Science.gov

Sample records for aircraft development programs

  1. Program plan to develop airworthiness standards for STOL aircraft

    NASA Technical Reports Server (NTRS)

    Cayot, J. E.; Chubboy, R. A.; Hynes, C. S.

    1972-01-01

    A program plan to develop criteria for airworthiness standards for STOL transport aircraft is presented. Initially, three different STOL concepts are to be examined with a goal to arrive at a generalized set of standards. The Breguet 941 deflected-slipstream STOL has been initially evaluated on a piloted motion simulator and in flight. Confidence in establishing criteria for airworthiness standards for STOL transport aircraft has been obtained from these studies.

  2. NASA aeronautics. [fact sheet on NASA programs for aeronautical research and aircraft development

    NASA Technical Reports Server (NTRS)

    1974-01-01

    A fact sheet depicting the NASA programs involving aircraft development and aeronautics is presented. The fact sheet consists of artist concepts of the various aircraft which represent specific programs. Among the subjects discussed in the concise explanatory notes are: (1) the YF-12 aircraft, (2) hypersonic drag tests in wind tunnels, (3) augmentor wing concepts, (4) rotary wing development, (5) fly-by-wire aircraft control, (6) supercritical wings, (7) the quiet engine program for noise and emission abatement, (8) flight capabilities of lifting bodies, (9) tilt rotor concepts for improved helicopter performance, and (10) flight safety improvements for general aviation aircraft.

  3. Airworthiness criteria development for powered-lift aircraft: A program summary

    NASA Technical Reports Server (NTRS)

    Heffley, R. K.; Stapleford, R. L.; Rumold, R. C.

    1977-01-01

    A four-year simulation program to develop airworthiness criteria for powered-lift aircraft is summarized. All flight phases affected by use of powered lift (approach, landing, takeoff) are treated with regard to airworthiness problem areas (limiting flight conditions and safety margins: stability, control, and performance; and systems failure). The general features of powered-lift aircraft are compared to conventional aircraft.

  4. The Aircraft Morphing Program

    NASA Technical Reports Server (NTRS)

    Wlezien, R. W.; Horner, G. C.; McGowan, A. R.; Padula, S. L.; Scott, M. A.; Silcox, R. J.; Simpson, J. O.

    1998-01-01

    In the last decade smart technologies have become enablers that cut across traditional boundaries in materials science and engineering. Here we define smart to mean embedded actuation, sensing, and control logic in a tightly coupled feedback loop. While multiple successes have been achieved in the laboratory, we have yet to see the general applicability of smart devices to real aircraft systems. The NASA Aircraft Morphing program is an attempt to couple research across a wide range of disciplines to integrate smart technologies into high payoff aircraft applications. The program bridges research in seven individual disciplines and combines the effort into activities in three primary program thrusts. System studies are used to assess the highest- payoff program objectives, and specific research activities are defined to address the technologies required for development of smart aircraft systems. In this paper we address the overall program goals and programmatic structure, and discuss the challenges associated with bringing the technologies to fruition.

  5. Lift/cruise fan V/STOL technology aircraft design definition study. Volume 3: Development program and budgetary estimates

    NASA Technical Reports Server (NTRS)

    Obrien, W. J.

    1976-01-01

    The aircraft development program, budgetary estimates in CY 1976 dollars, and cost reduction program variants are presented. Detailed cost matrices are also provided for the mechanical transmission system, turbotip transmission system, and the thrust vector hoods and yaw doors.

  6. Development program to certify composite doubler repair technique for commercial aircraft

    SciTech Connect

    Roach, D.P.

    1997-07-01

    Commercial airframes exceeding 20 service years often develop crack and corrosion flaws. Bonded composite doublers offer a cost effective method to safely extend aircraft lives. The Federal Aircraft Authority (FAA) has completed a project to introduce composite doubler repair technology to the commercial aircraft industry. Instead of riveting steel or aluminum plates for repair, a single composite doubler may be bonded to the damaged structure. Adhesive bonding eliminates stress concentrations caused by fastener holes. Composites are readily formed into complex shapes for repairing irregular components. Also, composite doublers can be tailored to meet specific anisotropy needs, eliminating structural stiffening in directions other than those required. Other advantages include corrosion resistance, a high strength-to-weight ratio, and potential time savings in installation. One phase of this study developed general methodologies and test programs to ensure proper performance of the technique. A second phase focused on reinforcement of an L-1011 door frame, and encompassed all lifetime tasks such as design, analysis, installation, and nondestructive inspection. This paper overviews the project and details the activities conducted to gain FAA approval for composite doubler use. Structural tests evaluated the damage tolerance and fatigue performance of composite doublers while finite element models were generated to study doubler design issues. Nondestructive inspection procedures were developed and validated using full-scale test articles. Installation dry-runs demonstrated the viability of applying composite doublers in hangar environments. The project`s documentation package was used to support installation of a Boron-Epoxy composite repair on a Delta Air Lines L-1011 aircraft. A second product of the results is a Lockheed Service Bulletin which allows the door corner composite doubler to be installed on all L-1011 aircraft. 9 refs., 10 figs., 2 tabs.

  7. Eclipse program QF-106 aircraft

    NASA Technical Reports Server (NTRS)

    1996-01-01

    This photo shows two QF-106 aircraft that were used for the Eclipse project, both parked at the Mojave Airport in Mojave, California. In 1997 and 1998, the Dryden Flight Research Center at Edwards, California, supported and hosted a Kelly Space & Technology, Inc. project called Eclipse, which sought to demonstrate the feasibility of a reusable tow-launch vehicle concept. The project goal was to successfully tow, inflight, a modified QF-106 delta-wing aircraft with an Air Force C-141A transport aircraft. This would demonstrate the possibility of towing and launching an actual launch vehicle from behind a tow plane. Dryden was the responsible test organization and had flight safety responsibility for the Eclipse project. Dryden provided engineering, instrumentation, simulation, modification, maintenance, range support, and research pilots for the test program. The Air Force Flight Test Center (AFFTC), Edwards, California, supplied the C-141A transport aircraft and crew and configured the aircraft as needed for the tests. The AFFTC also provided the concept and detail design and analysis as well as hardware for the tow system and QF-106 modifications. Dryden performed the modifications to convert the QF-106 drone into the piloted EXD-01 (Eclipse eXperimental Demonstrator -01) experimental aircraft. Kelly Space & Technology hoped to use the results gleaned from the tow test in developing a series of low-cost, reusable launch vehicles. These tests demonstrated the validity of towing a delta-wing aircraft having high wing loading, validated the tow simulation model, and demonstrated various operational procedures, such as ground processing of in-flight maneuvers and emergency abort scenarios.

  8. Development and validation of a general purpose linearization program for rigid aircraft models

    NASA Technical Reports Server (NTRS)

    Duke, E. L.; Antoniewicz, R. F.

    1985-01-01

    A FORTRAN program that provides the user with a powerful and flexible tool for the linearization of aircraft models is discussed. The program LINEAR numerically determines a linear systems model using nonlinear equations of motion and a user-supplied, nonlinear aerodynamic model. The system model determined by LINEAR consists of matrices for both the state and observation equations. The program has been designed to allow easy selection and definition of the state, control, and observation variables to be used in a particular model. Also, included in the report is a comparison of linear and nonlinear models for a high performance aircraft.

  9. Computer programs for estimating civil aircraft economics

    NASA Technical Reports Server (NTRS)

    Maddalon, D. V.; Molloy, J. K.; Neubawer, M. J.

    1980-01-01

    Computer programs for calculating airline direct operating cost, indirect operating cost, and return on investment were developed to provide a means for determining commercial aircraft life cycle cost and economic performance. A representative wide body subsonic jet aircraft was evaluated to illustrate use of the programs.

  10. Development of a Computer Program for Analyzing Preliminary Aircraft Configurations in Relationship to Emerging Agility Metrics

    NASA Technical Reports Server (NTRS)

    Bauer, Brent

    1993-01-01

    This paper discusses the development of a FORTRAN computer code to perform agility analysis on aircraft configurations. This code is to be part of the NASA-Ames ACSYNT (AirCraft SYNThesis) design code. This paper begins with a discussion of contemporary agility research in the aircraft industry and a survey of a few agility metrics. The methodology, techniques and models developed for the code are then presented. Finally, example trade studies using the agility module along with ACSYNT are illustrated. These trade studies were conducted using a Northrop F-20 Tigershark aircraft model. The studies show that the agility module is effective in analyzing the influence of common parameters such as thrust-to-weight ratio and wing loading on agility criteria. The module can compare the agility potential between different configurations. In addition, one study illustrates the module's ability to optimize a configuration's agility performance.

  11. The NASA Aircraft Energy Efficiency Program

    NASA Technical Reports Server (NTRS)

    Klineberg, J. M.

    1978-01-01

    The objective of the NASA Aircraft Energy Efficiency Program is to accelerate the development of advanced technology for more energy-efficient subsonic transport aircraft. This program will have application to current transport derivatives in the early 1980s and to all-new aircraft of the late 1980s and early 1990s. Six major technology projects were defined that could result in fuel savings in commercial aircraft: (1) Engine Component Improvement, (2) Energy Efficient Engine, (3) Advanced Turboprops, (4) Energy Efficiency Transport (aerodynamically speaking), (5) Laminar Flow Control, and (6) Composite Primary Structures.

  12. The NASA aircraft icing research program

    NASA Technical Reports Server (NTRS)

    Shaw, Robert J.; Reinmann, John J.

    1990-01-01

    The objective of the NASA aircraft icing research program is to develop and make available to industry icing technology to support the needs and requirements for all-weather aircraft designs. Research is being done for both fixed wing and rotary wing applications. The NASA program emphasizes technology development in two areas, advanced ice protection concepts and icing simulation. Reviewed here are the computer code development/validation, icing wind tunnel testing, and icing flight testing efforts.

  13. The NASA aircraft icing research program

    NASA Technical Reports Server (NTRS)

    Shaw, Robert J.; Reinmann, John J.

    1987-01-01

    The objective of the NASA aircraft icing research program is to develop and make available to industry icing technology to support the needs and requirements for all weather aircraft designs. Research is being done for both fixed and rotary wing applications. The NASA program emphasizes technology development in two key areas: advanced ice protection concepts and icing simulation (analytical and experimental). The computer code development/validation, icing wind tunnel testing, and icing flight testing efforts which were conducted to support the icing technology development are reviewed.

  14. Role of research aircraft in technology development

    NASA Technical Reports Server (NTRS)

    Szalai, K. J.

    1984-01-01

    The United States's aeronautical research program has been rich in the use of research aircraft to explore new flight regimes, develop individual aeronautical concepts, and investigate new vehicle classes and configurations. This paper reviews the NASA supercritical wing, digital fly-by-wire, HiMAT, and AD-1 oblique-wing flight research programs, and draws from these examples general conclusions regarding the role and impact of research aircraft in technology development. The impact of a flight program on spinoff technology is also addressed. The secondary, serendipitous results are often highly significant. Finally, future research aircraft programs are examined for technology trends and expected results.

  15. Aircraft vortex marking program

    NASA Technical Reports Server (NTRS)

    Pompa, M. F.

    1979-01-01

    A simple, reliable device for identifying atmospheric vortices, principally as generated by in-flight aircraft and with emphasis on the use of nonpolluting aerosols for marking by injection into such vortex (-ices) is presented. The refractive index and droplet size were determined from an analysis of aerosol optical and transport properties as the most significant parameters in effecting vortex optimum light scattering (for visual sighting) and visual persistency of at least 300 sec. The analysis also showed that a steam-ejected tetraethylene glycol aerosol with droplet size near 1 micron and refractive index of approximately 1.45 could be a promising candidate for vortex marking. A marking aerosol was successfully generated with the steam-tetraethylene glycol mixture from breadboard system hardware. A compact 25 lb/f thrust (nominal) H2O2 rocket chamber was the key component of the system which produced the required steam by catalytic decomposition of the supplied H2O2.

  16. Aircraft structural health monitoring system development: overview of the Air Force/Navy smart metallic structures program

    NASA Astrophysics Data System (ADS)

    Van Way, Craig B.; Kudva, Jayanth N.; Schoess, Jeffrey N.; Zeigler, Michael L.; Alper, James M.

    1995-05-01

    Significant progress in fulfilling the current joint Air Force/Navy `Smart Metallic Structures (SMS)' program primary objective, to demonstrate a viable structural health monitoring system (SHMS) for a large structural aircraft component, is presented. Structural health monitoring and its relation to current Force Management (FM) and Aircraft Structural Integrity Program (ASIP) procedures are first reviewed together with a brief status overview of the relevant sensor technologies (e.g. AE, fiber-optic, corrosion, etc.). Key features of the SHMS architecture are described for the selected F/A-18 bulkhead and T-38 wing spar structural demonstration articles, highlighting sensors, processors, data busses, hardware, and software. Results from acoustic monitoring of the program sub-element structural tests are presented in some detail along with a status review of the SHMS multiplex bus component hardware and software. Finally, structural requirements for an SHMS meeting minimum ASIP guidelines for damage detection are discussed along with foals for future testing and development of the SHMS under the SMS program.

  17. Research related to variable sweep aircraft development

    NASA Technical Reports Server (NTRS)

    Polhamus, E. C.; Toll, T. A.

    1981-01-01

    Development in high speed, variable sweep aircraft research is reviewed. The 1946 Langley wind tunnel studies related to variable oblique and variable sweep wings and results from the X-5 and the XF1OF variable sweep aircraft are discussed. A joint program with the British, evaluation of the British "Swallow", development of the outboard pivot wing/aft tail configuration concept by Langley, and the applied research program that followed and which provided the technology for the current, variable sweep military aircraft is outlined. The relative state of variable sweep as a design option is also covered.

  18. U.S. aerospace industry opinion of the effect of computer-aided prediction-design technology on future wind-tunnel test requirements for aircraft development programs

    NASA Technical Reports Server (NTRS)

    Treon, S. L.

    1979-01-01

    A survey of the U.S. aerospace industry in late 1977 suggests that there will be an increasing use of computer-aided prediction-design technology (CPD Tech) in the aircraft development process but that, overall, only a modest reduction in wind-tunnel test requirements from the current level is expected in the period through 1995. Opinions were received from key spokesmen in 23 of the 26 solicited major companies or corporate divisions involved in the design and manufacture of nonrotary wing aircraft. Development programs for nine types of aircraft related to test phases and wind-tunnel size and speed range were considered.

  19. Future development programs. [for emission reduction and production of aircraft engines

    NASA Technical Reports Server (NTRS)

    Waters, L.

    1976-01-01

    A company program was planned which has a main drive to develop those emission reduction concepts that have the promise of earliest success. These programs were proposed in an attempt to enhance existing engine systems, exploiting their potential for emission reduction as far as is compatible with retaining the well established features in them that are well understood and in current production. The intended programs identified in the area of new concepts were: (1) upgrading the TCM fuel system, (2) evaluation of accelerator pump, (3) reduced cooling requirement, and (4) variable spark timing.

  20. Eclipse program C-141A aircraft

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This photograph shows the Air Force C-141A that was used in the Eclipse project as a tow vehicle. The project used a QF-106 interceptor aircraft to simulate a future orbiter, which would be towed to a high altitude and released to fire its own engines and carry a payload into space. In 1997 and 1998, the Dryden Flight Research Center at Edwards, California, supported and hosted a Kelly Space & Technology, Inc. project called Eclipse, which sought to demonstrate the feasibility of a reusable tow-launch vehicle concept. The project goal was to successfully tow, inflight, a modified QF-106 delta-wing aircraft with an Air Force C-141A transport aircraft. This would demonstrate the possibility of towing and launching an actual launch vehicle from behind a tow plane. Dryden was the responsible test organization and had flight safety responsibility for the Eclipse project. Dryden provided engineering, instrumentation, simulation, modification, maintenance, range support, and research pilots for the test program. The Air Force Flight Test Center (AFFTC), Edwards, California, supplied the C-141A transport aircraft and crew and configured the aircraft as needed for the tests. The AFFTC also provided the concept and detail design and analysis as well as hardware for the tow system and QF-106 modifications. Dryden performed the modifications to convert the QF-106 drone into the piloted EXD-01 (Eclipse eXperimental Demonstrator-01) experimental aircraft. Kelly Space & Technology hoped to use the results gleaned from the tow test in developing a series of low-cost, reusable launch vehicles. These tests demonstrated the validity of towing a delta-wing aircraft having high wing loading, validated the tow simulation model, and demonstrated various operational procedures, such as ground processing of in-flight maneuvers and emergency abort scenarios.

  1. The NASA Aircraft Energy Efficiency program

    NASA Technical Reports Server (NTRS)

    Klineberg, J. M.

    1979-01-01

    A review is provided of the goals, objectives, and recent progress in each of six aircraft energy efficiency programs aimed at improved propulsive, aerodynamic and structural efficiency for future transport aircraft. Attention is given to engine component improvement, an energy efficient turbofan engine, advanced turboprops, revolutionary gains in aerodynamic efficiency for aircraft of the late 1990s, laminar flow control, and composite primary aircraft structures.

  2. Challenges for the aircraft structural integrity program

    NASA Technical Reports Server (NTRS)

    Lincoln, John W.

    1994-01-01

    Thirty-six years ago the United States Air Force established the USAF Aircraft Structural Integrity Program (ASIP) because flight safety had been degraded by fatigue failures of operational aircraft. This initial program evolved, but has been stable since the issuance of MIL-STD-1530A in 1975. Today, the program faces new challenges because of a need to maintain aircraft longer in an environment of reduced funding levels. Also, there is increased pressure to reduce cost of the acquisition of new aircraft. It is the purpose of this paper to discuss the challenges for the ASIP and identify the changes in the program that will meet these challenges in the future.

  3. Tactical aircraft optical cable plant program plan

    NASA Astrophysics Data System (ADS)

    Weaver, Thomas L.; Murdock, John K.; Ide, James R.

    1995-05-01

    A program was created with joint industry and government funding to apply fiber optic technologies to tactical aircraft. The technology offers many potential benefits, including increased electromagnetic interference immunity and the possibility of reduced weight, increased reliability, and enlarged capability from redesigning architectures to use the large bandwidth of fiber optics. Those benefits will only be realized if fiber optics meets the unique requirements of aircraft networks. The application of fiber optics to tactical aircraft presents challenges to physical components which can only be met by a methodical attention to what is required, what are the conditions of use, and how will the components be produced in the broad context of a fiber optics using economy. For this purpose, the FLASH program has outlined a plan, and developed a team to evaluate requirements, delineate environmental and use conditions, and design practical, low cost components for tactical aircraft fiber optic cable plants including cables, connectors, splices, backplanes, manufacturing and installation methods, and test and maintenance methods.

  4. Eclipse program QF-106 aircraft in flight

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This photo shows one of the QF-106s used in the Eclipse project in flight. In 1997 and 1998, the Dryden Flight Research Center at Edwards, California, supported and hosted a Kelly Space & Technology, Inc. project called Eclipse, which sought to demonstrate the feasibility of a reusable tow-launch vehicle concept. The project goal was to successfully tow, inflight, a modified QF-106 delta-wing aircraft with an Air Force C-141A transport aircraft. This would demonstrate the possibility of towing and launching an actual launch vehicle from behind a tow plane. Dryden was the responsible test organization and had flight safety responsibility for the Eclipse project. Dryden provided engineering, instrumentation, simulation, modification, maintenance, range support, and research pilots for the test program. The Air Force Flight Test Center (AFFTC), Edwards, California, supplied the C-141A transport aircraft and crew and configured the aircraft as needed for the tests. The AFFTC also provided the concept and detail design and analysis as well as hardware for the tow system and QF-106 modifications. Dryden performed the modifications to convert the QF-106 drone into the piloted EXD-01 (Eclipse eXperimental Demonstrator-01) experimental aircraft. Kelly Space & Technology hoped to use the results gleaned from the tow test in developing a series of low-cost, reusable launch vehicles. These tests demonstrated the validity of towing a delta-wing aircraft having high wing loading, validated the tow simulation model, and demonstrated various operational procedures, such as ground processing of in-flight maneuvers and emergency abort scenarios.

  5. Eclipse program C-141A aircraft

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This photograph shows the Air Force C-141A that was used in the Eclipse project as a tow vehicle. In 1997 and 1998, the Dryden Flight Research Center at Edwards, California, supported and hosted a Kelly Space & Technology, Inc. project called Eclipse, which sought to demonstrate the feasibility of a reusable tow-launch vehicle concept. The project goal was to successfully tow, inflight, a modified QF-106 delta-wing aircraft with an Air Force C-141A transport aircraft. This would demonstrate the possibility of towing and launching an actual launch vehicle from behind a tow plane. Dryden was the responsible test organization and had flight safety responsibility for the Eclipse project. Dryden provided engineering, instrumentation, simulation, modification, maintenance, range support, and research pilots for the test program. The Air Force Flight Test Center (AFFTC), Edwards, California, supplied the C-141A transport aircraft and crew and configured the aircraft as needed for the tests. The AFFTC also provided the concept and detail design and analysis as well as hardware for the tow system and QF-106 modifications. Dryden performed the modifications to convert the QF-106 drone into the piloted EXD-01 (Eclipse eXperimental Demonstrator-01) experimental aircraft. Kelly Space & Technology hoped to use the results gleaned from the tow test in developing a series of low-cost, reusable launch vehicles. These tests demonstrated the validity of towing a delta-wing aircraft having high wind loading, validated the tow simulation model, and demonstrated various operational procedures, such as ground processing of in-flight maneuvers and emergency abort scenarios.

  6. The Cal Poly aircraft design program

    NASA Technical Reports Server (NTRS)

    Sandlin, Doral R.; Van't Riet, Robert

    1993-01-01

    Discussed is the aircraft design program at Cal Poly, SLO. The history of the program and the impact of the NASA/USRA ADP are presented. Examples of student design accomplishments are included. Questions on how the aircraft design education process can be improved are postulated.

  7. Development Cycle Time Simulation for Civil Aircraft

    NASA Technical Reports Server (NTRS)

    Spitz, William; Berardino, Frank; Golaszewski, Richard; Johnson, Jesse

    2001-01-01

    Cycle Time Reduction (CTR) will be one of the major factors affecting the future of the civil aerospace industry. This focus is the end reflection of the level of competition in the commercial large carrier aircraft industry. Aircraft manufacturer must minimize costs and pass a portion of those savings onto buyers. CTR is one strategy used to move the manufacturing firm down the cost curve. The current NASA Airframe Development Cycle Time Reduction Goal is 50% by year 2022. This goal is not achievable based on the program analysis done by the LMI/GRA team. This may mean that the current roster of NASA CTR programs needs to be reexamined or that the program technology progress factors, as determined by the NASA experts, were understated. Programs that duplicate the reductions of others should be replaced with non-duplicative programs. In addition, new programs targeting a specific part of the cycle can be developed.

  8. Computer program to predict aircraft noise levels

    NASA Technical Reports Server (NTRS)

    Clark, B. J.

    1981-01-01

    Methods developed at the NASA Lewis Research Center for predicting the noise contributions from various aircraft noise sources were programmed to predict aircraft noise levels either in flight or in ground tests. The noise sources include fan inlet and exhaust, jet, flap (for powered lift), core (combustor), turbine, and airframe. Noise propagation corrections are available for atmospheric attenuation, ground reflections, extra ground attenuation, and shielding. Outputs can include spectra, overall sound pressure level, perceived noise level, tone-weighted perceived noise level, and effective perceived noise level at locations specified by the user. Footprint contour coordinates and approximate footprint areas can also be calculated. Inputs and outputs can be in either System International or U.S. customary units. The subroutines for each noise source and propagation correction are described. A complete listing is given.

  9. Probing emissions of military cargo aircraft: description of a joint field measurement Strategic Environmental Research and Development Program.

    PubMed

    Cheng, Meng-Dawn; Corporan, Edwin; DeWitt, Matthew J; Spicer, Chester W; Holdren, Michael W; Cowen, Kenneth A; Laskin, Alex; Harris, David B; Shores, Richard C; Kagann, Robert; Hashmonay, Ram

    2008-06-01

    To develop effective air quality control strategies for military air bases, there is a need to accurately quantify these emissions. In support of the Strategic Environmental Research and Development Program project, the particulate matter (PM) and gaseous emissions from two T56 engines on a parked C-130 aircraft were characterized at the Kentucky Air National Guard base in Louisville, KY. Conventional and research-grade instrumentation and methodology were used in the field campaign during the first week of October 2005. Particulate emissions were sampled at the engine exit plane and at 15 m downstream. In addition, remote sensing of the gaseous species was performed via spectroscopic techniques at 5 and 15 m downstream of the engine exit. It was found that PM mass and number concentrations measured at 15-m downstream locations, after dilution-correction generally agreed well with those measured at the engine exhaust plane; however, higher variations were observed in the far-field after natural dilution of the downstream measurements was accounted for. Using carbon dioxide-normalized data we demonstrated that gas species measurements by extractive and remote sensing techniques agreed reasonably well. PMID:18581808

  10. 14 CFR 91.1109 - Aircraft maintenance: Inspection program.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Aircraft maintenance: Inspection program... Ownership Operations Program Management § 91.1109 Aircraft maintenance: Inspection program. Each program manager must establish an aircraft inspection program for each make and model program aircraft and...

  11. Aircraft wiring program status report

    NASA Technical Reports Server (NTRS)

    Beach, Rex

    1995-01-01

    In this Naval Air Warfare Center (NAWC) Aircraft Division status report, the general and wire and cable component activities, the systems engineering activities, the aircraft wiring lead maintenance activities, the NAVAIR/NASA interface activities, and the Base Realignment and Closure (BRAC) Commission recommendations are presented.

  12. Fire resistant aircraft seat program

    NASA Technical Reports Server (NTRS)

    Fewell, L. A.

    1979-01-01

    Foams, textiles, and thermoformable plastics were tested to determine which materials were fire retardant, and safe for aircraft passenger seats. Seat components investigated were the decorative fabric cover, slip covers, fire blocking layer, cushion reinforcement, and the cushioning layer.

  13. The NASA research program on propulsion for supersonic cruise aircraft

    NASA Technical Reports Server (NTRS)

    Weber, R. J.

    1975-01-01

    The objectives and status of the propulsion portion of a program aimed at advancing the technology and establishing a data base appropriate for the possible future development of supersonic cruise aircraft are reviewed. Research related to exhaust nozzles, combustors, and inlets that is covered by the noise, pollution, and dynamics programs is described.

  14. DEVELOPMENT OF CRITERIA AND METHODS FOR EVALUATING TRAINER AIRCRAFT EFFECTIVENESS.

    ERIC Educational Resources Information Center

    KUSEWITT, J.B.

    THE PURPOSE OF THIS STUDY WAS TO DEVELOP A METHOD FOR DETERMINING OBJECTIVE MEASURES OF TRAINER AIRCRAFT EFFECTIVENESS TO EVALUATE PROGRAM ALTERNATIVES FOR TRAINING PILOTS FOR FLEET FIGHTER AND ATTACK-TYPE AIRCRAFT. THE TRAINING SYLLABUS WAS BASED ON AVERAGE STUDENT ABILITY. THE BASIC PROBLEM WAS TO ESTABLISH QUANTITATIVE TIME-DIFFICULTY…

  15. Commercial Aircraft Development and the Export Market

    NASA Technical Reports Server (NTRS)

    Snodgrass, J.

    1972-01-01

    The various factors which endanger the future of commercial aircraft development are defined. The factors discussed are: (1) a decline in federally funded research and development programs, (2) a general decline in the economic health of the domestic airlines, (3) the increased cost of development which may be several times the net worth of the company, (4) the development overseas of common market and manufacturing consortia, and (5) foreign manufacturers receiving significant financial support from their national governments. It is stated that unless immediate and innovative solutions to combat these factors are found, the commercial aviation industry will be in serious difficulty.

  16. Program to compute the positions of the aircraft and of the aircraft sensor footprints

    NASA Technical Reports Server (NTRS)

    Paris, J. F. (Principal Investigator)

    1982-01-01

    The positions of the ground track of the aircraft and of the aircraft sensor footprints, in particular the metric camera and the radar scatterometer on the C-130 aircraft, are estimated by a program called ACTRK. The program uses the altitude, speed, and attitude informaton contained in the radar scatterometer data files to calculate the positions. The ACTRK program is documented.

  17. The atmospheric effects of stratospheric aircraft: A third program report

    NASA Technical Reports Server (NTRS)

    Stolarski, Richard S. (Editor); Wesoky, Howard L. (Editor)

    1993-01-01

    A third report from the Atmospheric Effects of Stratospheric Aircraft (AESA) component of NASA's High-Speed Research Program (HSRP) is presented. Market and technology considerations continue to provide an impetus for high-speed civil transport research. A recent United Nations Environment Program scientific assessment showed that considerable uncertainty still exists about the possible impact of aircraft on the atmosphere. The AESA was designed to develop the body of scientific knowledge necessary for the evaluation of the impact of stratospheric aircraft on the atmosphere. The first Program report presented the basic objectives and plans for AESA. This third report marks the midpoint of the program and presents the status of the ongoing research on the impact of stratospheric aircraft on the atmosphere as reported at the third annual AESA Program meeting in June 1993. The focus of the program is on predicted atmospheric changes resulting from projected HSCT emissions. Topics reported on cover how high-speed civil transports (HSCT) might affect stratospheric ozone, emissions scenarios and databases to assess potential atmospheric effects from HSCT's, calculated results from 2-D zonal mean models using emissions data, engine trace constituent measurements, and exhaust plume/aircraft wake vortex interactions.

  18. The atmospheric effects of stratospheric aircraft: A third program report

    SciTech Connect

    Stolarski, R.S.; Wesoky, H.L.

    1993-11-01

    A third report from the Atmospheric Effects of Stratospheric Aircraft (AESA) component of NASA's High-Speed Research Program (HSRP) is presented. Market and technology considerations continue to provide an impetus for high-speed civil transport research. A recent United Nations Environment Program scientific assessment showed that considerable uncertainty still exists about the possible impact of aircraft on the atmosphere. The AESA was designed to develop the body of scientific knowledge necessary for the evaluation of the impact of stratospheric aircraft on the atmosphere. The first Program report presented the basic objectives and plans for AESA. This third report marks the midpoint of the program and presents the status of the ongoing research on the impact of stratospheric aircraft on the atmosphere as reported at the third annual AESA Program meeting in June 1993. The focus of the program is on predicted atmospheric changes resulting from projected HSCT emissions. Topics reported on cover how high-speed civil transports (HSCT) might affect stratospheric ozone, emissions scenarios and databases to assess potential atmospheric effects from HSCT's, calculated results from 2-D zonal mean models using emissions data, engine trace constituent measurements, and exhaust plume/aircraft wake vortex interactions. Separate abstracts have been indexed for articles from this report.

  19. Fly-by-light aircraft closed loop test program

    NASA Astrophysics Data System (ADS)

    Halski, Don J.; Kessler, Bradley L.; Mattes, Robert E.; Wanamaker, Michael F.; Baumbick, Robert J.

    1995-05-01

    The Fly-by-Light Aircraft Closed-Loop Test (FACT) program is a flight test program sponsored by NASA-Lewis Research Center. The objectives of the FACT program are to demonstrate optical closed-loop control of flight critical and non-flight critical control surfaces and to demonstrate installation and maintenance aspects of fiber optics for application to commercial aircraft. This paper summarizes the FACT program optical maintenance, test architecture, and hardware developments to be flight tested on the NASA-Dryden F/A-18 Systems Research Aircraft (SRA). The modifications include replacing Fly-By-Wire (FBW) main ram feedback LVDT's with optic position sensors and an electro-optic decoder, and using electrical to optic converters and reverse for commands. The performance and handling qualities will be validated by laboratory, ground, and flight tests. The goal is to demonstrate system performance equivalent to the production system.

  20. Aircraft stress sequence development: A complex engineering process made simple

    NASA Technical Reports Server (NTRS)

    Schrader, K. H.; Butts, D. G.; Sparks, W. A.

    1994-01-01

    Development of stress sequences for critical aircraft structure requires flight measured usage data, known aircraft loads, and established relationships between aircraft flight loads and structural stresses. Resulting cycle-by-cycle stress sequences can be directly usable for crack growth analysis and coupon spectra tests. Often, an expert in loads and spectra development manipulates the usage data into a typical sequence of representative flight conditions for which loads and stresses are calculated. For a fighter/trainer type aircraft, this effort is repeated many times for each of the fatigue critical locations (FCL) resulting in expenditure of numerous engineering hours. The Aircraft Stress Sequence Computer Program (ACSTRSEQ), developed by Southwest Research Institute under contract to San Antonio Air Logistics Center, presents a unique approach for making complex technical computations in a simple, easy to use method. The program is written in Microsoft Visual Basic for the Microsoft Windows environment.

  1. Improvements in aircraft extraction programs

    NASA Technical Reports Server (NTRS)

    Balakrishnan, A. V.; Maine, R. E.

    1976-01-01

    Flight data from an F-8 Corsair and a Cessna 172 was analyzed to demonstrate specific improvements in the LRC parameter extraction computer program. The Cramer-Rao bounds were shown to provide a satisfactory relative measure of goodness of parameter estimates. It was not used as an absolute measure due to an inherent uncertainty within a multiplicative factor, traced in turn to the uncertainty in the noise bandwidth in the statistical theory of parameter estimation. The measure was also derived on an entirely nonstatistical basis, yielding thereby also an interpretation of the significance of off-diagonal terms in the dispersion matrix. The distinction between coefficients as linear and non-linear was shown to be important in its implication to a recommended order of parameter iteration. Techniques of improving convergence generally, were developed, and tested out on flight data. In particular, an easily implemented modification incorporating a gradient search was shown to improve initial estimates and thus remove a common cause for lack of convergence.

  2. Aircraft noise prediction program user's manual

    NASA Technical Reports Server (NTRS)

    Gillian, R. E.

    1982-01-01

    The Aircraft Noise Prediction Program (ANOPP) predicts aircraft noise with the best methods available. This manual is designed to give the user an understanding of the capabilities of ANOPP and to show how to formulate problems and obtain solutions by using these capabilities. Sections within the manual document basic ANOPP concepts, ANOPP usage, ANOPP functional modules, ANOPP control statement procedure library, and ANOPP permanent data base. appendixes to the manual include information on preparing job decks for the operating systems in use, error diagnostics and recovery techniques, and a glossary of ANOPP terms.

  3. The aircraft energy efficiency active controls technology program

    NASA Technical Reports Server (NTRS)

    Hood, R. V., Jr.

    1977-01-01

    Broad outlines of the NASA Aircraft Energy Efficiency Program for expediting the application of active controls technology to civil transport aircraft are presented. Advances in propulsion and airframe technology to cut down on fuel consumption and fuel costs, a program for an energy-efficient transport, and integrated analysis and design technology in aerodynamics, structures, and active controls are envisaged. Fault-tolerant computer systems and fault-tolerant flight control system architectures are under study. Contracts with leading manufacturers for research and development work on wing-tip extensions and winglets for the B-747, a wing load alleviation system, elastic mode suppression, maneuver-load control, and gust alleviation are mentioned.

  4. WHIPICE. [Computer Program for Analysis of Aircraft Deicing

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This video documents efforts by NASA Lewis Research Center researchers to improve ice protection for aircraft. A new system of deicing aircraft by allowing a thin sheet of ice to develop, then breaking it into particles, is being examined, particularly to determine the extent of shed ice ingestion by jet engines that results. The process is documented by a high speed imaging system that scans the breakup and flow of the ice particles at 1000 frames per second. This data is then digitized and analyzed using a computer program called WHIPICE, which analyzes grey scale images of the ice particles. Detailed description of the operation of this computer program is provided.

  5. Airborne Subscale Transport Aircraft Research Testbed: Aircraft Model Development

    NASA Technical Reports Server (NTRS)

    Jordan, Thomas L.; Langford, William M.; Hill, Jeffrey S.

    2005-01-01

    The Airborne Subscale Transport Aircraft Research (AirSTAR) testbed being developed at NASA Langley Research Center is an experimental flight test capability for research experiments pertaining to dynamics modeling and control beyond the normal flight envelope. An integral part of that testbed is a 5.5% dynamically scaled, generic transport aircraft. This remotely piloted vehicle (RPV) is powered by twin turbine engines and includes a collection of sensors, actuators, navigation, and telemetry systems. The downlink for the plane includes over 70 data channels, plus video, at rates up to 250 Hz. Uplink commands for aircraft control include over 30 data channels. The dynamic scaling requirement, which includes dimensional, weight, inertial, actuator, and data rate scaling, presents distinctive challenges in both the mechanical and electrical design of the aircraft. Discussion of these requirements and their implications on the development of the aircraft along with risk mitigation strategies and training exercises are included here. Also described are the first training (non-research) flights of the airframe. Additional papers address the development of a mobile operations station and an emulation and integration laboratory.

  6. 14 CFR 91.415 - Changes to aircraft inspection programs.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 2 2013-01-01 2013-01-01 false Changes to aircraft inspection programs. 91..., Preventive Maintenance, and Alterations § 91.415 Changes to aircraft inspection programs. (a) Whenever the Administrator finds that revisions to an approved aircraft inspection program under § 91.409(f)(4) or §...

  7. 14 CFR 91.415 - Changes to aircraft inspection programs.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 2 2011-01-01 2011-01-01 false Changes to aircraft inspection programs. 91..., Preventive Maintenance, and Alterations § 91.415 Changes to aircraft inspection programs. (a) Whenever the Administrator finds that revisions to an approved aircraft inspection program under § 91.409(f)(4) or §...

  8. Mechanism of Start and Development of Aircraft Crash Fires

    NASA Technical Reports Server (NTRS)

    Pinkel, I. Irving; Preston, G. Merritt; Pesman, Gerard J.

    1952-01-01

    Full-scale aircraft crashes were made to investigate the mechanism of the start and development of aircraft crash fires. The results are discussed herein. This investigation revealed the characteristics of the ignition sources, the manner in which the combustibles spread, the mechanism of the union of the combustibles and ignition sources, and the pertinent factors governing the development of a crash fire as observed in this program.

  9. Mechanism of Start and Development of Aircraft Crash Fires

    NASA Technical Reports Server (NTRS)

    Pinkel, I. Irving; Preston, G. Merritt; Pesman, Gerard J.

    1952-01-01

    Full-scale aircraft crashes, devised to give surge fuel spillage and a high incidence of fire, were made to investigate the mechanism of the start and development of aircraft crash fires. The results are discussed. herein. This investigation revealed the characteristics of the ignition sources, the manner in which the combustibles spread., the mechanism of the union of the combustibles and ignition sources, and the pertinent factors governing the development of a crash fire as observed in this program.

  10. 14 CFR 135.419 - Approved aircraft inspection program.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Approved aircraft inspection program. 135... OPERATING REQUIREMENTS: COMMUTER AND ON DEMAND OPERATIONS AND RULES GOVERNING PERSONS ON BOARD SUCH AIRCRAFT Maintenance, Preventive Maintenance, and Alterations § 135.419 Approved aircraft inspection program....

  11. 14 CFR 135.419 - Approved aircraft inspection program.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Approved aircraft inspection program. 135... OPERATING REQUIREMENTS: COMMUTER AND ON DEMAND OPERATIONS AND RULES GOVERNING PERSONS ON BOARD SUCH AIRCRAFT Maintenance, Preventive Maintenance, and Alterations § 135.419 Approved aircraft inspection program....

  12. 14 CFR 135.419 - Approved aircraft inspection program.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Approved aircraft inspection program. 135... OPERATING REQUIREMENTS: COMMUTER AND ON DEMAND OPERATIONS AND RULES GOVERNING PERSONS ON BOARD SUCH AIRCRAFT Maintenance, Preventive Maintenance, and Alterations § 135.419 Approved aircraft inspection program....

  13. Eclipse program QF-106 aircraft in flight, view from tanker

    NASA Technical Reports Server (NTRS)

    1997-01-01

    View of QF-106 airplane from a KC-135 tanker aircraft. The Eclipse aircraft was not refueling but simply flying below and behind the tanker for purposes of shooting the photograph from the air. In 1997 and 1998, the Dryden Flight Research Center at Edwards, California, supported and hosted a Kelly Space & Technology, Inc. project called Eclipse, which sought to demonstrate the feasibility of a reusable tow-launch vehicle concept. The project goal was to successfully tow, inflight, a modified QF-106 delta-wing aircraft with an Air Force C-141A transport aircraft. This would demonstrate the possibility of towing and launching an actual launch vehicle from behind a tow plane. Dryden was the responsible test organization and had flight safety responsibility for the Eclipse project. Dryden provided engineering, instrumentation, simulation, modification, maintenance, range support, and research pilots for the test program. The Air Force Flight Test Center (AFFTC), Edwards, California, supplied the C-141A transport aircraft and crew and configured the aircraft as needed for the tests. The AFFTC also provided the concept and detail design and analysis as well as hardware for the tow system and QF-106 modifications. Dryden performed the modifications to convert the QF-106 drone into the piloted EXD-01 (Eclipse eXperimental Demonstrator -01) experimental aircraft. Kelly Space & Technology hoped to use the results gleaned from the tow test in developing a series of low-cost, reusable launch vehicles. These tests demonstrated the validity of towing a delta-wing aircraft having high wing loading, validated the tow simulation model, and demonstrated various operational procedures, such as ground processing of in-flight maneuvers and emergency abort scenarios.

  14. NASA Aircraft Vortex Spacing System Development Status

    NASA Technical Reports Server (NTRS)

    Hinton, David A.; Charnock, James K.; Bagwell, Donald R.; Grigsby, Donner

    1999-01-01

    The National Aeronautics and Space Administration (NASA) is addressing airport capacity enhancements during instrument meteorological conditions through the Terminal Area Productivity (TAP) program. Within TAP, the Reduced Spacing Operations (RSO) subelement at the NASA Langley Research Center is developing an Aircraft VOrtex Spacing System (AVOSS). AVOSS will integrate the output of several systems to produce weather dependent, dynamic wake vortex spacing criteria. These systems provide current and predicted weather conditions, models of wake vortex transport and decay in these weather conditions, and real-time feedback of wake vortex behavior from sensors. The goal of the NASA program is to provide the research and development to demonstrate an engineering model AVOSS in real-time operation at a major airport. The demonstration is only of concept feasibility, and additional effort is required to deploy an operational system for actual aircraft spacing reduction. This paper describes the AVOSS system architecture, a wake vortex facility established at the Dallas-Fort Worth International Airport (DFW), initial operational experience with the AVOSS system, and emerging considerations for subsystem requirements. Results of the initial system operation suggest a significant potential for reduced spacing.

  15. A Structural Design for an Externally Blown Flap (EBF) Medium STOL Research Aircraft. [development of computer program for structural analysis

    NASA Technical Reports Server (NTRS)

    1972-01-01

    A computer program to predict, by reference to structural drawings, the dynamic response of a high lift STOL wing with externally blown flaps was developed. Structural data for the computer program are presented in the form of sketches, weight and dynamic loads information graphs, and tables for an external blown, triple-slotted flap, high lift STOL transport wing. Weight, mass distribution, and moment of inertia data are summarized in table form and presented pictorially by drawing layout. The methods used for obtaining weight data were: (1) actual know, weight of components, (2) preliminary stress sizing, and (3) statistical weight estimating methods.

  16. Automatic Dynamic Aircraft Modeler (ADAM) for the Computer Program NASTRAN

    NASA Technical Reports Server (NTRS)

    Griffis, H.

    1985-01-01

    Large general purpose finite element programs require users to develop large quantities of input data. General purpose pre-processors are used to decrease the effort required to develop structural models. Further reduction of effort can be achieved by specific application pre-processors. Automatic Dynamic Aircraft Modeler (ADAM) is one such application specific pre-processor. General purpose pre-processors use points, lines and surfaces to describe geometric shapes. Specifying that ADAM is used only for aircraft structures allows generic structural sections, wing boxes and bodies, to be pre-defined. Hence with only gross dimensions, thicknesses, material properties and pre-defined boundary conditions a complete model of an aircraft can be created.

  17. Propulsion Controlled Aircraft design and development

    NASA Technical Reports Server (NTRS)

    Wells, Edward A.; Urnes, James M., Sr.

    1995-01-01

    This paper describes the design, development, and ground testing of the propulsion controlled aircraft (PCA) flight control system. A backup flight control system which uses only engine thrust, the PCA system utilizes collective and differential thrust changes to steer an aircraft that experiences partial or complete failure of the hydraulically actuated control surfaces. The objective of the program was to investigate, in flight, the throttles-only control capability of the F-15, using manual control, and also an augmented PCA mode in which computer-controlled thrust was used for flight control. The objective included PCA operation in up-and-away flight and, if performance was adequate, a secondary objective to make actual PCA landings. The PCA design began with a feasibility study which evaluated many control law designs. The study was done using off-line control analysis, simulation, and on-line manned flight simulator tests. Control laws, cockpit displays, and cockpit controls were evaluated by NASA test pilots. A flight test baseline configuration was selected based on projected flight performance, applicability to transport and fighter aircraft, and funding costs. During the PCA software and hardware development, the initial design was updated as data became available from throttle-only flight experiments conducted by NASA on the F-15. This information showed basic airframe characteristics that were not observed in the F-15 flight simulator and resulted in several design changes. After the primary objectives of the PCA flight testing were accomplished, additional PCA modes of operation were developed and implemented. The evolution of the PCA system from the initial feasibility study, control law design, simulation, hardware-in-the-loop tests, pilot-in-the-loop tests, and ground tests is presented.

  18. ERAST Program Proteus Aircraft in Flight

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The unusual design of the Proteus high-altitude aircraft, incorporating a gull-wing shape for its main wing and a long, slender forward canard, is clearly visible in this view of the aircraft in flight over the Mojave Desert in California. In the Proteus Project, NASA's Dryden Flight Research Center, Edwards, California, is assisting Scaled Composites, Inc., Mojave, California, in developing a sophisticated station-keeping autopilot system and a Satellite Communications (SATCOM)-based uplink-downlink data system for aircraft and payload data under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project. The ERAST Project is sponsored by the Office of Aero-Space Technology at NASA Headquarters, and is managed by the Dryden Flight Research Center. The Proteus is a unique aircraft, designed as a high-altitude, long-duration telecommunications relay platform with potential for use on atmospheric sampling and Earth-monitoring science missions. The aircraft is designed to be flown by two pilots in a pressurized cabin, but also has the potential to perform its missions semiautonomously or be flown remotely from the ground. Flight testing of the Proteus, beginning in the summer of 1998 at Mojave Airport through the end of 1999, included the installation and checkout of the autopilot system, including the refinement of the altitude hold and altitude change software. The SATCOM equipment, including avionics and antenna systems, had been installed and checked out in several flight tests. The systems performed flawlessly during the Proteus's deployment to the Paris Airshow in 1999. NASA's ERAST project funded development of an Airborne Real-Time Imaging System (ARTIS). Developed by HyperSpectral Sciences, Inc., the small ARTIS camera was demonstrated during the summer of 1999 when it took visual and near-infrared photos over the Experimental Aircraft Association's 'AirVenture 99' Airshow at Oshkosh, Wisconsin. The images were displayed on a computer

  19. Eclipse program F-106 aircraft in flight, front view

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Shot of the QF-106 aircraft in flight with the landing gear deployed. In 1997 and 1998, the Dryden Flight Research Center at Edwards, California, supported and hosted a Kelly Space & Technology, Inc. project called Eclipse, which sought to demonstrate the feasibility of a reusable tow-launch vehicle concept. The project goal was to successfully tow, inflight, a modified QF-106 delta-wing aircraft with an Air Force C-141A transport aircraft. This would demonstrate the possibility of towing and launching an actual launch vehicle from behind a tow plane. Dryden was the responsible test organization and had flight safety responsibility for the Eclipse project. Dryden provided engineering, instrumentation, simulation, modification, maintenance, range support, and research pilots for the test program. The Air Force Flight Test Center (AFFTC), Edwards, California, supplied the C-141A transport aircraft and crew and configured the aircraft as needed for the tests. The AFFTC also provided the concept and detail design and analysis as well as hardware for the tow system and QF-106 modifications. Dryden performed the modifications to convert the QF-106 drone into the piloted EXD-01 (Eclipse eXperimental Demonstrator-01) experimental aircraft. Kelly Space & Technology hoped to use the results gleaned from the tow test in developing a series of low-cost, reusable launch vehicles. These tests demonstrated the validity of towing a delta-wing aircraft having high wing loading, validated the tow simulation model, and demonstrated various operational procedures, such as ground processing of in-flight maneuvers and emergency abort scenarios.

  20. 14 CFR 91.1109 - Aircraft maintenance: Inspection program.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Ownership Operations Program Management § 91.1109 Aircraft maintenance: Inspection program. Each program... thereof. (3) The name and address of the person responsible for scheduling the inspections required by...

  1. 14 CFR 91.1109 - Aircraft maintenance: Inspection program.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Ownership Operations Program Management § 91.1109 Aircraft maintenance: Inspection program. Each program... thereof. (3) The name and address of the person responsible for scheduling the inspections required by...

  2. 14 CFR 91.1109 - Aircraft maintenance: Inspection program.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Ownership Operations Program Management § 91.1109 Aircraft maintenance: Inspection program. Each program... thereof. (3) The name and address of the person responsible for scheduling the inspections required by...

  3. Progress toward the development of an aircraft icing analysis capability

    NASA Technical Reports Server (NTRS)

    Shaw, R. J.

    1984-01-01

    An overview of the NASA efforts to develop an aircraft icing analysis capability is presented. Discussions are included of the overall and long term objectives of the program as well as current capabilities and limitations of the various computer codes being developed. Descriptions are given of codes being developed to analyze two and three dimensional trajectories of water droplets, airfoil ice accretion, aerodynamic performance degradation of components and complete aircraft configurations, electrothermal deicer, and fluid freezing point depressant deicer. The need for bench mark and verification data to support the code development is also discussed.

  4. System IDentification Programs for AirCraft (SIDPAC)

    NASA Technical Reports Server (NTRS)

    Morelli, Eugene A.

    2002-01-01

    A collection of computer programs for aircraft system identification is described and demonstrated. The programs, collectively called System IDentification Programs for AirCraft, or SIDPAC, were developed in MATLAB as m-file functions. SIDPAC has been used successfully at NASA Langley Research Center with data from many different flight test programs and wind tunnel experiments. SIDPAC includes routines for experiment design, data conditioning, data compatibility analysis, model structure determination, equation-error and output-error parameter estimation in both the time and frequency domains, real-time and recursive parameter estimation, low order equivalent system identification, estimated parameter error calculation, linear and nonlinear simulation, plotting, and 3-D visualization. An overview of SIDPAC capabilities is provided, along with a demonstration of the use of SIDPAC with real flight test data from the NASA Glenn Twin Otter aircraft. The SIDPAC software is available without charge to U.S. citizens by request to the author, contingent on the requestor completing a NASA software usage agreement.

  5. Development of the XV-15 tiltrotor research aircraft - Lessons learned

    NASA Technical Reports Server (NTRS)

    Schroers, Laurel G.

    1989-01-01

    The initial ground rules that guided the decision process during the initial stages of the XV-15 tiltrotor aircraft development are reviewed and reevaluated. A full flight-envelope nonlinear simulation mathematical model is outlined, along with the advantages of a multiaircraft program. Direct involvement of government engineers in all aspects of the program is considered to be beneficial, while the ejection-seat test requirement is not. Utilization of existing components - a rotor, transmissions, and engines - is analyzed, and emphasis is placed on integrated system test plans responsible for producing two reliable aircraft through a complete checkout of the aircraft subsystems before the start of the fligth program. Wind-tunnel and fatigue test requirements are presented, and the decision to go with an all mechanical control system design is addressed.

  6. Aircraft noise source and computer programs - User's guide

    NASA Technical Reports Server (NTRS)

    Crowley, K. C.; Jaeger, M. A.; Meldrum, D. F.

    1973-01-01

    The application of computer programs for predicting the noise-time histories and noise contours for five types of aircraft is reported. The aircraft considered are: (1) turbojet, (2) turbofan, (3) turboprop, (4) V/STOL, and (5) helicopter. Three principle considerations incorporated in the design of the noise prediction program are core effectiveness, limited input, and variable output reporting.

  7. PASS: A computer program for Preliminary Aircraft Structural Synthesis

    NASA Technical Reports Server (NTRS)

    Johnson, E. H.

    1977-01-01

    A computer code for Preliminary Aircraft Structural Synthesis provides rapid and accurate analysis for aircraft structures that can be adequately modeled by beam finite elements. The philosophy used in developing the program was to provide a basic framework that can be used for structural synthesis. It is anticipated that a user will need to add detail to this framework in order to perform his specific task. With this philosophy in mind, the program was written so that it is easily divided into segments, thereby making it readily adaptable. The theoretical portion of this manual describes the basic structure of the program and details the development of the unique beam element that is used. The present capability of the algorithm is stated and suggestions are made regarding enhancements to this capability. User information is also given that provides an overview of the program's construction, identifies the required inputs, describes the program output, provides some comments on the program use, and exhibits results for a simple example.

  8. An overview of the quiet short-haul research aircraft program

    NASA Technical Reports Server (NTRS)

    Shovlin, M. D.; Cochrane, J. A.

    1978-01-01

    An overview of the Quiet Short Haul Research Aircraft (QSRA) Program is presented, with special emphasis on its propulsion and acoustic aspects. A description of the NASA technical participation in the program including wind tunnel testing, engine ground tests, and advanced aircraft simulation is given. The aircraft and its systems are described and, measured performance, where available, is compared to program goals. Preliminary data indicate that additional research and development are needed in some areas of which acoustics is an example. Some of these additional research areas and potential experiments using the QSRA to develop the technology are discussed. The concept of the QSRA as a national flight research facility is explained.

