Science.gov

Sample records for aircraft design requirements

  1. Aircraft Design

    NASA Technical Reports Server (NTRS)

    Bowers, Albion H. (Inventor); Uden, Edward (Inventor)

    2016-01-01

    The present invention is an aircraft wing design that creates a bell shaped span load, which results in a negative induced drag (induced thrust) on the outer portion of the wing; such a design obviates the need for rudder control of an aircraft.

  2. System design requirements for advanced rotary-wing agricultural aircraft

    NASA Technical Reports Server (NTRS)

    Lemont, H. E.

    1979-01-01

    Helicopter aerial dispersal systems were studied to ascertain constraints to the system, the effects of removal of limitations (technical and FAA regulations), and subsystem improvements. Productivity indices for the aircraft and swath effects were examined. Typical missions were formulated through conversations with operators, and differing gross weight aircraft were synthesized to perform these missions. Economic analysis of missions and aircraft indicated a general correlation of small aircraft (3000 lb gross weight) suitability for small fields (25 acres), and low dispersion rates (less than 32 lb/acre), with larger aircraft (12,000 lb gross weight) being more favorable for bigger fields (200 acres) and heavier dispersal rates (100 lb/acre). Operator problems, possible aircraft and system improvements, and selected removal of operating limitations were reviewed into recommendations for future NASA research items.

  3. Synthesis from Design Requirements of a Hybrid System for Transport Aircraft Longitudinal Control. Volume 2

    NASA Technical Reports Server (NTRS)

    Hynes, Charles S.; Hardy, Gordon H.; Sherry, Lance

    2007-01-01

    Volume I of this report presents a new method for synthesizing hybrid systems directly from desi gn requirements, and applies the method to design of a hybrid system for longitudinal control of transport aircraft. The resulting system satisfies general requirement for safety and effectiveness specified a priori, enabling formal validation to be achieved. Volume II contains seven appendices intended to make the report accessible to readers with backgrounds in human factors, flight dynamics and control, and formal logic. Major design goals are (1) system design integrity based on proof of correctness at the design level, (2) significant simplification and cost reduction in system development and certification, and (3) improved operational efficiency, with significant alleviation of human-factors problems encountered by pilots in current transport aircraft. This report provides for the first time a firm technical basis for criteria governing design and certification of avionic systems for transport aircraft. It should be of primary interest to designers of next-generation avionic systems.

  4. Hypersonic aircraft design

    NASA Technical Reports Server (NTRS)

    Alkamhawi, Hani; Greiner, Tom; Fuerst, Gerry; Luich, Shawn; Stonebraker, Bob; Wray, Todd

    1990-01-01

    A hypersonic aircraft is designed which uses scramjets to accelerate from Mach 6 to Mach 10 and sustain that speed for two minutes. Different propulsion systems were considered and it was decided that the aircraft would use one full scale turbofan-ramjet. Two solid rocket boosters were added to save fuel and help the aircraft pass through the transonic region. After considering aerodynamics, aircraft design, stability and control, cooling systems, mission profile, and landing systems, a conventional aircraft configuration was chosen over that of a waverider. The conventional design was chosen due to its landing characteristics and the relative expense compared to the waverider. Fuel requirements and the integration of the engine systems and their inlets are also taken into consideration in the final design. A hypersonic aircraft was designed which uses scramjets to accelerate from Mach 6 to Mach 10 and sustain that speed for two minutes. Different propulsion systems were considered and a full scale turbofan-ramjet was chosen. Two solid rocket boosters were added to save fuel and help the aircraft pass through the transonic reqion. After the aerodynamics, aircraft design, stability and control, cooling systems, mission profile, landing systems, and their physical interactions were considered, a conventional aircraft configuration was chosen over that of a waverider. The conventional design was chosen due to its landing characteristics and the relative expense compared to the waverider. Fuel requirements and the integration of the engine systems and their inlets were also considered in the designing process.

  5. Synthesis from Design Requirements of a Hybrid System for Transport Aircraft Longitudinal Control. Volume 1

    NASA Technical Reports Server (NTRS)

    Hynes, Charles S.; Hardy, Gordon H.; Sherry, Lance

    2007-01-01

    Volume I of this report presents a new method for synthesizing hybrid systems directly from design requirements, and applies the method to design of a hybrid system for longitudinal control of transport aircraft. The resulting system satisfies general requirement for safety and effectiveness specified a priori, enabling formal validation to be achieved. Volume II contains seven appendices intended to make the report accessible to readers with backgrounds in human factors, fli ght dynamics and control. and formal logic. Major design goals are (1) system desi g n integrity based on proof of correctness at the design level, (2), significant simplification and cost reduction in system development and certification, and (3) improved operational efficiency, with significant alleviation of human-factors problems encountered by pilots in current transport aircraft. This report provides for the first time a firm technical basis for criteria governing design and certification of avionic systems for transport aircraft. It should be of primary interest to designers of next-generation avionic systems.

  6. Conceptual Design of Low-Boom Aircraft with Flight Trim Requirement

    NASA Technical Reports Server (NTRS)

    Ordaz, Irian; Geiselhart, Karl A.; Fenbert, James W.

    2014-01-01

    A new low-boom target generation approach is presented which allows the introduction of a trim requirement during the early conceptual design of supersonic aircraft. The formulation provides an approximation of the center of pressure for a presumed aircraft configuration with a reversed equivalent area matching a low-boom equivalent area target. The center of pressure is approximated from a surrogate lift distribution that is based on the lift component of the classical equivalent area. The assumptions of the formulation are verified to be sufficiently accurate for a supersonic aircraft of high fineness ratio through three case studies. The first two quantify and verify the accuracy and the sensitivity of the surrogate center of pressure corresponding to shape deformation of lifting components. The third verification case shows the capability of the approach to achieve a trim state while maintaining the low-boom characteristics of a previously untrimmed configuration. Finally, the new low-boom target generation approach is demonstrated through the early conceptual design of a demonstrator concept that is low-boom feasible, trimmed, and stable in cruise.

  7. Aircraft Design Considerations to Meet One Engine Inoperative (OEI) Safety Requirements

    NASA Technical Reports Server (NTRS)

    Scott, Mark W.

    2012-01-01

    Commercial airlines are obligated to operate such that an aircraft can suffer an engine failure at any point in its mission and terminate the flight without an accident. Only minimal aircraft damage is allowable, such as brake replacement due to very heavy application, or an engine inspection and/or possible removal due to use of an emergency rating. Such performance criteria are often referred to as zero exposure, referring to zero accident exposure to an engine failure. The critical mission segment for meeting one engine inoperative (OEI) criteria is takeoff. For a given weight, wind, and ambient condition, fixed wing aircraft require a balanced field length. This is the longer of the distance to take off if an engine fails at a predetermined critical point in the takeoff profile, or the distance to reject the takeoff and brake to a stop. Rotorcraft have requirements for horizontal takeoff procedures that are equivalent to a balanced field length requirements for fixed wing aircraft. Rotorcraft also perform vertical procedures where no runway or heliport distance is available. These were developed primarily for elevated heliports as found on oil rigs or rooftops. They are also used for ground level operations as might be found at heliports at the end of piers or other confined areas.

  8. Advanced hypersonic aircraft design

    NASA Technical Reports Server (NTRS)

    Utzinger, Rob; Blank, Hans-Joachim; Cox, Craig; Harvey, Greg; Mckee, Mike; Molnar, Dave; Nagy, Greg; Petersen, Steve

    1992-01-01

    The objective of this design project is to develop the hypersonic reconnaissance aircraft to replace the SR-71 and to complement existing intelligence gathering devices. The initial design considerations were to create a manned vehicle which could complete its mission with at least two airborne refuelings. The aircraft must travel between Mach 4 and Mach 7 at an altitude of 80,000 feet for a maximum range of 12,000 nautical miles. The vehicle should have an air breathing propulsion system at cruise. With a crew of two, the aircraft should be able to take off and land on a 10,000 foot runway, and the yearly operational costs were not to exceed $300 million. Finally, the aircraft should exhibit stealth characteristics, including a minimized radar cross-section (RCS) and a reduced sonic boom. The technology used in this vehicle should allow for production between the years 1993 and 1995.

  9. An assessment of tailoring of lightning protection design requirements for a composite wing structure on a metallic aircraft

    NASA Technical Reports Server (NTRS)

    Harwood, T. L.

    1991-01-01

    The Navy A-6E aircraft is presently being modified with a new wing which uses graphite/epoxy structures and substructures around a titanium load-bearing structure. The ability of composites to conduct electricity is less than that of aluminum. This is cause for concern when the wing may be required to conduct large lightning currents. The manufacturer attempted to solve lightning protection issues by performing a risk assessment based on a statistical approach which allows relaxation of the wing lightning protection design levels over certain locations of the composite wing. A sensitivity study is presented designed to define the total risk of relaxation of the design levels.

  10. Aircraft digital control design methods

    NASA Technical Reports Server (NTRS)

    Powell, J. D.; Parsons, E.; Tashker, M. G.

    1976-01-01

    Variations in design methods for aircraft digital flight control are evaluated and compared. The methods fall into two categories; those where the design is done in the continuous domain (or s plane) and those where the design is done in the discrete domain (or z plane). Design method fidelity is evaluated by examining closed loop root movement and the frequency response of the discretely controlled continuous aircraft. It was found that all methods provided acceptable performance for sample rates greater than 10 cps except the uncompensated s plane design method which was acceptable above 20 cps. A design procedure based on optimal control methods was proposed that provided the best fidelity at very slow sample rates and required no design iterations for changing sample rates.

  11. U.S. aerospace industry opinion of the effect of computer-aided prediction-design technology on future wind-tunnel test requirements for aircraft development programs

    NASA Technical Reports Server (NTRS)

    Treon, S. L.

    1979-01-01

    A survey of the U.S. aerospace industry in late 1977 suggests that there will be an increasing use of computer-aided prediction-design technology (CPD Tech) in the aircraft development process but that, overall, only a modest reduction in wind-tunnel test requirements from the current level is expected in the period through 1995. Opinions were received from key spokesmen in 23 of the 26 solicited major companies or corporate divisions involved in the design and manufacture of nonrotary wing aircraft. Development programs for nine types of aircraft related to test phases and wind-tunnel size and speed range were considered.

  12. 14 CFR 137.31 - Aircraft requirements.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Aircraft requirements. 137.31 Section 137... AIRCRAFT OPERATIONS Operating Rules § 137.31 Aircraft requirements. No person may operate an aircraft unless that aircraft— (a) Meets the requirements of § 137.19(d); and (b) Is equipped with a suitable...

  13. 14 CFR 137.31 - Aircraft requirements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Aircraft requirements. 137.31 Section 137... AIRCRAFT OPERATIONS Operating Rules § 137.31 Aircraft requirements. No person may operate an aircraft unless that aircraft— (a) Meets the requirements of § 137.19(d); and (b) Is equipped with a suitable...

  14. 14 CFR 137.31 - Aircraft requirements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Aircraft requirements. 137.31 Section 137... AIRCRAFT OPERATIONS Operating Rules § 137.31 Aircraft requirements. No person may operate an aircraft unless that aircraft— (a) Meets the requirements of § 137.19(d); and (b) Is equipped with a suitable...

  15. 14 CFR 137.31 - Aircraft requirements.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Aircraft requirements. 137.31 Section 137... AIRCRAFT OPERATIONS Operating Rules § 137.31 Aircraft requirements. No person may operate an aircraft unless that aircraft— (a) Meets the requirements of § 137.19(d); and (b) Is equipped with a suitable...

  16. 14 CFR 137.31 - Aircraft requirements.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Aircraft requirements. 137.31 Section 137... AIRCRAFT OPERATIONS Operating Rules § 137.31 Aircraft requirements. No person may operate an aircraft unless that aircraft— (a) Meets the requirements of § 137.19(d); and (b) Is equipped with a suitable...

  17. New design and operating techniques and requirements for improved aircraft terminal area operations

    NASA Technical Reports Server (NTRS)

    Reeder, J. P.; Taylor, R. T.; Walsh, T. M.

    1974-01-01

    Current aircraft operating problems that must be alleviated for future high-density terminal areas are safety, dependence on weather, congestion, energy conservation, noise, and atmospheric pollution. The Microwave Landing System (MLS) under development by FAA provides increased capabilities over the current ILS. The development of the airborne system's capability to take maximum advantage of the MLS capabilities in order to solve terminal area problems are discussed. A major limiting factor in longitudinal spacing for capacity increase is the trailing vortex hazard. Promising methods for causing early dissipation of the vortices were explored. Flight procedures for avoiding the hazard were investigated. Terminal configured vehicles and their flight test development are discussed.

  18. The design of sport and touring aircraft

    NASA Technical Reports Server (NTRS)

    Eppler, R.; Guenther, W.

    1984-01-01

    General considerations concerning the design of a new aircraft are discussed, taking into account the objective to develop an aircraft can satisfy economically a certain spectrum of tasks. Requirements related to the design of sport and touring aircraft included in the past mainly a high cruising speed and short take-off and landing runs. Additional requirements for new aircraft are now low fuel consumption and optimal efficiency. A computer program for the computation of flight performance makes it possible to vary automatically a number of parameters, such as flight altitude, wing area, and wing span. The appropriate design characteristics are to a large extent determined by the selection of the flight altitude. Three different wing profiles are compared. Potential improvements with respect to the performance of the aircraft and its efficiency are related to the use of fiber composites, the employment of better propeller profiles, more efficient engines, and the utilization of suitable instrumentation for optimal flight conduction.

  19. 14 CFR 135.25 - Aircraft requirements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... requirements of this chapter (14 CFR chapter I) that would be applicable to that aircraft were it registered in... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Aircraft requirements. 135.25 Section 135... REQUIREMENTS: COMMUTER AND ON DEMAND OPERATIONS AND RULES GOVERNING PERSONS ON BOARD SUCH AIRCRAFT...

  20. 14 CFR 142.57 - Aircraft requirements.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Aircraft requirements. 142.57 Section 142... Requirements § 142.57 Aircraft requirements. (a) An applicant for, or holder of, a training center certificate must ensure that each aircraft used for flight instruction and solo flights meets the...

  1. 14 CFR 135.25 - Aircraft requirements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... requirements of this chapter (14 CFR chapter I) that would be applicable to that aircraft were it registered in... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Aircraft requirements. 135.25 Section 135... REQUIREMENTS: COMMUTER AND ON DEMAND OPERATIONS AND RULES GOVERNING PERSONS ON BOARD SUCH AIRCRAFT...

  2. 14 CFR 135.25 - Aircraft requirements.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... requirements of this chapter (14 CFR chapter I) that would be applicable to that aircraft were it registered in... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Aircraft requirements. 135.25 Section 135... REQUIREMENTS: COMMUTER AND ON DEMAND OPERATIONS AND RULES GOVERNING PERSONS ON BOARD SUCH AIRCRAFT...

  3. 14 CFR 142.57 - Aircraft requirements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Aircraft requirements. 142.57 Section 142... Requirements § 142.57 Aircraft requirements. (a) An applicant for, or holder of, a training center certificate must ensure that each aircraft used for flight instruction and solo flights meets the...

  4. 14 CFR 135.25 - Aircraft requirements.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... requirements of this chapter (14 CFR chapter I) that would be applicable to that aircraft were it registered in... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Aircraft requirements. 135.25 Section 135... REQUIREMENTS: COMMUTER AND ON DEMAND OPERATIONS AND RULES GOVERNING PERSONS ON BOARD SUCH AIRCRAFT...

  5. 14 CFR 142.57 - Aircraft requirements.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Aircraft requirements. 142.57 Section 142... Requirements § 142.57 Aircraft requirements. (a) An applicant for, or holder of, a training center certificate must ensure that each aircraft used for flight instruction and solo flights meets the...

  6. 14 CFR 142.57 - Aircraft requirements.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Aircraft requirements. 142.57 Section 142... Requirements § 142.57 Aircraft requirements. (a) An applicant for, or holder of, a training center certificate must ensure that each aircraft used for flight instruction and solo flights meets the...

  7. 14 CFR 142.57 - Aircraft requirements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Aircraft requirements. 142.57 Section 142... Requirements § 142.57 Aircraft requirements. (a) An applicant for, or holder of, a training center certificate must ensure that each aircraft used for flight instruction and solo flights meets the...

  8. 14 CFR 135.25 - Aircraft requirements.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... requirements of this chapter (14 CFR chapter I) that would be applicable to that aircraft were it registered in... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Aircraft requirements. 135.25 Section 135... REQUIREMENTS: COMMUTER AND ON DEMAND OPERATIONS AND RULES GOVERNING PERSONS ON BOARD SUCH AIRCRAFT...

  9. Design Considerations for Laminar Flow Control Aircraft

    NASA Technical Reports Server (NTRS)

    Sturgeon, R. F.; Bennett, J. A.

    1976-01-01

    A study was conducted to investigate major design considerations involved in the application of laminar flow control to the wings and empennage of long range subsonic transport aircraft compatible with initial operation in 1985. For commercial transports with a design mission range of 10,186 km (5500 n mil) and a payload of 200 passengers, parametric configuration analyses were conducted to evaluate the effect of aircraft performance, operational, and geometric parameters on fuel efficiency. Study results indicate that major design goals for aircraft optimization include maximization of aspect ratio and wing loading and minimization of wing sweep consistent with wing volume and airport performance requirements.

  10. Science requirements and feasibility/design studies of a very-high-altitude aircraft for atmospheric research

    NASA Technical Reports Server (NTRS)

    Russell, Philip B.; Lux, David P.; Reed, R. Dale; Loewenstein, Max; Wegener, Steven

    1991-01-01

    The advantages and shortcomings of currently available aircraft for use in very high altitude missions to study such problems as polar ozone or stratosphere-troposphere exchange pose the question of whether to develop advanced aircraft for atmospheric research. To answer this question, NASA conducted a workshop to determine science needs and feasibility/design studies to assess whether and how those needs could be met. It was determined that there was a need for an aircraft that could cruise at an altitude of 30 km with a range of 6,000 miles with vertical profiling down to 10 km and back at remote points and carry a payload of 3,000 lbs.

  11. 14 CFR 141.75 - Aircraft requirements.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Aircraft requirements. 141.75 Section 141...) SCHOOLS AND OTHER CERTIFICATED AGENCIES PILOT SCHOOLS Operating Rules § 141.75 Aircraft requirements. The following items must be carried on each aircraft used for flight training and solo flights: (a) A...

  12. 14 CFR 141.75 - Aircraft requirements.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Aircraft requirements. 141.75 Section 141...) SCHOOLS AND OTHER CERTIFICATED AGENCIES PILOT SCHOOLS Operating Rules § 141.75 Aircraft requirements. The following items must be carried on each aircraft used for flight training and solo flights: (a) A...

  13. 14 CFR 141.75 - Aircraft requirements.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Aircraft requirements. 141.75 Section 141...) SCHOOLS AND OTHER CERTIFICATED AGENCIES PILOT SCHOOLS Operating Rules § 141.75 Aircraft requirements. The following items must be carried on each aircraft used for flight training and solo flights: (a) A...

  14. 14 CFR 141.75 - Aircraft requirements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Aircraft requirements. 141.75 Section 141...) SCHOOLS AND OTHER CERTIFICATED AGENCIES PILOT SCHOOLS Operating Rules § 141.75 Aircraft requirements. The following items must be carried on each aircraft used for flight training and solo flights: (a) A...

  15. 14 CFR 141.75 - Aircraft requirements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Aircraft requirements. 141.75 Section 141...) SCHOOLS AND OTHER CERTIFICATED AGENCIES PILOT SCHOOLS Operating Rules § 141.75 Aircraft requirements. The following items must be carried on each aircraft used for flight training and solo flights: (a) A...

  16. Turboelectric Aircraft Drive Key Performance Parameters and Functional Requirements

    NASA Technical Reports Server (NTRS)

    Jansen, Ralph H.; Brown, Gerald V.; Felder, James L.; Duffy, Kirsten P.

    2016-01-01

    The purpose of this paper is to propose specific power and efficiency as the key performance parameters for a turboelectric aircraft power system and investigate their impact on the overall aircraft. Key functional requirements are identified that impact the power system design. Breguet range equations for a base aircraft and a turboelectric aircraft are found. The benefits and costs that may result from the turboelectric system are enumerated. A break-even analysis is conducted to find the minimum allowable electric drive specific power and efficiency that can preserve the range, initial weight, operating empty weight, and payload weight of the base aircraft.

  17. Turboelectric Aircraft Drive Key Performance Parameters and Functional Requirements

    NASA Technical Reports Server (NTRS)

    Jansen, Ralph; Brown, Gerald V.; Felder, James L.; Duffy, Kirsten P.

    2015-01-01

    The purpose of this presentation is to propose specific power and efficiency as the key performance parameters for a turboelectric aircraft power system and investigate their impact on the overall aircraft. Key functional requirements are identified that impact the power system design. Breguet range equations for a base aircraft and a turboelectric aircraft are found. The benefits and costs that may result from the turboelectric system are enumerated. A break-even analysis is conducted to find the minimum allowable electric drive specific power and efficiency that can preserve the range, initial weight, operating empty weight, and payload weight of the base aircraft.

  18. Turboelectric Aircraft Drive Key Performance Parameters and Functional Requirements

    NASA Technical Reports Server (NTRS)

    Jansen, Ralph H.; Brown, Gerald V.; Felder, James L.; Duffy, Kirsten P.

    2015-01-01

    The purpose of this paper is to propose specific power and efficiency as the key performance parameters for a turboelectric aircraft power system and investigate their impact on the overall aircraft. Key functional requirements are identified that impact the power system design. Breguet range equations for a base aircraft and a turboelectric aircraft are found. The benefits and costs that may result from the turboelectric system are enumerated. A break-even analysis is conducted to find the minimum allowable electric drive specific power and efficiency that can preserve the range, initial weight, operating empty weight, and payload weight of the base aircraft.

  19. Low Reynolds number, long endurance aircraft design

    SciTech Connect

    Foch, R.J.; Ailinger, K.G. )

    1992-02-01

    Airplanes are typically designed to maximize range at the highest practical cruising speed. However, several missions require extended duration rather than range, and favor the slowest possible cruise speed. Such missions include surveillance, radio relay, and ship's electronic decoy. These missions are ideally suited for advanced technology unmanned aircraft, either remotely piloted or autonomous. Feasibility studies have been conducted and flight demonstrator prototypes of such unique aircraft have been under steady research and development at the Naval Research Laboratory since 1978. This paper discusses the design aspects and tradeoffs unique to small, slow speed long endurance unmanned aircraft operating at wing chord Reynolds numbers between 150,000 and 500,000. Additionally, many of these low Reynolds number-driven design features have applicability to high altitude, long endurance aircraft. 6 refs.

  20. Innovations in Aircraft Design

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The Boeing 777 carries with it basic and applied research, technology, and aerodynamic knowledge honed at several NASA field centers. Several Langley Research Center innovations instrumental to the development of the aircraft include knowledge of how to reduce engine and other noise for passengers and terminal residents, increased use of lightweight aerospace composite structures for increased fuel efficiency and range, and wind tunnel tests confirming the structural integrity of 777 wing-airframe integration. Test results from Marshall Space Flight Center aimed at improving the performance of the Space Shuttle engines led to improvements in the airplane's new, more efficient jet engines. Finally, fostered by Ames Research Center, the Boeing 777 blankets that protect areas of the plane from high temperatures and fire have a lineage to Advanced Flexible Reusable Surface Insulation used on certain areas of the Space Shuttle. According to Boeing Company estimates, the 777 has captured three-quarters of new orders for airplanes in its class since the program was launched.

  1. Sun powered aircraft design

    NASA Technical Reports Server (NTRS)

    Maccready, P. B.; Lissaman, P. B. S.; Morgan, W. R.; Burke, J. D.

    1981-01-01

    Two piloted aircraft have been developed and flown powered solely by photovoltaic cells in a program sponsored by the DuPont Company. The 30.8-kg (68-lb), 21.6-m (71-ft) span, Gossamer Penguin was used as a solar test bed, making a 2.6-km (1.6-mile) flight in August 1980. The 88.1-kg (194-lb), 14.3-m (47-ft) span Solar Challenger was developed for long flights in normal turbulence. Stressed to +9 G, it utilizes Kevlar, Nomex honeycomb-graphite sandwich wall tubes, expanded polystyrene foam ribs, and Mylar skin. With a 54.9-kg (121-lb) airframe, 33.1-kg (73-lb) propulsion system, and a 45.4-kg (100-lb) pilot, it flies on 1400 watts. In summer, the projected maximum climb is 1.0 m/s (200 ft/min) at 9,150 m (30,000 ft). Sixty purely solar-powered flights were made during winter 1980-1981. Using thermals, 1,070 m (3,500 ft) was reached with 115-minute duration.

  2. Aircraft family design using enhanced collaborative optimization

    NASA Astrophysics Data System (ADS)

    Roth, Brian Douglas

    Significant progress has been made toward the development of multidisciplinary design optimization (MDO) methods that are well-suited to practical large-scale design problems. However, opportunities exist for further progress. This thesis describes the development of enhanced collaborative optimization (ECO), a new decomposition-based MDO method. To support the development effort, the thesis offers a detailed comparison of two existing MDO methods: collaborative optimization (CO) and analytical target cascading (ATC). This aids in clarifying their function and capabilities, and it provides inspiration for the development of ECO. The ECO method offers several significant contributions. First, it enhances communication between disciplinary design teams while retaining the low-order coupling between them. Second, it provides disciplinary design teams with more authority over the design process. Third, it resolves several troubling computational inefficiencies that are associated with CO. As a result, ECO provides significant computational savings (relative to CO) for the test cases and practical design problems described in this thesis. New aircraft development projects seldom focus on a single set of mission requirements. Rather, a family of aircraft is designed, with each family member tailored to a different set of requirements. This thesis illustrates the application of decomposition-based MDO methods to aircraft family design. This represents a new application area, since MDO methods have traditionally been applied to multidisciplinary problems. ECO offers aircraft family design the same benefits that it affords to multidisciplinary design problems. Namely, it simplifies analysis integration, it provides a means to manage problem complexity, and it enables concurrent design of all family members. In support of aircraft family design, this thesis introduces a new wing structural model with sufficient fidelity to capture the tradeoffs associated with component

  3. Progress in aircraft design since 1903

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Significant developments in aviation history are documented to show the advancements in aircraft design which have taken place since 1903. Each aircraft is identified according to the manufacturer, powerplant, dimensions, normal weight, and typical performance. A narrative summary of the major accomplishments of the aircraft is provided. Photographs of each aircraft are included.

  4. Stochastic Methods for Aircraft Design

    NASA Technical Reports Server (NTRS)

    Pelz, Richard B.; Ogot, Madara

    1998-01-01

    The global stochastic optimization method, simulated annealing (SA), was adapted and applied to various problems in aircraft design. The research was aimed at overcoming the problem of finding an optimal design in a space with multiple minima and roughness ubiquitous to numerically generated nonlinear objective functions. SA was modified to reduce the number of objective function evaluations for an optimal design, historically the main criticism of stochastic methods. SA was applied to many CFD/MDO problems including: low sonic-boom bodies, minimum drag on supersonic fore-bodies, minimum drag on supersonic aeroelastic fore-bodies, minimum drag on HSCT aeroelastic wings, FLOPS preliminary design code, another preliminary aircraft design study with vortex lattice aerodynamics, HSR complete aircraft aerodynamics. In every case, SA provided a simple, robust and reliable optimization method which found optimal designs in order 100 objective function evaluations. Perhaps most importantly, from this academic/industrial project, technology has been successfully transferred; this method is the method of choice for optimization problems at Northrop Grumman.

  5. 19 CFR 122.32 - Aircraft required to land.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 19 Customs Duties 1 2013-04-01 2013-04-01 false Aircraft required to land. 122.32 Section 122.32... TREASURY AIR COMMERCE REGULATIONS Landing Requirements § 122.32 Aircraft required to land. (a) Any aircraft... where aircraft entering the U.S. from a foreign area may land. As such, aircraft must land at...

  6. 19 CFR 122.32 - Aircraft required to land.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 19 Customs Duties 1 2011-04-01 2011-04-01 false Aircraft required to land. 122.32 Section 122.32... TREASURY AIR COMMERCE REGULATIONS Landing Requirements § 122.32 Aircraft required to land. (a) Any aircraft... where aircraft entering the U.S. from a foreign area may land. As such, aircraft must land at...

  7. 19 CFR 122.32 - Aircraft required to land.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 19 Customs Duties 1 2010-04-01 2010-04-01 false Aircraft required to land. 122.32 Section 122.32... TREASURY AIR COMMERCE REGULATIONS Landing Requirements § 122.32 Aircraft required to land. (a) Any aircraft... where aircraft entering the U.S. from a foreign area may land. As such, aircraft must land at...

  8. 19 CFR 122.32 - Aircraft required to land.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 19 Customs Duties 1 2012-04-01 2012-04-01 false Aircraft required to land. 122.32 Section 122.32... TREASURY AIR COMMERCE REGULATIONS Landing Requirements § 122.32 Aircraft required to land. (a) Any aircraft... where aircraft entering the U.S. from a foreign area may land. As such, aircraft must land at...

  9. 19 CFR 122.32 - Aircraft required to land.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 19 Customs Duties 1 2014-04-01 2014-04-01 false Aircraft required to land. 122.32 Section 122.32... TREASURY AIR COMMERCE REGULATIONS Landing Requirements § 122.32 Aircraft required to land. (a) Any aircraft... where aircraft entering the U.S. from a foreign area may land. As such, aircraft must land at...

  10. A methodology for designing aircraft to low sonic boom constraints

    NASA Technical Reports Server (NTRS)

    Mack, Robert J.; Needleman, Kathy E.

    1991-01-01

    A method for designing conceptual supersonic cruise aircraft to meet low sonic boom requirements is outlined and described. The aircraft design is guided through a systematic evolution from initial three view drawing to a final numerical model description, while the designer using the method controls the integration of low sonic boom, high supersonic aerodynamic efficiency, adequate low speed handling, and reasonable structure and materials technologies. Some experience in preliminary aircraft design and in the use of various analytical and numerical codes is required for integrating the volume and lift requirements throughout the design process.

  11. Aircraft empennage structural detail design

    NASA Technical Reports Server (NTRS)

    Meholic, Greg; Brown, Rhonda; Hall, Melissa; Harvey, Robert; Singer, Michael; Tella, Gustavo

    1993-01-01

    This project involved the detailed design of the aft fuselage and empennage structure, vertical stabilizer, rudder, horizontal stabilizer, and elevator for the Triton primary flight trainer. The main design goals under consideration were to illustrate the integration of the control systems devices used in the tail surfaces and their necessary structural supports as well as the elevator trim, navigational lighting system, electrical systems, tail-located ground tie, and fuselage/cabin interface structure. Accommodations for maintenance, lubrication, adjustment, and repairability were devised. Weight, fabrication, and (sub)assembly goals were addressed. All designs were in accordance with the FAR Part 23 stipulations for a normal category aircraft.

  12. Preliminary design of a long-endurance Mars aircraft

    NASA Technical Reports Server (NTRS)

    Colozza, Anthony J.

    1990-01-01

    The preliminary design requirements of a long endurance aircraft capable of flight within the Martian environment was determined. Both radioisotope/heat engine and PV solar array power production systems were considered. Various cases for each power system were analyzed in order to determine the necessary size, weight and power requirements of the aircraft. The analysis method used was an adaptation of the method developed by Youngblood and Talay of NASA-Langley used to design a high altitude earth based aircraft. The analysis is set up to design an aircraft which, for the given conditions, has a minimum wingspan and maximum endurance parameter. The results showed that, for a first approximation, a long endurance aircraft is feasible within the Martian environment. The size and weight of the most efficient solar aircraft were comparable to the radioisotope powered one.

  13. Effect of commercial and military performance requirements for transport category aircraft on space shuttle booster design and operation

    NASA Technical Reports Server (NTRS)

    Bithell, R. A.; Pence, W. A., Jr.

    1972-01-01

    The effect of two sets of performance requirements, commercial and military, on the design and operation of the space shuttle booster is evaluated. Critical thrust levels are established according to both sets of operating rules for the takeoff, cruise, and go-around flight modes, and the effect on engine requirements determined. Both flyback and ferry operations are considered. The impact of landing rules on potential shuttle flyback and ferry bases is evaluated. Factors affecting reserves are discussed, including winds, temperature, and nonstandard flight operations. Finally, a recommended set of operating rules is proposed for both flyback and ferry operations that allows adequate performance capability and safety margins without compromising design requirements for either flight phase.

  14. Efficient Viscous Design of Realistic Aircraft Configurations

    NASA Technical Reports Server (NTRS)

    Campbell, Richard L.

    2004-01-01

    This paper addresses the use of the Constrained Direct Iterative Surface Curvature (CDISC) design method in the aircraft design process. A discussion of some of the requirements for practical use of CFD in the design process is followed by a description of different CFD design methods, along with their relative strengths and weaknesses. A detailed description of the CDISC design method highlights some of the aspects of the method that provide computational efficiency and portability, as well as the flow and geometry constraint capabilities. In addition, an efficient approach to multipoint design, the Weighted Averaging of Geometries (WAG) method, is described and illustrated using a couple of simple examples. The CDISC and WAG methods are then applied to a complex generic business jet geometry using an unstructured grid flow solver to demonstrate the multipoint and multicomponent design capabilities of these methods. Introduction

  15. Display/control requirements for VTOL aircraft

    NASA Technical Reports Server (NTRS)

    Hoffman, W. C.; Curry, R. E.; Kleinman, D. L.; Hollister, W. M.; Young, L. R.

    1975-01-01

    Quantative metrics were determined for system control performance, workload for control, monitoring performance, and workload for monitoring. Pilot tasks were allocated for navigation and guidance of automated commercial V/STOL aircraft in all weather conditions using an optimal control model of the human operator to determine display elements and design.

  16. 19 CFR 122.61 - Aircraft required to clear.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 19 Customs Duties 1 2012-04-01 2012-04-01 false Aircraft required to clear. 122.61 Section 122.61... TREASURY AIR COMMERCE REGULATIONS Clearance of Aircraft and Permission To Depart § 122.61 Aircraft required to clear. (a) Private aircraft leaving the United States as defined in § 122.22, for a foreign...

  17. 19 CFR 122.61 - Aircraft required to clear.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 19 Customs Duties 1 2010-04-01 2010-04-01 false Aircraft required to clear. 122.61 Section 122.61... TREASURY AIR COMMERCE REGULATIONS Clearance of Aircraft and Permission To Depart § 122.61 Aircraft required to clear. (a) Private aircraft leaving the United States as defined in § 122.22, for a foreign...

  18. 19 CFR 122.61 - Aircraft required to clear.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 19 Customs Duties 1 2014-04-01 2014-04-01 false Aircraft required to clear. 122.61 Section 122.61... TREASURY AIR COMMERCE REGULATIONS Clearance of Aircraft and Permission To Depart § 122.61 Aircraft required to clear. (a) Private aircraft leaving the United States as defined in § 122.22, for a foreign...

  19. 19 CFR 122.61 - Aircraft required to clear.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 19 Customs Duties 1 2011-04-01 2011-04-01 false Aircraft required to clear. 122.61 Section 122.61... TREASURY AIR COMMERCE REGULATIONS Clearance of Aircraft and Permission To Depart § 122.61 Aircraft required to clear. (a) Private aircraft leaving the United States as defined in § 122.22, for a foreign...

  20. 19 CFR 122.61 - Aircraft required to clear.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 19 Customs Duties 1 2013-04-01 2013-04-01 false Aircraft required to clear. 122.61 Section 122.61... TREASURY AIR COMMERCE REGULATIONS Clearance of Aircraft and Permission To Depart § 122.61 Aircraft required to clear. (a) Private aircraft leaving the United States as defined in § 122.22, for a foreign...

  1. Aircraft Conceptual Design Using Vehicle Sketch Pad

    NASA Technical Reports Server (NTRS)

    Fredericks, William J.; Antcliff, Kevin R.; Costa, Guillermo; Deshpande, Nachiket; Moore, Mark D.; Miguel, Edric A. San; Snyder, Alison N.

    2010-01-01

    Vehicle Sketch Pad (VSP) is a parametric geometry modeling tool that is intended for use in the conceptual design of aircraft. The intent of this software is to rapidly model aircraft configurations without expending the expertise and time that is typically required for modeling with traditional Computer Aided Design (CAD) packages. VSP accomplishes this by using parametrically defined components, such as a wing that is defined by span, area, sweep, taper ratio, thickness to cord, and so on. During this phase of frequent design builds, changes to the model can be rapidly visualized along with the internal volumetric layout. Using this geometry-based approach, parameters such as wetted areas and cord lengths can be easily extracted for rapid external performance analyses, such as a parasite drag buildup. At the completion of the conceptual design phase, VSP can export its geometry to higher fidelity tools. This geometry tool was developed by NASA and is freely available to U.S. companies and universities. It has become integral to conceptual design in the Aeronautics Systems Analysis Branch (ASAB) here at NASA Langley Research Center and is currently being used at over 100 universities, aerospace companies, and other government agencies. This paper focuses on the use of VSP in recent NASA conceptual design studies to facilitate geometry-centered design methodology. Such a process is shown to promote greater levels of creativity, more rapid assessment of critical design issues, and improved ability to quickly interact with higher order analyses. A number of VSP vehicle model examples are compared to CAD-based conceptual design, from a designer perspective; comparisons are also made of the time and expertise required to build the geometry representations as well.

  2. 14 CFR 121.153 - Aircraft requirements: General.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    .... type certificate and complies with all of the requirements of this chapter (14 CFR Chapter 1) that... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Aircraft requirements: General. 121.153... REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Aircraft Requirements § 121.153 Aircraft...

  3. 14 CFR 121.153 - Aircraft requirements: General.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    .... type certificate and complies with all of the requirements of this chapter (14 CFR Chapter 1) that... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Aircraft requirements: General. 121.153... REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Aircraft Requirements § 121.153 Aircraft...

  4. 14 CFR 121.153 - Aircraft requirements: General.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    .... type certificate and complies with all of the requirements of this chapter (14 CFR Chapter 1) that... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Aircraft requirements: General. 121.153... REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Aircraft Requirements § 121.153 Aircraft...

  5. 14 CFR 121.153 - Aircraft requirements: General.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    .... type certificate and complies with all of the requirements of this chapter (14 CFR Chapter 1) that... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Aircraft requirements: General. 121.153... REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Aircraft Requirements § 121.153 Aircraft...

  6. 14 CFR 121.153 - Aircraft requirements: General.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    .... type certificate and complies with all of the requirements of this chapter (14 CFR Chapter 1) that... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Aircraft requirements: General. 121.153... REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Aircraft Requirements § 121.153 Aircraft...

  7. Circulation control STOL aircraft design aspects

    NASA Technical Reports Server (NTRS)

    Loth, John L.

    1987-01-01

    Since Davidson patented Circulation Control Airfoils in 1960, there have been only 2 aircraft designed and flown with circulation control (CC). Designing with CC is complex for the following reasons: the relation between lift increase and blowing momentum is nonlinear; for good cruise performance one must change the wing geometry in flight from a round to a sharp trailing edge. The bleed air from the propulsion engines or an auxiliary compressor, must be used efficiently. In designing with CC, the propulsion and control aspects are just as important as aerodynamics. These design aspects were examined and linearized equations are presented in order to facilitate a preliminary analysis of the performance potential of CC. The thrust and lift requirements for takeoff make the calculated runway length very sensitive to the bleed air ratio. Thrust vectoring improves performance and can offset nose down pitching moments. The choice of blowing jet to free stream velocity ratio determines the efficiency of applying bleed air power.

  8. Design Methods and Optimization for Morphing Aircraft

    NASA Technical Reports Server (NTRS)

    Crossley, William A.

    2005-01-01

    This report provides a summary of accomplishments made during this research effort. The major accomplishments are in three areas. The first is the use of a multiobjective optimization strategy to help identify potential morphing features that uses an existing aircraft sizing code to predict the weight, size and performance of several fixed-geometry aircraft that are Pareto-optimal based upon on two competing aircraft performance objectives. The second area has been titled morphing as an independent variable and formulates the sizing of a morphing aircraft as an optimization problem in which the amount of geometric morphing for various aircraft parameters are included as design variables. This second effort consumed most of the overall effort on the project. The third area involved a more detailed sizing study of a commercial transport aircraft that would incorporate a morphing wing to possibly enable transatlantic point-to-point passenger service.

  9. 14 CFR 91.203 - Civil aircraft: Certifications required.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 2 2013-01-01 2013-01-01 false Civil aircraft: Certifications required. 91..., and Certificate Requirements § 91.203 Civil aircraft: Certifications required. (a) Except as provided in § 91.715, no person may operate a civil aircraft unless it has within it the following: (1)...

  10. 14 CFR 91.203 - Civil aircraft: Certifications required.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 2 2011-01-01 2011-01-01 false Civil aircraft: Certifications required. 91..., and Certificate Requirements § 91.203 Civil aircraft: Certifications required. (a) Except as provided in § 91.715, no person may operate a civil aircraft unless it has within it the following: (1)...

  11. 14 CFR 91.203 - Civil aircraft: Certifications required.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Civil aircraft: Certifications required. 91..., and Certificate Requirements § 91.203 Civil aircraft: Certifications required. (a) Except as provided in § 91.715, no person may operate a civil aircraft unless it has within it the following: (1)...

  12. 14 CFR 91.203 - Civil aircraft: Certifications required.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 2 2012-01-01 2012-01-01 false Civil aircraft: Certifications required. 91..., and Certificate Requirements § 91.203 Civil aircraft: Certifications required. (a) Except as provided in § 91.715, no person may operate a civil aircraft unless it has within it the following: (1)...

  13. 14 CFR 91.203 - Civil aircraft: Certifications required.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 2 2014-01-01 2014-01-01 false Civil aircraft: Certifications required. 91..., and Certificate Requirements § 91.203 Civil aircraft: Certifications required. (a) Except as provided in § 91.715, no person may operate a civil aircraft unless it has within it the following: (1)...

  14. Alloy design for aircraft engines

    NASA Astrophysics Data System (ADS)

    Pollock, Tresa M.

    2016-08-01

    Metallic materials are fundamental to advanced aircraft engines. While perceived as mature, emerging computational, experimental and processing innovations are expanding the scope for discovery and implementation of new metallic materials for future generations of advanced propulsion systems.

  15. 19 CFR 122.41 - Aircraft required to enter.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 19 Customs Duties 1 2010-04-01 2010-04-01 false Aircraft required to enter. 122.41 Section 122.41... TREASURY AIR COMMERCE REGULATIONS Aircraft Entry and Entry Documents; Electronic Manifest Requirements for Passengers, Crew Members, and Non-Crew Members Onboard Commercial Aircraft Arriving In, Continuing...

  16. 19 CFR 122.41 - Aircraft required to enter.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 19 Customs Duties 1 2014-04-01 2014-04-01 false Aircraft required to enter. 122.41 Section 122.41... TREASURY AIR COMMERCE REGULATIONS Aircraft Entry and Entry Documents; Electronic Manifest Requirements for Passengers, Crew Members, and Non-Crew Members Onboard Commercial Aircraft Arriving In, Continuing...

  17. 19 CFR 122.41 - Aircraft required to enter.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 19 Customs Duties 1 2013-04-01 2013-04-01 false Aircraft required to enter. 122.41 Section 122.41... TREASURY AIR COMMERCE REGULATIONS Aircraft Entry and Entry Documents; Electronic Manifest Requirements for Passengers, Crew Members, and Non-Crew Members Onboard Commercial Aircraft Arriving In, Continuing...

  18. 19 CFR 122.41 - Aircraft required to enter.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 19 Customs Duties 1 2011-04-01 2011-04-01 false Aircraft required to enter. 122.41 Section 122.41... TREASURY AIR COMMERCE REGULATIONS Aircraft Entry and Entry Documents; Electronic Manifest Requirements for Passengers, Crew Members, and Non-Crew Members Onboard Commercial Aircraft Arriving In, Continuing...

  19. 19 CFR 122.41 - Aircraft required to enter.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 19 Customs Duties 1 2012-04-01 2012-04-01 false Aircraft required to enter. 122.41 Section 122.41... TREASURY AIR COMMERCE REGULATIONS Aircraft Entry and Entry Documents; Electronic Manifest Requirements for Passengers, Crew Members, and Non-Crew Members Onboard Commercial Aircraft Arriving In, Continuing...

  20. Some trends in aircraft design: Structures

    NASA Technical Reports Server (NTRS)

    Brooks, G. W.

    1975-01-01

    Trends and programs currently underway on the national scene to improve the structural interface in the aircraft design process are discussed. The National Aeronautics and Space Administration shares a partnership with the educational and industrial community in the development of the tools, the criteria, and the data base essential to produce high-performance and cost-effective vehicles. Several thrusts to build the technology in materials, structural concepts, analytical programs, and integrated design procedures essential for performing the trade-offs required to fashion competitive vehicles are presented. The application of advanced fibrous composites, improved methods for structural analysis, and continued attention to important peripheral problems of aeroelastic and thermal stability are among the topics considered.

  1. Structural design of supersonic cruise aircraft

    NASA Technical Reports Server (NTRS)

    Fischler, J. E.

    1976-01-01

    The major efforts leading to an efficient structural design include: (1) the analysis methods used to improve the structural model optimization and compare the structural concepts, (2) the analysis and description of the fail-safe, crack growth, and residual strength studies and tests, (3) baseline structural trade studies to determine optimum structural weights including effects of geometry changes, strength, fail-safety, aeroelastics and flutter, 6AL-4V annealed titanium in structural efficiency after 70,000 hours at temperature, (5) the study of three structural models for aircraft at 2.0 Mach, 2.2 Mach, and 2.4 Mach cruise speeds, (6) the study of many structural concepts to determine their weight efficiencies; and (7) the determination of the requirements for large-scale structural development testing.

  2. 14 CFR 291.22 - Aircraft accident liability insurance requirement.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false Aircraft accident liability insurance... for All-Cargo Air Transportation § 291.22 Aircraft accident liability insurance requirement. No air carrier shall operate all-cargo aircraft or provide all-cargo air transportation unless such carrier...

  3. 14 CFR 294.40 - Aircraft accident liability insurance requirements.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false Aircraft accident liability insurance....40 Aircraft accident liability insurance requirements. No Canadian charter air taxi operator shall engage in charter air service unless such carrier has and maintains in effect aircraft accident...

  4. Control Design for a Generic Commercial Aircraft Engine

    NASA Technical Reports Server (NTRS)

    Csank, Jeffrey; May, Ryan D.

    2010-01-01

    This paper describes the control algorithms and control design process for a generic commercial aircraft engine simulation of a 40,000 lb thrust class, two spool, high bypass ratio turbofan engine. The aircraft engine is a complex nonlinear system designed to operate over an extreme range of environmental conditions, at temperatures from approximately -60 to 120+ F, and at altitudes from below sea level to 40,000 ft, posing multiple control design constraints. The objective of this paper is to provide the reader an overview of the control design process, design considerations, and justifications as to why the particular architecture and limits have been chosen. The controller architecture contains a gain-scheduled Proportional Integral controller along with logic to protect the aircraft engine from exceeding any limits. Simulation results illustrate that the closed loop system meets the Federal Aviation Administration s thrust response requirements

  5. 14 CFR 183.27 - Designated aircraft maintenance inspectors.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Designated aircraft maintenance inspectors...: Privileges § 183.27 Designated aircraft maintenance inspectors. A designated aircraft maintenance inspector (DAMI) may approve maintenance on civil aircraft used by United States military flying clubs in...

  6. 14 CFR 183.27 - Designated aircraft maintenance inspectors.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Designated aircraft maintenance inspectors...: Privileges § 183.27 Designated aircraft maintenance inspectors. A designated aircraft maintenance inspector (DAMI) may approve maintenance on civil aircraft used by United States military flying clubs in...

  7. 14 CFR 183.27 - Designated aircraft maintenance inspectors.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Designated aircraft maintenance inspectors...: Privileges § 183.27 Designated aircraft maintenance inspectors. A designated aircraft maintenance inspector (DAMI) may approve maintenance on civil aircraft used by United States military flying clubs in...

  8. 14 CFR 183.27 - Designated aircraft maintenance inspectors.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Designated aircraft maintenance inspectors...: Privileges § 183.27 Designated aircraft maintenance inspectors. A designated aircraft maintenance inspector (DAMI) may approve maintenance on civil aircraft used by United States military flying clubs in...

  9. 14 CFR 183.27 - Designated aircraft maintenance inspectors.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Designated aircraft maintenance inspectors...: Privileges § 183.27 Designated aircraft maintenance inspectors. A designated aircraft maintenance inspector (DAMI) may approve maintenance on civil aircraft used by United States military flying clubs in...

  10. Aircraft integrated design and analysis: A classroom experience

    NASA Technical Reports Server (NTRS)

    Weisshaar, Terrence A.

    1989-01-01

    AAE 451 is the capstone course required of all senior undergraduates in the School of Aeronautics and Astronautics at Purdue University. During the past year the first steps of a long evolutionary process were taken to change the content and expectations of this course. These changes are the result of the availability of advanced computational capabilities and sophisticated electronic media availability at Purdue. This presentation will describe both the long range objectives and this year's experience using the High Speed Commercial Transport design, the AIAA Long Duration Aircraft design and RPV design proposal as project objectives. The central goal of these efforts is to provide a user-friendly, computer-software-based environment to supplement traditional design course methodology. The Purdue University Computer Center (PUCC), the Engineering Computer Network (ECN) and stand-alone PC's are being used for this development. This year's accomplishments center primarily on aerodynamics software obtained from NASA/Langley and its integration into the classroom. Word processor capability for oral and written work and computer graphics were also blended into the course. A total of ten HSCT designs were generated, ranging from twin-fuselage aircraft, forward swept wing aircraft to the more traditional delta and double-delta wing aircraft. Four Long Duration Aircraft designs were submitted, together with one RPV design tailored for photographic surveillance.

