Science.gov

Sample records for aircraft engine exhausts

  1. Aircraft Piston Engine Exhaust Emission Symposium

    NASA Technical Reports Server (NTRS)

    1976-01-01

    A 2-day symposium on the reduction of exhaust emissions from aircraft piston engines was held on September 14 and 15, 1976, at the Lewis Research Center in Cleveland, Ohio. Papers were presented by both government organizations and the general aviation industry on the status of government contracts, emission measurement problems, data reduction procedures, flight testing, and emission reduction techniques.

  2. Aircraft Engine Exhaust Nozzle System for Jet Noise Reduction

    NASA Technical Reports Server (NTRS)

    Thomas, Russell H. (Inventor); Czech, Michael J. (Inventor); Elkoby, Ronen (Inventor)

    2014-01-01

    The aircraft exhaust engine nozzle system includes a fan nozzle to receive a fan flow from a fan disposed adjacent to an engine disposed above an airframe surface of the aircraft, a core nozzle disposed within the fan nozzle and receiving an engine core flow, and a pylon structure connected to the core nozzle and structurally attached with the airframe surface to secure the engine to the aircraft.

  3. Exhaust emissions reduction for intermittent combustion aircraft engines

    NASA Technical Reports Server (NTRS)

    Rezy, B. J.; Stuckas, K. J.; Tucker, J. R.; Meyers, J. E.

    1982-01-01

    Three concepts which, to an aircraft piston engine, provide reductions in exhaust emissions of hydrocarbons and carbon monoxide while simultaneously improving fuel economy. The three chosen concepts, (1) an improved fuel injection system, (2) an improved cooling cylinder head, and (3) exhaust air injection, when combined, show a synergistic relationship in achieving these goals. In addition, the benefits of variable ignition timing were explored and both dynamometer and flight testing of the final engine configuration were accomplished.

  4. Organic positive ions in aircraft gas-turbine engine exhaust

    NASA Astrophysics Data System (ADS)

    Sorokin, Andrey; Arnold, Frank

    Volatile organic compounds (VOCs) represent a significant fraction of atmospheric aerosol. However the role of organic species emitted by aircraft (as a consequence of the incomplete combustion of fuel in the engine) in nucleation of new volatile particles still remains rather speculative and requires a much more detailed analysis of the underlying mechanisms. Measurements in aircraft exhaust plumes have shown the presence of both different non-methane VOCs (e.g. PartEmis project) and numerous organic cluster ions (MPIK-Heidelberg). However the link between detected organic gas-phase species and measured mass spectrum of cluster ions is uncertain. Unfortunately, up to now there are no models describing the thermodynamics of the formation of primary organic cluster ions in the exhaust of aircraft engines. The aim of this work is to present first results of such a model development. The model includes the block of thermodynamic data based on proton affinities and gas basicities of organic molecules and the block of non-equilibrium kinetics of the cluster ions evolution in the exhaust. The model predicts important features of the measured spectrum of positive ions in the exhaust behind aircraft. It is shown that positive ions emitted by aircraft engines into the atmosphere mostly consist of protonated and hydrated organic cluster ions. The developed model may be explored also in aerosol investigations of the background atmosphere as well as in the analysis of the emission of fine aerosol particles by automobiles.

  5. 78 FR 65554 - Exhaust Emission Standards for New Aircraft Turbine Engines and Identification Plate for Aircraft...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-01

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF TRANSPORTATION Federal Aviation Administration 14 CFR Parts 34 and 45 RIN 2120-AK15 Exhaust Emission Standards for New Aircraft Turbine Engines and Identification Plate for Aircraft Engines Correction In rule document 2013-24712, appearing on pages 63015-63017...

  6. Exhaust emission reduction for intermittent combustion aircraft engines

    NASA Technical Reports Server (NTRS)

    Moffett, R. N.

    1979-01-01

    Three concepts for optimizing the performance, increasing the fuel economy, and reducing exhaust emission of the piston aircraft engine were investigated. High energy-multiple spark discharge and spark plug tip penetration, ultrasonic fuel vaporization, and variable valve timing were evaluated individually. Ultrasonic fuel vaporization did not demonstrate sufficient improvement in distribution to offset the performance loss caused by the additional manifold restriction. High energy ignition and revised spark plug tip location provided no change in performance or emissions. Variable valve timing provided some performance benefit; however, even greater performance improvement was obtained through induction system tuning which could be accomplished with far less complexity.

  7. Real-time measurements of jet aircraft engine exhaust.

    PubMed

    Rogers, Fred; Arnott, Pat; Zielinska, Barbara; Sagebiel, John; Kelly, Kerry E; Wagner, David; Lighty, JoAnn S; Sarofim, Adel F

    2005-05-01

    Particulate-phase exhaust properties from two different types of ground-based jet aircraft engines--high-thrust and turboshaft--were studied with real-time instruments on a portable pallet and additional time-integrated sampling devices. The real-time instruments successfully characterized rapidly changing particulate mass, light absorption, and polycyclic aromatic hydrocarbon (PAH) content. The integrated measurements included particulate-size distributions, PAH, and carbon concentrations for an entire test run (i.e., "run-integrated" measurements). In all cases, the particle-size distributions showed single modes peaking at 20-40nm diameter. Measurements of exhaust from high-thrust F404 engines showed relatively low-light absorption compared with exhaust from a turboshaft engine. Particulate-phase PAH measurements generally varied in phase with both net particulate mass and with light-absorbing particulate concentrations. Unexplained response behavior sometimes occurred with the real-time PAH analyzer, although on average the real-time and integrated PAH methods agreed within the same order of magnitude found in earlier investigations.

  8. Field Tests of a Laser Raman Measurement System for Aircraft Engine Exhaust Emissions

    DTIC Science & Technology

    1974-10-01

    practical one. The advantages of optical exhaust gas measurements versus probing systems has been demonstrated. It now remains to solve the remaining...Raman system NOVA digital data processor has the capability to service such additional measurements. If velocity information is desired a study should be...AD/A-003 648 FIELD TESTS OF A LASER RAMAN MEASURE- MENT SYSTEM FOR AIRCRAFT ENGINE EXHAUST EMISSIONS Donald A. Leunard Avoo Everett Researoh

  9. 77 FR 76842 - Exhaust Emissions Standards for New Aircraft Gas Turbine Engines and Identification Plate for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-31

    ... action revises the standards for oxides of nitrogen and test procedures for exhaust emissions based on... Environmental Protection Agency (EPA) proposed new aircraft engine emission standards for oxides of nitrogen (NO... Protection (CAEP) of ICAO uses to differentiate the CAEP work cycles that produce new standards. For...

  10. Jet engine exhaust emissions of high altitude commercial aircraft projected to 1990

    NASA Technical Reports Server (NTRS)

    Grobman, J.; Ingebo, R. D.

    1974-01-01

    Projected minimum levels of engine exhaust emissions that may be practicably achievable for future commercial aircraft operating at high-altitude cruise conditions are presented. The forecasts are based on:(1) current knowledge of emission characteristics of combustors and augmentors; (2) the status of combustion research in emission reduction technology; and (3) predictable trends in combustion systems and operating conditions as required for projected engine designs that are candidates for advanced subsonic or supersonic commercial aircraft fueled by either JP fuel, liquefied natural gas, or hydrogen. Results are presented for cruise conditions in terms of both an emission index (g constituent/kg fuel) and an emission rate (g constituent/hr).

  11. Forecast of jet engine exhaust emissions for future high altitude commercial aircraft

    NASA Technical Reports Server (NTRS)

    Grobman, J.; Ingebo, R. D.

    1974-01-01

    Projected minimum levels of engine exhaust emissions that may be practicably achievable for future commercial aircraft operating at high altitude cruise conditions are presented. The forecasts are based on: (1) current knowledge of emission characteristics of combustors and augmentors; (2) the current status of combustion research in emission reduction technology; (3) predictable trends in combustion systems and operating conditions as required for projected engine designs that are candidates for advanced subsonic or supersonic commercial aircraft. Results are presented for cruise conditions in terms of an emission index, g pollutant/kg fuel. Two sets of engine exhaust emission predictions are presented: the first, based on an independent NASA study and the second, based on the consensus of an ad hoc committee composed of industry, university, and government representatives. The consensus forecasts are in general agreement with the NASA forecasts.

  12. Performance Characteristics of an Aircraft Engine with Exhaust Turbine Supercharger

    DTIC Science & Technology

    1941-05-01

    installation of’the ex- haust turbine supercha~ger. The two piston rods at oppb- si t e ends of the s e r vo c~rl iuder ware connect a d to the aut 0... crankshaft through multispeed gears. INTRODUCTION It is the function of superchargers in general to aug- Dent the porforcance of an internal-combustion engine...to the arbitrary design limit of the turbine and blower combination, the unit should be capable of main- taining approximate12r sea-level operating

  13. Chemical composition and photochemical reactivity of exhaust from aircraft turbine engines

    NASA Astrophysics Data System (ADS)

    Spicer, C. W.; Holdren, M. W.; Riggin, R. M.; Lyon, T. F.

    1994-10-01

    Assessment of the environmental impact of aircraft emissions is required by planners and policy makers. Seveal areas of concern are: 1. exposure of airport workers and urban residents to toxic chemicals emitted when the engines operate at low power (idle and taxi) on the ground; 2. contributions to urban photochemical air pollution of aircraft volatile organic and nitrogen oxides emissions from operations around airports; and 3. emissions of nitrogen oxides and particles during high-altitude operation. The environmental impact of chemicals emitted from jet aircraft turbine engines has not been firmly established due to lack of data regarding emission rates and identities of the compounds emitted. This paper describes an experimental study of two different aircraft turbine engines designed to determine detailed organic emissions, as well as emissions of inorganic gases. Emissions were measured at several engine power settings. Measurements were made of detailed organic composition from C1 through C17, CO, CO2, NO, NOx, and polycyclic aromatic hydrocarbons. Measurements were made using a multi-port sampling pro be positioned directly behind the engine in the exhaust exit plane. The emission measurements have been used to determine the organic distribution by carbon number and the distribution by compound class at each engine power level. The sum of the organic species was compared with an independent measurement of total organic carbon to assess the carbon mass balance. A portion of the exhaust was captured and irradiated in outdoor smog chambers to assess the photochemical reactivity of the emissions with respect to ozone formation. The reactivity of emissions from the two engines was apportioned by chemical compound class.

  14. Aircraft engine exhaust emissions and other airport-related contributions to ambient air pollution: A review

    NASA Astrophysics Data System (ADS)

    Masiol, Mauro; Harrison, Roy M.

    2014-10-01

    Civil aviation is fast-growing (about +5% every year), mainly driven by the developing economies and globalisation. Its impact on the environment is heavily debated, particularly in relation to climate forcing attributed to emissions at cruising altitudes and the noise and the deterioration of air quality at ground-level due to airport operations. This latter environmental issue is of particular interest to the scientific community and policymakers, especially in relation to the breach of limit and target values for many air pollutants, mainly nitrogen oxides and particulate matter, near the busiest airports and the resulting consequences for public health. Despite the increased attention given to aircraft emissions at ground-level and air pollution in the vicinity of airports, many research gaps remain. Sources relevant to air quality include not only engine exhaust and non-exhaust emissions from aircraft, but also emissions from the units providing power to the aircraft on the ground, the traffic due to the airport ground service, maintenance work, heating facilities, fugitive vapours from refuelling operations, kitchens and restaurants for passengers and operators, intermodal transportation systems, and road traffic for transporting people and goods in and out to the airport. Many of these sources have received inadequate attention, despite their high potential for impact on air quality. This review aims to summarise the state-of-the-art research on aircraft and airport emissions and attempts to synthesise the results of studies that have addressed this issue. It also aims to describe the key characteristics of pollution, the impacts upon global and local air quality and to address the future potential of research by highlighting research needs.

  15. Jet aircraft engine exhaust emissions database development: Year 1990 and 2015 scenarios

    NASA Technical Reports Server (NTRS)

    Landau, Z. Harry; Metwally, Munir; Vanalstyne, Richard; Ward, Clay A.

    1994-01-01

    Studies relating to environmental emissions associated with the High Speed Civil Transport (HSCT) military jet and charter jet aircraft were conducted by McDonnell Douglas Aerospace Transport Aircraft. The report includes engine emission results for baseline 1990 charter and military scenario and the projected jet engine emissions results for a 2015 scenario for a Mach 1.6 HSCT charter and military fleet. Discussions of the methodology used in formulating these databases are provided.

  16. Multispectral imaging of aircraft exhaust

    NASA Astrophysics Data System (ADS)

    Berkson, Emily E.; Messinger, David W.

    2016-05-01

    Aircraft pollutants emitted during the landing-takeoff (LTO) cycle have significant effects on the local air quality surrounding airports. There are currently no inexpensive, portable, and unobtrusive sensors to quantify the amount of pollutants emitted from aircraft engines throughout the LTO cycle or to monitor the spatial-temporal extent of the exhaust plume. We seek to thoroughly characterize the unburned hydrocarbon (UHC) emissions from jet engine plumes and to design a portable imaging system to remotely quantify the emitted UHCs and temporally track the distribution of the plume. This paper shows results from the radiometric modeling of a jet engine exhaust plume and describes a prototype long-wave infrared imaging system capable of meeting the above requirements. The plume was modeled with vegetation and sky backgrounds, and filters were selected to maximize the detectivity of the plume. Initial calculations yield a look-up chart, which relates the minimum amount of emitted UHCs required to detect the presence of a plume to the noise-equivalent radiance of a system. Future work will aim to deploy the prototype imaging system at the Greater Rochester International Airport to assess the applicability of the system on a national scale. This project will help monitor the local pollution surrounding airports and allow better-informed decision-making regarding emission caps and pollution bylaws.

  17. Identification of lubrication oil in the particulate matter emissions from engine exhaust of in-service commercial aircraft.

    PubMed

    Yu, Zhenhong; Herndon, Scott C; Ziemba, Luke D; Timko, Michael T; Liscinsky, David S; Anderson, Bruce E; Miake-Lye, Richard C

    2012-09-04

    Lubrication oil was identified in the organic particulate matter (PM) emissions of engine exhaust plumes from in-service commercial aircraft at Chicago Midway Airport (MDW) and O'Hare International Airport (ORD). This is the first field study focused on aircraft lubrication oil emissions, and all of the observed plumes described in this work were due to near-idle engine operations. The identification was carried out with an Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-ToF AMS) via a collaborative laboratory and field investigation. A characteristic mass marker of lubrication oil, I(85)/I(71), the ratio of ion fragment intensity between m/z = 85 and 71, was used to distinguish lubrication oil from jet engine combustion products. This AMS marker was based on ion fragmentation patterns measured using electron impact ionization for two brands of widely used lubrication oil in a laboratory study. The AMS measurements of exhaust plumes from commercial aircraft in this airport field study reveal that lubrication oil is commonly present in organic PM emissions that are associated with emitted soot particles, unlike the purely oil droplets observed at the lubrication system vent. The characteristic oil marker, I(85)/I(71), was applied to quantitatively determine the contribution from lubrication oil in measured aircraft plumes, which ranges from 5% to 100%.

  18. Extrapolating Ground-Based Aircraft Engine Exhaust Emissions to Cruise Conditions: Lessons From the 2013 ACCESS Chase Plane Experiment

    NASA Astrophysics Data System (ADS)

    Moore, R.; Shook, M.; Thornhill, K. L.; Winstead, E.; Anderson, B. E.

    2011-12-01

    Aircraft engine emissions constitute a tiny fraction of the global black carbon mass, but can have a disproportionate climatic impact because they are emitted high in the troposphere and in remote regions with otherwise low aerosol concentrations. Consequently, these particles are likely to strongly influence cirrus and contrail formation by acting as ice nuclei (IN). However, the ice nucleating properties of aircraft exhaust at relevant atmospheric conditions are not well known, and thus, the overall impact of aviation on cloud formation remains very uncertain. While a number of aircraft engine emissions studies have previously been conducted at sea level temperature and pressure (e.g., APEX, AAFEX-1 and 2), it unclear the extent to which exhaust emissions on the ground translate to emissions at cruise conditions with much lower inlet gas temperatures and pressures. To address this need, the NASA Alternative Fuel Effects on Contrails and Cruise Emissions (ACCESS) was conducted in February-April, 2013 to examine the aerosol and gas emissions from the NASA DC-8 under a variety of different fuel types, engine power, and altitude/meteorological conditions. Two different fuel types were studied: a traditional JP-8 fuel and a 50:50 blend of JP-8 and a camelina-based hydro-treated renewable jet (HRJ) fuel. Emissions were sampled using a comprehensive suite of gas- and aerosol-phase instrumentation integrated on an HU-25 Falcon jet that was positioned in the DC-8 exhaust plume at approximately 100-500m distance behind the engines. In addition, a four-hour ground test was carried out with sample probes positioned at 30 m behind each of the inboard engines. Measurements of aerosol concentration, size distribution, soot mass, and hygroscopicity were carried out along with trace gas measurements of CO2, NO, NO2, O3, and water vapor. NOx emissions were reconciled by employing the well-established Boeing method for normalizing engine fuel flow rates to STP; however, comparison

  19. Extrapolating Ground-Based Aircraft Engine Exhaust Emissions to Cruise Conditions: Lessons From the 2013 ACCESS Chase Plane Experiment

    NASA Astrophysics Data System (ADS)

    Moore, R.; Shook, M.; Thornhill, K. L.; Winstead, E.; Anderson, B. E.

    2013-12-01

    Aircraft engine emissions constitute a tiny fraction of the global black carbon mass, but can have a disproportionate climatic impact because they are emitted high in the troposphere and in remote regions with otherwise low aerosol concentrations. Consequently, these particles are likely to strongly influence cirrus and contrail formation by acting as ice nuclei (IN). However, the ice nucleating properties of aircraft exhaust at relevant atmospheric conditions are not well known, and thus, the overall impact of aviation on cloud formation remains very uncertain. While a number of aircraft engine emissions studies have previously been conducted at sea level temperature and pressure (e.g., APEX, AAFEX-1 and 2), it unclear the extent to which exhaust emissions on the ground translate to emissions at cruise conditions with much lower inlet gas temperatures and pressures. To address this need, the NASA Alternative Fuel Effects on Contrails and Cruise Emissions (ACCESS) was conducted in February-April, 2013 to examine the aerosol and gas emissions from the NASA DC-8 under a variety of different fuel types, engine power, and altitude/meteorological conditions. Two different fuel types were studied: a traditional JP-8 fuel and a 50:50 blend of JP-8 and a camelina-based hydro-treated renewable jet (HRJ) fuel. Emissions were sampled using a comprehensive suite of gas- and aerosol-phase instrumentation integrated on an HU-25 Falcon jet that was positioned in the DC-8 exhaust plume at approximately 100-500m distance behind the engines. In addition, a four-hour ground test was carried out with sample probes positioned at 30 m behind each of the inboard engines. Measurements of aerosol concentration, size distribution, soot mass, and hygroscopicity were carried out along with trace gas measurements of CO2, NO, NO2, O3, and water vapor. NOx emissions were reconciled by employing the well-established Boeing method for normalizing engine fuel flow rates to STP; however, comparison

  20. Integrated exhaust gas analysis system for aircraft turbine engine component testing

    NASA Technical Reports Server (NTRS)

    Summers, R. L.; Anderson, R. C.

    1985-01-01

    An integrated exhaust gas analysis system was designed and installed in the hot-section facility at the Lewis Research Center. The system is designed to operate either manually or automatically and also to be operated from a remote station. The system measures oxygen, water vapor, total hydrocarbons, carbon monoxide, carbon dioxide, and oxides of nitrogen. Two microprocessors control the system and the analyzers, collect data and process them into engineering units, and present the data to the facility computers and the system operator. Within the design of this system there are innovative concepts and procedures that are of general interest and application to other gas analysis tasks.

  1. Hygroscopic Properties of Aircraft Engine Exhaust Aerosol Produced From Traditional and Alternative Fuels

    NASA Astrophysics Data System (ADS)

    Moore, R.; Ziemba, L. D.; Beyersdorf, A. J.; Thornhill, K. L.; Winstead, E. L.; Crumeyrolle, S.; Chen, G.; Anderson, B. E.

    2012-12-01

    Aircraft emissions of greenhouse gases and aerosols constitute an important component of anthropogenic climate forcing, of which aerosol-cloud interactions remain poorly understood. It is currently thought that the ability of these aerosols to alter upper tropospheric cirrus cloud properties may produce radiative forcings many times larger than the impact of linear contrails alone and which may partially offset the impact of greenhouse gas emissions from aviation (Burkhardt and Karcher, Nature, 2011). Consequently, it is important to characterize the ability of these engine-emitted aerosol to act as cloud condensation nuclei (CCN) and ice nuclei (IN) to form clouds. While a number of studies in the literature have examined aerosol-cloud interactions for laboratory-generated soot or from aircraft engines burning traditional fuels, limited attention has been given to how switching to alternative jet fuels impacts the ability of engine-emitted aerosols to form clouds. The key to understanding these changes is the aerosol hygroscopicity. To address this need, the second NASA Alternative Aviation Fuel Experiment (AAFEX-II) was conducted in 2011 to examine the aerosol emissions from the NASA DC-8 under a variety of different engine power and fuel type conditions. Five fuel types were considered including traditional JP-8 fuel, synthetic Fischer-Tropsh (FT) fuel , sulfur-doped FT fuel (FTS) , hydrotreated renewable jet (HRJ) fuel, and a 50:50 blend of JP-8 with HRJ. Emissions were sampled from the DC-8 on the airport jetway at a distance of 145 meters downwind of the engine by a comprehensive suite of aerosol instrumentation that provided information on the aerosol concentration, size distribution, soot mass, and CCN activity. Concurrent measurements of carbon dioxide were used to account for plume dilution so that characteristic emissions indices could be determined. It is found that both engine power and fuel type significantly influence the hygroscopic properties of

  2. Subsidence of aircraft engine exhaust in the stratosphere: Implications for calculated ozone depletions

    NASA Technical Reports Server (NTRS)

    Rodriguez, J. M.; Shia, R.-L.; Ko, M. K. W.; Heisey, C. W.; Weistenstein, D. K.; Miake-Lye, R. C.; Kolb, C. E.

    1994-01-01

    The deposition altitude of nitrogen oxides and other exhaust species emitted by stratospheric aircraft is a crucial parameter in determining the impact of these emissions on stratospheric ozone. We have utilized a model for the wake of a High-Speed Civil Transport (HSCT) to estimate the enhancements in water and reductions in ozone in these wakes as a function of time. Radiative calculations indicate differential cooling rates as large as -5K/day at the beginning of the far-wake regime, mostly due to the enhanced water abundance. These cooling rates would imply a net sinking of the wakes of about 1.2 km after three days in the limit of no mixing. Calculated mid-latitude column ozone reductions due to emissions from a Mach 2.4 HSCT would then change from about -1% to -06%. However, more realistic calculations adopting moderate mixing for the wake reduce the net sinking to less than 0.2 km, making the impact of radiative subsidence negligible.

  3. Experimental clean combustor program, phase 1. [aircraft exhaust/gas analysis - gas turbine engines

    NASA Technical Reports Server (NTRS)

    Roberts, R.; Peduzzi, A.; Vitti, G. E.

    1975-01-01

    A program of screening three low emission combustors for conventional takeoff and landing, by testing and analyzing thirty-two configurations is presented. Configurations were tested that met the emission goals at idle operating conditions for carbon monoxide and for unburned hydrocarbons (emission index values of 20 and 4, respectively). Configurations were also tested that met a smoke number goal of 15 at sea-level take-off conditions. None of the configurations met the goal for oxides of nitrogen emissions at sea-level take-off conditions. The best configurations demonstrated oxide of nitrogen emission levels that were approximately 61 percent lower than those produced by the JT9D-7 engine, but these levels were still approximately 24 percent above the goal of an emission index level of 10. Additional combustor performance characteristics, including lean blowout, exit temperature pattern factor and radial profile, pressure loss, altitude stability, and altitude relight characteristics were documented. The results indicate the need for significant improvement in the altitude stability and relight characteristics. In addition to the basic program for current aircraft engine combustors, seventeen combustor configurations were evaluated for advanced supersonic technology applications. The configurations were tested at cruise conditions, and a conceptual design was evolved.

  4. Calculations of economy of 18-cylinder radial aircraft engine with exhaust-gas turbine geared to the crankshaft

    NASA Technical Reports Server (NTRS)

    Hannum, Richard W; Zimmerman, Richard H

    1945-01-01

    Calculations based on dynamometer test-stand data obtained on an 18-cylinder radial engine were made to determine the improvement in fuel consumption that can be obtained at various altitudes by gearing an exhaust-gas turbine to the engine crankshaft in order to increase the engine-shaft work.

  5. 78 FR 63015 - Exhaust Emissions Standards for New Aircraft Gas Turbine Engines and Identification Plate for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-23

    ... kilonewtons (kN) (76 FR 45012). The EPA also proposed adopting the gas turbine engine test procedures of the... 18, 2012 (77 FR 36342), and was effective July 18, 2012. On December 31, 2012, the FAA published a final rule with a request for comments (77 FR 76842) adopting the EPA's new emissions standards in...

  6. 78 FR 63017 - Exhaust Emissions Standards for New Aircraft Gas Turbine Engines and Identification Plate for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-23

    ... engines with rated thrusts greater than 26.7 kilonewtons (kN) (76 FR 45012). The EPA also proposed...). The final rule adopting these proposals was published on June 18, 2012 (77 FR 36342), and was... (77 FR 76842) adopting the EPA's new emissions standards in part 34. Although the EPA's NPRM...

  7. Diesel engine exhaust

    Integrated Risk Information System (IRIS)

    Diesel engine exhaust ; CASRN N.A . Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Ef

  8. Detection of aircraft exhaust in hyperspectral image data

    NASA Astrophysics Data System (ADS)

    Lane, Sarah E.; West, Leanne L.; Gimmestad, Gary G.; Smith, William L., Sr.; Burdette, Edward M.

    2011-10-01

    The use of a hyperspectral imaging system for the detection of gases has been investigated, and algorithms have been developed for various applications. Of particular interest here is the ability to use these algorithms in the detection of the wake disturbances trailing an aircraft. A dataset of long wave infrared (LWIR) hyperspectral datacubes taken with a Telops Hyper-Cam at Hartsfield-Jackson International Airport in Atlanta, Georgia is investigated. The methodology presented here assumes that the aircraft engine exhaust gases will become entrained in wake vortices that develop; therefore, if the exhaust can be detected upon exiting the engines, it can be followed through subsequent datacubes until the vortex disturbance is detected. Gases known to exist in aircraft exhaust are modeled, and the Adaptive Coherence/Cosine Estimator (ACE) is used to search for these gases. Although wake vortices have not been found in the data, an unknown disturbance following the passage of the aircraft has been discovered.

  9. 40 CFR 87.21 - Exhaust emission standards for Tier 4 and earlier engines.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF AIR POLLUTION FROM AIRCRAFT AND AIRCRAFT ENGINES Exhaust Emissions (New Aircraft Gas Turbine Engines) § 87.21 Exhaust emission standards for Tier 4 and earlier... apply for aircraft engines manufactured before July 18, 2012 and certain engines exempted under §...

  10. 40 CFR 87.21 - Exhaust emission standards for Tier 4 and earlier engines.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF AIR POLLUTION FROM AIRCRAFT AND AIRCRAFT ENGINES Exhaust Emissions (New Aircraft Gas Turbine Engines) § 87.21 Exhaust emission standards for Tier 4 and earlier... apply for aircraft engines manufactured before July 18, 2012 and certain engines exempted under §...

  11. Task-specific tailored multiple-reflection mirror systems for sensitivity enhancement of spectroscopic measurements: application for aircraft engine exhaust emission measurements with FT-IR spectro

    NASA Astrophysics Data System (ADS)

    Brockmann, Klaus; Kurtenbach, Ralf; Kriesche, Volker; Wiesen, Peter; Heland, Joerg; Schaefer, Klaus

    1999-09-01

    Multi-path reflection mirror systems in White- or Herriott- type configuration have been widely used to enhance the absorption path-length and thus the sensitivity of laboratory spectroscopic systems, e.g. for smog chamber studies and molecular spectroscopy. Field studies, for instance using mobile tunable diode laser spectroscopy have widened the range of applications of these mirror systems for specific measurement tasks. In this paper a special designed White-type system mounted in two racks with 5 m base-length and adjustable optical path-length up to 74 passes is described. This system has been tested and successfully used to enhance the sensitivity of non-intrusive FT-IR measurements of aircraft engine exhaust emissions in the harsh environment of an engine test bed. The open cell around the engine plume including the transfer optics for the adaption of the spectrometers in a separate room allowed manual switching between passive FT-IR emission measurements, FT-IR absorption measurements with the cell, and, by covering the infrared source (globar) with a shutter, multi-path FT-IR emission measurements. Tests prior to the aircraft engine measurements were made to investigate the influence of different path- lengths, the position of the plume in the White cell, soot in the exhaust gas, and vibrations of the mirrors. The FT-IR spectra from all three measurement modes using the White cell during the engine measurements were found to be of good quality and the results of the analyses were comparable to the results from intrusive measurement systems.

  12. Remote passive detection of aircraft exhausts at airports

    NASA Astrophysics Data System (ADS)

    Schaefer, Klaus P.; Jahn, Carsten; Harig, Roland; Aleyt, Christian; Rusch, Peter

    Emissions from vented sources are often important inputs for the development of emission inventories and contribute to local air pollution and global enhancement of greenhouse gases. Aircraft engines are part of these emission sources. A passive measurement technique such as FTIR emission spectrometry is more cost effective and faster in operation for the determination of the composition of hot exhausts of this kind than other measurement systems as e.g. in situ techniques. Within the scope of aircraft emission investigations the measurements were performed from a measurement van which is equipped with an FTIR spectrometer of high spectral resolution coupled with a telescope and a two-axis movable mirror for rapid orientation towards the emission sources. At airports the emission indices of CO2, CO and NO of main engines and auxiliary power units of standing aircraft were determined. The measurement time is about one minute. The accuracy is better than 30 % as found from burner experiments with calibration gases (CO and NO). The method is also applied to detect exhausts of flares and smoke stacks. Currently, a new scanning FTIR-system is developed. The system allows imaging of the exhaust gas and rapid automated alignment of the field of view. The goal of the new development is to measure aircraft exhausts during normal operations at the airport. The spectrometer is coupled with a camera giving an image of the scenery so that a rapid selection of the hottest exhaust area is possible. It is planned to equip the system with an infrared camera for automatic tracking of this area with the scanning mirror so that measurements of the exhausts of a moving aircraft are possible.

  13. Stratospheric aircraft exhaust plume and wake chemistry

    NASA Technical Reports Server (NTRS)

    Miake-Lye, R. C.; Martinez-Sanchez, M.; Brown, R. C.; Kolb, C. E.; Worsnop, D. R.; Zahniser, M. S.; Robinson, G. N.; Rodriguez, J. M.; Ko, M. K. W.; Shia, R-L.

    1993-01-01

    Progress to date in an ongoing study to analyze and model emissions leaving a proposed High Speed Civil Transport (HSCT) from when the exhaust gases leave the engine until they are deposited at atmospheric scales in the stratosphere is documented. A kinetic condensation model was implemented to predict heterogeneous condensation in the plume regime behind an HSCT flying in the lower stratosphere. Simulations were performed to illustrate the parametric dependence of contrail droplet growth on the exhaust condensation nuclei number density and size distribution. Model results indicate that the condensation of water vapor is strongly dependent on the number density of activated CN. Incorporation of estimates for dilution factors into a Lagrangian box model of the far-wake regime with scale-dependent diffusion indicates negligible decrease in ozone and enhancement of water concentrations of 6-13 times background, which decrease rapidly over 1-3 days. Radiative calculations indicate a net differential cooling rate of the plume about 3K/day at the beginning of the wake regime, with a total subsidence ranging between 0.4 and 1 km. Results from the Lagrangian plume model were used to estimate the effect of repeated superposition of aircraft plumes on the concentrations of water and NO(y) along a flight corridor. Results of laboratory studies of heterogeneous chemistry are also described. Kinetics of HCl, N2O5 and ClONO2 uptake on liquid sulfuric acid were measured as a function of composition and temperature. Refined measurements of the thermodynamics of nitric acid hydrates indicate that metastable dihydrate may play a role in the nucleation of more stable trihydrates PSC's.

  14. Turbocharged engine with exhaust purifier

    SciTech Connect

    Tadokoro, T.; Matsuda, I.; Okimoto, H.

    1986-09-23

    The patent described a control system for an automobile engine having intake and exhaust systems for respectively conducting intake gases to and exhaust gases from the engine, which comprises, in combination: a turbocharger including a turbine disposed in the exhaust system and adapted to be driven by the flow of the exhaust gases therethrough and a blower disposed in the intake system and drivingly connected with the turbine for supercharging the intake gases; and exhaust purifying device disposed in the exhaust system downstream of the turbine with respect to the direction of flow of the exhaust gases; a regulating means for varying the effective cross-section of a portion of the exhaust system leading to the turbine; a control means for controlling the regulating means in dependence on an operating condition of the engine, the control means causing the regulating means to decrease the effective cross-section during a low speed operating condition, but to increase the effective cross-section during a high speed operating condition of the engine.

  15. A Preliminary Study of the Prevention of Ice on Aircraft by the Use of Engine-exhaust Heat

    NASA Technical Reports Server (NTRS)

    Rodert, Lewis A

    1939-01-01

    An investigation was made in the N.A.C.A. ice tunnel at air temperatures from 20 degrees to 28 degrees Fahrenheit and at a velocity of 80 miles per hour to determine whether ice formations on a model wing could be prevented by the use of the heat from the engine-exhaust gas. Various spanwise duct systems were tested in a 6-foot-chord N.A.C.A. 23012 wing model. The formation of ice over the entire wing chord was prevented by the direct heating of the forward 10 percent of the wing by hot air, which was passed through leading-edge ducts. Under dry conditions, enough heat to maintain the temperature of the forward 10 percent of the wing at about 200 degrees Fahrenheit above that of the ambient air was required for the prevention of ice formation. The air temperature in the ducts that was necessary to produce these skin temperatures varied from 360 degrees to 834 degrees Fahrenheit; the corresponding air velocities in the duct were 152 and 45 feet per second. Ice formations at the leading edge were locally prevented by air that passed over the interior of the wing surface at a velocity of 30 feet per second and a temperature of 122 degrees Fahrenheit.

  16. 14 CFR 25.941 - Inlet, engine, and exhaust compatibility.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant General § 25.941 Inlet, engine, and exhaust compatibility. For airplanes using variable inlet or exhaust system geometry, or both... malfunctions) upon the aerodynamic control of the airplane may not result in any condition that would...

  17. 14 CFR 25.941 - Inlet, engine, and exhaust compatibility.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant General § 25.941 Inlet, engine, and exhaust compatibility. For airplanes using variable inlet or exhaust system geometry, or both... malfunctions) upon the aerodynamic control of the airplane may not result in any condition that would...

  18. 14 CFR 25.941 - Inlet, engine, and exhaust compatibility.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant General § 25.941 Inlet, engine, and exhaust compatibility. For airplanes using variable inlet or exhaust system geometry, or both... malfunctions) upon the aerodynamic control of the airplane may not result in any condition that would...

  19. 14 CFR 25.941 - Inlet, engine, and exhaust compatibility.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant General § 25.941 Inlet, engine, and exhaust compatibility. For airplanes using variable inlet or exhaust system geometry, or both... malfunctions) upon the aerodynamic control of the airplane may not result in any condition that would...

  20. 14 CFR 25.941 - Inlet, engine, and exhaust compatibility.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant General § 25.941 Inlet, engine, and exhaust compatibility. For airplanes using variable inlet or exhaust system geometry, or both... malfunctions) upon the aerodynamic control of the airplane may not result in any condition that would...

