Science.gov

Sample records for aircraft dynamic response

  1. Dynamic response of aircraft structure

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The physical and mathematical problems associated with the response of elastic structures to random excitations such as occurs during buffeting and other transonic phenomena were discussed. The following subjects were covered: (1) general dynamic system consisting of the aircraft structure, the aerodynamic driving forces due to separated flow, and the aerodynamic forces due to aircraft structural motion, (2) structural and aerodynamic quantities of the dynamic system with special emphasis given to the description of the aerodynamic forces, and including a treatment of similarity laws, scaling effects, and wind tunnel testing, and (3) methods for data processing of fluctuating pressure recordings and techniques for response analysis for random excitation. A general buffeting flutter model, which takes into account the interactions between the separated and motion induced flows was presented. Relaxations of this model leading to the forced vibration model were explained.

  2. Frequency-response identification of XV-15 tilt-rotor aircraft dynamics

    NASA Technical Reports Server (NTRS)

    Tischler, Mark B.

    1987-01-01

    The timely design and development of the next generation of tilt-rotor aircraft (JVX) depend heavily on the in-depth understanding of existing XV-15 dynamics and the availability of fully validated simulation models. Previous studies have considered aircraft and simulation trim characteristics, but analyses of basic flight vehicle dynamics were limited to qualitative pilot evaluation. The present study has the following objectives: documentation and evaluation of XV-15 bare-airframe dynamics; comparison of aircraft and simulation responses; and development of a validated transfer-function description of the XV-15 needed for future studies. A nonparametric frequency-response approach is used which does not depend on assumed model order or structure. Transfer-function representations are subsequently derived which fit the frequency responses in the bandwidth of greatest concern for piloted handling-qualities and control-system applications.

  3. Conceptual Design Optimization of an Augmented Stability Aircraft Incorporating Dynamic Response and Actuator Constraints

    NASA Technical Reports Server (NTRS)

    Welstead, Jason; Crouse, Gilbert L., Jr.

    2014-01-01

    Empirical sizing guidelines such as tail volume coefficients have long been used in the early aircraft design phases for sizing stabilizers, resulting in conservatively stable aircraft. While successful, this results in increased empty weight, reduced performance, and greater procurement and operational cost relative to an aircraft with optimally sized surfaces. Including flight dynamics in the conceptual design process allows the design to move away from empirical methods while implementing modern control techniques. A challenge of flight dynamics and control is the numerous design variables, which are changing fluidly throughout the conceptual design process, required to evaluate the system response to some disturbance. This research focuses on addressing that challenge not by implementing higher order tools, such as computational fluid dynamics, but instead by linking the lower order tools typically used within the conceptual design process so each discipline feeds into the other. In thisresearch, flight dynamics and control was incorporated into the conceptual design process along with the traditional disciplines of vehicle sizing, weight estimation, aerodynamics, and performance. For the controller, a linear quadratic regulator structure with constant gains has been specified to reduce the user input. Coupling all the disciplines in the conceptual design phase allows the aircraft designer to explore larger design spaces where stabilizers are sized according to dynamic response constraints rather than historical static margin and volume coefficient guidelines.

  4. Dynamic response analysis of an aircraft structure under thermal-acoustic loads

    NASA Astrophysics Data System (ADS)

    Cheng, H.; Li, H. B.; Zhang, W.; Wu, Z. Q.; Liu, B. R.

    2016-09-01

    Future hypersonic aircraft will be exposed to extreme combined environments includes large magnitude thermal and acoustic loads. It presents a significant challenge for the integrity of these vehicles. Thermal-acoustic test is used to test structures for dynamic response and sonic fatigue due to combined loads. In this research, the numerical simulation process for the thermal acoustic test is presented, and the effects of thermal loads on vibro-acoustic response are investigated. To simulate the radiation heating system, Monte Carlo theory and thermal network theory was used to calculate the temperature distribution. Considering the thermal stress, the high temperature modal parameters are obtained with structural finite element methods. Based on acoustic finite element, modal-based vibro-acoustic analysis is carried out to compute structural responses. These researches are very vital to optimum thermal-acoustic test and structure designs for future hypersonic vehicles structure

  5. A recurrence matrix solution for the dynamic response of aircraft in gusts

    NASA Technical Reports Server (NTRS)

    Houbolt, John C

    1951-01-01

    A systematic procedure developed for the calculation of the structural response of aircraft flying through a gust by use of difference equations in the solution of dynamic problems is first illustrated by means of a simple-damped-oscillator example. A detailed analysis is then given which leads to a recurrence matrix equation for the determination of the response of an airplane in a gust. The method takes into account wing bending and twisting deformations, fuselage deflection, vertical and pitching motion of the airplane, and some tail forces. The method is based on aerodynamic strip theory, but compressibility and three-dimensional aerodynamic effects can be taken into account approximately by means of over-all corrections. Either a sharp-edge gust or a gust of arbitrary shape in the spanwise or flight directions may be treated. In order to aid in the application of the method to any specific case, a suggested computational procedure is included. The possibilities of applying the method to a variety of transient aircraft problems, such as landing, are brought out. A brief review of matrix algebra, covering the extent to which it is used in the analysis, is also included. (author)

  6. Conceptual Design Optimization of an Augmented Stability Aircraft Incorporating Dynamic Response Performance Constraints

    NASA Technical Reports Server (NTRS)

    Welstead, Jason

    2014-01-01

    This research focused on incorporating stability and control into a multidisciplinary de- sign optimization on a Boeing 737-class advanced concept called the D8.2b. A new method of evaluating the aircraft handling performance using quantitative evaluation of the sys- tem to disturbances, including perturbations, continuous turbulence, and discrete gusts, is presented. A multidisciplinary design optimization was performed using the D8.2b transport air- craft concept. The con guration was optimized for minimum fuel burn using a design range of 3,000 nautical miles. Optimization cases were run using xed tail volume coecients, static trim constraints, and static trim and dynamic response constraints. A Cessna 182T model was used to test the various dynamic analysis components, ensuring the analysis was behaving as expected. Results of the optimizations show that including stability and con- trol in the design process drastically alters the optimal design, indicating that stability and control should be included in conceptual design to avoid system level penalties later in the design process.

  7. Static and Dynamic Structural Response of an Aircraft Wing with Damage Using Equivalent Plate Analysis

    NASA Technical Reports Server (NTRS)

    Krishnamurthy, T.; Tsai, Frank J.

    2008-01-01

    A process to generate an equivalent plate based on an optimization approach to predict the static and dynamic response of flight vehicle wing structures is proposed. Geometric-scale and frequency-scale factors are defined to construct an equivalent plate with any desired scale to use in simulation and wind tunnel experiments. It is shown that the stiffness and the displacements are scaled linearly with the geometric-scale factor, whereas the load is scaled as the square of the geometric-scale factor. The scaled stiffness of the reference flight vehicle is matched first to construct the equivalent plate. Then the frequency-scale factor is defined to scale the flight vehicle frequencies. The scaled flight vehicle frequencies are matched by placing arbitrary point masses along the equivalent plate geometry. Two simple stiffened-plate examples, one with damage and another without damage, were used to demonstrate the accuracy of the optimization procedure proposed. Geometric-scale factors ranging from 0.2 to 1.0 were used in the analyses. In both examples, the static and dynamic response of the reference stiffened-panel solution is matched accurately. The scaled equivalent plate predicted the first five frequencies of the stiffened panel very accurately. Finally, the proposed equivalent plate procedure was demonstrated in a more realistic typical aircraft wing structure. Two scale equivalent plate models were generated using the geometric-scale factors 1.0 and 0.2. Both equivalent plate models predicted the static response of the wing structure accurately. The equivalent plate models reproduced the first five frequencies of the wing structure accurately.

  8. Improved aircraft dynamic response and fatigue life during ground operations using an active control landing gear system

    NASA Technical Reports Server (NTRS)

    Mcgehee, J. R.; Carden, H. D.; Edson, R.

    1978-01-01

    A three-degree-of-freedom aircraft landing analysis incorporating a series-hydraulic active control main landing gear has been developed and verified using preliminary experimental data from drop tests of a modified main landing gear from a 2722 kg (6000 lbm) class of airplane. The verified analysis was also employed to predict the landing dynamics of a supersonic research airplane with an active control main landing gear system. The results of this investigation have shown that this type of active gear is feasible and indicate a potential for improving airplane dynamic response and reducing structural fatigue damage during ground operations by approximately 90% relative to that incurred with the passive gear.

  9. Transport aircraft accident dynamics

    NASA Technical Reports Server (NTRS)

    Cominsky, A.

    1982-01-01

    A study was carried out of 112 impact survivable jet transport aircraft accidents (world wide) of 27,700 kg (60,000 lb.) aircraft and up extending over the last 20 years. This study centered on the effect of impact and the follow-on events on aircraft structures and was confined to the approach, landing and takeoff segments of the flight. The significant characteristics, frequency of occurrence and the effect on the occupants of the above data base were studied and categorized with a view to establishing typical impact scenarios for use as a basis of verifying the effectiveness of potential safety concepts. Studies were also carried out of related subjects such as: (1) assessment of advanced materials; (2) human tolerance to impact; (3) merit functions for safety concepts; and (4) impact analysis and test methods.

  10. Langley Aircraft Landing Dynamics Facility

    NASA Technical Reports Server (NTRS)

    Davis, Pamela A.; Stubbs, Sandy M.; Tanner, John A.

    1987-01-01

    The Langley Research Center has recently upgraded the Landing Loads Track (LLT) to improve the capability of low-cost testing of conventional and advanced landing gear systems. The unique feature of the Langley Aircraft Landing Dynamics Facility (ALDF) is the ability to test aircraft landing gear systems on actual runway surfaces at operational ground speeds and loading conditions. A historical overview of the original LLT is given, followed by a detailed description of the new ALDF systems and operational capabilities.

  11. Aircraft Dynamic Modeling in Turbulence

    NASA Technical Reports Server (NTRS)

    Morelli, Eugene A.; Cunninham, Kevin

    2012-01-01

    A method for accurately identifying aircraft dynamic models in turbulence was developed and demonstrated. The method uses orthogonal optimized multisine excitation inputs and an analytic method for enhancing signal-to-noise ratio for dynamic modeling in turbulence. A turbulence metric was developed to accurately characterize the turbulence level using flight measurements. The modeling technique was demonstrated in simulation, then applied to a subscale twin-engine jet transport aircraft in flight. Comparisons of modeling results obtained in turbulent air to results obtained in smooth air were used to demonstrate the effectiveness of the approach.

  12. Experimental investigation on dynamic response of aircraft panels excited by high-intensity acoustic loads in thermal environment

    NASA Astrophysics Data System (ADS)

    WU, Z. Q.; LI, H. B.; ZHANG, W.; CHENG, H.; KONG, F. J.; LIU, B. R.

    2016-09-01

    Metallic and composite panels are the major components for thermal protection system of aircraft vehicles, which are exposed to a severe combination of aerodynamic, thermal and acoustic environments during hypersonic flights. A thermal-acoustic testing apparatus which simulates thermal and acoustic loads was used to validate the integrity and the reliability of these panels. Metallic and ceramic matrix composite flat panels were designed. Dynamic response tests of these panels were carried out using the thermal acoustic apparatus. The temperature of the metallic specimen was up to 400 °C, and the temperature of the composite specimen was up to 600 °C. Moreover, the acoustic load was over 160 dB. Acceleration responses of these testing panels were measured using high temperature instruments during the testing process. Results show that the acceleration root mean square values are dominated by sound pressure level of acoustic loads. Compared with testing data in room environment, the peaks of the acceleration dynamic response shifts obviously to the high frequency in thermal environment.

  13. Human response to aircraft noise

    NASA Technical Reports Server (NTRS)

    Powell, Clemans A.; Fields, James M.

    1991-01-01

    The human auditory system and the perception of sound are discussed. The major concentration is on the annnoyance response and methods for relating the physical characteristics of sound to those psychosociological attributes associated with human response. Results selected from the extensive laboratory and field research conducted on human response to aircraft noise over the past several decades are presented along with discussions of the methodology commonly used in conducting that research. Finally, some of the more common criteria, regulations, and recommended practices for the control or limitation of aircraft noise are examined in light of the research findings on human response.

  14. V/STOL aircraft and fluid dynamic

    NASA Astrophysics Data System (ADS)

    Roberts, L.; Anderson, S. B.

    1982-01-01

    The impact of military applications on rotorcraft and V/STOL aircraft design with respect to fixed wing aircraft is discussed. The influence of the mission needs on the configurational design of V/STOL aircraft, the implications regarding some problems in fluid dynamics relating to propulsive flows, and their interaction with the aircraft and the ground plane, are summarized.

  15. Study on the Similarity Criteria of Aircraft Structure Temperature/Stress/Dynamic Response

    NASA Astrophysics Data System (ADS)

    Liu, Lei; Gui, Ye-Wei; Du, Yan-Xia; Geng, Xiang-Ren; Wang, An-Ling

    The performance parameters of thermal protection system are essential for the design and optimization of high-speed aircraft. The flight-ground conversion is a valid method to provide the effective support to the design of the thermal protection structure (TPS), because the performance data of TPS were generally obtained from wind tunnel test and should be conversed to the corresponding environment. In this paper, the similarity parameters of heat conduction and thermoelasticity equations are studied, the similarity criteria proposed, and the effectiveness of some of the similar parameters are calculated and analyzed. The research results indicated that wind tunnel test can be better designed using the proposed similarity criteria, and the data obtained from wind tunnel test can be modified more rational to accommodate the reality flight condition so as to improve the precision and the efficiency of wind tunnel experiment.

  16. Update on an investigation of flight buffeting of a variable-sweep aircraft. [F-111 A dynamic response

    NASA Technical Reports Server (NTRS)

    Benepe, D. B.; Cunningham, A. M., Jr.; Traylor, S., Jr.; Dunmyer, W. D.

    1975-01-01

    A detailed investigation of flight buffeting response of an F-111A aircraft was performed. AIAA Paper No. 74-358 presented results of an initial study of wing and fuselage responses measured at subsonic speeds and wing leading-edge sweep of 26 degrees. The present paper gives additional results for wing sweeps of 26, 50 and 72.5 degrees at Mach numbers up to 1.2 including horizontal tail responses. Power spectra, response time histories, variations of rms response with angle of attack, and effects of Mach number and wing sweep angle are discussed.

  17. NASA Langley's Aircraft Landing Dynamics Facility

    NASA Technical Reports Server (NTRS)

    Davis, Pamela A.

    1993-01-01

    The Aircraft Landing Dynamics Facility (ALDF) is a unique facility with the ability to test aircraft landing gear systems on actual runway surfaces at operational ground speeds and loading conditions. A brief historical overview of the original Landing Loads Track (LLT) is given, followed by a detailed description of the new ALDF systems and operational capabilities.

  18. Coupling Dynamics in Aircraft: A Historical Perspective

    NASA Technical Reports Server (NTRS)

    Day, Richard E.

    1997-01-01

    Coupling dynamics can produce either adverse or beneficial stability and controllability, depending on the characteristics of the aircraft. This report presents archival anecdotes and analyses of coupling problems experienced by the X-series, Century series, and Space Shuttle aircraft. The three catastrophic sequential coupling modes of the X-2 airplane and the two simultaneous unstable modes of the X-15 and Space Shuttle aircraft are discussed. In addition, the most complex of the coupling interactions, inertia roll coupling, is discussed for the X-2, X-3, F-100A, and YF-102 aircraft. The mechanics of gyroscopics, centrifugal effect, and resonance in coupling dynamics are described. The coupling modes discussed are interacting multiple degrees of freedom of inertial and aerodynamic forces and moments. The aircraft are assumed to be rigid bodies. Structural couplings are not addressed. Various solutions for coupling instabilities are discussed.

  19. A review of the analytical simulation of aircraft crash dynamics

    NASA Technical Reports Server (NTRS)

    Fasanella, Edwin L.; Carden, Huey D.; Boitnott, Richard L.; Hayduk, Robert J.

    1990-01-01

    A large number of full scale tests of general aviation aircraft, helicopters, and one unique air-to-ground controlled impact of a transport aircraft were performed. Additionally, research was also conducted on seat dynamic performance, load-limiting seats, load limiting subfloor designs, and emergency-locator-transmitters (ELTs). Computer programs were developed to provide designers with methods for predicting accelerations, velocities, and displacements of collapsing structure and for estimating the human response to crash loads. The results of full scale aircraft and component tests were used to verify and guide the development of analytical simulation tools and to demonstrate impact load attenuating concepts. Analytical simulation of metal and composite aircraft crash dynamics are addressed. Finite element models are examined to determine their degree of corroboration by experimental data and to reveal deficiencies requiring further development.

  20. Aircraft Landing Dynamics Facility (ALDF)

    NASA Technical Reports Server (NTRS)

    1964-01-01

    Original Test Carriage: A carriage catapulted by a hydraulic jet at speeds up to 150 mph for studies of ground loads on high-speed aircraft is in operation at the Langley Research Center of the National Aeronautics and Space Administration. A drop test rig is installed on the carriage, which is catapulted 400 feet in 3.5 seconds. The carriage travels along a track and special instruments record loads data as an aircraft landing gear or other test specimen is dropped on a concrete strip. Five cables attached to a battery of 20 Navy Mark IV arresting gears, stretched across the 2,200-foot track, bring the carriage to a halt after the test run. The carriage, when loaded to its capacity of 20,000 pounds, represents a 50-ton load. The hydraulic catapult consists of a single water jet, which roars from a nozzle at the front end of the L-shaped pressure vessel (center) and is forced into a specially-shaped bucket on the carriage. The water jet, traveling at 660 feet per second, undergoes a 180 degree change of direction and floods out of another opening in the bucket below the incoming jet stream. The momentum change produces a thrust on the carriage of 400,00 pounds.

  1. 19 CFR 122.36 - Responsibility of aircraft commander.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 19 Customs Duties 1 2010-04-01 2010-04-01 false Responsibility of aircraft commander. 122.36...; DEPARTMENT OF THE TREASURY AIR COMMERCE REGULATIONS Landing Requirements § 122.36 Responsibility of aircraft commander. If an aircraft lands in the U.S. and Customs officers have not arrived, the aircraft...

  2. 19 CFR 122.36 - Responsibility of aircraft commander.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 19 Customs Duties 1 2012-04-01 2012-04-01 false Responsibility of aircraft commander. 122.36...; DEPARTMENT OF THE TREASURY AIR COMMERCE REGULATIONS Landing Requirements § 122.36 Responsibility of aircraft commander. If an aircraft lands in the U.S. and Customs officers have not arrived, the aircraft...

  3. 19 CFR 122.36 - Responsibility of aircraft commander.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 19 Customs Duties 1 2011-04-01 2011-04-01 false Responsibility of aircraft commander. 122.36...; DEPARTMENT OF THE TREASURY AIR COMMERCE REGULATIONS Landing Requirements § 122.36 Responsibility of aircraft commander. If an aircraft lands in the U.S. and Customs officers have not arrived, the aircraft...

  4. 19 CFR 122.36 - Responsibility of aircraft commander.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 19 Customs Duties 1 2014-04-01 2014-04-01 false Responsibility of aircraft commander. 122.36...; DEPARTMENT OF THE TREASURY AIR COMMERCE REGULATIONS Landing Requirements § 122.36 Responsibility of aircraft commander. If an aircraft lands in the U.S. and Customs officers have not arrived, the aircraft...

  5. 19 CFR 122.36 - Responsibility of aircraft commander.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 19 Customs Duties 1 2013-04-01 2013-04-01 false Responsibility of aircraft commander. 122.36...; DEPARTMENT OF THE TREASURY AIR COMMERCE REGULATIONS Landing Requirements § 122.36 Responsibility of aircraft commander. If an aircraft lands in the U.S. and Customs officers have not arrived, the aircraft...

  6. Flight dynamics research for highly agile aircraft

    NASA Technical Reports Server (NTRS)

    Nguyen, Luat T.

    1989-01-01

    This paper highlights recent results of research conducted at the NASA Langley Research Center as part of a broad flight dynamics program aimed at developing technology that will enable future combat aircraft to achieve greatly enhanced agility capability at subsonic combat conditions. Studies of advanced control concepts encompassing both propulsive and aerodynamic approaches are reviewed. Dynamic stall phenomena and their potential impact on maneuvering performance and stability are summarized. Finally, issues of mathematical modeling of complex aerodynamics occurring during rapid, large amplitude maneuvers are discussed.

  7. Application of Probabilistic Analysis to Aircraft Impact Dynamics

    NASA Technical Reports Server (NTRS)

    Lyle, Karen H.; Padula, Sharon L.; Stockwell, Alan E.

    2003-01-01

    Full-scale aircraft crash simulations performed with nonlinear, transient dynamic, finite element codes can incorporate structural complexities such as: geometrically accurate models; human occupant models; and advanced material models to include nonlinear stressstrain behaviors, laminated composites, and material failure. Validation of these crash simulations is difficult due to a lack of sufficient information to adequately determine the uncertainty in the experimental data and the appropriateness of modeling assumptions. This paper evaluates probabilistic approaches to quantify the uncertainty in the simulated responses. Several criteria are used to determine that a response surface method is the most appropriate probabilistic approach. The work is extended to compare optimization results with and without probabilistic constraints.

  8. Multi-aircraft dynamics, navigation and operation

    NASA Astrophysics Data System (ADS)

    Houck, Sharon Wester

    Air traffic control stands on the brink of a revolution. Fifty years from now, we will look back and marvel that we ever flew by radio beacons and radar alone, much as we now marvel that early aviation pioneers flew by chronometer and compass alone. The microprocessor, satellite navigation systems, and air-to-air data links are the technical keys to this revolution. Many airports are near or at capacity now for at least portions of the day, making it clear that major increases in airport capacity will be required in order to support the projected growth in air traffic. This can be accomplished by adding airports, adding runways at existing airports, or increasing the capacity of the existing runways. Technology that allows use of ultra closely spaced (750 ft to 2500 ft) parallel approaches would greatly reduce the environmental impact of airport capacity increases. This research tackles the problem of multi aircraft dynamics, navigation, and operation, specifically in the terminal area, and presents new findings on how ultra closely spaced parallel approaches may be accomplished. The underlying approach considers how multiple aircraft are flown in visual conditions, where spacing criteria is much less stringent, and then uses this data to study the critical parameters for collision avoidance during an ultra closely spaced parallel approach. Also included is experimental and analytical investigations on advanced guidance systems that are critical components of precision approaches. Together, these investigations form a novel approach to the design and analysis of parallel approaches for runways spaced less than 2500 ft apart. This research has concluded that it is technically feasible to reduce the required runway spacing during simultaneous instrument approaches to less than the current minimum of 3400 ft with the use of advanced navigation systems while maintaining the currently accepted levels of safety. On a smooth day with both pilots flying a tunnel

  9. Aircraft Fault Detection Using Real-Time Frequency Response Estimation

    NASA Technical Reports Server (NTRS)

    Grauer, Jared A.

    2016-01-01

    A real-time method for estimating time-varying aircraft frequency responses from input and output measurements was demonstrated. The Bat-4 subscale airplane was used with NASA Langley Research Center's AirSTAR unmanned aerial flight test facility to conduct flight tests and collect data for dynamic modeling. Orthogonal phase-optimized multisine inputs, summed with pilot stick and pedal inputs, were used to excite the responses. The aircraft was tested in its normal configuration and with emulated failures, which included a stuck left ruddervator and an increased command path latency. No prior knowledge of a dynamic model was used or available for the estimation. The longitudinal short period dynamics were investigated in this work. Time-varying frequency responses and stability margins were tracked well using a 20 second sliding window of data, as compared to a post-flight analysis using output error parameter estimation and a low-order equivalent system model. This method could be used in a real-time fault detection system, or for other applications of dynamic modeling such as real-time verification of stability margins during envelope expansion tests.

  10. Dynamics of aircraft antiskid braking systems. [conducted at the Langley aircraft landing loads and traction facility

    NASA Technical Reports Server (NTRS)

    Tanner, J. A.; Stubbs, S. M.; Dreher, R. C.; Smith, E. G.

    1982-01-01

    A computer study was performed to assess the accuracy of three brake pressure-torque mathematical models. The investigation utilized one main gear wheel, brake, and tire assembly of a McDonnell Douglas DC-9 series 10 airplane. The investigation indicates that the performance of aircraft antiskid braking systems is strongly influenced by tire characteristics, dynamic response of the antiskid control valve, and pressure-torque response of the brake. The computer study employed an average torque error criterion to assess the accuracy of the models. The results indicate that a variable nonlinear spring with hysteresis memory function models the pressure-torque response of the brake more accurately than currently used models.

  11. Practical aspects of modeling aircraft dynamics from flight data

    NASA Technical Reports Server (NTRS)

    Iliff, K. W.; Maine, R. E.

    1984-01-01

    The purpose of parameter estimation, a subset of system identification, is to estimate the coefficients (such as stability and control derivatives) of the aircraft differential equations of motion from sampled measured dynamic responses. In the past, the primary reason for estimating stability and control derivatives from flight tests was to make comparisons with wind tunnel estimates. As aircraft became more complex, and as flight envelopes were expanded to include flight regimes that were not well understood, new requirements for the derivative estimates evolved. For many years, the flight determined derivatives were used in simulations to aid in flight planning and in pilot training. The simulations were particularly important in research flight test programs in which an envelope expansion into new flight regimes was required. Parameter estimation techniques for estimating stability and control derivatives from flight data became more sophisticated to support the flight test programs. As knowledge of these new flight regimes increased, more complex aircraft were flown. Much of this increased complexity was in sophisticated flight control systems. The design and refinement of the control system required higher fidelity simulations than were previously required.

  12. Coupled nonlinear aeroelasticity and flight dynamics of fully flexible aircraft

    NASA Astrophysics Data System (ADS)

    Su, Weihua

    This dissertation introduces an approach to effectively model and analyze the coupled nonlinear aeroelasticity and flight dynamics of highly flexible aircraft. A reduced-order, nonlinear, strain-based finite element framework is used, which is capable of assessing the fundamental impact of structural nonlinear effects in preliminary vehicle design and control synthesis. The cross-sectional stiffness and inertia properties of the wings are calculated along the wing span, and then incorporated into the one-dimensional nonlinear beam formulation. Finite-state unsteady subsonic aerodynamics is used to compute airloads along lifting surfaces. Flight dynamic equations are then introduced to complete the aeroelastic/flight dynamic system equations of motion. Instead of merely considering the flexibility of the wings, the current work allows all members of the vehicle to be flexible. Due to their characteristics of being slender structures, the wings, tail, and fuselage of highly flexible aircraft can be modeled as beams undergoing three dimensional displacements and rotations. New kinematic relationships are developed to handle the split beam systems, such that fully flexible vehicles can be effectively modeled within the existing framework. Different aircraft configurations are modeled and studied, including Single-Wing, Joined-Wing, Blended-Wing-Body, and Flying-Wing configurations. The Lagrange Multiplier Method is applied to model the nodal displacement constraints at the joint locations. Based on the proposed models, roll response and stability studies are conducted on fully flexible and rigidized models. The impacts of the flexibility of different vehicle members on flutter with rigid body motion constraints, flutter in free flight condition, and roll maneuver performance are presented. Also, the static stability of the compressive member of the Joined-Wing configuration is studied. A spatially-distributed discrete gust model is incorporated into the time simulation

  13. Identification and verification of frequency-domain models for XV-15 tilt-rotor aircraft dynamics

    NASA Technical Reports Server (NTRS)

    Tischler, M. B.; Leung, J. G. M.; Dugan, D. C.

    1984-01-01

    Frequency-domain methods are used to extract the open-loop dynamics of the XV-15 tilt-rotor aircraft from flight test data for the cruise condition (V = 170 knots). The frequency responses are numerically fitted with transfer-function forms to identify equivalent model characteristics. The associated handling quality parameters meet or exceed Level 2, Category A, requirements for fixed-wing military aircraft. Step response matching is used to verify the time-domain fidelity of the transfer-function models for the cruise and hover flight conditions. The transient responses of the model and aircraft are in close agreement in all cases, except for the normal acceleration response to elevator deflection in cruise. This discrepancy is probably due to the unmodeled rotor rpm dynamics. The utility of the frequency-domain approach for dynamics identification and analysis is clearly demonstrated.

  14. Aircraft wake flow effect and horizontal tail buffet. [pressure distribution and responses of fighter aircraft in transonic maneuvers

    NASA Technical Reports Server (NTRS)

    Hwang, C.; Pi, W. S.

    1979-01-01

    As part of a program to investigate the fluctuating pressure distribution and response behavior of a fighter aircraft in transonic maneuver, an F-5A scale model has previously been tested in an 11-ft transonic wind tunnel. The model, with a number of static and dynamic pressure transducers imbedded in the lifting surfaces was tested at various angles of attack up to 16 deg. In this paper, test results of particular interest to wake flow and horizontal tail buffet are described. It is shown that the dynamic pressure data on the tail surface at the specified flight conditions serve to determine the local dynamic loads. They also influence the control performance of the aircraft under maneuver conditions where buffet is encountered. The data presented demonstrate a number of contributing factors that affect the tail dynamic pressures in the transonic regime.

  15. Seasonal Chemical and Dynamical Responses in a Chemistry-Climate model to Aircraft NOx Emissions: Simulations with the GEOS CCM and Comparisons with GMI

    NASA Astrophysics Data System (ADS)

    Selkirk, H. B.; Rodriguez, J. M.; Oman, L.; Liang, Q.; Douglass, A. R.; Pawson, S.; Manyin, M.; Ott, L. E.; Damoah, R.

    2011-12-01

    We have run multi-year ensembles of one-year simulations with GEOS CCM to study both annual average and seasonal effects of NOx emissions by aviation. GEOS CCM is an atmospheric GCM with interactive stratospheric and tropospheric chemistry. Hourly aircraft NOx emissions over the globe for the year 2006 were provided by courtesy of the US Department of Transportation. All simulations were forced by historical SSTs and sea ice with constant greenhouse gases for 2005, and climatological lightning NOx, aerosols and dust were prescribed in monthly fields. On average, the perturbation response in NOx is positive and predominantly in the upper troposphere and lower stratosphere of the Northern Hemisphere where the bulk of the emissions lie, reaching values over 50 pptv at ~10 km on an annual average basis. The concomitant ozone response extends over a deeper layer in the troposphere with statistically significant mid-tropospheric increases of more than 5% and 8% in mid-latitudes and at the northern polar regions. Seasonal differences in the responses are striking, with the largest perturbations of NOx during January at the tropopause near the core of the emissions at 40°N, while in July perturbations over 50 pptv spread throughout the Arctic. These differences are reflected in ozone, which shows perturbations of 50 ppbv and greater in July at the summer polar tropopause while in January the tropospheric response throughout the middle and polar latitudes is limited to ~10 ppbv. We compare these seasonal variations in response to aviation NOx emissions in GEOS CCM with those from GMI, a chemical transport model that shares the COMBO chemistry scheme with GEOS CCM . Finally, we examine the radiative impacts of these seasonal perturbations in ozone and methane.

  16. Piloting Changes to Changing Aircraft Dynamics: What Do Pilots Need to Know?

    NASA Technical Reports Server (NTRS)

    Trujillo, Anna C.; Gregory, Irene M.

    2011-01-01

    An experiment was conducted to quantify the effects of changing dynamics on a subject s ability to track a signal in order to eventually model a pilot adapting to changing aircraft dynamics. The data will be used to identify primary aircraft dynamics variables that influence changes in pilot s response and produce a simplified pilot model that incorporates this relationship. Each run incorporated a different set of second-order aircraft dynamics representing short period transfer function pitch attitude response: damping ratio, frequency, gain, zero location, and time delay. The subject s ability to conduct the tracking task was the greatest source of root mean square error tracking variability. As for the aircraft dynamics, the factors that affected the subjects ability to conduct the tracking were the time delay, frequency, and zero location. In addition to creating a simplified pilot model, the results of the experiment can be utilized in an advisory capacity. A situation awareness/prediction aid based on the pilot behavior and aircraft dynamics may help tailor pilot s inputs more quickly so that PIO or an upset condition can be avoided.

  17. Effects of asymmetry on the dynamic stability of aircraft

    NASA Technical Reports Server (NTRS)

    Fantino, R. E.; Parsons, E. K.; Powell, J. D.; Shevell, R. S.

    1975-01-01

    The oblique wing concept for transonic aircraft was proposed to reduce drag. The dynamic stability of the aircraft was investigated by analytically determining the stability derivatives at angles of skew ranging from 0 and 45 deg and using these stability derivatives in a linear analysis of the coupled aircraft behavior. The stability derivatives were obtained using a lifting line aerodynamic theory and found to give reasonable agreement with derivatives developed in a previous study for the same aircraft. In the dynamic analysis, no instability or large changes occurred in the root locations for skew angles varying from 0 to 45 deg with the exception of roll convergence. The damping in roll, however, decreased by an order of magnitude. Rolling was a prominent feature of all the oscillatory mode shapes at high skew angles.

  18. Residents' annoyance responses to aircraft noise events

    NASA Technical Reports Server (NTRS)

    Dempsey, T. K.; Stephens, D. G.; Fields, J. M.; Shepherd, K. P.

    1983-01-01

    In a study conducted in the vicinity of Salt Lake City International Airport, community residents reported their annoyance with individual aircraft flyovers during rating sessions conducted in their homes. Annoyance ratings were obtained at different times of the day. Aircraft noise levels were measured, and other characteristics of the aircraft were noted by trained observers. Metrics commonly used for assessing aircraft noise were compared, but none performed significantly better than A-weighted sound pressure level. A significant difference was found between the ratings of commercial jet aircraft and general aviation propeller aircraft, with the latter being judged less annoying. After the effects of noise level were accounted for, no significant differences were found between the ratings of landings and takeoffs. Aircraft noise annoyance reactions are stronger in lowered ambient noise conditions. This is consistent with the theory that reduced nighttime and evening ambient levels could create different reactions at different times of day. After controlling for ambient noise in a multiple regression analysis, no significant differences were found between the ratings of single events obtained during the three time periods: morning, afternoon, and evenings.

  19. Structural dynamics and vibrations of damped, aircraft-type structures

    NASA Technical Reports Server (NTRS)

    Young, Maurice I.

    1992-01-01

    Engineering preliminary design methods for approximating and predicting the effects of viscous or equivalent viscous-type damping treatments on the free and forced vibration of lightly damped aircraft-type structures are developed. Similar developments are presented for dynamic hysteresis viscoelastic-type damping treatments. It is shown by both engineering analysis and numerical illustrations that the intermodal coupling of the undamped modes arising from the introduction of damping may be neglected in applying these preliminary design methods, except when dissimilar modes of these lightly damped, complex aircraft-type structures have identical or nearly identical natural frequencies. In such cases, it is shown that a relatively simple, additional interaction calculation between pairs of modes exhibiting this 'modal response' phenomenon suffices in the prediction of interacting modal damping fractions. The accuracy of the methods is shown to be very good to excellent, depending on the normal natural frequency separation of the system modes, thereby permitting a relatively simple preliminary design approach. This approach is shown to be a natural precursor to elaborate finite element, digital computer design computations in evaluating the type, quantity, and location of damping treatment.

  20. Variability of annoyance response due to aircraft noise

    NASA Technical Reports Server (NTRS)

    Dempsey, T. K.; Cawthorn, J. M.

    1979-01-01

    An investigation was conducted to study the variability in the response of subjects participating in noise experiments. This paper presents a description of a model developed to include this variability which incorporates an aircraft-noise adaptation level or an annoyance calibration for each individual. The results indicate that the use of an aircraft-noise adaption level improved prediction accuracy of annoyance responses (and simultaneously reduced response variation).

  1. Passenger comfort response times as a function of aircraft motion

    NASA Technical Reports Server (NTRS)

    Rinalducci, E. J.

    1975-01-01

    The relationship between a passenger's response time of changes in level of comfort experienced as a function of aircraft motion was examined. The aircraft used in this investigation was capable of providing a wide range of vertical and transverse accelerations by means of direct lift flap control surfaces and side force generator surfaces in addition to normal control surfaces. Response times to changes in comfort were recorded along with the passenger's rating of comfort on a five point scale. In addition, a number of aircraft motion variables including vertical and transverse accelerations were also recorded. Results indicate some relationship between human comfort response times to reaction time data.

  2. Nonlinear response and sonic fatigue of high speed aircraft

    NASA Astrophysics Data System (ADS)

    Vaicaitis, Rimas; Kavallieratos, P.

    An analytical model for nonlinear response of composite panels to random surface pressures and aerodynamic heating is presented. The random surface pressures are simulated in the space-time domain and the governing nonlinear equations of motion are solved using a Galerkin-like modal method and a numerical time domain integration procedure. The required statistical quantities such as moments, probability density histograms, peak distribution histograms, and crossing rates are calculated directly from the response time history of displacement or stress. It is found that thermal heating induces buckling, and at some combinations of heating temperatures and input sound pressure levels a 'snap-through' type dynamic response is induced, resulting in large stress reversals. At high temperatures, a large nonlinear static response and small dynamic random vibrations are observed. For the anticipated severe thermal and noise environment of high-speed aircraft, the various simplified linear theories used to predict stress response and fatigue life of composite surface panels would not produce realistic structural configurations and reliable designs.

  3. The community response to aircraft noise around six Spanish airports

    NASA Astrophysics Data System (ADS)

    Garcia, A.; Faus, L. J.; Garcia, A. M.

    1993-06-01

    The community response to aircraft noise has been studied through a social survey. A total of 1800 persons living in the vicinity of six major Spanish airports have been interviewed at their homes concerning the environmental quality of the area, dissatisfaction with road traffic noise and aircraft noise, activities interfered with by noise, most disturbing aircraft types, and subjective evaluation of airport impact. All the responses obtained in this survey have been compared with aircraft noise levels corresponding to the residence locations of the people interviewed (values of NEF levels were calculated with the INM model). The results obtained in this work allow one to evaluate the impact of aircraft noise under a wide range of different situations.

  4. Aircraft Landing Dynamics Facility - A unique facility with new capabilities

    NASA Technical Reports Server (NTRS)

    Davis, P. A.; Stubbs, S. M.; Tanner, J. A.

    1985-01-01

    The Aircraft Landing Dynamics Facility (ALDF), formerly called the Landing Loads Track, is described. The paper gives a historical overview of the original NASA Langley Research Center Landing Loads Track and discusses the unique features of this national test facility. Comparisons are made between the original track characteristics and the new capabilities of the Aircraft Landing Dynamics Facility following the recently completed facility update. Details of the new propulsion and arresting gear systems are presented along with the novel features of the new high-speed carriage. The data acquisition system is described and the paper concludes with a review of future test programs.

  5. Dynamics and Adaptive Control for Stability Recovery of Damaged Aircraft

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan; Krishnakumar, Kalmanje; Kaneshige, John; Nespeca, Pascal

    2006-01-01

    This paper presents a recent study of a damaged generic transport model as part of a NASA research project to investigate adaptive control methods for stability recovery of damaged aircraft operating in off-nominal flight conditions under damage and or failures. Aerodynamic modeling of damage effects is performed using an aerodynamic code to assess changes in the stability and control derivatives of a generic transport aircraft. Certain types of damage such as damage to one of the wings or horizontal stabilizers can cause the aircraft to become asymmetric, thus resulting in a coupling between the longitudinal and lateral motions. Flight dynamics for a general asymmetric aircraft is derived to account for changes in the center of gravity that can compromise the stability of the damaged aircraft. An iterative trim analysis for the translational motion is developed to refine the trim procedure by accounting for the effects of the control surface deflection. A hybrid direct-indirect neural network, adaptive flight control is proposed as an adaptive law for stabilizing the rotational motion of the damaged aircraft. The indirect adaptation is designed to estimate the plant dynamics of the damaged aircraft in conjunction with the direct adaptation that computes the control augmentation. Two approaches are presented 1) an adaptive law derived from the Lyapunov stability theory to ensure that the signals are bounded, and 2) a recursive least-square method for parameter identification. A hardware-in-the-loop simulation is conducted and demonstrates the effectiveness of the direct neural network adaptive flight control in the stability recovery of the damaged aircraft. A preliminary simulation of the hybrid adaptive flight control has been performed and initial data have shown the effectiveness of the proposed hybrid approach. Future work will include further investigations and high-fidelity simulations of the proposed hybrid adaptive Bight control approach.

  6. Analysis of flexible aircraft longitudinal dynamics and handling qualities. Volume 2: Data

    NASA Technical Reports Server (NTRS)

    Waszak, M. R.; Schmidt, D. K.

    1985-01-01

    Two analysis methods are applied to a family of flexible aircraft in order to investigate how and when structural (especially dynamic aeroelastic) effects affect the dynamic characteristics of aircraft. The first type of analysis is an open loop modal analysis technique. This method considers the effect of modal residue magnitudes on determining vehicle handling qualities. The second method is a pilot in the loop analysis procedure that considers several closed loop system characteristics. Both analyses indicated that dynamic aeroelastic effects caused a degradation in vehicle tracking performance, based on the evaluation of some simulation results. Volume 2 consists of the presentation of the state variable models of the flexible aircraft configurations used in the analysis applications mode shape plots for the structural modes, numerical results from the modal analysis frequency response plots from the pilot in the loop analysis and a listing of the modal analysis computer program.

  7. Dynamics and control of robotic aircraft with articulated wings

    NASA Astrophysics Data System (ADS)

    Paranjape, Aditya Avinash

    There is a considerable interest in developing robotic aircraft, inspired by birds, for a variety of missions covering reconnaissance and surveillance. Flapping wing aircraft concepts have been put forth in light of the efficiency of flapping flight at small scales. These aircraft are naturally equipped with the ability to rotate their wings about the root, a form of wing articulation. This thesis covers some problems concerning the performance, stability and control of robotic aircraft with articulated wings in gliding flight. Specifically, we are interested in aircraft without a vertical tail, which would then use wing articulation for longitudinal as well as lateral-directional control. Although the dynamics and control of articulated wing aircraft share several common features with conventional fixed wing aircraft, the presence of wing articulation presents several unique benefits as well as limitations from the perspective of performance and control. One of the objective of this thesis is to understand these features using a combination of theoretical and numerical tools. The aircraft concept envisioned in this thesis uses the wing dihedral angles for longitudinal and lateral-directional control. Aircraft with flexible articulated wings are also investigated. We derive a complete nonlinear model of the flight dynamics incorporating dynamic CG location and the changing moment of inertia. We show that symmetric dihedral configuration, along with a conventional horizontal tail, can be used to control flight speed and flight path angle independently of each other. This characteristic is very useful for initiating an efficient perching maneuver. It is shown that wing dihedral angles alone can effectively regulate sideslip during rapid turns and generate a wide range of equilibrium turn rates while maintaining a constant flight speed and regulating sideslip. We compute the turning performance limitations that arise due to the use of wing dihedral for yaw control

  8. Dynamic tests of composite panels of an aircraft wing

    NASA Astrophysics Data System (ADS)

    Splichal, Jan; Pistek, Antonin; Hlinka, Jiri

    2015-10-01

    The paper describes the analysis of aerospace composite structures under dynamic loading. Today, it is common to use design procedures based on assumption of static loading only, and dynamic loading is rarely assumed and applied in design and certification of aerospace structures. The paper describes the application of dynamic loading for the design of aircraft structures, and the validation of the procedure on a selected structure. The goal is to verify the possibility of reducing the weight through improved design/modelling processes using dynamic loading instead of static loading. The research activity focuses on the modelling and testing of a composite panel representing a local segment of an aircraft wing section, investigating in particular the buckling behavior under dynamic loading. Finite Elements simulation tools are discussed, as well as the advantages of using a digital optical measurement system for the evaluation of the tests. The comparison of the finite element simulations with the results of the tests is presented.

  9. Coupled nonlinear flight dynamics, aeroelasticity, and control of very flexible aircraft

    NASA Astrophysics Data System (ADS)

    Shearer, Christopher M.

    Flight dynamics and control of rigid aircraft motion coupled with linearized structural dynamics has been studied for several decades. However, new requirements for very flexible aircraft are challenging the validity of most rigid body coupled linearized structural motion formulations, due to the presence of large elastic motions. This dissertation presents, the flight dynamics, integration, and control of the six degree-of-freedom equations of motion of a reference point on a very flexible aircraft coupled with the aeroelastic equations which govern the geometrically nonlinear structural response of the vehicle. A low-order strain-based nonlinear structural analysis coupled with unsteady finite-state potential flow aerodynamics form the basis for the aeroelastic formulation. The nonlinear beam structural model is based upon the finite strain approach. Kinematic differential equations are used to provide orientation and position of the fixed reference point. The resulting governing differential equations are non-linear, first- and second-order differential algebraic equations and provide a low-order complete nonlinear aircraft formulation. The resulting equations are integrated using an implicit Modified Newmark Method. The method incorporates both first- and second-order nonlinear equations without the necessity of transforming second-order equations to first-order form. The method also incorporates a Newton-Raphson sub-iteration scheme to reduce residual error. Due to the inherent flexibility of these aircraft, the low order structural modes couple directly with the rigid body modes. This creates a system which cannot be separated as in traditional control schemes. Trajectory control techniques are developed based upon a combination of linear and nonlinear inner-loop tracking and an outer-loop nonlinear transformation from desired trajectories to reference frame velocities. Numerical simulations are presented validating the proposed integration scheme and the

  10. Fire detector response in aircraft applications

    NASA Technical Reports Server (NTRS)

    Wiersma, S. J.; Mckee, R. G.

    1978-01-01

    Photoelectric, ionization, and gas sensors were used to detect the signatures from the radiant heat or flame of various aircraft materials. It was found that both ionization and photoelectric detectors are about equally capable of detecting products of pyrolysis and combustion of synthetic polymers, especially those containing fire-retardant additives. Ionization detectors alone appeared to be sensitive to combustion products of simple cellulosic materials. A gas sensor detector appeared to be insensitive to pyrolysis or combustion products of many of the materials.

  11. Crash response data system for the controlled impact demonstration (CID) of a full scale transport aircraft

    NASA Technical Reports Server (NTRS)

    Calloway, Raymond S.; Knight, Vernie H., Jr.

    1986-01-01

    NASA Langley's Crash Response Data System (CRDS) which is designed to acquire aircraft structural and anthropomorphic dummy responses during the full-scale transport CID test is described. Included in the discussion are the system design approach, details on key instrumentation subsystems and operations, overall instrumentation crash performance, and data recovery results. Two autonomous high-environment digital flight instrumentation systems, DAS 1 and DAS 2, were employed to obtain research data from various strain gage, accelerometer, and tensiometric sensors installed in the B-720 test aircraft. The CRDS successfully acquired 343 out of 352 measurements of dynamic crash data.

  12. Flight dynamics simulation modeling and control of a large flexible tiltrotor aircraft

    NASA Astrophysics Data System (ADS)

    Juhasz, Ondrej

    A high order rotorcraft mathematical model is developed and validated against the XV-15 and a Large Civil Tiltrotor (LCTR) concept. The mathematical model is generic and allows for any rotorcraft configuration, from single main rotor helicopters to coaxial and tiltrotor aircraft. Rigid-body and inflow states, as well as flexible wing and blade states are used in the analysis. The separate modeling of each rotorcraft component allows for structural flexibility to be included, which is important when modeling large aircraft where structural modes affect the flight dynamics frequency ranges of interest, generally 1 to 20 rad/sec. Details of the formulation of the mathematical model are given, including derivations of structural, aerodynamic, and inertial loads. The linking of the components of the aircraft is developed using an approach similar to multibody analyses by exploiting a tree topology, but without equations of constraints. Assessments of the effects of wing flexibility are given. Flexibility effects are evaluated by looking at the nature of the couplings between rigid-body modes and wing structural modes and vice versa. The effects of various different forms of structural feedback on aircraft dynamics are analyzed. A proportional-integral feedback on the structural acceleration is deemed to be most effective at both improving the damping and reducing the overall excitation of a structural mode. A model following control architecture is then implemented on full order flexible LCTR models. For this aircraft, the four lowest frequency structural modes are below 20 rad/sec, and are thus needed for control law development and analysis. The impact of structural feedback on both Attitude-Command, Attitude-Hold (ACAH) and Translational Rate Command (TRC) response types are investigated. A rigid aircraft model has optimistic performance characteristics, and a control system designed for a rigid aircraft could potentially destabilize a flexible one. The various

  13. Automatic Dynamic Aircraft Modeler (ADAM) for the Computer Program NASTRAN

    NASA Technical Reports Server (NTRS)

    Griffis, H.

    1985-01-01

    Large general purpose finite element programs require users to develop large quantities of input data. General purpose pre-processors are used to decrease the effort required to develop structural models. Further reduction of effort can be achieved by specific application pre-processors. Automatic Dynamic Aircraft Modeler (ADAM) is one such application specific pre-processor. General purpose pre-processors use points, lines and surfaces to describe geometric shapes. Specifying that ADAM is used only for aircraft structures allows generic structural sections, wing boxes and bodies, to be pre-defined. Hence with only gross dimensions, thicknesses, material properties and pre-defined boundary conditions a complete model of an aircraft can be created.

  14. Impact of aircraft plume dynamics on airport local air quality

    NASA Astrophysics Data System (ADS)

    Barrett, Steven R. H.; Britter, Rex E.; Waitz, Ian A.

    2013-08-01

    Air quality degradation in the locality of airports poses a public health hazard. The ability to quantitatively predict the air quality impacts of airport operations is of importance for assessing the air quality and public health impacts of airports today, of future developments, and for evaluating approaches for mitigating these impacts. However, studies such as the Project for the Sustainable Development of Heathrow have highlighted shortcomings in understanding of aircraft plume dispersion. Further, if national or international aviation environmental policies are to be assessed, a computationally efficient method of modeling aircraft plume dispersion is needed. To address these needs, we describe the formulation and validation of a three-dimensional integral plume model appropriate for modeling aircraft exhaust plumes at airports. We also develop a simplified concentration correction factor approach to efficiently account for dispersion processes particular to aircraft plumes. The model is used to explain monitoring station results in the London Heathrow area showing that pollutant concentrations are approximately constant over wind speeds of 3-12 m s-1, and is applied to reproduce empirically derived relationships between engine types and peak NOx concentrations at Heathrow. We calculated that not accounting for aircraft plume dynamics would result in a factor of 1.36-2.3 over-prediction of the mean NOx concentration (depending on location), consistent with empirical evidence of a factor of 1.7 over-prediction. Concentration correction factors are also calculated for aircraft takeoff, landing and taxi emissions, providing an efficient way to account for aircraft plume effects in atmospheric dispersion models.

  15. Dynamic Forms. Part 2; Application to Aircraft Guidance

    NASA Technical Reports Server (NTRS)

    Meyer, George; Smith, G. Allan

    1997-01-01

    The paper describes a method for guiding a dynamic system through a given set of points. The paradigm is a fully automatic aircraft subject to air traffic control (ATC). The ATC provides a sequence of waypoints through which the aircraft trajectory must pass. The waypoints typically specify time, position, and velocity. The guidance problem is to synthesize a system state trajectory that satisfies both the ATC and aircraft constraints. Complications arise because the controlled process is multidimensional, multiaxis, nonlinear, highly coupled, and the state space is not flat. In addition, there is a multitude of operating modes, which may number in the hundreds. Each such mode defines a distinct state space model of the process by specifying the state space coordinatization, the partition of the controls into active controls and configuration controls, and the output map. Furthermore, mode transitions are required to be smooth. The proposed guidance algorithm is based on the inversion of the pure feedback approximation, followed by correction for the effects of zero dynamics. The paper describes the structure and major modules of the algorithm, and the performance is illustrated by several example aircraft maneuvers.

  16. Aircraft path planning for optimal imaging using dynamic cost functions

    NASA Astrophysics Data System (ADS)

    Christie, Gordon; Chaudhry, Haseeb; Kochersberger, Kevin

    2015-05-01

    Unmanned aircraft development has accelerated with recent technological improvements in sensing and communications, which has resulted in an "applications lag" for how these aircraft can best be utilized. The aircraft are becoming smaller, more maneuverable and have longer endurance to perform sensing and sampling missions, but operating them aggressively to exploit these capabilities has not been a primary focus in unmanned systems development. This paper addresses a means of aerial vehicle path planning to provide a realistic optimal path in acquiring imagery for structure from motion (SfM) reconstructions and performing radiation surveys. This method will allow SfM reconstructions to occur accurately and with minimal flight time so that the reconstructions can be executed efficiently. An assumption is made that we have 3D point cloud data available prior to the flight. A discrete set of scan lines are proposed for the given area that are scored based on visibility of the scene. Our approach finds a time-efficient path and calculates trajectories between scan lines and over obstacles encountered along those scan lines. Aircraft dynamics are incorporated into the path planning algorithm as dynamic cost functions to create optimal imaging paths in minimum time. Simulations of the path planning algorithm are shown for an urban environment. We also present our approach for image-based terrain mapping, which is able to efficiently perform a 3D reconstruction of a large area without the use of GPS data.

  17. Feedback Linearized Aircraft Control Using Dynamic Cell Structure

    NASA Technical Reports Server (NTRS)

    Jorgensen, C. C.

    1998-01-01

    A Dynamic Cell Structure (DCS ) Neural Network was developed which learns a topology representing network (TRN) of F-15 aircraft aerodynamic stability and control derivatives. The network is combined with a feedback linearized tracking controller to produce a robust control architecture capable of handling multiple accident and off-nominal flight scenarios. This paper describes network and its performance for accident scenarios including differential stabilator lock, soft sensor failure, control, stability derivative variation, and turbulence.

  18. Uncertain structural dynamics of aircraft panels and fuzzy structures analysis

    NASA Astrophysics Data System (ADS)

    Sparrow, Victor W.; Buehrle, Ralph D.

    2002-11-01

    Aircraft fuselage panels, seemingly simple structures, are actually complex because of the uncertainty of the attachments of the frame stiffeners and longitudinal stringers. It is clearly important to understand the dynamics of these panels because of the subsequent radiation into the passenger cabin, even when complete information is not available for all portions of the finite-element model. Over the last few years a fuzzy structures analysis (FSA) approach has been undertaken at Penn State and NASA Langley to quantify the uncertainty in modeling aircraft panels. A new MSC.Nastran [MSC.Software Corp. (Santa Ana, CA)] Direct Matrix Abstraction Program (DMAP) code was written and tested [AIAA paper 2001-1320, 42nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conf., Seattle, WA, 16 April 2001] and was applied to simple fuselage panel models [J. Acoust. Soc. Am. 109, 2410(A) (2001)]. Recently the work has focused on understanding the dynamics of a realistic aluminum fuselage panel, typical of today's aircraft construction. This presentation will provide an overview of the research and recent results will be given for the fuselage panel. Comparison between experiments and the FSA results will be shown for different fuzzy input parameters. [Work supported by NASA Research Cooperative Agreement NCC-1-382.

  19. Flexible body dynamic stability for high performance aircraft

    NASA Technical Reports Server (NTRS)

    Goforth, E. A.; Youssef, H. M.; Apelian, C. V.; Schroeder, S. C.

    1991-01-01

    Dynamic equations which include the effects of unsteady aerodynamic forces and a flexible body structure were developed for a free flying high performance fighter aircraft. The linear and angular deformations are assumed to be small in the body reference frame, allowing the equations to be linearized in the deformation variables. Equations for total body dynamics and flexible body dynamics are formulated using the hybrid coordinate method and integrated in a state space format. A detailed finite element model of a generic high performance fighter aircraft is used to generate the mass and stiffness matrices. Unsteady aerodynamics are represented by a rational function approximation of the doublet lattice matrices. The equations simplify for the case of constant angular rate of the body reference frame, allowing the effect of roll rate to be studied by computing the eigenvalues of the system. It is found that the rigid body modes of the aircraft are greatly affected by introducing a constant roll rate, while the effect on the flexible modes is minimal for this configuration.

  20. Dynamics and control of robotic aircraft with articulated wings

    NASA Astrophysics Data System (ADS)

    Paranjape, Aditya Avinash

    There is a considerable interest in developing robotic aircraft, inspired by birds, for a variety of missions covering reconnaissance and surveillance. Flapping wing aircraft concepts have been put forth in light of the efficiency of flapping flight at small scales. These aircraft are naturally equipped with the ability to rotate their wings about the root, a form of wing articulation. This thesis covers some problems concerning the performance, stability and control of robotic aircraft with articulated wings in gliding flight. Specifically, we are interested in aircraft without a vertical tail, which would then use wing articulation for longitudinal as well as lateral-directional control. Although the dynamics and control of articulated wing aircraft share several common features with conventional fixed wing aircraft, the presence of wing articulation presents several unique benefits as well as limitations from the perspective of performance and control. One of the objective of this thesis is to understand these features using a combination of theoretical and numerical tools. The aircraft concept envisioned in this thesis uses the wing dihedral angles for longitudinal and lateral-directional control. Aircraft with flexible articulated wings are also investigated. We derive a complete nonlinear model of the flight dynamics incorporating dynamic CG location and the changing moment of inertia. We show that symmetric dihedral configuration, along with a conventional horizontal tail, can be used to control flight speed and flight path angle independently of each other. This characteristic is very useful for initiating an efficient perching maneuver. It is shown that wing dihedral angles alone can effectively regulate sideslip during rapid turns and generate a wide range of equilibrium turn rates while maintaining a constant flight speed and regulating sideslip. We compute the turning performance limitations that arise due to the use of wing dihedral for yaw control

  1. High-order computational fluid dynamics tools for aircraft design.

    PubMed

    Wang, Z J

    2014-08-13

    Most forecasts predict an annual airline traffic growth rate between 4.5 and 5% in the foreseeable future. To sustain that growth, the environmental impact of aircraft cannot be ignored. Future aircraft must have much better fuel economy, dramatically less greenhouse gas emissions and noise, in addition to better performance. Many technical breakthroughs must take place to achieve the aggressive environmental goals set up by governments in North America and Europe. One of these breakthroughs will be physics-based, highly accurate and efficient computational fluid dynamics and aeroacoustics tools capable of predicting complex flows over the entire flight envelope and through an aircraft engine, and computing aircraft noise. Some of these flows are dominated by unsteady vortices of disparate scales, often highly turbulent, and they call for higher-order methods. As these tools will be integral components of a multi-disciplinary optimization environment, they must be efficient to impact design. Ultimately, the accuracy, efficiency, robustness, scalability and geometric flexibility will determine which methods will be adopted in the design process. This article explores these aspects and identifies pacing items. PMID:25024419

  2. High-order computational fluid dynamics tools for aircraft design.

    PubMed

    Wang, Z J

    2014-08-13

    Most forecasts predict an annual airline traffic growth rate between 4.5 and 5% in the foreseeable future. To sustain that growth, the environmental impact of aircraft cannot be ignored. Future aircraft must have much better fuel economy, dramatically less greenhouse gas emissions and noise, in addition to better performance. Many technical breakthroughs must take place to achieve the aggressive environmental goals set up by governments in North America and Europe. One of these breakthroughs will be physics-based, highly accurate and efficient computational fluid dynamics and aeroacoustics tools capable of predicting complex flows over the entire flight envelope and through an aircraft engine, and computing aircraft noise. Some of these flows are dominated by unsteady vortices of disparate scales, often highly turbulent, and they call for higher-order methods. As these tools will be integral components of a multi-disciplinary optimization environment, they must be efficient to impact design. Ultimately, the accuracy, efficiency, robustness, scalability and geometric flexibility will determine which methods will be adopted in the design process. This article explores these aspects and identifies pacing items.

  3. High-order computational fluid dynamics tools for aircraft design

    PubMed Central

    Wang, Z. J.

    2014-01-01

    Most forecasts predict an annual airline traffic growth rate between 4.5 and 5% in the foreseeable future. To sustain that growth, the environmental impact of aircraft cannot be ignored. Future aircraft must have much better fuel economy, dramatically less greenhouse gas emissions and noise, in addition to better performance. Many technical breakthroughs must take place to achieve the aggressive environmental goals set up by governments in North America and Europe. One of these breakthroughs will be physics-based, highly accurate and efficient computational fluid dynamics and aeroacoustics tools capable of predicting complex flows over the entire flight envelope and through an aircraft engine, and computing aircraft noise. Some of these flows are dominated by unsteady vortices of disparate scales, often highly turbulent, and they call for higher-order methods. As these tools will be integral components of a multi-disciplinary optimization environment, they must be efficient to impact design. Ultimately, the accuracy, efficiency, robustness, scalability and geometric flexibility will determine which methods will be adopted in the design process. This article explores these aspects and identifies pacing items. PMID:25024419

  4. Exploratory flight investigation of aircraft response to the wing vortex wake generated by the augmentor wing jet STOL research aircraft

    NASA Technical Reports Server (NTRS)

    Jacobsen, R. A.; Drinkwater, F. J., III

    1975-01-01

    A brief exploratory flight program was conducted at Ames Research Center to investigate the vortex wake hazard of a powered-lift STOL aircraft. The study was made by flying an instrumented Cessna 210 aircraft into the wake of the augmentor wing jet STOL research aircraft at separation distances from 1 to 4 n.mi. Characteristics of the wake were evaluated in terms of the magnitude of the upset of the probing aircraft. Results indicated that within 1 n.mi. separation the wake could cause rolling moments in excess of roll control power and yawing moments equivalent to rudder control power of the probe aircraft. Subjective evaluations by the pilots of the Cessna 210 aircraft, supported by response measurements, indicated that the upset caused by the wake of the STOL aircraft was comparable to that of a DC-9 in the landing configuration.

  5. Direct Adaptive Aircraft Control Using Dynamic Cell Structure Neural Networks

    NASA Technical Reports Server (NTRS)

    Jorgensen, Charles C.