  11. Simulation Packages Expand Aircraft Design Options

    NASA Technical Reports Server (NTRS)

    2013-01-01

    In 2001, NASA released a new approach to computational fluid dynamics that allows users to perform automated analysis on complex vehicle designs. In 2010, Palo Alto, California-based Desktop Aeronautics acquired a license from Ames Research Center to sell the technology. Today, the product assists organizations in the design of subsonic aircraft, space planes, spacecraft, and high speed commercial jets.

  12. Design of a spanloader cargo aircraft

    NASA Technical Reports Server (NTRS)

    1989-01-01

    With a growing demand for fast international freight service, the slow-moving cargo ships currently in use will soon find a substantial portion of their clients looking elsewhere. One candidate for filling this expected gap in the freight market is a span-loading aircraft (or 'flying wing') capable of long-range operation with extremely large payloads. This report summarizes the design features of an aircraft capable of fulfilling a long-haul, high-capacity cargo mission. The spanloader seeks to gain advantage over conventional aircraft by eliminating the aircraft fuselage and thus reducing empty weight. The primary disadvantage of this configuration is that the cargo-containing wing tends to be thick, thus posing a challenge to the airfoil designer. It also suffers from stability and control problems not encountered by conventional aircraft. The result is an interesting, challenging exercise in unconventional design. The report that follows is a student written synopsis of an effort judged to be the best of eight designs developed during the year 1988-1989.

  13. Modeling Programs Increase Aircraft Design Safety

    NASA Technical Reports Server (NTRS)

    2012-01-01

    Flutter may sound like a benign word when associated with a flag in a breeze, a butterfly, or seaweed in an ocean current. When used in the context of aerodynamics, however, it describes a highly dangerous, potentially deadly condition. Consider the case of the Lockheed L-188 Electra Turboprop, an airliner that first took to the skies in 1957. Two years later, an Electra plummeted to the ground en route from Houston to Dallas. Within another year, a second Electra crashed. In both cases, all crew and passengers died. Lockheed engineers were at a loss as to why the planes wings were tearing off in midair. For an answer, the company turned to NASA s Transonic Dynamics Tunnel (TDT) at Langley Research Center. At the time, the newly renovated wind tunnel offered engineers the capability of testing aeroelastic qualities in aircraft flying at transonic speeds near or just below the speed of sound. (Aeroelasticity is the interaction between aerodynamic forces and the structural dynamics of an aircraft or other structure.) Through round-the-clock testing in the TDT, NASA and industry researchers discovered the cause: flutter. Flutter occurs when aerodynamic forces acting on a wing cause it to vibrate. As the aircraft moves faster, certain conditions can cause that vibration to multiply and feed off itself, building to greater amplitudes until the flutter causes severe damage or even the destruction of the aircraft. Flutter can impact other structures as well. Famous film footage of the Tacoma Narrows Bridge in Washington in 1940 shows the main span of the bridge collapsing after strong winds generated powerful flutter forces. In the Electra s case, faulty engine mounts allowed a type of flutter known as whirl flutter, generated by the spinning propellers, to transfer to the wings, causing them to vibrate violently enough to tear off. Thanks to the NASA testing, Lockheed was able to correct the Electra s design flaws that led to the flutter conditions and return the

  14. A multiple objective optimization approach to aircraft control systems design

    NASA Technical Reports Server (NTRS)

    Tabak, D.; Schy, A. A.; Johnson, K. G.; Giesy, D. P.

    1979-01-01

    The design of an aircraft lateral control system, subject to several performance criteria and constraints, is considered. While in the previous studies of the same model a single criterion optimization, with other performance requirements expressed as constraints, has been pursued, the current approach involves a multiple criteria optimization. In particular, a Pareto optimal solution is sought.

  15. Aircraft-crash-protected roof design for the European SBWR

    SciTech Connect

    Posta, B.A.; Kadar, I.; Rao, A.S.

    1995-12-31

    The European utility requirement document (EURD) places significant emphasis on aircraft crash protection of the reactor building - Alternative concepts were evaluated for protecting the dry-well head and the fuel pool from the effect of the spalling concrete for the General Electric Company`s European simplified boiling water reactor (ESBWR) designs.

  16. Structural analysis at aircraft conceptual design stage

    NASA Astrophysics Data System (ADS)

    Mansouri, Reza

    In the past 50 years, computers have helped by augmenting human efforts with tremendous pace. The aircraft industry is not an exception. Aircraft industry is more than ever dependent on computing because of a high level of complexity and the increasing need for excellence to survive a highly competitive marketplace. Designers choose computers to perform almost every analysis task. But while doing so, existing effective, accurate and easy to use classical analytical methods are often forgotten, which can be very useful especially in the early phases of the aircraft design where concept generation and evaluation demands physical visibility of design parameters to make decisions [39, 2004]. Structural analysis methods have been used by human beings since the very early civilization. Centuries before computers were invented; the pyramids were designed and constructed by Egyptians around 2000 B.C, the Parthenon was built by the Greeks, around 240 B.C, Dujiangyan was built by the Chinese. Persepolis, Hagia Sophia, Taj Mahal, Eiffel tower are only few more examples of historical buildings, bridges and monuments that were constructed before we had any advancement made in computer aided engineering. Aircraft industry is no exception either. In the first half of the 20th century, engineers used classical method and designed civil transport aircraft such as Ford Tri Motor (1926), Lockheed Vega (1927), Lockheed 9 Orion (1931), Douglas DC-3 (1935), Douglas DC-4/C-54 Skymaster (1938), Boeing 307 (1938) and Boeing 314 Clipper (1939) and managed to become airborne without difficulty. Evidencing, while advanced numerical methods such as the finite element analysis is one of the most effective structural analysis methods; classical structural analysis methods can also be as useful especially during the early phase of a fixed wing aircraft design where major decisions are made and concept generation and evaluation demands physical visibility of design parameters to make decisions

  17. Design definition study of a lift/cruise fan technology V/STOL aircraft. Volume 1: Navy operational aircraft

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Aircraft were designed and sized to meet Navy mission requirements. Five missions were established for evaluation: anti-submarine warfare (ASW), surface attack (SA), combat search and rescue (CSAR), surveillance (SURV), and vertical on-board delivery (VOD). All missions were performed with a short takeoff and a vertical landing. The aircraft were defined using existing J97-GE gas generators or reasonable growth derivatives in conjunction with turbotip fans reflecting LF460 type technology. The multipurpose aircraft configuration established for U.S. Navy missions utilizes the turbotip driven lift/cruise fan concept for V/STOL aircraft.

  18. Multidisciplinary design optimization of low-noise transport aircraft

    NASA Astrophysics Data System (ADS)

    Leifsson, Leifur Thor

    The objective of this research is to examine how to design low-noise transport aircraft using Multidisciplinary Design Optimization (MDO). The subject is approached by designing for low-noise both implicitly and explicitly. The explicit design approach involves optimizing an aircraft while explicitly constraining the noise level. An MDO framework capable of optimizing both a cantilever wing and a Strut-Braced-Wing (SBW) aircraft was developed. The objective is to design aircraft for low-airframe-noise at the approach conditions and quantify the change in weight and performance with respect to a traditionally designed aircraft. The results show that reducing airframe noise by reducing approach speed alone, will not provide significant noise reduction without a large performance and weight penalty. Therefore, more dramatic changes to the aircraft design are needed to achieve a significant airframe noise reduction. Another study showed that the trailing-edge flap can be eliminated, as well as all the noise associated with that device, without incurring a significant weight and performance penalty. Lastly, an airframe noise analysis showed that a SBW aircraft with short fuselage-mounted landing gear could have a similar or potentially a lower airframe noise level than a comparable cantilever wing aircraft. The implicit design approach involves selecting a configuration that supports a low-noise operation, and optimizing for performance. In this study a Blended-Wing-Body (BWB) transport aircraft, with a conventional and a distributed propulsion system, was optimized for minimum take-off gross weight. The effects of distributed propulsion were studied using an MDO framework previously developed at Virginia Tech. The results show that more than two thirds of the theoretical savings of distributed propulsion are required for the BWB designs with a distributed propulsion system to have comparable gross weight as those with a conventional propulsion system. Therefore

  19. Aircraft integrated design and analysis: A classroom experience

    NASA Technical Reports Server (NTRS)

    1988-01-01

    AAE 451 is the capstone course required of all senior undergraduates in the School of Aeronautics and Astronautics at Purdue University. During the past year the first steps of a long evolutionary process were taken to change the content and expectations of this course. These changes are the result of the availability of advanced computational capabilities and sophisticated electronic media availability at Purdue. This presentation will describe both the long range objectives and this year's experience using the High Speed Commercial Transport (HSCT) design, the AIAA Long Duration Aircraft design and a Remotely Piloted Vehicle (RPV) design proposal as project objectives. The central goal of these efforts was to provide a user-friendly, computer-software-based, environment to supplement traditional design course methodology. The Purdue University Computer Center (PUCC), the Engineering Computer Network (ECN), and stand-alone PC's were used for this development. This year's accomplishments centered primarily on aerodynamics software obtained from the NASA Langley Research Center and its integration into the classroom. Word processor capability for oral and written work and computer graphics were also blended into the course. A total of 10 HSCT designs were generated, ranging from twin-fuselage and forward-swept wing aircraft, to the more traditional delta and double-delta wing aircraft. Four Long Duration Aircraft designs were submitted, together with one RPV design tailored for photographic surveillance. Supporting these activities were three video satellite lectures beamed from NASA/Langley to Purdue. These lectures covered diverse areas such as an overview of HSCT design, supersonic-aircraft stability and control, and optimization of aircraft performance. Plans for next year's effort will be reviewed, including dedicated computer workstation utilization, remote satellite lectures, and university/industrial cooperative efforts.

  20. Aerodynamic design trends for commercial aircraft

    NASA Technical Reports Server (NTRS)

    Hilbig, R.; Koerner, H.

    1986-01-01

    Recent research on advanced-configuration commercial aircraft at DFVLR is surveyed, with a focus on aerodynamic approaches to improved performance. Topics examined include transonic wings with variable camber or shock/boundary-layer control, wings with reduced friction drag or laminarized flow, prop-fan propulsion, and unusual configurations or wing profiles. Drawings, diagrams, and graphs of predicted performance are provided, and the need for extensive development efforts using powerful computer facilities, high-speed and low-speed wind tunnels, and flight tests of models (mounted on specially designed carrier aircraft) is indicated.

  1. Design of a spanloader cargo aircraft

    NASA Technical Reports Server (NTRS)

    Weisshaar, Terrence A.

    1989-01-01

    The design features of an aircraft capable of fulfilling a long haul, high capacity cargo mission are described. This span-loading aircraft, or flying wing, is capable of carrying extremely large payloads and is expected to be in demand to replace the slow-moving cargo ships currently in use. The spanloader seeks to reduce empty weight by eliminating the aircraft fuselage. Disadvantages are the thickness of the cargo-containing wing, and resulting stability and control problems. The spanloader presented here has a small fuselage, low-aspect ratio wings, winglets, and uses six turbofan engines for propulsion. It will have a payload capacity of 300,000 pounds plus 30 first class passengers and 6 crew members. Its projected market is transportation of freight from Europe and the U.S.A. to countries in the Pacific Basin. Cost estimates support its economic feasibility.

  2. Navier-Stokes computations useful in aircraft design

    NASA Technical Reports Server (NTRS)

    Holst, Terry L.

    1990-01-01

    Large scale Navier-Stokes computations about aircraft components as well as reasonably complete aircraft configurations are presented and discussed. Speed and memory requirements are described for various general problem classes, which in some cases are already being used in the industrial design environment. Recent computed results, with experimental comparisons when available, are included to highlight the presentation. Finally, prospects for the future are described and recommendations for areas of concentrated research are indicated. The future of Navier-Stokes computations is seen to be rapidly expanding across a broad front of applications, which includes the entire subsonic-to-hypersonic speed regime.

  3. Design of a 4-seat, general aviation, electric aircraft

    NASA Astrophysics Data System (ADS)

    Rajagopalan, Arvindhakshan

    Range and payload of current electric aircraft is limited primarily due to low energy density of batteries. However, recent advances in battery technology promise storage of more than 1 kWh of energy per kilogram of weight in the near future. This kind of energy storage makes possible the design of an electric aircraft comparable to, if not better than existing state-of-the art general aviation aircraft powered by internal combustion engines. This thesis explores through parametric studies the effect of lift-to-drag ratio, flight speed, and cruise altitude on required thrust power and battery energy and presents the conceptual and preliminary design of a four-seat, general aviation electric aircraft with a takeoff weight of 1750 kg, a range of 800 km, and a cruise speed of 200 km/h. An innovative configuration design will take full advantage of the electric propulsion system, while a Lithium-Polymer battery and a DC brush less motor will provide the power. Advanced aerodynamics will explore the greatest possible extend of laminar flow on the fuselage, the wing, and the empennage surfaces to minimize drag, while advanced composite structures will provide the greatest possible savings on empty weight. The proposed design is intended to be certifiable under current FAR 23 requirements.

  4. Manx: Close air support aircraft preliminary design

    NASA Technical Reports Server (NTRS)

    Amy, Annie; Crone, David; Hendrickson, Heidi; Willis, Randy; Silva, Vince

    1991-01-01

    The Manx is a twin engine, twin tailed, single seat close air support design proposal for the 1991 Team Student Design Competition. It blends advanced technologies into a lightweight, high performance design with the following features: High sensitivity (rugged, easily maintained, with night/adverse weather capability); Highly maneuverable (negative static margin, forward swept wing, canard, and advanced avionics result in enhanced aircraft agility); and Highly versatile (design flexibility allows the Manx to contribute to a truly integrated ground team capable of rapid deployment from forward sites).

  5. Energy Conversion and Storage Requirements for Hybrid Electric Aircraft

    NASA Technical Reports Server (NTRS)

    Misra, Ajay

    2016-01-01

    Among various options for reducing greenhouse gases in future large commercial aircraft, hybrid electric option holds significant promise. In the hybrid electric aircraft concept, gas turbine engine is used in combination with an energy storage system to drive the fan that propels the aircraft, with gas turbine engine being used for certain segments of the flight cycle and energy storage system being used for other segments. The paper will provide an overview of various energy conversion and storage options for hybrid electric aircraft. Such options may include fuel cells, batteries, super capacitors, multifunctional structures with energy storage capability, thermoelectric, thermionic or a combination of any of these options. The energy conversion and storage requirements for hybrid electric aircraft will be presented. The role of materials in energy conversion and storage systems for hybrid electric aircraft will be discussed.

  6. Aircraft requirements for low/medium density markets

    NASA Technical Reports Server (NTRS)

    Ausrotas, R.; Dodge, S.; Faulkner, H.; Glendinning, I.; Hays, A.; Simpson, R.; Swan, W.; Taneja, N.; Vittek, J.

    1973-01-01

    A study was conducted to determine the demand for and the economic factors involved in air transportation in a low and medium density market. The subjects investigated are as follows: (1) industry and market structure, (2) aircraft analysis, (3) economic analysis, (4) field surveys, and (5) computer network analysis. Graphs are included to show the economic requirements and the aircraft performance characteristics.

  7. Display/control requirements for automated VTOL aircraft

    NASA Technical Reports Server (NTRS)

    Hoffman, W. C.; Kleinman, D. L.; Young, L. R.

    1976-01-01

    A systematic design methodology for pilot displays in advanced commercial VTOL aircraft was developed and refined. The analyst is provided with a step-by-step procedure for conducting conceptual display/control configurations evaluations for simultaneous monitoring and control pilot tasks. The approach consists of three phases: formulation of information requirements, configuration evaluation, and system selection. Both the monitoring and control performance models are based upon the optimal control model of the human operator. Extensions to the conventional optimal control model required in the display design methodology include explicit optimization of control/monitoring attention; simultaneous monitoring and control performance predictions; and indifference threshold effects. The methodology was applied to NASA's experimental CH-47 helicopter in support of the VALT program. The CH-47 application examined the system performance of six flight conditions. Four candidate configurations are suggested for evaluation in pilot-in-the-loop simulations and eventual flight tests.

  8. Probabilistic Methods for Uncertainty Propagation Applied to Aircraft Design

    NASA Technical Reports Server (NTRS)

    Green, Lawrence L.; Lin, Hong-Zong; Khalessi, Mohammad R.

    2002-01-01

    Three methods of probabilistic uncertainty propagation and quantification (the method of moments, Monte Carlo simulation, and a nongradient simulation search method) are applied to an aircraft analysis and conceptual design program to demonstrate design under uncertainty. The chosen example problems appear to have discontinuous design spaces and thus these examples pose difficulties for many popular methods of uncertainty propagation and quantification. However, specific implementation features of the first and third methods chosen for use in this study enable successful propagation of small uncertainties through the program. Input uncertainties in two configuration design variables are considered. Uncertainties in aircraft weight are computed. The effects of specifying required levels of constraint satisfaction with specified levels of input uncertainty are also demonstrated. The results show, as expected, that the designs under uncertainty are typically heavier and more conservative than those in which no input uncertainties exist.

  9. Subsonic Aircraft With Regression and Neural-Network Approximators Designed

    NASA Technical Reports Server (NTRS)

    Patnaik, Surya N.; Hopkins, Dale A.

    2004-01-01

    At the NASA Glenn Research Center, NASA Langley Research Center's Flight Optimization System (FLOPS) and the design optimization testbed COMETBOARDS with regression and neural-network-analysis approximators have been coupled to obtain a preliminary aircraft design methodology. For a subsonic aircraft, the optimal design, that is the airframe-engine combination, is obtained by the simulation. The aircraft is powered by two high-bypass-ratio engines with a nominal thrust of about 35,000 lbf. It is to carry 150 passengers at a cruise speed of Mach 0.8 over a range of 3000 n mi and to operate on a 6000-ft runway. The aircraft design utilized a neural network and a regression-approximations-based analysis tool, along with a multioptimizer cascade algorithm that uses sequential linear programming, sequential quadratic programming, the method of feasible directions, and then sequential quadratic programming again. Optimal aircraft weight versus the number of design iterations is shown. The central processing unit (CPU) time to solution is given. It is shown that the regression-method-based analyzer exhibited a smoother convergence pattern than the FLOPS code. The optimum weight obtained by the approximation technique and the FLOPS code differed by 1.3 percent. Prediction by the approximation technique exhibited no error for the aircraft wing area and turbine entry temperature, whereas it was within 2 percent for most other parameters. Cascade strategy was required by FLOPS as well as the approximators. The regression method had a tendency to hug the data points, whereas the neural network exhibited a propensity to follow a mean path. The performance of the neural network and regression methods was considered adequate. It was at about the same level for small, standard, and large models with redundancy ratios (defined as the number of input-output pairs to the number of unknown coefficients) of 14, 28, and 57, respectively. In an SGI octane workstation (Silicon Graphics

  10. Application of heuristic optimization in aircraft design

    NASA Astrophysics Data System (ADS)

    Hu, Zhenning

    Genetic algorithms and the related heuristic optimization strategies are introduced and their applications in the aircraft design are developed. Generally speaking, genetic algorithms belong to non-deterministic direct search methods, which are most powerful in finding optimum or near-optimum solutions of a very complex system where a little priori knowledge is known. Therefore they have a wide application in aerospace systems. Two major aircraft optimal design projects are illustrated in this dissertation. The first is the application of material optimization of aligned fiber laminate composites in the presence of stress concentrations. After a large number of tests on laminates with different layers, genetic algorithms find an alignment pattern in a certain range for the Boeing Co. specified material. The second project is the application of piezoelectric actuator placement on a generic tail skins to reduce the 2nd mode vibration caused by buffet, which is part of a Boeing project to control the buffet effect on aircraft. In this project, genetic algorithms are closely involved with vibration analysis and finite element analysis. Actuator optimization strategies are first tested on the theoretical beam models to gain experience, and then the generic tail model is applied. Genetic algorithms achieve a great success in optimizing up to 888 actuator parameters on the tail skins.

  11. TRUSS: An intelligent design system for aircraft wings

    NASA Technical Reports Server (NTRS)

    Bates, Preston R.; Schrage, Daniel P.

    1989-01-01

    Competitive leadership in the international marketplace, superiority in national defense, excellence in productivity, and safety of both private and public systems are all national defense goals which are dependent on superior engineering design. In recent years, it has become more evident that early design decisions are critical, and when only based on performance often result in products which are too expensive, hard to manufacture, or unsupportable. Better use of computer-aided design tools and information-based technologies is required to produce better quality United States products. A program is outlined here to explore the use of knowledge based expert systems coupled with numerical optimization, database management techniques, and designer interface methods in a networked design environment to improve and assess design changes due to changing emphasis or requirements. The initial structural design of a tiltrotor aircraft wing is used as a representative example to demonstrate the approach being followed.

  12. Techno-economic requirements for composite aircraft components

    NASA Technical Reports Server (NTRS)

    Palmer, Ray

    1993-01-01

    The primary reason for use of composites is to save structural weight. A well designed composite aircraft structure will usually save 25-30 percent of a well designed metal structure. The weight savings then translates into improved performance of the aircraft in measures of greater payload, increased flying range or improved efficiency - less use of fuel. Composite materials offer technical advantages. Key technical advantages that composites offer are high stiffness, tailored strength capability, fatigue resistance, and corrosion resistance. Low thermal expansion properties produce dimensionally stable structures over a wide range of temperature. Specialty resin 'char' forming characteristics in a fire environment offer potential fire barrier application and safer aircraft. The materials and processes of composite fabrication offer the potential for lower cost structures in the near future. The application of composite materials to aircraft are discussed.

  13. Basic avionics module design for general aviation aircraft

    NASA Technical Reports Server (NTRS)

    Smyth, R. K.; Smyth, D. E.

    1978-01-01

    The design of an advanced digital avionics system (basic avionics module) for general aviation aircraft operated with a single pilot under IFR conditions is described. The microprocessor based system provided all avionic functions, including flight management, navigation, and lateral flight control. The mode selection was interactive with the pilot. The system used a navigation map data base to provide operation in the current and planned air traffic control environment. The system design included software design listings for some of the required modules. The distributed microcomputer uses the IEEE 488 bus for interconnecting the microcomputer and sensors.

  14. Improving the Aircraft Design Process Using Web-Based Modeling and Simulation

    NASA Technical Reports Server (NTRS)

    Reed, John A.; Follen, Gregory J.; Afjeh, Abdollah A.; Follen, Gregory J. (Technical Monitor)

    2000-01-01

    Designing and developing new aircraft systems is time-consuming and expensive. Computational simulation is a promising means for reducing design cycle times, but requires a flexible software environment capable of integrating advanced multidisciplinary and multifidelity analysis methods, dynamically managing data across heterogeneous computing platforms, and distributing computationally complex tasks. Web-based simulation, with its emphasis on collaborative composition of simulation models, distributed heterogeneous execution, and dynamic multimedia documentation, has the potential to meet these requirements. This paper outlines the current aircraft design process, highlighting its problems and complexities, and presents our vision of an aircraft design process using Web-based modeling and simulation.

  15. Improving the Aircraft Design Process Using Web-based Modeling and Simulation

    NASA Technical Reports Server (NTRS)

    Reed, John A.; Follen, Gregory J.; Afjeh, Abdollah A.

    2003-01-01

    Designing and developing new aircraft systems is time-consuming and expensive. Computational simulation is a promising means for reducing design cycle times, but requires a flexible software environment capable of integrating advanced multidisciplinary and muitifidelity analysis methods, dynamically managing data across heterogeneous computing platforms, and distributing computationally complex tasks. Web-based simulation, with its emphasis on collaborative composition of simulation models, distributed heterogeneous execution, and dynamic multimedia documentation, has the potential to meet these requirements. This paper outlines the current aircraft design process, highlighting its problems and complexities, and presents our vision of an aircraft design process using Web-based modeling and simulation.

  16. 32 CFR Table 2 to Part 855 - Aircraft Liability Coverage Requirements

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 6 2011-07-01 2011-07-01 false Aircraft Liability Coverage Requirements 2 Table... AIRCRAFT CIVIL AIRCRAFT USE OF UNITED STATES AIR FORCE AIRFIELDS Pt. 855, Table 2 Table 2 to Part 855—Aircraft Liability Coverage Requirements Aircraft maximum gross takeoff weight (MGTOW) Coverage for...

  17. 32 CFR Table 2 to Part 855 - Aircraft Liability Coverage Requirements

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 6 2013-07-01 2013-07-01 false Aircraft Liability Coverage Requirements 2 Table... AIRCRAFT CIVIL AIRCRAFT USE OF UNITED STATES AIR FORCE AIRFIELDS Pt. 855, Table 2 Table 2 to Part 855—Aircraft Liability Coverage Requirements Aircraft maximum gross takeoff weight(MGTOW) Coverage for...

  18. 32 CFR Table 2 to Part 855 - Aircraft Liability Coverage Requirements

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 6 2010-07-01 2010-07-01 false Aircraft Liability Coverage Requirements 2 Table... AIRCRAFT CIVIL AIRCRAFT USE OF UNITED STATES AIR FORCE AIRFIELDS Pt. 855, Table 2 Table 2 to Part 855—Aircraft Liability Coverage Requirements Aircraft maximum gross takeoff weight (MGTOW) Coverage for...

  19. 32 CFR Table 2 to Part 855 - Aircraft Liability Coverage Requirements

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 6 2012-07-01 2012-07-01 false Aircraft Liability Coverage Requirements 2 Table... AIRCRAFT CIVIL AIRCRAFT USE OF UNITED STATES AIR FORCE AIRFIELDS Pt. 855, Table 2 Table 2 to Part 855—Aircraft Liability Coverage Requirements Aircraft maximum gross takeoff weight(MGTOW) Coverage for...

  20. 32 CFR Table 2 to Part 855 - Aircraft Liability Coverage Requirements

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 6 2014-07-01 2014-07-01 false Aircraft Liability Coverage Requirements 2 Table... AIRCRAFT CIVIL AIRCRAFT USE OF UNITED STATES AIR FORCE AIRFIELDS Pt. 855, Table 2 Table 2 to Part 855—Aircraft Liability Coverage Requirements Aircraft maximum gross takeoff weight(MGTOW) Coverage for...

  1. Multidisciplinary Design and Analysis for Commercial Aircraft

    NASA Technical Reports Server (NTRS)

    Cummings, Russell M.; Freeman, H. JoAnne

    1999-01-01

    Multidisciplinary design and analysis (MDA) has become the normal mode of operation within most aerospace companies, but the impact of these changes have largely not been reflected at many universities. On an effort to determine if the emergence of multidisciplinary design concepts should influence engineering curricula, NASA has asked several universities (Virginia Tech, Georgia Tech, Clemson, BYU, and Cal Poly) to investigate the practicality of introducing MDA concepts within their undergraduate curricula. A multidisciplinary team of faculty, students, and industry partners evaluated the aeronautical engineering curriculum at Cal Poly. A variety of ways were found to introduce MDA themes into the curriculum without adding courses or units to the existing program. Both analytic and educational tools for multidisciplinary design of aircraft have been developed and implemented.

  2. Methodology for design of active controls for V/STOL aircraft

    NASA Technical Reports Server (NTRS)

    Meyer, G.; Cicolani, L.

    1976-01-01

    An effort to develop techniques for the design of integrated, fully automatic flight control systems for powered lift STOL and VTOL aircraft is described. The structure is discussed of the control system which has been developed to deal with the strong nonlinearities inherent in this class of aircraft, to admit automatic coupling with the advanced ATC requiring accurate execution of complex trajectories, and to admit a variety of active control tasks. The specific case considered is the Augmentor Wing Research Aircraft.

  3. Design of a turbofan powered regional transport aircraft

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The majority of the market for small commercial transport aircraft is dominated by high efficiency propeller driven aircraft of non-U.S. manufacture. During the past year, an aircraft was designed with ranges of up to 1500 nautical miles and passenger loads between 50 and 90. Special emphasis was placed upon keeping acquisition cost and direct operating costs at a low level while providing passengers with quality comfort levels. Several designs are presented which place a high premium on design innovation.

  4. Global stratospheric change: Requirements for a Very-High-Altitude Aircraft for Atmospheric Research

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The workshop on Requirements for a Very-High-Altitude Aircraft for Atmospheric Research, sponsored by NASA Ames Research Center, was held July 15 to 16, 1989, at Truckee, CA. The workshop had two purposes: to assess the scientific justification for a new aircraft that will support stratospheric research beyond the altitudes accessible to the NASA ER-2; and to determine the aircraft characteristics (e.g., ceiling altitude, payload accommodations, range, flight duration, operational capabilities) required to perform the stratospheric research referred to in the justification. To accomplish these purposes, the workshop brought together a cross-section of stratospheric scientists with several aircraft design and operations experts. The stratospheric scientists included theoreticians as well as experimenters with experience in remote and in situ measurements from satellites, rockets, balloons, aircraft, and the ground. Discussions of required aircraft characteristics focused on the needs of stratospheric research. It was recognized that an aircraft optimal for stratospheric science would also be useful for other applications, including remote measurements of Earth's surface. A brief description of these other applications was given at the workshop.

  5. Airborne antenna coverage requirements for the TCV B-737 aircraft. [for operation with microwave landing systems

    NASA Technical Reports Server (NTRS)

    Southall, W. A., Jr.; White, W. F.

    1978-01-01

    The airborne antenna line of sight look angle requirement for operation with a Microwave Landing System (MLS) was studied. The required azimuth and elevation line of sight look angles from an antenna located on an aircraft to three ground based antenna sites at the Wallops Flight Center (FPS-16 radar, MLS aximuth, and MLS elevation) as the aircraft follows specific approach paths selected as representative of MLS operations at the Denver, Colorado, terminal area are presented. These required azimuth and elevation look angles may be interpreted as basic design requirements for antenna of the TCV B-737 airplane for MLS operations along these selected approach paths.

  6. 49 CFR 1562.23 - Aircraft operator and passenger requirements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... flightcrew member of an aircraft, as defined in 49 CFR 1540.5, operating into or out of DCA: (1) Must undergo... designated under 14 CFR part 73; (ii) A flight restriction established under 14 CFR 91.141; (iii) Special security instructions issued under 14 CFR 99.7; (iv) A restricted area designated under 14 CFR part 73;...

  7. 49 CFR 1562.23 - Aircraft operator and passenger requirements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... flightcrew member of an aircraft, as defined in 49 CFR 1540.5, operating into or out of DCA: (1) Must undergo... designated under 14 CFR part 73; (ii) A flight restriction established under 14 CFR 91.141; (iii) Special security instructions issued under 14 CFR 99.7; (iv) A restricted area designated under 14 CFR part 73;...

  8. 49 CFR 1562.23 - Aircraft operator and passenger requirements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... flightcrew member of an aircraft, as defined in 49 CFR 1540.5, operating into or out of DCA: (1) Must undergo... designated under 14 CFR part 73; (ii) A flight restriction established under 14 CFR 91.141; (iii) Special security instructions issued under 14 CFR 99.7; (iv) A restricted area designated under 14 CFR part 73;...

  9. 49 CFR 1562.23 - Aircraft operator and passenger requirements.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... flightcrew member of an aircraft, as defined in 49 CFR 1540.5, operating into or out of DCA: (1) Must undergo... designated under 14 CFR part 73; (ii) A flight restriction established under 14 CFR 91.141; (iii) Special security instructions issued under 14 CFR 99.7; (iv) A restricted area designated under 14 CFR part 73;...

  10. Design study: A 186 kW lightweight diesel aircraft engine

    NASA Technical Reports Server (NTRS)

    Brouwers, A. P.

    1980-01-01

    The design of an aircraft engine capable of developing 186 kW shaft power at a 7620 m altitude is described. The 186 kW design takes into account expected new developments in aircraft designs resulting in a reassessment of the power requirements at the cruise mode operation. Based on the results of this analysis a three phase technology development program is projected resulting in production dates of 1985, 1992, and 2000.

  11. Conceptual design proposal: HUGO global range/mobility transport aircraft

    NASA Technical Reports Server (NTRS)

    Johnston, Tom; Perretta, Dave; Mcbane, Doug; Morin, Greg; Thomas, Greg; Woodward, Joe; Gulakowski, Steve

    1993-01-01

    With the collapse of the former Soviet Union and the emergence of the United Nations actively pursuing a peace keeping role in world affairs, the United States has been forced into a position as the world's leading peace enforcer. It is still a very dangerous world with seemingly never ending ideological, territorial, and economic disputes requiring the U.S. to maintain a credible deterrent posture in this uncertain environment. This has created an urgent need to rapidly transport large numbers of troops and equipment from the continental United States (CONUS) to any potential world trouble spot by means of a global range/mobility transport aircraft. The most recent examples being Operation Desert Shield/Storm and Operation Restore Hope. To meet this challenge head-on, a request for proposal (RFP) was developed and incorporated into the 1992/1993 AIAA/McDonnell Douglas Corporation Graduate Team Aircraft Design Competition. The RFP calls for the conceptual design and justification of a large aircraft capable of power projecting a significant military force without surface transportation reliance.

  12. Simulation Tools Model Icing for Aircraft Design

    NASA Technical Reports Server (NTRS)

    2012-01-01

    Here s a simple science experiment to try: Place an unopened bottle of distilled water in your freezer. After 2-3 hours, if the water is pure enough, you will notice that it has not frozen. Carefully pour the water into a bowl with a piece of ice in it. When it strikes the ice, the water will instantly freeze. One of the most basic and commonly known scientific facts is that water freezes at around 32 F. But this is not always the case. Water lacking any impurities for ice crystals to form around can be supercooled to even lower temperatures without freezing. High in the atmosphere, water droplets can achieve this delicate, supercooled state. When a plane flies through clouds containing these droplets, the water can strike the airframe and, like the supercooled water hitting the ice in the experiment above, freeze instantly. The ice buildup alters the aerodynamics of the plane - reducing lift and increasing drag - affecting its performance and presenting a safety issue if the plane can no longer fly effectively. In certain circumstances, ice can form inside aircraft engines, another potential hazard. NASA has long studied ways of detecting and countering atmospheric icing conditions as part of the Agency s efforts to enhance aviation safety. To do this, the Icing Branch at Glenn Research Center utilizes a number of world-class tools, including the Center s Icing Research Tunnel and the NASA 607 icing research aircraft, a "flying laboratory" for studying icing conditions. The branch has also developed a suite of software programs to help aircraft and icing protection system designers understand the behavior of ice accumulation on various surfaces and in various conditions. One of these innovations is the LEWICE ice accretion simulation software. Initially developed in the 1980s (when Glenn was known as Lewis Research Center), LEWICE has become one of the most widely used tools in icing research and aircraft design and certification. LEWICE has been transformed over

  13. Some comparisons of US and USSR aircraft design developments

    NASA Technical Reports Server (NTRS)

    Spearman, M. L.

    1985-01-01

    A review is given of the design and development of some US and USSR aircraft. The emphasis is on the historical development of large aircraft-civil and military transports and bombers. Design trends are somewhat similar for the two countries and indications are that some fundamental characteristics are dictated more by ideological differences rather than technological differences. A brief description is given in a more or less chronological order of the major bomber aircraft, major civil and military transport aircraft, and the development of the air transport systems.

  14. Aerodynamic Design Opportunities for Future Supersonic Aircraft

    NASA Technical Reports Server (NTRS)

    Wood, Richard M.; Bauer, Steven X. S.; Flamm, Jeffrey D.

    2002-01-01

    A discussion of a diverse set of aerodynamic opportunities to improve the aerodynamic performance of future supersonic aircraft has been presented and discussed. These ideas are offered to the community in a hope that future supersonic vehicle development activities will not be hindered by past efforts. A number of nonlinear flow based drag reduction technologies are presented and discussed. The subject technologies are related to the areas of interference flows, vehicle concepts, vortex flows, wing design, advanced control effectors, and planform design. The authors also discussed the importance of improving the aerodynamic design environment to allow creativity and knowledge greater influence. A review of all of the data presented show that pressure drag reductions on the order of 50 to 60 counts are achievable, compared to a conventional supersonic cruise vehicle, with the application of several of the discussed technologies. These drag reductions would correlate to a 30 to 40% increase in cruise L/D (lift-to-drag ratio) for a commercial supersonic transport.

  15. The design of a long range megatransport aircraft

    NASA Technical Reports Server (NTRS)

    Weisshaar, Terrence A.; Allen, Carl L.

    1992-01-01

    During the period from August 1991 - June 1992 two design classes at Purdue University participated in the design of a long range, high capacity transport aircraft, dubbed the megatransport. Thirteen Purdue design teams generated RFP's that defined passenger capability and range, based upon team perception of market needs and infrastructure constraints. Turbofan engines were designed by each group to power these aircraft. The design problem and the variety of solutions developed are described in an attached paper.

  16. Conceptual design of single turbofan engine powered light aircraft

    NASA Technical Reports Server (NTRS)

    Snyder, F. S.; Voorhees, C. G.; Heinrich, A. M.; Baisden, D. N.

    1977-01-01

    The conceptual design of a four place single turbofan engine powered light aircraft was accomplished utilizing contemporary light aircraft conventional design techniques as a means of evaluating the NASA-Ames General Aviation Synthesis Program (GASP) as a preliminary design tool. In certain areas, disagreement or exclusion were found to exist between the results of the conventional design and GASP processes. Detail discussion of these points along with the associated contemporary design methodology are presented.

  17. Conceptual design of high speed supersonic aircraft: A brief review on SR-71 (Blackbird) aircraft

    NASA Astrophysics Data System (ADS)

    Xue, Hui; Khawaja, H.; Moatamedi, M.

    2014-12-01

    The paper presents the conceptual design of high-speed supersonic aircraft. The study focuses on SR-71 (Blackbird) aircraft. The input to the conceptual design is a mission profile. Mission profile is a flight profile of the aircraft defined by the customer. This paper gives the SR-71 aircraft mission profile specified by US air force. Mission profile helps in defining the attributes the aircraft such as wing profile, vertical tail configuration, propulsion system, etc. Wing profile and vertical tail configurations have direct impact on lift, drag, stability, performance and maneuverability of the aircraft. A propulsion system directly influences the performance of the aircraft. By combining the wing profile and the propulsion system, two important parameters, known as wing loading and thrust to weight ratio can be calculated. In this work, conceptual design procedure given by D. P. Raymer (AIAA Educational Series) is applied to calculate wing loading and thrust to weight ratio. The calculated values are compared against the actual values of the SR-71 aircraft. Results indicates that the values are in agreement with the trend of developments in aviation.

  18. 14 CFR 294.40 - Aircraft accident liability insurance requirements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... engage in charter air service unless such carrier has and maintains in effect aircraft accident liability... on file with the Department's Office of International Aviation, Special Authorities Division, at all... (AVIATION PROCEEDINGS) ECONOMIC REGULATIONS CANADIAN CHARTER AIR TAXI OPERATORS Insurance Requirements §...

  19. 14 CFR 294.40 - Aircraft accident liability insurance requirements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... engage in charter air service unless such carrier has and maintains in effect aircraft accident liability... on file with the Department's Office of International Aviation, Special Authorities Division, at all... (AVIATION PROCEEDINGS) ECONOMIC REGULATIONS CANADIAN CHARTER AIR TAXI OPERATORS Insurance Requirements §...

  20. 49 CFR 1562.23 - Aircraft operator and passenger requirements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...) Date and place of birth. (iv) Social security number, (submission is voluntary, although recommended... flightcrew member of an aircraft, as defined in 49 CFR 1540.5, operating into or out of DCA: (1) Must undergo... designated under 14 CFR part 73; (ii) A flight restriction established under 14 CFR 91.141; (iii)...

  1. Sabot high speed interceptor AE 4273 aircraft design

    NASA Technical Reports Server (NTRS)

    Dober, Dave; Al-Hashel, Waleed; Baldocchi, Bob; Berg, Tim; Lindsay, Curt; Mcatee, Aaron; Sergent, Dan; Dunbrack, Harry

    1992-01-01

    Today's carrier based deck launched intercept (DLI) mission is a vital one that is aimed at protecting the carrier battle group and detering potential adversaries. The assets deployed on our carrier decks are able to complete this mission but with very limited range. The waverider concept has great potential to increase the range of this carrier based mission. As a result, a request for proposals (RFP) was developed which contains design requirements for an aircraft that can complete this mission through the utilization of waverider technology.

  2. Advances in aircraft design: Multiobjective optimization and a markup language

    NASA Astrophysics Data System (ADS)

    Deshpande, Shubhangi

    Today's modern aerospace systems exhibit strong interdisciplinary coupling and require a multidisciplinary, collaborative approach. Analysis methods that were once considered feasible only for advanced and detailed design are now available and even practical at the conceptual design stage. This changing philosophy for conducting conceptual design poses additional challenges beyond those encountered in a low fidelity design of aircraft. This thesis takes some steps towards bridging the gaps in existing technologies and advancing the state-of-the-art in aircraft design. The first part of the thesis proposes a new Pareto front approximation method for multiobjective optimization problems. The method employs a hybrid optimization approach using two derivative free direct search techniques, and is intended for solving blackbox simulation based multiobjective optimization problems with possibly nonsmooth functions where the analytical formof the objectives is not known and/or the evaluation of the objective function(s) is very expensive (very common in multidisciplinary design optimization). A new adaptive weighting scheme is proposed to convert a multiobjective optimization problem to a single objective optimization problem. Results show that the method achieves an arbitrarily close approximation to the Pareto front with a good collection of well-distributed nondominated points. The second part deals with the interdisciplinary data communication issues involved in a collaborative mutidisciplinary aircraft design environment. Efficient transfer, sharing, and manipulation of design and analysis data in a collaborative environment demands a formal structured representation of data. XML, a W3C recommendation, is one such standard concomitant with a number of powerful capabilities that alleviate interoperability issues. A compact, generic, and comprehensive XML schema for an aircraft design markup language (ADML) is proposed here to provide a common language for data

  3. Multidisciplinary aircraft conceptual design optimization considering fidelity uncertainties

    NASA Astrophysics Data System (ADS)

    Neufeld, Daniel

    Aircraft conceptual design traditionally utilizes simplified analysis methods and empirical equations to establish the basic layout of new aircraft. Applying optimization methods to aircraft conceptual design may yield solutions that are found to violate constraints when more sophisticated analysis methods are introduced. The designer's confidence that proposed conceptual designs will meet their performance targets is limited when conventional optimization approaches are utilized. Therefore, there is a need for an optimization approach that takes into account the uncertainties that arise when traditional analysis methods are used in aircraft conceptual design optimization. This research introduces a new aircraft conceptual design optimization approach that utilizes the concept of Reliability Based Design Optimization (RBDO). RyeMDO, a framework for multi-objective, multidisciplinary RBDO was developed for this purpose. The performance and effectiveness of the RBDO-MDO approaches implemented in RyeMDO were evaluated to identify the most promising approaches for aircraft conceptual design optimization. Additionally, an approach for quantifying the errors introduced by approximate analysis methods was developed. The approach leverages available historical data to quantify the uncertainties introduced by approximate analysis methods in two engineering case studies: the conceptual design optimization of an aircraft wing box structure and the conceptual design optimization of a commercial aircraft. The case studies were solved with several of the most promising RBDO-MDO integrated approaches. The proposed approach yields more conservative solutions and estimates the risk associated with each solution, enabling designers to reduce the likelihood that conceptual aircraft designs will fail to meet objectives later in the design process.

  4. Structural concept trends for commercial supersonic cruise aircraft design

    NASA Technical Reports Server (NTRS)

    Sakat, I. F.; Davis, G. W.; Saelman, B.

    1980-01-01

    Structural concept trends for future commercial supersonic transport aircraft are considered. Highlights, including the more important design conditions and requirements, of two studies are discussed. Knowledge of these design parameters, as determined through studies involving the application of flexible mathematical models, enabled inclusion of aeroelastic considerations in the structural-material concepts evaluation. The design trends and weight data of the previous contractual study of Mach 2.7 cruise aircraft were used as the basis for incorporating advanced materials and manufacturing approaches to the airframe for reduced weight and cost. Structural studies of design concepts employing advanced aluminum alloys, advanced composites, and advanced titanium alloy and manufacturing techniques are compared for a Mach 2.0 arrow-wing configuration concept. Appraisals of the impact of these new materials and manufacturing concepts to the airframe design are shown and compared. The research and development to validate the potential sources of weight and cost reduction identified as necessary to attain a viable advanced commercial supersonic transport are discussed.

  5. Design of short haul aircraft for fuel conservation

    NASA Technical Reports Server (NTRS)

    Bowden, M. K.; Sweet, H. S.; Waters, M. H.

    1975-01-01

    Current jet fuel prices of twice the 1972 level have significantly changed the characteristics of airplane design for best economy. The results of a contract with the NASA Ames Advanced Concepts and Missions Division confirmed the economic desirability of lower design cruise speeds and higher aspect-ratio wings compared to designs developed in the by-gone era of low fuel price. Evaluation of potential fuel conservation for short-haul aircraft showed that an interaction of airfoil technology and desirable engine characteristics is important: the supercritical airfoil permits higher aspect ratio wings with lower sweep; these, in turn, lower the cruise thrust requirements so that engines with higher bypass ratios are better matched in terms of lapse rate; lower cruise speeds (which are also better for fuel and operating cost economy) push the desired bypass ratio up further. Thus, if fuel prices remain high, or rise further, striking reductions in community noise level can be achieved as a fallout in development of a 1980s airplane and engine. Analyses are presented of developmental trends in the design of short-haul aircraft with lower cruise speeds and higher aspect-ratio wings, and the effects on fuel consumption of design field length, powered lift concepts, and turboprop as well as turbofan propulsion are discussed.

  6. The design of a long-range megatransport aircraft

    NASA Technical Reports Server (NTRS)

    Weisshaar, Terrence A.; Allen, Carl L.

    1992-01-01

    Aircraft manufacturers are examining the market and feasibility of long-range passenger aircraft carrying more than 600 passengers. These aircraft would carry travelers at reduced cost and, at the same time, reduce congestion around major airports. The design of a large, long-range transport involves broad issues such as: the integration of airport terminal facilities; passenger loading and unloading; trade-offs between aircraft size and the cost to reconfigure these existing facilities; and, defeating the 'square-cube' law. Thirteen Purdue design teams generated RFP's that defined passenger capability and range, based upon team perception of market needs and infrastructure constraints. Turbofan engines were designed by each group to power these aircraft. The design problem and the variety of solutions developed are reviewed.

  7. The role of computational fluid dynamics (CFD) in aircraft design

    SciTech Connect

    Tinoco, E.N. )

    1990-01-01

    The application of CFD to aircraft design configurations and its influence on the aircraft development and support process is analyzed. Results indicate that combining CFD and the wind tunnel can achieve design solutions that otherwise would not be found, and can also significantly reduce the length of the design cycle. It is concluded that CFD provides for a better understanding of flow physics, achievement of design solutions that are otherwise unobtainable, and reduction of development flowtime.

  8. Detailed design of a Ride Quality Augmentation System for commuter aircraft

    NASA Technical Reports Server (NTRS)

    Suikat, Reiner; Donaldson, Kent E.; Downing, David R.

    1989-01-01

    The design of a Ride Quality Augmentation System (RQAS) for commuter aircraft is documented. The RQAS is designed for a Cessna 402B, an 8 passenger prop twin representative to this class of aircraft. The purpose of the RQAS is the reduction of vertical and lateral accelerations of the aircraft due to atmospheric turbulence by the application of active control. The detailed design of the hardware (the aircraft modifications, the Ride Quality Instrumentation System (RQIS), and the required computer software) is examined. The aircraft modifications, consisting of the dedicated control surfaces and the hydraulic actuation system, were designed at Cessna Aircraft by Kansas University-Flight Research Laboratory. The instrumentation system, which consist of the sensor package, the flight computer, a Data Acquisition System, and the pilot and test engineer control panels, was designed by NASA-Langley. The overall system design and the design of the software, both for flight control algorithms and ground system checkout are detailed. The system performance is predicted from linear simulation results and from power spectral densities of the aircraft response to a Dryden gust. The results indicate that both accelerations are possible.

  9. NASA advanced design program. Design and analysis of a radio-controlled flying wing aircraft

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The main challenge of this project was to design an aircraft that will achieve stability while flying without a horizontal tail. The project focused on both the design, analysis and construction of a remotely piloted, elliptical shaped flying wing. The design team was composed of four sub-groups each of which dealt with the different aspects of the design, namely aerodynamics, stability and control, propulsion, and structures. Each member of the team initially researched the background information pertaining to specific facets of the project. Since previous work on this topic was limited, most of the focus of the project was directed towards developing an understanding of the natural instability of the aircraft. Once the design team entered the conceptual stage of the project, a series of compromises had to be made to satisfy the unique requirements of each sub-group. As a result of the numerous calculations and iterations necessary, computers were utilized extensively. In order to visualize the design and layout of the wing, engines and control surfaces, a solid modeling package was used to evaluate optimum design placements. When the design was finalized, construction began with the help of all the members of the project team. The nature of the carbon composite construction process demanded long hours of manual labor. The assembly of the engine systems also required precision hand work. The final product of this project is the Elang, a one-of-a-kind remotely piloted aircraft of composite construction powered by two ducted fan engines.

  10. Performance Evaluation Method for Dissimilar Aircraft Designs

    NASA Technical Reports Server (NTRS)

    Walker, H. J.