  1. Aircraft Engine Emissions. [conference

    NASA Technical Reports Server (NTRS)

    1977-01-01

    A conference on a aircraft engine emissions was held to present the results of recent and current work. Such diverse areas as components, controls, energy efficient engine designs, and noise and pollution reduction are discussed.

  2. Pollutant monitoring of aircraft exhaust with multispectral imaging

    NASA Astrophysics Data System (ADS)

    Berkson, Emily E.; Messinger, David W.

    2016-10-01

    Communities surrounding local airports are becoming increasingly concerned about the aircraft pollutants emitted during the landing-takeoff (LTO) cycle, and their potential for negative health effects. Chicago, Los Angeles, Boston and London have all recently been featured in the news regarding concerns over the amount of airport pollution being emitted on a daily basis, and several studies have been published on the increased risks of cancer for those living near airports. There are currently no inexpensive, portable, and unobtrusive sensors that can monitor the spatial and temporal nature of jet engine exhaust plumes. In this work we seek to design a multispectral imaging system that is capable of tracking exhaust plumes during the engine idle phase, with a specific focus on unburned hydrocarbon (UHC) emissions. UHCs are especially potent to local air quality, and their strong absorption features allow them to act as a spatial and temporal plume tracer. Using a Gaussian plume to radiometrically model jet engine exhaust, we have begun designing an inexpensive, portable, and unobtrusive imaging system to monitor the relative amount of pollutants emitted by aircraft in the idle phase. The LWIR system will use two broadband filters to detect emitted UHCs. This paper presents the spatial and temporal radiometric models of the exhaust plume from a typical jet engine used on 737s. We also select filters for plume tracking, and propose an imaging system layout for optimal detectibility. In terms of feasibility, a multispectral imaging system will be two orders of magnitude cheaper than current unobtrusive methods (PTR-MS) used to monitor jet engine emissions. Large-scale impacts of this work will include increased capabilities to monitor local airport pollution, and the potential for better-informed decision-making regarding future developments to airports.

  3. Exhaust Emissions Characteristics for a General Aviation Light-Aircraft Teledyne Continental Motors (TCM) GTSIO-520-K Piston Engine.

    DTIC Science & Technology

    1979-12-01

    Testing 2 TCM GTSIO-520-K Engine Installation--NAFEC General 4 Aviation Pistion Engine Test Facility 3 NAFEC Air Induction (Airflow Measurement...adjusting the restriction on the capillary. The clamp compression was affected by the flexible material on which the clamp was mounted and the variable...General aviation pistion engine emission tests were conducted to provide the following categories of data: 1. Full-rich (or production fuel schedule

  4. Energy efficient aircraft engines

    NASA Technical Reports Server (NTRS)

    Chamberlin, R.; Miller, B.

    1979-01-01

    The three engine programs that constitute the propulsion portion of NASA's Aircraft Energy Efficiency Program are described, their status indicated, and anticipated improvements in SFC discussed. The three engine programs are: (1) engine component improvement, directed at current engines, (2) energy efficient engine, directed at new turbofan engines, and (3) advanced turboprops, directed at technology for advanced turboprop-powered aircraft with cruise speeds to Mach 0.8. Unique propulsion system interactive ties to the airframe resulting from engine design features to reduce fuel consumption are discussed. Emphasis is placed on the advanced turboprop since it offers the largest potential fuel savings of the three propulsion programs and also has the strongest interactive ties to the airframe.

  5. Energy efficient aircraft engines

    NASA Technical Reports Server (NTRS)

    Chamberlin, R.; Miller, B.

    1979-01-01

    The three engine programs that constitute the propulsion portion of NASA's Aircraft Energy Efficiency Program are described, their status indicated, and anticipated improvements in SFC discussed. The three engine programs are (1) Engine Component Improvement--directed at current engines, (2) Energy Efficiency Engine directed at new turbofan engines, and (3) Advanced Turboprops--directed at technology for advanced turboprop--powered aircraft with cruise speeds to Mach 0.8. Unique propulsion system interactive ties to the airframe resulting from engine design features to reduce fuel consumption are discussed. Emphasis is placed on the advanced turboprop since it offers the largest potential fuel savings of the three propulsion programs and also has the strongest interactive ties to the airframe.

  6. Aircraft engines. II

    SciTech Connect

    Smith, M.G. Jr.

    1988-01-01

    An account is given of the design features and prospective performance gains of ultrahigh bypass subsonic propulsion configurations and various candidate supersonic commercial aircraft powerplants. The supersonic types, whose enhanced thermodynamic cycle efficiency is considered critical to the economic viability of a second-generation SST, are the variable-cycle engine, the variable stream control engine, the turbine-bypass engine, and the supersonic-throughflow fan. Also noted is the turboramjet concept, which will be applicable to hypersonic aircraft whose airframe structure materials can withstand the severe aerothermodynamic conditions of this flight regime.

  7. Aircraft engine pollution reduction

    NASA Technical Reports Server (NTRS)

    Rudey, R. A.

    1972-01-01

    The effect of engine operation on the types and levels of the major aircraft engine pollutants is described and the major factors governing the formation of these pollutants during the burning of hydrocarbon fuel are discussed. Methods which are being explored to reduce these pollutants are discussed and their application to several experimental research programs are pointed out. Results showing significant reductions in the levels of carbon monoxide, unburned hydrocarbons, and oxides of nitrogen obtained from experimental combustion research programs are presented and discussed to point out potential application to aircraft engines.

  8. Hyper-spectral imaging of aircraft exhaust plumes

    NASA Astrophysics Data System (ADS)

    Bowen, Spencer; Bradley, Kenneth; Gross, Kevin; Perram, Glen; Marciniak, Michael

    2008-10-01

    An imaging Fourier-transform spectrometer has been used to determine low spatial resolution temperature and chemical species concentration distributions of aircraft jet engine exhaust plumes. An overview of the imaging Fourier transform spectrometer and the methodology of the project is presented. Results to date are shared and future work is discussed. Exhaust plume data from a Turbine Technologies, LTD, SR-30 turbojet engine at three engine settings was collected using a Telops Field-portable Imaging Radiometric Spectrometer Technology Mid-Wave Extended (FIRST-MWE). Although the plume exhibited high temporal frequency fluctuations, temporal averaging of hyper-spectral data-cubes produced steady-state distributions, which, when co-added and Fourier transformed, produced workable spectra. These spectra were then reduced using a simplified gaseous effluent model to fit forward-modeled spectra obtained from the Line-By-Line Radiative Transfer Model (LBLRTM) and the high-resolution transmission (HITRAN) molecular absorption database to determine approximate temperature and concentration distributions. It is theorized that further development of the physical model will produce better agreement between measured and modeled data.

  9. Optics in aircraft engines

    NASA Astrophysics Data System (ADS)

    Vachon, James; Malhotra, Subhash

    The authors describe optical IR&D (independent research and development) programs designed to demonstrate and evaluate optical technologies for incorporation into next-generation military and commercial aircraft engines. Using a comprehensive demonstration program to validate this technology in an on-engine environment, problems encountered can be resolved early and risk can be minimized. In addition to specific activities related to the optics demonstration on the fighter engine, there are other optical programs underway, including a solenoid control system, a light off detection system, and an optical communication link. Research is also underway in simplifying opto-electronics and exploiting multiplexing to further reduce cost and weight.

  10. Aircraft Engine Systems

    NASA Technical Reports Server (NTRS)

    Veres, Joseph

    2001-01-01

    This report outlines the detailed simulation of Aircraft Turbofan Engine. The objectives were to develop a detailed flow model of a full turbofan engine that runs on parallel workstation clusters overnight and to develop an integrated system of codes for combustor design and analysis to enable significant reduction in design time and cost. The model will initially simulate the 3-D flow in the primary flow path including the flow and chemistry in the combustor, and ultimately result in a multidisciplinary model of the engine. The overnight 3-D simulation capability of the primary flow path in a complete engine will enable significant reduction in the design and development time of gas turbine engines. In addition, the NPSS (Numerical Propulsion System Simulation) multidisciplinary integration and analysis are discussed.

  11. Fuel conservative aircraft engine technology

    NASA Technical Reports Server (NTRS)

    Nored, D. L.

    1978-01-01

    Technology developments for more fuel-efficiency subsonic transport aircraft are reported. Three major propulsion projects were considered: (1) engine component improvement - directed at current engines; (2) energy efficient engine - directed at new turbofan engines; and (3) advanced turboprops - directed at technology for advanced turboprop-powered aircraft. Each project is reviewed and some of the technologies and recent accomplishments are described.

  12. 40 CFR 87.23 - Exhaust emission standards for Tier 6 and Tier 8 engines.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Exhaust emission standards for Tier 6 and Tier 8 engines. 87.23 Section 87.23 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Emissions (New Aircraft Gas Turbine Engines) § 87.23 Exhaust emission standards for Tier 6 and Tier...

  13. Calibration and demonstration of a condensation nuclei counting system for airborne measurements of aircraft exhausted particles

    NASA Astrophysics Data System (ADS)

    Cofer, Wesley R.; Anderson, Bruce E.; Winstead, Edward L.; Bagwell, Donald R.

    A system of multiple continuous-flow condensation nuclei counters (CNC) was assembled, calibrated, and demonstrated on a NASA T-39 Sabreliner jet aircraft. The mission was to penetrate the exhaust plumes and/or contrails of other subsonic jet aircraft and determine the concentrations of submicrometer diameter aerosol particles. Mission criteria required rapid response measurements ( ˜ 1 s) at aircraft cruise altitudes (9-12 km). The CNC sampling system was optimized to operate at 160 Torr. Aerosol samples were acquired through an externally mounted probe. Installed downstream of the probe was a critical flow orifice that provided sample to the CNC system. The orifice not only controlled volumetric flow rate, but also dampened probe pressure/flow oscillations encountered in the turbulent aircraft-wake vortex environment. Laboratory calibrations with NaCl particles under representative conditions are reported that indicate small amounts of particle loss and a maximum measurement efficiency of ˜ 75% for particles with diameters ranging from ⩾ 0.01- ⩽ 0.18 μm Data from exhaust/contrail samplings of a NASA B757 and DC-8 at cruise altitude are discussed. Data include exhaust/contrail measurements made during periods in which the B757 port jet engine burned low-sulfur fuel while the starboard engine simultaneously burned specially prepared high-sulfur fuel. The data discussed highlight the CNC systems performance, and introduce new observations pertinent to the behavior of sulfur in aircraft exhaust aerosol chemistry.

  14. Abatement of an aircraft exhaust plume using aerodynamic baffles.

    PubMed

    Bennett, Michael; Christie, Simon M; Graham, Angus; Garry, Kevin P; Velikov, Stefan; Poll, D Ian; Smith, Malcolm G; Mead, M Iqbal; Popoola, Olalekan A M; Stewart, Gregor B; Jones, Roderic L

    2013-03-05

    The exhaust jet from a departing commercial aircraft will eventually rise buoyantly away from the ground; given the high thrust/power (i.e., momentum/buoyancy) ratio of modern aero-engines, however, this is a slow process, perhaps requiring ∼ 1 min or more. Supported by theoretical and wind tunnel modeling, we have experimented with an array of aerodynamic baffles on the surface behind a set of turbofan engines of 124 kN thrust. Lidar and point sampler measurements show that, as long as the intervention takes place within the zone where the Coanda effect holds the jet to the surface (i.e., within about 70 m in this case), then quite modest surface-mounted baffles can rapidly lift the jet away from the ground. This is of potential benefit in abating both surface concentrations and jet blast downstream. There is also some modest acoustic benefit. By distributing the aerodynamic lift and drag across an array of baffles, each need only be a fraction of the height of a single blast fence.

  15. Effect of air temperature and relative humidity at various fuel-air ratios on exhaust emissions on a per-mode basis of an Avco Lycoming 0-320 DIAD light aircraft engine. Volume 2: Individual data points

    NASA Technical Reports Server (NTRS)

    Skorobatckyi, M.; Cosgrove, D. V.; Meng, P. R.; Kempke, E. R.

    1976-01-01

    A carbureted four cylinder air cooled 0-320 DIAD Lycoming aircraft engine was tested to establish the effects of air temperature and humidity at various fuel-air ratios on the exhaust emissions on a per-mode basis. The test conditions included carburetor lean-out at air temperatures of 50, 59, 80, and 100 F at relative humidities of 0, 30, 60, and 80 percent. Temperature-humidity effects at the higher values of air temperature and relative humidity tested indicated that the HC and CO emissions increased significantly, while the NOx emissions decreased. Even at a fixed fuel-air ratio, the HC emissions increase and the NOx emissions decrease at the higher values of air temperature and humidity. Volume II contains the data taken at each of the individual test points.

  16. Two phase exhaust for internal combustion engine

    SciTech Connect

    Vuk, Carl T

    2011-11-29

    An internal combustion engine having a reciprocating multi cylinder internal combustion engine with multiple valves. At least a pair of exhaust valves are provided and each supply a separate power extraction device. The first exhaust valves connect to a power turbine used to provide additional power to the engine either mechanically or electrically. The flow path from these exhaust valves is smaller in area and volume than a second flow path which is used to deliver products of combustion to a turbocharger turbine. The timing of the exhaust valve events is controlled to produce a higher grade of energy to the power turbine and enhance the ability to extract power from the combustion process.

  17. Eye and respiratory irritants in jet engine exhaust.

    PubMed

    Miyamoto, Y

    1986-11-01

    It has been noted that eye and respiratory irritation frequently occurred in the ground crews and pilots working on the field behind an aircraft with a low smoke combustor (LSC) engine. This study was attempted to analyze the exhaust sampled at about 50 m behind the LSC J79 engines at idle power setting by means of a high performance liquid chromatography (HPLC) technique. Nine kinds of lower aliphatic carbonyl compound (seven aldehydes and two ketones) were identified. The concentration of formaldehyde was the highest among them, showing the value above the threshold reported by previous investigators. Concentration of NOx was simultaneously measured by a gas detector tube in the same sample. The exhaust of a conventional J79 engine, which has rarely caused irritation, was also analyzed by the same technique and the results were compared. It was concluded that formaldehyde plays a major role in causing irritation.

  18. An Experimental Investigation of Rectangular Exhaust-Gas Ejectors Applicable for Engine Cooling

    NASA Technical Reports Server (NTRS)

    Manganiello, Eugene J; Bogatsky, Donald

    1945-01-01

    An experimental investigation of rectangular exhaust-gas ejector pumps was conducted to provide data that would serve as a guide to the design of ejector applications for aircraft engines with marginal cooling. The pumping characteristics of rectangular ejectors actuated by the exhaust of a single-cylinder aircraft engine were determined for a range of ejector mixing-section area from 20 to 50 square inches, over-all length from 12 to 42 inches, aspect ratio from 1 to 5, diffusing exit area from 20 to 81 square inches, and exhaust-nozzle aspect ratio from 1 to 42.

  19. Ground-based aircraft exhaust measurements of a Lufthansa Airbus A340 using FTIR emission spectrometry

    NASA Astrophysics Data System (ADS)

    Schaefer, Klaus; Heland, Joerg

    1999-01-01

    The emission inventories of aircraft emissions are being set up using flight routing data and test rig measurements of the engine manufacturers for certification purposes which have to be extrapolated with respect to the actual parameters at cruise altitude. Precise data from in-service engines are not existing. FTIR-emission-spectroscopy as a remote sensing multi-component exhaust gas analysis method has been further developed to specify the traceable molecules in aircraft exhausts, to determine the detection limits, and to obtain reliable statements concerning its accuracy. The first measurement with the Airbus A340 engine CFM56-5C2 during run up tests at ground level showed the overall ability of the FTIR-emission system to analyze the exhausts of modern gas turbines with high bypass ratio and mixing of fan air into the exhausts before the nozzle exit. Good quality spectra were measured and analyzed with respect to the mixing rations of CO2, H2O, CO, NO, and N2O, and the emission indices of CO, NO, and N2O. Total measurement times at one thrust level should be about 15 minutes to obtain reliable result which can be compared to the ICAO data of this engine.

  20. 46 CFR 119.425 - Engine exhaust cooling.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Engine exhaust cooling. 119.425 Section 119.425 Shipping... Machinery Requirements § 119.425 Engine exhaust cooling. (a) Except as otherwise provided in this paragraph, all engine exhaust pipes must be water cooled. (1) Vertical dry exhaust pipes are permissible...

  1. 46 CFR 119.425 - Engine exhaust cooling.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Engine exhaust cooling. 119.425 Section 119.425 Shipping... Machinery Requirements § 119.425 Engine exhaust cooling. (a) Except as otherwise provided in this paragraph, all engine exhaust pipes must be water cooled. (1) Vertical dry exhaust pipes are permissible...

  2. Monitoring Engine Vibrations And Spectrum Of Exhaust

    NASA Technical Reports Server (NTRS)

    Martinez, Carol L.; Randall, Michael R.; Reinert, John W.

    1991-01-01

    Real-time computation of intensities of peaks in visible-light emission spectrum of exhaust combined with real-time spectrum analysis of vibrations into developmental monitoring technique providing up-to-the-second information on conditions of critical bearings in engine. Conceived to monitor conditions of bearings in turbopump suppling oxygen to Space Shuttle main engine, based on observations that both vibrations in bearings and intensities of visible light emitted at specific wavelengths by exhaust plume of engine indicate wear and incipient failure of bearings. Applicable to monitoring "health" of other machinery via spectra of vibrations and electromagnetic emissions from exhausts. Concept related to one described in "Monitoring Bearing Vibrations For Signs Of Damage", (MFS-29734).

  3. Workshop on Jet Exhaust Noise Reduction for Tactical Aircraft - NASA Perspective

    NASA Technical Reports Server (NTRS)

    Huff, Dennis L.; Henderson, Brenda S.

    2007-01-01

    Jet noise from supersonic, high performance aircraft is a significant problem for takeoff and landing operations near air bases and aircraft carriers. As newer aircraft with higher thrust and performance are introduced, the noise tends to increase due to higher jet exhaust velocities. Jet noise has been a subject of research for over 55 years. Commercial subsonic aircraft benefit from changes to the engine cycle that reduce the exhaust velocities and result in significant noise reduction. Most of the research programs over the past few decades have concentrated on commercial aircraft. Progress has been made by introducing new engines with design features that reduce the noise. NASA has recently started a new program called "Fundamental Aeronautics" where three projects (subsonic fixed wing, subsonic rotary wing, and supersonics) address aircraft noise. For the supersonics project, a primary goal is to understand the underlying physics associated with jet noise so that improved noise prediction tools and noise reduction methods can be developed for a wide range of applications. Highlights from the supersonics project are presented including prediction methods for broadband shock noise, flow measurement methods, and noise reduction methods. Realistic expectations are presented based on past history that indicates significant jet noise reduction cannot be achieved without major changes to the engine cycle. NASA s past experience shows a few EPNdB (effective perceived noise level in decibels) can be achieved using low noise design features such as chevron nozzles. Minimal thrust loss can be expected with these nozzles (< 0.5%) and they may be retrofitted on existing engines. In the long term, it is desirable to use variable cycle engines that can be optimized for lower jet noise during takeoff operations and higher thrust for operational performance. It is also suggested that noise experts be included early in the design process for engine nozzle systems to participate

  4. Alloy design for aircraft engines

    NASA Astrophysics Data System (ADS)

    Pollock, Tresa M.

    2016-08-01

    Metallic materials are fundamental to advanced aircraft engines. While perceived as mature, emerging computational, experimental and processing innovations are expanding the scope for discovery and implementation of new metallic materials for future generations of advanced propulsion systems.

  5. First direct sulfuric acid detection in the exhaust plume of a jet aircraft in flight

    NASA Astrophysics Data System (ADS)

    Curtius, J.; Sierau, B.; Arnold, F.; Baumann, R.; Busen, R.; Schulte, P.; Schumann, U.

    Sulfuric acid (SA) was for the first time directly detected in the exhaust plume of a jet aircraft in flight. The measurements were made by a novel aircraft-based VACA (Volatile Aerosol Component Analyzer) instrument of MPI-K Heidelberg while the research aircraft Falcon was chasing another research aircraft ATTAS. The VACA measures the total SA in the gas and in volatile submicron aerosol particles. During the chase the engines of the ATTAS alternatively burned sulfur-poor and sulfur-rich fuel. In the sulfur-rich plume very marked enhancements of total SA were observed of up to 1300 pptv which were closely correlated with ΔCO2 and ΔT and were far above the local ambient atmospheric background-level of typically 15-50 pptv. Our observations indicate a lower limit for the efficiency ɛ for fuel-sulfur conversion to SA of 0.34 %.

  6. NO(x) reduction additives for aircraft gas turbine engines

    NASA Technical Reports Server (NTRS)

    Adelman, Henry G.; Menees, Gene P.; Cambier, Jean-Luc

    1993-01-01

    The reduction of oxides of nitrogen (NO(x)) emissions from aircraft gas turbine engines is a vital part of the NASA High Speed Research Program. Emissions reductions are critical to the feasibility of future High Speed Civil Transports which operate at supersonic speeds in the stratosphere. It is believed that large fleets of such aircraft using conventional gas turbine engines would emit levels of NO(x) that would be harmful to the stratospheric ozone layer. Previous studies have shown that NO(x) emissions can be reduced from stationary powerplant exhausts by the addition of additives such as ammonia to the exhaust gases. Since the exhaust residence times, pressures and temperatures may be different for aircraft gas turbines, a study has been made of additive effectiveness for high speed, high altitude flight.

  7. Speciation and chemical evolution of nitrogen oxides in aircraft exhaust near airports.

    PubMed

    Wood, Ezra C; Herndon, Scott C; Timko, Michael T; Yelvington, Paul E; Miake-Lye, Richard C

    2008-03-15

    Measurements of nitrogen oxides from a variety of commercial aircraft engines as part of the JETS-APEX2 and APEX3 campaigns show that NOx (NOx [triple bond] NO + NO2) is emitted primarily in the form of NO2 at idle thrust and NO at high thrust. A chemical kinetics combustion model reproduces the observed NO2 and NOx trends with engine power and sheds light on the relevant chemical mechanisms. Experimental evidence is presented of rapid conversion of NO to NO2 in the exhaust plume from engines at low thrust. The rapid conversion and the high NO2/NOx emission ratios observed are unrelated to ozone chemistry. NO2 emissions from a CFM56-3B1 engine account for approximately 25% of the NOx emitted below 3000 feet (916 m) and 50% of NOx emitted below 500 feet (153 m) during a standard ICAO (International Civil Aviation Organization) landing-takeoff cycle. Nitrous acid (HONO) accounts for 0.5% to 7% of NOy emissions from aircraft exhaust depending on thrust and engine type. Implications for photochemistry near airports resulting from aircraft emissions are discussed.

  8. Measurements of nitrous acid in commercial aircraft exhaust at the Alternative Aviation Fuel Experiment.

    PubMed

    Lee, Ben H; Santoni, Gregory W; Wood, Ezra C; Herndon, Scott C; Miake-Lye, Richard C; Zahniser, Mark S; Wofsy, Steven C; Munger, J William

    2011-09-15

    The Alternative Aviation Fuel Experiment (AAFEX), conducted in January of 2009 in Palmdale, California, quantified aerosol and gaseous emissions from a DC-8 aircraft equipped with CFM56-2C1 engines using both traditional and synthetic fuels. This study examines the emissions of nitrous acid (HONO) and nitrogen oxides (NO(x) = NO + NO(2)) measured 145 m behind the grounded aircraft. The fuel-based emission index (EI) for HONO increases approximately 6-fold from idle to takeoff conditions but plateaus between 65 and 100% of maximum rated engine thrust, while the EI for NO(x) increases continuously. At high engine power, NO(x) EI is greater when combusting traditional (JP-8) rather than Fischer-Tropsch fuels, while HONO exhibits the opposite trend. Additionally, hydrogen peroxide (H(2)O(2)) was identified in exhaust plumes emitted only during engine idle. Chemical reactions responsible for emissions and comparison to previous measurement studies are discussed.

  9. Aircraft and Engine Development Testing

    DTIC Science & Technology

    1986-09-01

    Control in Flight * Integrated Inlet- engine * Power/weight Exceeds Unity F-lll * Advanced Engines * Augmented Turbofan * High Turbine Temperature...residence times). Also, fabrication of a small scale "hot" engine with rotating components such as compressors and turbines with cooled blades , is...capabil- ities are essential to meet the needs of current and projected aircraft and engine programs. The required free jet nozzles should be capable of

  10. Ice Prevention on Aircraft by Means of Engine Exhaust Heat and a Technical Study of Heat Transmission from a Clark Y Airfoil

    NASA Technical Reports Server (NTRS)

    Theodorsen, Theodore; Clay, William C

    1933-01-01

    This investigation was conducted to study the practicability of employing heat as a means of preventing the formation of ice on airplane wings. The report relates essentially to technical problems regarding the extraction of heat from the exhaust gases and its proper distribution over the exposed surfaces. In this connection a separate study has been made to determine the variation of the coefficient of heat transmission along the chord of a Clark Y airfoil. Experiments on ice prevention both in the laboratory and in flight show conclusively that it is necessary to heat only the front portion of the wing surface to effect complete prevention. Experiments in flight show that a vapor-heating system which extracts heat from the exhaust and distributes it to the wings is an entirely practical and efficient method for preventing ice formation.

  11. Exhaust gas recirculation in a homogeneous charge compression ignition engine

    DOEpatents

    Duffy, Kevin P.; Kieser, Andrew J.; Rodman, Anthony; Liechty, Michael P.; Hergart, Carl-Anders; Hardy, William L.

    2008-05-27

    A homogeneous charge compression ignition engine operates by injecting liquid fuel directly in a combustion chamber, and mixing the fuel with recirculated exhaust and fresh air through an auto ignition condition of the fuel. The engine includes at least one turbocharger for extracting energy from the engine exhaust and using that energy to boost intake pressure of recirculated exhaust gas and fresh air. Elevated proportions of exhaust gas recirculated to the engine are attained by throttling the fresh air inlet supply. These elevated exhaust gas recirculation rates allow the HCCI engine to be operated at higher speeds and loads rendering the HCCI engine a more viable alternative to a conventional diesel engine.

  12. Two stroke engine exhaust emissions separator

    DOEpatents

    Turner, Terry D.; Wilding, Bruce M.; McKellar, Michael G.; Raterman, Kevin T.

    2002-01-01

    A separator for substantially resolving at least one component of a process stream, such as from the exhaust of an internal combustion engine. The separator includes a body defining a chamber therein. A nozzle housing is located proximate the chamber. An exhaust inlet is in communication with the nozzle housing and the chamber. A nozzle assembly is positioned in the nozzle housing and includes a nozzle moveable within and relative to the nozzle housing. The nozzle includes at least one passage formed therethrough such that a process stream entering the exhaust inlet connection passes through the passage formed in the nozzle, which imparts a substantially rotational flow to the process stream as it enters the chamber. A positioning member is configured to position the nozzle relative to the nozzle housing in response to changes in process stream pressure to adjust flowrate of said process stream entering into the chamber.

  13. Two stroke engine exhaust emissions separator

    DOEpatents

    Turner, Terry D.; Wilding, Bruce M.; McKellar, Michael G.; Raterman, Kevin T.

    2003-04-22

    A separator for substantially resolving at least one component of a process stream, such as from the exhaust of an internal combustion engine. The separator includes a body defining a chamber therein. A nozzle housing is located proximate the chamber. An exhaust inlet is in communication with the nozzle housing and the chamber. A nozzle assembly is positioned in the nozzle housing and includes a nozzle moveable within and relative to the nozzle housing. The nozzle includes at least one passage formed therethrough such that a process stream entering the exhaust inlet connection passes through the passage formed in the nozzle and imparts a substantially rotational flow to the process stream as it enters the chamber. A positioning member is configured to position the nozzle relative to the nozzle housing in response to changes in process stream pressure thereby adjusting flowrate of said process stream entering into the chamber.

  14. Sulfuric Acid and Soot Particle Formation in Aircraft Exhaust

    NASA Technical Reports Server (NTRS)

    Pueschel, Rudolf F.; Verma, S.; Ferry, G. V.; Howard, S. D.; Vay, S.; Kinne, S. A.; Baumgardner, D.; Dermott, P.; Kreidenweis, S.; Goodman, J.; Gore, Waren J. Y. (Technical Monitor)

    1997-01-01

    A combination of CN counts, Ames wire impactor size analyses and optical particle counter data in aircraft exhaust results in a continuous particle size distribution between 0.01 micrometer and 1 micrometer particle radius sampled in the exhaust of a Boeing 757 research aircraft. The two orders of magnitude size range covered by the measurements correspond to 6-7 orders of magnitude particle concentration. CN counts and small particle wire impactor data determine a nucleation mode, composed of aircraft-emitted sulfuric acid aerosol, that contributes between 62% and 85% to the total aerosol surface area and between 31% and 34% to its volume. Soot aerosol comprises 0.5% of the surface area of the sulfuric acid aerosol. Emission indices are: EIH2SO4 = 0.05 g/kgFUEL and (0.2-0.5) g/kgFUEL (for 75 ppmm and 675 ppmm fuel-S, respectively), 2.5E4

  15. Acoustically shielded exhaust system for high thrust jet engines

    NASA Technical Reports Server (NTRS)

    Carey, John P. (Inventor); Lee, Robert (Inventor); Majjigi, Rudramuni K. (Inventor)

    1995-01-01

    A flade exhaust nozzle for a high thrust jet engine is configured to form an acoustic shield around the core engine exhaust flowstream while supplementing engine thrust during all flight conditions, particularly during takeoff. The flade airflow is converted from an annular 360.degree. flowstream to an arcuate flowstream extending around the lower half of the core engine exhaust flowstream so as to suppress exhaust noise directed at the surrounding community.

  16. Exhaust gas recirculation system for an internal combustion engine

    SciTech Connect

    Wu, Ko-Jen

    2013-05-21

    An exhaust gas recirculation system for an internal combustion engine comprises an exhaust driven turbocharger having a low pressure turbine outlet in fluid communication with an exhaust gas conduit. The turbocharger also includes a low pressure compressor intake and a high pressure compressor outlet in communication with an intake air conduit. An exhaust gas recirculation conduit fluidly communicates with the exhaust gas conduit to divert a portion of exhaust gas to a low pressure exhaust gas recirculation branch extending between the exhaust gas recirculation conduit and an engine intake system for delivery of exhaust gas thereto. A high pressure exhaust gas recirculation branch extends between the exhaust gas recirculation conduit and the compressor intake and delivers exhaust gas to the compressor for mixing with a compressed intake charge for delivery to the intake system.

  17. 46 CFR 119.430 - Engine exhaust pipe installation.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Engine exhaust pipe installation. 119.430 Section 119... INSTALLATION Specific Machinery Requirements § 119.430 Engine exhaust pipe installation. (a) The design of all... prevent backflow of water from reaching engine exhaust ports under normal conditions. (d) Pipes used...

  18. 46 CFR 182.425 - Engine exhaust cooling.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Engine exhaust cooling. 182.425 Section 182.425 Shipping...) MACHINERY INSTALLATION Specific Machinery Requirements § 182.425 Engine exhaust cooling. (a) Except as otherwise provided in this paragraph, all engine exhaust pipes must be water cooled. (1) Vertical...

  19. 46 CFR 182.430 - Engine exhaust pipe installation.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Engine exhaust pipe installation. 182.430 Section 182... 100 GROSS TONS) MACHINERY INSTALLATION Specific Machinery Requirements § 182.430 Engine exhaust pipe... must be so arranged as to prevent backflow of water from reaching engine exhaust ports under...

  20. 46 CFR 182.425 - Engine exhaust cooling.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Engine exhaust cooling. 182.425 Section 182.425 Shipping...) MACHINERY INSTALLATION Specific Machinery Requirements § 182.425 Engine exhaust cooling. (a) Except as otherwise provided in this paragraph, all engine exhaust pipes must be water cooled. (1) Vertical...

  1. 46 CFR 119.430 - Engine exhaust pipe installation.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Engine exhaust pipe installation. 119.430 Section 119... INSTALLATION Specific Machinery Requirements § 119.430 Engine exhaust pipe installation. (a) The design of all... prevent backflow of water from reaching engine exhaust ports under normal conditions. (d) Pipes used...

  2. 30 CFR 36.25 - Engine exhaust system.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Engine exhaust system. 36.25 Section 36.25... EQUIPMENT Construction and Design Requirements § 36.25 Engine exhaust system. (a) Construction. The exhaust system of the engine shall be designed to withstand an internal pressure equal to 4 times the...

  3. Flight-determined engine exhaust characteristics of an F404 engine in an F-18 airplane

    NASA Technical Reports Server (NTRS)

    Ennix, Kimberly A.; Burcham, Frank W., Jr.; Webb, Lannie D.

    1993-01-01

    Personnel at the NASA Langley Research Center (NASA-Langley) and the NASA Dryden Flight Research Facility (NASA-Dryden) recently completed a joint acoustic flight test program. Several types of aircraft with high nozzle pressure ratio engines were flown to satisfy a twofold objective. First, assessments were made of subsonic climb-to-cruise noise from flights conducted at varying altitudes in a Mach 0.30 to 0.90 range. Second, using data from flights conducted at constant altitude in a Mach 0.30 to 0.95 range, engineers obtained a high quality noise database. This database was desired to validate the Aircraft Noise Prediction Program and other system noise prediction codes. NASA-Dryden personnel analyzed the engine data from several aircraft that were flown in the test program to determine the exhaust characteristics. The analysis of the exhaust characteristics from the F-18 aircraft are reported. An overview of the flight test planning, instrumentation, test procedures, data analysis, engine modeling codes, and results are presented.

  4. Jet Engine Exhaust Analysis by Subtractive Chromatography

    DTIC Science & Technology

    1978-12-01

    and J. J. Brooks. Development of a portable miniature collection system for the exposure as- sessment within the microenvironment for carcinogens ...65 A-2. Recovery of acrylonitrile from standard sample generation system ...... ............. 66 B-I. Jet engine exhaust sampling and analysis...7 n-Butane 0.16 2.6 minutes 8 Propylene oxide 3.14 52 minutes 9 Acrylonitrile 9.35 2.6 hours 10 Phenanthrene 1.9 x 106 61 years 11 4-Bromodiphenyl

  5. Jet Engine Exhaust Nozzle Flow Effector

    NASA Technical Reports Server (NTRS)

    Turner, Travis L. (Inventor); Cano, Roberto J. (Inventor); Silox, Richard J. (Inventor); Buehrle, Ralph D. (Inventor); Cagle, Christopher M. (Inventor); Cabell, Randolph H. (Inventor); Hilton, George C. (Inventor)

    2014-01-01

    A jet engine exhaust nozzle flow effector is a chevron formed with a radius of curvature with surfaces of the flow effector being defined and opposing one another. At least one shape memory alloy (SMA) member is embedded in the chevron closer to one of the chevron's opposing surfaces and substantially spanning from at least a portion of the chevron's root to the chevron's tip.

  6. Jet Engine Exhaust Nozzle Flow Effector

    NASA Technical Reports Server (NTRS)

    Turner, Travis L. (Inventor); Cano, Roberto J. (Inventor); Silcox, Richard J. (Inventor); Buehrle, Ralph D. (Inventor); Cagle, Christopher M. (Inventor); Cabell, Randolph H. (Inventor); Hilton, George C. (Inventor)

    2011-01-01

    A jet engine exhaust nozzle flow effector is a chevron formed with a radius of curvature with surfaces of the flow effector being defined and opposing one another. At least one shape memory alloy (SMA) member is embedded in the chevron closer to one of the chevron's opposing surfaces and substantially spanning from at least a portion of the chevron's root to the chevron's tip.