    1997-01-01

    A Dynamic Cell Structure (DCS) Neural Network was developed which learns topology representing networks (TRNS) of F-15 aircraft aerodynamic stability and control derivatives. The network is integrated into a direct adaptive tracking controller. The combination produces a robust adaptive architecture capable of handling multiple accident and off- nominal flight scenarios. This paper describes the DCS network and modifications to the parameter estimation procedure. The work represents one step towards an integrated real-time reconfiguration control architecture for rapid prototyping of new aircraft designs. Performance was evaluated using three off-line benchmarks and on-line nonlinear Virtual Reality simulation. Flight control was evaluated under scenarios including differential stabilator lock, soft sensor failure, control and stability derivative variations, and air turbulence.

  6. Application of tire dynamics to aircraft landing gear design analysis

    NASA Technical Reports Server (NTRS)

    Black, R. J.

    1983-01-01

    The tire plays a key part in many analyses used for design of aircraft landing gear. Examples include structural design of wheels, landing gear shimmy, brake whirl, chatter and squeal, complex combination of chatter and shimmy on main landing gear (MLG) systems, anti-skid performance, gear walk, and rough terrain loads and performance. Tire parameters needed in the various analyses are discussed. Two tire models are discussed for shimmy analysis, the modified Moreland approach and the von Schlippe-Dietrich approach. It is shown that the Moreland model can be derived from the Von Schlippe-Dietrich model by certain approximations. The remaining analysis areas are discussed in general terms and the tire parameters needed for each are identified. Accurate tire data allows more accurate design analysis and the correct prediction of dynamic performance of aircraft landing gear.

  7. Dynamic thermal tomography for nondestructive inspection of aging aircraft

    SciTech Connect

    Del Grande, N.K.; Dolan, K.W.; Durbin, P.F.; Gorvad, M.R.; Shapiro, A.B.

    1993-11-01

    The authors apply dual-band infrared (DBIR) imaging as a dynamic thermal tomography tool for wide area inspection of a Boeing 737 aircraft and several Boeing KC-135 aircraft panels. The analyses are discussed in this report. After flash-heating the aircraft skin, they record synchronized DBIR images every 40 ms, from onset to 8 seconds after the heat flash. They analyze selective DBIR image ratios which enhance surface temperature contrast and remove surface-emissivity clutter. The Boeing 737 and KC-135 aircraft fuselage panels have varying percent thickness losses from corrosion. They established the correlation of percent thickness loss with surface temperature rise (above ambient) for a partially corroded F-18 wing box structure and several aluminum plates which had 6 to 60% thickness losses at milled flat-bottom hole sites. Based on this correlation, lap splice temperatures rise 1C per 24 {plus_minus} 5% material loss at 0.4 s after the heat flash. They tabulate and map corrosion-related percent thickness loss effects for the riveted Boeing 737, and the riveted Boeing KKC-135. They map the fuselage composite thermal inertia, based on the (inverse) slope of the surface temperature versus inverse square root of time. Composite thermal inertia maps characterized shallow skin defects within the lap splice at early times (< 0.3 s) and deeper skin defects within the lap splice at late times (> 0.4 s). Late time composite thermal inertia maps depict where corrosion-related thickness losses occur (e.g., on the inside of the Boeing 737 lap splice, beneath the galley and the latrine). Lap splice sites on a typical Boeing KC-135 panel with low composite thermal inertia values had high skin-thickness losses from corrosion.

  8. Aircraft

    DOEpatents

    Hibbs, B.D.; Lissaman, P.B.S.; Morgan, W.R.; Radkey, R.L.

    1998-09-22

    This disclosure provides a solar rechargeable aircraft that is inexpensive to produce, is steerable, and can remain airborne almost indefinitely. The preferred aircraft is a span-loaded flying wing, having no fuselage or rudder. Travelling at relatively slow speeds, and having a two-hundred foot wingspan that mounts photovoltaic cells on most all of the wing`s top surface, the aircraft uses only differential thrust of its eight propellers to turn. Each of five sections of the wing has one or more engines and photovoltaic arrays, and produces its own lift independent of the other sections, to avoid loading them. Five two-sided photovoltaic arrays, in all, are mounted on the wing, and receive photovoltaic energy both incident on top of the wing, and which is incident also from below, through a bottom, transparent surface. The aircraft is capable of a top speed of about ninety miles per hour, which enables the aircraft to attain and can continuously maintain altitudes of up to sixty-five thousand feet. Regenerative fuel cells in the wing store excess electricity for use at night, such that the aircraft can sustain its elevation indefinitely. A main spar of the wing doubles as a pressure vessel that houses hydrogen and oxygen gases for use in the regenerative fuel cell. The aircraft has a wide variety of applications, which include weather monitoring and atmospheric testing, communications, surveillance, and other applications as well. 31 figs.

  9. Aircraft

    DOEpatents

    Hibbs, Bart D.; Lissaman, Peter B. S.; Morgan, Walter R.; Radkey, Robert L.

    1998-01-01

    This disclosure provides a solar rechargeable aircraft that is inexpensive to produce, is steerable, and can remain airborne almost indefinitely. The preferred aircraft is a span-loaded flying wing, having no fuselage or rudder. Travelling at relatively slow speeds, and having a two-hundred foot wingspan that mounts photovoltaic cells on most all of the wing's top surface, the aircraft uses only differential thrust of its eight propellers to turn. Each of five sections of the wing has one or more engines and photovoltaic arrays, and produces its own lift independent of the other sections, to avoid loading them. Five two-sided photovoltaic arrays, in all, are mounted on the wing, and receive photovoltaic energy both incident on top of the wing, and which is incident also from below, through a bottom, transparent surface. The aircraft is capable of a top speed of about ninety miles per hour, which enables the aircraft to attain and can continuously maintain altitudes of up to sixty-five thousand feet. Regenerative fuel cells in the wing store excess electricity for use at night, such that the aircraft can sustain its elevation indefinitely. A main spar of the wing doubles as a pressure vessel that houses hydrogen and oxygen gasses for use in the regenerative fuel cell. The aircraft has a wide variety of applications, which include weather monitoring and atmospheric testing, communications, surveillance, and other applications as well.

  10. User's Manual for Computer Program ROTOR. [to calculate tilt-rotor aircraft dynamic characteristics

    NASA Technical Reports Server (NTRS)

    Yasue, M.

    1974-01-01

    A detailed description of a computer program to calculate tilt-rotor aircraft dynamic characteristics is presented. This program consists of two parts: (1) the natural frequencies and corresponding mode shapes of the rotor blade and wing are developed from structural data (mass distribution and stiffness distribution); and (2) the frequency response (to gust and blade pitch control inputs) and eigenvalues of the tilt-rotor dynamic system, based on the natural frequencies and mode shapes, are derived. Sample problems are included to assist the user.

  11. Lumped mass modelling for the dynamic analysis of aircraft structures

    NASA Technical Reports Server (NTRS)

    Abu-Saba, Elias G.; Shen, Ji Yao; Mcginley, William M.; Montgomery, Raymond C.

    1992-01-01

    Aircraft structures may be modelled by lumping the masses at particular strategic points and the flexibility or stiffness of the structure is obtained with reference to these points. Equivalent moments of inertia for the section at these positions are determined. The lumped masses are calculated based on the assumption that each point will represent the mass spread on one half of the space on each side. Then these parameters are used in the differential equation of motion and the eigen characteristics are determined. A comparison is made with results obtained by other established methods. The lumped mass approach in the dynamic analysis of complicated structures provides an easier means of predicting the dynamic characteristics of these structures. It involves less computer time and avoids computational errors that are inherent in the numerical solution of complicated systems.

  12. Life and dynamic capacity modeling for aircraft transmissions

    NASA Technical Reports Server (NTRS)

    Savage, Michael

    1991-01-01

    A computer program to simulate the dynamic capacity and life of parallel shaft aircraft transmissions is presented. Five basic configurations can be analyzed: single mesh, compound, parallel, reverted, and single plane reductions. In execution, the program prompts the user for the data file prefix name, takes input from a ASCII file, and writes its output to a second ASCII file with the same prefix name. The input data file includes the transmission configuration, the input shaft torque and speed, and descriptions of the transmission geometry and the component gears and bearings. The program output file describes the transmission, its components, their capabilities, locations, and loads. It also lists the dynamic capability, ninety percent reliability, and mean life of each component and the transmission as a system. Here, the program, its input and output files, and the theory behind the operation of the program are described.

  13. 41 CFR 102-33.125 - If we use Federal aircraft, what are our management responsibilities?

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... use Federal aircraft, you are responsible for— (a) Establishing agency-specific Flight Program... accounting for aircraft parts; (e) Reporting inventory, cost, and utilization data (for reporting... and FMR subchapter B (41 CFR chapter 102, subchapter B)....

  14. 41 CFR 102-33.125 - If we use Federal aircraft, what are our management responsibilities?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... use Federal aircraft, you are responsible for— (a) Establishing agency-specific Flight Program... accounting for aircraft parts; (e) Reporting inventory, cost, and utilization data (for reporting... and FMR subchapter B (41 CFR chapter 102, subchapter B)....

  15. Combined dynamic inversion and QFT flight control of an unstable high performance aircraft

    NASA Astrophysics Data System (ADS)

    Stout, Perry Walter

    Quantitative Feedback Theory (QFT) is a control system synthesis, technique that directly considers system uncertainties and disturbance magnitudes when formulating closed-loop control algorithms. Dynamic Inversion is a nonlinear control system design technique that relies on accurate mathematical models to compute control inputs producing arbitrary system responses. Both techniques have been applied to unstable high performance aircraft flight control, and produced effective aircraft controllers. Both techniques have certain drawbacks: Nonlinear QFT controllers tend to be unnecessarily conservative (the computed controllers have excessive bandwidth) because known system properties are treated as "unknown" disturbances during loop synthesis. Meanwhile Dynamic Inversion control is sensitive to differences between assumed mathematical models and actual system dynamic properties. Combining the two control techniques provides the benefit of both while suffering the drawbacks of neither, as demonstrated by Single Input, Single Output (SISO) control of a constant airspeed, no roll, no yaw nonlinear model of the F-16 aircraft, and by Multi-Input, Multi-Output (MIMO) control of a full six-degree-of-freedom version. Design performance of the combined controllers is verified by reduced actuator efforts and by reduced sensor noise to actuator input (U( s)/n(s)) transfer function magnitudes compared to standard QFT versions.

  16. Predictions of F-111 TACT aircraft buffet response

    NASA Technical Reports Server (NTRS)

    Cunningham, Atlee M., Jr.; Coe, Charles F.

    1990-01-01

    A summary is presented for the prediction method development and correlations of predicted response with flight test measurements. The prediction method was based on refinements to the method described by Cunningham. One improvement made use of direct time integration of the correlated fluctuating pressure data to obtain buffet excitation for the various modes of interest. Another improvement incorporated a hybrid technique for scaling measured wind tunnel damping data to full-scale for the modes of interest. A third improvement made use of the diagonalized form of the fully coupled equations of motion. Finally, a mechanism was described for explaining an apparent coupling between the aircraft wing torsion modes and shock induced trailing edge separation that led to very high wing motion on the aircraft that was not observed on the wind tunnel model.

  17. A model and plan for a longitudinal study of community response to aircraft noise

    NASA Technical Reports Server (NTRS)

    Gunn, W. J.; Patterson, H. P.; Cornog, J.; Klaus, P.; Connor, W. K.

    1975-01-01

    A new approach is discussed for the study of the effects of aircraft noise on people who live near large airports. The approach was an outgrowth of a planned study of the reactions of individuals exposed to changing aircraft noise conditions around the Dallas-Ft. Worth (DFW) regional airport. The rationale, concepts, and methods employed in the study are discussed. A critical review of major past studies traces the history of community response research in an effort to identify strengths and limitations of the various approaches and methodologies. A stress-reduction model is presented to provide a framework for studying the dynamics of human response to a changing noise environment. The development of the survey instrument is detailed, and preliminary results of pretest data are discussed.

  18. Simulation of Aircraft Engine Blade-Out Structural Dynamics

    NASA Technical Reports Server (NTRS)

    Lawrence, Charles; Carney, Kelly; Gallardo, Vicente

    2001-01-01

    A primary concern of aircraft structure designers is the accurate simulation of the blade-out event and the subsequent windmilling of the engine. Reliable simulations of the blade-out event are required to insure structural integrity during flight as well as to guarantee successful blade-out certification testing. The system simulation includes the lost blade loadings and the interactions between the rotating turbomachinery and the remaining aircraft structural components. General-purpose finite element structural analysis codes such as MSC NASTRAN are typically used and special provisions are made to include transient effects from the blade loss and rotational effects resulting from the engine's turbomachinery. The present study provides the equations of motion for rotordynamic response including the effect of spooldown speed and rotor unbalance and examines the effects of these terms on a cantilevered rotor. The effect of spooldown speed is found to be greater with increasing spooldown rate. The parametric term resulting from the mass unbalance has a more significant effect on the rotordynamic response than does the spooldown term. The parametric term affects both the peak amplitudes as well as the resonant frequencies of the rotor.

  19. Simulation of Aircraft Engine Blade-Out Structural Dynamics. Revised

    NASA Technical Reports Server (NTRS)

    Lawrence, Charles; Carney, Kelly; Gallardo, Vicente

    2001-01-01

    A primary concern of aircraft structure designers is the accurate simulation of the blade-out event and the subsequent windmilling of the engine. Reliable simulations of the blade-out event are required to insure structural integrity during flight as well as to guarantee successful blade-out certification testing. The system simulation includes the lost blade loadings and the interactions between the rotating turbomachinery and the remaining aircraft structural components. General-purpose finite element structural analysis codes such as MSC NASTRAN are typically used and special provisions are made to include transient effects from the blade loss and rotational effects resulting from the engine's turbomachinery. The present study provides the equations of motion for rotordynamic response including the effect of spooldown speed and rotor unbalance and examines the effects of these terms on a cantilevered rotor. The effect of spooldown speed is found to be greater with increasing spooldown rate. The parametric term resulting from the mass unbalance has a more significant effect on the rotordynamic response than does the spooldown term. The parametric term affects both the peak amplitudes as well as the resonant frequencies of the rotor.

  20. Evaluation of Aircraft Platforms for SOFIA by Computational Fluid Dynamics

    NASA Technical Reports Server (NTRS)

    Klotz, S. P.; Srinivasan, G. R.; VanDalsem, William (Technical Monitor)

    1995-01-01

    The selection of an airborne platform for the Stratospheric Observatory for Infrared Astronomy (SOFIA) is based not only on economic cost, but technical criteria, as well. Technical issues include aircraft fatigue, resonant characteristics of the cavity-port shear layer, aircraft stability, the drag penalty of the open telescope bay, and telescope performance. Recently, two versions of the Boeing 747 aircraft, viz., the -SP and -200 configurations, were evaluated by computational fluid dynamics (CFD) for their suitability as SOFIA platforms. In each configuration the telescope was mounted behind the wings in an open bay with nearly circular aperture. The geometry of the cavity, cavity aperture, and telescope was identical in both platforms. The aperture was located on the port side of the aircraft and the elevation angle of the telescope, measured with respect to the vertical axis, was 500. The unsteady, viscous, three-dimensional, aerodynamic and acoustic flow fields in the vicinity of SOFIA were simulated by an implicit, finite-difference Navier-Stokes flow solver (OVERFLOW) on a Chimera, overset grid system. The computational domain was discretized by structured grids. Computations were performed at wind-tunnel and flight Reynolds numbers corresponding to one free-stream flow condition (M = 0.85, angle of attack alpha = 2.50, and sideslip angle beta = 0 degrees). The computational domains consisted of twenty-nine(29) overset grids in the wind-tunnel simulations and forty-five(45) grids in the simulations run at cruise flight conditions. The maximum number of grid points in the simulations was approximately 4 x 10(exp 6). Issues considered in the evaluation study included analysis of the unsteady flow field in the cavity, the influence of the cavity on the flow across empennage surfaces, the drag penalty caused by the open telescope bay, and the noise radiating from cavity surfaces and the cavity-port shear layer. Wind-tunnel data were also available to compare

  1. Dynamics of tilting proprotor aircraft in cruise flight

    NASA Technical Reports Server (NTRS)

    Johnson, W.

    1974-01-01

    A nine degree-of-freedom theoretical model is developed for investigations of the dynamics of a proprotor operating in high inflow axial flight on a cantilever wing. The basic characteristics of the rotor high inflow aerodynamics and the resulting rotor aeroelastic behavior are discussed. The problems of classical whirl flutter, the two-bladed rotor, and the influence of the proprotor on the stability derivatives of the aircraft are treated briefly. The influence of various elements of the theoretical model is discussed, including the modeling used for the blade and wing aerodynamics, and the influence of the rotor lag degree of freedom. The results from tests of two full-scale proprotors - a gimballed, stiff-inplane rotor and a hingeless, soft-inplane rotor - are presented; comparisons with the theoretical results show good correlation.

  2. Inferring Small Scale Dynamics from Aircraft Measurements of Tracers

    NASA Technical Reports Server (NTRS)

    Sparling, L. C.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    The millions of ER-2 and DC-8 aircraft measurements of long-lived tracers in the Upper Troposphere/Lower Stratosphere (UT/LS) hold enormous potential as a source of statistical information about subgrid scale dynamics. Extracting this information however can be extremely difficult because the measurements are made along a 1-D transect through fields that are highly anisotropic in all three dimensions. Some of the challenges and limitations posed by both the instrumentation and platform are illustrated within the context of the problem of using the data to obtain an estimate of the dissipation scale. This presentation will also include some tutorial remarks about the conditional and two-point statistics used in the analysis.

  3. A simulation study of the flight dynamics of elastic aircraft. Volume 1: Experiment, results and analysis

    NASA Technical Reports Server (NTRS)

    Waszak, Martin R.; Davidson, John B.; Schmidt, David K.

    1987-01-01

    The simulation experiment described addresses the effects of structural flexibility on the dynamic characteristics of a generic family of aircraft. The simulation was performed using the NASA Langley VMS simulation facility. The vehicle models were obtained as part of this research. The simulation results include complete response data and subjective pilot ratings and comments and so allow a variety of analyses. The subjective ratings and analysis of the time histories indicate that increased flexibility can lead to increased tracking errors, degraded handling qualities, and changes in the frequency content of the pilot inputs. These results, furthermore, are significantly affected by the visual cues available to the pilot.

  4. Simulation of Aircraft Landing Gears with a Nonlinear Dynamic Finite Element Code

    NASA Technical Reports Server (NTRS)

    Lyle, Karen H.; Jackson, Karen E.; Fasanella, Edwin L.

    2000-01-01

    Recent advances in computational speed have made aircraft and spacecraft crash simulations using an explicit, nonlinear, transient-dynamic, finite element analysis code more feasible. This paper describes the development of a simple landing gear model, which accurately simulates the energy absorbed by the gear without adding substantial complexity to the model. For a crash model, the landing gear response is approximated with a spring where the force applied to the fuselage is computed in a user-written subroutine. Helicopter crash simulations using this approach are compared with previously acquired experimental data from a full-scale crash test of a composite helicopter.

  5. A simulation study of the flight dynamics of elastic aircraft. Volume 2: Data

    NASA Technical Reports Server (NTRS)

    Waszak, Martin R.; Davidson, John B.; Schmidt, David K.

    1987-01-01

    The simulation experiment described addresses the effects of structural flexibility on the dynamic characteristics of a generic family of aircraft. The simulation was performed using the NASA Langley VMS simulation facility. The vehicle models were obtained as part of this research project. The simulation results include complete response data and subjective pilot ratings and comments and so allow a variety of analyses. The subjective ratings and analysis of the time histories indicate that increased flexibility can lead to increased tracking errors, degraded handling qualities, and changes in the frequency content of the pilot inputs. These results, furthermore, are significantly affected by the visual cues available to the pilot.

  6. Non-linear controls influence functions in an aircraft dynamics simulator

    NASA Astrophysics Data System (ADS)

    Guerreiro, Nelson M.; Hubbard, James E., Jr.; Motter, Mark A.

    2006-03-01

    In the development and testing of novel structural and controls concepts, such as morphing aircraft wings, appropriate models are needed for proper system characterization. In most instances, available system models do not provide the required additional degrees of freedom for morphing structures but may be modified to some extent to achieve a compatible system. The objective of this study is to apply wind tunnel data collected for an Unmanned Air Vehicle (UAV), that implements trailing edge morphing, to create a non-linear dynamics simulator, using well defined rigid body equations of motion, where the aircraft stability derivatives change with control deflection. An analysis of this wind tunnel data, using data extraction algorithms, was performed to determine the reference aerodynamic force and moment coefficients for the aircraft. Further, non-linear influence functions were obtained for each of the aircraft's control surfaces, including the sixteen trailing edge flap segments. These non-linear controls influence functions are applied to the aircraft dynamics to produce deflection-dependent aircraft stability derivatives in a non-linear dynamics simulator. Time domain analysis of the aircraft motion, trajectory, and state histories can be performed using these nonlinear dynamics and may be visualized using a 3-dimensional aircraft model. Linear system models can be extracted to facilitate frequency domain analysis of the system and for control law development. The results of this study are useful in similar projects where trailing edge morphing is employed and will be instrumental in the University of Maryland's continuing study of active wing load control.

  7. Portable device to assess dynamic accuracy of global positioning systems (GPS) receivers used in agricultural aircraft

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A device was designed to test the dynamic accuracy of Global Positioning System (GPS) receivers used in aerial vehicles. The system works by directing a sun-reflected light beam from the ground to the aircraft using mirrors. A photodetector is placed pointing downward from the aircraft and circuitry...

  8. Dynamic ground effects flight test of an F-15 aircraft

    NASA Technical Reports Server (NTRS)

    Corda, Stephen; Stephenson, Mark T.; Burcham, Frank W.; Curry, Robert E.

    1994-01-01

    Flight tests to determine the changes in the aerodynamic characteristics of an F-15 aircraft caused by dynamic ground effects are described. Data were obtained for low and high sink rates between 0.7 and 6.5 ft/sec and at two landing approach speeds and flap settings: 150 kn with the flaps down and 170 kn with the flaps up. Simple correlation curves are given for the change in aerodynamic coefficients because of ground effects as a function of sink rate. Ground effects generally caused an increase in the lift, drag, and nose-down pitching movement coefficients. The change in the lift coefficient increased from approximately 0.05 at the high-sink rate to approximately 0.10 at the low-sink rate. The change in the drag coefficient increased from approximately 0 to 0.03 over this decreasing sink rate range. No significant difference because of the approach configuration was evident for lift and drag; however, a significant difference in pitching movement was observed for the two approach speeds and flap settings. For the 170 kn with the flaps up configuration, the change in the nose-down pitching movement increased from approximately -0.008 to -0.016. For the 150 kn with the flaps down configuration, the change was approximately -0.008 to -0.038.

  9. Characterization, parameter estimation, and aircraft response statistics of atmospheric turbulence

    NASA Technical Reports Server (NTRS)

    Mark, W. D.

    1981-01-01

    A nonGaussian three component model of atmospheric turbulence is postulated that accounts for readily observable features of turbulence velocity records, their autocorrelation functions, and their spectra. Methods for computing probability density functions and mean exceedance rates of a generic aircraft response variable are developed using nonGaussian turbulence characterizations readily extracted from velocity recordings. A maximum likelihood method is developed for optimal estimation of the integral scale and intensity of records possessing von Karman transverse of longitudinal spectra. Formulas for the variances of such parameter estimates are developed. The maximum likelihood and least-square approaches are combined to yield a method for estimating the autocorrelation function parameters of a two component model for turbulence.

  10. Experimental and Numerical Investigation of the Dynamic Seat Comfort in Aircrafts

    NASA Astrophysics Data System (ADS)

    Ciloglu, Hakan

    This research focuses on the dynamic seat comfort in aircrafts specifically during takeoff, landing and cruise through turbulence flight conditions. The experiments are performed using a multi axis shaker table in the Automotive Centre of Excellence (ACE) at the University of Ontario Institute of Technology subjected to sample takeoff, landing and cruise vibration recordings obtained onboard of an actual flight. The input vibrations introduced to the aircraft seats during actual flight conditions and during the experiments in the ACE are compared and it is concluded that the given flight conditions were successfully replicated for the interest of this thesis. The experiments are conducted with two different aircraft seats, economy class and business class. Furthermore, to investigate the importance of seat cushion characteristics in addition to economy and business class seat cushions, three laboratory made cushions were included in the investigation as well. Moreover, the effect of passenger weight is also discussed by conducting the experiments with 1 and 2 identical dummies. It is concluded that static seat properties play a significant role in the comfort perception level as well as flight conditions. Among the three flight condition, landing appeared to be the most uncomfortable case comparing to takeoff and cruise. In addition to experimental work, a numerical study to simulate the flight conditions is undertaken with the initial work of CAD modelling. The simulated responses of the seat is partially matching with experimental results due to unknown parameters of the cushion and the connections of the aircraft seat that cannot be created in the CAD model due to unknown manufacturing processes.

  11. Studies for determining rapid thrust response requirements and techniques for use in a long range transport aircraft

    NASA Technical Reports Server (NTRS)

    Newirth, D. M.; Ferguson, W. W.

    1973-01-01

    Propulsion systems proposed for the next generation of long-range transport aircraft will utilize advanced technology to reduce the noise to levels that will be inoffensive to the community. Additional reductions can be realized by adopting steeper glide slopes during the landing approach. The aircraft dynamic characteristics and methods of obtaining rapid engine response during the go-around maneuver from an aborted landing approach are identified and discussed. The study concludes that the present levels of flight safety will not be compromised by the steeper approach.

  12. Flight Dynamics of Flexible Aircraft with Aeroelastic and Inertial Force Interactions

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan T.; Tuzcu, Ilhan

    2009-01-01

    This paper presents an integrated flight dynamic modeling method for flexible aircraft that captures coupled physics effects due to inertial forces, aeroelasticity, and propulsive forces that are normally present in flight. The present approach formulates the coupled flight dynamics using a structural dynamic modeling method that describes the elasticity of a flexible, twisted, swept wing using an equivalent beam-rod model. The structural dynamic model allows for three types of wing elastic motion: flapwise bending, chordwise bending, and torsion. Inertial force coupling with the wing elasticity is formulated to account for aircraft acceleration. The structural deflections create an effective aeroelastic angle of attack that affects the rigid-body motion of flexible aircraft. The aeroelastic effect contributes to aerodynamic damping forces that can influence aerodynamic stability. For wing-mounted engines, wing flexibility can cause the propulsive forces and moments to couple with the wing elastic motion. The integrated flight dynamics for a flexible aircraft are formulated by including generalized coordinate variables associated with the aeroelastic-propulsive forces and moments in the standard state-space form for six degree-of-freedom flight dynamics. A computational structural model for a generic transport aircraft has been created. The eigenvalue analysis is performed to compute aeroelastic frequencies and aerodynamic damping. The results will be used to construct an integrated flight dynamic model of a flexible generic transport aircraft.

  13. Dynamic response and noise transmission of discretely stiffened composite panels

    NASA Astrophysics Data System (ADS)

    Lyrintzis, Constantinos S.; Vaicatis, Rimas

    The surface protection systems of aerospace and aircraft structures are often constructed from discretely stiffened composite panels. This paper presents an analytical study of the dynamic response and structure-borne sound transmission of these structures due to random loading conditions. A generalized transfer matrix procedure is developed to obtain the required dynamic response solution. Modal decomposition is used to predict the interior noise transmission. Numerical results are presented for acousto-structural applications.

  14. Study of dynamics of X-14B VTOL aircraft

    NASA Technical Reports Server (NTRS)

    Loscutoff, W. V.; Mitchiner, J. L.; Roesener, R. A.; Seevers, J. A.

    1973-01-01

    Research was initiated to investigate certain facets of modern control theory and their integration with a digital computer to provide a tractable flight control system for a VTOL aircraft. Since the hover mode is the most demanding phase in the operation of a VTOL aircraft, the research efforts were concentrated in this mode of aircraft operation. Research work on three different aspects of the operation of the X-14B VTOL aircraft is discussed. A general theory for optimal, prespecified, closed-loop control is developed. The ultimate goal was optimal decoupling of the modes of the VTOL aircraft to simplify the pilot's task of handling the aircraft. Modern control theory is used to design deterministic state estimators which provide state variables not measured directly, but which are needed for state variable feedback control. The effect of atmospheric turbulence on the X-14B is investigated. A maximum magnitude gust envelope within which the aircraft could operate stably with the available control power is determined.

  15. Dynamic Modeling Accuracy Dependence on Errors in Sensor Measurements, Mass Properties, and Aircraft Geometry

    NASA Technical Reports Server (NTRS)

    Grauer, Jared A.; Morelli, Eugene A.

    2013-01-01

    A nonlinear simulation of the NASA Generic Transport Model was used to investigate the effects of errors in sensor measurements, mass properties, and aircraft geometry on the accuracy of dynamic models identified from flight data. Measurements from a typical system identification maneuver were systematically and progressively deteriorated and then used to estimate stability and control derivatives within a Monte Carlo analysis. Based on the results, recommendations were provided for maximum allowable errors in sensor measurements, mass properties, and aircraft geometry to achieve desired levels of dynamic modeling accuracy. Results using other flight conditions, parameter estimation methods, and a full-scale F-16 nonlinear aircraft simulation were compared with these recommendations.

  16. Northrop F-5A aircraft transonic buffet pressure data acquisition and response analysis

    NASA Technical Reports Server (NTRS)

    Hwang, C.; Pi, W. S.

    1975-01-01

    Flight tests were performed on an extensively instrumented F-5A aircraft to investigate the dynamic buffet pressure distribution on the wing surfaces and the responses during a series of transonic maneuvers called the windup turns. The maneuvers were performed at three Mach number-altitude combinations with a constant q of approximately 14,360 N/sq m (300 psf). The fluctuating buffet pressure data at 24 stations on the right wing of the F-5A were acquired by miniaturized semiconductor type pressure transducers mounted on the wing. A new transducer mounting and wiring technique was applied where the interference with the natural flow condition was minimized. The data acquired in this manner were found adequate to trace the shock origin, the movement of the shock front and the development of the separated flow (shock-induced or leading-edge induced) on the wing surface. An analytical procedure, called a 'segmentwise stationary procedure', was introduced to compute the aircraft response spectra based on the measured buffet pressures. The analytical response data computed in this manner are correlated with the test response data obtained in the same flights.

  17. The Effect of Faster Engine Response on the Lateral Directional Control of a Damaged Aircraft

    NASA Technical Reports Server (NTRS)

    May, Ryan D.; Lemon, Kimberly A.; Csank, Jeffrey T.; Litt, Jonathan S.; Guo, Ten-Huei

    2012-01-01

    The integration of flight control and propulsion control has been a much discussed topic, especially for emergencies where the engines may be able to help stabilize and safely land a damaged aircraft. Previous research has shown that for the engines to be effective as flight control actuators, the response time to throttle commands must be improved. Other work has developed control modes that accept a higher risk of engine failure in exchange for improved engine response during an emergency. In this effort, a nonlinear engine model (the Commercial Modular Aero-Propulsion System Simulation 40k) has been integrated with a nonlinear airframe model (the Generic Transport Model) in order to evaluate the use of enhanced-response engines as alternative yaw rate control effectors. Tests of disturbance rejection and command tracking were used to determine the impact of the engines on the aircraft's dynamical behavior. Three engine control enhancements that improve the response time of the engine were implemented and tested in the integrated simulation. The enhancements were shown to increase the engine s effectiveness as a yaw rate control effector when used in an automatic feedback loop. The improvement is highly dependent upon flight condition; the airframe behavior is markedly improved at low altitude, low speed conditions, and relatively unchanged at high altitude, high speed.

  18. Dynamic alarm response procedures

    SciTech Connect

    Martin, J.; Gordon, P.; Fitch, K.

    2006-07-01

    The Dynamic Alarm Response Procedure (DARP) system provides a robust, Web-based alternative to existing hard-copy alarm response procedures. This paperless system improves performance by eliminating time wasted looking up paper procedures by number, looking up plant process values and equipment and component status at graphical display or panels, and maintenance of the procedures. Because it is a Web-based system, it is platform independent. DARP's can be served from any Web server that supports CGI scripting, such as Apache{sup R}, IIS{sup R}, TclHTTPD, and others. DARP pages can be viewed in any Web browser that supports Javascript and Scalable Vector Graphics (SVG), such as Netscape{sup R}, Microsoft Internet Explorer{sup R}, Mozilla Firefox{sup R}, Opera{sup R}, and others. (authors)

  19. A unique facility for V/STOL aircraft hover testing. [Langley Impact Dynamics Research Facility

    NASA Technical Reports Server (NTRS)

    Culpepper, R. G.; Murphy, R. D.; Gillespie, E. A.; Lane, A. G.

    1979-01-01

    The Langley Impact Dynamics Research Facility (IDRF) was modified to obtain static force and moment data and to allow assessment of aircraft handling qualities during dynamic tethered hover flight. Test probe procedures were also established. Static lift and control measurements obtained are presented along with results of limited dynamic tethered hover flight.

  20. A simple dynamic engine model for use in a real-time aircraft simulation with thrust vectoring

    NASA Technical Reports Server (NTRS)

    Johnson, Steven A.

    1990-01-01

    A simple dynamic engine model was developed at the NASA Ames Research Center, Dryden Flight Research Facility, for use in thrust vectoring control law development and real-time aircraft simulation. The simple dynamic engine model of the F404-GE-400 engine (General Electric, Lynn, Massachusetts) operates within the aircraft simulator. It was developed using tabular data generated from a complete nonlinear dynamic engine model supplied by the manufacturer. Engine dynamics were simulated using a throttle rate limiter and low-pass filter. Included is a description of a method to account for axial thrust loss resulting from thrust vectoring. In addition, the development of the simple dynamic engine model and its incorporation into the F-18 high alpha research vehicle (HARV) thrust vectoring simulation. The simple dynamic engine model was evaluated at Mach 0.2, 35,000 ft altitude and at Mach 0.7, 35,000 ft altitude. The simple dynamic engine model is within 3 percent of the steady state response, and within 25 percent of the transient response of the complete nonlinear dynamic engine model.

  1. Probabilistic Modeling of Aircraft Trajectories for Dynamic Separation Volumes

    NASA Technical Reports Server (NTRS)

    Lewis, Timothy A.

    2016-01-01

    With a proliferation of new and unconventional vehicles and operations expected in the future, the ab initio airspace design will require new approaches to trajectory prediction for separation assurance and other air traffic management functions. This paper presents an approach to probabilistic modeling of the trajectory of an aircraft when its intent is unknown. The approach uses a set of feature functions to constrain a maximum entropy probability distribution based on a set of observed aircraft trajectories. This model can be used to sample new aircraft trajectories to form an ensemble reflecting the variability in an aircraft's intent. The model learning process ensures that the variability in this ensemble reflects the behavior observed in the original data set. Computational examples are presented.

  2. The role of computational fluid dynamics (CFD) in aircraft design

    SciTech Connect

    Tinoco, E.N. )

    1990-01-01

    The application of CFD to aircraft design configurations and its influence on the aircraft development and support process is analyzed. Results indicate that combining CFD and the wind tunnel can achieve design solutions that otherwise would not be found, and can also significantly reduce the length of the design cycle. It is concluded that CFD provides for a better understanding of flow physics, achievement of design solutions that are otherwise unobtainable, and reduction of development flowtime.

  3. Creating a Test Validated Structural Dynamic Finite Element Model of the X-56A Aircraft

    NASA Technical Reports Server (NTRS)

    Pak, Chan-Gi; Truong, Samson

    2014-01-01

    Small modeling errors in the finite element model will eventually induce errors in the structural flexibility and mass, thus propagating into unpredictable errors in the unsteady aerodynamics and the control law design. One of the primary objectives of the Multi Utility Technology Test-bed, X-56A aircraft, is the flight demonstration of active flutter suppression, and therefore in this study, the identification of the primary and secondary modes for the structural model tuning based on the flutter analysis of the X-56A aircraft. The ground vibration test-validated structural dynamic finite element model of the X-56A aircraft is created in this study. The structural dynamic finite element model of the X-56A aircraft is improved using a model tuning tool. In this study, two different weight configurations of the X-56A aircraft have been improved in a single optimization run. Frequency and the cross-orthogonality (mode shape) matrix were the primary focus for improvement, while other properties such as center of gravity location, total weight, and offdiagonal terms of the mass orthogonality matrix were used as constraints. The end result was a more improved and desirable structural dynamic finite element model configuration for the X-56A aircraft. Improved frequencies and mode shapes in this study increased average flutter speeds of the X-56A aircraft by 7.6% compared to the baseline model.

  4. Investigations into the triggered lightning response of the F106B thunderstorm research aircraft

    NASA Technical Reports Server (NTRS)

    Rudolph, Terence H.; Perala, Rodney A.; Mckenna, Paul M.; Parker, Steven L.

    1985-01-01

    An investigation has been conducted into the lightning characteristics of the NASA F106B thunderstorm research aircraft. The investigation includes analysis of measured data from the aircraft in the time and frequency domains. Linear and nonlinear computer modelling has also been performed. In addition, new computer tools have been developed, including a new enhanced nonlinear air breakdown model, and a subgrid model useful for analyzing fine details of the aircraft's geometry. Comparison of measured and calculated electromagnetic responses of the aircraft to a triggered lightning environment are presented.

  5. Measuring subjective response to aircraft noise: the effects of survey context.

    PubMed

    Kroesen, Maarten; Molin, Eric J E; van Wee, Bert

    2013-01-01

    In applied research, noise annoyance is often used as indicator of subjective reaction to aircraft noise in residential areas. The present study aims to show that the meaning which respondents attach to the concept of aircraft noise annoyance is partly a function of survey context. To this purpose a survey is conducted among residents living near Schiphol Airport, the largest airport in the Netherlands. In line with the formulated hypotheses it is shown that different sets of preceding questionnaire items influence the response distribution of aircraft noise annoyance as well as the correlational patterns between aircraft noise annoyance and other relevant scales.

  6. Enhanced Airport Capacity Through Safe, Dynamic Reductions in Aircraft Separation: NASA's Aircraft VOrtex Spacing System (AVOSS)

    NASA Technical Reports Server (NTRS)

    OConnor, Cornelius J.; Rutishauser, David K.

    2001-01-01

    An aspect of airport terminal operations that holds potential for efficiency improvements is the separation criteria applied to aircraft for wake vortex avoidance. These criteria evolved to represent safe spacing under weather conditions conducive to the longest wake hazards, and are consequently overly conservative during a significant portion of operations. Under many ambient conditions, such as moderate crosswinds or turbulence, wake hazard durations are substantially reduced. To realize this reduction NASA has developed a proof-of-concept Aircraft Vortex Spacing System (AVOSS). Successfully operated in a real-time field demonstration during July 2000 at the Dallas Ft. Worth International Airport, AVOSS is a novel integration of weather sensors, wake sensors, and analytical wake prediction algorithms. Gains in airport throughput using AVOSS spacing as compared to the current criteria averaged 6%, with peak values approaching the theoretical maximum of 16%. The average throughput gain translates to 15-40% reductions in delay when applied to realistic capacity ratios at major airports.

  7. Response of fall-staging brant and Canada geese to aircraft overflights in southwestern Alaska

    USGS Publications Warehouse

    Ward, D.H.; Stehn, R.A.; Erickson, W.P.; Derksen, D.V.

    1999-01-01

    Because much of the information concerning disturbance of waterfowl by aircraft is anecdotal, we examined behavioral responses of Pacific brant (Branta bernicla nigricans) and Canada geese (B. canadensis taverneri) to experimental overflights during fall staging at Izembek Lagoon, Alaska. These data were used to develop predictive models of brant and Canada goose response to aircraft altitude, type, noise, and lateral distance from flocks. Overall, 75% of brant flocks and 9% of Canada goose flocks flew in response to overflights. Mean flight and alert responses of both species were greater for rotary-wing than for fixed-wing aircraft and for high-noise than for low-noise aircraft. Increased lateral distance between an aircraft and a flock was the most consistent predictive parameter associated with lower probability of a response by geese. Altitude was a less reliable predictor because of interaction effects with aircraft type and noise. Although mean response of brant and Canada geese generally was inversely proportional to aircraft altitude, greatest response occurred at intermediate (305-760 m) altitudes. At Izembek Lagoon and other areas where there are large concentrations of waterfowl, managers should consider lateral distance from the birds as the primary criterion for establishing local flight restrictions, especially for helicopters.

  8. Modeling XV-15 tilt-rotor aircraft dynamics by frequency and time-domain identification techniques

    NASA Technical Reports Server (NTRS)

    Tischler, Mark B.; Kaletka, Juergen

    1986-01-01

    Models of the open-loop hover dynamics of the XV-15 Tilt-Rotor Aircraft are extracted from flight data using two approaches: frequency-domain and time-domain identification. Both approaches are reviewed and the identification results are presented and compared in detail. The extracted models compare favorable, with the differences associated mostly with the inherent weighting of each technique. Step responses are used to show that the predictive capability of the models from both techniques is excellent. Based on the results of this study, the relative strengths and weaknesses of the frequency- and time-domain techniques are summarized, and a proposal for a coordinated parameter identification approach is presented.

  9. Non-linear controls influence functions in an aircraft dynamics simulator

    NASA Technical Reports Server (NTRS)

    Guerreiro, Nelson M.; Hubbard, James E., Jr.; Motter, Mark A.

    2006-01-01

    In the development and testing of novel structural and controls concepts, such as morphing aircraft wings, appropriate models are needed for proper system characterization. In most instances, available system models do not provide the required additional degrees of freedom for morphing structures but may be modified to some extent to achieve a compatible system. The objective of this study is to apply wind tunnel data collected for an Unmanned Air Vehicle (UAV), that implements trailing edge morphing, to create a non-linear dynamics simulator, using well defined rigid body equations of motion, where the aircraft stability derivatives change with control deflection. An analysis of this wind tunnel data, using data extraction algorithms, was performed to determine the reference aerodynamic force and moment coefficients for the aircraft. Further, non-linear influence functions were obtained for each of the aircraft s control surfaces, including the sixteen trailing edge flap segments. These non-linear controls influence functions are applied to the aircraft dynamics to produce deflection-dependent aircraft stability derivatives in a non-linear dynamics simulator. Time domain analysis of the aircraft motion, trajectory, and state histories can be performed using these nonlinear dynamics and may be visualized using a 3-dimensional aircraft model. Linear system models can be extracted to facilitate frequency domain analysis of the system and for control law development. The results of this study are useful in similar projects where trailing edge morphing is employed and will be instrumental in the University of Maryland s continuing study of active wing load control.

  10. Aircraft landing response in a discrete multipath environment

    NASA Technical Reports Server (NTRS)

    Guarino, C. R.

    1975-01-01

    This paper considers the problem of discrete multipath reflections upon an aircraft in the landing phase. A model is developed for the communication channel for a typical receiver. Simulation studies are presented showing the effects of discrete multipath upon the aircraft's ability to follow a specified flight path. A development is presented for the analytical determination of the probability density function of the angular errors.

  11. Experimental and analytical determination of characteristics affecting light aircraft landing-gear dynamics

    NASA Technical Reports Server (NTRS)

    Fasanella, E. L.; Mcgehee, J. R.; Pappas, M. S.

    1977-01-01

    An experimental and analytical investigation was conducted to determine which characteristics of a light aircraft landing gear influence gear dynamic behavior significantly. The investigation focused particularly on possible modification for load control. Pseudostatic tests were conducted to determine the gear fore-and-aft spring constant, axial friction as a function of drag load, brake pressure-torque characteristics, and tire force-deflection characteristics. To study dynamic tire response, vertical drops were conducted at impact velocities of 1.2, 1.5, and 1.8 m/s onto a level surface; to determine axial-friction effects, a second series of vertical drops were made at 1.5 m/s onto surfaces inclined 5 deg and 10 deg to the horizontal. An average dynamic axial-friction coefficient of 0.15 was obtained by comparing analytical data with inclined surface drop test data. Dynamic strut bending and associated axial friction were found to be severe for the drop tests on the 10 deg surface.

  12. 41 CFR 102-33.345 - What are a State agency's responsibilities in the donation of Federal Government aircraft parts?

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...'s responsibilities in the donation of Federal Government aircraft parts? 102-33.345 Section 102-33...) FEDERAL MANAGEMENT REGULATION PERSONAL PROPERTY 33-MANAGEMENT OF GOVERNMENT AIRCRAFT Disposing of... responsibilities in the donation of Federal Government aircraft parts? When a State agency accepts surplus...

  13. 41 CFR 102-33.345 - What are a State agency's responsibilities in the donation of Federal Government aircraft parts?

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...'s responsibilities in the donation of Federal Government aircraft parts? 102-33.345 Section 102-33...) FEDERAL MANAGEMENT REGULATION PERSONAL PROPERTY 33-MANAGEMENT OF GOVERNMENT AIRCRAFT Disposing of... responsibilities in the donation of Federal Government aircraft parts? When a State agency accepts surplus...

  14. 41 CFR 102-33.345 - What are a State agency's responsibilities in the donation of Federal Government aircraft parts?

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...'s responsibilities in the donation of Federal Government aircraft parts? 102-33.345 Section 102-33...) FEDERAL MANAGEMENT REGULATION PERSONAL PROPERTY 33-MANAGEMENT OF GOVERNMENT AIRCRAFT Disposing of... responsibilities in the donation of Federal Government aircraft parts? When a State agency accepts surplus...

  15. 41 CFR 102-33.345 - What are a State agency's responsibilities in the donation of Federal Government aircraft parts?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...'s responsibilities in the donation of Federal Government aircraft parts? 102-33.345 Section 102-33...) FEDERAL MANAGEMENT REGULATION PERSONAL PROPERTY 33-MANAGEMENT OF GOVERNMENT AIRCRAFT Disposing of... responsibilities in the donation of Federal Government aircraft parts? When a State agency accepts surplus...

  16. 41 CFR 102-33.345 - What are a State agency's responsibilities in the donation of Federal Government aircraft parts?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...'s responsibilities in the donation of Federal Government aircraft parts? 102-33.345 Section 102-33...) FEDERAL MANAGEMENT REGULATION PERSONAL PROPERTY 33-MANAGEMENT OF GOVERNMENT AIRCRAFT Disposing of... responsibilities in the donation of Federal Government aircraft parts? When a State agency accepts surplus...

  17. Airport take-off noise assessment aimed at identify responsible aircraft classes.

    PubMed

    Sanchez-Perez, Luis A; Sanchez-Fernandez, Luis P; Shaout, Adnan; Suarez-Guerra, Sergio

    2016-01-15

    Assessment of aircraft noise is an important task of nowadays airports in order to fight environmental noise pollution given the recent discoveries on the exposure negative effects on human health. Noise monitoring and estimation around airports mostly use aircraft noise signals only for computing statistical indicators and depends on additional data sources so as to determine required inputs such as the aircraft class responsible for noise pollution. In this sense, the noise monitoring and estimation systems have been tried to improve by creating methods for obtaining more information from aircraft noise signals, especially real-time aircraft class recognition. Consequently, this paper proposes a multilayer neural-fuzzy model for aircraft class recognition based on take-off noise signal segmentation. It uses a fuzzy inference system to build a final response for each class p based on the aggregation of K parallel neural networks outputs Op(k) with respect to Linear Predictive Coding (LPC) features extracted from K adjacent signal segments. Based on extensive experiments over two databases with real-time take-off noise measurements, the proposed model performs better than other methods in literature, particularly when aircraft classes are strongly correlated to each other. A new strictly cross-checked database is introduced including more complex classes and real-time take-off noise measurements from modern aircrafts. The new model is at least 5% more accurate with respect to previous database and successfully classifies 87% of measurements in the new database.

  18. Airport take-off noise assessment aimed at identify responsible aircraft classes.

    PubMed

    Sanchez-Perez, Luis A; Sanchez-Fernandez, Luis P; Shaout, Adnan; Suarez-Guerra, Sergio

    2016-01-15

    Assessment of aircraft noise is an important task of nowadays airports in order to fight environmental noise pollution given the recent discoveries on the exposure negative effects on human health. Noise monitoring and estimation around airports mostly use aircraft noise signals only for computing statistical indicators and depends on additional data sources so as to determine required inputs such as the aircraft class responsible for noise pollution. In this sense, the noise monitoring and estimation systems have been tried to improve by creating methods for obtaining more information from aircraft noise signals, especially real-time aircraft class recognition. Consequently, this paper proposes a multilayer neural-fuzzy model for aircraft class recognition based on take-off noise signal segmentation. It uses a fuzzy inference system to build a final response for each class p based on the aggregation of K parallel neural networks outputs Op(k) with respect to Linear Predictive Coding (LPC) features extracted from K adjacent signal segments. Based on extensive experiments over two databases with real-time take-off noise measurements, the proposed model performs better than other methods in literature, particularly when aircraft classes are strongly correlated to each other. A new strictly cross-checked database is introduced including more complex classes and real-time take-off noise measurements from modern aircrafts. The new model is at least 5% more accurate with respect to previous database and successfully classifies 87% of measurements in the new database. PMID:26540603

  19. Dependence of Dynamic Modeling Accuracy on Sensor Measurements, Mass Properties, and Aircraft Geometry

    NASA Technical Reports Server (NTRS)

    Grauer, Jared A.; Morelli, Eugene A.

    2013-01-01

    The NASA Generic Transport Model (GTM) nonlinear simulation was used to investigate the effects of errors in sensor measurements, mass properties, and aircraft geometry on the accuracy of identified parameters in mathematical models describing the flight dynamics and determined from flight data. Measurements from a typical flight condition and system identification maneuver were systematically and progressively deteriorated by introducing noise, resolution errors, and bias errors. The data were then used to estimate nondimensional stability and control derivatives within a Monte Carlo simulation. Based on these results, recommendations are provided for maximum allowable errors in sensor measurements, mass properties, and aircraft geometry to achieve desired levels of dynamic modeling accuracy. Results using additional flight conditions and parameter estimation methods, as well as a nonlinear flight simulation of the General Dynamics F-16 aircraft, were compared with these recommendations

  20. Effects of Inertial and Geometric Nonlinearities in the Simulation of Flexible Aircraft Dynamics

    NASA Astrophysics Data System (ADS)

    Bun Tse, Bosco Chun

    This thesis examines the relative importance of the inertial and geometric nonlinearities in modelling the dynamics of a flexible aircraft. Inertial nonlinearities are derived by employing an exact definition of the velocity distribution and lead to coupling between the rigid body and elastic motions. The geometric nonlinearities are obtained by applying nonlinear theory of elasticity to the deformations. Peters' finite state unsteady aerodynamic model is used to evaluate the aerodynamic forces. Three approximate models obtained by excluding certain combinations of nonlinear terms are compared with that of the complete dynamics equations to obtain an indication of which terms are required for an accurate representation of the flexible aircraft behavior. A generic business jet model is used for the analysis. The results indicate that the nonlinear terms have a significant effect for more flexible aircraft, especially the geometric nonlinearities which leads to increased damping in the dynamics.

  1. Flight Dynamics Modeling and Simulation of a Damaged Transport Aircraft

    NASA Technical Reports Server (NTRS)

    Shah, Gautam H.; Hill, Melissa A.

    2012-01-01

    A study was undertaken at NASA Langley Research Center to establish, demonstrate, and apply methodology for modeling and implementing the aerodynamic effects of MANPADS damage to a transport aircraft into real-time flight simulation, and to demonstrate a preliminary capability of using such a simulation to conduct an assessment of aircraft survivability. Key findings from this study include: superpositioning of incremental aerodynamic characteristics to the baseline simulation aerodynamic model proved to be a simple and effective way of modeling damage effects; the primary effect of wing damage rolling moment asymmetry may limit minimum airspeed for adequate controllability, but this can be mitigated by the use of sideslip; combined effects of aerodynamics, control degradation, and thrust loss can result in significantly degraded controllability for a safe landing; and high landing speeds may be required to maintain adequate control if large excursions from the nominal approach path are allowed, but high-gain pilot control during landing can mitigate this risk.

  2. Computational Fluid Dynamics of Whole-Body Aircraft

    NASA Astrophysics Data System (ADS)

    Agarwal, Ramesh

    1999-01-01

    The current state of the art in computational aerodynamics for whole-body aircraft flowfield simulations is described. Recent advances in geometry modeling, surface and volume grid generation, and flow simulation algorithms have led to accurate flowfield predictions for increasingly complex and realistic configurations. As a result, computational aerodynamics has emerged as a crucial enabling technology for the design and development of flight vehicles. Examples illustrating the current capability for the prediction of transport and fighter aircraft flowfields are presented. Unfortunately, accurate modeling of turbulence remains a major difficulty in the analysis of viscosity-dominated flows. In the future, inverse design methods, multidisciplinary design optimization methods, artificial intelligence technology, and massively parallel computer technology will be incorporated into computational aerodynamics, opening up greater opportunities for improved product design at substantially reduced costs.

  3. Optimal input design for aircraft parameter estimation using dynamic programming principles

    NASA Technical Reports Server (NTRS)

    Klein, Vladislav; Morelli, Eugene A.

    1990-01-01

    A new technique was developed for designing optimal flight test inputs for aircraft parameter estimation experiments. The principles of dynamic programming were used for the design in the time domain. This approach made it possible to include realistic practical constraints on the input and output variables. A description of the new approach is presented, followed by an example for a multiple input linear model describing the lateral dynamics of a fighter aircraft. The optimal input designs produced by the new technique demonstrated improved quality and expanded capability relative to the conventional multiple input design method.

  4. Optimal Input Design for Aircraft Parameter Estimation using Dynamic Programming Principles

    NASA Technical Reports Server (NTRS)

    Morelli, Eugene A.; Klein, Vladislav

    1990-01-01

    A new technique was developed for designing optimal flight test inputs for aircraft parameter estimation experiments. The principles of dynamic programming were used for the design in the time domain. This approach made it possible to include realistic practical constraints on the input and output variables. A description of the new approach is presented, followed by an example for a multiple input linear model describing the lateral dynamics of a fighter aircraft. The optimal input designs produced by the new technique demonstrated improved quality and expanded capability relative to the conventional multiple input design method.

  5. Longitudinal control of aircraft dynamics based on optimization of PID parameters

    NASA Astrophysics Data System (ADS)

    Deepa, S. N.; Sudha, G.

    2016-03-01

    Recent years many flight control systems and industries are employing PID controllers to improve the dynamic behavior of the characteristics. In this paper, PID controller is developed to improve the stability and performance of general aviation aircraft system. Designing the optimum PID controller parameters for a pitch control aircraft is important in expanding the flight safety envelope. Mathematical model is developed to describe the longitudinal pitch control of an aircraft. The PID controller is designed based on the dynamic modeling of an aircraft system. Different tuning methods namely Zeigler-Nichols method (ZN), Modified Zeigler-Nichols method, Tyreus-Luyben tuning, Astrom-Hagglund tuning methods are employed. The time domain specifications of different tuning methods are compared to obtain the optimum parameters value. The results prove that PID controller tuned by Zeigler-Nichols for aircraft pitch control dynamics is better in stability and performance in all conditions. Future research work of obtaining optimum PID controller parameters using artificial intelligence techniques should be carried out.

  6. Effect of mass variation on the dynamics of receiver aircraft during aerial refueling

    NASA Astrophysics Data System (ADS)

    Mao, Weixin

    This dissertation presents the results of a study of the dynamic behavior of two aircraft that are flying in formation while one of them (the receiver) is being refueled by the other (the tanker) in mid-flight. The current procedure for aerial refueling requires that the receiver aircraft fly below, behind, and in relatively close proximity of the tanker for refueling to be possible. This means that the receiver aircraft is subjected to the full impact of the tanker wake turbulence; and this can clearly have a major impact on the motion of the receiver craft. Another important fact about aerial refueling is that large quantity of fuel is transferred from one vehicle to the other in a relatively short time. The resulting change in mass and the attendant change in aircraft inertia properties can also affect the dynamics of the aircraft system during fuel transfer. The principal goal of this project is to investigate the importance of this latter effect. This work accomplishes two main objectives. First, it shows how mass variation can be effectively factored into an analytical study of in-flight refueling; and it does this while keeping the analyses involved manageable. In addition, a numerical study of the equations of motion is utilized to extract useful information on how mass variation and some changes in receiver aircraft parameters can affect the motion of the receiver relative to the tanker. Results obtained indicate that mass variation due to fuel transfer compounds the difficulties created by tanker wake turbulence. In order to keep the receiver aircraft at a fixed position relative to the tanker during aerial refueling, appreciable adjustments must be made to the receiver's angle of attack, throttle setting and elevator deflection. A larger refueling rate demands even larger adjustments. Changes in certain other parameters related to aerial refueling can also amplify the effects of mass variation on the receiver motion, or influence the system's dynamics in

  7. Validation of Methodology for Estimating Aircraft Unsteady Aerodynamic Parameters from Dynamic Wind Tunnel Tests

    NASA Technical Reports Server (NTRS)

    Murphy, Patrick C.; Klein, Vladislav

    2003-01-01

    A basic problem in flight dynamics is the mathematical formulation of the aerodynamic model for aircraft. This study is part of an ongoing effort at NASA Langley to develop a more general formulation of the aerodynamic model for aircraft that includes nonlinear unsteady aerodynamics and to develop appropriate test techniques that facilitate identification of these models. A methodology for modeling and testing using wide-band inputs to estimate the unsteady form of the aircraft aerodynamic model was developed previously but advanced test facilities were not available at that time to allow complete validation of the methodology. The new model formulation retained the conventional static and rotary dynamic terms but replaced conventional acceleration terms with more general indicial functions. In this study advanced testing techniques were utilized to validate the new methodology for modeling. Results of static, conventional forced oscillation, wide-band forced oscillation, oscillatory coning, and ramp tests are presented.

  8. Analysis of flexible aircraft longitudinal dynamics and handling qualities. Volume 1: Analysis methods

    NASA Technical Reports Server (NTRS)

    Waszak, M. R.; Schmidt, D. S.

    1985-01-01

    As aircraft become larger and lighter due to design requirements for increased payload and improved fuel efficiency, they will also become more flexible. For highly flexible vehicles, the handling qualities may not be accurately predicted by conventional methods. This study applies two analysis methods to a family of flexible aircraft in order to investigate how and when structural (especially dynamic aeroelastic) effects affect the dynamic characteristics of aircraft. The first type of analysis is an open loop model analysis technique. This method considers the effects of modal residue magnitudes on determining vehicle handling qualities. The second method is a pilot in the loop analysis procedure that considers several closed loop system characteristics. Volume 1 consists of the development and application of the two analysis methods described above.

  9. Method and System for Dynamic Automated Corrections to Weather Avoidance Routes for Aircraft in En Route Airspace

    NASA Technical Reports Server (NTRS)

    McNally, B. David (Inventor); Erzberger, Heinz (Inventor); Sheth, Kapil (Inventor)

    2015-01-01

    A dynamic weather route system automatically analyzes routes for in-flight aircraft flying in convective weather regions and attempts to find more time and fuel efficient reroutes around current and predicted weather cells. The dynamic weather route system continuously analyzes all flights and provides reroute advisories that are dynamically updated in real time while the aircraft are in flight. The dynamic weather route system includes a graphical user interface that allows users to visualize, evaluate, modify if necessary, and implement proposed reroutes.

  10. Integrated Approach to the Dynamics and Control of Maneuvering Flexible Aircraft

    NASA Technical Reports Server (NTRS)

    Waszak, Martin R. (Technical Monitor); Meirovitch, Leonard; Tuzcu, Ilhan

    2003-01-01

    This work uses a fundamental approach to the problem of simulating the flight of flexible aircraft. To this end, it integrates into a single formulation the pertinent disciplines, namely, analytical dynamics, structural dynamics, aerodynamics, and controls. It considers both the rigid body motions of the aircraft, three translations (forward motion, sideslip and plunge) and three rotations (roll, pitch and yaw), and the elastic deformations of every point of the aircraft, as well as the aerodynamic, propulsion, gravity and control forces. The equations of motion are expressed in a form ideally suited for computer processing. A perturbation approach yields a flight dynamics problem for the motions of a quasi-rigid aircraft and an 'extended aeroelasticity' problem for the elastic deformations and perturbations in the rigid body motions, with the solution of the first problem entering as an input into the second problem. The control forces for the flight dynamics problem are obtained by an 'inverse' process and the feedback controls for the extended aeroservoelasticity problem are determined by the LQG theory. A numerical example presents time simulations of rigid body perturbations and elastic deformations about 1) a steady level flight and 2) a level steady turn maneuver.

  11. Dynamic ground effects flight test of the NASA F-15 aircraft

    NASA Technical Reports Server (NTRS)

    Corda, Stephen

    1995-01-01

    Aerodynamic characteristics of an aircraft may significantly differ when flying close to the ground rather than when flying up and away. Recent research has also determined that dynamic effects (i.e., sink rate) influence ground effects (GE). A ground effects flight test program of the F-15 aircraft was conducted to support the propulsion controlled aircraft (PCA) program at the NASA Dryden Flight Research Center. Flight data was collected for 24 landings on seven test flights. Dynamic ground effects data were obtained for low- and high-sink rates, between 0.8 and 6.5 ft/sec, at two approach speed and flap combinations. These combinations consisted of 150 kt with the flaps down (30 deg deflection) and 170 kt with the flaps up (0 deg deflection), both with the inlet ramps in the full-up position. The aerodynamic coefficients caused by ground effects were estimated from the flight data. These ground effects data were correlated with the aircraft speed, flap setting, and sink rate. Results are compared to previous flight test and wind-tunnel ground effects data for various wings and for complete aircraft.