    1979-01-01

    A rationale is presented for using the square of the wingspan rather than the wing reference area as a basis for nondimensional comparisons of the aerodynamic and performance characteristics of aircraft that differ substantially in planform and loading. Working relationships are developed and illustrated through application to several categories of aircraft covering a range of Mach numbers from 0.60 to 2.00. For each application, direct comparisons of drag polars, lift-to-drag ratios, and maneuverability are shown for both nondimensional systems. The inaccuracies that may arise in the determination of aerodynamic efficiency based on reference area are noted. Span loading is introduced independently in comparing the combined effects of loading and aerodynamic efficiency on overall performance. Performance comparisons are made for the NACA research aircraft, lifting bodies, century-series fighter aircraft, F-111A aircraft with conventional and supercritical wings, and a group of supersonic aircraft including the B-58 and XB-70 bomber aircraft. An idealized configuration is included in each category to serve as a standard for comparing overall efficiency.

  11. Design and Development of the Aircraft Instrument Comprehension Program.

    ERIC Educational Resources Information Center

    Higgins, Norman C.

    The Aircraft Instrument Comprehension (AIC) Program is a self-instructional program designed to teach undergraduate student pilots to read instruments that indicate the position of the aircraft in flight, based on sequential instructional stages of information, prompted practice, and unprompted practice. The program includes a 36-item multiple…

  12. Advanced Technology Spark-Ignition Aircraft Piston Engine Design Study

    NASA Technical Reports Server (NTRS)

    Stuckas, K. J.

    1980-01-01

    The advanced technology, spark ignition, aircraft piston engine design study was conducted to determine the improvements that could be made by taking advantage of technology that could reasonably be expected to be made available for an engine intended for production by January 1, 1990. Two engines were proposed to account for levels of technology considered to be moderate risk and high risk. The moderate risk technology engine is a homogeneous charge engine operating on avgas and offers a 40% improvement in transportation efficiency over present designs. The high risk technology engine, with a stratified charge combustion system using kerosene-based jet fuel, projects a 65% improvement in transportation efficiency. Technology enablement program plans are proposed herein to set a timetable for the successful integration of each item of required advanced technology into the engine design.

  13. Review of evolving trends in blended wing body aircraft design

    NASA Astrophysics Data System (ADS)

    Okonkwo, Paul; Smith, Howard

    2016-04-01

    The desire to produce environmentally friendly aircraft that is aerodynamically efficient and capable of conveying large number of passengers over long ranges at reduced direct operating cost led aircraft designers to develop the Blended Wing Body (BWB) aircraft concept. The BWB aircraft represents a paradigm shift in the design of aircraft. The design provides aerodynamics and environmental benefits and is suitable for the integration of advanced systems and concepts like laminar flow technology, jet flaps and distributed propulsion. However, despite these benefits, the BWB is yet to be developed for commercial air transport due to several challenges. This paper reviews emerging trends in BWB aircraft design highlighting design challenges that have hindered the development of a BWB passenger transport aircraft. The study finds that in order to harness the advantages and reduce the deficiencies of a tightly coupled configuration like the BWB, a multidisciplinary design synthesis optimisation should be conducted with good handling and ride quality as objective functions within acceptable direct operating cost and noise bounds.

  14. A robust optimization methodology for preliminary aircraft design

    NASA Astrophysics Data System (ADS)

    Prigent, S.; Maréchal, P.; Rondepierre, A.; Druot, T.; Belleville, M.

    2016-05-01

    This article focuses on a robust optimization of an aircraft preliminary design under operational constraints. According to engineers' know-how, the aircraft preliminary design problem can be modelled as an uncertain optimization problem whose objective (the cost or the fuel consumption) is almost affine, and whose constraints are convex. It is shown that this uncertain optimization problem can be approximated in a conservative manner by an uncertain linear optimization program, which enables the use of the techniques of robust linear programming of Ben-Tal, El Ghaoui, and Nemirovski [Robust Optimization, Princeton University Press, 2009]. This methodology is then applied to two real cases of aircraft design and numerical results are presented.

  15. Aerostructural analysis and design optimization of composite aircraft

    NASA Astrophysics Data System (ADS)

    Kennedy, Graeme James

    High-performance composite materials exhibit both anisotropic strength and stiffness properties. These anisotropic properties can be used to produce highly-tailored aircraft structures that meet stringent performance requirements, but these properties also present unique challenges for analysis and design. New tools and techniques are developed to address some of these important challenges. A homogenization-based theory for beams is developed to accurately predict the through-thickness stress and strain distribution in thick composite beams. Numerical comparisons demonstrate that the proposed beam theory can be used to obtain highly accurate results in up to three orders of magnitude less computational time than three-dimensional calculations. Due to the large finite-element model requirements for thin composite structures used in aerospace applications, parallel solution methods are explored. A parallel direct Schur factorization method is developed. The parallel scalability of the direct Schur approach is demonstrated for a large finite-element problem with over 5 million unknowns. In order to address manufacturing design requirements, a novel laminate parametrization technique is presented that takes into account the discrete nature of the ply-angle variables, and ply-contiguity constraints. This parametrization technique is demonstrated on a series of structural optimization problems including compliance minimization of a plate, buckling design of a stiffened panel and layup design of a full aircraft wing. The design and analysis of composite structures for aircraft is not a stand-alone problem and cannot be performed without multidisciplinary considerations. A gradient-based aerostructural design optimization framework is presented that partitions the disciplines into distinct process groups. An approximate Newton-Krylov method is shown to be an efficient aerostructural solution algorithm and excellent parallel scalability of the algorithm is demonstrated. An

  16. Design of a turbofan powered regional transport aircraft

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The majority of the market for small commercial transport aircraft is dominated by high-efficiency, propeller-driven aircraft of non-U.S. manufacture. During the past year senior student design teams at Purdue developed and then responded to a Request For Proposal (RFP) for a regional transport aircraft. The RFP development identified promising world markets and their needs. The students responded by designing aircraft with ranges of up to 1500 n.m. and passenger loads of 50 to 90. During the design project, special emphasis was placed upon keeping acquisition cost and direct operating costs at a low level while providing passengers with quality comfort levels. Twelve student teams worked for one semester developing their designs. Several of the more successful designs and those that placed a high premium on innovation are described. The depth of detail and analysis in these student efforts are also illustrated.

  17. Comparison of Requirements for Composite Structures for Aircraft and Space Applications

    NASA Technical Reports Server (NTRS)

    Raju, Ivatury S.; Elliot, Kenny B.; Hampton, Roy W.; Knight, Norman F., Jr.; Aggarwal, Pravin; Engelstad, Stephen P.; Chang, James B.

    2010-01-01

    In this report, the aircraft and space vehicle requirements for composite structures are compared. It is a valuable exercise to study composite structural design approaches used in the airframe industry and to adopt methodology that is applicable for space vehicles. The missions, environments, analysis methods, analysis validation approaches, testing programs, build quantities, inspection, and maintenance procedures used by the airframe industry, in general, are not transferable to spaceflight hardware. Therefore, while the application of composite design approaches from aircraft and other industries is appealing, many aspects cannot be directly utilized. Nevertheless, experiences and research for composite aircraft structures may be of use in unexpected arenas as space exploration technology develops, and so continued technology exchanges are encouraged.

  18. Aircraft energy efficiency laminar flow control wing design study

    NASA Technical Reports Server (NTRS)

    Bonner, T. F., Jr.; Pride, J. D., Jr.; Fernald, W. W.

    1977-01-01

    An engineering design study was performed in which laminar flow control (LFC) was integrated into the wing of a commercial passenger transport aircraft. A baseline aircraft configuration was selected and the wing geometry was defined. The LFC system, with suction slots, ducting, and suction pumps was integrated with the wing structure. The use of standard aluminum technology and advanced superplastic formed diffusion bonded titanium technology was evaluated. The results of the design study show that the LFC system can be integrated with the wing structure to provide a structurally and aerodynamically efficient wing for a commercial transport aircraft.

  19. Stress-strain analysis and optimal design of aircraft structures

    NASA Astrophysics Data System (ADS)

    Liakhovenko, I. A.

    The papers contained in this volume present results of theoretical and experimental research related to the stress-strain analysis and optimal design of aircraft structures. Topics discussed include a study of the origin of residual stresses and strains in the transparencies of supersonic aircraft, methodology for studying the fracture of aircraft structures in static tests, and the stability of a multispan panel under combined loading. The discussion also covers optimization of the stiffness and mass characteristics of lifting surface structures modeled by an elastic beam, a study of the strength of a closed system of wings, and a method for the optimal design of a large-aspect-ratio wing.

  20. Multidisciplinary Optimization Methods for Aircraft Preliminary Design

    NASA Technical Reports Server (NTRS)

    Kroo, Ilan; Altus, Steve; Braun, Robert; Gage, Peter; Sobieski, Ian

    1994-01-01

    This paper describes a research program aimed at improved methods for multidisciplinary design and optimization of large-scale aeronautical systems. The research involves new approaches to system decomposition, interdisciplinary communication, and methods of exploiting coarse-grained parallelism for analysis and optimization. A new architecture, that involves a tight coupling between optimization and analysis, is intended to improve efficiency while simplifying the structure of multidisciplinary, computation-intensive design problems involving many analysis disciplines and perhaps hundreds of design variables. Work in two areas is described here: system decomposition using compatibility constraints to simplify the analysis structure and take advantage of coarse-grained parallelism; and collaborative optimization, a decomposition of the optimization process to permit parallel design and to simplify interdisciplinary communication requirements.

  1. Conceptual design of an aircraft automated coating removal system

    SciTech Connect

    Baker, J.E.; Draper, J.V.; Pin, F.G.; Primm, A.H.; Shekhar, S.

    1996-05-01

    Paint stripping of the U.S. Air Force`s large transport aircrafts is currently a labor-intensive, manual process. Significant reductions in costs, personnel and turnaround time can be accomplished by the judicious use of automation in some process tasks. This paper presents the conceptual design of a coating removal systems for the tail surfaces of the C-5 plane. Emphasis is placed on the technology selection to optimize human-automation synergy with respect to overall costs, throughput, quality, safety, and reliability. Trade- offs between field-proven vs. research-requiring technologies, and between expected gain vs. cost and complexity, have led to a conceptual design which is semi-autonomous (relying on the human for task specification and disturbance handling) yet incorporates sensor- based automation (for sweep path generation and tracking, surface following, stripping quality control and tape/breach handling).

  2. Equivalent plate modeling for conceptual design of aircraft wing structures

    NASA Technical Reports Server (NTRS)

    Giles, Gary L.

    1995-01-01

    This paper describes an analysis method that generates conceptual-level design data for aircraft wing structures. A key requirement is that this data must be produced in a timely manner so that is can be used effectively by multidisciplinary synthesis codes for performing systems studies. Such a capability is being developed by enhancing an equivalent plate structural analysis computer code to provide a more comprehensive, robust and user-friendly analysis tool. The paper focuses on recent enhancements to the Equivalent Laminated Plate Solution (ELAPS) analysis code that significantly expands the modeling capability and improves the accuracy of results. Modeling additions include use of out-of-plane plate segments for representing winglets and advanced wing concepts such as C-wings along with a new capability for modeling the internal rib and spar structure. The accuracy of calculated results is improved by including transverse shear effects in the formulation and by using multiple sets of assumed displacement functions in the analysis. Typical results are presented to demonstrate these new features. Example configurations include a C-wing transport aircraft, a representative fighter wing and a blended-wing-body transport. These applications are intended to demonstrate and quantify the benefits of using equivalent plate modeling of wing structures during conceptual design.

  3. An integrated systems engineering approach to aircraft design

    NASA Astrophysics Data System (ADS)

    Price, M.; Raghunathan, S.; Curran, R.

    2006-06-01

    The challenge in Aerospace Engineering, in the next two decades as set by Vision 2020, is to meet the targets of reduction of nitric oxide emission by 80%, carbon monoxide and carbon dioxide both by 50%, reduce noise by 50% and of course with reduced cost and improved safety. All this must be achieved with expected increase in capacity and demand. Such a challenge has to be in a background where the understanding of physics of flight has changed very little over the years and where industrial growth is driven primarily by cost rather than new technology. The way forward to meet the challenges is to introduce innovative technologies and develop an integrated, effective and efficient process for the life cycle design of aircraft, known as systems engineering (SE). SE is a holistic approach to a product that comprises several components. Customer specifications, conceptual design, risk analysis, functional analysis and architecture, physical architecture, design analysis and synthesis, and trade studies and optimisation, manufacturing, testing validation and verification, delivery, life cycle cost and management. Further, it involves interaction between traditional disciplines such as Aerodynamics, Structures and Flight Mechanics with people- and process-oriented disciplines such as Management, Manufacturing, and Technology Transfer. SE has become the state-of-the-art methodology for organising and managing aerospace production. However, like many well founded methodologies, it is more difficult to embody the core principles into formalised models and tools. The key contribution of the paper will be to review this formalisation and to present the very latest knowledge and technology that facilitates SE theory. Typically, research into SE provides a deeper understanding of the core principles and interactions, and helps one to appreciate the required technical architecture for fully exploiting it as a process, rather than a series of events. There are major issues as

  4. Conceptual design for a laminar-flying-wing aircraft

    NASA Astrophysics Data System (ADS)

    Saeed, T. I.

    The laminar-flying-wing aircraft appears to be an attractive long-term prospect for reducing the environmental impact of commercial aviation. In assessing its potential, a relatively straightforward initial step is the conceptual design of a version with restricted sweep angle. Such a design is the topic of this thesis. Subject to constraints, this research aims to; provide insight into the parameters affecting practical laminar-flow-control suction power requirements; identify a viable basic design specification; and, on the basis of this, an assessment of the fuel efficiency through a detailed conceptual design study. It is shown that there is a minimum power requirement independent of the suction system design, associated with the stagnation pressure loss in the boundary layer. This requirement increases with aerofoil section thickness, but depends only weakly on Mach number and (for a thick, lightly-loaded laminar flying wing) lift coefficient. Deviation from the optimal suction distribution, due to a practical chamber-based architecture, is found to have very little effect on the overall suction coefficient. In the spanwise direction, through suitable choice of chamber depth, the pressure drop due to frictional and inertial effects may be rendered negligible. Finally, it is found that the pressure drop from the aerofoil surface to the pump collector ducts determines the power penalty. To identify the viable basic design specification, a high-level exploration of the laminar flying wing design space is performed. The characteristics of the design are assessed as a function of three parameters: thickness-to-chord ratio, wingspan, and unit Reynolds number. A feasible specification, with 20% thickness-to-chord, 80 m span and a unit Reynolds number of 8 x 106 m-1, is identified; it corresponds to a 187 tonne aircraft which cruises at Mach 0.67 and altitude 22,500 ft, with lift coefficient 0.14. On the basis of this specification, a detailed conceptual design is

  5. Application of advanced high speed turboprop technology to future civil short-haul transport aircraft design

    NASA Technical Reports Server (NTRS)

    Conlon, J. A.; Bowles, J. V.

    1978-01-01

    With an overall goal of defining the needs and requirements for short-haul transport aircraft research and development, the objective of this paper is to determine the performance and noise impact of short-haul transport aircraft designed with an advanced turboprop propulsion system. This propulsion system features high-speed propellers that have more blades and reduced diameters. Aircraft are designed for short and medium field lengths; mission block fuel and direct operating costs (DOC) are used as performance measures. The propeller diameter was optimized to minimize DOC. Two methods are employed to estimate the weight of the acoustic treatment needed to reduce interior noise to an acceptable level. Results show decreasing gross weight, block fuel, DOC, engine size, and optimum propfan diameter with increasing field length. The choice of acoustic treatment method has a significant effect on the aircraft design.

  6. Design and evaluation of aircraft heat source systems for use with high-freezing point fuels

    NASA Technical Reports Server (NTRS)

    Pasion, A. J.

    1979-01-01

    The objectives were the design, performance and economic analyses of practical aircraft fuel heating systems that would permit the use of high freezing-point fuels on long-range aircraft. Two hypothetical hydrocarbon fuels with freezing points of -29 C and -18 C were used to represent the variation from current day jet fuels. A Boeing 747-200 with JT9D-7/7A engines was used as the baseline aircraft. A 9300 Km mission was used as the mission length from which the heat requirements to maintain the fuel above its freezing point was based.

  7. Preliminary design studies of an advanced general aviation aircraft

    NASA Technical Reports Server (NTRS)

    Barrett, Ron; Demoss, Shane; Dirkzwager, AB; Evans, Darryl; Gomer, Charles; Keiter, Jerry; Knipp, Darren; Seier, Glen; Smith, Steve; Wenninger, ED

    1991-01-01

    The preliminary design results are presented of the advanced aircraft design project. The goal was to take a revolutionary look into the design of a general aviation aircraft. Phase 1 of the project included the preliminary design of two configurations, a pusher, and a tractor. Phase 2 included the selection of only one configuration for further study. The pusher configuration was selected on the basis of performance characteristics, cabin noise, natural laminar flow, and system layouts. The design was then iterated to achieve higher levels of performance.

  8. V/STOL tilt rotor aircraft study. Volume 2: Preliminary design of research aircraft

    NASA Technical Reports Server (NTRS)

    1972-01-01

    A preliminary design study was conducted to establish a minimum sized, low cost V/STOL tilt-rotor research aircraft with the capability of performing proof-of-concept flight research investigations applicable to a wide range of useful military and commercial configurations. The analysis and design approach was based on state-of-the-art methods and maximum use of off-the-shelf hardware and systems to reduce development risk, procurement cost and schedules impact. The rotors to be used are of 26 foot diameter and are the same as currently under construction and test as part of NASA Tilt-Rotor Contract NAS2-6505. The aircraft has a design gross weight of 12,000 lbs. The proposed engines to be used are Lycoming T53-L-13B rated at 1550 shaft horsepower which are fully qualified. A flight test investigation is recommended which will determine the capabilities and limitations of the research aircraft.

  9. Numeric Design and Performance Analysis of Solid Oxide Fuel Cell -- Gas Turbine Hybrids on Aircraft

    NASA Astrophysics Data System (ADS)

    Hovakimyan, Gevorg

    The aircraft industry benefits greatly from small improvements in aircraft component design. One possible area of improvement is in the Auxiliary Power Unit (APU). Modern aircraft APUs are gas turbines located in the tail section of the aircraft that generate additional power when needed. Unfortunately the efficiency of modern aircraft APUs is low. Solid Oxide Fuel Cell/Gas Turbine (SOFC/GT) hybrids are one possible alternative for replacing modern gas turbine APUs. This thesis investigates the feasibility of replacing conventional gas turbine APUs with SOFC/GT APUs on aircraft. An SOFC/GT design algorithm was created in order to determine the specifications of an SOFC/GT APU. The design algorithm is comprised of several integrated modules which together model the characteristics of each component of the SOFC/GT system. Given certain overall inputs, through numerical analysis, the algorithm produces an SOFC/GT APU, optimized for specific power and efficiency, capable of performing to the required specifications. The SOFC/GT design is then input into a previously developed quasi-dynamic SOFC/GT model to determine its load following capabilities over an aircraft flight cycle. Finally an aircraft range study is conducted to determine the feasibility of the SOFC/GT APU as a replacement for the conventional gas turbine APU. The design results show that SOFC/GT APUs have lower specific power than GT systems, but have much higher efficiencies. Moreover, the dynamic simulation results show that SOFC/GT APUs are capable of following modern flight loads. Finally, the range study determined that SOFC/GT APUs are more attractive over conventional APUs for longer range aircraft.

  10. Utilization of CAD/CAE for concurrent design of structural aircraft components

    NASA Technical Reports Server (NTRS)

    Kahn, William C.

    1993-01-01

    The feasibility of installing the Stratospheric Observatory for Infrared Astronomy telescope (named SOFIA) into an aircraft for NASA astronomy studies is investigated using CAD/CAE equipment to either design or supply data for every facet of design engineering. The aircraft selected for the platform was a Boeing 747, chosen on the basis of its ability to meet the flight profiles required for the given mission and payload. CAD models of the fuselage of two of the aircraft models studied (747-200 and 747 SP) were developed, and models for the component parts of the telescope and subsystems were developed by the various concurrent engineering groups of the SOFIA program, to determine the requirements for the cavity opening and for design configuration. It is noted that, by developing a plan to use CAD/CAE for concurrent engineering at the beginning of the study, it was possible to produce results in about two-thirds of the time required using traditional methods.

  11. An economic model for evaluating high-speed aircraft designs

    NASA Technical Reports Server (NTRS)

    Vandervelden, Alexander J. M.

    1989-01-01

    A Class 1 method for determining whether further development of a new aircraft design is desirable from all viewpoints is presented. For the manufacturer the model gives an estimate of the total cost of research and development from the preliminary design to the first production aircraft. Using Wright's law of production, one can derive the average cost per aircraft produced for a given break-even number. The model will also provide the airline with a good estimate of the direct and indirect operating costs. From the viewpoint of the passenger, the model proposes a tradeoff between ticket price and cruise speed. Finally all of these viewpoints are combined in a Comparative Aircraft Seat-kilometer Economic Index.

  12. Needs and Challenges in Education for Aircraft Design.

    ERIC Educational Resources Information Center

    Haupt, Ulrich

    A brief review of recent developments in engineering education leads to basic reflections about the importance of design education. Aircraft design is singled out as a field where demands on design are particularly high and urgent. Basic needs are determined. Additional challenges posed by engineering technology, continuing studies,…

  13. 19 CFR 122.62 - Aircraft not otherwise required to clear.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... State export licensing authority as set out in 22 CFR parts 121 and 123. Such aircraft may depart from... under the Export Administration Regulations (15 CFR parts 730 through 774). Aircraft are not required to... (15 CFR part 30), aircraft not required to clear by § 122.61 shall obtain permission to depart...

  14. Design of an air traffic computer simulation system to support investigation of civil tiltrotor aircraft operations

    NASA Technical Reports Server (NTRS)

    Rogers, Ralph V.

    1993-01-01

    The TATSS Project's goal was to develop a design for computer software that would support the attainment of the following objectives for the air traffic simulation model: (1) Full freedom of movement for each aircraft object in the simulation model. Each aircraft object may follow any designated flight plan or flight path necessary as required by the experiment under consideration. (2) Object position precision up to +/- 3 meters vertically and +/- 15 meters horizontally. (3) Aircraft maneuvering in three space with the object position precision identified above. (4) Air traffic control operations and procedures. (5) Radar, communication, navaid, and landing aid performance. (6) Weather. (7) Ground obstructions and terrain. (8) Detection and recording of separation violations. (9) Measures of performance including deviations from flight plans, air space violations, air traffic control messages per aircraft, and traditional temporal based measures.

  15. Active and passive structural design concepts for improved empennage effectiveness of aircraft

    NASA Astrophysics Data System (ADS)

    Weiss, Franz; Schweiger, Johannes; Simpson, John; Kullrich, Thomas

    2000-06-01

    Active structures concepts for the design of aircraft have been investigated for several years. Concerning static aeroelastic applications, all concepts known to the authors are trying to improve the design of aircraft wings. In the case of wings however, the design space for active structures concepts is limited by a multitude of functional requirements. Empennage surfaces on the other hand only have to meet two basic requirements: sufficient stability and maneuverability for the longitudinal and lateral motion of the aircraft. In the case of vertical tails, the aerodynamic effectiveness for the side force and for the rudder yawing moment are usually reduced by the flexibility of the structure. This causes a weight increase for the structure, which is especially unpleasant for tail surfaces because of the rearward shift of the center of gravity. Today, multidisciplinary structural optimization methods can be used to minimize the weight penalty for static aeroelastic effectiveness requirements. But an amount of penalty still remains. A smart solution for additional weight savings, if possible below the conventional basic strength design of the structure, would therefore be very welcome for any new aircraft design. The paper will describe a new design approach for vertical tails. The concept is based on a smart system for the attachment of the complete tail surface to the fuselage. If properly designed, the variable stiffness of this system will provide improved aerodynamic effectiveness of the tail at any flight condition compared to the rigid aircraft. In a first step, the structure for the vertical tail of a fighter aircraft is designed for static strength and buckling stability by means of a structural optimization program, which is based on finite element methods. The impacts of static aeroelastic effectiveness and flutter stability criteria on the structural design are shown. A modified structural model is then used to incorporate the active system for the

  16. Preliminary design studies of an advanced general aviation aircraft

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Preliminary design studies are presented for an advanced general aviation aircraft. Advanced guidance and display concepts, laminar flow, smart structures, fuselage and wing structural design and manufacturing, and preliminary configuration design are discussed. This project was conducted as a graduate level design class under the auspices of the KU/NASA/USRA Advanced Design Program in Aeronautics. The results obtained during the fall semester of 1990 (Phase 1) and the spring semester of 1991 (Phase 2) are presented.

  17. Advances in Experiment Design for High Performance Aircraft

    NASA Technical Reports Server (NTRS)

    Morelli, Engene A.

    1998-01-01

    A general overview and summary of recent advances in experiment design for high performance aircraft is presented, along with results from flight tests. General theoretical background is included, with some discussion of various approaches to maneuver design. Flight test examples from the F-18 High Alpha Research Vehicle (HARV) are used to illustrate applications of the theory. Input forms are compared using Cramer-Rao bounds for the standard errors of estimated model parameters. Directions for future research in experiment design for high performance aircraft are identified.

  18. The ARCTAS aircraft mission: design and execution

    NASA Astrophysics Data System (ADS)

    Jacob, D. J.; Crawford, J. H.; Maring, H. B.; Clarke, A. D.; Dibb, J. E.; Ferrare, R. A.; Hostetler, C. A.; Russell, P. B.; Singh, H. B.; Thompson, A. M.; Shaw, G. E.; McCauley, E.; Pederson, J. R.; Fisher, J. A.

    2009-12-01

    We present an overview of the NASA Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) mission, conducted in two 3-week deployments based in Alaska (April 2008) and western Canada (June-July 2008). The goal of ARCTAS was to better understand the factors driving current changes in Arctic atmospheric composition and climate, including (1) transport of mid-latitude pollution, (2) boreal forest fires, (3) aerosol radiative forcing, and (4) chemical processes. ARCTAS involved three aircraft: a DC-8 with detailed chemical payload, a P-3 with extensive aerosol payload, and a B-200 with aerosol remote sensing instrumentation. The aircraft augmented satellite observations of Arctic atmospheric composition, in particular from the NASA A-Train, by (1) validating the data, (2) improving constraints on retrievals, (3) making correlated observations, and (4) characterizing chemical and aerosol processes. The April flights (ARCTAS-A) sampled pollution plumes from all three mid-latitude continents, fire plumes from Siberia and Southeast Asia, and halogen radical events. The June-July flights (ARCTAS-B) focused on boreal forest fire influences and sampled fresh fire plumes from northern Saskatchewan as well as older fire plumes from Canada, Siberia, and California. The June-July deployment was preceded by one week of flights over California sponsored by the California Air Resources Board (ARCTAS-CARB). The ARCTAS-CARB goals were to (1) improve state emission inventories for greenhouse gases and aerosols, (2) provide observations to test and improve models of ozone and aerosol pollution. Extensive sampling across southern California and the Central Valley characterized emissions from urban centers, offshore shipping lanes, agricultural crops, feedlots, industrial sources, and wildfires.

  19. 32 CFR 855.6 - Aircraft exempt from the requirement for a civil aircraft landing permit.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... includes aircraft owned by individuals but leased by Army or Navy aero clubs. (4) A US State, County... local Government has retained liability responsibilities. (7) Civil aircraft transporting critically...

  20. Efficiency and economics of large scale hydrogen liquefaction. [for future generation aircraft requirements

    NASA Technical Reports Server (NTRS)

    Baker, C. R.

    1975-01-01

    Liquid hydrogen is being considered as a substitute for conventional hydrocarbon-based fuels for future generations of commercial jet aircraft. Its acceptance will depend, in part, upon the technology and cost of liquefaction. The process and economic requirements for providing a sufficient quantity of liquid hydrogen to service a major airport are described. The design is supported by thermodynamic studies which determine the effect of process arrangement and operating parameters on the process efficiency and work of liquefaction.

  1. Requirements for facilities and measurement techniques to support CFD development for hypersonic aircraft

    NASA Technical Reports Server (NTRS)

    Sellers, William L., III; Dwoyer, Douglas L.

    1992-01-01

    The design of a hypersonic aircraft poses unique challenges to the engineering community. Problems with duplicating flight conditions in ground based facilities have made performance predictions risky. Computational fluid dynamics (CFD) has been proposed as an additional means of providing design data. At the present time, CFD codes are being validated based on sparse experimental data and then used to predict performance at flight conditions with generally unknown levels of uncertainty. This paper will discuss the facility and measurement techniques that are required to support CFD development for the design of hypersonic aircraft. Illustrations are given of recent success in combining experimental and direct numerical simulation in CFD model development and validation for hypersonic perfect gas flows.

  2. Design and physical characteristics of the Transonic Aircraft Technology (TACT) research aircraft

    NASA Technical Reports Server (NTRS)

    Painter, W. D.; Caw, L. J.

    1978-01-01

    The Transonic Aircraft Technology (TACT) research program provided data necessary to verify aerodynamic concepts, such as the supercritical wing, and to gain the confidence required for the application of such technology to advanced high performance aircraft. An F-111A aircraft was employed as the flight test bed to provide full scale data. The data were correlated extensively with predictions based on data obtained from wind tunnel tests. An assessment of the improvement afforded at transonic speeds in drag divergence, maneuvering performance, and airplane handling qualities by the use of the supercritical wing was included in the program. Transonic flight and wind tunnel testing techniques were investigated, and specific research technologies evaluated were also summarized.

  3. Design and evaluation of flight directors for V/STOL aircraft

    NASA Technical Reports Server (NTRS)

    Hess, R. A.

    1977-01-01

    A brief review of model-based techniques for the design of aircraft flight directors is undertaken. An analytical director design technique which utilizes an optimal control model of the human pilot is then discussed in more detail. The analytical and experimental results of three specific director design studies are discussed, all involving control of a light utility helicopter. Finally, a general design methodology is discussed which can aid in the specification of pilot-centered display requirements.

  4. Thermal design for areas of interference heating on actively cooled hypersonic aircraft

    NASA Technical Reports Server (NTRS)

    Herring, R. L.; Stone, J. E.

    1978-01-01

    Numerous actively cooled panel design alternatives for application in regions on high speed aircraft that are subject to interference heating effects were studied. Candidate design concepts were evaluated using mass, producibility, reliability and inspectability/maintainability as figures of merit. Three design approaches were identified as superior within certain regimes of the matrix of design heating conditions considered. Only minor modifications to basic actively cooled panel design are required to withstand minor interference heating effects. Designs incorporating internally finned coolant tubes to augment heat transfer are recommended for moderate design heating conditions. At severe heating conditions, an insulated panel concept is required.

  5. Design of a flight control system for a highly maneuverable aircraft using mu synthesis

    NASA Technical Reports Server (NTRS)

    Reiner, Jacob; Balas, Gary J.; Garrard, William L.

    1993-01-01

    This paper presents a methodology for the design of longitudinal controllers for high performance aircraft operating over large ranges of angle of attack. The technique used for controller design is structured singular value or mu synthesis. The controller is designed to minimize the weighted H-infinity norm of the error between the aircraft response and the desired handling quality specifications without saturating the control actuators. The mu synthesis procedure ensures that the stability and performance of the aircraft is robust to parameter variations and modeling uncertainties included in the design model. Nonlinear simulations demonstrate that the controller satisfies handling quality requirements and provides excellent tracking of pilot inputs over a wide range of transient angles of attack and Mach number.

  6. 14 CFR 382.71 - What other aircraft accessibility requirements apply to carriers?

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false What other aircraft accessibility requirements apply to carriers? 382.71 Section 382.71 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT... DISABILITY IN AIR TRAVEL Accessibility of Aircraft § 382.71 What other aircraft accessibility...

  7. 14 CFR 382.71 - What other aircraft accessibility requirements apply to carriers?

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false What other aircraft accessibility requirements apply to carriers? 382.71 Section 382.71 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT... DISABILITY IN AIR TRAVEL Accessibility of Aircraft § 382.71 What other aircraft accessibility...

  8. 14 CFR 382.71 - What other aircraft accessibility requirements apply to carriers?

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false What other aircraft accessibility requirements apply to carriers? 382.71 Section 382.71 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT... DISABILITY IN AIR TRAVEL Accessibility of Aircraft § 382.71 What other aircraft accessibility...

  9. 14 CFR 382.71 - What other aircraft accessibility requirements apply to carriers?

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false What other aircraft accessibility requirements apply to carriers? 382.71 Section 382.71 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT... DISABILITY IN AIR TRAVEL Accessibility of Aircraft § 382.71 What other aircraft accessibility...

  10. 14 CFR 382.71 - What other aircraft accessibility requirements apply to carriers?

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false What other aircraft accessibility requirements apply to carriers? 382.71 Section 382.71 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT... DISABILITY IN AIR TRAVEL Accessibility of Aircraft § 382.71 What other aircraft accessibility...

  11. Eagle RTS: A design for a regional transport aircraft

    NASA Technical Reports Server (NTRS)

    Bryer, Paul; Buckles, Jon; Lemke, Paul; Peake, Kirk

    1992-01-01

    This university design project concerns the Eagle RTS (Regional Transport System), a 66 passenger, twin turboprop aircraft with a range of 836 nautical miles. It will operate with a crew of two pilots and two flight attendents. This aircraft will employ the use of aluminum alloys and composite materials to reduce the aircraft weight and increase aerodynamic efficiency. The Eagle RTS will use narrow body aerodynamics with a canard configuration to improve performance. Leading edge technology will be used in the cockpit to improve flight handling and safety. The Eagle RTS propulsion system will consist of two turboprop engines with a total thrust of approximately 6300 pounds, 3150 pounds thrust per engine, for the cruise configuration. The engines will be mounted on the aft section of the aircraft to increase passenger safety in the event of a propeller failure. Aft mounted engines will also increase the overall efficiency of the aircraft by reducing the aircraft's drag. The Eagle RTS is projected to have a takeoff distance of approximately 4700 feet and a landing distance of 6100 feet. These distances will allow the Eagle RTS to land at the relatively short runways of regional airports.

  12. Toward Reduced Aircraft Community Noise Impact Via a Perception-Influenced Design Approach

    NASA Technical Reports Server (NTRS)

    Rizzi, Stephen A.

    2016-01-01

    This is an exciting time for aircraft design. New configurations, including small multi-rotor uncrewed aerial systems, fixed- and tilt-wing distributed electric propulsion aircraft, high-speed rotorcraft, hybrid-electric commercial transports, and low-boom supersonic transports, are being made possible through a host of propulsion and airframe technology developments. The resulting noise signatures may be radically different, both spectrally and temporally, than those of the current fleet. Noise certification metrics currently used in aircraft design do not necessarily reflect these characteristics and therefore may not correlate well with human response. Further, as operations and missions become less airport-centric, e.g., those associated with on-demand mobility or package delivery, vehicles may operate in closer proximity to the population than ever before. Fortunately, a new set of tools are available for assessing human perception during the design process in order to affect the final design in a positive manner. The tool chain utilizes system noise prediction methods coupled with auralization and psychoacoustic testing, making possible the inclusion of human response to noise, along with performance criteria and certification requirements, into the aircraft design process. Several case studies are considered to illustrate how this approach could be used to influence the design of future aircraft.

  13. The Computer Aided Aircraft-design Package (CAAP)

    NASA Technical Reports Server (NTRS)

    Yalif, Guy U.

    1994-01-01

    The preliminary design of an aircraft is a complex, labor-intensive, and creative process. Since the 1970's, many computer programs have been written to help automate preliminary airplane design. Time and resource analyses have identified, 'a substantial decrease in project duration with the introduction of an automated design capability'. Proof-of-concept studies have been completed which establish 'a foundation for a computer-based airframe design capability', Unfortunately, today's design codes exist in many different languages on many, often expensive, hardware platforms. Through the use of a module-based system architecture, the Computer aided Aircraft-design Package (CAAP) will eventually bring together many of the most useful features of existing programs. Through the use of an expert system, it will add an additional feature that could be described as indispensable to entry level engineers and students: the incorporation of 'expert' knowledge into the automated design process.

  14. Comparison of predicted engine core noise with current and proposed aircraft noise certification requirements

    NASA Technical Reports Server (NTRS)

    Vonglahn, U. H.; Groesbeck, D. E.

    1981-01-01

    Predicted engine core noise levels are compared with measured total aircraft noise levels and with current and proposed federal noise certification requirements. Comparisons are made at the FAR-36 measuring stations and include consideration of both full- and cutback-power operation at takeoff. In general, core noise provides a barrier to achieving proposed EPA stage 5 noise levels for all types of aircraft. More specifically, core noise levels will limit further reductions in aircraft noise levels for current widebody commercial aircraft.

  15. Conceptual Design Optimization of an Augmented Stability Aircraft Incorporating Dynamic Response and Actuator Constraints

    NASA Technical Reports Server (NTRS)

    Welstead, Jason; Crouse, Gilbert L., Jr.

    2014-01-01

    Empirical sizing guidelines such as tail volume coefficients have long been used in the early aircraft design phases for sizing stabilizers, resulting in conservatively stable aircraft. While successful, this results in increased empty weight, reduced performance, and greater procurement and operational cost relative to an aircraft with optimally sized surfaces. Including flight dynamics in the conceptual design process allows the design to move away from empirical methods while implementing modern control techniques. A challenge of flight dynamics and control is the numerous design variables, which are changing fluidly throughout the conceptual design process, required to evaluate the system response to some disturbance. This research focuses on addressing that challenge not by implementing higher order tools, such as computational fluid dynamics, but instead by linking the lower order tools typically used within the conceptual design process so each discipline feeds into the other. In thisresearch, flight dynamics and control was incorporated into the conceptual design process along with the traditional disciplines of vehicle sizing, weight estimation, aerodynamics, and performance. For the controller, a linear quadratic regulator structure with constant gains has been specified to reduce the user input. Coupling all the disciplines in the conceptual design phase allows the aircraft designer to explore larger design spaces where stabilizers are sized according to dynamic response constraints rather than historical static margin and volume coefficient guidelines.

  16. Siphon breaker design requirements

    SciTech Connect

    Neill, D.T.; Stephens, A.G.

    1993-03-01

    The Siphon Breaker Design Requirements Project was intended to provide experimental data on siphon flow effects. In addition, the experimental system was to be modeled with the RELAP code and the predicted and measured performances compared. This report describes the design and operation of the siphon breaker experimental equipment from 1989 to 1991. In addition the test results for all the experimental runs made in 1990 and 1991 are presented and described. Unfortunately, we have not been able to obtain useful results from a RELAP 5 model of the siphon system; consequently, we are unable to present any predictive calculations for comparison with the data presented. We have had lots of expert advice from several sources on using the RELAP code but to date our efforts have remained unsuccessful. After an extra year of effort, admittedly part-time but a lot of that, we choose to abandon the modeling efforts and produce this report describing the experimental equipment and test results.

  17. Siphon breaker design requirements

    NASA Astrophysics Data System (ADS)

    Neill, D. T.; Stephens, A. G.

    1993-03-01

    The Siphon Breaker Design Requirements Project was intended to provide experimental data on siphon flow effects. In addition, the experimental system was to be modeled with the RELAP code and the predicted and measured performances compared. The design and operation of the siphon breaker experimental equipment from 1989 to 1991 are described. In addition the test results for all the experimental runs made in 1990 and 1991 are presented and described. Unfortunately, useful results were not obtained from a RELAP 5 model of the siphon system; consequently, we are unable to present any predictive calculations for comparison with the data presented. We have had lots of expert advice from several sources on using the RELAP code but to date our efforts have remained unsuccessful. After an extra year of effort, admittedly part-time but a lot of that, the modeling efforts was abandoned and the experimental equipment and test results are described.

  18. Impact of flight systems integration on future aircraft design

    NASA Technical Reports Server (NTRS)

    Hood, R. V.; Dollyhigh, S. M.; Newsom, J. R.

    1984-01-01

    Integrations trends in aircraft are discussed with an eye to manifestations in future aircraft designs through interdisciplinary technology integration. Current practices use software changes or small hardware fixes to solve problems late in the design process, e.g., low static stability to upgrade fuel efficiency. A total energy control system has been devised to integrate autopilot and autothrottle functions, thereby eliminating hardware, reducing the software, pilot workload, and cost, and improving flight efficiency and performance. Integrated active controls offer reduced weight and larger payloads for transport aircraft. The introduction of vectored thrust may eliminate horizontal and vertical stabilizers, and location of the thrust at the vehicle center of gravity can provide vertical takeoff and landing capabilities. It is suggested that further efforts will open a new discipline, aeroservoelasticity, and tests will become multidisciplinary, involving controls, aerodynamics, propulsion and structures.

  19. The Guardian: Preliminary design of a close air support aircraft

    NASA Technical Reports Server (NTRS)

    Haag, Jonathan; Huber, David; Mcinerney, Kelly; Mulligan, Greg; Pessin, David; Seelos, Michael

    1991-01-01

    One design is presented of a Close Air Support (CAS) aircraft. It is a canard wing, twin engine, twin vertical tail aircraft that has the capability to cruise at 520 knots. The Guardian contains state of the art flight control systems. Specific highlights of the Guardian include: (1) low cost (the acquisition cost per airplane is $13.6 million for a production of 500 airplanes); (2) low maintenance (it was designed to be easily maintainable in unprepared fields); and (3) high versatility (it can perform a wide range of missions). Along with being a CAS aircraft, it is capable of long ferry missions, battlefield interdiction, maritime attack, and combat rescue. The Guardian is capable of a maximum ferry of 3800 nm, can takeoff in a distance of 1700 ft, land in a ground roll distance of 1644 ft. It has a maximum takeoff weight of 48,753 lbs, and is capable of carrying up to 19,500 lbs of ordinance.

  20. Preliminary aerodynamic design considerations for advanced laminar flow aircraft configurations

    NASA Technical Reports Server (NTRS)

    Johnson, Joseph L., Jr.; Yip, Long P.; Jordan, Frank L., Jr.

    1986-01-01

    Modern composite manufacturing methods have provided the opportunity for smooth surfaces that can sustain large regions of natural laminar flow (NLF) boundary layer behavior and have stimulated interest in developing advanced NLF airfoils and improved aircraft designs. Some of the preliminary results obtained in exploratory research investigations on advanced aircraft configurations at the NASA Langley Research Center are discussed. Results of the initial studies have shown that the aerodynamic effects of configuration variables such as canard/wing arrangements, airfoils, and pusher-type and tractor-type propeller installations can be particularly significant at high angles of attack. Flow field interactions between aircraft components were shown to produce undesirable aerodynamic effects on a wing behind a heavily loaded canard, and the use of properly designed wing leading-edge modifications, such as a leading-edge droop, offset the undesirable aerodynamic effects by delaying wing stall and providing increased stall/spin resistance with minimum degradation of laminar flow behavior.

  1. Comparison of Requirements for Composite Structures for Aircraft and Space Applications

    NASA Technical Reports Server (NTRS)

    Raju, Ivatury S.; Elliott, Kenny B.; Hampton, Roy W.; Knight, Norman F., Jr.; Aggarwal, Pravin; Engelstad, Stephen P.; Chang, James B.

    2010-01-01

    In this paper, the aircraft and space vehicle requirements for composite structures are compared. It is a valuable exercise to study composite structural design approaches used in the airframe industry, and to adopt methodology that is applicable for space vehicles. The missions, environments, analysis methods, analysis validation approaches, testing programs, build quantities, inspection, and maintenance procedures used by the airframe industry, in general, are not transferable to spaceflight hardware. Therefore, while the application of composite design approaches from other industries is appealing, many aspects cannot be directly utilized. Nevertheless, experiences and research for composite aircraft structures may be of use in unexpected arenas as space exploration technology develops, and so continued technology exchanges are encouraged.

  2. Light transport and general aviation aircraft icing research requirements

    NASA Technical Reports Server (NTRS)

    Breeze, R. K.; Clark, G. M.

    1981-01-01

    A short term and a long term icing research and technology program plan was drafted for NASA LeRC based on 33 separate research items. The specific items listed resulted from a comprehensive literature search, organized and assisted by a computer management file and an industry/Government agency survey. Assessment of the current facilities and icing technology was accomplished by presenting summaries of ice sensitive components and protection methods; and assessments of penalty evaluation, the experimental data base, ice accretion prediction methods, research facilities, new protection methods, ice protection requirements, and icing instrumentation. The intent of the research plan was to determine what icing research NASA LeRC must do or sponsor to ultimately provide for increased utilization and safety of light transport and general aviation aircraft.

  3. Neural Network and Regression Approximations in High Speed Civil Transport Aircraft Design Optimization

    NASA Technical Reports Server (NTRS)

    Patniak, Surya N.; Guptill, James D.; Hopkins, Dale A.; Lavelle, Thomas M.

    1998-01-01

    Nonlinear mathematical-programming-based design optimization can be an elegant method. However, the calculations required to generate the merit function, constraints, and their gradients, which are frequently required, can make the process computational intensive. The computational burden can be greatly reduced by using approximating analyzers derived from an original analyzer utilizing neural networks and linear regression methods. The experience gained from using both of these approximation methods in the design optimization of a high speed civil transport aircraft is the subject of this paper. The Langley Research Center's Flight Optimization System was selected for the aircraft analysis. This software was exercised to generate a set of training data with which a neural network and a regression method were trained, thereby producing the two approximating analyzers. The derived analyzers were coupled to the Lewis Research Center's CometBoards test bed to provide the optimization capability. With the combined software, both approximation methods were examined for use in aircraft design optimization, and both performed satisfactorily. The CPU time for solution of the problem, which had been measured in hours, was reduced to minutes with the neural network approximation and to seconds with the regression method. Instability encountered in the aircraft analysis software at certain design points was also eliminated. On the other hand, there were costs and difficulties associated with training the approximating analyzers. The CPU time required to generate the input-output pairs and to train the approximating analyzers was seven times that required for solution of the problem.

  4. Design of the advanced regional aircraft, the DART-75

    NASA Technical Reports Server (NTRS)

    Elliott, Steve; Gislason, Jason; Huffstetler, Mark; Mann, Jon; Withers, Ashley; Zimmerman, Mark

    1992-01-01

    This design analysis is intended to show the capabilities of the DART-75, a 75 passenger medium-range regional transport. Included are the detailed descriptions of the structures, performance, stability and control, weight and balance, and engine design. The design should allow for the DART to become the premier regional aircraft of the future due to some advanced features like the canard, semi-composite construction, and advanced engines.

  5. Design considerations for composite fuselage structure of commercial transport aircraft

    NASA Technical Reports Server (NTRS)

    Davis, G. W.; Sakata, I. F.

    1981-01-01

    The structural, manufacturing, and service and environmental considerations that could impact the design of composite fuselage structure for commercial transport aircraft application were explored. The severity of these considerations was assessed and the principal design drivers delineated. Technical issues and potential problem areas which must be resolved before sufficient confidence is established to commit to composite materials were defined. The key issues considered are: definition of composite fuselage design specifications, damage tolerance, and crashworthiness.

  6. Design and verification by nonlinear simulation of a Mach/CAS control law for the NASA TCV B737 aircraft

    NASA Technical Reports Server (NTRS)

    Bruce, Kevin R.

    1986-01-01

    A Mach/CAS control system using an elevator was designed and developed for use on the NASA TCV B737 aircraft to support research in profile descent procedures and approach energy management. The system was designed using linear analysis techniques primarily. The results were confirmed and the system validated at additional flight conditions using a nonlinear 737 aircraft simulation. All design requirements were satisfied.

  7. Preliminary design of a supersonic Short Takeoff and Vertical Landing (STOVL) fighter aircraft

    NASA Technical Reports Server (NTRS)

    Cox, Brian; Borchers, Paul; Gomer, Charlie; Henderson, Dean; Jacobs, Tavis; Lawson, Todd; Peterson, Eric; Ross, Tweed, III; Bellmard, Larry

    1990-01-01

    The preliminary design study of a supersonic Short Takeoff and Vertical Landing (STOVL) fighter is presented. A brief historical survey of powered lift vehicles was presented, followed by a technology assessment of the latest supersonic STOVL engine cycles under consideration by industry and government in the U.S. and UK. A survey of operational fighter/attack aircraft and the modern battlefield scenario were completed to develop, respectively, the performance requirements and mission profiles for the study. Three configurations were initially investigated with the following engine cycles: a hybrid fan vectored thrust cycle, a lift+lift/cruise cycle, and a mixed flow vectored thrust cycle. The lift+lift/cruise aircraft configuration was selected for detailed design work which consisted of: (1) a material selection and structural layout, including engine removal considerations, (2) an aircraft systems layout, (3) a weapons integration model showing the internal weapons bay mechanism, (4) inlet and nozzle integration, (5) an aircraft suckdown prediction, (6) an aircraft stability and control analysis, including a takeoff, hover, and transition control analysis, (7) a performance and mission capability study, and (8) a life cycle cost analysis. A supersonic fighter aircraft with STOVL capability with the lift+lift/cruise engine cycle seems a viable option for the next generation fighter.

  8. A Subsonic Aircraft Design Optimization With Neural Network and Regression Approximators

    NASA Technical Reports Server (NTRS)

    Patnaik, Surya N.; Coroneos, Rula M.; Guptill, James D.; Hopkins, Dale A.; Haller, William J.

    2004-01-01

    The Flight-Optimization-System (FLOPS) code encountered difficulty in analyzing a subsonic aircraft. The limitation made the design optimization problematic. The deficiencies have been alleviated through use of neural network and regression approximations. The insight gained from using the approximators is discussed in this paper. The FLOPS code is reviewed. Analysis models are developed and validated for each approximator. The regression method appears to hug the data points, while the neural network approximation follows a mean path. For an analysis cycle, the approximate model required milliseconds of central processing unit (CPU) time versus seconds by the FLOPS code. Performance of the approximators was satisfactory for aircraft analysis. A design optimization capability has been created by coupling the derived analyzers to the optimization test bed CometBoards. The approximators were efficient reanalysis tools in the aircraft design optimization. Instability encountered in the FLOPS analyzer was eliminated. The convergence characteristics were improved for the design optimization. The CPU time required to calculate the optimum solution, measured in hours with the FLOPS code was reduced to minutes with the neural network approximation and to seconds with the regression method. Generation of the approximators required the manipulation of a very large quantity of data. Design sensitivity with respect to the bounds of aircraft constraints is easily generated.