  9. The atmospheric effects of stratospheric aircraft: A fourth program report

    NASA Technical Reports Server (NTRS)

    Stolarski, Richard S. (Editor); Wesoky, Howard L. (Editor); Wofsy, Steven C.; Ravishankara, A. R.; Rodriguez, Jose M.; Grose, William L.

    1995-01-01

    This document presents the fourth report from the Atmospheric Effects of Stratospheric Aircraft (AESA) component of NASA's High-Speed Research Program (HSRP). Market and technology considerations continue to provide an impetus for high-speed civil transport research. A recent AESA interim assessment report and a review of that report have shown that considerable uncertainty still exists about the possible impact of aircraft on the atmosphere. The AESA has been designed to develop the body of scientific knowledge necessary for the evaluation of the impact of stratospheric aircraft on the atmosphere. The first Program report presented the basic objectives and plans for AESA. This fourth report comes after the interim assessment and sets forth directions for the 1995 assessment at the end of AESA Phase 1. It also sets forth the goals and directions for AESA Phase 2, as reported at the 1994 Atmospheric Effects of Aviation Project (AEAP) annual meeting held in June. The focus of the Phase 2 effort is to obtain the best possible closure on the outstanding problems identified in the interim assessment and NASA/NRC review. Topics discussed in this report include how high-speed civil transports (HSCT) might affect stratospheric ozone, emissions scenarios and databases to assess potential atmospheric effects from HSCT's, calculated results from 2-D zonal mean models using emissions data, engine trace constituent measurements.

  10. The atmospheric effects of stratospheric aircraft: A fourth program report

    SciTech Connect

    Stolarski, R.S.; Wesoky, H.L.; Wofsy, S.C.; Ravishankara, A.R.; Rodriguez, J.M.; Grose, W.L.

    1995-01-01

    This document presents the fourth report from the Atmospheric Effects of Stratospheric Aircraft (AESA) component of NASA`s High-Speed Research Program (HSRP). Market and technology considerations continue to provide an impetus for high-speed civil transport research. A recent AESA interim assessment report and a review of that report have shown that considerable uncertainty still exists about the possible impact of aircraft on the atmosphere. The AESA has been designed to develop the body of scientific knowledge necessary for the evaluation of the impact of stratospheric aircraft on the atmosphere. The first Program report presented the basic objectives and plans for AESA. This fourth report comes after the interim assessment and sets forth directions for the 1995 assessment at the end of AESA Phase 1. It also sets forth the goals and directions for AESA Phase 2, as reported at the 1994 Atmospheric Effects of Aviation Project (AEAP) annual meeting held in June. The focus of the Phase 2 effort is to obtain the best possible closure on the outstanding problems identified in the interim assessment and NASA/NRC review. Topics discussed in this report include how high-speed civil transports (HSCT) might affect stratospheric ozone, emissions scenarios and databases to assess potential atmospheric effects from HSCT`s, calculated results from 2-D zonal mean models using emissions data, engine trace constituent measurements.

  11. Program in acoustics. [aeroacoustics, aircraft noise, and noise suppression

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Relevant research projects conducted by faculty and graduate students in the general area of aeroacoustics to further the understanding of noise generation by aircraft and to aid in the development of practical methods for noise suppression are listed. Special activities summarized relate to the nonlinear acoustic wave theory and its application to several cases including that of the acoustic source located at the throat of a near-sonic duct, a computer program developed to compute the nonlinear wave theory, and a parabolic approximation for propagation of sounding in moving stratified media.

  12. Programs To Optimize Spacecraft And Aircraft Trajectories

    NASA Technical Reports Server (NTRS)

    Brauer, G. L.; Petersen, F. M.; Cornick, D.E.; Stevenson, R.; Olson, D. W.

    1994-01-01

    POST/6D POST is set of two computer programs providing ability to target and optimize trajectories of powered or unpowered spacecraft or aircraft operating at or near rotating planet. POST treats point-mass, three-degree-of-freedom case. 6D POST treats more-general rigid-body, six-degree-of-freedom (with point masses) case. Used to solve variety of performance, guidance, and flight-control problems for atmospheric and orbital vehicles. Applications include computation of performance or capability of vehicle in ascent, or orbit, and during entry into atmosphere, simulation and analysis of guidance and flight-control systems, dispersion-type analyses and analyses of loads, general-purpose six-degree-of-freedom simulation of controlled and uncontrolled vehicles, and validation of performance in six degrees of freedom. Written in FORTRAN 77 and C language. Two machine versions available: one for SUN-series computers running SunOS(TM) (LAR-14871) and one for Silicon Graphics IRIS computers running IRIX(TM) operating system (LAR-14869).

  13. Sikorsky Aircraft Advanced Rotorcraft Transmission (ART) program

    NASA Astrophysics Data System (ADS)

    Kish, Jules G.

    1993-03-01

    The objectives of the Advanced Rotorcraft Transmission program were to achieve a 25 percent weight reduction, a 10 dB noise reduction, and a 5,000 hour mean time between removals (MTBR). A three engine Army Cargo Aircraft (ACA) of 85,000 pounds gross weight was used as the baseline. Preliminary designs were conducted of split path and split torque transmissions to evaluate weight, reliability, and noise. A split path gearbox was determined to be 23 percent lighter, greater than 10 dB quieter, and almost four times more reliable than the baseline two stage planetary design. Detail design studies were conducted of the chosen split path configuration, and drawings were produced of a 1/2 size gearbox consisting of a single engine path of the split path section. Fabrication and testing was then conducted on the 1/2 size gearbox. The 1/2 size gearbox testing proved that the concept of the split path gearbox with high reduction ratio double helical output gear was sound. The improvements were attributed to extensive use of composites, spring clutches, advanced high hot hardness gear steels, the split path configuration itself, high reduction ratio, double helical gearing on the output stage, elastomeric load sharing devices, and elimination of accessory drives.

  14. Sikorsky Aircraft Advanced Rotorcraft Transmission (ART) program

    NASA Technical Reports Server (NTRS)

    Kish, Jules G.

    1993-01-01

    The objectives of the Advanced Rotorcraft Transmission program were to achieve a 25 percent weight reduction, a 10 dB noise reduction, and a 5,000 hour mean time between removals (MTBR). A three engine Army Cargo Aircraft (ACA) of 85,000 pounds gross weight was used as the baseline. Preliminary designs were conducted of split path and split torque transmissions to evaluate weight, reliability, and noise. A split path gearbox was determined to be 23 percent lighter, greater than 10 dB quieter, and almost four times more reliable than the baseline two stage planetary design. Detail design studies were conducted of the chosen split path configuration, and drawings were produced of a 1/2 size gearbox consisting of a single engine path of the split path section. Fabrication and testing was then conducted on the 1/2 size gearbox. The 1/2 size gearbox testing proved that the concept of the split path gearbox with high reduction ratio double helical output gear was sound. The improvements were attributed to extensive use of composites, spring clutches, advanced high hot hardness gear steels, the split path configuration itself, high reduction ratio, double helical gearing on the output stage, elastomeric load sharing devices, and elimination of accessory drives.

  15. System identification methods for aircraft flight control development and validation

    NASA Technical Reports Server (NTRS)

    Tischler, Mark B.

    1995-01-01

    System-identification methods compose a mathematical model, or series of models, from measurements of inputs and outputs of dynamic systems. The extracted models allow the characterization of the response of the overall aircraft or component subsystem behavior, such as actuators and on-board signal processing algorithms. This paper discusses the use of frequency-domain system-identification methods for the development and integration of aircraft flight-control systems. The extraction and analysis of models of varying complexity from nonparametric frequency-responses to transfer-functions and high-order state-space representations is illustrated using the Comprehensive Identification from FrEquency Responses (CIFER) system-identification facility. Results are presented for test data of numerous flight and simulation programs at the Ames Research Center including rotorcraft, fixed-wing aircraft, advanced short takeoff and vertical landing (ASTOVL), vertical/short takeoff and landing (V/STOL), tiltrotor aircraft, and rotor experiments in the wind tunnel. Excellent system characterization and dynamic response prediction is achieved for this wide class of systems. Examples illustrate the role of system-identification technology in providing an integrated flow of dynamic response data around the entire life-cycle of aircraft development from initial specifications, through simulation and bench testing, and into flight-test optimization.

  16. An ER-2 aircraft airborne lidar as part of the development program of a spaceborne system: A potential NASA/CNES cooperative project

    NASA Technical Reports Server (NTRS)

    Megie, G.; Flamant, P.; Bourdet, M.; Browell, E.; Hall, W.; Talbot, J.

    1984-01-01

    A lidar system for atmospheric investigations to fly aboard a high altitude aircraft is introduced. Scientific objectives of the program are reviewed in terms of the expected accuracy and temporal and/or spatial resolution of measurements such as ozone vertical profiles in the troposphere and stratosphere, cirrus clouds studies, tropospheric and stratospheric aerosol monitoring and water vapor measurements in the boundary layer and at the troposphere stratosphere interface. The instrument is conceived as an autonomous, space qualified system as a first step towards a fully automated system for spaceborne applications.

  17. A computer program for fitting smooth surfaces to three-dimensional aircraft configurations

    NASA Technical Reports Server (NTRS)

    Craidon, C. B.; Smith, R. E., Jr.

    1975-01-01

    A computer program developed to fit smooth surfaces to the component parts of three-dimensional aircraft configurations was described. The resulting equation definition of an aircraft numerical model is useful in obtaining continuous two-dimensional cross section plots in arbitrarily defined planes, local tangents, enriched surface plots and other pertinent geometric information; the geometry organization used as input to the program has become known as the Harris Wave Drag Geometry.

  18. Modeling Programs Increase Aircraft Design Safety

    NASA Technical Reports Server (NTRS)

    2012-01-01

    Flutter may sound like a benign word when associated with a flag in a breeze, a butterfly, or seaweed in an ocean current. When used in the context of aerodynamics, however, it describes a highly dangerous, potentially deadly condition. Consider the case of the Lockheed L-188 Electra Turboprop, an airliner that first took to the skies in 1957. Two years later, an Electra plummeted to the ground en route from Houston to Dallas. Within another year, a second Electra crashed. In both cases, all crew and passengers died. Lockheed engineers were at a loss as to why the planes wings were tearing off in midair. For an answer, the company turned to NASA s Transonic Dynamics Tunnel (TDT) at Langley Research Center. At the time, the newly renovated wind tunnel offered engineers the capability of testing aeroelastic qualities in aircraft flying at transonic speeds near or just below the speed of sound. (Aeroelasticity is the interaction between aerodynamic forces and the structural dynamics of an aircraft or other structure.) Through round-the-clock testing in the TDT, NASA and industry researchers discovered the cause: flutter. Flutter occurs when aerodynamic forces acting on a wing cause it to vibrate. As the aircraft moves faster, certain conditions can cause that vibration to multiply and feed off itself, building to greater amplitudes until the flutter causes severe damage or even the destruction of the aircraft. Flutter can impact other structures as well. Famous film footage of the Tacoma Narrows Bridge in Washington in 1940 shows the main span of the bridge collapsing after strong winds generated powerful flutter forces. In the Electra s case, faulty engine mounts allowed a type of flutter known as whirl flutter, generated by the spinning propellers, to transfer to the wings, causing them to vibrate violently enough to tear off. Thanks to the NASA testing, Lockheed was able to correct the Electra s design flaws that led to the flutter conditions and return the

  19. Environmental assessment, aircraft chemical warfare survivability test program, Naval Air Warfare Center, Aircraft Division, Patuxent River, Maryland

    SciTech Connect

    1992-02-01

    The proposed project, the Aircraft Chemical Warfare Survivability Test Program at Patuxent River Naval Air Station, involves the testing and development of aircraft systems and operating procedures for use in an environment contaminated with chemical/biological warfare agents. The tests will be performed in accordance with a directive from the chief of Naval Operations to obtain and maintain the capability to operate in a chemically-contaminated environment. These tests will be performed under outdoor, warm-weather conditions on a dredge disposal area and adjacent runways to simulate the conditions under which a real-life threat would be encountered.

  20. Development of stitched/RTM primary structures for transport aircraft

    NASA Technical Reports Server (NTRS)

    Hawley, Arthur V.

    1993-01-01

    This report covers work accomplished in the Innovative Composite Aircraft Primary Structure (ICAPS) program. An account is given of the design criteria and philosophy that guides the development. Wing and fuselage components used as a baseline for development are described. The major thrust of the program is to achieve a major cost breakthrough through development of stitched dry preforms and resin transfer molding (RTM), and progress on these processes is reported. A full description is provided on the fabrication of the stitched RTM wing panels. Test data are presented.

  1. The Development of an Electronic Aircraft Taxi Navigation Display

    NASA Technical Reports Server (NTRS)

    Andre, Anthony D.; Sridhar, Banavar (Technical Monitor)

    1997-01-01

    This paper describes the development of an electronic aircraft taxi navigation display as part of NASA's Terminal Area Productivity (TAP) Program. The impetus for the development of this specific display, and the TAP program as a whole, is the current bottleneck in surface operations experienced during low-visibility operations. Simply stated, while modern aircraft are equipped to fly and land in low-visibility conditions, they lack the related technology required to allow them to efficiently and safely navigation from the runway to the gate. Pilots under such conditions consequently taxi slower, sometimes get lost and have to stop, and occasionally collide with other aircraft. Based on a review of available display and navigation sensor technologies, and a one-year information requirements study conducted aboard several commercial aircraft flights, it was determined that an electronic aircraft taxi navigation display was the most viable option for improving the efficiency of low-visibility taxi operations. Based on flight deck observations and pilot interviews, previous map display research, other taxi map display efforts, and part-task taxi map research, an advanced taxi navigation display has been developed and is currently being tested. The taxi navigation display is presented as a head-down cockpit display and includes a track-up perspective airport surface view, taxiway, gate and runway labels, ownship position, traffic icons and collision annunciation, graphical route guidance, heading indicator, rotating compass, RVR wedge, stop bars, zoom control, and datalink message window. The development and support for each of the features will be discussed in detail. Additional information is contained in the original extended abstract.

  2. Propeller aircraft interior noise model: User's manual for computer program

    NASA Astrophysics Data System (ADS)

    Wilby, E. G.; Pope, L. D.

    1985-01-01

    A computer program entitled PAIN (Propeller Aircraft Interior Noise) has been developed to permit calculation of the sound levels in the cabin of a propeller-driven airplane. The fuselage is modeled as a cylinder with a structurally integral floor, the cabin sidewall and floor being stiffened by ring frames, stringers and floor beams of arbitrary configurations. The cabin interior is covered with acoustic treatment and trim. The propeller noise consists of a series of tones at harmonics of the blade passage frequency. Input data required by the program include the mechanical and acoustical properties of the fuselage structure and sidewall trim. Also, the precise propeller noise signature must be defined on a grid that lies in the fuselage skin. The propeller data are generated with a propeller noise prediction program such as the NASA Langley ANOPP program. The program PAIN permits the calculation of the space-average interior sound levels for the first ten harmonics of a propeller rotating alongside the fuselage. User instructions for PAIN are given in the report. Development of the analytical model is presented in NASA CR 3813.

  3. Development of Stitched Composite Structure for Advanced Aircraft

    NASA Technical Reports Server (NTRS)

    Jegley, Dawn; Przekop, Adam; Rouse, Marshall; Lovejoy, Andrew; Velicki, Alex; Linton, Kim; Wu, Hsi-Yung; Baraja, Jaime; Thrash, Patrick; Hoffman, Krishna

    2015-01-01

    NASA has created the Environmentally Responsible Aviation Project to develop technologies which will reduce the impact of aviation on the environment. A critical aspect of this pursuit is the development of a lighter, more robust airframe that will enable the introduction of unconventional aircraft configurations. NASA and The Boeing Company are working together to develop a structural concept that is lightweight and an advancement beyond state-of-the-art composites. The Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) is an integrally stiffened panel design where elements are stitched together and designed to maintain residual load-carrying capabilities under a variety of damage scenarios. With the PRSEUS concept, through-the-thickness stitches are applied through dry fabric prior to resin infusion, and replace fasteners throughout each integral panel. Through-the-thickness reinforcement at discontinuities, such as along flange edges, has been shown to suppress delamination and turn cracks, which expands the design space and leads to lighter designs. The pultruded rod provides stiffening away from the more vulnerable skin surface and improves bending stiffness. A series of building blocks were evaluated to explore the fundamental assumptions related to the capability and advantages of PRSEUS panels. These building blocks addressed tension, compression, and pressure loading conditions. The emphasis of the development work has been to assess the loading capability, damage arrestment features, repairability, post-buckling behavior, and response of PRSEUS flat panels to out-of plane pressure loading. The results of this building-block program from coupons through an 80%-scale pressure box have demonstrated the viability of a PRSEUS center body for the Hybrid Wing Body (HWB) transport aircraft. This development program shows that the PRSEUS benefits are also applicable to traditional tube-andwing aircraft, those of advanced configurations, and other

  4. 14 CFR 91.1109 - Aircraft maintenance: Inspection program.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 2 2012-01-01 2012-01-01 false Aircraft maintenance: Inspection program. 91.1109 Section 91.1109 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Fractional Ownership Operations Program Management...

  5. Commercial Aircraft Emission Scenario for 2020: Database Development and Analysis

    NASA Technical Reports Server (NTRS)

    Sutkus, Donald J., Jr.; Baughcum, Steven L.; DuBois, Douglas P.; Wey, Chowen C. (Technical Monitor)

    2003-01-01

    This report describes the development of a three-dimensional database of aircraft fuel use and emissions (NO(x), CO, and hydrocarbons) for the commercial aircraft fleet projected to 2020. Global totals of emissions and fuel burn for 2020 are compared to global totals from previous aircraft emission scenario calculations.

  6. Computer program to perform cost and weight analysis of transport aircraft. Volume 2: Technical volume

    NASA Technical Reports Server (NTRS)

    1973-01-01

    An improved method for estimating aircraft weight and cost using a unique and fundamental approach was developed. The results of this study were integrated into a comprehensive digital computer program, which is intended for use at the preliminary design stage of aircraft development. The program provides a means of computing absolute values for weight and cost, and enables the user to perform trade studies with a sensitivity to detail design and overall structural arrangement. Both batch and interactive graphics modes of program operation are available.

  7. Development of Textile Reinforced Composites for Aircraft Structures

    NASA Technical Reports Server (NTRS)

    Dexter, H. Benson

    1998-01-01

    NASA has been a leader in development of composite materials for aircraft applications during the past 25 years. In the early 1980's NASA and others conducted research to improve damage tolerance of composite structures through the use of toughened resins but these resins were not cost-effective. The aircraft industry wanted affordable, robust structures that could withstand the rigors of flight service with minimal damage. The cost and damage tolerance barriers of conventional laminated composites led NASA to focus on new concepts in composites which would incorporate the automated manufacturing methods of the textiles industry and which would incorporate through-the-thickness reinforcements. The NASA Advanced Composites Technology (ACT) Program provided the resources to extensively investigate the application of textile processes to next generation aircraft wing and fuselage structures. This paper discusses advanced textile material forms that have been developed, innovative machine concepts and key technology advancements required for future application of textile reinforced composites in commercial transport aircraft. Multiaxial warp knitting, triaxial braiding and through-the-thickness stitching are the three textile processes that have surfaced as the most promising for further development. Textile reinforced composite structural elements that have been developed in the NASA ACT Program are discussed. Included are braided fuselage frames and window-belt reinforcements, woven/stitched lower fuselage side panels, stitched multiaxial warp knit wing skins, and braided wing stiffeners. In addition, low-cost processing concepts such as resin transfer molding (RTM), resin film infusion (RFI), and vacuum-assisted resin transfer molding (VARTM) are discussed. Process modeling concepts to predict resin flow and cure in textile preforms are also discussed.

  8. Vehicle Design Evaluation Program (VDEP). A computer program for weight sizing, economic, performance and mission analysis of fuel-conservative aircraft, multibodied aircraft and large cargo aircraft using both JP and alternative fuels

    NASA Technical Reports Server (NTRS)

    Oman, B. H.

    1977-01-01

    The NASA Langley Research Center vehicle design evaluation program (VDEP-2) was expanded by (1) incorporating into the program a capability to conduct preliminary design studies on subsonic commercial transport type aircraft using both JP and such alternate fuels as hydrogen and methane;(2) incorporating an aircraft detailed mission and performance analysis capability; and (3) developing and incorporating an external loads analysis capability. The resulting computer program (VDEP-3) provides a preliminary design tool that enables the user to perform integrated sizing, structural analysis, and cost studies on subsonic commercial transport aircraft. Both versions of the VDEP-3 Program which are designated preliminary Analysis VDEP-3 and detailed Analysis VDEP utilize the same vehicle sizing subprogram which includes a detailed mission analysis capability, as well as a geometry and weight analysis for multibodied configurations.

  9. Status review of NASA programs for reducing aircraft gas turbine engine emissions

    NASA Technical Reports Server (NTRS)

    Rudey, R. A.

    1976-01-01

    Programs initiated by NASA to develop and demonstrate low emission advanced technology combustors for reducing aircraft gas turbine engine pollution are reviewed. Program goals are consistent with urban emission level requirements as specified by the U. S. Environmental Protection Agency and with upper atmosphere cruise emission levels as recommended by the U. S. Climatic Impact Assessment Program and National Research Council. Preliminary tests of advanced technology combustors indicate that significant reductions in all major pollutant emissions should be attainable in present generation aircraft gas turbine engines without adverse effects on fuel consumption. Preliminary test results from fundamental studies indicate that extremely low emission combustion systems may be possible for future generation jet aircraft. The emission reduction techniques currently being evaluated in these programs are described along with the results and a qualitative assessment of development difficulty.

  10. Program Development

    SciTech Connect

    Atencio, Julian J.

    2014-05-01

    This presentation covers how to go about developing a human reliability program. In particular, it touches on conceptual thinking, raising awareness in an organization, the actions that go into developing a plan. It emphasizes evaluating all positions, eliminating positions from the pool due to mitigating factors, and keeping the process transparent. It lists components of the process and objectives in process development. It also touches on the role of leadership and the necessity for audit.

  11. FCAP - A new tool for the evaluation of active control technology. [Flight Control Analysis Program for flexible aircraft

    NASA Technical Reports Server (NTRS)

    Noll, R. B.; Morino, L.

    1975-01-01

    A computer program has been developed for the evaluation of flight control systems designed for flexible aircraft. This Flight Control Analysis Program (FCAP) is designed in a modular fashion to incorporate sensor, actuator, and control logic element dynamics as well as aircraft dynamics and aerodynamics for complex configurations. Formulation of the total aircraft dynamic system is accomplished in matrix form by casting the equations in state vector format. The system stability and performance are determined in either the frequency or time domain using classical analysis techniques. The aerodynamic method used also permits evaluation of the flutter characteristics of the aircraft.

  12. Electromagnetic pulse standards development for military aircraft

    NASA Astrophysics Data System (ADS)

    McClendon, Harold M.; Rodriguez, Manuel J.

    Concepts involved in the system-level standard philosophy adopted by the US Air Force's Aeronautical System Division (ASD) for hardening aircraft systems are presented. ASD's approach is to develop a totally new system-level military electromagnetic pulse (EMP) standard, which will be imposed on prime airframe contractors, and to modify existing electromagnetic interference (EMI) standards (MIL-STD-461 and MIL-STD-462), for subsystem/equipment-level requirements. The system-level standard is in the early stages of development and is scheduled for release in 1989. The changes to MIL-STD-461 and MIL-STD-462 are in the final stages of preparation and should be available for use in late 1987. It is noted that these changes are generic in that they do not specifically reference EMP due to their applicability to other transient environments such as lightning.

  13. Advanced organic composite materials for aircraft structures: Future program

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Revolutionary advances in structural materials have been responsible for revolutionary changes in all fields of engineering. These advances have had and are still having a significant impact on aircraft design and performance. Composites are engineered materials. Their properties are tailored through the use of a mix or blend of different constituents to maximize selected properties of strength and/or stiffness at reduced weights. More than 20 years have passed since the potentials of filamentary composite materials were identified. During the 1970s much lower cost carbon filaments became a reality and gradually designers turned from boron to carbon composites. Despite progress in this field, filamentary composites still have significant unfulfilled potential for increasing aircraft productivity; the rendering of advanced organic composite materials into production aircraft structures was disappointingly slow. Why this is and research and technology development actions that will assist in accelerating the application of advanced organic composites to production aircraft is discussed.

  14. 14 CFR 135.419 - Approved aircraft inspection program.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Approved aircraft inspection program. 135.419 Section 135.419 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR CARRIERS AND OPERATORS FOR COMPENSATION OR HIRE: CERTIFICATION AND...

  15. 78 FR 68360 - Unmanned Aircraft System Test Site Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-14

    ... comments published in the Federal Register on February 22, 2013 (78 FR 12259), Docket No. FAA-2013-0061... (78 FR 18932), Docket No. FAA-2013-0061- 0050. In addition, this document publishes the FAA's Final... Federal Aviation Administration 14 CFR Part 91 Unmanned Aircraft System Test Site Program AGENCY:...

  16. 14 CFR 135.419 - Approved aircraft inspection program.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Approved aircraft inspection program. 135.419 Section 135.419 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... chapter are not adequate to meet this part, or upon application by a certificate holder, the...

  17. The Development of a Highly Reliable Power Management and Distribution System for Civil Transport Aircraft

    NASA Technical Reports Server (NTRS)

    Coleman, Anthony S.; Hansen, Irving G.

    1994-01-01

    NASA is pursuing a program in Advanced Subsonic Transport (AST) to develop the technology for a highly reliable Fly-By-Light/Power-By-WIre aircraft. One of the primary objectives of the program is to develop the technology base for confident application of integrated PBW components and systems to transport aircraft to improve operating reliability and efficiency. Technology will be developed so that the present hydraulic and pneumatic systems of the aircraft can be systematically eliminated and replaced by electrical systems. These motor driven actuators would move the aircraft wing surfaces as well as the rudder to provide steering controls for the pilot. Existing aircraft electrical systems are not flight critical and are prone to failure due to Electromagnetic Interference (EMI) (1), ground faults and component failures. In order to successfully implement electromechanical flight control actuation, a Power Management and Distribution (PMAD) System must be designed having a reliability of 1 failure in 10(exp +9) hours, EMI hardening and a fault tolerance architecture to ensure uninterrupted power to all aircraft flight critical systems. The focus of this paper is to analyze, define, and describe technically challenging areas associated with the development of a Power By Wire Aircraft and typical requirements to be established at the box level. The authors will attempt to propose areas of investigation, citing specific military standards and requirements that need to be revised to accommodate the 'More Electric Aircraft Systems'.

  18. Aging Aircraft NDI Development and Demonstration Center (AANC): An overview

    SciTech Connect

    Walter, P.L.

    1991-01-01

    A major center with emphasis on validation of nondestructive inspection techniques for aging aircraft, the Aging Aircraft NDI Development and Demonstration Center (AANC), has been funded by the FAA at Sandia National Laboratories. The Center has been assigned specific tasks in developing techniques for the nondestructive inspection of static engine parts, assessing inspection reliability (POD experiments), developing test beds for nondestructive inspection validation, maintaining a FAA library of characterized aircraft structural test specimens, and leasing a hangar to house a high flight cycle transport aircraft for use as a full scale test bed. 3 refs.

  19. Aging aircraft NDI Development and Demonstration Center (AANC): An overview

    NASA Astrophysics Data System (ADS)

    Walter, Patrick L.

    1992-07-01

    A major center with emphasis on validation of nondestructive inspection (NDI) techniques for aging aircraft, the Aging Aircraft NDI Development and Demonstration Center (AANC), has been funded by the FAA at Sandia National Laboratories. The Center has been assigned specific tasks in developing techniques for the nondestructive inspection of static engine parts, assessing inspection reliability (POD experiments), developing testbeds for NDI validation, maintaining a FAA library of characterized aircraft structural test specimens, and leasing a hangar to house a high flight cycle transport aircraft for use as a full scale test bed.

  20. Some comparisons of US and USSR aircraft design developments

    NASA Technical Reports Server (NTRS)

    Spearman, M. L.

    1985-01-01

    A review is given of the design and development of some U.S. and U.S.S.R. aircraft. The emphasis is on the historical development of large aircraft - civil and military transports and bombers. Design trends are somewhat similar for the two countries and indications are that some fundamental characteristics are dictated more by ideological differences rather than technological differences. A brief description is given in a more or less chronological order of the major bomber aircraft, major civil and military transport aircraft, and the development of the air transport systems.

  1. Some comparisons of US and USSR aircraft design developments

    NASA Technical Reports Server (NTRS)

    Spearman, M. L.

    1985-01-01

    A review is given of the design and development of some US and USSR aircraft. The emphasis is on the historical development of large aircraft-civil and military transports and bombers. Design trends are somewhat similar for the two countries and indications are that some fundamental characteristics are dictated more by ideological differences rather than technological differences. A brief description is given in a more or less chronological order of the major bomber aircraft, major civil and military transport aircraft, and the development of the air transport systems.

  2. Development of composite wing carrythrough bulkheads for fighter aircraft

    NASA Technical Reports Server (NTRS)

    Goering, J. C.; Behrens, R. S.; Libeskind, Mark

    1990-01-01

    Potential weight savings due to the use of composite materials for highly loaded primary structures are being demonstrated through the design, fabrication, and test of an all composite wing carrythrough bulkhead for the F/A-18 fighter aircraft. A one piece composite design which results in a 24 percent weight savings, relative to the existing aluminum bulkhead, was developed. Critical details of this design were evaluated through element tests, and a full scale prototype component was fabricated. The structural integrity of this design will be demonstrated in a comprehensive full scale test program.

  3. Selected topics from the structural acoustics program for the B-1 aircraft

    NASA Technical Reports Server (NTRS)

    Belcher, P. M.

    1979-01-01

    The major elements of the structural acoustics program for the B-1 aircraft are considered. Acoustic pressures measured at 280 sites on the surface of the vehicle were used to develop pressure models for a resizing of airframe components for aircraft No. 4 (A/C4). Acoustical fatigue design data for two dynamically complex structural configurations were acquired in laboratory programs, the conceptions for and executions of which detailed significant departures from the conventional. Design requirements for mechanical fasteners for configurations other than these two made use of analytical extensions of regrettably limited available information.

  4. Toward scramjet aircraft. [progress in engine development

    NASA Technical Reports Server (NTRS)

    Jones, R. A.; Huber, P. W.

    1978-01-01

    The possibility for civil, military, and remotely-piloted aviation above Mach 5 is discussed with reference to the scramjet. Actively cooled aircraft structures of low weight are described, together with jet nozzle design and combustion parameters. The scramjet is seen as operating alone or in tandem with ramjet propulsion, which would power an aircraft up to scramjet speeds. Attention is given to the specific impulse of the scramjet engine, with hydrogen as the primary fuel. Applications include: advanced reconnaissance and interceptor aircraft, strategic cruise (both aircraft and missiles), highly-maneuverable interceptor missiles, transports, aircraft-type launch vehicles, first stages for Space Shuttle launching craft, and single-stage-to-orbit vehicles. Research has focused on increasing the propulsion power of the scramjet engine, while reducing drag on the accompanying airframe.

  5. Development of pressure containment and damage tolerance technology for composite fuselage structures in large transport aircraft

    NASA Technical Reports Server (NTRS)

    Smith, P. J.; Thomson, L. W.; Wilson, R. D.

    1986-01-01

    NASA sponsored composites research and development programs were set in place to develop the critical engineering technologies in large transport aircraft structures. This NASA-Boeing program focused on the critical issues of damage tolerance and pressure containment generic to the fuselage structure of large pressurized aircraft. Skin-stringer and honeycomb sandwich composite fuselage shell designs were evaluated to resolve these issues. Analyses were developed to model the structural response of the fuselage shell designs, and a development test program evaluated the selected design configurations to appropriate load conditions.

  6. New airfoil sections for general aviation aircraft. [cruising and flap development tests

    NASA Technical Reports Server (NTRS)

    Wentz, W. H., Jr.

    1973-01-01

    A program has been undertaken to develop new airfoil sections suitable for general aviation aircraft, utilizing theoretical and experimental advanced technology developed in recent years primarily for subsonic jet transport and military aircraft. The airfoil development program is one component of the Advanced Technology Light Twin program sponsored by NASA Langley Research Center. Two-dimensional tests of a new airfoil have demonstrated high cruising performance over a fairly wide C sub 1 range, and a C sub 1 max value of 3.69 with Fowler flap and no leading-edge devices. Experimental and theoretical development of additional configurations is under way.

  7. Sensors for aircraft corrosion -- Review and future developments

    SciTech Connect

    Tullmin, M.A.A.; Roberge, P.R.; Little, M.A.

    1997-12-01

    In the Canadian Forces, as for other aircraft operators, the need has arise to utilize new tools for managing corrosion problems more cost effectively. In this context, the role of aircraft corrosion sensors and the current state of this technological field was reviewed, together with identifying future development work. Three separate aircraft corrosion surveillance application areas have been defined, as a basis for evaluating the strengths and weaknesses of various corrosion sensor technologies. At present, the biggest technical shortcomings exist for the important task of reducing unnecessary inspections. The development of smart sensors integrated into the aircraft structure is recommended for this requirement.

  8. New developments in aluminum for aircraft and automobiles

    NASA Technical Reports Server (NTRS)

    Petit, Jocelyn I.

    1994-01-01

    A common bond for the aircraft and automobile industry is the need for cost-efficient, lightweight structures such as provided by aluminum based materials. The topics are presented in viewgraph form and cover the following: new developments in aluminum for aircraft and automobiles; forces shaping future automotive materials needs; aluminum strength/weakness versus competitive materials; evolution of aluminum aerospace alloys; forces shaping future aircraft materials needs; fiber/metal structural laminates; and property requirements for jetliner and military transport applications.

  9. The Atmospheric Effects of Stratospheric Aircraft: a First Program Report

    NASA Technical Reports Server (NTRS)

    Prather, Michael J.; Wesoky, Howard L.; Miake-Lye, Richard C.; Douglass, Anne R.; Turco, Richard P.; Wuebbles, Donald J.; Ko, Malcolm K. W.; Schmeltekopf, Arthur L.

    1992-01-01

    Studies have indicated that, with sufficient technology development, high speed civil transport aircraft could be economically competitive with long haul subsonic aircraft. However, uncertainty about atmospheric pollution, along with community noise and sonic boom, continues to be a major concern; and this is addressed in the planned 6 yr HSRP begun in 1990. Building on NASA's research in atmospheric science and emissions reduction, the AESA studies particularly emphasizing stratospheric ozone effects. Because it will not be possible to directly measure the impact of an HSCT aircraft fleet on the atmosphere, the only means of assessment will be prediction. The process of establishing credibility for the predicted effects will likely be complex and involve continued model development and testing against climatological patterns. Lab simulation of heterogeneous chemistry and other effects will continue to be used to improve the current models.

  10. The atmospheric effects of stratospheric aircraft: A first program report

    SciTech Connect

    Prather, M.J.; Wesoky, H.L.; Miake-lye, R.C.; Douglass, A.R.; Turco, R.P.; Wuebbles, D.J.; Ko, M.K.W.; Schmeltekopf, A.L.

    1992-01-01

    Studies have indicated that, with sufficient technology development, high speed civil transport aircraft could be economically competitive with long haul subsonic aircraft. However, uncertainty about atmospheric pollution, along with community noise and sonic boom, continues to be a major concern; and this is addressed in the planned 6 yr HSRP begun in 1990. Building on NASA's research in atmospheric science and emissions reduction, the AESA studies particularly emphasizing stratospheric ozone effects. Because it will not be possible to directly measure the impact of an HSCT aircraft fleet on the atmosphere, the only means of assessment will be prediction. The process of establishing credibility for the predicted effects will likely be complex and involve continued model development and testing against climatological patterns. Lab simulation of heterogeneous chemistry and other effects will continue to be used to improve the current models.

  11. Program on ground test of modified quiet, clean, JT3D and JT8D turbofan engines in their respective nacelles. [modification of Boeing 707, 727, and 737 aircraft for aircraft noise reduction

    NASA Technical Reports Server (NTRS)

    1973-01-01

    A program to reduce the community noise levels of commercial jet aircraft is summarized. The program objective is the development of three acoustically treated nacelle configurations for the 707, 727, and 737 series aircraft to provide maximum noise reduction with minimum performance loss, modification requirements, and economic impact. The preliminary design, model testing, data analyses, and economic studies of proposed nacelle configurations are discussed.

  12. Modification of ACSYNT aircraft computer program for preliminary design

    NASA Technical Reports Server (NTRS)

    Biezad, Daniel J.; Rojos-Oviedo, Ruben

    1994-01-01

    This paper presents the development of a computer simulation of agility flight test techniques. Its purpose is to evaluate the agility of aircraft configurations early in the preliminary design phase. The simulation module is integrated into the NASA Ames aircraft synthesis design code. Trade studies using the agility module embedded within the design code to simulate the combat cycle time agility metric are illustrated using a Northrop F-20 aircraft model. Results show that the agility module is effective in analyzing the influence of common parameters such as thrust-to-weight ratio and wing loading on agility criteria. The module can also compare the agility potential between different configurations and has the capability to optimize agility performance early in the design process.

  13. Current and future developments in civil aircraft non-destructive evaluation from an operator's point of view

    NASA Technical Reports Server (NTRS)

    Register, Jeff

    1992-01-01

    In June, 1988, the first International Conference on aging aircraft was held to address nondestructive tests (NDT) of aging aircraft and other issues. From this meeting, a research program was initiated and funded by the FAA. As a result of this program, a lot of work has been done to study current NDT practices in the aviation industry and secondly, to research and develop new NDT methods to improve the reliability and efficiency of in-service inspection of aircraft structures and powerplants. The following is an overview of the current and future developments in civil aircraft NDT, as viewed by an air carrier and the concerns for NDT in the future.

  14. A system safety model for developmental aircraft programs

    NASA Technical Reports Server (NTRS)

    Amberboy, E. J.; Stokeld, R. L.

    1982-01-01

    Basic tenets of safety as applied to developmental aircraft programs are presented. The integration of safety into the project management aspects of planning, organizing, directing and controlling is illustrated by examples. The basis for project management use of safety and the relationship of these management functions to 'real-world' situations is presented. The rationale which led to the safety-related project decision and the lessons learned as they may apply to future projects are presented.

  15. NASA/Ames Research Center's science and applications aircraft program

    NASA Technical Reports Server (NTRS)

    Hall, G. Warren

    1991-01-01

    NASA-Ames Research Center operates a fleet of seven Science and Applications Aircraft, namely the C-141/Kuiper Airborne Observatory (KAO), DC-8, C-130, Lear Jet, and three ER-2s. These aircraft are used to satisfy two major objectives, each of equal importance. The first is to acquire remote and in-situ scientific data in astronomy, astrophysics, earth sciences, ocean processes, atmospheric physics, meteorology, materials processing and life sciences. The second major objective is to expedite the development of sensors and their attendant algorithms for ultimate use in space and to simulate from an aircraft, the data to be acquired from spaceborne sensors. NASA-Ames Science and Applications Aircraft are recognized as national and international facilities. They have performed and will continue to perform, operational missions from bases in the United States and worldwide. Historically, twice as many investigators have requested flight time than could be accommodated. This situation remains true today and is expected to increase in the years ahead. A major advantage of the existing fleet of aircraft is their ability to cover a large expanse of the earth's ecosystem from the surface to the lower stratosphere over large distances and time aloft. Their large payload capability allows a number of scientists to use multi-investigator sensor suites to permit simultaneous and complementary data gathering. In-flight changes to the sensors or data systems have greatly reduced the time required to optimize the development of new instruments. It is doubtful that spaceborne systems will ever totally replace the need for airborne science aircraft. The operations philosophy and capabilities exist at NASA-Ames Research Center.

  16. A mathematical model for Vertical Attitude Takeoff and Landing (VATOL) aircraft simulation. Volume 3: User's manual for VATOL simulation program

    NASA Technical Reports Server (NTRS)

    Fortenbaugh, R. L.

    1980-01-01

    Instructions for using Vertical Attitude Takeoff and Landing Aircraft Simulation (VATLAS), the digital simulation program for application to vertical attitude takeoff and landing (VATOL) aircraft developed for installation on the NASA Ames CDC 7600 computer system are described. The framework for VATLAS is the Off-Line Simulation (OLSIM) routine. The OLSIM routine provides a flexible framework and standardized modules which facilitate the development of off-line aircraft simulations. OLSIM runs under the control of VTOLTH, the main program, which calls the proper modules for executing user specified options. These options include trim, stability derivative calculation, time history generation, and various input-output options.

  17. A new role for structures technology in aircraft configuration development

    NASA Technical Reports Server (NTRS)

    Nisbet, J. W.; Hoy, J. M.

    1976-01-01

    It is pointed out that decisions made during configuration development determine nearly 60% of the total program cost. The key to the new Structures Technology role considered is the development of integrated computer systems for structural design and analysis. Such systems make it possible to include structural sizing within the scope of preliminary configuration development. Analysis models are discussed, taking into account approaches used to determine the structural weight of an aircraft in the preliminary design stage, a finite element representation for a supersonic arrow wing transport, and the aerodynamic model. Attention is given to automated design considerations and a study which was conducted to reduce the aerodynamic drag of a supersonic transport by blending the structure of the wing and fuselage.

  18. Development of a micro-computer based integrated design system for high altitude long endurance aircraft

    NASA Technical Reports Server (NTRS)

    Hall, David W.; Rogan, J. Edward

    1988-01-01

    A microcomputer-based integration of aircraft design disciplines has been applied theoretically to sailplane, microwave-powered aircraft, and High Altitude Long-Endurance (HALE) aircraft configurational definition efforts. Attention is presently given to the further development of such integrated-disciplines approaches through the incorporation of AI techniques; these are then applied to the aforementioned case of the HALE. The 'windFrame' language used, which is based on HyperTalk, will allow designers to write programs using a highly graphical, user interface-oriented environment.

  19. Development of a microcomputer based integrated design system for high altitude long endurance aircraft

    NASA Technical Reports Server (NTRS)

    Hall, David W.; Rogan, J. Edward

    1989-01-01

    A microcomputer-based integration of aircraft design disciplines has been applied theoretically to sailplane, microwave-powered aircraft, and High Altitude Long-Endurance (HALE) aircraft configurational definition efforts. Attention is presently given to the further development of such integrated-discipline approaches through the incorporation of AI techniques; these are then applied to the aforementioned case of the HALE. The windFrame language used, which is based on HyperTalk, will allow designers to write programs using a highly graphical, user interface-oriented environment.

  20. The vehicle design evaluation program - A computer-aided design procedure for transport aircraft

    NASA Technical Reports Server (NTRS)

    Oman, B. H.; Kruse, G. S.; Schrader, O. E.

    1977-01-01

    The vehicle design evaluation program is described. This program is a computer-aided design procedure that provides a vehicle synthesis capability for vehicle sizing, external load analysis, structural analysis, and cost evaluation. The vehicle sizing subprogram provides geometry, weight, and balance data for aircraft using JP, hydrogen, or methane fuels. The structural synthesis subprogram uses a multistation analysis for aerodynamic surfaces and fuselages to develop theoretical weights and geometric dimensions. The parts definition subprogram uses the geometric data from the structural analysis and develops the predicted fabrication dimensions, parts material raw stock buy requirements, and predicted actual weights. The cost analysis subprogram uses detail part data in conjunction with standard hours, realization factors, labor rates, and material data to develop the manufacturing costs. The program is used to evaluate overall design effects on subsonic commercial type aircraft due to parameter variations.

  1. Optimal Input Design for Aircraft Parameter Estimation using Dynamic Programming Principles

    NASA Technical Reports Server (NTRS)

    Morelli, Eugene A.; Klein, Vladislav

    1990-01-01

    A new technique was developed for designing optimal flight test inputs for aircraft parameter estimation experiments. The principles of dynamic programming were used for the design in the time domain. This approach made it possible to include realistic practical constraints on the input and output variables. A description of the new approach is presented, followed by an example for a multiple input linear model describing the lateral dynamics of a fighter aircraft. The optimal input designs produced by the new technique demonstrated improved quality and expanded capability relative to the conventional multiple input design method.

  2. Optimal input design for aircraft parameter estimation using dynamic programming principles

    NASA Technical Reports Server (NTRS)

    Klein, Vladislav; Morelli, Eugene A.

    1990-01-01

    A new technique was developed for designing optimal flight test inputs for aircraft parameter estimation experiments. The principles of dynamic programming were used for the design in the time domain. This approach made it possible to include realistic practical constraints on the input and output variables. A description of the new approach is presented, followed by an example for a multiple input linear model describing the lateral dynamics of a fighter aircraft. The optimal input designs produced by the new technique demonstrated improved quality and expanded capability relative to the conventional multiple input design method.

  3. Probing Emissions of Military Cargo Aircraft: Description of a Joint Field Measurement Program

    SciTech Connect

    Cheng, Mengdawn; Corporan, E.; DeWitt, M.; Spicer, C.; Holdren, M.; Cowen, K.; Harris, B.; Shores, R.; Hashmonay, R.; Kaganan, R.

    2008-01-01

    Direct emissions of NOx, volatile organic compounds, and particulate matter (PM) by aircraft contribute to the pollutant levels found in the atmosphere. Aircraft emissions can be injected at the ground level or directly at the high altitude in flight. Conversion of the precursor gases into secondary PM is one of the pathways for the increased atmospheric PM. Atmospheric PM interacts with solar radiation altering atmospheric radiation balance and potentially contributing to global and regional climate changes. Also, direct emissions of air toxics, ozone precursors and PM from aircraft in and around civilian airports and military air bases can worsen local air quality in non-attainment and/or maintenance areas. These emissions need to be quantified. However, the current EPA methods for particle emission measurements from such sources, modified Method 5 and Conditional Test Method 039, are gravimetric-based, and it is anticipated that these methods will not be suitable for current and future generations of aircraft turbine engines, whose particle mass emissions are low. To evaluate measurement approaches for military aircraft emissions, two complementary projects were initiated in 2005. A joint field campaign between these two programs was executed during the first week of October 2005 at the Kentucky Air National Guard (KYANG) base in Louisville, KY. This campaign represented the first in a series of field studies for each program funded by the DoD Strategic Environmental Research and Development Program (SERDP) and provided the basis for cross-comparison of the sampling approaches and measurement techniques employed by the respective program teams. This paper describes the overall programmatic of the multi-year SERDP aircraft emissions research and presents a summary of the results from the joint field campaign.

  4. Auralization Architectures for NASA?s Next Generation Aircraft Noise Prediction Program

    NASA Technical Reports Server (NTRS)

    Rizzi, Stephen A.; Lopes, Leonard V.; Burley, Casey L.; Aumann, Aric R.

    2013-01-01

    Aircraft community noise is a significant concern due to continued growth in air traffic, increasingly stringent environmental goals, and operational limitations imposed by airport authorities. The assessment of human response to noise from future aircraft can only be afforded through laboratory testing using simulated flyover noise. Recent work by the authors demonstrated the ability to auralize predicted flyover noise for a state-of-the-art reference aircraft and a future hybrid wing body aircraft concept. This auralization used source noise predictions from NASA's Aircraft NOise Prediction Program (ANOPP) as input. The results from this process demonstrated that auralization based upon system noise predictions is consistent with, and complementary to, system noise predictions alone. To further develop and validate the auralization process, improvements to the interfaces between the synthesis capability and the system noise tools are required. This paper describes the key elements required for accurate noise synthesis and introduces auralization architectures for use with the next-generation ANOPP (ANOPP2). The architectures are built around a new auralization library and its associated Application Programming Interface (API) that utilize ANOPP2 APIs to access data required for auralization. The architectures are designed to make the process of auralizing flyover noise a common element of system noise prediction.

  5. Effectiveness evaluation of STOL transport operations (phase 2). [computer simulation program of commercial short haul aircraft operations

    NASA Technical Reports Server (NTRS)

    Welp, D. W.; Brown, R. A.; Ullman, D. G.; Kuhner, M. B.

    1974-01-01

    A computer simulation program which models a commercial short-haul aircraft operating in the civil air system was developed. The purpose of the program is to evaluate the effect of a given aircraft avionics capability on the ability of the aircraft to perform on-time carrier operations. The program outputs consist primarily of those quantities which can be used to determine direct operating costs. These include: (1) schedule reliability or delays, (2) repairs/replacements, (3) fuel consumption, and (4) cancellations. More comprehensive models of the terminal area environment were added and a simulation of an existing airline operation was conducted to obtain a form of model verification. The capability of the program to provide comparative results (sensitivity analysis) was then demonstrated by modifying the aircraft avionics capability for additional computer simulations.

  6. PIFCGT: A PIF autopilot design program for general aviation aircraft

    NASA Technical Reports Server (NTRS)

    Broussard, J. R.

    1983-01-01

    This report documents the PIFCGT computer program. In FORTRAN, PIFCGT is a computer design aid for determing Proportional-Integral-Filter (PIF) control laws for aircraft autopilots implemented with a Command Generator Tracker (CGT). The program uses Linear-Quadratic-Regulator synthesis algorithms to determine feedback gains, and includes software to solve the feedforward matrix equation which is useful in determining the command generator tracker feedforward gains. The program accepts aerodynamic stability derivatives and computes the corresponding aerodynamic linear model. The nine autopilot modes that can be designed include four maneuver modes (ROLL SEL, PITCH SEL, HDG SEL, ALT SEL), four final approach models (APR GS, APR LOCI, APR LOCR, APR LOCP), and a BETA HOLD mode. The program has been compiled and executed on a CDC computer.

  7. Aircraft

    DOEpatents

    Hibbs, B.D.; Lissaman, P.B.S.; Morgan, W.R.; Radkey, R.L.

    1998-09-22

    This disclosure provides a solar rechargeable aircraft that is inexpensive to produce, is steerable, and can remain airborne almost indefinitely. The preferred aircraft is a span-loaded flying wing, having no fuselage or rudder. Travelling at relatively slow speeds, and having a two-hundred foot wingspan that mounts photovoltaic cells on most all of the wing`s top surface, the aircraft uses only differential thrust of its eight propellers to turn. Each of five sections of the wing has one or more engines and photovoltaic arrays, and produces its own lift independent of the other sections, to avoid loading them. Five two-sided photovoltaic arrays, in all, are mounted on the wing, and receive photovoltaic energy both incident on top of the wing, and which is incident also from below, through a bottom, transparent surface. The aircraft is capable of a top speed of about ninety miles per hour, which enables the aircraft to attain and can continuously maintain altitudes of up to sixty-five thousand feet. Regenerative fuel cells in the wing store excess electricity for use at night, such that the aircraft can sustain its elevation indefinitely. A main spar of the wing doubles as a pressure vessel that houses hydrogen and oxygen gases for use in the regenerative fuel cell. The aircraft has a wide variety of applications, which include weather monitoring and atmospheric testing, communications, surveillance, and other applications as well. 31 figs.

  8. Aircraft

    DOEpatents

    Hibbs, Bart D.; Lissaman, Peter B. S.; Morgan, Walter R.; Radkey, Robert L.

    1998-01-01

    This disclosure provides a solar rechargeable aircraft that is inexpensive to produce, is steerable, and can remain airborne almost indefinitely. The preferred aircraft is a span-loaded flying wing, having no fuselage or rudder. Travelling at relatively slow speeds, and having a two-hundred foot wingspan that mounts photovoltaic cells on most all of the wing's top surface, the aircraft uses only differential thrust of its eight propellers to turn. Each of five sections of the wing has one or more engines and photovoltaic arrays, and produces its own lift independent of the other sections, to avoid loading them. Five two-sided photovoltaic arrays, in all, are mounted on the wing, and receive photovoltaic energy both incident on top of the wing, and which is incident also from below, through a bottom, transparent surface. The aircraft is capable of a top speed of about ninety miles per hour, which enables the aircraft to attain and can continuously maintain altitudes of up to sixty-five thousand feet. Regenerative fuel cells in the wing store excess electricity for use at night, such that the aircraft can sustain its elevation indefinitely. A main spar of the wing doubles as a pressure vessel that houses hydrogen and oxygen gasses for use in the regenerative fuel cell. The aircraft has a wide variety of applications, which include weather monitoring and atmospheric testing, communications, surveillance, and other applications as well.

  9. Development of a thermal acoustical aircraft insulation material

    NASA Technical Reports Server (NTRS)

    Lin, R. Y.; Struzik, E. A.

    1974-01-01

    A process was developed for fabricating a light weight foam suitable for thermal and acoustical insulation in aircraft. The procedures and apparatus are discussed, and the foam specimens are characterized by numerous tests and measurements.

  10. Aircraft research and development trends in the US and USSR

    NASA Technical Reports Server (NTRS)

    Spearman, M. L.

    1986-01-01

    Research and development related to aircraft has shown significant progress in both the U.S. and the USSR. In some cases, the indications are that technological advances have resulted in new aircraft concepts and, in other cases, there are indications of particular national needs or objectives that have driven the required research and development to meet the need. The progression of aircraft development tends to reflect factors other than technology such as the political atmosphere, the world environment, and other contending national objectives. The trends in aircraft research and development in the U.S. and USSR will be traced from the early 1900's and, in a time-frame manner, will be related to other influencing factors.

  11. Development and validation of bonded composite doubler repairs for commercial aircraft.

    SciTech Connect

    Roach, Dennis Patrick; Rackow, Kirk A.