  12. Annoyance responses to stable and changing aircraft noise exposure.

    PubMed

    Brink, Mark; Wirth, Katja E; Schierz, Christoph; Thomann, Georg; Bauer, Georg

    2008-11-01

    This article reports the two extensive aircraft noise annoyance surveys subsequently carried out among residents in the vicinity of Zurich Airport in 2001 and 2003 in order to update and validate existing exposure-effect relationships for aircraft noise and annoyance in Switzerland. Logistic and polynomial approximations of the exposure-annoyance relationships for both the years 2001 and 2003 are presented for the L(dn), L(den), and L(A,eq24) noise metrics. The results confirm other recently published international research and provide further evidence that community annoyance due to aircraft noise has increased over the past decades. Between the two survey years, a considerable amount of early morning and late evening flight operations have been relocated to use an other runway than before; thus both the effects of a recent step decrease and recent step increase on the exposure-annoyance relationship could be investigated. Residents that experienced a step increase elicited a quite pronounced over-reaction of annoyance which correlated with the magnitude of the change. Two logistic regression models are provided to forecast the effects of changes in exposure during shoulder hours in the early morning and the late evening.

  13. Gust response of commercial jet aircraft including effects of autopilot operation

    NASA Technical Reports Server (NTRS)

    Goldberg, J. H.

    1982-01-01

    A simplified theory of aircraft vertical acceleration gust response based on a model including pitch, vertical displacement and control motions due to autopilot operation is presented. High-order autopilot transfer functions are utilized for improved accuracy in the determination of the overall response characteristics. Four representative commercial jet aircraft were studied over a wide range of operating conditions and comparisons of individual responses are given. It is shown that autopilot operation relative to the controls fixed case causes response attenuation of from 10 percent to approximately 25 percent depending on flight condition and increases in crossing number up to 30 percent, with variations between aircraft of from 5 percent to 10 percent, in general, reflecting the differences in autopilot design. A detailed computer program description and listing of the calculation procedure suitable for the general application of the theory to any airplane autopilot combination is also included.

  14. Application of dynamic fracture mechanics to the investigation of catastrophic failure in aircraft structures

    NASA Astrophysics Data System (ADS)

    Chow, Benjamin Bin

    A dynamic fracture mechanics approach to the estimation of the residual strength of aircraft structures is presented. The dependence of the dynamic crack initiation toughness of aluminum 2024-T3 on loading rate is first studied experimentally. Based on the experimental results and on established dynamic fracture mechanic concepts, a fracture mechanics based failure model is established and is used to estimate the residual strength of aircraft structures. A methodology to determine residual strength of dynamically loaded structures based on global structural analysis coupled with local finite element analysis is introduced. Local finite element calculations were performed for different loading rates to simulate the conditions encountered in an explosively loaded aircraft fuselage. The results from the analyses were then used in conjunction with the experimental results for the dynamic fracture toughness of a 2024-T3 aluminum alloy as a function of loading rate, KdIC vs. K˙d(t), to determine the time to failure, tf, for a given loading rate. A failure envelope, sf vs. ṡ , based on the failure model and finite element analysis, is presented for the different cases and the implications for the residual strength of aircraft structures is discussed. Mixed mode dynamic crack initiation in aluminum 2024-T3 alloy is investigated by combining experiments with numerical simulations. The optical technique of coherent gradient sensing (CGS) and a strain gage method are employed to study the evolution of the mixed mode stress intensity factors. The dynamic mixed mode failure envelope is obtained using the crack initiation data from the experiments at a nominal loading rate of 7 x 105 MPam/s . Numerical simulations of the experiments are conducted to both help in designing the experiments and to validate the results of the experiments. The numerical simulations show good correlation with the experimental results.

  15. Modeling the Effects of Aircraft Emissions on Atmospheric Photochemistry Using Layered Plume Dynamics

    NASA Astrophysics Data System (ADS)

    Cameron, M. A.; Jacobson, M. Z.; Naiman, A. D.; Lele, S. K.

    2012-12-01

    Aviation is an expanding industry, experiencing continued growth and playing an increasingly noticed role in upper tropospheric/lower stratospheric composition. Nitrogen oxides and other gas-phase emissions from aircraft react to affect ozone photochemistry. This research investigates the effects of treating aircraft gas-phase chemistry within an expanding layered plume versus at the grid scale. SMVGEAR II, a sparse-matrix, vectorized Gear-type solver for ordinary differential equations, is used to solve chemical equations at both the grid scale and subgrid scale. A Subgrid Plume Model (SPM) is used to advance the expanding plume, accounting for wind shear and diffusion. Simulations suggest that using a layered plume approach results in noticeably different final NOx concentrations, demonstrating the importance of these plume dynamics in predicting the effects of aircraft on ozone concentrations. Results showing the effects of a layered plume, single plume, and no plume on ozone after several hours will be presented.

  16. Subjective responses to aircraft noise in an outdoor recreational setting: a combined field and laboratory study

    NASA Astrophysics Data System (ADS)

    Aasvang, G. M.; Engdahl, B.

    2004-09-01

    The knowledge about human perception of noise in outdoor recreational areas is limited. The aim of the present study was to study the relationship between different noise indicators and subjective responses to aircraft noise, aiming at developing applicable noise indicators in areas for recreational purposes. The perception of aircraft noise was investigated in a combined field and laboratory approach. The partially controlled outdoor field study was conducted in a recreational area close to Fornebu airport, the main airport in Oslo (until August 1998). A group of subjects were asked to score their perceived annoyance and acceptability of actual flyovers during a 50 min session as well as the total annoyance for the whole session. The subjects were later presented to the same aircraft noises, as recorded during the field session, in a laboratory experiment simulating outdoor exposure. Subjects exposed both in field and laboratory responded similarly under both conditions. In both test situations a high correlation was found between different noise indices, as well as between all noise indices and responses to single events. A significant relation was found between the number of aircraft noise events judged as "not acceptable" and the total annoyance response. The present observations showed a correspondence between subjective responses to aircraft noise, both immediate and total judgements, and personal attitudes towards the noise source, but not with self reported noise sensitivity.

  17. Modal analysis of sailplane and transport aircraft wings using the dynamic stiffness method

    NASA Astrophysics Data System (ADS)

    Banerjee, J. R.

    2016-05-01

    The purpose of this paper is to provide theory, results, discussion and conclusions arising from an in-depth investigation on the modal behaviour of high aspect ratio aircraft wings. The illustrative examples chosen are representative of sailplane and transport airliner wings. To achieve this objective, the dynamic stiffness method of modal analysis is used. The wing is represented by a series of dynamic stiffness elements of bending-torsion coupled beams which are assembled to form the overall dynamic stiffness matrix of the complete wing. With cantilever boundary condition applied at the root, the eigenvalue problem is formulated and finally solved with the help of the Wittrick-Williams algorithm to yield the eigenvalues and eigenmodes which are essentially the natural frequencies and mode shapes of the wing. Results for wings of two sailplanes and four transport aircraft are discussed and finally some conclusions are drawn

  18. Incident-response monitoring technologies for aircraft cabin air quality

    NASA Astrophysics Data System (ADS)

    Magoha, Paul W.

    Poor air quality in commercial aircraft cabins can be caused by volatile organophosphorus (OP) compounds emitted from the jet engine bleed air system during smoke/fume incidents. Tri-cresyl phosphate (TCP), a common anti-wear additive in turbine engine oils, is an important component in today's global aircraft operations. However, exposure to TCP increases risks of certain adverse health effects. This research analyzed used aircraft cabin air filters for jet engine oil contaminants and designed a jet engine bleed air simulator (BAS) to replicate smoke/fume incidents caused by pyrolysis of jet engine oil. Field emission scanning electron microscopy (FESEM) with X-ray energy dispersive spectroscopy (EDS) and neutron activation analysis (NAA) were used for elemental analysis of filters, and gas chromatography interfaced with mass spectrometry (GC/MS) was used to analyze used filters to determine TCP isomers. The filter analysis study involved 110 used and 90 incident filters. Clean air filter samples exposed to different bleed air conditions simulating cabin air contamination incidents were also analyzed by FESEM/EDS, NAA, and GC/MS. Experiments were conducted on a BAS at various bleed air conditions typical of an operating jet engine so that the effects of temperature and pressure variations on jet engine oil aerosol formation could be determined. The GC/MS analysis of both used and incident filters characterized tri- m-cresyl phosphate (TmCP) and tri-p-cresyl phosphate (TpCP) by a base peak of an m/z = 368, with corresponding retention times of 21.9 and 23.4 minutes. The hydrocarbons in jet oil were characterized in the filters by a base peak pattern of an m/z = 85, 113. Using retention times and hydrocarbon thermal conductivity peak (TCP) pattern obtained from jet engine oil standards, five out of 110 used filters tested had oil markers. Meanwhile 22 out of 77 incident filters tested positive for oil fingerprints. Probit analysis of jet engine oil aerosols obtained

  19. A pilot study of human response to general aviation aircraft noise

    NASA Technical Reports Server (NTRS)

    Stearns, J.; Brown, R.; Neiswander, P.

    1983-01-01

    A pilot study, conducted to evaluate procedures for measuring the noise impact and community response to general aviation aircraft around Torrance Municipal Airport, a typical large GA airport, employed Torrance Airport's computer-based aircraft noise monitoring system, which includes nine permanent monitor stations surrounding the airport. Some 18 residences near these monitor stations were equipped with digital noise level recorders to measure indoor noise levels. Residents were instructed to fill out annoyance diaries for periods of 5-6 days, logging the time of each annoying aircraft overflight noise event and judging its degree of annoyance on a seven-point scale. Among the noise metrics studied, the differential between outdoor maximum A-weighted noise level of the aircraft and the outdoor background level showed the best correlation with annoyance; this correlation was clearly seen at only high noise levels, And was only slightly better than that using outdoor aircraft noise level alone. The results indicate that, on a national basis, a telephone survey coupled with outdoor noise measurements would provide an efficient and practical means of assessing the noise impact of general aviation aircraft.

  20. Continuation Methods for Qualitative Analysis of Aircraft Dynamics

    NASA Technical Reports Server (NTRS)

    Cummings, Peter A.

    2004-01-01

    A class of numerical methods for constructing bifurcation curves for systems of coupled, non-linear ordinary differential equations is presented. Foundations are discussed, and several variations are outlined along with their respective capabilities. Appropriate background material from dynamical systems theory is presented.

  1. Aircraft motion and passenger comfort response data from TIFS ride-quality flight experiments

    NASA Technical Reports Server (NTRS)

    Schoonover, W. E., Jr.

    1976-01-01

    The aircraft motion data and passenger comfort response data obtained during ride-quality flight experiments using the USAD Total In-Flight Simulator (TIFS) are given. During each of 40 test flights, 10 passenger subjects individually assessed the ride comfort of various types of aircraft motions. The 115 individuals who served as passenger subjects were selected to be representative of air travelers in general. Aircraft motions tested consisted of both random and sinusoidal oscillations in various combinations of five degrees of freedom (transverse, normal, roll, pitch, and yaw), as well as of terminal-area flight maneuvers. The data are sufficiently detailed to allow analysis of passenger reactions to flight environments, evaluation of the use of a portable environment measuring/recording system and comparison of the in-flight simulator responses with input commands.

  2. Effects of three activities on annoyance responses to recorded flyovers. [human tolerance of jet aircraft noise

    NASA Technical Reports Server (NTRS)

    Gunn, W. J.; Shepherd, W. T.; Fletcher, J. L.

    1975-01-01

    Human subjects participated in an experiment in which they were engaged in TV viewing, telephone listening, or reverie (no activity) for a 1/2-hour session. During the session, they were exposed to a series of recorded aircraft sounds at the rate of one flight every 2 minutes. At each session, four levels of flyover noise, separated by 5 db increments were presented several times in a Latin Square balanced sequence. The peak levels of the noisiest flyover in any session was fixed at 95, 90, 85, 75, or 70 db. At the end of the test session, subjects recorded their responses to the aircraft sounds, using a bipolar scale which covered the range from very pleasant to extremely annoying. Responses to aircraft noises are found to be significantly affected by the particular activity in which the subjects are engaged.

  3. Oculogravic illusion in response to straight-ahead acceleration of a CF-104 aircraft

    NASA Technical Reports Server (NTRS)

    Graybiel, A.; Jennings, G. L.; Johnson, W. H.; Money, K. E.; Malcolm, R. E.

    1979-01-01

    Experimental subjects wore goggles that restricted monocular vision to a luminous line fixed relative to the head, and they were exposed on one occasion to a straight-ahead acceleration of an aircraft and on another occasion to a tilting chair. The magnitude of change of direction of the resultant acceleration was the same on both occasions, but the perceived movement of the luminous line from the two stimuli was very different. In response to the aircraft stimulus, the oculogravic illusion was experienced and the luminous line was perceived as tilting relative to the subject, in response to the tilting chair stimulus, the line was perceived as remaining fixed relative to the subject. It was concluded that the oculogravic illusion, as experienced in the aircraft (and previously in centrifuges), is a true illusion and not merely a fact of physics.

  4. A measurement model for general noise reaction in response to aircraft noise.

    PubMed

    Kroesen, Maarten; Schreckenberg, Dirk

    2011-01-01

    In this paper a measurement model for general noise reaction (GNR) in response to aircraft noise is developed to assess the performance of aircraft noise annoyance and a direct measure of general reaction as indicators of this concept. For this purpose GNR is conceptualized as a superordinate latent construct underlying particular manifestations. This conceptualization is empirically tested through estimation of a second-order factor model. Data from a community survey at Frankfurt Airport are used for this purpose (N=2206). The data fit the hypothesized factor structure well and support the conceptualization of GNR as a superordinate construct. It is concluded that noise annoyance and a direct measure of general reaction to noise capture a large part of the negative feelings and emotions in response to aircraft noise but are unable to capture all relevant variance. The paper concludes with recommendations for the valid measurement of community reaction and several directions for further research.

  5. Some aspects of aircraft dynamic loads due to flow separation

    NASA Astrophysics Data System (ADS)

    Mabey, D. G.

    Topics discussed in this paper include the need for consistent definitions of buffet and buffeting, the advantages of a consistent notation, buffeting due to wings and other components, the alleviation of buffeting, the special difficulties of flight tests and the special advantages of buffeting measurements in cryogenic wind-tunnels. Single degree of freedom flutter due to flow separation is not discussed, but may contribute significant dynamic loads.

  6. 41 CFR 102-33.335 - What are the receiving agency's responsibilities in the transfer or donation of aircraft parts?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false What are the receiving agency's responsibilities in the transfer or donation of aircraft parts? 102-33.335 Section 102-33.335... agency's responsibilities in the transfer or donation of aircraft parts? An agency that...

  7. 41 CFR 102-33.335 - What are the receiving agency's responsibilities in the transfer or donation of aircraft parts?

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 41 Public Contracts and Property Management 3 2011-01-01 2011-01-01 false What are the receiving agency's responsibilities in the transfer or donation of aircraft parts? 102-33.335 Section 102-33.335... agency's responsibilities in the transfer or donation of aircraft parts? An agency that...

  8. Design and evaluation of a robust dynamic neurocontroller for a multivariable aircraft control problem

    NASA Technical Reports Server (NTRS)

    Troudet, T.; Garg, S.; Merrill, W.

    1992-01-01

    The design of a dynamic neurocontroller with good robustness properties is presented for a multivariable aircraft control problem. The internal dynamics of the neurocontroller are synthesized by a state estimator feedback loop. The neurocontrol is generated by a multilayer feedforward neural network which is trained through backpropagation to minimize an objective function that is a weighted sum of tracking errors, and control input commands and rates. The neurocontroller exhibits good robustness through stability margins in phase and vehicle output gains. By maintaining performance and stability in the presence of sensor failures in the error loops, the structure of the neurocontroller is also consistent with the classical approach of flight control design.

  9. Assessment of dynamic effects on aircraft design loads: The landing impact case

    NASA Astrophysics Data System (ADS)

    Bronstein, Michael; Feldman, Esther; Vescovini, Riccardo; Bisagni, Chiara

    2015-10-01

    This paper addresses the potential benefits due to a fully dynamic approach to determine the design loads of a mid-size business jet. The study is conducted by considering the fuselage midsection of the DAEDALOS aircraft model with landing impact conditions. The comparison is presented in terms of stress levels between the novel dynamic approach and the standard design practice based on the use of equivalent static loads. The results illustrate that a slight reduction of the load levels can be achieved, but careful modeling of the damping level is needed. Guidelines for an improved load definition are discussed, and suggestions for future research activities are provided.

  10. Effects of control saturation on the command response of statically unstable aircraft

    NASA Technical Reports Server (NTRS)

    Hanson, G. D.; Stengel, R. F.

    1983-01-01

    Hanson and Stengel (1981) have described the effects of saturating controls on the initial-condition response of statically unstable aircraft. In an analysis of the stability augmentation system, consideration was given to maximizing the region of stable response. The present investigation is concerned with an extension of the control saturation analysis to the problem of command response, taking into account the main problem of control design for satisfactory flying qualities (as perceived by the pilot). A model for examining the effects of control saturation on longitudinal stability and command response is developed and applied to an aircraft with a static instability. Three parameters prescribing longitudinal flying qualities are examined with respect to their ability to identify proper flying qualities in the presence of control saturation. The presented analysis provides also satisfactory guidelines for establishing command saturation/stability boundaries.

  11. A comparison of community response to aircraft noise at Toronto International and Oshawa Municipal airports†

    NASA Astrophysics Data System (ADS)

    Taylor, S. M.; Hall, F. L.; Birnie, S. E.

    1981-07-01

    Debate continues over the validity of a single dose-response relationship to describe annoyance due to transportation noise. Doubts about the appropriateness of a single relationship have centred primarily on the issue of differential response to the same noise level for different sources (e.g., aircraft, road traffic and trains). However, recent work suggests that response may vary for different types of the same source, namely aircraft, dependent upon the character, and specifically the number, of operations. Recent data collected around Toronto International and Oshawa Municipal airports permit a test of differences in four aggregate response variables. For the same NEF level, the percent at all annoyed at the two airports is not statistically different. The percent highly annoyed and the percent reporting speech interference are both significantly greater at Toronto but the percent reporting sleep interruption is greater at Oshawa. These differences can be explained in terms of the operational characteristics of the two airports.

  12. Evaluating the Handling Qualities of Flight Control Systems Including Nonlinear Aircraft and System Dynamics

    NASA Astrophysics Data System (ADS)

    Lin, Raymond Chao

    The handling qualities evaluation of nonlinear aircraft systems is an area of concern in loss-of-control (LOC) prevention. The Get Transfer Function (GetTF) method was demonstrated for evaluating the handling qualities of flight control systems and aircraft containing nonlinearities. NASA's Generic Transport Model (GTM), a nonlinear model of a civilian jet transport aircraft, was evaluated. Using classical techniques, the stability, control, and augmentation (SCAS) systems were designed to control pitch rate, roll rate, and airspeed. Hess's structural pilot model was used to model pilot dynamics in pitch and roll-attitude tracking. The simulated task was simultaneous tracking of, both, pitch and roll attitudes. Eight cases were evaluated: 1) gain increase of pitch-attitude command signal, 2) gain increase of roll-attitude command signal, 3) gain reduction of elevator command signal, 4) backlash in elevator actuator, 5) combination 3 and 4 in elevator actuator, 6) gain reduction of aileron command signal, 7) backlash in aileron actuator, and 8) combination of 6 and 7 in aileron actuator. The GetTF method was used to estimate the transfer function approximating a linear relationship between the proprioceptive signal of the pilot model and the command input. The transfer function was then used to predict the handling qualities ratings (HQR) and pilot-induced oscillation ratings (PIOR). The HQR is based on the Cooper-Harper rating scale. In pitch-attitude tracking, the nominal aircraft is predicted to have Level 2* HQRpitch and 2 < PIORpitch < 4. The GetTF method generally predicted degraded handling qualities for cases with impaired actuators. The results demonstrate GetTF's utility in evaluating the handling qualities during the design phase of flight control and aircraft systems. A limited human-in-the-loop pitch tracking exercise was also conducted to validate the structural pilot model.

  13. Applications of the unsteady vortex-lattice method in aircraft aeroelasticity and flight dynamics

    NASA Astrophysics Data System (ADS)

    Murua, Joseba; Palacios, Rafael; Graham, J. Michael R.

    2012-11-01

    The unsteady vortex-lattice method provides a medium-fidelity tool for the prediction of non-stationary aerodynamic loads in low-speed, but high-Reynolds-number, attached flow conditions. Despite a proven track record in applications where free-wake modelling is critical, other less-computationally expensive potential-flow models, such as the doublet-lattice method and strip theory, have long been favoured in fixed-wing aircraft aeroelasticity and flight dynamics. This paper presents how the unsteady vortex-lattice method can be implemented as an enhanced alternative to those techniques for diverse situations that arise in flexible-aircraft dynamics. A historical review of the methodology is included, with latest developments and practical applications. Different formulations of the aerodynamic equations are outlined, and they are integrated with a nonlinear beam model for the full description of the dynamics of a free-flying flexible vehicle. Nonlinear time-marching solutions capture large wing excursions and wake roll-up, and the linearisation of the equations lends itself to a seamless, monolithic state-space assembly, particularly convenient for stability analysis and flight control system design. The numerical studies emphasise scenarios where the unsteady vortex-lattice method can provide an advantage over other state-of-the-art approaches. Examples of this include unsteady aerodynamics in vehicles with coupled aeroelasticity and flight dynamics, and in lifting surfaces undergoing complex kinematics, large deformations, or in-plane motions. Geometric nonlinearities are shown to play an instrumental, and often counter-intuitive, role in the aircraft dynamics. The unsteady vortex-lattice method is unveiled as a remarkable tool that can successfully incorporate all those effects in the unsteady aerodynamics modelling.

  14. The space-developed dynamic vertical cutoff rigidity model and its applicability to aircraft radiation dose.

    PubMed

    Smart, D F; Shea, M A

    2003-01-01

    We have developed a dynamic geomagnetic vertical cutoff rigidity model that predicts the energetic charged particle transmission through the magnetosphere. Initially developed for space applications, we demonstrate the applicability of this library of cutoff rigidity models for computing aircraft radiation dose. The world grids of vertical cutoff rigidities were obtained by particle trajectory tracing in a magnetospheric model. This reference set of world grids of vertical cutoff rigidities calculated for satellite altitudes covers all magnetic activity levels from super quiet to extremely disturbed (i.e., Kp indices ranging from 0 to 9+) for every three hours in universal time. We utilize the McIlwain "L" parameter as the basis of the interpolation technique to reduce these initial satellite altitude vertical cutoff rigidities to cutoff rigidity values at aircraft altitudes.

  15. Emotionality in response to aircraft noise: A report of development work

    NASA Technical Reports Server (NTRS)

    Klaus, P. A.

    1975-01-01

    A literature search and pilot study conducted to investigate the topic of emotional response to aircraft noise are described. A Tell-A-Story Technique was developed for use in the pilot study which required respondents to make up stories for a series of aircraft-related and non-aircraft-related pictures. A content analysis of these stories was made. The major finding was that response patterns varied among three groups of respondents - those currently living near airports, those who had lived near airports in the past, and those who had never lived near airports. Negative emotional feelings toward aircraft were greatest among respondents who had lived near airports in the past but no longer did. A possible explanation offered for this finding was that people currently living near airports might adapt to the situation by denying some of their negative feelings, which they might feel more free to express after they had moved away from the situation. Other techniques used in the pilot study are also described, including group interviews and a word association task.

  16. Effects of aircraft motion on passengers' comfort ratings and response times.

    PubMed

    Rinalducci, E J

    1980-02-01

    Comfort ratings and response times for changes in the experienced level of comfort were examined in 20 subjects using the NASA Flight Research Center's Jetstar aircraft modified to carry the GPAS system (General Purpose Airborne Simulator). Data were obtained for each of the subjects during two runs of 10 1-min. flight segments. In general, as the magnitude of aircraft motion increased in either the vertical or transverse (lateral) directions, there was an increase in feelings of discomfort and a decrease in response times to those changes. These results suggest parallels between the large body of laboratory data on human reaction time and that collected in this field study on response times to changes in ride comfort.

  17. An analytical study of the response of a constant-attitude aircraft to atmospheric turbulence

    NASA Technical Reports Server (NTRS)

    Smetana, F. O.; Carden, R. K.

    1973-01-01

    A light airplane equipped with an automatic control system which drives large wing flaps and the stabilator so as to produce a constant pitch attitude in all flight modes was analyzed for its response to a specific gust. The aircraft was also equipped with a bank-angle steering, zero sideslip automatic control system which was studied for its effectiveness in suppressing a specific lateral gust. The gusts were assumed to be comprised of 200 lateral and 400 vertical sinusoids. Each was used to excite the controlled aircraft and the time response to the sum of all sinusoids was plotted. The assumption was that the gust may be treated as stationary in space but variable in time rather than the reverse. Results indicate that such a control system can suppress vertical gusts up to the limit of control authority. Either the lateral accelerations or the yawing velocity response to lateral gusts can be suppressed with this system but not both simultaneously.

  18. Predicting the effects of unmodeled dynamics on an aircraft flight control system design using eigenspace assignment

    NASA Technical Reports Server (NTRS)

    Johnson, Eric N.; Davidson, John B.; Murphy, Patrick C.

    1994-01-01

    When using eigenspace assignment to design an aircraft flight control system, one must first develop a model of the plant. Certain questions arise when creating this model as to which dynamics of the plant need to be included in the model and which dynamics can be left out or approximated. The answers to these questions are important because a poor choice can lead to closed-loop dynamics that are unpredicted by the design model. To alleviate this problem, a method has been developed for predicting the effect of not including certain dynamics in the design model on the final closed-loop eigenspace. This development provides insight as to which characteristics of unmodeled dynamics will ultimately affect the closed-loop rigid-body dynamics. What results from this insight is a guide for eigenstructure control law designers to aid them in determining which dynamics need or do not need to be included and a new way to include these dynamics in the flight control system design model to achieve a required accuracy in the closed-loop rigid-body dynamics. The method is illustrated for a lateral-directional flight control system design using eigenspace assignment for the NASA High Alpha Research Vehicle (HARV).

  19. Dynamic Metabolism in Immune Response

    PubMed Central

    Al-Hommrani, Mazen; Chakraborty, Paramita; Chatterjee, Shilpak; Mehrotra, Shikhar

    2016-01-01

    Cell, the basic unit of life depends for its survival on nutrients and thereby energy to perform its physiological function. Cells of lymphoid and myeloid origin are key in evoking an immune response against “self” or “non-self” antigens. The thymus derived lymphoid cells called T cells are a heterogenous group with distinct phenotypic and molecular signatures that have been shown to respond against an infection (bacterial, viral, protozoan) or cancer. Recent studies have unearthed the key differences in energy metabolism between the various T cell subsets, natural killer cells, dendritic cells, macrophages and myeloid derived suppressor cells. While a number of groups are dwelling into the nuances of the metabolism and its role in immune response at various strata, this review focuses on dynamic state of metabolism that is operational within various cellular compartments that interact to mount an effective immune response to alleviate disease state.

  20. Reducing Conservatism in Aircraft Engine Response Using Conditionally Active Min-Max Limit Regulators

    NASA Technical Reports Server (NTRS)

    May, Ryan D.; Garg, Sanjay

    2012-01-01

    Current aircraft engine control logic uses a Min-Max control selection structure to prevent the engine from exceeding any safety or operational limits during transients due to throttle commands. This structure is inherently conservative and produces transient responses that are slower than necessary. In order to utilize the existing safety margins more effectively, a modification to this architecture is proposed, referred to as a Conditionally Active (CA) limit regulator. This concept uses the existing Min-Max architecture with the modification that limit regulators are active only when the operating point is close to a particular limit. This paper explores the use of CA limit regulators using a publicly available commercial aircraft engine simulation. The improvement in thrust response while maintaining all necessary safety limits is demonstrated in a number of cases.

  1. Stable H(infinity) Controller Design for the Longitudinal Dynamics of an Aircraft

    NASA Technical Reports Server (NTRS)

    Oezbay, Hitay; Garg, Sanjay

    1995-01-01

    This report discusses different approaches to stable H infinity controller design applied to the problem of augmenting the longitudinal dynamics of an aircraft. Stability of the H infinity controller is investigated by analyzing the effects of changes in the performance index weights, and modifications in the measured outputs. The existence of a stable suboptimal controller is also investigated. It is shown that this is equivalent to finding a stable controller, whose infinity norm is less than a specified bound, for an unstable plant which is determined from parametrization of all H infinity controllers. Examples are given for a gust alleviation and a command tracking problem.

  2. Design considerations for attaining 250-knot test velocities at the aircraft landing dynamics facility

    NASA Technical Reports Server (NTRS)

    Gray, C. E., Jr.; Snyder, R. E.; Taylor, J. T.; Cires, A.; Fitzgerald, A. L.; Armistead, M. F.

    1980-01-01

    Preliminary design studies are presented which consider the important parameters in providing 250 knot test velocities at the Aircraft Landing Dynamics Facility. Four major components of this facility are: the hydraulic jet catapult, the test carriage structure, the reaction turning bucket, and the wheels. Using the hydraulic-jet catapult characteristics, a target design point was selected and a carriage structure was sized to meet the required strength requirements. The preliminary design results indicate that to attain 250 knot test velocities for a given hydraulic jet catapult system, a carriage mass of 25,424 kg (56,000 lbm.) cannot be exceeded.

  3. Combustion Dynamics and Control for Ultra Low Emissions in Aircraft Gas-Turbine Engines

    NASA Technical Reports Server (NTRS)

    DeLaat, John C.

    2011-01-01

    Future aircraft engines must provide ultra-low emissions and high efficiency at low cost while maintaining the reliability and operability of present day engines. The demands for increased performance and decreased emissions have resulted in advanced combustor designs that are critically dependent on efficient fuel/air mixing and lean operation. However, all combustors, but most notably lean-burning low-emissions combustors, are susceptible to combustion instabilities. These instabilities are typically caused by the interaction of the fluctuating heat release of the combustion process with naturally occurring acoustic resonances. These interactions can produce large pressure oscillations within the combustor and can reduce component life and potentially lead to premature mechanical failures. Active Combustion Control which consists of feedback-based control of the fuel-air mixing process can provide an approach to achieving acceptable combustor dynamic behavior while minimizing emissions, and thus can provide flexibility during the combustor design process. The NASA Glenn Active Combustion Control Technology activity aims to demonstrate active control in a realistic environment relevant to aircraft engines by providing experiments tied to aircraft gas turbine combustors. The intent is to allow the technology maturity of active combustion control to advance to eventual demonstration in an engine environment. Work at NASA Glenn has shown that active combustion control, utilizing advanced algorithms working through high frequency fuel actuation, can effectively suppress instabilities in a combustor which emulates the instabilities found in an aircraft gas turbine engine. Current efforts are aimed at extending these active control technologies to advanced ultra-low-emissions combustors such as those employing multi-point lean direct injection.

  4. Occupant injury and fatality in general aviation aircraft for which dynamic crash testing is certification-mandated.

    PubMed

    Boyd, Douglas D

    2015-06-01

    Towards further improving general aviation aircraft crashworthiness, multi-axis dynamic tests have been required for aircraft certification (14CFR23.562) since 1985. The objective of this study was to determine if occupants in aircraft certified to these higher crashworthiness standards show a mitigated fraction of fatal accidents and/or injury severity. The NTSB aviation database was queried for accidents occurring between 2002 and 2012 involving aircraft certified to, or immune from, dynamic crash testing and manufactured after 1999. Only operations conducted under 14CFR Part 91 were considered. Statistical analysis employed proportion tests and logistic regression. Off-airport landings are associated with high decelerative forces; however for off-airport landings, the fraction of fatal accidents for aircraft subject to, or exempt from, dynamic crash testing was similar (0.53 and 0.60, respectively). Unexpectedly, for on-airport landings a higher fraction of fatalities was evident for aircraft whose certification mandated dynamic crash testing. Improved crashworthiness standards would be expected to translate into a reduced severity of accident injuries. For all accidents, as well as for those deemed survivable, the fraction of minor and serious injuries was reduced for occupants in aircraft certified to the higher crashworthiness standards. Surprisingly, the fraction of occupants fatally injured was not decreased for aircraft subject to dynamic crash tests. To shed light on this unexpected finding flight history, airman demographics and post-impact fires for aircraft for which dynamic crash testing is mandatory or exempt was examined. For the former cohort the median distance of the accident flight was nearly 44% higher. Aircraft subject to dynamic crash testing were also involved in a greater fraction (0.25 versus 0.12, respectively) of post-impact fires. Our data suggest that while the more stringent crashworthiness standards have mitigated minor and serious

  5. Occupant injury and fatality in general aviation aircraft for which dynamic crash testing is certification-mandated.

    PubMed

    Boyd, Douglas D

    2015-06-01

    Towards further improving general aviation aircraft crashworthiness, multi-axis dynamic tests have been required for aircraft certification (14CFR23.562) since 1985. The objective of this study was to determine if occupants in aircraft certified to these higher crashworthiness standards show a mitigated fraction of fatal accidents and/or injury severity. The NTSB aviation database was queried for accidents occurring between 2002 and 2012 involving aircraft certified to, or immune from, dynamic crash testing and manufactured after 1999. Only operations conducted under 14CFR Part 91 were considered. Statistical analysis employed proportion tests and logistic regression. Off-airport landings are associated with high decelerative forces; however for off-airport landings, the fraction of fatal accidents for aircraft subject to, or exempt from, dynamic crash testing was similar (0.53 and 0.60, respectively). Unexpectedly, for on-airport landings a higher fraction of fatalities was evident for aircraft whose certification mandated dynamic crash testing. Improved crashworthiness standards would be expected to translate into a reduced severity of accident injuries. For all accidents, as well as for those deemed survivable, the fraction of minor and serious injuries was reduced for occupants in aircraft certified to the higher crashworthiness standards. Surprisingly, the fraction of occupants fatally injured was not decreased for aircraft subject to dynamic crash tests. To shed light on this unexpected finding flight history, airman demographics and post-impact fires for aircraft for which dynamic crash testing is mandatory or exempt was examined. For the former cohort the median distance of the accident flight was nearly 44% higher. Aircraft subject to dynamic crash testing were also involved in a greater fraction (0.25 versus 0.12, respectively) of post-impact fires. Our data suggest that while the more stringent crashworthiness standards have mitigated minor and serious

  6. An Overview of Modifications Applied to a Turbulence Response Analysis Method for Flexible Aircraft Configurations

    NASA Technical Reports Server (NTRS)

    Funk, Christie J.

    2013-01-01

    A software program and associated methodology to study gust loading on aircraft exists for a classification of geometrically simplified flexible configurations. This program consists of a simple aircraft response model with two rigid and three flexible symmetric degrees of freedom and allows for the calculation of various airplane responses due to a discrete one-minus-cosine gust as well as continuous turbulence. Simplifications, assumptions, and opportunities for potential improvements pertaining to the existing software program are first identified, then a revised version of the original software tool is developed with improved methodology to include more complex geometries, additional excitation cases, and output data so as to provide a more useful and accurate tool for gust load analysis. Revisions are made in the categories of aircraft geometry, computation of aerodynamic forces and moments, and implementation of horizontal tail mode shapes. In order to improve the original software program to enhance usefulness, a wing control surface and horizontal tail control surface is added, an extended application of the discrete one-minus-cosine gust input is employed, a supplemental continuous turbulence spectrum is implemented, and a capability to animate the total vehicle deformation response to gust inputs in included. These revisions and enhancements are implemented and an analysis of the results is used to validate the modifications.

  7. Conceptual Design and Structural Optimization of NASA Environmentally Responsible Aviation (ERA) Hybrid Wing Body Aircraft

    NASA Technical Reports Server (NTRS)

    Quinlan, Jesse R.; Gern, Frank H.

    2016-01-01

    Simultaneously achieving the fuel consumption and noise reduction goals set forth by NASA's Environmentally Responsible Aviation (ERA) project requires innovative and unconventional aircraft concepts. In response, advanced hybrid wing body (HWB) aircraft concepts have been proposed and analyzed as a means of meeting these objectives. For the current study, several HWB concepts were analyzed using the Hybrid wing body Conceptual Design and structural optimization (HCDstruct) analysis code. HCDstruct is a medium-fidelity finite element based conceptual design and structural optimization tool developed to fill the critical analysis gap existing between lower order structural sizing approaches and detailed, often finite element based sizing methods for HWB aircraft concepts. Whereas prior versions of the tool used a half-model approach in building the representative finite element model, a full wing-tip-to-wing-tip modeling capability was recently added to HCDstruct, which alleviated the symmetry constraints at the model centerline in place of a free-flying model and allowed for more realistic center body, aft body, and wing loading and trim response. The latest version of HCDstruct was applied to two ERA reference cases, including the Boeing Open Rotor Engine Integration On an HWB (OREIO) concept and the Boeing ERA-0009H1 concept, and results agreed favorably with detailed Boeing design data and related Flight Optimization System (FLOPS) analyses. Following these benchmark cases, HCDstruct was used to size NASA's ERA HWB concepts and to perform a related scaling study.

  8. Raptor responses to low-level jet aircraft and sonic booms.

    PubMed

    Ellis, D H; Ellis, C H; Mindell, D P

    1991-01-01

    We estimated effects of low-level military jet aircraft and mid- to high-altitude sonic booms (actual and simulated) on nesting peregrine falcons (Falco peregrinus) and seven other raptors by observing their responses to test stimuli, determining nesting success for the test year, and evaluating site reoccupancy rates for the year following the tests. Frequent and nearby jet aircraft passes: (1) sometimes noticeably alarmed birds, (2) occasionally caused birds to fly from perches or eyries, (3) most often evoked only minimal responses, and (4) were never associated with reproductive failure. Similarly, responses to real and simulated mid- to high-altitude sonic booms were often minimal and never appeared productivity limiting. Eighteen (95%) of 19 nest sites subjected to low-level jet flights and/or simulated sonic booms in 1980 fledged young during that year. Eighteen (95%) of 19 sites disturbed in 1980 were reoccupied by pairs or lone birds of the same species in 1981. We subjected four pairs of prairie falcons (Falco mexicanus) to low-level aircraft at ad libitum levels during the courtship and incubation phases when adults were most likely to abandon: all four eyries fledged young. From heart rate (HR) data taken via a telemetering egg at another prairie falcon eyrie, we determined that stimulus-induced HR alterations were comparable to rate changes for birds settling to incubate following flight. While encouraging, our findings cannot be taken as conclusive evidence that jet flights and/or sonic booms will have no long-term negative effects for other raptor species or for other areas. In addition, we did not experiment with totally naive wild adults, rotary-winged aircraft, or low-level sonic booms. PMID:15092075

  9. Raptor responses to low-level jet aircraft and sonic booms

    USGS Publications Warehouse

    Ellis, D.H.; Ellis, C.H.; Mindell, D.P.

    1991-01-01

    We estimated effects of low-level military jet aircraft and mid- to high-altitude sonic booms (actual and simulated) on nesting peregrine falcons (Falco peregrinus) and seven other raptors by observing their responses to test stimuli, determining nesting success for the test year, and evaluating site reoccupancy rates for the year following the tests. Frequent and nearby jet aircraft passes: (1) sometimes noticeably alarmed birds, (2) occasionally caused birds toffy from perches or eyries, (3) most often evoked only minimal responses, and (4) were never associated with reproductive failure. Similarly, responses to real and simulated mid- to high-altitude sonic booms were often minimal and never appeared productivity limiting. Eighteen (95%) of 19 nest sites subjected to low-level jet flights and/or simulated sonic booms in 1980 fledged young during that year. Eighteen (95%) of l9 sites disturbed in 1980 were reoccupied by pairs or lone birds of the same species in 1981. We subjected four pairs of prairie falcons (Falco mexicanus) to low-level aircraft at ad libitum levels during the courtship and incubation phases when adults were most likely to abandon: all four eyries fledged young. From heart rate (HR) data taken via a telemetering egg at another prairie falcon eyrie, we determined that stimulus-induced HR alterations were comparable to rate changes for birds settling to incubate following flight. While encouraging, our findings cannot be taken as conclusive evidence that jet flights and/or sonic booms will have no long-term negative effects for other raptor species or for other areas. In addition, we did not experiment with totally naive wild adults, rotary-winged aircraft, or low-level sonic booms.

  10. A Sensitivity Study of Commercial Aircraft Engine Response for Emergency Situations

    NASA Technical Reports Server (NTRS)

    Csank, Jeffrey T.; May, Ryan D.; Litt, Jonathan S.; Guo, Ten-Huei

    2011-01-01

    This paper contains the details of a sensitivity study in which the variation in a commercial aircraft engine's outputs is observed for perturbations in its operating condition inputs or control parameters. This study seeks to determine the extent to which various controller limits can be modified to improve engine performance, while capturing the increased risk that results from the changes. In an emergency, the engine may be required to produce additional thrust, respond faster, or both, to improve the survivability of the aircraft. The objective of this paper is to propose changes to the engine controller and determine the costs and benefits of the additional capabilities produced by the engine. This study indicates that the aircraft engine is capable of producing additional thrust, but at the cost of an increased risk of an engine failure due to higher turbine temperatures and rotor speeds. The engine can also respond more quickly to transient commands, but this action reduces the remaining stall margin to possibly dangerous levels. To improve transient response in landing scenarios, a control mode known as High Speed Idle is proposed that increases the responsiveness of the engine and conserves stall margin

  11. Effect of motion frequency spectrum on subjective comfort response. [modeling passenger reactions to commercial aircraft flights

    NASA Technical Reports Server (NTRS)

    Jacobson, I. D.; Schoultz, M. B.; Blake, J. C.

    1973-01-01

    In order to model passenger reaction to present and future aircraft environments, it is necessary to obtain data in several ways. First, of course, is the gathering of environmental and passenger reaction data on commercial aircraft flights. In addition, detailed analyses of particular aspects of human reaction to the environment are best studied in a controllable experimental situation. Thus the use of simulators, both flight and ground based, is suggested. It is shown that there is a reasonably high probability that the low frequency end of the spectrum will not be necessary for simulation purposes. That is, the fidelity of any simulation which omits the very low frequency content will not yield results which differ significantly from the real environment. In addition, there does not appear to be significant differences between the responses obtained in the airborne simulator environment versus those obtained on commercial flights.

  12. An overview of the crash dynamics failure behavior of metal and composite aircraft structures

    NASA Technical Reports Server (NTRS)

    Carden, Huey D.; Boitnott, Richard L.; Fasanella, Edwin L.; Jones, Lisa E.

    1991-01-01

    An overview of failure behavior results is presented from some of the crash dynamics research conducted with concepts of aircraft elements and substructure not necessarily designed or optimized for energy absorption or crash loading considerations. Experimental and analytical data are presented that indicate some general trends in the failure behavior of a class of composite structures that includes fuselage panels, individual fuselage sections, fuselage frames, skeleton subfloors with stringers and floor beams without skin covering, and subfloors with skin added to the frame stringer structure. Although the behavior is complex, a strong similarity in the static/dynamic failure behavior among these structures is illustrated through photographs of the experimental results and through analytical data of generic composite structural models.

  13. An inverse modelling approach for frequency response correction of capacitive humidity sensors in ABL research with small unmanned aircraft

    NASA Astrophysics Data System (ADS)

    Wildmann, N.; Kaufmann, F.; Bange, J.

    2014-05-01

    The measurement of water-vapour concentration in the atmosphere is an ongoing challenge in environmental research. Satisfactory solutions are present for ground-based meteorological stations and measurements of mean values. However, advanced research of thermodynamic processes also aloft, above the surface layer and especially in the atmospheric boundary layer (ABL), requires the resolution of small-scale turbulence. Sophisticated optical instruments are used in airborne meteorology with manned aircraft to achieve the necessary fast response measurements in the order of 1 Hz (e.g. LiCor 7500). Since these instruments are too large and heavy for the application on the promising platforms of small remotely piloted aircraft (RPA), a method is presented in this study, that enhances small capacitive humidity sensors to be able to resolve turbulent eddies in the order of 10 m. For this purpose a physical and dynamical model of such a sensor is described and inverted in order to restore original water vapour fluctuations from sensor measurements. Examples of flight measurements show how the method can be used to correct vertical profiles and resolve turbulence spectra up to about 3 Hz.

  14. Comparison of structural response and fatigue endurance of aircraft flap-like box structures subjected to acoustic loading.

    PubMed

    Xiao, Y; White, R G; Aglietti, G S

    2005-05-01

    The results of an extensive test program to characterize the behavior of typical aircraft structures under acoustic loading and to establish their fatigue endurance are presented. The structures tested were the three flap-like box-type of structures. Each structure consisted of one flat (bottom) and one curved (top) stiffener stiffened skin panel, front, and rear spars, and ribs that divided the structures into three bays. The three structures, constructed from three different materials (aircraft standard aluminum alloy, Carbon Fibre Reinforced Plastic, and a Glass Fibre Metal Laminate, i.e., GLARE) had the same size and configuration, with only minor differences due to the use of different materials. A first set of acoustic tests with excitations of intensity ranging from 140 to 160 dB were carried out to obtain detailed data on the dynamic response of the three structures. The FE analysis of the structures is also briefly described and the results compared with the experimental data. The fatigue endurance of the structures was then determined using random acoustic excitation with an overall sound pressure level of 161 dB, and details of crack propagation are reported.

  15. Application of several methods for determining transfer functions and frequency response of aircraft from flight data

    NASA Technical Reports Server (NTRS)

    Eggleston, John M; Mathews, Charles W

    1954-01-01

    In the process of analyzing the longitudinal frequency-response characteristics of aircraft, information on some of the methods of analysis has been obtained by the Langley Aeronautical Laboratory of the National Advisory Committee for Aeronautics. In the investigation of these methods, the practical applications and limitations were stressed. In general, the methods considered may be classed as: (1) analysis of sinusoidal response, (2) analysis of transient response as to harmonic content through determination of the Fourier integral by manual or machine methods, and (3) analysis of the transient through the use of least-squares solutions of the coefficients of an assumed equation for either the transient time response or frequency response (sometimes referred to as curve-fitting methods). (author)

  16. Computational fluid dynamics modeling of transport and deposition of pesticides in an aircraft cabin

    NASA Astrophysics Data System (ADS)

    Isukapalli, Sastry S.; Mazumdar, Sagnik; George, Pradeep; Wei, Binnian; Jones, Byron; Weisel, Clifford P.

    2013-04-01

    Spraying of pesticides in aircraft cabins is required by some countries as part of a disinsection process to kill insects that pose a public health threat. However, public health concerns remain regarding exposures of cabin crew and passengers to pesticides in aircraft cabins. While large scale field measurements of pesticide residues and air concentrations in aircraft cabins scenarios are expensive and time consuming, Computational Fluid Dynamics (CFD) models provide an effective alternative for characterizing concentration distributions and exposures. This study involved CFD modeling of a twin-aisle 11 row cabin mockup with heated manikins, mimicking a part of a fully occupied Boeing 767 cabin. The model was applied to study the flow and deposition of pesticides under representative scenarios with different spraying patterns (sideways and overhead) and cabin air exchange rates (low and high). Corresponding spraying experiments were conducted in the cabin mockup, and pesticide deposition samples were collected at the manikin's lap and seat top for a limited set of five seats. The CFD model performed well for scenarios corresponding to high air exchange rates, captured the concentration profiles for middle seats under low air exchange rates, and underestimated the concentrations at window seats under low air exchange rates. Additionally, both the CFD and experimental measurements showed no major variation in deposition characteristics between sideways and overhead spraying. The CFD model can estimate concentration fields and deposition profiles at very high resolutions, which can be used for characterizing the overall variability in air concentrations and surface loadings. Additionally, these model results can also provide a realistic range of surface and air concentrations of pesticides in the cabin that can be used to estimate potential exposures of cabin crew and passengers to these pesticides.

  17. Dynamic response of CFRP plates under the action of random acoustic loading

    NASA Astrophysics Data System (ADS)

    White, R. G.; Mousley, R. F.

    Acoustic fatigue design procedures for metallic, stiffened skin, and plate-type structures have been well established and validated in the past for aircraft structures. The advent of CFRP and its use in aircraft has necessitated reappraisal of dynamic design techniques. Experimental and theoretical studies of CFRP plates under the action of random acoustic loading are discussed. Attention is given to the nature and levels of the dynamic strains induced in terms of statistical properties and relative modal contributions, the latter being important in consideration of using simple single mode formulas for dynamic response prediction. The effects of high levels of excitation, up to 160 dB, which can produce nonlinear responses are discussed. The case of forced response of plates under the action of combined static in-plane compressive loading and acoustic excitation is also considered.

  18. Simulations of ozone distributions in an aircraft cabin using computational fluid dynamics

    NASA Astrophysics Data System (ADS)

    Rai, Aakash C.; Chen, Qingyan

    2012-07-01

    Ozone is a major pollutant of indoor air. Many studies have demonstrated the adverse health effect of ozone and the byproducts generated as a result of ozone-initiated reactive chemistry in an indoor environment. This study developed a Computational Fluid Dynamics (CFD) model to predict the ozone distribution in an aircraft cabin. The model was used to simulate the distribution of ozone in an aircraft cabin mockup for the following cases: (1) empty cabin; (2) cabin with seats; (3) cabin with soiled T-shirts; (4) occupied cabin with simple human geometry; and (5) occupied cabin with detailed human geometry. The agreement was generally good between the CFD results and the available experimental data. The ozone removal rate, deposition velocity, retention ratio, and breathing zone levels were well predicted in those cases. The CFD model predicted breathing zone ozone concentration to be 77-99% of the average cabin ozone concentration depending on the seat location. The ozone concentration at the breathing zone in the cabin environment can better assess the health risk to passengers and can be used to develop strategies for a healthier cabin environment.

  19. 41 CFR 102-33.100 - What are our responsibilities when contracting to purchase or lease-purchase a Federal aircraft...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... aircraft or to award a CAS contract? In contracting to purchase or lease-purchase a Federal aircraft or to award a CAS contract, you must follow the Federal Acquisition Regulation (48 CFR chapter 1) unless your... responsibilities when contracting to purchase or lease-purchase a Federal aircraft or to award a CAS contract?...

  20. 41 CFR 102-33.100 - What are our responsibilities when contracting to purchase or lease-purchase a Federal aircraft...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... aircraft or to award a CAS contract? In contracting to purchase or lease-purchase a Federal aircraft or to award a CAS contract, you must follow the Federal Acquisition Regulation (48 CFR chapter 1) unless your... responsibilities when contracting to purchase or lease-purchase a Federal aircraft or to award a CAS contract?...

  1. 41 CFR 102-33.100 - What are our responsibilities when contracting to purchase or lease-purchase a Federal aircraft...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... aircraft or to award a CAS contract? In contracting to purchase or lease-purchase a Federal aircraft or to award a CAS contract, you must follow the Federal Acquisition Regulation (48 CFR chapter 1) unless your... responsibilities when contracting to purchase or lease-purchase a Federal aircraft or to award a CAS contract?...

  2. 41 CFR 102-33.100 - What are our responsibilities when contracting to purchase or lease-purchase a Federal aircraft...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... aircraft or to award a CAS contract? In contracting to purchase or lease-purchase a Federal aircraft or to award a CAS contract, you must follow the Federal Acquisition Regulation (48 CFR chapter 1) unless your... responsibilities when contracting to purchase or lease-purchase a Federal aircraft or to award a CAS contract?...

  3. 41 CFR 102-33.100 - What are our responsibilities when contracting to purchase or lease-purchase a Federal aircraft...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... aircraft or to award a CAS contract? In contracting to purchase or lease-purchase a Federal aircraft or to award a CAS contract, you must follow the Federal Acquisition Regulation (48 CFR chapter 1) unless your... responsibilities when contracting to purchase or lease-purchase a Federal aircraft or to award a CAS contract?...

  4. An Experimental Investigation of Damaged Arresting Gear Tapes for the Langley Aircraft Landing Dynamics Facility

    NASA Technical Reports Server (NTRS)

    Mason, Angela J.

    1999-01-01

    An experimental investigation was performed on damaged arresting gear tapes at the Langley Aircraft Landing Dynamics Facility. The arrestment system uses five pairs of tapes to bring the test carriage to a halt. The procedure used to determine when to replace the tapes consists of a close evaluation of each of the 10 tapes after each run. During this evaluation, each tape is examined thoroughly and any damage observed on the tape is recorded. If the damaged tape does not pass the inspection, the tape is replaced with a new one. For the past 13 years, the most commonly seen damage types are edge fray damage and transverse damage. Tests were conducted to determine the maximum tensile strength of a damaged arresting gear tape specimen. The data indicate that tapes exhibiting transverse damage can withstand higher loads than tapes with edge fray damage.

  5. Flight dynamics of a pterosaur-inspired aircraft utilizing a variable-placement vertical tail.

    PubMed

    Roberts, Brian; Lind, Rick; Chatterjee, Sankar

    2011-06-01

    Mission performance for small aircraft is often dependent on the turn radius. Various biologically inspired concepts have demonstrated that performance can be improved by morphing the wings in a manner similar to birds and bats; however, the morphing of the vertical tail has received less attention since neither birds nor bats have an appreciable vertical tail. This paper investigates a design that incorporates the morphing of the vertical tail based on the cranial crest of a pterosaur. The aerodynamics demonstrate a reduction in the turn radius of 14% when placing the tail over the nose in comparison to a traditional aft-placed vertical tail. The flight dynamics associated with this configuration has unique characteristics such as a Dutch-roll mode with excessive roll motion and a skid divergence that replaces the roll convergence.

  6. Quasi-Linear Parameter Varying Representation of General Aircraft Dynamics Over Non-Trim Region

    NASA Technical Reports Server (NTRS)

    Shin, Jong-Yeob

    2007-01-01

    For applying linear parameter varying (LPV) control synthesis and analysis to a nonlinear system, it is required that a nonlinear system be represented in the form of an LPV model. In this paper, a new representation method is developed to construct an LPV model from a nonlinear mathematical model without the restriction that an operating point must be in the neighborhood of equilibrium points. An LPV model constructed by the new method preserves local stabilities of the original nonlinear system at "frozen" scheduling parameters and also represents the original nonlinear dynamics of a system over a non-trim region. An LPV model of the motion of FASER (Free-flying Aircraft for Subscale Experimental Research) is constructed by the new method.

  7. Flight dynamics of a pterosaur-inspired aircraft utilizing a variable-placement vertical tail.

    PubMed

    Roberts, Brian; Lind, Rick; Chatterjee, Sankar

    2011-06-01

    Mission performance for small aircraft is often dependent on the turn radius. Various biologically inspired concepts have demonstrated that performance can be improved by morphing the wings in a manner similar to birds and bats; however, the morphing of the vertical tail has received less attention since neither birds nor bats have an appreciable vertical tail. This paper investigates a design that incorporates the morphing of the vertical tail based on the cranial crest of a pterosaur. The aerodynamics demonstrate a reduction in the turn radius of 14% when placing the tail over the nose in comparison to a traditional aft-placed vertical tail. The flight dynamics associated with this configuration has unique characteristics such as a Dutch-roll mode with excessive roll motion and a skid divergence that replaces the roll convergence. PMID:21558603

  8. A synthesis approach for reproducing the response of aircraft panels to a turbulent boundary layer excitation.

    PubMed

    Bravo, Teresa; Maury, Cédric

    2011-01-01

    Random wall-pressure fluctuations due to the turbulent boundary layer (TBL) are a feature of the air flow over an aircraft fuselage under cruise conditions, creating undesirable effects such as cabin noise annoyance. In order to test potential solutions to reduce the TBL-induced noise, a cost-efficient alternative to in-flight or wind-tunnel measurements involves the laboratory simulation of the response of aircraft sidewalls to high-speed subsonic TBL excitation. Previously published work has shown that TBL simulation using a near-field array of loudspeakers is only feasible in the low frequency range due to the rapid decay of the spanwise correlation length with frequency. This paper demonstrates through theoretical criteria how the wavenumber filtering capabilities of the radiating panel reduces the number of sources required, thus dramatically enlarging the frequency range over which the response of the TBL-excited panel is accurately reproduced. Experimental synthesis of the panel response to high-speed TBL excitation is found to be feasible over the hydrodynamic coincidence frequency range using a reduced set of near-field loudspeakers driven by optimal signals. Effective methodologies are proposed for an accurate reproduction of the TBL-induced sound power radiated by the panel into a free-field and when coupled to a cavity.

  9. A Summary of Revisions Applied to a Turbulence Response Analysis Method for Flexible Aircraft Configurations

    NASA Technical Reports Server (NTRS)

    Funk, Christie J.; Perry, Boyd, III; Silva, Walter A.; Newman, Brett

    2014-01-01

    A software program and associated methodology to study gust loading on aircraft exists for a classification of geometrically simplified flexible configurations. This program consists of a simple aircraft response model with two rigid and three flexible symmetric degrees-of - freedom and allows for the calculation of various airplane responses due to a discrete one-minus- cosine gust as well as continuous turbulence. Simplifications, assumptions, and opportunities for potential improvements pertaining to the existing software program are first identified, then a revised version of the original software tool is developed with improved methodology to include more complex geometries, additional excitation cases, and additional output data so as to provide a more useful and precise tool for gust load analysis. In order to improve the original software program to enhance usefulness, a wing control surface and horizontal tail control surface is added, an extended application of the discrete one-minus-cosine gust input is employed, a supplemental continuous turbulence spectrum is implemented, and a capability to animate the total vehicle deformation response to gust inputs is included. These revisions and enhancements are implemented and an analysis of the results is used to validate the modifications.

  10. A synthesis approach for reproducing the response of aircraft panels to a turbulent boundary layer excitation.

    PubMed

    Bravo, Teresa; Maury, Cédric

    2011-01-01

    Random wall-pressure fluctuations due to the turbulent boundary layer (TBL) are a feature of the air flow over an aircraft fuselage under cruise conditions, creating undesirable effects such as cabin noise annoyance. In order to test potential solutions to reduce the TBL-induced noise, a cost-efficient alternative to in-flight or wind-tunnel measurements involves the laboratory simulation of the response of aircraft sidewalls to high-speed subsonic TBL excitation. Previously published work has shown that TBL simulation using a near-field array of loudspeakers is only feasible in the low frequency range due to the rapid decay of the spanwise correlation length with frequency. This paper demonstrates through theoretical criteria how the wavenumber filtering capabilities of the radiating panel reduces the number of sources required, thus dramatically enlarging the frequency range over which the response of the TBL-excited panel is accurately reproduced. Experimental synthesis of the panel response to high-speed TBL excitation is found to be feasible over the hydrodynamic coincidence frequency range using a reduced set of near-field loudspeakers driven by optimal signals. Effective methodologies are proposed for an accurate reproduction of the TBL-induced sound power radiated by the panel into a free-field and when coupled to a cavity. PMID:21302997

  11. Vibration and aeroelasticity of advanced aircraft wings modeled as thin-walled beams: Dynamics, stability and control

    NASA Astrophysics Data System (ADS)

    Qin, Zhanming

    Based on a refined analytical anisotropic thin-walled beam model, aeroelastic instability, dynamic aeroelastic response, active/passive aeroelastic control of advanced aircraft wings modeled as thin-walled beams are systematically addressed. The refined thin-walled beam model is based on an existing framework of the thin-walled beam model and a couple of non-classical effects that are usually also important are incorporated and the model herein developed is validated against the available experimental, Finite Element Analysis (FEA), Dynamic Finite Element (DFE), and other analytical predictions. The concept of indicial functions is used to develop unsteady aerodynamic model, which broadly encompasses the cases of incompressible, compressible subsonic, compressible supersonic and hypersonic flows. State-space conversion of the indicial function based unsteady aerodynamic model is also developed. Based on the piezoelectric material technology, a worst case control strategy based on the minimax theory towards the control of aeroelastic systems is further developed. Shunt damping within the aeroelastic tailoring environment is also investigated. The major part of this dissertation is organized in the form of self-contained chapters, each of which corresponds to a paper that has been or will be submitted to a journal for publication. In order to fullfil the requirement of having a continuous presentation of the topics, each chapter starts with the purely structural models and is gradually integrated with the involved interactive field disciplines.

  12. Nonlinear Acoustic Response of an Aircraft Fuselage Sidewall Structure by a Reduced-Order Analysis

    NASA Technical Reports Server (NTRS)

    Przekop, Adam; Rizzi, Stephen A.; Groen, David S.

    2006-01-01

    A reduced-order nonlinear analysis of a structurally complex aircraft fuselage sidewall panel is undertaken to explore issues associated with application of such analyses to practical structures. Of primary interest is the trade-off between computational efficiency and accuracy. An approach to modal basis selection is offered based upon the modal participation in the linear regime. The nonlinear static response to a uniform pressure loading and nonlinear random response to a uniformly distributed acoustic loading are computed. Comparisons of the static response with a nonlinear static solution in physical degrees-of-freedom demonstrate the efficacy of the approach taken for modal basis selection. Changes in the modal participation as a function of static and random loading levels suggest a means for improvement in the basis selection.

  13. Application of numerical optimization techniques to control system design for nonlinear dynamic models of aircraft

    NASA Technical Reports Server (NTRS)

    Lan, C. Edward; Ge, Fuying

    1989-01-01

    Control system design for general nonlinear flight dynamic models is considered through numerical simulation. The design is accomplished through a numerical optimizer coupled with analysis of flight dynamic equations. The general flight dynamic equations are numerically integrated and dynamic characteristics are then identified from the dynamic response. The design variables are determined iteratively by the optimizer to optimize a prescribed objective function which is related to desired dynamic characteristics. Generality of the method allows nonlinear effects to aerodynamics and dynamic coupling to be considered in the design process. To demonstrate the method, nonlinear simulation models for an F-5A and an F-16 configurations are used to design dampers to satisfy specifications on flying qualities and control systems to prevent departure. The results indicate that the present method is simple in formulation and effective in satisfying the design objectives.

  14. A laboratory study of subjective annoyance response to sonic booms and aircraft flyovers

    NASA Technical Reports Server (NTRS)

    Leatherwood, Jack D.; Sullivan, Brenda M.