  9. Unmanned Aircraft System Control and ATC Communications Bandwidth Requirements

    NASA Technical Reports Server (NTRS)

    Henriksen, Steve

    2008-01-01

    There are significant activities taking place to establish the procedures and requirements for safe and routine operation of unmanned aircraft systems (UAS) in the National Airspace System (NAS). Among the barriers to overcome in achieving this goal is the lack of sufficient frequency spectrum necessary for the UAS control and air traffic control (ATC) communications links. This shortcoming is compounded by the fact that the UAS control communications links will likely be required to operate in protected frequency spectrum, just as ATC communications links are, because they relate to "safety and regularity of flight." To support future International Telecommunications Union (ITU) World Radio Conference (WRC) agenda items concerning new frequency allocations for UAS communications links, and to augment the Future Communications Study (FCS) Technology Evaluation Group efforts, NASA Glenn Research Center has sponsored a task to estimate the UAS control and ATC communications bandwidth requirements for safe, reliable, and routine operation of UAS in the NAS. This report describes the process and results of that task. The study focused on long-term bandwidth requirements for UAS approximately through 2030.

  10. Design optimization of high-speed proprotor aircraft

    NASA Technical Reports Server (NTRS)

    Schleicher, David R.; Phillips, James D.; Carbajal, Kevin B.

    1993-01-01

    NASA's high-speed rotorcraft (HSRC) studies have the objective of investigating technology for vehicles that have both low downwash velocities and forward flight speed capability of up to 450 knots. This paper investigates a tilt rotor, a tilt wing, and a folding tilt rotor designed for a civil transport mission. Baseline aircraft models using current technology are developed for each configuration using a vertical/short takeoff and landing (V/STOL) aircraft design synthesis computer program to generate converged vehicle designs. Sensitivity studies and numerical optimization are used to illustrate each configuration's key design tradeoffs and constraints. Minimization of the gross takeoff weight is used as the optimization objective function. Several advanced technologies are chosen, and their relative impact on future configurational development is discussed. Finally, the impact of maximum cruise speed on vehicle figures of merit (gross weight, productivity, and direct operating cost) is analyzed. The three most important conclusions from the study are payload ratios for these aircraft will be commensurate with current fixed-wing commuter aircraft; future tilt rotors and tilt wings will be significantly lighter, more productive, and cheaper than competing folding tilt rotors; and the most promising technologies are an advanced-technology proprotor for both tilt rotor and tilt wing and advanced structural materials for the folding tilt rotor.

  11. An aircraft model for the AIAA controls design challenge

    NASA Technical Reports Server (NTRS)

    Brumbaugh, Randal W.

    1991-01-01

    A generic, state-of-the-art, high-performance aircraft model, including detailed, full-envelope, nonlinear aerodynamics, and full-envelope thrust and first-order engine response data is described. While this model was primarily developed Controls Design Challenge, the availability of such a model provides a common focus for research in aeronautical control theory and methodology. An implementation of this model using the FORTRAN computer language, associated routines furnished with the aircraft model, and techniques for interfacing these routines to external procedures is also described. Figures showing vehicle geometry, surfaces, and sign conventions are included.

  12. Visualization in the Design of Modern Aircraft Aerodynamics

    NASA Technical Reports Server (NTRS)

    Bryson, Steve; Kutler, Paul (Technical Monitor)

    1997-01-01

    Modem aircraft design involves study of airflow through both windtunnel testing and computer simulation. These computer simulations result in often very large and complex sets of numbers, which contain information critical to the aircrafts performance. This talk will describe how visualization is used to understand these simulations, using a variety of techniques including low-level analysis such as simulated particles, high-level feature detection, and virtual-reality-based techniques for exploration. We will focus on the challenges of extremely large data sets, interactive performance, and information extraction. The talk will close with a vision of the future including the integration of simulation and visualization.

  13. Concepts for a future aircraft design environment

    SciTech Connect

    Bouchard, E.E. )

    1992-02-01

    One of the means to the efficient exploration of aerospace 'design space' is the use of extremely flexible tools for parametric design, which may be regarded as the task of making those decisions which furnish values for quantities needed to create a specific object from an overall concept for that type of object. The Engineer's Scratch Pad (ESP) is a software system for the implementation of just such a parametric-design strategy which specifies the calculations to be performed via some combination of equations and data-flow diagrams. ESP has been successfully applied in recent years to vehicle conceptual design, environmental control system design, heat-exchanger design, and production-process analyses. 17 refs.

  14. Engine Conceptual Design Studies for a Hybrid Wing Body Aircraft

    NASA Technical Reports Server (NTRS)

    Tong, Michael T.; Jones, Scott M.; Haller, William J.; Handschuh, Robert F.

    2009-01-01

    Worldwide concerns of air quality and climate change have made environmental protection one of the most critical issues in aviation today. NASA's current Fundamental Aeronautics research program is directed at three generations of aircraft in the near, mid and far term, with initial operating capability around 2015, 2020, and 2030, respectively. Each generation has associated goals for fuel burn, NOx, noise, and field-length reductions relative to today's aircrafts. The research for the 2020 generation is directed at enabling a hybrid wing body (HWB) aircraft to meet NASA's aggressive technology goals. This paper presents the conceptual cycle and mechanical designs of the two engine concepts, podded and embedded systems, which were proposed for a HWB cargo freighter. They are expected to offer significant benefits in noise reductions without compromising the fuel burn.

  15. Engine Conceptual Design Studies for a Hybrid Wing Body Aircraft

    NASA Technical Reports Server (NTRS)

    Tong, Michael T.; Jones, Scott M.; Haller, William J.; Handschuh, Robert F.

    2009-01-01

    Worldwide concerns of air quality and climate change have made environmental protection one of the most critical issues in aviation today. NASA s current Fundamental Aeronautics Research program is directed at three generations of aircraft in the near, mid and far term, with initial operating capability around 2015, 2020, and 2030, respectively. Each generation has associated goals for fuel burn, NOx, noise, and field-length reductions relative to today s aircrafts. The research for the 2020 generation is directed at enabling a hybrid wing body (HWB) aircraft to meet NASA s aggressive technology goals. This paper presents the conceptual cycle and mechanical designs of the two engine concepts, podded and embedded systems, which were proposed for a HWB cargo freighter. They are expected to offer significant benefits in noise reductions without compromising the fuel burn.

  16. Interactive Graphics Analysis for Aircraft Design

    NASA Technical Reports Server (NTRS)

    Townsend, J. C.

    1983-01-01

    Program uses higher-order far field drag minimization. Computer program WDES WDEM preliminary aerodynamic design tool for one or two interacting, subsonic lifting surfaces. Subcritical wing design code employs higher-order far-field drag minimization technique. Linearized aerodynamic theory used. Program written in FORTRAN IV.

  17. Evaluation of materials and design modifications for aircraft brakes

    NASA Technical Reports Server (NTRS)

    Ho, T. L.; Kennedy, F. E.; Peterson, M. B.

    1975-01-01

    A test program is described which was carried out to evaluate several proposed design modifications and several high-temperature friction materials for use in aircraft disk brakes. The evaluation program was carried out on a specially built test apparatus utilizing a disk brake and wheel half from a small het aircraft. The apparatus enabled control of brake pressure, velocity, and braking time. Tests were run under both constant and variable velocity conditions and covered a kinetic energy range similar to that encountered in aircraft brake service. The results of the design evaluation program showed that some improvement in brake performance can be realized by making design changes in the components of the brake containing friction material. The materials evaluation showed that two friction materials show potential for use in aircraft disk brakes. One of the materials is a nickel-based sintered composite, while the other is a molybdenum-based material. Both materials show much lower wear rates than conventional copper-based materials and are better able to withstand the high temperatures encountered during braking. Additional materials improvement is necessary since both materials show a significant negative slope of the friction-velocity curve at low velocities.

  18. An integrated computer system for preliminary design of advanced aircraft.

    NASA Technical Reports Server (NTRS)

    Fulton, R. E.; Sobieszczanski, J.; Landrum, E. J.

    1972-01-01

    A progress report is given on the first phase of a research project to develop a system of Integrated Programs for Aerospace-Vehicle Design (IPAD) which is intended to automate to the largest extent possible the preliminary and detailed design of advanced aircraft. The approach used is to build a pilot system and simultaneously to carry out two major contractual studies to define a practical IPAD system preparatory to programing. The paper summarizes the specifications and goals of the IPAD system, the progress to date, and any conclusion reached regarding its feasibility and scope. Sample calculations obtained with the pilot system are given for aircraft preliminary designs optimized with respect to discipline parameters, such as weight or L/D, and these results are compared with designs optimized with respect to overall performance parameters, such as range or payload.

  19. Application of the generalized reduced gradient method to conceptual aircraft design

    NASA Technical Reports Server (NTRS)

    Gabriele, G. A.

    1984-01-01

    The complete aircraft design process can be broken into three phases of increasing depth: conceptual design, preliminary design, and detail design. Conceptual design consists primarily of developing general arrangements and selecting the configuration that optimally satisfies all mission requirements. The result of the conceptual phase is a conceptual baseline configuration that serves as the starting point for the preliminary design phase. The conceptual design of an aircraft involves a complex trade-off of many independent variables that must be investigated before deciding upon the basic configuration. Some of these variables are discrete (number of engines), some represent different configurations (canard vs conventional tail) and some may represent incorporation of new technologies (aluminum vs composite materials). At Lockheed-Georgia, the sizing program is known as GASP (Generalized Aircraft Sizing Program). GASP is a large program containing analysis modules covering the many different disciplines involved fin defining the aricraft, such as aerodynamics, structures, stability and control, mission performance, and cost. These analysis modules provide first-level estimates the aircraft properties that are derived from handbook, experimental, and historical sources.

  20. The design of digital-adaptive controllers for VTOL aircraft

    NASA Technical Reports Server (NTRS)

    Stengel, R. F.; Broussard, J. R.; Berry, P. W.

    1976-01-01

    Design procedures for VTOL automatic control systems have been developed and are presented. Using linear-optimal estimation and control techniques as a starting point, digital-adaptive control laws have been designed for the VALT Research Aircraft, a tandem-rotor helicopter which is equipped for fully automatic flight in terminal area operations. These control laws are designed to interface with velocity-command and attitude-command guidance logic, which could be used in short-haul VTOL operations. Developments reported here include new algorithms for designing non-zero-set-point digital regulators, design procedures for rate-limited systems, and algorithms for dynamic control trim setting.

  1. Analysis and design technology for high-speed aircraft structures

    NASA Technical Reports Server (NTRS)

    Starnes, James H., Jr.; Camarda, Charles J.

    1992-01-01

    Recent high-speed aircraft structures research activities at NASA Langley Research Center are described. The following topics are covered: the development of analytical and numerical solutions to global and local thermal and structural problems, experimental verification of analysis methods, identification of failure mechanisms, and the incorporation of analysis methods into design and optimization strategies. The paper describes recent NASA Langley advances in analysis and design methods, structural and thermal concepts, and test methods.

  2. Design of the Next Generation Aircraft Noise Prediction Program: ANOPP2

    NASA Technical Reports Server (NTRS)

    Lopes, Leonard V., Dr.; Burley, Casey L.

    2011-01-01

    The requirements, constraints, and design of NASA's next generation Aircraft NOise Prediction Program (ANOPP2) are introduced. Similar to its predecessor (ANOPP), ANOPP2 provides the U.S. Government with an independent aircraft system noise prediction capability that can be used as a stand-alone program or within larger trade studies that include performance, emissions, and fuel burn. The ANOPP2 framework is designed to facilitate the combination of acoustic approaches of varying fidelity for the analysis of noise from conventional and unconventional aircraft. ANOPP2 integrates noise prediction and propagation methods, including those found in ANOPP, into a unified system that is compatible for use within general aircraft analysis software. The design of the system is described in terms of its functionality and capability to perform predictions accounting for distributed sources, installation effects, and propagation through a non-uniform atmosphere including refraction and the influence of terrain. The philosophy of mixed fidelity noise prediction through the use of nested Ffowcs Williams and Hawkings surfaces is presented and specific issues associated with its implementation are identified. Demonstrations for a conventional twin-aisle and an unconventional hybrid wing body aircraft configuration are presented to show the feasibility and capabilities of the system. Isolated model-scale jet noise predictions are also presented using high-fidelity and reduced order models, further demonstrating ANOPP2's ability to provide predictions for model-scale test configurations.

  3. High-order computational fluid dynamics tools for aircraft design.

    PubMed

    Wang, Z J

    2014-08-13

    Most forecasts predict an annual airline traffic growth rate between 4.5 and 5% in the foreseeable future. To sustain that growth, the environmental impact of aircraft cannot be ignored. Future aircraft must have much better fuel economy, dramatically less greenhouse gas emissions and noise, in addition to better performance. Many technical breakthroughs must take place to achieve the aggressive environmental goals set up by governments in North America and Europe. One of these breakthroughs will be physics-based, highly accurate and efficient computational fluid dynamics and aeroacoustics tools capable of predicting complex flows over the entire flight envelope and through an aircraft engine, and computing aircraft noise. Some of these flows are dominated by unsteady vortices of disparate scales, often highly turbulent, and they call for higher-order methods. As these tools will be integral components of a multi-disciplinary optimization environment, they must be efficient to impact design. Ultimately, the accuracy, efficiency, robustness, scalability and geometric flexibility will determine which methods will be adopted in the design process. This article explores these aspects and identifies pacing items. PMID:25024419

  4. High-order computational fluid dynamics tools for aircraft design.

    PubMed

    Wang, Z J

    2014-08-13

    Most forecasts predict an annual airline traffic growth rate between 4.5 and 5% in the foreseeable future. To sustain that growth, the environmental impact of aircraft cannot be ignored. Future aircraft must have much better fuel economy, dramatically less greenhouse gas emissions and noise, in addition to better performance. Many technical breakthroughs must take place to achieve the aggressive environmental goals set up by governments in North America and Europe. One of these breakthroughs will be physics-based, highly accurate and efficient computational fluid dynamics and aeroacoustics tools capable of predicting complex flows over the entire flight envelope and through an aircraft engine, and computing aircraft noise. Some of these flows are dominated by unsteady vortices of disparate scales, often highly turbulent, and they call for higher-order methods. As these tools will be integral components of a multi-disciplinary optimization environment, they must be efficient to impact design. Ultimately, the accuracy, efficiency, robustness, scalability and geometric flexibility will determine which methods will be adopted in the design process. This article explores these aspects and identifies pacing items.

  5. High-order computational fluid dynamics tools for aircraft design

    PubMed Central

    Wang, Z. J.

    2014-01-01

    Most forecasts predict an annual airline traffic growth rate between 4.5 and 5% in the foreseeable future. To sustain that growth, the environmental impact of aircraft cannot be ignored. Future aircraft must have much better fuel economy, dramatically less greenhouse gas emissions and noise, in addition to better performance. Many technical breakthroughs must take place to achieve the aggressive environmental goals set up by governments in North America and Europe. One of these breakthroughs will be physics-based, highly accurate and efficient computational fluid dynamics and aeroacoustics tools capable of predicting complex flows over the entire flight envelope and through an aircraft engine, and computing aircraft noise. Some of these flows are dominated by unsteady vortices of disparate scales, often highly turbulent, and they call for higher-order methods. As these tools will be integral components of a multi-disciplinary optimization environment, they must be efficient to impact design. Ultimately, the accuracy, efficiency, robustness, scalability and geometric flexibility will determine which methods will be adopted in the design process. This article explores these aspects and identifies pacing items. PMID:25024419

  6. Application of tire dynamics to aircraft landing gear design analysis

    NASA Technical Reports Server (NTRS)

    Black, R. J.

    1983-01-01

    The tire plays a key part in many analyses used for design of aircraft landing gear. Examples include structural design of wheels, landing gear shimmy, brake whirl, chatter and squeal, complex combination of chatter and shimmy on main landing gear (MLG) systems, anti-skid performance, gear walk, and rough terrain loads and performance. Tire parameters needed in the various analyses are discussed. Two tire models are discussed for shimmy analysis, the modified Moreland approach and the von Schlippe-Dietrich approach. It is shown that the Moreland model can be derived from the Von Schlippe-Dietrich model by certain approximations. The remaining analysis areas are discussed in general terms and the tire parameters needed for each are identified. Accurate tire data allows more accurate design analysis and the correct prediction of dynamic performance of aircraft landing gear.

  7. Design considerations for application of laminar flow control systems to transport aircraft

    NASA Technical Reports Server (NTRS)

    Braslow, A. L.; Fischer, M. C.

    1985-01-01

    The current status of the laminar-flow control LFC technology is summarized. Factors that have previously inhibited the application of LFC are first reviewed. Involved are the effects of atmospheric ice crystals, surface irregularities, acoustical environment, and off-design operating conditions. Aircraft design trends that are different from turbulent aircraft are discussed as are various design requirements unique to the LFC systems. Current design approaches for the principal LFC systems are reviewed. These include the system for protection of the leading-edge region from surface contamination and icing and the system for removal of a portion of the boundary-layer air. The latter includes consideration of both multiple spanwise suction slots and distributed perforations and required differences between the wing-box and leading-edge box regions.

  8. A crew-centered flight deck design philosophy for High-Speed Civil Transport (HSCT) aircraft

    NASA Technical Reports Server (NTRS)

    Palmer, Michael T.; Rogers, William H.; Press, Hayes N.; Latorella, Kara A.; Abbott, Terence S.

    1995-01-01

    Past flight deck design practices used within the U.S. commercial transport aircraft industry have been highly successful in producing safe and efficient aircraft. However, recent advances in automation have changed the way pilots operate aircraft, and these changes make it necessary to reconsider overall flight deck design. The High Speed Civil Transport (HSCT) mission will likely add new information requirements, such as those for sonic boom management and supersonic/subsonic speed management. Consequently, whether one is concerned with the design of the HSCT, or a next generation subsonic aircraft that will include technological leaps in automated systems, basic issues in human usability of complex systems will be magnified. These concerns must be addressed, in part, with an explicit, written design philosophy focusing on human performance and systems operability in the context of the overall flight crew/flight deck system (i.e., a crew-centered philosophy). This document provides such a philosophy, expressed as a set of guiding design principles, and accompanied by information that will help focus attention on flight crew issues earlier and iteratively within the design process. This document is part 1 of a two-part set.

  9. Onboard Inert Gas Generation System/Onboard Oxygen Gas Generation System (OBIGGS/OBOGS) Study. Part 1; Aircraft System Requirements

    NASA Technical Reports Server (NTRS)

    Reynolds, Thomas L.; Bailey, Delbert B.; Lewinski, Daniel F.; Roseburg, Conrad M.; Palaszewski, Bryan (Technical Monitor)

    2001-01-01

    The purpose of this technology assessment is to define a multiphase research study program investigating Onboard Inert Gas Generation Systems (OBIGGS) and Onboard Oxygen Generation Systems (OBOGS) that would identify current airplane systems design and certification requirements (Subtask 1); explore state-of-the-art technology (Subtask 2); develop systems specifications (Subtask 3); and develop an initial system design (Subtask 4). If feasible, consideration may be given to the development of a prototype laboratory test system that could potentially be used in commercial transport aircraft (Subtask 5). These systems should be capable of providing inert nitrogen gas for improved fire cargo compartment fire suppression and fuel tank inerting and emergency oxygen for crew and passenger use. Subtask I of this research study, presented herein, defines current production aircraft certification requirements and design objectives necessary to meet mandatory FAA certification requirements and Boeing design and performance specifications. These requirements will be utilized for baseline comparisons for subsequent OBIGGS/OBOGS application evaluations and assessments.

  10. Design and flight test of the Propulsion Controlled Aircraft (PCA) flight control system on the NASA F-15 test aircraft

    NASA Technical Reports Server (NTRS)

    Wells, Edward A.; Urnes, James M., Sr.

    1994-01-01

    This report describes the design, development and flight testing of the Propulsion Controlled Aircraft (PCA) flight control system performed at McDonnell Douglas Aerospace (MDA), St. Louis, Missouri and at the NASA Dryden Flight Research Facility, Edwards Air Force Base, California. This research and development program was conducted by MDA and directed by NASA through the Dryden Flight Research Facility for the period beginning January 1991 and ending December 1993. A propulsion steering backup to the aircraft conventional flight control system has been developed and flight demonstrated on a NASA F-15 test aircraft. The Propulsion Controlled Aircraft (PCA) flight system utilizes collective and differential thrust changes to steer an aircraft that experiences partial or complete failure of the hydraulically actuated control surfaces. The PCA flight control research has shown that propulsion steering is a viable backup flight control mode and can assist the pilot in safe landing recovery of a fighter aircraft that has damage to or loss of the flight control surfaces. NASA, USAF and Navy evaluation test pilots stated that the F-15 PCA design provided the control necessary to land the aircraft. Moreover, the feasibility study showed that PCA technology can be directly applied to transport aircraft and provide a major improvement in the survivability of passengers and crew of controls damaged aircraft.

  11. External store effects on the stability of fighter and interceptor airplanes. [application to military aircraft mission requirements

    NASA Technical Reports Server (NTRS)

    Spearman, M. L.; Sawyer, W. C.

    1974-01-01

    Some criteria for external carriage of missiles for fighter aircraft intended for aerial combat missions and for fighter-interceptor missions are considered. The mission requirements discussed include the short-range fighter-interceptor, the short-range interceptor, the medium-range interceptor, and the long-range interceptor. Missiles types considered to be compatible with the various point mission designs include the short-range missile, the medium-range missile, and the long-range missile. From the study, it appears that point mission design aircraft can be arranged in such a way that the required external-store arrangement will not impair the stability of the aircraft. An extensive reference list of NASA external store research is included.

  12. Preliminary design of a family of three close air support aircraft

    NASA Technical Reports Server (NTRS)

    Cox, Brian; Darrah, Paul; Lussier, Wayne; Mills, Nikos

    1989-01-01

    A family of three Close Air Support aircraft is presented. These aircraft are designed with commonality as the main design objective to reduce the life cycle cost. The aircraft are low wing, twin-boom, pusher turbo-prop configurations. The amount of information displayed to the pilot was reduced to a minimum to greatly simplify the cockpit. The aircraft met the mission specifications and the performance and cost characteristics compared well with other CAS aircraft. The concept of a family of CAS aircraft seems viable after preliminary design.

  13. Data management in an object-oriented distributed aircraft conceptual design environment

    NASA Astrophysics Data System (ADS)

    Lu, Zhijie

    In the competitive global market place, aerospace companies are forced to deliver the right products to the right market, with the right cost, and at the right time. However, the rapid development of technologies and new business opportunities, such as mergers, acquisitions, supply chain management, etc., have dramatically increased the complexity of designing an aircraft. Therefore, the pressure to reduce design cycle time and cost is enormous. One way to solve such a dilemma is to develop and apply advanced engineering environments (AEEs), which are distributed collaborative virtual design environments linking researchers, technologists, designers, etc., together by incorporating application tools and advanced computational, communications, and networking facilities. Aircraft conceptual design, as the first design stage, provides major opportunity to compress design cycle time and is the cheapest place for making design changes. However, traditional aircraft conceptual design programs, which are monolithic programs, cannot provide satisfactory functionality to meet new design requirements due to the lack of domain flexibility and analysis scalability. Therefore, we are in need of the next generation aircraft conceptual design environment (NextADE). To build the NextADE, the framework and the data management problem are two major problems that need to be addressed at the forefront. Solving these two problems, particularly the data management problem, is the focus of this research. In this dissertation, in light of AEEs, a distributed object-oriented framework is firstly formulated and tested for the NextADE. In order to improve interoperability and simplify the integration of heterogeneous application tools, data management is one of the major problems that need to be tackled. To solve this problem, taking into account the characteristics of aircraft conceptual design data, a robust, extensible object-oriented data model is then proposed according to the

  14. Mathematical analysis of aircraft intercooler design

    NASA Technical Reports Server (NTRS)

    Joyner, Upshur T

    1940-01-01

    A mathematical analysis has been made to show the method of obtaining the dimensions of the intercooler that will use the least total power for a given set of design conditions. The results of this analysis have been used in a sample calculation and, on the basis of this calculation, a new inter cooler arrangement is suggested. Because the length of the two air passages of the new arrangement is short in comparison with the third dimension, the height of the intercooler, this intercooler arrangement has unusual dimensions. These dimensions give the proposed intercooler arrangement an advantage over one of usual dimensions because less total power will be consumed by the intercooler, the weight and volume of the intercooler will be smaller, and the pressure drop of both the engine air and the cooling air in passing through the intercooler will be lower.

  15. Effect of power system technology and mission requirements on high altitude long endurance aircraft

    NASA Technical Reports Server (NTRS)

    Colozza, Anthony J.

    1994-01-01

    An analysis was performed to determine how various power system components and mission requirements affect the sizing of a solar powered long endurance aircraft. The aircraft power system consists of photovoltaic cells and a regenerative fuel cell. Various characteristics of these components, such as PV cell type, PV cell mass, PV cell efficiency, fuel cell efficiency, and fuel cell specific mass, were varied to determine what effect they had on the aircraft sizing for a given mission. Mission parameters, such as time of year, flight altitude, flight latitude, and payload mass and power, were also altered to determine how mission constraints affect the aircraft sizing. An aircraft analysis method which determines the aircraft configuration, aspect ratio, wing area, and total mass, for maximum endurance or minimum required power based on the stated power system and mission parameters is presented. The results indicate that, for the power system, the greatest benefit can be gained by increasing the fuel cell specific energy. Mission requirements also substantially affect the aircraft size. By limiting the time of year the aircraft is required to fly at high northern or southern latitudes, a significant reduction in aircraft size or increase in payload capacity can be achieved.

  16. Aircraft

    DOEpatents

    Hibbs, B.D.; Lissaman, P.B.S.; Morgan, W.R.; Radkey, R.L.

    1998-09-22

    This disclosure provides a solar rechargeable aircraft that is inexpensive to produce, is steerable, and can remain airborne almost indefinitely. The preferred aircraft is a span-loaded flying wing, having no fuselage or rudder. Travelling at relatively slow speeds, and having a two-hundred foot wingspan that mounts photovoltaic cells on most all of the wing`s top surface, the aircraft uses only differential thrust of its eight propellers to turn. Each of five sections of the wing has one or more engines and photovoltaic arrays, and produces its own lift independent of the other sections, to avoid loading them. Five two-sided photovoltaic arrays, in all, are mounted on the wing, and receive photovoltaic energy both incident on top of the wing, and which is incident also from below, through a bottom, transparent surface. The aircraft is capable of a top speed of about ninety miles per hour, which enables the aircraft to attain and can continuously maintain altitudes of up to sixty-five thousand feet. Regenerative fuel cells in the wing store excess electricity for use at night, such that the aircraft can sustain its elevation indefinitely. A main spar of the wing doubles as a pressure vessel that houses hydrogen and oxygen gases for use in the regenerative fuel cell. The aircraft has a wide variety of applications, which include weather monitoring and atmospheric testing, communications, surveillance, and other applications as well. 31 figs.

  17. Aircraft

    DOEpatents

    Hibbs, Bart D.; Lissaman, Peter B. S.; Morgan, Walter R.; Radkey, Robert L.

    1998-01-01

    This disclosure provides a solar rechargeable aircraft that is inexpensive to produce, is steerable, and can remain airborne almost indefinitely. The preferred aircraft is a span-loaded flying wing, having no fuselage or rudder. Travelling at relatively slow speeds, and having a two-hundred foot wingspan that mounts photovoltaic cells on most all of the wing's top surface, the aircraft uses only differential thrust of its eight propellers to turn. Each of five sections of the wing has one or more engines and photovoltaic arrays, and produces its own lift independent of the other sections, to avoid loading them. Five two-sided photovoltaic arrays, in all, are mounted on the wing, and receive photovoltaic energy both incident on top of the wing, and which is incident also from below, through a bottom, transparent surface. The aircraft is capable of a top speed of about ninety miles per hour, which enables the aircraft to attain and can continuously maintain altitudes of up to sixty-five thousand feet. Regenerative fuel cells in the wing store excess electricity for use at night, such that the aircraft can sustain its elevation indefinitely. A main spar of the wing doubles as a pressure vessel that houses hydrogen and oxygen gasses for use in the regenerative fuel cell. The aircraft has a wide variety of applications, which include weather monitoring and atmospheric testing, communications, surveillance, and other applications as well.

  18. Aircraft design for mission performance using nonlinear multiobjective optimization methods

    NASA Technical Reports Server (NTRS)

    Dovi, Augustine R.; Wrenn, Gregory A.

    1990-01-01

    A new technique which converts a constrained optimization problem to an unconstrained one where conflicting figures of merit may be simultaneously considered was combined with a complex mission analysis system. The method is compared with existing single and multiobjective optimization methods. A primary benefit from this new method for multiobjective optimization is the elimination of separate optimizations for each objective, which is required by some optimization methods. A typical wide body transport aircraft is used for the comparative studies.

  19. A-2000: Close air support aircraft design team

    NASA Technical Reports Server (NTRS)

    Carrannanto, Paul; Lim, Don; Lucas, Evangeline; Risse, Alan; Weaver, Dave; Wikse, Steve

    1991-01-01

    The US Air Force is currently faced with the problem of providing adequate close air support for ground forces. Air response to troops engaged in combat must be rapid and devastating due to the highly fluid battle lines of the future. The A-2000 is the result of a study to design an aircraft to deliver massive fire power accurately. The low cost A-2000 incorporates: large weapons payload; excellent maneuverability; all weather and terrain following capacity; redundant systems; and high survivability.

  20. Fuel characteristics pertinent to the design of aircraft fuel systems

    NASA Technical Reports Server (NTRS)

    Barnett, Henry C; Hibbard, R R

    1953-01-01

    Because of the importance of fuel properties in design of aircraft fuel systems the present report has been prepared to provide information on the characteristics of current jet fuels. In addition to information on fuel properties, discussions are presented on fuel specifications, the variations among fuels supplied under a given specification, fuel composition, and the pertinence of fuel composition and physical properties to fuel system design. In some instances the influence of variables such as pressure and temperature on physical properties is indicated. References are cited to provide fuel system designers with sources of information containing more detail than is practicable in the present report.

  1. Perspective on the span-distributed-load concept for application to large cargo aircraft design

    NASA Technical Reports Server (NTRS)

    Whitehead, A. H., Jr.

    1975-01-01

    Results of a simplified analysis of the span-distributed-load concept (in which payload is placed within the wing structure) are presented. It is shown that a design based on these principles has a high potential for application to future large air cargo transport. Significant improvements are foreseen in increased payload fraction and productivity and in reduced fuel consumption and operating costs. A review of the efforts in the 1940's to develop all-wing aircraft shows the potential of transferring those early technological developments to current design of distributed-load aircraft. Current market analyses are projected to 1990 to show the future commercial demand for large capacity freighters. Several configuration designs which would serve different market requirements for these large freighters are discussed as are some of the pacing-technology requirements.

  2. Robots for aircraft coatings removal: Parameters and requirements

    SciTech Connect

    Gat, U.

    1990-01-01

    The chemical stripping of coatings of aircraft is being phased out, primarily for environmental reasons. The search is on for methods that are more economical, more efficient, non-damaging and environmentally acceptable. Two of several prime candidates for the new methods are laser stripping and media stripping. Amongst the media stripping methods several are being considered, some of which are plastic media, bicarbonates, and frozen carbon dioxide. To achieve better quality, uniformity, efficiency, and economy and to reduce to a minimum any possible environmental hazards, it is desirable to utilize robots and automatic methods for the aircraft stripping. It is desirable that the robots be flexible and versatile to the extent possible. The flexibility and versatility refers to the ability to recognize and adjust to: variations within an aircraft type; different types of aircraft, including segments of aircraft; accommodation of different stripping methods, primarily laser stripping and plastic media blasting (PMB). However it is realized that flexability or versatility may not be available. Furthermore no practical robots or even partial levels of automation may be readily available for implementation. This paper summarizes desired features and characteristics for robots for coatings removals from aircraft.

  3. The Design of an Ultra High Capacity Long Range Transport Aircraft

    NASA Technical Reports Server (NTRS)

    Weisshaar, Terrence A.; Bucci, Gregory; Hare, Angela; Szolwinski, Matthew

    1993-01-01

    This paper examines the design of a 650 passenger aircraft with 8000 nautical mile range to reduce seat mile cost and to reduce airport and airway congestion. This design effort involves the usual issues that require trades between technologies, but must also include consideration of: airport terminal facilities; passenger loading and unloading; and, defeating the 'square-cube' law to design large structures. This paper will review the long range ultra high capacity or megatransport design problem and the variety of solutions developed by senior student design teams at Purdue University.

  4. The Eliminator: A design of a close air support aircraft

    NASA Technical Reports Server (NTRS)

    Hendrix, Mandy; Hoang, TY; Kokolios, Alex; Selyem, Sharon; Wardell, Mark; Winterrowd, David

    1991-01-01

    The Eliminator is the answer to the need for an affordable, maintainable, survivable, high performance close air support aircraft primarily for the United States, but with possible export sales to foreign customers. The Eliminator is twin turbofan, fixed wing aircraft with high mounted canards and low mounted wings. It is designed for high subsonic cruise and an attack radius of 250 nautical miles. Primarily it would carry 20 500 pound bombs as its main ordnance , but is versatile enough to carry a variety of weapons configurations to perform several different types of missions. It carries state of the art navigation and targeting systems to deliver its payload with pinpoint precision and is designed for maximum survivability of the crew and aircraft for a safe return and quick turnaround. It can operate from fields as short as 1800 ft. with easy maintenance for dispersed operation during hostile situations. It is designed for exceptional maneuverability and could be used in a variety of roles from air-to-air operations to anti-submarine warfare and maritime patrol duties.

  5. A fuselage/tank structure study for actively cooled hypersonic cruise vehicles, summary. [aircraft design of aircraft fuel systems

    NASA Technical Reports Server (NTRS)

    Pirrello, C. J.; Baker, A. H.; Stone, J. E.

    1976-01-01

    A detailed analytical study was made to investigate the effects of fuselage cross section (circular and elliptical) and the structural arrangement (integral and nonintegral tanks) on aircraft performance. The vehicle was a 200 passenger, liquid hydrogen fueled Mach 6 transport designed to meet a range goal of 9.26 Mn (5000 NM). A variety of trade studies were conducted in the area of configuration arrangement, structural design, and active cooling design in order to maximize the performance of each of three point design aircraft: (1) circular wing-body with nonintegral tanks, (2) circular wing-body with integral tanks and (3) elliptical blended wing-body with integral tanks. Aircraft range and weight were used as the basis for comparison. The resulting design and performance characteristics show that the blended body integral tank aircraft weights the least and has the greatest range capability, however, producibility and maintainability factors favor nonintegral tank concepts.

  6. Design criteria for flightpath and airspeed control for the approach and landing of STOL aircraft

    NASA Technical Reports Server (NTRS)

    Franklin, J. A.; Innis, R. C.; Hardy, G. H.; Stephenson, J. D.

    1982-01-01

    A flight research program was conducted to assess requirements for flightpath and airspeed control for glide-slope tracking during a precision approach and for flare control, particularly as applied to powered-lift, short takeoff and landing (STOL) aircraft. Ames Research Center's Augmentor Wing Research Aircraft was used to fly approaches on a 7.5 deg glide slope to landings on a 30 X 518 m (100 X 1700 ft) STOL runway. The dominant aircraft response characteristics determined were flightpath overshoot, flightpath-airspeed coupling, and initial flightpath response time. The significant contribution to control of the landing flare using pitch attitude was the short-term flightpath response. The limiting condition for initial flightpath response time for flare control with thrust was also identified. It is possible to define flying-qualities design criteria for glide-slope and flare control based on the aforementioned response characteristics.

  7. Integration of Off-Track Sonic Boom Analysis in Conceptual Design of Supersonic Aircraft

    NASA Technical Reports Server (NTRS)

    Ordaz, Irian; Li, Wu

    2011-01-01

    A highly desired capability for the conceptual design of aircraft is the ability to rapidly and accurately evaluate new concepts to avoid adverse trade decisions that may hinder the development process in the later stages of design. Evaluating the robustness of new low-boom concepts is important for the conceptual design of supersonic aircraft. Here, robustness means that the aircraft configuration has a low-boom ground signature at both under- and off-track locations. An integrated process for off-track boom analysis is developed to facilitate the design of robust low-boom supersonic aircraft. The integrated off-track analysis can also be used to study the sonic boom impact and to plan future flight trajectories where flight conditions and ground elevation might have a significant effect on ground signatures. The key enabler for off-track sonic boom analysis is accurate computational fluid dynamics (CFD) solutions for off-body pressure distributions. To ensure the numerical accuracy of the off-body pressure distributions, a mesh study is performed with Cart3D to determine the mesh requirements for off- body CFD analysis and comparisons are made between the Cart3D and USM3D results. The variations in ground signatures that result from changes in the initial location of the near-field waveform are also examined. Finally, a complete under- and off-track sonic boom analysis is presented for two distinct supersonic concepts to demonstrate the capability of the integrated analysis process.

  8. Design considerations for attaining 250-knot test velocities at the aircraft landing dynamics facility

    NASA Technical Reports Server (NTRS)

    Gray, C. E., Jr.; Snyder, R. E.; Taylor, J. T.; Cires, A.; Fitzgerald, A. L.; Armistead, M. F.

    1980-01-01

    Preliminary design studies are presented which consider the important parameters in providing 250 knot test velocities at the Aircraft Landing Dynamics Facility. Four major components of this facility are: the hydraulic jet catapult, the test carriage structure, the reaction turning bucket, and the wheels. Using the hydraulic-jet catapult characteristics, a target design point was selected and a carriage structure was sized to meet the required strength requirements. The preliminary design results indicate that to attain 250 knot test velocities for a given hydraulic jet catapult system, a carriage mass of 25,424 kg (56,000 lbm.) cannot be exceeded.

  9. A Pilot Opinion Study of Lateral Control Requirements for Fighter-Type Aircraft

    NASA Technical Reports Server (NTRS)

    Creer, Brent Y.; Stewart, John D.; Merrick, Robert B.; Drinkwater, Fred J., III

    1959-01-01

    As part of a continuing NASA program of research on airplane handling qualities, a pilot opinion investigation has been made on the lateral control requirements of fighter aircraft flying in their combat speed range. The investigation was carried out using a stationary flight simulator and a moving flight simulator, and the flight simulator results were supplemented by research tests in actual flight. The flight simulator study was based on the presumption that the pilot rates the roll control of an airplane primarily on a single-degree-of-freedom basis; that is, control of angle of roll about the aircraft body axis being of first importance. From the assumption of a single degree of freedom system it follows that there are two fundamental parameters which govern the airplane roll response, namely the roll damping expressed as a time constant and roll control power in terms of roll acceleration. The simulator study resulted in a criterion in terms of these two parameters which defines satisfactory, unsatisfactory, and unacceptable roll performance from a pilot opinion standpoint. The moving simulator results were substantiated by the in-flight investigation. The derived criterion was compared with the roll performance criterion based upon wing tip helix angle and also with other roll performance concepts which currently influence the roll performance design of military fighter aircraft flying in their combat speed range.

  10. Design of a composite wing extension for a general aviation aircraft

    NASA Technical Reports Server (NTRS)

    Adney, P. S.; Horn, W. J.

    1984-01-01

    A composite wing extension was designed for a typical general aviation aircraft to improve lift curve slope, dihedral effect, and lift to drag ratio. Advanced composite materials were used in the design to evaluate their use as primary structural components in general aviation aircraft. Extensive wind tunnel tests were used to evaluate six extension shapes. The extension shape chosen as the best choice was 28 inches long with a total area of 17 square feet. Subsequent flight tests showed the wing extension's predicted aerodynamic improvements to be correct. The structural design of the wing extension consisted of a hybrid laminate carbon core with outer layers of Kevlar - layed up over a foam interior which acted as an internal support. The laminate skin of the wing extension was designed from strength requirements, and the foam core was included to prevent buckling. A joint lap was recommended to attach the wing extension to the main wing structure.

  11. N+3 Aircraft Concept Designs and Trade Studies. Volume 1

    NASA Technical Reports Server (NTRS)

    Greitzer, E. M.; Bonnefoy, P. A.; DelaRosaBlanco, E.; Dorbian, C. S.; Drela, M.; Hall, D. K.; Hansman, R. J.; Hileman, J. I.; Liebeck, R. H.; Levegren, J.; Mody, P.; Pertuze, J. A.; Sato, S.; Spakovszky, Z. S.; Tan, C. S.; Hollman, J. S.; Duda, J. E.; Fitzgerald, N.; Houghton, J.; Kerrebrock, J. L.; Kiwada, G. F.; Kordonowy, D.; Parrish, J. C.; Tylko, J.; Wen, E. A.

    2010-01-01

    MIT, Aerodyne Research, Aurora Flight Sciences, and Pratt & Whitney have collaborated to address NASA s desire to pursue revolutionary conceptual designs for a subsonic commercial transport that could enter service in the 2035 timeframe. The MIT team brings together multidisciplinary expertise and cutting-edge technologies to determine, in a rigorous and objective manner, the potential for improvements in noise, emissions, and performance for subsonic fixed wing transport aircraft. The collaboration incorporates assessment of the trade space in aerodynamics, propulsion, operations, and structures to ensure that the full spectrum of improvements is identified. Although the analysis focuses on these key areas, the team has taken a system-level approach to find the integrated solutions that offer the best balance in performance enhancements. Based on the trade space analyses and system-level assessment, two aircraft have been identified and carried through conceptual design to show both the in-depth engineering that underpins the benefits envisioned and also the technology paths that need to be followed to enable, within the next 25 years, the development of aircraft three generations ahead in capabilities from those flying today.

  12. Design and Evaluation of Nextgen Aircraft Separation Assurance Concepts

    NASA Technical Reports Server (NTRS)

    Johnson, Walter; Ho, Nhut; Arutyunov, Vladimir; Laue, John-Luke; Wilmoth, Ian

    2012-01-01

    To support the development and evaluation of future function allocation concepts for separation assurance systems for the Next Generation Air Transportation System, this paper presents the design and human-in-the-loop evaluation of three feasible function allocation concepts that allocate primary aircraft separation assurance responsibilities and workload to: 1) pilots; 2) air traffic controllers (ATC); and 3) automation. The design of these concepts also included rules of the road, separation assurance burdens for aircraft of different equipage levels, and utilization of advanced weather displays paired with advanced conflict detection and resolution automation. Results of the human-in-the-loop simulation show that: a) all the concepts are robust with respect to weather perturbation; b) concept 1 (pilots) had highest throughput, closest to assigned spacing, and fewest violations of speed and altitude restrictions; c) the energy of the aircraft during the descent phase was better managed in concepts 1 and 2 (pilots and ATC) than in concept 3 (automation), in which the situation awareness of pilots and controllers was lowest, and workload of pilots was highest. The paper also discusses further development of these concepts and their augmentation and integration with future air traffic management tools and systems that are being considered for NextGen.

  13. Sonic Boom Mitigation Through Aircraft Design and Adjoint Methodology

    NASA Technical Reports Server (NTRS)

    Rallabhandi, Siriam K.; Diskin, Boris; Nielsen, Eric J.

    2012-01-01

    This paper presents a novel approach to design of the supersonic aircraft outer mold line (OML) by optimizing the A-weighted loudness of sonic boom signature predicted on the ground. The optimization process uses the sensitivity information obtained by coupling the discrete adjoint formulations for the augmented Burgers Equation and Computational Fluid Dynamics (CFD) equations. This coupled formulation links the loudness of the ground boom signature to the aircraft geometry thus allowing efficient shape optimization for the purpose of minimizing the impact of loudness. The accuracy of the adjoint-based sensitivities is verified against sensitivities obtained using an independent complex-variable approach. The adjoint based optimization methodology is applied to a configuration previously optimized using alternative state of the art optimization methods and produces additional loudness reduction. The results of the optimizations are reported and discussed.

  14. Data on the Design of Plywood for Aircraft

    NASA Technical Reports Server (NTRS)

    Elmendorf, Armin

    1921-01-01

    This report makes available data which will aid the designer in determining the plywood that is best adapted to various aircraft parts. It gives the results of investigations made by the Forest Products Laboratory of the United States Forest Service at Madison, Wisconsin, for the Army and Navy Departments, and is one of a series of reports on the use of wood in aircraft prepared by the Forest Products Laboratory for publication by the National Advisory Committee for Aeronautics. The object of the study was to determine, through comprehensive tests, the mechanical and physical properties of plywood and how these properties vary with density, number, thickness, arrangement of the plies and direction of grain of the plies.

  15. Neural Network Prediction of New Aircraft Design Coefficients

    NASA Technical Reports Server (NTRS)

    Norgaard, Magnus; Jorgensen, Charles C.; Ross, James C.

    1997-01-01

    This paper discusses a neural network tool for more effective aircraft design evaluations during wind tunnel tests. Using a hybrid neural network optimization method, we have produced fast and reliable predictions of aerodynamical coefficients, found optimal flap settings, and flap schedules. For validation, the tool was tested on a 55% scale model of the USAF/NASA Subsonic High Alpha Research Concept aircraft (SHARC). Four different networks were trained to predict coefficients of lift, drag, moment of inertia, and lift drag ratio (C(sub L), C(sub D), C(sub M), and L/D) from angle of attack and flap settings. The latter network was then used to determine an overall optimal flap setting and for finding optimal flap schedules.

  16. System Synthesis in Preliminary Aircraft Design using Statistical Methods

    NASA Technical Reports Server (NTRS)

    DeLaurentis, Daniel; Mavris, Dimitri N.; Schrage, Daniel P.

    1996-01-01

    This paper documents an approach to conceptual and preliminary aircraft design in which system synthesis is achieved using statistical methods, specifically design of experiments (DOE) and response surface methodology (RSM). These methods are employed in order to more efficiently search the design space for optimum configurations. In particular, a methodology incorporating three uses of these techniques is presented. First, response surface equations are formed which represent aerodynamic analyses, in the form of regression polynomials, which are more sophisticated than generally available in early design stages. Next, a regression equation for an overall evaluation criterion is constructed for the purpose of constrained optimization at the system level. This optimization, though achieved in a innovative way, is still traditional in that it is a point design solution. The methodology put forward here remedies this by introducing uncertainty into the problem, resulting a solutions which are probabilistic in nature. DOE/RSM is used for the third time in this setting. The process is demonstrated through a detailed aero-propulsion optimization of a high speed civil transport. Fundamental goals of the methodology, then, are to introduce higher fidelity disciplinary analyses to the conceptual aircraft synthesis and provide a roadmap for transitioning from point solutions to probabalistic designs (and eventually robust ones).

  17. System Synthesis in Preliminary Aircraft Design Using Statistical Methods

    NASA Technical Reports Server (NTRS)

    DeLaurentis, Daniel; Mavris, Dimitri N.; Schrage, Daniel P.

    1996-01-01

    This paper documents an approach to conceptual and early preliminary aircraft design in which system synthesis is achieved using statistical methods, specifically Design of Experiments (DOE) and Response Surface Methodology (RSM). These methods are employed in order to more efficiently search the design space for optimum configurations. In particular, a methodology incorporating three uses of these techniques is presented. First, response surface equations are formed which represent aerodynamic analyses, in the form of regression polynomials, which are more sophisticated than generally available in early design stages. Next, a regression equation for an Overall Evaluation Criterion is constructed for the purpose of constrained optimization at the system level. This optimization, though achieved in an innovative way, is still traditional in that it is a point design solution. The methodology put forward here remedies this by introducing uncertainty into the problem, resulting in solutions which are probabilistic in nature. DOE/RSM is used for the third time in this setting. The process is demonstrated through a detailed aero-propulsion optimization of a High Speed Civil Transport. Fundamental goals of the methodology, then, are to introduce higher fidelity disciplinary analyses to the conceptual aircraft synthesis and provide a roadmap for transitioning from point solutions to probabilistic designs (and eventually robust ones).

  18. A service life extension (SLEP) approach to operating aging aircraft beyond their original design lives

    NASA Astrophysics Data System (ADS)

    Pentz, Alan Carter

    With today's uncertain funding climate (including sequestration and continuing budget resolutions), decision makers face severe budgetary challenges to maintain dominance through all aspects of the Department of Defense (DoD). To meet war-fighting capabilities, the DoD continues to extend aircraft programs beyond their design service lives by up to ten years, and occasionally much more. The budget requires a new approach to traditional extension strategies (i.e., reuse, reset, and reclamation) for structural hardware. While extending service life without careful controls can present a safety concern, future operations planning does not consider how much risk is present when operating within sound structural principles. Traditional structural hardware extension methods drive increased costs. Decision makers often overlook the inherent damage tolerance and fatigue capability of structural components and rely on simple time- and flight-based cycle accumulation when determining aircraft retirement lives. This study demonstrates that decision makers should consider risk in addition to the current extension strategies. Through an evaluation of eight military aircraft programs and the application and simulation of F-18 turbine engine usage data, this dissertation shows that insight into actual aircraft mission data, consideration of fatigue capability, and service extension length are key factors to consider. Aircraft structural components, as well as many critical safety components and system designs, have a predefined level of conservatism and inherent damage tolerance. The methods applied in this study would apply to extensions of other critical structures such as bridges. Understanding how much damage tolerance is built into the design compared to the original design usage requirements presents the opportunity to manage systems based on risk. The study presents the sensitivity of these factors and recommends avenues for further research.