  7. 14 CFR 34.82 - Sampling and analytical procedures for measuring smoke exhaust emissions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ..., DEPARTMENT OF TRANSPORTATION AIRCRAFT FUEL VENTING AND EXHAUST EMISSION REQUIREMENTS FOR TURBINE ENGINE POWERED AIRPLANES Test Procedures for Engine Smoke Emissions (Aircraft Gas Turbine Engines) §...

  8. 14 CFR 34.82 - Sampling and analytical procedures for measuring smoke exhaust emissions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ..., DEPARTMENT OF TRANSPORTATION AIRCRAFT FUEL VENTING AND EXHAUST EMISSION REQUIREMENTS FOR TURBINE ENGINE POWERED AIRPLANES Test Procedures for Engine Smoke Emissions (Aircraft Gas Turbine Engines) §...

  9. 46 CFR 119.425 - Engine exhaust cooling.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... the exhaust pipe. (3) The part of the exhaust system between the point of cooling water injection and..., all engine exhaust pipes must be water cooled. (1) Vertical dry exhaust pipes are permissible if... deepest load waterline; (iii) They are so arranged as to prevent entry of cold water from rough...

  10. 46 CFR 119.425 - Engine exhaust cooling.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... the exhaust pipe. (3) The part of the exhaust system between the point of cooling water injection and..., all engine exhaust pipes must be water cooled. (1) Vertical dry exhaust pipes are permissible if... deepest load waterline; (iii) They are so arranged as to prevent entry of cold water from rough...

  11. 46 CFR 119.425 - Engine exhaust cooling.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... the exhaust pipe. (3) The part of the exhaust system between the point of cooling water injection and..., all engine exhaust pipes must be water cooled. (1) Vertical dry exhaust pipes are permissible if... deepest load waterline; (iii) They are so arranged as to prevent entry of cold water from rough...

  12. Microphone Boom for Aircraft-Engine Monitoring

    NASA Technical Reports Server (NTRS)

    Cohn, R.; Economu, M.; Albrecht, W.

    1986-01-01

    Microphone for measuring aircraft engine noise mounted on lengthwise boom supported away from fuselage and engine. This configuration minimizes boundary-layer effects and pressure doubling that is present if microphone were mounted in aircraft fuselage.

  13. Fretting in aircraft turbine engines

    NASA Technical Reports Server (NTRS)

    Johnson, R. L.; Bill, R. C.

    1974-01-01

    The problem of fretting in aircraft turbine engines is discussed. Critical fretting can occur on fan, compressor, and turbine blade mountings, as well as on splines, rolling element bearing races, and secondary sealing elements of face type seals. Structural fatigue failures have been shown to occur at fretted areas on component parts. Methods used by designers to reduce the effects of fretting are given.

  14. Chemical characterization of freshly emitted particulate matter from aircraft exhaust using single particle mass spectrometry

    NASA Astrophysics Data System (ADS)

    Abegglen, Manuel; Brem, B. T.; Ellenrieder, M.; Durdina, L.; Rindlisbacher, T.; Wang, J.; Lohmann, U.; Sierau, B.

    2016-06-01

    Non-volatile aircraft engine emissions are an important anthropogenic source of soot particles in the upper troposphere and in the vicinity of airports. They influence climate and contribute to global warming. In addition, they impact air quality and thus human health and the environment. The chemical composition of non-volatile particulate matter emission from aircraft engines was investigated using single particle time-of-flight mass spectrometry. The exhaust from three different aircraft engines was sampled and analyzed. The soot particulate matter was sampled directly behind the turbine in a test cell at Zurich Airport. Single particle analyses will focus on metallic compounds. The particles analyzed herein represent a subset of the emissions composed of the largest particles with a mobility diameter >100 nm due to instrumental restrictions. A vast majority of the analyzed particles was shown to contain elemental carbon, and depending on the engine and the applied thrust the elemental carbon to total carbon ratio ranged from 83% to 99%. The detected metallic compounds were all internally mixed with the soot particles. The most abundant metals in the exhaust were Cr, Fe, Mo, Na, Ca and Al; V, Ba, Co, Cu, Ni, Pb, Mg, Mn, Si, Ti and Zr were also detected. We further investigated potential sources of the ATOFMS-detected metallic compounds using Inductively Coupled Plasma Mass Spectrometry. The potential sources considered were kerosene, engine lubrication oil and abrasion from engine wearing components. An unambiguous source apportionment was not possible because most metallic compounds were detected in several of the analyzed sources.

  15. Power-dependent speciation of volatile organic compounds in aircraft exhaust

    NASA Astrophysics Data System (ADS)

    Beyersdorf, Andreas J.; Thornhill, K. Lee; Winstead, Edward L.; Ziemba, Luke D.; Blake, Donald R.; Timko, Michael T.; Anderson, Bruce E.

    2012-12-01

    As part of the third NASA Aircraft Particle Emissions Experiment (APEX-3, November 2005), whole air samples were collected to determine the emission rates of volatile organic compounds (VOCs) from aircraft equipped with three different gas-turbine engines (an Allison Engine 3007-A1E, a Pratt-Whitney 4158, and a Rolls-Royce RB211-535E4B). Samples were collected 1 m behind the engine exhaust plane of the engines while they were operated at powers ranging from idle up to 30% of maximum rated thrust. Exhaust emission indices (mass emitted per kilogram of fuel used) for CO and non-methane hydrocarbons (NMHCs) were calculated based on enhancements over background relative to CO2. Emissions of all NMHCs were greatest at low power with values decreasing by an order of magnitude with increasing power. Previous studies have shown that scaling idle hydrocarbon emissions to formaldehyde or ethene (which are typically emitted at a ratio of 1-to-1 at idle) reduces variability amongst engine types. NMHC emissions were found to scale at low power, with alkenes contributing over 50% of measured NMHCs. However, as the power increases hydrocarbon emissions no longer scale to ethene, as the aromatics become the dominant species emitted. This may be due in part to a shift in combustion processes from thermal cracking (producing predominantly alkenes) to production of new molecules (producing proportionally more aromatics) as power increases. The formation of these aromatics is an intermediate step in the production of soot, which also increases with increasing power. The increase in aromatics relative to alkenes additionally results in a decrease in the hydroxyl radical reactivity and ozone formation potential of aircraft exhaust. Samples collected 30 m downwind of the engine were also analyzed for NMHCs and carbonyl compounds (acetone, 2-butanone and C1-C9 aldehydes). Formaldehyde was the predominant carbonyl emitted; however, the ratio of ethene-to-formaldehyde varied between the

  16. Stratospheric aircraft exhaust plume and wake chemistry studies

    NASA Technical Reports Server (NTRS)

    Miake-Lye, R. C.; Martinez-Sanchez, M.; Brown, R. C.; Kolb, C. E.; Worsnop, D. R.; Zahniser, M. S.; Robinson, G. N.; Rodriguez, J. M.; Ko, M. K. W.; Shia, R-L.

    1992-01-01

    This report documents progress to date in an ongoing study to analyze and model emissions leaving a proposed High Speed Civil Transport (HSCT) from when the exhaust gases leave the engine until they are deposited at atmospheric scales in the stratosphere. Estimates are given for the emissions, summarizing relevant earlier work (CIAP) and reviewing current propulsion research efforts. The chemical evolution and the mixing and vortical motion of the exhaust are analyzed to track the exhaust and its speciation as the emissions are mixed to atmospheric scales. The species tracked include those that could be heterogeneously reactive on the surfaces of the condensed solid water (ice) particles and on exhaust soot particle surfaces. Dispersion and reaction of chemical constituents in the far wake are studied with a Lagrangian air parcel model, in conjunction with a radiation code to calculate the net heating/cooling. Laboratory measurements of heterogeneous chemistry of aqueous sulfuric acid and nitric acid hydrates are also described. Results include the solubility of HCl in sulfuric acid which is a key parameter for modeling stratospheric processing. We also report initial results for condensation of nitric acid trihydrate from gas phase H2O and HNO3.

  17. Swirling-flow jet noise suppressors for aircraft engines

    NASA Technical Reports Server (NTRS)

    Schwartz, I. R.

    1976-01-01

    Experimental investigations of the effects of swirling the jet exhausts of small turbofan and turbojet engines have indicated significant progress towards predicting and attaining substantial jet noise abatement with minimum thrust losses in large aircraft engines. Systematic variations of the important swirl vane and swirling flow parameters were conducted to determine their effects on jet noise reduction and engine performance. Since swirling flow becomes more effective in reducing jet noise as the density and temperature gradients increase, the significant trends in noise reduction and engine performance that were established by these parametric studies could be projected into potentially greater reductions of sound pressure levels with minimum thrust losses by controlled swirling of the jets of high thrust engines. The density and temperature gradients in the jet exhausts of high thrust engines are larger by comparison with gradients in small engines.

  18. Real-Time Aircraft Engine-Life Monitoring

    NASA Technical Reports Server (NTRS)

    Klein, Richard

    2014-01-01

    This project developed an inservice life-monitoring system capable of predicting the remaining component and system life of aircraft engines. The embedded system provides real-time, inflight monitoring of the engine's thrust, exhaust gas temperature, efficiency, and the speed and time of operation. Based upon this data, the life-estimation algorithm calculates the remaining life of the engine components and uses this data to predict the remaining life of the engine. The calculations are based on the statistical life distribution of the engine components and their relationship to load, speed, temperature, and time.

  19. Remote sensing of temperature and concentration profiles of a gas jet by coupling infrared emission spectroscopy and LIDAR for characterization of aircraft engine exhaust

    NASA Astrophysics Data System (ADS)

    Offret, J.-P.; Lebedinsky, J.; Navello, L.; Pina, V.; Serio, B.; Bailly, Y.; Hervé, P.

    2015-05-01

    Temperature data play an important role in the combustion chamber since it determines both the efficiency and the rate of pollutants emission of engines. Air pollution problem concerns the emissions of gases such as CO, CO2, NO, NO2, SO2 and also aerosols, soot and volatile organic compounds. Flame combustion occurs in hostile environments where temperature and concentration profiles are often not easy to measure. In this study, a temperature and CO2 concentration profiles optical measurement method, suitable for combustion analysis, is discussed and presented. The proposed optical metrology method presents numerous advantages when compared to intrusive methods. The experimental setup comprises a passive radiative emission measurement method combined with an active laser-measurement method. The passive method is based on the use of gas emission spectroscopy. The experimental spectrometer device is coupled with an active method. The active method is used to investigate and correct complex flame profiles. This method similar to a LIDAR (Light Detection And Ranging) device is based on the measurement of Rayleigh scattering of a short laser pulse recorded using a high-speed streak camera. The whole experimental system of this new method is presented. Results obtained on a small-scale turbojet are shown and discussed in order to illustrate the potentials deliver by the sophisticated method. Both temperature and concentration profiles of the gas jet are presented and discussed.

  20. Diesel engine catalytic combustor system. [aircraft engines

    NASA Technical Reports Server (NTRS)

    Ream, L. W. (Inventor)

    1984-01-01

    A low compression turbocharged diesel engine is provided in which the turbocharger can be operated independently of the engine to power auxiliary equipment. Fuel and air are burned in a catalytic combustor to drive the turbine wheel of turbine section which is initially caused to rotate by starter motor. By opening a flapper value, compressed air from the blower section is directed to catalytic combustor when it is heated and expanded, serving to drive the turbine wheel and also to heat the catalytic element. To start, engine valve is closed, combustion is terminated in catalytic combustor, and the valve is then opened to utilize air from the blower for the air driven motor. When the engine starts, the constituents in its exhaust gas react in the catalytic element and the heat generated provides additional energy for the turbine section.

  1. 46 CFR 182.430 - Engine exhaust pipe installation.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... must be so arranged as to prevent backflow of water from reaching engine exhaust ports under normal... adapted to resist the action of oil, acid, and heat, has a wall thickness sufficient to prevent collapsing... stresses resulting from the expansion of the exhaust piping. (g) A dry exhaust pipe must: (1) If it...

  2. 46 CFR 119.430 - Engine exhaust pipe installation.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... prevent backflow of water from reaching engine exhaust ports under normal conditions. (d) Pipes used for... resist the action of oil, acid, and heat, and has a wall thickness sufficient to prevent collapsing or... stresses resulting from the expansion of the exhaust piping. (g) A dry exhaust pipe must: (1) If it...

  3. 46 CFR 119.430 - Engine exhaust pipe installation.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... prevent backflow of water from reaching engine exhaust ports under normal conditions. (d) Pipes used for... resist the action of oil, acid, and heat, and has a wall thickness sufficient to prevent collapsing or... stresses resulting from the expansion of the exhaust piping. (g) A dry exhaust pipe must: (1) If it...

  4. Calculation of odour emissions from aircraft engines at Copenhagen Airport.

    PubMed

    Winther, Morten; Kousgaard, Uffe; Oxbøl, Arne

    2006-07-31

    In a new approach the odour emissions from aircraft engines at Copenhagen Airport are calculated using actual fuel flow and emission measurements (one main engine and one APU: Auxiliary Power Unit), odour panel results, engine specific data and aircraft operational data for seven busy days. The calculation principle assumes a linear relation between odour and HC emissions. Using a digitalisation of the aircraft movements in the airport area, the results are depicted on grid maps, clearly reflecting aircraft operational statistics as single flights or total activity during a whole day. The results clearly reflect the short-term temporal fluctuations of the emissions of odour (and exhaust gases). Aircraft operating at low engine thrust (taxiing, queuing and landing) have a total odour emission share of almost 98%, whereas the shares for the take off/climb out phases (2%) and APU usage (0.5%) are only marginal. In most hours of the day, the largest odour emissions occur, when the total amount of fuel burned during idle is high. However, significantly higher HC emissions for one specific engine cause considerable amounts of odour emissions during limited time periods. The experimentally derived odour emission factor of 57 OU/mg HC is within the range of 23 and 110 OU/mg HC used in other airport odour studies. The distribution of odour emission results between aircraft operational phases also correspond very well with the results for these other studies. The present study uses measurement data for a representative engine. However, the uncertainties become large when the experimental data is used to estimate the odour emissions for all aircraft engines. More experimental data is needed to increase inventory accuracy, and in terms of completeness it is recommended to make odour emission estimates also for engine start and the fuelling of aircraft at Copenhagen Airport in the future.

  5. Remote sensing of aircraft exhaust temperature and composition by passive Fourier Transform Infrared (FTIR)

    NASA Astrophysics Data System (ADS)

    Flores, Edgar; Schäfer, Klaus; Black, John; Harig, Roland; Jahn, Carsten

    2007-10-01

    The scanning infrared gas imaging system (SIGIS-HR) and the quantitative gas analysis software MAPS (Multicomponent Air Pollution Software) are applied to investigate the spatial distribution of the temperature and gas concentrations (CO, NO) within the plume of aircraft engines at airports. The system integrates an infrared camera also. It is used for the localisation of the hot source that additionally suggests the best measurement position of the SIGIS-HR. The application of emission FTIR spectrometry for the measurement of temperature and gas emission index of CO and NO is presented for the exhaust of a small turbojet based on a helicopter turbine. In these measurements the emitted infrared radiation from the exhaust gas stream was collected by the SIGIS-HR at different spectral resolution (56 cm -1 and 0.2 cm -1). The software MAPS includes the Instrumental Line Shape (ILS) of the OPAG- 22 FTIR spectrometer obtained by active gas cell measurements and ILS modelling. The rough concept of the system will be presented and operational applications will be discussed. The results of the investigation of the temperature and gas concentrations (CO, NO) within the aircraft engine plumes will be shown. The limitations and of the systems will be discussed.

  6. Exhaust apparatus for a v-type internal combustion engine

    SciTech Connect

    Ito, Y.; Deguchi, R.; Matsuoka, H.; Hanafusa, T.

    1988-03-22

    An exhaust apparatus adapted for connection to a V-type internal combustion engine in an automobile having a first cylinder bank away from the passenger compartment of the automobile and a second cylinder bank proximate the passenger compartment of the automobile, is described comprising: a first exhaust manifold connected to the first cylinder bank; a second exhaust manifold connected to the second cylinder bank; a catalytic converter; and means for connecting the first and second exhaust manifolds to the catalytic convertor.

  7. The Further Development of Heat-Resistant Materials for Aircraft Engines

    NASA Technical Reports Server (NTRS)

    Bollenrath, Franz

    1946-01-01

    The present report deals with the problems involved in the greater utilization and development of aircraft engine materials, and specifically; piston materials, cylinder heads, exhaust valves, and exhaust gas turbine blading. The blades of the exhaust gas turbine are likely to be the highest stressed components of modern power plants from a thermal-mechanical and chemical standpoint, even though the requirements on exhaust valves of engines with gasoline injection are in general no less stringent. For the fire plate in Diesel engines the specifications for mechanical strength and design are not so stringent, and the question of heat resistance, which under these circumstances is easier obtainable, predominates.

  8. Lightweight Exhaust Manifold and Exhaust Pipe Ducting for Internal Combustion Engines

    NASA Technical Reports Server (NTRS)

    Northam, G. Burton (Inventor); Ransone, Philip O. (Inventor); Rivers, H. Kevin (Inventor)

    1999-01-01

    An improved exhaust system for an internal combustion gasoline-and/or diesel-fueled engine includes an engine exhaust manifold which has been fabricated from carbon- carbon composite materials in operative association with an exhaust pipe ducting which has been fabricated from carbon-carbon composite materials. When compared to conventional steel. cast iron. or ceramic-lined iron paris. the use of carbon-carbon composite exhaust-gas manifolds and exhaust pipe ducting reduces the overall weight of the engine. which allows for improved acceleration and fuel efficiency: permits operation at higher temperatures without a loss of strength: reduces the "through-the wall" heat loss, which increases engine cycle and turbocharger efficiency and ensures faster "light-off" of catalytic converters: and, with an optional thermal reactor, reduces emission of major pollutants, i.e. hydrocarbons and carbon monoxide.

  9. 19 CFR 10.183 - Duty-free entry of civil aircraft, aircraft engines, ground flight simulators, parts, components...

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... Duty-free entry of civil aircraft, aircraft engines, ground flight simulators, parts, components, and... aircraft, aircraft engines, and ground flight simulators, including their parts, components, and... United States Coast Guard, aircraft, aircraft engines, and ground flight simulators, including...

  10. 19 CFR 10.183 - Duty-free entry of civil aircraft, aircraft engines, ground flight simulators, parts, components...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Duty-free entry of civil aircraft, aircraft engines, ground flight simulators, parts, components, and... aircraft, aircraft engines, and ground flight simulators, including their parts, components, and... United States Coast Guard, aircraft, aircraft engines, and ground flight simulators, including...

  11. 19 CFR 10.183 - Duty-free entry of civil aircraft, aircraft engines, ground flight simulators, parts, components...

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... Duty-free entry of civil aircraft, aircraft engines, ground flight simulators, parts, components, and... aircraft, aircraft engines, and ground flight simulators, including their parts, components, and... United States Coast Guard, aircraft, aircraft engines, and ground flight simulators, including...

  12. 19 CFR 10.183 - Duty-free entry of civil aircraft, aircraft engines, ground flight simulators, parts, components...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... Duty-free entry of civil aircraft, aircraft engines, ground flight simulators, parts, components, and... aircraft, aircraft engines, and ground flight simulators, including their parts, components, and... United States Coast Guard, aircraft, aircraft engines, and ground flight simulators, including...

  13. 19 CFR 10.183 - Duty-free entry of civil aircraft, aircraft engines, ground flight simulators, parts, components...

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... Duty-free entry of civil aircraft, aircraft engines, ground flight simulators, parts, components, and... aircraft, aircraft engines, and ground flight simulators, including their parts, components, and... United States Coast Guard, aircraft, aircraft engines, and ground flight simulators, including...

  14. Engine Would Recover Exhaust Energy More Efficiently

    NASA Technical Reports Server (NTRS)

    Dimpelfeld, Philip M.

    1993-01-01

    Exhaust energy used for supercharging and extra shaft power. Flow of exhaust apportioned by waste gate to meet demand of turbocharger, and portion not fed to turbocharger sent to power-recovery turbine. Expected to increase fuel efficiency.

  15. 75 FR 32315 - Airworthiness Directives; Various Aircraft Equipped With Rotax Aircraft Engines 912 A Series Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-08

    ..., 912 F, and 912 S series engines. Versions of the 912 F series and 912 S series engines are type... not have an engine type certificate; instead, the engine is part of the aircraft type design. You may... Equipped With Rotax Aircraft Engines 912 A Series Engines AGENCY: Federal Aviation Administration...

  16. 46 CFR 182.430 - Engine exhaust pipe installation.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Engine exhaust pipe installation. 182.430 Section 182... 100 GROSS TONS) MACHINERY INSTALLATION Specific Machinery Requirements § 182.430 Engine exhaust pipe... must be provided in compliance with § 177.970 of this chapter at such locations where persons...

  17. 40 CFR 1065.130 - Engine exhaust.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ....130 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS... exhaust tubing that has either a wall thickness of less than 2 mm or is air gap-insulated to minimize... balance of fuel, intake air, and exhaust according to § 1065.655 to verify exhaust system integrity....

  18. 40 CFR 1065.130 - Engine exhaust.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ....130 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS... exhaust tubing that has either a wall thickness of less than 2 mm or is air gap-insulated to minimize... balance of fuel, intake air, and exhaust according to § 1065.655 to verify exhaust system integrity....

  19. 40 CFR 1065.130 - Engine exhaust.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ....130 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS... exhaust tubing that has either a wall thickness of less than 2 mm or is air gap-insulated to minimize..., intake air, and exhaust according to § 1065.655 to verify exhaust system integrity. (f)...

  20. 40 CFR 1065.130 - Engine exhaust.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ....130 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS... exhaust tubing that has either a wall thickness of less than 2 mm or is air gap-insulated to minimize... balance of fuel, intake air, and exhaust according to § 1065.655 to verify exhaust system integrity....

  1. 40 CFR 1065.130 - Engine exhaust.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ....130 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS... exhaust tubing that has either a wall thickness of less than 2 mm or is air gap-insulated to minimize... balance of fuel, intake air, and exhaust according to § 1065.655 to verify exhaust system integrity....

  2. Characterization of Rotating Detonation Engine Exhaust Through Nozzle Guide Vanes

    DTIC Science & Technology

    2013-03-21

    Equilibrium with Applications program NRL Naval Research Laboratories NGV Nozzle Guide Vane PDE Pulse Detonation Engine RDE Rotating Detonation Engine...CHARACTERIZATION OF ROTATING DETONATION ENGINE EXHAUST THROUGH NOZZLE GUIDE VANES THESIS Nick D. DeBarmore, Second Lieutenant, USAF AFIT/GAE/ENY/13...Government and is not subject to copyright protection in the United States. AFIT/GAE/ENY/13-M09 CHARACTERIZATION OF ROTATING DETONATION ENGINE EXHAUST

  3. 14 CFR 34.31 - Standards for exhaust emissions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... FUEL VENTING AND EXHAUST EMISSION REQUIREMENTS FOR TURBINE ENGINE POWERED AIRPLANES Exhaust Emissions (In-use Aircraft Gas Turbine Engines) § 34.31 Standards for exhaust emissions. (a) Exhaust emissions of smoke from each in-use aircraft gas turbine engine of Class T8, beginning February 1, 1974,...

  4. 14 CFR 34.31 - Standards for exhaust emissions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... FUEL VENTING AND EXHAUST EMISSION REQUIREMENTS FOR TURBINE ENGINE POWERED AIRPLANES Exhaust Emissions (In-use Aircraft Gas Turbine Engines) § 34.31 Standards for exhaust emissions. (a) Exhaust emissions of smoke from each in-use aircraft gas turbine engine of Class T8, beginning February 1, 1974,...

  5. 14 CFR 34.21 - Standards for exhaust emissions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... FUEL VENTING AND EXHAUST EMISSION REQUIREMENTS FOR TURBINE ENGINE POWERED AIRPLANES Exhaust Emissions (New Aircraft Gas Turbine Engines) § 34.21 Standards for exhaust emissions. (a) Exhaust emissions of smoke from each new aircraft gas turbine engine of class T8 manufactured on or after February 1,...

  6. Simulation investigation of the effect of the NASA Ames 80-by 120-foot wind tunnel exhaust flow on light aircraft operating in the Moffett field trafffic pattern

    NASA Technical Reports Server (NTRS)

    Streeter, Barry G.

    1986-01-01

    A preliminary study of the exhaust flow from the Ames Research Center 80 by 120 Foot Wind Tunnel indicated that the flow might pose a hazard to low-flying light aircraft operating in the Moffett Field traffic pattern. A more extensive evaluation of the potential hazard was undertaken using a fixed-base, piloted simulation of a light, twin-engine, general-aviation aircraft. The simulated aircraft was flown through a model of the wind tunnel exhaust by pilots of varying experience levels to develop a data base of aircraft and pilot reactions. It is shown that a light aircraft would be subjected to a severe disturbance which, depending upon entry condition and pilot reaction, could result in a low-altitude stall or cause damage to the aircraft tail structure.

  7. Exhaust gas recirculation method for internal combustion engines

    SciTech Connect

    Kawanabe, T.; Kimura, K.; Asakura, M.; Shiina, T.

    1988-07-19

    This patent describes a method of controlling exhaust gas recirculation in an internal combustion engine having an exhaust passage, an intake passage, an exhaust gas recirculating passage communicating the exhaust passage with the intake passage, and exhaust gas recirculating valve; and a transmission having a shift lever. The valve opening of the exhaust gas recirculating valve is controlled in response to operating conditions of the engine so as to regulate the amount of exhaust gas recirculation to values appropriate to the operating conditions of the engine. The method comprising the steps of (1) determining whether or not the engine is in at least one of a predetermined accelerating condition and a predetermined decelerating condition; (2) varying the valve opening of the exhaust gas recirculating valve by a predetermined value when the engine is determined to be in at least one of the predetermined accelerating condition and the predetermined decelerating condition; (3) detecting a position of the shift lever of the transmission; and (4) correcting the predetermined value in accordance with the detected position of the shift lever so as to increase the valve opening of the exhaust gas recirculating valve as the shift lever of the transmission is set to a higher speed position.

  8. Exhaust Nozzle for a Multitube Detonative Combustion Engine

    NASA Technical Reports Server (NTRS)

    Bratkovich, Thomas E.; Williams, Kevin E.; Bussing, Thomas R. A.; Lidstone, Gary L.; Hinkey, John B.

    2004-01-01

    An improved type of exhaust nozzle has been invented to help optimize the performances of multitube detonative combustion engines. The invention is applicable to both air-breathing and rocket engines used to propel some aircraft and spacecraft, respectively. In a detonative combustion engine, thrust is generated through the expulsion of combustion products from a detonation process in which combustion takes place in a reaction zone coupled to a shock wave. The combustion releases energy to sustain the shock wave, while the shock wave enhances the combustion in the reaction zone. The coupled shockwave/reaction zone, commonly referred to as a detonation, propagates through the reactants at very high speed . typically of the order of several thousands of feet per second (of the order of 1 km/s). The very high speed of the detonation forces combustion to occur very rapidly, thereby contributing to high thermodynamic efficiency. A detonative combustion engine of the type to which the present invention applies includes multiple parallel cylindrical combustion tubes, each closed at the front end and open at the rear end. Each tube is filled with a fuel/oxidizer mixture, and then a detonation wave is initiated at the closed end. The wave propagates rapidly through the fuel/oxidizer mixture, producing very high pressure due to the rapid combustion. The high pressure acting on the closed end of the tube contributes to forward thrust. When the detonation wave reaches the open end of the tube, it produces a blast wave, behind which the high-pressure combustion products are expelled from the tube. The process of filling each combustion tube with a detonable fuel/oxidizer mixture and then producing a detonation repeated rapidly to obtain repeated pulses of thrust. Moreover, the multiple combustion tubes are filled and fired in a repeating sequence. Hence, the pressure at the outlet of each combustion tube varies cyclically. A nozzle of the present invention channels the

  9. Experimental Measurements of the Effects of Photo-chemical Oxidation on Aerosol Emissions in Aircraft Exhaust

    NASA Astrophysics Data System (ADS)

    Miracolo, M. A.; Presto, A. A.; Hennigan, C. J.; Nguyen, N.; Ranjan, M.; Reeder, A.; Lipsky, E.; Donahue, N. M.; Robinson, A. L.

    2009-12-01

    Many military and commercial airfields are located in non-attainment areas for particulate matter (PM2.5), but the contribution of emissions from in-use aircraft to local and regional PM2.5 concentrations is uncertain. In collaboration with the Pennsylvania Air National Guard 171st Air Refueling Wing, the Carnegie Mellon University (CMU) Mobile Laboratory was deployed to measure fresh and aged emissions from a CFM56-2B1 gas-turbine engine mounted on a KC-135 Stratotanker airframe. The CFM-56 family of engine powers many different types of military and civilian aircraft, including the Boeing 737 and several Airbus models. It is one of the most widely deployed models of engines in the world. The goal of this work was to measure the gas-particle partitioning of the fresh emissions at atmospherically relevant conditions and to investigate the effect of atmospheric oxidation on aerosol loadings as the emissions age. Emissions were sampled from an inlet installed one meter downstream of the engine exit plane and transferred into a portable smog chamber via a heated inlet line. Separate experiments were conducted at different engine loads ranging from ground idle to take-off rated thrust. During each experiment, some diluted exhaust was added to the chamber and the volatility of the fresh emissions was then characterized using a thermodenuder. After this characterization, the chamber was exposed to either ambient sunlight or UV lights to initiate photochemical oxidation, which produced secondary aerosol and ozone. A suite of gas and particle-phase instrumentation was used to characterize the evolution of the gas and particle-phase emissions, including an aerosol mass spectrometer (AMS) to measure particle size and composition distributions. Fresh emissions of fine particles varied with engine load with peak emission factors at low and high loads. At high engine loads, the fresh emissions were dominated by black carbon; at low loads volatile organic carbon emissions were

  10. Near Noise Field of a Jet-Engine Exhaust

    NASA Technical Reports Server (NTRS)

    Howes, Walton L; Callaghan, Edmund E; Coles, Willard D; Mull, Harold R

    1957-01-01

    Aircraft structures located in the near noise field of a jet engine are subjected to extremely high fluctuating pressures that may cause structural fatigue. Studies of such structures have been limited by lack of knowledge of the loadings involved. The acoustic near field produced by the exhaust of a stationary turbojet engine having a high pressure ratio was measured for a single operating condition without burning. The maximum overall sound pressure without afterburning was found to be about 42 pounds per square foot along the jet boundary in the region immediately downstream of the jet-nozzle exit. With afterburning maximum sound pressure was increased by 50 percent. The sound pressures without afterburning were obtained on a constant percentage band width basis in the frequency range from 350 to 700 cps. Cross-correlation measurements with microphones were made for a range of jet velocities at locations along the jet and at a distance from the jet. In general, little change in the correlation curves was found as a function of jet velocity or frequency-band width.

  11. Lightweight diesel aircraft engines for general aviation

    NASA Technical Reports Server (NTRS)

    Berenyi, S. G.; Brouwers, A. P.

    1980-01-01

    A methodical design study was conducted to arrive at new diesel engine configurations and applicable advanced technologies. Two engines are discussed and the description of each engine includes concept drawings. A performance analysis, stress and weight prediction, and a cost study were also conducted. This information was then applied to two airplane concepts, a six-place twin and a four-place single engine aircraft. The aircraft study consisted of installation drawings, computer generated performance data, aircraft operating costs and drawings of the resulting airplanes. The performance data shows a vast improvement over current gasoline-powered aircraft. At the completion of this basic study, the program was expanded to evaluate a third engine configuration. This third engine incorporates the best features of the original two, and its design is currently in progress. Preliminary information on this engine is presented.

  12. Engine with pulse-suppressed dedicated exhaust gas recirculation

    SciTech Connect

    Keating, Edward J.; Baker, Rodney E.

    2016-06-07

    An engine assembly includes an intake assembly, a spark-ignited internal combustion engine, and an exhaust assembly. The intake assembly includes a charge air cooler disposed between an exhaust gas recirculation (EGR) mixer and a backpressure valve. The charge air cooler has both an inlet and an outlet, and the back pressure valve is configured to maintain a minimum pressure difference between the inlet of the charge air cooler and an outlet of the backpressure valve. A dedicated exhaust gas recirculation system is provided in fluid communication with at least one cylinder and with the EGR mixer. The dedicated exhaust gas recirculation system is configured to route all of the exhaust gas from the at least one cylinder to the EGR mixer for recirculation back to the engine.

  13. Characterization of chemical and particulate emissions from aircraft engines

    NASA Astrophysics Data System (ADS)

    Agrawal, Harshit; Sawant, Aniket A.; Jansen, Karel; Wayne Miller, J.; Cocker, David R.

    2008-06-01

    This paper presents a series of measurements from four on-wing, commercial aircraft engines, including two newer CFM56-7 engines and two earlier CFM56-3 engines. Samples were collected from each engine using a probe positioned behind the exhaust nozzle of the aircraft, chocked on a concrete testing pad. The emission factors for particulate matter mass, elemental and organic carbon, carbonyls, polycyclic aromatic hydrocarbons, n-alkanes, dioxins, metals and ions are reported for four different engine power setting modes. The emissions indices of particulate matter, elemental and organic carbon are highly power dependent for these engines. Particulate matter emission indices (g kg-1 fuel) are found to increase from 1.1E-02 to 2.05E-01 with increase in power from idle to 85%. The elemental carbon to organic carbon varies from 0.5 to 3.8 with change in power from idle to 85%. The carbonyl emissions are dominated by formaldehyde. The emission index of formaldehyde ranges from 2.3E-01 to 4.8E-01 g kg-1 fuel. The distribution of metals depends on the difference in the various engines. The dioxin emissions from the aircraft engines are observed to be below detection limit.

  14. Technology for reducing aircraft engine pollution

    NASA Technical Reports Server (NTRS)

    Rudey, R. A.; Kempke, E. E., Jr.

    1975-01-01

    Programs have been initiated by NASA to develop and demonstrate advanced technology for reducing aircraft gas turbine and piston engine pollutant emissions. These programs encompass engines currently in use for a wide variety of aircraft from widebody-jets to general aviation. Emission goals for these programs are consistent with the established EPA standards. Full-scale engine demonstrations of the most promising pollutant reduction techniques are planned within the next three years. Preliminary tests of advanced technology gas turbine engine combustors indicate that significant reductions in all major pollutant emissions should be attainable in present generation aircraft engines without adverse effects on fuel consumption. Fundamental-type programs are yielding results which indicate that future generation gas turbine aircraft engines may be able to utilize extremely low pollutant emission combustion systems.

  15. The chemistry and diffusion of aircraft exhausts in the lower stratosphere during the first few hours after fly-by. [with attention to ozone depletion by SST exhaust plumes

    NASA Technical Reports Server (NTRS)

    Hilst, G. R.

    1974-01-01

    An analysis of the hydrogen-nitrogen-oxygen reaction systems in the lower stratosphere as they are initially perturbed by individual aircraft engine exhaust plumes was conducted in order to determine whether any significant chemical reactions occur, either among exhaust chemical species, or between these species and the environmental ozone, while the exhaust products are confined to intact plume segments at relatively high concentrations. The joint effects of diffusive mixing and chemical kinetics on the reactions were also studied, using the techniques of second-order closure diffusion/chemistry models. The focus of the study was on the larger problem of the potential depletion of ozone by supersonic transport aircraft exhaust materials emitted into the lower stratosphere.