    1994-01-01

    Three experiments were conducted to determine subjective equivalence of aircraft subsonic flyover noise and sonic booms. Two of the experiments were conducted in a loudspeaker-driven sonic boom simulator, and the third in a large room containing conventional loudspeakers. The sound generation system of the boom simulator had a frequency response extending to very low frequencies (about 1 Hz) whereas the large room loudspeakers were limited to about 20 Hz. Subjective equivalence between booms and flyovers was quantified in terms of the difference between the noise level of a boom and that of a flyover when the two were judged equally annoying. Noise levels were quantified in terms of the following noise descriptors: Perceived Level (PL), Perceived Noise Level (PNL), C-weighted sound exposure level (SELC), and A-weighted sound exposure level (SELA). Results from the present study were compared, where possible, to similar results obtained in other studies. Results showed that noise level differences depended upon the descriptor used, specific boom and aircraft noise events being compared and, except for the PNL descriptor, varied between the simulator and large room. Comparison of noise level differences obtained in the present study with those of other studies indicated good agreement across studies only for the PNL and SELA descriptors. Comparison of the present results with assessments of community response to high-energy impulsive sounds made by Working Group 84 of the National Research Council's Committee on Hearing, Bioacoustics, and Biomechanics (CHABA) showed good agreement when boom/flyover noise level differences were based on SELA. However, noise level differences obtained by CHABA using SELA for aircraft flyovers and SELC for booms were not in agreement with results obtained in the present study.

  15. A laboratory study of subjective annoyance response to sonic booms and aircraft flyovers

    NASA Astrophysics Data System (ADS)

    Leatherwood, Jack D.; Sullivan, Brenda M.

    1994-05-01

    Three experiments were conducted to determine subjective equivalence of aircraft subsonic flyover noise and sonic booms. Two of the experiments were conducted in a loudspeaker-driven sonic boom simulator, and the third in a large room containing conventional loudspeakers. The sound generation system of the boom simulator had a frequency response extending to very low frequencies (about 1 Hz) whereas the large room loudspeakers were limited to about 20 Hz. Subjective equivalence between booms and flyovers was quantified in terms of the difference between the noise level of a boom and that of a flyover when the two were judged equally annoying. Noise levels were quantified in terms of the following noise descriptors: Perceived Level (PL), Perceived Noise Level (PNL), C-weighted sound exposure level (SELC), and A-weighted sound exposure level (SELA). Results from the present study were compared, where possible, to similar results obtained in other studies. Results showed that noise level differences depended upon the descriptor used, specific boom and aircraft noise events being compared and, except for the PNL descriptor, varied between the simulator and large room. Comparison of noise level differences obtained in the present study with those of other studies indicated good agreement across studies only for the PNL and SELA descriptors. Comparison of the present results with assessments of community response to high-energy impulsive sounds made by Working Group 84 of the National Research Council's Committee on Hearing, Bioacoustics, and Biomechanics (CHABA) showed good agreement when boom/flyover noise level differences were based on SELA. However, noise level differences obtained by CHABA using SELA for aircraft flyovers and SELC for booms were not in agreement with results obtained in the present study.

  16. Technical evaluation report of AGARD Technical Evaluation Meeting on Unsteady Aerodynamics: Fundamentals and Applications to Aircraft Dynamics

    NASA Technical Reports Server (NTRS)

    Mabey, D. G.; Chambers, J. R.

    1986-01-01

    From May 6 to 9, 1985, the Fluid Dynamics Panel and Flight Mechanics Panel of AGARD jointly arranged a Symposium on Unsteady Aerodynamics-Fundamentals and Applications to Aircraft Dynamics at the Stadthall, Goettingen, West Germany. This Symposium was organized by an international program committee chaired by Dr. K. J. Orlik-Ruckemann of the Fluid Dynamics Panel. The program consisted of five sessions grouped in two parts: (1) Fundamentals of Unsteady Aerodynamics; and (2) Applications to Aircraft Dynamics. The 35 papers presented at the 4 day meeting are published in AGARD CP 386 and listed in the Appendix. As the papers are already available and cover a very wide field, the evaluators have offered brief comments on every paper, followed by an overall evaluation of the meeting, together with some general conclusions and recommendations.

  17. The insertion of human dynamics models in the flight control loops of V/STOL research aircraft. Appendix 2: The optimal control model of a pilot in V/STOL aircraft control loops

    NASA Technical Reports Server (NTRS)

    Zipf, Mark E.

    1989-01-01

    An overview is presented of research work focussed on the design and insertion of classical models of human pilot dynamics within the flight control loops of V/STOL aircraft. The pilots were designed and configured for use in integrated control system research and design. The models of human behavior that were considered are: McRuer-Krendel (a single variable transfer function model); and Optimal Control Model (a multi-variable approach based on optimal control and stochastic estimation theory). These models attempt to predict human control response characteristics when confronted with compensatory tracking and state regulation tasks. An overview, mathematical description, and discussion of predictive limitations of the pilot models is presented. Design strategies and closed loop insertion configurations are introduced and considered for various flight control scenarios. Models of aircraft dynamics (both transfer function and state space based) are developed and discussed for their use in pilot design and application. Pilot design and insertion are illustrated for various flight control objectives. Results of pilot insertion within the control loops of two V/STOL research aricraft (Sikorski Black Hawk UH-60A, McDonnell Douglas Harrier II AV-8B) are presented and compared against actual pilot flight data. Conclusions are reached on the ability of the pilot models to adequately predict human behavior when confronted with similar control objectives.

  18. Preliminary Analysis of the Effect of Flow Separation Due to Rocket Jet Pluming on Aircraft Dynamic Stability During Atmospheric Exit

    NASA Technical Reports Server (NTRS)

    Dryer, Murray; North, Warren J.

    1959-01-01

    A theoretical investigation was conducted to determine the effects of body boundary-layer separation resulting from a highly underexpanded jet on the dynamic stability of a typical rocket aircraft during an atmospheric exit trajectory. The particular flight condition studied on a digital computer for five degrees of freedom was at Mach 6.0 and 150,000 feet. In view of the unknown character of the separated flow field, two estimates of the pressures in the separated region were made to calculate the unbalanced forces and moments. These estimates, based on limited fundamental zero-angle-of-attack studies and observations, are believed to cover what may be the actual case. In addition to a fixed control case, two simulated pilot control inputs were studied: rate-limited and instantaneous responses. The resulting-motions with and without boundary-layer separation were compared for various initial conditions. The lower of the assumed misalinement forces and moments led to a situation whereby a slowly damped motion could be satisfactorily controlled with rate-limited control input. The higher assumption led to larger amplitude, divergent motions when the same control rates were used. These motions were damped only when the instantaneous control responses were assumed.

  19. Response of TL dosemeters to cosmic radiation on board passenger aircraft.

    PubMed

    Bilski, P; Budzanowski, M; Marczewska, B; Olko, P

    2002-01-01

    Measurements were performed with various LiF based TLDs on board seven Polish aircraft, flying long-distance or middle-distance routes. All of the 7LiF detectors used (various types of 7LiF:Mg,Ti and 7LiF:Mg,Cu,P detectors), which measure the non-neutron component of the radiation field, produced consistent results. It was found that the characteristics of the TLD response (ratio of different detector responses, glow curve shapes) after doses of radiation at flying altitudes differ from those obtained after exposure at the CERN facility (CERF), suggesting a lower contribution of densely ionising radiation. The neutron induced TL signal was also more affected by the thickness of the holder, suggesting the presence of a softer neutron energy spectrum at flight altitudes. Further in-flight and CERF exposures of detectors are planned to resolve these issues.

  20. Supporting statement for community study of human response to aircraft noise

    NASA Technical Reports Server (NTRS)

    Dempsey, T. K.; Deloach, R.; Stephens, D. G.

    1980-01-01

    A study plan for quantifying the relationship between human annoyance and the noise level of individual aircraft events is studied. The validity of various noise descriptors or noise metrics for quantifying aircraft noise levels are assessed.

  1. An adaptive human response mechanism controlling the V/STOL aircraft. Appendix 3: The adaptive control model of a pilot in V/STOL aircraft control loops. M.S. Thesis. Final Report

    NASA Technical Reports Server (NTRS)

    Kucuk, Senol

    1988-01-01

    Importance of the role of human operator in control systems has led to the particular area of manual control theory. Human describing functions were developed to model human behavior for manual control studies to take advantage of the successful and safe human operations. A single variable approach is presented that can be extended for multi-variable tasks where a low order human response model is used together with its rules, to adapt the model on-line, being capable of responding to the changes in the controlled element dynamics. Basic control theory concepts are used to combine the model, constrained with the physical observations, particularly, for the case of aircraft control. Pilot experience is represented as the initial model parameters. An adaptive root-locus method is presented as the adaptation law of the model where the closed loop bandwidth of the system is to be preserved in a stable manner with the adjustments of the pilot handling qualities which relate the latter to the closed loop bandwidth and damping of the closed loop pilot aircraft combination. A Kalman filter parameter estimator is presented as the controlled element identifier of the adaptive model where any discrepancies of the open loop dynamics from the presented one, are sensed to be compensated.

  2. Development and evaluation of a new method for predicting aircraft buffet response

    NASA Technical Reports Server (NTRS)

    Cunningham, A. M., Jr.; Waner, P. G., Jr.; Watts, J. D.; Benepe, D. B.; Riddle, D. W.

    1975-01-01

    The buffet prediction method uses rigid wind tunnel model fluctuating pressure data to form a buffet forcing function. The response is then calculated with a mathematical dynamic model of the airplane developed for gust response analysis. By including the extremes of phasing and contribution of symmetric and antisymmetric airplane responses, the upper and lower bounds are established for buffet response. F-111A flight test data show good agreement with predicted bounds for a variety of flight conditions.

  3. Simulation and analysis of dynamic heating in the ultrafast aircraft thermometer measurements

    NASA Astrophysics Data System (ADS)

    Rosa, Bogdan; Bajer, Konrad; Haman, Krzysztof E.; Szoplik, Tomasz

    2005-10-01

    The ultrafast aircraft thermometer is an airborne device designed for measuring temperature in clouds with centimeter spatial resolution. Its sensor consists of 5mm long and 2.5μm thick thermo-resistive wire protected against impact of cloud droplets by a shield in the form of a suitably shaped rod, placed upstream. However the disturbances of airflow around this rod result in noise in the temperature record. Suction applied through slits located on both sides of the rod reduces the noise generated by vortices shed from the rod and lowers the probability of droplet-wire collisions. Our recent theoretical analysis and numerical simulations led to optimization of this device and additionally clarified the role of the sampling method in processing of the analogue output of the thermometer. In this paper we try to deepen our understanding of the nature of the noise as well as to improve calculations of the corrections connected with the dynamic heating. For this purpose we have done extensive three-dimensional numerical simulations of the airflow around the protective rod and the sensing wire, which permitted precise computation of dynamic heating and showed how applying the suction removes the thermal boundary layer from the rod and damps the sources of the noise.

  4. A new method to determine dynamically equivalent finite element models of aircraft structures from modal test data

    NASA Astrophysics Data System (ADS)

    Karaağaçlı, Taylan; Yıldız, Erdinç N.; Nevzat Özgüven, H.

    2012-08-01

    Flutter analysis is a major requirement to predict safe flight envelops and to decide on flutter testing conditions of newly designed or modified aircraft structures. In order to achieve reliable flutter analysis of an aircraft structure, it is necessary to obtain a good correlation between its finite element (FE) model and experimental modal data. Currently available model updating methods require construction of a detailed initial FE model in order to achieve convergence of the modes obtained from updated FE model to their experimental counterparts. If the updating procedure is not carried out by the original design team of the aircraft structure but a subsidiary company that makes certain modification on it, construction of an appropriate initial FE model from scratch becomes a tedious task requiring considerable amount of engineering work. To overcome the foregoing problem, this paper presents a new method that aims to derive dynamically equivalent FE model of an aircraft structure directly from its experimental modal data. The application of the method is illustrated with two case studies. In the first case study, the performance of the method is tested with the modal test data of a benchmark structure built to simulate dynamic behavior of an airplane, namely GARTEUR SM-AG 19 test bed, and very satisfactory results are obtained: the first 10 elastic FE modes of the test bed closely correlate with experimental data. In the second case study, the method is applied to the modal test data obtained from ground vibration test (GVT) of a real aircraft. In this application, it is observed that only the first 4 modes of the resultant FE model correlate well with experimental data. It is concluded that the method suggested works perfectly well for simple structures like GARTEUR test bed, and it gives quite promising results when applied to real aircraft structures.

  5. The Role of Turbulence in Chemical and Dynamical Processes in the Near-Field Wake of Subsonic Aircraft

    NASA Technical Reports Server (NTRS)

    Lewellen, D. C.; Lewellen, W. Steve

    2002-01-01

    During this grant, covering the period from September 1998 to December 2001, we continued the investigation of the role of turbulent mixing in the wake of subsonic aircraft initiated in 1994 for NASA's Atmospheric Effects of Aviation Project. The goal of the research has been to provide sufficient understanding and quantitative analytical capability to assess the dynamical, chemical, and microphysical interactions in the near-field wake that have the greatest potential to influence the global atmospheric impact of the projected fleet of subsonic aircraft. Through large-eddy simulations we have shown that turbulence in the early wake dynamics can have a strong effect on both the ice microphysics of contrail evolution and on wake chemistry. The wake vortex dynamics are the primary determinant of the vertical extent of the contrail; this together with the local wind shear largely determines the horizontal extent. The fraction of the initial ice crystals surviving the wake vortex dynamics, their spatial distribution, and the ice mass distribution are all sensitive to the aircraft type, assumed initial ice crystal number, and ambient humidity and turbulence conditions. Our model indicates that there is a significant range of conditions for which a smaller aircraft such as a B737 produces as significant a persistent contrail as a larger aircraft such as a B747, even though the latter consumes almost five times as much fuel. Large-eddy simulations of the near wake of a B757 provided a fine-grained chemical-dynamical representation of simplified NOx - HOx chemistry in wakes of ages from a few seconds to several minutes. By sampling the simulated data in a manner similar to that of in situ aircraft measurements it was possible to provide a likely explanation for a puzzle uncovered in the 1996 SUCCESS flight measurements of OH and HO2 The results illustrate the importance of considering fluid dynamics effects in interpreting chemistry results when mixing rates and species

  6. Dynamical response to a stationary tidal field

    NASA Astrophysics Data System (ADS)

    Landry, Philippe; Poisson, Eric

    2015-12-01

    We demonstrate that a slowly rotating compact body subjected to a stationary tidal field undergoes a dynamical response, in which the fluid variables and the interior metric vary on the time scale of the rotation period. This dynamical response requires the tidal field to have a gravitomagnetic component generated by external mass currents; the response to a gravitoelectric tidal field is stationary. We confirm that in a calculation carried out to first order in the body's rotation, the exterior geometry bears no trace of this internal dynamics; it remains stationary in spite of the time-dependent interior.

  7. A new fast response instrument for measuring total water content from aircraft

    NASA Astrophysics Data System (ADS)

    Nicholls, S.; Leighton, J.; Barker, R.

    1990-10-01

    A device for measuring the total water content of a parcel of air from an aircraft has been developed. The total water of a parcel of air is a conserved quantity, independent of phase changes, provided there is no transport of water through the parcel boundaries. Current airborne hygrometers normally attempt to measure the water content in individual phases and the presence of other phases invariably influences the quality of the data. However, any liquid water or ice entering this new probe is efficiently evaporated and the resultant water vapor measured using a Lyman-alpha hygrometer. In airborne trials the device was calibrated against a cooled-mirror dewpoint device. Runs were conducted in warm stratocumulus tops, through small cumulus, in mixed-phase precipitation and cirrus cloud. In all cases the device was found to produce high quality, fast response data.

  8. Response to actual and simulated recordings of conventional takeoff and landing jet aircraft

    NASA Technical Reports Server (NTRS)

    Mabry, J. E.; Sullivan, B. M.

    1978-01-01

    Comparability between noise characteristics of synthesized recordings of aircraft in flight and actual recordings were investigated. Although the synthesized recordings were more smoothly time-varying than the actual recordings and the synthesizer could not produce a comb-filter effect that was present in the actual recordings, results supported the conclusion that annoyance response is comparable to the synthesized and actual recordings. A correction for duration markedly improved the validity of engineering calculation procedures designed to measure noise annoyance. Results led to the conclusion that the magnitude estimation psychophysical method was a highly reliable approach for evaluating engineering calculation procedures designed to measure noise annoyance. For repeated presentations of pairs of actual recordings, differences between judgment results for identical signals ranged from 0.0 to 0.5 db.

  9. The relationship between aircraft noise exposure and day-use visitor survey responses in backcountry areas of national parks.

    PubMed

    Rapoza, Amanda; Sudderth, Erika; Lewis, Kristin

    2015-10-01

    To evaluate the relationship between aircraft noise exposure and the quality of national park visitor experience, more than 4600 visitor surveys were collected at seven backcountry sites in four U.S. national parks simultaneously with calibrated sound level measurements. Multilevel logistic regression was used to estimate parameters describing the relationship among visitor responses, aircraft noise dose metrics, and mediator variables. For the regression models, survey responses were converted to three dichotomous variables, representing visitors who did or did not experience slightly or more, moderately or more, or very or more annoyance or interference with natural quiet from aircraft noise. Models with the most predictive power included noise dose metrics of sound exposure level, percent time aircraft were audible, and percentage energy due to helicopters and fixed-wing propeller aircraft. These models also included mediator variables: visitor ratings of the "importance of calmness, peace and tranquility," visitor group composition (adults or both adults and children), first visit to the site, previously taken an air tour, and participation in bird-watching or interpretive talks. The results complement and extend previous research conducted in frontcountry areas and will inform evaluations of air tour noise effects on visitors to national parks and remote wilderness sites. PMID:26520292

  10. The relationship between aircraft noise exposure and day-use visitor survey responses in backcountry areas of national parks.

    PubMed

    Rapoza, Amanda; Sudderth, Erika; Lewis, Kristin

    2015-10-01

    To evaluate the relationship between aircraft noise exposure and the quality of national park visitor experience, more than 4600 visitor surveys were collected at seven backcountry sites in four U.S. national parks simultaneously with calibrated sound level measurements. Multilevel logistic regression was used to estimate parameters describing the relationship among visitor responses, aircraft noise dose metrics, and mediator variables. For the regression models, survey responses were converted to three dichotomous variables, representing visitors who did or did not experience slightly or more, moderately or more, or very or more annoyance or interference with natural quiet from aircraft noise. Models with the most predictive power included noise dose metrics of sound exposure level, percent time aircraft were audible, and percentage energy due to helicopters and fixed-wing propeller aircraft. These models also included mediator variables: visitor ratings of the "importance of calmness, peace and tranquility," visitor group composition (adults or both adults and children), first visit to the site, previously taken an air tour, and participation in bird-watching or interpretive talks. The results complement and extend previous research conducted in frontcountry areas and will inform evaluations of air tour noise effects on visitors to national parks and remote wilderness sites.

  11. Numerical simulation of the actuation system for the ALDF's propulsion control valve. [Aircraft Landing Dynamics Facility

    NASA Technical Reports Server (NTRS)

    Korte, John J.

    1990-01-01

    A numerical simulation of the actuation system for the propulsion control valve (PCV) of the NASA Langley Aircraft Landing Dynamics Facility was developed during the preliminary design of the PCV and used throughout the entire project. The simulation is based on a predictive model of the PCV which is used to evaluate and design the actuation system. The PCV controls a 1.7 million-pound thrust water jet used in propelling a 108,000-pound test carriage. The PCV can open and close in 0.300 second and deliver over 9,000 gallons of water per sec at pressures up to 3150 psi. The numerical simulation results are used to predict transient performance and valve opening characteristics, specify the hydraulic control system, define transient loadings on components, and evaluate failure modes. The mathematical model used for numerically simulating the mechanical fluid power system is described, and numerical results are demonstrated for a typical opening and closing cycle of the PCV. A summary is then given on how the model is used in the design process.

  12. Analytical model for tilting proprotor aircraft dynamics, including blade torsion and coupled bending modes, and conversion mode operation

    NASA Technical Reports Server (NTRS)

    Johnson, W.

    1974-01-01

    An analytical model is developed for proprotor aircraft dynamics. The rotor model includes coupled flap-lag bending modes, and blade torsion degrees of freedom. The rotor aerodynamic model is generally valid for high and low inflow, and for axial and nonaxial flight. For the rotor support, a cantilever wing is considered; incorporation of a more general support with this rotor model will be a straight-forward matter.

  13. Simplified methods for interpreting the effect of transfer-function zeros on the transient response of aircraft

    NASA Technical Reports Server (NTRS)

    Onken, R.

    1972-01-01

    Two simple methods are outlined for evaluating the effect of transfer-function zeros on the system time response. The pole effects can also be evaluated. These methods are useful for simplified analysis or creating design criteria in terms of desirable regions of pole-zero locations. The type of transfer function studied is limited to those linear systems. Corresponding to ordinary longitudinal or lateral aircraft transfer functions, the denominator polynomial is of fourth order and the numerator of third order at most. With the longitudinal motion of the aircraft as an example, the methods are used in the evaluation of optimal regulator control with respect to a particular performance index structure.

  14. Dynamic electrical response of solar cells

    NASA Technical Reports Server (NTRS)

    Catani, J. P.

    1981-01-01

    The dynamic response of a solar generator is of primary importance as much for the design and development of electrical power conditioning hardware as for the analysis of electromagnetic compatibility. A mathematical model of photo-batteries was developed on the basis of impedance measurements performed under differing conditions of temperature, light intensity, before and after irradiation. This model was compared with that derived from PN junction theory and to static measurements. These dynamic measurements enabled the refinement of an integration method capable of determining, under normal laboratory conditions, the dynamic response of a generator to operational lighting conditions.

  15. Dynamic response of cavitating turbomachines

    NASA Technical Reports Server (NTRS)

    Ng, S. L.

    1976-01-01

    Stimulated by the pogo instability encountered in many liquid propellant rockets, the dynamic behavior of cavitating inducers is discussed. An experimental facility where the upstream and downstream flows of a cavitating inducer could be perturbed was constructed and tested. The upstream and downstream pressure and mass flow fluctuations were measured. Matrices representing the transfer functions across the inducer pump were calculated from these measurements and from the hydraulic system characteristics for two impellers in various states of cavitation. The transfer matrices when plotted against the perturbing frequency showed significant departure from steady state or quasi-steady predictions especially at higher frequencies.

  16. The effects of aeroelastic deformation on the unaugmented stopped-rotor dynamics of an X-Wing aircraft

    NASA Technical Reports Server (NTRS)

    Gilbert, Michael G.; Silva, Walter A.

    1987-01-01

    A new design concept in the development of vertical takeoff and landing aircraft with high forward flight speed capability is that of the X-Wing. The X-Wing is a stiff, bearingless helicopter rotor system which can be stopped in flight and the blades used as two forward-swept wings and two aft-swept wings. Because of the unusual configuration in the fixed-wing mode, there is a high potential for aeroelastic divergence or flutter and coupling of blade vibration modes with rigid-body modes. An aeroelastic stability analysis of an X-Wing configuration aircraft was undertaken to determine if these problems could exist. This paper reports on the results of dynamic stability analyses in the lateral and longitudinal directions including the vehicle rigid-body and flexible modes. A static aeroelastic analysis using the normal vibration mode equations of motion was performed to determine the cause of a loss of longitudinal static margin with increasing airspeed. This loss of static margin was found to be due to aeroelastic 'washin' of the forward-swept blades and 'washout' of the aft-swept blades moving the aircraft aerodynamic center forward of the center of gravity. This phenomenon is likely to be generic to X-Wing aircraft.

  17. The effects of aeroelastic deformation on the unaugmented stopped-rotor dynamics of an X-Wing aircraft

    NASA Technical Reports Server (NTRS)

    Gilbert, Michael G.; Silva, Walter A.

    1987-01-01

    A new design concept in the development of VTOL aircraft with high forward flight speed capability is that of the X-Wing, a stiff, bearingless helicopter rotor system which can be stopped in flight and the blades used as two forward-swept and two aft-swept wings. Because of the usual configuration in the fixed-wing mode, there is a high potential for aeroelastic divergence or flutter and coupling of blade vibration modes with rigid-body modes. An aeroelastic stability analysis of an X-Wing configuration aircraft was undertaken to determine if these problems could exist. This paper reports on the results of dynamic stability analyses in the lateral and longitudinal directions including the vehicle rigid-body and flexible modes. A static aeroelastic analysis using the normal vibration mode equations of motion was performed to determine the cause of a loss of longitudinal static margin with increasing airspeed. This loss of static margin was found to be due to aeroelastic washin of the forward-swept blades and washout of the aft-swept blades moving the aircraft aerodynamic center forward of the center of gravity. This phenomenon is likely to be generic to X-Wing aircraft.

  18. The dynamic response of rail support

    NASA Astrophysics Data System (ADS)

    Gu, Gunmo; Choi, Jungyoul

    2013-06-01

    This research reviews principles behind the dynamic response of rail supports, and introduces a method of analysis to find the maximum response in a realistic setting. Assuming a time-dependent, moving mass with massive wheels is essential, because the ratio of the moving mass to the rail mass is significant. However, the dynamic response of the track is not affected by dynamic properties of the train other than its unsprung mass, because the natural frequencies of the train suspension and track are significantly different. A numerical method is developed to model the dynamic response based on these principles, and applied to the Korean urban transit. The dynamic response includes multiple peaks with a large amplitude range, creating noise while the wheel passes the support. The dynamic impact factor (DIF) for the rail support depends mainly on the stiffness and damping of the rail support. The DIF for the rail moment is below the code value, whether this value is based on numerical analysis or on-site measurements. However, our numerical analysis results in a DIF for support settlement that is greater than the code value, if the damping is less than 3%.

  19. Estimation of Aircraft Unsteady Aerodynamic Parameters from Dynamic Wind Tunnel Testing

    NASA Technical Reports Server (NTRS)

    Murphy, Patrick C.; Klein, Vladislav

    2001-01-01

    Improved aerodynamic mathematical models, for use in aircraft simulation or flight control design, are required when representing nonlinear unsteady aerodynamics. A key limitation of conventional aerodynamic models is the inability to map frequency and amplitude dependent data into the equations of motion directly. In an effort to obtain a more general formulation of the aerodynamic model, researchers have been led to a parallel requirement for more general testing methods. Testing for a more comprehensive model can lead to a very time consuming number of tests especially if traditional single frequency harmonic testing is attempted. This paper presents an alternative to traditional single frequency forced-oscillation testing by utilizing Schroeder sweeps to efficiently obtain the frequency response of the unsteady aerodynamic model. Schroeder inputs provide signals with a flat power spectrum over a specified frequency band. For comparison, experimental results using the traditional single-frequency inputs are also considered. A method for data analysis to determine an adequate unsteady aerodynamic model is presented. Discussion of associated issues that arise during this type of analysis and comparison of results using traditional single frequency analysis are provided.

  20. Estimation of dynamic rotor loads for the rotor systems research aircraft: Methodology development and validation

    NASA Technical Reports Server (NTRS)

    Duval, R. W.; Bahrami, M.

    1985-01-01

    The Rotor Systems Research Aircraft uses load cells to isolate the rotor/transmission systm from the fuselage. A mathematical model relating applied rotor loads and inertial loads of the rotor/transmission system to the load cell response is required to allow the load cells to be used to estimate rotor loads from flight data. Such a model is derived analytically by applying a force and moment balance to the isolated rotor/transmission system. The model is tested by comparing its estimated values of applied rotor loads with measured values obtained from a ground based shake test. Discrepancies in the comparison are used to isolate sources of unmodeled external loads. Once the structure of the mathematical model has been validated by comparison with experimental data, the parameters must be identified. Since the parameters may vary with flight condition it is desirable to identify the parameters directly from the flight data. A Maximum Likelihood identification algorithm is derived for this purpose and tested using a computer simulation of load cell data. The identification is found to converge within 10 samples. The rapid convergence facilitates tracking of time varying parameters of the load cell model in flight.

  1. The response dynamics of preferential choice.

    PubMed

    Koop, Gregory J; Johnson, Joseph G

    2013-12-01

    The ubiquity of psychological process models requires an increased degree of sophistication in the methods and metrics that we use to evaluate them. We contribute to this venture by capitalizing on recent work in cognitive science analyzing response dynamics, which shows that the bearing information processing dynamics have on intended action is also revealed in the motor system. This decidedly "embodied" view suggests that researchers are missing out on potential dependent variables with which to evaluate their models-those associated with the motor response that produces a choice. The current work develops a method for collecting and analyzing such data in the domain of decision making. We first validate this method using widely normed stimuli from the International Affective Picture System (Experiment 1), and demonstrate that curvature in response trajectories provides a metric of the competition between choice options. We next extend the method to risky decision making (Experiment 2) and develop predictions for three popular classes of process model. The data provided by response dynamics demonstrate that choices contrary to the maxim of risk seeking in losses and risk aversion in gains may be the product of at least one "online" preference reversal, and can thus begin to discriminate amongst the candidate models. Finally, we incorporate attentional data collected via eye-tracking (Experiment 3) to develop a formal computational model of joint information sampling and preference accumulation. In sum, we validate response dynamics for use in preferential choice tasks and demonstrate the unique conclusions afforded by response dynamics over and above traditional methods.

  2. Survey of needs and capabilities for wind tunnel testing of dynamic stability of aircraft at high angles of attack

    NASA Technical Reports Server (NTRS)

    Orlik-Ruckemann, K. J.

    1973-01-01

    A survey was conducted relative to future requirements for dynamic stability information for such aerospace vehicles as the space shuttle and advanced high performance military aircraft. High-angle-of-attack and high-Reynolds number conditions were emphasized. A review was made of the wind-tunnel capabilities in North America for measuring dynamic stability derivatives, revealing an almost total lack of capabilities that could satisfy these requirements. Recommendations are made regarding equipment that should be constructed to remedy this situation. A description is given of some of the more advanced existing capabilities, which can be used to at least partly satisfy immediate demands.

  3. Low-order nonlinear dynamic model of IC engine-variable pitch propeller system for general aviation aircraft

    NASA Technical Reports Server (NTRS)

    Richard, Jacques C.

    1995-01-01

    This paper presents a dynamic model of an internal combustion engine coupled to a variable pitch propeller. The low-order, nonlinear time-dependent model is useful for simulating the propulsion system of general aviation single-engine light aircraft. This model is suitable for investigating engine diagnostics and monitoring and for control design and development. Furthermore, the model may be extended to provide a tool for the study of engine emissions, fuel economy, component effects, alternative fuels, alternative engine cycles, flight simulators, sensors, and actuators. Results show that the model provides a reasonable representation of the propulsion system dynamics from zero to 10 Hertz.

  4. Aircraft landing gear systems

    NASA Technical Reports Server (NTRS)

    Tanner, John A. (Editor)

    1990-01-01

    Topics presented include the laboratory simulation of landing gear pitch-plane dynamics, a summary of recent aircraft/ground vehicle friction measurement tests, some recent aircraft tire thermal studies, and an evaluation of critical speeds in high-speed aircraft. Also presented are a review of NASA antiskid braking research, titanium matrix composite landing gear development, the current methods and perspective of aircraft flotation analysis, the flow rate and trajectory of water spray produced by an aircraft tire, and spin-up studies of the Space Shuttle Orbiter main gear tire.

  5. Annoyance response to simulated advanced turboprop aircraft interior noise containing tonal beats

    NASA Technical Reports Server (NTRS)

    Leatherwood, Jack D.

    1987-01-01

    A study is done to investigate the effects on subjective annoyance of simulated advanced turboprop (ATP) interior noise environments containing tonal beats. The simulated environments consisted of low-frequency tones superimposed on a turbulent-boundary-layer noise spectrum. The variables used in the study included propeller tone frequency (100 to 250 Hz), propeller tone levels (84 to 105 dB), and tonal beat frequency (0 to 1.0 Hz). Results indicated that propeller tones within the simulated ATP environment resulted in increased annoyance response that was fully predictable in terms of the increase in overall sound pressure level due to the tones. Implications for ATP aircraft include the following: (1) the interior noise environment with propeller tones is more annoying than an environment without tones if the tone is present at a level sufficient to increase the overall sound pressure level; (2) the increased annoyance due to the fundamental propeller tone frequency without harmonics is predictable from the overall sound pressure level; and (3) no additional noise penalty due to the perception of single discrete-frequency tones and/or beats was observed.

  6. Finite element simulation of pipe dynamic response

    SciTech Connect

    Slagis, G.C.; Litton, R.W.

    1996-12-01

    Nonlinear finite element dynamic analyses of the response of a pipe span to controlled-displacement, sinusoidal vibration have been performed. The objective of this preliminary study is to compare strain and acceleration response data to those generated by Beaney in the Berkeley Nuclear Laboratories experiments. Results for an unpressurized, 5 Hz, carbon steel pipe are in good agreement with the experiments. Hence, it appears that analytical simulation will be useful to assess seismic margins. Recommendations for additional studies are provided. The analyses confirm the test results--dynamic response is greatly attenuated by material plasticity. Analytical strains and accelerations are about 30% higher than test data. There are several possible explanations for the differences. To assess the effect of frequency on response, the length of the pipe span was increased. Analysis of the longer, 2 Hz, pipe span shows significantly greater cyclic strains than the 5 Hz span at the same input excitation levels.

  7. Stability boundaries for aircraft with unstable lateral-directional dynamics and control saturation

    NASA Technical Reports Server (NTRS)

    Shrivastava, Prakash C.; Stengel, Robert F.

    1989-01-01

    Aircraft that do not possess inherent (aerodynamic) stability must rely on closed-loop control systems for stable operation. Because there are limits on the deflections of an aircraft's control surfaces, the region of stable operation also is bounded. These boundaries are investigated for a lateral-directional example in which vertical fin size is inadequate to provide directional stability and where aileron and rudder deflections are subject to saturation. Fourth-order models are used in this study, with flight control logic based on minimum-control-energy linear-quadratic-regulatory theory. It is found that the stability boundaries can be described by unstable limit cycles surrounding stable equilibrium points. Variations in regions of stability with gain levels and command inputs are illustrated. Current results suggest guidelines for permissible limits on the open-loop instability of an aircraft's lateral-directional modes.

  8. Use of Airport Noise Complaint Files to Improve Understanding of Community Response to Aircraft Noise

    NASA Technical Reports Server (NTRS)

    Fidell, Sanford; Howe, Richard

    1998-01-01

    This study assessed the feasibility of using complaint information archived by modem airport monitoring systems to conduct quantitative analyses of the causes of aircraft noise complaints and their relationship to noise- induced annoyance. It was found that all computer-based airport monitoring systems provide at least rudimentary tools for performing data base searches by complainant name, address, date, time of day, and types of aircraft and complaints. Analyses of such information can provide useful information about longstanding concerns, such as the extent to which complaint rates are driven by objectively measurable aspects of aircraft operations; the degree to which changes in complaint rates can be predicted prior to implementation of noise mitigation measures; and the degree to which aircraft complaint information can be used to simplify and otherwise improve prediction of the prevalence of noise-induced annoyance in communities.

  9. Linear and nonlinear interpretation of the direct strike lightning response of the NASA F106B thunderstorm research aircraft

    NASA Technical Reports Server (NTRS)

    Rudolph, T. H.; Perala, R. A.

    1983-01-01

    The objective of the work reported here is to develop a methodology by which electromagnetic measurements of inflight lightning strike data can be understood and extended to other aircraft. A linear and time invariant approach based on a combination of Fourier transform and three dimensional finite difference techniques is demonstrated. This approach can obtain the lightning channel current in the absence of the aircraft for given channel characteristic impedance and resistive loading. The model is applied to several measurements from the NASA F106B lightning research program. A non-linear three dimensional finite difference code has also been developed to study the response of the F106B to a lightning leader attachment. This model includes three species air chemistry and fluid continuity equations and can incorporate an experimentally based streamer formulation. Calculated responses are presented for various attachment locations and leader parameters. The results are compared qualitatively with measured inflight data.

  10. The dynamics of the HSCT environment. [air pollution from High Speed Civil Transport Aircraft

    NASA Technical Reports Server (NTRS)

    Douglass, Anne R.; Rood, Richard B.

    1991-01-01

    Assessments of the impact of aircraft engine exhausts on stratospheric ozone levels are currently limited to 2D zonally-averaged models which, while completely representing chemistry, involve high parameterization of transport processes. Prospective 3D models under development by NASA-Goddard will use winds from a data-assimilation procedure; the upper troposphere/lower stratosphere behavior of one such model has been verified by direct comparison of model simulations with satellite, balloon, and sonde measurements. Attention is presently given to the stratosphere/troposphere exchange and nonzonal distribution of aircraft engine exhaust.

  11. Space life sciences: structure and dynamics of the global space radiation field at aircraft altitudes.

    PubMed

    2003-01-01

    This issue is devoted to research papers on the radiation environment encountered by aircraft crew members and the flying public, both of which are exposed to a higher than average radiation dose. Two types of space radiation are considered: galactic cosmic radiation and solar activity. The papers include reviews on atmospheric ionization radiation, the factors controlling this radiation, the modeling of this radiation, and measurements made on board specific aircraft flights during solar minimum and solar maximum conditions, and during the major solar proton events that occurred in 1989 and 2001.

  12. Impact Response Study on Covering Cap of Aircraft Big-Size Integral Fuel Tank

    NASA Astrophysics Data System (ADS)

    Wang, Fusheng; Jia, Senqing; Wang, Yi; Yue, Zhufeng

    2016-05-01

    In order to assess various design concepts and choose a kind of covering cap design scheme which can meet the requirements of airworthiness standard and ensure the safety of fuel tank. Using finite element software ANSYS/LS- DYNA, the impact process of covering cap of aircraft fuel tank by projectile were simulated, in which dynamical characteristics of simple single covering cap and gland double-layer covering cap impacted by titanium alloy projectile and rubber projectile were studied, as well as factor effects on simple single covering cap and gland double-layer covering cap under impact region, impact angle and impact energy were also studied. Though the comparison of critical damage velocity and element deleted number of the covering caps, it shows that the external covering cap has a good protection effect on internal covering cap. The regions close to boundary are vulnerable to appear impact damage with titanium alloy projectile while the regions close to center is vulnerable to occur damage with rubber projectile. Equivalent strain in covering cap is very little when impact angle is less than 15°. Element deleted number in covering cap reaches the maximum when impact angle is between 60°and 65°by titanium alloy projectile. While the bigger the impact angle and the more serious damage of the covering cap will be when rubber projectile impact composite covering cap. The energy needed for occurring damage on external covering cap and internal covering cap is less than and higher than that when single covering cap occur damage, respectively. The energy needed for complete breakdown of double-layer covering cap is much higher than that of single covering cap.

  13. Impact Response Study on Covering Cap of Aircraft Big-Size Integral Fuel Tank

    NASA Astrophysics Data System (ADS)

    Wang, Fusheng; Jia, Senqing; Wang, Yi; Yue, Zhufeng

    2016-10-01

    In order to assess various design concepts and choose a kind of covering cap design scheme which can meet the requirements of airworthiness standard and ensure the safety of fuel tank. Using finite element software ANSYS/LS- DYNA, the impact process of covering cap of aircraft fuel tank by projectile were simulated, in which dynamical characteristics of simple single covering cap and gland double-layer covering cap impacted by titanium alloy projectile and rubber projectile were studied, as well as factor effects on simple single covering cap and gland double-layer covering cap under impact region, impact angle and impact energy were also studied. Though the comparison of critical damage velocity and element deleted number of the covering caps, it shows that the external covering cap has a good protection effect on internal covering cap. The regions close to boundary are vulnerable to appear impact damage with titanium alloy projectile while the regions close to center is vulnerable to occur damage with rubber projectile. Equivalent strain in covering cap is very little when impact angle is less than 15°. Element deleted number in covering cap reaches the maximum when impact angle is between 60°and 65°by titanium alloy projectile. While the bigger the impact angle and the more serious damage of the covering cap will be when rubber projectile impact composite covering cap. The energy needed for occurring damage on external covering cap and internal covering cap is less than and higher than that when single covering cap occur damage, respectively. The energy needed for complete breakdown of double-layer covering cap is much higher than that of single covering cap.

  14. Progress of Aircraft System Noise Assessment with Uncertainty Quantification for the Environmentally Responsible Aviation Project

    NASA Technical Reports Server (NTRS)

    Thomas, Russell H.; Burley, Casey L.; Guo, Yueping

    2016-01-01

    Aircraft system noise predictions have been performed for NASA modeled hybrid wing body aircraft advanced concepts with 2025 entry-into-service technology assumptions. The system noise predictions developed over a period from 2009 to 2016 as a result of improved modeling of the aircraft concepts, design changes, technology development, flight path modeling, and the use of extensive integrated system level experimental data. In addition, the system noise prediction models and process have been improved in many ways. An additional process is developed here for quantifying the uncertainty with a 95% confidence level. This uncertainty applies only to the aircraft system noise prediction process. For three points in time during this period, the vehicle designs, technologies, and noise prediction process are documented. For each of the three predictions, and with the information available at each of those points in time, the uncertainty is quantified using the direct Monte Carlo method with 10,000 simulations. For the prediction of cumulative noise of an advanced aircraft at the conceptual level of design, the total uncertainty band has been reduced from 12.2 to 9.6 EPNL dB. A value of 3.6 EPNL dB is proposed as the lower limit of uncertainty possible for the cumulative system noise prediction of an advanced aircraft concept.

  15. Stability, Transient Response, Control, and Safety of a High-Power Electric Grid for Turboelectric Propulsion of Aircraft

    NASA Technical Reports Server (NTRS)

    Armstrong, Michael; Ross, Christine; Phillips, Danny; Blackwelder, Mark

    2013-01-01

    This document contains the deliverables for the NASA Research and Technology for Aerospace Propulsion Systems (RTAPS) regarding the stability, transient response, control, and safety study for a high power cryogenic turboelectric distributed propulsion (TeDP) system. The objective of this research effort is to enumerate, characterize, and evaluate the critical issues facing the development of the N3-X concept aircraft. This includes the proposal of electrical grid architecture concepts and an evaluation of any needs for energy storage.

  16. Aircraft Pitch Control with Fixed Order LQ Compensators

    NASA Technical Reports Server (NTRS)

    Green, James; Ashokkumar, Cr.; Homaifar, A.

    1997-01-01

    This paper considers a given set of fixed order compensators for aircraft pitch control problem. By augmenting compensator variables to the original state equations of the aircraft, a new dynamic model is considered to seek a LQ controller. While the fixed order compensators can achieve a set of desired poles in a specified region, LQ formulation provides the inherent robustness properties. The time response for ride quality is significantly improved with a set of dynamic compensators.

  17. Molecular Dynamics Simulation of Dynamic Response of Beryllium

    NASA Astrophysics Data System (ADS)

    Thompson, Aidan P.; Lane, J. Matthew D.; Baskes, Michael I.; Desjarlais, Michael P.

    2009-06-01

    The response of beryllium to dynamic loading has been extensively studied, both experimentally and theoretically, due to its importance in several technological areas. Compared to other metals, it is quite challenging to accurately represent the various anomalous behaviors of beryllium using classical interatomic potentials. The spherically-symmetric EAM potential can not reproduce the observed c/a ratio for α-Be under ambient conditions, which is significantly smaller than the ideal HCP value. The directional-dependence of the MEAM potential overcomes this problem, but introduces additional complexity. We will compare predictions of these classical potentials to experimental measurements of beryllium at ambient conditions, and also to theoretical calculations at high temperatures and pressures. Finally, we will present initial results from non-equilibrium molecular dynamics simulations of beryllium under dynamic loading. This work is supported by the Laboratory Directed Research and Development program at Sandia National Laboratories.

  18. Coupled Vortex-Lattice Flight Dynamic Model with Aeroelastic Finite-Element Model of Flexible Wing Transport Aircraft with Variable Camber Continuous Trailing Edge Flap for Drag Reduction

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan; Ting, Eric; Nguyen, Daniel; Dao, Tung; Trinh, Khanh

    2013-01-01

    This paper presents a coupled vortex-lattice flight dynamic model with an aeroelastic finite-element model to predict dynamic characteristics of a flexible wing transport aircraft. The aircraft model is based on NASA Generic Transport Model (GTM) with representative mass and stiffness properties to achieve a wing tip deflection about twice that of a conventional transport aircraft (10% versus 5%). This flexible wing transport aircraft is referred to as an Elastically Shaped Aircraft Concept (ESAC) which is equipped with a Variable Camber Continuous Trailing Edge Flap (VCCTEF) system for active wing shaping control for drag reduction. A vortex-lattice aerodynamic model of the ESAC is developed and is coupled with an aeroelastic finite-element model via an automated geometry modeler. This coupled model is used to compute static and dynamic aeroelastic solutions. The deflection information from the finite-element model and the vortex-lattice model is used to compute unsteady contributions to the aerodynamic force and moment coefficients. A coupled aeroelastic-longitudinal flight dynamic model is developed by coupling the finite-element model with the rigid-body flight dynamic model of the GTM.

  19. Dynamic-tensile-extrusion response of fluoropolymers

    SciTech Connect

    Brown, Eric N; Trujillo, Carl P; Gray, George T

    2009-01-01

    The current work applies the recently developed Dynamic-Tensile-Extrusion (Dyn-Ten-Ext) technique to polytetrafluoroethylene (PTFE) and polychlorotrifluoroethylene (PCTFE). Similar to the Taylor Impact Rod, Dynamic-Tensile-Extrusion is a strongly integrated test, probing a wide range of strain rates and stress states. However, the stress state is primarily tensile enabling investigation of dynamic tensile failure modes. Here we investigate the influence of this propensity to neck or not between PCTFE and PTFE on their response under dynamic tensile extrusion loading. The results of the Dyn-Ten-Ext technique are compared with two classic techniques. Both polymers have been investigated using Tensile Split Hopkinson Pressure Bar. The quasistatic and dynamic responses of both fluoro-polymers have been extensively characterized. The two polymers exhibit significantly different failure behavior under tensile loading at moderate strain rates. Polytetrafluoroethylene resists formation of a neck and exhibits significant strain hardening. Independent of temperature or strain rate, PTFE sustains true strains to failure of approximately 1.5. Polychlorotrifluoroethylene, on the other hand, consistently necks at true strains of approximately 0.05.

  20. Computational Fluid Dynamics (CFD) Simulations of a Humvee Airdropped from Aircraft

    NASA Astrophysics Data System (ADS)

    Reyes, Phillip M.

    Military airdrop is a means of transporting and delivering cargo to inaccessible locales faster and more efficiently. The Humvee, an all-terrain truck, is one such payload that the U.S. Army drops routinely. Here, interesting physics occurs both structurally and aerodynamically. From a fluid dynamics and trajectory standpoint, determining the aerodynamic forces and moments acting on the parachute and payload is crucial particularly for trajectory prediction. This study primarily used Computational Fluid Dynamics (CFD) to simulate the aerodynamics of an airdrop Humvee model in two regimes of fall, namely, right after clearing the aircraft ramp, and during descent under parachute. This study was performed at a Reynolds number of 3.07x10. 6 and at an airspeedof 9.144m/s (30ft/s). The first humvee part of the study analyzed the aerodynamic coefficients drag, lift, and pitching moment over a 360 degree range of pitch angles for the Humvee configured for extraction. The second set of humvee simulations focused on the aerodynamic coefficients at pitch angles of -40 degrees to +40 degrees with the platform and vehicle configured for descent under parachute. The Humvee after ramp tip-off has a parachute pack on its hood, but lacks one during the descent phase. The numerical data was compared with the results of geometries from previous studies. These geometries include: the flat plate, Type-V LVADS and 10K-JPADS containers, and a cargo-carrying platform outfitted with a bumper. Our results clearly show the effects of the many angular features that characterize the shape of a Humvee in comparison to those of a simple cuboid, particularly with regards to the loss of lift in a sub-range of pitch angle (-45 degrees to -180 degrees). First, the aerodynamic coefficients were calculated over one full-revolution of the humvee (-180 degrees to +180 degrees static pitch angles with respect to the humvee's platform) best matched in lift, drag, and moment those of the type V LVADS

  1. The implementation and operation of a variable-response electronic throttle control system for a TF-104G aircraft

    NASA Technical Reports Server (NTRS)

    Neal, Bradford; Sengupta, Upal

    1989-01-01

    During some flight programs, researchers have encountered problems in the throttle response characteristics of high-performance aircraft. To study and to help solve these problems, the National Aeronautics and Space Administration Ames Research Center's Dryden Flight Research Facility (Ames-Dryden) conducted a study using a TF-104G airplane modified with a variable-response electronic throttle control system. Ames-Dryden investigated the effects of different variables on engine response and handling qualities. The system provided transport delay, lead and lag filters, second-order lags, command rate and position limits, and variable gain between the pilot's throttle command and the engine fuel controller. These variables could be tested individually or in combination. Ten research flights were flown to gather data on engine response and to obtain pilot ratings of the various system configurations. The results should provide design criteria for engine-response characteristics. The variable-response throttle components and how they were installed in the TF-104G aircraft are described. How the variable-response throttle was used in flight and some of the results of using this system are discussed.

  2. Progressive Aerodynamic Model Identification From Dynamic Water Tunnel Test of the F-16XL Aircraft

    NASA Technical Reports Server (NTRS)

    Murphy, Patrick C.; Klein, Vladislav; Szyba, Nathan M.

    2004-01-01

    Development of a general aerodynamic model that is adequate for predicting the forces and moments in the nonlinear and unsteady portions of the flight envelope has not been accomplished to a satisfactory degree. Predicting aerodynamic response during arbitrary motion of an aircraft over the complete flight envelope requires further development of the mathematical model and the associated methods for ground-based testing in order to allow identification of the model. In this study, a general nonlinear unsteady aerodynamic model is presented, followed by a summary of a linear modeling methodology that includes test and identification methods, and then a progressive series of steps suggesting a roadmap to develop a general nonlinear methodology that defines modeling, testing, and identification methods. Initial steps of the general methodology were applied to static and oscillatory test data to identify rolling-moment coefficient. Static measurements uncovered complicated dependencies of the aerodynamic coefficient on angle of attack and sideslip in the stall region making it difficult to find a simple analytical expression for the measurement data. In order to assess the effect of sideslip on the damping and unsteady terms, oscillatory tests in roll were conducted at different values of an initial offset in sideslip. Candidate runs for analyses were selected where higher order harmonics were required for the model and where in-phase and out-of-phase components varied with frequency. From these results it was found that only data in the angle-of-attack range of 35 degrees to 37.5 degrees met these requirements. From the limited results it was observed that the identified models fit the data well and both the damping-in-roll and the unsteady term gain are decreasing with increasing sideslip and motion amplitude. Limited similarity between parameter values in the nonlinear model and the linear model suggest that identifiability of parameters in both terms may be a

  3. An inverse-modelling approach for frequency response correction of capacitive humidity sensors in ABL research with small remotely piloted aircraft (RPA)

    NASA Astrophysics Data System (ADS)

    Wildmann, N.; Kaufmann, F.; Bange, J.

    2014-09-01

    The measurement of water vapour concentration in the atmosphere is an ongoing challenge in environmental research. Satisfactory solutions exist for ground-based meteorological stations and measurements of mean values. However, carrying out advanced research of thermodynamic processes aloft as well, above the surface layer and especially in the atmospheric boundary layer (ABL), requires the resolution of small-scale turbulence. Sophisticated optical instruments are used in airborne meteorology with manned aircraft to achieve the necessary fast-response measurements of the order of 10 Hz (e.g. LiCor 7500). Since these instruments are too large and heavy for the application on small remotely piloted aircraft (RPA), a method is presented in this study that enhances small capacitive humidity sensors to be able to resolve turbulent eddies of the order of 10 m. The sensor examined here is a polymer-based sensor of the type P14-Rapid, by the Swiss company Innovative Sensor Technologies (IST) AG, with a surface area of less than 10 mm2 and a negligible weight. A physical and dynamical model of this sensor is described and then inverted in order to restore original water vapour fluctuations from sensor measurements. Examples of flight measurements show how the method can be used to correct vertical profiles and resolve turbulence spectra up to about 3 Hz. At an airspeed of 25 m s-1 this corresponds to a spatial resolution of less than 10 m.

  4. Creating a Test Validated Structural Dynamic Finite Element Model of the Multi-Utility Technology Test Bed Aircraft

    NASA Technical Reports Server (NTRS)

    Pak, Chan-Gi; Truong, Samson S.

    2014-01-01

    Small modeling errors in the finite element model will eventually induce errors in the structural flexibility and mass, thus propagating into unpredictable errors in the unsteady aerodynamics and the control law design. One of the primary objectives of Multi Utility Technology Test Bed, X-56A, aircraft is the flight demonstration of active flutter suppression, and therefore in this study, the identification of the primary and secondary modes for the structural model tuning based on the flutter analysis of X-56A. The ground vibration test validated structural dynamic finite element model of the X-56A is created in this study. The structural dynamic finite element model of the X-56A is improved using a model tuning tool. In this study, two different weight configurations of the X-56A have been improved in a single optimization run.

  5. Dynamic structural aeroelastic stability testing of the XV-15 tilt rotor research aircraft

    NASA Technical Reports Server (NTRS)

    Schroers, L. G.

    1982-01-01

    For the past 20 years, a significant effort has been made to understand and predict the structural aeroelastic stability characteristics of the tilt rotor concept. Beginning with the rotor-pylon oscillation of the XV-3 aircraft, the problem was identified and then subjected to a series of theoretical studies, plus model and full-scale wind tunnel tests. From this data base, methods were developed to predict the structural aeroelastic stability characteristics of the XV-15 Tilt Rotor Research Aircraft. The predicted aeroelastic characteristics are examined in light of the major parameters effecting rotor-pylon-wing stability. Flight test techniques used to obtain XV-15 aeroelastic stability are described. Flight test results are summarized and compared to the predicted values. Wind tunnel results are compared to flight test results and correlated with predicted values.

  6. Cancellation control law for lateral-directional dynamics of a supermaneuverable aircraft

    NASA Technical Reports Server (NTRS)

    Snell, Antony

    1993-01-01

    Cancellation control laws are designed which reduce the high levels of lateral acceleration encountered during aggressive rolling maneuvers executed at high angle of attack. Two independent problem are examined. One is to reduce lateral acceleration at the mass center, while the other focuses on lateral acceleration at the pilot's station, located 7.0 m forward of the mass center. Both of these problems are challenging and somewhat different in their limitations. In each case the design is based on a linearization of the lateral-directional dynamics about a high angle of attack condition. The controllers incorporate dynamic inversion inner loops to provide control of stability-axis roll- and yaw-rates and then employ cancellation filters in both feed-forward and feed-back signal paths. The relative simplicity of the control laws should allow nonlinear generalizations to be devised. Although it is shown that lateral acceleration can be reduced substantially by such control laws, this is at the cost of slowed roll response, poor dutch-roll damping or a combination of the two.

  7. A state dynamics method for integrated GPS/INS navigation and its application to aircraft precision approach

    NASA Astrophysics Data System (ADS)

    Chan, Fang-Cheng

    In recent years, GPS navigation systems have found widespread use in many diverse applications. The achievements of GPS navigation systems in positioning and navigation services have been nothing short of extraordinary. With the use of carrier phase measurements and Differential GPS (DGPS), centimeter-level performance is achievable today. Therefore, the principal issues for modern navigation are not related to accuracy per se, but robustness. Unfortunately in this regard, all radionavigation systems are subject to Radio Frequency Interference (RFI). In response, this research is focused on the development of interference-robust navigation systems for aviation applications. A new dual-frequency Carrier-phase DGPS (CDGPS) architecture has been developed in this research and its performance was evaluated relative to the requirements for a unique shipboard landing application. RFI vulnerability was addressed for this application by directly incorporating a single frequency architecture as a back-up in the event of hostile jamming on one frequency. For critical civil aviation applications without access to dual frequency GPS signals, a novel method for tightly-coupling GPS and Inertial Navigation Sensors (INS) was developed to address the signal vulnerability issue. The new hybrid navigation system, based on the direct fusion of GPS and INS using state dynamics, is a mathematically rigorous approach, yet it is more direct and simpler to implement than existing GPS/INS integration schemes. The hybrid navigation system was validated with flight data, and predicted system performance was evaluated using a covariance analysis method. Necessary conditions on INS sensor and gravity model quality were derived to ensure that the hybrid system performance is compliant with navigation requirements for aircraft precision approach and landing. In addition, a new fault detection algorithm, based on integrated Kalman filter innovations, was developed and evaluated against other

  8. Dynamic Aberration Correction for Conformal Window of High-Speed Aircraft Using Optimized Model-Based Wavefront Sensorless Adaptive Optics.

    PubMed

    Dong, Bing; Li, Yan; Han, Xin-Li; Hu, Bin

    2016-09-02

    For high-speed aircraft, a conformal window is used to optimize the aerodynamic performance. However, the local shape of the conformal window leads to large amounts of dynamic aberrations varying with look angle. In this paper, deformable mirror (DM) and model-based wavefront sensorless adaptive optics (WSLAO) are used for dynamic aberration correction of an infrared remote sensor equipped with a conformal window and scanning mirror. In model-based WSLAO, aberration is captured using Lukosz mode, and we use the low spatial frequency content of the image spectral density as the metric function. Simulations show that aberrations induced by the conformal window are dominated by some low-order Lukosz modes. To optimize the dynamic correction, we can only correct dominant Lukosz modes and the image size can be minimized to reduce the time required to compute the metric function. In our experiment, a 37-channel DM is used to mimic the dynamic aberration of conformal window with scanning rate of 10 degrees per second. A 52-channel DM is used for correction. For a 128 × 128 image, the mean value of image sharpness during dynamic correction is 1.436 × 10(-5) in optimized correction and is 1.427 × 10(-5) in un-optimized correction. We also demonstrated that model-based WSLAO can achieve convergence two times faster than traditional stochastic parallel gradient descent (SPGD) method.

  9. Dynamic Aberration Correction for Conformal Window of High-Speed Aircraft Using Optimized Model-Based Wavefront Sensorless Adaptive Optics.

    PubMed

    Dong, Bing; Li, Yan; Han, Xin-Li; Hu, Bin

    2016-01-01

    For high-speed aircraft, a conformal window is used to optimize the aerodynamic performance. However, the local shape of the conformal window leads to large amounts of dynamic aberrations varying with look angle. In this paper, deformable mirror (DM) and model-based wavefront sensorless adaptive optics (WSLAO) are used for dynamic aberration correction of an infrared remote sensor equipped with a conformal window and scanning mirror. In model-based WSLAO, aberration is captured using Lukosz mode, and we use the low spatial frequency content of the image spectral density as the metric function. Simulations show that aberrations induced by the conformal window are dominated by some low-order Lukosz modes. To optimize the dynamic correction, we can only correct dominant Lukosz modes and the image size can be minimized to reduce the time required to compute the metric function. In our experiment, a 37-channel DM is used to mimic the dynamic aberration of conformal window with scanning rate of 10 degrees per second. A 52-channel DM is used for correction. For a 128 × 128 image, the mean value of image sharpness during dynamic correction is 1.436 × 10(-5) in optimized correction and is 1.427 × 10(-5) in un-optimized correction. We also demonstrated that model-based WSLAO can achieve convergence two times faster than traditional stochastic parallel gradient descent (SPGD) method. PMID:27598161

  10. Dynamic Aberration Correction for Conformal Window of High-Speed Aircraft Using Optimized Model-Based Wavefront Sensorless Adaptive Optics

    PubMed Central

    Dong, Bing; Li, Yan; Han, Xin-li; Hu, Bin

    2016-01-01

    For high-speed aircraft, a conformal window is used to optimize the aerodynamic performance. However, the local shape of the conformal window leads to large amounts of dynamic aberrations varying with look angle. In this paper, deformable mirror (DM) and model-based wavefront sensorless adaptive optics (WSLAO) are used for dynamic aberration correction of an infrared remote sensor equipped with a conformal window and scanning mirror. In model-based WSLAO, aberration is captured using Lukosz mode, and we use the low spatial frequency content of the image spectral density as the metric function. Simulations show that aberrations induced by the conformal window are dominated by some low-order Lukosz modes. To optimize the dynamic correction, we can only correct dominant Lukosz modes and the image size can be minimized to reduce the time required to compute the metric function. In our experiment, a 37-channel DM is used to mimic the dynamic aberration of conformal window with scanning rate of 10 degrees per second. A 52-channel DM is used for correction. For a 128 × 128 image, the mean value of image sharpness during dynamic correction is 1.436 × 10−5 in optimized correction and is 1.427 × 10−5 in un-optimized correction. We also demonstrated that model-based WSLAO can achieve convergence two times faster than traditional stochastic parallel gradient descent (SPGD) method. PMID:27598161

  11. UAS in the NAS: Survey Responses by ATC, Manned Aircraft Pilots, and UAS Pilots

    NASA Technical Reports Server (NTRS)

    Comstock, James R., Jr.; McAdaragh, Raymon; Ghatas, Rania W.; Burdette, Daniel W.; Trujillo, Anna C.

    2013-01-01

    NASA currently is working with industry and the Federal Aviation Administration (FAA) to establish future requirements for Unmanned Aircraft Systems (UAS) flying in the National Airspace System (NAS). To work these issues NASA has established a multi-center UAS Integration in the NAS project. In order to establish Ground Control Station requirements for UAS, the perspective of each of the major players in NAS operations was desired. Three on-line surveys were administered that focused on Air Traffic Controllers (ATC), pilots of manned aircraft, and pilots of UAS. Follow-up telephone interviews were conducted with some survey respondents. The survey questions addressed UAS control, navigation, and communications from the perspective of small and large unmanned aircraft. Questions also addressed issues of UAS equipage, especially with regard to sense and avoid capabilities. From the ATC and military ATC perspective, of particular interest is how mixed-operations (manned/UAS) have worked in the past and the role of aircraft equipage. Knowledge gained from this information is expected to assist the NASA UAS in the NAS project in directing research foci thus assisting the FAA in the development of rules, regulations, and policies related to UAS in the NAS.

