign of jet aircraft engines in order to reduce the nitrogen oxides emissions. In 1989 atmospheric models identified two other paths by which the ozone destroying effects of stratospheric aircraft might be reduced or eliminated: (1) Use relatively low supersonic Mach numbers and flight altitudes. For a given rate of nitrogen oxides injection into the stratosphere, the calculated reduction of total ozone is a strong function of altitude, and flight altitudes well below 20 kilometers give relatively low calculated ozone reductions. (2) Include heterogeneous chemistry in the two-dimensional model calculations. Necessary conditions for answering the question on the title above are to improve the quality of our understanding of the lower stratosphere and to broaden our knowledge of hetergeneous stratospheric chemistry. This article reviews recently proposed new mechanisms for heterogeneous reactions on the global stratospheric sulfate aerosols.

  17. Stratospheric aircraft: Impact on the stratosphere

    SciTech Connect

    Johnston, H.

    1992-02-01

    The steady-state distribution of natural stratospheric ozone is primarily maintained through production by ultraviolet photolysis of molecular oxygen, destruction by a catalytic cycle involving nitrogen oxides (NO{sub x}), and relocation by air motions within the stratosphere. Nitrogen oxides from the exhausts of a commercially viable fleet of supersonic transports would exceed the natural source of stratospheric nitrogen oxides if the t should be equipped with 1990 technology jet engines. This model-free comparison between a vital natural global ingredient and a proposed new industrial product shows that building a large fleet of passenger stratospheric aircraft poses a significant global problem. NASA and aircraft industries have recognized this problem and are studying the redesign of jet aircraft engines in order to reduce the nitrogen oxides emissions. In 1989 atmospheric models identified two other paths by which the ozone destroying effects of stratospheric aircraft might be reduced or eliminated: (1) Use relatively low supersonic Mach numbers and flight altitudes. For a given rate of nitrogen oxides injection into the stratosphere, the calculated reduction of total ozone is a strong function of altitude, and flight altitudes well below 20 kilometers give relatively low calculated ozone reductions. (2) Include heterogeneous chemistry in the two-dimensional model calculations. Necessary conditions for answering the question on the title above are to improve the quality of our understanding of the lower stratosphere and to broaden our knowledge of hetergeneous stratospheric chemistry. This article reviews recently proposed new mechanisms for heterogeneous reactions on the global stratospheric sulfate aerosols.

  18. Emission of atmospheric pollutants out of Africa - Analysis of CARIBIC aircraft air samples

    NASA Astrophysics Data System (ADS)

    Thorenz, Ute R.; Baker, Angela K.; Schuck, Tanja; van Velthoven, Peter F. J.; Ziereis, Helmut; Brenninkmeijer, Carl A. M.

    2014-05-01

    Africa is the single largest continental source of biomass burning (BB) emissions. The burning African savannas and tropical forests are a source for a wide range of chemical species, which are important for global atmospheric chemistry, especially for the pristine Southern Hemisphere. Emitted compounds include carbon monoxide (CO), nitrogen oxides (NOx), hydrocarbons, oxygenated hydrocarbons and particles. Deep convection over Central Africa transports boundary layer emissions to the free troposphere making aircraft-based observations useful for investigation of surface emissions and examination of transport and chemistry processes over Africa The CARIBIC project (Civil Aircraft for the Regular Investigation of the Atmosphere Based on an Instrument Container, www.caribic-atmosphere.com part of IAGOS www.iagos.org) is a long term atmospheric measurement program using an instrument container deployed aboard a Lufthansa Airbus A340-600 for a monthly sequence of long-distance passenger flights. Besides the online measurements mixing ratios of greenhouse gases and a suite of C2-C8 non methane hydrocarbons (NMHCs) are measured from flask samples collected at cruise altitude. During northern hemispheric winter 2010/2011 CARIBIC flights took place from Frankfurt to Cape Town and Johannesburg in South Africa. Several BB tracers like methane, CO and various NMHCs were found to be elevated over tropical Africa. Using tracer-CO- and tracer-NOy-correlations emissions were characterized. The NMHC-CO correlations show monthly changing slopes, indicating a change in burned biomass, major fire stage, source region and/or other factors influencing NMHC emissions. To expand our analysis of emission sources a source region data filter was used, based on backward trajectories calculated along the flight tracks. Taking all CARIBIC samples into account having backward trajectories to the African boundary layer the dataset was enlarged from 77 to 168 samples. For both datasets tracer

  19. Baseline monitoring using aircraft laser ranging. [spaceborne laser simulation and aircraft laser tracking

    NASA Technical Reports Server (NTRS)

    Krabill, W. B.; Hoge, F. E.; Martin, C. F.

    1982-01-01

    The use of aircraft laser ranging for the determination of baselines between ground based retroreflectors was investigated via simulations and with tests at Wallops Flight Center using the Airborne Oceanographic Lidar (AOL) on the Wallops C-54 aircraft ranging to a reflector array deployed around one of the Wallops runways. The aircraft altitude and reflector spacing were chosen on the basis of scaled down modeling of spacecraft tracking from 1000 km of reflectors separated by some 52 km, or of high altitude (10 km) aircraft tracking of reflectors separated by some 500 m. Aircraft altitudes flown for different passes across the runway reflector array varied from 800 m to 1350 m, with 32 reflectors deployed over an approximtely 300 m x 500 m ground pattern. The AOL transmitted 400 pulses/sec with a scan rate of 5/sec in a near circular pattern, so that the majority of the pulses were reflected by the runway surface or its environs rather than by retroreflectors. The return pulse characteristics clearly showed the high reflectivity of portions of the runway, with several returns indistinguishable in amplitude from reflector returns. For each pass across the reflector field, typically six to ten reflector hits were identified, consistent with that predicted by simulations and the observed transmitted elliptical pulse size.

  20. A fuselage/tank structure study for actively cooled hypersonic cruise vehicles: Active cooling system analysis

    NASA Technical Reports Server (NTRS)

    Stone, J. E.

    1975-01-01

    The effects of fuselage cross section and structural arrangement on the performance of actively cooled hypersonic cruise vehicles are investigated. An active cooling system which maintains the aircraft's entire surface area at temperatures below 394 K at Mach 6 is developed along with a hydrogen fuel tankage thermal protection system. Thermodynamic characteristics of the actively cooled thermal protection systems established are summarized. Design heat loads and coolant flowrate requirements are defined for each major structural section and for the total system. Cooling system weights are summarized at the major component level. Conclusions and recommendations are included.