    2007-07-01

    A typical aircraft can experience over 2,000 fatigue cycles (cabin pressurizations) and even greater flight hours in a single year. An unavoidable by-product of aircraft use is that crack, impact, and corrosion flaws develop throughout the aircraft's skin and substructure elements. Economic barriers to the purchase of new aircraft have placed even greater demands on efficient and safe repair methods. The use of bonded composite doublers offers the airframe manufacturers and aircraft maintenance facilities a cost effective method to safely extend the lives of their aircraft. Instead of riveting multiple steel or aluminum plates to facilitate an aircraft repair, it is now possible to bond a single Boron-Epoxy composite doubler to the damaged structure. The FAA's Airworthiness Assurance Center at Sandia National Labs (AANC), Boeing, and Federal Express completed a pilot program to validate and introduce composite doubler repair technology to the U.S. commercial aircraft industry. This project focused on repair of DC-10 fuselage structure and its primary goal was to demonstrate routine use of this repair technology using niche applications that streamline the design-to-installation process. As composite doubler repairs gradually appear in the commercial aircraft arena, successful flight operation data is being accumulated. These commercial aircraft repairs are not only demonstrating the engineering and economic advantages of composite doubler technology but they are also establishing the ability of commercial maintenance depots to safely adopt this repair technique. This report presents the array of engineering activities that were completed in order to make this technology available for widespread commercial aircraft use. Focused laboratory testing was conducted to compliment the field data and to address specific issues regarding damage tolerance and flaw growth in composite doubler repairs. Fatigue and strength tests were performed on a simulated wing repair using a

  12. Study of the damping characteristics of general aviation aircraft panels and development of computer programs to calculate the effectiveness of interior noise control treatment, part 1

    NASA Technical Reports Server (NTRS)

    Navaneethan, R.; Hunt, J.; Quayle, B.

    1982-01-01

    Tests were carried out on 20 inch x 20 inch panels at different test conditions using free-free panels, clamped panels, and panels as installed in the KU-FRL acoustic test facility. Tests with free-free panels verified the basic equipment set-up and test procedure. They also provided a basis for comparison. The results indicate that the effect of installed panels is to increase the damping ratio at the same frequency. However, a direct comparison is not possible, as the fundamental frequency of a free-free panel differs from the resonance frequency of the panel when installed. The damping values of panels installed in the test facility are closer to the damping values obtained with fixed-fixed panels. Effects of damping tape, stiffeners, and bonded and riveted edged conditions were also investigated. Progress in the development of a simple interior noise level control program is reported.

  13. Eclipse program F-106 aircraft takeoff from airport in Mojave, California

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Shot of QF-106 aircraft taking off from Mojave Airport, California. In 1997 and 1998, the Dryden Flight Research Center at Edwards, California, supported and hosted a Kelly Space & Technology, Inc. project called Eclipse, which sought to demonstrate the feasibility of a reusable tow-launch vehicle concept. The project goal was to successfully tow, inflight, a modified QF-106 delta-wing aircraft with an Air Force C-141A transport aircraft. This would demonstrate the possibility of towing and launching an actual launch vehicle from behind a tow plane. Dryden was the responsible test organization and had flight safety responsibility for the Eclipse project. Dryden provided engineering, instrumentation, simulation, modification, maintenance, range support, and research pilots for the test program. The Air Force Flight Test Center (AFFTC), Edwards, California, supplied the C-141A transport aircraft and crew and configured the aircraft as needed for the tests. The AFFTC also provided the concept and detail design and analysis as well as hardware for the tow system and QF-106 modifications. Dryden performed the modifications to convert the QF-106 drone into the piloted EXD-01 (Eclipse eXperimental Demonstrator-01) experimental aircraft. Kelly Space & Technology hoped to use the results gleaned from the tow test in developing a series of low-cost, reusable launch vehicles. These tests demonstrated the validity of towing a delta-wing aircraft having high wing loading, validated the tow simulation model, and demonstrated various operational procedures, such as ground processing of in-flight maneuvers and emergency abort scenarios.

  14. Aircrew-aircraft integration: A summary of US Army research programs and plans

    NASA Technical Reports Server (NTRS)

    Key, D. L.; Aiken, E. W.

    1984-01-01

    A review of selected programs which illustrate the research efforts of the U.S. Army Aeromechanics Laboratory in the area of aircrew-aircraft integration is presented. Plans for research programs to support the development of future military rotorcraft are also described. The crew of a combat helicopter must, in general, perform two major functions during the conduct of a particular mission: flightpath control and mission management. Accordingly, the research programs described are being conducted in the same two major categories: (1) flightpath control, which encompasses the areas of handling qualities, stability and control, and displays for the pilot's control of the rotorcraft's flightpath, and (2) mission management, which includes human factors and cockpit integration research topics related to performance of navigation, communication, and aircraft systems management tasks.

  15. Aircrew-aircraft integration - A summary of U.S. Army research programs and plans

    NASA Technical Reports Server (NTRS)

    Key, D. L.; Aiken, E. W.

    1984-01-01

    A review of selected programs which illustrate the research efforts of the U.S. Army Aeromechanics Laboratory in the area of aircrew-aircraft integration is presented. Plans for research programs to support the development of future military rotorcraft are also described. The crew of a combat helicopter must, in general, perform two major functions during the conduct of a particular mission: flightpath control and mission management. Accordingly, the research programs described are being conducted in the same two major categories: (1) flightpath control, which encompasses the areas of handling qualities, stability and control, and displays for the pilot's control of the rotorcraft's flightpath, and (2) mission management, which includes human factors and cockpit integration research topics related to performance of navigation, communication, and aircraft systems management tasks.

  16. Potential applications of advanced aircraft in developing countries

    NASA Technical Reports Server (NTRS)

    Maddalon, D. V.

    1978-01-01

    An investigation sponsored by NASA indicates that air transportation can play an important role in the economic progress of developing countries. By the turn of the century, the rapid economic growth now occurring in many developing countries should result in a major redistribution of the world's income. Some countries now classified as 'developing' will become 'developed' and are likely to become far more important to the world's civil aviation industry. Developing countries will be increasingly important buyers of conventional subsonic long-haul jet passenger aircraft but not to the point of significant influence on the design or technological content of future aircraft of this type. However, the technological content of more specialized aircraft may be influenced by developing country requirements and reflected in designs which fill a need concerning specialized missions, related to short-haul, low-density, rough runways, and natural resource development.

  17. Data development technical support document for the aircraft crash risk analysis methodology (ACRAM) standard

    SciTech Connect

    Kimura, C.Y.; Glaser, R.E.; Mensing, R.W.; Lin, T.; Haley, T.A.; Barto, A.B.; Stutzke, M.A.

    1996-08-01

    The Aircraft Crash Risk Analysis Methodology (ACRAM) Panel has been formed by the US Department of Energy Office of Defense Programs (DOE/DP) for the purpose of developing a standard methodology for determining the risk from aircraft crashes onto DOE ground facilities. In order to accomplish this goal, the ACRAM panel has been divided into four teams, the data development team, the model evaluation team, the structural analysis team, and the consequence team. Each team, consisting of at least one member of the ACRAM plus additional DOE and DOE contractor personnel, specializes in the development of the methodology assigned to that team. This report documents the work performed by the data development team and provides the technical basis for the data used by the ACRAM Standard for determining the aircraft crash frequency. This report should be used to provide the generic data needed to calculate the aircraft crash frequency into the facility under consideration as part of the process for determining the aircraft crash risk to ground facilities as given by the DOE Standard Aircraft Crash Risk Assessment Methodology (ACRAM). Some broad guidance is presented on how to obtain the needed site-specific and facility specific data but this data is not provided by this document.

  18. Fabrication methods for YF-12 wing panels for the Supersonic Cruise Aircraft Research Program

    NASA Technical Reports Server (NTRS)

    Hoffman, E. L.; Payne, L.; Carter, A. L.

    1975-01-01

    Advanced fabrication and joining processes for titanium and composite materials are being investigated by NASA to develop technology for the Supersonic Cruise Aircraft Research (SCAR) Program. With Lockheed-ADP as the prime contractor, full-scale structural panels are being designed and fabricated to replace an existing integrally stiffened shear panel on the upper wing surface of the NASA YF-12 aircraft. The program involves ground testing and Mach 3 flight testing of full-scale structural panels and laboratory testing of representative structural element specimens. Fabrication methods and test results for weldbrazed and Rohrbond titanium panels are discussed. The fabrication methods being developed for boron/aluminum, Borsic/aluminum, and graphite/polyimide panels are also presented.

  19. Aircraft Noise Prediction Program theoretical manual: Propeller aerodynamics and noise

    NASA Technical Reports Server (NTRS)

    Zorumski, W. E. (Editor); Weir, D. S. (Editor)

    1986-01-01

    The prediction sequence used in the aircraft noise prediction program (ANOPP) is described. The elements of the sequence are called program modules. The first group of modules analyzes the propeller geometry, the aerodynamics, including both potential and boundary-layer flow, the propeller performance, and the surface loading distribution. This group of modules is based entirely on aerodynamic strip theory. The next group of modules deals with the first group. Predictions of periodic thickness and loading noise are determined with time-domain methods. Broadband noise is predicted by a semiempirical method. Near-field predictions of fuselage surface pressrues include the effects of boundary layer refraction and scattering. Far-field predictions include atmospheric and ground effects.

  20. A review of US Army aircrew-aircraft integration research programs

    NASA Technical Reports Server (NTRS)

    Key, D. C.; Aiken, E. W.

    1984-01-01

    If the U.S. Army's desire to develop a one crew version of the Light Helicopter Family (LHX) helicopter is to be realized, both flightpath management and mission management will have to be performed by one crew. Flightpath management, the helicopter pilot, and the handling qualities of the helicopter were discussed. In addition, mission management, the helicopter pilot, and pilot control/display interface were considered. Aircrew-aircraft integration plans and programs were reviewed.

  1. Aircraft optical cable plant program plan: the approach for the physical layer for fly-by-light control networks

    NASA Astrophysics Data System (ADS)

    Weaver, Thomas L.; Murdock, John K.

    1995-05-01

    A program was created with joint industry and government funding to apply fiber optic technologies to aircraft. The technology offers many potential benefits. Among them are increased electromagnetic interference immunity and the possibility of reduced weight, increased reliability, and enlarged capability by redesigning architectures to use the large bandwidth of fiber optics. Those benefits will only be realized if fiber optics meets the unique requirements of aircraft networks. Over the past two decades, considerable effort has been expended on applying photonic technologies to aircraft. Great successes have occurred in optoelectronic components development. In the development of these systems to link those components, known as the cable plant, progress has also been made, but only recently has it been organized in a coordinated, systems-oriented fashion. The FLASH program will expand on the nascent cable plant systems efforts by building upon recent work in individual components, and integrating that work into a cohesive aircraft cable plant. Therefore, the FLASH program will develop the low cost, reliable cables, connectors, splices, backplanes, manufacturing and installation methods, test methods, support equipment, and training systems needed to form a true optical cable plant for transport aircraft, tactical aircraft, and helicopters.

  2. Review of the Rhein-Flugzeugbau Wankel powered aircraft program. [ducted fan engines

    NASA Technical Reports Server (NTRS)

    Riethmueller, M.

    1978-01-01

    The development of light aircraft with special emphasis on modern propulsion systems and production is discussed in terms of the application of rotary engines to aircraft. Emphasis is placed on the integrated ducted-fan propulsion system using rotary engines.

  3. Development of a computer technique for the prediction of transport aircraft flight profile sonic boom signatures. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Coen, Peter G.

    1991-01-01

    A new computer technique for the analysis of transport aircraft sonic boom signature characteristics was developed. This new technique, based on linear theory methods, combines the previously separate equivalent area and F function development with a signature propagation method using a single geometry description. The new technique was implemented in a stand-alone computer program and was incorporated into an aircraft performance analysis program. Through these implementations, both configuration designers and performance analysts are given new capabilities to rapidly analyze an aircraft's sonic boom characteristics throughout the flight envelope.

  4. Flight simulation - A vital and expanding technology in aircraft development

    NASA Technical Reports Server (NTRS)

    Reynolds, P. A.; Hall, G. W.

    1978-01-01

    Flight simulation, both ground and in-flight, is experiencing major technological improvement and growth. The increased capabilities are providing new opportunities for support of the aircraft development process. The development of faster digital computers, improved visual displays, better motion systems and increased interest in simulation fidelity has improved the ground simulator to the point where it accomplishes a major portion of the aircraft development before work on the flight article begins. The efficiency of the ground simulator as a forecaster for the flight testing phase is becoming well established. In-flight simulation is properly being used to bridge the gap between the ground simulator and the flight test article. Simulation provides the vital link between analysis, aerodynamic tests, and subsystem tests and the flight test article. This paper describes the latest advances in flight simulation and its increasing role in the aircraft development process.

  5. Aircraft noise prediction program theoretical manual, part 1

    NASA Technical Reports Server (NTRS)

    Zorumski, W. E.

    1982-01-01

    Aircraft noise prediction theoretical methods are given. The prediction of data which affect noise generation and propagation is addressed. These data include the aircraft flight dynamics, the source noise parameters, and the propagation effects.

  6. Eclipse program QF-106 aircraft taxies at airport in Mojave, California

    NASA Technical Reports Server (NTRS)

    1997-01-01

    View of QF-106 airplane for the Eclipse project taxiing on the runway at Mojave Airport, California. In 1997 and 1998, the Dryden Flight Research Center at Edwards, California, supported and hosted a Kelly Space & Technology, Inc. project called Eclipse, which sought to demonstrate the feasibility of a reusable tow-launch vehicle concept. The project goal was to successfully tow, inflight, a modified QF-106 delta-wing aircraft with an Air Force C-141A transport aircraft. This would demonstrate the possibility of towing and launching an actual launch vehicle from behind a tow plane. Dryden was the responsible test organization and had flight safety responsibility for the Eclipse project. Dryden provided engineering, instrumentation, simulation, modification, maintenance, range support, and research pilots for the test program. The Air Force Flight Test Center (AFFTC), Edwards, California, supplied the C-141A transport aircraft and crew and configured the aircraft as needed for the tests. The AFFTC also provided the concept and detail design and analysis as well as hardware for the tow system and QF-106 modifications. Dryden performed the modifications to convert the QF-106 drone into the piloted EXD-01 (Eclipse eXperimental Demonstrator-01) experimental aircraft. Kelly Space & Technology hoped to use the results gleaned from the tow test in developing a series of low-cost, reusable launch vehicles. These tests demonstrated the validity of towing a delta-wing aircraft having high wing loading, validated the tow simulation model, and demonstrated various operational procedures, such as ground processing of in-flight maneuvers and emergency abort scenarios.

  7. Meeting the challenges with the Douglas Aircraft Company Aeroelastic Design Optimization Program (ADOP)

    NASA Technical Reports Server (NTRS)

    Rommel, Bruce A.

    1989-01-01

    An overview of the Aeroelastic Design Optimization Program (ADOP) at the Douglas Aircraft Company is given. A pilot test program involving the animation of mode shapes with solid rendering as well as wire frame displays, a complete aircraft model of a high-altitude hypersonic aircraft to test ADOP procedures, a flap model, and an aero-mesh modeler for doublet lattice aerodynamics are discussed.

  8. Development of crashworthy passenger seats for general-aviation aircraft

    NASA Technical Reports Server (NTRS)

    Reilly, M. J.; Tanner, A. E.

    1979-01-01

    Two types of energy absorbing passenger seat concepts suitable for installation in light twin-engine fixed wing aircraft were developed. An existing passenger seat for such an aircraft was used to obtain the envelope constraints. Ceiling suspended and floor supported seat concept designs were developed. A restraint system suitable for both concepts was designed. Energy absorbing hardware for both concepts was fabricated and tension and compression tests were conducted to demonstrate the stroking capability and the force deflection characteristics. Crash impact analysis was made and seat loads developed. The basic seat structures were analyzed to determine the adequacy of their strength under impact loading.

  9. An overview of V/STOL aircraft development

    NASA Technical Reports Server (NTRS)

    Anderson, S. B.

    1983-01-01

    In reviewing the years of aviation development, it can be seen that vertical-takeoff-and-landing (VTOL) flight was considered before conventional fixed-wing operations. However, it has been difficult to develop a VTOL capability. The present investigation is concerned with a review of the historical development of VTOL aircraft, taking into account lessons learned from a selected group of concepts. Attention is given to the Flying Bedsteads, the tail-sitter designs, the Air Test Vehicle (ATV) and X-14 aircraft, the SC-1, the XV-3 tilt-rotor aircraft, the VZ3-RY deflected slipstream, the X-18 tilt wing, the VZ-2 tilt wing, the VZ-4 ducted fan, the Harrier, the XV-4A (Hummingbird), the Forger, and the XV-15 advanced tilt rotor.

  10. Energy efficient engine program contributions to aircraft fuel conservation

    SciTech Connect

    Batterton, P.G.

    1984-01-01

    Significant advances in high bypass turbofan technologies that enhance fuel efficiency have been demonstrated in the NASA Energy Efficient Engine Program. This highly successful second propulsion element of the NASA Aircraft Energy Efficiency Program included major contract efforts with both General Electric and Pratt Whitney. Major results of these efforts will be presented including highlights from the NASA/General Electric E3 research turbofan engine test. Direct application of all the E3 technologies could result in fuel savings of over 18% compared to the CF6-50 and JT9D-7. Application of the E3 technologies to new and derivative engines such as the CF6-80C and PW 2037, as well as others, will be discussed. Significant portions of the fuel savings benefit for these new products can be directly related to the E3 technology program. Finally, results of a study looking at far term advanced turbofan engines will be briefly described. The study shows that substantial additional fuel savings over E3 are possible with additional turbofan technology programs.

  11. Energy efficient engine program contributions to aircraft fuel conservation

    NASA Technical Reports Server (NTRS)

    Batterton, P. G.

    1984-01-01

    Significant advances in high bypass turbofan technologies that enhance fuel efficiency have been demonstrated in the NASA Energy Efficient Engine Program. This highly successful second propulsion element of the NASA Aircraft Energy Efficiency Program included major contract efforts with both General Electric and Pratt & Whitney. Major results of these efforts will be presented including highlights from the NASA/General Electric E3 research turbofan engine test. Direct application of all the E3 technologies could result in fuel savings of over 18% compared to the CF6-50 and JT9D-7. Application of the E3 technologies to new and derivative engines such as the CF6-80C and PW 2037, as well as others, will be discussed. Significant portions of the fuel savings benefit for these new products can be directly related to the E3 technology program. Finally, results of a study looking at far term advanced turbofan engines will be briefly described. The study shows that substantial additional fuel savings over E3 are possible with additional turbofan technology programs.

  12. Air Force procedure for predicting aircraft noise around airbases: Airbase operations program (BASEOPS) description

    NASA Astrophysics Data System (ADS)

    Lee, Robert A.; Mohlman, Henry T.

    1990-01-01

    A user manual is presented for the BASEOPS 3.00 program developed by AAMRL/BBE. The installation, use and limitations of this program is described. BASEOPS is the menu driven computerized airbase operations input program used in doing airbase noise assessments under the USAF Air Installation Compatible Use Zone (AICUZ) program. BASEOPS will create a file that can be directly interfaced to the NOISEMAP 6.0 program, used to calculate the total noise exposure from these input operations. BASEOPS contains default performance profiles (takeoff and landing) for Military Transient and Civil aircraft. The program also allows the user to create a NOISEMAP input file for any subset of the input data through a Global Editing Menu. This can be used for quickly creating multiple noise analyses for different operational input scenarios.

  13. Rotor burst protection program: Statistics on aircraft gas turbine engine failures that occurred in commercial aviation during 1971

    NASA Technical Reports Server (NTRS)

    Delucia, R. A.; Mangano, G. J.

    1973-01-01

    A program to develop criteria for the design of devices that will be used on aircraft to protect passengers and the aircraft structure from the lethal and devastating fragments generated by the disintegration of a gas turbine engine rotor is discussed. Statistics on gas rotor turbine failures that have occurred in commercial aviation in 1971 are presented. It is shown that 124 rotor failures occurred and 35 of these were uncontained. This figure is considered significantly high to justify continuation of the development program.

  14. Development of metalloceramic friction materials for aircraft brake

    SciTech Connect

    Nair, C.G.K.; Dutta, D.; Mohan, G.

    1993-12-31

    The paper presents the science and technology of designing and developing complex iron and copper based metalloceramic composites for aircraft brake applications to meet diverse characteristics such as high coefficient of friction, low wear rate, high melting point, high temperature strength and hardness, high specific heat and thermal conductivity and resistance to seizure. The composition of the various ingredients and sintering parameters are optimized by statistically designed experiments. Friction test in a laboratory scale dynamometer is used to measure friction coefficient, temperature rise and wear rate. EPMA and EDAX are used for assessing uniformity of alloying of matrix and distribution of various ingredients. A variety of complex compositions have been developed to suit a number of applications as friction material for aircraft ranging from jet engine trainer, advanced fighter, civil and military transport aircraft.

  15. User's Manual for Computer Program ROTOR. [to calculate tilt-rotor aircraft dynamic characteristics

    NASA Technical Reports Server (NTRS)

    Yasue, M.

    1974-01-01

    A detailed description of a computer program to calculate tilt-rotor aircraft dynamic characteristics is presented. This program consists of two parts: (1) the natural frequencies and corresponding mode shapes of the rotor blade and wing are developed from structural data (mass distribution and stiffness distribution); and (2) the frequency response (to gust and blade pitch control inputs) and eigenvalues of the tilt-rotor dynamic system, based on the natural frequencies and mode shapes, are derived. Sample problems are included to assist the user.

  16. The wild weasel development programs, one run, one hit, one error

    NASA Astrophysics Data System (ADS)

    Stiles, Gerald J.

    1990-07-01

    Traced here are the development and upgrade programs for a specialized program, the F-4G Wild Weasel. Potential reasons why the initial development program for the aircraft succeeded, whereas the follow-on program failed, are examined.

  17. Applications of advanced transport aircraft in developing countries

    NASA Technical Reports Server (NTRS)

    Gobetz, F. W.; Assarabowski, R. J.; Leshane, A. A.

    1978-01-01

    Four representative market scenarios were studied to evaluate the relative performance of air-and surface-based transportation systems in meeting the needs of two developing contries, Brazil and Indonesia, which were selected for detailed case studies. The market scenarios were: remote mining, low-density transport, tropical forestry, and large cargo aircraft serving processing centers in resource-rich, remote areas. The long-term potential of various aircraft types, together with fleet requirements and necessary technology advances, is determined for each application.

  18. Aircraft Vortex Spacing System (AVOSS) Concept and Development

    NASA Technical Reports Server (NTRS)

    Hinton, David A.

    1997-01-01

    The AVOSS goal is to: (1) Support TAP goal of improving instrument operations capacity 12-15% while maintaining safety; (2) Provide dynamical aircraft wake vortex spacing criteria to ATC systems at capacity limited facilities with required lead time and stability for use in establishing aircraft arrival scheduling; and (3) System development and concept demonstration. The AVOSS system concept is to separate aircraft from encounters with wake vortices of an operationally unacceptable strength. In doing so, define protected corridor from outer marker to runway and predict time for vortex to clear ("Transport Time"), define operationally unacceptable wake strength and predict time to decay ("Decay Time"), combine and provide to ATC automation ("Residence Time"), and monitor safety and provide predictor feedback with wake vortex detection subsystem.

  19. Future developments in transport aircraft noise reduction technology

    SciTech Connect

    Pendley, R.E.

    1982-01-01

    During the past 13 years, important advances in the technology of aircraft noise control have resulted from industry and government research programs. Quieter commercial transport airplanes have entered the fleet and additional new designs now committed to production will begin service in a few years. This paper indicates the noise reductions that will be achieved by the quieter transports that will replace the older designs and remarks on the outlook for still quieter designs.

  20. NASA Boeing 737 Aircraft Test Results from 1996 Joint Winter Runway Friction Measurement Program

    NASA Technical Reports Server (NTRS)

    Yager, Thomas J.

    1996-01-01

    A description of the joint test program objectives and scope is given together with the performance capability of the NASA Langley B-737 instrumented aircraft. The B-737 test run matrix conducted during the first 8 months of this 5-year program is discussed with a description of the different runway conditions evaluated. Some preliminary test results are discussed concerning the Electronic Recording Decelerometer (ERD) readings and a comparison of B-737 aircraft braking performance for different winter runway conditions. Detailed aircraft parameter time history records, analysis of ground vehicle friction measurements and harmonization with aircraft braking performance, assessment of induced aircraft contaminant drag, and evaluation of the effects of other factors on aircraft/ground vehicle friction performance will be documented in a NASA Technical Report which is being prepared for publication next year.

  1. AMLCD obsolescence and the impact on military aircraft programs

    NASA Astrophysics Data System (ADS)

    Hoener, Steven J.; Wilkins, Donald F.

    2000-08-01

    When current domestic Active Matrix Liquid Crystal Display (AMLCD) sources became unavailable, prime contractors for military aircraft faced a severe problem with the sudden obsolescence of these assemblies. AMLCDs had become central to crew station design, but the only qualified North American source had failed. The problem was further complicated as several programs were beginning production, and supplies of existing, useable AMLCDs were rapidly being depleted. Solutions to the availability of AMLCDs had to be found quickly. The F/A - 18E/F program faced a unique situation in that three different displays, manufactured by two different suppliers, were affected by the loss of the AMLCD source. Both of the suppliers, for various technical and programmatic reasons, chose different approaches to the crisis. The advantages and disadvantages of each approach are examined in this paper. In addition, Boeing has formed a Displays Process Action Team (DPAT) to examine whether or not it is possible to use common displays across the Company's diverse product lines.

  2. The NASA aircraft noise prediction program improved propeller analysis system

    NASA Technical Reports Server (NTRS)

    Nguyen, L. Cathy

    1991-01-01

    The improvements and the modifications of the NASA Aircraft Noise Prediction Program (ANOPP) and the Propeller Analysis System (PAS) are described. Comparisons of the predictions and the test data are included in the case studies for the flat plate model in the Boundary Layer Module, for the effects of applying compressibility corrections to the lift and pressure coefficients, for the use of different weight factors in the Propeller Performance Module, for the use of the improved retarded time equation solution, and for the effect of the number grids in the Transonic Propeller Noise Module. The DNW tunnel test data of a propeller at different angles of attack and the Dowty Rotol data are compared with ANOPP predictions. The effect of the number of grids on the Transonic Propeller Noise Module predictions and the comparison of ANOPP TPN and DFP-ATP codes are studied. In addition to the above impact studies, the transonic propeller noise predictions for the SR-7, the UDF front rotor, and the support of the enroute noise test program are included.

  3. Review of the FOCSI (Fiber Optic Control System Integration) program. [applications in aircraft flight control

    NASA Technical Reports Server (NTRS)

    Baumbick, Robert

    1991-01-01

    A joint NASA/NAVY program, called FOCSI, is reviewed which is aimed at designing optical sensor systems to fit the installation and environmentally test passive optical sensors and electrooptic architectures. These optical sensor systems will be flown on an F18 aircraft to collect data on the operability and maintainability of these systems in a flight environment. The NASA F-18 aircraft will be equipped with a 1773 optical databus to transfer the optical sensor information to the aircraft data collection location.

  4. Small transport aircraft technology

    NASA Technical Reports Server (NTRS)

    Williams, L. J.

    1983-01-01

    Information on commuter airline trends and aircraft developments is provided to upgrade the preliminary findings of a NASA-formed small transport aircraft technology (STAT) team, established to determine whether the agency's research and development programs could help commuter aircraft manufacturers solve technical problems related to passenger acceptance and use of 19- to 50-passenger aircraft. The results and conclusions of the full set of completed STAT studies are presented. These studies were performed by five airplane manufacturers, five engine manufacturers, and two propeller manufacturers. Those portions of NASA's overall aeronautics research and development programs which are applicable to commuter aircraft design are summarized. Areas of technology that might beneficially be expanded or initiated to aid the US commuter aircraft manufacturers in the evolution of improved aircraft for the market are suggested.

  5. Stratified charge rotary aircraft engine technology enablement program

    NASA Technical Reports Server (NTRS)

    Badgley, P. R.; Irion, C. E.; Myers, D. M.

    1985-01-01

    The multifuel stratified charge rotary engine is discussed. A single rotor, 0.7L/40 cu in displacement, research rig engine was tested. The research rig engine was designed for operation at high speeds and pressures, combustion chamber peak pressure providing margin for speed and load excursions above the design requirement for a high is advanced aircraft engine. It is indicated that the single rotor research rig engine is capable of meeting the established design requirements of 120 kW, 8,000 RPM, 1,379 KPA BMEP. The research rig engine, when fully developed, will be a valuable tool for investigating, advanced and highly advanced technology components, and provide an understanding of the stratified charge rotary engine combustion process.

  6. Wind tunnel technology for the development of future commercial aircraft

    NASA Technical Reports Server (NTRS)

    Szodruch, J.

    1986-01-01

    Requirements for new technologies in the area of civil aircraft design are mainly related to the high cost involved in the purchase of modern, fuel saving aircraft. A second important factor is the long term rise in the price of fuel. The demonstration of the benefits of new technologies, as far as these are related to aerodynamics, will,for the foreseeable future, still be based on wind tunnel measurements. Theoretical computation methods are very successfully used in design work, wing optimization, and an estimation of the Reynolds number effect. However, wind tunnel tests are still needed to verify the feasibility of the considered concepts. Along with other costs, the cost for the wind tunnel tests needed for the development of an aircraft is steadily increasing. The present investigation is concerned with the effect of numerical aerodynamics and civil aircraft technology on the development of wind tunnels. Attention is given to the requirements for the wind tunnel, investigative methods, measurement technology, models, and the relation between wind tunnel experiments and theoretical methods.

  7. Some historical trends in the research and development of aircraft

    NASA Technical Reports Server (NTRS)

    Spearman, M. L.

    1983-01-01

    A survey of some trends in aircraft design was made in an effort to determine the relation between research, development, test, and evaluation (RDT and E) and aircraft mission capability, requirements, and objectives. Driving forces in the history of aircraft include the quest for speed which involved design concepts incorporating jet propulsion systems and low drag features. The study of high speed design concepts promoted new experimental and analytical research techniques. These research techniques, in turn, have lead to concepts offering new performance potential. Design trends were directed toward increased speed, efficiency, productivity, and safety. Generally speaking, the research and development effort has been evolutionary in nature and, with the exception of the transition to supersonic flight, little has occurred since the origin of flight that has drastically changed the basic design fundamentals of aircraft. However, this does not preclude the possibility of dramatic changes in the future since the products of research are frequently unpredictable. Advances should be expected and sought in improved aerodynamics (reduced drag, enhanced lift, flow field exploitation); propulsion (improved engine cycles, multimode engines, alternate fuels, alternate power sources); structures (new materials, manufacturing techniques); all with a view toward increased efficiency and utility.

  8. Aircraft noise prediction program theoretical manual, part 2

    NASA Technical Reports Server (NTRS)

    Zorumski, W. E.

    1982-01-01

    Detailed prediction methods for specific aircraft noise sources are given. These sources are airframe noise, combustion noise, fan noise, single and dual stream jet noise, and turbine noise. Modifications to the NASA methods which comply with the International Civil Aviation Organization standard method for aircraft noise prediction are given.

  9. Aircraft noise prediction program theoretical manual, part 2

    NASA Astrophysics Data System (ADS)

    Zorumski, W. E.

    1982-02-01

    Detailed prediction methods for specific aircraft noise sources are given. These sources are airframe noise, combustion noise, fan noise, single and dual stream jet noise, and turbine noise. Modifications to the NASA methods which comply with the International Civil Aviation Organization standard method for aircraft noise prediction are given.

  10. Development of Advanced Methods of Structural and Trajectory Analysis for Transport Aircraft

    NASA Technical Reports Server (NTRS)

    Ardema, Mark D.

    1996-01-01

    In this report the author describes: (1) development of advanced methods of structural weight estimation, and (2) development of advanced methods of flight path optimization. A method of estimating the load-bearing fuselage weight and wing weight of transport aircraft based on fundamental structural principles has been developed. This method of weight estimation represents a compromise between the rapid assessment of component weight using empirical methods based on actual weights of existing aircraft and detailed, but time-consuming, analysis using the finite element method. The method was applied to eight existing subsonic transports for validation and correlation. Integration of the resulting computer program, PDCYL, has been made into the weights-calculating module of the AirCraft SYNThesis (ACSYNT) computer program. ACSYNT bas traditionally used only empirical weight estimation methods; PDCYL adds to ACSYNT a rapid, accurate means of assessing the fuselage and wing weights of unconventional aircraft. PDCYL also allows flexibility in the choice of structural concept, as well as a direct means of determining the impact of advanced materials on structural weight.

  11. Users Guide for NASA Lewis Research Center DC-9 Reduced-Gravity Aircraft Program

    NASA Technical Reports Server (NTRS)

    Neumann, Eric S.; Withrow, James P.; Yaniec, John S.

    1996-01-01

    The document provides guidelines and information for users of the DC-9 Reduced-Gravity Aircraft Program. It describes the facilities, requirements for test personnel, equipment design and installation, mission preparation, and in-flight procedures. Those who have used the KC-135 reduced-gravity aircraft will recognize that many of the procedures and guidelines are the same.

  12. Computer program to predict noise of general aviation aircraft: User's guide

    NASA Technical Reports Server (NTRS)

    Mitchell, J. A.; Barton, C. K.; Kisner, L. S.; Lyon, C. A.

    1982-01-01

    Program NOISE predicts General Aviation Aircraft far-field noise levels at FAA FAR Part 36 certification conditions. It will also predict near-field and cabin noise levels for turboprop aircraft and static engine component far-field noise levels.

  13. Development of thermoplastic composite aircraft structures

    NASA Technical Reports Server (NTRS)

    Renieri, Michael P.; Burpo, Steven J.; Roundy, Lance M.; Todd, Stephanie A.; Kim, H. J.

    1992-01-01

    Efforts focused on the use of thermoplastic composite materials in the development of structural details associated with an advanced fighter fuselage section with applicability to transport design. In support of these designs, mechanics developments were conducted in two areas. First, a dissipative strain energy approach to material characterization and failure prediction, developed at the Naval Research Laboratory, was evaluated as a design/analysis tool. Second, a finite element formulation for thick composites was developed and incorporated into a lug analysis method which incorporates pin bending effects. Manufacturing concepts were developed for an upper fuel cell cover. A detailed trade study produced two promising concepts: fiber placement and single-step diaphragm forming. Based on the innovative design/manufacturing concepts for the fuselage section primary structure, elements were designed, fabricated, and structurally tested. These elements focused on key issues such as thick composite lugs and low cost forming of fastenerless, stiffener/moldine concepts. Manufacturing techniques included autoclave consolidation, single diaphragm consolidation (SDCC) and roll-forming.

  14. Atmospheric effects of stratospheric aircraft - A status report from NASA's High-Speed Research Program

    NASA Technical Reports Server (NTRS)

    Wesoky, Howard L.; Prather, Michael J.

    1991-01-01

    Studies have indicated that, with sufficient technology development, future high-speed civil transport aircraft could be economically competitive with long-haul subsonic aircraft. However, uncertainty about atmospheric pollution, along with community noise and sonic boom, continues to be a major concern which is being addressed in the planned six-year High-Speed Research Program begun in 1990. Building on NASA's research in atmospheric science and emissions reduction, current analytical predictions indicate that an operating range may exist at altitudes below 20 km (i.e., corresponding to a cruise Mach number of approximately 2.4) where the goal level of 5 gm equivalent NO2 emissions/kg fuel will deplete less than one percent of column ozone. Because it will not be possible to directly measure the impact of an aircraft fleet on the atmosphere, the only means of assessment will be prediction. The process of establishing credibility for the predicted effects will likely be complex and involve continued model development and testing against climatological patterns. In particular, laboratory simulation of heterogeneous chemistry and other effects, and direct measurements of well understood tracers in the troposphere and stratosphere are being used to improve the current models.

  15. Predicting Aircraft Noise Levels

    NASA Technical Reports Server (NTRS)

    Clark, B. J.

    1983-01-01

    Computer program developed for predicting aircraft noise levels either in flight or in ground tests. Noise sources include fan inlet and exhaust jet flap (for powered lift), core (combustor), turbine and airframe. Program written in FORTRAN IV.

  16. PRSEUS Development for the Hybrid Wing Body Aircraft

    NASA Technical Reports Server (NTRS)

    Velicki, Alex; Jegley, Dawn

    2011-01-01

    NASA has created the Environmentally Responsible Aviation (ERA) Project to explore and document the feasibility, benefits and technical risk of advanced vehicle configurations and enabling technologies that will reduce the impact of aviation on the environment. A critical aspect of this pursuit is the development of a lighter, more robust airframe that will enable the introduction of unconventional aircraft configurations that have higher lift to drag ratios, reduced drag, and lower community noise. The primary structural concept being developed for the Hybrid Wing Body aircraft design under the ERA project in the Airframe Technology element is the PRSEUS concept. This paper describes how researchers at NASA and Boeing are working together to develop fundamental PRSEUS technologies that could someday be implemented on a transport size HWB airplane design.

  17. Inlet, engine, airframe controls integration development for supercruising aircraft

    NASA Technical Reports Server (NTRS)

    Houchard, J. H.; Carlin, C. M.; Tjonneland, E.

    1983-01-01

    In connection with a consideration of advanced military aircraft systems, attention is given to research for improving the technology of the design of supersonic cruise aircraft. Syberg et al. (1981) have shown that an analytic design method is now available to accurately predict the flow characteristics of axisymmetric supersonic inlets, including off-design angle of attack operation. On the basis of information regarding the inlet flow characteristics, the control system designer can begin the inlet design and development, before wind tunnel testing has begun. The present investigation is concerned with details and status of inlet control technology. A detailed representation of a supersonic propulsion system is developed. This development demonstrates the feasibility of the selected hybrid computational concept.

  18. U.S. Supersonic Commercial Aircraft: Assessing NASA's High Speed Research Program

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The legislatively mandated objectives of the National Aeronautics and Space Administration (NASA) include "the improvement of the usefulness, performance, speed, safety, and efficiency of aeronautical and space vehicles" and "preservation of the United States' preeminent position in aeronautics and space through research and technology development related to associated manufacturing processes." Most of NASA's activities are focused on the space-related aspects of these objectives. However, NASA also conducts important work related to aeronautics. NASA's High Speed Research (HSR) Program is a focused technology development program intended to enable the commercial development of a high speed (i.e., supersonic) civil transport (HSCT). However, the HSR Program will not design or test a commercial airplane (i.e., an HSCT); it is industry's responsibility to use the results of the HSR Program to develop an HSCT. An HSCT would be a second generation aircraft with much better performance than first generation supersonic transports (i.e., the Concorde and the Soviet Tu-144). The HSR Program is a high risk effort: success requires overcoming many challenging technical problems involving the airframe, propulsion system, and integrated aircraft. The ability to overcome all of these problems to produce an affordable HSCT is far from certain. Phase I of the HSR Program was completed in fiscal year 1995; it produced critical information about the ability of an HSCT to satisfy environmental concerns (i-e., noise and engine emissions). Phase II (the final phase according to current plans) is scheduled for completion in 2002. Areas of primary emphasis are propulsion, airframe materials and structures, flight deck systems, aerodynamic performance, and systems integration.

  19. NASA-UVa light aerospace alloy and structures technology program supplement: Aluminum-based materials for high speed aircraft

    NASA Technical Reports Server (NTRS)

    Starke, E. A., Jr. (Editor)

    1995-01-01

    This report on the NASA-UVa light aerospace alloy and structure technology program supplement: Aluminum-Based Materials for High Speed Aircraft covers the period from July 1, 1992. The objective of the research is to develop aluminum alloys and aluminum matrix composites for the airframe which can efficiently perform in the HSCT environment for periods as long as 60,000 hours (certification for 120,000 hours) and, at the same time, meet the cost and weight requirements for an economically viable aircraft. Current industry baselines focus on flight at Mach 2.4. The research covers four major materials systems: (1) Ingot metallurgy 2XXX, 6XXX, and 8XXX alloys, (2) Powder metallurgy 2XXX alloys, (3) Rapidly solidified, dispersion strengthened Al-Fe-X alloys, and (4) Discontinuously reinforced metal matrix composites. There are ten major tasks in the program which also include evaluation and trade-off studies by Boeing and Douglas aircraft companies.

  20. Historical development of worldwide supersonic aircraft

    NASA Technical Reports Server (NTRS)

    Spearman, M. L.

    1983-01-01

    Some major milestones in the progression of airplane speeds from subsonic to supersonic are traced. Historical background is included on work done prior to the Twentieth Century, but the major emphasis is on the Twentieth Century developments after the man carrying airplane became a practical reality. The techniques of increasing airplane speed revolve around means of increasing the propulsive force and means of reducing the airframe resistance (drag). With the changes in speed, the attendant changes in flow patterns due to the compressibility of air introduce some aerodynamic problems. In addition, geometric changes introduced to combat the effects of compressibility also promote aerodynamic problems. Some of the solutions to these problems are illustrated, and many design features that evolved are discussed.

  1. EOS Aqua AMSR-E Arctic Sea Ice Validation Program: Arctic2003 Aircraft Campaign Flight Report

    NASA Technical Reports Server (NTRS)

    Cavalieri, D. J.; Markus,T.

    2003-01-01

    In March 2003 a coordinated Arctic sea ice validation field campaign using the NASA Wallops P-3B aircraft was successfully completed. This campaign was part of the program for validating the Earth Observing System (EOS) Aqua Advanced Microwave Scanning Radiometer (AMSR-E) sea ice products. The AMSR-E, designed and built by the Japanese National Space Development Agency for NASA, was launched May 4, 2002 on the EOS Aqua spacecraft. The AMSR-E sea ice products to be validated include sea ice concentration, sea ice temperature, and snow depth on sea ice. This flight report describes the suite of instruments flown on the P-3, the objectives of each of the seven flights, the Arctic regions overflown, and the coordination among satellite, aircraft, and surface-based measurements. Two of the seven aircraft flights were coordinated with scientists making surface measurements of snow and ice properties including sea ice temperature and snow depth on sea ice at a study area near Barrow, AK and at a Navy ice camp located in the Beaufort Sea. Two additional flights were dedicated to making heat and moisture flux measurements over the St. Lawrence Island polynya to support ongoing air-sea-ice processes studies of Arctic coastal polynyas. The remaining flights covered portions of the Bering Sea ice edge, the Chukchi Sea, and Norton Sound.

  2. 78 FR 18932 - Public Meeting: Unmanned Aircraft Systems Test Site Program; Privacy Approach

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-28

    ... the Federal Register on February 22, 2013 (78 FR 12259), Docket No. FAA-2013-0061. In that document... operation of unmanned aircraft systems within the test site program (78 FR 12259). The proposed...

  3. Users Guide for NASA Lewis Research Center DC-9 Reduced-Gravity Aircraft Program

    NASA Technical Reports Server (NTRS)

    Yaniec, John S.

    1995-01-01

    The document provides guidelines and information for users of the DC-9 Reduced-Gravity Aircraft Program. It describes the facilities, requirements for test personnel, equipment design and installation, mission preparation, and in-flight procedures. Those who have used the KC-135 reduced-gravity aircraft will recognize that many of the procedures and guidelines are the same, to ensure a commonality between the DC-9 and KC-135 programs.

  4. LFC leading edge glove flight: Aircraft modification design, test article development and systems integration

    NASA Technical Reports Server (NTRS)

    Etchberger, F. R.

    1983-01-01

    Reduction of skin friction drag by suction of boundary layer air to maintain laminar flow has been known since Prandtl's published work in 1904. The dramatic increases in fuel costs and the potential for periods of limited fuel availability provided the impetus to explore technologies to reduce transport aircraft fuel consumption. NASA sponsored the Aircraft Energy Efficiency (ACEE) program in 1976 to develop technologies to improve fuel efficiency. This report documents the Lockheed-Georgia Company accomplishments in designing and fabricating a leading-edge flight test article incorporating boundary layer suction slots to be flown by NASA on their modified JetStar aircraft. Lockheed-Georgia Company performed as the integration contractor to design the JetStar aircraft modification to accept both a Lockheed and a McDonnell Douglas flight test article. McDonnell Douglas uses a porous skin concept. The report describes aerodynamic analyses, fabrication techniques, JetStar modifications, instrumentation requirements, and structural analyses and testing for the Lockheed test article. NASA will flight test the two LFC leading-edge test articles in a simulated commercial environment over a 6 to 8 month period in 1984. The objective of the flight test program is to evaluate the effectiveness of LFC leading-edge systems in reducing skin friction drag and consequently improving fuel efficiency.

  5. Systems Analysis Developed for All-Electric Aircraft Propulsion

    NASA Technical Reports Server (NTRS)

    Kohout, Lisa L.

    2004-01-01

    There is a growing interest in the use of fuel cells as a power source for all-electric aircraft propulsion as a means to substantially reduce or eliminate environmentally harmful emissions. Among the technologies under consideration for these concepts are advanced proton exchange membrane (PEM) and solid oxide fuel cells (SOFCs), alternative fuels and fuel processing, and fuel storage. A multidisciplinary effort is underway at the NASA Glenn Research Center to develop and evaluate concepts for revolutionary, nontraditional fuel cell power and propulsion systems for aircraft applications. As part of this effort, system studies are being conducted to identify concepts with high payoff potential and associated technology areas for further development. To support this effort, a suite of component models was developed to estimate the mass, volume, and performance for a given system architecture. These models include a hydrogen-air PEM fuel cell; an SOFC; balance-of-plant components (compressor, humidifier, separator, and heat exchangers); compressed gas, cryogenic, and liquid fuel storage tanks; and gas turbine/generator models for hybrid system applications. First-order feasibility studies were completed for an all-electric personal air vehicle utilizing a fuel-cell-powered propulsion system. A representative aircraft with an internal combustion engine was chosen as a baseline to provide key parameters to the study, including engine power and subsystem mass, fuel storage volume and mass, and aircraft range. The engine, fuel tank, and associated ancillaries were then replaced with a fuel cell subsystem. Various configurations were considered including a PEM fuel cell with liquid hydrogen storage, a direct methanol PEM fuel cell, and a direct internal reforming SOFC/turbine hybrid system using liquid methane fuel. Each configuration was compared with the baseline case on a mass and range basis.

  6. User's guide for a computer program for calculating the zero-lift wave drag of complex aircraft configurations

    NASA Technical Reports Server (NTRS)

    Craidon, C. B.

    1983-01-01

    A computer program was developed to extend the geometry input capabilities of previous versions of a supersonic zero lift wave drag computer program. The arbitrary geometry input description is flexible enough to describe almost any complex aircraft concept, so that highly accurate wave drag analysis can now be performed because complex geometries can be represented accurately and do not have to be modified to meet the requirements of a restricted input format.

  7. A FORTRAN program for determining aircraft stability and control derivatives from flight data

    NASA Technical Reports Server (NTRS)

    Maine, R. E.; Iliff, K. W.

    1975-01-01

    A digital computer program written in FORTRAN IV for the estimation of aircraft stability and control derivatives is presented. The program uses a maximum likelihood estimation method, and two associated programs for routine, related data handling are also included. The three programs form a package that can be used by relatively inexperienced personnel to process large amounts of data with a minimum of manpower. This package was used to successfully analyze 1500 maneuvers on 20 aircraft, and is designed to be used without modification on as many types of computers as feasible. Program listings and sample check cases are included.

  8. Development of fire resistant, nontoxic aircraft interior materials

    NASA Technical Reports Server (NTRS)

    Haley, G.; Silverman, B.; Tajima, Y.

    1976-01-01

    All available newly developed nonmetallic polymers were examined for possible usage in developing fire resistant, nontoxic nonmetallic parts or assemblies for aircraft interiors. Specifically, feasibility for the development of clear films for new decorative laminates, compression moldings, injection molded parts, thermoformed plastic parts, and flexible foams were given primary considerations. Preliminary data on the flame resistant characteristics of the materials were obtained. Preliminary toxicity data were generated from samples of materials submitted from the contractor. Preliminary data on the physical characteristics of various thermoplastic materials to be considered for either compression molded, injection molded, or thermoformed parts were obtained.

  9. Development and utilization of composite honeycomb and solid laminate reference standards for aircraft inspections.

    SciTech Connect

    Roach, Dennis Patrick; Rackow, Kirk A.

    2004-06-01

    The FAA's Airworthiness Assurance NDI Validation Center, in conjunction with the Commercial Aircraft Composite Repair Committee, developed a set of composite reference standards to be used in NDT equipment calibration for accomplishment of damage assessment and post-repair inspection of all commercial aircraft composites. In this program, a series of NDI tests on a matrix of composite aircraft structures and prototype reference standards were completed in order to minimize the number of standards needed to carry out composite inspections on aircraft. Two tasks, related to composite laminates and non-metallic composite honeycomb configurations, were addressed. A suite of 64 honeycomb panels, representing the bounding conditions of honeycomb construction on aircraft, was inspected using a wide array of NDI techniques. An analysis of the resulting data determined the variables that play a key role in setting up NDT equipment. This has resulted in a set of minimum honeycomb NDI reference standards that include these key variables. A sequence of subsequent tests determined that this minimum honeycomb reference standard set is able to fully support inspections over the full range of honeycomb construction scenarios found on commercial aircraft. In the solid composite laminate arena, G11 Phenolic was identified as a good generic solid laminate reference standard material. Testing determined matches in key velocity and acoustic impedance properties, as well as, low attenuation relative to carbon laminates. Furthermore, comparisons of resonance testing response curves from the G11 Phenolic NDI reference standard was very similar to the resonance response curves measured on the existing carbon and fiberglass laminates. NDI data shows that this material should work for both pulse-echo (velocity-based) and resonance (acoustic impedance-based) inspections.

  10. Final report on development of Pulse Arrested Spark Discharge (PASD) for aging aircraft wiring application

    SciTech Connect

    Lockner, Thomas Ramsbeck; Howard, R. Kevin; Pena, Gary Edward; Schneider, Larry X.; Higgins, Matthew B.; Glover, Steven Frank

    2006-09-01

    Pulsed Arrested Spark Discharge (PASD) is a Sandia National Laboratories Patented, non-destructive wiring system diagnostic that has been developed to detect defects in aging wiring systems in the commercial aircraft fleet. PASD was previously demonstrated on relatively controlled geometry wiring such as coaxial cables and shielded twisted-pair wiring through a contract with the U.S. navy and is discussed in a Sandia National Laboratories report, SAND2001-3225 ''Pulsed Arrested Spark Discharge (PASD) Diagnostic Technique for the Location of Defects in Aging Wiring Systems''. This report describes an expansion of earlier work by applying the PASD technique to unshielded twisted-pair and discrete wire configurations commonly found in commercial aircraft. This wiring is characterized by higher impedances as well as relatively non-uniform impedance profiles that have been found to be challenging for existing aircraft wiring diagnostics. Under a three year contract let by the Federal Aviation Administration, Interagency Agreement DTFA-03-00X90019, this technology was further developed for application on aging commercial aircraft wiring systems. This report describes results of the FAA program with discussion of previous work conducted under U.S. Department of Defense funding.

  11. Tilt-proprotor perspective. [VTOL aircraft characteristics and development

    NASA Technical Reports Server (NTRS)

    Few, D. D.; Edenborough, H. K.

    1977-01-01

    The general tilt-proprotor concept is discussed, and a more detailed look at the XV-15 aircraft is taken. The special features of the two-engine system, engine control system, and flight control system are mentioned. The main objectives of the XV-15 program are to (1) verify rotor/pylon/wing/dynamic stability and aircraft performance over a representative operational envelope, (2) assess the handling qualities and establish a safe operating envelope, and (3) investigate gust sensitivity, effects of downwash, and hover operation. With regard to rotor/pylon stability, one challenge is to be able to predict a parameter's value and then build hardware to match. The analytical program has gained some respect through aeroelastic and full-scale XV-3 demonstrations. Special concern centers around the thrust and power management system when flying at high speed when very small changes in rotor collective pitch represent large changes in thrust and power. Demonstration of the system awaits wind-tunnel and flight testing.

  12. Mathematical model for lift/cruise fan V/STOL aircraft simulator programming data

    NASA Technical Reports Server (NTRS)

    Bland, M. P.; Fajfar, B.; Konsewicz, R. K.

    1976-01-01

    Simulation data are reported for the purpose of programming the flight simulator for advanced aircraft for tests of the lift/cruise fan V/STOL Research Technology Aircraft. These simulation tests are to provide insight into problem areas which are encountered in operational use of the aircraft. A mathematical model is defined in sufficient detail to represent all the necessary pertinent aircraft and system characteristics. The model includes the capability to simulate two basic versions of an aircraft propulsion system: (1) the gas coupled configuration which uses insulated air ducts to transmit power between gas generators and fans in the form of high energy engine exhaust and (2) the mechanically coupled power system which uses shafts, clutches, and gearboxes for power transmittal. Both configurations are modeled such that the simulation can include vertical as well as rolling takeoff and landing, hover, powered lift flight, aerodynamic flight, and the transition between powered lift and aerodynamic flight.

  13. Aircraft wire system laboratory development : phase I progress report.

    SciTech Connect

    Dinallo, Michael Anthony; Lopez, Christopher D.

    2003-08-01

    An aircraft wire systems laboratory has been developed to support technical maturation of diagnostic technologies being used in the aviation community for detection of faulty attributes of wiring systems. The design and development rationale of the laboratory is based in part on documented findings published by the aviation community. The main resource at the laboratory is a test bed enclosure that is populated with aged and newly assembled wire harnesses that have known defects. This report provides the test bed design and harness selection rationale, harness assembly and defect fabrication procedures, and descriptions of the laboratory for usage by the aviation community.

  14. Development of assembly techniques for fire resistant aircraft interior panels

    NASA Technical Reports Server (NTRS)

    Lee, S. C. S.

    1978-01-01

    Ten NASA Type A fire resistant aircraft interior panels were fabricated and tested to develop assembly techniques. These techiques were used in the construction of a full scale lavatory test structure for flame propagation testing. The Type A panel is of sandwich construction consisting of Nomex honeycomb filled with quinone dioxime foam, and bismaleimide/glass face sheets bonded to the core with polyimide film adhesive. The materials selected and the assembly techniques developed for the lavatory test structure were designed for obtaining maximum fire containment with minimum smoke and toxic emission.