  12. UAS in the NAS: Survey Responses by ATC, Manned Aircraft Pilots, and UAS Pilots

    NASA Technical Reports Server (NTRS)

    Comstock, James R., Jr.; McAdaragh, Raymon; Ghatas, Rania W.; Burdette, Daniel W.; Trujillo, Anna C.

    2014-01-01

    NASA currently is working with industry and the Federal Aviation Administration (FAA) to establish future requirements for Unmanned Aircraft Systems (UAS) flying in the National Airspace System (NAS). To work these issues NASA has established a multi-center "UAS Integration in the NAS" project. In order to establish Ground Control Station requirements for UAS, the perspective of each of the major players in NAS operations was desired. Three on-line surveys were administered that focused on Air Traffic Controllers (ATC), pilots of manned aircraft, and pilots of UAS. Follow-up telephone interviews were conducted with some survey respondents. The survey questions addressed UAS control, navigation, and communications from the perspective of small and large unmanned aircraft. Questions also addressed issues of UAS equipage, especially with regard to sense and avoid capabilities. From the civilian ATC and military ATC perspectives, of particular interest are how mixed operations (manned / UAS) have worked in the past and the role of aircraft equipage. Knowledge gained from this information is expected to assist the NASA UAS Integration in the NAS project in directing research foci thus assisting the FAA in the development of rules, regulations, and policies related to UAS in the NAS.

  13. Predictions of F-111 TACT aircraft buffet response and correlations of fluctuating pressures measured on aluminum and steel models and the aircraft

    NASA Technical Reports Server (NTRS)

    Coe, Charles F.; Cunningham, Atlee M., Jr.

    1987-01-01

    Results of buffet research that was conducted as part of the joint USAF/NASA F-111 TACT Research Program are presented. The correlation of wind tunnel and flight measurements of buffet excitation showed that there generally was good agreement between measurements of pressure fluctuations on the models and aircraft in regions of separated flow. At shock-wave boundaries of the separated flow, correlations of pressure fluctuations were not so good, due to Reynolds number and static elastic effects. The buffet prediction method, which applies a forcing function that is obtained by real-time integration of pressure time histories with the natural modes, is described. The generalized forces, including the effects of wing and tail, correlations of predicted and measured damping, and correlations of predicted and measured buffet response are presented. All presented data are for a Mach number of 0.8 with wing-sweep angles of 26 and 35 deg for a range of angles-of-attack that include buffet onset to high intensity buffeting. Generally, the buffet predictions were considered to be quite good particularly in light of past buffet-prediction experience.

  14. Flying qualities and control system characteristics for superaugmented aircraft

    NASA Technical Reports Server (NTRS)

    Myers, T. T.; Mcruer, D. T.; Johnston, D. E.

    1984-01-01

    Aircraft-alone dynamics and superaugmented control system fundamental regulatory properties including stability and regulatory responses of the basic closed-loop systems; fundamental high and low frequency margins and governing factors; and sensitivity to aircraft and controller parameters are addressed. Alternative FCS mechanizations, and mechanizational side effects are also discussed. An overview of flying qualities considerations encompasses general pilot operations as a controller in unattended, intermittent and trim, and full-attention regulatory or command control; effective vehicle primary and secondary response properties to pilot inputs and disturbances; pilot control architectural possibilities; and comparison of superaugmented and conventional aircraft path responses for different forms of pilot control. Results of a simple experimental investigation into pilot dynamic behavior in attitude control of superaugmented aircraft configurations with high frequency time laps and time delays are presented.

  15. Methodologies for reproducing in-flight loads of aircraft wings on the ground and predicting their response to battle-induced damage

    NASA Astrophysics Data System (ADS)

    Bou-Mosleh, Charbel Fouad

    with no other means of actuation. This thesis also predicts the aerodynamic response of aircraft wings to simulated battle damage, using numerical aerodynamic simulations. The damage is represented by a circular hole in the computational fluid dynamics model of a clean F-16 wing. The effects of changing the size, location and shape of the hole as well as the angle of attack on the lift and drag of the wing are predicted. The obtained numerical results indicate that the lift decreases and the drag increases with increasing the size of the hole and/or the angle of attack.

  16. Applications of Response Surface-Based Methods to Noise Analysis in the Conceptual Design of Revolutionary Aircraft

    NASA Technical Reports Server (NTRS)

    Hill, Geoffrey A.; Olson, Erik D.

    2004-01-01

    Due to the growing problem of noise in today's air transportation system, there have arisen needs to incorporate noise considerations in the conceptual design of revolutionary aircraft. Through the use of response surfaces, complex noise models may be converted into polynomial equations for rapid and simplified evaluation. This conversion allows many of the commonly used response surface-based trade space exploration methods to be applied to noise analysis. This methodology is demonstrated using a noise model of a notional 300 passenger Blended-Wing-Body (BWB) transport. Response surfaces are created relating source noise levels of the BWB vehicle to its corresponding FAR-36 certification noise levels and the resulting trade space is explored. Methods demonstrated include: single point analysis, parametric study, an optimization technique for inverse analysis, sensitivity studies, and probabilistic analysis. Extended applications of response surface-based methods in noise analysis are also discussed.

  17. The dynamic inelastic response of delaminated plates

    SciTech Connect

    Addessio, F.L.; Williams, T.O.

    1996-12-01

    A generalized theory for laminated plates with delaminations is used to consider the influence of inelastic deformations on the dynamic behavior of composite plates with delaminations. The laminate model is based on a generalized displacement formulation implemented at the layer level. The delamination behavior can be modeled using any general interfacial fracture law: however, for the current work a linear model is employed. The interfacial displacement jumps are expressed in an internally consistent fashion in terms of the fundamental unknown interfacial tractions. The current theory imposes no restrictions on the size, location, distribution, or direction of growth of the delaminations. The proposed theory is used to consider the inelastic, dynamic response of delaminated plates in cylindrical bending subjected to a ramp and hold type of loading. The individual layers in the current study are assumed to be either titanium or aluminum. The inelastic response of both materials is modeled using the unified viscoplastic theory of Bodner and Partom. It is shown that the presence of both inelastic behavior and delamination can have a significant influence on the plate response. In particular it is shown that these mechanisms are strongly interactive. This result emphasizes the need to consider both mechanisms simultaneously.

  18. Structural optimization for nonlinear dynamic response.

    PubMed

    Dou, Suguang; Strachan, B Scott; Shaw, Steven W; Jensen, Jakob S

    2015-09-28

    Much is known about the nonlinear resonant response of mechanical systems, but methods for the systematic design of structures that optimize aspects of these responses have received little attention. Progress in this area is particularly important in the area of micro-systems, where nonlinear resonant behaviour is being used for a variety of applications in sensing and signal conditioning. In this work, we describe a computational method that provides a systematic means for manipulating and optimizing features of nonlinear resonant responses of mechanical structures that are described by a single vibrating mode, or by a pair of internally resonant modes. The approach combines techniques from nonlinear dynamics, computational mechanics and optimization, and it allows one to relate the geometric and material properties of structural elements to terms in the normal form for a given resonance condition, thereby providing a means for tailoring its nonlinear response. The method is applied to the fundamental nonlinear resonance of a clamped-clamped beam and to the coupled mode response of a frame structure, and the results show that one can modify essential normal form coefficients by an order of magnitude by relatively simple changes in the shape of these elements. We expect the proposed approach, and its extensions, to be useful for the design of systems used for fundamental studies of nonlinear behaviour as well as for the development of commercial devices that exploit nonlinear behaviour.

  19. The response of smoke detectors to pyrolysis and combustion products from aircraft interior materials

    NASA Technical Reports Server (NTRS)

    Mckee, R. G.; Alvares, N. J.

    1976-01-01

    The following projects were completed as part of the effort to develop and test economically feasible fire-resistant materials for interior furnishings of aircraft as well as detectors of incipient fires in passenger and cargo compartments: (1) determination of the sensitivity of various contemporary gas and smoke detectors to pyrolysis and combustion products from materials commonly used in aircraft interiors and from materials that may be used in the future, (2) assessment of the environmental limitations to detector sensitivity and reliability. The tests were conducted on three groups of materials by exposure to the following three sources of exposure: radiant and Meeker burner flame, heated coil, and radiant source only. The first test series used radiant heat and flame exposures on easily obtainable test materials. Next, four materials were selected from the first group and exposed to an incandescent coil to provide the conditions for smoldering combustion. Finally, radiant heat exposures were used on advanced materials that are not readily available.

  20. Construction and verification of a model of passenger response to STOL aircraft characteristics

    NASA Technical Reports Server (NTRS)

    Jacobson, I. D.

    1976-01-01

    A technique for evaluating passenger acceptance of a transportation system's environment has been developed. This includes a model of passenger reaction to the vehicle, as well as the relative satisfaction compared to other system attributes. The technique is applied to two commercial airline operations - a U.S. commuter, and the Canadian Airtransit STOL system. It is demonstrated that system convenience and aircraft interior seating can play a large role in satisfying the passenger.

  1. Soil analyses and evaluations at the impact dynamics research facility for two full-scale aircraft crash tests

    NASA Technical Reports Server (NTRS)

    Cheng, R. Y. K.

    1977-01-01

    The aircraft structural crash behavior and occupant survivability for aircraft crashes on a soil surface was studied. The results of placement, compaction, and maintenance of two soil test beds are presented. The crators formed by the aircraft after each test are described.

  2. Dynamics of active cellular response under stress

    NASA Astrophysics Data System (ADS)

    de, Rumi; Zemel, Assaf; Safran, Samuel

    2008-03-01

    Forces exerted by and on adherent cells are important for many physiological processes such as wound healing and tissue formation. In addition, recent experiments have shown that stem cell differentiation is controlled, at least in part, by the elasticity of the surrounding matrix. Using a simple theoretical model that includes the forces due to both the mechanosensitive nature of cells and the elastic response of the matrix, we predict the dynamics of orientation of cells. The model predicts many features observed in measurements of cellular forces and orientation including the increase with time of the forces generated by cells in the absence of applied stress and the consequent decrease of the force in the presence of quasi-static stresses. We also explain the puzzling observation of parallel alignment of cells for static and quasi-static stresses and of nearly perpendicular alignment for dynamically varying stresses. In addition, we predict the response of the cellular orientation to a sinusoidally varying applied stress as a function of frequency. The dependence of the cell orientation angle on the Poisson ratio of the surrounding material can be used to distinguish systems in which cell activity is controlled by stress from those where cell activity is controlled by strain. Reference: Nature Physics, vol. 3, pp 655 (2007).

  3. Influence of cabin conditions on placement and response of contaminant detection sensors in a commercial aircraft.

    PubMed

    Mazumdar, Sagnik; Chen, Qingyan

    2008-01-01

    Potential causalities due to airborne disease transmission and risk of chem-bio terrorism in commercial airliner cabins can be reduced by fast responses. Fast responses are only possible by using sensors at appropriate locations in the cabins. Cost, size and weight factors restrict the number of sensors that could be installed inside a cabin. Since release locations and seating patterns of passengers can impact airborne contaminant transports, this study first addressed this impact by using a validated computational fluid dynamics (CFD) program in a four-row mockup of twin-aisle airliner cabin. It was observed that occupancy patterns and release locations have little influence on longitudinal contaminant transports though localized variations of contaminant concentrations may exist. The results show that response time of the sensors is considerably reduced with the increase in number of sensors. If only a single sensor is available across a cabin cross-section then it should be placed at the middle of the ceiling. A cabin model of a fully occupied twin-aisle airliner with 210 seats was also build to study the diverse contaminant distribution trends along cabin length. The results reveal that seating arrangements can make cross-sectional airflow pattern considerably asymmetrical. Similar airflow patterns make the longitudinal contaminant transport in the business and economy classes alike. The presence of galleys greatly affected the longitudinal transport of contaminants in a particular cabin section. The effects due to galleys were less significant if a multipoint sampling system was used. The multipoint sampling system can also reduce the number of sensors required in a cabin.

  4. Effects of Aircraft Wake Dynamics on Measured and Simulated NO(x) and HO(x) Wake Chemistry. Appendix B

    NASA Technical Reports Server (NTRS)

    Lewellen, D. C.; Lewellen, W. S.

    2001-01-01

    High-resolution numerical large-eddy simulations of the near wake of a B757 including simplified NOx and HOx chemistry were performed to explore the effects of dynamics on chemistry in wakes of ages from a few seconds to several minutes. Dilution plays an important basic role in the NOx-O3 chemistry in the wake, while a more interesting interaction between the chemistry and dynamics occurs for the HOx species. These simulation results are compared with published measurements of OH and HO2 within a B757 wake under cruise conditions in the upper troposphere taken during the Subsonic Aircraft Contrail and Cloud Effects Special Study (SUCCESS) mission in May 1996. The simulation provides a much finer grained representation of the chemistry and dynamics of the early wake than is possible from the 1 s data samples taken in situ. The comparison suggests that the previously reported discrepancy of up to a factor of 20 - 50 between the SUCCESS measurements of the [HO2]/[OH] ratio and that predicted by simplified theoretical computations is due to the combined effects of large mixing rates around the wake plume edges and averaging over volumes containing large species fluctuations. The results demonstrate the feasibility of using three-dimensional unsteady large-eddy simulations with coupled chemistry to study such phenomena.

  5. Integrated Aerodynamic/Structural/Dynamic Analyses of Aircraft with Large Shape Changes

    NASA Technical Reports Server (NTRS)

    Samareh, Jamshid A.; Chwalowski, Pawel; Horta, Lucas G.; Piatak, David J.; McGowan, Anna-Maria R.

    2007-01-01

    The conceptual and preliminary design processes for aircraft with large shape changes are generally difficult and time-consuming, and the processes are often customized for a specific shape change concept to streamline the vehicle design effort. Accordingly, several existing reports show excellent results of assessing a particular shape change concept or perturbations of a concept. The goal of the current effort was to develop a multidisciplinary analysis tool and process that would enable an aircraft designer to assess several very different morphing concepts early in the design phase and yet obtain second-order performance results so that design decisions can be made with better confidence. The approach uses an efficient parametric model formulation that allows automatic model generation for systems undergoing radical shape changes as a function of aerodynamic parameters, geometry parameters, and shape change parameters. In contrast to other more self-contained approaches, the approach utilizes off-the-shelf analysis modules to reduce development time and to make it accessible to many users. Because the analysis is loosely coupled, discipline modules like a multibody code can be easily swapped for other modules with similar capabilities. One of the advantages of this loosely coupled system is the ability to use the medium-to high-fidelity tools early in the design stages when the information can significantly influence and improve overall vehicle design. Data transfer among the analysis modules are based on an accurate and automated general purpose data transfer tool. In general, setup time for the integrated system presented in this paper is 2-4 days for simple shape change concepts and 1-2 weeks for more mechanically complicated concepts. Some of the key elements briefly described in the paper include parametric model development, aerodynamic database generation, multibody analysis, and the required software modules as well as examples for a telescoping wing, a

  6. Low-speed wind-tunnel investigation of the flight dynamic characteristics of an advanced turboprop business/commuter aircraft configuration

    NASA Technical Reports Server (NTRS)

    Coe, Paul L., Jr.; Turner, Steven G.; Owens, D. Bruce

    1990-01-01

    An investigation was conducted to determine the low-speed flight dynamic behavior of a representative advanced turboprop business/commuter aircraft concept. Free-flight tests were conducted in the NASA Langley Research Center's 30- by 60-Foot Tunnel. In support of the free-flight tests, conventional static, dynamic, and free-to-roll oscillation tests were performed. Tests were intended to explore normal operating and post stall flight conditions, and conditions simulating the loss of power in one engine.

  7. Raptors and aircraft

    USGS Publications Warehouse

    Smith, D.G.; Ellis, D.H.; Johnson, T.H.; Glinski, Richard L.; Pendleton, Beth Giron; Moss, Mary Beth; LeFranc, Maurice N.=; Millsap, Brian A.; Hoffman, Stephen W.

    1988-01-01

    Less than 5% of all bird strikes of aircraft are by raptor species, but damage to airframe structure or jet engine dysfunction are likely consequences. Beneficial aircraft-raptor interactions include the use of raptor species to frighten unwanted birds from airport areas and the use of aircraft to census raptor species. Many interactions, however, modify the raptor?s immediate behavior and some may decrease reproduction of sensitive species. Raptors may respond to aircraft stimuli by exhibiting alarm, increased heart rate, flushing or fleeing and occasionally by directly attacking intruding aircraft. To date, most studies reveal that raptor responses to aircraft are brief and do not limit reproduction; however, additional study is needed.

  8. Evaluation of allergic response using dynamic thermography

    NASA Astrophysics Data System (ADS)

    Rokita, E.; Rok, T.; Tatoń, G.

    2015-03-01

    Skin dynamic termography supplemented by a mathematical model is presented as an objective and sensitive indicator of the skin prick test result. Termographic measurements were performed simultaneously with routine skin prick tests. The IR images were acquired every 70 s up to 910 s after skin prick. In the model histamine is treated as the principal mediator of the allergic reaction. Histamine produces vasolidation and the engorged vessels are responsible for an increase in skin temperature. The model parameters were determined by fitting the analytical solutions to the spatio-temporal distributions of the differences between measured and baseline temperatures. The model reproduces experimental data very well (coefficient of determination = 0.805÷0.995). The method offers a set of parameters to describe separately skin allergic reaction and skin reactivity. The release of histamine after allergen injection is the best indicator of allergic response. The diagnostic parameter better correlates with the standard evaluation of a skin prick test (correlation coefficient = 0.98) than the result of the thermographic planimetric method based on temperature and heated area determination (0.81). The high sensitivity of the method allows for determination of the allergic response in patients with the reduced skin reactivity.

  9. Analysis and test evaluation of the dynamic response and stability of three advanced turboprop models

    NASA Technical Reports Server (NTRS)

    Bansal, P. N.; Arseneaux, P. J.; Smith, A. F.; Turnberg, J. E.; Brooks, B. M.

    1985-01-01

    Results of dynamic response and stability wind tunnel tests of three 62.2 cm (24.5 in) diameter models of the Prop-Fan, advanced turboprop, are presented. Measurements of dynamic response were made with the rotors mounted on an isolated nacelle, with varying tilt for nonuniform inflow. One model was also tested using a semi-span wing and fuselage configuration for response to realistic aircraft inflow. Stability tests were performed using tunnel turbulence or a nitrogen jet for excitation. Measurements are compared with predictions made using beam analysis methods for the model with straight blades, and finite element analysis methods for the models with swept blades. Correlations between measured and predicted rotating blade natural frequencies for all the models are very good. The IP dynamic response of the straight blade model is reasonably well predicted. The IP response of the swept blades is underpredicted and the wing induced response of the straight blade is overpredicted. Two models did not flutter, as predicted. One swept blade model encountered an instability at a higher RPM than predicted, showing predictions to be conservative.

  10. Photonic water dynamically responsive to external stimuli

    NASA Astrophysics Data System (ADS)

    Sano, Koki; Kim, Youn Soo; Ishida, Yasuhiro; Ebina, Yasuo; Sasaki, Takayoshi; Hikima, Takaaki; Aida, Takuzo

    2016-08-01

    Fluids that contain ordered nanostructures with periodic distances in the visible-wavelength range, anomalously exhibit structural colours that can be rapidly modulated by external stimuli. Indeed, some fish can dynamically change colour by modulating the periodic distance of crystalline guanine sheets cofacially oriented in their fluid cytoplasm. Here we report that a dilute aqueous colloidal dispersion of negatively charged titanate nanosheets exhibits structural colours. In this `photonic water', the nanosheets spontaneously adopt a cofacial geometry with an ultralong periodic distance of up to 675 nm due to a strong electrostatic repulsion. Consequently, the photonic water can even reflect near-infrared light up to 1,750 nm. The structural colour becomes more vivid in a magnetic flux that induces monodomain structural ordering of the colloidal dispersion. The reflective colour of the photonic water can be modulated over the entire visible region in response to appropriate physical or chemical stimuli.

  11. Dynamic response of damaged angleplied fiber composites

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Sinclair, J. H.; Lark, R. F.

    1979-01-01

    The effects of low level damage induced by monotonic load, cyclic load and/or residual stresses on the vibration frequencies and damping factors of fiber composite angleplied laminates were investigated. Two different composite systems were studied - low modulus fiber and ultra high modulus fiber composites. The results obtained show that the frequencies and damping factors of angleplied laminates made from low modulus fiber composites are sensitive to low level damage while those made from ultra high modulus composites are not. Vibration tests may not be sufficiently sensitive to assess concentrated local damage in angleplied laminates. Dynamic response determined from low-velocity impact coupled with the Fast Fourier Transform and packaged in a minicomputer can be a convenient procedure for assessing low-level damage.

  12. Dynamic Assessment and Response to Intervention

    PubMed Central

    Grigorenko, Elena L.

    2013-01-01

    This article compares and contrasts the main features of dynamic testing and assessment (DT/A) and response to intervention (RTI). The comparison is carried out along the following lines: (a) historical and empirical roots of both concepts, (b) premises underlying DT/A and RTI, (c) terms used in these concepts, (d) use of these concepts, (e) evidence in support of DT/A and RTI, and (f) expectations associated with each of the concepts. The main outcome of this comparison is a conclusion that both approaches belong to one family of methodologies in psychology and education whose key feature is in blending assessment and intervention in one holistic activity. Because DT/A has been around much longer than RTI, it makes sense for the proponents of RTI to consider both the accomplishments and frustrations that have accumulated in the field of DT/A. PMID:19073895

  13. Photonic water dynamically responsive to external stimuli.

    PubMed

    Sano, Koki; Kim, Youn Soo; Ishida, Yasuhiro; Ebina, Yasuo; Sasaki, Takayoshi; Hikima, Takaaki; Aida, Takuzo

    2016-01-01

    Fluids that contain ordered nanostructures with periodic distances in the visible-wavelength range, anomalously exhibit structural colours that can be rapidly modulated by external stimuli. Indeed, some fish can dynamically change colour by modulating the periodic distance of crystalline guanine sheets cofacially oriented in their fluid cytoplasm. Here we report that a dilute aqueous colloidal dispersion of negatively charged titanate nanosheets exhibits structural colours. In this 'photonic water', the nanosheets spontaneously adopt a cofacial geometry with an ultralong periodic distance of up to 675 nm due to a strong electrostatic repulsion. Consequently, the photonic water can even reflect near-infrared light up to 1,750 nm. The structural colour becomes more vivid in a magnetic flux that induces monodomain structural ordering of the colloidal dispersion. The reflective colour of the photonic water can be modulated over the entire visible region in response to appropriate physical or chemical stimuli. PMID:27572806

  14. Static & Dynamic Response of 2D Solids

    1996-07-15

    NIKE2D is an implicit finite-element code for analyzing the finite deformation, static and dynamic response of two-dimensional, axisymmetric, plane strain, and plane stress solids. The code is fully vectorized and available on several computing platforms. A number of material models are incorporated to simulate a wide range of material behavior including elasto-placicity, anisotropy, creep, thermal effects, and rate dependence. Slideline algorithms model gaps and sliding along material interfaces, including interface friction, penetration and single surfacemore » contact. Interactive-graphics and rezoning is included for analyses with large mesh distortions. In addition to quasi-Newton and arc-length procedures, adaptive algorithms can be defined to solve the implicit equations using the solution language ISLAND. Each of these capabilities and more make NIKE2D a robust analysis tool.« less

  15. Static & Dynamic Response of 2D Solids

    SciTech Connect

    Lin, Jerry

    1996-07-15

    NIKE2D is an implicit finite-element code for analyzing the finite deformation, static and dynamic response of two-dimensional, axisymmetric, plane strain, and plane stress solids. The code is fully vectorized and available on several computing platforms. A number of material models are incorporated to simulate a wide range of material behavior including elasto-placicity, anisotropy, creep, thermal effects, and rate dependence. Slideline algorithms model gaps and sliding along material interfaces, including interface friction, penetration and single surface contact. Interactive-graphics and rezoning is included for analyses with large mesh distortions. In addition to quasi-Newton and arc-length procedures, adaptive algorithms can be defined to solve the implicit equations using the solution language ISLAND. Each of these capabilities and more make NIKE2D a robust analysis tool.

  16. Photonic water dynamically responsive to external stimuli

    PubMed Central

    Sano, Koki; Kim, Youn Soo; Ishida, Yasuhiro; Ebina, Yasuo; Sasaki, Takayoshi; Hikima, Takaaki; Aida, Takuzo

    2016-01-01

    Fluids that contain ordered nanostructures with periodic distances in the visible-wavelength range, anomalously exhibit structural colours that can be rapidly modulated by external stimuli. Indeed, some fish can dynamically change colour by modulating the periodic distance of crystalline guanine sheets cofacially oriented in their fluid cytoplasm. Here we report that a dilute aqueous colloidal dispersion of negatively charged titanate nanosheets exhibits structural colours. In this ‘photonic water', the nanosheets spontaneously adopt a cofacial geometry with an ultralong periodic distance of up to 675 nm due to a strong electrostatic repulsion. Consequently, the photonic water can even reflect near-infrared light up to 1,750 nm. The structural colour becomes more vivid in a magnetic flux that induces monodomain structural ordering of the colloidal dispersion. The reflective colour of the photonic water can be modulated over the entire visible region in response to appropriate physical or chemical stimuli. PMID:27572806

  17. Cell death: a dynamic response concept.

    PubMed

    Loos, Benjamin; Engelbrecht, Anna-Mart

    2009-07-01

    Autophagy, apoptosis and necrosis have previously been described as distinct static processes that induce and execute cell death. Due to an increased use of novel techniques in mapping cellular death-techniques which allow for reporting of real-time data-the existence of "grey zones" between cell death modes and the existence of the "point of no return" within these have been revealed. This revelation demands the integration of new concepts in describing the cellular death process. Furthermore, since the contribution of autophagy in cell death or cell survival is still poorly understood, it is important to accurately describe its function within the dynamic framework of cell death. In this review cell death is viewed as a dynamic and integrative cellular response to ensure the highest likelihood of self-preservation. Suggestions are offered for conceptualizing cell death modes and their morphological features, both individually and in relation to one another. It addresses the need for distinguishing between dying cells and dead cells so as to better locate and control the onset of cell death. Most importantly, the fundamental role of autophagy, autophagic flux, and the effects of the intracellular metabolic environment on the kinetics of the cell death modes are stressed. It also contextualizes the kinetic dimension of cell death as a process and aims to contribute towards a better understanding of autophagy as a key mechanism within this process. Understanding the dynamic nature of the cell death process and autophagy's central role can reveal new insight for therapeutic intervention in preventing cell death.

  18. Dynamic response of Hovercraft lift fans

    NASA Astrophysics Data System (ADS)

    Moran, D. D.

    1981-08-01

    Hovercraft lift fans are subjected to varying back pressure due to wave action and craft motions when these vehicles are operating in a seaway. The oscillatory back pressure causes the fans to perform dynamically, exhibiting a hysteresis type of response and a corresponding degradation in mean performance. Since Hovercraft motions are influenced by variations in lift fan pressure and discharge, it is important to understand completely the nature of the dynamic performance of lift fans in order to completely solve the Hovercraft seakeeping problem. The present study was performed to determine and classify the instabilities encountered in a centrifugal fan operating against time-varying back pressure. A model-scale experiment was developed in which the fan discharge was directed into a flow-measuring device, terminating in a rotating valve which produced an oscillatory back pressure superimposed upon a mean aerodynamic resistance. Pressure and local velocity were measured as functions of time at several locations in the fan volute. The measurements permitted the identification of rotating (or propagating) stall in the impeller. One cell and two cell configurations were classified and the transient condition connecting these two configurations was observed. The mechanisms which lead to rotating stall in a centrifugal compressor are presented and discussed with specific reference to Hovercraft applications.

  19. Evaluating the dynamic response of in-flight thrust calculation techniques during throttle transients

    NASA Technical Reports Server (NTRS)

    Ray, Ronald J.

    1994-01-01

    New flight test maneuvers and analysis techniques for evaluating the dynamic response of in-flight thrust models during throttle transients have been developed and validated. The approach is based on the aircraft and engine performance relationship between thrust and drag. Two flight test maneuvers, a throttle step and a throttle frequency sweep, were developed and used in the study. Graphical analysis techniques, including a frequency domain analysis method, were also developed and evaluated. They provide quantitative and qualitative results. Four thrust calculation methods were used to demonstrate and validate the test technique. Flight test applications on two high-performance aircraft confirmed the test methods as valid and accurate. These maneuvers and analysis techniques were easy to implement and use. Flight test results indicate the analysis techniques can identify the combined effects of model error and instrumentation response limitations on the calculated thrust value. The methods developed in this report provide an accurate approach for evaluating, validating, or comparing thrust calculation methods for dynamic flight applications.

  20. Frequency Response of an Aircraft Wing with Discrete Source Damage Using Equivalent Plate Analysis

    NASA Technical Reports Server (NTRS)

    Krishnamurthy, T.; Eldred, Lloyd B.

    2007-01-01

    An equivalent plate procedure is developed to provide a computationally efficient means of matching the stiffness and frequencies of flight vehicle wing structures for prescribed loading conditions. Several new approaches are proposed and studied to match the stiffness and first five natural frequencies of the two reference models with and without damage. One approach divides the candidate reference plate into multiple zones in which stiffness and mass can be varied using a variety of materials including aluminum, graphite-epoxy, and foam-core graphite-epoxy sandwiches. Another approach places point masses along the edge of the stiffness-matched plate to tune the natural frequencies. Both approaches are successful at matching the stiffness and natural frequencies of the reference plates and provide useful insight into determination of crucial features in equivalent plate models of aircraft wing structures.

  1. Nonlinear robust control of hypersonic aircrafts with interactions between flight dynamics and propulsion systems.

    PubMed

    Li, Zhaoying; Zhou, Wenjie; Liu, Hao

    2016-09-01

    This paper addresses the nonlinear robust tracking controller design problem for hypersonic vehicles. This problem is challenging due to strong coupling between the aerodynamics and the propulsion system, and the uncertainties involved in the vehicle dynamics including parametric uncertainties, unmodeled model uncertainties, and external disturbances. By utilizing the feedback linearization technique, a linear tracking error system is established with prescribed references. For the linear model, a robust controller is proposed based on the signal compensation theory to guarantee that the tracking error dynamics is robustly stable. Numerical simulation results are given to show the advantages of the proposed nonlinear robust control method, compared to the robust loop-shaping control approach.

  2. Nonlinear robust control of hypersonic aircrafts with interactions between flight dynamics and propulsion systems.

    PubMed

    Li, Zhaoying; Zhou, Wenjie; Liu, Hao

    2016-09-01

    This paper addresses the nonlinear robust tracking controller design problem for hypersonic vehicles. This problem is challenging due to strong coupling between the aerodynamics and the propulsion system, and the uncertainties involved in the vehicle dynamics including parametric uncertainties, unmodeled model uncertainties, and external disturbances. By utilizing the feedback linearization technique, a linear tracking error system is established with prescribed references. For the linear model, a robust controller is proposed based on the signal compensation theory to guarantee that the tracking error dynamics is robustly stable. Numerical simulation results are given to show the advantages of the proposed nonlinear robust control method, compared to the robust loop-shaping control approach. PMID:27132149

  3. System identification methods for aircraft flight control development and validation

    NASA Technical Reports Server (NTRS)

    Tischler, Mark B.

    1995-01-01

    System-identification methods compose a mathematical model, or series of models, from measurements of inputs and outputs of dynamic systems. The extracted models allow the characterization of the response of the overall aircraft or component subsystem behavior, such as actuators and on-board signal processing algorithms. This paper discusses the use of frequency-domain system-identification methods for the development and integration of aircraft flight-control systems. The extraction and analysis of models of varying complexity from nonparametric frequency-responses to transfer-functions and high-order state-space representations is illustrated using the Comprehensive Identification from FrEquency Responses (CIFER) system-identification facility. Results are presented for test data of numerous flight and simulation programs at the Ames Research Center including rotorcraft, fixed-wing aircraft, advanced short takeoff and vertical landing (ASTOVL), vertical/short takeoff and landing (V/STOL), tiltrotor aircraft, and rotor experiments in the wind tunnel. Excellent system characterization and dynamic response prediction is achieved for this wide class of systems. Examples illustrate the role of system-identification technology in providing an integrated flow of dynamic response data around the entire life-cycle of aircraft development from initial specifications, through simulation and bench testing, and into flight-test optimization.

  4. Lightning hazards to aircraft

    NASA Technical Reports Server (NTRS)

    Corn, P. B.

    1978-01-01

    Lightning hazards and, more generally, aircraft static electricity are discussed by a representative for the Air Force Flight Dynamics Laboratory. An overview of these atmospheric electricity hazards to aircraft and their systems is presented with emphasis on electrical and electronic subsystems. The discussion includes reviewing some of the characteristics of lightning and static electrification, trends in weather and lightning-related mishaps, some specific threat mechanisms and susceptible aircraft subsystems and some of the present technology gaps. A roadmap (flow chart) is presented to show the direction needed to address these problems.

  5. Projectiles Impact Assessment of Aircraft Wing Structures with Real Dynamic Load

    NASA Astrophysics Data System (ADS)

    Han, Lu; Han, Qing; Wang, Changlin

    2015-07-01

    This paper presents an analysis to achieve the impact damage of the wing structure under real dynamic load. MPCCI tools are utilized to convert wing aerodynamic load into structural Finite Element Method (FEM) node load. The ANSYS/LS-DYNA code is also used to simulate the dynamic loading effects of the wing structure hit by several projectiles, including both active damage mechanism and common damage mechanism. In addition, structural node force on the leading edge and the midline is compared to the aerodynamic load separately. Furthermore, the statistical analysis of the penetrating size and the stress concentration around the damage holes indicates that under the same load situation, the structural damage efficiency of active damage mechanism is significantly higher than the one of common damage mechanism.

  6. Dynamic bioactive stimuli-responsive polymeric surfaces

    NASA Astrophysics Data System (ADS)

    Pearson, Heather Marie

    This dissertation focuses on the design, synthesis, and development of antimicrobial and anticoagulant surfaces of polyethylene (PE), polypropylene (PP), and poly(tetrafluoroethylene) (PTFE) polymers. Aliphatic polymeric surfaces of PE and PP polymers functionalized using click chemistry reactions by the attachment of --COOH groups via microwave plasma reactions followed by functionalization with alkyne moieties. Azide containing ampicillin (AMP) was synthesized and subsequently clicked into the alkyne prepared PE and PP surfaces. Compared to non-functionalized PP and PE surfaces, the AMP clicked surfaces exhibited substantially enhanced antimicrobial activity against Staphylococcus aureus bacteria. To expand the biocompatibility of polymeric surface anticoagulant attributes, PE and PTFE surfaces were functionalized with pH-responsive poly(2-vinyl pyridine) (P2VP) and poly(acrylic acid) (PAA) polyelectrolyte tethers terminated with NH2 and COOH groups. The goal of these studies was to develop switchable stimuli-responsive polymeric surfaces that interact with biological environments and display simultaneous antimicrobial and anticoagulant properties. Antimicrobial AMP was covalently attached to --COOH terminal ends of protected PAA, while anticoagulant heparin (HEP) was attached to terminal --NH2 groups of P2VP. When pH < 2.3, the P2VP segments are protonated and extend, but for pH > 5.5, they collapse while the PAA segments extend. Such surfaces, when exposed to Staphylococcus aureus, inhibit bacterial growth due to the presence of AMP, as well as are effective anticoagulants due to the presence of covalently attached HEP. Comparison of these "dynamic" pH responsive surfaces with "static" surfaces terminated with AMP entities show significant enhancement of longevity and surface activity against microbial film formation. The last portion of this dissertation focuses on the covalent attachment of living T1 and Φ11 bacteriophages (phages) on PE and PTFE surface

  7. SILHIL Replication of Electric Aircraft Powertrain Dynamics and Inner-Loop Control for V&V of System Health Management Routines

    NASA Technical Reports Server (NTRS)

    Bole, Brian; Teubert, Christopher Allen; Cuong Chi, Quach; Hogge, Edward; Vazquez, Sixto; Goebel, Kai; George, Vachtsevanos

    2013-01-01

    Software-in-the-loop and Hardware-in-the-loop testing of failure prognostics and decision making tools for aircraft systems will facilitate more comprehensive and cost-effective testing than what is practical to conduct with flight tests. A framework is described for the offline recreation of dynamic loads on simulated or physical aircraft powertrain components based on a real-time simulation of airframe dynamics running on a flight simulator, an inner-loop flight control policy executed by either an autopilot routine or a human pilot, and a supervisory fault management control policy. The creation of an offline framework for verifying and validating supervisory failure prognostics and decision making routines is described for the example of battery charge depletion failure scenarios onboard a prototype electric unmanned aerial vehicle.

  8. Aircraft Contrails

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Captured in this scene is a series of aircraft contrails in a high traffic region over the northern Gulf of Mexico (27.0N, 85.5W). Contrails are caused by the hot engine exhaust of high flying aircraft interacting with moisture in the cold upper atmosphere and are common occurrances of high flying aircraft.

  9. Co-operation processes in dynamic environment management: evolution through training experienced pilots in flying a highly automated aircraft.

    PubMed

    Rogalski, J

    1996-01-01

    Dynamic environment management (process control, aircraft piloting, etc.) increasingly implies collective work components. Pragmatic purposes as well as epistemological interests raise important questions on collective activities at work. In particular, linked to the technological evolution in flight management, the role of the 'collective fact' appears as a key point in reliability. Beyond the development of individual competencies, the quality of the 'distributed' crew activity has to be questioned. This paper presents an empirical study about how experienced pilots co-ordinate their information and actions during the last period of training on a highly automated cockpit. A task of disturbance management (engine fire during takeoff) is chosen as amplifying cognitive requirements. Analysis focuses on the transitions between the main task and the incident to be managed. Crew performance and co-operation between two pilots are compared in three occurrences of the same task: the results are coherent with the hypothesis of a parallel evolution of the crew performance and its internal co-operation, and show that prescribed explicit co-operation is more present on action than on information about the 'state of the world'. Methodological issues are discussed about the possible effects of the specific situation of training, and about the psychological meaning of the results. PMID:11540153

  10. 48 CFR 246.408-71 - Aircraft.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 3 2010-10-01 2010-10-01 false Aircraft. 246.408-71... Aircraft. (a) The Federal Aviation Administration (FAA) has certain responsibilities and prerogatives in connection with some commercial aircraft and of aircraft equipment and accessories (Pub. L. 85-726 (72...

  11. 48 CFR 246.408-71 - Aircraft.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 48 Federal Acquisition Regulations System 3 2013-10-01 2013-10-01 false Aircraft. 246.408-71... Aircraft. (a) The Federal Aviation Administration (FAA) has certain responsibilities and prerogatives in connection with some commercial aircraft and of aircraft equipment and accessories (Pub. L. 85-726 (72...

  12. 48 CFR 246.408-71 - Aircraft.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 48 Federal Acquisition Regulations System 3 2012-10-01 2012-10-01 false Aircraft. 246.408-71... Aircraft. (a) The Federal Aviation Administration (FAA) has certain responsibilities and prerogatives in connection with some commercial aircraft and of aircraft equipment and accessories (Pub. L. 85-726 (72...

  13. 48 CFR 246.408-71 - Aircraft.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 3 2011-10-01 2011-10-01 false Aircraft. 246.408-71... Aircraft. (a) The Federal Aviation Administration (FAA) has certain responsibilities and prerogatives in connection with some commercial aircraft and of aircraft equipment and accessories (Pub. L. 85-726 (72...

  14. 48 CFR 246.408-71 - Aircraft.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 3 2014-10-01 2014-10-01 false Aircraft. 246.408-71... Aircraft. (a) The Federal Aviation Administration (FAA) has certain responsibilities and prerogatives in connection with some commercial aircraft and of aircraft equipment and accessories (Pub. L. 85-726 (72...

  15. 41 CFR 301-70.903 - What are our responsibilities for ensuring that Government aircraft are the most cost-effective...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... governmental function or for required use travel, using any space available for passengers on official travel... responsibilities for ensuring that Government aircraft are the most cost-effective alternative for travel? 301-70.903 Section 301-70.903 Public Contracts and Property Management Federal Travel Regulation...

  16. 41 CFR 301-70.903 - What are our responsibilities for ensuring that Government aircraft are the most cost-effective...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... governmental function or for required use travel, using any space available for passengers on official travel... responsibilities for ensuring that Government aircraft are the most cost-effective alternative for travel? 301-70.903 Section 301-70.903 Public Contracts and Property Management Federal Travel Regulation...

  17. 41 CFR 301-70.903 - What are our responsibilities for ensuring that Government aircraft are the most cost-effective...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... governmental function or for required use travel, using any space available for passengers on official travel... responsibilities for ensuring that Government aircraft are the most cost-effective alternative for travel? 301-70.903 Section 301-70.903 Public Contracts and Property Management Federal Travel Regulation...

  18. Spontaneous Facial Mimicry in Response to Dynamic Facial Expressions

    ERIC Educational Resources Information Center

    Sato, Wataru; Yoshikawa, Sakiko

    2007-01-01

    Based on previous neuroscientific evidence indicating activation of the mirror neuron system in response to dynamic facial actions, we hypothesized that facial mimicry would occur while subjects viewed dynamic facial expressions. To test this hypothesis, dynamic/static facial expressions of anger/happiness were presented using computer-morphing…

  19. Use of Unmanned Aircraft System (UAS) in Response to the 2014 Eruption of Ontake Volcano, Japan

    NASA Astrophysics Data System (ADS)

    Mori, T.; Hashimoto, T.; Terada, A.; Shinohara, H.; Kazahaya, R.; Yoshimoto, M.; Tanaka, R.

    2015-12-01

    On Sept. 27, 2014, a phreatic eruption occurred at Ontake volcano (3067 m a.s.l.), central Japan. The eruption caused an unprecedented volcanic disaster in the last 70 years in Japan. Search and rescue operations started soon after the eruption until they were suspended due to snowfall in late October. Considering the potential hazards of further explosive events and the severe winter condition, an approach to the summit area after late October was very difficult. To reveal the condition of the volcanic activity and foresee the trend, we considered it important to carry out volcanic gas surveys for the dense plumes in the vicinity of the vents using an unmanned aircraft system (UAS). For the surveys at Ontake volcano, the UAS was expected to fly about 8 km roundtrip distance at an altitude of over 3000 m. A multicopter with 8 rotors was adopted and we targeted four types of plume monitoring using the UAS; in-plume monitoring of multiple gas concentrations, SO2 flux measurement with UV spectroscopy, thermography of the vents, and in-plume particle sampling. In order to meet the 1 kg payload of the multicopter, some of the instruments were slimmed down.The UAS campaigns at Ontake volcano were carried out on Nov. 20-21, 2014 and on Jun. 2, 2015 from the safety distance of 3-3.5 km away from the crater. With the UAS surveys, we revealed that the SO2/H2S ratios of volcanic gas were closer to the hydrothermal origin instead of direct magma degassing. The second survey also pointed out that the SO2 emission decreased down below 10 ton/day by June 2015, by taking an advantage of flying the vicinity of the vents before the plume was diluted. Our surveys showed decreasing activity of the volcano, together with the advantages of using UAS in volcano monitoring for inaccessible conditions.

  20. Plume and wake dynamics, mixing, and chemistry behind an HSCT aircraft

    NASA Technical Reports Server (NTRS)

    Miake-Lye, R. C.; Martinez-Sanchez, M.; Brown, R. C.; Kolb, C. E.

    1991-01-01

    The chemical evolution and mixing and vortical motion of a High Speed Civil Transport's engine exhausts must be analyzed in order to track the gas and its speciation as emissions are mixed to atmospheric scales. Attention is presently given to an analytic model of the wake dynamical processes which accounts for the roll-up of the trailing vorticity, its breakup due to the Crow instability, and the subsequent evolution and motion of the reconnected vorticity. The concentrated vorticity is noted to wrap up the buoyant exhaust and suppress its continued mixing and dilution. The species tracked encompass those which could be heterogeneously reactive on the surfaces of the condensed ice particles, and those capable of reacting with exhaust soot particle surfaces to form active contrail and/or cloud condensation nuclei.

  1. Acoustic characteristics and dynamic structural loading of an ASTOVL aircraft in hover

    NASA Astrophysics Data System (ADS)

    Mitchell, L. K.; Norum, Thomas D.; Johns, Albert L.

    1992-01-01

    Measurements of surface dynamic loading and freestream acoustics were made for an ASTOVL model in hover, to quantify the effects of elevated temperature on the acoustic field and surface loading. Data were acquired for a many combinations of operating parameters: model height above the ground plane, nozzle pressure ratio, and jet exit stagnation temperature. For many conditions, strong tones were observed, with amplitudes up to 150 dB. The frequencies of the strongest tones were well predicted by a model assuming feedback between the nozzle exit and the ground plane. The model also accounts for many of the variations in frequency observed with changes in model height, nozzle pressure ratio, and jet temperature. Broadband sound pressure levels up to 170 dB were also recorded. The maximum levels occurred at approximately 3 equivalent jet diameters above the ground plane. For the majority of the cases, the increase in noise due to temperature was less than expected based on free jet correlations.

  2. A linear input-varying framework for modeling and control of morphing aircraft

    NASA Astrophysics Data System (ADS)

    Grant, Daniel T.

    2011-12-01

    a method to relate the flight dynamics of morphing aircraft by interpreting a time-varying eigenvector in terms of flight modes. The time-varying eigenvector is actually defined through a decomposition of the state-transition matrix and thus describes an entire response through a morphing trajectory. A variable-sweep aircraft is analyzed to demonstrate the information that is obtained through this method and how the flight dynamics are altered by the time-varying morphing. Also, morphing vehicles have inherently time-varying dynamics due to the alteration of their configurations; consequently, the numerous techniques for analysis and control of time-invariant systems are inappropriate. Therefore, a control scheme is introduced that directly considers a concept of time-varying pole to command morphing. The resulting trajectory minimizing tracking error for either a state response or a pole response.

  3. Distributed Parallel Processing and Dynamic Load Balancing Techniques for Multidisciplinary High Speed Aircraft Design

    NASA Technical Reports Server (NTRS)

    Krasteva, Denitza T.

    1998-01-01

    Multidisciplinary design optimization (MDO) for large-scale engineering problems poses many challenges (e.g., the design of an efficient concurrent paradigm for global optimization based on disciplinary analyses, expensive computations over vast data sets, etc.) This work focuses on the application of distributed schemes for massively parallel architectures to MDO problems, as a tool for reducing computation time and solving larger problems. The specific problem considered here is configuration optimization of a high speed civil transport (HSCT), and the efficient parallelization of the embedded paradigm for reasonable design space identification. Two distributed dynamic load balancing techniques (random polling and global round robin with message combining) and two necessary termination detection schemes (global task count and token passing) were implemented and evaluated in terms of effectiveness and scalability to large problem sizes and a thousand processors. The effect of certain parameters on execution time was also inspected. Empirical results demonstrated stable performance and effectiveness for all schemes, and the parametric study showed that the selected algorithmic parameters have a negligible effect on performance.

  4. Aeroelastic Response of Swept Aircraft Wings in a Compressible Flow Field

    NASA Technical Reports Server (NTRS)

    Marzocca, Piergiovanni; Librescu, Liviu; Silva, Walter A.

    2000-01-01

    The present study addresses the subcritical aeroelastic response of swept wings, in various flight speed regimes, to arbitrary time-dependent external excitations. The methodology based on the concept of indicial functions is carried out in time and frequency domains. As a result of this approach, the proper unsteady aerodynamic loads necessary to study the subcritical aeroelastic response of the open/closed loop aeroelastic systems, and of flutter instability, respectively are obtained. Validation of the aeroelastic model is provided, and applications to subcritical aeroelastic response to blast pressure signatures are illustrated. In this context, an original representation of the aeroelastic response in the phase-space is displayed, and pertinent conclusions on the implications of a number of selected parameters of the system are outlined.

  5. Human comfort response to dominant random motions in longitudinal modes of aircraft motion

    NASA Technical Reports Server (NTRS)

    Stone, R. W., Jr.

    1980-01-01

    The effects of random vertical and longitudinal accelerations and pitching velocity passenger ride comfort responses were examined on the NASA Langley Visual Motion Simulator. Effects of power spectral density shape were studied for motions where the peak was between 0 and 2 Hz. The subjective rating data and the physical motion data obtained are presented without interpretation or detailed analysis. There existed motions in all other degrees of freedom as well as the particular pair of longitudinal airplane motions studied. These unwanted motions, caused by the characteristics of the simulator may have introduced some interactive effects on passenger responses.

  6. Dynamic modeling and experimental results for a head tilt response.

    PubMed

    Geisinger, Dario; Ferreira, Enrique; Suarez, Alejo; Suarez, Hamlet

    2010-01-01

    The estimation of the vertical in humans is important in everyday life although the mechanisms involved are not completely understood yet. This paper presents two sets of experiments with normal subjects, using the same virtual reality setup, aiming to help in this understanding. First, a steady state experiment is presented, which is used to determine the gravitational vertical precision while the second, a dynamical transient response experiment, is used to find dynamic models of each subject response. Results show that the dynamic models are able to reproduce the results of the steady state experiment while having the benefits that a dynamic model brings to evaluate subjects performance.

  7. Aeroelastic dynamic response and control of an airfoil section with control surface nonlinearities

    NASA Astrophysics Data System (ADS)

    Li, Daochun; Guo, Shijun; Xiang, Jinwu

    2010-10-01

    Nonlinearities in aircraft mechanisms are inevitable, especially in the control system. It is necessary to investigate the effects of them on the dynamic response and control performance of aeroelastic system. In this paper, based on the state-dependent Riccati equation method, a state feedback suboptimal control law is derived for aeroelastic response and flutter suppression of a three degree-of-freedom typical airfoil section. With the control law designed, nonlinear effects of freeplay in the control surface and time delay between the control input and actuator are investigated by numerical approach. A cubic nonlinearity in pitch degree is adopted to prevent the aeroelastic responses from divergence when the flow velocity exceeds the critical flutter speed. For the system with a freeplay, the responses of both open- and closed-loop systems are determined with Runge-Kutta algorithm in conjunction with Henon's method. This method is used to locate the switching points accurately and efficiently as the system moves from one subdomain into another. The simulation results show that the freeplay leads to a forward phase response and a slight increase of flutter speed of the closed-loop system. The effect of freeplay on the aeroelastic response decreases as the flow velocity increases. The time delay between the control input and actuator may impair control performance and cause high-frequency motion and quasi-periodic vibration.

  8. Electromagnetic response of dynamic magnetized plasma

    NASA Astrophysics Data System (ADS)

    Kalluri, Dikshitulu K.

    2000-06-01

    An electromagnetic wave is transformed in a remarkable way by a transient magnetoplasma medium. The main effect of the temporal change in the parameters of the medium is the splitting of the source wave into new waves whose frequencies are different from the incident wave frequency. Several transient problems [1] involving slow or fast creation or slow or fast collapse of the plasma medium in the presence of a static magnetic field will be discussed. Approximate perturbation solution for the case of rapid temporal change of the plasma medium, based on time-domain Green's function, will be presented. WKP or Adiabatic analysis for the problem of slow temporal change of the plasma medium will also be presented. Finite Difference Time Domain (FDTD) method of numerical solution will be developed. Several interesting results obtained by the author by using the approximate solutions and verified by the FDTD method will be discussed. The more important results are: (1) frequency upshifting with power intensification of a whistler wave by a collapsing plasma medium, (2) conversion of a whistler wave into a controllable helical wiggler magnetic field, (3) mode coupling due to a magnetized plasma in a cavity, and (4) frequency down-shifting due to switched plasma layers in the presence of a background magnetic field. A switched magentoplasma can act like a frequency transformer. The source wave can be generated in an available frequency band and the switched plasma device converts the source wave into a new wave in a frequency band not easily obtainable by other methods. Frequency shifting mechanism can be applied for plasma cloaking of satellites and aircraft and for producing short-chirped-pulses as ultra wide band signals. Recent proof of the principle experiments confirmed many theoretical results. Many more experiments need to be done to study the scalability of the results. Fast Switching of magnetized plasma is a challenging experimental task.

  9. Contributions of the Transonic Dynamics Tunnel to the Testing of Active Control of Aeroelastic Response

    NASA Technical Reports Server (NTRS)

    Perry, Boyd, III; Noll, Thomas E.; Scott, Robert C.

    2000-01-01

    By the 1960s, researchers began to investigate the feasibility of using active controls technology (ACT) for increasing the capabilities of military and commercial aircraft. Since then many researchers, too numerous to mention, have investigated and demonstrated the usefulness of ACT for favorably modifying the aeroelastic response characteristics of flight vehicles. As a result, ACT entered the limelight as a viable tool for answering some very difficult design questions and had the potential for obtaining structural weight reductions optimizing maneuvering performance, and satisfying the multimission requirements being imposed on future military and commercial aircraft designs. Over the past 40 years, the NASA Langley Research Center (LaRC) has played a major role in developing ACT in part by its participation in many wind-tunnel programs conducted in the Transonic Dynamics Tunnel (TDT). These programs were conducted for the purposes of: (1) establishing concept feasibility; (2) demonstrating proof of concept; and (3) providing data for validating new modeling, analysis, and design methods. This paper provides an overview of the ACT investigations conducted in the TDT. For each program discussed herein, the objectives of the effort, the testing techniques, the test results, any, signIficant findings, and the lessons learned with respect to ACT testing are presented.

  10. Shock tube investigation of dynamic response of pressure transducers for validation of rotor performance measurements

    NASA Technical Reports Server (NTRS)

    Bershader, Daniel

    1988-01-01

    For some time now, NASA has had a program under way to aid in the validation of rotor performance and acoustics codes associated with the UH-60 rotary-wing aircraft; and to correlate results of such studies with those obtained from investigations of other selected aircraft rotor performance. A central feature of these studies concerns the dynamic measurement of surface pressure at various locations up to frequencies of 25 KHz. For this purpose, fast-response gauges of the Kulite type are employed. The latter need to be buried in the rotor; they record surface pressures which are transmitted by a pipette connected to the gauge. The other end of the pipette is cut flush with the surface. In certain locations, the pipette configuration includes a rather sharp right-angle bend. The natural question has arisen in this connection: In what way are the pipettes modifying the signals received at the rotor surface and subsequently transmitted to the sensitive Kulite transducer element. The basic details and results of the program performed and recently completed in the High Pressure Shock Tube Laboratory of the Department of Aeronautics and Astronautics at Stanford University are given.

  11. 14 CFR 91.7 - Civil aircraft airworthiness.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 2 2011-01-01 2011-01-01 false Civil aircraft airworthiness. 91.7 Section... aircraft airworthiness. (a) No person may operate a civil aircraft unless it is in an airworthy condition. (b) The pilot in command of a civil aircraft is responsible for determining whether that aircraft...

  12. 14 CFR 91.7 - Civil aircraft airworthiness.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Civil aircraft airworthiness. 91.7 Section... aircraft airworthiness. (a) No person may operate a civil aircraft unless it is in an airworthy condition. (b) The pilot in command of a civil aircraft is responsible for determining whether that aircraft...

  13. 14 CFR 91.7 - Civil aircraft airworthiness.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 2 2012-01-01 2012-01-01 false Civil aircraft airworthiness. 91.7 Section... aircraft airworthiness. (a) No person may operate a civil aircraft unless it is in an airworthy condition. (b) The pilot in command of a civil aircraft is responsible for determining whether that aircraft...

  14. 14 CFR 91.7 - Civil aircraft airworthiness.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 2 2014-01-01 2014-01-01 false Civil aircraft airworthiness. 91.7 Section... aircraft airworthiness. (a) No person may operate a civil aircraft unless it is in an airworthy condition. (b) The pilot in command of a civil aircraft is responsible for determining whether that aircraft...

  15. 14 CFR 91.7 - Civil aircraft airworthiness.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 2 2013-01-01 2013-01-01 false Civil aircraft airworthiness. 91.7 Section... aircraft airworthiness. (a) No person may operate a civil aircraft unless it is in an airworthy condition. (b) The pilot in command of a civil aircraft is responsible for determining whether that aircraft...

  16. Static & Dynamic Response of 3D Solids

    1996-07-15

    NIKE3D is a large deformations 3D finite element code used to obtain the resulting displacements and stresses from multi-body static and dynamic structural thermo-mechanics problems with sliding interfaces. Many nonlinear and temperature dependent constitutive models are available.

  17. Dispersion of Response Times Reveals Cognitive Dynamics

    ERIC Educational Resources Information Center

    Holden, John G.; Van Orden, Guy C.; Turvey, Michael T.

    2009-01-01

    Trial-to-trial variation in word-pronunciation times exhibits 1/f scaling. One explanation is that human performances are consequent on multiplicative interactions among interdependent processes-interaction dominant dynamics. This article describes simulated distributions of pronunciation times in a further test for multiplicative interactions and…

  18. Prediction of response of aircraft panels subjected to acoustic and thermal loads

    NASA Technical Reports Server (NTRS)

    Mei, Chuh

    1992-01-01

    The primary effort of this research project has been focused on the development of analytical methods for the prediction of random response of structural panels subjected to combined and intense acoustic and thermal loads. The accomplishments on various acoustic fatigue research activities are described first, then followed by publications and theses. Topics covered include: transverse shear deformation; finite element models of vibrating composite laminates; large deflection vibration modeling; finite element analysis of thermal buckling; and prediction of three dimensional duct using boundary element method.

  19. Modal combination in response spectrum modal dynamic analysis

    SciTech Connect

    Hammond, C.R.; Singhal, M.K.

    1993-09-01

    UCRL-15910 does not give explicit requirements for combining the values of the resonse of individual modes in a response spectrum modal dynamic analysis. Since UCRL-15910 references ASE 4-86, modal combination methods given in ASCE 4-86 are described in this paper. Efficient use of typical dynamic analysis computer programs while complying with ASCE 4-86 is also described.

  20. Aircraft Design

    NASA Technical Reports Server (NTRS)

    Bowers, Albion H. (Inventor); Uden, Edward (Inventor)

    2016-01-01

    The present invention is an aircraft wing design that creates a bell shaped span load, which results in a negative induced drag (induced thrust) on the outer portion of the wing; such a design obviates the need for rudder control of an aircraft.

  1. Impact response of graphite-epoxy flat laminates using projectiles that simulate aircraft engine encounters

    NASA Technical Reports Server (NTRS)

    Preston, J. L., Jr.; Cook, T. S.

    1975-01-01

    An investigation of the response of a graphite-epoxy material to foreign object impact was made by impacting spherical projectiles of gelatin, ice, and steel normally on flat panels. The observed damage was classified as transverse (stress wave delamination and cracking), penetrative, or structural (gross failure): the minimum, or threshold, velocity to cause each class of damage was established as a function of projectile characteristics. Steel projectiles had the lowest transverse damage threshold, followed by gelatin and ice. Making use of the threshold velocities and assuming that the normal component of velocity produces the damage in nonnormal impacts, a set of impact angles and velocities was established for each projectile material which would result in damage to composite fan blades. Analysis of the operating parameters of a typical turbine fan blade shows that small steel projectiles are most likely to cause delamination and penetration damage to unprotected graphite-epoxy composite fan blades.

  2. DYNAMICAL RESPONSE OF QUASI ID MOTT INSULATORS.

    SciTech Connect

    ESSLER,F.H.L.TSVELIK,A.M.

    2004-01-14

    At low energies certain one dimensional Mott insulators can be described in terms of an exactly solvable quantum field theory, the U(1) Thirring model. Using exact results derived from integrability we determine dynamical properties like the frequency dependent optical conductivity and the single-particle Green's function. We discuss the effects of a small temperature and the effects on interchain tunneling in a model of infinitely many weakly coupled chains.

  3. Six-degree-of-freedom aircraft simulation with mixed-data structure using the applied dynamics simulation language, ADSIM

    NASA Technical Reports Server (NTRS)

    Savaglio, Clare

    1989-01-01

    A realistic simulation of an aircraft in the flight using the AD 100 digital computer is presented. The implementation of three model features is specifically discussed: (1) a large aerodynamic data base (130,00 function values) which is evaluated using function interpolation to obtain the aerodynamic coefficients; (2) an option to trim the aircraft in longitudinal flight; and (3) a flight control system which includes a digital controller. Since the model includes a digital controller the simulation implements not only continuous time equations but also discrete time equations, thus the model has a mixed-data structure.

  4. Maintenance cost study of rotary wing aircraft

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The feasibility was studied of predicting rotary wing operation maintenance costs by using several aircraft design factors for the aircraft dynamic systems. The dynamic systems considered were engines, drives and transmissions, rotors, and flight controls. Multiple regression analysis was used to correlate aircraft design and operational factors with manhours per flight hour, and equations for each dynamic system were developed. Results of labor predictions using the equations compare favorably with actual values.

  5. A Dynamic Navigation Model for Unmanned Aircraft Systems and an Application to Autonomous Front-On Environmental Sensing and Photography Using Low-Cost Sensor Systems

    PubMed Central

    Cooper, Andrew James; Redman, Chelsea Anne; Stoneham, David Mark; Gonzalez, Luis Felipe; Etse, Victor Kwesi

    2015-01-01

    This paper presents an unmanned aircraft system (UAS) that uses a probabilistic model for autonomous front-on environmental sensing or photography of a target. The system is based on low-cost and readily-available sensor systems in dynamic environments and with the general intent of improving the capabilities of dynamic waypoint-based navigation systems for a low-cost UAS. The behavioural dynamics of target movement for the design of a Kalman filter and Markov model-based prediction algorithm are included. Geometrical concepts and the Haversine formula are applied to the maximum likelihood case in order to make a prediction regarding a future state of a target, thus delivering a new waypoint for autonomous navigation. The results of the application to aerial filming with low-cost UAS are presented, achieving the desired goal of maintained front-on perspective without significant constraint to the route or pace of target movement. PMID:26343680

  6. A Dynamic Navigation Model for Unmanned Aircraft Systems and an Application to Autonomous Front-On Environmental Sensing and Photography Using Low-Cost Sensor Systems.