  16. Shape memory alloy actuated adaptive exhaust nozzle for jet engine

    NASA Technical Reports Server (NTRS)

    Song, Gangbing (Inventor); Ma, Ning (Inventor)

    2009-01-01

    The proposed adaptive exhaust nozzle features an innovative use of the shape memory alloy (SMA) actuators for actively control of the opening area of the exhaust nozzle for jet engines. The SMA actuators remotely control the opening area of the exhaust nozzle through a set of mechanism. An important advantage of using SMA actuators is the reduction of weight of the actuator system for variable area exhaust nozzle. Another advantage is that the SMA actuator can be activated using the heat from the exhaust and eliminate the need of other energy source. A prototype has been designed and fabricated. The functionality of the proposed SMA actuated adaptive exhaust nozzle is verified in the open-loop tests.

  17. Exhaust gas purification system for lean burn engine

    DOEpatents

    Haines, Leland Milburn

    2002-02-19

    An exhaust gas purification system for a lean burn engine includes a thermal mass unit and a NO.sub.x conversion catalyst unit downstream of the thermal mass unit. The NO.sub.x conversion catalyst unit includes at least one catalyst section. Each catalyst section includes a catalytic layer for converting NO.sub.x coupled to a heat exchanger. The heat exchanger portion of the catalyst section acts to maintain the catalytic layer substantially at a desired temperature and cools the exhaust gas flowing from the catalytic layer into the next catalytic section in the series. In a further aspect of the invention, the exhaust gas purification system includes a dual length exhaust pipe upstream of the NO.sub.x conversion catalyst unit. The dual length exhaust pipe includes a second heat exchanger which functions to maintain the temperature of the exhaust gas flowing into the thermal mass downstream near a desired average temperature.

  18. Results and status of the NASA aircraft engine emission reduction technology programs

    NASA Technical Reports Server (NTRS)

    Jones, R. E.; Diehl, L. A.; Petrash, D. A.; Grobman, J.

    1978-01-01

    The results of an aircraft engine emission reduction study are reviewed in detail. The capability of combustor concepts to produce significantly lower levels of exhaust emissions than present production combustors was evaluated. The development status of each combustor concept is discussed relative to its potential for implementation in aircraft engines. Also, the ability of these combustor concepts to achieve proposed NME and NCE EPA standards is discussed.

  19. Influence of fuel sulfur on the composition of aircraft exhaust plumes: The experiments SULFUR 1-7

    NASA Astrophysics Data System (ADS)

    Schumann, U.; Arnold, F.; Busen, R.; Curtius, J.; Kärcher, B.; Kiendler, A.; Petzold, A.; Schlager, H.; Schröder, F.; Wohlfrom, K.-H.

    2002-08-01

    The series of SULFUR experiments was performed to determine the aerosol particle and contrail formation properties of aircraft exhaust plumes for different fuel sulfur contents (FSC, from 2 to 5500 μg/g), flight conditions, and aircraft (ATTAS, A310, A340, B707, B747, B737, DC8, DC10). This paper describes the experiments and summarizes the results obtained, including new results from SULFUR 7. The conversion fraction ɛ of fuel sulfur to sulfuric acid is measured in the range 0.34 to 4.5% for an older (Mk501) and 3.3 +/- 1.8% for a modern engine (CFM56-3B1). For low FSC, ɛ is considerably smaller than what is implied by the volume of volatile particles in the exhaust. For FSC >= 100 μg/g and ɛ as measured, sulfuric acid is the most important precursor of volatile aerosols formed in aircraft exhaust plumes of modern engines. The aerosol measured in the plumes of various aircraft and models suggests ɛ to vary between 0.5 and 10% depending on the engine and its state of operation. The number of particles emitted from various subsonic aircraft engines or formed in the exhaust plume per unit mass of burned fuel varies from 2 × 1014 to 3 × 1015 kg-1 for nonvolatile particles (mainly black carbon or soot) and is of order 2 × 1017 kg-1 for volatile particles >1.5 nm at plume ages of a few seconds. Chemiions (CIs) formed in kerosene combustion are found to be quite abundant and massive. CIs contain sulfur-bearing molecules and organic matter. The concentration of CIs at engine exit is nearly 109 cm-3. Positive and negative CIs are found with masses partially exceeding 8500 atomic mass units. The measured number of volatile particles cannot be explained with binary homogeneous nucleation theory but is strongly related to the number of CIs. The number of ice particles in young contrails is close to the number of soot particles at low FSC and increases with increasing FSC. Changes in soot particles and FSC have little impact on the threshold temperature for contrail

  20. 14 CFR 34.64 - Sampling and analytical procedures for measuring gaseous exhaust emissions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT FUEL VENTING AND EXHAUST EMISSION REQUIREMENTS FOR TURBINE... Turbine Engines) § 34.64 Sampling and analytical procedures for measuring gaseous exhaust emissions....

  1. 14 CFR 34.64 - Sampling and analytical procedures for measuring gaseous exhaust emissions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT FUEL VENTING AND EXHAUST EMISSION REQUIREMENTS FOR TURBINE... Turbine Engines) § 34.64 Sampling and analytical procedures for measuring gaseous exhaust emissions....

  2. Improvements in teaching aircraft engine design

    SciTech Connect

    Mattingly, J.D.; Heiser, W.H. Tennessee, University, Tullahoma )

    1992-07-01

    Aircraft gas turbine analysis and design pedagogy can be enriched through the incorporation improved preliminary engine thrust and fuel consumption models, novel computer programs for both aircraft system analysis and turbomechanical design, and a new perspective for engine-cycle analysis. Four computer programs have been developed for preliminary engine design; two of these automate aircraft system analysis, while another designs multistage axial-flow compressors and the last designs multistage axial-flow turbines. Student confusion with 'design-point' and 'off-design' concepts is by these means reduced. 6 refs.

  3. Compound engine with plural stage intercooled exhaust pump

    SciTech Connect

    Wang, L.S.

    1986-09-09

    A compound internal combustion engine is described which consists of a positive displacement internal combustion engine having an inlet and an exhaust gas outlet, a gas turbine drive coupled with the positive displacement engine and having an inlet communicating with the positive displacement engine outlet and a gas outlet, and suction means having a suction inlet connected to the turbine outlet. The suction means comprises a multi-stage turbo-compressor driven by the turbine and having a gas inlet communicating with the turbine outlet and an outlet exhausting into the ambient atmosphere. The multi-stage turbo-compressor includes interstage cooling means.

  4. Supersonic fan engines for military aircraft

    NASA Technical Reports Server (NTRS)

    Franciscus, L. C.

    1983-01-01

    Engine performance and mission studies were performed for turbofan engines with supersonic through-flow fans. A Mach 2.4 CTOL aircraft was used in the study. Two missions were considered: a long range penetrator mission and a long range intercept mission. The supersonic fan engine is compared with an augmented mixed flow turbofan in terms of mission radius for a fixed takeoff gross weight of 75,000 lbm. The mission radius of aircraft powered by supersonic fan engines could be 15 percent longer than aircraft powered with conventional turbofan engines at moderate thrust to gross weight ratios. The climb and acceleration performance of the supersonic fan engines is better than that of the conventional turbofan engines.

  5. Integrated engine generator for aircraft secondary power

    NASA Technical Reports Server (NTRS)

    Secunde, R. R.

    1972-01-01

    An integrated engine-generator for aircraft secondary power generation is described. The concept consists of an electric generator located inside a turbojet or turbofan engine and both concentric with and driven by one of the main engine shafts. The electric power conversion equipment and generator controls are located in the aircraft. When properly rated, the generator serves as an engine starter as well as a source of electric power. This configuration reduces or eliminates the need for an external gear box on the engine and permits reduction in the nacelle diameter.

  6. Cycle Counting Methods of the Aircraft Engine

    ERIC Educational Resources Information Center

    Fedorchenko, Dmitrii G.; Novikov, Dmitrii K.

    2016-01-01

    The concept of condition-based gas turbine-powered aircraft operation is realized all over the world, which implementation requires knowledge of the end-of-life information related to components of aircraft engines in service. This research proposes an algorithm for estimating the equivalent cyclical running hours. This article provides analysis…

  7. Review of Aircraft Engine Fan Noise Reduction

    NASA Technical Reports Server (NTRS)

    VanZante, Dale

    2008-01-01

    Aircraft turbofan engines incorporate multiple technologies to enhance performance and durability while reducing noise emissions. Both careful aerodynamic design of the fan and proper installation of the fan into the system are requirements for achieving the performance and acoustic objectives. The design and installation characteristics of high performance aircraft engine fans will be discussed along with some lessons learned that may be applicable to spaceflight fan applications.

  8. Capture of Heat Energy from Diesel Engine Exhaust

    SciTech Connect

    Chuen-Sen Lin

    2008-12-31

    Diesel generators produce waste heat as well as electrical power. About one-third of the fuel energy is released from the exhaust manifolds of the diesel engines and normally is not captured for useful applications. This project studied different waste heat applications that may effectively use the heat released from exhaust of Alaskan village diesel generators, selected the most desirable application, designed and fabricated a prototype for performance measurements, and evaluated the feasibility and economic impact of the selected application. Exhaust flow rate, composition, and temperature may affect the heat recovery system design and the amount of heat that is recoverable. In comparison with the other two parameters, the effect of exhaust composition may be less important due to the large air/fuel ratio for diesel engines. This project also compared heat content and qualities (i.e., temperatures) of exhaust for three types of fuel: conventional diesel, a synthetic diesel, and conventional diesel with a small amount of hydrogen. Another task of this project was the development of a computer-aided design tool for the economic analysis of selected exhaust heat recovery applications to any Alaskan village diesel generator set. The exhaust heat recovery application selected from this study was for heating. An exhaust heat recovery system was fabricated, and 350 hours of testing was conducted. Based on testing data, the exhaust heat recovery heating system showed insignificant effects on engine performance and maintenance requirements. From measurements, it was determined that the amount of heat recovered from the system was about 50% of the heat energy contained in the exhaust (heat contained in exhaust was evaluated based on environment temperature). The estimated payback time for 100% use of recovered heat would be less than 3 years at a fuel price of $3.50 per gallon, an interest rate of 10%, and an engine operation of 8 hours per day. Based on experimental data

  9. Aircraft

    DTIC Science & Technology

    2002-01-01

    Company, Washington, DC Boeing Commercial Aircraft Division, Seattle, WA and Long Beach, CA Boeing Military Aircraft and Missile Division, St. Louis, MO and... aircraft ; military fixed-wing aircraft ; rotorcraft (helicopters and tiltrotor aircraft ); and aircraft jet engines. Two companies dominate the commercial... aircraft business, Boeing and Airbus. Four companies dominate the military fixed-wing market, Boeing, Lockheed Martin, BAE Systems, and European

  10. 46 CFR 182.425 - Engine exhaust cooling.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... water injection and the engine manifold must be water-jacketed or effectively insulated and protected in... otherwise provided in this paragraph, all engine exhaust pipes must be water cooled. (1) Vertical dry... prevent entry of cold water from rough or boarding seas; (iv) They are constructed of corrosion...

  11. 46 CFR 182.425 - Engine exhaust cooling.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... water injection and the engine manifold must be water-jacketed or effectively insulated and protected in... otherwise provided in this paragraph, all engine exhaust pipes must be water cooled. (1) Vertical dry... prevent entry of cold water from rough or boarding seas; (iv) They are constructed of corrosion...

  12. 46 CFR 182.425 - Engine exhaust cooling.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... water injection and the engine manifold must be water-jacketed or effectively insulated and protected in... otherwise provided in this paragraph, all engine exhaust pipes must be water cooled. (1) Vertical dry... prevent entry of cold water from rough or boarding seas; (iv) They are constructed of corrosion...

  13. Computer aided design of jet engine test cell exhaust systems

    SciTech Connect

    Collings, D.

    1982-01-01

    A computerized design procedure that provides a multi-directional analysis of available data is a proven method of developing accurate cost models and performing system trade-offs. The application to the engineering of exhaust silencing systems for jet engine test cells is discused.

  14. 40 CFR 87.31 - Standards for exhaust emissions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Gas Turbine Engines) § 87.31 Standards for exhaust emissions. (a) Exhaust emissions of smoke from each in-use aircraft gas turbine engine of Class T8, beginning February 1, 1974, shall not exceed: Smoke number of 30. (b) Exhaust emissions of smoke from each in-use aircraft gas turbine engine of class TF...

  15. 40 CFR 87.31 - Standards for exhaust emissions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Gas Turbine Engines) § 87.31 Standards for exhaust emissions. (a) Exhaust emissions of smoke from each in-use aircraft gas turbine engine of Class T8, beginning February 1, 1974, shall not exceed: Smoke number of 30. (b) Exhaust emissions of smoke from each in-use aircraft gas turbine engine of class TF...

  16. Jet-Engine Exhaust Nozzle With Thrust-Directing Flaps

    NASA Technical Reports Server (NTRS)

    Wing, David J.

    1996-01-01

    Convergent/divergent jet-engine exhaust nozzle has cruciform divergent passage containing flaps that move to deflect flow of exhaust in either or both planes perpendicular to main fore-and-aft axis of undeflected flow. Prototype of thrust-vector-control nozzles installed in advanced, high-performance airplanes to provide large pitching (usually, vertical) and yawing (usually, horizontal) attitude-control forces independent of attitude-control forces produced by usual aerodynamic control surfaces.

  17. Investigation of NOx Removal from Small Engine Exhaust

    NASA Technical Reports Server (NTRS)

    Akyurtlu, Ates; Akyurtlu, Jale F.

    1999-01-01

    Contribution of emissions from small engines to the air pollution is significant. Due to differences in operating conditions and economics, the pollution control systems designed for automobiles will be neither suitable nor economically feasible for use on small engines. The objective of this project was to find a catalyst for the removal of NOx from the exhaust of small engines which use a rich air to fuel ratio. The desired catalyst should be inexpensive so that the cost of the pollution control unit will be only a small fraction of the total equipment cost. The high cost of noble metals makes them too expensive for use as NOx catalyst for small engines. Catalytic reduction of Nitrogen Oxide (NO) can also be accomplished by base-metal oxide catalysts. The main disadvantage of base-metal catalysts is their deactivation by poisons and high temperatures. Requirements for the length of the life of the small engine exhaust catalysts are much less than those for automobile exhaust catalysts. Since there is no oxygen in the exhaust gases, reduction selectivity is not a problem. Also, the reducing exhaust gases might help prevent the harmful interactions of the catalyst with the support. For these reasons only the supported metal oxide catalysts were investigated in this project.

  18. Investigation of NO(x) Removal from Small Engine Exhaust

    NASA Technical Reports Server (NTRS)

    Akyurtlu, Ates; Akyurtlu, Jale F.

    1999-01-01

    Contribution of emissions from small engines to the air pollution is significant. Due to differences in operating conditions and economics, the pollution control systems designed for automobiles will be neither suitable nor economically feasible for use on small engines. The objective of this project was to find a catalyst for the removal of NOx from the exhaust of small engines which use a rich air to fuel ratio. The desired catalyst should be inexpensive so that the cost of the pollution control unit will be only a small fraction of the total equipment cost. The high cost of noble metals makes them too expensive for use as NOx catalyst for small engines. Catalytic reduction of NO can also be accomplished by base-metal oxide catalysts. The main disadvantage of base-metal catalysts is their deactivation by poisons and high temperatures. Requirements for the length of the life of the small engine exhaust catalysts are much less than those for automobile exhaust catalysts. Since there is no oxygen in the exhaust gases, reduction selectivity is not a problem. Also, the reducing exhaust gases might help prevent the harmful interactions of the catalyst with the support. For these reasons only the supported metal oxide catalysts were investigated in this project.

  19. Mixed exhaust flow supersonic jet engine and method

    SciTech Connect

    Klees, G.W.

    1993-06-08

    A method of operating a supersonic jet engine installation is described comprising (a) providing an engine having a variable area air inlet means and an outlet to discharge engine exhaust; (b) providing a secondary air passageway means; (c) receiving ambient air in the air inlet means and providing the ambient air as primary air to the engine inlet and secondary air to the secondary air passageway means; (d) providing a mixing section having an inlet portion and an exit portion, utilizing the mixing section in directing the exhaust from the engine to primary convergent/divergent exit passageway segments, where the exhaust is discharged at supersonic velocity as primary flow components, and directing secondary air flow from the secondary air passageway means to secondary exit passageway segments which are interspersed with the primary segments and from which the secondary air is discharged at subsonic velocity as secondary flow components; and (e) providing an exhaust section to receive the primary and secondary flow components in a mixing region and causing the primary and secondary flow components to mix to create a supersonic mixed flow, the exhaust section having a variable area final nozzle through which the mixed flow is discharged.

  20. Measurements of HONO, NO, NOy and SO2 in aircraft exhaust plumes at cruise

    NASA Astrophysics Data System (ADS)

    Jurkat, T.; Voigt, C.; Arnold, F.; Schlager, H.; Kleffmann, J.; Aufmhoff, H.; Schäuble, D.; Schaefer, M.; Schumann, U.

    2011-05-01

    Measurements of gaseous nitrogen and sulfur oxide emissions in young aircraft exhaust plumes give insight into chemical oxidation processes inside aircraft engines. Particularly, the OH-induced formation of nitrous acid (HONO) from nitrogen oxide (NO) and sulfuric acid (H2SO4) from sulfur dioxide (SO2) inside the turbine which is highly uncertain, need detailed analysis to address the climate impact of aviation. We report on airborne in situ measurements at cruise altitudes of HONO, NO, NOy, and SO2 in 9 wakes of 8 different types of modern jet airliners, including for the first time also an A380. Measurements of HONO and SO2 were made with an ITCIMS (Ion Trap Chemical Ionization Mass Spectrometer) using a new ion-reaction scheme involving SF5- reagent ions. The measured molar ratios HONO/NO and HONO/NOy with averages of 0.038 ± 0.010 and 0.027 ± 0.005 were found to decrease systematically with increasing NOx emission-index (EI NOx). We calculate an average EI HONO of 0.31 ± 0.12 g NO2 kg-1. Using reliable measurements of HONO and NOy, which are less adhesive than H2SO4 to the inlet walls, we derive the OH-induced conversion fraction of fuel sulfur to sulfuric acid $\\varepsilon$ with an average of 2.2 ± 0.5 %. $\\varepsilon$ also tends to decrease with increasing EI NOx, consistent with earlier model simulations. The lowest HONO/NO, HONO/NOy and $\\varepsilon$ was observed for the largest passenger aircraft A380.

  1. Engine selection for transport and combat aircraft

    NASA Technical Reports Server (NTRS)

    Dugan, J. F., Jr.

    1972-01-01

    The procedures that are used to select engines for transport and combat aircraft are discussed. In general, the problem is to select the engine parameters including engine size in such a way that all constraints are satisfied and airplane performance is maximized. This is done for four different classes of aircraft: (1) a long haul conventional takeoff and landing (CTOL) transport, (2) a short haul vertical takeoff and landing (VTOL) transport, (3) a long range supersonic transport (SST), and (4) a fighter aircraft. For the commercial airplanes the critical constraints have to do with noise while for the fighter, maneuverability requirements define the engine. Generally, the resultant airplane performance (range or payload) is far less than that achievable without these constraints and would suffer more if nonoptimum engines were selected.

  2. Double-reed exhaust valve engine

    DOEpatents

    Bennett, Charles L.

    2015-06-30

    An engine based on a reciprocating piston engine that extracts work from pressurized working fluid. The engine includes a double reed outlet valve for controlling the flow of low-pressure working fluid out of the engine. The double reed provides a stronger force resisting closure of the outlet valve than the force tending to open the outlet valve. The double reed valve enables engine operation at relatively higher torque and lower efficiency at low speed, with lower torque, but higher efficiency at high speed.

  3. 77 FR 44429 - Airworthiness Directives; Various Aircraft Equipped With Rotax Aircraft Engines 912 A Series Engine

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-30

    ... this AD: Aeromot AMT 300 Turbo Super Ximango and Stemme S10 VT have a Rotax 914 engine installed, not a... certificate holder Aircraft model Engine model Aeromot-Ind stria AMT-200 912 A2 Mec nico- Metal rgica...

  4. Primary VOC emissions from Commercial Aircraft Jet Engines

    NASA Astrophysics Data System (ADS)

    Kilic, Dogushan; Huang, Rujin; Slowik, Jay; Brem, Benjamin; Durdina, Lukas; Rindlisbacher, Theo; Baltensperger, Urs; Prevot, Andre

    2014-05-01

    Air traffic is growing continuously [1]. The increasing number of airplanes leads to an increase of aviation emissions giving rise to environmental concerns globally by high altitude emissions and, locally on air quality at the ground level [2]. The overall impact of aviation emissions on the environment is likely to increase when the growing air transportation trend [2] is considered. The Aviation Particle Regulatory Instrumentation Demonstration Experiment (APRIDE)-5 campaign took place at Zurich Airport in 2013. In this campaign, aircraft exhaust is sampled during engine acceptance tests after engine overhaul at the facilities of SR Technics. Direct sampling from the engine core is made possible due to the unique fixed installation of a retractable sampling probe and the use of a standardized sampling system designed for the new particulate matter regulation in development for aircraft engines. Many of the gas-phase aircraft emissions, e.g. CO2, NOX, CO, SO2, hydrocarbons, and volatile organic compounds (VOC) were detected by the instruments in use. This study, part of the APRIDE-5 campaign, focuses on the primary VOC emissions in order to produce emission factors of VOC species for varying engine operating conditions which are the surrogates for the flight cycles. Previously, aircraft plumes were sampled in order to quantify VOCs by a proton transfer reaction quadrupole mass spectrometer (PTR-MS) [3]. This earlier study provided a preliminary knowledge on the emission of species such as methanol, acetaldehyde, acetone, benzene and toluene by varying engine thrust levels. The new setup was (i) designed to sample from the diluted engine exhaust and the new tool and (ii) used a high resolution time of flight PTR-MS with higher accuracy for many new species, therefore providing a more detailed and accurate inventory. We will present the emission factors for species that were quantified previously, as well as for many additional VOCs detected during the campaign

  5. Power recovery from turbine and gas engine exhausts

    SciTech Connect

    Lawson, G.L.

    1985-02-01

    Due to the energy consciousness of the United States and to the ever increasing cost of engine fuels, power recovery from turbine and gas engine exhausts has come of age. The addition of waste recovery systems to these exhausts increases the thermal efficiencies of typical systems from the range of 21% to 39% up to the range of 28% to 49%. The new ''expander'' type power recovery system includes a waste heat recovery exchanger which will transfer heat from the engine exhaust into any of numerous thermal fluids. The recovered heat energy now in the thermal fluid medium can, in turn, be used to produce power for any desired application (i.e. gas compression, process refrigeration, electrical power generation, etc.). The particular systems put forth in this paper concentrate on the use of expansion fluids (other than steam) driving ''expanders'' as motive devices.

  6. 77 FR 39623 - Airworthiness Standards: Aircraft Engines; Technical Amendment

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-05

    ... Part 33 [Amendment No. 33-33] Airworthiness Standards: Aircraft Engines; Technical Amendment AGENCY... amendment clarifies aircraft engine vibration test requirements in the airworthiness standards. The clarification is in response to inquiries from applicants requesting FAA engine type certifications...

  7. Further exhaust emission control for two-stroke engines

    SciTech Connect

    Sato, Kazuo; Nakano, Masamitsu; Ukawa, Haruo; Inaga, Hisashi

    1994-09-01

    Two-stroke engines are being utilized in large numbers as small utility, lawn and garden equipment engines. The following two subjects were examined with regards to exhaust emission control. The first subject was to compare the theoretical values of a combustion model simulation with the experimentally measured values of the base line emission of two-stroke volume. The second subject was to examine the emission conformability to the 1995 and 1999 California Air Resources Board (CARB) exhaust emission regulations California Regulations for 1995 and Later Utility and Lawn and Garden Equipment Engine, adopted at March 20, 1992, amended, at November 3, 1993. in two-stroke engines with various combinations between various fuels, fuel supply systems and scavenging systems. For this subject it was determine;that the emission control systems based on the lean combustion can be used to meet the 1995 CARB exhaust emission regulations. However, it was also concluded that to meet the 1999 CARB exhaust emission regulations, various emission control systems with various combinations regarding such parameters as fuels, scavenging systems and exhaust systems must be used. 27 refs., 20 figs., 4 tabs.

  8. Catalysts For Lean Burn Engine Exhaust Abatement

    DOEpatents

    Ott, Kevin C.; Clark, Noline C.; Paffett, Mark T.

    2004-04-06

    The present invention provides a process for catalytically reducing nitrogen oxides in an exhaust gas stream containing nitrogen oxides and a reductant material by contacting the gas stream under conditions effective to catalytically reduce the nitrogen oxides with a catalyst comprising a aluminum-silicate type material and a minor amount of a metal, the catalyst characterized as having sufficient catalytic activity so as to reduce the nitrogen oxides by at least 60 percent under temperatures within the range of from about 200.degree. C. to about 400.degree. C.

  9. Catalysts for lean burn engine exhaust abatement

    DOEpatents

    Ott, Kevin C.; Clark, Noline C.; Paffett, Mark T.

    2003-01-01

    The present invention provides a process for catalytically reducing nitrogen oxides in an exhaust gas stream containing nitrogen oxides and a reductant material by contacting the gas stream under conditions effective to catalytically reduce the nitrogen oxides with a catalyst comprising a aluminum-silicate type material and a minor amount of a metal, the catalyst characterized as having sufficient catalytic activity so as to reduce the nitrogen oxides by at least 60 percent under temperatures within the range of from about 200.degree. C. to about 400.degree. C.

  10. Catalysts for lean burn engine exhaust abatement

    DOEpatents

    Ott, Kevin C.; Clark, Noline C.; Paffett, Mark T.

    2006-08-01

    The present invention provides a process for catalytically reducing nitrogen oxides in an exhaust gas stream containing nitrogen oxides and a reductant material by contacting the gas stream under conditions effective to catalytically reduce the nitrogen oxides with a catalyst comprising a aluminum-silicate type material and a minor amount of a metal, the catalyst characterized as having sufficient catalytic activity so as to reduce the nitrogen oxides by at least 60 percent under temperatures within the range of from about 200.degree. C. to about 400.degree. C.

  11. Pollution reducing aircraft propulsion

    SciTech Connect

    Tamura, R. M.

    1985-05-28

    Aircraft engine exhaust is mixed with air and fuel and recombusted. Air is drawn into the secondary combustion chamber from suction surfaces on wings. Exhaust of the secondary combustion chamber is blown over wing and fuselage surfaces.

  12. Chemical characterization of the fine particle emissions from commercial aircraft engines during the Aircraft Particle Emissions eXperiment (APEX) 1 to 3

    EPA Science Inventory

    This paper addresses the need for detailed chemical information on the fine particulate matter (PM2.5) generated by commercial aviation engines. The exhaust plumes of nine engine models were sampled during the three test campaigns of the Aircraft Particle Emissions eXperiment (AP...

  13. Experimental evaluation of exhaust mixers for an Energy Efficient Engine

    NASA Technical Reports Server (NTRS)

    Kozlowski, H.; Kraft, G.

    1980-01-01

    Static scale model tests were conducted to evaluate exhaust system mixers for a high bypass ratio engine as part of the NASA sponsored Energy Efficient program. Gross thrust coefficients were measured for a series of mixer configurations which included variations in the number of mixer lobes, tailpipe length, mixer penetration, and length. All of these parameters have a significant impact on exhaust system performance. In addition, flow visualization pictures and pressure/temperature traverses were obtained for selected configurations. Parametric performance trends are discussed and the results considered relative to the Energy Efficient Engine program goals.

  14. Comparison of immunotoxic effects induced by the extracts from methanol and gasoline engine exhausts in vitro.

    PubMed

    Che, Wangjun; Liu, Guiming; Qiu, Hong; Zhang, Hao; Ran, Yun; Zeng, Xianggui; Wen, Weihua; Shu, Ya

    2010-06-01

    Gasoline engine exhaust has been considered as a major source of air pollution in China. Due to lower cyto- and geno-toxicity effects of methanol engine exhaust, methanol is regarded as a potential substitute for gasoline. We have previously compared cyto- and geno-toxicities of gasoline engine exhaust with that of methanol engine exhaust in A549 cells (Zhang et al., 2007).To characterize the immunotoxic effects for gasoline and methanol engine exhausts in immune cell, in this study, we further compared effects of gasoline and methanol engine exhausts on immune function in RAW264.7 cell and rabbit alveolar macrophages. Results showed that both gasoline and methanol engine exhaust could evidently inhibit RAW264.7 cell proliferation, promote RAW264.7 cell apoptosis, decrease E-rosette formation rate and inhibit anti-tumor effects of alveolar macrophages, at the same time, these effects of gasoline engine exhaust were far stronger than those of methanol engine exhaust. In addition, gasoline engine exhaust could significantly inhibit activities of ADCC of alveolar macrophages, but methanol engine exhaust could not. These results suggested that both gasoline and methanol engine exhausts might be immunotoxic atmospheric pollutants, but some effects of gasoline engine exhaust on immunotoxicities may be far stronger than that of methanol engine exhaust.

  15. Vehicle engines produce exhaust nanoparticles even when not fueled.

    PubMed

    Rönkkö, Topi; Pirjola, Liisa; Ntziachristos, Leonidas; Heikkilä, Juha; Karjalainen, Panu; Hillamo, Risto; Keskinen, Jorma

    2014-01-01

    Vehicle engines produce submicrometer exhaust particles affecting air quality, especially in urban environments. In on-road exhaust studies with a heavy duty diesel vehicle and in laboratory studies with two gasoline-fueled passenger cars, we found that as much as 20-30% of the number of exhaust particles larger than 3 nm may be formed during engine braking conditions-that is, during decelerations and downhill driving while the engine is not fueled. Particles appeared at size ranges extending even below 7 nm and at high number concentrations. Their small size and nonvolatility, coupled with the observation that these particles contain lube-oil-derived metals zinc, phosphorus, and calcium, are suggestive of health risks at least similar to those of exhaust particles observed before. The particles' characteristics indicate that their emissions can be reduced using exhaust after-treatment devices, although these devices have not been mandated for all relevant vehicle types. Altogether, our findings enhance the understanding of the formation vehicle emissions and allow for improved protection of human health in proximity to traffic.

  16. 75 FR 70098 - Airworthiness Directives; Various Aircraft Equipped With Rotax Aircraft Engines 912 A Series Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-17

    ... crankcase surface to remove any oil. (ii) Warm up the engine to a minimum oil temperature of 50 degrees C (120 degrees F). Information about warming up the engine can be found in the applicable line... Aircraft Engines 912 A series engine with a crankcase assembly S/N up to and including S/N...

  17. Control method for turbocharged diesel engines having exhaust gas recirculation

    DOEpatents

    Kolmanovsky, Ilya V.; Jankovic, Mrdjan J; Jankovic, Miroslava

    2000-03-14

    A method of controlling the airflow into a compression ignition engine having an EGR and a VGT. The control strategy includes the steps of generating desired EGR and VGT turbine mass flow rates as a function of the desired and measured compressor mass airflow values and exhaust manifold pressure values. The desired compressor mass airflow and exhaust manifold pressure values are generated as a function of the operator-requested fueling rate and engine speed. The EGR and VGT turbine mass flow rates are then inverted to corresponding EGR and VGT actuator positions to achieve the desired compressor mass airflow rate and exhaust manifold pressure. The control strategy also includes a method of estimating the intake manifold pressure used in generating the EGR valve and VGT turbine positions.

  18. Sulfuric Acid and Soot Particles in Aircraft Exhaust

    NASA Technical Reports Server (NTRS)

    Pueschel, Rudolf F.; Verma, S.; Ferry, G. V.; Goodman, J.; Strawa, A. W.; Gore, Warren J. Y. (Technical Monitor)

    1997-01-01

    Aircraft have become the fastest, fairly convenient and, in most cases of long-distance travel, most economical mode of travel. This is reflected in the increase of commercial air traffic at a rate of 6% per year since 1978. Future annual growth rates of passenger miles of 4% for domestic and 6% for international routes are projected. A still larger annual increase of 8.5% is expected for the Asia/Pacific region. To meet that growth, Boeing predicts the addition of 15,900 new aircraft to the world's fleets, valued at more than $1.1 trillion, within the next 20 years. The largest concern of environmental consequences of aircraft emissions deals with ozone (O3), because: (1) the O3 layer protects the blaspheme from short-ultraviolet radiation that can cause damage to human, animal and plant life, and possibly affect agricultural production and the marine food chain; (2) O3 is important for the production of the hydroxyl radical (OH) which, in turn, is responsible for the destruction of other greenhouse gases, e.g., methane (CH4) and for the removal of other pollutants, and (3) O3 is a greenhouse gas. Additional information is contained in the original extended abstract.

  19. 30 CFR 36.25 - Engine exhaust system.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... device to shut off automatically the fuel supply to the engine at a safe minimum water level. A cooling... after the fuel supply has been shut off automatically until the water supply in the cooling box has been... controls a safe minimum water level in the cooling box and also prevents the final exhaust temperature...

  20. 30 CFR 36.25 - Engine exhaust system.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... device to shut off automatically the fuel supply to the engine at a safe minimum water level. A cooling... after the fuel supply has been shut off automatically until the water supply in the cooling box has been... controls a safe minimum water level in the cooling box and also prevents the final exhaust temperature...

  1. 14 CFR 21.6 - Manufacture of new aircraft, aircraft engines, and propellers.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Manufacture of new aircraft, aircraft..., DEPARTMENT OF TRANSPORTATION AIRCRAFT CERTIFICATION PROCEDURES FOR PRODUCTS AND PARTS General § 21.6 Manufacture of new aircraft, aircraft engines, and propellers. (a) Except as specified in paragraphs (b)...

  2. 14 CFR 21.6 - Manufacture of new aircraft, aircraft engines, and propellers.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Manufacture of new aircraft, aircraft..., DEPARTMENT OF TRANSPORTATION AIRCRAFT CERTIFICATION PROCEDURES FOR PRODUCTS AND PARTS General § 21.6 Manufacture of new aircraft, aircraft engines, and propellers. (a) Except as specified in paragraphs (b)...

  3. 14 CFR 21.6 - Manufacture of new aircraft, aircraft engines, and propellers.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Manufacture of new aircraft, aircraft..., DEPARTMENT OF TRANSPORTATION AIRCRAFT CERTIFICATION PROCEDURES FOR PRODUCTS AND PARTS General § 21.6 Manufacture of new aircraft, aircraft engines, and propellers. (a) Except as specified in paragraphs (b)...

  4. Effects of motion on jet exhaust noise from aircraft

    NASA Technical Reports Server (NTRS)

    Chun, K. S.; Berman, C. H.; Cowan, S. J.

    1976-01-01

    The various problems involved in the evaluation of the jet noise field prevailing between an observer on the ground and an aircraft in flight in a typical takeoff or landing approach pattern were studied. Areas examined include: (1) literature survey and preliminary investigation, (2) propagation effects, (3) source alteration effects, and (4) investigation of verification techniques. Sixteen problem areas were identified and studied. Six follow-up programs were recommended for further work. The results and the proposed follow-on programs provide a practical general technique for predicting flyover jet noise for conventional jet nozzles.

  5. 14 CFR 34.62 - Test procedure (propulsion engines).

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... FUEL VENTING AND EXHAUST EMISSION REQUIREMENTS FOR TURBINE ENGINE POWERED AIRPLANES Test Procedures for Engine Exhaust Gaseous Emissions (Aircraft and Aircraft Gas Turbine Engines) § 34.62 Test...

  6. Characterization of Chemicals on Engine Exhaust Particles

    DTIC Science & Technology

    1989-06-01

    Chromatography /Mass Spectrometry (NCI GC/MS). The NCI on- column injection GC/MS method provides significant benefits for the analysis of nitro-aromatic...found is quite small. The two columns of data for tne TF33-P7 engine operated at 30 percent power were obtained on separate days, so that factors other...alkane 19 736 Long chain alkane 20 775 C1, fluorene 21 811 Fluorenone 22 834 Long chain alkane 23 844 Long chain alkane 24 859 Phenanthrene 25 869

  7. An engine trade study for a supersonic STOVL fighter-attack aircraft, volume 1

    NASA Technical Reports Server (NTRS)

    Beard, B. B.; Foley, W. H.