  15. Touchdown: The Development of Propulsion Controlled Aircraft at NASA Dryden

    NASA Technical Reports Server (NTRS)

    Tucker, Tom

    1999-01-01

    This monograph relates the important history of the Propulsion Controlled Aircraft project at NASA's Dryden Flight Research Center. Spurred by a number of airplane crashes caused by the loss of hydraulic flight controls, a NASA-industry team lead by Frank W. Burcham and C. Gordon Fullerton developed a way to land an aircraft safely using only engine thrust to control the airplane. In spite of initial skepticism, the team discovered that, by manually manipulating an airplane's thrust, there was adequate control for extended up-and-away flight. However, there was not adequate control precision for safe runway landings because of the small control forces, slow response, and difficulty in damping the airplane phugoid and Dutch roll oscillations. The team therefore conceived, developed, and tested the first computerized Propulsion Controlled Aircraft (PCA) system. The PCA system takes pilot commands, uses feedback from airplane measurements, and computes commands for the thrust of each engine, yielding much more precise control. Pitch rate and velocity feedback damp the phugoid oscillation, while yaw rate feedback damps the Dutch roll motion. The team tested the PCA system in simulators and conducted flight research in F-15 and MD-11 airplanes. Later, they developed less sophisticated variants of PCA called PCA Lite and PCA Ultralite to make the system cheaper and therefore more attractive to industry. This monograph tells the PCA story in a non- technical way with emphasis on the human aspects of the engineering and flic,ht-research effort. It thereby supplements the extensive technical literature on PCA and makes the development of this technology accessible to a wide audience.

  16. Development of 2 underseat energy absorbers for application to crashworthy passenger seats for general aviation aircraft

    NASA Technical Reports Server (NTRS)

    Warrick, J. C.; Desjardins, S. P.

    1979-01-01

    This report presents the methodology and results of a program conducted to develop two underseat energy absorber (E/A) concepts for application to nonadjustable crashworthy passenger seats for general aviation aircraft. One concept utilizes an inflated air bag, and the other, a convoluted sheet metal bellows. Prototypes of both were designed, built, and tested. Both concepts demonstrated the necessary features of an energy absorber (load-limiter); however, the air bag concept is particularly encouraging because of its light weight. Several seat frame concepts also were investigated as a means of resisting longitudinal and lateral loads and of guiding the primary vertical stroke of the underseat energy absorber. Further development of a seat system design using the underseat energy absorbers is recommended because they provide greatly enhanced crash survivability as compared with existing general aviation aircraft seats.

  17. Guidelines for Program Development.

    ERIC Educational Resources Information Center

    Manitoba Dept. of Education and Training, Winnipeg. Literacy and Continuing Education Branch.

    This guide, which is intended to assist developers of community-based adult literacy programs in Manitoba, explains the following components of good programming and presents suggestions for integrating them into literacy provision: community outreach, program development, learner involvement, provision of appropriate staffing, use of volunteers,…

  18. Staff Development Program Evaluation.

    ERIC Educational Resources Information Center

    Ashur, Nina E.; And Others

    An evaluation of the staff development program at College of the Canyons (California) was conducted in 1991 to provide information applicable to program improvement. Questionnaires were distributed to all faculty, classified staff, and flexible calendar program committee and staff development advisory committee members, resulting in response rates…

  19. EGADS: A microcomputer program for estimating the aerodynamic performance of general aviation aircraft

    NASA Technical Reports Server (NTRS)

    Melton, John E.

    1994-01-01

    EGADS is a comprehensive preliminary design tool for estimating the performance of light, single-engine general aviation aircraft. The software runs on the Apple Macintosh series of personal computers and assists amateur designers and aeronautical engineering students in performing the many repetitive calculations required in the aircraft design process. The program makes full use of the mouse and standard Macintosh interface techniques to simplify the input of various design parameters. Extensive graphics, plotting, and text output capabilities are also included.

  20. Aircraft operations management manual

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The NASA aircraft operations program is a multifaceted, highly diverse entity that directly supports the agency mission in aeronautical research and development, space science and applications, space flight, astronaut readiness training, and related activities through research and development, program support, and mission management aircraft operations flights. Users of the program are interagency, inter-government, international, and the business community. This manual provides guidelines to establish policy for the management of NASA aircraft resources, aircraft operations, and related matters. This policy is an integral part of and must be followed when establishing field installation policy and procedures covering the management of NASA aircraft operations. Each operating location will develop appropriate local procedures that conform with the requirements of this handbook. This manual should be used in conjunction with other governing instructions, handbooks, and manuals.

  1. Propulsion. [NASA program for aircraft fuel consumption reduction

    NASA Technical Reports Server (NTRS)

    Nored, D. L.

    1978-01-01

    NASA aims at developing propulsion technology to reduce the fuel consumption of present engines by 5%, that of new engines of the late 1980s by at least 12%, and that of an advanced early 1990s turboprop by an additional 15%. This paper reviews three separate NASA programs which take up these aims. They are, respectively, Engine Component Improvement, Energy Efficient Engine, and Advanced Turboprops.

  2. Assessment System for Aircraft Noise (ASAN): Development of alpha-test prototype system software

    NASA Astrophysics Data System (ADS)

    Reddingius, Nicholaas H.; Smyth, John S.

    1990-02-01

    The Alpha-Test version of the Assessment System for Aircraft Noise (ASAN) is described. ASAN was developed for the United States Air Force's Noise and Sonic Boom Impact Technology Advanced Development Program Office (NSBIT ADPO). The Purpose of ASAN is to provide Air Force route and environmental planners with a set of tools for preparing the noise portion of environmental impact statements (EIS), environmental assessments (EA), and findings of no significant impact (FONSI). ASAN provides a consistent set of procedures and models which represent the current state-of-the-art in noise engineering practice. A brief overview is given of the technical issues of developing the ASAN system.

  3. Analytic development of improved supersonic cruise aircraft based on wind tunnel data

    NASA Technical Reports Server (NTRS)

    Roensch, R. L.; Page, G. S.

    1980-01-01

    Data obtained from the MDC/NASA cooperative wing tunnel program were used to develop empirical corrections to theory. These methods were then used to develop a 2.2M supersonic cruise aircraft configuration with a cruise trimmed maximum L/D of 10.2. The empirical corrections to the theory are reviewed, and the configuration alternatives examined in the development of the configuration are presented. The benefits of designing for optimum trimmed performance, including the effects of the nacelles, are discussed.

  4. Examination of the costs, benefits and enery conservation aspects of the NASA aircraft fuel conservation technology program

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The costs and benefits of the NASA Aircraft Fuel Conservation Technology Program are discussed. Consideration is given to a present worth analysis of the planned program expenditures, an examination of the fuel savings to be obtained by the year 2005 and the worth of this fuel savings relative to the investment required, a comparison of the program funding with that planned by other Federal agencies for energy conservation, an examination of the private industry aeronautical research and technology financial posture for the period FY 76 - FY 85, and an assessment of the potential impacts on air and noise pollution. To aid in this analysis, a computerized fleet mix forecasting model was developed. This model enables the estimation of fuel consumption and present worth of fuel expenditures for selected commerical aircraft fleet mix scenarios.

  5. The development of a parachute system for aerial delivery from high speed cargo aircraft

    SciTech Connect

    Behr, V.L.

    1992-12-31

    Supply of military personnel on the ground with cargo has long been accomplished with parachute delivery systems from aircraft. Structural limits of aircraft have typically limited these operations to no more than 150 KCAS. A desire for increased survivability of cargo delivery aircraft has led to the development and fielding of aircraft capable of delivering cargo at substantially higher speeds. This paper describes efforts undertaken to design develop and test a cargo delivery system for use at speeds compatible with those high speed cargo aircraft.

  6. The development of a parachute system for aerial delivery from high speed cargo aircraft

    SciTech Connect

    Behr, V.L.

    1992-01-01

    Supply of military personnel on the ground with cargo has long been accomplished with parachute delivery systems from aircraft. Structural limits of aircraft have typically limited these operations to no more than 150 KCAS. A desire for increased survivability of cargo delivery aircraft has led to the development and fielding of aircraft capable of delivering cargo at substantially higher speeds. This paper describes efforts undertaken to design develop and test a cargo delivery system for use at speeds compatible with those high speed cargo aircraft.

  7. CAP-TSD: A program for unsteady transonic analysis of realistic aircraft configurations

    NASA Technical Reports Server (NTRS)

    Batina, John T.; Seidel, David A.; Bland, Samuel R.; Bennett, Robert M.

    1989-01-01

    The development of a new transonic code to predict unsteady flows about realistic aircraft configurations are described. An approximate factorization algorithm for solution of the unsteady transonic small disturbance equation is first described. Because of the superior stability characteristics of the AF algorithm, a new transonic aeroelasticity code was developed which is described in some detail. The new code was very easy to modify to include the additional aircraft components, so in a very short period of time the code was developed to treat complete aircraft configurations. Finally, applications are presented which demonstrate many of the geometry capabilities of the new code.

  8. Aerodynamic design and analysis system for supersonic aircraft. Part 3: Computer program description

    NASA Technical Reports Server (NTRS)

    Middleton, W. D.; Lundry, J. L.; Coleman, R. G.

    1975-01-01

    The computer program for the design and analysis of supersonic aircraft configurations is presented. The schematics of the program structure are provided. The individual overlays and subroutines are described. The system is useful in determining surface pressures and supersonic area rule concepts.

  9. Development of systems and techniques for landing an aircraft using onboard television

    NASA Technical Reports Server (NTRS)

    Gee, S. W.; Carr, P. C.; Winter, W. R.; Manke, J. A.

    1978-01-01

    A flight program was conducted to develop a landing technique with which a pilot could consistently and safely land a remotely piloted research vehicle (RPRV) without outside visual reference except through television. Otherwise, instrumentation was standard. Such factors as the selection of video parameters, the pilot's understanding of the television presentation, the pilot's ground cockpit environment, and the operational procedures for landing were considered. About 30 landings were necessary for a pilot to become sufficiently familiar and competent with the test aircraft to make powered approaches and landings with outside visual references only through television. When steep approaches and landings were made by remote control, the pilot's workload was extremely high. The test aircraft was used as a simulator for the F-15 RPRV, and as such was considered to be essential to the success of landing the F-15 RPRV.

  10. An evaluation of NASA's program for improving aircraft fuel efficiency

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The report provides commentary and recommendations where appropriate on each of the major elements of the program. Key findings of the committee included a recommendation that closer ties be established between NASA and the FAA to expedite the use and acceptance of the new technology. The committee also cited the potential for fuel savings through an imporved air traffic control system and recommended that the management of NASA and the FAA discuss ways and means to work together to exploit more effectively the capabilities and responsibilities of each to develop air traffic control.

  11. Spacelab simulation using a Lear Jet aircraft: Mission no. 4 (ASSESS program)

    NASA Technical Reports Server (NTRS)

    Reller, J. O., Jr.; Neel, C. B.; Mason, R. H.

    1975-01-01

    The fourth ASSESS Spacelab simulation mission utilizing a Lear Jet aircraft featured trained experiment operators (EOs) in place of the participating scientists, to simulate the role and functions of payload specialists in Spacelab who may conduct experiments developed by other scientists. The experiment was a broadband infrared photometer coupled to a 30-cm, open port, IR telescope. No compromises in equipment design or target selection were made to simplify operator tasks; the science goals of the mission were selected to advance the mainline research program of the principle investigator (PI). Training of the EOs was the responsibility of the PI team and consisted of laboratory sessions, on-site training during experiment integration, and integrated mission training using the aircraft as a high-fidelity simulator. The EO permission experience in these several disciplines proved adequate for normal experiment operations, but marginal for the identification and remedy of equipment malfunctions. During the mission, the PI utilized a TV communication system to assist the EOs to overcome equipment difficulties; both science and operations were successfully implemented.

  12. Development of the On-board Aircraft Network

    NASA Technical Reports Server (NTRS)

    Green, Bryan D. W.; Mezu, Okechukwu A.

    2004-01-01

    Phase II will focus on the development of the on-board aircraft networking portion of the testbed which includes the subnet and router configuration and investigation of QoS issues. This implementation of the testbed will consist of a workstation, which functions as the end system, connected to a router. The router will service two subnets that provide data to the cockpit and the passenger cabin. During the testing, data will be transferred between the end systems and those on both subnets. QoS issues will be identified and a preliminary scheme will be developed. The router will be configured for the testbed network and initial security studies will be initiated. In addition, architecture studies of both the SITA and Immarsat networks will be conducted.

  13. Leadership in Program Development.

    ERIC Educational Resources Information Center

    Moon, Sidney; Swift, Melanie

    1989-01-01

    Presented are a literature review, model, and case study for effective local program development for gifted and talented students. The model applies the research on educational change and institutional excellence to the task of developing excellent programs for gifted/talented youth in school districts of various types and sizes. (PB)

  14. University Career Development Programming

    ERIC Educational Resources Information Center

    Cochran, Donald J.; Rademacher, Betty Green

    1978-01-01

    Pertinent considerations involved in the delivery of career development services at the college level are reviewed. Specific examples of possible career programming alternatives are discussed and summarized in an organizational grid. A detailed case is included as a concrete example of career program development. (Author)

  15. Status of NASA aircraft engine emission reduction and upper atmosphere measurement programs

    NASA Technical Reports Server (NTRS)

    Rudey, R. A.; Lezberg, E. A.

    1976-01-01

    Advanced emission reduction techniques for five existing aircraft gas turbine engines are evaluated. Progress made toward meeting the 1979 EPA standards in rig tests of combustors for the five engines is reported. Results of fundamental combustion studies suggest the possibility of a new generation of jet engine combustor technology that would reduce oxides-of-nitrogen (NOx) emissions far below levels currently demonstrated in the engine-related programs. The Global Air Sampling Program (GAS) is now in full operation and is providing data on constituent measurements of ozone and other minor upper-atmosphere species related to aircraft emissions.

  16. ANOPP programmer's reference manual for the executive System. [aircraft noise prediction program

    NASA Technical Reports Server (NTRS)

    Gillian, R. E.; Brown, C. G.; Bartlett, R. W.; Baucom, P. H.

    1977-01-01

    Documentation for the Aircraft Noise Prediction Program as of release level 01/00/00 is presented in a manual designed for programmers having a need for understanding the internal design and logical concepts of the executive system software. Emphasis is placed on providing sufficient information to modify the system for enhancements or error correction. The ANOPP executive system includes software related to operating system interface, executive control, and data base management for the Aircraft Noise Prediction Program. It is written in Fortran IV for use on CDC Cyber series of computers.

  17. Aircraft gas turbine low-power emissions reduction technology program

    NASA Technical Reports Server (NTRS)

    Dodds, W. J.; Gleason, C. C.; Bahr, D. W.

    1978-01-01

    Advanced aircraft turbine engine combustor technology was used to reduce low-power emissions of carbon monoxide and unburned hydrocarbons to levels significantly lower than those which were achieved with current technology. Three combustor design concepts, which were designated as the hot-wall liner concept, the recuperative-cooled liner concept, and the catalyst converter concept, were evaluated in a series of CF6-50 engine size 40 degree-sector combustor rig tests. Twenty-one configurations were tested at operating conditions spanning the design condition which was an inlet temperature and pressure of 422 K and 304 kPa, a reference velocity of 23 m/s and a fuel-air-ration of 10.5 g/kg. At the design condition typical of aircraft turbine engine ground idle operation, the best configurations of all three concepts met the stringent emission goals which were 10, 1, and 4 g/kg for CO, HC, and Nox, respectively.

  18. An integrated computer-program-system for the preliminary design of advanced hypersonic aircraft (PrADO-Hy)

    NASA Astrophysics Data System (ADS)

    Kossira, H.; Bardenhagen, A.; Heinze, W.

    The design program system PrADO-Hy (Preliminary Aircraft Design and Optimization - Hypersonic) for computer-aided conceptional hypersonic aircraft design, developed by the Institute of Aircraft Design and Structural Mechanics (IFL, TU Braunschweig), is introduced. The modular program simulates, controlled by a data management system, in its kernel the design process with the interactions between the different disciplines (aerodynamics, propulsion, structure, flight mechanics, etc.). The design process is superimposed by a multivariable optimization loop. This paper describes the organization of the PrADO system, the data management technique, and as an example of the program library the weight and balance module for the estimation of structural mass. The practical application and the capabilities of the program system are demonstrated by a design study of a TSTO (two-stage-to-orbit) vehicle, which should transfer a space payload of 3.3 tons to a low-earth-orbit (80 km/450 km). The computational results of some investigations will be presented.

  19. A correlation study of X-29A aircraft and associated analytical development. Ph.D. Thesis. Final Contract Report

    NASA Technical Reports Server (NTRS)

    Ahmadi, Ali

    1988-01-01

    Results of the contractor structural and aerodynamic analysis of the X-29A aircraft are verified. A brief history and potential advantages of the X-29A aircraft are discussed. The NASA developed computer package, STARS (STructures, Aerodynamics, and Related Systems), which is used in verifying contractor results is discussed. Enhancements of the STARS package are described, particularly the incorporation of the FASTEX computer program under STARS, and the development of a complete computer graphics system. A comparative study of free vibration and aerodynamic analysis of the X-29A aircraft is given. This study has shown that the natural frequencies and modeshapes determined analytically by STARS and the contractor compare relatively well with experimentally determined data. Also included in the study is the formulation and development of the higher-order plane-stress finite dynamic triangular element.

  20. The Effects of Aircraft Wake Dynamics on Contrail Development

    NASA Technical Reports Server (NTRS)

    Lewellen, D. C.; Lewellen, W. S.; Grose, W. L. (Technical Monitor)

    2001-01-01

    Results of large-eddy simulations of the development of young persistent ice contrails are presented, concentrating on the interactions between the aircraft wake dynamics and the ice cloud evolution over ages front a few seconds to approx. 30 min. The 3D unsteady evolution of the dispersing engine exhausts, trailing vortex pair interaction and breakup, and subsequent Brunt-Vaisala oscillations of the older wake plume are modeled in detail in high-resolution simulations, coupled with it bulk microphysics model for the contrail ice development. The simulations confirm that the early wake dynamics can have a strong influence on the properties of persistent contrails even at late times. The vortex dynamics are the primary determinant of the vertical extent of the contrail (until precipitate ton becomes significant): and this together with the local wind shear largely determines the horizontal extent. The ice density, ice crystal number density, and a conserved exhaust tracer all develop and disperse in different fashions from each other. The total ice crystal number can be significantly reduced due to adiabatic compression resulting from the downward motion of the vortex system, even for ambient conditions that are substantially supersaturated with respect to ice. The fraction of the initial ice crystals surviving, their spatial distribution and the ice mass distribution are all sensitive to the aircraft type, ambient humidity, assumed initial ice crystal number, and ambient turbulence conditions. There is a significant range of conditions for which a smaller transport such as a B737 produces as significant a persistent contrail as a larger transport such as a B747, even though the latter consumes almost five times as much fuel. The difficulties involved in trying to minimize persistent contrail production are discussed.

  1. User's manual for LINEAR, a FORTRAN program to derive linear aircraft models

    NASA Technical Reports Server (NTRS)

    Duke, Eugene L.; Patterson, Brian P.; Antoniewicz, Robert F.

    1987-01-01

    This report documents a FORTRAN program that provides a powerful and flexible tool for the linearization of aircraft models. The program LINEAR numerically determines a linear system model using nonlinear equations of motion and a user-supplied nonlinear aerodynamic model. The system model determined by LINEAR consists of matrices for both state and observation equations. The program has been designed to allow easy selection and definition of the state, control, and observation variables to be used in a particular model.

  2. Development of a 21st Century Small Aircraft Transportation System

    NASA Technical Reports Server (NTRS)

    Bowen, Brent D.; Holmes, Bruce J.; Hansen, Frederick

    2000-01-01

    The National Aeronautics and Space Administration (NASA), U.S. Department of Transportation, Federal Aviation Administration, industry stakeholders, and academia, have joined forces to pursue the NASA National General Aviation Roadmap leading to a Small Aircraft Transportation System (SATS). This strategic undertaking has a 25-year goal to bring the next-generation technologies and improve travel between remote communities and transportation centers in urban areas by utilizing the nation's 5,400 public use general aviation airports. To facilitate this initiative, a comprehensive upgrade of public infrastructure must be planned, coordinated, and implemented within the framework of the national air transportation system. The Nebraska NASA EPSCoR Program has proposed to deliver research support in key public infrastructure areas in coordination with the General Aviation Program Office at the NASA Langley Research Center. Ultimately, SATS may permit tripling aviation system throughput capacity by tapping the underutilized general aviation facilities to achieve the national goal of doorstep-to-destination travel at four times the speed of highways for the nation's suburban, rural, and remote communities.

  3. The SCARLET development program

    SciTech Connect

    Allen, D.M.; Piszczor, M.F. Jr.

    1995-12-31

    The paper describes the SCARLET program that has developed an exciting new type of spacecraft solar array. The program includes design, fabrication, testing, and integration to the Comet satellite and has been accomplished in a half year time period. Background of the program, an overview of satellite integration benefits and concerns for concentrator arrays, and a summary of the program development process and rationale arc included. The history making first SCARLET array will be flown on the Comet spacecraft which will be launched on a Conestoga launch vehicle from Wallops Island in July 1995.

  4. YF-12 Lockalloy ventral fin program, volume 1. [design analysis, fabrication, and manufacturing of aircraft structures using aluminum and beryllium alloys for the lockheed YF-12 aircraft

    NASA Technical Reports Server (NTRS)

    Duba, R. J.; Haramis, A. C.; Marks, R. F.; Payne, L.; Sessing, R. C.

    1976-01-01

    Results are presented of the YF-12 Lockalloy Ventral Fin Program which was carried out by Lockheed Aircraft Corporation - Advanced Development Projects for the joint NASA/USAF YF-12 Project. The primary purpose of the program was to redesign and fabricate the ventral fin of the YF-12 research airplane (to reduce flutter) using Lockalloy, and alloy of beryllium and aluminum, as a major structural material. A secondary purpose, was to make a material characterization study (thermodynamic properties, corrosion; fatigue tests, mechanical properties) of Lockalloy to validate the design of the ventral fin and expand the existing data base on this material. All significant information pertinent to the design and fabrication of the ventral fin is covered. Emphasis throughout is given to Lockalloy fabrication and machining techniques and attendant personnel safety precautions. Costs are also examined. Photographs of tested alloy specimens are shown along with the test equipment used.

  5. Aging aircraft NDI Development and Demonstration Center (AANC): An overview. [nondestructive inspection

    NASA Technical Reports Server (NTRS)

    Walter, Patrick L.

    1992-01-01

    A major center with emphasis on validation of nondestructive inspection (NDI) techniques for aging aircraft, the Aging Aircraft NDI Development and Demonstration Center (AANC), has been funded by the FAA at Sandia National Laboratories. The Center has been assigned specific tasks in developing techniques for the nondestructive inspection of static engine parts, assessing inspection reliability (POD experiments), developing testbeds for NDI validation, maintaining a FAA library of characterized aircraft structural test specimens, and leasing a hangar to house a high flight cycle transport aircraft for use as a full scale test bed.

  6. High speed wind tunnel tests of the PTA aircraft. [Propfan Test Assessment Program

    NASA Technical Reports Server (NTRS)

    Aljabri, A. S.; Little, B. H., Jr.

    1986-01-01

    Propfans, advanced highly-loaded propellers, are proposed to power transport aircraft that cruise at high subsonic speeds, giving significant fuel savings over the equivalent turbofan-powered aircraft. NASA is currently sponsoring the Propfan Test Assessment Program (PTA) to provide basic data on the structural integrity and acoustic performance of the propfan. The program involves installation design, wind-tunnel tests, and flight tests of the Hamilton Standard SR-7 propfan in a wing-mount tractor installation on the Gulfstream II aircraft. This paper reports on the high-speed wind-tunnel tests and presents the computational aerodynamic methods that were employed in the analyses, design, and evaluation of the configuration. In spite of the complexity of the configuration, these methods provide aerodynamic predictions which are in excellent agreement with wind-tunnel data.

  7. A review and update of the NASA aircraft noise prediction program propeller analysis system

    NASA Technical Reports Server (NTRS)

    Golub, Robert A.; Nguyen, L. Cathy

    1989-01-01

    The National Aeronautics and Space Administration (NASA) Aircraft Noise Prediction Program (ANOPP) Propeller Analysis System (PAS) is a set of computational modules for predicting the aerodynamics, performance, and noise of propellers. The ANOPP PAS has the capability to predict noise levels for propeller aircraft certification and produce parametric scaling laws for the adjustment of measured data to reference conditions. A technical overview of the prediction techniques incorporated into the system is presented. The prediction system has been applied to predict the noise signature of a variety of propeller configurations including the effects of propeller angle of attack. A summary of these validation studies is discussed with emphasis being placed on the wind tunnel and flight test programs sponsored by the Federal Aviation Administration (FAA) for the Piper Cherokee Lance aircraft. A number of modifications and improvements have been made to the system and both DEC VAX and IBM-PC versions of the system have been added to the original CDC NOS version.

  8. A review and update of the NASA aircraft noise prediction program propeller analysis system

    NASA Astrophysics Data System (ADS)

    Golub, Robert A.; Nguyen, L. Cathy

    1989-04-01

    The National Aeronautics and Space Administration (NASA) Aircraft Noise Prediction Program (ANOPP) Propeller Analysis System (PAS) is a set of computational modules for predicting the aerodynamics, performance, and noise of propellers. The ANOPP PAS has the capability to predict noise levels for propeller aircraft certification and produce parametric scaling laws for the adjustment of measured data to reference conditions. A technical overview of the prediction techniques incorporated into the system is presented. The prediction system has been applied to predict the noise signature of a variety of propeller configurations including the effects of propeller angle of attack. A summary of these validation studies is discussed with emphasis being placed on the wind tunnel and flight test programs sponsored by the Federal Aviation Administration (FAA) for the Piper Cherokee Lance aircraft. A number of modifications and improvements have been made to the system and both DEC VAX and IBM-PC versions of the system have been added to the original CDC NOS version.

  9. Results and status of the NASA aircraft engine emission reduction technology programs

    NASA Technical Reports Server (NTRS)

    Jones, R. E.; Diehl, L. A.; Petrash, D. A.; Grobman, J.

    1978-01-01

    The results of an aircraft engine emission reduction study are reviewed in detail. The capability of combustor concepts to produce significantly lower levels of exhaust emissions than present production combustors was evaluated. The development status of each combustor concept is discussed relative to its potential for implementation in aircraft engines. Also, the ability of these combustor concepts to achieve proposed NME and NCE EPA standards is discussed.

  10. A Comprehensive Program for Measurement of Military Aircraft Emissions

    SciTech Connect

    Cheng, Mengdawn

    2009-11-01

    Emissions of gases and particulate matter by military aircraft were characterized inplume by 'extractive' and 'optical remote-sensing (ORS)' technologies. Non-volatile particle size distribution, number and mass concentrations were measured with good precision and reproducibly. Time-integrated particulate filter samples were collected and analyzed for smoke number, elemental composition, carbon contents, and sulfate. Observed at EEP the geometric mean diameter (as measured by the mobility diameter) generally increased as the engine power setting increased, which is consistent with downstream observations. The modal diameters at the downstream locations are larger than that at EEP at the same engine power level. The results indicate that engine particles were processed by condensation, for example, leading to particle growth in-plume. Elemental analysis indicated little metals were present in the exhaust, while most of the exhaust materials in the particulate phase were carbon and sulfate (in the JP-8 fuel). CO, CO{sub 2}, NO, NO{sub 2}, SO{sub 2}, HCHO, ethylene, acetylene, propylene, and alkanes were measured. The last five species were most noticeable under engine idle condition. The levels of hydrocarbons emitted at high engine power level were generally below the detection limits. ORS techniques yielded real-time gaseous measurement, but the same techniques could not be extended directly to ultrafine particles found in all engine exhausts. The results validated sampling methodology and measurement techniques used for non-volatile particulate aircraft emissions, which also highlighted the needs for further research on sampling and measurement for volatile particulate matter and semi-volatile species in the engine exhaust especially at the low engine power setting.

  11. 14 CFR 129.14 - Maintenance program and minimum equipment list requirements for U.S.-registered aircraft.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Maintenance program and minimum equipment list requirements for U.S.-registered aircraft. 129.14 Section 129.14 Aeronautics and Space FEDERAL....S.-REGISTERED AIRCRAFT ENGAGED IN COMMON CARRIAGE General § 129.14 Maintenance program and...

  12. 14 CFR 129.14 - Maintenance program and minimum equipment list requirements for U.S.-registered aircraft.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Maintenance program and minimum equipment list requirements for U.S.-registered aircraft. 129.14 Section 129.14 Aeronautics and Space FEDERAL....S.-REGISTERED AIRCRAFT ENGAGED IN COMMON CARRIAGE General § 129.14 Maintenance program and...

  13. 14 CFR 129.14 - Maintenance program and minimum equipment list requirements for U.S.-registered aircraft.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Maintenance program and minimum equipment list requirements for U.S.-registered aircraft. 129.14 Section 129.14 Aeronautics and Space FEDERAL....S.-REGISTERED AIRCRAFT ENGAGED IN COMMON CARRIAGE General § 129.14 Maintenance program and...

  14. 14 CFR 129.14 - Maintenance program and minimum equipment list requirements for U.S.-registered aircraft.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Maintenance program and minimum equipment list requirements for U.S.-registered aircraft. 129.14 Section 129.14 Aeronautics and Space FEDERAL....S.-REGISTERED AIRCRAFT ENGAGED IN COMMON CARRIAGE General § 129.14 Maintenance program and...

  15. Development of a biaxial test facility for structural evaluation of aircraft fuselage panels

    SciTech Connect

    Roach, D.; Walkington, P.; Rice, T.

    1998-03-01

    The number of commercial airframes exceeding twenty years of service continues to grow. An unavoidable by-product of aircraft use is that crack and corrosion flaws develop throughout the aircraft`s skin and substructure elements. Economic barriers to the purchase of new aircraft have created an aging aircraft fleet and placed even greater demands on efficient and safe repair methods. Composite doublers, or repair patches, provide an innovative repair technique which can enhance the way aircraft are maintained. Instead of riveting multiple steel or aluminum plates to facilitate an aircraft repair, it is now possible to bond a single Boron-Epoxy composite doubler to the damaged structure. The composite doubler repair process produces both engineering and economic benefits. The FAA`s Airworthiness Assurance Center at Sandia National Labs completed a project to introduce composite doubler repair technology to the commercial aircraft industry. This paper focuses on a specialized structural test facility which was developed to evaluate the performance of composite doublers on actual aircraft structure. The facility can subject an aircraft fuselage section to a combined load environment of pressure (hoop stress) and axial, or longitudinal, stress. The tests simulate maximum cabin pressure loads and use a computerized feedback system to maintain the proper ratio between hoop and axial loads. Through the use of this full-scale test facility it was possible to: (1) assess general composite doubler response in representative flight load scenarios, and (2) verify the design and analysis approaches as applied to an L-1011 door corner repair.

  16. Design of the Next Generation Aircraft Noise Prediction Program: ANOPP2

    NASA Technical Reports Server (NTRS)

    Lopes, Leonard V., Dr.; Burley, Casey L.

    2011-01-01

    The requirements, constraints, and design of NASA's next generation Aircraft NOise Prediction Program (ANOPP2) are introduced. Similar to its predecessor (ANOPP), ANOPP2 provides the U.S. Government with an independent aircraft system noise prediction capability that can be used as a stand-alone program or within larger trade studies that include performance, emissions, and fuel burn. The ANOPP2 framework is designed to facilitate the combination of acoustic approaches of varying fidelity for the analysis of noise from conventional and unconventional aircraft. ANOPP2 integrates noise prediction and propagation methods, including those found in ANOPP, into a unified system that is compatible for use within general aircraft analysis software. The design of the system is described in terms of its functionality and capability to perform predictions accounting for distributed sources, installation effects, and propagation through a non-uniform atmosphere including refraction and the influence of terrain. The philosophy of mixed fidelity noise prediction through the use of nested Ffowcs Williams and Hawkings surfaces is presented and specific issues associated with its implementation are identified. Demonstrations for a conventional twin-aisle and an unconventional hybrid wing body aircraft configuration are presented to show the feasibility and capabilities of the system. Isolated model-scale jet noise predictions are also presented using high-fidelity and reduced order models, further demonstrating ANOPP2's ability to provide predictions for model-scale test configurations.

  17. Developing an Intergenerational Program.

    ERIC Educational Resources Information Center

    Brummel, Steven W.

    1989-01-01

    Steps in the development of intergenerational programs include the following: (1) needs assessment; (2) planning; (3) implementation; (4) assuring program longevity; and (5) establishing a national focus. Detailed description of such stages as facility and site procurement, recruitment, orientation, training, maintenance, and support is provided.…

  18. The MSFC Program Control Development Program

    NASA Technical Reports Server (NTRS)

    1994-01-01

    It is the policy of the Marshall Space Flight Center (MSFC) that employees be given the opportunity to develop their individual skills and realize their full potential consistent with their selected career path and with the overall Center's needs and objectives. The MSFC Program Control Development Program has been designed to assist individuals who have selected Program Control or Program Analyst Program Control as a career path to achieve their ultimate career goals. Individuals selected to participate in the MSFC Program Control Development Program will be provided with development training in the various Program Control functional areas identified in the NASA Program Control Model. The purpose of the MSFC Program Control Development Program is to develop individual skills in the various Program Control functions by on-the-job and classroom instructional training on the various systems, tools, techniques, and processes utilized in these areas.

  19. Minimum time acceleration of aircraft turbofan engines by using an algorithm based on nonlinear programming

    NASA Technical Reports Server (NTRS)

    Teren, F.

    1977-01-01

    Minimum time accelerations of aircraft turbofan engines are presented. The calculation of these accelerations was made by using a piecewise linear engine model, and an algorithm based on nonlinear programming. Use of this model and algorithm allows such trajectories to be readily calculated on a digital computer with a minimal expenditure of computer time.

  20. A research program to reduce the interior noise in general aviation aircraft, index and summary

    NASA Technical Reports Server (NTRS)

    Morgan, L.; Jackson, K.; Roskam, J.

    1985-01-01

    This report is an index of the published works from NASA Grant NSG 1301, entitled A Research Program to Reduce the Interior Noise in General Aviation Aircraft. Included are a list of all published reports and papers, a compilation of test specimen characteristics, and summaries of each published work.

  1. Development of Composite Honeycomb and Solid Laminate Reference Standards to Aid Aircraft Inspections

    SciTech Connect

    Dorrell, L.; Roach, D.

    1999-03-04

    The rapidly increasing use of composites on commercial airplanes coupled with the potential for economic savings associated with their use in aircraft structures means that the demand for composite materials technology will continue to increase. Inspecting these composite structures is a critical element in assuring their continued airworthiness. The FAA's Airworthiness Assurance NDI Validation Center, in conjunction with the Commercial Aircraft Composite Repair Committee (CACRC), is developing a set of composite reference standards to be used in NDT equipment calibration for accomplishment of damage assessment and post-repair inspection of all commercial aircraft composites. In this program, a series of NDI tests on a matrix of composite aircraft structures and prototype reference standards were completed in order to minimize the number of standards needed to carry out composite inspections on aircraft. Two tasks, related to composite laminates and non-metallic composite honeycomb configurations, were addressed. A suite of 64 honeycomb panels, representing the bounding conditions of honeycomb construction on aircraft, were inspected using a wide array of NDI techniques. An analysis of the resulting data determined the variables that play a key role in setting up NDT equipment. This has resulted in a prototype set of minimum honeycomb reference standards that include these key variables. A sequence of subsequent tests determined that this minimum honeycomb reference standard set is able to fully support inspections over the fill range of honeycomb construction scenarios. Current tasks are aimed at optimizing the methods used to engineer realistic flaws into the specimens. In the solid composite laminate arena, we have identified what appears to be an excellent candidate, G11 Phenolic, as a generic solid laminate reference standard material. Testing to date has determined matches in key velocity and acoustic impedance properties, as well as, low attenuation relative

  2. Advanced ATC - An aircraft perspective

    NASA Technical Reports Server (NTRS)

    Credeur, L.; Williams, D. H.; Howell, W. E.; Spitzer, C. R.

    1986-01-01

    The principal operational improvements desired by commercial aircraft operators in the United States are efficient aircraft operations and delay reductions at the major terminals. This paper describes efforts underway within the Advanced Transport Operating Systems Program at the Langley Research Center to provide a technology basis for reducing delay while improving aircraft efficiency. The principal thrust is the development of time-based traffic control concepts which could be used within the framework of the upgraded National Airspace System and which would allow conventionally equipped aircraft to operate in a manner compatible with advanced aircraft.

  3. Advanced ATC: An aircraft perspective

    NASA Technical Reports Server (NTRS)

    Credeur, Leonard; Williams, David H.; Howell, William E.; Spitzer, Cary R.

    1986-01-01

    The principal operational improvements desired by commercial aircraft operators in the United States are efficient aircraft operations and delay reductions at the major terminals. Efforts underway within the Advanced Transport Operating Systems Program at the Langley Research Center to provide a technology basis for reducing delay while improving aircraft efficiency are discussed. The principal thrust is the development of time-based traffic control concepts which could be used within the framework of the upgraded National Airspace System and which would allow conventionally equipped aircraft to operate in a manner compatible with advanced aircraft.

  4. A computer program for fitting smooth surfaces to an aircraft configuration and other three dimensional geometries

    NASA Technical Reports Server (NTRS)

    Craidon, C. B.

    1975-01-01

    A computer program that uses a three-dimensional geometric technique for fitting a smooth surface to the component parts of an aircraft configuration is presented. The resulting surface equations are useful in performing various kinds of calculations in which a three-dimensional mathematical description is necessary. Programs options may be used to compute information for three-view and orthographic projections of the configuration as well as cross-section plots at any orientation through the configuration. The aircraft geometry input section of the program may be easily replaced with a surface point description in a different form so that the program could be of use for any three-dimensional surface equations.

  5. Atmospheric CO{sub 2} concentrations the CSIRO (Australia) monitoring program from aircraft 1972 - 1981

    SciTech Connect

    Beardsmore, D.J.; Pearman, G.I.

    1984-09-01

    Atmospheric CO{sub 2} concentrations were measured in the troposphere and lower stratosphere over the Australia-New Zealand region and as far south as Antarctica for the period 1972-1981. The samples were collected from aircraft over a large range of latitudes and altitudes. The sampling program has been based on the cooperation of the Australia Department of Transport, Quantas Airways, Trans Australia Airlines, the United States, New Zealand and Australian Air Forces and occasional chartering of light aircraft for special purposes.

  6. Trauma program development.

    PubMed

    Althausen, Peter L

    2014-07-01

    The development of a strong trauma program is clearly one of the most important facets of successful business development. Several recent publications have demonstrated that well run trauma services can generate significant profits for both the hospital and the surgeons involved. There are many aspects to this task that require constant attention and insight. Top notch patient care, efficiency, and cost-effective resource utilization are all important components that must be addressed while providing adequate physician compensation within the bounds of hospital financial constraints and the encompassing legal issues. Each situation is different but many of the components are universal. This chapter addresses all aspects of trauma program development to provide the graduating fellow with the tools to create a new trauma program or improve an existing program in order to provide the best patient care while optimizing financial reward and improving care efficiency. PMID:24918830

  7. Lightweight two-stroke cycle aircraft diesel engine technology enablement program, volume 2

    NASA Technical Reports Server (NTRS)

    Freen, P. D.; Berenyi, S. G.; Brouwers, A. P.; Moynihan, M. E.

    1985-01-01

    An experimental Single Cylinder Test Engine Program is conducted to confirm the analytically projected performance of a two-stroke cycle diesel engine for aircraft applications. Testing confirms the ability of a proposed 4-cylinder version of such an engine to reach the target power at altitude in a highly turbocharged configuration. The experimental program defines all necessary parameters to permit a design of a multicylinder engine for eventual flight applications.

  8. Lightweight two-stroke cycle aircraft diesel engine technology enablement program, volume 3

    NASA Technical Reports Server (NTRS)

    Freen, P. D.; Berenyi, S. G.; Brouwers, A. P.; Moynihan, M. E.

    1985-01-01

    An experimental Single Cylinder Test Engine Program is conducted to confirm the analytically projected performance of a two-stroke cycle diesel engine for aircraft applications. Testing confirms the ability of a proposed 4-cylinder version of such an engine to reach the target power at altitude in a highly turbocharged configuration. The experimental program defines all necessary parameters to permit design of a multicylinder engine for eventual flight applications.

  9. An overview of the joint FAA/NASA aircraft/ground runway friction program

    NASA Technical Reports Server (NTRS)

    Yager, Thomas J.

    1989-01-01

    There is a need for information on runways which may become slippery due to various forms and types of contaminants. Experience has shown that since the beginning of all weather aircraft operations, there have been landing and aborted takeoff incidents and/or accidents each year where aircraft have either run off the end or veered off the shoulder of low friction runways. NASA Langley's Landing and Impact Dynamics Branch is involved in several research programs directed towards obtaining a better understanding of how different tire properties interact with varying pavement surface characteristics to produce acceptable performance for aircraft ground handling requirements. One such effort, which was jointly supported by not only NASA and the FAA but by several aviation industry groups including the Flight Safety Foundation, is described.

  10. Recent Developments in Aircraft Flyover Noise Simulation at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Rizzi, Stephen A.; Sullivan, Brenda M.; Aumann, Aric R.

    2008-01-01

    The NASA Langley Research Center is involved in the development of a new generation of synthesis and simulation tools for creation of virtual environments used in the study of aircraft community noise. The original emphasis was on simulation of flyover noise associated with subsonic fixed wing aircraft. Recently, the focus has shifted to rotary wing aircraft. Many aspects of the simulation are applicable to both vehicle classes. Other aspects, particularly those associated with synthesis, are more vehicle specific. This paper discusses the capabilities of the current suite of tools, their application to fixed and rotary wing aircraft, and some directions for the future.

  11. TRAGEN: Computer program to simulate an aircraft steered to follow a specified verticle profile. User's guide

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The longitudinal dynamics of a medium range twin-jet or tri-jet transport aircraft are simulated. For the climbing trajectory, the thrust is constrained to maximum value, and for descent, the thrust is set at idle. For cruise, the aircraft is held in the trim condition. For climb or descent, the aircraft is steered to follow either (a) a fixed profile which is input to the program or (b) a profile computed at the beginning of that segment of the run. For climb, the aircraft is steered to maintain the given airspeed as a function of altitude. For descent, the aircraft is steered to maintain the given altitude as a function of range-to-go. In both cases, the control variable is angle-of-attack. The given output trajectory is presented and compared with the input trajectory. Step climb is treated just as climb. For cruise, the Breguet equations are used to compute the fuel burned to achieve a given range and to connect given initial and final values of altitude and Mach number.

  12. Development of a multipurpose smart recorder for general aviation aircraft

    NASA Technical Reports Server (NTRS)

    White, J. H.; Finger, J. F.

    1988-01-01

    An intelligent flight recorder, called the Smart Recorder, was fabricated and installed on a King Air aircraft used in standard commercial charter service. This recorder was used for collection of data toward two objectives: (1) the characterization of the typical environment encountered by the aircraft; and (2) research in the area of trend monitoring. Data processing routines and data presentation formats were defined that are applicable to commuter size aircraft. The feasibility of a cost-effective, multipurpose recorder for general aviation aircraft was successfully demonstrated. Implementation of on-board environmental data processing increased the number of flight hours that could be stored on a single data cartridge and simplified the data management problem by reducing the volume of data to be processed in the laboratory. Trend monitoring algorithms showed less variability in the trend plots when compared against plots of manual data.

  13. An overview of the Douglas Aircraft Company Aeroelastic Design Optimization Program (ADOP)

    NASA Technical Reports Server (NTRS)

    Dodd, Alan J.

    1989-01-01

    From a program manager's viewpoint, the history, scope and architecture of a major structural design program at Douglas Aircraft Company called Aeroelastic Design Optimization Program (ADOP) are described. ADOP was originally intended for the rapid, accurate, cost-effective evaluation of relatively small structural models at the advanced design level, resulting in improved proposal competitiveness and avoiding many costly changes later in the design cycle. Before release of the initial version in November 1987, however, the program was expanded to handle very large production-type analyses.

  14. NASA-UVa light aerospace alloy and structure technology program supplement: Aluminum-based materials for high speed aircraft

    NASA Technical Reports Server (NTRS)

    Starke, E. A., Jr.

    1993-01-01

    This report on the NASA-UVa Light Aerospace Alloy and Structure Technology Program Supplement: Aluminum-Based Materials for High Speed Aircraft covers the period from January 1, 1992 to June 30, 1992. The objective of the research is to develop aluminum alloys and aluminum matrix composites for the airframe which can efficiently perform in the HSCT environment for periods as long as 60,000 hours (certification for 120,000 hours) and, at the same time, meet the cost and weight requirements for an economically viable aircraft. Current industry baselines focus on flight at Mach 2.4. The research covers four major materials systems: (1) ingot metallurgy 2XXX, 6XXX, and 8XXX alloys, (2) powder metallurgy 2XXX alloys, (3) rapidly solidified, dispersion strengthened Al-Fe-X alloys, and (4) discontinuously reinforced metal matrix composites. There are ten major tasks in the program which also include evaluation and trade-off studies by Boeing and Douglas aircraft companies.

  15. Study of the application of advanced technologies to long range transport aircraft. Volume 2: Advanced technology program recommendations

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The benefits of the application of advanced technology to future transport aircraft were investigated. The noise reduction goals established by the CARD (Civil Aviation Research and Development) study for the 1981-1985 time period can be satisfied. Reduced terminal area and airway congestion can result from use of advanced on-board systems and operating procedures. The use of advanced structural design concepts can result in greatly reduced gross weight and improved operating economics. The full potential of these benefits can be realized in a 1985 airplane by implementing a research and development program that is funded to an average level of approximately $55 million per year over a ten year period.

  16. Study of the application of advanced technologies to long-range transport aircraft. Volume 2: Research and development requirements

    NASA Technical Reports Server (NTRS)

    Lange, R. H.; Sturgeon, R. F.; Adams, W. E.; Bradley, E. S.; Cahill, J. F.; Eudaily, R. R.; Hancock, J. P.; Moore, J. W.

    1972-01-01

    Investigations were conducted to evaluate the relative benefits attainable through the exploitation of advanced technologies and to identify future research and development efforts required to permit the application of selected technologies to transport aircraft entering commercial operation in 1985. Results show that technology advances, particularly in the areas of composite materials, supercritical aerodynamics, and active control systems, will permit the development of long-range, high-payload commercial transports operating at high-subsonic speeds with direct operating costs lower than those of current aircraft. These advanced transports also achieve lower noise levels and lower engine pollutant emissions than current transports. Research and development efforts, including analytical investigations, laboratory test programs, and flight test programs, are required in essentially all technology areas to achieve the potential technology benefits.

  17. Studies of aircraft differential maneuvering. Report 75-27: Calculating of differential-turning barrier surfaces. Report 75-26: A user's guide to the aircraft energy-turn and tandem-motion computer programs. Report 75-7: A user's guide to the aircraft energy-turn hodograph program. [numerical analysis of tactics and aircraft maneuvers of supersonic attack aircraft

    NASA Technical Reports Server (NTRS)

    Kelley, H. J.; Lefton, L.

    1976-01-01

    The numerical analysis of composite differential-turn trajectory pairs was studied for 'fast-evader' and 'neutral-evader' attitude dynamics idealization for attack aircraft. Transversality and generalized corner conditions are examined and the joining of trajectory segments discussed. A criterion is given for the screening of 'tandem-motion' trajectory segments. Main focus is upon the computation of barrier surfaces. Fortunately, from a computational viewpoint, the trajectory pairs defining these surfaces need not be calculated completely, the final subarc of multiple-subarc pairs not being required. Some calculations for pairs of example aircraft are presented. A computer program used to perform the calculations is included.

  18. 22 CFR 126.6 - Foreign-owned military aircraft and naval vessels, and the Foreign Military Sales program.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... the authority of Department of State Form DSP-94. It covers FMS Case , expiration . 22 CFR 126.6... 22 Foreign Relations 1 2010-04-01 2010-04-01 false Foreign-owned military aircraft and naval... aircraft and naval vessels, and the Foreign Military Sales program. (a) A license from the Directorate...

  19. NASA-UVA Light Aerospace Alloy and Structure Technology Program Supplement: Aluminum-Based Materials for High Speed Aircraft

    NASA Technical Reports Server (NTRS)

    Starke, E. A., Jr.

    1997-01-01

    This is the final report of the study "Aluminum-Based Materials for High Speed Aircraft" which had the objectives (1) to identify the most promising aluminum-based materials with respect to major structural use on the HSCT and to further develop those materials and (2) to assess the materials through detailed trade and evaluation studies with respect to their structural efficiency on the HSCT. The research team consisted of ALCOA, Allied-Signal, Boeing, McDonnell Douglas, Reynolds Metals and the University of Virginia. Four classes of aluminum alloys were investigated: (1) I/M 2XXX containing Li and I/M 2XXX without Li, (2) I/M 6XXX, (3) two P/M 2XXX alloys, and (4) two different aluminum-based metal matrix composites (MMC). The I/M alloys were targeted for a Mach 2.0 aircraft and the P/M and MMC alloys were targeted for a Mach 2.4 aircraft. Design studies were conducted using several different concepts including skin/stiffener (baseline), honeycomb sandwich, integrally stiffened and hybrid adaptations (conventionally stiffened thin-sandwich skins). Alloy development included fundamental studies of coarsening behavior, the effect of stress on nucleation and growth of precipitates, and fracture toughness as a function of temperature were an integral part of this program. The details of all phases of the research are described in this final report.

  20. User's manual for interactive LINEAR: A FORTRAN program to derive linear aircraft models

    NASA Technical Reports Server (NTRS)

    Antoniewicz, Robert F.; Duke, Eugene L.; Patterson, Brian P.

    1988-01-01

    An interactive FORTRAN program that provides the user with a powerful and flexible tool for the linearization of aircraft aerodynamic models is documented in this report. The program LINEAR numerically determines a linear system model using nonlinear equations of motion and a user-supplied linear or nonlinear aerodynamic model. The nonlinear equations of motion used are six-degree-of-freedom equations with stationary atmosphere and flat, nonrotating earth assumptions. The system model determined by LINEAR consists of matrices for both the state and observation equations. The program has been designed to allow easy selection and definition of the state, control, and observation variables to be used in a particular model.

  1. DCS-Neural-Network Program for Aircraft Control and Testing

    NASA Technical Reports Server (NTRS)

    Jorgensen, Charles C.

    2006-01-01

    A computer program implements a dynamic-cell-structure (DCS) artificial neural network that can perform such tasks as learning selected aerodynamic characteristics of an airplane from wind-tunnel test data and computing real-time stability and control derivatives of the airplane for use in feedback linearized control. A DCS neural network is one of several types of neural networks that can incorporate additional nodes in order to rapidly learn increasingly complex relationships between inputs and outputs. In the DCS neural network implemented by the present program, the insertion of nodes is based on accumulated error. A competitive Hebbian learning rule (a supervised-learning rule in which connection weights are adjusted to minimize differences between actual and desired outputs for training examples) is used. A Kohonen-style learning rule (derived from a relatively simple training algorithm, implements a Delaunay triangulation layout of neurons) is used to adjust node positions during training. Neighborhood topology determines which nodes are used to estimate new values. The network learns, starting with two nodes, and adds new nodes sequentially in locations chosen to maximize reductions in global error. At any given time during learning, the error becomes homogeneously distributed over all nodes.

  2. Oblique Wing Remotely Piloted Research Aircraft. Volume 1: Development

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The NASA Ames/DSI oblique wing remotely piloted research aircraft is a highly unusual, variable remotely piloted vehicle whose configuration and capabilities are the result of certain initial design guidelines that, in terms of conventional aircraft structures and configurations, would be considered to be contradictory and unachievable. Accordingly, the novel design of the yawed wing RPV is at odds in many respects with conventional aircraft practice. Novelty, then, forms the first, unwritten, design guideline. This design is intended to move away from convention in geometry, structure, and materials. The specific guidelines followed in the design of the yawed wing RPV and a short discussion of the impact of each on the configuration of the vehicle are presented.

  3. Aircraft cockpit vision: Math model

    NASA Technical Reports Server (NTRS)

    Bashir, J.; Singh, R. P.

    1975-01-01

    A mathematical model was developed to describe the field of vision of a pilot seated in an aircraft. Given the position and orientation of the aircraft, along with the geometrical configuration of its windows, and the location of an object, the model determines whether the object would be within the pilot's external vision envelope provided by the aircraft's windows. The computer program using this model was implemented and is described.

  4. Development of aircraft lavatory compartments with improved fire resistance characteristics

    NASA Technical Reports Server (NTRS)

    Anderson, R. A.; Johnson, G. A.

    1978-01-01

    The Boeing's participation in a NASA-funded program (FIREMEN) included developing materials for use as lavatory wall panels, sidewall panels, and ceiling panels possessing flammability, smoke, and toxicity (FS&T) characteristics superior to current materials of construction is described. A sandwich panel system is developed for improving FS&T characteristics and acceptable cost, processing requirements, aesthetic qualities, abrasion resistance, strain resistance, scuff resistance, and washability.