    PubMed

    Cooper, Andrew James; Redman, Chelsea Anne; Stoneham, David Mark; Gonzalez, Luis Felipe; Etse, Victor Kwesi

    2015-01-01

    This paper presents an unmanned aircraft system (UAS) that uses a probabilistic model for autonomous front-on environmental sensing or photography of a target. The system is based on low-cost and readily-available sensor systems in dynamic environments and with the general intent of improving the capabilities of dynamic waypoint-based navigation systems for a low-cost UAS. The behavioural dynamics of target movement for the design of a Kalman filter and Markov model-based prediction algorithm are included. Geometrical concepts and the Haversine formula are applied to the maximum likelihood case in order to make a prediction regarding a future state of a target, thus delivering a new waypoint for autonomous navigation. The results of the application to aerial filming with low-cost UAS are presented, achieving the desired goal of maintained front-on perspective without significant constraint to the route or pace of target movement.

  7. A Dynamic Navigation Model for Unmanned Aircraft Systems and an Application to Autonomous Front-On Environmental Sensing and Photography Using Low-Cost Sensor Systems.

    PubMed

    Cooper, Andrew James; Redman, Chelsea Anne; Stoneham, David Mark; Gonzalez, Luis Felipe; Etse, Victor Kwesi

    2015-01-01

    This paper presents an unmanned aircraft system (UAS) that uses a probabilistic model for autonomous front-on environmental sensing or photography of a target. The system is based on low-cost and readily-available sensor systems in dynamic environments and with the general intent of improving the capabilities of dynamic waypoint-based navigation systems for a low-cost UAS. The behavioural dynamics of target movement for the design of a Kalman filter and Markov model-based prediction algorithm are included. Geometrical concepts and the Haversine formula are applied to the maximum likelihood case in order to make a prediction regarding a future state of a target, thus delivering a new waypoint for autonomous navigation. The results of the application to aerial filming with low-cost UAS are presented, achieving the desired goal of maintained front-on perspective without significant constraint to the route or pace of target movement. PMID:26343680

  8. Advanced composites structural concepts and materials technologies for primary aircraft structures: Structural response and failure analysis

    NASA Technical Reports Server (NTRS)

    Dorris, William J.; Hairr, John W.; Huang, Jui-Tien; Ingram, J. Edward; Shah, Bharat M.

    1992-01-01

    Non-linear analysis methods were adapted and incorporated in a finite element based DIAL code. These methods are necessary to evaluate the global response of a stiffened structure under combined in-plane and out-of-plane loading. These methods include the Arc Length method and target point analysis procedure. A new interface material model was implemented that can model elastic-plastic behavior of the bond adhesive. Direct application of this method is in skin/stiffener interface failure assessment. Addition of the AML (angle minus longitudinal or load) failure procedure and Hasin's failure criteria provides added capability in the failure predictions. Interactive Stiffened Panel Analysis modules were developed as interactive pre-and post-processors. Each module provides the means of performing self-initiated finite elements based analysis of primary structures such as a flat or curved stiffened panel; a corrugated flat sandwich panel; and a curved geodesic fuselage panel. This module brings finite element analysis into the design of composite structures without the requirement for the user to know much about the techniques and procedures needed to actually perform a finite element analysis from scratch. An interactive finite element code was developed to predict bolted joint strength considering material and geometrical non-linearity. The developed method conducts an ultimate strength failure analysis using a set of material degradation models.

  9. Response of DP 600 products to dynamic impact loads

    NASA Astrophysics Data System (ADS)

    Clark, Deidra Darcell

    The objective of this study was to compare the microstructural response of various DP 600 products subjected to low velocity, dynamic impact tests, typically encountered in a car crash. Since the response of steel is sensitive to its microstructure as controlled by the alloying elements, phase content, and processing; various DP 600 products may respond differently to crashes. The microstructure before and after dynamic impact deformation at 5 and 10 mph was characterized with regards to grain size, morphology, and phase content among vendors A, B, and C to evaluate efficiency in absorbing energy mechanisms during a crash simulated by dynamic impact testing in a drop tower.

  10. Monitoring response to disturbance in dynamic rangelands

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Arid and semi-arid rangelands worldwide provide important ecosystem services and see a diversity of land uses. To maintain the health of these lands, it is necessary to monitor rangeland conditions in response to management and disturbance. Spatial patterns from disturbance are superimposed on patte...

  11. Analysis of dynamic system response to product random processes

    NASA Technical Reports Server (NTRS)

    Sidwell, K.

    1978-01-01

    The response of dynamic systems to the product of two independent Gaussian random processes is developed by use of the Fokker-Planck and associated moment equations. The development is applied to the amplitude modulated process which is used to model atmospheric turbulence in aeronautical applications. The exact solution for the system response is compared with the solution obtained by the quasi-steady approximation which omits the dynamic properties of the random amplitude modulation. The quasi-steady approximation is valid as a limiting case of the exact solution for the dynamic response of linear systems to amplitude modulated processes. In the nonlimiting case the quasi-steady approximation can be invalid for dynamic systems with low damping.

  12. Dynamic brittle material response based on a continuum damage model

    SciTech Connect

    Chen, E.P.

    1994-12-31

    The response of brittle materials to dynamic loads was studied in this investigation based on a continuum damage model. Damage mechanism was selected to be interaction and growth of subscale cracks. Briefly, the cracks are activated by bulk tension and the density of activated cracks are described by a Weibull statistical distribution. The moduli of a cracked solid derived by Budiansky and O`Connell are then used to represent the global material degradation due to subscale cracking. This continuum damage model was originally developed to study rock fragmentation and was modified in the present study to improve on the post-limit structural response. The model was implemented into a transient dynamic explicit finite element code PRONTO 2D and then used for a numerical study involving the sudden stretching of a plate with a centrally located hole. Numerical results characterizing the dynamic responses of the material were presented. The effect of damage on dynamic material behavior was discussed.

  13. The Response Dynamics of Recognition Memory: Sensitivity and Bias

    ERIC Educational Resources Information Center

    Koop, Gregory J.; Criss, Amy H.

    2016-01-01

    Advances in theories of memory are hampered by insufficient metrics for measuring memory. The goal of this paper is to further the development of model-independent, sensitive empirical measures of the recognition decision process. We evaluate whether metrics from continuous mouse tracking, or response dynamics, uniquely identify response bias and…

  14. Aircraft Inspection for the General Aviation Aircraft Owner.

    ERIC Educational Resources Information Center

    Federal Aviation Administration (DOT), Washington, DC. Flight Standards Service.

    Presented is useful information for owners, pilots, student mechanics, and others with aviation interests. Part I of this booklet outlines aircraft inspection requirements, owner responsibilities, inspection time intervals, and sources of basic information. Part II is concerned with the general techniques used to inspect an aircraft. (Author/JN)

  15. Bistable responses in bacterial genetic networks: Designs and dynamical consequences

    PubMed Central

    Tiwari, Abhinav; Ray, J. Christian J.; Narula, Jatin; Igoshin, Oleg A.

    2011-01-01

    A key property of living cells is their ability to react to stimuli with specific biochemical responses. These responses can be understood through the dynamics of underlying biochemical and genetic networks. Evolutionary design principles have been well studied in networks that display graded responses, with a continuous relationship between input signal and system output. Alternatively, biochemical networks can exhibit bistable responses so that over a range of signals the network possesses two stable steady states. In this review, we discuss several conceptual examples illustrating network designs that can result in a bistable response of the biochemical network. Next, we examine manifestations of these designs in bacterial master-regulatory genetic circuits. In particular, we discuss mechanisms and dynamic consequences of bistability in three circuits: two-component systems, sigma-factor networks, and a multistep phosphorelay. Analyzing these examples allows us to expand our knowledge of evolutionary design principles for networks with bistable responses. PMID:21385588

  16. Dynamic response of graphene to thermal impulse

    NASA Astrophysics Data System (ADS)

    Zhang, Jingchao; Huang, Xiaopeng; Yue, Yanan; Wang, Jianmei; Wang, Xinwei

    2011-12-01

    A transient molecular dynamics technique is developed to characterize the thermophysical properties of two-dimensional graphene nanoribbons (GNRs). By directly tracking the thermal-relaxation history of a GNR that is heated by a thermal impulse, we are able to determine its thermal diffusivity quickly and accurately. We study the dynamic thermal conductivity of various length GNRs of 1.99 nm width. Quantum correction is applied in all of the temperature calculations and is found to have a critical role in the thermal-transport study of graphene. The calculated specific heat of GNRs agrees well with that of graphite at 300.6 and 692.3 K, showing little effect of the unique graphene structure on its ability to store thermal energy. A strong size effect on GNR's thermal conductivity is observed and its theoretical values for an infinite-length limit are evaluated by data fitting and extrapolation. With infinite length, the 1.99-nm-wide GNR has a thermal conductivity of 149 W m-1 K-1 at 692.3 K, and 317 W m-1 K-1 at 300.6 K. Our study of the temperature distribution and evolution suggests that diffusive transport is dominant in the studied GNRs. Non-Fourier heat conduction is observed at the beginning of the thermal-relaxation procedure. Thermal waves in GNR's in-plane direction are observed only for phonons in the flexural direction (ZA mode). The observed propagation speed (c = 4.6 km s-1) of the thermal wave follows the relation of c=vg/2 (vg is the ZA phonon group velocity). Our thermal-wave study reveals that in graphene, the ZA phonons transfer thermal energy much faster than longitudinal (LA) and transverse (TA) modes. Also, ZA↔ZA energy transfer is much faster than the ZA↔LA/TA phonon energy transfer.

  17. Design criteria for integrated flight/propulsion control systems for STOVL fighter aircraft

    NASA Technical Reports Server (NTRS)

    Franklin, James A.

    1993-01-01

    As part of NASA's program to develop technology for short takeoff and vertical landing (STOVL) fighter aircraft, control system designs have been developed for a conceptual STOVL aircraft. This aircraft is representative of the class of mixed-flow remote-lift concepts that was identified as the preferred design approach by the US/UK STOVL Joint Assessment and Ranking Team. The control system designs have been evaluated throughout the powered-lift flight envelope on Ames Research Center's Vertical Motion Simulator. Items assessed in the control system evaluation were: maximum control power used in transition and vertical flight, control system dynamic response associated with thrust transfer for attitude control, thrust margin in the presence of ground effect and hot gas ingestion, and dynamic thrust response for the engine core. Effects of wind, turbulence, and ship airwake disturbances are incorporated in the evaluation. Results provide the basis for a reassessment of existing flying qualities design criteria applied to STOVL aircraft.

  18. High Speed Civil Transport Aircraft Simulation: Reference-H Cycle 1, MATLAB Implementation

    NASA Technical Reports Server (NTRS)

    Sotack, Robert A.; Chowdhry, Rajiv S.; Buttrill, Carey S.

    1999-01-01

    The mathematical model and associated code to simulate a high speed civil transport aircraft - the Boeing Reference H configuration - are described. The simulation was constructed in support of advanced control law research. In addition to providing time histories of the dynamic response, the code includes the capabilities for calculating trim solutions and for generating linear models. The simulation relies on the nonlinear, six-degree-of-freedom equations which govern the motion of a rigid aircraft in atmospheric flight. The 1962 Standard Atmosphere Tables are used along with a turbulence model to simulate the Earth atmosphere. The aircraft model has three parts - an aerodynamic model, an engine model, and a mass model. These models use the data from the Boeing Reference H cycle 1 simulation data base. Models for the actuator dynamics, landing gear, and flight control system are not included in this aircraft model. Dynamic responses generated by the nonlinear simulation are presented and compared with results generated from alternate simulations at Boeing Commercial Aircraft Company and NASA Langley Research Center. Also, dynamic responses generated using linear models are presented and compared with dynamic responses generated using the nonlinear simulation.

  19. Dynamic response of a piezoelectric flapping wing

    NASA Astrophysics Data System (ADS)

    Kumar, Alok; Khandwekar, Gaurang; Venkatesh, S.; Mahapatra, D. R.; Dutta, S.

    2015-03-01

    Piezo-composite membranes have advantages over motorized flapping where frequencies are high and certain coupling between bending and twisting is useful to generate lift and forward flight. We draw examples of fruit fly and bumble bee. Wings with Piezo ceramic PZT coating are realized. The passive mechanical response of the wing is characterized experimentally and validated using finite element simulation. Piezoelectric actuation with uniform electrode coating is characterized and optimal frequencies for flapping are identified. The experimental data are used in an empirical model and advanced ratio for a flapping insect like condition for various angular orientations is estimated.

  20. Dynamic response of cantilever retaining walls

    SciTech Connect

    Veletsos, A.S.; Younan, A.H.; Bandyopadhyay, K.

    1996-10-01

    A critical evaluation is made of the response to horizontal ground shaking of flexible cantilever retaining walls that are elastically constrained against rotation at their base. The retained medium is idealized as a uniform, linear, viscoelastic stratum of constant thickness and semi-infinite extent in the horizontal direction. The parameters varied include the flexibilities of the wall and its base, the properties of the retained medium, and the characteristics of the ground motion. In addition to long-period, effectively static excitations, both harmonic base motions and an actual earthquake record are considered. The response quantities examined include the displacements of the wall relative to the moving base, the wall pressures, and the associated shears and bending moments. The method of analysis employed is described only briefly, emphasis being placed on the presentation and interpretation of the comprehensive numerical solutions. It is shown that, for realistic wall flexibilities, the maximum wall forces are significantly lower than those obtained for fixed-based rigid walls and potentially of the same order of magnitude as those computed by the Mononobe-Okabe method.

  1. A study of external fuel vaporization. [for aircraft gas turbine engines

    NASA Technical Reports Server (NTRS)

    Szetela, E. J.; Chiappetta, L.; Baker, C. E.

    1981-01-01

    Candidate external vaporizer designs for an aircraft gas turbine engine are evaluated with respect to fuel thermal stability, integration of the vaporizer system into the aircraft engine, engine and vaporizer dynamic response, startup and altitude restart, engine performance, control requirements, safety, and maintenance. The selected concept is shown to offer potential gains in engine performance in terms of reduced specific fuel consumption and improved engine thrust/weight ratio. The thrust/weight improvement can be traded against vaporization system weight.

  2. Scaling aircraft noise perception.

    NASA Technical Reports Server (NTRS)

    Ollerhead, J. B.

    1973-01-01

    Following a brief review of the background to the study, an extensive experiment is described which was undertaken to assess the practical differences between numerous alternative methods for calculating the perceived levels of individual aircraft flyover wounds. One hundred and twenty recorded sounds, including jets, turboprops, piston aircraft and helicopters were rated by a panel of subjects in a pair comparison test. The results were analyzed to evaluate a number of noise rating procedures, in terms of their ability to accurately estimate both relative and absolute perceived noise levels over a wider dynamic range (84-115 dB SPL) than had generally been used in previous experiments. Performances of the different scales were examined in detail for different aircraft categories, and the merits of different band level summation procedures, frequency weighting functions, duration and tone corrections were investigated.

  3. Effects of low intensity noise from aircraft or from neighbourhood on cognitive learning and electrophysiological stress responses.

    PubMed

    Trimmel, Michael; Atzlsdorfer, Jürgen; Tupy, Nina; Trimmel, Karin

    2012-11-01

    The effects of low intensity noise on cognitive learning and autonomous physiological processes are of high practical relevance but are rarely addressed in empirical investigations. This study investigated the impact of neighbourhood noise (of 45 dB[A], n=20) and of noise coming from passing aircraft (of 48 dB[A] peak amplitude presented once per minute; n=19) during computer based learning of different texts (with three types of text structure, i.e. linear text, hierarchic hypertext, and network hypertext) in relation to a control group (35 dB[A], n=20). Using a between subjects design, reproduction scores, heart rate, and spontaneous skin conductance fluctuations were compared. Results showed impairments of reproduction in both noise conditions. Additionally, whereas in the control group and the neighbourhood noise group scores were better for network hypertext structure than for hierarchic hypertext, no effect of text structure on reproduction appeared in the aircraft noise group. Compared to the control group, for most of the learning period the number of spontaneous skin conductance fluctuations was higher for the aircraft noise group. For the neighbourhood noise group, fluctuations were higher during pre- and post task periods when noise stimulation was still present. Additionally, during the last 5 min of the 15 min learning period, an increased heart rate was found in the aircraft noise group. Data indicate remarkable cognitive and physiological effects of low intensity background noise. Some aspects of reproduction were impaired in the two noise groups. Cognitive learning, as indicated by reproduction scores, was changed structurally in the aircraft noise group and was accompanied by higher sympathetic activity. An additional cardiovascular load appeared for aircraft noise when combined with time pressure as indicated by heart rate for the announced last 5 min of the learning period during aircraft noise with a peak SPL of even 48 dB(A). Attentional

  4. Effects of low intensity noise from aircraft or from neighbourhood on cognitive learning and electrophysiological stress responses.

    PubMed

    Trimmel, Michael; Atzlsdorfer, Jürgen; Tupy, Nina; Trimmel, Karin

    2012-11-01

    The effects of low intensity noise on cognitive learning and autonomous physiological processes are of high practical relevance but are rarely addressed in empirical investigations. This study investigated the impact of neighbourhood noise (of 45 dB[A], n=20) and of noise coming from passing aircraft (of 48 dB[A] peak amplitude presented once per minute; n=19) during computer based learning of different texts (with three types of text structure, i.e. linear text, hierarchic hypertext, and network hypertext) in relation to a control group (35 dB[A], n=20). Using a between subjects design, reproduction scores, heart rate, and spontaneous skin conductance fluctuations were compared. Results showed impairments of reproduction in both noise conditions. Additionally, whereas in the control group and the neighbourhood noise group scores were better for network hypertext structure than for hierarchic hypertext, no effect of text structure on reproduction appeared in the aircraft noise group. Compared to the control group, for most of the learning period the number of spontaneous skin conductance fluctuations was higher for the aircraft noise group. For the neighbourhood noise group, fluctuations were higher during pre- and post task periods when noise stimulation was still present. Additionally, during the last 5 min of the 15 min learning period, an increased heart rate was found in the aircraft noise group. Data indicate remarkable cognitive and physiological effects of low intensity background noise. Some aspects of reproduction were impaired in the two noise groups. Cognitive learning, as indicated by reproduction scores, was changed structurally in the aircraft noise group and was accompanied by higher sympathetic activity. An additional cardiovascular load appeared for aircraft noise when combined with time pressure as indicated by heart rate for the announced last 5 min of the learning period during aircraft noise with a peak SPL of even 48 dB(A). Attentional

  5. Monitoring the intracellular calcium response to a dynamic hypertonic environment

    NASA Astrophysics Data System (ADS)

    Huang, Xiaowen; Yue, Wanqing; Liu, Dandan; Yue, Jianbo; Li, Jiaqian; Sun, Dong; Yang, Mengsu; Wang, Zuankai

    2016-03-01

    The profiling of physiological response of cells to external stimuli at the single cell level is of importance. Traditional approaches to study cell responses are often limited by ensemble measurement, which is challenging to reveal the complex single cell behaviors under a dynamic environment. Here we report the development of a simple microfluidic device to investigate intracellular calcium response to dynamic hypertonic conditions at the single cell level in real-time. Interestingly, a dramatic elevation in the intracellular calcium signaling is found in both suspension cells (human leukemic cell line, HL-60) and adherent cells (lung cancer cell line, A549), which is ascribed to the exposure of cells to the hydrodynamic stress. We also demonstrate that the calcium response exhibits distinct single cell heterogeneity as well as cell-type-dependent responses to the same stimuli. Our study opens up a new tool for tracking cellular activity at the single cell level in real time for high throughput drug screening.

  6. Slow dynamics in features of synchronized neural network responses

    PubMed Central

    Haroush, Netta; Marom, Shimon

    2015-01-01

    In this report trial-to-trial variations in the synchronized responses of neural networks are explored over time scales of minutes, in ex-vivo large scale cortical networks. We show that sub-second measures of the individual synchronous response, namely—its latency and decay duration, are related to minutes-scale network response dynamics. Network responsiveness is reflected as residency in, or shifting amongst, areas of the latency-decay plane. The different sensitivities of latency and decay durations to synaptic blockers imply that these two measures reflect aspects of inhibitory and excitatory activities. Taken together, the data suggest that trial-to-trial variations in the synchronized responses of neural networks might be related to effective excitation-inhibition ratio being a dynamic variable over time scales of minutes. PMID:25926787

  7. Dynamic response of trapped ultracold bosons on optical lattices

    SciTech Connect

    Batrouni, G.G.; Assaad, F.F.; Scalettar, R.T.; Denteneer, P.J.H.

    2005-09-15

    We study the dynamic response of ultracold bosons trapped in one-dimensional optical lattices using Quantum Monte Carlo simulations of the boson Hubbard model with a confining potential. The dynamic structure factor reveals the inhomogeneous nature of the low temperature state, which contains coexisting Mott insulator and superfluid regions. We present new evidence for local quantum criticality and discuss implications for the experimental excitation spectrum of {sup 87}Rb atoms confined in one dimension.

  8. Localized measurements of composite dynamic response for health monitoring

    NASA Astrophysics Data System (ADS)

    Webb, Sean; Oman, Kyle; Peters, Kara; Stan, Nikola; Chadderdon, Spencer; Selfridge, Richard; Schultz, Stephen

    2014-04-01

    We demonstrate the measurement of and applications for full-spectral measurements collected from FBG sensors in dynamic loading environments. The measurement of the dynamic response of a laminated plate to an impact event highlights the information gained during the event as compared to after the event. The measurement of damage induced spectral distortion in a thin plate during vibration loading demonstrates the capability of separating spectral distortion due to multiple effects, including damage and vibration loading. Finally, the measurement of the change in dynamic response of an adhesively bonded joint highlights the capability to measure the progression of fatigue damage. Confirmation that the change in FBG response is due to fatigue damage is performed through independent pulsed phase thermography imaging of the adhesively bonded joint.

  9. Dynamic response analysis procedure for landfills with geosynthetic liners

    SciTech Connect

    Yegian, M.K.; Harb, J.N.; Kadakal, U.

    1998-10-01

    The dynamic response of geosynthetic interfaces commonly encountered in municipal solid waste landfills were investigated using a shaking table facility. The force-slip relationships for the tested interfaces showed almost rigid and then plastic deformation where the maximum shear force transmitted through the interface increases slightly with increasing slip. The force-slip relationships were modeled with equivalent stiffness and damping ratios. These equivalent parameters were established as a function of slip displacements to account for the nonlinear behavior of the interfaces. Using the equivalent stiffness and damping, the dynamic properties of an equivalent soil layer were established such that the dynamic response of the equivalent soil layer is similar to that of the geosynthetic interface it represents. The purpose of this representation was to allow the modeling of geosynthetic interfaces in wave propagation analysis, such as SHAKE analysis. The properties of the equivalent soil layer were validated by comparing the measured dynamic response of a rigid block placed on geosynthetics with that computed using the SHAKEW program and the properties of the equivalent soil layer developed. A procedure for analysis of the dynamic response of landfills with geosynthetic liners is proposed.

  10. Handling Qualities of Large Flexible Aircraft. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Poopaka, S.

    1980-01-01

    The effects on handling qualities of elastic modes interaction with the rigid body dynamics of a large flexible aircraft are studied by a mathematical computer simulation. An analytical method to predict the pilot ratings when there is a severe modes interactions is developed. This is done by extending the optimal control model of the human pilot response to include the mode decomposition mechanism into the model. The handling qualities are determined for a longitudinal tracking task using a large flexible aircraft with parametric variations in the undamped natural frequencies of the two lowest frequency, symmetric elastic modes made to induce varying amounts of mode interaction.

  11. 32 CFR 855.6 - Aircraft exempt from the requirement for a civil aircraft landing permit.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... includes aircraft owned by individuals but leased by Army or Navy aero clubs. (4) A US State, County... local Government has retained liability responsibilities. (7) Civil aircraft transporting critically...

  12. 150 Passenger Commercial Aircraft

    NASA Technical Reports Server (NTRS)

    Bucovsky, Adrian; Romli, Fairuz I.; Rupp, Jessica

    2002-01-01

    It has been projected that the need for a short-range mid-sized, aircraft is increasing. The future strategy to decrease long-haul flights will increase the demand for short-haul flights. Since passengers prefer to meet their destinations quickly, airlines will increase the frequency of flights, which will reduce the passenger load on the aircraft. If a point-to-point flight is not possible, passengers will prefer only a one-stop short connecting flight to their final destination. A 150-passenger aircraft is an ideal vehicle for these situations. It is mid-sized aircraft and has a range of 3000 nautical miles. This type of aircraft would market U.S. domestic flights or inter-European flight routes. The objective of the design of the 150-passenger aircraft is to minimize fuel consumption. The configuration of the aircraft must be optimized. This aircraft must meet CO2 and NOx emissions standards with minimal acquisition price and operating costs. This report contains all the work that has been performed for the completion of the design of a 150 passenger commercial aircraft. The methodology used is the Technology Identification, Evaluation, and Selection (TIES) developed at Georgia Tech Aerospace Systems Design laboratory (ASDL). This is an eight-step conceptual design process to evaluate the probability of meeting the design constraints. This methodology also allows for the evaluation of new technologies to be implemented into the design. The TIES process begins with defining the problem with a need established and a market targeted. With the customer requirements set and the target values established, a baseline concept is created. Next, the design space is explored to determine the feasibility and viability of the baseline aircraft configuration. If the design is neither feasible nor viable, new technologies can be implemented to open up the feasible design space and allow for a plausible solution. After the new technologies are identified, they must be evaluated

  13. Development and Flight Testing of a Neural Network Based Flight Control System on the NF-15B Aircraft

    NASA Technical Reports Server (NTRS)

    Bomben, Craig R.; Smolka, James W.; Bosworth, John T.; Silliams-Hayes, Peggy S.; Burken, John J.; Larson, Richard R.; Buschbacher, Mark J.; Maliska, Heather A.

    2006-01-01

    The Intelligent Flight Control System (IFCS) project at the NASA Dryden Flight Research Center, Edwards AFB, CA, has been investigating the use of neural network based adaptive control on a unique NF-15B test aircraft. The IFCS neural network is a software processor that stores measured aircraft response information to dynamically alter flight control gains. In 2006, the neural network was engaged and allowed to learn in real time to dynamically alter the aircraft handling qualities characteristics in the presence of actual aerodynamic failure conditions injected into the aircraft through the flight control system. The use of neural network and similar adaptive technologies in the design of highly fault and damage tolerant flight control systems shows promise in making future aircraft far more survivable than current technology allows. This paper will present the results of the IFCS flight test program conducted at the NASA Dryden Flight Research Center in 2006, with emphasis on challenges encountered and lessons learned.

  14. Structural modeling of aircraft tires

    NASA Technical Reports Server (NTRS)

    Clark, S. K.; Dodge, R. N.; Lackey, J. I.; Nybakken, G. H.

    1973-01-01

    A theoretical and experimental investigation of the feasibility of determining the mechanical properties of aircraft tires from small-scale model tires was accomplished. The theoretical results indicate that the macroscopic static and dynamic mechanical properties of aircraft tires can be accurately determined from the scale model tires although the microscopic and thermal properties of aircraft tires can not. The experimental investigation was conducted on a scale model of a 40 x 12, 14 ply rated, type 7 aircraft tire with a scaling factor of 8.65. The experimental results indicate that the scale model tire exhibited the same static mechanical properties as the prototype tire when compared on a dimensionless basis. The structural modeling concept discussed in this report is believed to be exact for mechanical properties of aircraft tires under static, rolling, and transient conditions.

  15. Dynamic Response Testing in an Electrically Heated Reactor Test Facility

    NASA Astrophysics Data System (ADS)

    Bragg-Sitton, Shannon M.; Morton, T. J.

    2006-01-01

    Non-nuclear testing can be a valuable tool in the development of a space nuclear power or propulsion system. In a non-nuclear test bed, electric heaters are used to simulate the heat from nuclear fuel. Standard testing allows one to fully assess thermal, heat transfer, and stress related attributes of a given system, but fails to demonstrate the dynamic response that would be present in an integrated, fueled reactor system. The integration of thermal hydraulic hardware tests with simulated neutronic response provides a bridge between electrically heated testing and fueled nuclear testing. By implementing a neutronic response model to simulate the dynamic response that would be expected in a fueled reactor system, one can better understand system integration issues, characterize integrated system response times and response characteristics, and assess potential design improvements at a relatively small fiscal investment. Initial system dynamic response testing was demonstrated on the integrated SAFE-100a heat pipe (HP) cooled, electrically heated reactor and heat exchanger hardware, utilizing a one-group solution to the point kinetics equations to simulate the expected neutronic response of the system. Reactivity feedback calculations were then based on a bulk reactivity feedback coefficient and measured average core temperature. This paper presents preliminary results from similar dynamic testing of a direct drive gas cooled reactor system (DDG), demonstrating the applicability of the testing methodology to any reactor type and demonstrating the variation in system response characteristics in different reactor concepts. Although the HP and DDG designs both utilize a fast spectrum reactor, the method of cooling the reactor differs significantly, leading to a variable system response that can be demonstrated and assessed in a non-nuclear test facility. Planned system upgrades to allow implementation of higher fidelity dynamic testing are also discussed. Proposed DDG

  16. Head and neck response of a finite element anthropomorphic test device and human body model during a simulated rotary-wing aircraft impact.

    PubMed

    White, Nicholas A; Danelson, Kerry A; Gayzik, F Scott; Stitzel, Joel D

    2014-11-01

    A finite element (FE) simulation environment has been developed to investigate aviator head and neck response during a simulated rotary-wing aircraft impact using both an FE anthropomorphic test device (ATD) and an FE human body model. The head and neck response of the ATD simulation was successfully validated against an experimental sled test. The majority of the head and neck transducer time histories received a CORrelation and analysis (CORA) rating of 0.7 or higher, indicating good overall correlation. The human body model simulation produced a more biofidelic head and neck response than the ATD experimental test and simulation, including change in neck curvature. While only the upper and lower neck loading can be measured in the ATD, the shear force, axial force, and bending moment were reported for each level of the cervical spine in the human body model using a novel technique involving cross sections. This loading distribution provides further insight into the biomechanical response of the neck during a rotary-wing aircraft impact.

  17. Simulated dynamic response of a servovalve controlled hydraulic actuator

    NASA Technical Reports Server (NTRS)

    Babcock, Dale A.

    1990-01-01

    A general purpose math model of a servovalve controlled hydraulic actuator system is derived. The system consists of a linear actuator with unequal piston areas, a single stage servovalve, a gas charged hydraulic accumulator, and the interconnecting piping. The state equations are integrated using the Advanced Continuous Simulation Language (ACSL) for determining the system's dynamic response characteristics. Using this generalized hydraulic actuator system model, response characteristics were determined for various servovalve commands.

  18. Dynamic Response Testing in an Electrically Heated Reactor Test Facility

    NASA Technical Reports Server (NTRS)

    Bragg-Sitton, Shannon M.; Morton, T. J.

    2006-01-01

    Non-nuclear testing can be a valuable tool in development of a space nuclear power or propulsion system. In a non-nuclear test bed, electric heaters are used to simulate the heat from nuclear fuel. Standard testing allows one to fully assess thermal, heat transfer, and stress related attributes of a given system, but fails to demonstrate the dynamic response that would be present in an integrated, fueled reactor system. The integration of thermal hydraulic hardware tests with simulated neutronic response provides a bridge between electrically heated testing and full nuclear testing. By implementing a neutronic response model to simulate the dynamic response that would be expected in a fueled reactor system, one can better understand system integration issues, characterize integrated system response times and response characteristics, and assess potential design improvements at a relatively small fiscal investment. Initial system dynamic response testing was demonstrated on the integrated SAFE-100a heat pipe cooled, electrically heated reactor and heat exchanger hardware, utilizing a one-group solution to the point kinetics equations to simulate the expected neutronic response of the system (Bragg-Sitton, 2005). The current paper applies the same testing methodology to a direct drive gas cooled reactor system, demonstrating the applicability of the testing methodology to any reactor type and demonstrating the variation in system response characteristics in different reactor concepts. In each testing application, core power transients were controlled by a point kinetics model with reactivity feedback based on core average temperature; the neutron generation time and the temperature feedback coefficient are provided as model inputs. Although both system designs utilize a fast spectrum reactor, the method of cooling the reactor differs significantly, leading to a variable system response that can be demonstrated and assessed in a non-nuclear test facility.

  19. Ultrafast Dynamic Piezoresistive Response of Graphene-Based Cellular Elastomers.

    PubMed

    Qiu, Ling; Bulut Coskun, M; Tang, Yue; Liu, Jefferson Z; Alan, Tuncay; Ding, Jie; Truong, Van-Tan; Li, Dan

    2016-01-01

    Ultralight graphene-based cellular elastomers are found to exhibit nearly frequency-independent piezoresistive behaviors. Surpassing the mechanoreceptors in the human skin, these graphene elastomers can provide an instantaneous and high-fidelity electrical response to dynamic pressures ranging from quasi-static up to 2000 Hz, and are capable of detecting ultralow pressures as small as 0.082 Pa.

  20. Dynamic response and stability analysis of flexible, multibody systems. [spacecraft

    NASA Technical Reports Server (NTRS)

    Bodley, C. S.; Park, A. C.; Devers, A. D.; Frisch, H. P.

    1977-01-01

    A general version of Lagrange's equations, including auxiliary nonholonomic, rheonomic conditions of constraint, is used in the dynamic simulation and stability analysis of interconnected flexible bodies. Modeling of the nonlinear flexible/rigid dynamic coupling effects, the interaction forces/torques, and the elastic deformation effects is discussed. A digital computer program is developed to obtain time-domain solution for the nonlinear response of systems represented as a collection of individual bodies, numerical linearization of system-governing equations, time-domain solution for the perturbation response about a nominal state, and a frequency-domain stability analysis corresponding to the linearization. The digital simulation code is employed to study the dynamic behavior of a typical satellite and a spacecraft with deployable experiment booms.

  1. Glassy Dynamics in the Adaptive Immune Response Prevents Autoimmune Disease

    NASA Astrophysics Data System (ADS)

    Sun, Jun; Earl, David J.; Deem, Michael W.

    2005-09-01

    The immune system normally protects the human host against death by infection. However, when an immune response is mistakenly directed at self-antigens, autoimmune disease can occur. We describe a model of protein evolution to simulate the dynamics of the adaptive immune response to antigens. Computer simulations of the dynamics of antibody evolution show that different evolutionary mechanisms, namely, gene segment swapping and point mutation, lead to different evolved antibody binding affinities. Although a combination of gene segment swapping and point mutation can yield a greater affinity to a specific antigen than point mutation alone, the antibodies so evolved are highly cross reactive and would cause autoimmune disease, and this is not the chosen dynamics of the immune system. We suggest that in the immune system’s search for antibodies, a balance has evolved between binding affinity and specificity.

  2. A study of low-cost reliable actuators for light aircraft. Part A: Chapters 1-8

    NASA Technical Reports Server (NTRS)

    Eijsink, H.; Rice, M.

    1978-01-01

    An analysis involving electro-mechanical, electro-pneumatic, and electro-hydraulic actuators was performed to study which are compatible for use in the primary and secondary flight controls of a single engine light aircraft. Actuator characteristics under investigation include cost, reliability, weight, force, volumetric requirements, power requirements, response characteristics and heat accumulation characteristics. The basic types of actuators were compared for performance characteristics in positioning a control surface model and then were mathematically evaluated in an aircraft to get the closed loop dynamic response characteristics. Conclusions were made as to the suitability of each actuator type for use in an aircraft.

  3. Application of Piloted Simulation to High-Angle-of-Attack Flight-Dynamics Research for Fighter Aircraft

    NASA Technical Reports Server (NTRS)

    Ogburn, Marilyn E.; Foster, John V.; Hoffler, Keith D.

    2005-01-01

    This paper reviews the use of piloted simulation at Langley Research Center as part of the NASA High-Angle-of-Attack Technology Program (HATP), which was created to provide concepts and methods for the design of advanced fighter aircraft. A major research activity within this program is the development of the design processes required to take advantage of the benefits of advanced control concepts for high-angle-of-attack agility. Fundamental methodologies associated with the effective use of piloted simulation for this research are described, particularly those relating to the test techniques, validation of the test results, and design guideline/criteria development.

  4. A Collection of Nonlinear Aircraft Simulations in MATLAB

    NASA Technical Reports Server (NTRS)

    Garza, Frederico R.; Morelli, Eugene A.

    2003-01-01

    Nonlinear six degree-of-freedom simulations for a variety of aircraft were created using MATLAB. Data for aircraft geometry, aerodynamic characteristics, mass / inertia properties, and engine characteristics were obtained from open literature publications documenting wind tunnel experiments and flight tests. Each nonlinear simulation was implemented within a common framework in MATLAB, and includes an interface with another commercially-available program to read pilot inputs and produce a three-dimensional (3-D) display of the simulated airplane motion. Aircraft simulations include the General Dynamics F-16 Fighting Falcon, Convair F-106B Delta Dart, Grumman F-14 Tomcat, McDonnell Douglas F-4 Phantom, NASA Langley Free-Flying Aircraft for Sub-scale Experimental Research (FASER), NASA HL-20 Lifting Body, NASA / DARPA X-31 Enhanced Fighter Maneuverability Demonstrator, and the Vought A-7 Corsair II. All nonlinear simulations and 3-D displays run in real time in response to pilot inputs, using contemporary desktop personal computer hardware. The simulations can also be run in batch mode. Each nonlinear simulation includes the full nonlinear dynamics of the bare airframe, with a scaled direct connection from pilot inputs to control surface deflections to provide adequate pilot control. Since all the nonlinear simulations are implemented entirely in MATLAB, user-defined control laws can be added in a straightforward fashion, and the simulations are portable across various computing platforms. Routines for trim, linearization, and numerical integration are included. The general nonlinear simulation framework and the specifics for each particular aircraft are documented.

  5. Dynamic differential imaging of intrinsic optical responses in the retina

    NASA Astrophysics Data System (ADS)

    Yao, Xin-Cheng; Li, Yang-Guo; Liu, Lei; Amthor, Frank

    2010-02-01

    High resolution monitoring of stimulus-evoked retinal neural activities is important for understanding retinal neural mechanisms, and for diagnosis of retinal disease and evaluation of treatment. Fast intrinsic optical signals (IOSs), which have the time courses comparable to retinal electrophysiological responses, hold the promise for high resolution imaging of retinal neural activities. However, application of fast IOS imaging has been hindered by contamination of slow, high magnitude, optical responses associated with transient hemodynamic and metabolic changes. We recently demonstrated the feasibility of separating fast IOSs from slow optical responses by combined dynamic differential imaging and high frequency flicker stimulation.

  6. A numerical study of aircraft empennage buffet

    NASA Astrophysics Data System (ADS)

    Findlay, David Bruce

    1999-10-01

    A method to predict tightly-coupled dynamic aeroelastic vertical tail buffet was presented. Analysis of high angle of attack vertical tail buffet was performed. A Navier-Stokes fluid dynamics method was coupled with a modal structural dynamics method. The approach was to improve upon existing methods to evaluate complex geometric arrangements with general multi-zone interfacing. The method was demonstrated through a step- wise approach beginning with a simple configuration and building up to a complete aircraft at high angle of attack with flexible tail surfaces. Results compared well with in-flight and Full-scale wind tunnel measured trends and frequency content. Comparisons with measured absolute values of buffet loads showed the computations to be under-predicting the test data. This was primarily attributed to insufficient grid resolution, in particular in the vicinity of the main vortex flow. The demanding computational requirements of full-configuration tail buffet prediction limited the fidelity. The primary contribution of the present study was the extension and demonstration of a tightly-coupled aeroelastic computational fluid dynamics/structural dynamics based analysis method for analysis of aircraft empennage buffet. The focus was on improving the development process associated with characterizing empennage buffet loads and the resulting structural response. The intent was to establish a computationally based alternative approach to the experimentally based process currently employed. The computational method was employed to provide far greater insight into the flow physics phenomena associated with specific configurations and conditions of interest.

  7. Studies of TLP dynamic response under wind, waves and current

    NASA Astrophysics Data System (ADS)

    Gu, Jia-yang; Yang, Jian-min; Lv, Hai-ning

    2012-09-01

    Investigated is the coupled response of a tension leg platform (TLP) for random waves. Inferred are the mass matrix, coupling stiffness matrix, damping matrix in the vibration differential equation and external load of TLP in moving coordinating system. Infinitesimal method is applied to divide columns and pontoons into small parts. Time domain motion equation is solved by Runge-Kutta integration scheme. Jonswap spectrum is simulated in the random wave, current is simulated by linear interpolation, and NPD spectrum is applied as wind spectrum. The Monte Carlo method is used to simulate random waves and fluctuated wind. Coupling dynamic response, change of tendon tension and riser tension in different sea conditions are analyzed by power spectral density (PSD). The influence of approach angle on dynamic response of TLP and tendon tension is compared.

  8. Dynamic Resource Allocation in Disaster Response: Tradeoffs in Wildfire Suppression

    PubMed Central

    Petrovic, Nada; Alderson, David L.; Carlson, Jean M.

    2012-01-01

    Challenges associated with the allocation of limited resources to mitigate the impact of natural disasters inspire fundamentally new theoretical questions for dynamic decision making in coupled human and natural systems. Wildfires are one of several types of disaster phenomena, including oil spills and disease epidemics, where (1) the disaster evolves on the same timescale as the response effort, and (2) delays in response can lead to increased disaster severity and thus greater demand for resources. We introduce a minimal stochastic process to represent wildfire progression that nonetheless accurately captures the heavy tailed statistical distribution of fire sizes observed in nature. We then couple this model for fire spread to a series of response models that isolate fundamental tradeoffs both in the strength and timing of response and also in division of limited resources across multiple competing suppression efforts. Using this framework, we compute optimal strategies for decision making scenarios that arise in fire response policy. PMID:22514605

  9. Dynamics and response of polymer-coated acoustic devices

    SciTech Connect

    Martin, S.J.; Frye, G.C.

    1992-01-01

    In this paper we consider the dynamic behavior and the electrical response of a thickness-shear mode resonator with a polymer film coating one face. With glassy polymers (shear stiffness G{prime} {approx} 10{sup 10} dyne/cm{sup 2}), this film tends to move synchronously with the oscillating resonator surface, while with rubbery polymers (G{prime} {approx} 10{sup 7} dyne/cm{sup 2}), the upper portions of the film lag behind the driven resonator/film interface, causing shear deformation of the film. As polymer properties change, interesting dynamic film behavior results, notably a film resonance when the acoustic phase shift across the film is an odd multiple of {pi}2. This dynamic behavior influences the electrical response of the resonator due to the coupling between shear displacement and electric field in the piezoelectric quartz. Utilizing the fact that the polymer shear modulus changes rapidly as a function of temperature, these film behavior trends were demonstrated by measuring the electrical characteristics of a polyisobutylene-coated resonator as a function of frequency and at several temperatures. We show how these changing film dynamics can be correlated with changes in the measured electrical response. 11 refs.

  10. Dynamics and response of polymer-coated acoustic devices

    SciTech Connect

    Martin, S.J.; Frye, G.C.

    1992-06-01

    In this paper we consider the dynamic behavior and the electrical response of a thickness-shear mode resonator with a polymer film coating one face. With glassy polymers (shear stiffness G{prime} {approx} 10{sup 10} dyne/cm{sup 2}), this film tends to move synchronously with the oscillating resonator surface, while with rubbery polymers (G{prime} {approx} 10{sup 7} dyne/cm{sup 2}), the upper portions of the film lag behind the driven resonator/film interface, causing shear deformation of the film. As polymer properties change, interesting dynamic film behavior results, notably a film resonance when the acoustic phase shift across the film is an odd multiple of {pi}2. This dynamic behavior influences the electrical response of the resonator due to the coupling between shear displacement and electric field in the piezoelectric quartz. Utilizing the fact that the polymer shear modulus changes rapidly as a function of temperature, these film behavior trends were demonstrated by measuring the electrical characteristics of a polyisobutylene-coated resonator as a function of frequency and at several temperatures. We show how these changing film dynamics can be correlated with changes in the measured electrical response. 11 refs.

  11. The dynamic response of a viscoelastic biological tissue simulant

    NASA Astrophysics Data System (ADS)

    Shepherd, Christopher; Appleby-Thomas, Gareth; Hazell, Paul; Allsop, Derek

    2009-06-01

    The development and optimisation of new projectiles requires comparative techniques to assess ballistic performance. Porcine gelatin has found a substantial niche in the ballistics community as a tissue mimic. Primarily due to its elasticity, gelatin has been shown to deform in a similar manner to biological tissues. Bullet impacts typically occur in the 350-850 m/s range and consequently, knowledge of the high strain rate dynamic properties of both the projectile constituents and target materials is desirable if simulations are to allow the optimisation of projectile design. A large body of knowledge exists on the dynamic properties of projectiles, however relatively little data exists in the literature on the dynamic response of flesh simulants. The Hugoniot for a 20 wt% porcine gelatin, which exhibits a ballistic response similar to that of human tissues at room temperature, is determined in this paper using the plate impact technique. Up-Us and Up-P relationships are determined for impact velocities in the range of 200-900 m/s. Good agreement with the limited available data from the literature for similar concentrations is found and the dynamic response established at impact stresses up to 3 times higher than that observed elsewhere. Additionally, high frequency elastic properties are investigated using ultrasound and compared to those observed elsewhere.

  12. Aircraft cybernetics

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The use of computers for aircraft control, flight simulation, and inertial navigation is explored. The man-machine relation problem in aviation is addressed. Simple and self-adapting autopilots are described and the assets and liabilities of digital navigation techniques are assessed.

  13. Fluctuation-response relation unifies dynamical behaviors in neural fields

    NASA Astrophysics Data System (ADS)

    Fung, C. C. Alan; Wong, K. Y. Michael; Mao, Hongzi; Wu, Si

    2015-08-01

    Anticipation is a strategy used by neural fields to compensate for transmission and processing delays during the tracking of dynamical information and can be achieved by slow, localized, inhibitory feedback mechanisms such as short-term synaptic depression, spike-frequency adaptation, or inhibitory feedback from other layers. Based on the translational symmetry of the mobile network states, we derive generic fluctuation-response relations, providing unified predictions that link their tracking behaviors in the presence of external stimuli to the intrinsic dynamics of the neural fields in their absence.

  14. Heterogeneous nodal responses in cascade dynamics on multiplex networks

    NASA Astrophysics Data System (ADS)

    Lee, Kyu-Min; Brummitt, Charles D.; Goh, Kwang-Il

    2014-03-01

    Structure and dynamics of multiplex network systems have been intensively studied recently, revealing nontrivial results such as facilitated cascading failures and new type of phase transitions unforeseen in the single-level systems. However, most studies about multi-layered, network of networks have mainly considered the case of single nodal response to multiple layers, that is, every node responds to the multiple layers in identical way. Most complex systems like human society, however, function not only through various kinds of relations but also through heterogeneous response behavior across agents, indicating a new level of complexity. To address it, here we formulate a threshold cascade model on multiplex networks with a mixture of two response functions: OR and AND rules. For the OR response, nodes are activated if enough neighbors in any layer are active, whereas for the AND response, the nodes activate only if enough neighbors in all layers are active. Coexistence of these two response rules is shown to control between facilitation and inhibition of cascading failures, and moreover, it can also control the type of transitions to global cascades between continuous and discontinuous ones. We will discuss the implication of the results in the context of social dynamics.

  15. Population dynamics and mutualism: Functional responses of benefits and costs

    USGS Publications Warehouse

    Holland, J. Nathaniel; DeAngelis, Donald L.; Bronstein, Judith L.

    2002-01-01

    We develop an approach for studying population dynamics resulting from mutualism by employing functional responses based on density‐dependent benefits and costs. These functional responses express how the population growth rate of a mutualist is modified by the density of its partner. We present several possible dependencies of gross benefits and costs, and hence net effects, to a mutualist as functions of the density of its partner. Net effects to mutualists are likely a monotonically saturating or unimodal function of the density of their partner. We show that fundamental differences in the growth, limitation, and dynamics of a population can occur when net effects to that population change linearly, unimodally, or in a saturating fashion. We use the mutualism between senita cactus and its pollinating seed‐eating moth as an example to show the influence of different benefit and cost functional responses on population dynamics and stability of mutualisms. We investigated two mechanisms that may alter this mutualism's functional responses: distribution of eggs among flowers and fruit abortion. Differences in how benefits and costs vary with density can alter the stability of this mutualism. In particular, fruit abortion may allow for a stable equilibrium where none could otherwise exist.

  16. Effective reconstruction of dynamics of medium response spectrum

    NASA Astrophysics Data System (ADS)

    Trofimov, Vyacheslav A.; Varentsova, Svetlana A.

    2008-10-01

    A new algorithm is suggested to visualize the dynamics of medium response spectrum in terahertz diapason by the singly measured set of partially intersected integral characteristics of the signal. The algorithm is based on SVD method and window sliding method. The analysis, we carried out, demonstrates many advantages of the new algorithm in com-parison with the Gabor-Fourier approach, which allows obtaining the dynamics of only one spectral line for one set of measurements. Among which it is necessary to mention the possibility to get the dynamics of many spectral components simultaneously for one set of measurements as well and therefore to get the complete information about the spectrum dynamics. This allows to identify specific materials with known spectral lines and to distinguish materials with similar spectra, which is of great importance for the detection and identification of different chemicals, pharmaceutical substances and explosives. To demonstrate the efficiency of a proposed algorithm, we compare spectrum dynamics of chocolate and soap, which possess the similar spectra. Our investigation shows that their dynamics widely vary in spec-tral lines. The proposed algorithm can be also applied to voice identification and to reconstruction of a laser beam profile with a great number of local maxima. Developed algorithm allows to measure the characteristic time of medium responce. It is very important for various problems of spectroscopy.

  17. Detection of the Impact of Ice Crystal Accretion in an Aircraft Engine Compression System During Dynamic Operation

    NASA Technical Reports Server (NTRS)

    May, Ryan D.; Simon, Donald L.; Guo, Ten-Huei

    2014-01-01

    The accretion of ice in the compression system of commercial gas turbine engines operating in high ice water content conditions is a safety issue being studied by the aviation community. While most of the research focuses on the underlying physics of ice accretion and the meteorological conditions in which accretion can occur, a systems-level perspective on the topic lends itself to potential near-term operational improvements. Here a detection algorithm is developed which has the capability to detect the impact of ice accretion in the Low Pressure Compressor of an aircraft engine during steady flight as well as during changes in altitude. Unfortunately, the algorithm as implemented was not able to distinguish throttle changes from ice accretion and thus more work remains to be done.

  18. Using the dynamic bond to access macroscopically responsive structurally dynamic polymers

    NASA Astrophysics Data System (ADS)

    Wojtecki, Rudy J.; Meador, Michael A.; Rowan, Stuart J.

    2011-01-01

    New materials that have the ability to reversibly adapt to their environment and possess a wide range of responses ranging from self-healing to mechanical work are continually emerging. These adaptive systems have the potential to revolutionize technologies such as sensors and actuators, as well as numerous biomedical applications. We will describe the emergence of a new trend in the design of adaptive materials that involves the use of reversible chemistry (both non-covalent and covalent) to programme a response that originates at the most fundamental (molecular) level. Materials that make use of this approach - structurally dynamic polymers - produce macroscopic responses from a change in the material's molecular architecture (that is, the rearrangement or reorganization of the polymer components, or polymeric aggregates). This design approach requires careful selection of the reversible/dynamic bond used in the construction of the material to control its environmental responsiveness.

  19. Parameter-less approaches for interpreting dynamic cellular response

    PubMed Central

    2014-01-01

    Cellular response such as cell signaling is an integral part of information processing in biology. Upon receptor stimulation, numerous intracellular molecules are invoked to trigger the transcription of genes for specific biological purposes, such as growth, differentiation, apoptosis or immune response. How complex are such specialized and sophisticated machinery? Computational modeling is an important tool for investigating dynamic cellular behaviors. Here, I focus on certain types of key signaling pathways that can be interpreted well using simple physical rules based on Boolean logic and linear superposition of response terms. From the examples shown, it is conceivable that for small-scale network modeling, reaction topology, rather than parameter values, is crucial for understanding population-wide cellular behaviors. For large-scale response, non-parametric statistical approaches have proven valuable for revealing emergent properties. PMID:25183996

  20. Using dissipative particle dynamics to model micromechanics of responsive hydrogels

    NASA Astrophysics Data System (ADS)

    Alexeev, Alexander; Nikolov, Svetoslav; Fernandez de Las Nieves, Alberto

    2015-03-01

    The ability of responsive hydrogels to undergo complex and reversible shape transformations in response to external stimuli such as temperature, magnetic/electric fields, pH levels, and light intensity has made them the material of choice for tissue scaffolding, drug delivery, bio-adhesive, bio-sensing, and micro-sorting applications. The complex micromechanics and kinetics of these responsive networks however, currently hinders developments in the aforementioned areas. In order to better understand the mechanical properties of these systems and how they change during the volume transition we have developed a dissipative particle dynamics (DPD) model for responsive polymer networks. We use this model to examine the impact of the Flory-Huggins parameter on the bulk and shear moduli. In this fashion we evaluate how environmental factors can affect the micromechanical properties of these networks. Support from NSF CAREER Award (DMR-1255288) is gratefully acknowledged.

  1. High speed, heavily loaded and precision aircraft type epicyclic gear system dynamic analysis overview and special considerations

    NASA Astrophysics Data System (ADS)

    Buyukataman, K.; Kazerounian, K.

    1993-06-01

    Dynamic analysis of reliable, lightweight, high speed and high power density epicyclic gears requires special effort to predict their maximum power transmitting capacity. This paper focuses on single-stage epicyclic gears of this category. The true definition of gear system power transmitting capacity requires understanding and proper evaluation of its dynamic capacity, as well as a state-of-the-art elasto-dynamic simulation which responds to input data as a fully instrumented test cell would. This paper presents an overview of key considerations, a background of dynamic system simulation, and emphasizes what needs to be done to make an epicyclic gear system successful in responding to tomorrow's challenging propulsion needs.

  2. Insights into the Dynamic Response of Tunnels in Jointed Rocks

    SciTech Connect

    Heuze, F E

    2004-11-01

    Tunnels in jointed rocks can be subjected to severe dynamic loads because of rock bursts, coal bumps, and large earthquakes. A series of 3-dimensional simulations was performed, based on discrete element analysis to gain insights into the parameters that influence the response of such tunnels. The simulations looked at the effect of joint set orientation, the effect of joint spacing, the effect of pulse shape for a given displacement, and the influence of using rigid versus deformable blocks in the analyses. The results of this modeling were also compared to field evidence of dynamic tunnel failures. This comparison reinforced the notion that 3-dimensional discrete element analysis can capture very well the kinematics of structures in jointed rock under dynamic loading.

  3. Dynamical Buildup of a Quantized Hall Response from Nontopological States

    NASA Astrophysics Data System (ADS)

    Hu, Ying; Zoller, Peter; Budich, Jan Carl

    2016-09-01

    We consider a two-dimensional system initialized in a topologically trivial state before its Hamiltonian is ramped through a phase transition into a Chern insulator regime. This scenario is motivated by current experiments with ultracold atomic gases aimed at realizing time-dependent dynamics in topological insulators. Our main findings are twofold. First, considering coherent dynamics, the non-equilibrium Hall response is found to approach a topologically quantized time averaged value in the limit of slow but non-adiabatic parameter ramps, even though the Chern number of the state remains trivial. Second, adding dephasing, the destruction of quantum coherence is found to stabilize this Hall response, while the Chern number generically becomes undefined. We provide a geometric picture of this phenomenology in terms of the time-dependent Berry curvature.

  4. Monitoring the intracellular calcium response to a dynamic hypertonic environment.

    PubMed

    Huang, Xiaowen; Yue, Wanqing; Liu, Dandan; Yue, Jianbo; Li, Jiaqian; Sun, Dong; Yang, Mengsu; Wang, Zuankai

    2016-01-01

    The profiling of physiological response of cells to external stimuli at the single cell level is of importance. Traditional approaches to study cell responses are often limited by ensemble measurement, which is challenging to reveal the complex single cell behaviors under a dynamic environment. Here we report the development of a simple microfluidic device to investigate intracellular calcium response to dynamic hypertonic conditions at the single cell level in real-time. Interestingly, a dramatic elevation in the intracellular calcium signaling is found in both suspension cells (human leukemic cell line, HL-60) and adherent cells (lung cancer cell line, A549), which is ascribed to the exposure of cells to the hydrodynamic stress. We also demonstrate that the calcium response exhibits distinct single cell heterogeneity as well as cell-type-dependent responses to the same stimuli. Our study opens up a new tool for tracking cellular activity at the single cell level in real time for high throughput drug screening. PMID:27004604

  5. Monitoring the intracellular calcium response to a dynamic hypertonic environment

    PubMed Central

    Huang, Xiaowen; Yue, Wanqing; Liu, Dandan; Yue, Jianbo; Li, Jiaqian; Sun, Dong; Yang, Mengsu; Wang, Zuankai

    2016-01-01

    The profiling of physiological response of cells to external stimuli at the single cell level is of importance. Traditional approaches to study cell responses are often limited by ensemble measurement, which is challenging to reveal the complex single cell behaviors under a dynamic environment. Here we report the development of a simple microfluidic device to investigate intracellular calcium response to dynamic hypertonic conditions at the single cell level in real-time. Interestingly, a dramatic elevation in the intracellular calcium signaling is found in both suspension cells (human leukemic cell line, HL-60) and adherent cells (lung cancer cell line, A549), which is ascribed to the exposure of cells to the hydrodynamic stress. We also demonstrate that the calcium response exhibits distinct single cell heterogeneity as well as cell-type-dependent responses to the same stimuli. Our study opens up a new tool for tracking cellular activity at the single cell level in real time for high throughput drug screening. PMID:27004604

  6. Transcriptome dynamics of the microRNA inhibition response.

    PubMed

    Wen, Jiayu; Leucci, Elenora; Vendramin, Roberto; Kauppinen, Sakari; Lund, Anders H; Krogh, Anders; Parker, Brian J

    2015-07-27

    We report a high-resolution time series study of transcriptome dynamics following antimiR-mediated inhibition of miR-9 in a Hodgkin lymphoma cell-line-the first such dynamic study of the microRNA inhibition response-revealing both general and specific aspects of the physiological response. We show miR-9 inhibition inducing a multiphasic transcriptome response, with a direct target perturbation before 4 h, earlier than previously reported, amplified by a downstream peak at ∼32 h consistent with an indirect response due to secondary coherent regulation. Predictive modelling indicates a major role for miR-9 in post-transcriptional control of RNA processing and RNA binding protein regulation. Cluster analysis identifies multiple co-regulated gene regulatory modules. Functionally, we observe a shift over time from mRNA processing at early time points to translation at later time points. We validate the key observations with independent time series qPCR and we experimentally validate key predicted miR-9 targets. Methodologically, we developed sensitive functional data analytic predictive methods to analyse the weak response inherent in microRNA inhibition experiments. The methods of this study will be applicable to similar high-resolution time series transcriptome analyses and provides the context for more accurate experimental design and interpretation of future microRNA inhibition studies. PMID:26089393

  7. A comparison of results from dynamic-response field tests

    NASA Astrophysics Data System (ADS)

    Hock, Susan M.; Thresher, Robert W.; Wright, Alan D.

    1988-11-01

    The dynamic response of Howden's 330-kW horizontal-axis wind turbine (HAWT) and the Northern Power Systems 100-kW North Wind 100 HAWT has been measured. The Howden machine incorporates a 26-m-diameter, upwind, three-bladed, wood/epoxy rotor that operates at 42 rpm and is a rigid-hub design. The North Wind 100 rotor has a diameter of 17.8 m, is upwind, two-bladed, and constructed of fiberglass, and has a teetered hub. The Northern Power turbine's blades are fully pitchable, while the Howden machine uses pitchable blade tips. This paper will present the results from each of these test programs in an effort to compare the dynamic response of each turbine. The analysis will focus on rotor bending loads in terms of both time domain and frequency response. The FLAP code will be used to explore sensitivity to teeter stiffness and natural frequency placement to provide a better understanding of the differences in behavior caused by configuration alone. The results are presented in the form of normalized azimuth-averaged plots of the deterministic loads, and spectral density plots of the stochastic responses. This presentation of the results will contrast major response differences due to design configurations.

  8. Simulation of dynamic material response with the PAGOSA code

    SciTech Connect

    Holian, K.S.; Adams, T.F.

    1993-08-01

    The 3D Eulerian PAGOSA hydrocode is being run on the massively parallel Connection Machine (CM) to simulate the response of materials to dynamic loading, such as by high explosives or high velocity impact. The code has a variety of equation of state forms, plastic yield models, and fracture and fragmentation models. The numerical algorithms in PAGOSA and the implementation of material models are discussed briefly.

  9. Ambient response of a unique performance-based design building with dynamic response modification features

    USGS Publications Warehouse

    Celebi, Mehmet; Huang, Moh; Shakal, Antony; Hooper, John; Klemencic, Ron

    2012-01-01

    A 64-story, performance-based design building with reinforced concrete core shear-walls and unique dynamic response modification features (tuned liquid sloshing dampers and buckling-restrained braces) has been instrumented with a monitoring array of 72 channels of accelerometers. Ambient vibration data recorded are analyzed to identify modes and associated frequencies and damping. The low-amplitude dynamic characteristics are considerably different than those computed from design analyses, but serve as a baseline against which to compare with future strong shaking responses. Such studies help to improve our understanding of the effectiveness of the added features to the building and help improve designs in the future.