    1982-01-01

    The best main engine for an advanced STOVL aircraft flight demonstrator was studied. The STOVL aircraft uses ejectors powered by engine bypass flow together with vectored core exhaust to achieve vertical thrust capability. Bypass flow and core flow are exhausted through separate nozzles during wingborne flight. Six near term turbofan engines were examined for suitability for this aircraft concept. Fan pressure ratio, thrust split between bypass and core flow, and total thrust level were used to compare engines. One of the six candidate engines was selected for the flight demonstrator configuration. Propulsion related to this aircraft concept was studied. A preliminary candidate for the aircraft reaction control system for hover attitude control was selected. A mathematical model of transfer of bypass thrust from ejectors to aft directed nozzle during the transition to wingborne flight was developed. An equation to predict ejector secondary air flow rate and ram drag is derived. Additional topics discussed include: nozzle area control, ejector to engine inlet reingestion, bypass/core thrust split variation, and gyroscopic behavior during hover.

  8. Method of vibration isolating an aircraft engine

    NASA Technical Reports Server (NTRS)

    Bender, Stanley I. (Inventor); Butler, Lawrence (Inventor); Dawes, Peter W. (Inventor)

    1991-01-01

    A method for coupling an engine to a support frame for mounting to a fuselage of an aircraft using a three point vibration isolating mounting system in which the load reactive forces at each mounting point are statically and dynamically determined. A first vibration isolating mount pivotably couples a first end of an elongated support beam to a stator portion of an engine with the pivoting action of the vibration mount being oriented such that it is pivotable about a line parallel to a center line of the engine. An aft end of the supporting frame is coupled to the engine through an additional pair of vibration isolating mounts with the mounts being oriented such that they are pivotable about a circumference of the engine. The aft mounts are symmetrically spaced to each side of the supporting frame by 45 degrees. The relative orientation between the front mount and the pair of rear mounts is such that only the rear mounts provide load reactive forces parallel to the engine center line, in support of the engine to the aircraft against thrust forces. The forward mount is oriented so as to provide only radial forces to the engine and some lifting forces to maintain the engine in position adjacent a fuselage. Since each mount is connected to provide specific forces to support the engine, forces required of each mount are statically and dynamically determinable.

  9. Aircraft engine mathematical model - linear system approach

    NASA Astrophysics Data System (ADS)

    Rotaru, Constantin; Roateşi, Simona; Cîrciu, Ionicǎ

    2016-06-01

    This paper examines a simplified mathematical model of the aircraft engine, based on the theory of linear and nonlinear systems. The dynamics of the engine was represented by a linear, time variant model, near a nominal operating point within a finite time interval. The linearized equations were expressed in a matrix form, suitable for the incorporation in the MAPLE program solver. The behavior of the engine was included in terms of variation of the rotational speed following a deflection of the throttle. The engine inlet parameters can cover a wide range of altitude and Mach numbers.

  10. 78 FR 54385 - Airworthiness Directives; Various Aircraft Equipped With Rotax Aircraft Engines 912 A Series Engine

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-04

    ... condition exists and is likely to exist or develop on other products of the same type design. FAA's.... Table 1 of Paragraph (c)--Affected Airplanes Type certificate holder Aircraft model Engine model Aeromot-Ind stria AMT-200 912 A2 Mec nico- Metal rgica Ltda. Diamond Aircraft Industries...... HK 36 R...

  11. General aviation piston-engine exhaust emission reduction

    NASA Technical Reports Server (NTRS)

    Kempke, E. E., Jr.; Houtman, W. H.; Westfield, W. T.; Duke, L. C.; Rezy, B. J.

    1977-01-01

    To support the promulgation of aircraft regulations, two airports were examined, Van Nuys and Tamiami. It was determined that the carbon monoxide (CO) emissions from piston-engine aircraft have a significant influence on the CO levels in the ambient air in and around airports, where workers and travelers would be exposed. Emissions standards were set up for control of emissions from aircraft piston engines manufactured after December 31, 1979. The standards selected were based on a technologically feasible and economically reasonable control of carbon monoxide. It was concluded that substantial CO reductions could be realized if the range of typical fuel-air ratios could be narrowed. Thus, improvements in fuel management were determined as reasonable controls.

  12. Aircraft Engineering Conference 1934 - Full Scale Tunnel

    NASA Technical Reports Server (NTRS)

    1934-01-01

    Gathered together in the only facility big enough to hold them, attendees at Langleys 1934 aircraft Engineering Conference pose in the Full Scale Wind Tunnel underneath a Boeing P-26A Peashooter. Present, among other notables, were Orville Wright, Charles Lindbergh, and Howard Hughes.

  13. Electronic materials testing in commercial aircraft engines

    NASA Astrophysics Data System (ADS)

    Brand, Dieter

    A device for the electronic testing of materials used in commercial aircraft engines is described. The instrument can be used for ferromagnetic, ferrimagnetic, and nonferromagnetic metallic materials, and it functions either optically or acoustically. The design of the device is described and technical data are given. The device operates under the principle of controlled self-inductivity. Its mode of operation is described.

  14. Flow Forming of Aircraft Engine Components

    DTIC Science & Technology

    2006-05-01

    Canada 1000 Marie Victorin, Longueuil Québec J4G 1A1 CANADA jean.Savoie@pwc.ca ABSTRACT Aircraft engine components are often an assembly of...1000 Marie Victorin, Longueuil Québec J4G 1A1 CANADA 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES

  15. Apollo lunar module engine exhaust products.

    PubMed

    Simoneit, B R; Burlingame, A L; Flory, D A; Smith, I D

    1969-11-07

    Organic combustion products generated by the lunar module descent engine, which burns a 1:1 mixture of unsymmetrical dimethylhydrazine fuel and nitrogen tetroxide oxidizer, have been analyzed. The major gaseous combustion products found were ammonia, water, carbon monoxide, nitrous oxide, oxygen, carbon dioxide, and nitric oxide. The minor products were acetylene, hydrogen cyanide, ethylene, formaldehyde, propadiene, ketene, cyanous acid, hydrazoic acid, various methylamines, acetaldehyde, methyl nitrite, formic acid, nitrous acid, butadiyne, nitrilohydrazines, nitromethane, and nitrosohydrazines with other oxidized derivatives of unsymmetrical dimethylhydrazine and hydrazine. The ion intensities of the various species in all mass spectra were estimated as the following concentrations: the gases (NH(3), H(2)O, CO, NO, O(2), CO(2), and NO(2)), 87.7 percent; compounds of C, H, and O, 6.0 percent; and compounds of C, H, and N (with traces of O), 5.8 percent.

  16. Mutagenicity of diesel exhaust particles from an engine with differing exhaust after treatments.

    PubMed

    Shi, X-C; Keane, M J; Ong, T; Li, S-Q; Bugarski, A B

    2010-01-01

    This study was conducted to investigate the effects of engine operating conditions and exhaust aftertreatments on the mutagenicity of diesel particulate matter (DPM) collected directly in an underground mine environment. A number of after-treatment devices are currently used on diesel engines in mines, but it is critical to determine whether reductions in DPM concentrations result in a corresponding decrease in adverse health effects. An eddy-current dynamometer was used to operate naturally aspirated mechanically controlled engine at several steady-state conditions. The samples were collected when the engine was equipped with a standard muffler, a diesel oxidation catalytic converter, two types of uncatalyzed diesel particulate filter systems, and three types of disposable diesel particulate filter elements. Bacterial gene mutation activity of DPM was tested on acetone extracts using the Ames Salmonella assay. The results indicated strong correlation between engine operating conditions and mutagenic activity of DPM. When the engine was fitted with muffler, the mutagenic activity was observed for the samples collected from light-load, but not heavy-load operating conditions. When the engine was equipped with a diesel oxidation catalyst, the samples did not exhibit mutagenic activity for any of four engine operating conditions. Mutagenic activity was observed for the samples collected when the engine was retrofitted with three types of disposable filters and sintered metal diesel particulate filter and operated at light load conditions. However, those filtration systems substantially reduced the concentration-normalized mutagenic activity from the levels observed for the muffler.

  17. 14 CFR 21.128 - Tests: aircraft engines.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Tests: aircraft engines. 21.128 Section 21... engines. (a) Each person manufacturing aircraft engines under a type certificate only shall subject each engine (except rocket engines for which the manufacturer must establish a sampling technique) to...

  18. 14 CFR 21.128 - Tests: aircraft engines.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Tests: aircraft engines. 21.128 Section 21... engines. (a) Each person manufacturing aircraft engines under a type certificate only shall subject each engine (except rocket engines for which the manufacturer must establish a sampling technique) to...

  19. From Contrails and Smoke Trails to Exhaust Particle Processes: A Brief History of Aircraft Particulate Emissions

    DTIC Science & Technology

    2011-12-01

    2,6- Dimethylnaphthalene Acenaphthylene Acenaphthene Phenanthrene Anthracene Fluoranthene Benz[ a ]anthracene Benzofluoranthenes Benzo [ a ] pyrene Indeno...1,2,3-c,d] pyrene Benzo [g,h,i]perylene Methane Ethane Propane Acetylene Propene n-Pentane n-Hexane Toluene n-Decane Dodecane Tridecane Formaldehyd e...Aerodyne Research, Inc. From Contrails and Smoke Trails to Exhaust Particle Processes: A brief history of aircraft particulate emissions Presented

  20. Advanced aircraft engine materials trends

    NASA Technical Reports Server (NTRS)

    Dreshfield, R. L.; Gray, H. R.; Levine, S. R.; Signorelli, R.

    1981-01-01

    Recent activities of the Lewis Research Center are reviewed which are directed toward developing materials for rotating hot section components for aircraft gas turbines. Turbine blade materials activities are directed at increasing metal temperatures approximately 100 C compared to current directionally solidified alloys by use of oxide dispersion strengthening or tungsten alloy wire reinforcement of nickel or iron base superalloys. The application of thermal barrier coatings offers a promise of increasing gas temperatures an additional 100 C with current cooling technology. For turbine disk alloys, activities are directed toward reducing the cost of turbine disks by 50 percent through near net shape fabrication of prealloyed powders as well as towards improved performance. In addition, advanced alloy concepts and fabrication methods for dual alloy disks are being studied as having potential for improving the life of future high performance disks and reducing the amount of strategic materials required in these components.

  1. Computational models for the viscous/inviscid analysis of jet aircraft exhaust plumes

    NASA Astrophysics Data System (ADS)

    Dash, S. M.; Pergament, H. S.; Thorpe, R. D.

    1980-05-01

    Computational models which analyze viscous/inviscid flow processes in jet aircraft exhaust plumes are discussed. These models are component parts of an NASA-LaRC method for the prediction of nozzle afterbody drag. Inviscid/shock processes are analyzed by the SCIPAC code which is a compact version of a generalized shock capturing, inviscid plume code (SCIPPY). The SCIPAC code analyzes underexpanded jet exhaust gas mixtures with a self-contained thermodynamic package for hydrocarbon exhaust products and air. A detailed and automated treatment of the embedded subsonic zones behind Mach discs is provided in this analysis. Mixing processes along the plume interface are analyzed by two upgraded versions of an overlaid, turbulent mixing code (BOAT) developed previously for calculating nearfield jet entrainment. The BOATAC program is a frozen chemistry version of BOAT containing the aircraft thermodynamic package as SCIPAC; BOATAB is an afterburning version with a self-contained aircraft (hydrocarbon/air) finite-rate chemistry package. The coupling of viscous and inviscid flow processes is achieved by an overlaid procedure with interactive effects accounted for by a displacement thickness type correction to the inviscid plume interface.

  2. Computational models for the viscous/inviscid analysis of jet aircraft exhaust plumes. [predicting afterbody drag

    NASA Technical Reports Server (NTRS)

    Dash, S. M.; Pergament, H. S.; Thorpe, R. D.

    1980-01-01

    Computational models which analyze viscous/inviscid flow processes in jet aircraft exhaust plumes are discussed. These models are component parts of an NASA-LaRC method for the prediction of nozzle afterbody drag. Inviscid/shock processes are analyzed by the SCIPAC code which is a compact version of a generalized shock capturing, inviscid plume code (SCIPPY). The SCIPAC code analyzes underexpanded jet exhaust gas mixtures with a self-contained thermodynamic package for hydrocarbon exhaust products and air. A detailed and automated treatment of the embedded subsonic zones behind Mach discs is provided in this analysis. Mixing processes along the plume interface are analyzed by two upgraded versions of an overlaid, turbulent mixing code (BOAT) developed previously for calculating nearfield jet entrainment. The BOATAC program is a frozen chemistry version of BOAT containing the aircraft thermodynamic package as SCIPAC; BOATAB is an afterburning version with a self-contained aircraft (hydrocarbon/air) finite-rate chemistry package. The coupling of viscous and inviscid flow processes is achieved by an overlaid procedure with interactive effects accounted for by a displacement thickness type correction to the inviscid plume interface.

  3. Organic content of particulate matter in turbine engine exhaust

    SciTech Connect

    Robertson, D.J.; Groth, R.H.; Blasko, T.J.

    1980-03-01

    Research report:Solid particulate matter, mainly carbon, emitted during fossil fuels combustion contains a variety of organic species adsorbed onto it. Studies were conducted to identify the organic compounds generated by a gas turbine engine. Total organics were determined by gas chromatography and flame ionization. Polynuclear aromatic hydrocarbons, phenols, and nitrosamines were present in samples collected from exhaust gases. (1 diagram, 4 references, 11 tables)

  4. A study of ingestion and dispersion of engine exhaust products in trailing vortex systems

    NASA Technical Reports Server (NTRS)

    Nielsen, J. N.; Stahara, S. S.; Woolley, J. P.

    1973-01-01

    Analysis has been made of the ingestion and dispersion of engine exhaust products into the trailing vortex system of supersonic aircraft flying in the stratosphere. The rate of mixing between the supersonic jet and the co-flowing supersonic stream was found to be an order of magnitude less than would be expected on the basis of subsonic eddy-viscosity results. The length of the potential core was 66 nozzle exit radii so that the exhaust gases remain at elevated temperatures and concentrations over much longer distances than previsously estimated. Ingestion started at the end of the potential core and all hot gas from the engine was ingested into the trailing vortex within two core lengths. Comparison between the buoyancy calculations for the supersonic case with nondimensionalized subsonic aircraft contrail data on wake spreading showed good agreement. Velocity and temperature profiles have been specified at various stages of the wake, and the analysis in this report can be used to predict variations of concentrations of species such as nitrogen oxides under conditions of chemical reaction.

  5. Utilization of LPG and gasoline engine exhaust emissions by microalgae.

    PubMed

    Taştan, Burcu Ertit; Duygu, Ergin; Ilbaş, Mustafa; Dönmez, Gönül

    2013-02-15

    The effect of engine exhaust emissions on air pollution is one of the greatest problems that the world is facing today. The study focused on the effects of realistic levels of engine exhaust emissions of liquid petroleum gas (LPG) and gasoline (GSN) on Phormidium sp. and Chlorella sp. Multi parameters including pH, different medial compositions, fuel types, flow rates and biomass concentrations were described in detail. Effects of some growth factors such as triacontanol (TRIA) and salicylic acid (SA) have also been tested. The maximum biomass concentration of Phormidium sp. reached after 15 days at 0.36 and 0.15 g/L initial biomass concentrations were found as 1.160 g/L for LPG emission treated cultures and 1.331 g/L for GSN emission treated cultures, respectively. The corresponding figures were 1.478 g/L for LPG emission treated cultures and 1.636 g/L for GSN emission treated cultures at 0.65 and 0.36 g/L initial Chlorella sp. biomass concentrations. This study highlights the significance of using Phormidium sp. and Chlorella sp. for utilization of LPG and GSN engine exhaust emissions by the help of growth factors.

  6. Practical Possibilities of High-Altitude Flight with Exhaust-Gas Turbines in Connection with Spark Ignition Engines Comparative Thermodynamic and Flight Mechanical Investigations

    NASA Technical Reports Server (NTRS)

    Weise, A.

    1947-01-01

    As a means of preparing for high-altitude flight with spark-ignition engines in conjunction with exhaust-gas turbosuperchargers, various methods of modifying the exhaust-gas temperatures, which are initially higher than a turbine can withstand are mathematically compared. The thermodynamic results first obtained are then examined with respect to the effect on flight speed, climbing speed, ceiling, economy, and cruising range. The results are so presented in a generalized form that they may be applied to every appropriate type of aircraft design and a comparison with the supercharged engine without exhaust-gas turbine can be made.

  7. Generation and characterization of gasoline engine exhaust inhalation exposure atmospheres.

    PubMed

    McDonald, Jacob D; Barr, Edward B; White, Richard K; Kracko, Dean; Chow, Judith C; Zielinska, Barbara; Grosjean, Eric

    2008-10-01

    Exposure atmospheres for a rodent inhalation toxicology study were generated from the exhaust of a 4.3-L gasoline engine coupled to a dynamometer and operated on an adapted California Unified Driving Cycle. Exposure levels were maintained at three different dilution rates. One chamber at the lowest dilution had particles removed by filtration. Each exposure atmosphere was characterized for particle mass, particle number, particle size distribution, and detailed chemical speciation. The majority of the mass in the exposure atmospheres was gaseous carbon monoxide, nitrogen oxides, and volatile organics, with small amounts of particle-bound carbon/ions and metals. The atmospheres varied according to the cycle, with the largest spikes in volatile organic and inorganic species shown during the "cold start" portion of the cycle. Ammonia present from the exhaust and rodents interacted with the gasoline exhaust to form secondary inorganic particles, and an increase in exhaust resulted in higher proportions of secondary inorganics as a portion of the total particle mass. Particle size had a median of 10-20 nm by number and approximately 150 nm by mass. Volatile organics matched the composition of the fuel, with large proportions of aliphatic and aromatic hydrocarbons coupled to low amounts of oxygenated organics. A new measurement technique revealed organics reacting with nitrogen oxides have likely resulted in measurement bias in previous studies of combustion emissions. Identified and measured particle organic species accounted for about 10% of total organic particle mass and were mostly aliphatic acids and polycyclic aromatic hydrocarbons.

  8. Gasoline engine with single overhead camshaft having duel exhaust cams per cylinder wherein each exhaust cam has duel lobes

    SciTech Connect

    Taguma, K.

    1991-03-19

    This patent describes an improved gasoline engine using a spark plug and a spark plug wire. It comprises a cylinder having a cylinder wall and an upper end; a piston movably disposed within the cylinder; a gasoline injector for supplying the gasoline charge into the cylinder; a single tube exhaust valve movably mounted to the cylinder; a single overhead camshaft having duel exhaust came for the cylinder with each exhaust cam having duel exhaust lobes; and port holes contained in the cylinder around the cylinder wall in a ring-like fashion.

  9. Sulfuric acid measurements in the exhaust plume of a jet aircraft in flight: Implications for the sulfuric acid formation efficiency

    NASA Astrophysics Data System (ADS)

    Curtius, J.; Arnold, F.; Schulte, P.

    2002-04-01

    Sulfuric acid concentrations were measured in the exhaust plume of a B737-300 aircraft in flight. The measurements were made onboard of the German research aircraft Falcon using the Volatile Aerosol Component Analyzer (VACA). The VACA measures total H2SO4, which is the sum of gaseous H2SO4 and aerosol H2SO4. Measurements took place at distances of 25-200 m behind the B737 corresponding to plume ages of about 0.1-1 seconds. The fuel sulfur content (FSC) of the fuel burned by the B737 engines was alternatively 2.6 and 56 mg sulfur per kilogram fuel (ppmm). H2SO4 concentrations measured in the plume for the 56 ppmm sulfur case were up to ~600 pptv. The average concentration of H2SO4 measured in the ambient atmosphere outside the aircraft plume was 88 pptv, the maximum ambient atmospheric H2SO4 was ~300 pptv. Average efficiencies ɛΔCO2 = 3.3 +/- 1.8% and ɛΔT = 2.9 +/- 1.6% for fuel sulfur conversion to sulfuric acid were inferred when relating the H2SO4 data to measurements of the plume tracers ΔCO2 and ΔT.

  10. Exhaust gas treatment in testing nuclear rocket engines

    NASA Astrophysics Data System (ADS)

    Zweig, Herbert R.; Fischler, Stanley; Wagner, William R.

    1993-01-01

    With the exception of the last test series of the Rover program, Nuclear Furnace 1, test-reactor and rocket engine hydrogen gas exhaust generated during the Rover/NERVA program was released directly to the atmosphere, without removal of the associated fission products and other radioactive debris. Current rules for nuclear facilities (DOE Order 5480.6) are far more protective of the general environment; even with the remoteness of the Nevada Test Site, introduction of potentially hazardous quantities of radioactive waste into the atmosphere must be scrupulously avoided. The Rocketdyne treatment concept features a diffuser to provide altitude simulation and pressure recovery, a series of heat exchangers to gradually cool the exhaust gas stream to 100 K, and an activated charcoal bed for adsorption of inert gases. A hydrogen-gas fed ejector provides auxiliary pumping for startup and shutdown of the engine. Supplemental filtration to remove particulates and condensed phases may be added at appropriate locations in the system. The clean hydrogen may be exhausted to the atmosphere and flared, or the gas may be condensed and stored for reuse in testing. The latter approach totally isolates the working gas from the environment.

  11. Helping Aircraft Engines Lighten Up

    NASA Technical Reports Server (NTRS)

    2004-01-01

    High-temperature polyimide/carbon fiber matrix composites are developed by the Polymers Branch at NASA's Glenn Research Center. These materials can withstand high temperatures and have good processing properties, which make them particularly useful for jet and rocket engines and for components such as fan blades, bushings, and duct segments. Applying polyimide composites as components for aerospace structures can lead to substantial vehicle weight reductions. A typical polyimide composite is made up of layers of carbon or glass fibers glued together by a high-temperature polymer to make the material strong, stiff, and lightweight. Organic molecules containing carbon, nitrogen, oxygen, and hydrogen within the polyimide keep the material s density low, resulting in the light weight. The strength of a component or part made from a polyimide comes mainly from the reinforcing high-strength fibers. The strength of the carbon fibers coupled with the stiffness of polyimides allows engineers to make a very rigid structure without it being massive. Another benefit of a polyimide s suitability for aerospace applications is its reduced need for machining. When polyimide parts are removed from a mold, they are nearly in their final shape. Usually, very little machining is needed before a part is ready for use.

  12. Evaluation of Federal Aviation Administration ion engine exhaust sampling rake

    NASA Technical Reports Server (NTRS)

    Fiorentino, A. J.; Greene, W.; Roberts, R.

    1977-01-01

    A FAA exhaust emissions rake was tested in the Experimental Clean Combustor Program, Phase 3 to permit comparison of the values of gaseous emissions and smoke measured by the FAA rake with those measured with the NASA Pratt and Whitney Aircraft (P and WA) rake used in the Phase 3 Experimental Clean Combustor Program and with station seven probes. The results showed that the levels of CO, THC, NOx and smoke measured by the FAA and NASA/P and WA rakes agree well at high power, but that CO emissions measured by the FAA rake were approximately 10 percent higher than those measured by the NASA/P and WA rake at low power.

  13. Health effects of subchronic inhalation exposure to gasoline engine exhaust.

    PubMed

    Reed, M D; Barrett, E G; Campen, M J; Divine, K K; Gigliotti, A P; McDonald, J D; Seagrave, J C; Mauderly, J L; Seilkop, S K; Swenberg, J A

    2008-10-01

    Gasoline engine emissions are a ubiquitous source of exposure to complex mixtures of particulate matter (PM) and non-PM pollutants; yet their health hazards have received little study in comparison with those of diesel emissions. As a component of the National Environmental Respiratory Center (NERC) multipollutant research program, F344 and SHR rats and A/J, C57BL/6, and BALBc mice were exposed 6 h/day, 7 days/week for 1 week to 6 months to exhaust from 1996 General Motors 4.3-L engines burning national average fuel on a simulated urban operating cycle. Exposure groups included whole exhaust diluted 1:10, 1:15, or 1:90, filtered exhaust at the 1:10 dilution, or clean air controls. Evaluations included organ weight, histopathology, hematology, serum chemistry, bronchoalveolar lavage, cardiac electrophysiology, micronuclei in circulating cells, DNA methylation and oxidative injury, clearance of Pseudomonas aeruginosa from the lung, and development of respiratory allergic responses to ovalbumin. Among the 120 outcome variables, only 20 demonstrated significant exposure effects. Several statistically significant effects appeared isolated and were not supported by related variables. The most coherent and consistent effects were those related to increased red blood cells, interpreted as likely to have resulted from exposure to 13-107 ppm carbon monoxide. Other effects supported by multiple variables included mild lung irritation and depression of oxidant production by alveolar macrophages. The lowest exposure level caused no significant effects. Because only 6 of the 20 significant effects appeared to be substantially reversed by PM filtration, the majority of effects were apparently caused by non-PM components of exhaust.

  14. Aircraft Engine Sump Fire Mitigation

    NASA Technical Reports Server (NTRS)

    Rosenlieb, J. W.

    1973-01-01

    An investigation was performed of the conditions in which fires can result and be controlled within the bearing sump simulating that of a gas turbine engine; Esso 4040 Turbo Oil, Mobil Jet 2, and Monsanto MCS-2931 lubricants were used. Control variables include the oil inlet temperature, bearing temperature, oil inlet and scavenge rates, hot air inlet temperature and flow rate, and internal sump baffling. In addition to attempting spontaneous combustion, an electric spark and a rub (friction) mechanism were employed to ignite fires. Spontaneous combustion was not obtained; however, fires were readily ignited with the electric spark while using each of the three test lubricants. Fires were also ignited using the rub mechanism with the only test lubricant evaluated, Esso 4040. Major parameters controlling ignitions were: Sump configuration; Bearing and oil temperatures, hot air temperature and flow and bearing speed. Rubbing between stationary parts and rotating parts (eg. labyrinth seal and mating rub strip) is a very potent fire source suggesting that observed accidental fires in gas turbine sumps may well arise from this cause.

  15. Exhaust Gas Emissions from a Rotating Detonation-wave Engine

    NASA Astrophysics Data System (ADS)

    Kailasanath, Kazhikathra; Schwer, Douglas

    2015-11-01

    Rotating detonation-wave engines (RDE) are a form of continuous detonation-wave engines. They potentially provide further gains in performance than an intermittent or pulsed detonation-wave engine (PDE). The overall flow field in an idealized RDE, primarily consisting of two concentric cylinders, has been discussed in previous meetings. Because of the high pressures involved and the lack of adequate reaction mechanisms for this regime, previous simulations have typically used simplified chemistry models. However, understanding the exhaust species concentrations in propulsion devices is important for both performance considerations as well as estimating pollutant emissions. Progress towards addressing this need will be discussed in this talk. In this approach, an induction parameter model is used for simulating the detonation but a more detailed finite-chemistry model including NOx chemistry is used in the expansion flow region, where the pressures are lower and the uncertainties in the chemistry model are greatly reduced. Results show that overall radical concentrations in the exhaust flow are substantially lower than from earlier predictions with simplified models. The performance of a baseline hydrogen/air RDE increased from 4940 s to 5000 s with the expansion flow chemistry, due to recombination of radicals and more production of H2O, resulting in additional heat release. Work sponsored by the Office of Naval Research.

  16. Tribological systems as applied to aircraft engines

    NASA Technical Reports Server (NTRS)

    Buckley, D. H.

    1985-01-01

    Tribological systems as applied to aircraft are reviewed. The importance of understanding the fundamental concepts involved in such systems is discussed. Basic properties of materials which can be related to adhesion, friction and wear are presented and correlated with tribology. Surface processes including deposition and treatment are addressed in relation to their present and future application to aircraft components such as bearings, gears and seals. Lubrication of components with both liquids and solids is discussed. Advances in both new liquid molecular structures and additives for those structures are reviewed and related to the needs of advanced engines. Solids and polymer composites are suggested for increasing use and ceramic coatings containing fluoride compounds are offered for the extreme temperatures encountered in such components as advanced bearings and seals.

  17. Study of unconventional aircraft engines designed for low energy consumption

    NASA Technical Reports Server (NTRS)

    Gray, D. E.

    1976-01-01

    Declining U.S. oil reserves and escalating energy costs underline the need for reducing fuel consumption in aircraft engines. The most promising unconventional aircraft engines based on their potential for fuel savings and improved economics are identified. The engines installed in both a long-range and medium-range aircraft were evaluated. Projected technology advances are identified and evaluated for their state-of-readiness for application to a commercial transport. Programs are recommended for developing the necessary technology.

  18. Aircraft emissions characterization: F101 and F110 engines. Final report Jun 87-Mar 89

    SciTech Connect

    Spicer, C.W.; Holdren, M.W.; Smith, D.L.; Miller, S.E.; Smith, R.N.

    1990-03-01

    Assessment of the environmental impact of aircraft operations is required by Air Force regulations. This program was undertaken to quantify gaseous and particulate emissions associated with two Air Force turbine engines (F101 and F110). The emissions tests were carried out using a test cell at Tinker AFB, Oklahoma City, OK. All tests employed JP-4 as the fuel, and fuel samples were characterized by standard tests and analyzed for composition. Emissions were measured at five power settings for each engine. Detailed organic composition, CO, CO2, NO, NOx, smoke emissions, particle concentration, and particle size distribution were measured. A multiport sampling rake was used to sample the exhaust, and heated Teflon tubing was used to transfer exhaust to the monitoring instrumentation. Measured and calculated fuel/air ratios were compared to assure representative sampling of the exhaust.

  19. Damage Propagation Modeling for Aircraft Engine Prognostics

    NASA Technical Reports Server (NTRS)

    Saxena, Abhinav; Goebel, Kai; Simon, Don; Eklund, Neil

    2008-01-01

    This paper describes how damage propagation can be modeled within the modules of aircraft gas turbine engines. To that end, response surfaces of all sensors are generated via a thermo-dynamical simulation model for the engine as a function of variations of flow and efficiency of the modules of interest. An exponential rate of change for flow and efficiency loss was imposed for each data set, starting at a randomly chosen initial deterioration set point. The rate of change of the flow and efficiency denotes an otherwise unspecified fault with increasingly worsening effect. The rates of change of the faults were constrained to an upper threshold but were otherwise chosen randomly. Damage propagation was allowed to continue until a failure criterion was reached. A health index was defined as the minimum of several superimposed operational margins at any given time instant and the failure criterion is reached when health index reaches zero. Output of the model was the time series (cycles) of sensed measurements typically available from aircraft gas turbine engines. The data generated were used as challenge data for the Prognostics and Health Management (PHM) data competition at PHM 08.

  20. Summary of the general aviation manufacturers' position on aircraft piston engine emissions

    NASA Technical Reports Server (NTRS)

    Helms, J. L.

    1976-01-01

    The General Aviation Manufacturers recommended that the EPA rescind the aircraft piston engine emissions regulations currently on the books. The reason was the very small emission reduction potential and the very poor benefit-cost ratio involved in this form of emission reduction. The limited resources of this industry can far better be devoted to items of much greater benefit to the citizens of this country - reducing noise, improving fuel efficiency (which will incidently reduce exhaust emissions), and improving the safety, operational, and economic aspects of aircraft, all far greater contributions to our total national transportation system.

  1. Impact of future fuel properties on aircraft engines and fuel systems

    NASA Technical Reports Server (NTRS)

    Rudey, R. A.; Grobman, J. S.

    1978-01-01

    The effect of modifications in hydrocarbon jet fuels specifications on engine performance, component durability and maintenance, and aircraft fuel system performance is discussed. Specific topics covered include: specific fuel consumption; ignition at relight limits; exhaust emissions; combustor liner temperatures; carbon deposition; gum formation in fuel nozzles, erosion and corrosion of turbine blades and vanes; deposits in fuel system heat exchangers; and pumpability and flowability of the fuel. Data that evaluate the ability of current technology aircraft to accept fuel specification changes are presented, and selected technological advances that can reduce the severity of the problems are described and discussed.

  2. Comparison of cytotoxicity and genotoxicity induced by the extracts of methanol and gasoline engine exhausts.

    PubMed

    Zhang, Zunzhen; Che, Wangjun; Liang, Ying; Wu, Mei; Li, Na; Shu, Ya; Liu, Fang; Wu, Desheng

    2007-09-01

    Gasoline engine exhaust has been considered a major source of air pollution in China, and methanol is considered as a potential substitute for gasoline fuel. In this study, the genotoxicity and cytotoxicity of organic extracts of condensate, particulate matters (PM) and semivolatile organic compounds (SVOC) of gasoline and absolute methanol engine exhaust were examined by using MTT assay, micronucleus assay, comet assay and Ames test. The results have showed that gasoline engine exhaust exhibited stronger cytotoxicity to human lung carcinoma cell lines (A549 cell) than methanol engine exhaust. Furthermore, gasoline engine exhaust increased micronucleus formation, induced DNA damage in A549 cells and increased TA98 revertants in the presence of metabolic activating enzymes in a concentration-dependent manner. In contrast, methanol engine exhaust failed to exhibit these adverse effects. The results suggest methanol may be used as a cleaner fuel for automobile.

  3. 77 FR 1626 - Airworthiness Directives; Various Aircraft Equipped With Rotax Aircraft Engines 912 A Series Engine

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-11

    ... determined the unsafe condition exists and is likely to exist or develop on other products of the same type... 40507; and (2) Certificated in any category. Table 1--Affected Airplanes Type certificate holder Aircraft model Engine model Aeromot-Ind stria AMT-200 912 A2 Mec nico- Metal rgica Ltda. Diamond...

  4. 40 CFR 86.1310-90 - Exhaust gas sampling and analytical system; diesel engines.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... system; diesel engines. 86.1310-90 Section 86.1310-90 Protection of Environment ENVIRONMENTAL PROTECTION... ENGINES (CONTINUED) Emission Regulations for New Otto-Cycle and Diesel Heavy-Duty Engines; Gaseous and Particulate Exhaust Test Procedures § 86.1310-90 Exhaust gas sampling and analytical system; diesel...

  5. 40 CFR 86.1310-90 - Exhaust gas sampling and analytical system; diesel engines.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... system; diesel engines. 86.1310-90 Section 86.1310-90 Protection of Environment ENVIRONMENTAL PROTECTION... ENGINES (CONTINUED) Emission Regulations for New Otto-Cycle and Diesel Heavy-Duty Engines; Gaseous and Particulate Exhaust Test Procedures § 86.1310-90 Exhaust gas sampling and analytical system; diesel...

  6. 77 FR 22187 - Technical Amendment; Airworthiness Standards-Aircraft Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-13

    ... Federal Aviation Administration 14 CFR Part 33 Technical Amendment; Airworthiness Standards--Aircraft.... SUMMARY: This amendment corrects a number of errors in the airworthiness standards for aircraft engine... additional burden on any person. List of Subjects 14 CFR Part 33 Air transportation, Aircraft,...

  7. USAF Aircraft Engine Emission Goals: A Critical Review.

    DTIC Science & Technology

    1979-09-01

    dif- ficult to obtain. Combustion product gases at the exhaust plane are extremely reactive and at high temperature; consequently, much of the CO and...19. KEY WORDS (Continue on reverse side if necessary and identify by block number) J Pollution Abatement Exhaust Emissions Combustion Aircraft...The USAF must continue basic research in areas of combustion , smoke formation, etc. it - -W: (7) Variability of emissions is an area where more

  8. Integrated engine-generator concept for aircraft electric secondary power

    NASA Technical Reports Server (NTRS)

    Secunde, R. R.; Macosko, R. P.; Repas, D. S.