  5. Developing hazardous waste programs

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    Developing a fully operational hazardous waste regulatory system requires at least 10 to 15 years—even in countries with strong legal and bureaucratic institutions, according to a report on "The Evolution of Hazardous Waste Programs," which was funded by Resources for the Future (RFF) and the World Bank's South Asia Environment Group, and issued on June 4.The report, which compares the experiences of how four developed and four developing countries have created hazardous waste programs, indicates that hazardous waste issues usually do not become a pressing environmental issue until after countries have dealt with more direct threats to public health, such as contaminated drinking water and air pollution. The countries examined include Indonesia, Thailand, Germany, and the United States.

  6. HSCT noise reduction technology development at GE Aircraft Engines

    NASA Astrophysics Data System (ADS)

    Majjigi, Rudramuni K.

    1992-04-01

    The topics covered include the following: High Speed Civil Transport (HSCT) exhaust nozzle design approaches; GE aircraft engine (GEAE) HSCT acoustics research; 2DCD non-IVP suppressor ejector; key sensitivities from reference aircraft; acoustic experiments; aero-mixing experimental set-up; fluid shield nozzle; HSCT Mach 2.4 flade nozzle; noise prediction; nozzle concept for GE/Boeing joint test; scale model hot core flow path modified to prevent hub-choking CFL3-D solution; HSCT exhaust nozzle status; and key acoustic technology issues for HSCT's.

  7. Developments in Stochastic Fuel Efficient Cruise Control and Constrained Control with Applications to Aircraft

    NASA Astrophysics Data System (ADS)

    McDonough, Kevin K.

    The dissertation presents contributions to fuel-efficient control of vehicle speed and constrained control with applications to aircraft. In the first part of this dissertation a stochastic approach to fuel-efficient vehicle speed control is developed. This approach encompasses stochastic modeling of road grade and traffic speed, modeling of fuel consumption through the use of a neural network, and the application of stochastic dynamic programming to generate vehicle speed control policies that are optimized for the trade-off between fuel consumption and travel time. The fuel economy improvements with the proposed policies are quantified through simulations and vehicle experiments. It is shown that the policies lead to the emergence of time-varying vehicle speed patterns that are referred to as time-varying cruise. Through simulations and experiments it is confirmed that these time-varying vehicle speed profiles are more fuel-efficient than driving at a comparable constant speed. Motivated by these results, a simpler implementation strategy that is more appealing for practical implementation is also developed. This strategy relies on a finite state machine and state transition threshold optimization, and its benefits are quantified through model-based simulations and vehicle experiments. Several additional contributions are made to approaches for stochastic modeling of road grade and vehicle speed that include the use of Kullback-Liebler divergence and divergence rate and a stochastic jump-like model for the behavior of the road grade. In the second part of the dissertation, contributions to constrained control with applications to aircraft are described. Recoverable sets and integral safe sets of initial states of constrained closed-loop systems are introduced first and computational procedures of such sets based on linear discrete-time models are given. The use of linear discrete-time models is emphasized as they lead to fast computational procedures. Examples of

  8. TCV software test and validation tools and technique. [Terminal Configured Vehicle program for commercial transport aircraft operation

    NASA Technical Reports Server (NTRS)

    Straeter, T. A.; Williams, J. R.

    1976-01-01

    The paper describes techniques for testing and validating software for the TCV (Terminal Configured Vehicle) program which is intended to solve problems associated with operating a commercial transport aircraft in the terminal area. The TCV research test bed is a Boeing 737 specially configured with digital computer systems to carry out automatic navigation, guidance, flight controls, and electronic displays research. The techniques developed for time and cost reduction include automatic documentation aids, an automatic software configuration, and an all software generation and validation system.

  9. Bibliography of Supersonic Cruise Aircraft Research (SCAR) Program from 1972 to Mid-1977

    NASA Technical Reports Server (NTRS)

    Hoffman, S.

    1977-01-01

    This bibliography documents publications of the supersonic cruise aircraft research (SCAR) program that were generated during the first 5 years of effort. The reports are arranged according to systems studies and five SCAR disciplines: propulsion, stratospheric emissions impact, structures and materials, aerodynamic performance, and stability and control. The specific objectives of each discipline are summarized. Annotation is included for all NASA inhouse and low-number contractor reports. There are 444 papers and articles included.

  10. Continued Development and Application of Circulation Control Pneumatic Technology to Advanced Transport Aircraft

    NASA Technical Reports Server (NTRS)

    Englar, Robert J.

    1998-01-01

    Personnel of the Georgia Tech Research Institute (GTRI) Aerospace and Transportation Lab have completed a four-year grant program to develop and evaluate the pneumatic aerodynamic technology known as Circulation Control (CC) or Circulation Control Wing (CCW) for advanced transport aircraft. This pneumatic technology, which employs low-level blowing from tangential slots over round or near-round trailing edges of airfoils, greatly augments the circulation around a lifting or control surface and thus enhances the aerodynamic forces and moments generated by that surface. Two-dimensional force augmentations as high as 80 times the input blowing momentum coefficient have been recorded experimentally for these blown devices, thus providing returns of 8000% on the jet momentum expended. A further benefit is the absence of moving parts such as mechanical flaps, slats, spoilers, ailerons, elevators and rudders from these pneumatic surfaces, or the use of only very small, simple, blown aerodynamic surfaces on synergistic designs which integrate the lift, drag and control surfaces. The application of these devices to advanced aircraft can offer significant benefits in their performance, efficiency, simplicity, reliability, economic cost of operation, noise reduction, and safety of flight. To further develop and evaluate this potential, this research effort was conducted by GTRI under grant for the NASA Langley Research Center, Applied Aerodynamics Division, Subsonic Aerodynamics Branch, between June 14, 1993 and May 31, 1997.

  11. Pollution reduction technology program for small jet aircraft engines: Class T1

    NASA Technical Reports Server (NTRS)

    Bruce, T. W.; Davis, F. G.; Mongia, H. C.

    1977-01-01

    Small jet aircraft engines (EPA class T1, turbojet and turbofan engines of less than 35.6 kN thrust) were evaluated with the objective of attaining emissions reduction consistent with performance constraints. Configurations employing the technological advances were screened and developed through full scale rig testing. The most promising approaches in full-scale engine testing were evaluated.

  12. Development and testing of the Perseus proof-of-concept aircraft. Final report

    SciTech Connect

    Langford, J.S.

    1993-02-26

    Many areas of global climate change research could benefit from a flexible, affordable, and near-term platform that could provide in situ measurements in the upper troposphere and lower stratosphere. To provide such a capability, the Perseus unmanned science research aircraft was proposed in 1989. As a first step toward the development of Perseus, a proof-of-concept (POC) demonstrator was constructed and tested during 1990 and 1991. The POC was a full scale Perseus airframe intended to validate the structural, aerodynamic, and flight control technologies for the Perseus within a total budget of about $1.5 million. Advanced propulsion systems needed for the operational Perseus were not covered in the POC program due to funding limitations. This report documents the design, development, and testing of the Perseus POC.

  13. An Overview of the Space Shuttle Orbiter's Aging Aircraft Program

    NASA Technical Reports Server (NTRS)

    Russell, Richard W.

    2007-01-01

    The Space Shuttle Orbiter has well exceeded its original design life of 10 years or 100 missions. The Orbiter Project Office (OPO) has sponsored several activities to address aging vehicle concerns, including a Corrosion Control Review Board (CCRB), a mid-life certification program, and most recently the formation of the Aging Orbiter Working Group (AOWG). The AOWG was chartered in 2004 as a proactive group which provides the OPO oversight for aging issues such as corrosion, non-destructive inspection, non-metallics, wiring and subsystems. The core team consists of mainly representatives from the Materials and Processes Problem Resolution Team (M&P PRT) and Safety and Mission Assurance (S&MA). Subsystem engineers and subject matter experts are called in as required. The AOWG has functioned by forming issues based sub-teams. Examples of completed sub-teams include adhesives, wiring and wing leading edge metallic materials. Current sub-teams include Composite Over-Wrapped Pressure Vessels (COPV), elastomeric materials and mechanisms.

  14. Development of the Junkers-diesel Aircraft Engine

    NASA Technical Reports Server (NTRS)

    Gasterstadt,

    1930-01-01

    The working process of the Junkers engine has resulted from a series of attempts to attain high performance and to control the necessarily rapid and complete combustion at extremely high speeds. The two main problems of Diesel engines in aircraft are addressed; namely, incomplete combustion and the greater weight of Diesel engine parts compared to gasoline engines.

  15. A perspective on 15 years of proof-of-concept aircraft development and flight research at Ames-Moffett by the Rotorcraft and Powered-Lift Flight Projects Division, 1970-1985

    NASA Technical Reports Server (NTRS)

    Few, David D.

    1987-01-01

    A proof-of-concept (POC) aircraft is defined and the concept of interest described for each of the six aircraft developed by the Ames-Moffet Rotorcraft and Powered-Lift Flight Projects Division from 1970 through 1985; namely, the OV-10, the C-8A Augmentor Wing, the Quiet Short-Haul Research Aircraft (QSRA), the XV-15 Tilt Rotor Research Aircraft (TRRA), the Rotor Systems Research Aircraft (RSRA)-compound, and the yet-to-fly RSRA/X-Wing Aircraft. The program/project chronology and most noteworthy features of the concepts are reviewed. The paper discusses the significance of each concept and the project demonstrating it; it briefly looks at what concepts are on the horizon as potential POC research aircraft and emphasizes that no significant advanced concept in aviation technology has ever been accepted by civilian or military users without first completing a demonstration through flight testing.

  16. Development of control laws for a flight test maneuver autopilot for an F-15 aircraft

    NASA Technical Reports Server (NTRS)

    Alag, G. S.; Duke, E. L.

    1985-01-01

    An autopilot can be used to provide precise control to meet the demanding requirements of flight research maneuvers with high-performance aircraft. The development of control laws within the context of flight test maneuver requirements is discussed. The control laws are developed using eigensystem assignment and command generator tracking. The eigenvalues and eigenvectors are chosen to provide the necessary handling qualities, while the command generator tracking enables the tracking of a specified state during the maneuver. The effectiveness of the control laws is illustrated by their application to an F-15 aircraft to ensure acceptable aircraft performance during a maneuver.

  17. Developing disease management programs.

    PubMed

    Herman, K

    1999-11-01

    Several market forces are driving interest in disease management and its growth, including the need to control costs; improve quality; attract, satisfy, and retain members; and meet accreditation requirements. People with chronic diseases and disabilities represent the most expensive and fastest-growing group of patients in health care, and agencies that develop successful disease management programs for these populations will reap a variety of benefits. PMID:10661985

  18. Euler Technology Assessment program for preliminary aircraft design employing SPLITFLOW code with Cartesian unstructured grid method

    NASA Technical Reports Server (NTRS)

    Finley, Dennis B.

    1995-01-01

    This report documents results from the Euler Technology Assessment program. The objective was to evaluate the efficacy of Euler computational fluid dynamics (CFD) codes for use in preliminary aircraft design. Both the accuracy of the predictions and the rapidity of calculations were to be assessed. This portion of the study was conducted by Lockheed Fort Worth Company, using a recently developed in-house Cartesian-grid code called SPLITFLOW. The Cartesian grid technique offers several advantages for this study, including ease of volume grid generation and reduced number of cells compared to other grid schemes. SPLITFLOW also includes grid adaptation of the volume grid during the solution convergence to resolve high-gradient flow regions. This proved beneficial in resolving the large vortical structures in the flow for several configurations examined in the present study. The SPLITFLOW code predictions of the configuration forces and moments are shown to be adequate for preliminary design analysis, including predictions of sideslip effects and the effects of geometry variations at low and high angles of attack. The time required to generate the results from initial surface definition is on the order of several hours, including grid generation, which is compatible with the needs of the design environment.

  19. Recent developments in aircraft protection systems for laser guide star operations

    NASA Astrophysics Data System (ADS)

    Stomski, Paul J.; Murphy, Thomas W.; Campbell, Randy

    2012-07-01

    The astronomical community's use of high power laser guide star adaptive optics (LGS-AO) systems presents a potential hazard to aviation. Historically, the most common and trusted means of protecting aircraft and their occupants has been the use of safety observers (aka spotters) armed with shut-off switches. These safety observers watch for aircraft at risk and terminate laser propagation before the aircraft can be adversely affected by the laser. Efforts to develop safer and more cost-effective automated aircraft protection systems for use by the astronomical community have been inhibited by both technological and regulatory challenges. This paper discusses recent developments in these two areas. Specifically, with regard to regulation and guidance we discuss the 2011 release of AS-6029 by the SAE as well as the potential impact of RTCA DO-278A. With regard to the recent developments in the technology used to protect aircraft from laser illumination, we discuss the novel Transponder Based Aircraft Detection (TBAD) system being installed at W. M. Keck Observatory (WMKO). Finally, we discuss our strategy for evaluating TBAD compliance with the regulations and for seeking appropriate approvals for LGS operations at WMKO using a fully automated, flexibly configured, multi-tier aircraft protection system incorporating this new technology.

  20. Conference on the Development of Fire-Resistant Aircraft Passenger Seats

    NASA Technical Reports Server (NTRS)

    Fewell, L. L.; Kourtides, D. A.; Rosser, R. W.; Parker, J. A.

    1976-01-01

    Papers are presented dealing with the development of aircraft seats with the minimum fire risk. Criteria examined include: flame spread, heat release, and smoke and/or toxic fumes. Materials and performance specifications of all seat material options are provided.

  1. Pollution reduction technology program small jet aircraft engines, phase 3

    NASA Technical Reports Server (NTRS)

    Bruce, T. W.; Davis, F. G.; Kuhn, T. E.; Mongia, H. C.

    1981-01-01

    A series of Model TFE731-2 engine tests were conducted with the Concept 2 variable geometry airblast fuel injector combustion system installed. The engine was tested to: (1) establish the emission levels over the selected points which comprise the Environmental Protection Agency Landing-Takeoff Cycle; (2) determine engine performance with the combustion system; and (3) evaulate the engine acceleration/deceleration characteristics. The hydrocarbon (HC), carbon monoxide (CO), and smoke goals were met. Oxides of nitrogen (NOx) were above the goal for the same configuration that met the other pollutant goals. The engine and combustor performance, as well as acceleration/deceleration characteristics, were acceptable. The Concept 3 staged combustor system was refined from earlier phase development and subjected to further rig refinement testing. The concept met all of the emissions goals.

  2. Advanced turboprop testbed systems study. Volume 1: Testbed program objectives and priorities, drive system and aircraft design studies, evaluation and recommendations and wind tunnel test plans

    NASA Technical Reports Server (NTRS)

    Bradley, E. S.; Little, B. H.; Warnock, W.; Jenness, C. M.; Wilson, J. M.; Powell, C. W.; Shoaf, L.

    1982-01-01

    The establishment of propfan technology readiness was determined and candidate drive systems for propfan application were identified. Candidate testbed aircraft were investigated for testbed aircraft suitability and four aircraft selected as possible propfan testbed vehicles. An evaluation of the four candidates was performed and the Boeing KC-135A and the Gulfstream American Gulfstream II recommended as the most suitable aircraft for test application. Conceptual designs of the two recommended aircraft were performed and cost and schedule data for the entire testbed program were generated. The program total cost was estimated and a wind tunnel program cost and schedule is generated in support of the testbed program.

  3. Development and testing of cabin sidewall acoustic resonators for the reduction of cabin tone levels in propfan-powered aircraft

    NASA Technical Reports Server (NTRS)

    Kuntz, H. L.; Gatineau, R. J.; Prydz, R. A.; Balena, F. J.

    1991-01-01

    The use of Helmholtz resonators to increase the sidewall transmission loss (TL) in aircraft cabin sidewalls is evaluated. Development, construction, and test of an aircraft cabin acoustic enclosure, built in support of the Propfan Test Assessment (PTA) program, is described. Laboratory and flight test results are discussed. Resonators (448) were located between the enclosure trim panels and the fuselage shell. In addition, 152 resonators were placed between the enclosure and aircraft floors. The 600 resonators were each tuned to a propfan fundamental blade passage frequency (235 Hz). After flight testing on the PTA aircraft, noise reduction (NR) tests were performed with the enclosure in the Kelly Johnson Research and Development Center Acoustics Laboratory. Broadband and tonal excitations were used in the laboratory. Tonal excitation simulated the propfan flight test excitation. The resonators increase the NR of the cabin walls around the resonance frequency of the resonator array. Increases in NR of up to 11 dB were measured. The effects of flanking, sidewall absorption, cabin absorption, resonator loading of trim panels, and panel vibrations are presented. Resonator and sidewall panel design and test are discussed.

  4. FLUT - A program for aeroelastic stability analysis. [of aircraft structures in subsonic flow

    NASA Technical Reports Server (NTRS)

    Johnson, E. H.

    1977-01-01

    A computer program (FLUT) that can be used to evaluate the aeroelastic stability of aircraft structures in subsonic flow is described. The algorithm synthesizes data from a structural vibration analysis with an unsteady aerodynamics analysis and then performs a complex eigenvalue analysis to assess the system stability. The theoretical basis of the program is discussed with special emphasis placed on some innovative techniques which improve the efficiency of the analysis. User information needed to efficiently and successfully utilize the program is provided. In addition to identifying the required input, the flow of the program execution and some possible sources of difficulty are included. The use of the program is demonstrated with a listing of the input and output for a simple example.

  5. Hybrid Neural-Network: Genetic Algorithm Technique for Aircraft Engine Performance Diagnostics Developed and Demonstrated

    NASA Technical Reports Server (NTRS)

    Kobayashi, Takahisa; Simon, Donald L.

    2002-01-01

    As part of the NASA Aviation Safety Program, a unique model-based diagnostics method that employs neural networks and genetic algorithms for aircraft engine performance diagnostics has been developed and demonstrated at the NASA Glenn Research Center against a nonlinear gas turbine engine model. Neural networks are applied to estimate the internal health condition of the engine, and genetic algorithms are used for sensor fault detection, isolation, and quantification. This hybrid architecture combines the excellent nonlinear estimation capabilities of neural networks with the capability to rank the likelihood of various faults given a specific sensor suite signature. The method requires a significantly smaller data training set than a neural network approach alone does, and it performs the combined engine health monitoring objectives of performance diagnostics and sensor fault detection and isolation in the presence of nominal and degraded engine health conditions.

  6. Development of advanced structural analysis methodologies for predicting widespread fatigue damage in aircraft structures

    NASA Technical Reports Server (NTRS)

    Harris, Charles E.; Starnes, James H., Jr.; Newman, James C., Jr.

    1995-01-01

    NASA is developing a 'tool box' that includes a number of advanced structural analysis computer codes which, taken together, represent the comprehensive fracture mechanics capability required to predict the onset of widespread fatigue damage. These structural analysis tools have complementary and specialized capabilities ranging from a finite-element-based stress-analysis code for two- and three-dimensional built-up structures with cracks to a fatigue and fracture analysis code that uses stress-intensity factors and material-property data found in 'look-up' tables or from equations. NASA is conducting critical experiments necessary to verify the predictive capabilities of the codes, and these tests represent a first step in the technology-validation and industry-acceptance processes. NASA has established cooperative programs with aircraft manufacturers to facilitate the comprehensive transfer of this technology by making these advanced structural analysis codes available to industry.

  7. Study to develop improved fire resistant aircraft passenger seat materials

    NASA Technical Reports Server (NTRS)

    Duskin, F. E.; Schutter, K. J.; Sieth, H. H.; Trabold, E. L.

    1980-01-01

    The Phase 3 study of the NASA 'Improved Fire Resistant Aircraft Seat Materials' involved fire tests of improved materials in multilayered combinations representative of cushion configurations. Tests were conducted to determine their thermal, smoke, and fire resistance characteristics. Additionally, a 'Design Guideline' for Fire Resistant Passenger Seats was written outlining general seat design considerations. Finally, a three-abreast 'Tourist Class' passenger seat assembly fabricated from the most advanced fire-resistant materials was delivered.

  8. A progress report on the development of an augmentor wing jet STOL research aircraft.

    NASA Technical Reports Server (NTRS)

    Quigley, H. C.; Sinclair, S. R. M.; Nark, T. C., Jr.; O'Keefe, J. V.

    1971-01-01

    The development of the aircraft has progressed to the point where the design of the modifications to the de Havilland C-8A Buffalo is complete and the engines are being tested. The predicted performance shows that the aircraft will be able to take off and land in less than 1500 ft. Simulation studies indicate that the handling qualities of the aircraft, with stability augmentation, will be acceptable for STOL research missions. Special techniques were required, however, for flight path control and transition from cruise to landing configuration .

  9. ABC Technology Development Program

    SciTech Connect

    1994-10-14

    The Accelerator-Based Conversion (ABC) facility will be designed to accomplish the following mission: `Provide a weapon`s grade plutonium disposition capability in a safe, economical, and environmentally sound manner on a prudent schedule for [50] tons of weapon`s grade plutonium to be disposed on in [20] years.` This mission is supported by four major objectives: provide a reliable plutonium disposition capability within the next [15] years; provide a level of safety and of safety assurance that meets or exceeds that afforded to the public by modern commercial nuclear power plants; meet or exceed all applicable federal, state, and local regulations or standards for environmental compliance; manage the program in a cost effective manner. The ABC Technology Development Program defines the technology development activities that are required to accomplish this mission. The technology development tasks are related to the following topics: blanket system; vessel systems; reactivity control systems; heat transport system components; energy conversion systems; shutdown heat transport systems components; auxiliary systems; technology demonstrations - large scale experiments.

  10. Future development programs. [for defining the emission problem and developing hardware to reduce pollutant levels

    NASA Technical Reports Server (NTRS)

    Jedrziewski, S.

    1976-01-01

    The emission problem or source points were defined and new materials, hardware, or operational procedures were developed to exercise the trends defined by the data collected. The programs to reduce the emission output of aircraft powerplants were listed. Continued establishment of baseline emissions for various engine models, continued characterization of effect of production tolerances on emissions, carbureted engine development and flight tests, and cylinder cooling/fin design programs were several of the programs investigated.

  11. NASA Electric Aircraft Test Bed (NEAT) Development Plan - Design, Fabrication, Installation

    NASA Technical Reports Server (NTRS)

    Dyson, Rodger W.

    2016-01-01

    As large airline companies compete to reduce emissions, fuel, noise, and maintenance costs, it is expected that more of their aircraft systems will shift from using turbofan propulsion, pneumatic bleed power, and hydraulic actuation, to instead using electrical motor propulsion, generator power, and electrical actuation. This requires new flight-weight and flight-efficient powertrain components, fault tolerant power management, and electromagnetic interference mitigation technologies. Moreover, initial studies indicate some combination of ambient and cryogenic thermal management and relatively high bus voltages when compared to state of practice will be required to achieve a net system benefit. Developing all these powertrain technologies within a realistic aircraft architectural geometry and under realistic operational conditions requires a unique electric aircraft testbed. This report will summarize existing testbed capabilities located in the U.S. and details the development of a unique complementary testbed that industry and government can utilize to further mature electric aircraft technologies.

  12. NAVSIM 2: A computer program for simulating aided-inertial navigation for aircraft

    NASA Technical Reports Server (NTRS)

    Bjorkman, William S.

    1987-01-01

    NAVSIM II, a computer program for analytical simulation of aided-inertial navigation for aircraft, is described. The description is supported by a discussion of the program's application to the design and analysis of aided-inertial navigation systems as well as instructions for utilizing the program and for modifying it to accommodate new models, constraints, algorithms and scenarios. NAVSIM II simulates an airborne inertial navigation system built around a strapped-down inertial measurement unit and aided in its function by GPS, Doppler radar, altimeter, airspeed, and position-fix measurements. The measurements are incorporated into the navigation estimate via a UD-form Kalman filter. The simulation was designed and implemented using structured programming techniques and with particular attention to user-friendly operation.

  13. Advanced manufacturing development of a composite empennage component for L-1011 aircraft

    NASA Technical Reports Server (NTRS)

    Alva, T.; Henkel, J.; Johnson, R.; Carll, B.; Jackson, A.; Mosesian, B.; Brozovic, R.; Obrien, R.; Eudaily, R.

    1982-01-01

    This is the final report of technical work conducted during the fourth phase of a multiphase program having the objective of the design, development and flight evaluation of an advanced composite empennage component manufactured in a production environment at a cost competitive with those of its metal counterpart, and at a weight savings of at least 20 percent. The empennage component selected for this program is the vertical fin box of the L-1011 aircraft. The box structure extends from the fuselage production joint to the tip rib and includes front and rear spars. During Phase 4 of the program, production quality tooling was designed and manufactured to produce three sets of covers, ribs, spars, miscellaneous parts, and subassemblies to assemble three complete ACVF units. Recurring and nonrecurring cost data were compiled and documented in the updated producibility/design to cost plan. Nondestruct inspections, quality control tests, and quality acceptance tests were performed in accordance with the quality assurance plan and the structural integrity control plan. Records were maintained to provide traceability of material and parts throughout the manufacturing development phase. It was also determined that additional tooling would not be required to support the current and projected L-1011 production rate.

  14. Development of EPA aircraft piston engine emission standards. [for air quality

    NASA Technical Reports Server (NTRS)

    Houtman, W.

    1976-01-01

    Piston engine light aircraft are significant sources of carbon monoxide in the vicinity of high activity general aviation airports. Substantial reductions in carbon monoxide were achieved by fuel mixture leaning using improved fuel management systems. The air quality impact of the hydrocarbon and oxides of nitrogen emissions from piston engine light aircraft were insufficient to justify the design constraints being confronted in present control system developments.

  15. ERAST Program Proteus Aircraft in Flight over the Mojave Desert in California

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The unusual design of the Proteus high-altitude aircraft, incorporating a gull-wing shape for its main wing and a long, slender forward canard, is clearly visible in this view of the aircraft in flight over the Mojave Desert in California. In the Proteus Project, NASA's Dryden Flight Research Center, Edwards, California, is assisting Scaled Composites, Inc., Mojave, California, in developing a sophisticated station-keeping autopilot system and a Satellite Communications (SATCOM)-based uplink-downlink data system for aircraft and payload data under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project. The ERAST Project is sponsored by the Office of Aero-Space Technology at NASA Headquarters, and is managed by the Dryden Flight Research Center. The Proteus is a unique aircraft, designed as a high-altitude, long-duration telecommunications relay platform with potential for use on atmospheric sampling and Earth-monitoring science missions. The aircraft is designed to be flown by two pilots in a pressurized cabin, but also has the potential to perform its missions semiautonomously or be flown remotely from the ground. Flight testing of the Proteus, beginning in the summer of 1998 at Mojave Airport through the end of 1999, included the installation and checkout of the autopilot system, including the refinement of the altitude hold and altitude change software. The SATCOM equipment, including avionics and antenna systems, had been installed and checked out in several flight tests. The systems performed flawlessly during the Proteus's deployment to the Paris Airshow in 1999. NASA's ERAST project funded development of an Airborne Real-Time Imaging System (ARTIS). Developed by HyperSpectral Sciences, Inc., the small ARTIS camera was demonstrated during the summer of 1999 when it took visual and near-infrared photos over the Experimental Aircraft Association's 'AirVenture 99' Airshow at Oshkosh, Wisconsin. The images were displayed on a computer

  16. Finite Element Model Development For Aircraft Fuselage Structures

    NASA Technical Reports Server (NTRS)

    Buehrle, Ralph D.; Fleming, Gary A.; Pappa, Richard S.; Grosveld, Ferdinand W.

    2000-01-01

    The ability to extend the valid frequency range for finite element based structural dynamic predictions using detailed models of the structural components and attachment interfaces is examined for several stiffened aircraft fuselage structures. This extended dynamic prediction capability is needed for the integration of mid-frequency noise control technology. Beam, plate and solid element models of the stiffener components are evaluated. Attachment models between the stiffener and panel skin range from a line along the rivets of the physical structure to a constraint over the entire contact surface. The finite element models are validated using experimental modal analysis results.

  17. Twist Model Development and Results From the Active Aeroelastic Wing F/A-18 Aircraft

    NASA Technical Reports Server (NTRS)

    Lizotte, Andrew; Allen, Michael J.

    2005-01-01

    Understanding the wing twist of the active aeroelastic wing F/A-18 aircraft is a fundamental research objective for the program and offers numerous benefits. In order to clearly understand the wing flexibility characteristics, a model was created to predict real-time wing twist. A reliable twist model allows the prediction of twist for flight simulation, provides insight into aircraft performance uncertainties, and assists with computational fluid dynamic and aeroelastic issues. The left wing of the aircraft was heavily instrumented during the first phase of the active aeroelastic wing program allowing deflection data collection. Traditional data processing steps were taken to reduce flight data, and twist predictions were made using linear regression techniques. The model predictions determined a consistent linear relationship between the measured twist and aircraft parameters, such as surface positions and aircraft state variables. Error in the original model was reduced in some cases by using a dynamic pressure-based assumption and by using neural networks. These techniques produced excellent predictions for flight between the standard test points and accounted for nonlinearities in the data. This report discusses data processing techniques and twist prediction validation, and provides illustrative and quantitative results.

  18. Twist Model Development and Results from the Active Aeroelastic Wing F/A-18 Aircraft

    NASA Technical Reports Server (NTRS)

    Lizotte, Andrew M.; Allen, Michael J.

    2007-01-01

    Understanding the wing twist of the active aeroelastic wing (AAW) F/A-18 aircraft is a fundamental research objective for the program and offers numerous benefits. In order to clearly understand the wing flexibility characteristics, a model was created to predict real-time wing twist. A reliable twist model allows the prediction of twist for flight simulation, provides insight into aircraft performance uncertainties, and assists with computational fluid dynamic and aeroelastic issues. The left wing of the aircraft was heavily instrumented during the first phase of the active aeroelastic wing program allowing deflection data collection. Traditional data processing steps were taken to reduce flight data, and twist predictions were made using linear regression techniques. The model predictions determined a consistent linear relationship between the measured twist and aircraft parameters, such as surface positions and aircraft state variables. Error in the original model was reduced in some cases by using a dynamic pressure-based assumption. This technique produced excellent predictions for flight between the standard test points and accounted for nonlinearities in the data. This report discusses data processing techniques and twist prediction validation, and provides illustrative and quantitative results.

  19. V/STOL tilt rotor aircraft study. Volume 7: Tilt rotor flight control program feedback studies

    NASA Technical Reports Server (NTRS)

    Alexander, H. R.; Eason, W.; Gillmore, K.; Morris, J.; Spittle, R.

    1973-01-01

    An exploratory study has been made of the use of feedback control in tilt rotor aircraft. This has included the use of swashplate cyclic and collective controls and direct lift control. Various sensor and feedback systems are evaluated in relation to blade loads alleviation, improvement in flying qualities, and modal suppression. Recommendations are made regarding additional analytical and wind tunnel investigations and development of feedback systems in the full scale flight vehicle. Estimated costs and schedules are given.

  20. Scheduled Civil Aircraft Emission Inventories for 1999: Database Development and Analysis

    NASA Technical Reports Server (NTRS)

    Sutkus, Donald J., Jr.; Baughcum, Steven L.; DuBois, Douglas P.

    2001-01-01

    This report describes the development of a three-dimensional database of aircraft fuel burn and emissions (NO(x), CO, and hydrocarbons) for the scheduled commercial aircraft fleet for each month of 1999. Global totals of emissions and fuel burn for 1999 are compared to global totals from 1992 and 2015 databases. 1999 fuel burn, departure and distance totals for selected airlines are compared to data reported on DOT Form 41 to evaluate the accuracy of the calculations. DOT Form T-100 data were used to determine typical payloads for freighter aircraft and this information was used to model freighter aircraft more accurately by using more realistic payloads. Differences in the calculation methodology used to create the 1999 fuel burn and emissions database from the methodology used in previous work are described and evaluated.

  1. Scheduled civil aircraft emission inventories for 1992: Database development and analysis

    NASA Technical Reports Server (NTRS)

    Baughcum, Steven L.; Tritz, Terrance G.; Henderson, Stephen C.; Pickett, David C.

    1996-01-01

    This report describes the development of a three-dimensional database of aircraft fuel burn and emissions (fuel burned, NOx, CO, and hydrocarbons) from scheduled commercial aircraft for each month of 1992. The seasonal variation in aircraft emissions was calculated for selected regions (global, North America, Europe, North Atlantic, and North Pacific). A series of parametric calculations were done to quantify the possible errors introduced from making approximations necessary to calculate the global emission inventory. The effects of wind, temperature, load factor, payload, and fuel tankering on fuel burn were evaluated to identify how they might affect the accuracy of aircraft emission inventories. These emissions inventories are available for use by atmospheric scientists conducting the Atmospheric Effects of Aviation Project (AEAP) modeling studies. Fuel burned and emissions of nitrogen oxides (NOx as N02), carbon monoxide, and hydrocarbons have been calculated on a 1 degree latitude x 1 degree longitude x 1 kilometer altitude grid and delivered to NASA as electronic files.

  2. A computer program to obtain time-correlated gust loads for nonlinear aircraft using the matched-filter-based method

    NASA Technical Reports Server (NTRS)

    Scott, Robert C.; Pototzky, Anthony S.; Perry, Boyd, III

    1994-01-01

    NASA Langley Research Center has, for several years, conducted research in the area of time-correlated gust loads for linear and nonlinear aircraft. The results of this work led NASA to recommend that the Matched-Filter-Based One-Dimensional Search Method be used for gust load analyses of nonlinear aircraft. This manual describes this method, describes a FORTRAN code which performs this method, and presents example calculations for a sample nonlinear aircraft model. The name of the code is MFD1DS (Matched-Filter-Based One-Dimensional Search). The program source code, the example aircraft equations of motion, a sample input file, and a sample program output are all listed in the appendices.

  3. Shuttle sortie simulation using a Lear jet aircraft: Mission no. 1 (assess program)

    NASA Technical Reports Server (NTRS)

    Mulholland, D. R.; Reller, J. O., Jr.; Nell, C. B., Jr.; Mason, R. H.

    1972-01-01

    The shuttle sortie simulation mission of the Airborne Science/Shuttle Experiments System Simulation Program which was conducted using the CV-990 aircraft is reported. The seven flight, five day mission obtained data on experiment preparation, type of experiment components, operation and maintenance, data acquisition, crew functions, timelines and interfaces, use of support equipment and spare parts, power consumption, work cycles, influence of constraints, and schedule impacts. This report describes the experiment, the facilities, the operation, and the results analyzed from the standpoint of their possible use in aiding the planning for experiments in the Shuttle Sortie Laboratory.

  4. Aircraft noise prediction program theoretical manual: Rotorcraft System Noise Prediction System (ROTONET), part 4

    NASA Technical Reports Server (NTRS)

    Weir, Donald S.; Jumper, Stephen J.; Burley, Casey L.; Golub, Robert A.

    1995-01-01

    This document describes the theoretical methods used in the rotorcraft noise prediction system (ROTONET), which is a part of the NASA Aircraft Noise Prediction Program (ANOPP). The ANOPP code consists of an executive, database manager, and prediction modules for jet engine, propeller, and rotor noise. The ROTONET subsystem contains modules for the prediction of rotor airloads and performance with momentum theory and prescribed wake aerodynamics, rotor tone noise with compact chordwise and full-surface solutions to the Ffowcs-Williams-Hawkings equations, semiempirical airfoil broadband noise, and turbulence ingestion broadband noise. Flight dynamics, atmosphere propagation, and noise metric calculations are covered in NASA TM-83199, Parts 1, 2, and 3.

  5. Development of a Low-Cost Sub-Scale Aircraft for Flight Research: The FASER Project

    NASA Technical Reports Server (NTRS)

    Owens, Donald B.; Cox, David E.; Morelli, Eugene A.

    2006-01-01

    An inexpensive unmanned sub-scale aircraft was developed to conduct frequent flight test experiments for research and demonstration of advanced dynamic modeling and control design concepts. This paper describes the aircraft, flight systems, flight operations, and data compatibility including details of some practical problems encountered and the solutions found. The aircraft, named Free-flying Aircraft for Sub-scale Experimental Research, or FASER, was outfitted with high-quality instrumentation to measure aircraft inputs and states, as well as vehicle health parameters. Flight data are stored onboard, but can also be telemetered to a ground station in real time for analysis. Commercial-off-the-shelf hardware and software were used as often as possible. The flight computer is based on the PC104 platform, and runs xPC-Target software. Extensive wind tunnel testing was conducted with the same aircraft used for flight testing, and a six degree-of-freedom simulation with nonlinear aerodynamics was developed to support flight tests. Flight tests to date have been conducted to mature the flight operations, validate the instrumentation, and check the flight data for kinematic consistency. Data compatibility analysis showed that the flight data are accurate and consistent after corrections are made for estimated systematic instrumentation errors.

  6. Finite Element Model Development and Validation for Aircraft Fuselage Structures

    NASA Technical Reports Server (NTRS)

    Buehrle, Ralph D.; Fleming, Gary A.; Pappa, Richard S.; Grosveld, Ferdinand W.

    2000-01-01

    The ability to extend the valid frequency range for finite element based structural dynamic predictions using detailed models of the structural components and attachment interfaces is examined for several stiffened aircraft fuselage structures. This extended dynamic prediction capability is needed for the integration of mid-frequency noise control technology. Beam, plate and solid element models of the stiffener components are evaluated. Attachment models between the stiffener and panel skin range from a line along the rivets of the physical structure to a constraint over the entire contact surface. The finite element models are validated using experimental modal analysis results. The increased frequency range results in a corresponding increase in the number of modes, modal density and spatial resolution requirements. In this study, conventional modal tests using accelerometers are complemented with Scanning Laser Doppler Velocimetry and Electro-Optic Holography measurements to further resolve the spatial response characteristics. Whenever possible, component and subassembly modal tests are used to validate the finite element models at lower levels of assembly. Normal mode predictions for different finite element representations of components and assemblies are compared with experimental results to assess the most accurate techniques for modeling aircraft fuselage type structures.

  7. NASA Broad Specification Fuels Combustion Technology program - Pratt and Whitney Aircraft Phase I results and status

    NASA Technical Reports Server (NTRS)

    Lohmann, R. P.; Fear, J. S.

    1982-01-01

    In connection with increases in the cost of fuels and the reduced availability of high quality petroleum crude, a modification of fuel specifications has been considered to allow acceptance of poorer quality fuels. To obtain the information upon which a selection of appropriate fuels for aircraft can be based, the Broad Specification Fuels Combustion Technology program was formulated by NASA. A description is presented of program-related investigations conducted by an American aerospace company. The specific objective of Phase I of this program has been to evaluate the impact of the use of broadened properties fuels on combustor design through comprehensive combustor rig testing. Attention is given to combustor concepts, experimental evaluation, results obtained with single stage combustors, the stage combustor concept, and the capability of a variable geometry combustor.

  8. Nonflammable Clothing Development Program

    NASA Technical Reports Server (NTRS)

    Johnston, Richard; Radnofsky, Matthew I.

    1968-01-01

    Protective clothing is of major importance in our space program. The authors discuss the requirements, selection, and testing of materials considered for use in the program. The various types of garments worn by astronauts and support personnel are briefly described.

  9. ERAST Program Proteus Aircraft in Flight over the Tehachapi Mountains in Southern California

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The unique shape of the Proteus high-altitude aircraft is clearly visible in this photo of the plane in flight above the rocky slopes of the Tehachapi Mountains near Mojave, California, where the Proteus was designed and built. In the Proteus Project, NASA's Dryden Flight Research Center, Edwards, California, is assisting Scaled Composites, Inc., Mojave, California, in developing a sophisticated station-keeping autopilot system and a Satellite Communications (SATCOM)-based uplink-downlink data system for aircraft and payload data under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project. The ERAST Project is sponsored by the Office of Aero-Space Technology at NASA Headquarters, and is managed by the Dryden Flight Research Center. The Proteus is a unique aircraft, designed as a high-altitude, long-duration telecommunications relay platform with potential for use on atmospheric sampling and Earth-monitoring science missions. The aircraft is designed to be flown by two pilots in a pressurized cabin, but also has the potential to perform its missions semiautonomously or be flown remotely from the ground. Flight testing of the Proteus, beginning in the summer of 1998 at Mojave Airport through the end of 1999, included the installation and checkout of the autopilot system, including the refinement of the altitude hold and altitude change software. The SATCOM equipment, including avionics and antenna systems, had been installed and checked out in several flight tests. The systems performed flawlessly during the Proteus's deployment to the Paris Airshow in 1999. NASA's ERAST project funded development of an Airborne Real-Time Imaging System (ARTIS). Developed by HyperSpectral Sciences, Inc., the small ARTIS camera was demonstrated during the summer of 1999 when it took visual and near-infrared photos over the Experimental Aircraft Association's 'AirVenture 99' Airshow at Oshkosh, Wisconsin. The images were displayed on a computer monitor at the

  10. ERAST Program Proteus Aircraft in Flight over the Mojave Desert in California

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The uniquely shaped Proteus high-altitude aircraft soars over California's Mojave Desert during a July 1999 flight. In the Proteus Project, NASA's Dryden Flight Research Center, Edwards, California, is assisting Scaled Composites, Inc., Mojave, California, in developing a sophisticated station-keeping autopilot system and a Satellite Communications (SATCOM)-based uplink-downlink data system for aircraft and payload data under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project. The ERAST Project is sponsored by the Office of Aero-Space Technology at NASA Headquarters, and is managed by the Dryden Flight Research Center. The Proteus is a unique aircraft, designed as a high-altitude, long-duration telecommunications relay platform with potential for use on atmospheric sampling and Earth-monitoring science missions. The aircraft is designed to be flown by two pilots in a pressurized cabin, but also has the potential to perform its missions semiautonomously or be flown remotely from the ground. Flight testing of the Proteus, beginning in the summer of 1998 at Mojave Airport through the end of 1999, included the installation and checkout of the autopilot system, including the refinement of the altitude hold and altitude change software. The SATCOM equipment, including avionics and antenna systems, had been installed and checked out in several flight tests. The systems performed flawlessly during the Proteus's deployment to the Paris Airshow in 1999. NASA's ERAST project funded development of an Airborne Real-Time Imaging System (ARTIS). Developed by HyperSpectral Sciences, Inc., the small ARTIS camera was demonstrated during the summer of 1999 when it took visual and near-infrared photos over the Experimental Aircraft Association's 'AirVenture 99' Airshow at Oshkosh, Wisconsin. The images were displayed on a computer monitor at the show only moments after they were taken. This was the second successful demonstration of the ARTIS camera. The

  11. ERAST Program Proteus Aircraft on Runway at Mojave Airport in Mojave, California

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The Proteus high-altitude aircraft on the ramp at the Mojave Airport in Mojave, California. In the Proteus Project, NASA's Dryden Flight Research Center, Edwards, California, is assisting Scaled Composites, Inc., Mojave, California, in developing a sophisticated station-keeping autopilot system and a Satellite Communications (SATCOM)-based uplink-downlink data system for aircraft and payload data under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project. The ERAST Project is sponsored by the Office of Aero-Space Technology at NASA Headquarters, and is managed by the Dryden Flight Research Center. The Proteus is a unique aircraft, designed as a high-altitude, long-duration telecommunications relay platform with potential for use on atmospheric sampling and Earth-monitoring science missions. The aircraft is designed to be flown by two pilots in a pressurized cabin, but also has the potential to perform its missions semiautonomously or be flown remotely from the ground. Flight testing of the Proteus, beginning in the summer of 1998 at Mojave Airport through the end of 1999, included the installation and checkout of the autopilot system, including the refinement of the altitude hold and altitude change software. The SATCOM equipment, including avionics and antenna systems, had been installed and checked out in several flight tests. The systems performed flawlessly during the Proteus's deployment to the Paris Airshow in 1999. NASA's ERAST project funded development of an Airborne Real-Time Imaging System (ARTIS). Developed by HyperSpectral Sciences, Inc., the small ARTIS camera was demonstrated during the summer of 1999 when it took visual and near-infrared photos over the Experimental Aircraft Association's 'AirVenture 99' Airshow at Oshkosh, Wisconsin. The images were displayed on a computer monitor at the show only moments after they were taken. This was the second successful demonstration of the ARTIS camera. The aircraft is designed to

  12. ERAST Program Proteus Aircraft Taking Off from Mojave Airport in Mojave, California

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The uniquely-shaped Proteus high-altitude research aircraft lifts off from the runway at the Mojave Airport in Mojave, California. In the Proteus Project, NASA's Dryden Flight Research Center, Edwards, California, is assisting Scaled Composites, Inc., Mojave, California, in developing a sophisticated station-keeping autopilot system and a Satellite Communications (SATCOM)-based uplink-downlink data system for aircraft and payload data under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project. The ERAST Project is sponsored by the Office of Aero-Space Technology at NASA Headquarters, and is managed by the Dryden Flight Research Center. The Proteus is a unique aircraft, designed as a high-altitude, long-duration telecommunications relay platform with potential for use on atmospheric sampling and Earth-monitoring science missions. The aircraft is designed to be flown by two pilots in a pressurized cabin, but also has the potential to perform its missions semiautonomously or be flown remotely from the ground. Flight testing of the Proteus, beginning in the summer of 1998 at Mojave Airport through the end of 1999, included the installation and checkout of the autopilot system, including the refinement of the altitude hold and altitude change software. The SATCOM equipment, including avionics and antenna systems, had been installed and checked out in several flight tests. The systems performed flawlessly during the Proteus's deployment to the Paris Airshow in 1999. NASA's ERAST project funded development of an Airborne Real-Time Imaging System (ARTIS). Developed by HyperSpectral Sciences, Inc., the small ARTIS camera was demonstrated during the summer of 1999 when it took visual and near-infrared photos over the Experimental Aircraft Association's 'AirVenture 99' Airshow at Oshkosh, Wisconsin. The images were displayed on a computer monitor at the show only moments after they were taken. This was the second successful demonstration of the ARTIS

  13. ERAST Program Proteus Aircraft Taxiing on Runway at Mojave Airport in Mojave, California

    NASA Technical Reports Server (NTRS)

    1999-01-01

    A frontal view of the Proteus high-altitude aircraft on the ramp at the Mojave Airport in Mojave, California in July 1999. In the Proteus Project, NASA's Dryden Flight Research Center, Edwards, California, is assisting Scaled Composites, Inc., Mojave, California, in developing a sophisticated station-keeping autopilot system and a Satellite Communications (SATCOM)-based uplink-downlink data system for aircraft and payload data under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project. The ERAST Project is sponsored by the Office of Aero-Space Technology at NASA Headquarters, and is managed by the Dryden Flight Research Center. The Proteus is a unique aircraft, designed as a high-altitude, long-duration telecommunications relay platform with potential for use on atmospheric sampling and Earth-monitoring science missions. The aircraft is designed to be flown by two pilots in a pressurized cabin, but also has the potential to perform its missions semiautonomously or be flown remotely from the ground. Flight testing of the Proteus, beginning in the summer of 1998 at Mojave Airport through the end of 1999, included the installation and checkout of the autopilot system, including the refinement of the altitude hold and altitude change software. The SATCOM equipment, including avionics and antenna systems, had been installed and checked out in several flight tests. The systems performed flawlessly during the Proteus's deployment to the Paris Airshow in 1999. NASA's ERAST project funded development of an Airborne Real-Time Imaging System (ARTIS). Developed by HyperSpectral Sciences, Inc., the small ARTIS camera was demonstrated during the summer of 1999 when it took visual and near-infrared photos over the Experimental Aircraft Association's 'AirVenture 99' Airshow at Oshkosh, Wisconsin. The images were displayed on a computer monitor at the show only moments after they were taken. This was the second successful demonstration of the ARTIS camera

  14. Development and flight test of an experimental maneuver autopilot for a highly maneuverable aircraft

    NASA Technical Reports Server (NTRS)

    Duke, Eugene L.; Jones, Frank P.; Roncoli, Ralph B.

    1986-01-01

    This report presents the development of an experimental flight test maneuver autopilot (FTMAP) for a highly maneuverable aircraft. The essence of this technique is the application of an autopilot to provide precise control during required flight test maneuvers. This newly developed flight test technique is being applied at the Dryden Flight Research Facility of NASA Ames Research Center. The FTMAP is designed to increase the quantity and quality of data obtained in test flight. The technique was developed and demonstrated on the highly maneuverable aircraft technology (HiMAT) vehicle. This report describes the HiMAT vehicle systems, maneuver requirements, FTMAP development process, and flight results.

  15. Requirements for regional short-haul air service and the definition of a flight program to determine neighborhood reactions to small transport aircraft

    NASA Technical Reports Server (NTRS)

    Feher, K.; Bollinger, L.; Bowles, J. V.; Waters, M. H.

    1978-01-01

    An evaluation of the current status and future requirements of an intraregional short haul air service is given. A brief definition of the different types of short haul air service is given. This is followed by a historical review of previous attempts to develop short haul air service in high density urban areas and an assessment of the current status. The requirements for intraregional air service, the need for economic and environmental viability and the need for a flight research program are defined. A detailed outline of a research program that would determine urban community reaction to frequent operations of small transport aircraft is also given. Both the operation of such an experiment in a specific region (San Francisco Bay area) and the necessary design modifications of an existing fixed wing aircraft which could be used in the experiment are established. An estimate is made of overall program costs.

  16. Stanford Hardware Development Program

    NASA Technical Reports Server (NTRS)

    Peterson, A.; Linscott, I.; Burr, J.

    1986-01-01

    Architectures for high performance, digital signal processing, particularly for high resolution, wide band spectrum analysis were developed. These developments are intended to provide instrumentation for NASA's Search for Extraterrestrial Intelligence (SETI) program. The real time signal processing is both formal and experimental. The efficient organization and optimal scheduling of signal processing algorithms were investigated. The work is complemented by efforts in processor architecture design and implementation. A high resolution, multichannel spectrometer that incorporates special purpose microcoded signal processors is being tested. A general purpose signal processor for the data from the multichannel spectrometer was designed to function as the processing element in a highly concurrent machine. The processor performance required for the spectrometer is in the range of 1000 to 10,000 million instructions per second (MIPS). Multiple node processor configurations, where each node performs at 100 MIPS, are sought. The nodes are microprogrammable and are interconnected through a network with high bandwidth for neighboring nodes, and medium bandwidth for nodes at larger distance. The implementation of both the current mutlichannel spectrometer and the signal processor as Very Large Scale Integration CMOS chip sets was commenced.

  17. Development, enhancement, and evaluation of aircraft measurement techniques for national ambient air quality standard criteria pollutants

    NASA Astrophysics Data System (ADS)

    Brent, Lacey Cluff

    The atmospheric contaminants most harmful to human health are designated Criteria Pollutants. To help Maryland attain the national ambient air quality standards (NAAQS) for Criteria Pollutants, and to improve our fundamental understanding of atmospheric chemistry, I conducted aircraft measurements in the Regional Atmospheric Measurement Modeling Prediction Program (RAMMPP). These data are used to evaluate model simulations and satellite observations. I developed techniques for improving airborne observation of two NAAQS pollutants, particulate matter (PM) and nitrogen dioxide (NO2). While structure and composition of organic aerosol are important for understanding PM formation, the molecular speciation of organic ambient aerosol remains largely unknown. The spatial distribution of reactive nitrogen is likewise poorly constrained. To examine water-soluble organic aerosol (WSOA) during an air pollution episode, I designed and implemented a shrouded aerosol inlet system to collect PM onto quartz fiber filters from a Cessna 402 research aircraft. Inlet evaluation conducted during a side-by-side flight with the NASA P3 demonstrated agreement to within 30%. An ion chromatographic mass spectrometric method developed using the NIST Standard Reference Material (SRM) 1649b Urban Dust, as a surrogate material resulted in acidic class separation and resolution of at least 34 organic acids; detection limits approach pg/g concentrations. Analysis of aircraft filter samples resulted in detection of 8 inorganic species and 16 organic acids of which 12 were quantified. Aged, re-circulated metropolitan air showed a greater number of dicarboxylic acids compared to air recently transported from the west. While the NAAQS for NO2 is rarely exceeded, it is a precursor molecule for ozone, America's most recalcitrant pollutant. Using cavity ringdown spectroscopy employing a light emitting diode (LED), I measured vertical profiles of NO2 (surface to 2.5 km) west (upwind) of the Baltimore

  18. NAIRAS aircraft radiation model development, dose climatology, and initial validation

    NASA Astrophysics Data System (ADS)

    Mertens, Christopher J.; Meier, Matthias M.; Brown, Steven; Norman, Ryan B.; Xu, Xiaojing

    2013-10-01

    The Nowcast of Atmospheric Ionizing Radiation for Aviation Safety (NAIRAS) is a real-time, global, physics-based model used to assess radiation exposure to commercial aircrews and passengers. The model is a free-running physics-based model in the sense that there are no adjustment factors applied to nudge the model into agreement with measurements. The model predicts dosimetric quantities in the atmosphere from both galactic cosmic rays (GCR) and solar energetic particles, including the response of the geomagnetic field to interplanetary dynamical processes and its subsequent influence on atmospheric dose. The focus of this paper is on atmospheric GCR exposure during geomagnetically quiet conditions, with three main objectives. First, provide detailed descriptions of the NAIRAS GCR transport and dosimetry methodologies. Second, present a climatology of effective dose and ambient dose equivalent rates at typical commercial airline altitudes representative of solar cycle maximum and solar cycle minimum conditions and spanning the full range of geomagnetic cutoff rigidities. Third, conduct an initial validation of the NAIRAS model by comparing predictions of ambient dose equivalent rates with tabulated reference measurement data and recent aircraft radiation measurements taken in 2008 during the minimum between solar cycle 23 and solar cycle 24. By applying the criterion of the International Commission on Radiation Units and Measurements (ICRU) on acceptable levels of aircraft radiation dose uncertainty for ambient dose equivalent greater than or equal to an annual dose of 1 mSv, the NAIRAS model is within 25% of the measured data, which fall within the ICRU acceptable uncertainty limit of 30%. The NAIRAS model predictions of ambient dose equivalent rate are generally within 50% of the measured data for any single-point comparison. The largest differences occur at low latitudes and high cutoffs, where the radiation dose level is low. Nevertheless, analysis suggests

  19. ANALYSIS OF AIRCRAFT MOTIONS

    NASA Technical Reports Server (NTRS)

    Wingrove, R. C.