  10. Dynamic structure of joint-action stimulus-response activity.

    PubMed

    Malone, MaryLauren; Castillo, Ramon D; Kloos, Heidi; Holden, John G; Richardson, Michael J

    2014-01-01

    The mere presence of a co-actor can influence an individual's response behavior. For instance, a social Simon effect has been observed when two individuals perform a Go/No-Go response to one of two stimuli in the presence of each other, but not when they perform the same task alone. Such effects are argued to provide evidence that individuals co-represent the task goals and the to-be-performed actions of a co-actor. Motivated by the complex-systems approach, the present study was designed to investigate an alternative hypothesis--that such joint-action effects are due to a dynamical (time-evolving) interpersonal coupling that operates to perturb the behavior of socially situated actors. To investigate this possibility, participants performed a standard Go/No-Go Simon task in joint and individual conditions. The dynamic structure of recorded reaction times was examined using fractal statistics and instantaneous cross-correlation. Consistent with our hypothesis that participants responding in a shared space would become behaviorally coupled, the analyses revealed that reaction times in the joint condition displayed decreased fractal structure (indicative of interpersonal perturbation processes modulating ongoing participant behavior) compared to the individual condition, and were more correlated across a range of time-scales compared to the reaction times of pseudo-pair controls. Collectively, the findings imply that dynamic processes might underlie social stimulus-response compatibility effects and shape joint cognitive processes in general.

  11. Spectral Response of Multilayer Optical Structures to Dynamic Loading

    NASA Astrophysics Data System (ADS)

    Scripka, David; Lecroy, Garrett; Lee, Gyuhyon; Sun, Changyan; Kang, Zhitao; Summers, Christopher J.; Thadhani, Naresh N.

    2015-06-01

    Distributed Bragg Reflectors and optical microcavities are multilayer optical structures with spectral properties that are intrinsically sensitive to external perturbations. With nanometer to micrometer dimensions and near instantaneous optical response, these structures show significant potential as the basis for mesoscale time-resolved diagnostics that can be used to probe the dynamic behavior of mesoscale heterogeneous materials. In order to characterize the optical and mechanical behavior of the multilayer structures, a coupled computational-experimental study is underway. A mechanistic analysis of the spectral response of the structures to dynamic loading will be presented, along with computational simulations illustrating the observable spectral effects of 1D shock compression. Results from fabrication of specific multilayer designs and initial laser-driven shock loading experiments will be shown and compared to the simulation results. Preliminary results indicate that the magnitude of dynamic loading can be directly correlated to the altered spectral response. Potential applications of the theoretical diagnostics and challenges associated with spatially resolved data collection methodology will also be discussed. DTRA grant HDTRA-1-12-1-0052 is acknowledged. David Scripka is supported by the Department of Defense through the National Defense Science and Engineering Graduate Fellowship Program.

  12. NASA Aircraft Controls Research, 1983

    NASA Technical Reports Server (NTRS)

    Beasley, G. P. (Compiler)

    1984-01-01

    The workshop consisted of 24 technical presentations on various aspects of aircraft controls, ranging from the theoretical development of control laws to the evaluation of new controls technology in flight test vehicles. A special report on the status of foreign aircraft technology and a panel session with seven representatives from organizations which use aircraft controls technology were also included. The controls research needs and opportunities for the future as well as the role envisioned for NASA in that research were addressed. Input from the panel and response to the workshop presentations will be used by NASA in developing future programs.

  13. Tone-mapping and dynamic range compression using dynamic cone response

    NASA Astrophysics Data System (ADS)

    Yun, Byoung-Ju; Hong, Hee-Dong; Park, Jinhyoung; Kim, Hyun-Deok; Choi, Ho-Hyoung

    2013-11-01

    Over the last several decades, the tone-mapping and color correction methods have been incorporated into the display device such as LCD/LED display device or the photographic print. However, conventional methods are based on Gray-World Assumption using spatial smoothing filter to estimate the local illumination component. For this reason, most of these methods have several problems like visual perception problem, scale the contrast, gray-out, color distortion (dominate color, halo-artifact) and so on. Accordingly, this paper presents a color correction method using the dynamic cone response function based on human visual perception. The proposed method consists of tone-mapping and dynamic cone response. The tone-mapped image is obtained by using chromatic and achromatic colors. Thereafter, the resultant image is processed through the dynamic cone response function, and it is to estimate the dynamic response of human eye as well as to deal with mismatch between a real scene and the rendered image. The experimental results show that the proposed method yields better performance of color correction over the conventional methods.

  14. Aircraft disinsection: A guide for military and civilian air carriers; Desinsectisation des aeronefs: Un guide a l`intention des responsables des transports aeriens civils et militaires

    SciTech Connect

    Ellis, R.A

    1996-05-01

    To prevent risks to air crews health, aircraft safety, and industry, Canada`s Department of National Defense (DND) has recently reviewed the potential problems associated with aircraft disinsection. Various directives for air crew, maintenance personnel and preventative medicine technicians to follow have been developed and updated periodically. This aircraft disinsection review is part of the latest effort to revise DND`s administrative orders on aircraft disinsection and could be a model for other military and civilian air carriers.

  15. COMMUNICATION: Electrophysiological response dynamics during focal cortical infarction

    NASA Astrophysics Data System (ADS)

    Chiganos, Terry C., Jr.; Jensen, Winnie; Rousche, Patrick J.

    2006-12-01

    While the intracellular processes of hypoxia-induced necrosis and the intercellular mechanisms of post-ischemic neurotoxicity associated with stroke are well documented, the dynamic electrophysiological (EP) response of neurons within the core or periinfarct zone remains unclear. The present study validates a method for continuous measurement of the local EP responses during focal cortical infarction induced via photothrombosis. Single microwire electrodes were acutely implanted into the primary auditory cortex of eight rats. Multi-unit neural activity, evoked via a continuous 2 Hz click stimulus, was recorded before, during and after infarction to assess neuronal function in response to local, permanent ischemia. During sham infarction, the average stimulus-evoked peak firing rate over 20 min remained stable at 495.5 ± 14.5 spikes s-1, indicating temporal stability of neural function under normal conditions. Stimulus-evoked peak firing was reliably reduced to background levels (firing frequency in the absence of stimulus) following initiation of photothrombosis over a period of 439 ± 92 s. The post-infarction firing patterns exhibited unique temporal degradation of the peak firing rate, suggesting a variable response to ischemic challenge. Despite the inherent complexity of cerebral ischemia secondary to microvascular occlusion, complete loss of EP function consistently occurred 300-600 s after photothrombosis. The results suggest that microwire recording during photothrombosis provides a simple and highly efficacious strategy for assessing the electrophysiological dynamics of cortical infarction.

  16. The disposal of military aircraft

    NASA Technical Reports Server (NTRS)

    Warner, Edward P

    1922-01-01

    The end of the war saw every belligerent with vast stocks of aircraft and aircraft supplies in all stages of usefulness, much of the material being absolutely new. The question of the best method of getting rid of this accumulation is one which has been agitating those responsible for its disposal for more than three years now, but no wholly satisfactory solution has yet been reached.

  17. SMA Hybrid Composites for Dynamic Response Abatement Applications

    NASA Technical Reports Server (NTRS)

    Turner, Travis L.

    2000-01-01

    A recently developed constitutive model and a finite element formulation for predicting the thermomechanical response of Shape Memory Alloy (SMA) hybrid composite (SMAHC) structures is briefly described. Attention is focused on constrained recovery behavior in this study, but the constitutive formulation is also capable of modeling restrained or free recovery. Numerical results are shown for glass/epoxy panel specimens with embedded Nitinol actuators subjected to thermal and acoustic loads. Control of thermal buckling, random response, sonic fatigue, and transmission loss are demonstrated and compared to conventional approaches including addition of conventional composite layers and a constrained layer damping treatment. Embedded SMA actuators are shown to be significantly more effective in dynamic response abatement applications than the conventional approaches and are attractive for combination with other passive and/or active approaches.

  18. Airborne Subscale Transport Aircraft Research Testbed: Aircraft Model Development

    NASA Technical Reports Server (NTRS)

    Jordan, Thomas L.; Langford, William M.; Hill, Jeffrey S.

    2005-01-01

    The Airborne Subscale Transport Aircraft Research (AirSTAR) testbed being developed at NASA Langley Research Center is an experimental flight test capability for research experiments pertaining to dynamics modeling and control beyond the normal flight envelope. An integral part of that testbed is a 5.5% dynamically scaled, generic transport aircraft. This remotely piloted vehicle (RPV) is powered by twin turbine engines and includes a collection of sensors, actuators, navigation, and telemetry systems. The downlink for the plane includes over 70 data channels, plus video, at rates up to 250 Hz. Uplink commands for aircraft control include over 30 data channels. The dynamic scaling requirement, which includes dimensional, weight, inertial, actuator, and data rate scaling, presents distinctive challenges in both the mechanical and electrical design of the aircraft. Discussion of these requirements and their implications on the development of the aircraft along with risk mitigation strategies and training exercises are included here. Also described are the first training (non-research) flights of the airframe. Additional papers address the development of a mobile operations station and an emulation and integration laboratory.

  19. Robust control of hypersonic aircraft

    NASA Astrophysics Data System (ADS)

    Fan, Yong-hua; Yang, Jun; Zhang, Yu-zhuo

    2007-11-01

    Design of a robust controller for the longitudinal dynamics of a hypersonic aircraft by using parameter space method is present. The desirable poles are mapped to the parameter space of the controller using pole placement approach in this method. The intersection of the parameter space is the common controller for the multiple mode system. This controller can meet the need of the different phases of aircraft. It has been proved by simulation that the controller has highly performance of precision and robustness for the disturbance caused by separation, cowl open, fuel on and fuel off and perturbation caused by unknown dynamics.

  20. Neural dynamics in response to binary taste mixtures

    PubMed Central

    Katz, Donald B.

    2013-01-01

    Taste stimuli encountered in the natural environment are usually combinations of multiple tastants. Although a great deal is known about how neurons in the taste system respond to single taste stimuli in isolation, less is known about how the brain deals with such mixture stimuli. Here, we probe the responses of single neurons in primary gustatory cortex (GC) of awake rats to an array of taste stimuli including 100% citric acid (100 mM), 100% sodium chloride (100 mM), 100% sucrose (100 mM), and a range of binary mixtures (90/10, 70/30, 50/50, 30/70, and 10/90%). We tested for the presence of three different hypothetical response patterns: 1) responses varying monotonically as a function of concentration of sucrose (or acid) in the mixture (the “monotonic” pattern); 2) responses increasing or decreasing as a function of degree of mixture of the stimulus (the “mixture” pattern); and 3) responses that change abruptly from being similar to one pure taste to being similar the other (the “categorical” pattern). Our results demonstrate the presence of both monotonic and mixture patterns within responses of GC neurons. Specifically, further analysis (that included the presentation of 50 mM sucrose and citric acid) made it clear that mixture suppression reliably precedes a palatability-related pattern. The temporal dynamics of the emergence of the palatability-related pattern parallel the temporal dynamics of the emergence of preference behavior for the same mixtures as measured by a brief access test. We saw no evidence of categorical coding. PMID:23365178

  1. Experimental investigation of fuel cell dynamic response and control

    NASA Astrophysics Data System (ADS)

    Williams, Keith A.; Keith, Warren T.; Marcel, Michael J.; Haskew, Timothy A.; Shepard, W. Steve; Todd, Beth A.

    An experimental study of the dynamic response of a commercial fuel cell system is presented in this work. The primary goal of the research is an examination of the feasibility for using fuel cells in a load-following mode for vehicular applications, where load-following implies that the fuel cell system provides the power necessary for transient responses without the use of additional energy storage elements, such as batteries or super-capacitors. The dynamic response of fuel cell systems used in the load-following mode may have implications for safe and efficient operation of vehicles. To that end, a DC-DC converter was used to port the power output of the fuel cell to a resistive load using a pulse-width-modulating circuit. Frequency responses of the system were evaluated at a variety of DC offsets and AC amplitudes of the PWM duty cycle from 1 out to 400 Hz. Open-loop transient responses are then evaluated using transitions from 10% to 90% duty cycle levels, followed by dwells at the 90% level and then transitions back to the 10% level. A classical proportional-integral controller was then developed and used to close the loop around the system, with the result that the fuel cell system was driven to track the same transient. The controller was then used to drive the fuel cell system according to a reference power signal, which was a scaled-down copy of the simulated power output from an internal combustion engine powering a conventional automobile through the Federal Urban Driving Schedule (FUDS). The results showed that the fuel cell system is capable of tracking transient signals with sufficient fidelity such that it should be applicable for use in a load-following mode for vehicular applications. The results also highlight important issues that must be addressed in considering vehicular applications of fuel cells, such as the power conditioning circuit efficiency and the effect of stack heating on the system response.

  2. Dynamic Response and Dynamic Failure Mode of a Weak Intercalated Rock Slope Using a Shaking Table

    NASA Astrophysics Data System (ADS)

    Fan, Gang; Zhang, Jianjing; Wu, Jinbiao; Yan, Kongming

    2016-08-01

    A large-scale shaking table test was performed to study the dynamic response of slopes parallel to geological bedding (bedding slopes) and slopes that cross-cut geological bedding (counter-bedding slopes). The test results show that the acceleration amplification coefficients increase with increasing elevation and, when the input earthquake amplitude is greater than 0.3 g, both bedding and counter-bedding slopes begin to show nonlinear dynamic response characteristics. With increasing elevation, the displacement of the bedding slope surface increases greatly. Conversely, the displacement of the counter-bedding slope surface increases first and then decreases; the slope develops a bulge at the relative elevation of 0.85. The displacement of the bedding slope surface is greater than that of the counter-bedding slope. The counter-bedding slope is more seismically stable compared with the bedding slope. Based on the Hilbert-Huang transform and marginal spectrum theories, the processes that develop dynamic damage of the bedding and counter-bedding slopes are identified. It is shown that the dynamic failure mode of the bedding slope is mainly represented by vertical tensile cracks at the rear of the slope, bedding slide of the strata along the weak intercalation, and rock collapse from the slope crest. However, the dynamic failure mode of the counter-bedding slope is mainly represented by staggered horizontal and vertical fissures, extrusion of the weak intercalation, and breakage at the slope crest.

  3. Glassy Dynamics in the Adaptive Immune Response Prevents Autoimmune Disease

    NASA Astrophysics Data System (ADS)

    Sun, Jun; Deem, Michael

    2006-03-01

    The immune system normally protects the human host against death by infection. However, when an immune response is mistakenly directed at self antigens, autoimmune disease can occur. We describe a model of protein evolution to simulate the dynamics of the adaptive immune response to antigens. Computer simulations of the dynamics of antibody evolution show that different evolutionary mechanisms, namely gene segment swapping and point mutation, lead to different evolved antibody binding affinities. Although a combination of gene segment swapping and point mutation can yield a greater affinity to a specific antigen than point mutation alone, the antibodies so evolved are highly cross-reactive and would cause autoimmune disease, and this is not the chosen dynamics of the immune system. We suggest that in the immune system a balance has evolved between binding affinity and specificity in the mechanism for searching the amino acid sequence space of antibodies. Our model predicts that chronic infection may lead to autoimmune disease as well due to cross-reactivity and suggests a broad distribution for the time of onset of autoimmune disease due to chronic exposure. The slow search of antibody sequence space by point mutation leads to the broad of distribution times.

  4. HAWT dynamic stall response asymmetries under yawed flow conditions

    NASA Astrophysics Data System (ADS)

    Schreck, S.; Robinson, M.; Hand, M.; Simms, D.

    2000-10-01

    Horizontal axis wind turbines can experience significant time-varying aerodynamic loads, potentially causing adverse effects on structures, mechanical components and power production. As designers attempt lighter and more flexible wind energy machines, greater accuracy and robustness will become even more critical in future aerodynamics models. Aerodynamics modelling advances, in turn, will rely on more thorough comprehension of the three-dimensional, unsteady, vortical flows that dominate wind turbine blade aerodynamics under high-load conditions. To experimentally characterize these flows, turbine blade surface pressures were acquired at multiple span locations via the NREL Phase IV Unsteady Aerodynamics Experiment. Surface pressures and associated normal force histories were used to characterize dynamic stall vortex kinematics and normal force amplification. Dynamic stall vortices and normal force amplification were confirmed to occur in response to angle-of-attack excursions above the static stall threshold. Stall vortices occupied approximately one-half of the blade span and persisted for nearly one-fourth of the blade rotation cycle. Stall vortex convection varied along the blade, resulting in dramatic deformation of the vortex. Presence and deformation of the dynamic stall vortex produced corresponding amplification of normal forces. Analyses revealed consistent alterations to vortex kinematics in response to changes in reduced frequency, span location and yaw error. Finally, vortex structures and kinematics not previously documented for wind turbine blades were isolated. Published in 2000 by John Wiley & Sons, Ltd.

  5. Nonlinear vibration phenomenon of an aircraft rub-impact rotor system due to hovering flight

    NASA Astrophysics Data System (ADS)

    Hou, Lei; Chen, Yushu; Cao, Qingjie

    2014-01-01

    This paper focuses on the nonlinear vibration phenomenon caused by aircraft hovering flight in a rub-impact rotor system supported by two general supports with cubic stiffness. The effect of aircraft hovering flight on the rotor system is considered as a maneuver load to formulate the equations of motion, which might result in periodic response instability to the rotor system even the eccentricity is small. The dynamic responses of the system under maneuver load are presented by bifurcation diagrams and the corresponding Lyapunov exponent spectrums. Numerical analyses are carried out to detect the periodic, sub-harmonic and quasi-periodic motions of the system, which are presented by orbit diagrams, phase trajectories, Poincare maps and amplitude power spectrums. The results obtained in this paper will contribute an understanding of the nonlinear dynamic behaviors of aircraft rotor systems in maneuvering flight.

  6. Advanced composites structural concepts and materials technologies for primary aircraft structures. Structural response and failure analysis: ISPAN modules users manual

    NASA Technical Reports Server (NTRS)

    Hairr, John W.; Huang, Jui-Ten; Ingram, J. Edward; Shah, Bharat M.

    1992-01-01

    The ISPAN Program (Interactive Stiffened Panel Analysis) is an interactive design tool that is intended to provide a means of performing simple and self contained preliminary analysis of aircraft primary structures made of composite materials. The program combines a series of modules with the finite element code DIAL as its backbone. Four ISPAN Modules were developed and are documented. These include: (1) flat stiffened panel; (2) curved stiffened panel; (3) flat tubular panel; and (4) curved geodesic panel. Users are instructed to input geometric and material properties, load information and types of analysis (linear, bifurcation buckling, or post-buckling) interactively. The program utilizing this information will generate finite element mesh and perform analysis. The output in the form of summary tables of stress or margins of safety, contour plots of loads or stress, and deflected shape plots may be generalized and used to evaluate specific design.

  7. Open Automated Demand Response Dynamic Pricing Technologies and Demonstration

    SciTech Connect

    Ghatikar, Girish; Mathieu, Johanna L.; Piette, Mary Ann; Koch, Ed; Hennage, Dan

    2010-08-02

    This study examines the use of OpenADR communications specification, related data models, technologies, and strategies to send dynamic prices (e.g., real time prices and peak prices) and Time of Use (TOU) rates to commercial and industrial electricity customers. OpenADR v1.0 is a Web services-based flexible, open information model that has been used in California utilities' commercial automated demand response programs since 2007. We find that data models can be used to send real time prices. These same data models can also be used to support peak pricing and TOU rates. We present a data model that can accommodate all three types of rates. For demonstration purposes, the data models were generated from California Independent System Operator's real-time wholesale market prices, and a California utility's dynamic prices and TOU rates. Customers can respond to dynamic prices by either using the actual prices, or prices can be mapped into"operation modes," which can act as inputs to control systems. We present several different methods for mapping actual prices. Some of these methods were implemented in demonstration projects. The study results demonstrate show that OpenADR allows interoperability with existing/future systems/technologies and can be used within related dynamic pricing activities within Smart Grid.

  8. Phase response curves for models of earthquake fault dynamics

    NASA Astrophysics Data System (ADS)

    Franović, Igor; Kostić, Srdjan; Perc, Matjaž; Klinshov, Vladimir; Nekorkin, Vladimir; Kurths, Jürgen

    2016-06-01

    We systematically study effects of external perturbations on models describing earthquake fault dynamics. The latter are based on the framework of the Burridge-Knopoff spring-block system, including the cases of a simple mono-block fault, as well as the paradigmatic complex faults made up of two identical or distinct blocks. The blocks exhibit relaxation oscillations, which are representative for the stick-slip behavior typical for earthquake dynamics. Our analysis is carried out by determining the phase response curves of first and second order. For a mono-block fault, we consider the impact of a single and two successive pulse perturbations, further demonstrating how the profile of phase response curves depends on the fault parameters. For a homogeneous two-block fault, our focus is on the scenario where each of the blocks is influenced by a single pulse, whereas for heterogeneous faults, we analyze how the response of the system depends on whether the stimulus is applied to the block having a shorter or a longer oscillation period.

  9. Phase response curves for models of earthquake fault dynamics.

    PubMed

    Franović, Igor; Kostić, Srdjan; Perc, Matjaž; Klinshov, Vladimir; Nekorkin, Vladimir; Kurths, Jürgen

    2016-06-01

    We systematically study effects of external perturbations on models describing earthquake fault dynamics. The latter are based on the framework of the Burridge-Knopoff spring-block system, including the cases of a simple mono-block fault, as well as the paradigmatic complex faults made up of two identical or distinct blocks. The blocks exhibit relaxation oscillations, which are representative for the stick-slip behavior typical for earthquake dynamics. Our analysis is carried out by determining the phase response curves of first and second order. For a mono-block fault, we consider the impact of a single and two successive pulse perturbations, further demonstrating how the profile of phase response curves depends on the fault parameters. For a homogeneous two-block fault, our focus is on the scenario where each of the blocks is influenced by a single pulse, whereas for heterogeneous faults, we analyze how the response of the system depends on whether the stimulus is applied to the block having a shorter or a longer oscillation period. PMID:27368770

  10. Phase response curves for models of earthquake fault dynamics.

    PubMed

    Franović, Igor; Kostić, Srdjan; Perc, Matjaž; Klinshov, Vladimir; Nekorkin, Vladimir; Kurths, Jürgen

    2016-06-01

    We systematically study effects of external perturbations on models describing earthquake fault dynamics. The latter are based on the framework of the Burridge-Knopoff spring-block system, including the cases of a simple mono-block fault, as well as the paradigmatic complex faults made up of two identical or distinct blocks. The blocks exhibit relaxation oscillations, which are representative for the stick-slip behavior typical for earthquake dynamics. Our analysis is carried out by determining the phase response curves of first and second order. For a mono-block fault, we consider the impact of a single and two successive pulse perturbations, further demonstrating how the profile of phase response curves depends on the fault parameters. For a homogeneous two-block fault, our focus is on the scenario where each of the blocks is influenced by a single pulse, whereas for heterogeneous faults, we analyze how the response of the system depends on whether the stimulus is applied to the block having a shorter or a longer oscillation period.

  11. Responsive Guest Encapsulation of Dynamic Conjugated Microporous Polymers.

    PubMed

    Xu, Lai; Li, Youyong

    2016-06-30

    The host-guest complexes of conjugated microporous polymers encapsulating C60 and dye molecules have been investigated systematically. The orientation of guest molecules inside the cavities, have different terms: inside the open cavities of the polymer, or inside the cavities formed by packing different polymers. The host backbone shows responsive dynamic behavior in order to accommodate the size and shape of incoming guest molecule or guest aggregates. Simulations show that the host-guest binding of conjugated polymers is stronger than that of non-conjugated polymers. This detailed study could provide a clear picture for the host-guest interaction for dynamic conjugated microporous polymers. The mechanism obtained could guide designing new conjugated microporous polymers.

  12. Responsive Guest Encapsulation of Dynamic Conjugated Microporous Polymers

    PubMed Central

    Xu, Lai; Li, Youyong

    2016-01-01

    The host-guest complexes of conjugated microporous polymers encapsulating C60 and dye molecules have been investigated systematically. The orientation of guest molecules inside the cavities, have different terms: inside the open cavities of the polymer, or inside the cavities formed by packing different polymers. The host backbone shows responsive dynamic behavior in order to accommodate the size and shape of incoming guest molecule or guest aggregates. Simulations show that the host-guest binding of conjugated polymers is stronger than that of non-conjugated polymers. This detailed study could provide a clear picture for the host-guest interaction for dynamic conjugated microporous polymers. The mechanism obtained could guide designing new conjugated microporous polymers. PMID:27356483

  13. Responsive Guest Encapsulation of Dynamic Conjugated Microporous Polymers

    NASA Astrophysics Data System (ADS)

    Xu, Lai; Li, Youyong

    2016-06-01

    The host-guest complexes of conjugated microporous polymers encapsulating C60 and dye molecules have been investigated systematically. The orientation of guest molecules inside the cavities, have different terms: inside the open cavities of the polymer, or inside the cavities formed by packing different polymers. The host backbone shows responsive dynamic behavior in order to accommodate the size and shape of incoming guest molecule or guest aggregates. Simulations show that the host-guest binding of conjugated polymers is stronger than that of non-conjugated polymers. This detailed study could provide a clear picture for the host-guest interaction for dynamic conjugated microporous polymers. The mechanism obtained could guide designing new conjugated microporous polymers.

  14. Responsive Guest Encapsulation of Dynamic Conjugated Microporous Polymers.

    PubMed

    Xu, Lai; Li, Youyong

    2016-01-01

    The host-guest complexes of conjugated microporous polymers encapsulating C60 and dye molecules have been investigated systematically. The orientation of guest molecules inside the cavities, have different terms: inside the open cavities of the polymer, or inside the cavities formed by packing different polymers. The host backbone shows responsive dynamic behavior in order to accommodate the size and shape of incoming guest molecule or guest aggregates. Simulations show that the host-guest binding of conjugated polymers is stronger than that of non-conjugated polymers. This detailed study could provide a clear picture for the host-guest interaction for dynamic conjugated microporous polymers. The mechanism obtained could guide designing new conjugated microporous polymers. PMID:27356483

  15. Desk-top model buildings for dynamic earthquake response demonstrations

    USGS Publications Warehouse

    Brady, A. Gerald

    1992-01-01

    Models of buildings that illustrate dynamic resonance behavior when excited by hand are designed and built. Two types of buildings are considered, one with columns stronger than floors, the other with columns weaker than floors. Combinations and variations of these two types are possible. Floor masses and column stiffnesses are chosen in order that the frequency of the second mode is approximately five cycles per second, so that first and second modes can be excited manually. The models are expected to be resonated by hand by schoolchildren or persons unfamiliar with the dynamic resonant response of tall buildings, to gain an understanding of structural behavior during earthquakes. Among other things, this experience will develop a level of confidence in the builder and experimenter should they be in a high-rise building during an earthquake, sensing both these resonances and other violent shaking.

  16. Response of shrink fitted assemblies to the dynamic torsion

    NASA Astrophysics Data System (ADS)

    Rajakumar, D. Ramesh

    2012-05-01

    Product design is mostly centered around design of different contact pairs. Among contact pairs, interference fit pair is widely used. Design of interference fits, involves not only dimensional interference, but also condition of interface between mating surfaces. Factors such as texture of interface, hardness of interface material and also physical properties of contacting materials influence the functional characteristics of interference shrink fitted assemblies. In actual practice most of such joints are subjected to dynamic loading. Data on torsion response is only limited. So that, detailed investigation on the influence of dimensional interference, contact length and interfacial properties (electroless nickel coating) on torsion capacity of interference fitted assemblies has been carried out. The response of interference fitted assemblies to dynamic torsion load has been evaluated, using L-9 Orthogonal array of experimental conditions to bring down the number of experiments. The results are analysed using analysis of variance (ANOVA) to find out the individual effects of parameter on dynamic loading. The Torque load carrying capacity of the shrink fitted assemblies is improved by electroless nickel coating. This could be attributed to the increase in actual contact area and tenacity of Nickel plating and presence of strong molecular bonds between the mating parts chosen for the assemblies. But the selection of interference, contact length and hardness of mating parts play a vital role in deciding the performance of these joints. The results clearly indicate that the dynamic performance of the assemblies could be improved by suitably selecting the materials keeping in mind the above factors. It is also found from the ANOVA results that the assemblies with (hardness) coated interlayer performed better. Interference and contact length also has influence on the strength but in this case their influence is not very significant. An expression is obtained using

  17. Analytical modeling of transport aircraft crash scenarios to obtain floor pulses

    NASA Technical Reports Server (NTRS)

    Wittlin, G.; Lackey, D.

    1983-01-01

    The KRAS program was used to analyze transport aircraft candidate crash scenarios. Aircraft floor pulses and seat/occupant responses are presented. Results show that: (1) longitudinal only pulses can be represented by equivalent step inputs and/or static requirements; (2) the L1649 crash test floor longitudinal pulse for the aft direction (forward inertia) is less than 9g static or an equivalent 5g pulse; aft inertia accelerations are extremely small ((ch76) 3g) for representative crash scenarios; (3) a viable procedure to relate crash scenario floor pulses to standard laboratory dynamic and static test data using state of the art analysis and test procedures was demonstrated; and (4) floor pulse magnitudes are expected to be lower for wide body aircraft than for smaller narrow body aircraft.

  18. Empathic behavioral and physiological responses to dynamic stimuli in depression.

    PubMed

    Schneider, Daniel; Regenbogen, Christina; Kellermann, Thilo; Finkelmeyer, Andreas; Kohn, Nils; Derntl, Birgit; Schneider, Frank; Habel, Ute

    2012-12-30

    Major depressive disorder (MDD) is strongly linked to social withdrawal and interpersonal problems which characterize the disorder and further aggravate symptoms. Investigating the nature of impaired emotional-social functioning as a basis of interpersonal functioning in MDD has been widely restricted to static stimuli and behavioral emotion recognition accuracy. The present study aimed at examining higher order emotional processes, namely empathic responses and its components, emotion recognition accuracy and affective responses in 28 MDD patients and 28 healthy control participants. The dynamic stimulus material included 96 short video clips depicting actors expressing basic emotions by face, voice prosody, and sentence content. Galvanic skin conductance measurements revealed implicit processes in the multimethod assessment of empathy. Overall, patients displayed lower empathy, emotion accuracy, and affective response rates than controls. Autonomous arousal was higher in patients. A generalized emotion processing deficit is in line with the "emotional context insensitivity" (ECI) theory which proposes decreased overall responsiveness to emotional stimuli. The dissociation between hypo-reactivity in explicit and hyper-reactivity in implicit measures of emotion processing can be related to the "limbic-cortical dysregulation" model of depression. Our findings support the dissociation of autonomic and subjective emotional responses which may account for interpersonal as well as emotional deficits in depression. PMID:22560057

  19. Dynamic Transcriptional Response of Escherichia coli to Inclusion Body Formation

    PubMed Central

    Baig, Faraz; Fernando, Lawrence P.; Salazar, Mary Alice; Powell, Rhonda R.; Bruce, Terri F.; Harcum, Sarah W.

    2014-01-01

    Escherichia coli is used intensively for recombinant protein production, but one key challenge with recombinant E. coli is the tendency of recombinant proteins to misfold and aggregate into insoluble inclusion bodies (IBs). IBs contain high concentrations of inactive recombinant protein that require recovery steps to salvage a functional recombinant protein. Currently, no universally effective method exists to prevent IB formation in recombinant E. coli. In this study, DNA microarrays were used to compare the E. coli gene expression response dynamics to soluble and insoluble recombinant protein production. As expected and previously reported, the classical heat-shock genes had increased expression due to IB formation, including protein folding chaperones and proteases. Gene expression levels for protein synthesis-related and energy-synthesis pathways were also increased. Many transmembrane transporter and corresponding catabolic pathways genes had decreased expression for substrates not present in the culture medium. Additionally, putative genes represented over one-third of the genes identified to have significant expression changes due to IB formation, indicating many important cellular responses to IB formation still need to be characterized. Interestingly, cells grown in 3% ethanol had significantly reduced gene expression responses due to IB formation. Taken together, these results indicate that IB formation is complex, stimulates the heat-shock response, increases protein and energy synthesis needs, and streamlines transport and catabolic processes, while ethanol diminished all of these responses. PMID:24338599

  20. Experimental benchmark for piping system dynamic-response analyses

    SciTech Connect

    Not Available

    1981-01-01

    This paper describes the scope and status of a piping system dynamics test program. A 0.20 m(8 in.) nominal diameter test piping specimen is designed to be representative of main heat transport system piping of LMFBR plants. Particular attention is given to representing piping restraints. Applied loadings consider component-induced vibration as well as seismic excitation. The principal objective of the program is to provide a benchmark for verification of piping design methods by correlation of predicted and measured responses. Pre-test analysis results and correlation methods are discussed.

  1. Educating with Aircraft Models

    ERIC Educational Resources Information Center

    Steele, Hobie

    1976-01-01

    Described is utilization of aircraft models, model aircraft clubs, and model aircraft magazines to promote student interest in aerospace education. The addresses for clubs and magazines are included. (SL)

  2. Aircraft accidents : method of analysis

    NASA Technical Reports Server (NTRS)

    1929-01-01

    This report on a method of analysis of aircraft accidents has been prepared by a special committee on the nomenclature, subdivision, and classification of aircraft accidents organized by the National Advisory Committee for Aeronautics in response to a request dated February 18, 1928, from the Air Coordination Committee consisting of the Assistant Secretaries for Aeronautics in the Departments of War, Navy, and Commerce. The work was undertaken in recognition of the difficulty of drawing correct conclusions from efforts to analyze and compare reports of aircraft accidents prepared by different organizations using different classifications and definitions. The air coordination committee's request was made "in order that practices used may henceforth conform to a standard and be universally comparable." the purpose of the special committee therefore was to prepare a basis for the classification and comparison of aircraft accidents, both civil and military. (author)

  3. Enhancing commerical aircraft explosion survivability via active venting

    NASA Astrophysics Data System (ADS)

    Veldman, Roger Lee

    2001-10-01

    A new technique for enhancing aircraft safety in the event of an on-board explosion was studied. The method under study employs deployable vent panels located on the fuselage which are activated by an array of pressure sensors in the aircraft interior. In the event that an explosion is detected, appropriate vent panels are rapidly released from the aircraft. This approach seeks to provide timely relief of explosive pressures within an aircraft to prevent catastrophic structural failure. In this study, the approximate time scale of an explosive detonation and the subsequent sensing and electronic processing was determined. Then, the actuation response times of several vent panel systems were determined through analytical modeling and scale-model experimental testing with good correlation achieved. A scale-model experimental analysis was also conducted to determine the decompression venting time of an aircraft fuselage under a variety of conditions. Two different sized pressure vessels were used in the experimental work and the results correlated quite favorably with an analytical model for decompression times. Finally, a dynamic finite element analysis was conducted to determine the response of a portion of a typical commercial aircraft fuselage subjected to explosive pressure loading. It was determined from this analysis that the pre-stressing of the fuselage from cabin pressurization increases the damage vulnerability of a commercial aircraft fuselage to internal explosions. It was also learned from the structural analysis that the peak fuselage strains due to blast loading occur quickly (within approximately 2 milliseconds) while it was conservatively estimated that approximately 5 to 7 milliseconds would be required to sense the explosion, to actuate selected vent panels, and to initiate the release of cabin pressure from the aircraft. Additionally, since it was determined that predicted fuselage strains for both pressurized and unpressurized load cases remained

  4. Shading responses of carbon allocation dynamics in mountain grassland

    NASA Astrophysics Data System (ADS)

    Bahn, M.; Lattanzi, F. A.; Brueggemann, N.; Siegwolf, R. T.; Richter, A.

    2012-12-01

    Carbon (C) allocation strongly influences plant and soil processes. Global environmental changes can alter source - sink relations of plants with potential implications for C allocation. Short-term C allocation dynamics in ecosystems and their responses to environmental changes are still poorly understood. To analyze effects of assimilate supply (i.e. C source strength) on ecosystem C allocation dynamics and the role of non-structural carbohydrates, canopy sections of a mountain meadow were pulse labeled with 13CO2 and subsequently shaded for a week or left unshaded (control). Tracer dynamics in above- and belowground sucrose and starch pools were analysed and coupled using compartmental modelling. The hypothesis was tested that shading affects tracer dynamics in non-structural carbohydrates and diminishes the transfer of recently assimilated C to roots and their storage pools. In unshaded plots up to 40% of assimilated C was routed through short-term storage in shoot starch and sucrose to buffer day / night cycles in photosynthesis. Shoot- and root sucrose and shoot starch were kinetically closely related pools. The tracer dynamics of the modelled root sucrose pool corresponded well with those in soil CO2 efflux. Root starch played no role in buffering day / night cycles and likely acted as a seasonal store. Shading strongly reduced sucrose and starch concentrations in shoots but not roots and resulted in a massive reduction of leaf respiration, while root respiration was much less diminished. Shading affected tracer dynamics in sucrose and starch of shoots: shoot starch rapidly lost tracer, while sucrose transiently increased its tracer content. Surprisingly, shading did not alter the dynamics of root carbohydrates. Even under severe C limitation after one week of shading, tracer C continued to be incorporated in root starch. Also the amount of 13C incorporated in phospholipid fatty acids of soil microbial communities was not reduced by shading, though its

  5. Catchment dynamics and social response during flash floods

    NASA Astrophysics Data System (ADS)

    Creutin, J. D.; Lutoff, C.; Ruin, I.; Scolobig, A.; Créton-Cazanave, L.

    2009-04-01

    The objective of this study is to examine how the current techniques for flash-flood monitoring and forecasting can meet the requirements of the population at risk to evaluate the severity of the flood and anticipate its danger. To this end, we identify the social response time for different social actions in the course of two well studied flash flood events which occurred in France and Italy. We introduce a broad characterization of the event management activities into three types according to their main objective (information, organisation and protection). The activities are also classified into three other types according to the scale and nature of the human group involved (individuals, communities and institutions). The conclusions reached relate to i) the characterisation of the social responses according to watershed scale and to the information available, and ii) to the appropriateness of the existing surveillance and forecasting tools to support the social responses. Our results suggest that representing the dynamics of the social response with just one number representing the average time for warning a population is an oversimplification. It appears that the social response time exhibits a parallel with the hydrological response time, by diminishing in time with decreasing size of the relevant watershed. A second result is that the human groups have different capabilities of anticipation apparently based on the nature of information they use. Comparing watershed response times and social response times shows clearly that at scales of less than 100 km2, a number of actions were taken with response times comparable to the catchment response time. The implications for adapting the warning processes to social scales (individual or organisational scales) are considerable. At small scales and for the implied anticipation times, the reliable and high-resolution description of the actual rainfall field becomes the major source of information for decision

  6. Dynamic response of reverse Taylor impact based on DIC technology

    NASA Astrophysics Data System (ADS)

    Liu, Jiancheng; Pi, Aiguo; Wu, Haijun; Huang, Fenglei

    2015-09-01

    Reverse ballistic impact test, which can obtain the response data of rod/projectile more comprehensive and quantitative than forward impact test, was widely used for the measurement of material dynamic and structure response. Based on the DIC technology and traditional optical measurement (high-speed camera measurement), the Taylor experiment of reverse ballistic with different length-diameter ratio and different impact velocities were carried out by 57 mm compression-shear type light-gas gun, which provides the instantaneous response data of the Taylor rod in microsecond level. Then, the transient structural deformation of the specimen and the characteristics of plastic wave propagation were analysed by DIC technology and compared with traditional optical measurement. Applying the theory of reverse Taylor impact deformation and combining with the simulation results by LS-DYNA, the rules of structure deformation and plastic wave propagation were obtained. The method above can be applied for the structure response of penetrator under the condition of reverse ballistic penetration.

  7. Cardiovascular response to dynamic aerobic exercise: a mathematical model.

    PubMed

    Magosso, E; Ursino, M

    2002-11-01

    An original mathematical model of the cardiovascular response to dynamic exercise is presented. It includes the pulsating heart, the pulmonary and systemic circulation, a separate description of the vascular bed in active tissues, the local metabolic vasodilation in these tissues and the mechanical effects of muscular contractions on venous return. Moreover, the model provides a description of the ventilatory response to exercise and various neural regulatory mechanisms working on cardiovascular parameters. These mechanisms embrace the so-called central command, the arterial baroreflex and the lung inflation reflex. All parameters in the model have been given in accordance with physiological data from the literature. In this work, the model has been used to simulate the steady-state value of the main cardiorespiratory quantities at different levels of aerobic exercise and the temporal pattern in the transient phase from rest to moderate exercise. Results suggest that, with suitable parameter values the model is able accurately to simulate the cardiorespiratory response in the overall range of aerobic exercise. This response is characterised by a moderate hypertension (10-30%) and by a conspicuous increase in systemic conductance (80-130%), heart rate (64-150%) and cardiac output (100-200%). The transient pattern exhibits three distinct phases (lasting approximately 5s, 15s and 2 min), that reflect the temporal heterogeneity of the mechanisms involved. The model may be useful to improve understanding of exercise physiology and as an educational tool to analyse the complexity of cardiovascular and respiratory regulation.

  8. Cardiovascular response to dynamic aerobic exercise: a mathematical model.

    PubMed

    Magosso, E; Ursino, M

    2002-11-01

    An original mathematical model of the cardiovascular response to dynamic exercise is presented. It includes the pulsating heart, the pulmonary and systemic circulation, a separate description of the vascular bed in active tissues, the local metabolic vasodilation in these tissues and the mechanical effects of muscular contractions on venous return. Moreover, the model provides a description of the ventilatory response to exercise and various neural regulatory mechanisms working on cardiovascular parameters. These mechanisms embrace the so-called central command, the arterial baroreflex and the lung inflation reflex. All parameters in the model have been given in accordance with physiological data from the literature. In this work, the model has been used to simulate the steady-state value of the main cardiorespiratory quantities at different levels of aerobic exercise and the temporal pattern in the transient phase from rest to moderate exercise. Results suggest that, with suitable parameter values the model is able accurately to simulate the cardiorespiratory response in the overall range of aerobic exercise. This response is characterised by a moderate hypertension (10-30%) and by a conspicuous increase in systemic conductance (80-130%), heart rate (64-150%) and cardiac output (100-200%). The transient pattern exhibits three distinct phases (lasting approximately 5s, 15s and 2 min), that reflect the temporal heterogeneity of the mechanisms involved. The model may be useful to improve understanding of exercise physiology and as an educational tool to analyse the complexity of cardiovascular and respiratory regulation. PMID:12507317

  9. Dynamical theory of active cellular response to external stress

    NASA Astrophysics Data System (ADS)

    de, Rumi; Safran, Samuel A.

    2008-09-01

    We present a comprehensive, theoretical treatment of the orientational response to external stress of active, contractile cells embedded in a gel-like elastic medium. The theory includes both the forces that arise from the deformation of the matrix as well as forces due to the internal regulation of the stress fibers and focal adhesions of the cell. We calculate the time-dependent response of both the magnitude and the direction of the elastic dipole that characterizes the active forces exerted by the cell, for various situations. For static or quasistatic external stress, cells orient parallel to the stress while for high frequency dynamic external stress, cells orient nearly perpendicular. Both numerical and analytical calculations of these effects are presented. In addition we predict the relaxation time for the cellular response for both slowly and rapidly varying external stresses; several characteristic scaling regimes for the relaxation time as a function of applied frequency are predicted. We also treat the case of cells for which the regulation of the stress fibers and focal adhesions is controlled by strain (instead of stress) and show that the predicted dependence of the cellular orientation on the Poisson ratio of the matrix can differentiate strain vs stress regulation of cellular response.

  10. Dynamics of telomerase activity in response to acute psychological stress

    PubMed Central

    Epel, Elissa S.; Lin, Jue; Dhabhar, Firdaus S.; Wolkowitz, Owen M.; Puterman, E; Karan, Lori; Blackburn, Elizabeth H.

    2010-01-01

    Telomerase activity plays an essential role in cel0l survival, by lengthening telomeres and promoting cell growth and longevity. It is now possible to quantify the low levels of telomerase activity in human leukocytes. Low basal telomerase activity has been related to chronic stress in people and to chronic glucocorticoid exposure in vitro. Here we test whether leukocyte telomerase activity changes under acute psychological stress. We exposed 44 elderly women, including 22 high stress dementia caregivers and 22 matched low stress controls, to a brief laboratory psychological stressor, while examining changes in telomerase activity of peripheral blood mononuclear cells (PBMC). At baseline, caregivers had lower telomerase activity levels than controls, but during stress telomerase activity increased similarly in both groups. Across the entire sample, subsequent telomerase activity increased by 18% one hour after the end of the stressor (p<0.01). The increase in telomerase activity was independent of changes in numbers or percentages of monocytes, lymphocytes, and specific T cell types, although we cannot fully rule out some potential contribution from immune cell redistribution in the change in telomerase activity. Telomerase activity increases were associated with greater cortisol increases in response to the stressor. Lastly, psychological response to the tasks (greater threat perception) was also related to greater telomerase activity increases in controls. These findings uncover novel relationships of dynamic telomerase activity with exposure to an acute stressor, and with two classic aspects of the stress response -- perceived psychological stress and neuroendocrine (cortisol) responses to the stressor. PMID:20018236

  11. Cortical response field dynamics in cat visual cortex.

    PubMed

    Sharon, Dahlia; Jancke, Dirk; Chavane, Frédéric; Na'aman, Shmuel; Grinvald, Amiram

    2007-12-01

    Little is known about the "inverse" of the receptive field--the region of cortical space whose spatiotemporal pattern of electrical activity is influenced by a given sensory stimulus. We refer to this activated area as the cortical response field, the properties of which remain unexplored. Here, the dynamics of cortical response fields evoked in visual cortex by small, local drifting-oriented gratings were explored using voltage-sensitive dyes. We found that the cortical response field was often characterized by a plateau of activity, beyond the rim of which activity diminished quickly. Plateau rim location was largely independent of stimulus orientation. However, approximately 20 ms following plateau onset, 1-3 peaks emerged on it and were amplified for 25 ms. Spiking was limited to the peak zones, whose location strongly depended on stimulus orientation. Thus, alongside selective amplification of a spatially restricted suprathreshold response, wider activation to just below threshold encompasses all orientation domains within a well-defined retinotopic vicinity of the current stimulus, priming the cortex for processing of subsequent stimuli. PMID:17395608

  12. Dynamical theory of active cellular response to external stress.

    PubMed

    De, Rumi; Safran, Samuel A

    2008-09-01

    We present a comprehensive, theoretical treatment of the orientational response to external stress of active, contractile cells embedded in a gel-like elastic medium. The theory includes both the forces that arise from the deformation of the matrix as well as forces due to the internal regulation of the stress fibers and focal adhesions of the cell. We calculate the time-dependent response of both the magnitude and the direction of the elastic dipole that characterizes the active forces exerted by the cell, for various situations. For static or quasistatic external stress, cells orient parallel to the stress while for high frequency dynamic external stress, cells orient nearly perpendicular. Both numerical and analytical calculations of these effects are presented. In addition we predict the relaxation time for the cellular response for both slowly and rapidly varying external stresses; several characteristic scaling regimes for the relaxation time as a function of applied frequency are predicted. We also treat the case of cells for which the regulation of the stress fibers and focal adhesions is controlled by strain (instead of stress) and show that the predicted dependence of the cellular orientation on the Poisson ratio of the matrix can differentiate strain vs stress regulation of cellular response.

  13. Input-response relationships in the dynamics of glycolysis.

    PubMed

    Markus, M; Hess, B

    1985-12-01

    The dynamic response of glycolysis is investigated using a two-enzyme model with three different type of input flux time dependences: constant, sinusoidal, and amplitude or frequency modulated (AM or FM) input flux. The analysis reveals that the system acts as a device which transduces amplitudes and frequencies of the input function into complex and remarkably diverse response patterns. This device may have more than one response possibilities for a single input function, owing to the coexistence of attractors in phase space. In such a case one response function can be switched over into the other by short substrate pulses. Stroboscopic plots reveal that chaotic regimes obtained under sinusoidal input flux obey a stretch-fold-press process, similar to the baker's transformation, upon a change of the stroboscoping phase. Chaotic oscillations obtained under AM or FM conditions often show a much higher degree of randomness than those obtained under sinusoidal input. This is expressed quantitatively by an enhanced Liapunov dimension of the attractors.

  14. INSIGHTS INTO THE DYNAMIC RESPONSE OF TUNNELS IN JOINTED ROCKS

    SciTech Connect

    Heuze, F E; Morris, J P

    2005-02-17

    Tunnels in jointed rocks can be subjected to severe dynamic loads because of rock bursts, coal bumps, and large earthquakes. A series of 3-dimensional simulations was performed, based on discrete element analysis to gain insights into the parameters that influence the response of such tunnels. The simulations looked at the effect of joint set orientation, the effect of joint spacing, the effect of peak displacement for a given peak velocity, the effect of pulse peak velocity for a given displacement, the influence of using rigid versus deformable blocks in the analyses, and the effect of repeated loading. The results of this modeling were also compared to field evidence of dynamic tunnel failures. This comparison reinforced the notion that 3-dimensional discrete element analysis can capture very well the kinematics of structures in jointed rocks under dynamic loading. The paper concludes with a glimpse into the future. Results are shown for a 3-dimensional discrete element massively parallel simulation with 100 million contact elements, performed with the LLNL LDEC code.

  15. Derivation and definition of a linear aircraft model

    NASA Technical Reports Server (NTRS)

    Duke, Eugene L.; Antoniewicz, Robert F.; Krambeer, Keith D.

    1988-01-01

    A linear aircraft model for a rigid aircraft of constant mass flying over a flat, nonrotating earth is derived and defined. The derivation makes no assumptions of reference trajectory or vehicle symmetry. The linear system equations are derived and evaluated along a general trajectory and include both aircraft dynamics and observation variables.

  16. Deconstructing the hydrologic response: pattern and dynamics of water age

    NASA Astrophysics Data System (ADS)

    Hrachowitz, Markus; Savenije, Hubert; Soulsby, Chris; Tetzlaff, Doerthe

    2013-04-01

    The water storage and release dynamics at the catchment scale are still incompletely understood. This is in particular true when considering actual particle transport rather than only the hydraulic response. The use of environmental tracers is frequently instructive for getting insights into these transport process patterns. However, the potential of tracers is frequently underexploited. Although known since the early days of tracer hydrology that the composition of water in the runoff, i.e. the water age distribution can be highly variable as a function of flow volumes, it is often treated as being time- and thus flow-invariant. Here we use long term (< 20 years) precipitation, flow and tracer (chloride) data of three contrasting upland catchments in the Scottish Highlands to inform integrated conceptual models. Using the models as virtual laboratories, water and tracer fluxes were tracked through the system in order to get a better understanding of the patterns and temporal, wetness induced dynamics in the composition of stream water and its age distributions. Tracking fluxes through the system showed that the various components of a model, representing individual flow processes, such as preferential or groundwater flow, can be characterized by fundamentally different water age distributions. As a consequence, the wetness dependent dynamics and connectivity patterns of these distinct pools of water are responsible for potentially fast and substantial switches in water age distributions. Further, modeled flux water age distributions were found to be highly sensitive to variable catchment wetness conditions and exhibited considerable hysteresis effects, depending on the catchment wetness history. While the water age during wetting-up conditions is controlled by fast processes (e.g. preferential flow), it is controlled by slow processes (e.g. groundwater flow) under drying-up conditions. This non-linearity is caused by the fact that water age distributions are not

  17. Dynamic response of one-dimensional bosons in a trap

    SciTech Connect

    Golovach, Vitaly N.; Minguzzi, Anna; Glazman, Leonid I.

    2009-10-15

    We calculate the dynamic structure factor S(q,{omega}) of a one-dimensional (1D) interacting Bose gas confined in a harmonic trap. The effective interaction depends on the strength of the confinement enforcing the (1D) motion of atoms; interaction may be further enhanced by superimposing an optical lattice on the trap potential. In the compressible state, we find that the smooth variation in the gas density around the trap center leads to softening of the singular behavior of S(q,{omega}) at the first Lieb excitation mode compared to the behavior predicted for homogeneous 1D systems. Nevertheless, the density-averaged response S(q,{omega}) remains a nonanalytic function of q and {omega} at the first Lieb excitation mode in the limit of weak trap confinement. The exponent of the power-law nonanalyticity is modified due to the inhomogeneity in a universal way and thus bears unambiguously the information about the (homogeneous) Lieb-Liniger model. A strong optical lattice causes formation of Mott phases. Deep in the Mott regime, we predict a semicircular peak in S(q,{omega}) centered at the on-site repulsion energy, {omega}=U. Similar peaks of smaller amplitudes exist at multiples of U as well. We explain the suppression of the dynamic response with entering into the Mott regime, observed recently by Clement et al. [Phys. Rev. Lett. 102, 155301 (2009)], based on an f-sum rule for the Bose-Hubbard model.

  18. Dynamic response of fiber bundle under transverse impact.

    SciTech Connect

    Lu, Wei-Yang; Song, Bo

    2010-03-01

    There has been a very high demand in developing efficient soft body armors to protect the military and law enforcement personnel from ballistic or explosive attack. As a basic component in the soft body armor, fibers or fiber bundles play a key role in the performance against ballistic impact. In order to study the ballistic-resistant mechanism of the soft body armor, it is desirable to understand the dynamic response of the fiber bundle under transverse impact. Transverse wave speed is one important parameter because a faster transverse wave speed can make the impact energy dissipate more quickly. In this study, we employed split Hopkinson pressure bar (SHPB) to generate constant high-speed impact on a Kevlar fiber bundle in the transverse direction. The deformation of the fiber bundle was photographed with high-speed digital cameras. The transverse wave speeds were experimentally measured at various transverse impact velocities. The experimental results can also be used to quantitatively verify the current analytical models or to develop new models to describe the dynamic response of fiber bundle under transverse impact.

  19. Aircraft identification experience

    NASA Technical Reports Server (NTRS)

    Iliff, K. W.

    1979-01-01

    Important aspects of estimating the unknown coefficients of the aircraft equations of motion from dynamic flight data are presented. The primary topic is the application of the maximum likelihood estimation technique. Basic considerations that must be addressed in the estimation of stability and control derivatives from conventional flight maneuvers are discussed. Some complex areas of estimation (such as estimation in the presence of atmospheric turbulence, estimation of acceleration derivatives, and analysis of maneuvers where both kinematic and aerodynamic coupling are present) are also discussed.

  20. Architectural Surety Applications for Building Response to Dynamic Loads

    SciTech Connect

    Matalucci, R.V.; Mayrhofer, C.

    1999-02-10

    This paper provides a summary introduction to the emerging area of Architectural Surety{trademark} applications for buildings and infrastructures that are subjected to dynamic loads from blast and naturally occurring events. This technology area has been under investigation to assist with the definition of risks associated with dynamic loads and to provide guidance for determining the required upgrading and retrofitting techniques suggested for reducing building and infrastructure vulnerabilities to such dynamic forces. This unique approach involves the application of risk management techniques for solving problems of the as-built environment through the application of security, safety, and reliability principles developed in the nuclear weapons programs of the United States Department of Energy (DOE) and through the protective structures programs of the German Ministry of Defense (MOD). The changing responsibilities of engineering design professionals are addressed in light of the increased public awareness of structural and facility systems' vulnerabilities to malevolent, normal, and abnormal environment conditions. Brief discussions are also presented on (1) the need to understand how dynamic pressures are affected by the structural failures they cause, (2) the need to determine cladding effects on columns, walls, and slabs, and (3) the need to establish effective standoff distance for perimeter barriers. A summary description is presented of selected technologies to upgrade and retrofit buildings by using high-strength concrete and energy-absorbing materials and by specifying appropriately designed window glazing and special masonry wall configurations and composites. The technologies, material performance, and design evaluation procedures presented include super-computational modeling and structural simulations, window glass fragmentation modeling, risk assessment procedures, instrumentation and health monitoring systems, three-dimensional CAD virtual reality

  1. Nanomaterials can dynamically steer cell responses to biological ligands.

    PubMed

    Sharma, Ram I; Schwarzbauer, Jean E; Moghe, Prabhas V

    2011-01-17

    Traditional tissue regeneration approaches to activate cell behaviors on biomaterials rely on the use of extracellular-matrix-based or soluble growth-factor cues. In this article, a novel approach is highlighted to dynamically steer cellular phenomena such as cell motility based on nanoscale substratum features of biological ligands. Albumin-derived nanocarriers (ANCs) with variable nanoscale-size features are functionalized with fibronectin III9-10 matrix ligands, and their effects on primary human keratinocyte activation are investigated. The presentation of fibronectin fragments from ANCs significantly enhances cell migration as compared to free ligands at equivalent concentrations. Notably, cell migration is influenced by the size of the underlying ANCs even for variably sized ANCs covered in comparable levels of fibronectin fragment. For equivalent ligand concentrations, cell migration on the smaller-sized ANCs (30 and 50 nm) is significantly enhanced as compared to that on larger-sized ANCs (75 and 100 nm). In contrast, the enhancement of cell migration on nanocarriers is abolished by the use of immobilized, biofunctionalized ANCs, indicating that "dynamic" nanocarrier internalization events underlie the role of nanocarrier geometry on the differential regulation of cell migration kinetics. Uptake studies using fluorescent ANCs indicate that larger-sized ANCs cause delayed endocytic kinetics and hence could present barriers for internalization during the cell adhesion and motility processes. Motile cells exhibit diminished migration upon exposure to clathrin inhibitors, but not caveolin inhibitors, suggesting the role of clathrin-mediated endocytosis in facilitating cell migratory responsiveness to the nanocarriers. Overall, a monotonic relationship is found between the nanocarrier cytointernalization rate and the cell migration rate, suggesting the possibility of designing biointerfacial features for the dynamic control of cell migration. Thus, the

  2. Theoretical and Analog Studies of the Effects of Nonlinear Stability Derivatives on the Longitudinal Motions of an Aircraft in Response to Step Control Deflections and to the Influence of Proportional Automatic Control

    NASA Technical Reports Server (NTRS)

    Curfman, Howard J , Jr

    1955-01-01

    Through theoretical and analog results the effects of two nonlinear stability derivatives on the longitudinal motions of an aircraft have been investigated. Nonlinear functions of pitching-moment and lift coefficients with angle of attack were considered. Analog results of aircraft motions in response to step elevator deflections and to the action of the proportional control systems are presented. The occurrence of continuous hunting oscillations was predicted and demonstrated for the attitude stabilization system with proportional control for certain nonlinear pitching-moment variations and autopilot adjustments.

  3. Nonlinear analysis of NPP safety against the aircraft attack

    NASA Astrophysics Data System (ADS)

    Králik, Juraj; Králik, Juraj

    2016-06-01

    The paper presents the nonlinear probabilistic analysis of the reinforced concrete buildings of nuclear power plant under the aircraft attack. The dynamic load is defined in time on base of the airplane impact simulations considering the real stiffness, masses, direction and velocity of the flight. The dynamic response is calculated in the system ANSYS using the transient nonlinear analysis solution method. The damage of the concrete wall is evaluated in accordance with the standard NDRC considering the spalling, scabbing and perforation effects. The simple and detailed calculations of the wall damage are compared.

  4. Vegetation dynamics--simulating responses to climatic change.

    PubMed

    Woodward, F I; Lomas, M R

    2004-08-01

    A modelling approach to simulating vegetation dynamics is described, incorporating critical processes of carbon sequestration, growth, mortality and distribution. The model has been developed to investigate the responses of vegetation to environmental change, at time scales from days to centuries and from the local to the global scale. The model is outlined and subsequent tests, against independent data sources, are relatively successful, from the small scale to the global scale. Tests against eddy covariance observations of carbon exchange by vegetation indicated significant differences between measured and simulated net ecosystem production (NEP). NEP is the net of large fluxes due to gross primary production and respiration, which are not directly measured and so there is some uncertainty in explaining differences between observations and simulations. In addition it was noted that closer agreement of fluxes was achieved for natural, or long-lived managed vegetation than for recently managed vegetation. The discrepancies appear to be most closely related to respiratory carbon losses from the soil, but this area needs further exploration. The differences do not scale up to the global scale, where simulated and measured global net biome production were similar, indicating that fluxes measured at the managed observed sites are not typical globally. The model (the Sheffield Dynamic Global Vegetation Model, SDGVM) has been applied to contemporary vegetation dynamics and indicates a significant CO2 fertilisation effect on the sequestration of atmospheric CO2. The terrestrial carbon sink for the 20th century is simulated to be widespread between latitudes 40 degrees S and 65 degrees N, but is greatest between 10 degrees S and 6 degrees N, excluding the effects of human deforestation. The mean maximum sink capacity over the 20th century is small, at 25 gC m(-2) year(-1), or approximately 1% of gross primary production. Simulations of vegetation dynamics under a scenario

  5. Model of aircraft noise adaptation

    NASA Technical Reports Server (NTRS)

    Dempsey, T. K.; Coates, G. D.; Cawthorn, J. M.

    1977-01-01

    Development of an aircraft noise adaptation model, which would account for much of the variability in the responses of subjects participating in human response to noise experiments, was studied. A description of the model development is presented. The principal concept of the model, was the determination of an aircraft adaptation level which represents an annoyance calibration for each individual. Results showed a direct correlation between noise level of the stimuli and annoyance reactions. Attitude-personality variables were found to account for varying annoyance judgements.

  6. Analyses and tests of the B-1 aircraft structural mode control system

    NASA Technical Reports Server (NTRS)

    Wykes, J. H.; Byar, T. R.; Macmiller, C. J.; Greek, D. C.