    1972-01-01

    The integrated engine-generator concept of locating an electric generator inside an aircraft turbojet or turbofan engine concentric with, and driven by, one of the main engine shafts is discussed. When properly rated, the generator can serve as an engine starter as well as a generator of electric power. The electric power conversion equipment and generator controls are conveniently located in the aircraft. Preliminary layouts of generators in a large engine together with their physical sizes and weights indicate that this concept is a technically feasible approach to aircraft secondary power.

  9. TCM aircraft piston engine emission reduction program

    NASA Technical Reports Server (NTRS)

    Rezy, B. J.

    1976-01-01

    The technology necessary to safely reduce general aviation piston engine exhaust emissions to meet the EPA 1980 Emission Standards with minimum adverse effects on cost, weight, fuel economy, and performance was demonstrated. A screening and assessment of promising emission reduction concepts was provided, and the preliminary design and development of those concepts was established. A system analysis study and a decision making procedure were used by TCM to evaluate, trade off, and rank the candidate concepts from a list of 14 alternatives. Cost, emissions, and 13 other design criteria considerations were defined and traded off against each candidate concept to establish its merit and emission reduction usefulness. A computer program was used to aid the evaluators in making the final choice of three concepts.

  10. 40 CFR 87.23 - Exhaust emission standards for Tier 6 and Tier 8 engines.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Exhaust emission standards for Tier 6 and Tier 8 engines. 87.23 Section 87.23 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY....23 Exhaust emission standards for Tier 6 and Tier 8 engines. This section describes the...

  11. Side branch absorber for exhaust manifold of two-stroke internal combustion engine

    SciTech Connect

    Harris, Ralph E; Broerman, III, Eugene L.; Bourn, Gary D

    2011-01-11

    A method of improving scavenging operation of a two-stroke internal combustion engine. The exhaust pressure of the engine is analyzed to determine if there is a pulsation frequency. Acoustic modeling is used to design an absorber. An appropriately designed side branch absorber may be attached to the exhaust manifold.

  12. Reduction of diesel engine exhaust noise in the petroleum mining industry. [by resonator type diffuser

    NASA Technical Reports Server (NTRS)

    Marinov, T.

    1974-01-01

    An important noise source in a drilling plant is Diesel engine exhaust. In order to reduce this noise, a reactive silencer of the derivative resonator type was proposed, calculated from the acoustic and design point of view and applied. As a result of applying such a silencer on the exhaust conduit of a Diesel engine the noise level dropped down to 18 db.

  13. Microfog lubrication for aircraft engine bearings

    NASA Technical Reports Server (NTRS)

    Rosenlieb, J. W.

    1976-01-01

    An analysis and system study was performed to provide design information regarding lubricant and coolant flow rates and flow paths for effective utilization of the lubricant and coolant in a once through bearing oil mist (microfog) and coolant air system. Both static and dynamic tests were performed. Static tests were executed to evaluate and calibrate the mist supply system. A total of thirteen dynamic step speed bearing tests were performed using four different lubricants and several different mist and air supply configurations. The most effective configuration consisted of supplying the mist and the major portion of the cooling air axially through the bearing. The results of these tests have shown the feasibility of using a once through oil mist and cooling air system to lubricate and cool a high speed, high temperature aircraft engine mainshaft bearing.

  14. Air Force F-16 Aircraft Engine Aerosol Emissions Under Cruise Altitude Conditions

    NASA Technical Reports Server (NTRS)

    Anderson, Bruce E.; Cofer, W. Randy, III; McDougal, David S.

    1999-01-01

    Selected results from the June 1997 Third Subsonic Assessment Near-Field Interactions Flight (SNIF-III) Experiment are documented. The primary objectives of the SNIF-III experiment were to determine the partitioning and abundance of sulfur species and to examine the formation and growth of aerosol particles in the exhaust of F-16 aircraft as a function of atmospheric and aircraft operating conditions and fuel sulfur concentration. This information is, in turn, being used to address questions regarding the fate of aircraft fuel sulfur impurities and to evaluate the potential of their oxidation products to perturb aerosol concentrations and surface areas in the upper troposphere. SNIF-III included participation of the Vermont and New Jersey Air National Guard F-16's as source aircraft and the Wallops Flight Facility T-39 Sabreliner as the sampling platform. F-16's were chosen as a source aircraft because they are powered by the modern F-100 Series 220 engine which is projected to be representative of future commercial aircraft engine technology. The T-39 instrument suite included sensors for measuring volatile and non-volatile condensation nuclei (CN), aerosol size distributions over the range from 0.1 to 3.0 (micro)m, 3-D winds, temperature, dewpoint, carbon dioxide (CO2), sulfur dioxide (SO2), sulfuric acid (H2SO4), and nitric acid (HNO3).

  15. 40 CFR 1054.103 - What exhaust emission standards must my handheld engines meet?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... g/kW-hr for Class IV engines. (3) 186 g/kW-hr for Class V engines. (c) Fuel types. The exhaust emission standards in this section apply for engines using the fuel type on which the engines in the... this section based on the following types of hydrocarbon emissions for engines powered by the...

  16. 40 CFR 1054.105 - What exhaust emission standards must my nonhandheld engines meet?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... engines with displacement at or above 100 cc. (3) 12.1 for Class II engines. (c) Fuel types. The exhaust emission standards in this section apply for engines using the fuel type on which the engines in the... this section based on the following types of hydrocarbon emissions for engines powered by the...

  17. 76 FR 72128 - Airworthiness Directives; Thielert Aircraft Engines GmbH (TAE) Reciprocating Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-22

    ... Directives; Thielert Aircraft Engines GmbH (TAE) Reciprocating Engines AGENCY: Federal Aviation... engines installed on, but not limited to, Diamond Aircraft Industries Model DA 42 airplanes. The existing... the PPRV, part number (P/N) 05-7212- E002801, on TAE 125-02-99 engines, from 300 hours to 600...

  18. Development of the Junkers-diesel Aircraft Engine

    NASA Technical Reports Server (NTRS)

    Gasterstadt,

    1930-01-01

    The working process of the Junkers engine has resulted from a series of attempts to attain high performance and to control the necessarily rapid and complete combustion at extremely high speeds. The two main problems of Diesel engines in aircraft are addressed; namely, incomplete combustion and the greater weight of Diesel engine parts compared to gasoline engines.

  19. Occupational exposure to diesel engine exhaust: a literature review.

    PubMed

    Pronk, Anjoeka; Coble, Joseph; Stewart, Patricia A

    2009-07-01

    Diesel exhaust (DE) is classified as a probable human carcinogen. Aims were to describe the major occupational uses of diesel engines and give an overview of personal DE exposure levels and determinants of exposure as reported in the published literature. Measurements representative of personal DE exposure were abstracted from the literature for the following agents: elemental carbon (EC), particulate matter (PM), carbon monoxide (CO), nitrogen oxide (NO), and nitrogen dioxide (NO(2)). Information on determinants of exposure was abstracted. In total, 3528 EC, 4166 PM, 581 CO, 322 NO, and 1404 NO(2) measurements were abstracted. From the 10,001 measurements, 32% represented exposure from on-road vehicles and 68% from off-road vehicles (30% mining, 15% railroad, and 22% others). Highest levels were reported for enclosed underground work sites in which heavy equipment is used: mining, mine maintenance, and construction (EC: 27-658 microg/m(3)). Intermediate exposure levels were generally reported for above-ground (semi-) enclosed areas in which smaller equipment was run: mechanics in a shop, emergency workers in fire stations, distribution workers at a dock, and workers loading/unloading inside a ferry (generally: EC<50 microg/m(3)). Lowest levels were reported for enclosed areas separated from the source, such as drivers and train crew, or outside, such as surface mining, parking attendants, vehicle testers, utility service workers, surface construction and airline ground personnel (EC<25 microg/m(3)). The other agents showed a similar pattern. Determinants of exposure reported for enclosed situations were ventilation and exhaust after treatment devices. Reported DE exposure levels were highest for underground mining and construction, intermediate for working in above-ground (semi-) enclosed areas and lowest for working outside or separated from the source. The presented data can be used as a basis for assessing occupational exposure in population

  20. Occupational exposure to diesel engine exhaust: A literature review

    PubMed Central

    Pronk, Anjoeka; Coble, Joseph; Stewart, Patricia

    2010-01-01

    Background Diesel exhaust (DE) is classified as a probable human carcinogen. Aims were to describe the major occupational uses of diesel engines and give an overview of personal DE exposure levels and determinants of exposure as reported in the published literature. Methods Measurements representative of personal DE exposure were abstracted from the literature for the following agents: elemental carbon (EC), particulate matter (PM), carbon monoxide (CO), nitrogen oxide (NO), and nitrogen dioxide (NO2). Information on determinants of exposure was abstracted. Results In total, 3528 EC, 4166 PM, 581 CO, 322 NO, and 1404 NO2 measurements were abstracted. From the 10,001 measurements, 32% represented exposure from on-road vehicles, and 68% from off-road vehicles (30% mining, 15% railroad, and 22% other). Highest levels were reported for enclosed underground work sites where heavy equipment is used: mining, mine maintenance, and construction, (EC: 27-658 μg/m3). Intermediate exposure levels were generally reported for above ground (semi-)enclosed areas where smaller equipment was run: mechanics in a shop, emergency workers in fire stations, distribution workers at a dock, and workers loading/unloading inside a ferry (generally: EC< 50 μg/m3). Lowest levels were reported for enclosed areas separated from the source such as drivers and train crew, or outside such as surface mining, parking attendants, vehicle testers, utility service workers, surface construction and airline ground personnel (EC<25 μg/m3). The other agents showed a similar pattern. Determinants of exposure reported for enclosed situations were ventilation and exhaust after treatment devices. Conclusions Reported DE exposure levels were highest for underground mining and construction, intermediate for working in above ground (semi-)enclosed areas and lowest for working outside or separated from the source. The presented data can be used as a basis for assessing occupational exposure in population

  1. Characterization of chemicals on engine-exhaust particles. Final report, September 1986-December 1987

    SciTech Connect

    Kuhlman, M.R.; Chuang, J.C.

    1989-06-01

    The object of the work described in this report has been the characterization of particulate-bound chemicals emitted from military aircraft, both as they are emitted and as the exhaust ages. Three Air Force turbine engines (TF33-P3, TF33-P7, and J79C) were examined in this study, using engine test cells at Tinker AFB OK. Emissions were collected at power settings of idle, 30%, 75%, and injected into smog chambers for subsequent aging. Samples were collected from these chambers periodically during the photochemical experiments to permit measurements of the vapor phase and particle associated photochemical experiments to permit measurements of the vapor-phase and particle associated polycyclic aromatic hydrocarbon (PAH) and derivatives under experimental conditions. Throughout the course of the experiments, measurements of the concentrations of total hydrocarbons, NO, NOx, and O{sub 3} were made. The samples collected on filter and sorbent media were returned to the laboratory for extraction and analysis by gas chromatography/mass spectrometry (GC/MS) to determine masses of specific target compounds collected. The time profiles of these compounds are presented for the various engines, operating powers, sunlight levels, and photochemical reactivities examines.

  2. Evaluation of carcinogenic hazard of diesel engine exhaust needs to consider revolutionary changes in diesel technology.

    PubMed

    McClellan, Roger O; Hesterberg, Thomas W; Wall, John C

    2012-07-01

    Diesel engines, a special type of internal combustion engine, use heat of compression, rather than electric spark, to ignite hydrocarbon fuels injected into the combustion chamber. Diesel engines have high thermal efficiency and thus, high fuel efficiency. They are widely used in commerce prompting continuous improvement in diesel engines and fuels. Concern for health effects from exposure to diesel exhaust arose in the mid-1900s and stimulated development of emissions regulations and research to improve the technology and characterize potential health hazards. This included epidemiological, controlled human exposure, laboratory animal and mechanistic studies to evaluate potential hazards of whole diesel exhaust. The International Agency for Research on Cancer (1989) classified whole diesel exhaust as - "probably carcinogenic to humans". This classification stimulated even more stringent regulations for particulate matter that required further technological developments. These included improved engine control, improved fuel injection system, enhanced exhaust cooling, use of ultra low sulfur fuel, wall-flow high-efficiency exhaust particulate filters, exhaust catalysts, and crankcase ventilation filtration. The composition of New Technology Diesel Exhaust (NTDE) is qualitatively different and the concentrations of particulate constituents are more than 90% lower than for Traditional Diesel Exhaust (TDE). We recommend that future reviews of carcinogenic hazards of diesel exhaust evaluate NTDE separately from TDE.

  3. Exhaust Nozzles for Propulsion Systems with Emphasis on Supersonic Cruise Aircraft

    NASA Technical Reports Server (NTRS)

    Stitt, Leonard E.

    1990-01-01

    This compendium summarizes the contributions of the NASA-Lewis and its contractors to supersonic exhaust nozzle research from 1963 to 1985. Two major research and technology efforts sponsored this nozzle research work; the U.S. Supersonic Transport (SST) Program and the follow-on Supersonic Cruise Research (SCR) Program. They account for two generations of nozzle technology: the first from 1963 to 1971, and the second from 1971 to 1985. First, the equations used to calculate nozzle thrust are introduced. Then the general types of nozzles are presented, followed by a discussion of those types proposed for supersonic aircraft. Next, the first-generation nozzles designed specifically for the Boeing SST and the second-generation nozzles designed under the SCR program are separately reviewed and then compared. A chapter on throttle-dependent afterbody drag is included, since drag has a major effect on the off-design performance of supersonic nozzles. A chapter on the performance of supersonic dash nozzles follows, since these nozzles have similar design problems, Finally, the nozzle test facilities used at NASA-Lewis during this nozzle research effort are identified and discussed. These facilities include static test stands, a transonic wind tunnel, and a flying testbed aircraft. A concluding section points to the future: a third generation of nozzles designed for a new era of high speed civil transports to produce even greater advances in performance, to meet new noise rules, and to ensure the continuity of over two decades of NASA research.

  4. Development of an experimental capability to validate infrared signature predictions of installed aircraft exhaust systems

    NASA Astrophysics Data System (ADS)

    Rooks, Steve; Fair, Martin L.; Smith, Anthony G.; Chettle, Nicholas

    2002-08-01

    As methods continue to develop for predicting infrared signatures for complex propulsion systems, the need to validate such methods and, indeed to gain confidence in new designs grows. Within Dstl, work to develop static engine test rigs has been carried out. These rigs allow aspects of infrared signature such as plume mixing, cavity emissions, surface impingement and subsequent treatment, obscuration and nozzle shaping to be studied. However, there is a growing need for data, which is more closely related to actual flight conditions. Full flight measurements are prohibitively expensive and often out of the question when a range of geometries are to be studied. Wind tunnel tests can also be difficult because of the quantity of power required for the free stream flow and the need to produce realistic hot gas. This paper describes the work that has been carried out to produce a cost effective free stream measurement capability, which makes use of existing static engine facilities. By bleeding engine compressor flows and exhaust flows, a reduced scale system has been created which allows the simulation of infrared propulsion issues at free stream Mach numbers of up to 0.5. The data obtained with this system has been used to validate the prediction methods for 3D-exhaust plume and afterbody infrared signature.

  5. 78 FR 47228 - Airworthiness Directives; Thielert Aircraft Engines GmbH Reciprocating Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-05

    ... Engines GmbH Reciprocating Engines AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of... Thielert Aircraft Engines GmbH TAE 125-01 reciprocating engines. This proposed AD was prompted by a report of engine power loss due to engine coolant contaminating the engine clutch. The design of the...

  6. PM emissions measurements of in-service commercial aircraft engines during the Delta-Atlanta Hartsfield Study

    NASA Astrophysics Data System (ADS)

    Lobo, Prem; Hagen, Donald E.; Whitefield, Philip D.; Raper, David

    2015-03-01

    This paper describes the results of the physical characterization of aircraft engine PM emission measurements conducted during the Delta-Atlanta Hartsfield Study at the Hartsfield-Jackson Atlanta International Airport. Engine exit plane PM emissions were sampled from on-wing engines on several in-service commercial transport aircraft from the fleet of Delta Airlines. The size distributions were lognormal in nature with a single mode. The geometric mean diameter was found to increase with increasing engine thrust, ranging from 15 nm at idle to 40 nm at takeoff. PM number- and mass-based emission indices were observed to be higher at the idle conditions (4% and 7%), lowest at 15%-30% thrust, and then increase with increasing thrust. Emissions measurements were also conducted during an advected plume study where over 300 exhaust plumes generated by a broad mix of commercial transports were sampled 100-350 m downwind from aircraft operational runways during normal airport operations. The range of values measured at take-off for the different engine types in terms of PM number-based emission index was between 7 × 1015-9 × 1017 particles/kg fuel burned, and that for PM mass-based emission index was 0.1-0.6 g/kg fuel burned. PM characteristics of aircraft engine specific exhaust were found to evolve over time as the exhaust plume expands, dilutes with ambient air, and cools. The data from these measurements will enhance the emissions inventory development for a subset of engines operating in the commercial fleet and improve/validate current environmental impact predictive tools with real world aircraft engine specific PM emissions inputs.

  7. Determination of major combustion products in aircraft exhausts by FTIR emission spectroscopy

    NASA Astrophysics Data System (ADS)

    Heland, J.; Schäfer, K.

    The results of ground-based FTIR emission measurements of major combustion products such as CO 2, H 2O, CO, NO, and N 2O of in-service aircraft engines are reported and compared to values published in recent literature. About 25% differences in the NO and CO emission indices at several power settings were found for two military bypass engines of the same type. In addition the measured CO emission index of (51.8±4.6) g kg -1 at idle power of a CFM56-3 engine was about 27% lower than the value given by Spicer et al. (1984, 1994)for this engine type and about 27-48% higher than the ICAO data ( ICAO, 1995) for the whole span of CFM56-3 engines. The CO emission index measured at idle power of a CFM56-5C2 engine of AN Airbus A340 was (24±4) g kg -1 and can be compared to the ICAO value of 34 g kg -1. The N 2O mixing ratios measured at a higher power setting of this engine was found to be 4 ppm and is in the range of reported literature values. Since the NO and CO emissions are strongly connected to the combustion process/efficiency and thus to the state of engine maintainance and/or the engine age, it can be concluded that there are significant engine-to-engine (of the same type) and possibly day-to-day variations in the emission characteristics of aero engines which cannot be neglected for the estimation of the overall air-traffic emissions.

  8. A WEAR MODEL FOR DIESEL ENGINE EXHAUST VALVES

    SciTech Connect

    Blau, Peter Julian

    2009-11-01

    The work summarized here comprises the concluding effort of a multi-year project, funded by the U.S. Department of Energy, Office of Vehicle Technologies. It supports the development of a better understanding of advanced diesel engine designs in which enhanced power density, energy efficiency, and emissions control place increasing demands upon the durability of engine materials. Many kinds of metallic alloys are used in engines depending on the operating stresses, temperatures, and chemical environments. Exhaust valves, for example, are subjected to high temperatures and repetitive surface contacts that place demands on durability and frictional characteristics of the materials. Valves must continue to seal the combustion chamber properly for thousands of hours of cyclic engine operation and under varying operating conditions. It was the focus of this effort to understand the wear processes in the valve-seat area and to develop a model for the surface deformation and wear of that important interface. An annotated bibliography is provided to illustrate efforts to understand valve wear and to investigate the factors of engine operation that affect its severity and physical manifestation. The project for which this modeling effort was the final task, involved construction of a high-temperature repetitive impact test system as well as basic tribology studies of the combined processes of mechanical wear plus oxidation at elevated temperatures. Several publications resulted from this work, and are cited in this report. The materials selected for the experimental work were high-performance alloys based on nickel and cobalt. In some cases, engine-tested exhaust valves were made available for wear analysis and to ensure that the modes of surface damage produced in experiments were simulative of service. New, production-grade exhaust valves were also used to prepare test specimens for experimental work along with the other alloy samples. Wear analysis of valves and seats

  9. Compact high-speed MWIR spectrometer applied to monitor CO2 exhaust dynamics from a turbojet engine

    NASA Astrophysics Data System (ADS)

    Linares-Herrero, R.; Vergara, G.; Gutiérrez Álvarez, R.; Fernández Montojo, C.; Gómez, L. J.; Villamayor, V.; Baldasano Ramírez, A.; Montojo, M. T.; Archilla, V.; Jiménez, A.; Mercader, D.; González, A.; Entero, A.

    2013-05-01

    Dfgfdg Due to international environmental regulations, aircraft turbojet manufacturers are required to analyze the gases exhausted during engine operation (CO, CO2, NOx, particles, unburned hydrocarbons (aka UHC), among others).Standard procedures, which involve sampling the gases from the exhaust plume and the analysis of the emissions, are usually complex and expensive, making a real need for techniques that allow a more frequent and reliable emissions measurements, and a desire to move from the traditional gas sampling-based methods to real time and non-intrusive gas exhaust analysis, usually spectroscopic. It is expected that the development of more precise and faster optical methods will provide better solutions in terms of performance/cost ratio. In this work the analysis of high-speed infrared emission spectroscopy measurements of plume exhaust are presented. The data was collected during the test trials of commercial engines carried out at Turbojet Testing Center-INTA. The results demonstrate the reliability of the technique for studying and monitoring the dynamics of the exhausted CO2 by the observation of the infrared emission of hot gases. A compact (no moving parts), high-speed, uncooled MWIR spectrometer was used for the data collection. This device is capable to register more than 5000 spectra per second in the infrared band ranging between 3.0 and 4.6 microns. Each spectrum is comprised by 128 spectral subbands with aband width of 60 nm. The spectrometer operated in a passive stand-off mode and the results from the measurements provided information of both the dynamics and the concentration of the CO2 during engine operation.

  10. Numerical laser beam propagation using a Large Eddy Simulation refractive index field representing a jet engine exhaust

    NASA Astrophysics Data System (ADS)

    Sjöqvist, Lars; Henriksson, Markus; Fedina, Ekaterina; Fureby, Christer

    2010-10-01

    The exhaust from jet engines introduces extreme turbulence levels in local environments around aircrafts. This may degrade the performance of electro-optical missile warning and laser-based DIRCM systems used to protect aircrafts against heat-seeking missiles. Full scale trials using real engines are expensive and difficult to perform motivating numerical simulations of the turbulence properties within the jet engine exhaust. Large Eddy Simulations (LES) is a computational fluid dynamics method that can be used to calculate spatial and temporal refractive index dynamics of the turbulent flow in the engine exhaust. From LES simulations the instantaneous refractive index in each grid point can be derived and interpolated to phase screens for numerical laser beam propagation or used to estimate aberration effects from optical path differences. The high computation load of LES limits the available data in terms of the computational volume and number of time steps. In addition the phase screen method used in laser beam propagation may also be too slow. For this reason extraction of statistical parameters from the turbulence field and statistical beam propagation methods are studied. The temporal variation of the refractive index is used to define a spatially varying structure constant. Ray-tracing through the mean refractive index field provides integrated static aberrations and the path integrated structure constant. These parameters can be used in classical statistical parameterised models describing propagation through turbulence. One disadvantage of using the structure constant description is that the temporal information is lost. Methods for studying the variation of optical aberrations based on models of Zernike coefficients are discussed. The results of the propagation calculations using the different methods are compared to each other and to available experimental data. Advantages and disadvantages of the different methods are briefly discussed.

  11. Supersonic through-flow fan engine and aircraft mission performance

    NASA Technical Reports Server (NTRS)

    Franciscus, Leo C.; Maldonado, Jaime J.

    1989-01-01

    A study was made to evaluate potential improvement to a commercial supersonic transport by powering it with supersonic through-flow fan turbofan engines. A Mach 3.2 mission was considered. The three supersonic fan engines considered were designed to operate at bypass ratios of 0.25, 0.5, and 0.75 at supersonic cruise. For comparison a turbine bypass turbojet was included in the study. The engines were evaluated on the basis of aircraft takeoff gross weight with a payload of 250 passengers for a fixed range of 5000 N.MI. The installed specific fuel consumption of the supersonic fan engines was 7 to 8 percent lower than that of the turbine bypass engine. The aircraft powered by the supersonic fan engines had takeoff gross weights 9 to 13 percent lower than aircraft powered by turbine bypass engines.

  12. Detection of emission indices of aircraft exhaust compounds by open-path optical methods at airports

    NASA Astrophysics Data System (ADS)

    Schürmann, Gregor; Schäfer, Klaus; Jahn, Carsten; Hoffmann, Herbert; Utzig, Selina

    2005-10-01

    Air pollutant emission rates of aircrafts are determined with test bed measurements. Regulations exist for CO2, NO, NO2, CO concentrations, the content of total unburned hydrocarbons and the smoke number, a measure of soot. These emission indices are listed for each engine in a data base of the International Civil Aviation Organisation (ICAO) for four different Air pollutant emission rates of aircrafts are determined with test bed measurements. Regulations exist for CO2, NO, NO2, CO concentrations, the content of total unburned hydrocarbons and the smoke number, a measure of soot. These emission indices are listed for each engine in a data base of the International Civil Aviation Organisation (ICAO) for four different thrust levels (Idle, approach, cruise and take-off). It is a common procedure to use this data base as a starting point to estimate aircraft emissions at airports and further on to calculate the contribution of airports on local air quality. The comparison of these indices to real in use measurements therefore is a vital task to test the quality of air quality models at airports. Here a method to determine emission indices is used, where concentration measurements of CO2 together with other pollutants in the aircraft plume are needed. During intensive measurement campaigns at Zurich (ZRH) and Paris Charles De Gaulle (CDG) airports, concentrations of CO2, NO, NO2 and CO were measured. The measurement techniques were Fourier-Transform-Infrared (FTIR) spectrometry and Differential Optical Absorption Spectroscopy (DOAS). The big advantage of these methods is that no operations on the airport are influenced during measurement times. Together with detailed observations of taxiway movements, a comparison of emission indices with real in use emissions is possible.

  13. Re-engining - The sound case for aircraft noise reduction

    NASA Astrophysics Data System (ADS)

    Goddard, K.

    1991-06-01

    The paper reviews the history of legislation to reduce jet-powered aircraft noise, particularly in the U.S.A. Recently introduced legislation is discussed and the paper goes on to explain the fundamental advantage of re-engining as a means of reducing aircraft noise. Th Rolls-Royce Tay engine is introduced and the two re-engine programs already launched are described. The expected large reductions in noise level which result from re-engining are illustrated. The paper concludes with a discussion on new programs, on the current airline business scene and on some aspects of the economics of re-engining.

  14. The 300 H.P. Benz Aircraft Engine

    NASA Technical Reports Server (NTRS)

    Heller, A

    1921-01-01

    A description is given of the Benz 12-cylinder aircraft engine. The 300 H.P. engine, with the cylinders placed at an angle of 60 degrees not only realizes a long-cherished conception, but has received refinement in detail. It may be described as a perfect example of modern German aircraft engine construction. Here, a detailed description is given of the construction of this engine. Emphasis is placed on the design and construction of the cylinders, pistons, and connecting rods. Also discussed are engine fitting, lubrication, oil pumps, bearings, the oil tank, fuel pump, carburetors, and cooling system.

  15. Lab-scale Lidar Sensing of Diesel Engines Exhausts

    NASA Technical Reports Server (NTRS)

    Borghese, A.

    1992-01-01

    Combustion technology and its environmental concerns are being considered with increasing attention, not only for global-scale effects, but also for toxicological implications, particularly in the lift conditions of traffic-congested areas and industrial sites. Majority combustion by-products (CO, NO(sub x)) and unburned hydrocarbons (HC), are already subject to increasingly severe regulations; however other, non-regulated minority species, mainly soot and heavy aromatic molecules, involve higher health risks, as they are suspected to be agents of serious pathologies and even mutagenic effects. This is but one of the reasons why much research work is being carried out worldwide on the physical properties of these substances. Correspondingly, the need arises to detect their presence in urban environments, with as high a sensitivity as is required by their low concentrations, proper time- and space-resolutions, and 'real-time' capabilities. Lidar techniques are excellent candidates to this purpose, although severe constraints limit their applicability, eye-safety problems and aerosol Mie scattering uncertainties above all. At CNR's Istituto Motori in Napels, a Lidar-like diagnostic system is being developed, aimed primarily at monitoring the dynamic behavior of internal combustion engines, particularly diesel exhausts, and at exploring the feasibility of a so-called 'Downtown Lidar'.

  16. 40 CFR 87.23 - Exhaust emission standards for Tier 6 and Tier 8 engines.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... engines determined to be derivative engines for emissions certification purposes under the requirements of... determined to be derivative engines for emissions certification purposes under the requirements of this part... engines installed (or delivered for installation) on military aircraft. (2) Engine type...

  17. 14 CFR 21.128 - Tests: aircraft engines.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Tests: aircraft engines. 21.128 Section 21.128 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT CERTIFICATION PROCEDURES FOR PRODUCTS AND PARTS Production Under Type Certificate § 21.128 Tests:...

  18. 14 CFR 21.128 - Tests: aircraft engines.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Tests: aircraft engines. 21.128 Section 21.128 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT CERTIFICATION PROCEDURES FOR PRODUCTS AND PARTS Production Under Type Certificate § 21.128 Tests:...

  19. 14 CFR 21.128 - Tests: aircraft engines.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Tests: aircraft engines. 21.128 Section 21.128 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT CERTIFICATION PROCEDURES FOR PRODUCTS AND PARTS Production Under Type Certificate § 21.128 Tests:...

  20. Performance, emissions, and physical characteristics of a rotating combustion aircraft engine

    NASA Technical Reports Server (NTRS)

    Berkowitz, M.; Hermes, W. L.; Mount, R. E.; Myers, D.

    1976-01-01

    The RC2-75, a liquid cooled two chamber rotary combustion engine (Wankel type), designed for aircraft use, was tested and representative baseline (212 KW, 285 BHP) performance and emissions characteristics established. The testing included running fuel/air mixture control curves and varied ignition timing to permit selection of desirable and practical settings for running wide open throttle curves, propeller load curves, variable manifold pressure curves covering cruise conditions, and EPA cycle operating points. Performance and emissions data were recorded for all of the points run. In addition to the test data, information required to characterize the engine and evaluate its performance in aircraft use is provided over a range from one half to twice its present power. The exhaust emissions results are compared to the 1980 EPA requirements. Standard day take-off brake specific fuel consumption is 356 g/KW-HR (.585 lb/BHP-HR) for the configuration tested.

  1. 76 FR 68636 - Airworthiness Directives; Thielert Aircraft Engines GmbH (TAE) Reciprocating Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-07

    ...-01] RIN 2120-AA64 Airworthiness Directives; Thielert Aircraft Engines GmbH (TAE) Reciprocating Engines AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule; request for comments. SUMMARY: We are superseding an existing airworthiness directive (AD) for Thielert Aircraft Engines...

  2. On the thermodynamics of waste heat recovery from internal combustion engine exhaust gas

    NASA Astrophysics Data System (ADS)

    Meisner, G. P.

    2013-03-01

    The ideal internal combustion (IC) engine (Otto Cycle) efficiency ηIC = 1-(1/r)(γ - 1) is only a function of engine compression ratio r =Vmax/Vmin and exhaust gas specific heat ratio γ = cP/cV. Typically r = 8, γ = 1.4, and ηIC = 56%. Unlike the Carnot Cycle where ηCarnot = 1-(TC/TH) for a heat engine operating between hot and cold heat reservoirs at TH and TC, respectively, ηIC is not a function of the exhaust gas temperature. Instead, the exhaust gas temperature depends only on the intake gas temperature (ambient), r, γ, cV, and the combustion energy. The ejected exhaust gas heat is thermally decoupled from the IC engine and conveyed via the exhaust system (manifold, pipe, muffler, etc.) to ambient, and the exhaust system is simply a heat engine that does no useful work. The maximum fraction of fuel energy that can be extracted from the exhaust gas stream as useful work is (1-ηIC) × ηCarnot = 32% for TH = 850 K (exhaust) and TC = 370 K (coolant). This waste heat can be recovered using a heat engine such as a thermoelectric generator (TEG) with ηTEG> 0 in the exhaust system. A combined IC engine and TEG system can generate net useful work from the exhaust gas waste heat with efficiency ηWH = (1-ηIC) × ηCarnot ×ηTEG , and this will increase the overall fuel efficiency of the total system. Recent improvements in TEGs yield ηTEG values approaching 15% giving a potential total waste heat conversion efficiency of ηWH = 4.6%, which translates into a fuel economy improvement approaching 5%. This work is supported by the US DOE under DE-EE0005432.

  3. A study of extractive and remote-sensing sampling and measurement of emissions from military aircraft engines

    NASA Astrophysics Data System (ADS)

    Cheng, Meng-Dawn; Corporan, Edwin

    2010-12-01

    Aircraft emissions contribute to the increased atmospheric burden of particulate matter (PM) that plays an important role in air quality, human health, visibility, contrail formation and climate change. Sampling and measurement of modern aircraft emissions at the engine exhaust plane (EEP) for engine and fuel certification remains challenging, as no agency-certified method is available. In this paper we summarize the results of three recent field studies devoted to investigate the consistency and applicability of "extractive" and "optical remote-sensing" (ORS) technologies in the sampling and measurement of gaseous and PM emitted by a number of military aircraft engines. Three classes of military engines were investigated; these include T56, TF33, and T700 & T701C types of engines, which consume 70-80% of the military aviation fuel each year. JP-8 and Fischer-Tropsch (FT)-derived paraffinic fuels were used to study the effect of fuels. It was found that non-volatile particles in the engine emissions were in the 20 nm range for the low power condition of new helicopter engines to 80 nm for the high power condition of legacy engines. Elemental analysis indicated little metals were present on particles, while most of the materials on the exhaust particles were carbon and sulfate based. Alkanes, carbon monoxide, carbon dioxide, nitrogen oxides, sulfur dioxide, formaldehyde, ethylene, acetylene and propylene were detected. The last five species were most noticeable only under low engine power. The emission indices calculated based on the ORS data deviate significantly from those based on the extractive data. Nevertheless, the ORS techniques were useful in the sense that it provided non-intrusive real-time detection of species in the exhaust plume, which warrants further development. The results obtained in this program help validate sampling methodology and measurement techniques used for non-volatile PM aircraft emissions as described in the SAE AIR6037 (2009).

  4. Flutter of aircraft engine turbine blades

    NASA Astrophysics Data System (ADS)

    Panovsky, Josef, Jr.

    1997-11-01

    The goal of this research is to eliminate occurrences of flutter of low-pressure turbine blades in aircraft engines. Fundamental unsteady aerodynamic experiments in an annular cascade plus correlating analyses are conducted to improve the understanding of the flutter mechanism in these blades and to identify the key flutter parameters. The use of two- and three-dimensional linearized Euler methods for the calculation of the unsteady pressures due to the blade motion are validated through detailed comparison with the experimental data. Unexpected features of the steady and unsteady flows are also investigated using these computational tools. The validated computer codes are used to extend the range of the experimental data in a series of parametric studies, where the influence of mode shape, reduced frequency, and blade loading are investigated. Mode shape is identified as the most important contributor to determining the stability of a blade design. A new stability parameter is introduced to gain additional insight into the key contributors to flutter. This stability parameter is derived from the influence coefficient representation of the cascade, and includes only contributions from the reference blade and its immediate neighbors. This has the effect of retaining the most important contributions while filtering out terms of less significance. Design rules for the preliminary concept phase and procedures for the detailed analysis phase of the typical blade design process are defined. Utilization of these procedures will lead to blade designs which are free of flutter.

  5. Aircraft Engine Sump Fire Mitigation, Phase 2

    NASA Technical Reports Server (NTRS)

    Rosenlieb, J. W.