    1994-01-01

    This program was developed by Ames Research Center, in cooperation with the National Transportation Safety Board, as a technique for deriving time histories of an aircraft's motion from Air Traffic Control (ATC) radar records. This technique uses the radar range and azimuth data, along with the downlinked altitude data, to derive an expanded set of data which includes airspeed, lift, attitude angles (pitch, roll, and heading), etc. This technique should prove useful as a source of data in the investigation of commercial airline accidents and in the analysis of accidents involving aircraft which do not have onboard data recorders (e.g., military, short-haul, and general aviation). The technique used to determine the aircraft motions involves smoothing of raw radar data. These smoothed results, in combination with other available information (wind profiles and aircraft performance data), are used to derive the expanded set of data. This program uses a cubic least-square fit to smooth the raw data. This moving-arc procedure provides a smoothed time history of the aircraft position, the inertial velocities, and accelerations. Using known winds, these inertial data are transformed to aircraft stability axes to provide true airspeed, thrust-drag, lift, and roll angle. Further derivation, based on aircraft dependent performance data, can determine the aircraft angle of attack, pitch, and heading angle. Results of experimental tests indicate that values derived from ATC radar records using this technique agree favorably with airborne measurements. This program is written in FORTRAN IV to be executed in the batch mode, and has been implemented on a CDC 6000 series computer with a central memory requirement of 64k (octal) of 60 bit words.

  20. Development of aircraft brake materials. [evaluation of metal and ceramic materials in sliding tests simulation of aircraft braking

    NASA Technical Reports Server (NTRS)

    Ho, T. L.; Peterson, M. B.

    1974-01-01

    The requirements of brake materials were outlined and a survey made to select materials to meet the needs of high temperature brakes. A number of metals and ceramic materials were selected and evaluated in sliding tests which simulated aircraft braking. Nickel, molybdenum tungsten, Zr02, high temperature cements and carbons were tested. Additives were then incorporated into these materials to optimize their wear or strength behavior with particular emphasis on nickel and molybdenum base materials and a high temperature potassium silicate cement. Optimum materials were developed which improved wear behavior over conventional brake materials in the simulated test. The best materials are a nickel, aluminum oxide, lead tungstate composition containing graphite or molybdenum disulphite; a molybdenum base material containing LPA100 (an intermetallic compound of cobalt, molybdenum, and silicon); and a carbon material (P5).

  1. NASA advanced design program. Design and analysis of a radio-controlled flying wing aircraft

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The main challenge of this project was to design an aircraft that will achieve stability while flying without a horizontal tail. The project focused on both the design, analysis and construction of a remotely piloted, elliptical shaped flying wing. The design team was composed of four sub-groups each of which dealt with the different aspects of the design, namely aerodynamics, stability and control, propulsion, and structures. Each member of the team initially researched the background information pertaining to specific facets of the project. Since previous work on this topic was limited, most of the focus of the project was directed towards developing an understanding of the natural instability of the aircraft. Once the design team entered the conceptual stage of the project, a series of compromises had to be made to satisfy the unique requirements of each sub-group. As a result of the numerous calculations and iterations necessary, computers were utilized extensively. In order to visualize the design and layout of the wing, engines and control surfaces, a solid modeling package was used to evaluate optimum design placements. When the design was finalized, construction began with the help of all the members of the project team. The nature of the carbon composite construction process demanded long hours of manual labor. The assembly of the engine systems also required precision hand work. The final product of this project is the Elang, a one-of-a-kind remotely piloted aircraft of composite construction powered by two ducted fan engines.

  2. Developing an orientation program.

    PubMed

    Edwards, K

    1999-01-01

    When the local area experienced tremendous growth and change, the radiology department at Maury Hospital in Columbia, Tennessee looked seriously at its orientation process in preparation for hiring additional personnel. It was an appropriate time for the department to review its orientation process and to develop a manual to serve as both a tool for supervisors and an ongoing reference for new employees. To gather information for the manual, supervisors were asked to identify information they considered vital for new employees to know concerning the daily operations of the department, its policies and procedures, the organizational structure of the hospital, and hospital and departmental computer systems. That information became the basis of the orientation manual, and provided an introduction to the hospital and radiology department; the structure of the organization; an overview of the radiology department; personnel information; operating procedures and computer systems; and various policies and procedures. With the manual complete, the radiology department concentrated on an orientation process that would meet the needs of supervisors who said they had trouble remembering the many details necessary to teach new employees. A pre-orientation checklist was developed, which contained the many details supervisors must handle between the time an employee is hired and arrives for work. The next step was the creation of a checklist for use by the supervisor during a new employee's first week on the job. A final step in the hospital's orientation program is to have each new employee evaluate the entire orientation process. That information is then used to update and revise the manual. PMID:10346648

  3. Flight service evaluation of an advanced composite empennage component on commercial transport aircraft. Phase 1: Engineering development

    NASA Technical Reports Server (NTRS)

    Ary, A.; Axtell, C.; Fogg, L.; Jackson, A.; James, A. M.; Mosesian, B.; Vanderwier, J.; Vanhamersveld, J.

    1976-01-01

    The empennage component selected for this program is the vertical fin box of the L-1011 aircraft. The box structure extends from the fuselage production joint to the tip rib and includes the front and rear spars. Various design options were evaluated to arrive at a configuration which would offer the highest potential for satisfying program objectives. The preferred configuration selected consists of a hat-stiffened cover with molded integrally stiffened spars, aluminum trussed composite ribs, and composite miniwich web ribs with integrally molded caps. Material screening tests were performed to select an advanced composite material system for the Advanced Composite Vertical Fin (ACFV) that would meet the program requirements from the standpoint of quality, reproducibility, and cost. Preliminary weight and cost analysis were made, targets established, and tracking plans developed. These include FAA certification, ancillary test program, quality control, and structural integrity control plans.

  4. Aircraft Mechanics: Scope and Sequence.

    ERIC Educational Resources Information Center

    Nashville - Davidson County Metropolitan Public Schools, TN.

    This scope and sequence guide, developed for an aircraft mechanics vocational education program, represents an initial step in the development of a systemwide articulated curriculum sequence for all vocational programs within the Metropolitan Nashville Public School System. It was developed as a result of needs expressed by teachers, parents, and…

  5. Highly Maneuverable Aircraft Technology (HiMAT) flight-flutter test program

    NASA Technical Reports Server (NTRS)

    Kehoe, M. W.

    1984-01-01

    The highly maneuverable aircraft technology (HiMAT) vehicle was evaluated in a joint NASA and Air Force flight test program. The HiMAT vehicle is a remotely piloted research vehicle. Its design incorporates the use of advanced composite materials in the wings, and canards for aeroelastic tailoring. A flight-flutter test program was conducted to clear a sufficient flight envelope to allow for performance, stability and control, and loads testing. Testing was accomplished with and without flight control-surface dampers. Flutter clearance of the vehicle indicated satisfactory damping and damping trends for the structural modes of the HiMAT vehicle. The data presented include frequency and damping plotted as a function of Mach number.

  6. Advanced Launch Development Program status

    NASA Technical Reports Server (NTRS)

    Colgrove, Roger

    1990-01-01

    The Advanced Launch System is a joint NASA - Air Force program originally directed to define the concept for a modular family of launch vehicles, to continue development programs and preliminary design activities focused primarily on low cost to orbit, and to offer maturing technologies to existing systems. The program was restructed in the spring of 1990 as a result of funding reductions and renamed the Advanced Launch Development Program. This paper addresses the program's status following that restructuring and as NASA and the Air Force commence a period of deliberation over future space launch needs and the budgetary resources available to meet those needs. The program is currently poised to protect a full-scale development decision in the mid-1990's through the appropriate application of program resources. These resources are concentrated upon maintaining the phase II system contractor teams, continuing the Space Transportation Engine development activity, and refocusing the Advanced Development Program demonstrated activities.

  7. Development of a Corrosion Sensor for AN Aircraft Vehicle Health Monitoring System

    NASA Astrophysics Data System (ADS)

    Scott, D. A.; Price, D. C.; Edwards, G. C.; Batten, A. B.; Kolmeder, J.; Muster, T. H.; Corrigan, P.; Cole, I. S.

    2010-02-01

    A Rayleigh-wave-based sensor has been developed to measure corrosion damage in aircraft. This sensor forms an important part of a corrosion monitoring system being developed for a major aircraft manufacturer. This system measures the corrosion rate at the location of its sensors, and through a model predicts the corrosion rates in nearby places on an aircraft into which no sensors can be placed. In order to calibrate this model, which yields corrosion rates rather than the accumulated effect, an absolute measure of the damage is required. In this paper the development of a surface wave sensor capable of measuring accumulated damage will be described in detail. This sensor allows the system to measure material loss due to corrosion regardless of the possible loss of historical corrosion rate data, and can provide, at any stage, a benchmark for the predictive model that would allow a good estimate of the accumulated corrosion damage in similar locations on an aircraft. This system may obviate the need for costly inspection of difficult-to-access places in aircraft, where presently the only way to check for corrosion is by periodic dismantling and reassembly.

  8. Revitalizing Undergraduate Programs: Curriculum Development.

    ERIC Educational Resources Information Center

    Ernst, Edward W.

    1989-01-01

    Discusses the Undergraduate Curriculum Development in Engineering program. Provides a short history of the program. Describes 10 curriculum projects ranging from engineering design to industry participation. Each program is encouraged to develop: analytical ability, ability to innovate and synthesize, integrating ability, and contextual…

  9. Measurement of ozone and water vapor by Airbus in-service aircraft: The MOZAIC airborne program, An overview

    NASA Astrophysics Data System (ADS)

    Marenco, Alain; Thouret, ValéRie; NéDéLec, Philippe; Smit, Herman; Helten, Manfred; Kley, Dieter; Karcher, Fernand; Simon, Pascal; Law, Kathy; Pyle, John; Poschmann, Georg; von Wrede, Rainer; Hume, Chris; Cook, Tim

    1998-10-01

    Tentative estimates, using three-dimensional chemistry and transport models, have suggested small ozone increases in the upper troposphere resulting from current aircraft emissions, but have also concluded to significant deficiencies in today's models and to the need to improve them through comparison with extended data sets. The Measurement of Ozone and Water Vapor by Airbus In-Service Aircraft (MOZAIC) program was initiated in 1993 by European scientists, aircraft manufacturers, and airlines to collect experimental data. Its goal is to help understand the atmosphere and how it is changing under the influence of human activity, with particular interest in the effects of aircraft. MOZAIC consists of automatic and regular measurements of ozone and water vapor by five long range passenger airliners flying all over the world. The aim is not to detect direct effects of aircraft emissions on the ozone budget inside the air traffic corridors but to build a large database of measurements to allow studies of chemical and physical processes in the atmosphere, and hence to validate global chemistry transport models. MOZAIC data provide, in particular, detailed ozone and water vapor climatologies at 9-12 km where subsonic aircraft emit most of their exhaust and which is a very critical domain (e.g., radiatively and stratosphere/troposphere exchanges) still imperfectly described in existing models. This will be valuable to improve knowledge about the processes occuring in the upper troposphere and the lowermost stratosphere, and the model treatment of near tropopause chemistry and transport. During MOZAIC I (January 1993-September 1996), fully automatic devices were developed, installed aboard five commercial Airbus A340s, and flown in normal airline service. A second phase, MOZAIC II, started in October 1996 with the aim of continuing the O3 and H2O measurements and doing a feasibility study of new airborne devices (CO, NOy). Between September 1994 and December 1997, 7500

  10. NAIRAS aircraft radiation model development, dose climatology, and initial validation

    PubMed Central

    Mertens, Christopher J; Meier, Matthias M; Brown, Steven; Norman, Ryan B; Xu, Xiaojing

    2013-01-01

    [1] The Nowcast of Atmospheric Ionizing Radiation for Aviation Safety (NAIRAS) is a real-time, global, physics-based model used to assess radiation exposure to commercial aircrews and passengers. The model is a free-running physics-based model in the sense that there are no adjustment factors applied to nudge the model into agreement with measurements. The model predicts dosimetric quantities in the atmosphere from both galactic cosmic rays (GCR) and solar energetic particles, including the response of the geomagnetic field to interplanetary dynamical processes and its subsequent influence on atmospheric dose. The focus of this paper is on atmospheric GCR exposure during geomagnetically quiet conditions, with three main objectives. First, provide detailed descriptions of the NAIRAS GCR transport and dosimetry methodologies. Second, present a climatology of effective dose and ambient dose equivalent rates at typical commercial airline altitudes representative of solar cycle maximum and solar cycle minimum conditions and spanning the full range of geomagnetic cutoff rigidities. Third, conduct an initial validation of the NAIRAS model by comparing predictions of ambient dose equivalent rates with tabulated reference measurement data and recent aircraft radiation measurements taken in 2008 during the minimum between solar cycle 23 and solar cycle 24. By applying the criterion of the International Commission on Radiation Units and Measurements (ICRU) on acceptable levels of aircraft radiation dose uncertainty for ambient dose equivalent greater than or equal to an annual dose of 1 mSv, the NAIRAS model is within 25% of the measured data, which fall within the ICRU acceptable uncertainty limit of 30%. The NAIRAS model predictions of ambient dose equivalent rate are generally within 50% of the measured data for any single-point comparison. The largest differences occur at low latitudes and high cutoffs, where the radiation dose level is low. Nevertheless, analysis

  11. Comparing the performance of expert user heuristics and an integer linear program in aircraft carrier deck operations.

    PubMed

    Ryan, Jason C; Banerjee, Ashis Gopal; Cummings, Mary L; Roy, Nicholas

    2014-06-01

    Planning operations across a number of domains can be considered as resource allocation problems with timing constraints. An unexplored instance of such a problem domain is the aircraft carrier flight deck, where, in current operations, replanning is done without the aid of any computerized decision support. Rather, veteran operators employ a set of experience-based heuristics to quickly generate new operating schedules. These expert user heuristics are neither codified nor evaluated by the United States Navy; they have grown solely from the convergent experiences of supervisory staff. As unmanned aerial vehicles (UAVs) are introduced in the aircraft carrier domain, these heuristics may require alterations due to differing capabilities. The inclusion of UAVs also allows for new opportunities for on-line planning and control, providing an alternative to the current heuristic-based replanning methodology. To investigate these issues formally, we have developed a decision support system for flight deck operations that utilizes a conventional integer linear program-based planning algorithm. In this system, a human operator sets both the goals and constraints for the algorithm, which then returns a proposed schedule for operator approval. As a part of validating this system, the performance of this collaborative human-automation planner was compared with that of the expert user heuristics over a set of test scenarios. The resulting analysis shows that human heuristics often outperform the plans produced by an optimization algorithm, but are also often more conservative. PMID:23934675

  12. Development of fire-resistant, low smoke generating, thermally stable end items for aircraft and spacecraft

    NASA Technical Reports Server (NTRS)

    Gagliani, J.

    1978-01-01

    A new approach to the problem of flammability by the use of materials obtained from foamy polyimide resins is developed. The ability of these materials to provide fire protection is demonstrated. The development of processes for producing resilient cell foam for use in aircraft seating, thermal acoustical insulation, floor and wall panels, coated glass fabrics, and molded hardware.

  13. Subsonic Ultra Green Aircraft Research Phase II: N+4 Advanced Concept Development

    NASA Technical Reports Server (NTRS)

    Bradley, Marty K.; Droney, Christopher K.

    2012-01-01

    This final report documents the work of the Boeing Subsonic Ultra Green Aircraft Research (SUGAR) team on Task 1 of the Phase II effort. The team consisted of Boeing Research and Technology, Boeing Commercial Airplanes, General Electric, and Georgia Tech. Using a quantitative workshop process, the following technologies, appropriate to aircraft operational in the N+4 2040 timeframe, were identified: Liquefied Natural Gas (LNG), Hydrogen, fuel cell hybrids, battery electric hybrids, Low Energy Nuclear (LENR), boundary layer ingestion propulsion (BLI), unducted fans and advanced propellers, and combinations. Technology development plans were developed.

  14. Game Changing Development Program Office

    NASA Video Gallery

    The Game Changing Development Program is a part of NASA's Space Technology Mission Directorate. The Program advances space technologies that may lead to entirely new approaches for the Agency's fut...

  15. Development of Polyimide Foam for Aircraft Sidewall Applications

    NASA Technical Reports Server (NTRS)

    Silcox, Richard; Cano, Roberto J.; Howerton, Brian M.; Bolton, J. Stuart; Kim, Nicholas N.

    2013-01-01

    In this paper, the use of polyimide foam as a lining in double panel applications is considered. It is being investigated here as a replacement for aircraft grade glass fiber and has a number of attractive functional attributes, not the least of which is its high fire resistance. The test configuration studied here consisted of two 1mm (0.04 in.) thick, flat aluminum panels separated by 12.7 cm (5.0 in.) with a 7.6 cm (3.0 in.) thick layer of foam centered in that space. Random incidence transmission loss measurements were conducted on this buildup, and conventional poro-elastic models were used to predict the performance of the lining material. Results from two densities of foam are considered. The Biot parameters of the foam were determined by a combination of direct measurement (for density, flow resistivity and Young s modulus) and inverse characterization procedures (for porosity, tortuosity, viscous and thermal characteristic length, Poisson s ratio and loss factor). The inverse characterization procedure involved matching normal incidence standing wave tube measurements of absorption coefficient and transmission loss of the isolated foam with finite element predictions. When the foam parameters determined in this way were used to predict the performance of the complete double panel system, reasonable agreement was obtained between the measured transmission loss and predictions made using a commercial statistical energy analysis code.

  16. Development of an Aircraft Approach and Departure Atmospheric Profile Generation Algorithm

    NASA Technical Reports Server (NTRS)

    Buck, Bill K.; Velotas, Steven G.; Rutishauser, David K. (Technical Monitor)

    2004-01-01

    In support of NASA Virtual Airspace Modeling and Simulation (VAMS) project, an effort was initiated to develop and test techniques for extracting meteorological data from landing and departing aircraft, and for building altitude based profiles for key meteorological parameters from these data. The generated atmospheric profiles will be used as inputs to NASA s Aircraft Vortex Spacing System (AVOLSS) Prediction Algorithm (APA) for benefits and trade analysis. A Wake Vortex Advisory System (WakeVAS) is being developed to apply weather and wake prediction and sensing technologies with procedures to reduce current wake separation criteria when safe and appropriate to increase airport operational efficiency. The purpose of this report is to document the initial theory and design of the Aircraft Approach Departure Atmospheric Profile Generation Algorithm.

  17. The development and evaluation of advanced technology laminar-flow-control subsonic transport aircraft

    NASA Technical Reports Server (NTRS)

    Sturgeon, R. F.

    1978-01-01

    A study was conducted to evaluate the technical and economic feasibility of applying laminar flow control (LFC) to the wings and empennage of long-range subsonic transport aircraft for initial operation in 1985. For a design mission range of 5500 n mi, advanced technology LFC and turbulent-flow aircraft were developed for a 200-passenger payload, and compared on the basis of production costs, direct operating costs, and fuel efficiency. Parametric analyses were conducted to establish optimum geometry, advanced system concepts were evaluated, and configuration variations maximizing the effectiveness of LFC were developed. The final comparisons include consideation of maintenance costs and procedures, manufacturing costs and procedures, and operational considerations peculiar to LFC aircraft.

  18. A user`s guide to LUGSAN 1.1: A computer program to calculate and archive lug and sway brace loads for aircraft-carried stores

    SciTech Connect

    Dunn, W.N.

    1994-07-01

    LUGSAN (LUG and Sway brace ANalysis) is a analysis and database computer program designed to calculate store lug and sway brace loads from aircraft captive carriage. LUGSAN combines the rigid body dynamics code, SWAY85 and the maneuver calculation code, MILGEN, with an INGRES database to function both as an analysis and archival system. This report describes the operation of the LUGSAN application program, including function description, layout examples, and sample sessions. This report is intended to be a user`s manual for version 1.1 of LUGSAN operating on the VAX/VMS system. The report is not intended to be a programmer or developer`s manual.

  19. Computer program for prediction of the deposition of material released from fixed and rotary wing aircraft

    NASA Technical Reports Server (NTRS)

    Teske, M. E.

    1984-01-01

    This is a user manual for the computer code ""AGDISP'' (AGricultural DISPersal) which has been developed to predict the deposition of material released from fixed and rotary wing aircraft in a single-pass, computationally efficient manner. The formulation of the code is novel in that the mean particle trajectory and the variance about the mean resulting from turbulent fluid fluctuations are simultaneously predicted. The code presently includes the capability of assessing the influence of neutral atmospheric conditions, inviscid wake vortices, particle evaporation, plant canopy and terrain on the deposition pattern.

  20. Development of an ultrasonic pulse-echo (UPE) technique for aircraft icing studies

    SciTech Connect

    Liu, Yang; Hu, Hui; Chen, Wen-Li; Bond, Leonard J.

    2014-02-18

    Aircraft operating in some cold weather conditions face the risk of icing. Icing poses a threat to flight safety and its management is expensive. Removing light frost on a clear day from a medium-size business jet can cost $300, heavy wet snow removal can cost $3,000 and removal of accumulated frozen/freezing rain can cost close to $10,000. Understanding conditions that lead to severe icing events is important and challenging. When an aircraft or rotorcraft flies in a cold climate, some of the super cooled droplets impinging on exposed aircraft surfaces may flow along the surface prior to freezing and give various forms and shapes of ice. The runback behavior of a water film on an aircraft affects the morphology of ice accretion and the rate of formation. In this study, we report the recent progress to develop an Ultrasonic Pulse-Echo (UPE) technique to provide real-time thickness distribution measurements of surface water flows driven by boundary layer airflows for aircraft icing studies. A series of initial experimental investigations are conducted in an ice wind tunnel employing an array of ultrasonic transducers placed underneath the surface of a flat plate. The water runback behavior on the plate is evaluated by measuring the thickness profile variation of the water film along the surface by using the UPE technique under various wind speed and flow rate conditions.

  1. Development of an ultrasonic pulse-echo (UPE) technique for aircraft icing studies

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Chen, Wen-Li; Bond, Leonard J.; Hu, Hui

    2014-02-01

    Aircraft operating in some cold weather conditions face the risk of icing. Icing poses a threat to flight safety and its management is expensive. Removing light frost on a clear day from a medium-size business jet can cost 300, heavy wet snow removal can cost 3,000 and removal of accumulated frozen/freezing rain can cost close to 10,000. Understanding conditions that lead to severe icing events is important and challenging. When an aircraft or rotorcraft flies in a cold climate, some of the super cooled droplets impinging on exposed aircraft surfaces may flow along the surface prior to freezing and give various forms and shapes of ice. The runback behavior of a water film on an aircraft affects the morphology of ice accretion and the rate of formation. In this study, we report the recent progress to develop an Ultrasonic Pulse-Echo (UPE) technique to provide real-time thickness distribution measurements of surface water flows driven by boundary layer airflows for aircraft icing studies. A series of initial experimental investigations are conducted in an ice wind tunnel employing an array of ultrasonic transducers placed underneath the surface of a flat plate. The water runback behavior on the plate is evaluated by measuring the thickness profile variation of the water film along the surface by using the UPE technique under various wind speed and flow rate conditions.

  2. The development of advanced technology blades for tilt-rotor aircraft

    NASA Technical Reports Server (NTRS)

    Alexander, Harold R.; Maisel, Martin D.; Giulianetti, Demo J.

    1986-01-01

    The paper discusses the development and ground testing of blades for the XV-15 tilt-rotor demonstrator aircraft. This work was performed under contract NAS2-11250 with NASA Ames Research Center. These blades, known as the Advanced Technology Blades (ATB), replace the rectangular, steel blades which were part of the XV-15 original design. The materials used in the primary structure of the ATB are fiberglass and high strain graphite epoxy laminates. This facilitates the use of 43 deg of nonlinear twist, a nonuniform tapered planform and thin airfoils required for aerodynamic efficiency. Instrumentation life is extended by encapsulating gages and wiring in the composite structure. Tip shells and cuff fairings are removable to provide access to tip weights and retention hardware; they are also replaceable with alternate research configurations. Extensive laboratory testing has validated predicted strength characteristics. Hover testing has demonstrated performance significantly superior to that predicted by contemporary methodology. Key elements of the test rig used for rotor performance measurement were developed as an ancillary part of the present program. The performance testing included measurement of near- and far-field noise. Induced inflow velocity distributions were also determined and photographs of tip vortex condensation trails were taken. These are providing guidance for modifications to hover peformance codes.

  3. Development of an advanced pitch active control system for a wide body jet aircraft

    NASA Technical Reports Server (NTRS)

    Guinn, Wiley A.; Rising, Jerry J.; Davis, Walt J.

    1984-01-01

    An advanced PACS control law was developed for a commercial wide-body transport (Lockheed L-1011) by using modern control theory. Validity of the control law was demonstrated by piloted flight simulation tests on the NASA Langley visual motion simulator. The PACS design objective was to develop a PACS that would provide good flying qualities to negative 10 percent static stability margins that were equivalent to those of the baseline aircraft at a 15 percent static stability margin which is normal for the L-1011. Also, the PACS was to compensate for high-Mach/high-g instabilities that degrade flying qualities during upset recoveries and maneuvers. The piloted flight simulation tests showed that the PACS met the design objectives. The simulation demonstrated good flying qualities to negative 20 percent static stability margins for hold, cruise and high-speed flight conditions. Analysis and wind tunnel tests performed on other Lockheed programs indicate that the PACS could be used on an advanced transport configuration to provide a 4 percent fuel savings which results from reduced trim drag by flying at negative static stability margins.

  4. NASA-UVa Light Aerospace Alloy and Structures Technology Program: Aluminum-Based Materials for High Speed Aircraft

    NASA Technical Reports Server (NTRS)

    Starke, E. A., Jr. (Editor)

    1996-01-01

    This report is concerned with 'Aluminum-Based Materials for High Speed Aircraft' which was initiated to identify the technology needs associated with advanced, low-cost aluminum base materials for use as primary structural materials. Using a reference baseline aircraft, these materials concept will be further developed and evaluated both technically and economically to determine the most attractive combinations of designs, materials, and manufacturing techniques for major structural sections of an HSCT. Once this has been accomplished, the baseline aircraft will be resized, if applicable, and performance objectives and economic evaluations made to determine aircraft operating costs. The two primary objectives of this study are: (1) to identify the most promising aluminum-based materials with respect to major structural use on the HSCT and to further develop those materials, and (2) to assess these materials through detailed trade and evaluation studies with respect to their structural efficiency on the HSCT.

  5. Crew station research and development facility training for the light helicopter demonstration/validation program

    NASA Technical Reports Server (NTRS)

    Matsumoto, Joy Hamerman; Rogers, Steven; Mccauley, Michael; Salinas, AL

    1992-01-01

    The U.S. Army Crew Station Research and Development Branch (CSRDB) of the Aircraft Simulation Division (AVSCOM) was tasked by the Light Helicopter Program Manager (LH-PM) to provide training to Army personnel in advanced aircraft simulation technology. The purpose of this training was to prepare different groups of pilots to support and evaluate two contractor simulation efforts during the Demonstration/Validation (DEM/VAL) phase of the LH program. The personnel in the CSRDB developed mission oriented training programs to accomplish the objectives, conduct the programs, and provide guidance to army personnel and support personnel throughout the DEM/VAL phase.

  6. Development of fire-resistant, low smoke generating, thermally stable end items for aircraft and spacecraft

    NASA Technical Reports Server (NTRS)

    Gagliani, J.; Sorathia, U. A. K.; Wilcoxson, A. L.

    1977-01-01

    Materials were developed to improve aircraft interior materials by modifying existing polymer structures, refining the process parameters, and by the use of mechanical configurations designed to overcome specific deficiencies. The optimization, selection, and fabrication of five fire resistant, low smoke emitting open cell foams are described for five different types of aircraft cabin structures. These include: resilient foams, laminate floor and wall paneling, thermal/acoustical insulation, molded shapes, and coated fabrics. All five have been produced from essentially the same polyimide precursor and have resulted in significant benefits from transfer of technology between the various tasks.

  7. Development of a proposed international standard for certification of aircraft to High Intensity Radiated Fields (HIRF)

    NASA Technical Reports Server (NTRS)

    Sargent, Noel B.

    1993-01-01

    Avionic systems performing critical functions in modern aircraft are potentially susceptible to the hazards of electromagnetic radiation from ground and airborne transmitters. The Federal Aviation Administration (FAA) requested that the Society of Automotive Engineers (SAE) coordinate the development of procedures and guidance material which can be used during the aircraft certification process to ensure adequate protection against high intensity radiated fields (HIRF). This paper addresses both the technical challenge of drafting a certification procedure and guidance standard as well as the management process used by the SAE subcommittee AE4R to converge a diverse range of opinions by its international membership in the shortest possible time.

  8. Validation of a Flexible Aircraft TakeOff and Landing Analysis /FATOLA/ computer program using flight landing data

    NASA Technical Reports Server (NTRS)

    Carden, H. D.; Mcgehee, J. R.

    1977-01-01

    A multiple-degree-of-freedom takeoff and landing analysis, Flexible Aircraft TakeOff and Landing Analysis computer program (FATOLA), was used to predict the landing behavior of a rigid-body X-24B reentry research vehicle and of a flexible-body modified-delta-wing supersonic YF-12 research aircraft. The analytical predictions were compared with flight test data for both research vehicles. Predicted time histories of vehicle motion and attitude, landing-gear strut stroke, and axial force transmitted from the landing gear to the airframe during the landing impact and rollout compared well with the actual time histories. Based on the comparisons presented, the versatility and validity of the FATOLA program for predicting landing dynamics of aircraft has been demonstrated.

  9. Developing a Collegiate Aquatics Program.

    ERIC Educational Resources Information Center

    Fawcett, Paul A.

    2001-01-01

    Presents suggestions for departments of health, physical education, and recreation that are planning to develop their own aquatics programs, focusing on: the prevalence of collegiate aquatics programs; course offerings in an aquatics minor; practicums and internships; graduate programs in aquatics; cross-disciplinary appeal; marketing the aquatics…

  10. NASA Aircraft Controls Research, 1983

    NASA Technical Reports Server (NTRS)

    Beasley, G. P. (Compiler)

    1984-01-01

    The workshop consisted of 24 technical presentations on various aspects of aircraft controls, ranging from the theoretical development of control laws to the evaluation of new controls technology in flight test vehicles. A special report on the status of foreign aircraft technology and a panel session with seven representatives from organizations which use aircraft controls technology were also included. The controls research needs and opportunities for the future as well as the role envisioned for NASA in that research were addressed. Input from the panel and response to the workshop presentations will be used by NASA in developing future programs.

  11. The development of turbojet aircraft in Germany, Britain, and the United States: A multi-national comparison of aeronautical engineering, 1935--1946

    NASA Astrophysics Data System (ADS)

    Pavelec, Sterling Michael

    In the 1930s aeronautical engineering needed revision. A presumptive anomaly was envisaged as piston-engine aircraft flew higher and faster. Radical alternatives to piston engines were considered in the unending quest for speed. Concurrently, but unwittingly, two turbojet engine programs were undertaken in Europe. The air-breathing three-stage turbojet engine was based on previous turbine technology; the revolutionary idea was the gas turbine as a prime mover for aircraft. In Germany, Dr. Hans von Ohain was the first to complete a flight-worthy turbojet engine for aircraft. Installed in a Heinkel designed aircraft, the Germans began the jet age on 27 August 1939. The Germans led throughout the war and were the first to produce jet aircraft for combat operations. The principal limiting factor for the German jet program was a lack of reliable engines. The continuing myths that Hitler orders, too little fuel, or too few pilots hindered the program are false. In England, Frank Whittle, without substantial support, but with dogged determination, also developed a turbojet engine. The British came second in the jet race when the Whittle engine powered the Gloster Pioneer on 15 May 1941. The Whittle-Gloster relationship continued and produced the only Allied combat jet aircraft during the war, the Meteor, which was confined to Home Defense in Britain. The American turbojet program was built directly from the Whittle engine. General Electric copied the Whittle designs and Bell Aircraft was contracted to build the first American jet plane. The Americans began the jet age on 1 October 1942 with a lackluster performance from their first jet, the Airacomet. But the Americans forged ahead, and had numerous engine and airframe programs in development by the end of the war. But, the Germans did it right and did it first. Partly because of a predisposition towards excellent engineering and physics, partly out of necessity, the Germans were able to produce combat turbojet aircraft

  12. V/STOL tilt rotor aircraft study. Volume 5: Definition of stowed rotor research aircraft

    NASA Technical Reports Server (NTRS)

    Soule, V. A.

    1973-01-01

    The results of a study of folding tilt rotor (stowed rotor) aircraft are presented. The effects of design cruise speed on the gross weight of a conceptual design stowed rotor aircraft are shown and a comparison is made with a conventional (non-folding) tilt rotor aircraft. A flight research stowed rotor design is presented. The program plans, including costs and schedules, are shown for the research aircraft development and a wind tunnel plan is presented for a full scale test of the aircraft.

  13. Development and evaluation of a profile negotiation process for integrating aircraft and air traffic control automation

    NASA Technical Reports Server (NTRS)

    Green, Steven M.; Denbraven, Wim; Williams, David H.

    1993-01-01

    The development and evaluation of the profile negotiation process (PNP), an interactive process between an aircraft and air traffic control (ATC) that integrates airborne and ground-based automation capabilities to determine conflict-free trajectories that are as close to an aircraft's preference as possible, are described. The PNP was evaluated in a real-time simulation experiment conducted jointly by NASA's Ames and Langley Research Centers. The Ames Center/TRACON Automation System (CTAS) was used to support the ATC environment, and the Langley Transport Systems Research Vehicle (TSRV) piloted cab was used to simulate a 4D Flight Management System (FMS) capable aircraft. Both systems were connected in real time by way of voice and data lines; digital datalink communications capability was developed and evaluated as a means of supporting the air/ground exchange of trajectory data. The controllers were able to consistently and effectively negotiate nominally conflict-free vertical profiles with the 4D-equipped aircraft. The actual profiles flown were substantially closer to the aircraft's preference than would have been possible without the PNP. However, there was a strong consensus among the pilots and controllers that the level of automation of the PNP should be increased to make the process more transparent. The experiment demonstrated the importance of an aircraft's ability to accurately execute a negotiated profile as well as the need for digital datalink to support advanced air/ground data communications. The concept of trajectory space is proposed as a comprehensive approach for coupling the processes of trajectory planning and tracking to allow maximum pilot discretion in meeting ATC constraints.

  14. Design Challenges Encountered in a Propulsion-Controlled Aircraft Flight Test Program

    NASA Technical Reports Server (NTRS)

    Maine, Trindel; Burken, John; Burcham, Frank; Schaefer, Peter

    1994-01-01

    The NASA Dryden Flight Research Center conducted flight tests of a propulsion-controlled aircraft system on an F-15 airplane. This system was designed to explore the feasibility of providing safe emergency landing capability using only the engines to provide flight control in the event of a catastrophic loss of conventional flight controls. Control laws were designed to control the flightpath and bank angle using only commands to the throttles. Although the program was highly successful, this paper highlights some of the challenges associated with using engine thrust as a control effector. These challenges include slow engine response time, poorly modeled nonlinear engine dynamics, unmodeled inlet-airframe interactions, and difficulties with ground effect and gust rejection. Flight and simulation data illustrate these difficulties.

  15. ASSESS program: Shuttle Spacelab simulation using a Lear jet aircraft (mission no. 2)

    NASA Technical Reports Server (NTRS)

    Reller, J. O., Jr.; Neel, C. B.; Mason, R. H.; Pappas, C. C.

    1974-01-01

    The second shuttle Spacelab simulation mission of the ASSESS program was conducted at Ames Research Center by the Airborne Science Office (ASO) using a Lear jet aircraft based at a site remote from normal flight operations. Two experimenters and the copilot were confined to quarters on the site during the mission, departing only to do in-flight research in infrared astronomy. A total of seven flights were made in a period of 4 days. Results show that experimenters with relatively little flight experience can plan and carry out a successful research effort under isolated and physically rigorous conditions, much as would more experienced scientists. Perhaps the margin of success is not as great, but the primary goal of sustained acquisition of significant data over a 5-day period can be achieved.

  16. CID-720 aircraft Langley Research Center preflight hardware tests: Development, flight acceptance and qualification

    NASA Technical Reports Server (NTRS)

    Pride, J. D.

    1986-01-01

    The testing conducted on LaRC-developed hardware for the controlled impact demonstration transport aircraft is discussed. To properly develop flight qualified crash systems, two environments were considered: the aircraft flight environment with the focus on vibration and temperature effects, and the crash environment with the long pulse shock effects. Also with the large quantity of fuel in the wing tanks the possibility of fire was considered to be a threat to data retrieval and thus fire tests were included in the development test process. The aircraft test successfully demonstrated the performance of the LaRC developed heat shields. Good telemetered data (S-band) was received during the impact and slide-out phase, and even after the aircraft came to rest. The two onboard DAS tape recorders were protected from the intense fire and high quality tape data was recovered. The complete photographic system performed as planned throughout the 40.0 sec of film supply. The four photo power distribution pallets remained in good condition and all ten onboard 16 mm high speed (400 frames/sec) cameras produced good film data.

  17. Composite components on commercial aircraft

    NASA Technical Reports Server (NTRS)

    Dexter, H. B.

    1980-01-01

    Commercial aircraft manufacturers are making production commitments to composite structure for future aircraft and modifications to current production aircraft. Flight service programs with advanced composites sponsored by NASA during the past 10 years are described. Approximately 2.5 million total composite component flight hours have been accumulated since 1970 on both commercial transports and helicopters. Design concepts with significant mass savings were developed, appropriate inspection and maintenance procedures were established, and satisfactory service was achieved for the various composite components. A major NASA/U.S. industry technology program to reduce fuel consumption of commercial transport aircraft through the use of advanced composites was undertaken. Ground and flight environmental effects on the composite materials used in the flight service programs supplement the flight service evaluation.

  18. Solid amine development program

    NASA Technical Reports Server (NTRS)

    Lovell, J. S.

    1973-01-01

    A regenerable solid amine material to perform the functions of humidity control and CO2 removal for space shuttle type vehicle is reported. Both small scale and large scale testing have shown this material to be competitive, especially for the longer shuttle missions. However, it had been observed that the material off-gasses ammonia under certain conditions. This presents two concerns. The first, that the ammonia would contaminate the cabin atmosphere, and second, that the material is degrading with time. An extensive test program has shown HS-C to produce only trace quantities of atmospheric contaminants, and under normal extremes, to have no practical life limitation.

  19. 22 CFR 126.6 - Foreign-owned military aircraft and naval vessels, and the Foreign Military Sales program.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... the authority of Department of State Form DSP-94. It covers FMS Case , expiration . 22 CFR 126.6... 22 Foreign Relations 1 2011-04-01 2011-04-01 false Foreign-owned military aircraft and naval vessels, and the Foreign Military Sales program. 126.6 Section 126.6 Foreign Relations DEPARTMENT OF...

  20. 14 CFR 129.14 - Maintenance program and minimum equipment list requirements for U.S.-registered aircraft.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Maintenance program and minimum equipment list requirements for U.S.-registered aircraft. 129.14 Section 129.14 Aeronautics and Space FEDERAL... having geographic responsibility for the operator. The foreign operator must show, before...

  1. New development in flying qualities with application to rotary wing aircraft

    NASA Technical Reports Server (NTRS)

    Hoh, R. H.

    1982-01-01

    Some recent considerations and developments in handling quality criteria are reviewed with emphasis on using fixed wing experience gained in developing MIL-F-8785C and the more recent MiL Standard and Handbook. Particular emphasis is placed on the tasks and environmental conditions used to develop the criterion boundaries, SAS failures, and potential fixed wing criteria that are applicable to rotary wing aircraft.

  2. Lightweight two-stroke cycle aircraft diesel engine technology enablement program, volume 1

    NASA Technical Reports Server (NTRS)

    Freen, P. D.; Berenyi, S. G.; Brouwers, A. P.; Moynihan, M. E.

    1985-01-01

    An experimental Single Cylinder Test Engine Program is conducted to confirm the analytically projected performance of a two-stroke cycle diesel engine for aircraft applications. The test engine delivered 78kW indicated power from 1007cc displacement, operating at 3500 RPM on Schnuerle loop scavenged two-stroke cycle. Testing confirms the ability of a proposed 4-cylinder version of such an engine to reach the target power at altitude, in a highly turbocharged configuration. The experimental program defines all necessary parameters to permit design of a multicylinder engine for eventual flight applications; including injection system requirement, turbocharging, heat rejection, breathing, scavenging, and structural requirements. The multicylinder engine concept is configured to operate with an augmented turbocharger, but with no primary scavenge blower. The test program is oriented to provide a balanced turbocharger compressor to turbine power balance without an auxiliary scavenging system. Engine cylinder heat rejection to the ambient air has been significantly reduced and the minimum overall turbocharger efficiency required is within the range of commercially available turbochargers. Analytical studies and finite element modeling is made of insulated configurations of the engines - including both ceramic and metallic versions. A second generation test engine is designed based on current test results.

  3. Propulsion integration for military aircraft

    NASA Technical Reports Server (NTRS)

    Henderson, William P.

    1989-01-01

    The transonic aerodynamic characteristics for high-performance aircraft are significantly affected by shock-induced flow interactions as well as other local flow interference effects which usually occur at transonic speeds. These adverse interactions can not only cause high drag, but can cause unusual aerodynamic loadings and/or severe stability and control problems. Many new programs are underway to develop methods for reducing the adverse effects, as well as to develop an understanding of the basic flow conditions which are the primary contributors. It is anticipated that these new programs will result in technologies which can reduce the aircraft cruise drag through improved integration as well as increased aircraft maneuverability throughh the application of thrust vectoring. This paper will identify some of the primary propulsion integration problems for high performance aircraft at transonic speeds, and demonstrate several methods for reducing or eliminating the undesirable characteristics, while enhancing configuration effectiveness.

  4. The Development of an Uninhabited Aircraft System for Remote Sensing in the Cryosphere

    NASA Astrophysics Data System (ADS)

    Donovan, W. R.; Hale, R. D.

    2006-12-01

    The use of autonomous aircraft in Cryospheric research is expected to lead to increases in the rate of data collection as well as decreases in both acquisition and operational costs associated with the implementation of aircraft in remote sensing. The University of Kansas is developing a robust, high-performance, autonomous platform capable of carrying up to eight wing-mounted antennas and 75 kg of payload over a distance of 1,700 km at speeds ranging from 150 300 km/hr. This aircraft, named the Meridian, is designed to carry a ground- penetrating radar system, currently under development at the University of Kansas, to measure ice thickness, snow accumulation, and basal conditions in support of the NSF funded Center for Remote Sensing of Ice Sheets (CReSIS). In addition, this vehicle is also designed to be a robust science test bed that can be used for a wide variety of missions related to Cryospheric research. This will offer the geophysical science community opportunities to utilize an uninhabited aircraft that has been designed specifically for remote sensing in extreme conditions. The key design parameters of the Meridian include a turbopropeller engine, which offers logistical benefits as it operates on heavy fuels that are commonly available in the Cryosphere; retractable landing gear with skis for operation from snow runways; anti-icing; and over-the-horizon operational capability

  5. Development and Evaluation of an Airborne Separation Assurance System for Autonomous Aircraft Operations

    NASA Technical Reports Server (NTRS)

    Barhydt, Richard; Palmer, Michael T.; Eischeid, Todd M.

    2004-01-01

    NASA Langley Research Center is developing an Autonomous Operations Planner (AOP) that functions as an Airborne Separation Assurance System for autonomous flight operations. This development effort supports NASA s Distributed Air-Ground Traffic Management (DAG-TM) operational concept, designed to significantly increase capacity of the national airspace system, while maintaining safety. Autonomous aircraft pilots use the AOP to maintain traffic separation from other autonomous aircraft and managed aircraft flying under today's Instrument Flight Rules, while maintaining traffic flow management constraints assigned by Air Traffic Service Providers. AOP is designed to facilitate eventual implementation through careful modeling of its operational environment, interfaces with other aircraft systems and data links, and conformance with established flight deck conventions and human factors guidelines. AOP uses currently available or anticipated data exchanged over modeled Arinc 429 data buses and an Automatic Dependent Surveillance Broadcast 1090 MHz link. It provides pilots with conflict detection, prevention, and resolution functions and works with the Flight Management System to maintain assigned traffic flow management constraints. The AOP design has been enhanced over the course of several experiments conducted at NASA Langley and is being prepared for an upcoming Joint Air/Ground Simulation with NASA Ames Research Center.

  6. Development and Flight Testing of a Neural Network Based Flight Control System on the NF-15B Aircraft

    NASA Technical Reports Server (NTRS)

    Bomben, Craig R.; Smolka, James W.; Bosworth, John T.; Silliams-Hayes, Peggy S.; Burken, John J.; Larson, Richard R.; Buschbacher, Mark J.; Maliska, Heather A.

    2006-01-01

    The Intelligent Flight Control System (IFCS) project at the NASA Dryden Flight Research Center, Edwards AFB, CA, has been investigating the use of neural network based adaptive control on a unique NF-15B test aircraft. The IFCS neural network is a software processor that stores measured aircraft response information to dynamically alter flight control gains. In 2006, the neural network was engaged and allowed to learn in real time to dynamically alter the aircraft handling qualities characteristics in the presence of actual aerodynamic failure conditions injected into the aircraft through the flight control system. The use of neural network and similar adaptive technologies in the design of highly fault and damage tolerant flight control systems shows promise in making future aircraft far more survivable than current technology allows. This paper will present the results of the IFCS flight test program conducted at the NASA Dryden Flight Research Center in 2006, with emphasis on challenges encountered and lessons learned.

  7. Potential applications of advanced aircraft in developing countries. [Brazil and Indonesia

    NASA Technical Reports Server (NTRS)

    Maddalon, D. V.

    1979-01-01

    Air transportation concepts for movement of cargo in developing countries are reviewed using aicraft which may appear in the future. For certain industrial applications, including mining and forestry, the relative costs of doing the job using different types of aircraft are compared with surface transportation systems. Two developing countries, Brazil and Indonesia, were taken as examples to determine what impact they might have on the aircraft markets of the future. Economic and demographic data on developing countries in general, and Brazil and Indonesia in particular, are reviewed. The concept of an industrial city in a remote area developed around an airport is discussed. It is noted that developing areas generally lack extensive surface transportation systems and that an air transportation system can be implemented in a relatively short time. A developing nation interested in rapid expansion may thus find the role of air cargo far more important than has been true in developed nations. Technological developments which may dramatically increase the performance of agricultural aircraft are also reviewed.

  8. Advanced technology composite aircraft structures

    NASA Technical Reports Server (NTRS)

    Ilcewicz, Larry B.; Walker, Thomas H.

    1991-01-01

    Work performed during the 25th month on NAS1-18889, Advanced Technology Composite Aircraft Structures, is summarized. The main objective of this program is to develop an integrated technology and demonstrate a confidence level that permits the cost- and weight-effective use of advanced composite materials in primary structures of future aircraft with the emphasis on pressurized fuselages. The period from 1-31 May 1991 is covered.

  9. The civil tiltrotor aircraft's potential in developing economies

    NASA Technical Reports Server (NTRS)

    Alton, Larry R.; Lane, Theodore

    1991-01-01

    The civilian tiltrotor (CTR) is analyzed as a new transportation technology with the potential for changing one of the key economic factors linked to Third World economic development. It is contended that efficient, low-cost transport services are a necessary condition for the economic development of Third World countries and that the CTR's capabilities and operating costs can provide more efficient transport services than have heretofore been available to such countries. A case study of potential CTR use among the nations of the Carribean Basin region appears to offer both analytical and empirical support to these contentions. The analysis indicates that normal market mechanisms are adequate for development of air cargo services using the CTR's capabilities. It is suggested that implementation of this service may require new institutional arrangements, but overall it is concluded that tiltrotor technology could make an important contribution to the economic development of Third World countries.

  10. Developments in new aircraft tire tread materials. [fatigue life of elastomeric materials

    NASA Technical Reports Server (NTRS)

    Yager, T. J.; Mccarty, J. L.; Riccitiello, S. R.; Golub, M. A.

    1976-01-01

    Comparative laboratory and field tests were conducted on experimental and state-of-the-art aircraft tire tread materials in a program aimed at seeking new elastomeric materials which would provide improved aircraft tire tread wear, traction, and blowout resistance in the interests of operational safety and economy. The experimental stock was formulated of natural rubber and amorphous vinyl polybutadiene to provide high thermal-oxidative resistance, a characteristic pursued on the premise that thermal oxidation is involved both in the normal abrasion or wear of tire treads and probably in the chain of events leading to blowout failures. Results from the tests demonstrate that the experimental stock provided better heat buildup (hysteresis) and fatigue properties, at least equal wet and dry traction, and greater wear resistance than the state-of-the-art stock.

  11. The NASA/industry Design Analysis Methods for Vibrations (DAMVIBS) program: Sikorsky Aircraft: Advances toward interacting with the airframe design process

    NASA Technical Reports Server (NTRS)

    Twomey, William J.

    1993-01-01

    A short history is traced of the work done at Sikorsky Aircraft under the NASA/industry DAMVIBS program. This includes both work directly funded by the program as well as work which was internally funded but which received its initial impetus from DAMVIBS. The development of a finite element model of the UH-60A airframe having a marked improvement in vibration-predicting ability is described. A new program, PAREDYM, developed at Sikorsky, which automatically adjusts an FEM so that its modal characteristics match test values, is described, as well as the part this program played in the improvement of the UH-60A model. Effects of the bungee suspension system on the shake test data used for model verification are described. The impetus given by the modeling improvement, as well as the recent availability of PAREDYM, has brought for the first time the introduction of low-vibration design into the design cycle at Sikorsky.

  12. Robotics development programs overview

    SciTech Connect

    Heckendorn, F.M.

    1990-11-01

    This paper discusses the applications of robotics at the Westinghouse Savannah River Site. The Savannah River Laboratory (SRL) continues to provide support to the Savannah River Site (SRS) in many areas of Robotics and Remote Vision. An overview of the current and near term future developments are presented. The driving forces for Robotics and Vision developments at SRS include the classic reasons for industrial robotics installation (i.e. repetitive and undesirable jobs) and those reasons related to radioactive environments. Protection of personnel from both radiation and radioactive contamination benefit greatly from both Robotics and Telerobotics. Additionally, the quality of information available from remote locations benefits greatly from the ability to visually monitor and remotely sense. The systems discussed include a glovebox waste handling and bagout robot, a shielded cells robot for radioactive waste sample transfer, waste handling gantry robots, a two armed master/slave manipulator as an attachment to a gantry robot, navigation robot research/testing, demonstration of the mobile underwater remote cleaning and inspection device, a camera deployment robot to support remote crane operations and for deployment of radiation sensors directly over a hazardous site, and demonstration of a large mobile robot for high radiation environments. Development of specialized and limited life vision/viewing systems for hazardous environments is also discussed.

  13. The development of cryogenic wind tunnels and their application to maneuvering aircraft technology

    NASA Technical Reports Server (NTRS)

    Polhamus, E. C.; Boyden, R. F.

    1981-01-01

    The cryogenic wind tunnel and its potential for advancing maneuvering aircraft technology is discussed. A brief overview of the cryogenic wind tunnel concept and the capabilities and status of the Langley cryogenic facilities is given, as is a review of the considerations leading to the selection of the cryogenic concept such as capital and operating costs of the tunnel, model and balance construction implications, and test condition. Typical viscous, compressibility and aeroelastic effects encountered by maneuvering aircraft are illustrated and the unique ability of the cryogenic wind tunnels to isolate and investigate these parameters while simulating full scale conditions is discussed. The status of the Langley cryogenic wind tunnel facilities is reviewed and their operating envelopes described in relation to maneuvering aircraft research and development requirements. The status of cryogenic testing technology specifically related to aircraft maneuverability studies including force balances and buffet measurement techniques is discussed. Included are examples of research carried out in the Langley 0.3 meter transonic cryogenic wind tunnel to verify the various techniques.

  14. Emotionality in response to aircraft noise: A report of development work

    NASA Technical Reports Server (NTRS)

    Klaus, P. A.

    1975-01-01

    A literature search and pilot study conducted to investigate the topic of emotional response to aircraft noise are described. A Tell-A-Story Technique was developed for use in the pilot study which required respondents to make up stories for a series of aircraft-related and non-aircraft-related pictures. A content analysis of these stories was made. The major finding was that response patterns varied among three groups of respondents - those currently living near airports, those who had lived near airports in the past, and those who had never lived near airports. Negative emotional feelings toward aircraft were greatest among respondents who had lived near airports in the past but no longer did. A possible explanation offered for this finding was that people currently living near airports might adapt to the situation by denying some of their negative feelings, which they might feel more free to express after they had moved away from the situation. Other techniques used in the pilot study are also described, including group interviews and a word association task.

  15. Experimental clean combustor program, phase 1. [aircraft exhaust/gas analysis - gas turbine engines

    NASA Technical Reports Server (NTRS)

    Roberts, R.; Peduzzi, A.; Vitti, G. E.