  19. 14 CFR 139.319 - Aircraft rescue and firefighting: Operational requirements.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Aircraft rescue and firefighting... AND OPERATIONS CERTIFICATION OF AIRPORTS Operations § 139.319 Aircraft rescue and firefighting: Operational requirements. (a) Rescue and firefighting capability. Except as provided in paragraph (c) of...

  20. A structural design for a hypersonic research aircraft

    NASA Technical Reports Server (NTRS)

    Jackson, L. R.; Taylor, A. H.

    1976-01-01

    A research aircraft is being studied that has potential for large-scale demonstration of advanced propulsive, structural, and aerodynamic technologies for hypersonic application. Versatility is achieved through a large removable payload bay with removable thermal protection, by removable wings, and by the configuration, which considers engine-airframe integration. Design criteria have been applied to an effective heat-sink structure of Lockalloy (Be-38Al), wherein thermal stress alleviation is a prime consideration in the design. Structural analyses are being performed with the SPAR computer program. Results indicate that no critical problems exist and the resulting structural weight is within initial estimates.

  1. Conceptual design of hybrid-electric transport aircraft

    NASA Astrophysics Data System (ADS)

    Pornet, C.; Isikveren, A. T.

    2015-11-01

    The European Flightpath 2050 and corresponding Strategic Research and Innovation Agenda (SRIA) as well as the NASA Environmentally Responsible Aviation N+ series have elaborated aggressive emissions and external noise reduction targets according to chronological waypoints. In order to deliver ultra-low or even zero in-flight emissions levels, there exists an increasing amount of international research and development emphasis on electrification of the propulsion and power systems of aircraft. Since the late 1990s, a series of experimental and a host of burgeouning commercial activities for fixed-wing aviation have focused on glider, ultra-light and light-sport airplane, and this is proving to serve as a cornerstone for more ambitious transport aircraft design and integration technical approaches. The introduction of hybrid-electric technology has dramatically expanded the design space and the full-potential of these technologies will be drawn through synergetic, tightly-coupled morphological and systems integration emphasizing propulsion - as exemplified by the potential afforded by distributed propulsion solutions. With the aim of expanding upon the current repository of knowledge associated with hybrid-electric propulsion systems a quad-fan arranged narrow-body transport aircraft equipped with two advanced Geared-Turbofans (GTF) and two Electrical Fans (EF) in an under-wing podded installation is presented in this technical article. The assessment and implications of an increasing Degree-of-Hybridization for Useful Power (HP,USE) on the overall sizing, performance as well as flight technique optimization of fuel-battery hybrid-electric aircraft is addressed herein. The integrated performance of the concept was analyzed in terms of potential block fuel burn reduction and change in vehicular efficiency in comparison to a suitably projected conventional aircraft employing GTF-only propulsion targeting year 2035. Results showed that by increasing HP,USE, significant

  2. 32 CFR 855.6 - Aircraft exempt from the requirement for a civil aircraft landing permit.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... individuals but leased by an Air Force aero club. (3) Aero clubs of other US military services. Note: This... pilot will always be in uniform and normally have a copy of a Coast Guard Auxiliary Patrol Order. If the aircraft is operating under “verbal orders of the commander,” the pilot can provide the telephone number...

  3. Robust integrated flight/propulsion control design for a STOVL aircraft using H-infinity control design techniques

    NASA Technical Reports Server (NTRS)

    Garg, Sanjay

    1993-01-01

    Results are presented from an application of H-infinity control design methodology to a centralized integrated flight/propulsion control (IFPC) system design for a supersonic STOVL fighter aircraft in transition flight. The emphasis is on formulating the H-infinity optimal control synthesis problem such that the critical requirements for the flight and propulsion systems are adequately reflected within the linear, centralized control problem formulation and the resulting controller provides robustness to modeling uncertainties and model parameter variations with flight condition. Detailed evaluation results are presented for a reduced order controller obtained from the improved H-infinity control design showing that the control design meets the specified nominal performance objective as well as provides stability robustness for variations in plant system dynamics with changes in aircraft trim speed within the transition flight envelope.

  4. Analysis of Turbofan Design Options for an Advanced Single-Aisle Transport Aircraft

    NASA Technical Reports Server (NTRS)

    Guynn, Mark D.; Berton, Jeffrey J.; Fisher, Kenneth L.; Haller, William J.; Tong, Michael T.; Thurman, Douglas R.

    2009-01-01

    The desire for higher engine efficiency has resulted in the evolution of aircraft gas turbine engines from turbojets, to low bypass ratio, first generation turbofans, to today's high bypass ratio turbofans. It is possible that future designs will continue this trend, leading to very-high or ultra-high bypass ratio (UHB) engines. Although increased bypass ratio has clear benefits in terms of propulsion system metrics such as specific fuel consumption, these benefits may not translate into aircraft system level benefits due to integration penalties. In this study, the design trade space for advanced turbofan engines applied to a single-aisle transport (737/A320 class aircraft) is explored. The benefits of increased bypass ratio and associated enabling technologies such as geared fan drive are found to depend on the primary metrics of interest. For example, bypass ratios at which fuel consumption is minimized may not require geared fan technology. However, geared fan drive does enable higher bypass ratio designs which result in lower noise. Regardless of the engine architecture chosen, the results of this study indicate the potential for the advanced aircraft to realize substantial improvements in fuel efficiency, emissions, and noise compared to the current vehicles in this size class.

  5. Design Process for High Speed Civil Transport Aircraft Improved by Neural Network and Regression Methods

    NASA Technical Reports Server (NTRS)

    Hopkins, Dale A.

    1998-01-01

    A key challenge in designing the new High Speed Civil Transport (HSCT) aircraft is determining a good match between the airframe and engine. Multidisciplinary design optimization can be used to solve the problem by adjusting parameters of both the engine and the airframe. Earlier, an example problem was presented of an HSCT aircraft with four mixed-flow turbofan engines and a baseline mission to carry 305 passengers 5000 nautical miles at a cruise speed of Mach 2.4. The problem was solved by coupling NASA Lewis Research Center's design optimization testbed (COMETBOARDS) with NASA Langley Research Center's Flight Optimization System (FLOPS). The computing time expended in solving the problem was substantial, and the instability of the FLOPS analyzer at certain design points caused difficulties. In an attempt to alleviate both of these limitations, we explored the use of two approximation concepts in the design optimization process. The two concepts, which are based on neural network and linear regression approximation, provide the reanalysis capability and design sensitivity analysis information required for the optimization process. The HSCT aircraft optimization problem was solved by using three alternate approaches; that is, the original FLOPS analyzer and two approximate (derived) analyzers. The approximate analyzers were calibrated and used in three different ranges of the design variables; narrow (interpolated), standard, and wide (extrapolated).

  6. Neural network application to aircraft control system design

    NASA Technical Reports Server (NTRS)

    Troudet, Terry; Garg, Sanjay; Merrill, Walter C.

    1991-01-01

    The feasibility of using artificial neural networks as control systems for modern, complex aerospace vehicles is investigated via an example aircraft control design study. The problem considered is that of designing a controller for an integrated airframe/propulsion longitudinal dynamics model of a modern fighter aircraft to provide independent control of pitch rate and airspeed responses to pilot command inputs. An explicit model following controller using H infinity control design techniques is first designed to gain insight into the control problem as well as to provide a baseline for evaluation of the neurocontroller. Using the model of the desired dynamics as a command generator, a multilayer feedforward neural network is trained to control the vehicle model within the physical limitations of the actuator dynamics. This is achieved by minimizing an objective function which is a weighted sum of tracking errors and control input commands and rates. To gain insight in the neurocontrol, linearized representations of the nonlinear neurocontroller are analyzed along a commanded trajectory. Linear robustness analysis tools are then applied to the linearized neurocontroller models and to the baseline H infinity based controller. Future areas of research are identified to enhance the practical applicability of neural networks to flight control design.

  7. Simultaneous calculation of aircraft design loads and structural member sizes

    NASA Technical Reports Server (NTRS)

    Giles, G. L.; Mccullers, L. A.

    1975-01-01

    A design process which accounts for the interaction between aerodynamic loads and changes in member sizes during sizing of aircraft structures is described. A simultaneous iteration procedure is used wherein both design loads and member sizes are updated during each cycle yielding converged, compatible loads and member sizes. A description is also given of a system of programs which incorporates this process using lifting surface theory to calculate aerodynamic pressure distributions, using a finite-element method for structural analysis, and using a fully stressed design technique to size structural members. This system is tailored to perform the entire process with computational efficiency in a single computer run so that it can be used effectively during preliminary design. Selected results, considering maneuver, taxi, and fatigue design conditions, are presented to illustrate convergence characteristics of this iterative procedure.

  8. Optimal input design for aircraft instrumentation systematic error estimation

    NASA Technical Reports Server (NTRS)

    Morelli, Eugene A.

    1991-01-01

    A new technique for designing optimal flight test inputs for accurate estimation of instrumentation systematic errors was developed and demonstrated. A simulation model of the F-18 High Angle of Attack Research Vehicle (HARV) aircraft was used to evaluate the effectiveness of the optimal input compared to input recorded during flight test. Instrumentation systematic error parameter estimates and their standard errors were compared. It was found that the optimal input design improved error parameter estimates and their accuracies for a fixed time input design. Pilot acceptability of the optimal input design was demonstrated using a six degree-of-freedom fixed base piloted simulation of the F-18 HARV. The technique described in this work provides a practical, optimal procedure for designing inputs for data compatibility experiments.

  9. Landing Gear Integration in Aircraft Conceptual Design. Revision

    NASA Technical Reports Server (NTRS)

    Chai, Sonny T.; Mason, William H.

    1997-01-01

    The design of the landing gear is one of the more fundamental aspects of aircraft design. The design and integration process encompasses numerous engineering disciplines, e.g., structure, weights, runway design, and economics, and has become extremely sophisticated in the last few decades. Although the design process is well-documented, no attempt has been made until now in the development of a design methodology that can be used within an automated environment. As a result, the process remains to be a key responsibility for the configuration designer and is largely experience-based and graphically-oriented. However, as industry and government try to incorporate multidisciplinary design optimization (MDO) methods in the conceptual design phase, the need for a more systematic procedure has become apparent. The development of an MDO-capable design methodology as described in this work is focused on providing the conceptual designer with tools to help automate the disciplinary analyses, i.e., geometry, kinematics, flotation, and weight. Documented design procedures and analyses were examined to determine their applicability, and to ensure compliance with current practices and regulations. Using the latest information as obtained from industry during initial industry survey, the analyses were in terms modified and expanded to accommodate the design criteria associated with the advanced large subsonic transports. Algorithms were then developed based on the updated analysis procedures to be incorporated into existing MDO codes.

  10. An acceptable role for computers in the aircraft design process

    NASA Technical Reports Server (NTRS)

    Gregory, T. J.; Roberts, L.

    1980-01-01

    Some of the reasons why the computerization trend is not wholly accepted are explored for two typical cases: computer use in the technical specialties and computer use in aircraft synthesis. The factors that limit acceptance are traced in part, to the large resources needed to understand the details of computer programs, the inability to include measured data as input to many of the theoretical programs, and the presentation of final results without supporting intermediate answers. Other factors are due solely to technical issues such as limited detail in aircraft synthesis and major simplifying assumptions in the technical specialties. These factors and others can be influenced by the technical specialist and aircraft designer. Some of these factors may become less significant as the computerization process evolves, but some issues, such as understanding large integrated systems, may remain issues in the future. Suggestions for improved acceptance include publishing computer programs so that they may be reviewed, edited, and read. Other mechanisms include extensive modularization of programs and ways to include measured information as part of the input to theoretical approaches.

  11. An Indispensable Ingredient: Flight Research and Aircraft Design

    NASA Technical Reports Server (NTRS)

    Gorn, Michael H.

    2003-01-01

    Flight research-the art of flying actual vehicles in the atmosphere in order to collect data about their behavior-has played a historic and decisive role in the design of aircraft. Naturally, wind tunnel experiments, computational fluid dynamics, and mathematical analyses all informed the judgments of the individuals who conceived of new aircraft. But flight research has offered moments of realization found in no other method. Engineer Dale Reed and research pilot Milt Thompson experienced one such epiphany on March 1, 1963, at the National Aeronautics and Space Administration s Dryden Flight Research Center in Edwards, California. On that date, Thompson sat in the cockpit of a small, simple, gumdrop-shaped aircraft known as the M2-F1, lashed by a long towline to a late-model Pontiac Catalina. As the Pontiac raced across Rogers Dry Lake, it eventually gained enough speed to make the M2-F1 airborne. Thompson braced himself for the world s first flight in a vehicle of its kind, called a lifting body because of its high lift-to-drag ratio. Reed later recounted what he saw:

  12. Analytical study of interior noise control by fuselage design techniques on high-speed, propeller-driven aircraft

    NASA Technical Reports Server (NTRS)

    Revell, J. D.; Balena, F. J.; Koval, L. R.

    1980-01-01

    The acoustical treatment mass penalties required to achieve an interior noise level of 80 dBA for high speed, fuel efficient propfan-powered aircraft are determined. The prediction method used is based on theory developed for the outer shell dynamics, and a modified approach for add-on noise control element performance. The present synthesis of these methods is supported by experimental data. Three different sized aircraft are studied, including a widebody, a narrowbody and a business sized aircraft. Noise control penalties are calculated for each aircraft for two kinds of noise control designs: add-on designs, where the outer wall structure cannot be changed, and advanced designs where the outer wall stiffness level and the materials usage can be altered. For the add-on designs, the mass penalties range from 1.7 to 2.4 percent of the takeoff gross weight (TOGW) of the various aircraft, similar to preliminary estimates. Results for advanced designs show significant reductions of the mass penalties. For the advanced aluminum designs the penalties are 1.5% of TOGW, and for an all composite aircraft the penalties range from 0.74 to 1.4% of TOGW.

  13. Design of the advanced regional aircraft, the DART-75

    NASA Technical Reports Server (NTRS)

    Elliot, Steve; Gislason, Jason; Huffstetler, Mark; Mann, Jon; Withers, Ashley; Zimmerman, Mark

    1992-01-01

    The need for regional aircraft stems from the problem of hub airport congestion. Regional travel will allow a passenger to commute from one spoke city to another spoke city without entering the congested hub airport. In addition, those people traveling longer routes may begin the flight at home instead of traveling to the hub airport. At this time, there is no American aerospace company that produces a regional transport for under 100 passengers. The intention of the Developmental Advanced Regional Transport (DART-75) is to fill this void with a modern, efficient regional aircraft. This design achieves the efficiency through a number of advanced features including three lifting surfaces, partial composite construction, and an advanced engine design. Efficiency is not the only consideration. Structural integrity, fatigue life, ease of maintenance, passenger comfort and convenience, and environmental aspects must all be considered. These factors force the design team to face many tradeoffs that are studied to find the best solution. The final consideration that cannot be overlooked is that of cost. The DART-75 is a 75-passenger medium-range regional transport intended for spoke-to-spoke, spoke-to-hub, and some hub-to-hub operations. Included are the general descriptions of the structures, weight and balance, stability and control, performance, and engine design.

  14. Linear tracking systems with applications to aircraft control system design

    NASA Technical Reports Server (NTRS)

    Lee, W. H.; Athans, M.; Castanon, D.; Bacchioloni, F.

    1977-01-01

    A class of optimal linear time invariant tracking systems, both in continuous time and discrete time, of which the number of inputs (which are restricted to be step functions) is equal to the number of system outputs, is studied. Along with derivation of equations and design procedures, two discretization schemes are presented, constraining either the control or its time derivative, to be a constant over each sampling period. Descriptions are given for the linearized model of the F-8C aircraft longitudinal dynamics, and the C* handling qualities criterion, which then serve as an illustration of the applications of these linear tracking designs. A suboptimal reduced state design is also presented. Numerical results are given for both the continuous time and discrete time designs.

  15. Global Sentry: NASA/USRA high altitude reconnaissance aircraft design, volume 2

    NASA Technical Reports Server (NTRS)

    Alexandru, Mona-Lisa; Martinez, Frank; Tsou, Jim; Do, Henry; Peters, Ashish; Chatsworth, Tom; Yu, YE; Dhillon, Jaskiran

    1990-01-01

    The Global Sentry is a high altitude reconnaissance aircraft design for the NASA/USRA design project. The Global Sentry uses proven technologies, light-weight composites, and meets the R.F.P. requirements. The mission requirements for the Global Sentry are described. The configuration option is discussed and a description of the final design is given. Preliminary sizing analyses and the mass properties of the design are presented. The aerodynamic features of the Global Sentry are described along with the stability and control characteristics designed into the flight control system. The performance characteristics are discussed as is the propulsion installation and system layout. The Global Sentry structural design is examined, including a wing structural analysis. The cockpit, controls and display layouts are covered. Manufacturing is covered and the life cost estimation. Reliability is discussed. Conclusions about the current Global Sentry design are presented, along with suggested areas for future engineering work.

  16. LFC leading edge glove flight: Aircraft modification design, test article development and systems integration

    NASA Technical Reports Server (NTRS)

    Etchberger, F. R.

    1983-01-01

    Reduction of skin friction drag by suction of boundary layer air to maintain laminar flow has been known since Prandtl's published work in 1904. The dramatic increases in fuel costs and the potential for periods of limited fuel availability provided the impetus to explore technologies to reduce transport aircraft fuel consumption. NASA sponsored the Aircraft Energy Efficiency (ACEE) program in 1976 to develop technologies to improve fuel efficiency. This report documents the Lockheed-Georgia Company accomplishments in designing and fabricating a leading-edge flight test article incorporating boundary layer suction slots to be flown by NASA on their modified JetStar aircraft. Lockheed-Georgia Company performed as the integration contractor to design the JetStar aircraft modification to accept both a Lockheed and a McDonnell Douglas flight test article. McDonnell Douglas uses a porous skin concept. The report describes aerodynamic analyses, fabrication techniques, JetStar modifications, instrumentation requirements, and structural analyses and testing for the Lockheed test article. NASA will flight test the two LFC leading-edge test articles in a simulated commercial environment over a 6 to 8 month period in 1984. The objective of the flight test program is to evaluate the effectiveness of LFC leading-edge systems in reducing skin friction drag and consequently improving fuel efficiency.

  17. Integrating Cloud-Computing-Specific Model into Aircraft Design

    NASA Astrophysics Data System (ADS)

    Zhimin, Tian; Qi, Lin; Guangwen, Yang

    Cloud Computing is becoming increasingly relevant, as it will enable companies involved in spreading this technology to open the door to Web 3.0. In the paper, the new categories of services introduced will slowly replace many types of computational resources currently used. In this perspective, grid computing, the basic element for the large scale supply of cloud services, will play a fundamental role in defining how those services will be provided. The paper tries to integrate cloud computing specific model into aircraft design. This work has acquired good results in sharing licenses of large scale and expensive software, such as CFD (Computational Fluid Dynamics), UG, CATIA, and so on.

  18. Registration and Marking Requirements for UAS. Unmanned Aircraft System (UAS) Registration

    NASA Technical Reports Server (NTRS)

    2005-01-01

    The registration of an aircraft is a prerequisite for issuance of a U.S. certificate of airworthiness by the FAA. The procedures and requirements for aircraft registration, and the subsequent issuance of registration numbers, are contained in FAR Part 47. However, the process/method(s) for applying the requirements of Parts 45 & 47 to Unmanned Aircraft Systems (UAS) has not been defined. This task resolved the application of 14 CFR Parts 45 and 47 to UAS. Key Findings: UAS are aircraft systems and as such the recommended approach to registration is to follow the same process for registration as manned aircraft. This will require manufacturers to comply with the requirements for 14 CFR 47, Aircraft Registration and 14 CFR 45, Identification and Registration Marking. In addition, only the UA should be identified with the N number registration markings. There should also be a documentation link showing the applicability of the control station and communication link to the UA. The documentation link can be in the form of a Type Certificate Data Sheet (TCDS) entry or a UAS logbook entry. The recommended process for the registration of UAS is similar to the manned aircraft process and is outlined in a 6-step process in the paper.

  19. Influence of noise requirements on STOL propulsion system designs

    NASA Technical Reports Server (NTRS)

    Rulis, R. J.

    1973-01-01

    The severity of proposed noise goals for STOL systems has resulted in a new design approach for aircraft propulsion systems. It has become necessary to consider the influence of the noise goal on the design of engine components, engine systems, and the integrated nacelle, separately and collectively, from the onset of the design effort. This integrated system design approach is required in order to effect an optimization of the propulsion and aircraft system. Results from extensive design studies and pertinent test programs are presented which show the effect of noise specifications on component and system design, and the trade offs possible of noise versus configuration and performance. The design optimization process of propulsion systems for powered lift systems is presented beginning with the component level and proceeding through to the final integrated propulsion system. Designs are presented which are capable of meeting future STOL noise regulations and the performance, installation and economic penalties are assessed as a function of noise level.

  20. A Generic Guidance and Control Structure for Six-Degree-of-Freedom Conceptual Aircraft Design

    NASA Technical Reports Server (NTRS)

    Cotting, M. Christopher; Cox, Timothy H.

    2005-01-01

    A control system framework is presented for both real-time and batch six-degree-of-freedom simulation. This framework allows stabilization and control with multiple command options, from body rate control to waypoint guidance. Also, pilot commands can be used to operate the simulation in a pilot-in-the-loop environment. This control system framework is created by using direct vehicle state feedback with nonlinear dynamic inversion. A direct control allocation scheme is used to command aircraft effectors. Online B-matrix estimation is used in the control allocation algorithm for maximum algorithm flexibility. Primary uses for this framework include conceptual design and early preliminary design of aircraft, where vehicle models change rapidly and a knowledge of vehicle six-degree-of-freedom performance is required. A simulated airbreathing hypersonic vehicle and a simulated high performance fighter are controlled to demonstrate the flexibility and utility of the control system.

  1. 14 CFR 61.117 - Private pilot privileges and limitations: Second in command of aircraft requiring more than one...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...: Second in command of aircraft requiring more than one pilot. 61.117 Section 61.117 Aeronautics and Space... limitations: Second in command of aircraft requiring more than one pilot. Except as provided in § 61.113 of this part, no private pilot may, for compensation or hire, act as second in command of an aircraft...

  2. 14 CFR 61.117 - Private pilot privileges and limitations: Second in command of aircraft requiring more than one...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...: Second in command of aircraft requiring more than one pilot. 61.117 Section 61.117 Aeronautics and Space... limitations: Second in command of aircraft requiring more than one pilot. Except as provided in § 61.113 of this part, no private pilot may, for compensation or hire, act as second in command of an aircraft...

  3. 14 CFR 61.117 - Private pilot privileges and limitations: Second in command of aircraft requiring more than one...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...: Second in command of aircraft requiring more than one pilot. 61.117 Section 61.117 Aeronautics and Space... limitations: Second in command of aircraft requiring more than one pilot. Except as provided in § 61.113 of this part, no private pilot may, for compensation or hire, act as second in command of an aircraft...

  4. 14 CFR 61.117 - Private pilot privileges and limitations: Second in command of aircraft requiring more than one...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...: Second in command of aircraft requiring more than one pilot. 61.117 Section 61.117 Aeronautics and Space... limitations: Second in command of aircraft requiring more than one pilot. Except as provided in § 61.113 of this part, no private pilot may, for compensation or hire, act as second in command of an aircraft...

  5. 19 CFR 122.22 - Electronic manifest requirement for all individuals onboard private aircraft arriving in and...

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... individuals onboard private aircraft arriving in and departing from the United States; notice of arrival and... Electronic manifest requirement for all individuals onboard private aircraft arriving in and departing from...) Electronic manifest requirement for all individuals onboard private aircraft arriving in the U.S.; notice...

  6. 19 CFR 122.22 - Electronic manifest requirement for all individuals onboard private aircraft arriving in and...

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... individuals onboard private aircraft arriving in and departing from the United States; notice of arrival and... Electronic manifest requirement for all individuals onboard private aircraft arriving in and departing from...) Electronic manifest requirement for all individuals onboard private aircraft arriving in the U.S.; notice...

  7. 19 CFR 122.22 - Electronic manifest requirement for all individuals onboard private aircraft arriving in and...

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... individuals onboard private aircraft arriving in and departing from the United States; notice of arrival and... Electronic manifest requirement for all individuals onboard private aircraft arriving in and departing from...) Electronic manifest requirement for all individuals onboard private aircraft arriving in the U.S.; notice...

  8. 19 CFR 122.22 - Electronic manifest requirement for all individuals onboard private aircraft arriving in and...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... individuals onboard private aircraft arriving in and departing from the United States; notice of arrival and... Electronic manifest requirement for all individuals onboard private aircraft arriving in and departing from...) Electronic manifest requirement for all individuals onboard private aircraft arriving in the U.S.; notice...

  9. 19 CFR 122.22 - Electronic manifest requirement for all individuals onboard private aircraft arriving in and...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... individuals onboard private aircraft arriving in and departing from the United States; notice of arrival and... Electronic manifest requirement for all individuals onboard private aircraft arriving in and departing from...) Electronic manifest requirement for all individuals onboard private aircraft arriving in the U.S.; notice...

  10. Analytical Design Package (ADP2): A computer aided engineering tool for aircraft transparency design

    NASA Technical Reports Server (NTRS)

    Wuerer, J. E.; Gran, M.; Held, T. W.

    1994-01-01

    The Analytical Design Package (ADP2) is being developed as a part of the Air Force Frameless Transparency Program (FTP). ADP2 is an integrated design tool consisting of existing analysis codes and Computer Aided Engineering (CAE) software. The objective of the ADP2 is to develop and confirm an integrated design methodology for frameless transparencies, related aircraft interfaces, and their corresponding tooling. The application of this methodology will generate high confidence for achieving a qualified part prior to mold fabrication. ADP2 is a customized integration of analysis codes, CAE software, and material databases. The primary CAE integration tool for the ADP2 is P3/PATRAN, a commercial-off-the-shelf (COTS) software tool. The open architecture of P3/PATRAN allows customized installations with different applications modules for specific site requirements. Integration of material databases allows the engineer to select a material, and those material properties are automatically called into the relevant analysis code. The ADP2 materials database will be composed of four independent schemas: CAE Design, Processing, Testing, and Logistics Support. The design of ADP2 places major emphasis on the seamless integration of CAE and analysis modules with a single intuitive graphical interface. This tool is being designed to serve and be used by an entire project team, i.e., analysts, designers, materials experts, and managers. The final version of the software will be delivered to the Air Force in Jan. 1994. The Analytical Design Package (ADP2) will then be ready for transfer to industry. The package will be capable of a wide range of design and manufacturing applications.

  11. Design of a MIPAS Instrument for high-altitude aircraft

    SciTech Connect

    Piesch, C.; Gulde, T.; Sartorius, F.F.V.

    1996-11-01

    A new MIPAS (Michelson Interferometer for Passive Atmospheric Sounding) is being designed for remote sensing of atmospheric trace constituents from high-altitude aircraft. The main goal is the measurement of cross sections of stratospheric species relevant to ozone research, such as ClONO{sub 2}, N{sub 2}O{sub 5}, NO, NO{sub 2} and HNO{sub 3}. The instrument measures the mid-infrared thermal emission of the atmosphere by limb- and upward sounding. From the spectra the two-dimensional distribution of the trace species along the flight trajectory can be derived. The instrument development is based on the approved balloon-borne MIPAS-B2 and aircraft MIPAS-FT systems. The system will be located in unpressurized compartments and thus operate under ambient temperature and pressure conditions. Major design constraints are the low mass-budget (max. 200 kg) and the automated operation without personnel intervention. The paper presents the concept and current status of the instrument development. 6 refs., 7 figs., 1 tab.

  12. Design-Oriented Analysis of Aircraft Fuselage Structures

    NASA Technical Reports Server (NTRS)

    Giles, Gary L.

    1998-01-01

    A design-oriented analysis capability for aircraft fuselage structures that utilizes equivalent plate methodology is described. This new capability is implemented as an addition to the existing wing analysis procedure in the Equivalent Laminated Plate Solution (ELAPS) computer code. The wing and fuselage analyses are combined to model entire airframes. The paper focuses on the fuselage model definition, the associated analytical formulation and the approach used to couple the wing and fuselage analyses. The modeling approach used to minimize the amount of preparation of input data by the user and to facilitate the making of design changes is described. The fuselage analysis is based on ring and shell equations but the procedure is formulated to be analogous to that used for plates in order to take advantage of the existing code in ELAPS. Connector springs are used to couple the wing and fuselage models. Typical fuselage analysis results are presented for two analytical models. Results for a ring-stiffened cylinder model are compared with results from conventional finite-element analyses to assess the accuracy of this new analysis capability. The connection of plate and ring segments is demonstrated using a second model that is representative of the wing structure for a channel-wing aircraft configuration.

  13. Input design for identification of aircraft stability and control derivatives

    NASA Technical Reports Server (NTRS)

    Gupta, N. K.; Hall, W. E., Jr.

    1975-01-01

    An approach for designing inputs to identify stability and control derivatives from flight test data is presented. This approach is based on finding inputs which provide the maximum possible accuracy of derivative estimates. Two techniques of input specification are implemented for this objective - a time domain technique and a frequency domain technique. The time domain technique gives the control input time history and can be used for any allowable duration of test maneuver, including those where data lengths can only be of short duration. The frequency domain technique specifies the input frequency spectrum, and is best applied for tests where extended data lengths, much longer than the time constants of the modes of interest, are possible. These technqiues are used to design inputs to identify parameters in longitudinal and lateral linear models of conventional aircraft. The constraints of aircraft response limits, such as on structural loads, are realized indirectly through a total energy constraint on the input. Tests with simulated data and theoretical predictions show that the new approaches give input signals which can provide more accurate parameter estimates than can conventional inputs of the same total energy. Results obtained indicate that the approach has been brought to the point where it should be used on flight tests for further evaluation.

  14. A Framework for Preliminary Design of Aircraft Structures Based on Process Information. Part 1

    NASA Technical Reports Server (NTRS)

    Rais-Rohani, Masoud

    1998-01-01

    This report discusses the general framework and development of a computational tool for preliminary design of aircraft structures based on process information. The described methodology is suitable for multidisciplinary design optimization (MDO) activities associated with integrated product and process development (IPPD). The framework consists of three parts: (1) product and process definitions; (2) engineering synthesis, and (3) optimization. The product and process definitions are part of input information provided by the design team. The backbone of the system is its ability to analyze a given structural design for performance as well as manufacturability and cost assessment. The system uses a database on material systems and manufacturing processes. Based on the identified set of design variables and an objective function, the system is capable of performing optimization subject to manufacturability, cost, and performance constraints. The accuracy of the manufacturability measures and cost models discussed here depend largely on the available data on specific methods of manufacture and assembly and associated labor requirements. As such, our focus in this research has been on the methodology itself and not so much on its accurate implementation in an industrial setting. A three-tier approach is presented for an IPPD-MDO based design of aircraft structures. The variable-complexity cost estimation methodology and an approach for integrating manufacturing cost assessment into design process are also discussed. This report is presented in two parts. In the first part, the design methodology is presented, and the computational design tool is described. In the second part, a prototype model of the preliminary design Tool for Aircraft Structures based on Process Information (TASPI) is described. Part two also contains an example problem that applies the methodology described here for evaluation of six different design concepts for a wing spar.

  15. Design and Fabrication of the NASA Decoupler Pylon for the F-16 Aircraft

    NASA Technical Reports Server (NTRS)

    Clayton, J. D.; Haller, R. L.; Hassler, J. M., Jr.

    1985-01-01

    The NASA Decoupler Pylon is a passive means of suppressing wing-store flutter. The feasibility of demonstrating this concept on the F-16 aircraft was established through model wind tunnel tests and analyses. As a result of these tests and studies a ship set of Decoupler Pylons was designed and fabricated for a flight test demonstration on the F-16 aircraft. Basic design criteria were developed during the analysis study pertaining to pylon pitch stiffness, alignment system requirements, and damping requirements. A design was developed which utilized an electrical motor for the pylon alignment system. The design uses a four pin, two link pivot design which results in a remote pivot located at the center of gravity of the store when the store is in the aligned position. The pitch spring was fabricated from a tapered constant stress cantilevered beam. The pylon has the same external lines as the existing production pylon and is designed to use a MAU-12 ejection rack which is the same as the one used with the production pylon. The detailed design and fabrication was supported with a complete ground test of the pylon prior to shipment to NASA.

  16. Overall design of imaging spectrometer on-board light aircraft

    SciTech Connect

    Zhongqi, H.; Zhengkui, C.; Changhua, C.

    1996-11-01

    Aerial remote sensing is the earliest remote sensing technical system and has gotten rapid development in recent years. The development of aerial remote sensing was dominated by high to medium altitude platform in the past, and now it is characterized by the diversity platform including planes of high-medium-low flying altitude, helicopter, airship, remotely controlled airplane, glider, and balloon. The widely used and rapidly developed platform recently is light aircraft. Early in the close of 1970s, Beijing Research Institute of Uranium Geology began aerial photography and geophysical survey using light aircraft, and put forward the overall design scheme of light aircraft imaging spectral application system (LAISAS) in 19905. LAISAS is comprised of four subsystem. They are called measuring platform, data acquiring subsystem, ground testing and data processing subsystem respectively. The principal instruments of LAISAS include measuring platform controlled by inertia gyroscope, aerial spectrometer with high spectral resolution, imaging spectrometer, 3-channel scanner, 128-channel imaging spectrometer, GPS, illuminance-meter, and devices for atmospheric parameters measuring, ground testing, data correction and processing. LAISAS has the features of integrity from data acquisition to data processing and to application; of stability which guarantees the image quality and is comprised of measuring, ground testing device, and in-door data correction system; of exemplariness of integrated the technology of GIS, GPS, and Image Processing System; of practicality which embodied LAISAS with flexibility and high ratio of performance to cost. So, it can be used in the fields of fundamental research of Remote Sensing and large-scale mapping for resource exploration, environmental monitoring, calamity prediction, and military purpose.

  17. PIFCGT: A PIF autopilot design program for general aviation aircraft

    NASA Technical Reports Server (NTRS)

    Broussard, J. R.

    1983-01-01

    This report documents the PIFCGT computer program. In FORTRAN, PIFCGT is a computer design aid for determing Proportional-Integral-Filter (PIF) control laws for aircraft autopilots implemented with a Command Generator Tracker (CGT). The program uses Linear-Quadratic-Regulator synthesis algorithms to determine feedback gains, and includes software to solve the feedforward matrix equation which is useful in determining the command generator tracker feedforward gains. The program accepts aerodynamic stability derivatives and computes the corresponding aerodynamic linear model. The nine autopilot modes that can be designed include four maneuver modes (ROLL SEL, PITCH SEL, HDG SEL, ALT SEL), four final approach models (APR GS, APR LOCI, APR LOCR, APR LOCP), and a BETA HOLD mode. The program has been compiled and executed on a CDC computer.

  18. Next Generation Civil Transport Aircraft Design Considerations for Improving Vehicle and System-Level Efficiency

    NASA Technical Reports Server (NTRS)

    Acosta, Diana M.; Guynn, Mark D.; Wahls, Richard A.; DelRosario, Ruben,

    2013-01-01

    The future of aviation will benefit from research in aircraft design and air transportation management aimed at improving efficiency and reducing environmental impacts. This paper presents civil transport aircraft design trends and opportunities for improving vehicle and system-level efficiency. Aircraft design concepts and the emerging technologies critical to reducing thrust specific fuel consumption, reducing weight, and increasing lift to drag ratio currently being developed by NASA are discussed. Advancements in the air transportation system aimed towards system-level efficiency are discussed as well. Finally, the paper describes the relationship between the air transportation system, aircraft, and efficiency. This relationship is characterized by operational constraints imposed by the air transportation system that influence aircraft design, and operational capabilities inherent to an aircraft design that impact the air transportation system.

  19. Application of an integrated flight/propulsion control design methodology to a STOVL aircraft

    NASA Technical Reports Server (NTRS)

    Garg, Sanjay; Mattern, Duane L.

    1991-01-01

    The application of an emerging Integrated Flight/Propulsion Control design methodology to a STOVL aircraft in transition flight is reported. The methodology steps consist of: (1) design of a centralized feedback controller to provide command tracking and stability and performance robustness considering the fully integrated airframe/propulsion model as one high-order system; (2) partition of the centralized controller into a decentralized, hierarchical form compatible with implementation requirements; and (3) design of command shaping prefilters from pilot control effectors to commanded variables to provide the overall desired response to pilot inputs. Intermediate design results using this methodology are presented, the complete point control design with the propulsion system operating schedule and limit protection logic included is evaluated for sample pilot control inputs, and the response is compared with that of an 'ideal response model' derived from Level I handling qualities requirements.

  20. Application of modern control design methodology to oblique wing research aircraft

    NASA Technical Reports Server (NTRS)

    Vincent, James H.

    1991-01-01

    A Linear Quadratic Regulator synthesis technique was used to design an explicit model following control system for the Oblique Wing Research Aircraft (OWRA). The forward path model (Maneuver Command Generator) was designed to incorporate the desired flying qualities and response decoupling. The LQR synthesis was based on the use of generalized controls, and it was structured to provide a proportional/integral error regulator with feedforward compensation. An unexpected consequence of this design approach was the ability to decouple the control synthesis into separate longitudinal and lateral directional designs. Longitudinal and lateral directional control laws were generated for each of the nine design flight conditions, and gain scheduling requirements were addressed. A fully coupled 6 degree of freedom open loop model of the OWRA along with the longitudinal and lateral directional control laws was used to assess the closed loop performance of the design. Evaluations were performed for each of the nine design flight conditions.

  1. Aircraft conceptual design - an adaptable parametric sizing methodology

    NASA Astrophysics Data System (ADS)

    Coleman, Gary John, Jr.

    Aerospace is a maturing industry with successful and refined baselines which work well for traditional baseline missions, markets and technologies. However, when new markets (space tourism) or new constrains (environmental) or new technologies (composite, natural laminar flow) emerge, the conventional solution is not necessarily best for the new situation. Which begs the question "how does a design team quickly screen and compare novel solutions to conventional solutions for new aerospace challenges?" The answer is rapid and flexible conceptual design Parametric Sizing. In the product design life-cycle, parametric sizing is the first step in screening the total vehicle in terms of mission, configuration and technology to quickly assess first order design and mission sensitivities. During this phase, various missions and technologies are assessed. During this phase, the designer is identifying design solutions of concepts and configurations to meet combinations of mission and technology. This research undertaking contributes the state-of-the-art in aircraft parametric sizing through (1) development of a dedicated conceptual design process and disciplinary methods library, (2) development of a novel and robust parametric sizing process based on 'best-practice' approaches found in the process and disciplinary methods library, and (3) application of the parametric sizing process to a variety of design missions (transonic, supersonic and hypersonic transports), different configurations (tail-aft, blended wing body, strut-braced wing, hypersonic blended bodies, etc.), and different technologies (composite, natural laminar flow, thrust vectored control, etc.), in order to demonstrate the robustness of the methodology and unearth first-order design sensitivities to current and future aerospace design problems. This research undertaking demonstrates the importance of this early design step in selecting the correct combination of mission, technologies and configuration to

  2. Arrow-wing supersonic cruise aircraft structural design concepts evaluation. Volume 3: Sections 12 through 14

    NASA Technical Reports Server (NTRS)

    Sakata, I. F.; Davis, G. W.

    1975-01-01

    The design of an economically viable supersonic cruise aircraft requires the lowest attainable structural-mass fraction commensurate with the selected near-term structural material technology. To achieve this goal of minimum structural-mass fraction, various combinations of promising wing and fuselage primary structure were analyzed for the load-temperature environment applicable to the arrow wing configuration. This analysis was conducted in accordance with the design criteria specified and included extensive use of computer-aided analytical methods to screen the candidate concepts and select the most promising concepts for the in-depth structural analysis.

  3. Identification of emergent off-nominal operational requirements during conceptual architecting of the more electric aircraft

    NASA Astrophysics Data System (ADS)

    Armstrong, Michael James

    Increases in power demands and changes in the design practices of overall equipment manufacturers has led to a new paradigm in vehicle systems definition. The development of unique power systems architectures is of increasing importance to overall platform feasibility and must be pursued early in the aircraft design process. Many vehicle systems architecture trades must be conducted concurrent to platform definition. With an increased complexity introduced during conceptual design, accurate predictions of unit level sizing requirements must be made. Architecture specific emergent requirements must be identified which arise due to the complex integrated effect of unit behaviors. Off-nominal operating scenarios present sizing critical requirements to the aircraft vehicle systems. These requirements are architecture specific and emergent. Standard heuristically defined failure mitigation is sufficient for sizing traditional and evolutionary architectures. However, architecture concepts which vary significantly in terms of structure and composition require that unique failure mitigation strategies be defined for accurate estimations of unit level requirements. Identifying of these off-nominal emergent operational requirements require extensions to traditional safety and reliability tools and the systematic identification of optimal performance degradation strategies. Discrete operational constraints posed by traditional Functional Hazard Assessment (FHA) are replaced by continuous relationships between function loss and operational hazard. These relationships pose the objective function for hazard minimization. Load shedding optimization is performed for all statistically significant failures by varying the allocation of functional capability throughout the vehicle systems architecture. Expressing hazards, and thereby, reliability requirements as continuous relationships with the magnitude and duration of functional failure requires augmentations to the traditional

  4. Conceptual Design and Structural Optimization of NASA Environmentally Responsible Aviation (ERA) Hybrid Wing Body Aircraft

    NASA Technical Reports Server (NTRS)

    Quinlan, Jesse R.; Gern, Frank H.

    2016-01-01

    Simultaneously achieving the fuel consumption and noise reduction goals set forth by NASA's Environmentally Responsible Aviation (ERA) project requires innovative and unconventional aircraft concepts. In response, advanced hybrid wing body (HWB) aircraft concepts have been proposed and analyzed as a means of meeting these objectives. For the current study, several HWB concepts were analyzed using the Hybrid wing body Conceptual Design and structural optimization (HCDstruct) analysis code. HCDstruct is a medium-fidelity finite element based conceptual design and structural optimization tool developed to fill the critical analysis gap existing between lower order structural sizing approaches and detailed, often finite element based sizing methods for HWB aircraft concepts. Whereas prior versions of the tool used a half-model approach in building the representative finite element model, a full wing-tip-to-wing-tip modeling capability was recently added to HCDstruct, which alleviated the symmetry constraints at the model centerline in place of a free-flying model and allowed for more realistic center body, aft body, and wing loading and trim response. The latest version of HCDstruct was applied to two ERA reference cases, including the Boeing Open Rotor Engine Integration On an HWB (OREIO) concept and the Boeing ERA-0009H1 concept, and results agreed favorably with detailed Boeing design data and related Flight Optimization System (FLOPS) analyses. Following these benchmark cases, HCDstruct was used to size NASA's ERA HWB concepts and to perform a related scaling study.

  5. Scramjet exhaust simulation technique for hypersonic aircraft nozzle design and aerodynamic tests

    NASA Technical Reports Server (NTRS)

    Hunt, J. L.; Talcott, N. A., Jr.; Cubbage, J. M.

    1977-01-01

    Current design philosophy for scramjet-powered hypersonic aircraft results in configurations with the entire lower fuselage surface utilized as part of the propulsion system. The lower aft-end of the vehicle acts as a high expansion ratio nozzle. Not only must the external nozzle be designed to extract the maximum possible thrust force from the high energy flow at the combustor exit, but the forces produced by the nozzle must be aligned such that they do not unduly affect aerodynamic balance. The strong coupling between the propulsion system and aerodynamics of the aircraft makes imperative at least a partial simulation of the inlet, exhaust, and external flows of the hydrogen-burning scramjet in conventional facilities for both nozzle formulation and aerodynamic-force data acquisition. Aerodynamic testing methods offer no contemporary approach for such vehicle design requirements. NASA-Langley has pursued an extensive scramjet/airframe integration R&D program for several years and has recently developed a promising technique for simulation of the scramjet exhaust flow for hypersonic aircraft. Current results of the research program to develop a scramjet flow simulation technique through the use of substitute gas blends are described in this paper.

  6. Aerodynamic design of gas and aerosol samplers for aircraft

    NASA Technical Reports Server (NTRS)

    Soderman, Paul T.; Hazen, Nathan L.; Brune, William H.

    1991-01-01

    The aerodynamic design of airborne probes for the capture of air and aerosols is discussed. Emphasis is placed on the key parameters that affect proper sampling, such as inlet-lip design, internal duct components for low pressure drop, and exhaust geometry. Inlet designs that avoid sonic flow conditions on the lip and flow separation in the duct are shown. Cross-stream velocities of aerosols are expressed in terms of droplet density and diameter. Flow curvature, which can cause aerosols to cross streamlines and impact on probe walls, can be minimized by means of a proper inlet shape and proper probe orientation, and by avoiding bends upstream of the test section. A NASA panel code called PMARC was used successfully to compute streamlines around aircraft and probes, as well as to compute to local velocity and pressure distributions in inlets. A NACA 1-series inlet with modified lip radius was used for the airborne capture of stratospheric chlorine monoxide at high altitude and high flight speed. The device has a two-stage inlet that decelerates the inflow with little disturbance to the flow through the test section. Diffuser design, exhaust hood design, valve loss, and corner vane geometry are discussed.

  7. Design-oriented aeroservoelastic optimization of strain-actuated aircraft

    NASA Astrophysics Data System (ADS)

    Jackson, Timothy W.

    An integrated design-oriented aeroservoelastic optimization capability for strain-actuated aircraft is presented. This capability is called SMART and it encompasses a suite of computer applications created for conceptual and preliminary design of aircraft augmented with "smart" actuation technologies. The SMART suite of applications includes: (1) a dedicated pre-processor for vehicle geometry, material, actuator, mechanism, and sensor layout; (2) a dedicated finite element automesher for conventional and strain-actuated flight vehicles; (3) integration of structural dynamics with a state of the art commercial unsteady aerodynamics code (ZAERO) via automated pre- and post-processors; (4) a database architecture for analyzing multiple designs and flight conditions; and (5) automated open- and closed-loop aeroservoelastic (ASE) model preparation. The analysis techniques used as the basis for SMART are suitable (within the range of application of linear theory) for modeling real flight vehicles with real large-scale structural, aerodynamic, and control systems. These techniques include: (6) dedicated linear finite element infrastructure for modeling conventional and strain-actuated (temperature and voltage induced) flight structures; (7) dedicated static and dynamic finite element solvers; (8) state space stability analysis for coupled aeroservoelastic systems; (9) computational tools for LQR controller design; and (10) analysis tools for the calculation of random response of linear systems to random inputs. SMART can compute: (11) static aeroelastic deformations and stresses in trimmed maneuvering elastic airplanes; (12) open-loop aeroelastic poles; (13) closed-loop (control by LQR) aeroservoelastic poles; (14) gust response (random gusts) of the open-loop and closed-loop aeroservoelastic system, and, also, when aerodynamic loads are not present; and (15) deformation and stresses of passive or actively-controlled structures subject to dynamic and static loads. To

  8. 19 CFR 122.75a - Electronic manifest requirement for passengers onboard commercial aircraft departing from the...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... onboard commercial aircraft departing from the United States. 122.75a Section 122.75a Customs Duties U.S... Passengers, Crew Members, and Non-Crew Members Onboard Commercial Aircraft Departing From the United States § 122.75a Electronic manifest requirement for passengers onboard commercial aircraft departing from...

  9. 19 CFR 122.75a - Electronic manifest requirement for passengers onboard commercial aircraft departing from the...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... onboard commercial aircraft departing from the United States. 122.75a Section 122.75a Customs Duties U.S... Passengers, Crew Members, and Non-Crew Members Onboard Commercial Aircraft Departing From the United States § 122.75a Electronic manifest requirement for passengers onboard commercial aircraft departing from...

  10. 19 CFR 122.75a - Electronic manifest requirement for passengers onboard commercial aircraft departing from the...

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... onboard commercial aircraft departing from the United States. 122.75a Section 122.75a Customs Duties U.S... Passengers, Crew Members, and Non-Crew Members Onboard Commercial Aircraft Departing From the United States § 122.75a Electronic manifest requirement for passengers onboard commercial aircraft departing from...

  11. 19 CFR 122.75a - Electronic manifest requirement for passengers onboard commercial aircraft departing from the...

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... onboard commercial aircraft departing from the United States. 122.75a Section 122.75a Customs Duties U.S... Passengers, Crew Members, and Non-Crew Members Onboard Commercial Aircraft Departing From the United States § 122.75a Electronic manifest requirement for passengers onboard commercial aircraft departing from...

  12. 19 CFR 122.75a - Electronic manifest requirement for passengers onboard commercial aircraft departing from the...

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... onboard commercial aircraft departing from the United States. 122.75a Section 122.75a Customs Duties U.S... Passengers, Crew Members, and Non-Crew Members Onboard Commercial Aircraft Departing From the United States § 122.75a Electronic manifest requirement for passengers onboard commercial aircraft departing from...

  13. Preliminary design of a supersonic cruise aircraft high-pressure turbine

    NASA Technical Reports Server (NTRS)

    Aceto, L. D.; Calderbank, J. C.