    1978-01-01

    The effect of changes in the input parameters (air leakage flow rate and temperature and lubricating oil inlet flow rate and temperature) over a specified range on the flammability conditions within an aircraft engine bearing sump was investigated. An analytical study was performed to determine the effect of various parameters on the generation rate of oil vapor from oil droplets in a hot air stream flowing in a cylindrical tube. The ignition of the vapor-air mixture by an ignition source was considered. The experimental investigation demonstrated that fires would be ignited by a spark ignitor over the full range of air and oil flow rates and air temperatures evaluated. However, no fires could be ignited when the oil inlet temperature was maintained below 41.7 K (290 F). The severity of the fires ignited were found to be directly proportional to the hot air flow rate. Reasonably good correlation was found between the mixture temperature in the sump at the ignitor location and the flammability limits as defined by flammability theory; thus a fairly reliable experimental method of determining flammable conditions within a sump was demonstrated. The computerized mathematical model shows that oil droplet size and air temperature have the greatest influence on the generation rate of oil vapor.

  6. Analysis of the effects of meteorology on aircraft exhaust dispersion and deposition using a Lagrangian particle model.

    PubMed

    Pecorari, Eliana; Mantovani, Alice; Franceschini, Chiara; Bassano, Davide; Palmeri, Luca; Rampazzo, Giancarlo

    2016-01-15

    The risk of air quality degradation is of considerable concern particularly for those airports that are located near urban areas. The ability to quantitatively predict the effects of air pollutants originated by airport operations is important for assessing air quality and the related impacts on human health. Current emission regulations have focused on local air quality in the proximity of airports. However, an integrated study should consider the effects of meteorological events, at both regional and local level, that can affect the dispersion and the deposition of exhausts. Rigorous scientific studies and extensive experimental data could contribute to the analysis of the impacts of airports expansion plans. This paper is focused on the analysis of the effects of meteorology on aircraft emission for the Marco Polo Airport in Venice. This is the most important international airport in the eastern part of the Po' Valley, one of the most polluted area in Europe. Air pollution is exacerbated by meteorology that is a combination of large and local scale effects that do not allow significant dispersion. Moreover, the airport is located near Venice, a city of noteworthy cultural and architectural relevance, and nearby the lagoon that hosts several areas of outstanding ecological importance at European level (Natura 2000 sites). Dispersion and deposit of the main aircraft exhausts (NOx, HC and CO) have been evaluated by using a Lagrangian particle model. Spatial and temporal aircraft exhaust dispersion has been analyzed for LTO cycle. Aircraft taxiing resulted to be the most impacting aircraft operation especially for the airport working area and its surroundings, however occasionally peaks may be observed even at high altitudes when cruise mode starts. Mixing height can affect concentrations more significantly than the concentrations in the exhausts themselves. An increase of HC and CO concentrations (15-50%) has been observed during specific meteorological events.

  7. Development of naval diesel engine duty cycles for air exhaust emission environmental impact analysis. Master's thesis

    SciTech Connect

    Markle, S.P.

    1994-05-01

    A strategy for testing naval diesel engines for exhaust emissions was developed. A survey of existing international and national standard diesel engine duty cycles was conducted. All were found to be inadequate for testing and certification of engine exhaust emissions from naval diesel powered ships. Naval ship data covering 11,500 hours of engine operation of four U.S. Navy LSD 41 Class amphibious ships was analyzed to develop a 27 point class operating profile. A procedure combining ship hull form characteristics, ship propulsion plant parameters, and ship operating profile was detailed to derive an 11-Mode duty cycle representative for testing LSD 41 Class propulsion diesel engines. A similar procedure was followed for ship service diesel engines. Comparisons with industry accepted duty cycles were conducted using exhaust emission contour plots for the Colt-Pielstick PC-4B diesel engines. Results showed the 11-Mode LSD 41 Class Duty Cycle best predicted ship propulsion engine emissions compared to the 27 point operating profile propeller curve. The procedure was applied to T-AO 187 Class with similar results. The application of civilian industry standards to measure naval diesel ship propulsion engine exhaust emissions was found to be inadequate. Engine exhaust flow chemistry post turbocharger was investigated using the SANDIA Lab computer tool CHEMKIN. Results showed oxidation and reduction reactions within exhaust gases are quenched in the exhaust stack. Since the exhaust stream in the stack is unreactive, emission sampling may be performed where most convenient. A proposed emission measurement scheme for LSD 41 Class ships was presented.

  8. 14 CFR 34.31 - Standards for exhaust emissions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... of smoke from each in-use aircraft gas turbine engine of Class T8, beginning February 1, 1974, shall not exceed a smoke number (SN) of 30. (b) Exhaust emissions of smoke from each in-use aircraft gas... paragraphs (a) and (b) of this section refer to exhaust smoke emission emitted during operation of the...

  9. 14 CFR 34.31 - Standards for exhaust emissions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... of smoke from each in-use aircraft gas turbine engine of Class T8, beginning February 1, 1974, shall not exceed a smoke number (SN) of 30. (b) Exhaust emissions of smoke from each in-use aircraft gas... paragraphs (a) and (b) of this section refer to exhaust smoke emission emitted during operation of the...

  10. Exhaust nozzle control and core engine fuel control for turbofan engine

    SciTech Connect

    Camp, V.T.

    1981-10-13

    This control serves to optimize thrust during steady state and transient operation modes of a turbofan engine of the mixed flow type by adjusting or trimming the exhaust nozzle area as a function of fan pressure ratio and fan rotor speed and by adjusting or trimming the core engine fuel flow as a function of fan rotor speed and/or turbine inlet temperature. The control serves to enhance stability by assuring airflow in the engine and its inlet is within a given value avoiding inlet buzz and high distortion to the engine and avoiding even transient operation in conditions that might cause compressor flow instability or stall. Fuel flow is adjusted or trimmed as a function of fan rotor speed or turbine inlet temperature limits depending on which is calling for the least amount of fuel.

  11. External fins and ejector action for reducing the infrared emission of engine exhaust ducting

    NASA Technical Reports Server (NTRS)

    Vanfossen, G. J., Jr.

    1975-01-01

    An analytical investigation was conducted to determine the feasibility of using external fins and ejector action on the exhaust ducting of a helicopter to reduce the infrared emission of the aircraft. Temperatures were calculated for both circular disk fins and pin fins. Results show that combining ejector action with fins can lower the metal temperature to acceptable levels at least for high flight speeds.

  12. Fiber-Optic Circuits For Aircraft Engine Controls

    NASA Astrophysics Data System (ADS)

    Glomb, Walter L.

    1987-12-01

    This paper describes environmental effects which impact the design of interfaces to fiber-optic sensors and data buses in aircraft engine controls. Emphasis is placed on selection of components and designs which maintain their performance and reliability in the harsh environment of an electronics enclosure mounted on a modern aircraft turbine engine. Particular attention is given to the effects of temperature on electro-optical component and system performance. The main conclusion is that electro-optical interfaces to a variety of fiber-optic systems can be installed in an engine-mounted control if the designs and components are selected after careful analysis of the effects of the engine environment.

  13. Performance of Blowdown Turbine Driven by Exhaust Gas of Nine-Cylinder Radial Engine

    NASA Technical Reports Server (NTRS)

    Turner, L Richard; Desmon, Leland G

    1944-01-01

    An investigation was made of an exhaust-gas turbine having four separate nozzle boxes each covering a 90 degree arc of the nozzle diaphragm and each connected to a pair of adjacent cylinders of a nine-cylinder radial engine. This type of turbine has been called a "blowdown" turbine because it recovers the kinetic energy developed in the exhaust stacks during the blowdown period, that is the first part of the exhaust process when the piston of the reciprocating engine is nearly stationary. The purpose of the investigation was to determine whether the blow turbine could develop appreciable power without imposing any large loss in engine power arising from restriction of the engine exhaust by the turbine.

  14. A Roadmap for Aircraft Engine Life Extending Control

    NASA Technical Reports Server (NTRS)

    Guo, Ten-Huei

    2001-01-01

    The concept of Aircraft Engine Life Extending Control is introduced. A brief description of the tradeoffs between performance and engine life are first explained. The overall goal of the life extending controller is to reduce the engine operating cost by extending the on-wing engine life while improving operational safety. The research results for NASA's Rocket Engine life extending control program are also briefly described. Major building blocks of the Engine Life Extending Control architecture are examined. These blocks include: life prediction models, engine operation models, stress and thermal analysis tools, control schemes, and intelligent control systems. The technology areas that would likely impact the successful implementation of an aircraft engine life extending control are also briefly described. Near, intermediate, and long term goals of NASA's activities are also presented.

  15. 40 CFR 1054.105 - What exhaust emission standards must my nonhandheld engines meet?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW, SMALL NONROAD SPARK... for marine generator engines Class I 10.0 610 5.0 Class II 8.0 610 5.0 (b) Averaging, banking, and...) Other engines: THC emissions. (d) Useful life. Your engines must meet the exhaust emission standards...

  16. 40 CFR 1054.105 - What exhaust emission standards must my nonhandheld engines meet?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW, SMALL NONROAD SPARK... for marine generator engines Class I 10.0 610 5.0 Class II 8.0 610 5.0 (b) Averaging, banking, and...) Other engines: THC emissions. (d) Useful life. Your engines must meet the exhaust emission standards...

  17. 40 CFR 1054.105 - What exhaust emission standards must my nonhandheld engines meet?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW, SMALL NONROAD SPARK... for marine generator engines Class I 10.0 610 5.0 Class II 8.0 610 5.0 (b) Averaging, banking, and...) Other engines: THC emissions. (d) Useful life. Your engines must meet the exhaust emission standards...

  18. 40 CFR 1054.105 - What exhaust emission standards must my nonhandheld engines meet?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW, SMALL NONROAD SPARK... for marine generator engines Class I 10.0 610 5.0 Class II 8.0 610 5.0 (b) Averaging, banking, and...) Other engines: THC emissions. (d) Useful life. Your engines must meet the exhaust emission standards...

  19. Biological effects of fuel and exhaust components from spacecraft descent engines employing hydrazine

    NASA Technical Reports Server (NTRS)

    Lehwalt, M. E.; Woeller, F. H.; Oyama, V. I.

    1973-01-01

    The effect of the products of the Viking terminal descent engine fuel upon possible extraterrestrial life at the Martian landing site is examined. The effects of the engine exhaust, the hydrazine fuel, and the breakdown products of the latter on terrestrial microorganisms have been studied. The results indicate that the gaseous exhaust products would probably not be hazardous to microorganisms, but that liquid hydrazine would be lethal.

  20. Relation of Hydrogen and Methane to Carbon Monoxide in Exhaust Gases from Internal-Combustion Engines

    NASA Technical Reports Server (NTRS)

    Gerrish, Harold C; Tessmann, Arthur M

    1935-01-01

    The relation of hydrogen and methane to carbon monoxide in the exhaust gases from internal-combustion engines operating on standard-grade aviation gasoline, fighting-grade aviation gasoline, hydrogenated safety fuel, laboratory diesel fuel, and auto diesel fuel was determined by analysis of the exhaust gases. Two liquid-cooled single-cylinder spark-ignition, one 9-cylinder radial air-cooled spark-ignition, and two liquid-cooled single-cylinder compression-ignition engines were used.

  1. Effect of Exhaust Pressure on the Cooling Characteristics of a Liquid-Cooled Engine

    NASA Technical Reports Server (NTRS)

    Doyle, Ronald B.; Desmon, Leland G.

    1947-01-01

    Data for a liquid-cooled engine with a displacement volume of 1710 cubic inches were analyzed to determine the effect of exhaust pressure on the engine cooling characteristics. The data covered a range of exhaust pressures from 7 to 62 inches of mercury absolute, inlet-manifold pressures from 30 to 50 inches of mercury absolute, engine speeds from 1600 to 3000 rpm, and fuel-air ratios from 0.063 to 0.100. The effect of exhaust pressure on engine cooling was satisfactorily incorporated in the NACA cooling-correlation method as a variation in effective gas temperature with exhaust pressure. Large variations of cylinder-head temperature with exhaust pressure were obtained for operation at constant charge flow. At a constant charge flow of 2 pounds per second (approximately 1000 bhp) and a fuel-air ratio of 0.085, an increase in exhaust pressure from 10 to 60 inches of mercury absolute resulted in an increase of 40 F in average cylinder-head temperature. For operation at constant engine speed and inlet-manifold pressure and variable exhaust pressure (variable charge flow), however, the effect of exhaust pressure on cylinder-head temperature is small. For example, at an inlet-manifold pressure of 40 inches of mercury absolute, an engine speed of 2400 rpm.- and a fuel-air ratio of 0.085, the average cylinder-head temperature was about the same at exhaust pressures of 10 and 60 inches of,mercury absolute; a rise and a subsequent decrease of about 70 occurred between these extremes.

  2. Generation and propagation of shock waves in the exhaust pipe of a 4 cycle automobile engine

    NASA Astrophysics Data System (ADS)

    Sekine, N.; Matsumura, S.; Aoki, K.; Takayama, K.

    1990-07-01

    An experimental investigation was made of reduction of noise generated in the exhaust pipe of a half liter 4-cycle water-cooled automobile gasoline engine. The pressure measurement along the exhaust pipe showed the nonlinear transition of compression waves discharged from the exhaust port of the engine into shock waves. In order to obtain a direct evidence of shock waves in the exhaust pipe, a flow visualization study was also conducted using a double exposure holographic interferometry. Weak shock waves of Mach number 1.09 exist in the exhaust pipe. For the purpose of collecting the data for designing optimum muffler configurations, additional shock tube experiments were carried out. The results indicates that the study of the non-linear wave interaction and propagation is important for the design of muffler.

  3. 78 FR 70216 - Airworthiness Directives; Thielert Aircraft Engines GmbH Reciprocating Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-25

    ... Engines GmbH Reciprocating Engines AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: We are adopting a new airworthiness directive (AD) for all Thielert Aircraft Engines GmbH TAE 125-01 reciprocating engines. This AD requires applying sealant to close the engine clutch...

  4. Intelligent Life-Extending Controls for Aircraft Engines Studied

    NASA Technical Reports Server (NTRS)

    Guo, Ten-Huei

    2005-01-01

    Current aircraft engine controllers are designed and operated to provide desired performance and stability margins. Except for the hard limits for extreme conditions, engine controllers do not usually take engine component life into consideration during the controller design and operation. The end result is that aircraft pilots regularly operate engines under unnecessarily harsh conditions to strive for optimum performance. The NASA Glenn Research Center and its industrial and academic partners have been working together toward an intelligent control concept that will include engine life as part of the controller design criteria. This research includes the study of the relationship between control action and engine component life as well as the design of an intelligent control algorithm to provide proper tradeoffs between performance and engine life. This approach is expected to maintain operating safety while minimizing overall operating costs. In this study, the thermomechanical fatigue (TMF) of a critical component was selected to demonstrate how an intelligent engine control algorithm can significantly extend engine life with only a very small sacrifice in performance. An intelligent engine control scheme based on modifying the high-pressure spool speed (NH) was proposed to reduce TMF damage from ground idle to takeoff. The NH acceleration schedule was optimized to minimize the TMF damage for a given rise-time constraint, which represents the performance requirement. The intelligent engine control scheme was used to simulate a commercial short-haul aircraft engine.

  5. Lightweight, low compression aircraft diesel engine. [converting a spark ignition engine to the diesel cycle

    NASA Technical Reports Server (NTRS)

    Gaynor, T. L.; Bottrell, M. S.; Eagle, C. D.; Bachle, C. F.

    1977-01-01

    The feasibility of converting a spark ignition aircraft engine to the diesel cycle was investigated. Procedures necessary for converting a single cylinder GTS10-520 are described as well as a single cylinder diesel engine test program. The modification of the engine for the hot port cooling concept is discussed. A digital computer graphics simulation of a twin engine aircraft incorporating the diesel engine and Hot Fort concept is presented showing some potential gains in aircraft performance. Sample results of the computer program used in the simulation are included.

  6. Characterization of Gas-Phase Organics Using Proton Transfer Reaction Time-of-Flight Mass Spectrometry: Aircraft Turbine Engines.

    PubMed

    Kilic, Dogushan; Brem, Benjamin T; Klein, Felix; El-Haddad, Imad; Durdina, Lukas; Rindlisbacher, Theo; Setyan, Ari; Huang, Rujin; Wang, Jing; Slowik, Jay G; Baltensperger, Urs; Prevot, Andre S H

    2017-04-04

    Nonmethane organic gas emissions (NMOGs) from in-service aircraft turbine engines were investigated using a proton transfer reaction time-of-flight mass spectrometer (PTR-ToF-MS) at an engine test facility at Zurich Airport, Switzerland. Experiments consisted of 60 exhaust samples for seven engine types (used in commercial aviation) from two manufacturers at thrust levels ranging from idle to takeoff. Emission indices (EIs) for more than 200 NMOGs were quantified, and the functional group fractions (including acids, carbonyls, aromatics, and aliphatics) were calculated to characterize the exhaust chemical composition at different engine operation modes. Total NMOG emissions were highest at idling with an average EI of 7.8 g/kg fuel and were a factor of ∼40 lower at takeoff thrust. The relative contribution of pure hydrocarbons (particularly aromatics and aliphatics) of the engine exhaust decreased with increasing thrust while the fraction of oxidized compounds, for example, acids and carbonyls increased. Exhaust chemical composition at idle was also affected by engine technology. Older engines emitted a higher fraction of nonoxidized NMOGs compared to newer ones. Idling conditions dominated ground level organic gas emissions. Based on the EI determined here, we estimate that reducing idle emissions could substantially improve air quality near airports.

  7. Methods for designing treatments to reduce interior noise of predominant sources and paths in a single engine light aircraft

    NASA Technical Reports Server (NTRS)

    Hayden, Richard E.; Remington, Paul J.; Theobald, Mark A.; Wilby, John F.

    1985-01-01

    The sources and paths by which noise enters the cabin of a small single engine aircraft were determined through a combination of flight and laboratory tests. The primary sources of noise were found to be airborne noise from the propeller and engine casing, airborne noise from the engine exhaust, structureborne noise from the engine/propeller combination and noise associated with air flow over the fuselage. For the propeller, the primary airborne paths were through the firewall, windshield and roof. For the engine, the most important airborne path was through the firewall. Exhaust noise was found to enter the cabin primarily through the panels in the vicinity of the exhaust outlet although exhaust noise entering the cabin through the firewall is a distinct possibility. A number of noise control techniques were tried, including firewall stiffening to reduce engine and propeller airborne noise, to stage isolators and engine mounting spider stiffening to reduce structure-borne noise, and wheel well covers to reduce air flow noise.

  8. Methods for designing treatments to reduce interior noise of predominant sources and paths in a single engine light aircraft

    NASA Astrophysics Data System (ADS)

    Hayden, Richard E.; Remington, Paul J.; Theobald, Mark A.; Wilby, John F.

    1985-03-01

    The sources and paths by which noise enters the cabin of a small single engine aircraft were determined through a combination of flight and laboratory tests. The primary sources of noise were found to be airborne noise from the propeller and engine casing, airborne noise from the engine exhaust, structureborne noise from the engine/propeller combination and noise associated with air flow over the fuselage. For the propeller, the primary airborne paths were through the firewall, windshield and roof. For the engine, the most important airborne path was through the firewall. Exhaust noise was found to enter the cabin primarily through the panels in the vicinity of the exhaust outlet although exhaust noise entering the cabin through the firewall is a distinct possibility. A number of noise control techniques were tried, including firewall stiffening to reduce engine and propeller airborne noise, to stage isolators and engine mounting spider stiffening to reduce structure-borne noise, and wheel well covers to reduce air flow noise.

  9. Integrated engine-generator for aircraft secondary power.

    NASA Technical Reports Server (NTRS)

    Secunde, R. R.

    1972-01-01

    The integrated engine-generator concept consists of an electric generator located inside a turbojet or turbofan engine and both concentric with and driven by one of the main engine shafts. The electric power-conversion equipment and generator controls are conveniently located in the aircraft. When properly rated, the generator serves as an engine starter as well as a source of electric power. The available generating capacity permits use of electrically driven engine accessories. This reduces or eliminates the need for an external gearbox on the engine, thereby simplifying the engine and nacelle assembly and increasing aircraft design flexibility. The nacelle diameter can then be decreased, resulting in less aerodynamic drag and reduced takeoff gross weight.

  10. 76 FR 82110 - Airworthiness Directives; Thielert Aircraft Engines GmbH Reciprocating Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-30

    ...-30-AD; Amendment 39-16906; AD 2010-06-12R1] RIN 2120-AA64 Airworthiness Directives; Thielert Aircraft.... SUMMARY: We are revising an existing airworthiness directive (AD) for Thielert Aircraft Engines GmbH models TAE 125-02-99 and TAE 125-01 reciprocating engines. That AD currently requires replacing...

  11. Further studies of methods for reducing community noise around airports. [aircraft noise - aircraft engines

    NASA Technical Reports Server (NTRS)

    Petersen, R. H.; Barry, D. J.; Kline, D. M.

    1975-01-01

    A simplified method of analysis was used in which all flights at a 'simulated' airport were assumed to operate from one runway in a single direction. For this simulated airport, contours of noise exposure forecast were obtained and evaluated. A flight schedule of the simulated airport which is representative of the 23 major U. S. airports was used. The effect of banning night-time operations by four-engine, narrow-body aircraft in combination with other noise reduction options was studied. The reductions in noise which would occur of two- and three-engine, narrow-body aircraft equipped with a refanned engine was examined. A detailed comparison of the effects of engine cutback on takeoff versus the effects of retrofitting quiet nacelles for narrow-body aircraft was also examined. A method of presenting the effects of various noise reduction options was treated.

  12. Lifecycle Information of Aircraft Engine Components

    DTIC Science & Technology

    2010-04-14

    commercial aircraft, the industry generated a number of potential RFID-based applications for airlines, air- freight carriers, aircraft maintenance and...adoption of RFID technologies to track serially controlled items requires careful planning and design. Data overload and data noise also affect the...performance of RFID systems. Data overload results from continuously scanning the RFID tags within reader range and sending the repeated information

  13. 77 FR 58301 - Technical Amendment; Airworthiness Standards: Aircraft Engines; Correction

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-20

    ... technical amendment, the FAA clarified aircraft engine vibration test requirements in the airworthiness... amendment, the FAA intended to clarify vibration test requirements in Sec. 33.83 of 14 Code of Federal... read as follows: Sec. 33.83 Vibration test. (a) Each engine must undergo vibration surveys to...

  14. Condensed data on the aircraft engines of the world

    NASA Technical Reports Server (NTRS)

    Fliedner, C S

    1929-01-01

    This compilation of the outstanding characteristics of the available aircraft engines of the world was prepared as a compact ready reference for desk use. It does not pretend to be anything but a skeleton outline of the characteristics of engines reported in the technical press as being in either the experimental, development, or production stage.

  15. Workshop on Aerosols and Particulates from Aircraft Gas Turbine Engines

    NASA Technical Reports Server (NTRS)

    Wey, Chown Chou (Compiler)

    1999-01-01

    In response to the National Research Council (NRC) recommendations, the Workshop on Aerosols and Particulates from Aircraft Gas Turbine Engines was organized by the NASA Lewis Research Center and held on July 29-30, 1997 at the Ohio Aerospace Institute in Cleveland, Ohio. The objective is to develop consensus among experts in the field of aerosols from gas turbine combustors and engines as to important issues and venues to be considered. Workshop participants' expertise included engine and aircraft design, combustion processes and kinetics, atmospheric science, fuels, and flight operations and instrumentation.

  16. A STUDY OF EXTRACTIVE AND REMOTE-SENSING SAMPLING AND MEASUREMENT OF EMISSIONS FROM MILITARY AIRCRAFT ENGINES

    SciTech Connect

    Cheng, Mengdawn; Corporan, E.

    2010-01-01

    Aircraft emissions contribute to the increased atmospheric burden of particulate matter (e.g., black carbon and secondary organic compounds) that plays a role in air quality, contrail formation and climate change. Sampling and measurement of modern aircraft emissions at the engine exhaust plane (EEP) for to engine and fuel certification remains a daunting task, no agency-certified method is available for the task. In this paper we summarize the results of a recent study that was devoted to investigate both extractive and optical remote-sensing (ORS) technologies in sampling and measurement of gaseous and particulate matter (PM) emitted by a number of military aircraft engines operated with JP-8 and a Fischer-Tropsch (FT) fuel at various engine conditions. These engines include cargo, bomber, and helicopter types of military aircraft that consumes 70-80% of the military aviation fuel each year. The emission indices of selected pollutants are discussed as these data may be of interest for atmospheric modeling and for design of air quality control strategies around the airports and military bases. It was found that non-volatile particles in the engine emissions were all in the ultrafine range. The mean diameter of particles increased as the engine power increased; the mode diameters were in the 20nm range for the low power condition of a new helicopter engine to 80nm for the high power condition of a newly maintained bomber engine. Elemental analysis indicated little metals were present on particles in the exhaust, while most of the materials on the exhaust particles were based on carbon and sulfate. Carbon monoxide, carbon dioxide, nitrogen oxide, sulfur dioxide, formaldehyde, ethylene, acetylene, propylene, and alkanes were detected using both technologies. The last five species (in the air toxics category) were most noticeable only under the low engine power. The emission indices calculated based on the ORS data were however observed to differ significantly (up to

  17. Control Design for a Generic Commercial Aircraft Engine

    NASA Technical Reports Server (NTRS)

    Csank, Jeffrey; May, Ryan D.

    2010-01-01

    This paper describes the control algorithms and control design process for a generic commercial aircraft engine simulation of a 40,000 lb thrust class, two spool, high bypass ratio turbofan engine. The aircraft engine is a complex nonlinear system designed to operate over an extreme range of environmental conditions, at temperatures from approximately -60 to 120+ F, and at altitudes from below sea level to 40,000 ft, posing multiple control design constraints. The objective of this paper is to provide the reader an overview of the control design process, design considerations, and justifications as to why the particular architecture and limits have been chosen. The controller architecture contains a gain-scheduled Proportional Integral controller along with logic to protect the aircraft engine from exceeding any limits. Simulation results illustrate that the closed loop system meets the Federal Aviation Administration s thrust response requirements

  18. QCGAT aircraft/engine design for reduced noise and emissions

    NASA Technical Reports Server (NTRS)

    Lanson, L.; Terrill, K. M.

    1980-01-01

    The high bypass ratio QCGAT engine played an important role in shaping the aircraft design. The aircraft which evolved is a sleek, advanced design, six-place aircraft with 3538 kg (7,800 lb) maximum gross weight. It offers a 2778 kilometer (1500 nautical mile) range with cruise speed of 0.5 Mach number and will take-off and land on the vast majority of general aviation airfields. Advanced features include broad application of composite materials and a supercritical wing design with winglets. Full-span fowler flaps were introduced to improve landing capability. Engines are fuselage-mounted with inlets over the wing to provide shielding of fan noise by the wing surfaces. The design objectives, noise, and emission considerations, engine cycle and engine description are discussed as well as specific design features.

  19. Investigations on the main engines exhaust of two Boeing 767-3ZR

    NASA Astrophysics Data System (ADS)

    Lechner, Bernhard; Bacher, Michael; Rodler, Johannes; Sturm, Peter J.

    2004-02-01

    The main engines exhaust of two Boeing 767-3ZR(ER) powered by Pratt & Whitney 4060 has been intensively studied using spectroscopic methods like Fourier Transform Infrared Spectroscopy (FTIR) and Differential Optical Absorption Spectroscopy (DOAS). All cockpit data was provided by the operating airline while the thrust level was varied between idle (25% N1) and 70 % N1 where N1 is the maximum number of revolutions of the fan. The investigated gaseous species were carbon dioxide, carbon monoxide, nitrogen oxides (NO and NO2) and some hydrocarbons (C2H4, C2H2, HCOH and unburned kerosene). A comparison to the database of the International Civil Aviation Organization (ICAO) showed much higher emissions of CO and NOx-emissions in the same range. Although these two aircraft were of the same age and maintained by the same operator the emissions differed by a factor of two. Formaldehyde proved to be the most abundant hydrocarbon besides ethane and ethane.

  20. 40 CFR 1051.240 - How do I demonstrate that my engine family complies with exhaust emission standards?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... family complies with exhaust emission standards? 1051.240 Section 1051.240 Protection of Environment... ENGINES AND VEHICLES Certifying Engine Families § 1051.240 How do I demonstrate that my engine family complies with exhaust emission standards? (a) For purposes of certification, your engine family...

  1. 40 CFR 1048.240 - How do I demonstrate that my engine family complies with exhaust emission standards?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... family complies with exhaust emission standards? 1048.240 Section 1048.240 Protection of Environment... SPARK-IGNITION ENGINES Certifying Engine Families § 1048.240 How do I demonstrate that my engine family complies with exhaust emission standards? (a) For purposes of certification, your engine family...

  2. Aircraft stress sequence development: A complex engineering process made simple

    NASA Technical Reports Server (NTRS)

    Schrader, K. H.; Butts, D. G.; Sparks, W. A.

    1994-01-01

    Development of stress sequences for critical aircraft structure requires flight measured usage data, known aircraft loads, and established relationships between aircraft flight loads and structural stresses. Resulting cycle-by-cycle stress sequences can be directly usable for crack growth analysis and coupon spectra tests. Often, an expert in loads and spectra development manipulates the usage data into a typical sequence of representative flight conditions for which loads and stresses are calculated. For a fighter/trainer type aircraft, this effort is repeated many times for each of the fatigue critical locations (FCL) resulting in expenditure of numerous engineering hours. The Aircraft Stress Sequence Computer Program (ACSTRSEQ), developed by Southwest Research Institute under contract to San Antonio Air Logistics Center, presents a unique approach for making complex technical computations in a simple, easy to use method. The program is written in Microsoft Visual Basic for the Microsoft Windows environment.

  3. The effects of operating conditions on particulate matter exhaust from diesel locomotive engines.

    PubMed

    Park, Duckshin; Yoon, Younghun; Kwon, Soon-Bark; Jeong, Wootae; Cho, Youngmin; Lee, Kiyoung

    2012-03-01

    Numerous reports have shown that fine particulates threaten human health. Since their health impact is associated with both mass and number concentrations, it is necessary to evaluate the emission standards for particulate mass accordingly. This study examined the particulate matter characteristics of diesel locomotive engine exhaust at various engine ratings. Diesel engine exhaust was collected via a dilution tunnel and the concentration and size distribution of fine particles were measured by a scanning mobility particle sizer. Exhaust gasses were measured simultaneously by a stack sampler. The maximum carbon monoxide emission was reached at 59% of the maximum rating, after which emissions decreased. The particle count median diameter increased with the engine rating, until a maximum was reached at 40% of the maximum rating. Most exhaust particles were nanoparticles with the nuclei mode range, a particle diameter (D(P))<50 nm. The increase in particles with the accumulation mode range, 50engine ratings, and within the accumulation mode range at higher engine ratings. Since diesel engines mainly generate fine particles, exhaust particle mass and size distribution should be considered in emission regulations.

  4. Particulate exhaust emissions from an experimental combustor. [gas turbine engine

    NASA Technical Reports Server (NTRS)

    Norgren, C. T.; Ingebo, R. D.

    1975-01-01

    The concentration of dry particulates (carbon) in the exhaust of an experimental gas turbine combustor was measured at simulated takeoff operating conditions and correlated with the standard smoke-number measurement. Carbon was determined quantitatively from a sample collected on a fiberglass filter by converting the carbon in the smoke sample to carbon dioxide and then measuring the volume of carbon dioxide formed by gas chromatography. At a smoke of 25 (threshold of visibility of the smoke plume for large turbojets) the carbon concentration was 2.8 mg carbon/cu m exhaust gas, which is equivalent to an emission index of 0.17 g carbon/kg fuel.

  5. Studies of diesel engine particle emissions during transient operations using an Engine Exhaust Particle Sizer

    SciTech Connect

    Wang, Jian; Storey, John Morse; Domingo, Norberto; Huff, Shean P; Thomas, John F; West, Brian H; Lee, Doh-Won

    2006-01-01

    Diesel engine particle emissions during transient operations, including emissions during FTP transient cycles and during active regenerations of a NOx adsorber, were studied using a fast Engine Exhaust Particle Sizer (EEPS). For both fuels tested, a No. 2 certification diesel and a low sulfur diesel (BP-15), high particle concentrations and emission rates were mainly associated with heavy engine acceleration, high speed, and high torque during transient cycles. Averaged over the FTP transient cycle, the particle number concentration during tests with the certification fuel was 1.2e8/cm3, about four times the particle number concentration observed during tests using the BP-15 fuel. The effect of each engine parameter on particle emissions was studied. During tests using BP-15, the particle number emission rate was mainly controlled by the engine speed and torque, whereas for Certification fuel, the engine acceleration also had a strong effect on number emission rates. The effects of active regenerations of a diesel NOx adsorber on particle emissions were also characterized for two catalyst regeneration strategies: Delayed Extended Main (DEM) and Post 80 injection (Post80). Particle volume concentrations observed during DEM regenerations were much higher than those during Post80 regenerations, and the minimum air to fuel ratio achieved during the regenerations had little effect on particle emission for both strategies. This study provides valuable information for developing strategies that minimize the particle formation during active regenerations of NOx adsorbers.

  6. Rankline-Brayton engine powered solar thermal aircraft

    SciTech Connect

    Bennett, Charles L

    2012-03-13

    A solar thermal powered aircraft powered by heat energy from the sun. A Rankine-Brayton hybrid cycle heat engine is carried by the aircraft body for producing power for a propulsion mechanism, such as a propeller or other mechanism for enabling sustained free flight. The Rankine-Brayton engine has a thermal battery, preferably containing a lithium-hydride and lithium mixture, operably connected to it so that heat is supplied from the thermal battery to a working fluid. A solar concentrator, such as reflective parabolic trough, is movably connected to an optically transparent section of the aircraft body for receiving and concentrating solar energy from within the aircraft. Concentrated solar energy is collected by a heat collection and transport conduit, and heat transported to the thermal battery. A solar tracker includes a heliostat for determining optimal alignment with the sun, and a drive motor actuating the solar concentrator into optimal alignment with the sun based on a determination by the heliostat.

  7. Rankine-Brayton engine powered solar thermal aircraft

    SciTech Connect

    Bennett, Charles L.

    2009-12-29

    A solar thermal powered aircraft powered by heat energy from the sun. A Rankine-Brayton hybrid cycle heat engine is carried by the aircraft body for producing power for a propulsion mechanism, such as a propeller or other mechanism for enabling sustained free flight. The Rankine-Brayton engine has a thermal battery, preferably containing a lithium-hydride and lithium mixture, operably connected to it so that heat is supplied from the thermal battery to a working fluid. A solar concentrator, such as reflective parabolic trough, is movably connected to an optically transparent section of the aircraft body for receiving and concentrating solar energy from within the aircraft. Concentrated solar energy is collected by a heat collection and transport conduit, and heat transported to the thermal battery. A solar tracker includes a heliostat for determining optimal alignment with the sun, and a drive motor actuating the solar concentrator into optimal alignment with the sun based on a determination by the heliostat.

  8. Conceptual design of single turbofan engine powered light aircraft

    NASA Technical Reports Server (NTRS)

    Snyder, F. S.; Voorhees, C. G.; Heinrich, A. M.; Baisden, D. N.

    1977-01-01

    The conceptual design of a four place single turbofan engine powered light aircraft was accomplished utilizing contemporary light aircraft conventional design techniques as a means of evaluating the NASA-Ames General Aviation Synthesis Program (GASP) as a preliminary design tool. In certain areas, disagreement or exclusion were found to exist between the results of the conventional design and GASP processes. Detail discussion of these points along with the associated contemporary design methodology are presented.

  9. 30 CFR 36.25 - Engine exhaust system.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... pressure observed in explosion tests, which are described in § 36.46, or a pressure of 125 pounds per... the equipment assembly that it is protected from accidental external damage. (2) A spaced-plate flame... conditioner may be used as the exhaust flame arrester provided that explosion tests demonstrate that...