    1975-01-01

    A program of screening three low emission combustors for conventional takeoff and landing, by testing and analyzing thirty-two configurations is presented. Configurations were tested that met the emission goals at idle operating conditions for carbon monoxide and for unburned hydrocarbons (emission index values of 20 and 4, respectively). Configurations were also tested that met a smoke number goal of 15 at sea-level take-off conditions. None of the configurations met the goal for oxides of nitrogen emissions at sea-level take-off conditions. The best configurations demonstrated oxide of nitrogen emission levels that were approximately 61 percent lower than those produced by the JT9D-7 engine, but these levels were still approximately 24 percent above the goal of an emission index level of 10. Additional combustor performance characteristics, including lean blowout, exit temperature pattern factor and radial profile, pressure loss, altitude stability, and altitude relight characteristics were documented. The results indicate the need for significant improvement in the altitude stability and relight characteristics. In addition to the basic program for current aircraft engine combustors, seventeen combustor configurations were evaluated for advanced supersonic technology applications. The configurations were tested at cruise conditions, and a conceptual design was evolved.

  16. NCG turbocompressor development program

    SciTech Connect

    Nichols, K.E.

    1997-12-31

    Barber-Nichols, Pacific Gas and Electric and UNOCAL as an industry group applied for a DOE grant under the GTO to develop a new type of compressor that could be used to extract non-condensable gas (NCG) from the condensers of geothermal power plants. This grant (DE-FG07-951A13391) was awarded on September 20, 1995. The installation and startup of the turbocompressor at the PG&E Geysers Unit 11 is covered by this paper. The turbocompressor has operated several days at 17000rpm while the plant was producing 50 to 70 MW.

  17. Nanosatellite Propulsion Development Program

    NASA Technical Reports Server (NTRS)

    Gagosian, J. S.; Rhee, M. S.; Zakrzwski, C. M.

    1999-01-01

    Earth-orbiting nanosatellite constellations are a unique and exciting means toward fulfilling part of the mission of the Goddard Space Flight Center (GSFC). These constellations, which may consist of several hundred 10-kg spacecraft, present unique challenges in the area of propulsion. Many mission concepts require significant delta-v and attitude control capability to reside in the nanosatellites. In response to requirements from mission feasibility studies, such as the Magnetospheric Constellation study, the GSFC has initiated industry and government partnerships to develop enabling propulsion technologies. The largest challenge has been to meet the power constraints of nanosatellites. These power issues, combined with the high thrust required by many of the missions studied, have led the GSFC to concentrate its efforts on chemical propulsion technology. Electric propulsion technologies capable of performing efficiently at very low power are also of interest to the GSFC as potential candidates for nanosatellite formation flying missions. This paper provides the status of specific industrial or government partnerships undertaken by the GSFC to develop nano/micro propulsion components. Three specific technologies are described in detail: 1) Nanosatellite Solid Rocket Motor Prototype 2) Ultra-Low-Power Cold Gas Thruster for Spin-Axis Precession 3) Micro-Machined Solid-Propellant Gas Generators.

  18. Environmental awareness program development

    NASA Technical Reports Server (NTRS)

    Steinhauer, David A.

    1995-01-01

    Work this summer in the Office of Safety, Environment, and Mission Assurance began with a review of current initiatives and environmental projects at the Langley Research Center (LaRC). This involved researching many of the documents on file which detail problems which have occurred as well as various approaches which have been used to address these problems. A large portion of the time was spent interviewing and working with each of the engineers, industrial hygienists and other professionals connected with the Office of Environmental Engineering. A few of the projects I worked on include: Researching environmental compliance, and pollution prevention efforts; touring many of the facilities at LaRC to observe the environmental efforts in the work place; researching equipment needs for the recycling/reclamation center; writing scripts for in-house training videos; working with the video production department to produce a training video; developing e-mail distribution list; developing environmental coordinator's database; and working with others to research logistics of recycling and waste minimization efforts.

  19. Automotive Stirling Engine Development Program

    NASA Technical Reports Server (NTRS)

    Allen, M. (Editor)

    1980-01-01

    Progress is reported in the following: the Stirling reference engine system design; components and subsystems; F-40 baseline Stirling engine installation and test; the first automotive engine to be built on the program; computer development activities; and technical assistance to the Government. The overall program philosophy is outlined, and data and results are given.

  20. Applications of computer graphics to aircraft synthesis

    NASA Technical Reports Server (NTRS)

    Carmichael, R. L.; Putnam, R.

    1975-01-01

    The history of the development of an aircraft configuration synthesis program using interactive computer graphics was described. A system based on time-sharing was compared to two different concepts based on distributed computing.

  1. Developing an Operator Training Program.

    ERIC Educational Resources Information Center

    Wubbena, Robert L.

    1978-01-01

    The study reported is a nationwide comprehensive analysis of the availability of training and the problems associated with the development of effective state programs for operators of water supply and wastewater facilities. (CS)

  2. Lunar exploration rover program developments

    SciTech Connect

    Klarer, P.R.

    1993-09-01

    The Robotic All Terrain Lunar Exploration Rover (RATLER) design concept began at Sandia National Laboratories in late 1991 with a series of small, proof-of-principle, working scale models. The models proved the viability of the concept for high mobility through mechanical simplicity, and eventually received internal funding at Sandia National Laboratories for full scale, proof-of-concept prototype development. Whereas the proof-of-principle models demonstrated the mechanical design`s capabilities for mobility, the full scale proof-of-concept design currently under development is intended to support field operations for experiments in telerobotics, autonomous robotic operations, telerobotic field geology, and advanced man-machine interface concepts. The development program`s current status is described, including an outline of the program`s work over the past year, recent accomplishments, and plans for follow-on development work.

  3. Computer programs for producing single-event aircraft noise data for specific engine power and meteorological conditions for use with USAF (United States Air Force) community noise model (NOISEMAP)

    NASA Astrophysics Data System (ADS)

    Mohlman, H. T.

    1983-04-01

    The Air Force community noise prediction model (NOISEMAP) is used to describe the aircraft noise exposure around airbases and thereby aid airbase planners to minimize exposure and prevent community encroachment which could limit mission effectiveness of the installation. This report documents two computer programs (OMEGA 10 and OMEGA 11) which were developed to prepare aircraft flight and ground runup noise data for input to NOISEMAP. OMEGA 10 is for flight operations and OMEGA 11 is for aircraft ground runups. All routines in each program are documented at a level useful to a programmer working with the code or a reader interested in a general overview of what happens within a specific subroutine. Both programs input normalized, reference aircraft noise data; i.e., data at a standard reference distance from the aircraft, for several fixed engine power settings, a reference airspeed and standard day meteorological conditions. Both programs operate on these normalized, reference data in accordance with user-defined, non-reference conditions to derive single-event noise data for 22 distances (200 to 25,000 feet) in a variety of physical and psycho-acoustic metrics. These outputs are in formats ready for input to NOISEMAP.

  4. Advanced technology for future regional transport aircraft

    NASA Technical Reports Server (NTRS)

    Williams, L. J.

    1982-01-01

    In connection with a request for a report coming from a U.S. Senate committee, NASA formed a Small Transport Aircraft Technology (STAT) team in 1978. STAT was to obtain information concerning the technical improvements in commuter aircraft that would likely increase their public acceptance. Another area of study was related to questions regarding the help which could be provided by NASA's aeronautical research and development program to commuter aircraft manufacturers with respect to the solution of technical problems. Attention is given to commuter airline growth, current commuter/region aircraft and new aircraft in development, prospects for advanced technology commuter/regional transports, and potential benefits of advanced technology. A list is provided of a number of particular advances appropriate to small transport aircraft, taking into account small gas turbine engine component technology, propeller technology, three-dimensional wing-design technology, airframe aerodynamics/propulsion integration, and composite structure materials.

  5. Recent developments in aircraft engine noise reduction technology

    NASA Technical Reports Server (NTRS)

    Stone, J. R.; Feiler, C. E.

    1981-01-01

    Some of the more important developments and progress in jet and fan noise reduction and flight effects are reviewed. Experiments are reported which show that nonaxisymmetric coannular nozzles have the potential to reduce jet noise for conventional and inverted velocity profiles. It is shown that an improved understanding of suppressive linear behavior, coupled with the new understanding of fan source noise, will soon allow the joint optimization of acoustic liner and fan design for low noise. It is also shown that fan noise source reduction concepts are applicable to advanced turboprops. Advances in inflow control device design are reviewed that appear to offer an adequate approach to the ground simulation of inflight fan noise.

  6. NASA technical advances in aircraft occupant safety

    NASA Technical Reports Server (NTRS)

    Enders, J. H.

    1978-01-01

    A NASA program to improve aircraft safety is discussed in terms of three areas of concentration: unexpected turbulence encounters, fire, and crash impact. To provide warning of clear air turbulence (CAT) so that the pilot can take evasive action, a laser Doppler system is described, which functions by measuring backscatter frequency radiation occurring in aerosols ahead of the aircraft. The system was found able to detect CAT, but at shorter than optimal ranges (10 km as opposed to 32 km). Fire safety has focused on both the early detection of fires through improved sensing methods, and on the development of fire-retardant materials, i.e., intumescent char-forming protective coatings. Crashworthiness is discussed in terms of the development of a survivable crash envelope and improved seat and restraint systems. To evaluate an aircraft for crashworthiness, finite-element computer programs are currently being developed which analyze both aircraft structural configurations and the intrinsic strength of aircraft materials.

  7. Kodak AMSD Mirror Development Program

    NASA Technical Reports Server (NTRS)

    Matthews, Gary; Dahl, Roger; Barrett, David; Bottom, John; Russell, Kevin (Technical Monitor)

    2002-01-01

    The Advanced Mirror System Demonstration Program is developing minor technology for the next generation optical systems. Many of these systems will require extremely lightweight and stable optics due to the overall size of the primary mirror. These segmented, deployable systems require new technology that AMSD is developing. The on-going AMSD program is a critical enabler for Next Generation Space Telescope (NGST) which will start in 2002. The status of Kodak's AMSD mirror and future plans will be discussed with respect to the NGST program.

  8. Development of a reduced area horizontal tail for a wide body jet aircraft

    NASA Technical Reports Server (NTRS)

    Rising, Jerry J.

    1984-01-01

    Commercial transport aircraft fuel consumption can be significantly reduced by decreasing the size of the horizontal tail. Work on reducing the horizontal tail area of the L-1011 is discussed. The reduced area horizontal tail program consisted of design, fabrication and wind tunnel testing of horizontal tails with reduced planform areas of 30 to 38 percent relative to the standard L-1011 tail. The total drag of the aircraft in cruise was reduced by approximately 2 percent. However, it was necessary to impose forward center of gravity limitations on the aircraft because the maximum lift goal of the reduced area tail was not achieved and sufficient nose-up control authority was not available. On a new design this problem could have been solved by moving the landing gear aft and enlarging the cut-out in the aft fuselage to allow for larger horizontal stabilizer deflections. However, since this is an existing design, these modifications were unfeasible and resulted in the center of gravity restriction.

  9. A parametric determination of transport aircraft price

    NASA Technical Reports Server (NTRS)

    Anderson, J. L.

    1975-01-01

    Cost per unit weight and other airframe and engine cost relations are given. Power equations representing these relations are presented for six airplane groups: general aircraft, turboprop transports, small jet transports, conventional jet transports, wide-body transports, supersonic transports, and for reciprocating, turboshaft, and turbothrust engines. Market prices calculated for a number of aircraft by use of the equations together with the aircraft characteristics are in reasonably good agreement with actual prices. Such price analyses are of value in the assessment of new aircraft devices and designs and potential research and development programs.

  10. Army-NASA aircrew/aircraft integration program (A3I) software detailed design document, phase 3

    NASA Technical Reports Server (NTRS)

    Banda, Carolyn; Chiu, Alex; Helms, Gretchen; Hsieh, Tehming; Lui, Andrew; Murray, Jerry; Shankar, Renuka

    1990-01-01

    The capabilities and design approach of the MIDAS (Man-machine Integration Design and Analysis System) computer-aided engineering (CAE) workstation under development by the Army-NASA Aircrew/Aircraft Integration Program is detailed. This workstation uses graphic, symbolic, and numeric prototyping tools and human performance models as part of an integrated design/analysis environment for crewstation human engineering. Developed incrementally, the requirements and design for Phase 3 (Dec. 1987 to Jun. 1989) are described. Software tools/models developed or significantly modified during this phase included: an interactive 3-D graphic cockpit design editor; multiple-perspective graphic views to observe simulation scenarios; symbolic methods to model the mission decomposition, equipment functions, pilot tasking and loading, as well as control the simulation; a 3-D dynamic anthropometric model; an intermachine communications package; and a training assessment component. These components were successfully used during Phase 3 to demonstrate the complex interactions and human engineering findings involved with a proposed cockpit communications design change in a simulated AH-64A Apache helicopter/mission that maps to empirical data from a similar study and AH-1 Cobra flight test.

  11. Prototype Development of an Operational Global Aircraft Radiation Exposure Nowcast

    NASA Astrophysics Data System (ADS)

    Mertens, C. J.; Tobiska, W.; Bouwer, D.; Kress, B. T.; Wiltberger, M. J.; Solomon, S. C.; Kunches, J.

    2009-12-01

    A prototype operational nowcast model of air-crew radiation exposure is currently under development and funded by NASA. The model predicts air-crew radiation exposure levels from both background galactic cosmic rays (GCR) and solar energetic particle events (SEP) that may accompany solar storms. The new air-crew radiation exposure model is called the Nowcast of Atmospheric Ionizing Radiation for Aviation Safety (NAIRAS) model. NAIRAS will provide global, data-driven, real-time exposure predictions of biologically harmful radiation at aviation altitudes. Observations are utilized from the ground (neutron monitors), from the atmosphere (the NCEP Global Forecast System), and from space (NASA/ACE and NOAA/GOES). Atmospheric observations provide the overhead mass shielding information and the ground- and space-based observations provide boundary conditions on the incident GCR and SEP particle flux distributions for transport and dosimetry calculations. Exposure rates are calculated using the NASA physics-based HZETRN (High Charge (Z) and Energy TRaNsport) code. An overview of the NAIRAS model is given: the concept, design, prototype implementation status, data access, and example results. We also discuss issues encounter thus far as well as anticipated hurdles in the research to operations transition process.

  12. Multidisciplinary Techniques and Novel Aircraft Control Systems

    NASA Technical Reports Server (NTRS)

    Padula, Sharon L.; Rogers, James L.; Raney, David L.

    2000-01-01

    The Aircraft Morphing Program at NASA Langley Research Center explores opportunities to improve airframe designs with smart technologies. Two elements of this basic research program are multidisciplinary design optimization (MDO) and advanced flow control. This paper describes examples where MDO techniques such as sensitivity analysis, automatic differentiation, and genetic algorithms contribute to the design of novel control systems. In the test case, the design and use of distributed shapechange devices to provide low-rate maneuvering capability for a tailless aircraft is considered. The ability of MDO to add value to control system development is illustrated using results from several years of research funded by the Aircraft Morphing Program.

  13. Multidisciplinary Techniques and Novel Aircraft Control Systems

    NASA Technical Reports Server (NTRS)

    Padula, Sharon L.; Rogers, James L.; Raney, David L.

    2000-01-01

    The Aircraft Morphing Program at NASA Langley Research Center explores opportunities to improve airframe designs with smart technologies. Two elements of this basic research program are multidisciplinary design optimization (MDO) and advanced flow control. This paper describes examples where MDO techniques such as sensitivity analysis, automatic differentiation, and genetic algorithms contribute to the design of novel control systems. In the test case, the design and use of distributed shape-change devices to provide low-rate maneuvering capability for a tailless aircraft is considered. The ability of MDO to add value to control system development is illustrated using results from several years of research funded by the Aircraft Morphing Program.

  14. Operational Prototype Development of a Global Aircraft Radiation Exposure Nowcast

    NASA Astrophysics Data System (ADS)

    Mertens, Christopher; Kress, Brian; Wiltberger, Michael; Tobiska, W. Kent; Bouwer, Dave

    Galactic cosmic rays (GCR) and solar energetic particles (SEP) are the primary sources of human exposure to high linear energy transfer (LET) radiation in the atmosphere. High-LET radiation is effective at directly breaking DNA strands in biological tissue, or producing chemically active radicals in tissue that alter the cell function, both of which can lead to cancer or other adverse health effects. A prototype operational nowcast model of air-crew radiation exposure is currently under development and funded by NASA. The model predicts air-crew radiation exposure levels from both GCR and SEP that may accompany solar storms. The new air-crew radiation exposure model is called the Nowcast of Atmospheric Ionizing Radiation for Aviation Safety (NAIRAS) model. NAIRAS will provide global, data-driven, real-time exposure predictions of biologically harmful radiation at aviation altitudes. Observations are utilized from the ground (neutron monitors), from the atmosphere (the NCEP Global Forecast System), and from space (NASA/ACE and NOAA/GOES). Atmospheric observations characterize the overhead mass shielding and the ground-and space-based observations provide boundary conditions on the incident GCR and SEP particle flux distributions for transport and dosimetry calculations. Radiation exposure rates are calculated using the NASA physics-based HZETRN (High Charge (Z) and Energy TRaNsport) code. An overview of the NAIRAS model is given: the concept, design, prototype implementation status, data access, and example results. Issues encountered thus far and known and/or anticipated hurdles to research to operations transition are also discussed.

  15. Airline return-on-investment model for technology evaluation. [computer program to measure economic value of advanced technology applied to passenger aircraft

    NASA Technical Reports Server (NTRS)

    1974-01-01

    This report presents the derivation, description, and operating instructions for a computer program (TEKVAL) which measures the economic value of advanced technology features applied to long range commercial passenger aircraft. The program consists of three modules; and airplane sizing routine, a direct operating cost routine, and an airline return-on-investment routine. These modules are linked such that they may be operated sequentially or individually, with one routine generating the input for the next or with the option of externally specifying the input for either of the economic routines. A very simple airplane sizing technique was previously developed, based on the Brequet range equation. For this program, that sizing technique has been greatly expanded and combined with the formerly separate DOC and ROI programs to produce TEKVAL.

  16. Aircraft and ground vehicle friction correlation test results obtained under winter runway conditions during joint FAA/NASA Runway Friction Program

    NASA Technical Reports Server (NTRS)

    Yager, Thomas J.; Vogler, William A.; Baldasare, Paul

    1988-01-01

    Aircraft and ground vehicle friction data collected during the Joint FAA/NASA Runway Friction Program under winter runway conditions are discussed and test results are summarized. The relationship between the different ground vehicle friction measurements obtained on compacted snow- and ice-covered conditions is defined together with the correlation to aircraft tire friction performance under similar runway conditions.

  17. The selection of materials technologies for full-scale development. [aircraft engine applications

    NASA Technical Reports Server (NTRS)

    Aronstamm, G. A.

    1979-01-01

    Candidate material technologies offering the largest application payoff for the least development costs and the least risk should be selected for full-scale development funding. A cost/benefit methodology is developed to rate candidate material and process opportunities for future aircraft engine applications. A development cost estimate and risk analysis is compared with the economic benefit to establish a ranking of the candidate advanced technologies. Also included are examples of this methodology as applied to high-strength HIP turbine disks, advanced oxide dispersion strengthened burner liners, and ceramic first-stage high-pressure turbine vanes.

  18. Developing a Leadership Program Trajectory.

    PubMed

    Bleich, Michael R

    2016-06-01

    From a program development perspective, leadership goals and content are best developed over time, with an aim to help nurses mature into their capacity to lead. Leadership often is encouraged in new nurses or in those who seek management positions. Professional development educators are encouraged to enact leadership development across a career continuum. J Contin Educ Nurs. 2016;47(6):250-252. PMID:27232221

  19. The NASA High Accuracy Fuel Flowmeter (HAFF) Development Program

    NASA Technical Reports Server (NTRS)

    Hobart, H. F.

    1983-01-01

    The high accuracy fuel flowmeter development program is described. A flightworthy meter that measures mass flowrate of aircraft fuels to within + or - 0.25% of reading over a 50:1 range of flow is developed. A study of measurement techniques to achieve this goal yielded three candidates: (1) a dual turbine flowmeter with density and viscosity compensation; (2) an angular momentum flowmeter with a motor-driven, spring-restrained turbine and viscosity shroud; and (3) a vortex precission flowmeter with density and viscosity compensation. An experimental study of each technique was completed and the first two candidates were selected for prototype development.

  20. Collision avoidance in commercial aircraft Free Flight via neural networks and non-linear programming.

    PubMed

    Christodoulou, Manolis A; Kontogeorgou, Chrysa

    2008-10-01

    In recent years there has been a great effort to convert the existing Air Traffic Control system into a novel system known as Free Flight. Free Flight is based on the concept that increasing international airspace capacity will grant more freedom to individual pilots during the enroute flight phase, thereby giving them the opportunity to alter flight paths in real time. Under the current system, pilots must request, then receive permission from air traffic controllers to alter flight paths. Understandably the new system allows pilots to gain the upper hand in air traffic. At the same time, however, this freedom increase pilot responsibility. Pilots face a new challenge in avoiding the traffic shares congested air space. In order to ensure safety, an accurate system, able to predict and prevent conflict among aircraft is essential. There are certain flight maneuvers that exist in order to prevent flight disturbances or collision and these are graded in the following categories: vertical, lateral and airspeed. This work focuses on airspeed maneuvers and tries to introduce a new idea for the control of Free Flight, in three dimensions, using neural networks trained with examples prepared through non-linear programming. PMID:18991361

  1. NASA Procurement Career Development Program

    NASA Technical Reports Server (NTRS)

    1987-01-01

    The NASA Procurement Career Development Program establishes an agency-wide framework for the management of career development activity in the procurement field. Within this framework, installations are encouraged to modify the various components to meet installation-specific mission and organization requirements. This program provides a systematic process for the assessment of and planning for the development, training, and education required to increase the employees' competence in the procurement work functions. It includes the agency-wide basic knowledge and skills by career field and level upon which individual and organizational development plans are developed. Also, it provides a system that is compatible with other human resource management and development systems, processes, and activities. The compatibility and linkage are important in fostering the dual responsibility of the individual and the organization in the career development process.

  2. Business Development Executive (BDE) Program

    SciTech Connect

    Rice, E.J. "Woody"; Frederick, W. James

    2005-12-05

    The IPST BDE (Institute of Paper Science and Technology Business Development Executive) program was initiated in 1997 to make the paper industry better aware of the new manufacturing technologies being developed at IPST for the U.S. pulp and paper industry's use. In April 2000, the BDE program management and the 20 BDEs, all retired senior level industry manufacturing and research executives, were asked by Ms. Denise Swink of OIT at DOE to take the added responsibility of bringing DOE developed energy conservation technology to the paper industry. This project was funded by a DOE grant of $950,000.

  3. Commercial Crew Development Program Overview

    NASA Technical Reports Server (NTRS)

    Russell, Richard W.

    2011-01-01

    NASA's Commercial Crew Development Program is designed to stimulate efforts within the private sector that will aid in the development and demonstration of safe, reliable, and cost-effective space transportation capabilities. With the goal of delivery cargo and eventually crew to Low Earth Orbit (LEO) and the International Space Station (ISS) the program is designed to foster the development of new spacecraft and launch vehicles in the commercial sector. Through Space Act Agreements (SAAs) in 2011 NASA provided $50M of funding to four partners; Blue Origin, The Boeing Company, Sierra Nevada Corporation, and SpaceX. Additional, NASA has signed two unfunded SAAs with ATK and United Space Alliance. This paper will give a brief summary of these SAAs. Additionally, a brief overview will be provided of the released version of the Commercial Crew Development Program plans and requirements documents.

  4. Automotive Stirling engine development program

    NASA Technical Reports Server (NTRS)

    Ernst, W.; Richey, A.; Farrell, R.; Riecke, G.; Smith, G.; Howarth, R.; Cronin, M.; Simetkosky, M.; Meacher, J.

    1986-01-01

    This is the ninth Semiannual Technical Progress Report prepared under the Automotive Stirling Engine Development Program. It covers the twenty-eighth and twenty-ninth quarters of activity after award of the contract. Quarterly Technical Progress Reports related program activities from the first through the thirteenth quarters; thereafter, reporting was changed to a Semiannual format. This report summarizes the study of higher-power kinematic Stirling engines for transportation use, development testing of Mod I Stirling engines, and component development activities. Component development testing included successful conical fuel nozzle testing and functional checkout of Mod II controls and auxiliaries on Mod I engine test beds. Overall program philosophy is outlined and data and test results are presented.

  5. Technologies for Aircraft Noise Reduction

    NASA Technical Reports Server (NTRS)

    Huff, Dennis L.

    2006-01-01

    Technologies for aircraft noise reduction have been developed by NASA over the past 15 years through the Advanced Subsonic Technology (AST) Noise Reduction Program and the Quiet Aircraft Technology (QAT) project. This presentation summarizes highlights from these programs and anticipated noise reduction benefits for communities surrounding airports. Historical progress in noise reduction and technologies available for future aircraft/engine development are identified. Technologies address aircraft/engine components including fans, exhaust nozzles, landing gear, and flap systems. New "chevron" nozzles have been developed and implemented on several aircraft in production today that provide significant jet noise reduction. New engines using Ultra-High Bypass (UHB) ratios are projected to provide about 10 EPNdB (Effective Perceived Noise Level in decibels) engine noise reduction relative to the average fleet that was flying in 1997. Audio files are embedded in the presentation that estimate the sound levels for a 35,000 pound thrust engine for takeoff and approach power conditions. The predictions are based on actual model scale data that was obtained by NASA. Finally, conceptual pictures are shown that look toward future aircraft/propulsion systems that might be used to obtain further noise reduction.

  6. Composite components on commercial aircraft

    NASA Technical Reports Server (NTRS)

    Dexter, H. B.

    1980-01-01

    The paper considers the use of composite components in commercial aircraft. NASA has been active in sponsoring flight service programs with advanced composites for the last 10 years, with 2.5 million total composite component hours accumulated since 1970 on commercial transports and helicopters with no significant degradation in residual strength of composite components. Design, inspection, and maintenance procedures have been developed; a major NASA/US industry technology program has been developed to reduce fuel consumption of commercial transport aircraft through the use of advanced composites.

  7. Environmental Education and Development Program

    SciTech Connect

    Not Available

    1994-03-01

    The Environmental Education and Development Program is a component on the effort to accomplish the Office of Environmental Restoration and Waste Management`s (EM) goal of environmental compliance and cleanup of the 1989 inventory of inactive DOE sites and facilities by the year 2019. Education and Development programs were designed specifically to stimulate the knowledge and workforce capability necessary to achieve EM goals while contributing to DOE`s overall goal of increasing scientific and technical literacy and competency. The primary implementation criterion for E&D activities involved a focus on programs and projects that had both immediate and long-range leveraging effects on infrastructure. This focus included programs that yielded short term results (one to five years), as well as long-term results, to ensure a steady supply of appropriately trained and educated human resources, including women and minorities, to meet EM`s demands.

  8. Development of an adaptive failure detection and identification system for detecting aircraft control element failures

    NASA Technical Reports Server (NTRS)

    Bundick, W. Thomas

    1990-01-01

    A methodology for designing a failure detection and identification (FDI) system to detect and isolate control element failures in aircraft control systems is reviewed. An FDI system design for a modified B-737 aircraft resulting from this methodology is also reviewed, and the results of evaluating this system via simulation are presented. The FDI system performed well in a no-turbulence environment, but it experienced an unacceptable number of false alarms in atmospheric turbulence. An adaptive FDI system, which adjusts thresholds and other system parameters based on the estimated turbulence level, was developed and evaluated. The adaptive system performed well over all turbulence levels simulated, reliably detecting all but the smallest magnitude partially-missing-surface failures.

  9. Scheduled Civil Aircraft Emission Inventories for 1976 and 1984: Database Development and Analysis

    NASA Technical Reports Server (NTRS)

    Baughcum, Steven L.; Henderson, Stephen C.; Tritz, Terrance G.

    1996-01-01

    This report describes the development of a three-dimensional database of aircraft fuel burn and emissions (fuel burned, NOx, CO, and hydrocarbons) from scheduled commercial aircraft for four months (February, May, August, and November) of 1976 and 1984. Combining this data with earlier published data for 1990 and 1992, trend analyses for fuel burned, NOx, carbon monoxide, and hydrocarbons were calculated for selected regions (global, North America, Europe, North Atlantic, and North Pacific). These emissions inventories are available for use by atmospheric scientists conducting the Atmospheric Effects of Aviation Project (AEAP) modeling studies. Fuel burned and emissions of nitrogen oxides (NOx as NO2), carbon monoxide, and hydrocarbons have been calculated on a 1 degree latitude x 1 degree longitude x 1 kilometer altitude grid and delivered to NASA as electronic files.

  10. OPTIM: Computer program to generate a vertical profile which minimizes aircraft fuel burn or direct operating cost. User's guide

    NASA Technical Reports Server (NTRS)

    1983-01-01

    A profile of altitude, airspeed, and flight path angle as a function of range between a given set of origin and destination points for particular models of transport aircraft provided by NASA is generated. Inputs to the program include the vertical wind profile, the aircraft takeoff weight, the costs of time and fuel, certain constraint parameters and control flags. The profile can be near optimum in the sense of minimizing: (1) fuel, (2) time, or (3) a combination of fuel and time (direct operating cost (DOC)). The user can also, as an option, specify the length of time the flight is to span. The theory behind the technical details of this program is also presented.

  11. Developing an Accurate CFD Based Gust Model for the Truss Braced Wing Aircraft

    NASA Technical Reports Server (NTRS)

    Bartels, Robert E.

    2013-01-01

    The increased flexibility of long endurance aircraft having high aspect ratio wings necessitates attention to gust response and perhaps the incorporation of gust load alleviation. The design of civil transport aircraft with a strut or truss-braced high aspect ratio wing furthermore requires gust response analysis in the transonic cruise range. This requirement motivates the use of high fidelity nonlinear computational fluid dynamics (CFD) for gust response analysis. This paper presents the development of a CFD based gust model for the truss braced wing aircraft. A sharp-edged gust provides the gust system identification. The result of the system identification is several thousand time steps of instantaneous pressure coefficients over the entire vehicle. This data is filtered and downsampled to provide the snapshot data set from which a reduced order model is developed. A stochastic singular value decomposition algorithm is used to obtain a proper orthogonal decomposition (POD). The POD model is combined with a convolution integral to predict the time varying pressure coefficient distribution due to a novel gust profile. Finally the unsteady surface pressure response of the truss braced wing vehicle to a one-minus-cosine gust, simulated using the reduced order model, is compared with the full CFD.

  12. Application of Artificial Intelligence (AI) programming techniques to tactical guidance for fighter aircraft

    NASA Technical Reports Server (NTRS)

    Mcmanus, John W.; Goodrich, Kenneth H.

    1989-01-01

    A research program investigating the use of Artificial Intelligence (AI) programming techniques to aid in the development of a Tactical Decision Generator (TDG) for Within-Visual-Range (WVR) air combat engagements is discussed. The application of AI methods for development and implementation of the TDG is presented. The history of the Adaptive Maneuvering Logic (AML) program is traced and current versions of the (AML) program is traced and current versions of the AML program are compared and contrasted with the TDG system. The Knowledge-Based Systems (KBS) used by the TDG to aid in the decision-making process are outlined and example rules are presented. The results of tests to evaluate the performance of the TDG against a version of AML and against human pilots in the Langley Differential Maneuvering Simulator (DMS) are presented. To date, these results have shown significant performance gains in one-versus-one air combat engagements.

  13. Aircraft engine pollution reduction.

    NASA Technical Reports Server (NTRS)

    Rudey, R. A.

    1972-01-01

    The effect of engine operation on the types and levels of the major aircraft engine pollutants is described and the major factors governing the formation of these pollutants during the burning of hydrocarbon fuel are discussed. Methods which are being explored to reduce these pollutants are discussed and their application to several experimental research programs are pointed out. Results showing significant reductions in the levels of carbon monoxide, unburned hydrocarbons, and oxides of nitrogen obtained from experimental combustion research programs are presented and discussed to point out potential application to aircraft engines. An experimental program designed to develop and demonstrate these and other advanced, low pollution combustor design methods is described. Results that have been obtained to date indicate considerable promise for reducing advanced engine exhaust pollutants to levels significantly below current engines.

  14. Status report on the land processes aircraft science management operations working group

    NASA Technical Reports Server (NTRS)

    Lawless, James G.; Mann, Lisa J.

    1991-01-01

    Since its inception three years ago, the Land Processes Aircraft Science Management Operations Working Group (MOWG) provided recommendations on the optimal use of the Agency's aircraft in support of the Land Processes Science Program. Recommendations covered topics such as aircraft and sensor usage, development of long-range plans, Multisensor Airborne Campaigns (MAC), program balance, aircraft sensor databases, new technology and sensor development, and increased University scientist participation in the program. Impacts of these recommendations improved the efficiency of various procedures including the flight request process, tracking of flight hours, and aircraft usage. The group also created a bibliography focused on publications produced by Land Processes scientists from the use of the aircraft program, surveyed NASA funded PI's on their participation in the aircraft program, and developed a planning template for multi-sensor airborne campaigns. Benefits from these activities are summarized.

  15. Development of RTM and powder prepreg resins for subsonic aircraft primary structures

    NASA Technical Reports Server (NTRS)

    Woo, Edmund P.; Groleau, Michael R.; Bertram, James L.; Puckett, Paul M.; Maynard, Shawn J.

    1993-01-01

    Dow developed a thermoset resin which could be used to produce composites via the RTM process. The composites formed are useful at 200 F service temperatures after moisture saturation, and are tough systems that are suitable for subsonic aircraft primary structure. At NASA's request, Dow also developed a modified version of the RTM resin system which was suitable for use in producing powder prepreg. In the course of developing the RTM and powder versions of these resins, over 50 different new materials were produced and evaluated.

  16. The NASA Thunderstorm Overflight Program (TOP): Research in atmospheric electricity from an instrumented U-2 aircraft platform

    NASA Technical Reports Server (NTRS)

    Vaughan, O. H., Jr.

    1983-01-01

    An overview of the NASA Thunderstorm Overflight Program (TOP) is presented. The various instruments flown on the NASA U-2 aircraft, as well as the ground instrumentation used to collect optical and electronic signature from the lightning events, are discussed. Samples of some of the photographic and electronic signatures are presented. Approximately 6400 electronic data samples of optical pulses were collected and are being analyzed.

  17. Leadership Development for Program Directors

    PubMed Central

    Bing-You, Robert; Wiltshire, Whitney; Skolfield, Jenny

    2010-01-01

    Background Residency program directors have increasingly challenging roles, but they may not be receiving adequate leadership development. Objective To assess and facilitate program directors' leadership self-awareness and development at a workshop retreat. Methods At our annual program director retreat, program directors and associate program directors from a variety of specialties completed the Thomas-Kilmann Conflict Mode Instrument (TKI), which evaluates an individual's behavior in conflict situations, and the Hersey-Blanchard Situational Leadership (HBSL) model, which measures individuals' preferred leadership style in working with followers. Participants received their results during the retreat and discussed their leadership style results in the context of conflict situations experienced in the past. An online survey was distributed 3 weeks after the retreat to assess participant satisfaction and to determine whether participants would make changes to their leadership styles. Results Seventeen program directors attended the retreat and completed the tools. On the TKI, 47% preferred the Compromising mode for handling conflict, while 18% preferred either the Avoiding or Accommodating modes. On the HBSL, 71% of program directors preferred a Coaching leadership style. Ninety-one percent of postretreat-survey respondents found the leadership tools helpful and also thought they had a better awareness of their conflict mode and leadership style preferences. Eighty-two percent committed to a change in their leadership behaviors in the 6 months following the retreat. Conclusions Leadership tools may be beneficial for promoting the professional development of program directors. The TKI and HBSL can be used within a local retreat or workshop as we describe to facilitate positive leadership-behavior changes. PMID:22132267

  18. Research and technology program perspectives for general aviation and commuter aircraft

    NASA Technical Reports Server (NTRS)

    Bauchspies, J. S.; Simpson, W. E.

    1982-01-01

    The uses, benefits, and technology needs of the U.S. general aviation industry were studied in light of growing competition from foreign general aviation manufacturers, especially in the commuter and business jet aircraft markets.

  19. A personal sampler for aircraft engine cold start particles: laboratory development and testing.

    PubMed

    Armendariz, Alfredo; Leith, David

    2003-01-01

    Industrial hygienists in the U.S. Air Force are concerned about exposure of their personnel to jet fuel. One potential source of exposure for flightline ground crews is the plume emitted during the start of aircraft engines in extremely cold weather. The purpose of this study was to investigate a personal sampler, a small tube-and-wire electrostatic precipitator (ESP), for assessing exposure to aircraft engine cold start particles. Tests were performed in the laboratory to characterize the sampler's collection efficiency and to determine the magnitude of adsorption and evaporation artifacts. A low-temperature chamber was developed for the artifact experiments so tests could be performed at temperatures similar to actual field conditions. The ESP collected particles from 0.5 to 20 micro m diameter with greater than 98% efficiency at particle concentrations up to 100 mg/m(3). Adsorption artifacts were less than 5 micro g/m(3) when sampling a high concentration vapor stream. Evaporation artifacts were significantly lower for the ESP than for PVC membrane filters across a range of sampling times and incoming vapor concentrations. These tests indicate that the ESP provides more accurate exposure assessment results than traditional filter-based particle samplers when sampling cold start particles produced by an aircraft engine. PMID:14674798

  20. Development and validation of nondestructive inspection techniques for composite doubler repairs on commercial aircraft

    SciTech Connect

    Roach, D.; Walkington, P.

    1998-05-01

    Composite doublers, or repair patches, provide an innovative repair technique which can enhance the way aircraft are maintained. Instead of riveting multiple steel or aluminum plates to facilitate an aircraft repair, it is possible to bond a single boron-epoxy composite doubler to the damaged structure. In order for the use of composite doublers to achieve widespread use in the civil aviation industry, it is imperative that methods be developed which can quickly and reliably assess the integrity of the doubler. In this study, a specific composite application was chosen on an L-1011 aircraft in order to focus the tasks on application and operation issues. Primary among inspection requirements for these doublers is the identification of disbonds, between the composite laminate and aluminum parent material, and delaminations in the composite laminate. Surveillance of cracks or corrosion in the parent aluminum material beneath the doubler is also a concern. No single nondestructive inspection (NDI) method can inspect for every flaw type, therefore it is important to be aware of available NDI techniques and to properly address their capabilities and limitations. A series of NDI tests were conducted on laboratory test structures and on full-scale aircraft fuselage sections. Specific challenges, unique to bonded composite doubler applications, were highlighted. An array of conventional and advanced NDI techniques were evaluated. Flaw detection sensitivity studies were conducted on applicable eddy current, ultrasonic, X-ray and thermography based devices. The application of these NDI techniques to composite doublers and the results from test specimens, which were loaded to provide a changing flaw profile, are presented in this report. It was found that a team of these techniques can identify flaws in composite doubler installations well before they reach critical size.

  1. Autonomous aircraft initiative study

    NASA Technical Reports Server (NTRS)

    Hewett, Marle D.

    1991-01-01

    The results of a consulting effort to aid NASA Ames-Dryden in defining a new initiative in aircraft automation are described. The initiative described is a multi-year, multi-center technology development and flight demonstration program. The initiative features the further development of technologies in aircraft automation already being pursued at multiple NASA centers and Department of Defense (DoD) research and Development (R and D) facilities. The proposed initiative involves the development of technologies in intelligent systems, guidance, control, software development, airborne computing, navigation, communications, sensors, unmanned vehicles, and air traffic control. It involves the integration and implementation of these technologies to the extent necessary to conduct selected and incremental flight demonstrations.

  2. GASP- General Aviation Synthesis Program. Volume 1: Main program. Part 1: Theoretical development

    NASA Technical Reports Server (NTRS)

    Hague, D.

    1978-01-01

    The General Aviation synthesis program performs tasks generally associated with aircraft preliminary design and allows an analyst the capability of performing parametric studies in a rapid manner. GASP emphasizes small fixed-wing aircraft employing propulsion systems varying froma single piston engine with fixed pitch propeller through twin turboprop/ turbofan powered business or transport type aircraft. The program, which may be operated from a computer terminal in either the batch or interactive graphic mode, is comprised of modules representing the various technical disciplines integrated into a computational flow which ensures that the interacting effects of design variables are continuously accounted for in the aircraft sizing procedure. The model is a useful tool for comparing configurations, assessing aircraft performance and economics, performing tradeoff and sensitivity studies, and assessing the impact of advanced technologies on aircraft performance and economics.

  3. STS pilot user development program

    NASA Technical Reports Server (NTRS)

    Mcdowell, J. R.

    1977-01-01

    Full exploitation of the STS capabilities will be not only dependent on the extensive use of the STS for known space applications and research, but also on new, innovative ideas of use originating with both current and new users. In recognition of this, NASA has been engaged in a User Development Program for the STS. The program began with four small studies. Each study addressed a separate sector of potential new users to identify techniques and methodologies for user development. The collective results established that a user development function was not only feasible, but necessary for NASA to realize the full potential of the STS. This final report begins with a description of the overall pilot program plan, which involved five specific tasks defined in the contract Statement of Work. Each task is then discussed separately; but two subjects, the development of principal investigators and space processing users, are discussed separately for improved continuity of thought. These discussions are followed by a summary of the primary results and conclusions of the Pilot User Development Program. Specific recommendations of the study are given.

  4. Structural integrity in aircraft.

    NASA Technical Reports Server (NTRS)

    Hardrath, H. F.

    1973-01-01

    The paper reviews briefly the current design philosophies for achieving long, efficient, and reliable service in aircraft structures. The strengths and weaknesses of these design philosophies and their demonstrated records of success are discussed. The state of the art has not been developed to the point where designing can be done without major test inspection and maintenance programs. A broad program of research is proposed through which a viable computerized design scheme will be provided during the next decade. The program will organize and correlate existing knowledge on fatigue and fracture behavior, identify gaps in this knowledge, and guide specific research to upgrade design capabilities.

  5. Lunar exploration rover program developments

    NASA Technical Reports Server (NTRS)

    Klarer, P. R.

    1994-01-01

    The Robotic All Terrain Lunar Exploration Rover (RATLER) design concept began at Sandia National Laboratories in late 1991 with a series of small, proof-of-principle, working scale models. The models proved the viability of the concept for high mobility through mechanical simplicity, and eventually received internal funding at Sandia National Laboratories for full scale, proof-of-concept prototype development. Whereas the proof-of-principle models demonstrated the mechanical design's capabilities for mobility, the full scale proof-of-concept design currently under development is intended to support field operations for experiments in telerobotics, autonomous robotic operations, telerobotic field geology, and advanced man-machine interface concepts. The development program's current status is described, including an outline of the program's work over the past year, recent accomplishments, and plans for follow-on development work.

  6. Motor Education: Educational Development Programs.

    ERIC Educational Resources Information Center

    Tansley, A. E.

    This booklet presents educational programs and activities focusing on motor skills for 5- to 9-year-old children and older children with learning problems. The premise of the activities is that the acquisition of motor skills is essential to basic learning. The role of language as a mediator and controller of motor development is emphasized. The…

  7. Social Development Program. 1967 Report.

    ERIC Educational Resources Information Center

    Ptaschnik, Jeffrey

    The Social Development Program was originated under Title I to aid socially maladjusted students, particularly disadvantaged Negro students, to adjust socially and academically. Group dynamics were used to influence the self-concepts of sixth and seventh graders from five participating schools. This report states the formal definition of the…

  8. Automotive Stirling Engine Development Program

    NASA Technical Reports Server (NTRS)

    Nightingale, N.; Ernst, W.; Richey, A.; Simetkosky, M.; Smith, G.; Rohdenburg, C.; Antonelli, M. (Editor)

    1983-01-01

    Program status and plans are discussed for component and technology development; reference engine system design, the upgraded Mod 1 engine; industry test and evaluation; and product assurance. Four current Mod 1 engines reached a total of 2523 operational hours, while two upgraded engines accumulated 166 hours.

  9. Child Development and Intergenerational Programming.

    ERIC Educational Resources Information Center

    Crites, Marsha S.

    1989-01-01

    Child development can be fostered through relationships between older adults and children. Children's social isolation resulting from demographic, economic, and social changes can be addressed by means of intergenerational programs. During four developmental stages from infancy to adolescence, older adults can play a significant role in…

  10. Data Base Development: Federal Programs.

    ERIC Educational Resources Information Center

    Fisk, Dorothy A.; Weiss, Todd D.

    1980-01-01

    Describes the development of a prototype database of federal food, agriculture, and nutrition programs: preliminary work; database design, including the identification of data elements; and data collection and processing. The uses of the database and suggestions for enhancing its future usefulness are discussed. (Author/JD)

  11. Professorship: A Faculty Development Program.

    ERIC Educational Resources Information Center

    Davis, Todd M.; Davis, Jane F.

    1987-01-01

    A faculty development program at a traditionally black college was designed to enhance the ability of graduate faculty to supervise research activities of graduate students. Focus was on interpersonal problem solving in advisement and professional issues; classroom techniques of discussion teaching, case methods, and psychodrama encouraged the…

  12. Hydrogen fueled subsonic aircraft - A prospective

    NASA Technical Reports Server (NTRS)

    Witcofski, R. D.

    1977-01-01

    The performance characteristics of hydrogen-fueled subsonic transport aircraft are compared with those of aircraft using conventional aviation kerosene. Results of the Cryogenically Fueled Aircraft Technology Program sponsored by NASA indicate that liquid hydrogen may be particularly efficient for subsonic transport craft when ranges of 4000 km or more are involved; however, development of advanced cryogenic tanks for liquid hydrogen fuel is required. The NASA-sponsored program also found no major technical obstacles for international airports converting the liquid hydrogen fueling systems. Resource utilization efficiency and fuel production costs for hydrogen produced by coal gasification or for liquid methane or synthetic aviation kerosene are also assessed.

  13. Remotely piloted aircraft in the civil environment

    NASA Technical Reports Server (NTRS)

    Gregory, T. J.; Nelms, W. P.; Karmarkar, J. S.

    1977-01-01

    Remotely piloted aircraft (RPA's) are of increasing interest to the military and others, as evidenced by a number of technology and development programs that are currently funded or planned. These programs have led to a number of test aircraft with significant capabilities, and future remotely piloted aircraft are forecast to become even more capable as the technology in a number of important subsystem areas is progressing at a rapid rate. As the size, weight and cost of RPA's is reduced, the prospect of using them for civilian applications becomes more likely.

  14. Development of an advanced pitch active control system and a reduced area horizontal tail for a wide-body jet aircraft

    NASA Technical Reports Server (NTRS)

    Guinn, Wiley A.

    1984-01-01

    The development of an advanced pitch active control system (PACS) and a reduced area horizontal tail for a wide-body jet transport (L-1011) with a flying horizontal stabilizer is discussed. The advanced PACS control law design objectives were to provide satisfactory handling qualities for aft c.g. flight conditions to negative static stability margins of 10 percent and to provide good maneuver control column force gradients for nonlinear stability flight conditions. Validity of the control laws were demonstrated by piloted flight simulation tests on the NASA Langley Visual Motion Simulator. Satisfactory handling qualities were actually demonstrated to a negative 20 percent static stability margin. The PACS control laws were mechanized to provide the system architecture that would be suitable for an L-1011 flight test program to a negative stability margin of 3 percent which represents the aft c.g. limits of the aircraft. Reduced area horizontal tail designs of 30 and 38 percent with respect to the L-1011 standard tail were designed, fabricated and wind tunnel tested. Drag reductions and weight savings of the 30 percent smaller tail would provide an L/D benefit of about 2% and the 38% small tail L/D benefit would be about 3 percent. However, forward c.g. limitations would have to be imposed on the aircraft because the maximum horizontal tail lift goal was not achieved and sufficient aircraft nose-up control authority was not available. This limitation would not be required for a properly designed new aircraft.

  15. Pathfinder Aircraft in Flight

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The Pathfinder research aircraft's wing structure was clearly defined as it soared under a clear blue sky during a test flight July 27, 1995, from Dryden Flight Research Center, Edwards, California. The center section and outer wing panels of the aircraft had ribs constructed of thin plastic foam, while the ribs in the inner wing panels are fabricated from lightweight composite material. Developed by AeroVironment, Inc., the Pathfinder was one of several unmanned aircraft being evaluated under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) program. Pathfinder was a lightweight, solar-powered, remotely piloted flying wing aircraft used to demonstrate the use of solar power for long- duration, high-altitude flight. Its name denotes its mission as the 'Pathfinder' or first in a series of solar-powered aircraft that will be able to remain airborne for weeks or months on scientific sampling and imaging missions. Solar arrays covered most of the upper wing surface of the Pathfinder aircraft. These arrays provided up to 8,000 watts of power at high noon on a clear summer day. That power fed the aircraft's six electric motors as well as its avionics, communications, and other electrical systems. Pathfinder also had a backup battery system that could provide power for two to five hours, allowing for limited-duration flight after dark. Pathfinder flew at airspeeds of only 15 to 20 mph. Pitch control was maintained by using tiny elevators on the trailing edge of the wing while turns and yaw control were accomplished by slowing down or speeding up the motors on the outboard sections of the wing. On September 11, 1995, Pathfinder set a new altitude record for solar- powered aircraft of 50,567 feet above Edwards Air Force Base, California, on a 12-hour flight. On July 7, 1997, it set another, unofficial record of 71,500 feet at the Pacific Missile Range Facility, Kauai, Hawaii. In 1998, Pathfinder was modified into the longer-winged Pathfinder Plus

  16. Pathfinder aircraft in flight

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The Pathfinder research aircraft's wing structure was clearly defined as it soared under a clear blue sky during a test flight July 27, 1995, from Dryden Flight Research Center, Edwards, California. The center section and outer wing panels of the aircraft had ribs constructed of thin plastic foam, while the ribs in the inner wing panels are fabricated from lightweight composite material. Developed by AeroVironment, Inc., the Pathfinder was one of several unmanned aircraft being evaluated under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) program. Pathfinder was a lightweight, solar-powered, remotely piloted flying wing aircraft used to demonstrate the use of solar power for long-duration, high-altitude flight. Its name denotes its mission as the 'Pathfinder' or first in a series of solar-powered aircraft that will be able to remain airborne for weeks or months on scientific sampling and imaging missions. Solar arrays covered most of the upper wing surface of the Pathfinder aircraft. These arrays provided up to 8,000 watts of power at high noon on a clear summer day. That power fed the aircraft's six electric motors as well as its avionics, communications, and other electrical systems. Pathfinder also had a backup battery system that could provide power for two to five hours, allowing for limited-duration flight after dark. Pathfinder flew at airspeeds of only 15 to 20 mph. Pitch control was maintained by using tiny elevators on the trailing edge of the wing while turns and yaw control were accomplished by slowing down or speeding up the motors on the outboard sections of the wing. On September 11, 1995, Pathfinder set a new altitude record for solar-powered aircraft of 50,567 feet above Edwards Air Force Base, California, on a 12-hour flight. On July 7, 1997, it set another, unofficial record of 71,500 feet at the Pacific Missile Range Facility, Kauai, Hawaii. In 1998, Pathfinder was modified into the longer-winged Pathfinder Plus

  17. Fiber optics for advanced aircraft

    NASA Technical Reports Server (NTRS)

    Baumbick, Robert J.

    1988-01-01

    The increased use of composites makes the digital control more susceptible to electromagnetic effects. In order to provide the protection to the digital control additional shielding will be required as well as protective circuitry for the electronics. This results in increased weight and reduced reliability. The advantages that fiber optic technology provides for advanced aircraft applications is recognized. The use of optical signals to carry information between the aircraft and the control module provides immunity from contamination by electromagnetic sources as well as other important benefits such as reduced weight and volume resulting from the elimination of the shielding and the replacement of metal conductors with low weight glass fibers. In 1975 NASA began work to develop passive optical sensors for use with fiber optics in aircraft control systems. The problem now is to choose the best optical sensor concepts and evaluate them for use. In 1985 NASA and DOD entered into a joint program, Fiber Optic Control System Integration (FOCSI), to look at optical technology specifically for use in advanced aircraft systems. The results of this program are discussed. The conclusion of the study indicated that the use of fiber optic technology in advanced aircraft systems is feasible and desirable. The study pointed to a lack of available sensors from vendors capable of operating in the adverse environments of advanced aircraft.

  18. Fiber optics for advanced aircraft

    NASA Technical Reports Server (NTRS)

    Baumbick, Robert J.

    1989-01-01

    The increased use of composites makes the digital control more susceptible to electromagnetic effects. In order to provide the protection to the digital control additional shielding will be required as well as protective circuitry for the electronics. This results in increased weight and reduced reliability. The advantages that fiber optic technology provides for advanced aircraft applications is recognized. The use of optical signals to carry information between the aircraft and the control module provides immunity from contamination by electromagnetic sources as well as other important benefits such as reduced weight and volume resulting from the elimination of the shielding and the replacement of metal conductors with low weight glass fibers. In 1975 NASA began work to develop passive optical sensors for use with fiber optics in aircraft control systems. The problem now is to choose the best optical sensor concepts and evaluate them for use. In 1985 NASA and DOD entered into a joint program, Fiber Optic Control System Integration (FOCSI), to look at optical technology specifically for use in advanced aircraft systems. The results of this program are discussed. The conclusion of the study indicated that the use of fiber optic technology in advanced aircraft systems is feasible and desirable. The study pointed to a lack of available sensors from vendors capable of operating in the adverse environments of advanced aircraft.

  19. Technology for reducing aircraft engine pollution

    NASA Technical Reports Server (NTRS)

    Rudey, R. A.; Kempke, E. E., Jr.

    1975-01-01

    Programs have been initiated by NASA to develop and demonstrate advanced technology for reducing aircraft gas turbine and piston engine pollutant emissions. These programs encompass engines currently in use for a wide variety of aircraft from widebody-jets to general aviation. Emission goals for these programs are consistent with the established EPA standards. Full-scale engine demonstrations of the most promising pollutant reduction techniques are planned within the next three years. Preliminary tests of advanced technology gas turbine engine combustors indicate that significant reductions in all major pollutant emissions should be attainable in present generation aircraft engines without adverse effects on fuel consumption. Fundamental-type programs are yielding results which indicate that future generation gas turbine aircraft engines may be able to utilize extremely low pollutant emission combustion systems.