    1983-01-01

    Development of the supersonic cruise aircraft engine continued in this National Aeronautics and Space Administration (NASA) sponsored Pratt and Whitney program for the Preliminary Design of an Advanced High-Pressure Turbine. Airfoil cooling concepts and the technology required to implement these concepts received particular emphasis. Previous supersonic cruise aircraft mission studies were reviewed and the Variable Stream Control Engine (VSCE) was chosen as the candidate or the preliminary turbine design. The design was evaluated for the supersonic cruise mission. The advanced technology to be generated from these designs showed benefits in the supersonic cruise application and subsonic cruise application. The preliminary design incorporates advanced single crystal materials, thermal barrier coatings, and oxidation resistant coatings for both the vane and blade. The 1990 technology vane and blade designs have cooled turbine efficiency of 92.3 percent, 8.05 percent Wae cooling and a 10,000 hour life. An alternate design with 1986 technology has 91.9 percent efficiency and 12.43 percent Wae cooling at the same life. To achieve these performance and life results, technology programs must be pursued to provide the 1990's technology assumed for this study.

  14. Advanced piloted aircraft flight control system design methodology. Volume 2: The FCX flight control design expert system

    NASA Technical Reports Server (NTRS)

    Myers, Thomas T.; Mcruer, Duane T.

    1988-01-01

    The development of a comprehensive and electric methodology for conceptual and preliminary design of flight control systems is presented and illustrated. The methodology is focused on the design states starting with the layout of system requirements and ending when some viable competing system architectures (feedback control structures) are defined. The approach is centered on the human pilot and the aircraft as both the sources of, and the keys to the solution of, many flight control problems. The methodology relies heavily on computational procedures which are highly interactive with the design engineer. To maximize effectiveness, these techniques, as selected and modified to be used together in the methodology, form a cadre of computational tools specifically tailored for integrated flight control system preliminary design purposes. The FCX expert system as presently developed is only a limited prototype capable of supporting basic lateral-directional FCS design activities related to the design example used. FCX presently supports design of only one FCS architecture (yaw damper plus roll damper) and the rules are largely focused on Class IV (highly maneuverable) aircraft. Despite this limited scope, the major elements which appear necessary for application of knowledge-based software concepts to flight control design were assembled and thus FCX represents a prototype which can be tested, critiqued and evolved in an ongoing process of development.

  15. A 150 and 300 kW lightweight diesel aircraft engine design study

    NASA Technical Reports Server (NTRS)

    Brouwers, A. P.

    1980-01-01

    The diesel engine was reinvestigated as an aircraft powerplant through design study conducted to arrive at engine configurations and applicable advanced technologies. Two engines are discussed, a 300 kW six-cylinder engine for twin engine general aviation aircraft and a 150 kW four-cylinder engine for single engine aircraft. Descriptions of each engine include concept drawings, a performance analysis, stress and weight data, and a cost study. This information was used to develop two airplane concepts, a six-place twin and a four-place single engine aircraft. The aircraft study consists of installation drawings, computer generated performance data, aircraft operating costs, and drawings of the resulting airplanes. The performance data show a vast improvement over current gasoline-powered aircraft.

  16. Full scale subsonic wind tunnel requirements and design studies

    NASA Technical Reports Server (NTRS)

    Kelly, M. W.; Mort, K. W.; Hickey, D. H.

    1972-01-01

    The justification and requirements are summarized for a large subsonic wind tunnel capable of testing full-scale aircraft, rotor systems, and advanced V/STOL aircraft propulsion systems. The design considerations and constraints for such a facility are reviewed, and the trades between facility test capability and costs are discussed. The design studies showed that the structural cost of this facility is the most important cost factor. For this reason (and other considerations such as requirements for engine exhaust gas purging) an open-return wind tunnel having two test sections was selected. The major technical problem in the design of an open-return wind tunnel is maintaining good test section flow quality in the presence of external winds. This problem has been studied extensively, and inlet and exhaust systems which provide satisfactory attenuation of the effects of external winds on test section flow quality were developed.

  17. The Horizon: A blended wing aircraft configuration design project, volume 3

    NASA Technical Reports Server (NTRS)

    Keidel, Paul; Gonda, Mark; Freeman, Darnon; Kim, Jay; Hsu, Yul

    1988-01-01

    The results of a study to design a High-Speed Civilian Transport (HSCT) using the blended wing-body configuration are presented. The HSCT is a Mach 2 to 5 transport aircraft designed to compete with current commercial aircraft. The subjects discussed are sizing, configuration, aerodynamics, stability and control, propulsion, performance, structures and pollution effects.

  18. 76 FR 50275 - Guidance for the Assessment of Beyond-Design-Basis Aircraft Impacts

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-12

    ... COMMISSION Guidance for the Assessment of Beyond-Design-Basis Aircraft Impacts AGENCY: Nuclear Regulatory...-Design-Basis Aircraft Impacts.'' This guide describes a method that the staff of NRC considers acceptable... power reactors. ADDRESSES: You can access publicly available documents related to this regulatory...

  19. Study of unconventional aircraft engines designed for low energy consumption

    NASA Technical Reports Server (NTRS)

    Gray, D. E.

    1976-01-01

    Declining U.S. oil reserves and escalating energy costs underline the need for reducing fuel consumption in aircraft engines. The most promising unconventional aircraft engines based on their potential for fuel savings and improved economics are identified. The engines installed in both a long-range and medium-range aircraft were evaluated. Projected technology advances are identified and evaluated for their state-of-readiness for application to a commercial transport. Programs are recommended for developing the necessary technology.

  20. Requirements for Reactor Physics Design

    SciTech Connect

    Diamond,D.J.

    2008-04-11

    It has been recognized that there is a need for requirements and guidance for design and operation of nuclear power plants. This is becoming more important as more reactors are being proposed to be built. In parallel with activities in individual countries are norms established by international organizations. This paper discusses requirements/guidance for neutronic design and operation as promulgated by the U.S. Nuclear Regulatory Commission (NRC). As an example, details are given for one reactor physics parameter, namely, the moderator temperature reactivity coefficient. The requirements/guidance from the NRC are discussed in the context of those generated for the International Atomic Energy Agency. The requirements/guidance are not identical from the two sources although they are compatible.

  1. Design of a digital ride quality augmentation system for commuter aircraft

    NASA Technical Reports Server (NTRS)

    Hammond, T. A.; Amin, S. P.; Paduano, J. D.; Downing, D. R.

    1984-01-01

    Commuter aircraft typically have low wing loadings, and fly at low altitudes, and so they are susceptible to undesirable accelerations caused by random atmospheric turbulence. Larger commercial aircraft typically have higher wing loadings and fly at altitudes where the turbulence level is lower, and so they provide smoother rides. This project was initiated based on the goal of making the ride of the commuter aircraft as smooth as the ride experienced on the major commercial airliners. The objectives of this project were to design a digital, longitudinal mode ride quality augmentation system (RQAS) for a commuter aircraft, and to investigate the effect of selected parameters on those designs.

  2. Performance of Several Combustion Chambers Designed for Aircraft Oil Engines

    NASA Technical Reports Server (NTRS)

    Joachim, William F; Kemper, Carlton

    1928-01-01

    Several investigations have been made on single-cylinder test engines to determine the performance characteristics of four types of combustion chambers designed for aircraft oil engines. Two of the combustion chambers studied were bulb-type precombustion chambers, the connecting orifice of one having been designed to produce high turbulence by tangential air flow in both the precombustion chamber and the cylinder. The other two were integral combustion chambers, one being dome-shaped and the other pent-roof shaped. The injection systems used included cam and eccentric driven fuel pumps, and diaphragm and spring-loaded fuel-injection valves. A diaphragm type maximum cylinder pressure indicator was used in part of these investigations with which the cylinder pressures were controlled to definite valves. The performance of the engines when equipped with each of the combustion chambers is discussed. The best performance for the tests reported was obtained with a bulb-type combustion chamber designed to give a high degree of turbulence within the bulb and cylinder. (author)

  3. Application of decomposition techniques to the preliminary design of a transport aircraft

    NASA Technical Reports Server (NTRS)

    Rogan, J. E.; Mcelveen, R. P.; Kolb, M. A.

    1986-01-01

    A multifaceted decomposition of a nonlinear constrained optimization problem describing the preliminary design process for a transport aircraft has been made. Flight dynamics, flexible aircraft loads and deformations, and preliminary structural design subproblems appear prominently in the decomposition. The use of design process decomposition for scheduling design projects, a new system integration approach to configuration control, and the application of object-centered programming to a new generation of design tools are discussed.

  4. Application of decomposition techniques to the preliminary design of a transport aircraft

    NASA Technical Reports Server (NTRS)

    Rogan, J. E.; Kolb, M. A.

    1987-01-01

    A nonlinear constrained optimization problem describing the preliminary design process for a transport aircraft has been formulated. A multifaceted decomposition of the optimization problem has been made. Flight dynamics, flexible aircraft loads and deformations, and preliminary structural design subproblems appear prominently in the decomposition. The use of design process decomposition for scheduling design projects, a new system integration approach to configuration control, and the application of object-centered programming to a new generation of design tools are discussed.

  5. An Extensible, Interchangeable and Sharable Database Model for Improving Multidisciplinary Aircraft Design

    NASA Technical Reports Server (NTRS)

    Lin, Risheng; Afjeh, Abdollah A.

    2003-01-01

    Crucial to an efficient aircraft simulation-based design is a robust data modeling methodology for both recording the information and providing data transfer readily and reliably. To meet this goal, data modeling issues involved in the aircraft multidisciplinary design are first analyzed in this study. Next, an XML-based. extensible data object model for multidisciplinary aircraft design is constructed and implemented. The implementation of the model through aircraft databinding allows the design applications to access and manipulate any disciplinary data with a lightweight and easy-to-use API. In addition, language independent representation of aircraft disciplinary data in the model fosters interoperability amongst heterogeneous systems thereby facilitating data sharing and exchange between various design tools and systems.

  6. Design, Specification, and Synthesis of Aircraft Electric Power Systems Control Logic

    NASA Astrophysics Data System (ADS)

    Xu, Huan

    Cyber-physical systems integrate computation, networking, and physical processes. Substantial research challenges exist in the design and verification of such large-scale, distributed sensing, actuation, and control systems. Rapidly improving technology and recent advances in control theory, networked systems, and computer science give us the opportunity to drastically improve our approach to integrated flow of information and cooperative behavior. Current systems rely on text-based specifications and manual design. Using new technology advances, we can create easier, more efficient, and cheaper ways of developing these control systems. This thesis will focus on design considerations for system topologies, ways to formally and automatically specify requirements, and methods to synthesize reactive control protocols, all within the context of an aircraft electric power system as a representative application area. This thesis consists of three complementary parts: synthesis, specification, and design. The first section focuses on the synthesis of central and distributed reactive controllers for an aircraft elec- tric power system. This approach incorporates methodologies from computer science and control. The resulting controllers are correct by construction with respect to system requirements, which are formulated using the specification language of linear temporal logic (LTL). The second section addresses how to formally specify requirements and introduces a domain-specific language for electric power systems. A software tool automatically converts high-level requirements into LTL and synthesizes a controller. The final sections focus on design space exploration. A design methodology is proposed that uses mixed-integer linear programming to obtain candidate topologies, which are then used to synthesize controllers. The discrete-time control logic is then verified in real-time by two methods: hardware and simulation. Finally, the problem of partial observability and

  7. Meeting the challenges with the Douglas Aircraft Company Aeroelastic Design Optimization Program (ADOP)

    NASA Technical Reports Server (NTRS)

    Rommel, Bruce A.

    1989-01-01

    An overview of the Aeroelastic Design Optimization Program (ADOP) at the Douglas Aircraft Company is given. A pilot test program involving the animation of mode shapes with solid rendering as well as wire frame displays, a complete aircraft model of a high-altitude hypersonic aircraft to test ADOP procedures, a flap model, and an aero-mesh modeler for doublet lattice aerodynamics are discussed.

  8. Challenge to aviation: Hatching a leaner pterosauer. [improving commercial aircraft design for greater fuel efficiency

    NASA Technical Reports Server (NTRS)

    Moss, F. E.

    1975-01-01

    Modifications in commercial aircraft design, particularly the development of lighter aircraft, are discussed as effective means of reducing aviation fuel consumption. The modifications outlined include: (1) use of the supercritical wing; (2) generation of the winglet; (3) production and flight testing of composite materials; and, (4) implementation of fly-by-wire control systems. Attention is also given to engineering laminar air flow control, improving cargo payloads, and adapting hydrogen fuels for aircraft use.

  9. 76 FR 75442 - Airworthiness Directives; Quest Aircraft Design, LLC Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-02

    ... Order 12866, (2) Is not a ``significant rule'' under DOT Regulatory Policies and Procedures (44 FR 11034...-037-AD; Amendment 39-16880; AD 2011-25-04] RIN 2120-AA64 Airworthiness Directives; Quest Aircraft... comments. ] SUMMARY: We are adopting a new airworthiness directive (AD) for certain Quest Aircraft...

  10. Advanced piloted aircraft flight control system design methodology. Volume 1: Knowledge base

    NASA Technical Reports Server (NTRS)

    Mcruer, Duane T.; Myers, Thomas T.

    1988-01-01

    The development of a comprehensive and electric methodology for conceptual and preliminary design of flight control systems is presented and illustrated. The methodology is focused on the design stages starting with the layout of system requirements and ending when some viable competing system architectures (feedback control structures) are defined. The approach is centered on the human pilot and the aircraft as both the sources of, and the keys to the solution of, many flight control problems. The methodology relies heavily on computational procedures which are highly interactive with the design engineer. To maximize effectiveness, these techniques, as selected and modified to be used together in the methodology, form a cadre of computational tools specifically tailored for integrated flight control system preliminary design purposes. While theory and associated computational means are an important aspect of the design methodology, the lore, knowledge and experience elements, which guide and govern applications are critical features. This material is presented as summary tables, outlines, recipes, empirical data, lists, etc., which encapsulate a great deal of expert knowledge. Much of this is presented in topical knowledge summaries which are attached as Supplements. The composite of the supplements and the main body elements constitutes a first cut at a a Mark 1 Knowledge Base for manned-aircraft flight control.

  11. Modeling and Design Analysis Methodology for Tailoring of Aircraft Structures with Composites

    NASA Technical Reports Server (NTRS)

    Rehfield, Lawrence W.

    2004-01-01

    Composite materials provide design flexibility in that fiber placement and orientation can be specified and a variety of material forms and manufacturing processes are available. It is possible, therefore, to 'tailor' the structure to a high degree in order to meet specific design requirements in an optimum manner. Common industrial practices, however, have limited the choices designers make. One of the reasons for this is that there is a dearth of conceptual/preliminary design analysis tools specifically devoted to identifying structural concepts for composite airframe structures. Large scale finite element simulations are not suitable for such purposes. The present project has been devoted to creating modeling and design analysis methodology for use in the tailoring process of aircraft structures. Emphasis has been given to creating bend-twist elastic coupling in high aspect ratio wings or other lifting surfaces. The direction of our work was in concert with the overall NASA effort Twenty- First Century Aircraft Technology (TCAT). A multi-disciplinary team was assembled by Dr. Damodar Ambur to work on wing technology, which included our project.

  12. High altitude solar power platform. [aircraft design analysis

    NASA Technical Reports Server (NTRS)

    Bailey, M. D.; Bower, M. V.

    1992-01-01

    Solar power is a preeminent alternative to conventional aircraft propulsion. With the continued advances in solar cells, fuel cells, and composite materials technology, the solar powered airplane is no longer a simple curiosity constrained to flights of several feet in altitude or minutes of duration. A high altitude solar powered platform (HASPP) has several potential missions, including communications and agriculture. In remote areas, a HASPP could be used as a communication link. In large farming areas, a HASPP could perform remote sensing of crops. The impact of HASPP in continuous flight for one year on agricultural monitoring mission is presented. This mission provides farmers with near real-time data twice daily from an altitude which allows excellant resolution on water conditions, crop diseases, and insect infestation. Accurate, timely data will enable farmers to increase their yield and efficiency. A design for HASPP for the foregoing mission is presented. In the design power derived from solar cells covering the wings is used for propulsion, avionics, and sensors. Excess power produced midday will be stored in fuel cells for use at night to maintain altitude and course.

  13. Vehicle Sketch Pad: a Parametric Geometry Modeler for Conceptual Aircraft Design

    NASA Technical Reports Server (NTRS)

    Hahn, Andrew S.

    2010-01-01

    The conceptual aircraft designer is faced with a dilemma, how to strike the best balance between productivity and fidelity? Historically, handbook methods have required only the coarsest of geometric parameterizations in order to perform analysis. Increasingly, there has been a drive to upgrade analysis methods, but these require considerably more precise and detailed geometry. Attempts have been made to use computer-aided design packages to fill this void, but their cost and steep learning curve have made them unwieldy at best. Vehicle Sketch Pad (VSP) has been developed over several years to better fill this void. While no substitute for the full feature set of computer-aided design packages, VSP allows even novices to quickly become proficient in defining three-dimensional, watertight aircraft geometries that are adequate for producing multi-disciplinary meta-models for higher order analysis methods, wind tunnel and display models, as well as a starting point for animation models. This paper will give an overview of the development and future course of VSP.

  14. Aircraft conceptual design study of the canard and threesurface unconventional configurations for the purposes of reducing environmental impacts

    NASA Astrophysics Data System (ADS)

    Desharnais, Olivier

    With a constant increase in the demand for air transport and today's high fuel price, the aerospace industry is actively searching for new operation methods and technologies to improve efficiency and to reduce the impact it has on the environment. Aircraft manufacturers are exploring many different ways of designing and building better airplanes. One of the considered methods is the use of unconventional aircraft configurations. The objective of this research is to study two configurations, the canard and three-surface, by applying them into a typical high-speed jet aircraft using the conceptual design tools for conventional aircraft available at Bombardier Aerospace (some of them have been modified and validated for the two configurations of interest). This included a weight estimation of the foreplane, an extensive validation of the aerodynamic tool, AVL, and a modification of a physics-based tail-sizing tool. The last tool was found necessary for an accurate foreplane/tailplane sizing, aircraft balancing, establishing the CG envelope and for the assessment of all stability and control requirements. Then, a canard aircraft comparable to the Bombardier research platform aircraft was designed. Final solutions were not obtained from a complete optimization because of some limitations in the design process. The preliminary results show an increase of fuel burn of 10%, leading to an increase of the environmental impacts. The theoretical advantage of not generating any download lift is clearly overwhelmed by the poor effectiveness of the high-lift system. The incapacity to reach a level of high-lift performance close to the one of conventional high-speed aircrafts mostly explains why the canard configuration was found to have no true benefits in this application. Even if no final solution of a three-surface aircraft was obtained in this research, this configuration was identified as being better than the canard case according to the information found in the literature

  15. Preliminary design study of advanced composite blade and hub and nonmechanical control system for the tilt-rotor aircraft. Volume 1: Engineering studies

    NASA Technical Reports Server (NTRS)

    Alexander, H. R.; Smith, K. E.; Mcveigh, M. A.; Dixon, P. G.; Mcmanus, B. L.

    1979-01-01

    Composite structures technology is applied in a preliminary design study of advanced technology blades and hubs for the XV-15 tilt rotor research demonstrator aircraft. Significant improvements in XV-15 hover and cruise performance are available using blades designed for compatibility with the existing aircraft, i.e., blade installation would not require modification of the airframe, hub or upper controls. Provision of a low risk nonmechanical control system was also studied, and a development specification is given.

  16. A trade-off analysis design tool. Aircraft interior noise-motion/passenger satisfaction model

    NASA Technical Reports Server (NTRS)

    Jacobson, I. D.

    1977-01-01

    A design tool was developed to enhance aircraft passenger satisfaction. The effect of aircraft interior motion and noise on passenger comfort and satisfaction was modelled. Effects of individual aircraft noise sources were accounted for, and the impact of noise on passenger activities and noise levels to safeguard passenger hearing were investigated. The motion noise effect models provide a means for tradeoff analyses between noise and motion variables, and also provide a framework for optimizing noise reduction among noise sources. Data for the models were collected onboard commercial aircraft flights and specially scheduled tests.

  17. The effects of aircraft design on STOL ride quality

    NASA Technical Reports Server (NTRS)

    Jones, C. R.; Jacobson, I. D.

    1975-01-01

    Effects of aircraft dynamic characteristics on passenger ride quality are investigated to determine ride-quality isocontours similar to aircraft handling-qualities contours. Measurements are made on a moving-base simulator while varying the aircraft short-period and Dutch Roll frequencies and dampings. Both pilot ratings and subjective ride-quality ratings are obtained during flight. Ride and handling qualities were found to be complementary for the Dutch Roll mode, but not for the short-period mode. Regions of optimal ride and handling qualities are defined for the short-period mode, and the effects of turbulence levels studied.

  18. The Design and Implementation of Aircraft Maintenance On-site Control System

    NASA Astrophysics Data System (ADS)

    Zhou, Guilin; Zhang, Huawei

    Based on the desire of aircraft maintenance, combined with the situation in work, this paper present the design and implementation of aircraft maintenance system based dot Net. For a partial page refresh object, AJAX is used through the system. New technology is used in a creative way and will promote innovation and transformation of the business.

  19. Automated Tetrahedral Mesh Generation for CFD Analysis of Aircraft in Conceptual Design

    NASA Technical Reports Server (NTRS)

    Ordaz, Irian; Li, Wu; Campbell, Richard L.

    2014-01-01

    The paper introduces an automation process of generating a tetrahedral mesh for computational fluid dynamics (CFD) analysis of aircraft configurations in early conceptual design. The method was developed for CFD-based sonic boom analysis of supersonic configurations, but can be applied to aerodynamic analysis of aircraft configurations in any flight regime.

  20. A fuselage/tank structure study for actively cooled hypersonic cruise vehicles: Aircraft design evaluation

    NASA Technical Reports Server (NTRS)

    Nobe, T.

    1975-01-01

    The effects of fuselage cross sections and structural members on the performance of hypersonic cruise aircraft are evaluated. Representative fuselage/tank area structure was analyzed for strength, stability, fatigue and fracture mechanics. Various thermodynamic and structural tradeoffs were conducted to refine the conceptual designs with the primary objective of minimizing weight and maximizing aircraft range.

  1. Lightweight diesel engine designs for commuter type aircraft

    NASA Technical Reports Server (NTRS)

    Brouwers, A. P.

    1981-01-01

    Conceptual designs and performance of advanced technology lightweight diesel engines, suitable for commuter type aircraft power plants are defined. Two engines are discussed, a 1491 kW (2000 SHP) eight-cylinder engine and a 895 kW (1200 SHP) six-cylinder engine. High performance and related advanced technologies are proposed such as insulated cylinders, very high injection pressures and high compressor and turbine efficiencies. The description of each engine includes concept drawings, a performance analysis, and weight data. Fuel flow data are given for full and partial power up to 7620m altitude. The performance data are also extrapolated over a power range from 671 kW(900SHP) to 1864 kW (2500 SHP). The specific fuel consumption of the 1491 kW (2000 SHP) engine is 182 g/hWh (.299 lb/HPh) at cruise altitude, its weight 620 kg (1365 lb.) and specific weight .415 kg/kW (.683 lb/HP). The specific fuel consumption of the 895 kW (1200 SHP) engine is 187 g/hWh (.308 lb/HPh) at cruise altitude, its weight 465 kg (1025 lb.) and specific weight .520 kg/kW (.854 lb/HP).

  2. 14 CFR 135.183 - Performance requirements: Land aircraft operated over water.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... operated over water. 135.183 Section 135.183 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... AND OPERATIONS OPERATING REQUIREMENTS: COMMUTER AND ON DEMAND OPERATIONS AND RULES GOVERNING PERSONS... operated over water. No person may operate a land aircraft carrying passengers over water unless— (a) It...

  3. 14 CFR 135.183 - Performance requirements: Land aircraft operated over water.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... operated over water. 135.183 Section 135.183 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... AND OPERATIONS OPERATING REQUIREMENTS: COMMUTER AND ON DEMAND OPERATIONS AND RULES GOVERNING PERSONS... operated over water. No person may operate a land aircraft carrying passengers over water unless— (a) It...

  4. 78 FR 77484 - Agency Information Collection Activities: Documents Required Aboard Private Aircraft

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-23

    ... SECURITY U.S. Customs and Border Protection Agency Information Collection Activities: Documents Required Aboard Private Aircraft AGENCY: U.S. Customs and Border Protection (CBP), Department of Homeland Security... the Paperwork Reduction Act of 1995 (Pub. L. 104-13; 44 U.S.C. 3507). DATES: Written comments...

  5. Multidisciplinary design optimization of a fighter aircraft with damage tolerance constraints and a probabilistic model of the fatigue environment

    NASA Astrophysics Data System (ADS)

    Arrieta, Albert Joseph

    2001-07-01

    Damage tolerance analysis (DTA) was considered in the global design optimization of an aircraft wing structure. Residual strength and fatigue life requirements, based on the damage tolerance philosophy, were investigated as new design constraints. In general, accurate fatigue prediction is difficult if the load environment is not known with a high degree of certainty. To address this issue, a probabilistic approach was used to describe the uncertain load environment. Probabilistic load spectra models were developed from flight recorder data. The global/local finite element approach allowed local fatigue requirements to be considered in the global design optimization. AFGROW fatigue crack growth analysis provided a new strength criterion for satisfying damage tolerance requirements within a global optimization environment. Initial research with the ASTROS program used the probabilistic load model and this damage tolerance constraint to optimize cracked skin panels on the lower wing of a fighter/attack aircraft. For an aerodynamic and structural model similar to an F-16, ASTROS simulated symmetric and asymmetric maneuvers during the optimization. Symmetric maneuvers, without underwing stores, produced the highest stresses and drove the optimization of the inboard lower wing skin. Asymmetric maneuvers, with underwing stores, affected the optimum thickness of the outboard hard points. Subsequent design optimizations included von Mises stress, aileron effectiveness, and lift effectiveness constraints simultaneously. This optimization was driven by the DTA and von Mises stress constraints and, therefore, DTA requirements can have an active role to play in preliminary aircraft design.

  6. A study to define the research and technology requirements for advanced turbo/propfan transport aircraft

    NASA Technical Reports Server (NTRS)

    Goldsmith, I. M.

    1981-01-01

    The feasibility of the propfan relative to the turbofan is summarized, using the Douglas DC-9 Super 80 (DS-8000) as the actual operational base aircraft. The 155 passenger economy class aircraft (31,775 lb 14,413 kg payload), cruise Mach at 0.80 at 31,000 ft (8,450 m) initial altitude, and an operational capability in 1985 was considered. Three propfan arrangements, wing mounted, conventional horizontal tail aft mounted, and aft fuselage pylon mounted are selected for comparison with the DC-9 Super 80 P&WA JT8D-209 turbofan powered aircraft. The configuration feasibility, aerodynamics, propulsion, structural loads, structural dynamics, sonic fatigue, acoustics, weight maintainability, performance, rough order of magnitude economics, and airline coordination are examined. The effects of alternate cruise Mach number, mission stage lengths, and propfan design characteristics are considered. Recommendations for further study, ground testing, and flight testing are included.

  7. A computer module used to calculate the horizontal control surface size of a conceptual aircraft design

    NASA Technical Reports Server (NTRS)

    Sandlin, Doral R.; Swanson, Stephen Mark

    1990-01-01

    The creation of a computer module used to calculate the size of the horizontal control surfaces of a conceptual aircraft design is discussed. The control surface size is determined by first calculating the size needed to rotate the aircraft during takeoff, and, second, by determining if the calculated size is large enough to maintain stability of the aircraft throughout any specified mission. The tail size needed to rotate during takeoff is calculated from a summation of forces about the main landing gear of the aircraft. The stability of the aircraft is determined from a summation of forces about the center of gravity during different phases of the aircraft's flight. Included in the horizontal control surface analysis are: downwash effects on an aft tail, upwash effects on a forward canard, and effects due to flight in close proximity to the ground. Comparisons of production aircraft with numerical models show good accuracy for control surface sizing. A modified canard design verified the accuracy of the module for canard configurations. Added to this stability and control module is a subroutine that determines one of the three design variables, for a stable vectored thrust aircraft. These include forward thrust nozzle position, aft thrust nozzle angle, and forward thrust split.

  8. Recent experience with multidisciplinary analysis and optimization in advanced aircraft design

    NASA Technical Reports Server (NTRS)

    Dollyhigh, Samuel M.; Sobieszczanski-Sobieski, Jaroslaw

    1990-01-01

    The task of modern aircraft design has always been complicated due to the number of intertwined technical factors from the various engineering disciplines. Furthermore, this complexity has been rapidly increasing by the development of such technologies as aeroelasticity tailored materials and structures, active control systems, integrated propulsion/airframe controls, thrust vectoring, and so on. Successful designs that achieve maximum advantage from these new technologies require a thorough understanding of the physical phenomena and the interactions among these phenomena. A study commissioned by the Aeronautical Sciences and Evaluation Board of the National Research Council has gone so far as to identify technology integration as a new discipline from which many future aeronautical advancements will arise. Regardless of whether one considers integration as a new discipline or not, it is clear to all engineers involved in aircraft design and analysis that better methods are required. In the past, designers conducted parametric studies in which a relatively small number of principal characteristics were varied to determine the effect on design requirements which were themselves often diverse and contradictory. Once a design was chosen, it then passed through the various engineers' disciplines whose principal task was to make the chosen design workable. Working in a limited design space, the discipline expert sometimes improved the concept, but more often than not, the result was in the form of a penalty to make the original concept workable. If an insurmountable problem was encountered, the process began over. Most design systems that attempt to account for disciplinary interactions have large empirical elements and reliance on past experience is a poor guide in obtaining maximum utilizations of new technologies. Further compounding the difficulty of design is that as the aeronautical sciences have matured, the discipline specialist's area of research has generally

  9. A Generic Inner-Loop Control Law Structure for Six-Degree-of-Freedom Conceptual Aircraft Design

    NASA Technical Reports Server (NTRS)

    Cox, Timothy H.; Cotting, M. Christopher

    2005-01-01

    A generic control system framework for both real-time and batch six-degree-of-freedom simulations is presented. This framework uses a simplified dynamic inversion technique to allow for stabilization and control of any type of aircraft at the pilot interface level. The simulation, designed primarily for the real-time simulation environment, also can be run in a batch mode through a simple guidance interface. Direct vehicle-state acceleration feedback is required with the simplified dynamic inversion technique. The estimation of surface effectiveness within real-time simulation timing constraints also is required. The generic framework provides easily modifiable control variables, allowing flexibility in the variables that the pilot commands. A direct control allocation scheme is used to command aircraft effectors. Primary uses for this system include conceptual and preliminary design of aircraft, when vehicle models are rapidly changing and knowledge of vehicle six-degree-of-freedom performance is required. A simulated airbreathing hypersonic vehicle and simulated high-performance fighter aircraft are used to demonstrate the flexibility and utility of the control system.

  10. A Generic Inner-Loop Control Law Structure for Six-Degree-of-Freedom Conceptual Aircraft Design

    NASA Technical Reports Server (NTRS)

    Cox, Timothy H.; Cotting, Christopher

    2005-01-01

    A generic control system framework for both real-time and batch six-degree-of-freedom (6-DOF) simulations is presented. This framework uses a simplified dynamic inversion technique to allow for stabilization and control of any type of aircraft at the pilot interface level. The simulation, designed primarily for the real-time simulation environment, also can be run in a batch mode through a simple guidance interface. Direct vehicle-state acceleration feedback is required with the simplified dynamic inversion technique. The estimation of surface effectiveness within real-time simulation timing constraints also is required. The generic framework provides easily modifiable control variables, allowing flexibility in the variables that the pilot commands. A direct control allocation scheme is used to command aircraft effectors. Primary uses for this system include conceptual and preliminary design of aircraft, when vehicle models are rapidly changing and knowledge of vehicle 6-DOF performance is required. A simulated airbreathing hypersonic vehicle and simulated high-performance fighter aircraft are used to demonstrate the flexibility and utility of the control system.

  11. Linear Quadratic Tracking Design for a Generic Transport Aircraft with Structural Load Constraints

    NASA Technical Reports Server (NTRS)

    Burken, John J.; Frost, Susan A.; Taylor, Brian R.

    2011-01-01

    When designing control laws for systems with constraints added to the tracking performance, control allocation methods can be utilized. Control allocations methods are used when there are more command inputs than controlled variables. Constraints that require allocators are such task as; surface saturation limits, structural load limits, drag reduction constraints or actuator failures. Most transport aircraft have many actuated surfaces compared to the three controlled variables (such as angle of attack, roll rate & angle of side slip). To distribute the control effort among the redundant set of actuators a fixed mixer approach can be utilized or online control allocation techniques. The benefit of an online allocator is that constraints can be considered in the design whereas the fixed mixer cannot. However, an online control allocator mixer has a disadvantage of not guaranteeing a surface schedule, which can then produce ill defined loads on the aircraft. The load uncertainty and complexity has prevented some controller designs from using advanced allocation techniques. This paper considers actuator redundancy management for a class of over actuated systems with real-time structural load limits using linear quadratic tracking applied to the generic transport model. A roll maneuver example of an artificial load limit constraint is shown and compared to the same no load limitation maneuver.

  12. Analysis and design of sidestick controller systems for general aviation aircraft

    NASA Technical Reports Server (NTRS)

    Martin, Daniel M.; Downing, David R.

    1990-01-01

    A method to design sidestick controllers for general aviation aircraft with reversible flight controls is proposed. The use of a sidestick in this type of flight vehicle generally increases the stick forces required for maneuvering; this is due to a reduction in the moment arm of application of the force. In the present study, the reduction of stick forces is achieved by incorporating geared tabs in the control-surface design. A complete analysis using the rigid-body aircraft longitudinal equations of motion and stick-force equation in coupled form is carried out. Lateral stick forces are predicted by solving the single-degree-of-freedom roll approximation and aileron stick-force equations. Data are presented for configurations with various tab areas and a wide range of gearing ratios. The results indicate that the method can be used successfully for geared-tab design and stick-force prediction. It is shown that gearing-ratio selection is critical but that tab area does not have a significant impact on the magnitude of stick forces and stick force to stick deflection gradients.

  13. Aircraft wing structural detail design (wing, aileron, flaps, and subsystems)

    NASA Technical Reports Server (NTRS)

    Downs, Robert; Zable, Mike; Hughes, James; Heiser, Terry; Adrian, Kenneth

    1993-01-01

    The goal of this project was to design, in detail, the wing, flaps, and ailerons for a primary flight trainer. Integrated in this design are provisions for the fuel system, the electrical system, and the fuselage/cabin carry-through interface structure. This conceptual design displays the general arrangement of all major components in the wing structure, taking into consideration the requirements set forth by the appropriate sections of Federal Aviation Regulation Part 23 (FAR23) as well as those established in the statement of work.

  14. A knowledge-based system design/information tool for aircraft flight control systems

    NASA Technical Reports Server (NTRS)

    Mackall, Dale A.; Allen, James G.

    1989-01-01

    Research aircraft have become increasingly dependent on advanced control systems to accomplish program goals. These aircraft are integrating multiple disciplines to improve performance and satisfy research objectives. This integration is being accomplished through electronic control systems. Because of the number of systems involved and the variety of engineering disciplines, systems design methods and information management have become essential to program success. The primary objective of the system design/information tool for aircraft flight control system is to help transfer flight control system design knowledge to the flight test community. By providing all of the design information and covering multiple disciplines in a structured, graphical manner, flight control systems can more easily be understood by the test engineers. This will provide the engineers with the information needed to thoroughly ground test the system and thereby reduce the likelihood of serious design errors surfacing in flight. The secondary objective is to apply structured design techniques to all of the design domains. By using the techniques in the top level system design down through the detailed hardware and software designs, it is hoped that fewer design anomalies will result. The flight test experiences of three highly complex, integrated aircraft programs are reviewed: the X-29 forward-swept wing, the advanced fighter technology integration (AFTI) F-16, and the highly maneuverable aircraft technology (HiMAT) program. Significant operating anomalies and the design errors which cause them, are examined to help identify what functions a system design/information tool should provide to assist designers in avoiding errors.

  15. A knowledge-based system design/information tool for aircraft flight control systems

    NASA Technical Reports Server (NTRS)

    Mackall, Dale A.; Allen, James G.

    1991-01-01

    Research aircraft have become increasingly dependent on advanced electronic control systems to accomplish program goals. These aircraft are integrating multiple disciplines to improve performance and satisfy research objective. This integration is being accomplished through electronic control systems. Systems design methods and information management have become essential to program success. The primary objective of the system design/information tool for aircraft flight control is to help transfer flight control system design knowledge to the flight test community. By providing all of the design information and covering multiple disciplines in a structured, graphical manner, flight control systems can more easily be understood by the test engineers. This will provide the engineers with the information needed to thoroughly ground test the system and thereby reduce the likelihood of serious design errors surfacing in flight. The secondary object is to apply structured design techniques to all of the design domains. By using the techniques in the top level system design down through the detailed hardware and software designs, it is hoped that fewer design anomalies will result. The flight test experiences are reviewed of three highly complex, integrated aircraft programs: the X-29 forward swept wing; the advanced fighter technology integration (AFTI) F-16; and the highly maneuverable aircraft technology (HiMAT) program. Significant operating technologies, and the design errors which cause them, is examined to help identify what functions a system design/informatin tool should provide to assist designers in avoiding errors.

  16. Common display performance requirements for military and commercial aircraft product lines

    NASA Astrophysics Data System (ADS)

    Hoener, Steven J.; Behrens, Arthur J.; Flint, John R.; Jacobsen, Alan R.

    2001-09-01

    Obtaining high quality Active Matrix Liquid Crystal (AMLCD) glass to meet the needs of the commercial and military aerospace business is a major challenge, at best. With the demise of all domestic sources of AMLCD substrate glass, the industry is now focused on overseas sources, which are primarily producing glass for consumer electronics. Previous experience with ruggedizing commercial glass leads to the expectation that the aerospace industry can leverage off the commercial market. The problem remains, while the commercial industry is continually changing and improving its products, the commercial and military aerospace industries require stable and affordable supplies of AMLCD glass for upwards of 20 years to support production and maintenance operations. The Boeing Engineering and Supplier Management Process Councils have chartered a group of displays experts from multiple aircraft product divisions within the Boeing Company, the Displays Process Action Team (DPAT), to address this situation from an overall corporate perspective. The DPAT has formulated a set of Common Displays Performance Requirements for use across the corporate line of commercial and military aircraft products. Though focused on the AMLCD problem, the proposed common requirements are largely independent of display technology. This paper describes the strategy being pursued within the Boeing Company to address the AMLCD supply problem and details the proposed implementation process, centered on common requirements for both commercial and military aircraft displays. Highlighted in this paper are proposed common, or standard, display sizes and the other major requirements established by the DPAT, along with the rationale for these requirements.

  17. Multidisciplinary design and optimization (MDO) methodology for the aircraft conceptual design

    NASA Astrophysics Data System (ADS)

    Iqbal, Liaquat Ullah

    An integrated design and optimization methodology has been developed for the conceptual design of an aircraft. The methodology brings higher fidelity Computer Aided Design, Engineering and Manufacturing (CAD, CAE and CAM) Tools such as CATIA, FLUENT, ANSYS and SURFCAM into the conceptual design by utilizing Excel as the integrator and controller. The approach is demonstrated to integrate with many of the existing low to medium fidelity codes such as the aerodynamic panel code called CMARC and sizing and constraint analysis codes, thus providing the multi-fidelity capabilities to the aircraft designer. The higher fidelity design information from the CAD and CAE tools for the geometry, aerodynamics, structural and environmental performance is provided for the application of the structured design methods such as the Quality Function Deployment (QFD) and the Pugh's Method. The higher fidelity tools bring the quantitative aspects of a design such as precise measurements of weight, volume, surface areas, center of gravity (CG) location, lift over drag ratio, and structural weight, as well as the qualitative aspects such as external geometry definition, internal layout, and coloring scheme early in the design process. The performance and safety risks involved with the new technologies can be reduced by modeling and assessing their impact more accurately on the performance of the aircraft. The methodology also enables the design and evaluation of the novel concepts such as the blended (BWB) and the hybrid wing body (HWB) concepts. Higher fidelity computational fluid dynamics (CFD) and finite element analysis (FEA) allow verification of the claims for the performance gains in aerodynamics and ascertain risks of structural failure due to different pressure distribution in the fuselage as compared with the tube and wing design. The higher fidelity aerodynamics and structural models can lead to better cost estimates that help reduce the financial risks as well. This helps in

  18. Seat Capacity Selection for an Advanced Short-Haul Aircraft Design

    NASA Technical Reports Server (NTRS)

    Marien, Ty V.

    2016-01-01

    A study was performed to determine the target seat capacity for a proposed advanced short-haul aircraft concept projected to enter the fleet by 2030. This analysis projected the potential demand in the U.S. for a short-haul aircraft using a transportation theory approach, rather than selecting a target seat capacity based on recent industry trends or current market demand. A transportation systems model was used to create a point-to-point network of short-haul trips and then predict the number of annual origin-destination trips on this network. Aircraft of varying seat capacities were used to meet the demand on this network, assuming a single aircraft type for the entire short-haul fleet. For each aircraft size, the ticket revenue and operational costs were used to calculate a total market profitability metric for all feasible flights. The different aircraft sizes were compared, based on this market profitability metric and also the total number of annual round trips and markets served. Sensitivity studies were also performed to determine the effect of changing the aircraft cruise speed and maximum trip length. Using this analysis, the advanced short-haul aircraft design team was able to select a target seat capacity for their design.

  19. Laminar Flow Aircraft Certification

    NASA Technical Reports Server (NTRS)

    Williams, Louis J. (Compiler)

    1986-01-01

    Various topics telative to laminar flow aircraft certification are discussed. Boundary layer stability, flaps for laminar flow airfoils, computational wing design studies, manufacturing requirements, windtunnel tests, and flow visualization are among the topics covered.

  20. Design, cost, and advanced technology applications for a military trainer aircraft

    NASA Technical Reports Server (NTRS)

    Hill, G. C.; Harper, M.

    1975-01-01

    The potential impact is examined of advanced aerodynamic and propulsive technologies in terms of operating and acquisition costs on conceptual mission and performance requirements for a future undergraduate jet pilot trainer aircraft.

  1. The Role of Modern Control Theory in the Design of Controls for Aircraft Turbine Engines

    NASA Technical Reports Server (NTRS)

    Zeller, J.; Lehtinen, B.; Merrill, W.

    1982-01-01

    Accomplishments in applying Modern Control Theory to the design of controls for advanced aircraft turbine engines were reviewed. The results of successful research programs are discussed. Ongoing programs as well as planned or recommended future thrusts are also discussed.

  2. Design criteria for integrated flight/propulsion control systems for STOVL fighter aircraft

    NASA Technical Reports Server (NTRS)

    Franklin, James A.

    1993-01-01

    As part of NASA's program to develop technology for short takeoff and vertical landing (STOVL) fighter aircraft, control system designs have been developed for a conceptual STOVL aircraft. This aircraft is representative of the class of mixed-flow remote-lift concepts that was identified as the preferred design approach by the US/UK STOVL Joint Assessment and Ranking Team. The control system designs have been evaluated throughout the powered-lift flight envelope on Ames Research Center's Vertical Motion Simulator. Items assessed in the control system evaluation were: maximum control power used in transition and vertical flight, control system dynamic response associated with thrust transfer for attitude control, thrust margin in the presence of ground effect and hot gas ingestion, and dynamic thrust response for the engine core. Effects of wind, turbulence, and ship airwake disturbances are incorporated in the evaluation. Results provide the basis for a reassessment of existing flying qualities design criteria applied to STOVL aircraft.

  3. A preliminary design proposal for a maritime patrol strike aircraft: MPS-2000 Condor

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The four member graduate design team assembled to submit a proposal for the 1993/1994 RFP at the University of Kansas has designed a four seat, variable swept wing, twin turbofan aircraft with STOL capabilities. The aircraft is named the MPS-2000 Condor and is capable of carrying air-to-surface or air-to-air weapon systems along with attack and surveillance radar and IRF systems. The aircraft has a cruise range of 800 nautical miles, a loiter of 4 hours, and a dash speed of 500 kts.

  4. Power systems and requirements for the integration of smart structures into aircraft

    NASA Astrophysics Data System (ADS)

    Lockyer, Allen J.; Martin, Christopher A.; Lindner, Douglas K.; Walia, Paramjit S.

    2002-07-01

    Electrical power distribution for recently developed smart actuators becomes an important air-vehicle challenge if projected smart actuation benefits are to be met. Among the items under development are variable shape inlets and control surfaces that utilize shape memory alloys (SMA); full span, chord-wise and span-wise contouring trailing control surfaces that use SMA or piezoelectric materials for actuation; and other strain-based actuators for buffet load alleviation, flutter suppression and flow control. At first glance, such technologies afford overall vehicle performance improvement, however, integration system impacts have yet to be determined or quantified. Power systems to support smart structures initiatives are the focus of the current paper. The paper has been organized into five main topics for further discussion: (1) air-vehicle power system architectures - standard and advanced distribution concepts for actuators, (2) smart wing actuator power requirements and results - highlighting wind tunnel power measurements from shape memory alloy and piezoelectric ultrasonic motor actuated control surfaces and different dynamic pressure and angle of attack; (3) vehicle electromagnetic effects (EME) issues, (4) power supply design considerations for smart actuators - featuring the aircraft power and actuator interface, and (5) summary and conclusions.

  5. AP1000{sup R} design robustness against extreme external events - Seismic, flooding, and aircraft crash

    SciTech Connect

    Pfister, A.; Goossen, C.; Coogler, K.; Gorgemans, J.

    2012-07-01

    Both the International Atomic Energy Agency (IAEA) and the U.S. Nuclear Regulatory Commission (NRC) require existing and new nuclear power plants to conduct plant assessments to demonstrate the unit's ability to withstand external hazards. The events that occurred at the Fukushima-Dai-ichi nuclear power station demonstrated the importance of designing a nuclear power plant with the ability to protect the plant against extreme external hazards. The innovative design of the AP1000{sup R} nuclear power plant provides unparalleled protection against catastrophic external events which can lead to extensive infrastructure damage and place the plant in an extended abnormal situation. The AP1000 plant is an 1100-MWe pressurized water reactor with passive safety features and extensive plant simplifications that enhance construction, operation, maintenance and safety. The plant's compact safety related footprint and protection provided by its robust nuclear island structures prevent significant damage to systems, structures, and components required to safely shutdown the plant and maintain core and spent fuel pool cooling and containment integrity following extreme external events. The AP1000 nuclear power plant has been extensively analyzed and reviewed to demonstrate that it's nuclear island design and plant layout provide protection against both design basis and extreme beyond design basis external hazards such as extreme seismic events, external flooding that exceeds the maximum probable flood limit, and malicious aircraft impact. The AP1000 nuclear power plant uses fail safe passive features to mitigate design basis accidents. The passive safety systems are designed to function without safety-grade support systems (such as AC power, component cooling water, service water, compressed air or HVAC). The plant has been designed to protect systems, structures, and components critical to placing the reactor in a safe shutdown condition within the steel containment vessel

  6. Report on the general design of commercial aircraft

    NASA Technical Reports Server (NTRS)

    Warner, Edward P

    1922-01-01

    Given here are evaluations of six different European aircraft from the point of view of a passenger. The aircraft discussed are the DH 34, the Handley-Page W8B, the Farman Goliath, the Potez IX, the Spad 33 (Berline), and the Fokker F.III. The airplanes were evaluated with regard to seating comfort, ventilation, noise, seating arrangements, cabin doors, baggage accommodation, interior arrangement of cabins, pilot's position and communication with the pilot, pilot accommodations, view from the cabin, safety, and lavatory accommodations.

  7. Simultaneous multi-design point approach to gas turbine on-design cycle analysis for aircraft engines

    NASA Astrophysics Data System (ADS)

    Schutte, Jeffrey Scott

    Gas turbine engines for aircraft applications are required to meet multiple performance and sizing requirements, subject to constraints established by the best available technology level, that are both directly and indirectly associated with the aerothermodynamic cycle. The performance requirements and limiting values of constraints that are considered by the cycle analyst conducting an engine cycle design occur at multiple operating conditions. The traditional approach to cycle analysis chooses a single design point with which to perform the on-design analysis. Additional requirements and constraints not transpiring at the design point must be evaluated in off-design analysis and therefore do not influence the cycle design. Such an approach makes it difficult to design the cycle to meet more than a few requirements and limits the number of different aerothermodynamic cycle designs that can reasonably be evaluated. Engine manufacturers have developed computational methods to create aerothermodynamic cycles that meet multiple requirements, but such methods are closely held secrets of their design process. This thesis presents a transparent and publicly available on-design cycle analysis method for gas turbine engines which generates aerothermodynamic cycles that simultaneously meet performance requirements and constraints at numerous design points. Such a method provides the cycle analyst the means to control all aspects of the aerothermodynamic cycle and provides the ability to parametrically create candidate engine cycles in greater numbers to comprehensively populate the cycle design space. The cycle design space represents all of the candidate engine cycles that meet the performance requirements for a particular application from which a "best" engine can be selected. This thesis develops the multi-design point on-design cycle analysis method labeled simultaneous MDP. The method is divided into three different phases resulting in an 11 step process to generate a

  8. Design, Evaluation and Experimental Effort Toward Development of a High Strain Composite Wing for Navy Aircraft

    NASA Technical Reports Server (NTRS)

    Bruno, Joseph; Libeskind, Mark

    1990-01-01

    This design development effort addressed significant technical issues concerning the use and benefits of high strain composite wing structures (Epsilon(sub ult) = 6000 micro-in/in) for future Navy aircraft. These issues were concerned primarily with the structural integrity and durability of the innovative design concepts and manufacturing techniques which permitted a 50 percent increase in design ultimate strain level (while maintaining the same fiber/resin system) as well as damage tolerance and survivability requirements. An extensive test effort consisting of a progressive series of coupon and major element tests was an integral part of this development effort, and culminated in the design, fabrication and test of a major full-scale wing box component. The successful completion of the tests demonstrated the structural integrity, durability and benefits of the design. Low energy impact testing followed by fatigue cycling verified the damage tolerance concepts incorporated within the structure. Finally, live fire ballistic testing confirmed the survivability of the design. The potential benefits of combining newer/emerging composite materials and new or previously developed high strain wing design to maximize structural efficiency and reduce fabrication costs was the subject of subsequent preliminary design and experimental evaluation effort.