    1980-01-01

    Analyses and flight tests of the B-1 structural mode control system (SMCS) are presented. Improvements in the total dynamic response of a flexible aircraft and the benefits to ride qualities, handling qualities, crew efficiency, and reduced dynamic loads on the primary structures, were investigated. The effectiveness and the performance of the SMCS, which uses small aerodynamic surfaces at the vehicle nose to provide damping to the structural modes, were evaluated.

  7. Experimental measurement of utricle system dynamic response to inertial stimulus.

    PubMed

    Dunlap, M D; Grant, J W

    2014-08-01

    The membranous utricle sac of the red-eared turtle was mounted in a piezoelectric actuated platform mounted on the stage of a light microscope. The piezoelectric actuator oscillated the base of the neuroepithelium along a linear axis. Displacements were in the plane of the utricle and consisted of a linear sinusoidal-sweep signal starting at 0 and increasing to 500 Hz over 5 s. This inertial stimulus caused measurable shear displacement of the otoconial layer's dorsal surface, resulting in shear deformation of the gelatinous and column filament layers. Displacements of the otoconial layer and a reference point on the neuroepithelium were filmed at 2,000 frames/s with a high-speed video camera during oscillations. Image registration was performed on the video to track displacements with a resolution better than 15 nm. The displacement waveforms were then matched to a linear second-order model of the dynamic system. The model match identified two system mechanical parameters-the natural circular frequency ω n and the damping ratio ζ-that characterized the utricle dynamic response. The median values found for the medial-lateral axis on 20 utricles with 95 % confidence intervals in parenthesis were as follows: ω n = 374 (353, 396) Hz and ζ = 0.50 (0.47, 0.53). The anterior-posterior axis values were not significantly different: ω n = 409 (390, 430) Hz and ζ = 0.53 (0.48, 0.57). The results have two relevant and significant dynamic system findings: (1) a higher than expected natural frequency and (2) significant under damping. Previous to this study, utricular systems were treated as overdamped and with natural frequencies much lower that measured here. Both of these system performance findings result in excellent utricle time response to acceleration stimuli and a broad frequency bandwidth up to 100 Hz. This study is the first to establish the upper end of this mechanical system frequency response of the utricle in any animal.

  8. An Assessment of Commuter Aircraft Noise Impact

    NASA Technical Reports Server (NTRS)

    Fidell, Sanford; Pearsons, Karl S.; Silvati, Laura; Sneddon, Matthew

    1996-01-01

    This report examines several approaches to understanding 'the commuter aircraft noise problem.' The commuter aircraft noise problem in the sense addressed in this report is the belief that some aspect(s) of community response to noise produced by commuter aircraft operations may not be fully assessed by conventional environmental noise metrics and methods. The report offers alternate perspectives and approaches for understanding this issue. The report also develops a set of diagnostic screening questions; describes commuter aircraft noise situations at several airports; and makes recommendations for increasing understanding of the practical consequences of greater heterogeneity in the air transport fleet serving larger airports.

  9. AGFATL- ACTIVE GEAR FLEXIBLE AIRCRAFT TAKEOFF AND LANDING ANALYSIS

    NASA Technical Reports Server (NTRS)

    Mcgehee, J. R.

    1994-01-01

    The Active Gear, Flexible Aircraft Takeoff and Landing Analysis program, AGFATL, was developed to provide a complete simulation of the aircraft takeoff and landing dynamics problem. AGFATL can represent an airplane either as a rigid body with six degrees of freedom or as a flexible body with multiple degrees of freedom. The airframe flexibility is represented by the superposition of up to twenty free vibration modes on the rigid-body motions. The analysis includes maneuver logic and autopilots programmed to control the aircraft during glide slope, flare, landing, and takeoff. The program is modular so that performance of the aircraft in flight and during landing and ground maneuvers can be studied separately or in combination. A program restart capability is included in AGFATL. Effects simulated in the AGFATL program include: (1) flexible aircraft control and performance during glide slope, flare, landing roll, and takeoff roll under conditions of changing winds, engine failures, brake failures, control system failures, strut failures, restrictions due to runway length, and control variable limits and time lags; (2) landing gear loads and dynamics for up to five gears; (3) single and multiple engines (maximum of four) including selective engine reversing and failure; (4) drag chute and spoiler effects; (5) wheel braking (including skid-control) and selective brake failure; (6) aerodynamic ground effects; (7) aircraft carrier operations; (8) inclined runways and runway perturbations; (9) flexible or rigid airframes; 10) rudder and nose gear steering; and 11) actively controlled landing gear shock struts. Input to the AGFATL program includes data which describe runway roughness; vehicle geometry, flexibility and aerodynamic characteristics; landing gear(s); propulsion; and initial conditions such as attitude, attitude change rates, and velocities. AGFATL performs a time integration of the equations of motion and outputs comprehensive information on the airframe

  10. Aircraft Electric Secondary Power

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Technologies resulted to aircraft power systems and aircraft in which all secondary power is supplied electrically are discussed. A high-voltage dc power generating system for fighter aircraft, permanent magnet motors and generators for aircraft, lightweight transformers, and the installation of electric generators on turbine engines are among the topics discussed.

  11. World commercial aircraft accidents

    SciTech Connect

    Kimura, C.Y.

    1993-01-01

    This report is a compilation of all accidents world-wide involving aircraft in commercial service which resulted in the loss of the airframe or one or more fatality, or both. This information has been gathered in order to present a complete inventory of commercial aircraft accidents. Events involving military action, sabotage, terrorist bombings, hijackings, suicides, and industrial ground accidents are included within this list. Included are: accidents involving world commercial jet aircraft, world commercial turboprop aircraft, world commercial pistonprop aircraft with four or more engines and world commercial pistonprop aircraft with two or three engines from 1946 to 1992. Each accident is presented with information in the following categories: date of the accident, airline and its flight numbers, type of flight, type of aircraft, aircraft registration number, construction number/manufacturers serial number, aircraft damage, accident flight phase, accident location, number of fatalities, number of occupants, cause, remarks, or description (brief) of the accident, and finally references used. The sixth chapter presents a summary of the world commercial aircraft accidents by major aircraft class (e.g. jet, turboprop, and pistonprop) and by flight phase. The seventh chapter presents several special studies including a list of world commercial aircraft accidents for all aircraft types with 100 or more fatalities in order of decreasing number of fatalities, a list of collision accidents involving commercial aircrafts, and a list of world commercial aircraft accidents for all aircraft types involving military action, sabotage, terrorist bombings, and hijackings.

  12. Dynamic response and acoustic fatigue of stiffened composite structure

    NASA Technical Reports Server (NTRS)

    Soovere, J.

    1984-01-01

    The results of acoustic fatigue and dynamic response tests performed on L-1011 graphite-epoxy (GrE) aileron and panel components are reported. The aileron featured glass microballoons between the GrE skins. Tests yielded random fatigue data from double and single cantilever coupons and modal data from impedance hammer and loudspeaker impulses. Numerical and sample test data were obtained on combined acoustic and shear loads, acoustic and thermal loads, random fatigue and damping of the integrally stiffened and secondary bonded panels. The fatigue data indicate a fatigue life beyond 10 million cycles. The acoustic data suggested that noise transmission could be enhanced in the integrally stiffened panels, which were more acoustic-fatigue resistant than were the secondary bonded panels.

  13. Dynamic, multiaxial impact response of confined and unconfined ceramic rods

    SciTech Connect

    Wise, J.L.; Grady, D.E.

    1993-09-01

    A new configuration for impact testing was implemented which yielded time-resolved measurements of the dynamic response of materials undergoing multiaxial strain. With this`-Method, one end of an initially stationary rod (ie., right circular cylinder) of test material was subjected to planar impact with a flat-faced projectile. The test rod was either free (unconfined) or mounted within a close-fitting sleeve which provided lateral confinement. Velocity interferometer diagnostics monitored the axial (longitudinal) velocity of the rod free end, and the transverse (radial) velocity for one or more points on the periphery of the rod or confinement sleeve. Analysis of the resultant velocity records allowed assessment of material properties, such as wave speeds and compressive yield strength, without the requirement of intact recovery of the rod. Data were obtained for alumina (Coors AD-99.5) rods in a series of tests involving variations in confinement and peak impact stress.

  14. Dynamic response of the cavitating LE-7 LOX pump

    NASA Astrophysics Data System (ADS)

    Shimura, Takashi; Watanabe, Mitsuo; Ujino, Isao

    The dynamic response of the LE-7 engine LOX pump under cavitating conditions was investigated by perturbation tests using cryogenic fluid in order to obtain data for the analysis of the H-II rocket POGO phenomena. Mass flow gain factor, M(sub b), and cavitation compliance, C(sub b), were determined by pressure data using resonant frequency. M(sub b) and C(sub b) show cavity volume change rates due to flow fluctuation and pressure fluctuations, respectively. A large accumulator was installed in the vicinity of the pump inlet in order to eliminate the upstream effects. The test results of M(sub b) agreed well with the values calculated by equations presented in the literature. However, the test results of C(sub b) were quite different from the calculated values.

  15. Dynamic response of shear thickening fluid under laser induced shock

    SciTech Connect

    Wu, Xianqian Yin, Qiuyun; Huang, Chenguang; Zhong, Fachun

    2015-02-16

    The dynamic response of the 57 vol./vol. % dense spherical silica particle-polyethylene glycol suspension at high pressure was investigated through short pulsed laser induced shock experiments. The measured back free surface velocities by a photonic Doppler velocimetry showed that the shock and the particle velocities decreased while the shock wave transmitted in the shear thickening fluid (STF), from which an equation of state for the STF was obtained. In addition, the peak stress decreased and the absorbed energy increased rapidly with increasing the thickness for a thin layer of the STF, which should be attributed to the impact-jammed behavior through compression of particle matrix, the deformation or crack of the hard-sphere particles, and the volume compression of the particles and the polyethylene glycol.

  16. Identification of fatigue cracks through separating dynamic responses

    NASA Astrophysics Data System (ADS)

    Yan, Guirong; Zhao, K.; Feng, R. Q.; Yi, J. R.

    2014-03-01

    During the service life of structures, fatigue cracks may occur in structural components due to dynamic loadings acting on them, such as wind loads, live loads and ground motion. If undetected timely, these fatigue cracks may lead to a catastrophic failure of the overall structure. Although a number of approaches to detecting fatigue cracks have been proposed, some of them appear rather sophisticated or expensive (requiring complicated equipment), and others suffer from a lack of sensitivity. In this study, a simple approach to detecting fatigue cracks is developed based on the bilinear behavior of fatigue cracks. First, a simple system identification method for bilinear systems is proposed by using the dynamic characteristics of bilinear systems. This method transfers nonlinear system identification into linear system identification by dividing impulse or free-vibration responses into different parts corresponding to each stiffness region according to the stiffness interface. In this way, the natural frequency of each region can be identified using any modal identification approach applicable to linear systems. Second, the procedure for identifying the existence of breathing fatigue cracks and quantifying the cracks qualitatively is proposed by looking for the difference in the identified natural frequency between regions. The proposed system identification method and crack detection procedure have been successfully validated by numerical simulations.

  17. Dynamical Response of Networks Under External Perturbations: Exact Results

    NASA Astrophysics Data System (ADS)

    Chinellato, David D.; Epstein, Irving R.; Braha, Dan; Bar-Yam, Yaneer; de Aguiar, Marcus A. M.

    2015-04-01

    We give exact statistical distributions for the dynamic response of influence networks subjected to external perturbations. We consider networks whose nodes have two internal states labeled 0 and 1. We let nodes be frozen in state 0, in state 1, and the remaining nodes change by adopting the state of a connected node with a fixed probability per time step. The frozen nodes can be interpreted as external perturbations to the subnetwork of free nodes. Analytically extending and to be smaller than 1 enables modeling the case of weak coupling. We solve the dynamical equations exactly for fully connected networks, obtaining the equilibrium distribution, transition probabilities between any two states and the characteristic time to equilibration. Our exact results are excellent approximations for other topologies, including random, regular lattice, scale-free and small world networks, when the numbers of fixed nodes are adjusted to take account of the effect of topology on coupling to the environment. This model can describe a variety of complex systems, from magnetic spins to social networks to population genetics, and was recently applied as a framework for early warning signals for real-world self-organized economic market crises.

  18. Effect of Dynamic Rolling Oscillations on Twin Tail Buffet Response

    NASA Technical Reports Server (NTRS)

    Sheta, Essam F.; Kandil, Osama A.

    1999-01-01

    The effect of dynamic rolling oscillations of delta-wing/twin-tail configuration on twin-tail buffet response is investigated. The computational model consists of a sharp-edged delta wing of aspect ratio one and swept-back flexible twin tail with taper ratio of 0.23. The configuration model is statically pitched at 30 deg. angle of attack and then forced to oscillate in roll around the symmetry axis at a constant amplitude of 4 deg. and reduced frequency of pi and 2(pi). The freestream Mach number and Reynolds number are 0.3 and 1.25 million, respectively. This multidisciplinary problem is solved using three sets of equations on a dynamic multi-block grid structure. The first set is the unsteady, full Navier-Stokes equations, the second set is the aeroelastic equations for coupled bending and torsion vibrations of the tails, and the third set is the grid-displacement equations. The configuration is investigated for inboard position of the twin tails which corresponds to a separation distance between the twin tails of 33% wing span. The computed results are compared with the results of stationary configuration, which previously have been validated using experimental data. The results conclusively showed that the rolling oscillations of the configuration have led to higher loads, higher deflections, and higher excitation peaks than those of the stationary configuration. Moreover, increasing the reduced frequency has led to higher loads and excitation peaks and lower bending and torsion deflections and acceleration.

  19. The dynamic response of carbon fiber-filled polymer composites

    NASA Astrophysics Data System (ADS)

    Dattelbaum, D. M.; Gustavsen, R. L.; Sheffield, S. A.; Stahl, D. B.; Scharff, R. J.; Rigg, P. A.; Furmanski, J.; Orler, E. B.; Patterson, B.; Coe, J. D.

    2012-08-01

    The dynamic (shock) responses of two carbon fiber-filled polymer composites have been quantified using gas gun-driven plate impact experimentation. The first composite is a filament-wound, highly unidirectional carbon fiber-filled epoxy with a high degree of porosity. The second composite is a chopped carbon fiber- and graphite-filled phenolic resin with little-to-no porosity. Hugoniot data are presented for the carbon fiber-epoxy (CE) composite to 18.6 GPa in the through-thickness direction, in which the shock propagates normal to the fibers. The data are best represented by a linear Rankine-Hugoniot fit: Us = 2.87 + 1.17 ×up(ρ0 = 1.536g/cm3). The shock wave structures were found to be highly heterogeneous, both due to the anisotropic nature of the fiber-epoxy microstructure, and the high degree of void volume. Plate impact experiments were also performed on a carbon fiber-filled phenolic (CP) composite to much higher shock input pressures, exceeding the reactants-to-products transition common to polymers. The CP was found to be stiffer than the filament-wound CE in the unreacted Hugoniot regime, and transformed to products near the shock-driven reaction threshold on the principal Hugoniot previously shown for the phenolic binder itself. [19] On-going research is focused on interrogating the direction-dependent dyanamic response and dynamic failure strength (spall) for the CE composite in the TT and 0∘ (fiber) directions.

  20. Eclipse program QF-106 aircraft

    NASA Technical Reports Server (NTRS)

    1996-01-01

    This photo shows two QF-106 aircraft that were used for the Eclipse project, both parked at the Mojave Airport in Mojave, California. In 1997 and 1998, the Dryden Flight Research Center at Edwards, California, supported and hosted a Kelly Space & Technology, Inc. project called Eclipse, which sought to demonstrate the feasibility of a reusable tow-launch vehicle concept. The project goal was to successfully tow, inflight, a modified QF-106 delta-wing aircraft with an Air Force C-141A transport aircraft. This would demonstrate the possibility of towing and launching an actual launch vehicle from behind a tow plane. Dryden was the responsible test organization and had flight safety responsibility for the Eclipse project. Dryden provided engineering, instrumentation, simulation, modification, maintenance, range support, and research pilots for the test program. The Air Force Flight Test Center (AFFTC), Edwards, California, supplied the C-141A transport aircraft and crew and configured the aircraft as needed for the tests. The AFFTC also provided the concept and detail design and analysis as well as hardware for the tow system and QF-106 modifications. Dryden performed the modifications to convert the QF-106 drone into the piloted EXD-01 (Eclipse eXperimental Demonstrator -01) experimental aircraft. Kelly Space & Technology hoped to use the results gleaned from the tow test in developing a series of low-cost, reusable launch vehicles. These tests demonstrated the validity of towing a delta-wing aircraft having high wing loading, validated the tow simulation model, and demonstrated various operational procedures, such as ground processing of in-flight maneuvers and emergency abort scenarios.

  1. Nonlinear transient analysis by energy minimization: A theoretical basis for the ACTION computer code. [predicting the response of a lightweight aircraft during a crash

    NASA Technical Reports Server (NTRS)

    Kamat, M. P.

    1980-01-01

    The formulation basis for establishing the static or dynamic equilibrium configurations of finite element models of structures which may behave in the nonlinear range are provided. With both geometric and time independent material nonlinearities included, the development is restricted to simple one and two dimensional finite elements which are regarded as being the basic elements for modeling full aircraft-like structures under crash conditions. Representations of a rigid link and an impenetrable contact plane are added to the deformation model so that any number of nodes of the finite element model may be connected by a rigid link or may contact the plane. Equilibrium configurations are derived as the stationary conditions of a potential function of the generalized nodal variables of the model. Minimization of the nonlinear potential function is achieved by using the best current variable metric update formula for use in unconstrained minimization. Powell's conjugate gradient algorithm, which offers very low storage requirements at some slight increase in the total number of calculations, is the other alternative algorithm to be used for extremely large scale problems.

  2. Nonlinear dynamical model and response of avian cranial kinesis.

    PubMed

    Meekangvan, Preeda; A Barhorst, Alan; Burton, Thomas D; Chatterjee, Sankar; Schovanec, Lawrence

    2006-05-01

    All modern birds have kinetic skulls in which the upper bill can move relative to the braincase, but the biomechanics and motion dynamics of cranial kinesis in birds are poorly understood. In this paper, we model the dynamics of avian cranial kinesis, such as prokinesis and proximal rhynchokinesis in which the upper jaw pivots around the nasal-frontal (N-F) hinge. The purpose of this paper is to present to the biological community an approach that demonstrates the application of sophisticated predictive mathematical modeling tools to avian kinesis. The generality of the method, however, is applicable to the advanced study of the biomechanics of other skeletal systems. The paper begins with a review of the relevant biological literature as well as the essential morphology of avian kinesis, especially the mechanical coupling of the upper and lower jaw by the postorbital ligament. A planar model of the described bird jaw morphology is then developed that maintains the closed kinematic topology of the avian jaw mechanism. We then develop the full nonlinear equations of motion with the assumption that the M. protractor pterygoideus and M. depressor mandibulae act on the quadrate as a pure torque, and the nasal frontal hinge is elastic with damping. The mechanism is shown to be a single degree of freedom device due to the holonomic constraints present in the quadrate-jugal bar-upper jaw-braincase-quadrate kinematic chain as well as the quadrate-lower jaw-postorbital ligament-braincase-quadrate kinematic chain. The full equations are verified via simulation and animation using the parameters of a Grey Heron (Ardea cinerea). Next we develop a simplified analytical model of the equations by power series expansion. We demonstrate that this model reproduces the dynamics of the full model to a high degree of fidelity. We proceed to use the harmonic balance technique to develop the frequency response characteristics of the jaw mechanism. It is shown that this avian cranial

  3. Nonlinear dynamical model and response of avian cranial kinesis.

    PubMed

    Meekangvan, Preeda; A Barhorst, Alan; Burton, Thomas D; Chatterjee, Sankar; Schovanec, Lawrence

    2006-05-01

    All modern birds have kinetic skulls in which the upper bill can move relative to the braincase, but the biomechanics and motion dynamics of cranial kinesis in birds are poorly understood. In this paper, we model the dynamics of avian cranial kinesis, such as prokinesis and proximal rhynchokinesis in which the upper jaw pivots around the nasal-frontal (N-F) hinge. The purpose of this paper is to present to the biological community an approach that demonstrates the application of sophisticated predictive mathematical modeling tools to avian kinesis. The generality of the method, however, is applicable to the advanced study of the biomechanics of other skeletal systems. The paper begins with a review of the relevant biological literature as well as the essential morphology of avian kinesis, especially the mechanical coupling of the upper and lower jaw by the postorbital ligament. A planar model of the described bird jaw morphology is then developed that maintains the closed kinematic topology of the avian jaw mechanism. We then develop the full nonlinear equations of motion with the assumption that the M. protractor pterygoideus and M. depressor mandibulae act on the quadrate as a pure torque, and the nasal frontal hinge is elastic with damping. The mechanism is shown to be a single degree of freedom device due to the holonomic constraints present in the quadrate-jugal bar-upper jaw-braincase-quadrate kinematic chain as well as the quadrate-lower jaw-postorbital ligament-braincase-quadrate kinematic chain. The full equations are verified via simulation and animation using the parameters of a Grey Heron (Ardea cinerea). Next we develop a simplified analytical model of the equations by power series expansion. We demonstrate that this model reproduces the dynamics of the full model to a high degree of fidelity. We proceed to use the harmonic balance technique to develop the frequency response characteristics of the jaw mechanism. It is shown that this avian cranial

  4. Gene Expression Dynamics Accompanying the Sponge Thermal Stress Response

    PubMed Central

    Guzman, Christine; Conaco, Cecilia

    2016-01-01

    Marine sponges are important members of coral reef ecosystems. Thus, their responses to changes in ocean chemistry and environmental conditions, particularly to higher seawater temperatures, will have potential impacts on the future of these reefs. To better understand the sponge thermal stress response, we investigated gene expression dynamics in the shallow water sponge, Haliclona tubifera (order Haplosclerida, class Demospongiae), subjected to elevated temperature. Using high-throughput transcriptome sequencing, we show that these conditions result in the activation of various processes that interact to maintain cellular homeostasis. Short-term thermal stress resulted in the induction of heat shock proteins, antioxidants, and genes involved in signal transduction and innate immunity pathways. Prolonged exposure to thermal stress affected the expression of genes involved in cellular damage repair, apoptosis, signaling and transcription. Interestingly, exposure to sublethal temperatures may improve the ability of the sponge to mitigate cellular damage under more extreme stress conditions. These insights into the potential mechanisms of adaptation and resilience of sponges contribute to a better understanding of sponge conservation status and the prediction of ecosystem trajectories under future climate conditions. PMID:27788197

  5. Dynamic Visual Acuity Associated With Eye Movements And Pupillary Responses

    NASA Astrophysics Data System (ADS)

    Suaste, Ernesto; García, Nadia; Rodríguez, Dolores; Zúñiga, Arturo

    2004-09-01

    Objectively was evaluate dynamic visual acuity (DVA), using moving optotypes, while monitoring eye movements and pupillary responses. Under controlled conditions of luminance and contrast the viewers were asked to look carefully at a moving alphabetic letter. The letter was moved in the horizontal plane at a determined speed by a sinusoidal frequency generator. The initial frequency was gradually incremented until the viewer reported was not able to distinguish the object. Objective measures of DVA were obtained using video-oculography (VOG) in which, pupillary images and eye movements were analyzed by image processing. We found that when a large dilatation of the pupil is presented coincided with a pause eye movement (0.1s). It was when the viewer leaves to see clearly the letter of Snellen. The changes of pupil diameter of the five viewers were found averages to nasal trajectory from 3.58 mm (0 Hz) to 3.85 mm (1Hz), and to temporal trajectory from 3.54 mm (0 Hz) to 3.96 mm (1 Hz). Also, the bandwidth since 0.6 to 1.2 Hz, of the viewers due to the response at the stimulus (letter of Snellen) with 20° of amplitude, was obtained.

  6. An investigation of aeroelastic phenomena associated with an oblique winged aircraft

    NASA Technical Reports Server (NTRS)

    Weisshaar, T. A.

    1976-01-01

    Oblique wing aeroelasticity studies are reviewed. The static aeroelastic stability characteristics of oblique wing aircraft, lateral trim requirements for 1-g flight, and the dynamic aeroelastic stability behavior of oblique winged aircraft, primarily flutter, are among the topics studied. The similarities and differences between oblique winged aircraft and conventional, bilaterally symmetric, swept wing aircraft are emphasized.

  7. Dynamic Docking Test System (DDTS) active table frequency response test results. [Apollo Soyuz Test Project

    NASA Technical Reports Server (NTRS)

    Gates, R. M.

    1974-01-01

    Results are presented of the frequency response test performed on the dynamic docking test system (DDTS) active table. Sinusoidal displacement commands were applied to the table and the dynamic response determined from measured actuator responses and accelerometers mounted to the table and one actuator.

  8. FAST Simulation Tool Containing Methods for Predicting the Dynamic Response of Wind Turbines

    SciTech Connect

    Jonkman, Jason

    2015-08-12

    FAST is a simulation tool (computer software) for modeling tlie dynamic response of horizontal-axis wind turbines. FAST employs a combined modal and multibody structural-dynamics formulation in the time domain.

  9. Upset Simulation and Training Initiatives for U.S. Navy Commercial Derived Aircraft

    NASA Technical Reports Server (NTRS)

    Donaldson, Steven; Priest, James; Cunningham, Kevin; Foster, John V.

    2012-01-01

    Militarized versions of commercial platforms are growing in popularity due to many logistical benefits in the form of commercial off-the-shelf (COTS) parts, established production methods, and commonality for different certifications. Commercial data and best practices are often leveraged to reduce procurement and engineering development costs. While the developmental and cost reduction benefits are clear, these militarized aircraft are routinely operated in flight at significantly different conditions and in significantly different manners than for routine commercial flight. Therefore they are at a higher risk of flight envelope exceedance. This risk may lead to departure from controlled flight and/or aircraft loss1. Historically, the risk of departure from controlled flight for military aircraft has been mitigated by piloted simulation training and engineering analysis of typical aircraft response. High-agility military aircraft simulation databases are typically developed to include high angles of attack (AoA) and sideslip due to the dynamic nature of their missions and have been developed for many tactical configurations over the previous decades. These aircraft simulations allow for a more thorough understanding of the vehicle flight dynamics characteristics at high AoA and sideslip. In recent years, government sponsored research on transport airplane aerodynamic characteristics at high angles of attack has produced a growing understanding of stall/post-stall behavior. This research along with recent commercial airline training initiatives has resulted in improved understanding of simulator-based training requirements and simulator model fidelity.2-5 In addition, inflight training research over the past decade has produced a database of pilot performance and recurrency metrics6. Innovative solutions to aerodynamically model large commercial aircraft for upset conditions such as high AoA, high sideslip, and ballistic damage, as well as capability to accurately

  10. 9 CFR 71.6 - Carrier responsible for cleaning and disinfecting of railroad cars, trucks, boats, aircraft or...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE INTERSTATE... unloaded, upon permission first received from the Animal and Plant Health Inspection Service, the means of... 9 Animals and Animal Products 1 2011-01-01 2011-01-01 false Carrier responsible for cleaning...

  11. 9 CFR 71.6 - Carrier responsible for cleaning and disinfecting of railroad cars, trucks, boats, aircraft or...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE INTERSTATE... unloaded, upon permission first received from the Animal and Plant Health Inspection Service, the means of... 9 Animals and Animal Products 1 2014-01-01 2014-01-01 false Carrier responsible for cleaning...

  12. 9 CFR 71.6 - Carrier responsible for cleaning and disinfecting of railroad cars, trucks, boats, aircraft or...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE INTERSTATE... unloaded, upon permission first received from the Animal and Plant Health Inspection Service, the means of... 9 Animals and Animal Products 1 2012-01-01 2012-01-01 false Carrier responsible for cleaning...

  13. 9 CFR 71.6 - Carrier responsible for cleaning and disinfecting of railroad cars, trucks, boats, aircraft or...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE INTERSTATE... unloaded, upon permission first received from the Animal and Plant Health Inspection Service, the means of... 9 Animals and Animal Products 1 2013-01-01 2013-01-01 false Carrier responsible for cleaning...

  14. Study of V/STOL aircraft implementation. Volume 2: Appendices

    NASA Technical Reports Server (NTRS)

    Androsky, A.; Miller, S. C.; Neiss, J. A.; Portenier, W. J.; Webb, H. M.

    1972-01-01

    An analysis of V/STOL aircraft implementation and utilization is presented. The subjects discussed are: (1) short haul air transportation requirements, (2) available aircraft technology, (3) aircraft production requirements, (4) airport requirements, (5) roles and responsibilities, and (6) cost and funding.

  15. Dynamic Response of Magnetic Reconnection Due to Current Sheet Variability

    NASA Astrophysics Data System (ADS)

    George, D. E.; Jahn, J. M.; Burch, J. L.; Hesse, M.; Pollock, C. J.

    2014-12-01

    Magnetic reconnection is a process which regulates the interaction between regions of magnetized plasma. While many factors have an impact on the evolution of this process, there still remains a lack of understanding of the key behaviors involved in the triggering of fast reconnection. Despite an abundance of in-situ measurements, indicating the high degree of variability in the thickness, density and composition along the current sheet, no simulation studies exist which account for such current sheet variations. 2D and 3D simulations have a periodic boundary in the dimension along the current sheet and so tend to neglect these variations in the current sheet originating external to the modeled reconnection region. Here we focus on the effects on reconnection due to the variability in the thickness and density of the current sheet. Using 2.5D kinetic simulations of 2-species plasma, we isolate and explore the dynamic effects on reconnection associated with variations in the current sheet originating externally to the reconnection region. While periodic boundary conditions are still used, in the direction along the current sheet, a step-change perturbation in thickness or density of the current sheet is introduced once a stable reconnection rate is reached. The dynamic response of the overall system, after introducing the perturbation, is then evaluated, with a focus on the reconnection rate. When the reconnection rate is slowed significantly over time, loading of the inflow region occurs (a build-up of plasma and magnetic energy/pressure. This state is indicated by an asymptotic behavior in the reconnection rate over time. If a sudden variation in the current sheet is introduced under these conditions, a resultant triggering of fast reconnection may occur, which could lead to an episode of fast reconnection, saw-tooth-crash condition or even act as a trigger for sub-storms.

  16. Methane dynamics regulated by microbial community response to permafrost thaw.

    PubMed

    McCalley, Carmody K; Woodcroft, Ben J; Hodgkins, Suzanne B; Wehr, Richard A; Kim, Eun-Hae; Mondav, Rhiannon; Crill, Patrick M; Chanton, Jeffrey P; Rich, Virginia I; Tyson, Gene W; Saleska, Scott R

    2014-10-23

    Permafrost contains about 50% of the global soil carbon. It is thought that the thawing of permafrost can lead to a loss of soil carbon in the form of methane and carbon dioxide emissions. The magnitude of the resulting positive climate feedback of such greenhouse gas emissions is still unknown and may to a large extent depend on the poorly understood role of microbial community composition in regulating the metabolic processes that drive such ecosystem-scale greenhouse gas fluxes. Here we show that changes in vegetation and increasing methane emissions with permafrost thaw are associated with a switch from hydrogenotrophic to partly acetoclastic methanogenesis, resulting in a large shift in the δ(13)C signature (10-15‰) of emitted methane. We used a natural landscape gradient of permafrost thaw in northern Sweden as a model to investigate the role of microbial communities in regulating methane cycling, and to test whether a knowledge of community dynamics could improve predictions of carbon emissions under loss of permafrost. Abundance of the methanogen Candidatus 'Methanoflorens stordalenmirensis' is a key predictor of the shifts in methane isotopes, which in turn predicts the proportions of carbon emitted as methane and as carbon dioxide, an important factor for simulating the climate feedback associated with permafrost thaw in global models. By showing that the abundance of key microbial lineages can be used to predict atmospherically relevant patterns in methane isotopes and the proportion of carbon metabolized to methane during permafrost thaw, we establish a basis for scaling changing microbial communities to ecosystem isotope dynamics. Our findings indicate that microbial ecology may be important in ecosystem-scale responses to global change. PMID:25341787

  17. River, delta and coastal morphological response accounting for biological dynamics

    NASA Astrophysics Data System (ADS)

    Goldsmith, W.; Bernardi, D.; Schippa, L.

    2015-03-01

    Management and construction can increase resilience in the face of climate change, and benefits can be enhanced through integration of biogenic materials including shells and vegetation. Rivers and coastal landforms are dynamic systems that respond to intentional and unintended manipulation of critical factors, often with unforeseen and/or undesirable resulting effects. River management strategies have impacts that include deltas and coastal areas which are increasingly vulnerable to climate change with reference to sea level rise and storm intensity. Whereas conventional assessment and analysis of rivers and coasts has relied on modelling of hydrology, hydraulics and sediment transport, incorporating additional biological factors can offer more comprehensive, beneficial and realistic alternatives. Suitable modelling tools can provide improved decision support. The question has been whether current models can effectively address biological responses with suitable reliability and efficiency. Since morphodynamic evolution exhibits its effects on a large timescale, the choice of mathematical model is not trivial and depends upon the availability of data, as well as the spatial extent, timelines and computation effort desired. The ultimate goal of the work is to set up a conveniently simplified river morphodynamic model, coupled with a biological dynamics plant population model able to predict the long-term evolution of large alluvial river systems managed through bioengineering. This paper presents the first step of the work related to the application of the model accounting for stationary vegetation condition. Sensitivity analysis has been performed on the main hydraulic, sedimentology, and biological parameters. The model has been applied to significant river training in Europe, Asia and North America, and comparative analysis has been used to validate analytical solutions. Data gaps and further areas for investigation are identified.

  18. Influence of ground parameters on the dynamic responses of anchored bedding rock slope

    NASA Astrophysics Data System (ADS)

    Yan, Zhi-xin; Gao, Le; Peng, Ningbo; Gao, Gang

    2013-10-01

    To research the influence of ground parameters on the dynamic responses of anchored bedding rock slope, a dynamic numerical simulation model of bedding rock slope with bolts was established using FLAC3D. The alteration of dynamic response with displacements and accelerations at monitoring points along the slope surface was set as analysis basis. The effects on dynamic responses of slope with different ground parameters, such as waves, frequencies and amplitudes were analyzed. It demonstrated great help for the dynamic stability analysis and slope design when it is supported with anchor under earthquake.

  19. Ride quality - An exploratory study and criteria development. [visual motion simulator measurement of response ratings of ride quality of aircraft

    NASA Technical Reports Server (NTRS)

    Stone, R. W., Jr.

    1974-01-01

    The Langley six degree of freedom visual motion simulator has been used to measure subjective response ratings of the ride quality of eight segments of flight, representative of a wide variation in comfort estimates. The results indicate that the use of simulators for this purpose appears promising. A preliminary approach for the development of criteria for ride quality ratings based on psychophysical precepts is included.

  20. Aircraft system modeling error and control error

    NASA Technical Reports Server (NTRS)

    Kulkarni, Nilesh V. (Inventor); Kaneshige, John T. (Inventor); Krishnakumar, Kalmanje S. (Inventor); Burken, John J. (Inventor)

    2012-01-01

    A method for modeling error-driven adaptive control of an aircraft. Normal aircraft plant dynamics is modeled, using an original plant description in which a controller responds to a tracking error e(k) to drive the component to a normal reference value according to an asymptote curve. Where the system senses that (1) at least one aircraft plant component is experiencing an excursion and (2) the return of this component value toward its reference value is not proceeding according to the expected controller characteristics, neural network (NN) modeling of aircraft plant operation may be changed. However, if (1) is satisfied but the error component is returning toward its reference value according to expected controller characteristics, the NN will continue to model operation of the aircraft plant according to an original description.

  1. Pilot Preferences on Displayed Aircraft Control Variables

    NASA Technical Reports Server (NTRS)

    Trujillo, Anna C.; Gregory, Irene M.

    2013-01-01

    The experiments described here explored how pilots want available maneuver authority information transmitted and how this information affects pilots before and after an aircraft failure. The aircraft dynamic variables relative to flight performance were narrowed to energy management variables. A survey was conducted to determine what these variables should be. Survey results indicated that bank angle, vertical velocity, and airspeed were the preferred variables. Based on this, two displays were designed to inform the pilot of available maneuver envelope expressed as bank angle, vertical velocity, and airspeed. These displays were used in an experiment involving control surface failures. Results indicate the displayed limitations in bank angle, vertical velocity, and airspeed were helpful to the pilots during aircraft surface failures. However, the additional information did lead to a slight increase in workload, a small decrease in perceived aircraft flying qualities, and no effect on aircraft situation awareness.

  2. Aircraft Lightning Electromagnetic Environment Measurement

    NASA Technical Reports Server (NTRS)

    Ely, Jay J.; Nguyen, Truong X.; Szatkowski, George N.

    2011-01-01

    This paper outlines a NASA project plan for demonstrating a prototype lightning strike measurement system that is suitable for installation onto research aircraft that already operate in thunderstorms. This work builds upon past data from the NASA F106, FAA CV-580, and Transall C-180 flight projects, SAE ARP5412, and the European ILDAS Program. The primary focus is to capture airframe current waveforms during attachment, but may also consider pre and post-attachment current, electric field, and radiated field phenomena. New sensor technologies are being developed for this system, including a fiber-optic Faraday polarization sensor that measures lightning current waveforms from DC to over several Megahertz, and has dynamic range covering hundreds-of-volts to tens-of-thousands-of-volts. A study of the electromagnetic emission spectrum of lightning (including radio wave, microwave, optical, X-Rays and Gamma-Rays), and a compilation of aircraft transfer-function data (including composite aircraft) are included, to aid in the development of other new lightning environment sensors, their placement on-board research aircraft, and triggering of the onboard instrumentation system. The instrumentation system will leverage recent advances in high-speed, high dynamic range, deep memory data acquisition equipment, and fiber-optic interconnect.

  3. Examining Uncertainty in Demand Response Baseline Models and Variability in Automated Response to Dynamic Pricing

    SciTech Connect

    Mathieu, Johanna L.; Callaway, Duncan S.; Kiliccote, Sila

    2011-08-15

    Controlling electric loads to deliver power system services presents a number of interesting challenges. For example, changes in electricity consumption of Commercial and Industrial (C&I) facilities are usually estimated using counterfactual baseline models, and model uncertainty makes it difficult to precisely quantify control responsiveness. Moreover, C&I facilities exhibit variability in their response. This paper seeks to understand baseline model error and demand-side variability in responses to open-loop control signals (i.e. dynamic prices). Using a regression-based baseline model, we define several Demand Response (DR) parameters, which characterize changes in electricity use on DR days, and then present a method for computing the error associated with DR parameter estimates. In addition to analyzing the magnitude of DR parameter error, we develop a metric to determine how much observed DR parameter variability is attributable to real event-to-event variability versus simply baseline model error. Using data from 38 C&I facilities that participated in an automated DR program in California, we find that DR parameter errors are large. For most facilities, observed DR parameter variability is likely explained by baseline model error, not real DR parameter variability; however, a number of facilities exhibit real DR parameter variability. In some cases, the aggregate population of C&I facilities exhibits real DR parameter variability, resulting in implications for the system operator with respect to both resource planning and system stability.

  4. Comparison of cardiovascular response to combined static-dynamic effort, postprandial dynamic effort and dynamic effort alone in patients with chronic ischemic heart disease

    SciTech Connect

    Hung, J.; McKillip, J.; Savin, W.; Magder, S.; Kraus, R.; Houston, N.; Goris, M.; Haskell, W.; DeBusk, R.

    1982-06-01

    The cardiovascular responses to combined static-dynamic effort, postprandial dynamic effort and dynamic effort alone were evaluated by upright bicycle ergometry during equilibrium-gated blood pool scintigraphy in 24 men, mean age 59 +/- 8 years, with chronic ischemic heart disease. Combined static-dynamic effort and the postprandial state elicited a peak cardiovascular response similar to that of dynamic effort alone. Heart rate, intraarterial systolic and diastolic pressures, rate-pressure product and ejection fraction were similar for the three test conditions at the onset of ischemia and at peak effort. The prevalence and extent of exercise-induced ischemic left ventricular dysfunction, ST-segment depression, angina pectoris and ventricular ectopic activity were also similar during the three test conditions. Direct and indirect measurements of systolic and diastolic blood pressure were highly correlated. The onset of ischemic ST-segment depression and angina pectoris correlated as strongly with heart rate alone as with the rate-pressure product during all three test conditions. The cardiovascular response to combined static-dynamic effort and to postprandial dynamic effort becomes more similar to that of dynamic effort alone as dynamic effort reaches a symptom limit. If significant ischemic and arrhythmic abnormalities are absent during symptom-limited dynamic exercise testing, they are unlikely to appear during combined static-dynamic or postprandial dynamic effort.

  5. Dynamics of the microbiota in response to host infection.

    PubMed

    Belzer, Clara; Gerber, Georg K; Roeselers, Guus; Delaney, Mary; DuBois, Andrea; Liu, Qing; Belavusava, Vera; Yeliseyev, Vladimir; Houseman, Andres; Onderdonk, Andrew; Cavanaugh, Colleen; Bry, Lynn

    2014-01-01

    Longitudinal studies of the microbiota are important for discovering changes in microbial communities that affect the host. The complexity of these ecosystems requires rigorous integrated experimental and computational methods to identify temporal signatures that promote physiologic or pathophysiologic responses in vivo. Employing a murine model of infectious colitis with the pathogen Citrobacter rodentium, we generated a 2-month time-series of 16S rDNA gene profiles, and quantitatively cultured commensals, from multiple intestinal sites in infected and uninfected mice. We developed a computational framework to discover time-varying signatures for individual taxa, and to automatically group signatures to identify microbial sub-communities within the larger gut ecosystem that demonstrate common behaviors. Application of this model to the 16S rDNA dataset revealed dynamic alterations in the microbiota at multiple levels of resolution, from effects on systems-level metrics to changes across anatomic sites for individual taxa and species. These analyses revealed unique, time-dependent microbial signatures associated with host responses at different stages of colitis. Signatures included a Mucispirillum OTU associated with early disruption of the colonic surface mucus layer, prior to the onset of symptomatic colitis, and members of the Clostridiales and Lactobacillales that increased with successful resolution of inflammation, after clearance of the pathogen. Quantitative culture data validated findings for predominant species, further refining and strengthening model predictions. These findings provide new insights into the complex behaviors found within host ecosystems, and define several time-dependent microbial signatures that may be leveraged in studies of other infectious or inflammatory conditions. PMID:25014551

  6. Dynamic involvement of ATG5 in cellular stress responses

    PubMed Central

    Lin, H H; Lin, S-M; Chung, Y; Vonderfecht, S; Camden, J M; Flodby, P; Borok, Z; Limesand, K H; Mizushima, N; Ann, D K

    2014-01-01

    Autophagy maintains cell and tissue homeostasis through catabolic degradation. To better delineate the in vivo function for autophagy in adaptive responses to tissue injury, we examined the impact of compromised autophagy in mouse submandibular glands (SMGs) subjected to main excretory duct ligation. Blocking outflow from exocrine glands causes glandular atrophy by increased ductal pressure. Atg5f/−;Aqp5-Cre mice with salivary acinar-specific knockout (KO) of autophagy essential gene Atg5 were generated. While duct ligation induced autophagy and the expression of inflammatory mediators, SMGs in Atg5f/−;Aqp5-Cre mice, before ligation, already expressed higher levels of proinflammatory cytokine and Cdkn1a/p21 messages. Extended ligation period resulted in the caspase-3 activation and acinar cell death, which was delayed by Atg5 knockout. Moreover, expression of a set of senescence-associated secretory phenotype (SASP) factors was elevated in the post-ligated glands. Dysregulation of cell-cycle inhibitor CDKN1A/p21 and activation of senescence-associated β-galactosidase were detected in the stressed SMG duct cells. These senescence markers peaked at day 3 after ligation and partially resolved by day 7 in post-ligated SMGs of wild-type (WT) mice, but not in KO mice. The role of autophagy-related 5 (ATG5)-dependent autophagy in regulating the tempo, duration and magnitude of cellular stress responses in vivo was corroborated by in vitro studies using MEFs lacking ATG5 or autophagy-related 7 (ATG7) and autophagy inhibitors. Collectively, our results highlight the role of ATG5 in the dynamic regulation of ligation-induced cellular senescence and apoptosis, and suggest the involvement of autophagy resolution in salivary repair. PMID:25341032

  7. Propulsion controlled aircraft computer

    NASA Technical Reports Server (NTRS)

    Cogan, Bruce R. (Inventor)

    2010-01-01

    A low-cost, easily retrofit Propulsion Controlled Aircraft (PCA) system for use on a wide range of commercial and military aircraft consists of an propulsion controlled aircraft computer that reads in aircraft data including aircraft state, pilot commands and other related data, calculates aircraft throttle position for a given maneuver commanded by the pilot, and then displays both current and calculated throttle position on a cockpit display to show the pilot where to move throttles to achieve the commanded maneuver, or is automatically sent digitally to command the engines directly.

  8. Dynamic modeling and response of soil-wall systems

    SciTech Connect

    Veletsos, A.S.; Younan, A.H.

    1993-10-01

    The study reported herein is the third in a series of investigations motivated by need to gain improved understanding of the responses to earthquakes of deeply embedded and underground tanks storing radioactive wastes, and to develop rational but simple methods of analysis and design for such systems. Following a brief review of the errors that may result from the use of a popular model for evaluating the dynamic soil forces induced in a base-excited rigid wall retaining an elastic stratum, the sources of the errors are identified and a modification is proposed which defines correctly the action of the system. In the proposed modification, the stratum is modeled by a series of elastically supported, semi-infinite horizontal bars with distributed mass instead of massless springs. The concepts involved are introduced by reference to a system composed of a fixed-based wall and a homogeneous elastic stratum, and are then applied to the analysis of more complex soil-wall systems. Both harmonic and transient excitations are considered, and comprehensive numerical solutions are presented which elucidate the actions involved and the effects and relative importance of the relevant parameters.

  9. Dynamic Control of Optical Response in Layered Metal Chalcogenide Nanoplates.

    PubMed

    Liu, Yanping; Tom, Kyle; Wang, Xi; Huang, Chunming; Yuan, Hongtao; Ding, Hong; Ko, Changhyun; Suh, Joonki; Pan, Lawrence; Persson, Kristin A; Yao, Jie

    2016-01-13

    Tunable optical transitions in ultrathin layered 2-dimensional (2D) materials unveil the electronic structures of materials and provide exciting prospects for potential applications in optics and photonics. Here, we present our realization of dynamic optical modulation of layered metal chalcogenide nanoplates using ionic liquid (IL) gating over a wide spectral range. The IL gating significantly increased the tuning range of the Fermi level and, as a result, substantially altered the optical transitions in the nanoplates. Using heavily n-doped Bi2Se3 nanoplates, we substantially modulated the light transmission through the ultrathin layer. A tunable, high-transmission spectral window in the visible to near-infrared region has been observed due to simultaneous shifts of both the plasma edge and absorption edge of the material. On the other hand, optical response of multilayer MoSe2 flakes gated by IL has shown enhanced transmission in both positive and negative biases, which is consistent with their ambipolar electrical behavior. The electrically controlled optical property tuning in metal chalcogenide material systems provides new opportunities for potential applications, such as wide spectral range optical modulators, optical filters, and electrically controlled smart windows with extremely low material consumption.

  10. Induced dynamic nonlinear ground response at Gamer Valley, California

    USGS Publications Warehouse

    Lawrence, Z.; Bodin, P.; Langston, C.A.; Pearce, F.; Gomberg, J.; Johnson, P.A.; Menq, F.-Y.; Brackman, T.

    2008-01-01

    We present results from a prototype experiment in which we actively induce, observe, and quantify in situ nonlinear sediment response in the near surface. This experiment was part of a suite of experiments conducted during August 2004 in Garner Valley, California, using a large mobile shaker truck from the Network for Earthquake Engineering Simulation (NEES) facility. We deployed a dense accelerometer array within meters of the mobile shaker truck to replicate a controlled, laboratory-style soil dynamics experiment in order to observe wave-amplitude-dependent sediment properties. Ground motion exceeding 1g acceleration was produced near the shaker truck. The wave field was dominated by Rayleigh surface waves and ground motions were strong enough to produce observable nonlinear changes in wave velocity. We found that as the force load of the shaker increased, the Rayleigh-wave phase velocity decreased by as much as ???30% at the highest frequencies used (up to 30 Hz). Phase velocity dispersion curves were inverted for S-wave velocity as a function of depth using a simple isotropic elastic model to estimate the depth dependence of changes to the velocity structure. The greatest change in velocity occurred nearest the surface, within the upper 4 m. These estimated S-wave velocity values were used with estimates of surface strain to compare with laboratory-based shear modulus reduction measurements from the same site. Our results suggest that it may be possible to characterize nonlinear soil properties in situ using a noninvasive field technique.

  11. Response of borehole extensometers to explosively generated dynamic loads

    SciTech Connect

    Patrick, W.C.; Brough, W.G.

    1980-08-25

    Commercially available, hydraulically anchored, multiple-point borehole extensometers (MPBX) were evaluated with respect to response to dynamic loads produced by explosions. This study is part of the DOE-funded Spent Fuel Test-Climax (SFT-C), currently being conducted in the Climax granitic stock at the Nevada Test Site. The SFT-C is an investigation of the feasibility of short-term storage and retrieval of spent nuclear reactor fuel assemblies at a plausible repository depth in granitic rock. Eleven spent fuel assemblies are stored at a depth of 420 m for three to five years, and will then be retrieved. MPBX units are used in the SFT-C to measure both excavation-induced and thermally induced rock displacements. Long-term reliability of extensometers in this hostile environment is essential in order to obtain valid data during the course of this test. Research to date shows conclusively that extensometers of this type continue to function reliably even though subjected to accelerations of 1.8 g; research also implies that they function well though subjected to accelerations in excess of 100 g. MPBX survivability during the first four months of testing at ambient temperatures was about 90 percent.

  12. Spatially dispersive dynamical response of hot carriers in doped graphene

    NASA Astrophysics Data System (ADS)

    Kukhtaruk, S. M.; Kochelap, V. A.; Sokolov, V. N.; Kim, K. W.

    2016-05-01

    We study theoretically wave-vector and frequency dispersion of the complex dynamic conductivity tensor (DCT), σlm(k , ω), of doped monolayer graphene under a strong dc electric field. For a general analysis, we consider the weak ac field of arbitrary configuration given by two independent vectors, the ac field polarization and the wave vector k. The high-field transport and linear response to the ac field are described on the base of the Boltzmann kinetic equation. We show that the real part of DCT, calculated in the collisionless regime, is not zero due to dissipation of the ac wave, whose energy is absorbed by the resonant Dirac quasiparticles effectively interacting with the wave. The role of the kinematic resonance at ω =vF | k | (vF is the Fermi velocity) is studied in detail taking into account deviation from the linear energy spectrum and screening by the charge carriers. The isopower-density curves and distributions of angle between the ac current density and field vectors are presented as a map which provides clear graphic representation of the DCT anisotropy. Also, the map shows certain ac field configurations corresponding to a negative power density, thereby it indicates regions of terahertz frequency for possible electrical (drift) instability in the graphene system.

  13. Triple Langmuir Probe Circuit Response to Dynamic Loading

    NASA Astrophysics Data System (ADS)

    Surla, Vijay; Jaworski, Michael; Kallman, Joshua; Kaita, Robert; Kugel, Henry; Ruzic, David

    2010-11-01

    Recently, an array of Langmuir probes was installed in the divertor region of the National Spherical Tokomak eXperiment (NSTX) and has been successfully tested [1]. The array is backed by a custom designed electronics system that allows biasing the probes, collecting the signals, reducing noise and amplifying circuitry and is suited to operate both as a single Langmuir probe and as a triple Langmuir probe (TLP). While the probe data has been useful in understanding the plasma characteristics during steady plasma discharges in NSTX, certain modifications aid interpretation of the transient events (˜μs scale) such as during Edge Localized Modes (ELMs). During high-flux transients, the bias circuit may drift from the nominal values before on-board control circuitry can respond. The details of the circuit, its response to dynamic loading and the resulting impact on signal interpretation is presented. [1] M.A. Jaworski, J. Kallman, R. Kaita, H. Kugel, B. LeBlanc, R. Marsala, and D.N. Ruzic, ``Biasing, acquisition and interpretation of a dense Langmuir probe array in NSTX,'' 18th Topical Conference on High Temperature Plasma Diagnsotics, 2010.

  14. EFFECT OF GRAIN SIZE ON DYNAMIC SCRATCH RESPONSE IN ALUMINA

    SciTech Connect

    Wang, Hong; Wereszczak, Andrew A; Lance, Michael J

    2006-01-01

    The machining and wear of ceramics and ceramic components are obviously influenced by abrasive damage. One parameter that can affect the abrasion process is the grain size of the ceramic material. To investigate this, single-grit pendulum scratch testing was used to investigate the dynamic scratch response in three 99.9% aluminas that each had a tight size distribution about mean grain sizes of 2, 15, or 25 m, respectively. The scratch speeds generated had an order of magnitude of ~ 1 m/s and the maximum scratch depths were several tens of micrometers. Tangential and normal scratch forces were monitored during each test and interpreted in conjunction with postmortem SEM and profilometry results. It was observed that both plastic deformation and brittle fracture participated in the scratching process and the relative activity of each was dependent on depth of penetration. At a specific depth of penetration, the material removal of alumina prevailingly relies on the generation and interaction of oblique radial and lateral cracks. Chip formation is greatly enhanced when the created cracks interact and that interaction itself depends on grain size. Larger grain size gives rise to larger lateral cracks, more severe fracture at the groove's bottom, and larger amplitude of scratch force oscillation. Lastly, the cutting pressure and the scratch hardness of alumina exhibit sensitivity to both grain size and the groove depth.

  15. Dynamic Control of Optical Response in Layered Metal Chalcogenide Nanoplates.

    PubMed

    Liu, Yanping; Tom, Kyle; Wang, Xi; Huang, Chunming; Yuan, Hongtao; Ding, Hong; Ko, Changhyun; Suh, Joonki; Pan, Lawrence; Persson, Kristin A; Yao, Jie

    2016-01-13

    Tunable optical transitions in ultrathin layered 2-dimensional (2D) materials unveil the electronic structures of materials and provide exciting prospects for potential applications in optics and photonics. Here, we present our realization of dynamic optical modulation of layered metal chalcogenide nanoplates using ionic liquid (IL) gating over a wide spectral range. The IL gating significantly increased the tuning range of the Fermi level and, as a result, substantially altered the optical transitions in the nanoplates. Using heavily n-doped Bi2Se3 nanoplates, we substantially modulated the light transmission through the ultrathin layer. A tunable, high-transmission spectral window in the visible to near-infrared region has been observed due to simultaneous shifts of both the plasma edge and absorption edge of the material. On the other hand, optical response of multilayer MoSe2 flakes gated by IL has shown enhanced transmission in both positive and negative biases, which is consistent with their ambipolar electrical behavior. The electrically controlled optical property tuning in metal chalcogenide material systems provides new opportunities for potential applications, such as wide spectral range optical modulators, optical filters, and electrically controlled smart windows with extremely low material consumption. PMID:26599063

  16. Adaptive Control of a Transport Aircraft Using Differential Thrust

    NASA Technical Reports Server (NTRS)

    Stepanyan, Vahram; Krishnakumar, Kalmanje; Nguyen, Nhan

    2009-01-01

    The paper presents an adaptive control technique for a damaged large transport aircraft subject to unknown atmospheric disturbances such as wind gust or turbulence. It is assumed that the damage results in vertical tail loss with no rudder authority, which is replaced with a differential thrust input. The proposed technique uses the adaptive prediction based control design in conjunction with the time scale separation principle, based on the singular perturbation theory. The application of later is necessitated by the fact that the engine response to a throttle command is substantially slow that the angular rate dynamics of the aircraft. It is shown that this control technique guarantees the stability of the closed-loop system and the tracking of a given reference model. The simulation example shows the benefits of the approach.

  17. Dynamic pituitary-adrenal interactions in response to Cardiac surgery

    PubMed Central

    Walker, Jamie J; Russell, Georgina M; Stevenson, Kirsty; Kershaw, Yvonne; Zhao, Zidong; Henley, David; Angelini, Gianni D; Lightman, Stafford L

    2014-01-01

    Objectives To characterize the dynamics of the pituitary-adrenal interaction during the course of coronary artery bypass grafting (CABG) both on and off pump. Since our data pointed to a major change in adrenal responsiveness to ACTH we used a reverse translation approach to investigate the molecular mechanisms underlying this change in a rat model of critical illness. Design Clinical studies: Prospective observational study Animal studies: Controlled experimental study Setting Clinical studies: Cardiac surgery operating rooms and critical care units Animal studies: University research laboratory Subjects Clinical studies: Twenty, male patients Animal studies: Adult, male Sprague-Dawley rats. Interventions Clinical studies: Coronary artery bypass graft - both on and off pump Animal studies: Injection of either lipopolysaccharide (LPS) or saline (controls) via a jugular vein cannula Measurements and Results Clinical studies: Blood samples were taken for 24 hours from placement of the first venous access. Cortisol and ACTH were measured every 10 and 60 minutes respectively, and corticosteroid binding globulin (CBG) was measured at the beginning and end of the 24 hour period and at the end of operation. There was an initial rise in both levels of ACTH and cortisol to supra-normal values at around the end of surgery. ACTH levels then returned towards pre-operative values. Ultradian pulsatility of both ACTH and cortisol was maintained throughout the peri-operative period in all individuals. The sensitivity of the adrenal gland to ACTH increased markedly at around 8 hours after surgery maintaining very high levels of cortisol in the face of ‘basal’ levels of ACTH. This sensitivity began to return towards pre-operative values at the end of the 24-hour sampling period. Animal studies: Adult, male Sprague-Dawley rats were either given lipopolysaccharide (LPS) or sterile saline via a jugular vein cannula. Hourly blood samples were subsequently collected for ACTH and

  18. Confinement effects on collective water dynamics: Molecular dynamics study of optical Kerr response in silica nanopores

    NASA Astrophysics Data System (ADS)

    Milischuk, Anatoli; Ladanyi, Branka

    2014-03-01

    We report the results of the study of the effects of confinement on collective dynamical properties of water in model nanopores at ambient conditions. The main focus is on approximately cylindrical pores composed of amorphous silica, with diameters ranging from 20 to 40 Å, designed to represent MCM-41 materials. Results for hydrophilic and hydrophobic pores of similar dimensions, but with roughness reduced compared to silica nanopores, are also considered. The main quantity studied is the polarizability anisotropy time correlation function (TCF), which is related to the experimentally-observed optical Kerr effect (OKE) nuclear response. We investigate the effects on this TCF of the reduced molecular translational and rotational water mobility in the layers near the interface. We find that these effects lead to pore diameter dependent slowdown of polarizability anisotropy relaxation, in agreement with OKE experiments. Support from NSF grant number 1213682 is acknowledged.

  19. Intensity invariant dynamics and odor-specific latencies in olfactory receptor neuron response

    PubMed Central

    Martelli, Carlotta; Carlson, John R.; Emonet, Thierry

    2013-01-01

    Odors elicit spatio-temporal patterns of activity in the brain. Spatial patterns arise from the specificity of the interaction between odorants and odorant receptors expressed in different olfactory receptor neurons (ORNs). But the origin of temporal patterns of activity and their role in odor coding remain unclear. We investigate how physiological aspects of ORN response and physical aspects of odor stimuli give rise to diverse responses in Drosophila ORNs. We show that odor stimuli have intrinsic dynamics that depend on odor type and strongly affect ORN response. Using linear-nonlinear modeling to remove the contribution of the stimulus dynamics from the ORN dynamics we study the physiological properties of the response to different odorants and concentrations. For several odorants and receptor types the ORN response dynamics normalized by the peak response are independent of stimulus intensity for a large portion of the neuron’s dynamic range. Adaptation to a background odor changes the gain and dynamic range of the response but does not affect normalized response dynamics. Stimulating ORNs with various odorants reveals significant odor-dependent delays in the ORN response functions. These differences however can be dominated by differences in stimulus dynamics. In one case the response of one ORN to two odorants is predicted solely from measurements of the odor signals. Within a large portion of their dynamic range ORNs can capture information about stimulus dynamics independently from intensity while introducing odor-dependent delays. How insects might use odor-specific stimulus dynamics and ORN dynamics in discrimination and navigation tasks remains an open question. PMID:23575828

  20. Comparison of piezoelectric systems and aerodynamic systems for aircraft vibration alleviation

    NASA Astrophysics Data System (ADS)

    Becker, Juergen; Luber, Wolfgang G.

    1998-06-01

    A comparison of active smart structure - piezoelectric control system and aerodynamic active systems for vibration alleviation and elastic mode damping of a military aircraft structure is presented. The vibration alleviation systems which are operative at flight in turbulence or during maneuvers at high incidence corresponding to severe buffeting conditions are under investigation by DASA as a part of research study on advanced aircraft structures. The active systems for elastic mode damping are designed as digital systems to provide vibration alleviation and have an interface to the flight control system (FCS) or are directly part of the FCS. The sensor concept of all different systems is the same as the sensor concept used for the FCS with the corresponding benefits of redundancy and safety. The design of systems and the comparisons of system properties are based on open and closed loop response calculations, performed with the dynamic model of the total aircraft including coupling of flight mechanics, structural dynamics, FCS dynamics and hydraulic actuator or piezo-actuator dynamics. Aerodynamic systems, like active foreplane and flap concepts, rudder and auxiliary rudder concepts, and piezoelectric systems, like piezo interface at the interconnection fin to rear fuselage and integrated piezo concepts are compared. Besides the essential effects on flexible aircraft mode stability and vibration alleviation factors system complexity and safety aspects are described.