  20. F-15 PCA (Propulsion Controlled Aircraft) Simulation Cockpit

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The F-15 PCA (Propulsion Controlled Aircraft) simulation was used from 1990 to 1993. It was used for the development of propulsion algorithms and piloting techniques (using throttles only) to be used for emergency flight control in the advent of a major flight control system failure on a multi-engine aircraft. Following this program with the Dryden F-15, similiar capabilities were developed for other aircraft, such as the B-720, Lear 24, B-727, C-402, and B-747.

  1. The Buffalo/Spey jet-STOL research aircraft

    NASA Technical Reports Server (NTRS)

    Whittley, D. C.

    1973-01-01

    The program to design and build a Buffalo/Spey Augmentor-Wing research aircraft is presented. The development of an internally blown flap system for the generation of powered lift is discussed. Modification, development, and testing of the Rolls-Royce Spey engine are reported. The ground tests and first flights of the aircraft are described and the application of the internally blown flap concept for short takeoff military transport aircraft is proposed.

  2. Nondestructive Evaluation (NDE) Results on Sikorsky Aircraft Survivable Affordable Reparable Airframe Program (SARAP) Samples

    NASA Technical Reports Server (NTRS)

    Zalameda, Joseph N.; Anastasi, Robert F.; Madaras, Eric I.

    2004-01-01

    The Survivable, Affordable, Reparable Airframe Program (SARAP) will develop/produce new structural design concepts with lower structural weight, reduced manufacturing complexity and development time, increased readiness, and improved threat protection. These new structural concepts will require advanced field capable inspection technologies to help meet the SARAP structural objectives. In the area of repair, damage assessment using nondestructive inspection (NDI) is critical to identify repair location and size. The purpose of this work is to conduct an assessment of new and emerging NDI methods that can potentially satisfy the SARAP program goals.

  3. ADVANCED EMISSIONS CONTROL DEVELOPMENT PROGRAM

    SciTech Connect

    G.A. Farthing

    2001-02-06

    The primary objective of the Advanced Emissions Control Development Program (AECDP) is to develop practical, cost-effective strategies for reducing the emissions of hazardous air pollutants (HAPs, or air toxics) from coal-fired boilers. The project goal is to effectively control air toxic emissions through the use of conventional flue gas cleanup equipment such as electrostatic precipitators (ESPs), fabric filters (baghouses), and wet flue gas desulfurization (WFGD) systems. Development work initially concentrated on the capture of trace metals, fine particulate, hydrogen chloride, and hydrogen fluoride. Recent work has focused almost exclusively on the control of mercury emissions.

  4. Advanced Emissions Control Development Program

    SciTech Connect

    G. A. Farthing; G. T. Amrhein; G. A. Kudlac; D. A. Yurchison; D. K. McDonald; M. G. Milobowski

    2001-03-31

    The primary objective of the Advanced Emissions Control Development Program (AECDP) is to develop practical, cost-effective strategies for reducing the emissions of hazardous air pollutants (HAPs, or air toxics) from coal-fired boilers. This objective is being met by identifying ways to effectively control air toxic emissions through the use of conventional flue gas cleanup equipment such as electrostatic precipitators (ESPs), fabric filters (fabric filters), and wet flue gas desulfurization (wet FGD) systems. Development work initially concentrated on the capture of trace metals, hydrogen chloride, and hydrogen fluoride. Recent work has focused almost exclusively on the control of mercury emissions.

  5. Accelerated leach test development program

    SciTech Connect

    Fuhrmann, M.; Pietrzak, R.F.; Heiser, J.; Franz, E.M.; Colombo, P.

    1990-11-01

    In FY 1989, a draft accelerated leach test for solidified waste was written. Combined test conditions that accelerate leaching were validated through experimental and modeling efforts. A computer program was developed that calculates test results and models leaching mechanisms. This program allows the user to determine if diffusion controls leaching and, if this is the case, to make projections of releases. Leaching mechanisms other than diffusion (diffusion plus source term partitioning and solubility limited leaching) are included in the program is indicators of other processes that may control leaching. Leach test data are presented and modeling results are discussed for laboratory scale waste forms composed of portland cement containing sodium sulfate salt, portland cement containing incinerator ash, and vinyl ester-styrene containing sodium sulfate. 16 refs., 38 figs., 5 tabs.

  6. The Further Development of Heat-Resistant Materials for Aircraft Engines

    NASA Technical Reports Server (NTRS)

    Bollenrath, Franz

    1946-01-01

    The present report deals with the problems involved in the greater utilization and development of aircraft engine materials, and specifically; piston materials, cylinder heads, exhaust valves, and exhaust gas turbine blading. The blades of the exhaust gas turbine are likely to be the highest stressed components of modern power plants from a thermal-mechanical and chemical standpoint, even though the requirements on exhaust valves of engines with gasoline injection are in general no less stringent. For the fire plate in Diesel engines the specifications for mechanical strength and design are not so stringent, and the question of heat resistance, which under these circumstances is easier obtainable, predominates.

  7. Development of an experiment for determining the autoignition characteristics of aircraft-type fuels

    NASA Technical Reports Server (NTRS)

    Spadaccini, L. J.

    1977-01-01

    An experimental test apparatus was developed to determine the autoignition characteristics of aircraft-type fuels in premixing prevaporizing passages at elevated temperatures and pressures. The experiment was designed to permit independent variation and evaluation of the experimental variables of pressure, temperature, flow rate, and fuel-air ratio. A comprehensive review of the autoignition literature is presented. Performance verification tests consisting of measurements of the ignition delay times for several lean fuel-air mixture ratios were conducted using Jet-A fuel at inlet air temperatures in the range 600 K to 900 K and pressures in the range 9 atm to 30 atm.

  8. Glucocorticoid programming of intrauterine development.

    PubMed

    Fowden, A L; Valenzuela, O A; Vaughan, O R; Jellyman, J K; Forhead, A J

    2016-07-01

    Glucocorticoids (GCs) are important environmental and maturational signals during intrauterine development. Toward term, the maturational rise in fetal glucocorticoid receptor concentrations decreases fetal growth and induces differentiation of key tissues essential for neonatal survival. When cortisol levels rise earlier in gestation as a result of suboptimal conditions for fetal growth, the switch from tissue accretion to differentiation is initiated prematurely, which alters the phenotype that develops from the genotype inherited at conception. Although this improves the chances of survival should delivery occur, it also has functional consequences for the offspring long after birth. Glucocorticoids are, therefore, also programming signals that permanently alter tissue structure and function during intrauterine development to optimize offspring fitness. However, if the postnatal environmental conditions differ from those signaled in utero, the phenotypical outcome of early-life glucocorticoid receptor overexposure may become maladaptive and lead to physiological dysfunction in the adult. This review focuses on the role of GCs in developmental programming, primarily in farm species. It examines the factors influencing GC bioavailability in utero and the effects that GCs have on the development of fetal tissues and organ systems, both at term and earlier in gestation. It also discusses the windows of susceptibility to GC overexposure in early life together with the molecular mechanisms and long-term consequences of GC programming with particular emphasis on the cardiovascular, metabolic, and endocrine phenotype of the offspring. PMID:27345310

  9. Computer program to perform cost and weight analysis of transport aircraft. Volume 1: Summary

    NASA Technical Reports Server (NTRS)

    1973-01-01

    A digital computer program for evaluating the weight and costs of advanced transport designs was developed. The resultant program, intended for use at the preliminary design level, incorporates both batch mode and interactive graphics run capability. The basis of the weight and cost estimation method developed is a unique way of predicting the physical design of each detail part of a vehicle structure at a time when only configuration concept drawings are available. In addition, the technique relies on methods to predict the precise manufacturing processes and the associated material required to produce each detail part. Weight data are generated in four areas of the program. Overall vehicle system weights are derived on a statistical basis as part of the vehicle sizing process. Theoretical weights, actual weights, and the weight of the raw material to be purchased are derived as part of the structural synthesis and part definition processes based on the computed part geometry.

  10. Numerical System Solver Developed for the National Cycle Program

    NASA Technical Reports Server (NTRS)

    Binder, Michael P.

    1999-01-01

    As part of the National Cycle Program (NCP), a powerful new numerical solver has been developed to support the simulation of aeropropulsion systems. This software uses a hierarchical object-oriented design. It can provide steady-state and time-dependent solutions to nonlinear and even discontinuous problems typically encountered when aircraft and spacecraft propulsion systems are simulated. It also can handle constrained solutions, in which one or more factors may limit the behavior of the engine system. Timedependent simulation capabilities include adaptive time-stepping and synchronization with digital control elements. The NCP solver is playing an important role in making the NCP a flexible, powerful, and reliable simulation package.

  11. Development of a survivorship program.

    PubMed

    Downs-Holmes, Catherine; Dracon, Andrea; Svarovsky, Therese; Sustin, Marla

    2014-01-01

    The number of cancer survivors has steadily climbed to more than 10 million since the 1980s secondary to advances in detection and treatment modalities. This reality, combined with an aging population, has drawn the attention of the medical community to meet the needs of this population. Therefore, cancer care providers are being called to develop survivorship programs for patients with curable disease. Some of the prominent organizations supporting this movement for focused survivorship care include the Institute of Medicine, the National Comprehensive Cancer Network, the American Society of Clinical Oncology, LiveStrong™, and the Oncology Nursing Society. This article provides the necessary steps for the development and implementation of an institution-specific survivorship program to fulfill the new standards for survivorship care. PMID:25252995

  12. Advanced Emissions Control Development Program

    SciTech Connect

    A.P.Evans; K.E. Redinger; M.J. Holmes

    1998-04-01

    The objective of the Advanced Emissions Control Development Program (AECDP) is to develop practical, cost-effective strategies for reducing the emissions of air toxics from coal-fired boilers. Ideally, the project aim is to effectively control air toxic emissions through the use of conventional flue gas cleanup equipment such as electrostatic precipitators (ESPS), fabric filters (baghouse), and wet flue gas desulfurization. Development work to date has concentrated on the capture of mercury, other trace metals, fine particulate and hydrogen chloride. Following the construction and evaluation of a representative air toxics test facility in Phase I, Phase II focused on the evaluation of mercury and several other air toxics emissions. The AECDP is jointly funded by the United States Department of Energy's Federal Energy Technology Center (DOE), the Ohio Coal Development Office within the Ohio Department of Development (oCDO), and Babcock& Wilcox-a McDermott company (B&W).

  13. Aircraft Loss of Control: Problem Analysis for the Development and Validation of Technology Solutions

    NASA Technical Reports Server (NTRS)

    Belcastro, Christine M.; Newman, Richard L.; Crider, Dennis A.; Klyde, David H.; Foster, John V.; Groff, Loren

    2016-01-01

    Aircraft loss of control (LOC) is a leading cause of fatal accidents across all transport airplane and operational classes. LOC can result from a wide spectrum of precursors (or hazards), often occurring in combination. Technologies developed for LOC prevention and recovery must therefore be effective under a wide variety of conditions and uncertainties, including multiple hazards, and the validation process must provide a means of assessing system effectiveness and coverage of these hazards. This paper provides a detailed description of a methodology for analyzing LOC as a dynamics and control problem for the purpose of developing effective technology solutions. The paper includes a definition of LOC based on several recent publications, a detailed description of a refined LOC accident analysis process that is illustrated via selected example cases, and a description of planned follow-on activities for identifying future potential LOC risks and the development of LOC test scenarios. Some preliminary considerations for LOC of Unmanned Aircraft Systems (UAS) and for their safe integration into the National Airspace System (NAS) are also discussed.

  14. Results of the recent precipitation static flight test program on the Navy P-3B antisubmarine aircraft

    NASA Technical Reports Server (NTRS)

    Whitaker, Mike

    1991-01-01

    Severe precipitation static problems affecting the communication equipment onboard the P-3B aircraft were recently studied. The study was conducted after precipitation static created potential safety-of-flight problems on Naval Reserve aircraft. A specially designed flight test program was conducted in order to measure, record, analyze, and characterize potential precipitation static problem areas. The test program successfully characterized the precipitation static interference problems while the P-3B was flown in moderate to extreme precipitation conditions. Data up to 400 MHz were collected on the effects of engine charging, precipitation static, and extreme cross fields. These data were collected using a computer controlled acquisition system consisting of a signal generator, RF spectrum and audio analyzers, data recorders, and instrumented static dischargers. The test program is outlined and the computer controlled data acquisition system is described in detail which was used during flight and ground testing. The correlation of test results is also discussed which were recorded during the flight test program and those measured during ground testing.

  15. Evaluation of the Advanced Subsonic Technology Program Noise Reduction Benefits

    NASA Technical Reports Server (NTRS)

    Golub, Robert A.; Rawls, John W., Jr.; Russell, James W.

    2005-01-01

    This report presents a detailed evaluation of the aircraft noise reduction technology concepts developed during the course of the NASA/FAA Advanced Subsonic Technology (AST) Noise Reduction Program. In 1992, NASA and the FAA initiated a cosponsored, multi-year program with the U.S. aircraft industry focused on achieving significant advances in aircraft noise reduction. The program achieved success through a systematic development and validation of noise reduction technology. Using the NASA Aircraft Noise Prediction Program, the noise reduction benefit of the technologies that reached a NASA technology readiness level of 5 or 6 were applied to each of four classes of aircraft which included a large four engine aircraft, a large twin engine aircraft, a small twin engine aircraft and a business jet. Total aircraft noise reductions resulting from the implementation of the appropriate technologies for each class of aircraft are presented and compared to the AST program goals.

  16. Wind Energy Career Development Program

    SciTech Connect

    Gwen Andersen

    2012-03-29

    Saint Francis University has developed curriculum in engineering and in business that is meeting the needs of students and employers (Task 1) as well as integrating wind energy throughout the curriculum. Through a variety of approaches, the University engaged in public outreach and education that reached over 2,000 people annually (Task 2). We have demonstrated, through the success of these programs, that students are eager to prepare for emerging jobs in alternative energy, that employers are willing to assist in developing employees who understand the broader business and policy context of the industry, and that people want to learn about wind energy.

  17. NASA's mobile satellite development program

    NASA Technical Reports Server (NTRS)

    Rafferty, William; Dessouky, Khaled; Sue, Miles

    1988-01-01

    A Mobile Satellite System (MSS) will provide data and voice communications over a vast geographical area to a large population of mobile users. A technical overview is given of the extensive research and development studies and development performed under NASA's mobile satellite program (MSAT-X) in support of the introduction of a U.S. MSS. The critical technologies necessary to enable such a system are emphasized: vehicle antennas, modulation and coding, speech coders, networking and propagation characterization. Also proposed is a first, and future generation MSS architecture based upon realized ground segment equipment and advanced space segment studies.

  18. Ozone depletion events observed in the high latitude surface layer during the TOPSE aircraft program

    NASA Astrophysics Data System (ADS)

    Ridley, B. A.; Atlas, E. L.; Montzka, D. D.; Browell, E. V.; Cantrell, C. A.; Blake, D. R.; Blake, N. J.; Cinquini, L.; Coffey, M. T.; Emmons, L. K.; Cohen, R. C.; Deyoung, R. J.; Dibb, J. E.; Eisele, F. L.; Flocke, F. M.; Fried, A.; Grahek, F. E.; Grant, W. B.; Hair, J. W.; Hannigan, J. W.; Heikes, B. J.; Lefer, B. L.; Mauldin, R. L.; Moody, J. L.; Shetter, R. E.; Snow, J. A.; Talbot, R. W.; Thornton, J. A.; Walega, J. G.; Weinheimer, A. J.; Wert, B. P.; Wimmers, A. J.

    2003-02-01

    During the Tropospheric Ozone Production about the Spring Equinox (TOPSE) aircraft program, ozone depletion events (ODEs) in the high latitude surface layer were investigated using lidar and in situ instruments. Flight legs of 100 km or longer distance were flown 32 times at 30 m altitude over a variety of regions north of 58° between early February and late May 2000. ODEs were found on each flight over the Arctic Ocean but their occurrence was rare at more southern latitudes. However, large area events with depletion to over 2 km altitude in one case were found as far south as Baffin Bay and Hudson Bay and as late as 22 May. There is good evidence that these more southern events did not form in situ but were the result of export of ozone-depleted air from the surface layer of the Arctic Ocean. Surprisingly, relatively intact transport of ODEs occurred over distances of 900-2000 km and in some cases over rough terrain. Accumulation of constituents in the frozen surface over the dark winter period cannot be a strong prerequisite of ozone depletion since latitudes south of the Arctic Ocean would also experience a long dark period. Some process unique to the Arctic Ocean surface or its coastal regions remains unidentified for the release of ozone-depleting halogens. There was no correspondence between coarse surface features such as solid ice/snow, open leads, or polynyas with the occurrence of or intensity of ozone depletion over the Arctic or subarctic regions. Depletion events also occurred in the absence of long-range transport of relatively fresh "pollution" within the high latitude surface layer, at least in spring 2000. Direct measurements of halogen radicals were not made. However, the flights do provide detailed information on the vertical structure of the surface layer and, during the constant 30 m altitude legs, measurements of a variety of constituents including hydroxyl and peroxy radicals. A summary of the behavior of these constituents is made. The

  19. Propeller aircraft interior noise model utilization study and validation

    NASA Technical Reports Server (NTRS)

    Pope, L. D.

    1984-01-01

    Utilization and validation of a computer program designed for aircraft interior noise prediction is considered. The program, entitled PAIN (an acronym for Propeller Aircraft Interior Noise), permits (in theory) predictions of sound levels inside propeller driven aircraft arising from sidewall transmission. The objective of the work reported was to determine the practicality of making predictions for various airplanes and the extent of the program's capabilities. The ultimate purpose was to discern the quality of predictions for tonal levels inside an aircraft occurring at the propeller blade passage frequency and its harmonics. The effort involved three tasks: (1) program validation through comparisons of predictions with scale-model test results; (2) development of utilization schemes for large (full scale) fuselages; and (3) validation through comparisons of predictions with measurements taken in flight tests on a turboprop aircraft. Findings should enable future users of the program to efficiently undertake and correctly interpret predictions.

  20. Propeller aircraft interior noise model utilization study and validation

    NASA Astrophysics Data System (ADS)

    Pope, L. D.

    1984-09-01

    Utilization and validation of a computer program designed for aircraft interior noise prediction is considered. The program, entitled PAIN (an acronym for Propeller Aircraft Interior Noise), permits (in theory) predictions of sound levels inside propeller driven aircraft arising from sidewall transmission. The objective of the work reported was to determine the practicality of making predictions for various airplanes and the extent of the program's capabilities. The ultimate purpose was to discern the quality of predictions for tonal levels inside an aircraft occurring at the propeller blade passage frequency and its harmonics. The effort involved three tasks: (1) program validation through comparisons of predictions with scale-model test results; (2) development of utilization schemes for large (full scale) fuselages; and (3) validation through comparisons of predictions with measurements taken in flight tests on a turboprop aircraft. Findings should enable future users of the program to efficiently undertake and correctly interpret predictions.

  1. Interim Report: Program Development Specialist's Role.

    ERIC Educational Resources Information Center

    Coon, George E.

    In a memorandum to the Chief of Planning and Program Development, Teacher Corps, the Program Development Specialist for the Pontiac Urban Corps in Oakland examines the role of the program development specialist. Although the program was successful in that 31 beginning teachers were placed and modules were developed in three discipline areas, the…

  2. STOL Aircraft

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Michael E. Fisher, President of AeroVisions International, has introduced the Culex light twin engine aircraft which offers economy of operation of a single engine plane, the ability to fly well on one engine, plus the capability of flying from short, unimproved fields of takeoff and landing distances less than 35 feet. Key element of design is an airfoil developed by Langley. Culex was originally intended to be factory built aircraft for special utility markets. However, it is now offered as a build-it-yourself kit plane.

  3. Aircraft surface coatings study: Energy efficient transport program. [sprayed and adhesive bonded coatings for drag reduction

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Surface coating materials for application on transport type aircraft to reduce drag, were investigated. The investigation included two basic types of materials: spray on coatings and adhesively bonded films. A cost/benefits analysis was performed, and recommendations were made for future work toward the application of this technology.

  4. Development of a multi-sensor airborne investigation platform based on an ultra-light aircraft

    NASA Astrophysics Data System (ADS)

    Herd, Rainer; Holst, Jonathan; Lay, Michael

    2013-04-01

    In the year 2012 the chair Raw Material and Natural Resource Management of Brandenburg University of Technology Cottbus, Germany started to develop, construct and assemble a multi-sensor airborne investigation system based on an ultra-light aircraft. The conceptual ideas were born several years before and triggered by the increasing demand of spatial underground information, increasing restrictions to access private property and the lack of affordable commercially operated systems for projects with small budgets. The concept of the presented system comprehends a full composite ultra-light aircraft, the Pipistrel VIRUS which combines a low minimum (65 km/h, a high crusing speed (250 km/h, a long range (1700 km) and a low noise potential. The investigation equipment which can be modified according to the investigation target comprises actually a CsI-y-spectrometer in the fuselage, 2 K-magnetometer at the wing tips and a VLF-EM-receiver underneath the tail. This configuration enables the system to operate for mineral exploration, geological mapping, detection of freshwater resources and brines and different environmental monitoring missions. The development and actual stage of the project will be presented. The first operating flight is scheduled for spring 2013.

  5. A perspective of laminar-flow control. [aircraft energy efficiency program

    NASA Technical Reports Server (NTRS)

    Braslow, A. L.; Muraca, R. J.

    1978-01-01

    A historical review of the development of laminar flow control technology is presented with reference to active laminar boundary-layer control through suction, the use of multiple suction slots, wind-tunnel tests, continuous suction, and spanwise contamination. The ACEE laminar flow control program is outlined noting the development of three-dimensional boundary-layer codes, cruise-noise prediction techniques, airfoil development, and leading-edge region cleaning. Attention is given to glove flight tests and the fabrication and testing of wing box designs.

  6. An Electronic Workshop on the Performance Seeking Control and Propulsion Controlled Aircraft Results of the F-15 Highly Integrated Digital Electronic Control Flight Research Program

    NASA Technical Reports Server (NTRS)

    Powers, Sheryll Goecke (Compiler)

    1995-01-01

    Flight research for the F-15 HIDEC (Highly Integrated Digital Electronic Control) program was completed at NASA Dryden Flight Research Center in the fall of 1993. The flight research conducted during the last two years of the HIDEC program included two principal experiments: (1) performance seeking control (PSC), an adaptive, real-time, on-board optimization of engine, inlet, and horizontal tail position on the F-15; and (2) propulsion controlled aircraft (PCA), an augmented flight control system developed for landings as well as up-and-away flight that used only engine thrust (flight controls locked) for flight control. In September 1994, the background details and results of the PSC and PCA experiments were presented in an electronic workshop, accessible through the Dryden World Wide Web (http://www.dfrc.nasa.gov/dryden.html) and as a compact disk.

  7. An assessment of the benefits of the use of NASA developed fuel conservative technology in the US commercial aircraft fleet

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Cost and benefits of a fuel conservative aircraft technology program proposed by NASA are estimated. NASA defined six separate technology elements for the proposed program: (a) engine component improvement (b) composite structures (c) turboprops (d) laminar flow control (e) fuel conservative engine and (f) fuel conservative transport. There were two levels postulated: The baseline program was estimated to cost $490 million over 10 years with peak funding in 1980. The level two program was estimated to cost an additional $180 million also over 10 years. Discussions with NASA and with representatives of the major commercial airframe manufacturers were held to estimate the combinations of the technology elements most likely to be implemented, the potential fuel savings from each combination, and reasonable dates for incorporation of these new aircraft into the fleet.

  8. Recent Progress in V/STOL Aircraft Technology

    NASA Technical Reports Server (NTRS)

    Roberts, L.; Deckert, W.; Hickey, D.

    1981-01-01

    Results from wind tunnel and flight tests investigations for V/STOL aircraft are reviewed. Primary emphasis is given to technical results relating to three types of subsonic aircraft: a quiet STOL aircraft; a tilt rotor aircraft; and a turbofan V/STOL aircraft. Comparison and correlation between theoretical and experimental results and between wind tunnel and flight test results, is made. The quiet STOL aircraft technology results are primarily those derived from the NASA/Boeing Quiet Short Haul Technology (QSRA) program. The QSRA aircraft uses an upper surface blown flap and develops a usable engine-out landing approach lift coefficient of 5.5 and landing distances less than 1,000 ft. The tilt rotor aircraft technology results are those obtained from the NASA/Army/Navy/Bell (XV-15-TRRA) aircraft flight investigations. The TRRA is a twin rotor research aircraft capable of vertical takeoff and landing and cruise speeds of 300 knots. The turbofan V/STOL aircraft technology results are from static ground facility and wind tunnel investigations of a NASA/NAVY/Grumman full scale lift/cruise fan aircraft model, which features two tilting nacelles with TF-34 engines.

  9. Aircraft noise problems

    NASA Astrophysics Data System (ADS)

    1981-01-01

    The problems related to aircraft noise were studied. Physical origin (sound), human reaction (noise), quantization of noise and sound sources of aircraft noise are discussed. Noise abatement at the source, technical, fleet-political and air traffic measures are explained. The measurements and future developments are also discussed. The position of Lufthansa as regards aircraft noise problems is depicted.

  10. A review of advanced turboprop transport aircraft

    NASA Astrophysics Data System (ADS)

    Lange, Roy H.

    The application of advanced technologies shows the potential for significant improvement in the fuel efficiency and operating costs of future transport aircraft envisioned for operation in the 1990s time period. One of the more promising advanced technologies is embodied in an advanced turboprop concept originated by Hamilton Standard and NASA and known as the propfan. The propfan concept features a highly loaded multibladed, variable pitch propeller geared to a high pressure ratio gas turbine engine. The blades have high sweepback and advanced airfoil sections to achieve 80 percent propulsive efficiency at M=0.80 cruise speed. Aircraft system studies have shown improvements in fuel efficiency of 15-20 percent for propfan advanced transport aircraft as compared to equivalent turbofan transports. Beginning with the Lockheed C-130 and Electra turboprop aircraft, this paper presents an overview of the evolution of propfan aircraft design concepts and system studies. These system studies include possible civil and military transport applications and data on the performance, community and far-field noise characteristics and operating costs of propfan aircraft design concepts. NASA Aircraft Energy Efficiency (ACEE) program propfan projects with industry are reviewed with respect to system studies of propfan aircraft and recommended flight development programs.

  11. Development of wing and tail configurations for low altitude unmanned research aircraft (LAURA)

    NASA Technical Reports Server (NTRS)

    Mangalam, S. M.; Harvey, W. D.; Siddiqi, S.

    1987-01-01

    The Low Altitude/Airspeed Unmanned Research Aircraft (LAURA) is being developed by the U.S. Navy for flight test research using low-Reynolds number airfoils. This vehicle consists of a standard modular fuselage designed to accept the installation of several wings/tails having low Reynolds number airfoils, and various planform shapes. Design constraints include shipboard storage, long flight endurance at very low airspeeds and sea-skimming cruise altitude. The stringent design constraints require the development of high-performance low Reynolds number (LRN) airfoils, suitable lifting surface configuration, and advanced airframe-propulsion systems. The present paper describes ongoing efforts to develop wing and tail configurations for LAURA using airfoils designed at NASA Langley Research Center.

  12. Application of Artificial Intelligence (AI) Programming Techniques to Tactical Guidance for Fighter Aircraft

    NASA Technical Reports Server (NTRS)

    McManus, John W.; Goodrich, Kenneth H.

    1989-01-01

    A research program investigating the use of Artificial Intelligence (AI) techniques to aid in the development of a Tactical Decision Generator (TDG) for Within-Visual-Range (WVR) air combat engagements is discussed. The application of AI methods for development and implementation of the TDG is presented. The history of the Adaptive Maneuvering Logic (AML) program is traced and current versions of the AML program are compared and contrasted with the TDG system. The Knowledge-Based Systems (KBS) used by the TDG to aid in the decision-making process are outlined in detail and example rules are presented. The results of tests to evaluate the performance of the TDG versus a version of AML and versus human pilots in the Langley Differential Maneuvering Simulator (DMS) are presented. To date, these results have shown significant performance gains in one-versus-one air combat engagements, and the AI-based TDG software has proven to be much easier to modify than the updated FORTRAN AML programs.

  13. From fighter aircraft to pipeline: The development of the first ''third generation'' aero-derived gas turbine in the 16,000-8,000 HP class

    SciTech Connect

    Rogers, G.N.; Mathers, W.G.

    1987-01-01

    Two totally unrelated sources of hot gas energy the FCCU oil refining process and the aircraft engine - both utilize the same range of basic aerodynamic and machinery design technologies for mechanical drive power recovery. this paper shows how these technologies came together and discusses the development of the Ingersoll-Rand GT-60 gas turbine, the first to use a general Electric LM1600 hot gas generator (from the F404 fighter engine program); it also illustrates how it was possible for the first ''third generation'' aero-derived gas turbine in the 16,000 - 18,000 hp class to be developed in a much shorter than normal lead time.

  14. Project report: Aircraft

    SciTech Connect

    Wuebbles, D.J.; Baughcum, S.; Metwally, M.; Seals, R.

    1994-04-01

    Analyses of scenarios of past and possible future emissions are an important aspect of assessing the potential environmental effects from aircraft, including the proposed high speed civil transport (HSCT). The development of a detailed three-dimensional database that accurately represents the integration of all aircraft emissions along realistic flight paths for such scenarios requires complex computational modeling capabilities. Such a detailed data set is required for the scenarios evaluated in this interim assessment. Within the NASA High-Speed Research Program, the Emissions Scenarios Committee provides a forum for identifying the required scenarios and evaluating the resulting database being developed with the advanced emissions modeling capabilities at the Boeing Company and McDonnell Douglas Corporation.

  15. Twenty Years of Changes in Greenland from Aircraft Laser Altimetry Collected by Ice Bridge and the Parca Program

    NASA Astrophysics Data System (ADS)

    Krabill, W. B.; Martin, C. F.; Sonntag, J. G.; Fredrick, E.; Manizade, S.; Yungel, J.; Russell, R.; Krabill, K.; Linkswiler, M.

    2012-12-01

    In spring of 2012 Operation Ice Bridge, using the NASA P3 aircraft, flew one of the largest airborne surveys of Arctic regions that has ever been accomplished. Many of these flights repeated previous surveys made by the NASA Airborne Topographic Mapper (ATM) in the NASA PARCA Program dating back to the early 1990's. Other flights repeated ICESat-I satellite ground tracks from the past decade. These extensive data sets permit a comprehensive examination of changes and change trends in the Greenland Ice Sheet. Results from comparing these new data with the historical records will be presented.

  16. Program development fund: FY 1987

    SciTech Connect

    Not Available

    1989-03-01

    It is the objective of the Fund to encourage innovative research to maintain the Laboratory's position at the forefront of science. Funds are used to explore new ideas and concepts that may potentially develop into new directions of research for the Laboratory and that are consistent with the major needs, overall goals, and mission of the Laboratory and the DOE. The types of projects eligible for support from PDF include: work in forefront areas of science and technology for the primary purpose of enriching Laboratory research and development capabilities; advanced study of new hypotheses, new experimental concepts, or innovative approaches to energy problems; experiments directed toward ''proof of principle'' or early determination of the utility of a new concept; and conception, design analyses, and development of experimental devices, instruments, or components. This report is a review of these research programs.

  17. Study of unconventional aircraft engines designed for low energy consumption

    NASA Technical Reports Server (NTRS)

    Gray, D. E.

    1976-01-01

    Declining U.S. oil reserves and escalating energy costs underline the need for reducing fuel consumption in aircraft engines. The most promising unconventional aircraft engines based on their potential for fuel savings and improved economics are identified. The engines installed in both a long-range and medium-range aircraft were evaluated. Projected technology advances are identified and evaluated for their state-of-readiness for application to a commercial transport. Programs are recommended for developing the necessary technology.

  18. Study of Advanced Propulsion Systems for Small Transport Aircraft Technology (STAT) Program

    NASA Technical Reports Server (NTRS)

    Baerst, C. F.; Heldenbrand, R. W.; Rowse, J. H.

    1981-01-01

    Definitions of takeoff gross weight, performance, and direct operating cost for both a 30 and 50 passenger airplane were established. The results indicate that a potential direct operating cost benefit, resulting from advanced technologies, of approximately 20 percent would be achieved for the 1990 engines. Of the numerous design features that were evaluated, only maintenance-related items contributed to a significant decrease in direct operating cost. Recommendations are made to continue research and technology programs for advanced component and engine development.

  19. Commercial Development Suborbital Rocket Program

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The enclosed report provides information on the sixth flight of the Consort suborbital rocket series. Consort 6 is currently scheduled for launch on February 19, 1993, with lift off at 11:00 a.m., Mountain Time. It will carry seven materials and biotechnology experiments, two accelerometer systems, a controller and battery packs in a module nearly 12 feet tall and weighing approximately 1,004 pounds. Consort 6 will reach an apogee of approximately 200 miles providing about 7 minutes of microgravity time. The entire mission, from launch to touchdown, is expected to last approximately 15 minutes. The Consort series is part of a unique suborbital rocket launch services program conducted by the Office of Advanced Concepts and Technology (OACT) in conjunction with its Centers for the Commercial Development of Space (CCDS). This service is managed through the Consortium for Materials Development in Space (CMDS), a CCDS based University of Alabama in Huntsville (UAH). at the This suborbital rocket program provides CCDS investigators with a microgravity environment to achieve commercial development objectives, or to test developmental hardware or techniques in preparation for orbital flights or additional follow-on work. Rocket and launch services for Consort 6, including use of the Starfire 1 launch vehicle, are provided by EER Systems Corporation. Integration of the payload into Starfire 1 will be handled by McDonnell Douglas Space Systems Company.

  20. Program summary for the Civilian Reactor Development Program

    SciTech Connect

    1982-07-01

    This Civilian Reactor Development Program document has the prime purpose of summarizing the technical programs supported by the FY 1983 budget request. This section provides a statement of the overall program objectives and a general program overview. Section II presents the technical programs in a format intended to show logical technical interrelationships, and does not necessarily follow the structure of the formal budget presentation. Section III presents the technical organization and management structure of the program.

  1. Development of Advanced Methods of Structural and Trajectory Analysis for Transport Aircraft

    NASA Technical Reports Server (NTRS)

    Ardema, Mark D.; Windhorst, Robert; Phillips, James

    1998-01-01

    This paper develops a near-optimal guidance law for generating minimum fuel, time, or cost fixed-range trajectories for supersonic transport aircraft. The approach uses a choice of new state variables along with singular perturbation techniques to time-scale decouple the dynamic equations into multiple equations of single order (second order for the fast dynamics). Application of the maximum principle to each of the decoupled equations, as opposed to application to the original coupled equations, avoids the two point boundary value problem and transforms the problem from one of a functional optimization to one of multiple function optimizations. It is shown that such an approach produces well known aircraft performance results such as minimizing the Brequet factor for minimum fuel consumption and the energy climb path. Furthermore, the new state variables produce a consistent calculation of flight path angle along the trajectory, eliminating one of the deficiencies in the traditional energy state approximation. In addition, jumps in the energy climb path are smoothed out by integration of the original dynamic equations at constant load factor. Numerical results performed for a supersonic transport design show that a pushover dive followed by a pullout at nominal load factors are sufficient maneuvers to smooth the jump.

  2. Automotive Stirling Engine Development Program

    NASA Technical Reports Server (NTRS)

    Nightingale, N.; Richey, A.; Farrell, R.; Riecke, G.; Ernst, W.; Howarth, R.; Cronin, M.; Simetkosky, M.; Smith, G.; Meacher, J.

    1985-01-01

    Development test activities on Mod I engines directed toward evaluating technologies for potential inclusion in the Mod II engine are summarized. Activities covered include: test of a 12-tube combustion gas recirculation combustor; manufacture and flow-distribution test of a two-manifold annular heater head; piston rod/piston base joint; single-solid piston rings; and a digital air/fuel concept. Also summarized are results of a formal assessment of candidate technologies for the Mod II engine, and preliminary design work for the Mod II. The overall program philosophy weight is outlined, and data and test results are presented.

  3. 23 CFR 660.109 - Program development.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 23 Highways 1 2011-04-01 2011-04-01 false Program development. 660.109 Section 660.109 Highways... PROGRAMS (DIRECT FEDERAL) Forest Highways § 660.109 Program development. (a) The FHWA will arrange and... program will be selected considering the following criteria: (1) The development, utilization,...

  4. 23 CFR 660.109 - Program development.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 23 Highways 1 2010-04-01 2010-04-01 false Program development. 660.109 Section 660.109 Highways... PROGRAMS (DIRECT FEDERAL) Forest Highways § 660.109 Program development. (a) The FHWA will arrange and... program will be selected considering the following criteria: (1) The development, utilization,...

  5. NASA progress in aircraft noise prediction

    NASA Technical Reports Server (NTRS)

    Raney, J. P.; Padula, S. L.; Zorumski, W. E.

    1981-01-01

    Langley Research Center efforts to develop a methodology for predicting the effective perceived noise level (EPNL) produced by jet-powered CTOL aircraft to an accuracy of + or - 1.5 dB are summarized with emphasis on the aircraft noise prediction program (ANOPP) which contains a complete set of prediction methods for CTOL aircraft including propulsion system noise sources, aerodynamic or airframe noise sources, forward speed effects, a layered atmospheric model with molecular absorption, ground impedance effects including excess ground attenuation, and a received noise contouring capability. The present state of ANOPP is described and its accuracy and applicability to the preliminary aircraft design process is assessed. Areas are indicated where further theoretical and experimental research on noise prediction are needed. Topics covered include the elements of the noise prediction problem which are incorporated in ANOPP, results of comparisons of ANOPP calculations with measured noise levels, and progress toward treating noise as a design constraint in aircraft system studies.

  6. NASA Wake Vortex Research for Aircraft Spacing

    NASA Technical Reports Server (NTRS)

    Perry, R. Brad; Hinton, David A.; Stuever, Robert A.

    1996-01-01

    The National Aeronautics and Space Administration (NASA) is addressing airport capacity enhancements during instrument meteorological conditions through the Terminal Area Productivity (TAP) program. Within TAP, the Reduced Spacing Operations (RSO) subelement at the NASA Langley Research Center is developing an Aircraft Vortex Spacing System (AVOSS). AVOSS will integrate the output of several inter-related areas to produce weather dependent, dynamic wake vortex spacing criteria. These areas include current and predicted weather conditions, models of wake vortex transport and decay in these weather conditions, real-time feedback of wake vortex behavior from sensors, and operationally acceptable aircraft/wake interaction criteria. In today's ATC system, the AVOSS could inform ATC controllers when a fixed reduced separation becomes safe to apply to large and heavy aircraft categories. With appropriate integration into the Center/TRACON Automation System (CTAS), AVOSS dynamic spacing could be tailored to actual generator/follower aircraft pairs rather than a few broad aircraft categories.

  7. GaAs/Ge Solar Powered Aircraft

    NASA Technical Reports Server (NTRS)

    Colozza, Anthony J.; Scheiman, David A.; Brinker, David J.

    1998-01-01

    Unmanned Aerial Vehicles (UAV) are being proposed for many applications for many applications including surveillance, mapping and atmospheric studies. These applications require a lightweight, low speed, medium to long duration aircraft. Due to the weight, speed, and altitude constraints imposed on such an aircraft, solar array generated electric power can be a viable alternative to air-breathing engines for certain missions. Development of such an aircraft is currently being funded under the Environmental Research Aircraft and Sensor Technology (ERAST) program. NASA Lewis Research Center (LeRC) has built a Solar Electric Airplane to demonstrate UAV technology. This aircraft utilizes high efficiency Applied Solar Energy Corporation (ASEC) GaAs/Ge space solar cells. The cells have been provided by the Air Force through the ManTech Office.

  8. The design of sport and touring aircraft

    NASA Technical Reports Server (NTRS)

    Eppler, R.; Guenther, W.

    1984-01-01

    General considerations concerning the design of a new aircraft are discussed, taking into account the objective to develop an aircraft can satisfy economically a certain spectrum of tasks. Requirements related to the design of sport and touring aircraft included in the past mainly a high cruising speed and short take-off and landing runs. Additional requirements for new aircraft are now low fuel consumption and optimal efficiency. A computer program for the computation of flight performance makes it possible to vary automatically a number of parameters, such as flight altitude, wing area, and wing span. The appropriate design characteristics are to a large extent determined by the selection of the flight altitude. Three different wing profiles are compared. Potential improvements with respect to the performance of the aircraft and its efficiency are related to the use of fiber composites, the employment of better propeller profiles, more efficient engines, and the utilization of suitable instrumentation for optimal flight conduction.

  9. Recent developments in rotary-balance testing of fighter aircraft configurations at NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Malcolm, G. N.; Schiff, L. B.

    1985-01-01

    Two rotary balance apparatuses were developed for testing airplane models in a coning motion. A large scale apparatus, developed for use in the 12-Foot Pressure Wind tunnel primarily to permit testing at high Reynolds numbers, was recently used to investigate the aerodynamics of 0.05-scale model of the F-15 fighter aircraft. Effects of Reynolds number, spin rate parameter, model attitude, presence of a nose boom, and model/sting mounting angle were investigated. A smaller apparatus, which investigates the aerodynamics of bodies of revolution in a coning motion, was used in the 6-by-6 foot Supersonic Wind Tunnel to investigate the aerodynamic behavior of a simple representation of a modern fighter, the Standard Dynamic Model (SDM). Effects of spin rate parameter and model attitude were investigated. A description of the two rigs and a discussion of some of the results obtained in the respective test are presented.

  10. Development of an algorithm to model an aircraft equipped with a generic CDTI display

    NASA Technical Reports Server (NTRS)

    Driscoll, W. C.; Houck, J. A.

    1986-01-01

    A model of human pilot performance of a tracking task using a generic Cockpit Display of Traffic Information (CDTI) display is developed from experimental data. The tracking task is to use CDTI in tracking a leading aircraft at a nominal separation of three nautical miles over a prescribed trajectory in space. The analysis of the data resulting from a factorial design of experiments reveals that the tracking task performance depends on the pilot and his experience at performing the task. Performance was not strongly affected by the type of control system used (velocity vector control wheel steering versus 3D automatic flight path guidance and control). The model that is developed and verified results in state trajectories whose difference from the experimental state trajectories is small compared to the variation due to the pilot and experience factors.

  11. Development of powder metallurgy Al alloys for high temperature aircraft structural applications, phase 2

    NASA Technical Reports Server (NTRS)

    Chellman, D. J.

    1982-01-01

    In this continuing study, the development of mechanically alloyed heat resistant aluminum alloys for aircraft were studied to develop higher strength targets and higher service temperatures. The use of higher alloy additions to MA Al-Fe-Co alloys, employment of prealloyed starting materials, and higher extrusion temperatures were investigated. While the MA Al-Fe-Co alloys exhibited good retention of strength and ductility properties at elevated temperatures and excellent stability of properties after 1000 hour exposure at elevated temperatures, a sensitivity of this system to low extrusion strain rates adversely affected the level of strength achieved. MA alloys in the Al-Li family showed excellent notched toughness and property stability after long time exposures at elevated temperatures. A loss of Li during processing and the higher extrusion temperature 482 K (900 F) resulted in low mechanical strengths. Subsequent hot and cold working of the MA Al-Li had only a mild influence on properties.

  12. CELSS research and development program

    NASA Technical Reports Server (NTRS)

    Bubenheim, David

    1990-01-01

    Research in Controlled Ecological Life Support Systems (CELSS) conducted by NASA indicate that plant based systems are feasible candidates for human support in space. Ames has responsibility for research and development, systems integration and control, and space flight experiment portions of the CELSS program. Important areas for development of new methods and technologies are biomass production, waste processing, water purification, air revitalization, and food processing. For the plant system, the approach was to identify the flexibility and response time for the food, water, and oxygen production, and carbon dioxide consumption processes. Tremendous increases in productivity, compared with terrestrial agriculture, were realized. Waste processing research emphasizes recycle (transformation) of human wastes, trash, and inedible biomass to forms usable as inputs to the plant production system. Efforts to improve efficiency of the plant system, select new CELSS crops for a balanced diet, and initiate closed system research with the Crop Growth Research Chambers continue. The System Control and Integration program goal is to insure orchestrated system operation of the biological, physical, and chemical operation of the biological, physical, and chemical component processors of the CELSS. Space flight studies are planned to verify adequate operation of the system in reduced gravity or microgravity environments.

  13. Advanced Emission Control Development Program.

    SciTech Connect

    Evans, A.P.

    1997-12-31

    Babcock & Wilcox (B&W) is conducting a five-year project aimed at the development of practical, cost-effective strategies for reducing the emissions of hazardous air pollutants (commonly called air toxics) from coal-fired electric utility plants. The need for air toxic emissions controls may arise as the U. S. Environmental Protection Agency proceeds with implementation of Title III of the Clean Air Act Amendment (CAAA) of 1990. Data generated during the program will provide utilities with the technical and economic information necessary to reliably evaluate various air toxics emissions compliance options such as fuel switching, coal cleaning, and flue gas treatment. The development work is being carried out using B&W`s new Clean Environment Development Facility (CEDF) wherein air toxics emissions control strategies can be developed under controlled conditions, and with proven predictability to commercial systems. Tests conducted in the CEDF provide high quality, repeatable, comparable data over a wide range of coal properties, operating conditions, and emissions control systems. Development work to date has concentrated on the capture of mercury, other trace metals, fine particulate, and the inorganic species hydrogen chloride and hydrogen fluoride.

  14. Advanced Emissions Control Development Program

    SciTech Connect

    Evans, A P

    1998-12-03

    Babcock & Wilcox (B&W) is conducting a five-year project aimed at the development of practical, cost-effective strategies for reducing the emissions of hazardous air pollutants (commonly called air toxics) from coal-fired electric utility plants. The need for air toxic emissions controls may arise as the U. S. Environmental Protection Agency proceeds with implementation of Title III of the Clean Air Act Amendment (CAAA) of 1990. Data generated during the program will provide utilities with the technical and economic information necessary to reliably evaluate various air toxics emissions compliance options such as fuel switching, coal cleaning, and flue gas treatment. The development work is being carried out using B&W's new Clean Environment Development Facility (CEDF) wherein air toxics emissions control strategies can be developed under controlled conditions, and with proven predictability to commercial systems. Tests conducted in the CEDF provide high quality, repeatable, comparable data over a wide range of coal properties, operating conditions, and emissions control systems. Development work to date has concentrated on the capture of mercury, other trace metals, fine particulate, and the inorganic species hydrogen chloride and hydrogen fluoride.

  15. Advanced Emissions Control Development Program

    SciTech Connect

    M. J. Holmes

    1998-12-03

    McDermott Technology, Inc. (MTI) is conducting a five-year project aimed at the development of practical, cost-effective strategies for reducing the emissions of hazardous air pollutants (commonly called air toxics) from coal-fired electric utility plants. The need for air toxic emissions controls may arise as the U. S. Environmental Protection Agency proceeds with implementation of Title III of the Clean Air Act Amendment (CAAA) of 1990. Data generated during the program will provide utilities with the technical and economic information necessary to reliably evaluate various air toxics emissions compliance options such as fuel switching, coal cleaning, and flue gas treatment. The development work is being carried out using the Clean Environment Development Facility (CEDF) wherein air toxics emissions control strategies can be developed under controlled conditions, and with proven predictability to commercial systems. Tests conducted in the CEDF provide high quality, repeatable, comparable data over a wide range of coal properties, operating conditions, and emissions control systems. Development work to date has concentrated on the capture of mercury, other trace metals, fine particulate, and hydrogen chloride and hydrogen fluoride.

  16. Advanced Emissions Control Development Program

    SciTech Connect

    A. P. Evans

    1998-12-03

    McDermott Technology, Inc. (MTI) is conducting a five-year project aimed at the development of practical, cost-effective strategies for reducing the emissions of hazardous air pollutants (commonly called air toxics) from coal-fired electric utility plants. The need for air toxic emissions controls may arise as the U. S. Environmental Protection Agency proceeds with implementation of Title III of the Clean Air Act Amendment (CAAA) of 1990. Data generated during the program will provide utilities with the technical and economic information necessary to reliably evaluate various air toxics emissions compliance options such as fuel switching, coal cleaning, and flue gas treatment. The development work is being carried out using the Clean Environment Development Facility (CEDF) wherein air toxics emissions control strategies can be developed under controlled conditions, and with proven predictability to commercial systems. Tests conducted in the CEDF provide high quality, repeatable, comparable data over a wide range of coal properties, operating conditions, and emissions control systems. Development work to date has concentrated on the capture of mercury, other trace metals, fine particulate, and the inorganic species, hydrogen chloride and hydrogen fluoride.

  17. Uterine development and endometrial programming.

    PubMed

    Bartol, F F; Wiley, A A; Bagnell, C A

    2006-01-01

    Structural patterning and functional programming of uterine tissues are mechanistically coupled. These processes ensure anteroposterior differentiation of uterine tissues from adjacent segments of the developing female reproductive tract (FRT) and radial patterning that establishes uterine-specific histoarchitecture and functionality. Uterine organogenesis begins prenatally and is completed postnatally. Genes required for FRT development include Pax2, Lim1 and Emx2, genes in the abdominal-B Hoxa cluster, and members of both Wnt and Hedgehog (Hh) gene families. Disruption of morphoregulatory gene expression patterns can prevent FRT development entirely or compromise uterine organogenesis specifically. Oestrogen receptor-alpha (ER) -dependent events associated with development of the neonatal porcine uterus can be altered by administration of oestrogen (E) or relaxin (RLX). Expression of the RLX receptor is detectable in porcine endometrium at birth, before onset of ER expression and uterine gland genesis. Uterotrophic effects of both E and RLX can be inhibited with the ER antagonist ICl 182,780, indicating that RLX may act via crosstalk with the ER system in neonatal tissues. Exposure of neonatal gilts to E alters temporospatial patterns of Hh, Wnt and Hoxa expression in the uterine wall. Oestrogen given for two weeks from birth produced hypoplastic adult porcine uteri that were less responsive to periattachment conceptus signals as reflected by reduced growth response and luminal fluid protein accumulation, altered endometrial gene expression, and reduced capacity for conceptus support. Data reinforce the concept that factors affecting signalling events in uterine tissues that produce changes in morphoregulatory gene expression patterns during critical organisational periods can alter the developmental trajectory of the uterus with lasting consequences. Thus, uterine tissues can be programmed epigenetically for success or failure during perinatal life. PMID

  18. Price Determination of General Aviation, Helicopter, and Transport Aircraft

    NASA Technical Reports Server (NTRS)

    Anderson, Joseph L.

    1978-01-01

    The NASA must assess its aeronautical research program with economic as well as performance measures. It thus is interested in what price a new technology aircraft would carry to make it attractive to the buyer. But what price a given airplane or helicopter will carry is largely a reflection of the manufacturer's assessment of the competitive market into which the new aircraft will be introduced. The manufacturer must weigh any new aerodynamic or system technology innovation he would add to an aircraft by the impact of this innovation upon the aircraft's economic attractiveness and price. The intent of this paper is to give price standards against which new technologies and the NASA's research program can be assessed. Using reported prices for general aviation, helicopter, and transport aircraft, price estimating relations in terms of engine and airframe characteristics have been developed. The relations are given in terms of the aircraft type, its manufactured empty weight, engine weight, horsepower or thrust. Factors for the effects of inflation are included to aid in making predictions of future aircraft prices. There are discussions of aircraft price in terms of number of passenger seats, airplane size and research and development costs related to an aircraft model, and indirectly as to how new technologies, aircraft complexity and inflation have affected these.

  19. Development and system identification of a light unmanned aircraft for flying qualities research

    SciTech Connect

    Peters, M.E.; Andrisani, D. II

    1994-12-31

    This paper describes the design, construction, flight testing and system identification of a light weight remotely piloted aircraft and its use in studying flying qualities in the longitudinal axis. The short period approximation to the longitudinal dynamics of the aircraft was used. Parameters in this model were determined a priori using various empirical estimators. These parameters were then estimated from flight data using a maximum likelihood parameter identification method. A comparison of the parameter values revealed that the stability derivatives obtained from the empirical estimators were reasonably close to the flight test results. However, the control derivatives determined by the empirical estimators were too large by a factor of two. The aircraft was also flown to determine how the longitudinal flying qualities of light weight remotely piloted aircraft compared to full size manned aircraft. It was shown that light weight remotely piloted aircraft require much faster short period dynamics to achieve level I flying qualities in an up-and-away flight task.

  20. The NASA Pollution-Reduction Technology Program for small jet aircraft engines - A status report

    NASA Technical Reports Server (NTRS)

    Fear, J. S.

    1976-01-01

    A three-phase experimental program is described which has the objective of enabling EPA Class T1 jet engines to meet the 1979 EPA emissions standards. In Phase I, three advanced combustor concepts, designed for the AiResearch TFE 731-2 turbofan engine, were evaluated in screening tests. Goals for carbon monoxide and unburned hydrocarbons were met or closely approached with two of the concepts with relatively modest departures from conventional combustor design practices. A more advanced premixing/prevaporizing combustor, while appearing to have the potential for meeting the oxides of nitrogen goal as well, will require extensive development to make it a practical combustion system. Smoke numbers for the two combustor concepts which will be carried forward into Phase II of the program were well within the EPA smoke standard. Phase II, Combustor-Engine Compatibility Testing, which is in its early stages, and planned Phase III, Combustor-Engine Demonstration Testing, are also described.