  9. Design Methodology for Multi-Element High-Lift Systems on Subsonic Civil Transport Aircraft

    NASA Technical Reports Server (NTRS)

    Pepper, R. S.; vanDam, C. P.

    1996-01-01

    The choice of a high-lift system is crucial in the preliminary design process of a subsonic civil transport aircraft. Its purpose is to increase the allowable aircraft weight or decrease the aircraft's wing area for a given takeoff and landing performance. However, the implementation of a high-lift system into a design must be done carefully, for it can improve the aerodynamic performance of an aircraft but may also drastically increase the aircraft empty weight. If designed properly, a high-lift system can improve the cost effectiveness of an aircraft by increasing the payload weight for a given takeoff and landing performance. This is why the design methodology for a high-lift system should incorporate aerodynamic performance, weight, and cost. The airframe industry has experienced rapid technological growth in recent years which has led to significant advances in high-lift systems. For this reason many existing design methodologies have become obsolete since they are based on outdated low Reynolds number wind-tunnel data and can no longer accurately predict the aerodynamic characteristics or weight of current multi-element wings. Therefore, a new design methodology has been created that reflects current aerodynamic, weight, and cost data and provides enough flexibility to allow incorporation of new data when it becomes available.

  10. Rapid Euler CFD for High-Performance Aircraft Design

    NASA Technical Reports Server (NTRS)

    Charlton, Eric F.

    2004-01-01

    The goal here was to present one approach to rapid CFD for S&C using an unstructured inviscid method, in order to eventually assess S&C properties as early in the design process as possible. Specific results are presented regarding time, accuracy (as compared to a baseline wind tunnel database) and simplicity for the user. For COMSAC, it s more important to talk about the "specifications" required by Advanced Design and S&C, as well as how the CFD results can be combined for envelope evaluation.

  11. Turning up the heat on aircraft structures. [design and analysis for high-temperature conditions

    NASA Technical Reports Server (NTRS)

    Dobyns, Alan; Saff, Charles; Johns, Robert

    1992-01-01

    An overview is presented of the current effort in design and development of aircraft structures to achieve the lowest cost for best performance. Enhancements in this area are focused on integrated design, improved design analysis tools, low-cost fabrication techniques, and more sophisticated test methods. 3D CAD/CAM data are becoming the method through which design, manufacturing, and engineering communicate.

  12. NASA Electric Aircraft Test Bed (NEAT) Development Plan - Design, Fabrication, Installation

    NASA Technical Reports Server (NTRS)

    Dyson, Rodger W.

    2016-01-01

    As large airline companies compete to reduce emissions, fuel, noise, and maintenance costs, it is expected that more of their aircraft systems will shift from using turbofan propulsion, pneumatic bleed power, and hydraulic actuation, to instead using electrical motor propulsion, generator power, and electrical actuation. This requires new flight-weight and flight-efficient powertrain components, fault tolerant power management, and electromagnetic interference mitigation technologies. Moreover, initial studies indicate some combination of ambient and cryogenic thermal management and relatively high bus voltages when compared to state of practice will be required to achieve a net system benefit. Developing all these powertrain technologies within a realistic aircraft architectural geometry and under realistic operational conditions requires a unique electric aircraft testbed. This report will summarize existing testbed capabilities located in the U.S. and details the development of a unique complementary testbed that industry and government can utilize to further mature electric aircraft technologies.

  13. Videopanorama Frame Rate Requirements Derived from Visual Discrimination of Deceleration During Simulated Aircraft Landing

    NASA Technical Reports Server (NTRS)

    Furnstenau, Norbert; Ellis, Stephen R.

    2015-01-01

    In order to determine the required visual frame rate (FR) for minimizing prediction errors with out-the-window video displays at remote/virtual airport towers, thirteen active air traffic controllers viewed high dynamic fidelity simulations of landing aircraft and decided whether aircraft would stop as if to be able to make a turnoff or whether a runway excursion would be expected. The viewing conditions and simulation dynamics replicated visual rates and environments of transport aircraft landing at small commercial airports. The required frame rate was estimated using Bayes inference on prediction errors by linear FRextrapolation of event probabilities conditional on predictions (stop, no-stop). Furthermore estimates were obtained from exponential model fits to the parametric and non-parametric perceptual discriminabilities d' and A (average area under ROC-curves) as dependent on FR. Decision errors are biased towards preference of overshoot and appear due to illusionary increase in speed at low frames rates. Both Bayes and A - extrapolations yield a framerate requirement of 35 < FRmin < 40 Hz. When comparing with published results [12] on shooter game scores the model based d'(FR)-extrapolation exhibits the best agreement and indicates even higher FRmin > 40 Hz for minimizing decision errors. Definitive recommendations require further experiments with FR > 30 Hz.

  14. Design Sensitivity for a Subsonic Aircraft Predicted by Neural Network and Regression Models

    NASA Technical Reports Server (NTRS)

    Hopkins, Dale A.; Patnaik, Surya N.

    2005-01-01

    A preliminary methodology was obtained for the design optimization of a subsonic aircraft by coupling NASA Langley Research Center s Flight Optimization System (FLOPS) with NASA Glenn Research Center s design optimization testbed (COMETBOARDS with regression and neural network analysis approximators). The aircraft modeled can carry 200 passengers at a cruise speed of Mach 0.85 over a range of 2500 n mi and can operate on standard 6000-ft takeoff and landing runways. The design simulation was extended to evaluate the optimal airframe and engine parameters for the subsonic aircraft to operate on nonstandard runways. Regression and neural network approximators were used to examine aircraft operation on runways ranging in length from 4500 to 7500 ft.

  15. From the analytical theory to hypersonic aircraft design

    NASA Astrophysics Data System (ADS)

    Merlen, A.

    Hypersonic flows around axisymmetrical power-law slender bodies are calculated for high, but finite, Mach numbers, and for low angles of attack. This is done by a small-perturbation expansion of self-similar solutions using the equivalence principle. The stream functions are found and a solidification principle is used in order to define hypersonic aircrafts.

  16. A Heading and Flight-Path Angle Control of Aircraft Based on Required Acceleration Vector

    NASA Astrophysics Data System (ADS)

    Yoshitani, Naoharu

    This paper describes a control of heading and flight-path angles of aircraft to time-varying command angles. The controller first calculates an acceleration command vector (acV), which is vertical to the velocity vector. acV consists of two components; the one is feedforward acceleration obtained from the rates of command angles, and the other is feedback acceleration obtained from angle deviations by using PID control law. A bank angle command around the velocity vector and commands of pitch and yaw rates are then obtained to generate the required acceleration. A roll rate command is calculated from bank angle deviation. Roll, pitch and yaw rate commands are put into the attitude controller, which can be composed of any suitable control laws such as PID control. The control requires neither aerodynamic coefficients nor online calculation of the inverse dynamics of the aircraft. A numerical simulation illustrates the effects of the control.

  17. Parallel calculation of sensitivity derivatives for aircraft design using automatic differentiation

    SciTech Connect

    Bischof, C.H.; Knauff, T.L. Jr.; Green, L.L.; Haigler, K.J.

    1994-01-01

    Realistic multidisciplinary design optimization (MDO) of advanced aircraft using state-of-the-art computers is an extremely challenging problem from both the physical modelling and computer science points of view. In order to produce an efficient aircraft design, many trade-offs must be made among the various physical design variables. Similarly, in order to produce an efficient design scheme, many trade-offs must be made among the various MDO implementation options. In this paper, we examine the effects of vectorization and coarse-grained parallelization on the SD calculation using a representative example taken from a transonic transport design problem.

  18. 19 CFR 122.49a - Electronic manifest requirement for passengers onboard commercial aircraft arriving in the United...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... onboard commercial aircraft arriving in the United States. 122.49a Section 122.49a Customs Duties U.S..., and Non-Crew Members Onboard Commercial Aircraft Arriving In, Continuing Within, and Overflying the United States § 122.49a Electronic manifest requirement for passengers onboard commercial...

  19. 19 CFR 122.49a - Electronic manifest requirement for passengers onboard commercial aircraft arriving in the United...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... onboard commercial aircraft arriving in the United States. 122.49a Section 122.49a Customs Duties U.S..., and Non-Crew Members Onboard Commercial Aircraft Arriving In, Continuing Within, and Overflying the United States § 122.49a Electronic manifest requirement for passengers onboard commercial...

  20. 19 CFR 122.49a - Electronic manifest requirement for passengers onboard commercial aircraft arriving in the United...

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... onboard commercial aircraft arriving in the United States. 122.49a Section 122.49a Customs Duties U.S..., and Non-Crew Members Onboard Commercial Aircraft Arriving In, Continuing Within, and Overflying the United States § 122.49a Electronic manifest requirement for passengers onboard commercial...

  1. 19 CFR 122.49a - Electronic manifest requirement for passengers onboard commercial aircraft arriving in the United...

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... onboard commercial aircraft arriving in the United States. 122.49a Section 122.49a Customs Duties U.S..., and Non-Crew Members Onboard Commercial Aircraft Arriving In, Continuing Within, and Overflying the United States § 122.49a Electronic manifest requirement for passengers onboard commercial...

  2. 19 CFR 122.49a - Electronic manifest requirement for passengers onboard commercial aircraft arriving in the United...

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... onboard commercial aircraft arriving in the United States. 122.49a Section 122.49a Customs Duties U.S..., and Non-Crew Members Onboard Commercial Aircraft Arriving In, Continuing Within, and Overflying the United States § 122.49a Electronic manifest requirement for passengers onboard commercial...

  3. 14 CFR 61.327 - Are there specific endorsement requirements to operate a light-sport aircraft based on VH?

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... to operate a light-sport aircraft based on VH? 61.327 Section 61.327 Aeronautics and Space FEDERAL... INSTRUCTORS, AND GROUND INSTRUCTORS Sport Pilots § 61.327 Are there specific endorsement requirements to operate a light-sport aircraft based on VH? (a) Except as specified in paragraph (c) of this section,...

  4. 14 CFR 61.327 - Are there specific endorsement requirements to operate a light-sport aircraft based on VH?

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... to operate a light-sport aircraft based on VH? 61.327 Section 61.327 Aeronautics and Space FEDERAL... INSTRUCTORS, AND GROUND INSTRUCTORS Sport Pilots § 61.327 Are there specific endorsement requirements to operate a light-sport aircraft based on VH? (a) Except as specified in paragraph (c) of this section,...

  5. 14 CFR 61.327 - Are there specific endorsement requirements to operate a light-sport aircraft based on VH?

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... to operate a light-sport aircraft based on VH? 61.327 Section 61.327 Aeronautics and Space FEDERAL... INSTRUCTORS, AND GROUND INSTRUCTORS Sport Pilots § 61.327 Are there specific endorsement requirements to operate a light-sport aircraft based on VH? (a) Except as specified in paragraph (c) of this section,...

  6. 14 CFR 61.327 - Are there specific endorsement requirements to operate a light-sport aircraft based on VH?

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... to operate a light-sport aircraft based on VH? 61.327 Section 61.327 Aeronautics and Space FEDERAL... INSTRUCTORS, AND GROUND INSTRUCTORS Sport Pilots § 61.327 Are there specific endorsement requirements to operate a light-sport aircraft based on VH? (a) Except as specified in paragraph (c) of this section,...

  7. Application of finite element models to eddy current probe design for aircraft inspection

    NASA Astrophysics Data System (ADS)

    Sharma, Sarit

    Eddy current nondestructive testing (NDT) methods are used extensively in the inspection of aircraft structures. Improvements and innovations in probe design are constantly required for detection of flaws in complex multilayer aircraft structures. This thesis investigates alternate designs of eddy current probes for addressing some of these problems. An important aspect of probe design is the capability to simulate probe performance. Numerical computation and visualization of the electromagnetic fields can provide valuable insight into the design of new probes. Finite element methods have been used in this dissertation to numerically compute the electromagnetic fields associated with the probe coils, and the eddy current probe signals. A major contribution of this thesis is development of techniques to reduce the computer resource requirement in the finite element modeling: of the eddy current phenomenon. The first flaw detection problem is addressed by focusing the flux of the probe using active compensation techniques. A novel eddy current probe using a combination of coils is proposed and studied using: the 3D model simulation. The probe consists of two current carrying concentric coils to detect flaws closer to the sample edges. Detection of defects in second and third layer of samples has been demonstrated using: the remote field eddy current (RFEC) method. In the RFEC method the pickup coils are located in the far field region which leads to a large volume to be modeled numerically with large number of elements. A method involving partitioning the volume in the 3D finite element model is demonstrated for the RFEC detection of defects. Magneto-optic/eddy current imaging (MOI) techniques have shown considerable promise in the detection of corrosion in the second layer. MOI is a nondestructive testing method currently in use in aircraft frame inspection and it involves optically sensing the magnetic field induced by the eddy currents in the test sample. A

  8. Vortex generator design for aircraft inlet distortion as a numerical optimization problem

    NASA Technical Reports Server (NTRS)

    Anderson, Bernhard H.; Levy, Ralph

    1991-01-01

    Aerodynamic compatibility of aircraft/inlet/engine systems is a difficult design problem for aircraft that must operate in many different flight regimes. Takeoff, subsonic cruise, supersonic cruise, transonic maneuvering, and high altitude loiter each place different constraints on inlet design. Vortex generators, small wing like sections mounted on the inside surfaces of the inlet duct, are used to control flow separation and engine face distortion. The design of vortex generator installations in an inlet is defined as a problem addressable by numerical optimization techniques. A performance parameter is suggested to account for both inlet distortion and total pressure loss at a series of design flight conditions. The resulting optimization problem is difficult since some of the design parameters take on integer values. If numerical procedures could be used to reduce multimillion dollar development test programs to a small set of verification tests, numerical optimization could have a significant impact on both cost and elapsed time to design new aircraft.

  9. Predicting the effects of unmodeled dynamics on an aircraft flight control system design using eigenspace assignment

    NASA Technical Reports Server (NTRS)

    Johnson, Eric N.; Davidson, John B.; Murphy, Patrick C.

    1994-01-01

    When using eigenspace assignment to design an aircraft flight control system, one must first develop a model of the plant. Certain questions arise when creating this model as to which dynamics of the plant need to be included in the model and which dynamics can be left out or approximated. The answers to these questions are important because a poor choice can lead to closed-loop dynamics that are unpredicted by the design model. To alleviate this problem, a method has been developed for predicting the effect of not including certain dynamics in the design model on the final closed-loop eigenspace. This development provides insight as to which characteristics of unmodeled dynamics will ultimately affect the closed-loop rigid-body dynamics. What results from this insight is a guide for eigenstructure control law designers to aid them in determining which dynamics need or do not need to be included and a new way to include these dynamics in the flight control system design model to achieve a required accuracy in the closed-loop rigid-body dynamics. The method is illustrated for a lateral-directional flight control system design using eigenspace assignment for the NASA High Alpha Research Vehicle (HARV).

  10. Parallel Calculation of Sensitivity Derivatives for Aircraft Design using Automatic Differentiation

    NASA Technical Reports Server (NTRS)

    Bischof, c. H.; Green, L. L.; Haigler, K. J.; Knauff, T. L., Jr.

    1994-01-01

    Sensitivity derivative (SD) calculation via automatic differentiation (AD) typical of that required for the aerodynamic design of a transport-type aircraft is considered. Two ways of computing SD via code generated by the ADIFOR automatic differentiation tool are compared for efficiency and applicability to problems involving large numbers of design variables. A vector implementation on a Cray Y-MP computer is compared with a coarse-grained parallel implementation on an IBM SP1 computer, employing a Fortran M wrapper. The SD are computed for a swept transport wing in turbulent, transonic flow; the number of geometric design variables varies from 1 to 60 with coupling between a wing grid generation program and a state-of-the-art, 3-D computational fluid dynamics program, both augmented for derivative computation via AD. For a small number of design variables, the Cray Y-MP implementation is much faster. As the number of design variables grows, however, the IBM SP1 becomes an attractive alternative in terms of compute speed, job turnaround time, and total memory available for solutions with large numbers of design variables. The coarse-grained parallel implementation also can be moved easily to a network of workstations.

  11. Optimal input design for aircraft parameter estimation using dynamic programming principles

    NASA Technical Reports Server (NTRS)

    Klein, Vladislav; Morelli, Eugene A.

    1990-01-01

    A new technique was developed for designing optimal flight test inputs for aircraft parameter estimation experiments. The principles of dynamic programming were used for the design in the time domain. This approach made it possible to include realistic practical constraints on the input and output variables. A description of the new approach is presented, followed by an example for a multiple input linear model describing the lateral dynamics of a fighter aircraft. The optimal input designs produced by the new technique demonstrated improved quality and expanded capability relative to the conventional multiple input design method.

  12. Optimal Input Design for Aircraft Parameter Estimation using Dynamic Programming Principles

    NASA Technical Reports Server (NTRS)

    Morelli, Eugene A.; Klein, Vladislav

    1990-01-01

    A new technique was developed for designing optimal flight test inputs for aircraft parameter estimation experiments. The principles of dynamic programming were used for the design in the time domain. This approach made it possible to include realistic practical constraints on the input and output variables. A description of the new approach is presented, followed by an example for a multiple input linear model describing the lateral dynamics of a fighter aircraft. The optimal input designs produced by the new technique demonstrated improved quality and expanded capability relative to the conventional multiple input design method.

  13. Variable stream control engine for advanced supersonic aircraft design update

    NASA Technical Reports Server (NTRS)

    Hunt, R. B.; Howlett, R. A.

    1980-01-01

    The updating of the engine concept for a second-generation supersonic transport, the variable stream control engine (VSCE), in terms of mechanical design definition and estimated performance is discussed. The design definition reflects technology advancements that improve system efficiency, durability and environments were established. The components unique to the VSCE concept, a high performance duct burner and a low noise coannular nozzle, and the high temperature components are identified as critical technologies. Technology advances for the high temperature components (main combustor and turbines) are also discussed. To address the requirements in this area, the technical approach for undertaking a high temperature validation program is defined. The multi-phased effort would include assorted rig and laboratory tests, then culminate with the demonstration of a flight-type main combustor and single-stage high pressure turbine at operating conditions envisioned for a VSCE.

  14. Advanced stratified charge rotary aircraft engine design study

    NASA Technical Reports Server (NTRS)

    Badgley, P.; Berkowitz, M.; Jones, C.; Myers, D.; Norwood, E.; Pratt, W. B.; Ellis, D. R.; Huggins, G.; Mueller, A.; Hembrey, J. H.

    1982-01-01

    A technology base of new developments which offered potential benefits to a general aviation engine was compiled and ranked. Using design approaches selected from the ranked list, conceptual design studies were performed of an advanced and a highly advanced engine sized to provide 186/250 shaft Kw/HP under cruise conditions at 7620/25,000 m/ft altitude. These are turbocharged, direct-injected stratified charge engines intended for commercial introduction in the early 1990's. The engine descriptive data includes tables, curves, and drawings depicting configuration, performance, weights and sizes, heat rejection, ignition and fuel injection system descriptions, maintenance requirements, and scaling data for varying power. An engine-airframe integration study of the resulting engines in advanced airframes was performed on a comparative basis with current production type engines. The results show airplane performance, costs, noise & installation factors. The rotary-engined airplanes display substantial improvements over the baseline, including 30 to 35% lower fuel usage.

  15. Wing design for a civil tiltrotor transport aircraft

    NASA Technical Reports Server (NTRS)

    Rais-Rohani, Masoud

    1994-01-01

    The goal of this research is the proper tailoring of the civil tiltrotor's composite wing-box structure leading to a minimum-weight wing design. With focus on the structural design, the wing's aerodynamic shape and the rotor-pylon system are held fixed. The initial design requirement on drag reduction set the airfoil maximum thickness-to-chord ratio to 18 percent. The airfoil section is the scaled down version of the 23 percent-thick airfoil used in V-22's wing. With the project goal in mind, the research activities began with an investigation of the structural dynamic and aeroelastic characteristics of the tiltrotor configuration, and the identification of proper procedures to analyze and account for these characteristics in the wing design. This investigation led to a collection of more than thirty technical papers on the subject, some of which have been referenced here. The review of literature on the tiltrotor revealed the complexity of the system in terms of wing-rotor-pylon interactions. The aeroelastic instability or whirl flutter stemming from wing-rotor-pylon interactions is found to be the most critical mode of instability demanding careful consideration in the preliminary wing design. The placement of wing fundamental natural frequencies in bending and torsion relative to each other and relative to the rotor 1/rev frequencies is found to have a strong influence on the whirl flutter. The frequency placement guide based on a Bell Helicopter Textron study is used in the formulation of frequency constraints. The analysis and design studies are based on two different finite-element computer codes: (1) MSC/NASATRAN and (2) WIDOWAC. These programs are used in parallel with the motivation to eventually, upon necessary modifications and validation, use the simpler WIDOWAC code in the structural tailoring of the tiltrotor wing. Several test cases were studied for the preliminary comparison of the two codes. The results obtained so far indicate a good overall

  16. The F-12 series aircraft approach to design for control system reliability

    NASA Technical Reports Server (NTRS)

    Schenk, F. L.; Mcmaster, J. R.

    1976-01-01

    The F-12 series aircraft control system design philosophy is reviewed as it pertains to functional reliability. The basic control system, i.e., cables, mixer, feel system, trim devices, and hydraulic systems are described and discussed. In addition, the implementation of the redundant stability augmentation system in the F-12 aircraft is described. Finally, the functional reliability record that has been achieved is presented.

  17. A KBE-enabled design framework for cost/weight optimization study of aircraft composite structures

    NASA Astrophysics Data System (ADS)

    Wang, H.; La Rocca, G.; van Tooren, M. J. L.

    2014-10-01

    Traditionally, minimum weight is the objective when optimizing airframe structures. This optimization, however, does not consider the manufacturing cost which actually determines the profit of the airframe manufacturer. To this purpose, a design framework has been developed able to perform cost/weight multi-objective optimization of an aircraft component, including large topology variations of the structural configuration. The key element of the proposed framework is a dedicated knowledge based engineering (KBE) application, called multi-model generator, which enables modelling very different product configurations and variants and extract all data required to feed the weight and cost estimation modules, in a fully automated fashion. The weight estimation method developed in this research work uses Finite Element Analysis to calculate the internal stresses of the structural elements and an analytical composite plate sizing method to determine their minimum required thicknesses. The manufacturing cost estimation module was developed on the basis of a cost model available in literature. The capability of the framework was successfully demonstrated by designing and optimizing the composite structure of a business jet rudder. The study case indicates the design framework is able to find the Pareto optimal set for minimum structural weight and manufacturing costin a very quick way. Based on the Pareto set, the rudder manufacturer is in conditions to conduct both internal trade-off studies between minimum weight and minimum cost solutions, as well as to offer the OEM a full set of optimized options to choose, rather than one feasible design.

  18. Synthesis of aircraft structures using integrated design and analysis methods

    NASA Technical Reports Server (NTRS)

    Sobieszczanski-Sobieski, J.; Goetz, R. C.

    1978-01-01

    A systematic research is reported to develop and validate methods for structural sizing of an airframe designed with the use of composite materials and active controls. This research program includes procedures for computing aeroelastic loads, static and dynamic aeroelasticity, analysis and synthesis of active controls, and optimization techniques. Development of the methods is concerned with the most effective ways of integrating and sequencing the procedures in order to generate structural sizing and the associated active control system, which is optimal with respect to a given merit function constrained by strength and aeroelasticity requirements.

  19. Aerodynamic aircraft design methods and their notable applications: Survey of the activity in Japan

    NASA Technical Reports Server (NTRS)

    Fujii, Kozo; Takanashi, Susumu

    1991-01-01

    An overview of aerodynamic aircraft design methods and their recent applications in Japan is presented. A design code which was developed at the National Aerospace Laboratory (NAL) and is in use now is discussed, hence, most of the examples are the result of the collaborative work between heavy industry and the National Aerospace Laboratory. A wide variety of applications in transonic to supersonic flow regimes are presented. Although design of aircraft elements for external flows are the main focus, some of the internal flow applications are also presented. Recent applications of the design code, using the Navier Stokes and Euler equations in the analysis mode, include the design of HOPE (a space vehicle) and Upper Surface Blowing (USB) aircraft configurations.

  20. Cold vacuum drying facility design requirements

    SciTech Connect

    IRWIN, J.J.

    1999-07-01

    This document provides the detailed design requirements for the Spent Nuclear Fuel Project Cold Vacuum Drying Facility. Process, safety, and quality assurance requirements and interfaces are specified.

  1. Concurrent airline fleet allocation and aircraft design with profit modeling for multiple airlines

    NASA Astrophysics Data System (ADS)

    Govindaraju, Parithi

    A "System of Systems" (SoS) approach is particularly beneficial in analyzing complex large scale systems comprised of numerous independent systems -- each capable of independent operations in their own right -- that when brought in conjunction offer capabilities and performance beyond the constituents of the individual systems. The variable resource allocation problem is a type of SoS problem, which includes the allocation of "yet-to-be-designed" systems in addition to existing resources and systems. The methodology presented here expands upon earlier work that demonstrated a decomposition approach that sought to simultaneously design a new aircraft and allocate this new aircraft along with existing aircraft in an effort to meet passenger demand at minimum fleet level operating cost for a single airline. The result of this describes important characteristics of the new aircraft. The ticket price model developed and implemented here enables analysis of the system using profit maximization studies instead of cost minimization. A multiobjective problem formulation has been implemented to determine characteristics of a new aircraft that maximizes the profit of multiple airlines to recognize the fact that aircraft manufacturers sell their aircraft to multiple customers and seldom design aircraft customized to a single airline's operations. The route network characteristics of two simple airlines serve as the example problem for the initial studies. The resulting problem formulation is a mixed-integer nonlinear programming problem, which is typically difficult to solve. A sequential decomposition strategy is applied as a solution methodology by segregating the allocation (integer programming) and aircraft design (non-linear programming) subspaces. After solving a simple problem considering two airlines, the decomposition approach is then applied to two larger airline route networks representing actual airline operations in the year 2005. The decomposition strategy serves

  2. Lift cruise fan V/STOL aircraft conceptual design study T-39 modification. Volume 1: Technical report

    NASA Technical Reports Server (NTRS)

    Elliott, D. W.

    1976-01-01

    The conversion of two T-39 aircraft into lift cruise fan research and technology vehicles is discussed. The concept is based upon modifying the T-39A (NA265-40) Sabreliner airframe into a V/STOL configuration by incorporating two LCF-459 lift cruise fans and three YJ-97 gas generators. The propulsion concept provides the thrust for horizontal flight or lift for vertical flight by deflection of bifurcated nozzles while maintaining engine out safety throughout the flight envelope. The configuration meets all the study requirements specified for the design with control powers in VTOL and conversion in excess of the requirement making it an excellent vehicle for research and development. The study report consists of two volumes; Volume 1 (Reference a) contains background data detailed description and technical substantiation of the aircraft. Volume 2 includes cost data, scheduling and program planning not addressed in Volume 1.

  3. Application of an integrated flight/propulsion control design methodology to a STOVL aircraft

    NASA Technical Reports Server (NTRS)

    Garg, Sanjay; Mattern, Duane L.

    1991-01-01

    Results are presented from the application of an emerging Integrated Flight/Propulsion Control (IFPC) design methodology to a Short Take Off and Vertical Landing (STOVL) aircraft in transition flight. The steps in the methodology consist of designing command shaping prefilters to provide the overall desired response to pilot command inputs. A previously designed centralized controller is first validated for the integrated airframe/engine plant used. This integrated plant is derived from a different model of the engine subsystem than the one used for the centralized controller design. The centralized controller is then partitioned in a decentralized, hierarchical structure comprising of airframe lateral and longitudinal subcontrollers and an engine subcontroller. Command shaping prefilters from the pilot control effector inputs are then designed and time histories of the closed loop IFPC system response to simulated pilot commands are compared to desired responses based on handling qualities requirements. Finally, the propulsion system safety and nonlinear limited protection logic is wrapped around the engine subcontroller and the response of the closed loop integrated system is evaluated for transients that encounter the propulsion surge margin limit.

  4. Arrow-wing supersonic cruise aircraft structural design concepts evaluation. Volume 2: Sections 7 through 11

    NASA Technical Reports Server (NTRS)

    Sakata, I. F.; Davis, G. W.

    1975-01-01

    The materials and advanced producibility methods that offer potential structural mass savings in the design of the primary structure for a supersonic cruise aircraft are identified and reported. A summary of the materials and fabrication techniques selected for this analytical effort is presented. Both metallic and composite material systems were selected for application to a near-term start-of-design technology aircraft. Selective reinforcement of the basic metallic structure was considered as the appropriate level of composite application for the near-term design.

  5. Some effects of applying sonic boom minimization to supersonic cruise aircraft design

    NASA Technical Reports Server (NTRS)

    Mack, R. J.; Darden, C. M.

    1979-01-01

    This paper presents a discussion of an aircraft shaping method to control sonic boom over-pressure levels along with the analysis of wind-tunnel data which validated the method. The results indicate that the sonic boom minimization method can guide the design team choices of aircraft planform and component arrangement toward a low-boom-level configuration while permitting sufficient freedom and flexibility to satisfy other design criteria. Further, it is shown that off-design flight conditions do not drastically change the overpressure sonic boom shape and strength.

  6. A CLIPS-based tool for aircraft pilot-vehicle interface design

    NASA Technical Reports Server (NTRS)

    Fowler, Thomas D.; Rogers, Steven P.

    1991-01-01

    The Pilot-Vehicle Interface of modern aircraft is the cognitive, sensory, and psychomotor link between the pilot, the avionics modules, and all other systems on board the aircraft. To assist pilot-vehicle interface designers, a C Language Integrated Production System (CLIPS) based tool was developed that allows design information to be stored in a table that can be modified by rules representing design knowledge. Developed for the Apple Macintosh, the tool allows users without any CLIPS programming experience to form simple rules using a point and click interface.

  7. Conceptual design study of a Harrier V/STOL research aircraft

    NASA Technical Reports Server (NTRS)

    Bode, W. E.; Berger, R. L.; Elmore, G. A.; Lacey, T. R.

    1978-01-01

    MCAIR recently completed a conceptual design study to define modification approaches to, and derive planning prices for the conversion of a two place Harrier to a V/STOL control, display and guidance research aircraft. Control concepts such as rate damping, attitude stabilization, velocity command, and cockpit controllers are to be demonstrated. Display formats will also be investigated, and landing, navigation and guidance systems flight tested. The rear cockpit is modified such that it can be quickly adapted to faithfully simulate the controls, displays and handling qualities of a Type A or Type B V/STOL. The safety pilot always has take command capability. The modifications studied fall into two categories: basic modifications and optional modifications. Technical descriptions of the basic modifications and of the optional modifications are presented. The modification plan and schedule as well as the test plan and schedule are presented. The failure mode and effects analysis, aircraft performance, aircraft weight, and aircraft support are discussed.

  8. Night vision imaging systems design, integration, and verification in military fighter aircraft

    NASA Astrophysics Data System (ADS)

    Sabatini, Roberto; Richardson, Mark A.; Cantiello, Maurizio; Toscano, Mario; Fiorini, Pietro; Jia, Huamin; Zammit-Mangion, David

    2012-04-01

    This paper describes the developmental and testing activities conducted by the Italian Air Force Official Test Centre (RSV) in collaboration with Alenia Aerospace, Litton Precision Products and Cranfiled University, in order to confer the Night Vision Imaging Systems (NVIS) capability to the Italian TORNADO IDS (Interdiction and Strike) and ECR (Electronic Combat and Reconnaissance) aircraft. The activities consisted of various Design, Development, Test and Evaluation (DDT&E) activities, including Night Vision Goggles (NVG) integration, cockpit instruments and external lighting modifications, as well as various ground test sessions and a total of eighteen flight test sorties. RSV and Litton Precision Products were responsible of coordinating and conducting the installation activities of the internal and external lights. Particularly, an iterative process was established, allowing an in-site rapid correction of the major deficiencies encountered during the ground and flight test sessions. Both single-ship (day/night) and formation (night) flights were performed, shared between the Test Crews involved in the activities, allowing for a redundant examination of the various test items by all participants. An innovative test matrix was developed and implemented by RSV for assessing the operational suitability and effectiveness of the various modifications implemented. Also important was definition of test criteria for Pilot and Weapon Systems Officer (WSO) workload assessment during the accomplishment of various operational tasks during NVG missions. Furthermore, the specific technical and operational elements required for evaluating the modified helmets were identified, allowing an exhaustive comparative evaluation of the two proposed solutions (i.e., HGU-55P and HGU-55G modified helmets). The results of the activities were very satisfactory. The initial compatibility problems encountered were progressively mitigated by incorporating modifications both in the front and

  9. 49 CFR 229.206 - Design requirements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Design requirements. 229.206 Section 229.206..., DEPARTMENT OF TRANSPORTATION RAILROAD LOCOMOTIVE SAFETY STANDARDS Locomotive Crashworthiness Design Requirements § 229.206 Design requirements. Each locomotive used in occupied service must meet the minimum...

  10. 49 CFR 229.206 - Design requirements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Design requirements. 229.206 Section 229.206..., DEPARTMENT OF TRANSPORTATION RAILROAD LOCOMOTIVE SAFETY STANDARDS Locomotive Crashworthiness Design Requirements § 229.206 Design requirements. Each locomotive used in occupied service must meet the minimum...

  11. 10 CFR 36.39 - Design requirements.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... an earthquake by designing to the seismic requirements of an appropriate source such as American... 10 Energy 1 2014-01-01 2014-01-01 false Design requirements. 36.39 Section 36.39 Energy NUCLEAR REGULATORY COMMISSION LICENSES AND RADIATION SAFETY REQUIREMENTS FOR IRRADIATORS Design and...

  12. 10 CFR 36.39 - Design requirements.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... an earthquake by designing to the seismic requirements of an appropriate source such as American... 10 Energy 1 2013-01-01 2013-01-01 false Design requirements. 36.39 Section 36.39 Energy NUCLEAR REGULATORY COMMISSION LICENSES AND RADIATION SAFETY REQUIREMENTS FOR IRRADIATORS Design and...

  13. 10 CFR 36.39 - Design requirements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... an earthquake by designing to the seismic requirements of an appropriate source such as American... 10 Energy 1 2010-01-01 2010-01-01 false Design requirements. 36.39 Section 36.39 Energy NUCLEAR REGULATORY COMMISSION LICENSES AND RADIATION SAFETY REQUIREMENTS FOR IRRADIATORS Design and...

  14. 14 CFR 135.109 - Pilot in command or second in command: Designation required.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Pilot in command or second in command... ON BOARD SUCH AIRCRAFT Flight Operations § 135.109 Pilot in command or second in command: Designation...) Second in command for each flight requiring two pilots. (b) The pilot in command, as designated by...

  15. 14 CFR 135.109 - Pilot in command or second in command: Designation required.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Pilot in command or second in command... ON BOARD SUCH AIRCRAFT Flight Operations § 135.109 Pilot in command or second in command: Designation...) Second in command for each flight requiring two pilots. (b) The pilot in command, as designated by...

  16. 14 CFR 135.109 - Pilot in command or second in command: Designation required.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Pilot in command or second in command... ON BOARD SUCH AIRCRAFT Flight Operations § 135.109 Pilot in command or second in command: Designation...) Second in command for each flight requiring two pilots. (b) The pilot in command, as designated by...

  17. 14 CFR 135.109 - Pilot in command or second in command: Designation required.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Pilot in command or second in command... ON BOARD SUCH AIRCRAFT Flight Operations § 135.109 Pilot in command or second in command: Designation...) Second in command for each flight requiring two pilots. (b) The pilot in command, as designated by...

  18. 14 CFR 135.109 - Pilot in command or second in command: Designation required.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Pilot in command or second in command... ON BOARD SUCH AIRCRAFT Flight Operations § 135.109 Pilot in command or second in command: Designation...) Second in command for each flight requiring two pilots. (b) The pilot in command, as designated by...

  19. A study of NACA and NASA published information of pertinence in the design of light aircraft

    NASA Technical Reports Server (NTRS)

    1970-01-01

    Three volume report contains NACA/NASA generated literature pertinent to the design of light aircraft. Information covers structural design, propulsion subsystems, landing gear loads, flutter, performance calculation procedures, and high horsepower propellers. Major emphasis is on reports produced prior to 1962.

  20. Electrical power generation systems - Combat aircraft perspective

    NASA Astrophysics Data System (ADS)

    Moeller, R.

    The electrical power generation system requirements of combat aircraft are briefly examined. In particular, attention is given to customer requirements, development of the installed electrical power in aircraft, electrical load analysis for designing the power generation system, and definition of aircraft electrical power supply characteristics and consumer qualities. The discussion also covers reliability requirements for power generation systems, design of a power generation system, control and protection equipment in power generation systems, and helicopter electrical power systems.

  1. Cold vacuum drying facility design requirements

    SciTech Connect

    Irwin, J.J.

    1997-09-24

    This release of the Design Requirements Document is a complete restructuring and rewrite to the document previously prepared and released for project W-441 to record the design basis for the design of the Cold Vacuum Drying Facility.

  2. A framework for the design of a voice-activated, intelligent, and hypermedia-based aircraft maintenance manual

    NASA Astrophysics Data System (ADS)

    Patankar, Manoj Shashikant

    Federal Aviation Regulations require Aviation Maintenance Technicians (AMTs) to refer to approved maintenance manuals when performing maintenance on airworthy aircraft. Because these manuals are paper-based, larger the size of the aircraft, more cumbersome are the manuals. Federal Aviation Administration (FAA) recognized the difficulties associated with the use of large manuals and conducted studies on the use of electronic media as an alternative to the traditional paper format. However, these techniques do not employ any artificial intelligence technologies and the user interface is limited to either a keyboard or a stylus pen. The primary emphasis of this research was to design a generic framework that would allow future development of voice-activated, intelligent, and hypermedia-based aircraft maintenance manuals. A prototype (VIHAMS-Voice-activated, Intelligent, and Hypermedia-based Aircraft Maintenance System) was developed, as a secondary emphasis, using the design and development techniques that evolved from this research. An evolutionary software design approach was used to design the proposed framework and the structured rapid prototyping technique was used to produce the VIHAMS prototype. VoiceAssist by Creative Labs was used to provide the voice interface so that the users (AMTs) could keep their hands free to work on the aircraft while maintaining complete control over the computer through discrete voice commands. KnowledgePro for Windows sp{TM}, an expert system shell, provided "intelligence" to the prototype. As a result of this intelligence, the system provided expert guidance to the user. The core information contained in conventional manuals was available in a hypermedia format. The prototype's operating hardware included a notebook computer with a fully functional audio system. An external microphone and the built-in speaker served as the input and output devices (along with the color monitor), respectively. Federal Aviation Administration

  3. 14 CFR 39.23 - May I fly my aircraft to a repair facility to do the work required by an airworthiness directive?

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false May I fly my aircraft to a repair facility... May I fly my aircraft to a repair facility to do the work required by an airworthiness directive? Yes... allow them to fly their aircraft to a repair facility to do the work required by an...

  4. 14 CFR 39.23 - May I fly my aircraft to a repair facility to do the work required by an airworthiness directive?

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false May I fly my aircraft to a repair facility... May I fly my aircraft to a repair facility to do the work required by an airworthiness directive? Yes... allow them to fly their aircraft to a repair facility to do the work required by an...

  5. 14 CFR 39.23 - May I fly my aircraft to a repair facility to do the work required by an airworthiness directive?

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false May I fly my aircraft to a repair facility... May I fly my aircraft to a repair facility to do the work required by an airworthiness directive? Yes... allow them to fly their aircraft to a repair facility to do the work required by an...

  6. 14 CFR 39.23 - May I fly my aircraft to a repair facility to do the work required by an airworthiness directive?

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false May I fly my aircraft to a repair facility... May I fly my aircraft to a repair facility to do the work required by an airworthiness directive? Yes... allow them to fly their aircraft to a repair facility to do the work required by an...

  7. Tropospheric sampling with aircraft

    SciTech Connect

    Daum, P.H.; Springston, S.R.

    1991-03-01

    Aircraft constitute a unique environment which places stringent requirements on the instruments used to measure the concentrations of atmospheric trace gases and aerosols. Some of these requirements such as minimization of size, weight, and power consumption are general; others are specific to individual techniques. This review presents the basic principles and considerations governing the deployment of trace gas and aerosol instrumentation on an aircraft. An overview of common instruments illustrates these points and provides guidelines for designing and using instruments on aircraft-based measurement programs.

  8. Efficient Multidisciplinary Analysis Approach for Conceptual Design of Aircraft with Large Shape Change

    NASA Technical Reports Server (NTRS)

    Chwalowski, Pawel; Samareh, Jamshid A.; Horta, Lucas G.; Piatak, David J.; McGowan, Anna-Maria R.

    2009-01-01

    The conceptual and preliminary design processes for aircraft with large shape changes are generally difficult and time-consuming, and the processes are often customized for a specific shape change concept to streamline the vehicle design effort. Accordingly, several existing reports show excellent results of assessing a particular shape change concept or perturbations of a concept. The goal of the current effort was to develop a multidisciplinary analysis tool and process that would enable an aircraft designer to assess several very different morphing concepts early in the design phase and yet obtain second-order performance results so that design decisions can be made with better confidence. The approach uses an efficient parametric model formulation that allows automatic model generation for systems undergoing radical shape changes as a function of aerodynamic parameters, geometry parameters, and shape change parameters. In contrast to other more self-contained approaches, the approach utilizes off-the-shelf analysis modules to reduce development time and to make it accessible to many users. Because the analysis is loosely coupled, discipline modules like a multibody code can be easily swapped for other modules with similar capabilities. One of the advantages of this loosely coupled system is the ability to use the medium- to high-fidelity tools early in the design stages when the information can significantly influence and improve overall vehicle design. Data transfer among the analysis modules are based on an accurate and automated general purpose data transfer tool. In general, setup time for the integrated system presented in this paper is 2-4 days for simple shape change concepts and 1-2 weeks for more mechanically complicated concepts. Some of the key elements briefly described in the paper include parametric model development, aerodynamic database generation, multibody analysis, and the required software modules as well as examples for a telescoping wing

  9. Preliminary analysis of long-range aircraft designs for future heavy airlift missions

    NASA Technical Reports Server (NTRS)

    Nelms, W. P., Jr.; Murphy, R.; Barlow, A.

    1976-01-01

    A computerized design study of very large cargo aircraft for the future heavy airlift mission was conducted using the Aircraft Synthesis program (ACSYNT). The study was requested by the Air Force under an agreement whereby Ames provides computerized design support to the Air Force Flight Dynamics Laboratory. This effort is part of an overall Air Force program to study advanced technology large aircraft systems. Included in the Air Force large aircraft program are investigations of missions such as heavy airlift, airborne missile launch, battle platform, command and control, and aerial tanker. The Ames studies concentrated on large cargo aircraft of conventional design with payloads from 250,000 to 350,000 lb. Range missions up to 6500 n.mi. and radius missions up to 3600 n.mi. have been considered. Takeoff and landing distances between 7,000 and 10,000 ft are important constraints on the configuration concepts. The results indicate that a configuration employing conventional technology in all disciplinary areas weighs approximately 2 million pounds to accomplish either a 6500-n.mi. range mission or a 3600-n.mi. radius mission with a 350,000-lb payload.

  10. Design of aircraft turbine fan drive gear transmission system

    NASA Technical Reports Server (NTRS)

    Dent, E.; Hirsch, R. A.; Peterson, V. W.

    1970-01-01

    The following basic types of gear reduction concepts were studied as being feasible power train systems for a low-bypass-ratio, single-spool, geared turbofan engine for general aircraft use: (1) single-stage external-internal reduction, (2) gears (offset shafting), (3) multiple compound idler gear system (concentric shafting), and (4) star gear planetary system with internal ring gear final output member (concentric shafting-counterrotation). In addition, studies were made of taking the accessories drive power off both the high-speed and low-speed shafting, using either face gears or spiral bevel gears. Both antifriction and sleeve-type bearings were considered for the external-internal and star-planet reduction concepts.

  11. Radar cross section fundamentals for the aircraft designer

    NASA Technical Reports Server (NTRS)

    Stadmore, H. A.

    1979-01-01

    Various aspects of radar cross-section (RCS) techniques are summarized, with emphasis placed on fundamental electromagnetic phenomena, such as plane and spherical wave formulations, and the definition of RCS is given in the far-field sense. The basic relationship between electronic countermeasures and a signature level is discussed in terms of the detectability range of a target vehicle. Fundamental radar-signature analysis techniques, such as the physical-optics and geometrical-optics approximations, are presented along with examples in terms of aircraft components. Methods of analysis based on the geometrical theory of diffraction are considered and various wave-propagation phenomena are related to local vehicle geometry. Typical vehicle components are also discussed, together with their contribution to total vehicle RCS and their individual signature sensitivities.

  12. The impact of emission standards on the design of aircraft gas turbine engine combustors

    NASA Technical Reports Server (NTRS)

    Rudey, R. A.

    1976-01-01

    The advent of environmental standards for controlling aircraft gas turbine engine emissions has led to a reevaluation of combustor design techniques. Effective emission control techniques have been identified and a wide spectrum of potential applications for these techniques to existing and advanced engines are being considered. Results from advanced combustor concept evaluations and from fundamental experiments are presented and discussed and comparisons are made with existing EPA emission standards and recommended levels for high altitude cruise. The impact that the advanced low emission concepts may impose on future aircraft engine combustor designs and related engine components is discussed.

  13. Design developments for advanced general aviation aircraft. [using Fly By Light Control

    NASA Technical Reports Server (NTRS)

    Roskam, Jan; Gomer, Charles

    1991-01-01

    Design study results are presented for two advanced general-aviation aircraft incorporating fly-by-light/fly-by-wire controls and digital avionics and cockpit displays. The design exercise proceeded from a database of information derived from a market survey for the 4-10 passenger aircraft range. Pusher and tractor propeller configurations were treated, and attention was given to the maximization of passenger comfort. 'Outside-in' tooling methods were assumed for the primary structures of both configurations, in order to achieve surface tolerances which maximize the rearward extent of laminar flow.

  14. Integrated flight/propulsion control design for a STOVL aircraft using H-infinity control design techniques

    NASA Technical Reports Server (NTRS)

    Garg, Sanjay; Ouzts, Peter J.

    1991-01-01

    Results are presented from an application of H(infinity) control design methodology to a centralized integrated flight/propulsion control (IFPC) system design for a supersonic short take-off and vertical landing (STOVL) fighter aircraft in transition flight. The emphasis is on formulating the H(infinity) control design problem such that the resulting controller provides robustness to modeling uncertainties and model parameter variations with flight condition. Experience gained from a preliminary H(infinity)=based IFPC design study performed earlier is used as the base to formulate the robust H(infinity) control design problem and improve the previous design. Detailed evaluation results are presented for a reduced-order controller obtained from the improved H(infinity) control design showing that the control design meets the specified nominal performance objectives as well as provides stability robustness for variations in plant system dynamics with chnages in aircraft trim speed within the transition flight envelope.

  15. Euler Technology Assessment program for preliminary aircraft design employing SPLITFLOW code with Cartesian unstructured grid method

    NASA Technical Reports Server (NTRS)

    Finley, Dennis B.

    1995-01-01

    This report documents results from the Euler Technology Assessment program. The objective was to evaluate the efficacy of Euler computational fluid dynamics (CFD) codes for use in preliminary aircraft design. Both the accuracy of the predictions and the rapidity of calculations were to be assessed. This portion of the study was conducted by Lockheed Fort Worth Company, using a recently developed in-house Cartesian-grid code called SPLITFLOW. The Cartesian grid technique offers several advantages for this study, including ease of volume grid generation and reduced number of cells compared to other grid schemes. SPLITFLOW also includes grid adaptation of the volume grid during the solution convergence to resolve high-gradient flow regions. This proved beneficial in resolving the large vortical structures in the flow for several configurations examined in the present study. The SPLITFLOW code predictions of the configuration forces and moments are shown to be adequate for preliminary design analysis, including predictions of sideslip effects and the effects of geometry variations at low and high angles of attack. The time required to generate the results from initial surface definition is on the order of several hours, including grid generation, which is compatible with the needs of the design environment.

  16. Numerical continuation and bifurcation analysis in aircraft design: an industrial perspective.

    PubMed

    Sharma, Sanjiv; Coetzee, Etienne B; Lowenberg, Mark H; Neild, Simon A; Krauskopf, Bernd

    2015-09-28

    Bifurcation analysis is a powerful method for studying the steady-state nonlinear dynamics of systems. Software tools exist for the numerical continuation of steady-state solutions as parameters of the system are varied. These tools make it possible to generate 'maps of solutions' in an efficient way that provide valuable insight into the overall dynamic behaviour of a system and potentially to influence the design process. While this approach has been employed in the military aircraft control community to understand the effectiveness of controllers, the use of bifurcation analysis in the wider aircraft industry is yet limited. This paper reports progress on how bifurcation analysis can play a role as part of the design process for passenger aircraft.

  17. Application of Adjoint Methodology to Supersonic Aircraft Design Using Reversed Equivalent Areas

    NASA Technical Reports Server (NTRS)

    Rallabhandi, Sriram K.

    2013-01-01

    This paper presents an approach to shape an aircraft to equivalent area based objectives using the discrete adjoint approach. Equivalent areas can be obtained either using reversed augmented Burgers equation or direct conversion of off-body pressures into equivalent area. Formal coupling with CFD allows computation of sensitivities of equivalent area objectives with respect to aircraft shape parameters. The exactness of the adjoint sensitivities is verified against derivatives obtained using the complex step approach. This methodology has the benefit of using designer-friendly equivalent areas in the shape design of low-boom aircraft. Shape optimization results with equivalent area cost functionals are discussed and further refined using ground loudness based objectives.

  18. Acoustic flight testing of advanced design propellers on a JetStar aircraft

    NASA Astrophysics Data System (ADS)

    Lasagna, P.; Mackall, K.

    1981-12-01

    Advanced turboprop-powered aircraft have the potential to reduce fuel consumption by 15 to 30 percent as compared with an equivalent technology turbofan-powered aircraft. An important obstacle to the use of advanced design propellers is the cabin noise generated at Mach numbers up to .8 and at altitudes up to 35,000 feet. As part of the NASA Aircraft Energy Efficiency Program, the near-field acoustic characteristics on a series of advanced design propellers are investigated. Currently, Dryden Flight Research Center is flight testing a series of propellers on a JetStar airplane. The propellers used in the flight test were previously tested in wind tunnels at the Lewis Research Center. Data are presented showing the narrow band spectra, acoustic wave form, and acoustic contours on the fuselage surface. Additional flights with the SR-3 propeller and other advanced propellers are planned in the future.

  19. Acoustic flight testing of advanced design propellers on a JetStar aircraft

    NASA Technical Reports Server (NTRS)

    Lasagna, P.; Mackall, K.

    1981-01-01

    Advanced turboprop-powered aircraft have the potential to reduce fuel consumption by 15 to 30 percent as compared with an equivalent technology turbofan-powered aircraft. An important obstacle to the use of advanced design propellers is the cabin noise generated at Mach numbers up to .8 and at altitudes up to 35,000 feet. As part of the NASA Aircraft Energy Efficiency Program, the near-field acoustic characteristics on a series of advanced design propellers are investigated. Currently, Dryden Flight Research Center is flight testing a series of propellers on a JetStar airplane. The propellers used in the flight test were previously tested in wind tunnels at the Lewis Research Center. Data are presented showing the narrow band spectra, acoustic wave form, and acoustic contours on the fuselage surface. Additional flights with the SR-3 propeller and other advanced propellers are planned in the future.

  20. Numerical continuation and bifurcation analysis in aircraft design: an industrial perspective.

    PubMed

    Sharma, Sanjiv; Coetzee, Etienne B; Lowenberg, Mark H; Neild, Simon A; Krauskopf, Bernd

    2015-09-28

    Bifurcation analysis is a powerful method for studying the steady-state nonlinear dynamics of systems. Software tools exist for the numerical continuation of steady-state solutions as parameters of the system are varied. These tools make it possible to generate 'maps of solutions' in an efficient way that provide valuable insight into the overall dynamic behaviour of a system and potentially to influence the design process. While this approach has been employed in the military aircraft control community to understand the effectiveness of controllers, the use of bifurcation analysis in the wider aircraft industry is yet limited. This paper reports progress on how bifurcation analysis can play a role as part of the design process for passenger aircraft. PMID:26303915

  1. 40 CFR 65.82 - Design requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 15 2010-07-01 2010-07-01 false Design requirements. 65.82 Section 65...) CONSOLIDATED FEDERAL AIR RULE Transfer Racks § 65.82 Design requirements. (a) The owner or operator shall equip... shall be designed to collect the regulated material displaced from tank trucks or railcars...

  2. 40 CFR 65.82 - Design requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 15 2011-07-01 2011-07-01 false Design requirements. 65.82 Section 65...) CONSOLIDATED FEDERAL AIR RULE Transfer Racks § 65.82 Design requirements. (a) The owner or operator shall equip... shall be designed to collect the regulated material displaced from tank trucks or railcars...

  3. NASA advanced design program: Analysis, design, and construction of a solar powered aircraft. B.S. Thesis

    NASA Technical Reports Server (NTRS)

    Chan, Agnes; Conley, Kristin; Javorski, Christian T.; Cheung, Kwok-Hung; Crivelli, Paul M.; Torrey, Nancy P.; Traver, Michael L.

    1992-01-01

    Increase in energy demands coupled with rapid depletion of natural energy resources have deemed solar energy as the most logical alternative source of power. The major objective of this project was to build a solar powered remotely controlled aircraft to demonstrate the feasibility of solar energy as an effective, alternate source of power. The final design was optimized for minimum weight and maximum strength of the structure. These design constraints necessitated a carbon fiber composite structure. Surya is a lightweight, durable aircraft capable of achieving level flight powered entirely by solar cells.

  4. Practices to identify and preclude adverse Aircraft-and-Rotorcraft-Pilot Couplings - A design perspective

    NASA Astrophysics Data System (ADS)

    Pavel, Marilena D.; Masarati, Pierangelo; Gennaretti, Massimo; Jump, Michael; Zaichik, Larisa; Dang-Vu, Binh; Lu, Linghai; Yilmaz, Deniz; Quaranta, Giuseppe; Ionita, Achim; Serafini, Jacopo

    2015-07-01

    Understanding, predicting and supressing the inadvertent aircraft oscillations caused by Aircraft/Rotorcraft Pilot Couplings (A/RPC) is a challenging problem for designers. These are potential instabilities that arise from the effort of controlling aircraft with high response actuation systems. The present paper reviews, updates and discusses desirable practices to be used during the design process for unmasking A/RPC phenomena. These practices are stemming from the European Commission project ARISTOTEL Aircraft and Rotorcraft Pilot Couplings - Tools and Techniques for Alleviation and Detection (2010-2013) and are mainly related to aerodynamic and structural modelling of the aircraft/rotorcraft, pilot modelling and A/RPC prediction criteria. The paper proposes new methodologies for precluding adverse A/RPCs events taking into account the aeroelasticity of the structure and pilot biodynamic interaction. It is demonstrated that high-frequency accelerations due to structural elasticity cause negative effects on pilot control, since they lead to involuntary body and limb-manipulator system displacements and interfere with pilot's deliberate control activity (biodynamic interaction) and, finally, worsen handling quality ratings.

  5. Design requirements for radiology workstations.

    PubMed

    Moise, Adrian; Atkins, M Stella

    2004-06-01

    This article stresses the importance of capturing feedback from representative users in the early stages of product development. We present our solution to producing quality requirement specifications for radiology workstations, specifications that remain valid over time because we successfully anticipated the industry trends and the user's needs. We present the results from a user study performed in December 1999 in a radiology clinic equipped with state-of-the-art Picture Archiving and Communications Systems (PACS) and imaging scanners. The study involved eight radiologists who answered questions and provided comments on three complementary research topics. First, we asked our subjects to enumerate the advantages and the disadvantages for both softcopy and hardcopy reading. We identified the two major factors for productivity improvement through the use of PACS workstations: workflow re-engineering and process automation. Second, we collected radiologist feedback on the use of hanging protocols (HPs). The results indicated the high importance of automatic image organization through HPs, with the potential effect of reducing the interpretation time by 10-20%. Our subjects estimated that 10-15 HPs would cover about 85%-95% of the regular radiological examinations. Third, we investigated the impact of the display devices on the radiologist's workflow. Our results indicated that the number and the properties of the monitors is a modality-specific requirement. The main results from this study on key functional requirements for softcopy interpretation only recently were incorporated in most of the current, successful PACS workstations.

  6. Preliminary design study of advanced composite blade and hub and nonmechanical control system for the tilt-rotor aircraft. Volume 2: Project planning data

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Project planning data for a rotor and control system procurement and testing program for modifications to the XV-15 tilt-rotor research demonstrator aircraft is presented. The design, fabrication, and installation of advanced composite blades compatible with the existing hub, an advanced composite hub, and a nonmechanical control system are required.

  7. Profile design for an advanced-technology airfoil for general aviation aircraft

    NASA Technical Reports Server (NTRS)

    Welte, D.

    1978-01-01

    A profile from the NASA General Aviation Whitcomb series and NACA profiles are used as a starting point in designing an advanced airfoil for general aviation aircraft. Potential theory pressure distribution calculations, together with boundary layer calculations, permit a decrease in the null moment and an optimization of the lift characteristics of the wing. Trailing edge flap design is also improved. Wind tunnel tests are used to compare the conventional profiles, the NASA profile, and the improved design.

  8. A knowledge-based system design/information tool for aircraft flight control systems

    NASA Technical Reports Server (NTRS)

    Mackall, Dale A.; Allen, James G.

    1989-01-01

    Flight test experiences of the X-29 forward-swept wing, the advanced fighter technology integration (AFTI) F-16, and the highly maneuverable aircraft technology (HiMAT) programs are reviewed. Significant operating anomalies in these programs and the design errors which caused them are examined. The functions which a system design/information tool should provide to assist designers in avoiding errors are identified.

  9. Improving aircraft conceptual design - A PHIGS interactive graphics interface for ACSYNT

    NASA Technical Reports Server (NTRS)

    Wampler, S. G.; Myklebust, A.; Jayaram, S.; Gelhausen, P.

    1988-01-01

    A CAD interface has been created for the 'ACSYNT' aircraft conceptual design code that permits the execution and control of the design process via interactive graphics menus. This CAD interface was coded entirely with the new three-dimensional graphics standard, the Programmer's Hierarchical Interactive Graphics System. The CAD/ACSYNT system is designed for use by state-of-the-art high-speed imaging work stations. Attention is given to the approaches employed in modeling, data storage, and rendering.

  10. Design of an aircraft landing system using dual-frequency GNSS

    NASA Astrophysics Data System (ADS)

    Konno, Hiroyuki

    There is a strong demand for new all-weather navigation aids to support aircraft precision approach and landing. The Federal Aviation Administration's Local Area Augmentation System (LAAS) is one such navigation aid that uses the Global Positioning System (GPS) to estimate aircraft location. LAAS is required to provide very high levels of accuracy, integrity, continuity, and availability, and the integrity requirement of one undetected navigation failure in a billion approaches has been a critical challenge in the design of this system. Tremendous efforts have developed methods to guarantee integrity for various potential anomalies that might threaten LAAS-aided landing. Currently, almost all these risks are mitigated by existing methods. One issue that remains is the risk due to ionosphere anomalies. This dissertation introduces novel integrity algorithms for ionosphere anomalies that take advantage of GPS modernization---undergoing changes in the GPS system that enhance civil user capabilities. This modernization includes adding new GPS civil signals, and these signals make possible multiple-frequency techniques. This research focuses on two types of dual-frequency carrier-smoothing methods---Divergence-Free Smoothing and Ionosphere-Free Smoothing---and develops integrity algorithms for ionosphere anomalies using these methods. Simulations show that the first algorithm, using Ionosphere-Free Smoothing, can achieve 96% to 99.9% availability at best over a broad region of the Conterminous United States (CONUS). This level of availability is unacceptably low for practical use. However, a benefit is that the resulting availability is not a function of the ionosphere condition. The second algorithm, based on Divergence-Free Smoothing, is shown by simulations to achieve more than 99.9% availability over more than 70% of CONUS under nominal ionosphere conditions. However, it has the potential to completely lose availability under severe ionosphere conditions. Taking

  11. Flying qualities design criteria applicable to supersonic cruise aircraft

    NASA Technical Reports Server (NTRS)

    Chalk, C. R.

    1980-01-01

    A comprehensive set of flying qualities design criteria was prepared for use in the supersonic cruise research program. The framework for stating the design criteria is established and design criteria are included which address specific failures, approach to dangerous flight conditions, flight at high angle of attack, longitudinal and lateral directional stability and control, the primary flight control system, and secondary flight controls. Examples are given of lateral directional design criteria limiting lateral accelerations at the cockpit, time to roll through 30 deg of bank, and time delay in the pilot's command path. Flight test data from the Concorde certification program are used to substantiate a number of the proposed design criteria.

  12. Design of a high capacity long range cargo aircraft

    NASA Technical Reports Server (NTRS)

    Weisshaar, Terrence A.

    1994-01-01

    This report examines the design of a long range cargo transport to attempt to reduce ton-mile shipping costs and to stimulate the air cargo market. This design effort involves the usual issues but must also include consideration of: airport terminal facilities; cargo loading and unloading; and defeating the 'square-cube' law to design large structures. This report reviews the long range transport design problem and several solutions developed by senior student design teams at Purdue University. The results show that it will be difficult to build large transports unless the infrastructure is changed and unless the basic form of the airplane changes so that aerodynamic and structural efficiencies are employed.

  13. Design for prevention of acoustic fatigue. [of aircraft structures

    NASA Technical Reports Server (NTRS)

    Smith, H. W.

    1983-01-01

    It is pointed out that new noise prediction methods and acoustic life estimation methods have matured to the point where they can be combined into a unified engineering procedure. "Life derivatives" can be extracted from parametric charts to furnish design data for preventing acoustic fatigue. The acoustic fatigue life is shown to be sensitive to the damping ratio through the use of life derivatives. The localized nature of propeller noise can be quantified with an "isodecibel" contour diagram.Even though the peak sound pressure level may be high, the directional derivatives show the noise decay rates with distance. Acoustic fatigue design is discussed from the overall design methodology and is shown to be similar to other structural design problems. While nonlinearities present a formidable design engineering problem, they are manageable by proven semi-empirical techniques. For new design problems, it is imperative to determine whether the data base completely spans the design variables.

  14. 14 CFR 65.63 - Aircraft dispatcher certification courses: Application, duration, and other general requirements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... FLIGHT CREWMEMBERS Aircraft Dispatchers § 65.63 Aircraft dispatcher certification courses: Application... forward any records to the FAA as requested by the Administrator. (f) Change in ownership. A change...

  15. The Design of a Literature File in Aircraft-Related Environmental Medicine.

    ERIC Educational Resources Information Center

    Hody, George L.

    The U.S. Army Aeromedical Research Laboratory (USAARL) is often required to make specialized measurements and perform applied research in aircraft-related areas of environmental medicine. Rapid access to the periodical literature is essential for the completion of many of these projects. A growing file of reprints from the periodical literature is…

  16. Aerodynamic design and analysis system for supersonic aircraft. Part 3: Computer program description

    NASA Technical Reports Server (NTRS)

    Middleton, W. D.; Lundry, J. L.; Coleman, R. G.

    1975-01-01

    The computer program for the design and analysis of supersonic aircraft configurations is presented. The schematics of the program structure are provided. The individual overlays and subroutines are described. The system is useful in determining surface pressures and supersonic area rule concepts.

  17. Survey of piloting factors in V/STOL aircraft with implications for flight control system design

    NASA Technical Reports Server (NTRS)

    Ringland, R. F.; Craig, S. J.

    1977-01-01

    Flight control system design factors involved for pilot workload relief are identified. Major contributors to pilot workload include configuration management and control and aircraft stability and response qualities. A digital fly by wire stability augmentation, configuration management, and configuration control system is suggested for reduction of pilot workload during takeoff, hovering, and approach.

  18. Criteria for design of integrated flight/propulsion control systems for STOVL fighter aircraft

    NASA Technical Reports Server (NTRS)

    Franklin, James A.

    1993-01-01

    As part of NASA's program to develop technology for short takeoff and vertical landing (STOVL) fighter aircraft, control system designs have been developed for a conceptual STOVL aircraft. This aircraft is representative of the class of mixed-flow remote-lift concepts that was identified as the preferred design approach by the U.S./U.K. STOVL Joint Assessment and Ranking Team. The control system designs have been evaluated throughout the powered-lift flight envelope on the Vertical Motion Simulator (VMS) at Ames Research Center. Items assessed in the control system evaluation were: maximum control power used in transition and vertical flight, control system dynamic response associated with thrust transfer for attitude control, thrust margin in the presence of ground effect and hot-gas ingestion, and dynamic thrust response for the engine core. Effects of wind, turbulence, and ship airwake disturbances are incorporated in the evaluation. Results provide the basis for a reassessment of existing flying-qualities design criteria applied to STOVL aircraft.

  19. Design study of test models of maneuvering aircraft configurations for the National Transonic Facility (NTF)

    NASA Technical Reports Server (NTRS)

    Griffin, S. A.; Madsen, A. P.; Mcclain, A. A.

    1984-01-01

    The feasibility of designing advanced technology, highly maneuverable, fighter aircraft models to achieve full scale Reynolds number in the National Transonic Facility (NTF) is examined. Each of the selected configurations are tested for aeroelastic effects through the use of force and pressure data. A review of materials and material processes is also included.

  20. Evaluation of structural design concepts for an arrow-wing supersonic cruise aircraft

    NASA Technical Reports Server (NTRS)

    Sakata, I. F.; Davis, G. W.

    1977-01-01

    An analytical study was performed to determine the best structural approach for design of primary wing and fuselage structure of a Mach 2.7 arrow wing supersonic cruise aircraft. Concepts were evaluated considering near term start of design. Emphasis was placed on the complex interactions between thermal stress, static aeroelasticity, flutter, fatigue and fail safe design, static and dynamic loads, and the effects of variations in structural arrangements, concepts and materials on these interactions. Results indicate that a hybrid wing structure incorporating low profile convex beaded and honeycomb sandwich surface panels of titanium alloy 6Al-4V were the most efficient. The substructure includes titanium alloy spar caps reinforced with boron polyimide composites. The fuselage shell consists of hat stiffened skin and frame construction of titanium alloy 6Al-4V. A summary of the study effort is presented, and a discussion of the overall logic, design philosophy and interaction between the analytical methods for supersonic cruise aircraft design are included.

  1. Training aircraft design considerations based on the successive organization of perception in manual control

    NASA Technical Reports Server (NTRS)

    Heffley, R. K.; Clement, W. F.; Craig, S. J.

    1982-01-01

    The thesis that pilot skill development in the Navy approach and landing task is very strongly tied to the aircraft closure rate and, therefore, that pilot training for this task should be based on an appropriate progression closure rate is considered. A rational and explicit determination of design point approach speeds as well as other important aerodynamic features for training aircraft is also considered. Two keys are discussed: recognition of the significance of transitioning from a purely compensatory control loop technique to one involving a pursuit crossfeed between throttle and pitch attitude, and addressing the terminal flight path adjustment in terms of range-to-go.

  2. A design study for a simple-to-fly, constant attitude light aircraft

    NASA Technical Reports Server (NTRS)

    Smetana, F. O.; Humphreys, D. E.; Montoya, R. J.; Rickard, W. W.; Wilkinson, I. E.

    1973-01-01

    The activities during a four-year study by doctoral students to evolve in detail a design for a simple-to-fly, constant attitude light airplane are described. The study indicated that such aircraft could materially reduce the hazards to light airplane occupants which arise from the high pilot work load and poor visibility that occur during landing. Preliminary cost studies indicate that in volume production this system would increase the cost of the aircraft in roughly the same fashion that automatic transmission, power steering, power brakes, and cruise control increase the cost of a compact car.

  3. 49 CFR 173.27 - General requirements for transportation by aircraft.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... may be offered for transportation or transported aboard a passenger-carrying aircraft or cargo... this paragraph for transport aboard cargo-only aircraft. (2) Limited quantities. (i) Unless otherwise... tank car or cargo tank containing a hazardous material may not be transported aboard aircraft....

  4. A simplified analysis of propulsion installation losses for computerized aircraft design

    NASA Technical Reports Server (NTRS)

    Morris, S. J., Jr.; Nelms, W. P., Jr.; Bailey, R. O.

    1976-01-01

    A simplified method is presented for computing the installation losses of aircraft gas turbine propulsion systems. The method has been programmed for use in computer aided conceptual aircraft design studies that cover a broad range of Mach numbers and altitudes. The items computed are: inlet size, pressure recovery, additive drag, subsonic spillage drag, bleed and bypass drags, auxiliary air systems drag, boundary-layer diverter drag, nozzle boattail drag, and the interference drag on the region adjacent to multiple nozzle installations. The methods for computing each of these installation effects are described and computer codes for the calculation of these effects are furnished. The results of these methods are compared with selected data for the F-5A and other aircraft. The computer program can be used with uninstalled engine performance information which is currently supplied by a cycle analysis program. The program, including comments, is about 600 FORTRAN statements long, and uses both theoretical and empirical techniques.

  5. Current status and new directions in conceptual aircraft design

    NASA Technical Reports Server (NTRS)

    Kidwell, George H., Jr.

    1990-01-01

    The following topics are discussed: systems analysis branch questions; systems analysis; historical perspective; background technology; conceptual design/evaluation program organization; system integration/vehicle closure; conceptual design synthesis programs; numerical optimization/mathematical programming; and current R&D interests. The discussion is presented in viewgraph format.

  6. The SnoDog: Preliminary design of a close air support aircraft

    NASA Technical Reports Server (NTRS)

    Ashbaugh, Scott; Bartel, Kent; Cavalli, J. R.; Chan, John; Chung, Jason; Dimaranan, Liza; Freese, Mike; Levitt, Rick; Soban, Dani

    1991-01-01

    U.S. military forces are presently searching for the next generation Close Air Support aircraft. The following report presents the SnoDog, a low-cost ($14.8 million) aircraft capable of operating from remote battlefields and unimproved airstrips. The configuration consists of a conventional, low aspect-ratio wing, twin booms, twin canted vertical stabilizers along with a high-mounted joined horizontal tail. A supercritical airfoil for the wing enhances aerodynamic performance, while the SnoDog's instability increases maneuverability over current close air support aircraft. Survivability was incorporated into the design by the use of a titanium tub to protect the cockpit from anti-aircraft artillery, as well as, the twin booms and retracted gear disposition. The booms aid survivability by supplying separated, redundant controls, and the landing gear are slightly exposed when retracted to enable a belly landing in emergencies. Designed to fly at Mach .76, the SnoDog is powered by two low-bypass turbofan engines. Engine accessibility and interchangeable parts make the SnoDog highly maintainable. The SnoDog is adaptable to many different missions, as it is capable of carrying advanced avionics pods, carrying external fuel tanks or refueling in-air, and carrying various types of munitions. This makes the SnoDog a multirole aircraft capable of air-to-air and air-to-ground combat. This combination of features make the SnoDog unique as a close air support aircraft, capable of meeting the U.S. military's future needs.

  7. ACSYNT - A standards-based system for parametric, computer aided conceptual design of aircraft

    NASA Technical Reports Server (NTRS)

    Jayaram, S.; Myklebust, A.; Gelhausen, P.

    1992-01-01

    A group of eight US aerospace companies together with several NASA and NAVY centers, led by NASA Ames Systems Analysis Branch, and Virginia Tech's CAD Laboratory agreed, through the assistance of Americal Technology Initiative, in 1990 to form the ACSYNT (Aircraft Synthesis) Institute. The Institute is supported by a Joint Sponsored Research Agreement to continue the research and development in computer aided conceptual design of aircraft initiated by NASA Ames Research Center and Virginia Tech's CAD Laboratory. The result of this collaboration, a feature-based, parametric computer aided aircraft conceptual design code called ACSYNT, is described. The code is based on analysis routines begun at NASA Ames in the early 1970's. ACSYNT's CAD system is based entirely on the ISO standard Programmer's Hierarchical Interactive Graphics System and is graphics-device independent. The code includes a highly interactive graphical user interface, automatically generated Hermite and B-Spline surface models, and shaded image displays. Numerous features to enhance aircraft conceptual design are described.

  8. Mission management aircraft operations manual

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This manual prescribes the NASA mission management aircraft program and provides policies and criteria for the safe and economical operation, maintenance, and inspection of NASA mission management aircraft. The operation of NASA mission management aircraft is based on the concept that safety has the highest priority. Operations involving unwarranted risks will not be tolerated. NASA mission management aircraft will be designated by the Associate Administrator for Management Systems and Facilities. NASA mission management aircraft are public aircraft as defined by the Federal Aviation Act of 1958. Maintenance standards, as a minimum, will meet those required for retention of Federal Aviation Administration (FAA) airworthiness certification. Federal Aviation Regulation Part 91, Subparts A and B, will apply except when requirements of this manual are more restrictive.

  9. Design and fabrication of nosecone for WB-57F aircraft fitted with APQ-102A side looking radar

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The design, fabrication, and testing of a nose cone which included a radome for a NASA WB-57F high altitude natural resources mapping aircraft was reviewed. The plane was fitted with a APQ-102A side looking radar operating at 9.6 GHz. The radar is directed normally to the direction of the flight and downward by a changeable angle, and it is assumed that the axis of the plane will not deviate from this direction by more than + or - 6 deg. The radome is required to subtend an angle of 160 deg centered 30 deg below the left horizon.

  10. Aircraft Conceptual Design and Risk Analysis Using Physics-Based Noise Prediction

    NASA Technical Reports Server (NTRS)

    Olson, Erik D.; Mavris, Dimitri N.

    2006-01-01

    An approach was developed which allows for design studies of commercial aircraft using physics-based noise analysis methods while retaining the ability to perform the rapid trade-off and risk analysis studies needed at the conceptual design stage. A prototype integrated analysis process was created for computing the total aircraft EPNL at the Federal Aviation Regulations Part 36 certification measurement locations using physics-based methods for fan rotor-stator interaction tones and jet mixing noise. The methodology was then used in combination with design of experiments to create response surface equations (RSEs) for the engine and aircraft performance metrics, geometric constraints and take-off and landing noise levels. In addition, Monte Carlo analysis was used to assess the expected variability of the metrics under the influence of uncertainty, and to determine how the variability is affected by the choice of engine cycle. Finally, the RSEs were used to conduct a series of proof-of-concept conceptual-level design studies demonstrating the utility of the approach. The study found that a key advantage to using physics-based analysis during conceptual design lies in the ability to assess the benefits of new technologies as a function of the design to which they are applied. The greatest difficulty in implementing physics-based analysis proved to be the generation of design geometry at a sufficient level of detail for high-fidelity analysis.

  11. An analytical sensitivity method for use in integrated aeroservoelastic aircraft design

    NASA Technical Reports Server (NTRS)

    Gilbert, Michael G.

    1989-01-01

    Interdisciplinary analysis capabilities have been developed for aeroservoelastic aircraft and large flexible spacecraft, but the requisite integrated design methods are only beginning to be developed. One integrated design method which has received attention is based on hierarchal problem decompositions, optimization, and design sensitivity analyses. This paper highlights a design sensitivity analysis method for Linear Quadratic Gaussian (LQG) optimal control laws, enabling the use of LQG techniques in the hierarchal design methodology. The LQG sensitivity analysis method calculates the change in the optimal control law and resulting controlled system responses due to changes in fixed design integration parameters using analytical sensitivity equations. Numerical results of a LQG design sensitivity analysis for a realistic aeroservoelastic aircraft example are presented. In this example, the sensitivity of the optimal control law and aircraft response for various parameters such as wing bending natural frequency is determined. The sensitivity results computed from the analytical expressions are used to estimate changes in response resulting from changes in the parameters. Comparisons of the estimates with exact calculated responses show they are reasonably accurate for + or - 15 percent changes in the parameters. Evaluation of the analytical expressions is computationally faster than equivalent finite difference calculations.

  12. Simulation Modeling Requirements for Loss-of-Control Accident Prevention of Turboprop Transport Aircraft

    NASA Technical Reports Server (NTRS)

    Crider, Dennis; Foster, John V.

    2012-01-01

    . This paper addresses simulation modeling requirements that are unique to turboprop transport aircraft and highlights the growing need for aerodynamic models suitable for stall training for these configurations. A review of prominent accidents that involved aerodynamic stall is used to illustrate various modeling features unique to turboprop configurations and the impact of stall behavior on susceptibility to loss of control that has led to new training requirements. This is followed by an overview of stability and control behavior of straight-wing turboprops, the related aerodynamic characteristics, and a summary of recent experimental studies on icing effects. In addition, differences in flight dynamics behavior between swept-wing jets and straight-wing turboprop configurations are discussed to compare and contrast modeling requirements. Specific recommendations for aerodynamic models along with further research needs and data measurements are also provided. 1

  13. A design procedure for the handling qualities optimization of the X-29A aircraft

    NASA Technical Reports Server (NTRS)

    Bosworth, John T.; Cox, Timothy H.

    1989-01-01

    A design technique for handling qualities improvement was developed for the X-29A aircraft. As with any new aircraft, the X-29A control law designers were presented with a relatively high degree of uncertainty in their mathematical models. The presence of uncertainties, and the high level of static instability of the X-29A caused the control law designers to stress stability and robustness over handling qualities. During flight test, the mathematical models of the vehicle were validated or corrected to match the vehicle dynamic behavior. The updated models were then used to fine tune the control system to provide fighter-like handling characteristics. A design methodology was developed which works within the existing control system architecture to provide improved handling qualities and acceptable stability with a minimum of cost in both implementation as well as software verification and validation.

  14. Vertical Lift Aircraft Design Conference, San Francisco, CA, Jan. 17-19, 1990, Proceedings

    SciTech Connect

    Not Available

    1990-01-01

    Topics presented include an overview of the NASA High Speed Rotorcraft Technology Development Program, propulsion system design for supersonic STOVL aircraft, NASA studies on hot gas ingestion and ground effects on STOVL aircraft, and the V/STOL transport concepts for special operations. Also presented are fault-tolerant architecture for a fly-by-light flight control computer, the servo flap in an advanced rotor control system, the high-speed rotorcraft V/STOL, and the improvement to interactive two-dimensional rotor section design. Also contributed are the experimental investigation of wingtip aerodynamic loading, the performance of an optimized rotor blade at off-design flight conditions, an unmanned air vehicle concept with tipjet drive, and AH-64A Apache hydraulic flight control system survivability design concepts.

  15. Current Research in Aircraft Tire Design and Performance

    NASA Technical Reports Server (NTRS)

    Tanner, J. A.; Mccarthy, J. L.; Clark, S. K.

    1981-01-01

    A review of the tire research programs which address the various needs identified by landing gear designers and airplane users is presented. The experimental programs are designed to increase tire tread lifetimes, relate static and dynamic tire properties, establish the tire hydroplaning spin up speed, study gear response to tire failures, and define tire temperature profiles during taxi, braking, and cornering operations. The analytical programs are aimed at providing insights into the mechanisms of heat generation in rolling tires and developing the tools necessary to streamline the tire design process and to aid in the analysis of landing gear problems.

  16. Celebrating 100 Years of Flight: Testing Wing Designs in Aircraft

    ERIC Educational Resources Information Center

    Pugalee, David K.; Nusinov, Chuck; Giersch, Chris; Royster, David; Pinelli, Thomas E.

    2005-01-01

    This article describes an investigation involving several designs of airplane wings in trial flight simulations based on a NASA CONNECT program. Students' experiences with data collection and interpretation are highlighted. (Contains 5 figures.)

  17. 7 CFR 3560.60 - Design requirements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... AGRICULTURE DIRECT MULTI-FAMILY HOUSING LOANS AND GRANTS Direct Loan and Grant Origination § 3560.60 Design requirements. (a) Standards. All Agency-financed MFH will be constructed in accordance with 7 CFR part 1924... 7 Agriculture 15 2011-01-01 2011-01-01 false Design requirements. 3560.60 Section...

  18. 7 CFR 3560.60 - Design requirements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... AGRICULTURE DIRECT MULTI-FAMILY HOUSING LOANS AND GRANTS Direct Loan and Grant Origination § 3560.60 Design requirements. (a) Standards. All Agency-financed MFH will be constructed in accordance with 7 CFR part 1924... 7 Agriculture 15 2010-01-01 2010-01-01 false Design requirements. 3560.60 Section...

  19. Application of an advanced computerized structural design system to an arrow-wing supersonic cruise aircraft

    NASA Technical Reports Server (NTRS)

    Robinson, J. C.; Yates, E. C., Jr.; Turner, M. J.; Grande, D. L.

    1975-01-01

    A structural design study of an arrow-wing supersonic cruise aircraft has been made using the integrated design system, ATLAS, and a relatively large analytical finite-element model containing 8500 degrees of freedom. This paper focuses on structural design methods developed and used in support of the study with emphasis on aeroelasticity. The use of ATLAS permitted (1) automatic resizing of the wing structure for multiple load conditions, (2) rapid evaluation of aeroelastic effects, and (3) an iterative approach to the correction of flutter deficiencies. The significant results of the study are discussed along with the advantages derived from the use of an advanced structural design system in preliminary design studies.

  20. The design of aircraft using the decision support problem technique

    NASA Technical Reports Server (NTRS)

    Mistree, Farrokh; Marinopoulos, Stergios; Jackson, David M.; Shupe, Jon A.

    1988-01-01

    The Decision Support Problem Technique for unified design, manufacturing and maintenance is being developed at the Systems Design Laboratory at the University of Houston. This involves the development of a domain-independent method (and the associated software) that can be used to process domain-dependent information and thereby provide support for human judgment. In a computer assisted environment, this support is provided in the form of optimal solutions to Decision Support Problems.

  1. Sensitivity analysis and multidisciplinary optimization for aircraft design: Recent advances and results

    NASA Technical Reports Server (NTRS)

    Sobieszczanski-Sobieski, Jaroslaw

    1988-01-01

    Optimization by decomposition, complex system sensitivity analysis, and a rapid growth of disciplinary sensitivity analysis are some of the recent developments that hold promise of a quantum jump in the support engineers receive from computers in the quantitative aspects of design. Review of the salient points of these techniques is given and illustrated by examples from aircraft design as a process that combines the best of human intellect and computer power to manipulate data.

  2. Sensitivity analysis and multidisciplinary optimization for aircraft design - Recent advances and results

    NASA Technical Reports Server (NTRS)

    Sobieszczanski-Sobieski, Jaroslaw

    1988-01-01

    Optimization by decomposition, complex system sensitivity analysis, and a rapid growth of disciplinary sensitivity analysis are some of the recent developments that hold promise of a quantum jump in the support engineers receive from computers in the quantitative aspects of design. Review of the salient points of these techniques is given and illustrated by examples from aircraft design as a process that combines the best of human intellect and computer power to manipulate data.

  3. Optimization applications in aircraft engine design and test

    NASA Technical Reports Server (NTRS)

    Pratt, T. K.

    1984-01-01

    Starting with the NASA-sponsored STAEBL program, optimization methods based primarily upon the versatile program COPES/CONMIN were introduced over the past few years to a broad spectrum of engineering problems in structural optimization, engine design, engine test, and more recently, manufacturing processes. By automating design and testing processes, many repetitive and costly trade-off studies have been replaced by optimization procedures. Rather than taking engineers and designers out of the loop, optimization has, in fact, put them more in control by providing sophisticated search techniques. The ultimate decision whether to accept or reject an optimal feasible design still rests with the analyst. Feedback obtained from this decision process has been invaluable since it can be incorporated into the optimization procedure to make it more intelligent. On several occasions, optimization procedures have produced novel designs, such as the nonsymmetric placement of rotor case stiffener rings, not anticipated by engineering designers. In another case, a particularly difficult resonance contraint could not be satisfied using hand iterations for a compressor blade, when the STAEBL program was applied to the problem, a feasible solution was obtained in just two iterations.

  4. Requirements for regional short-haul air service and the definition of a flight program to determine neighborhood reactions to small transport aircraft

    NASA Technical Reports Server (NTRS)

    Feher, K.; Bollinger, L.; Bowles, J. V.; Waters, M. H.

    1978-01-01

    An evaluation of the current status and future requirements of an intraregional short haul air service is given. A brief definition of the different types of short haul air service is given. This is followed by a historical review of previous attempts to develop short haul air service in high density urban areas and an assessment of the current status. The requirements for intraregional air service, the need for economic and environmental viability and the need for a flight research program are defined. A detailed outline of a research program that would determine urban community reaction to frequent operations of small transport aircraft is also given. Both the operation of such an experiment in a specific region (San Francisco Bay area) and the necessary design modifications of an existing fixed wing aircraft which could be used in the experiment are established. An estimate is made of overall program costs.

  5. Design and evaluation of a wireless sensor network based aircraft strength testing system.

    PubMed

    Wu, Jian; Yuan, Shenfang; Zhou, Genyuan; Ji, Sai; Wang, Zilong; Wang, Yang

    2009-01-01

    The verification of aerospace structures, including full-scale fatigue and static test programs, is essential for structure strength design and evaluation. However, the current overall ground strength testing systems employ a large number of wires for communication among sensors and data acquisition facilities. The centralized data processing makes test programs lack efficiency and intelligence. Wireless sensor network (WSN) technology might be expected to address the limitations of cable-based aeronautical ground testing systems. This paper presents a wireless sensor network based aircraft strength testing (AST) system design and its evaluation on a real aircraft specimen. In this paper, a miniature, high-precision, and shock-proof wireless sensor node is designed for multi-channel strain gauge signal conditioning and monitoring. A cluster-star network topology protocol and application layer interface are designed in detail. To verify the functionality of the designed wireless sensor network for strength testing capability, a multi-point WSN based AST system is developed for static testing of a real aircraft undercarriage. Based on the designed wireless sensor nodes, the wireless sensor network is deployed to gather, process, and transmit strain gauge signals and monitor results under different static test loads. This paper shows the efficiency of the wireless sensor network based AST system, compared to a conventional AST system. PMID:22408521

  6. Modern digital flight control system design for VTOL aircraft

    NASA Technical Reports Server (NTRS)

    Broussard, J. R.; Berry, P. W.; Stengel, R. F.

    1979-01-01

    Methods for and results from the design and evaluation of a digital flight control system (DFCS) for a CH-47B helicopter are presented. The DFCS employed proportional-integral control logic to provide rapid, precise response to automatic or manual guidance commands while following conventional or spiral-descent approach paths. It contained altitude- and velocity-command modes, and it adapted to varying flight conditions through gain scheduling. Extensive use was made of linear systems analysis techniques. The DFCS was designed, using linear-optimal estimation and control theory, and the effects of gain scheduling are assessed by examination of closed-loop eigenvalues and time responses.

  7. Advanced EVA system design requirements study

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Design requirements and criteria for the Space Station Advanced Extravehicular Activity System (EVAS) including crew enclosures, portable life support systems, maneuvering propulsion systems, and related extravehicular activity (EVA) support equipment were defined and established. The EVA mission requirements, environments, and medical and physiological requirements, as well as opertional, procedures, and training issues were considered.

  8. 7 CFR 1724.51 - Design requirements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... selection, conductor sag and tension information, design clearances, span limitations due to clearances..., or steel towers, in which load information will be used to purchase the structures, the design data... 7 Agriculture 11 2010-01-01 2010-01-01 false Design requirements. 1724.51 Section...

  9. Theoretical design of acoustic treatment for cabin noise control of a light aircraft

    NASA Technical Reports Server (NTRS)

    Vaicaitis, R.; Mixson, J. S.

    1984-01-01

    An analytical procedure has been used to design an acoustic treatment for cabin noise control of a light aircraft. Using this approach acoustic add-on treatments capable of reducing the average noise levels in the cabin by about 17 dB from the untreated condition are developed. The added weight of the noise control package is about 2 percent of the total gross take-off weight of the aircraft. The analytical model uses modal solutions wherein the structural modes of the sidewall and the acoustic modes of the receiving space are accounted for. The additional noise losses due to add-on treatments are calculated by the impedance transfer method. The input noise spectral levels are selected utilizing experimental flight data. The add-on treatments considered for cabin noise control include aluminum honeycomb panels, constrained layer damping tape, porous acoustic materials, noise barriers and limp trim panels. To reduce the noise transmitted through the double wall aircraft windows to acceptable levels, changes in the design of the aircraft window are recommended.

  10. NASA research in aircraft propulsion

    NASA Technical Reports Server (NTRS)

    Beheim, M. A.

    1982-01-01

    A broad overview of the scope of research presently being supported by NASA in aircraft propulsion is presented with emphasis on Lewis Research Center activities related to civil air transports, CTOL and V/STOL systems. Aircraft systems work is performed to identify the requirements for the propulsion system that enhance the mission capabilities of the aircraft. This important source of innovation and creativity drives the direction of propulsion research. In a companion effort, component research of a generic nature is performed to provide a better basis for design and provides an evolutionary process for technological growth that increases the capabilities of all types of aircraft. Both are important.

  11. Cargo Logistics Airlift Systems Study (CLASS). Volume 4: Future requirements of dedicated freighter aircraft to year 2008

    NASA Technical Reports Server (NTRS)

    Burby, R. J.

    1979-01-01

    The 1978 fleet operations are extended to the year 1992, thus providing an evaluation of current aircraft types in meeting the ensuing increased market demand. Possible changes in the fleet mix and the resulting economic situation are defined in terms of the number of units of each type aircraft and the resulting growth in operational frequency. Among the economic parameters considered are the associated investment required by the airline, the return on investment to the airline, and the accompanying levels of cash flow and operating income. Against this background the potential for a derivative aircraft to enter fleet operations in 1985 is defined as a function of payload size and as affected by 1980 technology. In a similar manner, the size and potential for a new dedicated 1990 technology, freighter aircraft to become operational in 1995 is established. The resulting aircraft and fleet operational and economic characteristics are evaluated over the period 1994 to 2008. The impacts of restricted growth in operational frequency, reduced market demand, variations in aircraft configurations, and military participation, are assessed.

  12. Vortex-Lattice Utilization. [in aeronautical engineering and aircraft design

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The many novel, innovative, and unique implementations and applications of the vortex-lattice method to aerodynamic design and analysis which have been performed by Industry, Government, and Universities were presented. Although this analytical tool is not new, it continues to be utilized and refined in the aeronautical community.

  13. Application of an Integrated Methodology for Propulsion and Airframe Control Design to a STOVL Aircraft

    NASA Technical Reports Server (NTRS)

    Garg, Sanjay; Mattern, Duane

    1994-01-01

    An advanced methodology for integrated flight propulsion control (IFPC) design for future aircraft, which will use propulsion system generated forces and moments for enhanced maneuver capabilities, is briefly described. This methodology has the potential to address in a systematic manner the coupling between the airframe and the propulsion subsystems typical of such enhanced maneuverability aircraft. Application of the methodology to a short take-off vertical landing (STOVL) aircraft in the landing approach to hover transition flight phase is presented with brief description of the various steps in the IFPC design methodology. The details of the individual steps have been described in previous publications and the objective of this paper is to focus on how the components of the control system designed at each step integrate into the overall IFPC system. The full nonlinear IFPC system was evaluated extensively in nonreal-time simulations as well as piloted simulations. Results from the nonreal-time evaluations are presented in this paper. Lessons learned from this application study are summarized in terms of areas of potential improvements in the STOVL IFPC design as well as identification of technology development areas to enhance the applicability of the proposed design methodology.

  14. Design study of a dual-cycle turbofan-ramjet engine for a hypersonic aircraft

    NASA Technical Reports Server (NTRS)

    Zumwalt, G. W.; Suwanprasert, S.

    1983-01-01

    Computer modelling was used with two different designs of an advanced turbofan-ramjet in order to derive performance predictions. The engine would enable an aircraft to take-off, accelerate to Mach 5.0, and climb to 90,000 ft. The two concepts included a turbofan with a ramjet annularly wrapped around it and a side-by-side configuration with the ramjet having a rectangular shape and mounted alongside the turbofan. The studies were performed to model weight, length, fuel efficiency, and the requirements of the thrust/drag ratio to exceed unity over the entire flight path. LH2 would be used for fuel and to regeneratively cool the combustion chamber. Turbofan operation with and without afterburner and with and without the ramjet inlet open were examined, as were variable areas for the burners. A side-by-side configuration displayed the best performance predictions, with a ramjet mass flow being 75 percent that of the turbofan and maximum temperatures being equal.

  15. The multidisciplinary design optimization of a distributed propulsion blended-wing-body aircraft

    NASA Astrophysics Data System (ADS)

    Ko, Yan-Yee Andy

    The purpose of this study is to examine the multidisciplinary design optimization (MDO) of a distributed propulsion blended-wing-body (BWB) aircraft. The BWB is a hybrid shape resembling a flying wing, placing the payload in the inboard sections of the wing. The distributed propulsion concept involves replacing a small number of large engines with many smaller engines. The distributed propulsion concept considered here ducts part of the engine exhaust to exit out along the trailing edge of the wing. The distributed propulsion concept affects almost every aspect of the BWB design. Methods to model these effects and integrate them into an MDO framework were developed. The most important effect modeled is the impact on the propulsive efficiency. There has been conjecture that there will be an increase in propulsive efficiency when there is blowing out of the trailing edge of a wing. A mathematical formulation was derived to explain this. The formulation showed that the jet 'fills in' the wake behind the body, improving the overall aerodynamic/propulsion system, resulting in an increased propulsive efficiency. The distributed propulsion concept also replaces the conventional elevons with a vectored thrust system for longitudinal control. An extension of Spence's Jet Flap theory was developed to estimate the effects of this vectored thrust system on the aircraft longitudinal control. It was found to provide a reasonable estimate of the control capability of the aircraft. An MDO framework was developed, integrating all the distributed propulsion effects modeled. Using a gradient based optimization algorithm, the distributed propulsion BWB aircraft was optimized and compared with a similarly optimized conventional BWB design. Both designs are for an 800 passenger, 0.85 cruise Mach number and 7000 nmi mission. The MDO results found that the distributed propulsion BWB aircraft has a 4% takeoff gross weight and a 2% fuel weight. Both designs have similar planform shapes

  16. An overview of the Douglas Aircraft Company Aeroelastic Design Optimization Program (ADOP)

    NASA Technical Reports Server (NTRS)

    Dodd, Alan J.

    1989-01-01

    From a program manager's viewpoint, the history, scope and architecture of a major structural design program at Douglas Aircraft Company called Aeroelastic Design Optimization Program (ADOP) are described. ADOP was originally intended for the rapid, accurate, cost-effective evaluation of relatively small structural models at the advanced design level, resulting in improved proposal competitiveness and avoiding many costly changes later in the design cycle. Before release of the initial version in November 1987, however, the program was expanded to handle very large production-type analyses.

  17. Modal control theory and application to aircraft lateral handling qualities design

    NASA Technical Reports Server (NTRS)

    Srinathkumar, S.

    1978-01-01

    A multivariable synthesis procedure based on eigenvalue/eigenvector assignment is reviewed and is employed to develop a systematic design procedure to meet the lateral handling qualities design objectives of a fighter aircraft over a wide range of flight conditions. The closed loop modal characterization developed provides significant insight into the design process and plays a pivotal role in the synthesis of robust feedback systems. The simplicity of the synthesis algorithm yields an efficient computer aided interactive design tool for flight control system synthesis.

  18. Arrow-wing supersonic cruise aircraft structural design concepts evaluation. Volume 1: Sections 1 through 6

    NASA Technical Reports Server (NTRS)

    Sakata, I. F.; Davis, G. W.

    1975-01-01

    The structural approach best suited for the design of a Mach 2.7 arrow-wing supersonic cruise aircraft was investigated. Results, procedures, and principal justification of results are presented. Detailed substantiation data are given. In general, each major analysis is presented sequentially in separate sections to provide continuity in the flow of the design concepts analysis effort. In addition to the design concepts evaluation and the detailed engineering design analyses, supporting tasks encompassing: (1) the controls system development; (2) the propulsion-airframe integration study; and (3) the advanced technology assessment are presented.

  19. Vehicle Design Evaluation Program (VDEP). A computer program for weight sizing, economic, performance and mission analysis of fuel-conservative aircraft, multibodied aircraft and large cargo aircraft using both JP and alternative fuels

    NASA Technical Reports Server (NTRS)

    Oman, B. H.

    1977-01-01

    The NASA Langley Research Center vehicle design evaluation program (VDEP-2) was expanded by (1) incorporating into the program a capability to conduct preliminary design studies on subsonic commercial transport type aircraft using both JP and such alternate fuels as hydrogen and methane;(2) incorporating an aircraft detailed mission and performance analysis capability; and (3) developing and incorporating an external loads analysis capability. The resulting computer program (VDEP-3) provides a preliminary design tool that enables the user to perform integrated sizing, structural analysis, and cost studies on subsonic commercial transport aircraft. Both versions of the VDEP-3 Program which are designated preliminary Analysis VDEP-3 and detailed Analysis VDEP utilize the same vehicle sizing subprogram which includes a detailed mission analysis capability, as well as a geometry and weight analysis for multibodied configurations.

  20. Neural Network and Regression Methods Demonstrated in the Design Optimization of a Subsonic Aircraft

    NASA Technical Reports Server (NTRS)

    Hopkins, Dale A.; Lavelle, Thomas M.; Patnaik, Surya

    2003-01-01

    The neural network and regression methods of NASA Glenn Research Center s COMETBOARDS design optimization testbed were used to generate approximate analysis and design models for a subsonic aircraft operating at Mach 0.85 cruise speed. The analytical model is defined by nine design variables: wing aspect ratio, engine thrust, wing area, sweep angle, chord-thickness ratio, turbine temperature, pressure ratio, bypass ratio, fan pressure; and eight response parameters: weight, landing velocity, takeoff and landing field lengths, approach thrust, overall efficiency, and compressor pressure and temperature. The variables were adjusted to optimally balance the engines to the airframe. The solution strategy included a sensitivity model and the soft analysis model. Researchers generated the sensitivity model by training the approximators to predict an optimum design. The trained neural network predicted all response variables, within 5-percent error. This was reduced to 1 percent by the regression method. The soft analysis model was developed to replace aircraft analysis as the reanalyzer in design optimization. Soft models have been generated for a neural network method, a regression method, and a hybrid method obtained by combining the approximators. The performance of the models is graphed for aircraft weight versus thrust as well as for wing area and turbine temperature. The regression method followed the analytical solution with little error. The neural network exhibited 5-percent maximum error over all parameters. Performance of the hybrid method was intermediate in comparison to the individual approximators. Error in the response variable is smaller than that shown in the figure because of a distortion scale factor. The overall performance of the approximators was considered to be satisfactory because aircraft analysis with NASA Langley Research Center s FLOPS (Flight Optimization System) code is a synthesis of diverse disciplines: weight estimation, aerodynamic