  10. 30 CFR 36.25 - Engine exhaust system.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... pressure observed in explosion tests, which are described in § 36.46, or a pressure of 125 pounds per... the equipment assembly that it is protected from accidental external damage. (2) A spaced-plate flame... conditioner may be used as the exhaust flame arrester provided that explosion tests demonstrate that...

  11. MULTIDISCIPLINARY SCIENTIFIC AND ENGINEERING APPROACHES TO ASSESSING DIESEL EXHAUST TOXICITY

    EPA Science Inventory

    Based on epidemiology reports, diesel exhaust (DE) containing particulate matter (PM) may play a role in increasing cardiopulmonary mortality and morbidity, such as lung infection and asthma symptoms. DE gas-phase components may modify the PM effects. DE components vary depending...

  12. Effects of Structural Flexibility on Aircraft-Engine Mounts

    NASA Technical Reports Server (NTRS)

    Phillips, W. H.

    1986-01-01

    Analysis extends technique for design of widely used type of vibration-isolating mounts for aircraft engines, in which rubber mounting pads located in plane behind center of gravity of enginepropeller combination. New analysis treats problem in statics. Results of simple approach useful in providing equations for design of vibrationisolating mounts. Equations applicable in usual situation in which engine-mount structure itself relatively light and placed between large mass of engine and other heavy components of airplane.

  13. Modeling Macro- and Micro-Scale Turbulent Mixing and Chemistry in Engine Exhaust Plumes

    NASA Technical Reports Server (NTRS)

    Menon, Suresh

    1998-01-01

    Simulation of turbulent mixing and chemical processes in the near-field plume and plume-vortex regimes has been successfully carried out recently using a reduced gas phase kinetics mechanism which substantially decreased the computational cost. A detailed mechanism including gas phase HOx, NOx, and SOx chemistry between the aircraft exhaust and the ambient air in near-field aircraft plumes is compiled. A reduced mechanism capturing the major chemical pathways is developed. Predictions by the reduced mechanism are found to be in good agreement with those by the detailed mechanism. With the reduced chemistry, the computer CPU time is saved by a factor of more than 3.5 for the near-field plume modeling. Distributions of major chemical species are obtained and analyzed. The computed sensitivities of major species with respect to reaction step are deduced for identification of the dominant gas phase kinetic reaction pathways in the jet plume. Both the near field plume and the plume-vortex regimes were investigated using advanced mixing models. In the near field, a stand-alone mixing model was used to investigate the impact of turbulent mixing on the micro- and macro-scale mixing processes using a reduced reaction kinetics model. The plume-vortex regime was simulated using a large-eddy simulation model. Vortex plume behind Boeing 737 and 747 aircraft was simulated along with relevant kinetics. Many features of the computed flow field show reasonable agreement with data. The entrainment of the engine plumes into the wing tip vortices and also the partial detrainment of the plume were numerically captured. The impact of fluid mechanics on the chemical processes was also studied. Results show that there are significant differences between spatial and temporal simulations especially in the predicted SO3 concentrations. This has important implications for the prediction of sulfuric acid aerosols in the wake and may partly explain the discrepancy between past numerical studies

  14. Aircraft Turbine Engine Control Research at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Garg, Sanjay

    2014-01-01

    This lecture will provide an overview of the aircraft turbine engine control research at NASA (National Aeronautics and Space Administration) Glenn Research Center (GRC). A brief introduction to the engine control problem is first provided with a description of the current state-of-the-art control law structure. A historical aspect of engine control development since the 1940s is then provided with a special emphasis on the contributions of GRC. The traditional engine control problem has been to provide a means to safely transition the engine from one steady-state operating point to another based on the pilot throttle inputs. With the increased emphasis on aircraft safety, enhanced performance and affordability, and the need to reduce the environmental impact of aircraft, there are many new challenges being faced by the designers of aircraft propulsion systems. The Controls and Dynamics Branch (CDB) at GRC is leading and participating in various projects in partnership with other organizations within GRC and across NASA, other government agencies, the U.S. aerospace industry, and academia to develop advanced propulsion controls and diagnostics technologies that will help meet the challenging goals of NASA programs under the Aeronautics Research Mission. The second part of the lecture provides an overview of the various CDB technology development activities in aircraft engine control and diagnostics, both current and some accomplished in the recent past. The motivation for each of the research efforts, the research approach, technical challenges and the key progress to date are summarized. The technologies to be discussed include system level engine control concepts, gas path diagnostics, active component control, and distributed engine control architecture. The lecture will end with a futuristic perspective of how the various current technology developments will lead to an Intelligent and Autonomous Propulsion System requiring none to very minimum pilot interface

  15. Multi-fuel rotary engine for general aviation aircraft

    NASA Technical Reports Server (NTRS)

    Jones, C.; Ellis, D. R.; Meng, P. R.

    1983-01-01

    Design studies of advanced multifuel general aviation and commuter aircraft rotary stratified charge engines are summarized. Conceptual design studies were performed at two levels of technology, on advanced general aviation engines sized to provide 186/250 shaft kW/hp under cruise conditions at 7620 (25000 m/ft) altitude. A follow on study extended the results to larger (2500 hp max.) engine sizes suitable for applications such as commuter transports and helicopters. The study engine designs were derived from relevant engine development background including both prior and recent engine test results using direct injected unthrottled rotary engine technology. Aircraft studies, using these resultant growth engines, define anticipated system effects of the performance and power density improvements for both single engine and twin engine airplanes. The calculated results indicate superior system performance and 27 to 33 percent fuel economy improvement for the rotary engine airplanes as compared to equivalent airframe concept designs with current baseline engines. The research and technology activities required to attain the projected engine performance levels are also discussed.

  16. 40 CFR 87.62 - Test procedure (propulsion engines).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Test procedure (propulsion engines... PROGRAMS (CONTINUED) CONTROL OF AIR POLLUTION FROM AIRCRAFT AND AIRCRAFT ENGINES Test Procedures for Engine Exhaust Gaseous Emissions (Aircraft and Aircraft Gas Turbine Engines) § 87.62 Test procedure...

  17. The Aerothermodynamics of Aircraft Gas Turbine Engines

    DTIC Science & Technology

    1978-07-01

    line and staggered tube ~ anks . Another way to get the coolant out of the trailing edge is to use drilled holes. These are normally calculated using...Pittsburgh, PA, 1976. 20.35 Butze, H. F., and Ehlers , R. C., "Effect of FUel Properties on Performance of a Single Aircraft Turbojet Combustor," NASA-Tl~-X...20.75 Butze, H. F .. and Ehlers , R. C., "Effect of Fuel Properties on Performance of A Single Aircraft Turboj et Combustor," NASA-TM-X-71789

  18. 77 FR 13488 - Airworthiness Directives; Thielert Aircraft Engines GmbH (TAE) Reciprocating Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-07

    ... Engines GmbH (TAE) Reciprocating Engines AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final... TAE 125-02-99 reciprocating engines installed on, but not limited to, Diamond Aircraft Industries...-E002801, on TAE 125-02-99 engine. This AD was prompted by TAE increasing the life of the PPRV, part...

  19. 78 FR 1733 - Airworthiness Directives; Thielert Aircraft Engines GmbH Reciprocating Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-09

    ... Engines GmbH Reciprocating Engines AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: We are superseding an existing airworthiness directive (AD) for all Thielert Aircraft Engines GmbH models TAE 125-01, TAE 125-02- 99, and TAE 125-02-114 reciprocating engines. That AD...

  20. 77 FR 4217 - Airworthiness Directives; Thielert Aircraft Engines GmbH Reciprocating Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-27

    ... Engines GmbH Reciprocating Engines AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: We are adopting a new airworthiness directive (AD) for all Thielert Aircraft Engines GmbH (TAE) ] TAE 125-02-99 and TAE 125-02-114 reciprocating engines. This AD was prompted by in-flight...

  1. 78 FR 1728 - Airworthiness Directives; Thielert Aircraft Engines GmbH Reciprocating Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-09

    ... Engines GmbH Reciprocating Engines AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: We are adopting a new airworthiness directive (AD) for all Thielert Aircraft Engines GmbH (TAE) TAE 125-02-99 and TAE 125-02-114 reciprocating engines. This AD requires inspection of the oil...

  2. Exhaust emissions of DI diesel engine using unconventional fuels

    NASA Astrophysics Data System (ADS)

    Sudrajad, Agung; Ali, Ismail; Hamdan, Hazmie; Hamzah, Mohd. Herzwan

    2012-06-01

    Optimization of using waste plastic and tire disposal fuel on diesel engine were observed. The experimental project was comparison between using both of unconventional fuel and base diesel fuel. The engine experiment was conducted with YANMAR TF120 single cylinder four stroke diesel engine set-up at variable engine speed at 2100, 1900, 1700, 1500 and 1300 rpm. The data have been taken at each point of engine speed during the stabilized engine-operating regime. Measurement of emissions parameters at different engine speed conditions have generally indicated lower in emission COfor waste plastic fuel, lower NOx for tire disposal fuel and lower SOx for diesel fuel.

  3. Aircraft Turbine Engine Control Research at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Garg, Sanjay

    2013-01-01

    This paper provides an overview of the aircraft turbine engine control research at the NASA Glenn Research Center (GRC). A brief introduction to the engine control problem is first provided with a description of the state-of-the-art control law structure. A historical aspect of engine control development since the 1940s is then provided with a special emphasis on the contributions of GRC. With the increased emphasis on aircraft safety, enhanced performance, and affordability, as well as the need to reduce the environmental impact of aircraft, there are many new challenges being faced by the designers of aircraft propulsion systems. The Controls and Dynamics Branch (CDB) at GRC is leading and participating in various projects to develop advanced propulsion controls and diagnostics technologies that will help meet the challenging goals of NASA Aeronautics Research Mission programs. The rest of the paper provides an overview of the various CDB technology development activities in aircraft engine control and diagnostics, both current and some accomplished in the recent past. The motivation for each of the research efforts, the research approach, technical challenges, and the key progress to date are summarized.

  4. Dynamic response at altitude of a turbojet engine with variable area exhaust nozzle

    NASA Technical Reports Server (NTRS)

    Delio, Gene J; Rosenweig, Solomon

    1952-01-01

    The dynamic characteristics of turbojet engine with variable exhaust nozzle area were investigated over a range of altitudes and flight Mach numbers. These characteristics generalize to standard static level condition. Data resulting from approximate step disturbances in either manipulated variable suggested functional relationships from which functions can be derived. The constants of the transfer functions are listed for five combinations of engine speed and exhaust nozzle area. The minimum data needed to completely define the transfer functions were: experimentally determined dynamic characteristics, such as engine time constant and initial rise ratio, resulting from either manipulated variable; static characteristics determined from steady-state performance curves.

  5. 40 CFR 1045.101 - What exhaust emission standards and requirements must my engines meet?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false What exhaust emission standards and requirements must my engines meet? 1045.101 Section 1045.101 Protection of Environment ENVIRONMENTAL PROTECTION... engines must meet the requirements in § 1045.115. (b) It is important that you read § 1045.145...

  6. 40 CFR 1042.104 - Exhaust emission standards for Category 3 engines.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE MARINE COMPRESSION-IGNITION... engines are not subject to not-to-exceed standards. (d) Useful life. Your engines must meet the exhaust emission standards of this section over their full useful life, expressed as a period in years or hours...

  7. 40 CFR 1042.104 - Exhaust emission standards for Category 3 engines.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE MARINE COMPRESSION-IGNITION... engines are not subject to not-to-exceed standards. (d) Useful life. Your engines must meet the exhaust emission standards of this section over their full useful life, expressed as a period in years or hours...

  8. ACUTE BEHAVORIAL EFFECTS FROM EXPOSURE TO TWO-STROKE ENGINE EXHAUST

    EPA Science Inventory

    Benefits of changing from two-stroke to four-stroke engines (and other remedial requirements) can be evaluated (monetized) from the standpoint of acute behavioral effects of human exposure to exhaust from these engines. The monetization process depends upon estimates of the magn...

  9. Some aspects of aircraft jet engine fuels

    NASA Technical Reports Server (NTRS)

    Bekiesinski, R.

    1979-01-01

    Technologies are reviewed for improving the thermal stability of jet fuels, with reference to the overheating of fuel tanks in supersonic aircraft. Consideration is given to the development of a jet fuel with high thermal stability by the Polish petroleum industry.

  10. Recent Progress in Engine Noise Reduction for Commercial Aircraft Applications

    NASA Technical Reports Server (NTRS)

    Huff, Dennis L.

    2003-01-01

    Considerable progress has been made over the past ten years developing technologies for reducing aircraft noise. Engine noise continues to be a dominate source, particularly for aircraft departing from airports. Research efforts have concentrated on developing noise prediction methods, experimental validation, and developing noise reduction concepts that have been verified through model scale and static engine tests. Most of the work has concentrated on fan and jet components for commercial turbofan engines. In this seminar, an overview of the engine noise reduction work that was sponsored by NASA s Advanced Subsonic Technology Noise Reduction Program will be given, along with background information on turbofan noise sources and certification procedures. Concepts like "chevron" nozzles for jet noise reduction and swept stators for fan noise reduction will be highlighted. A preliminary assessment on how the new technologies will impact future engines will be given.

  11. Studies on exhaust emissions of catalytic coated spark ignition engine with adulterated gasoline.

    PubMed

    Muralikrishna, M V S; Kishor, K; Venkata Ramana Reddy, Ch

    2006-04-01

    Adulteration of automotive fuels, especially, gasoline with cheaper fuels is widespread throughout south Asia. Some adulterants decrease the performance and life of the engine and increase the emission of harmful pollutants causing environmental and health problems. The present investigation is carried out to study the exhaust emissions from a single cylinder spark ignition (SI) engine with kerosene blended gasoline with different versions of the engine, such as conventional engine and catalytic coated engine with different proportions of the kerosene ranging from 0% to 40% by volume in steps of 10% in the kerosene-gasoline blend. The catalytic coated engine used in the study has copper coating of thickness 400 microns on piston and inner surface of the cylinder head. The pollutants in the exhaust, carbon monoxide (CO) and unburnt hydrocarbons (UBHC) are measured with Netel Chromatograph CO and HC analyzer at peak load operation of the engine. The engine is provided with catalytic converter with sponge iron as a catalyst to control the pollutants from the exhaust of the engine. An air injection is also provided to the catalytic converter to further reduce the pollutants. The pollutants found to increase drastically with adulterated gasoline. Copper-coated engine with catalytic converter significantly reduced pollutants, when compared to conventional engine.

  12. Reducing drag of a commuter train, using engine exhaust momentum

    NASA Astrophysics Data System (ADS)

    Ha, Dong Keun

    The objective of this thesis was to perform numerical investigations of two different methods of injecting fluid momentum into the air flow above a commuter train to reduce its drag. Based on previous aerodynamic modifications of heavy duty trucks in improving fuel efficiency, two structural modifications were designed and applied to a Metrolink Services commuter train in the Los Angeles (LA) County area to reduce its drag and subsequently improve fuel efficiency. The first modification was an L-shaped channel, added to the exhaust cooling fan above the locomotive roof to divert and align the exhaust gases in the axial direction. The second modification was adding an airfoil shaped lid over the L-shape channel, to minimize the drag of the perturbed structure, and thus reduce the overall drag. The computational fluid dynamic (CFD) software CCM+ from CD-Adapco with the ?-? turbulence model was used for the simulations. A single train set which consists of three vehicles: one locomotive, one trailer car and one cab car were used. All the vehicles were modeled based on the standard Metrolink fleet train size. The wind speed was at 90 miles per hour (mph), which is the maximum speed for the Orange County Metrolink line. Air was used as the exhaust gas in the simulation. The temperature of the exhausting air emitting out of the cooling fan on the roof was 150 F and the average fan speed was 120 mph. Results showed that with the addition of the lid, momentum injection results in reduced flow separation and pressure recovery behind the locomotive, which reduces the overall drag by at least 30%.

  13. Spectral radiance measurements of exhaust plumes from scale model rocket engines.

    PubMed

    McCaa, D J

    1968-05-01

    A short duration experimental technique for investigating radiative properties of rocket exhaust plumes at high altitudes is described. Experimental measurements of the spectral radiance of two interacting exhaust plumes generated by 1/45 scale F-l engines burning gaseous ethylene and oxygen are presented. In addition, the spectral radiance characteristics of several Saturn auxiliary solid propellant rocket motors have also been measured and these results are included. The measurements were obtained with a rapid scanning ir spectrometer.

  14. Advanced control for airbreathing engines, volume 2: General Electric aircraft engines

    NASA Technical Reports Server (NTRS)

    Bansal, Indar

    1993-01-01

    The application of advanced control concepts to air breathing engines may yield significant improvements in aircraft/engine performance and operability. Screening studies of advanced control concepts for air breathing engines were conducted by three major domestic aircraft engine manufacturers to determine the potential impact of concepts on turbine engine performance and operability. The purpose of the studies was to identify concepts which offered high potential yet may incur high research and development risk. A target suite of proposed advanced control concepts was formulated and evaluated in a two phase study to quantify each concept's impact on desired engine characteristics. To aid in the evaluation specific aircraft/engine combinations were considered: a Military High Performance Fighter mission, a High Speed Civil Transport mission, and a Civil Tiltrotor mission. Each of the advanced control concepts considered in the study are defined and described. The concept potential impact on engine performance was determined. Relevant figures of merit on which to evaluate the concepts are determined. Finally, the concepts are ranked with respect to the target aircraft/engine missions. A final report describing the screening studies was prepared by each engine manufacturer. Volume 2 of these reports describes the studies performed by GE Aircraft Engines.

  15. Multi-Fuel Rotary Engine for General Aviation Aircraft

    NASA Technical Reports Server (NTRS)

    Jones, C.; Ellis, D. R.; Meng, P. R.

    1983-01-01

    Design studies, conducted for NASA, of Advanced Multi-fuel General Aviation and Commuter Aircraft Rotary Stratified Charge Engines are summarized. Conceptual design studies of an advanced engine sized to provide 186/250 shaft KW/HP under cruise conditions at 7620/25,000 m/ft. altitude were performed. Relevant engine development background covering both prior and recent engine test results of the direct injected unthrottled rotary engine technology, including the capability to interchangeably operate on gasoline, diesel fuel, kerosene, or aviation jet fuel, are presented and related to growth predictions. Aircraft studies, using these resultant growth engines, define anticipated system effects of the performance and power density improvements for both single engine and twin engine airplanes. The calculated results indicate superior system performance and 30 to 35% fuel economy improvement for the Rotary-engine airplanes as compared to equivalent airframe concept designs with current baseline engines. The research and technology activities required to attain the projected engine performance levels are also discussed.

  16. Adaptive Optimization of Aircraft Engine Performance Using Neural Networks

    NASA Technical Reports Server (NTRS)

    Simon, Donald L.; Long, Theresa W.

    1995-01-01

    Preliminary results are presented on the development of an adaptive neural network based control algorithm to enhance aircraft engine performance. This work builds upon a previous National Aeronautics and Space Administration (NASA) effort known as Performance Seeking Control (PSC). PSC is an adaptive control algorithm which contains a model of the aircraft's propulsion system which is updated on-line to match the operation of the aircraft's actual propulsion system. Information from the on-line model is used to adapt the control system during flight to allow optimal operation of the aircraft's propulsion system (inlet, engine, and nozzle) to improve aircraft engine performance without compromising reliability or operability. Performance Seeking Control has been shown to yield reductions in fuel flow, increases in thrust, and reductions in engine fan turbine inlet temperature. The neural network based adaptive control, like PSC, will contain a model of the propulsion system which will be used to calculate optimal control commands on-line. Hopes are that it will be able to provide some additional benefits above and beyond those of PSC. The PSC algorithm is computationally intensive, it is valid only at near steady-state flight conditions, and it has no way to adapt or learn on-line. These issues are being addressed in the development of the optimal neural controller. Specialized neural network processing hardware is being developed to run the software, the algorithm will be valid at steady-state and transient conditions, and will take advantage of the on-line learning capability of neural networks. Future plans include testing the neural network software and hardware prototype against an aircraft engine simulation. In this paper, the proposed neural network software and hardware is described and preliminary neural network training results are presented.

  17. 40 CFR 1045.103 - What exhaust emission standards must my outboard and personal watercraft engines meet?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE ENGINES AND VESSELS Emission Standards and Related Requirements § 1045.103 What exhaust.... (3) Other engines: THC emissions. (e) Useful life. Your engines must meet the exhaust...

  18. 40 CFR 1045.103 - What exhaust emission standards must my outboard and personal watercraft engines meet?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE ENGINES AND VESSELS Emission Standards and Related Requirements § 1045.103 What exhaust.... (3) Other engines: THC emissions. (e) Useful life. Your engines must meet the exhaust...

  19. 40 CFR 1045.103 - What exhaust emission standards must my outboard and personal watercraft engines meet?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE ENGINES AND VESSELS Emission Standards and Related Requirements § 1045.103 What exhaust.... (3) Other engines: THC emissions. (e) Useful life. Your engines must meet the exhaust...

  20. 40 CFR 1045.103 - What exhaust emission standards must my outboard and personal watercraft engines meet?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE ENGINES AND VESSELS Emission Standards and Related Requirements § 1045.103 What exhaust.... (3) Other engines: THC emissions. (e) Useful life. Your engines must meet the exhaust...

  1. Research on hypersonic aircraft using pre-cooled turbojet engines

    NASA Astrophysics Data System (ADS)

    Taguchi, Hideyuki; Kobayashi, Hiroaki; Kojima, Takayuki; Ueno, Atsushi; Imamura, Shunsuke; Hongoh, Motoyuki; Harada, Kenya

    2012-04-01

    Systems analysis of a Mach 5 class hypersonic aircraft is performed. The aircraft can fly across the Pacific Ocean in 2 h. A multidisciplinary optimization program for aerodynamics, structure, propulsion, and trajectory is used in the analysis. The result of each element model is improved using higher accuracy analysis tools. The aerodynamic performance of the hypersonic aircraft is examined through hypersonic wind tunnel tests. A thermal management system based on the data of the wind tunnel tests is proposed. A pre-cooled turbojet engine is adopted as the propulsion system for the hypersonic aircraft. The engine can be operated continuously from take-off to Mach 5. This engine uses a pre-cooling cycle using cryogenic liquid hydrogen. The high temperature inlet air of hypersonic flight would be cooled by the same liquid hydrogen used as fuel. The engine is tested under sea level static conditions. The engine is installed on a flight test vehicle. Both liquid hydrogen fuel and gaseous hydrogen fuel are supplied to the engine from a tank and cylinders installed within the vehicle. The designed operation of major components of the engine is confirmed. A large amount of liquid hydrogen is supplied to the pre-cooler in order to make its performance sufficient for Mach 5 flight. Thus, fuel rich combustion is adopted at the afterburner. The experiments are carried out under the conditions that the engine is mounted upon an experimental airframe with both set up either horizontally or vertically. As a result, the operating procedure of the pre-cooled turbojet engine is demonstrated.

  2. A Systems Engineering Approach to Aircraft Kinetic Kill Countermeasures Technology: Development of an Active Aircraft Defense System for the C/KC-135 Aircraft. Volume 1

    DTIC Science & Technology

    1995-12-01

    AFIT/GSE/ENY/95D-01 A SYSTEMS ENGINEERING APPROACH TO AIRCRAFT KINETIC KILL COUNTERMEASURE TECHNOLOGY: DEVELOPMENT OF AN ACTIVE AIR DEFENSE SYSTEM...AFIT/GSE/ENY/95D-01 A SYSTEMS ENGINEERING APPROACH TO AIRCRAFT KINETIC KILL COUNTERMEASURE TECHNOLOGY: DEVELOPMENT OF AN ACTIVE AIR DEFENSE SYSTEM FOR...THE C/KC-135 AIRCRAFT THESIS (1 of2) Presented to the Faculty of the Graduate School of Engineering of the Air Force Institute of Technology Air

  3. Review of the Rhein-Flugzeugbau Wankel powered aircraft program. [ducted fan engines

    NASA Technical Reports Server (NTRS)

    Riethmueller, M.

    1978-01-01

    The development of light aircraft with special emphasis on modern propulsion systems and production is discussed in terms of the application of rotary engines to aircraft. Emphasis is placed on the integrated ducted-fan propulsion system using rotary engines.

  4. Power plant including an exhaust gas recirculation system for injecting recirculated exhaust gases in the fuel and compressed air of a gas turbine engine

    DOEpatents

    Anand, Ashok Kumar; Nagarjuna Reddy, Thirumala Reddy; Shaffer, Jason Brian; York, William David

    2014-05-13

    A power plant is provided and includes a gas turbine engine having a combustor in which compressed gas and fuel are mixed and combusted, first and second supply lines respectively coupled to the combustor and respectively configured to supply the compressed gas and the fuel to the combustor and an exhaust gas recirculation (EGR) system to re-circulate exhaust gas produced by the gas turbine engine toward the combustor. The EGR system is coupled to the first and second supply lines and configured to combine first and second portions of the re-circulated exhaust gas with the compressed gas and the fuel at the first and second supply lines, respectively.

  5. Effect of ethanol-gasoline blends on small engine generator energy efficiency and exhaust emission.

    PubMed

    Lin, Wen-Yinn; Chang, Yuan-Yi; Hsieh, You-Ru

    2010-02-01

    This study was focused on fuel energy efficiency and pollution analysis of different ratios of ethanol-gasoline blended fuels (E0, E3, E6, and E9) under different loadings. In this research, the experimental system consisted of a small engine generator, a particulate matter measurement system, and an exhaust gas analyzer system. Different fuels, unleaded gasoline, and ethanol-gasoline blends (E0, E3, E6, and E9) were used to study their effects on the exhaust gas emission and were expressed as thermal efficiency of the small engine generator energy efficiency. The results suggested that particle number concentration increased as the engine loading increased; however, it decreased as the ethanol content in the blend increased. While using E6 as fuel, the carbon monoxide (CO) concentration was less than other fuels (E0, E3, and E9) for each engine loading. The average of CO concentration reduction by using E3, E6, and E9 is 42, 86, and 83%, respectively. Using an ethanol-gasoline blend led to a significant reduction in exhaust emissions by approximately 78.7, 97.5, and 89.46% of the mean average values of hydrocarbons (HCs) with E3, E6, and E9 fuels, respectively, for all engine loadings. Using an ethanol-gasoline blend led to a significant reduction in exhaust emissions by approximately 35, 86, and 77% of the mean average values of nitrogen oxides (NOx) with E3, E6, and E9 fuels, respectively, at each engine loading. The E6 fuel gave the best results of the exhaust emissions, and the E9 fuel gave the best results of the particle emissions and engine performance. The thermal efficiency of the small engine generator increased as the ethanol content in the blend increased and as the engine loading increased.

  6. Chemistry Characterization of Jet Aircraft Engine Particulate by XPS: Results from APEX III

    NASA Technical Reports Server (NTRS)

    Vander Wal, Randy L.; Bryg, Victoria M.

    2014-01-01

    This paper reports XPS analysis of jet exhaust particulate from a B737, Lear, ERJ, and A300 aircraft during the APEX III NASA led field campaign. Carbon hybridization and bonding chemistry are identified by high-resolution scans about the C1s core-shell region. Significant organic content as gauged by the sp3/sp2 ratio is found across engines and platforms. Polar oxygen functional groups include carboxylic, carbonyl and phenol with combined content of 20 percent or more. By lower resolution survey scans various elements including transition metals are identified along with lighter elements such as S, N, and O in the form of oxides. Burning additives within lubricants are probable sources of Na, Ba, Ca, Zn, P and possibly Sn. Elements present and their percentages varied significantly across all engines, not revealing any trend or identifiable cause for the differences, though the origin is likely the same for the same element when observed. This finding suggests that their presence can be used as a tracer for identifying soots from aircraft engines as well as diagnostic for monitoring engine performance and wear.

  7. Chemistry characterization of jet aircraft engine particulate matter by XPS: Results from APEX III

    NASA Astrophysics Data System (ADS)

    Vander Wal, Randy L.; Bryg, Victoria M.; Huang, Chung-Hsuan

    2016-09-01

    This paper reports X-ray photoelectron spectroscopy (XPS) analysis of jet exhaust particulate matter (PM) from a B737, Lear, ERJ and A300 aircraft during the APEX III NASA led field campaign. Carbon hybridization and bonding chemistry are identified by high-resolution scans about the C1s core-shell region. Significant organic content as gauged by the sp3/sp2 ratio is found across engines and powers. Polar oxygen functional groups include carboxylic, carbonyl and phenol with combined content of 20% or more. By survey scans various elements including transition metals are identified along with lighter elements such as S, N and O in the form of oxides. Additives within lubricants are probable sources of Na, Ba, Ca, Zn, P and possibly Sn. Elements present and their percentages varied significantly across all engines, not revealing any trend or identifiable cause for the differences, though the origin is likely the same for the same element when observed. This finding suggests that their collective presence could serve as an environmental tracer for identifying PM originating from aircraft engines and serving as a diagnostic for engine performance and wear.

  8. Biofuel blending reduces particle emissions from aircraft engines at cruise conditions

    NASA Astrophysics Data System (ADS)

    Moore, Richard H.; Thornhill, Kenneth L.; Weinzierl, Bernadett; Sauer, Daniel; D’Ascoli, Eugenio; Kim, Jin; Lichtenstern, Michael; Scheibe, Monika; Beaton, Brian; Beyersdorf, Andreas J.; Barrick, John; Bulzan, Dan; Corr, Chelsea A.; Crosbie, Ewan; Jurkat, Tina; Martin, Robert; Riddick, Dean; Shook, Michael; Slover, Gregory; Voigt, Christiane; White, Robert; Winstead, Edward; Yasky, Richard; Ziemba, Luke D.; Brown, Anthony; Schlager, Hans; Anderson, Bruce E.

    2017-03-01

    Aviation-related aerosol emissions contribute to the formation of contrail cirrus clouds that can alter upper tropospheric radiation and water budgets, and therefore climate. The magnitude of air-traffic-related aerosol–cloud interactions and the ways in which these interactions might change in the future remain uncertain. Modelling studies of the present and future effects of aviation on climate require detailed information about the number of aerosol particles emitted per kilogram of fuel burned and the microphysical properties of those aerosols that are relevant for cloud formation. However, previous observational data at cruise altitudes are sparse for engines burning conventional fuels, and no data have previously been reported for biofuel use in-flight. Here we report observations from research aircraft that sampled the exhaust of engines onboard a NASA DC-8 aircraft as they burned conventional Jet A fuel and a 50:50 (by volume) blend of Jet A fuel and a biofuel derived from Camelina oil. We show that, compared to using conventional fuels, biofuel blending reduces particle number and mass emissions immediately behind the aircraft by 50 to 70 per cent. Our observations quantify the impact of biofuel blending on aerosol emissions at cruise conditions and provide key microphysical parameters, which will be useful to assess the potential of biofuel use in aviation as a viable strategy to mitigate climate change.

  9. Biofuel blending reduces particle emissions from aircraft engines at cruise conditions.

    PubMed

    Moore, Richard H; Thornhill, Kenneth L; Weinzierl, Bernadett; Sauer, Daniel; D'Ascoli, Eugenio; Kim, Jin; Lichtenstern, Michael; Scheibe, Monika; Beaton, Brian; Beyersdorf, Andreas J; Barrick, John; Bulzan, Dan; Corr, Chelsea A; Crosbie, Ewan; Jurkat, Tina; Martin, Robert; Riddick, Dean; Shook, Michael; Slover, Gregory; Voigt, Christiane; White, Robert; Winstead, Edward; Yasky, Richard; Ziemba, Luke D; Brown, Anthony; Schlager, Hans; Anderson, Bruce E

    2017-03-15

    Aviation-related aerosol emissions contribute to the formation of contrail cirrus clouds that can alter upper tropospheric radiation and water budgets, and therefore climate. The magnitude of air-traffic-related aerosol-cloud interactions and the ways in which these interactions might change in the future remain uncertain. Modelling studies of the present and future effects of aviation on climate require detailed information about the number of aerosol particles emitted per kilogram of fuel burned and the microphysical properties of those aerosols that are relevant for cloud formation. However, previous observational data at cruise altitudes are sparse for engines burning conventional fuels, and no data have previously been reported for biofuel use in-flight. Here we report observations from research aircraft that sampled the exhaust of engines onboard a NASA DC-8 aircraft as they burned conventional Jet A fuel and a 50:50 (by volume) blend of Jet A fuel and a biofuel derived from Camelina oil. We show that, compared to using conventional fuels, biofuel blending reduces particle number and mass emissions immediately behind the aircraft by 50 to 70 per cent. Our observations quantify the impact of biofuel blending on aerosol emissions at cruise conditions and provide key microphysical parameters, which will be useful to assess the potential of biofuel use in aviation as a viable strategy to mitigate climate change.

  10. Impact of future fuel properties on aircraft engines and fuel systems

    NASA Technical Reports Server (NTRS)

    Rudey, R. A.; Grobman, J. S.

    1978-01-01

    From current projections of the availability of high-quality petroleum crude oils, it is becoming increasingly apparent that the specifications for hydrocarbon jet fuels may have to be modified. The problems that are most likely to be encountered as a result of these modifications relate to engine performance, component durability and maintenance, and aircraft fuel-system performance. The effect on engine performance will be associated with changes in specific fuel consumption, ignition at relight limits, at exhaust emissions. Durability and maintenance will be affected by increases in combustor liner temperatures, carbon deposition, gum formation in fuel nozzles, and erosion and corrosion of turbine blades and vanes. Aircraft fuel-system performance will be affected by increased deposits in fuel-system heat exchangers and changes in the pumpability and flowability of the fuel. The severity of the potential problems is described in terms of the fuel characteristics most likely to change in the future. Recent data that evaluate the ability of current-technology aircraft to accept fuel specification changes are presented, and selected technological advances that can reduce the severity of the problems are described and discussed.

  11. Open loop pneumatic control of a Lysholm engine or turbine exhaust pressure

    SciTech Connect

    Plonski, B.A.

    1981-07-17

    A Lysholm engine, or helical screw expander, is currently being evaluated at the University of California, Berkeley for staging with a conventional turbine in geothermal energy conversion. A pneumatic closed loop, proportional-integral control system was implemented to control the Lysholm engine's exhaust pressure for performance testing of the engine at constant inlet/outlet pressure ratios. The control system will also be used to control the exhaust pressure of the conventional turbine during future testing of the staged Lysholm-turbine system. Analytical modeling of the control system was performed and successful tuning was achieved by applying Ziegler-Nichol's tuning method. Stable control and quick response, of approximately 1 minute, was demonstrated for load and set point changes in desired exhaust pressures.

  12. Exergo-Economic Analysis of an Experimental Aircraft Turboprop Engine Under Low Torque Condition

    NASA Astrophysics Data System (ADS)

    Atilgan, Ramazan; Turan, Onder; Aydin, Hakan

    Exergo-economic analysis is an unique combination of exergy analysis and cost analysis conducted at the component level. In exergo-economic analysis, cost of each exergy stream is determined. Inlet and outlet exergy streams of the each component are associated to a monetary cost. This is essential to detect cost-ineffective processes and identify technical options which could improve the cost effectiveness of the overall energy system. In this study, exergo-economic analysis is applied to an aircraft turboprop engine. Analysis is based on experimental values at low torque condition (240 N m). Main components of investigated turboprop engine are the compressor, the combustor, the gas generator turbine, the free power turbine and the exhaust. Cost balance equations have been formed for all components individually and exergo-economic parameters including cost rates and unit exergy costs have been calculated for each component.

  13. Energy efficient engine flight propulsion system: Aircraft/engine integration evaluation

    NASA Technical Reports Server (NTRS)

    Patt, R. F.

    1980-01-01

    Results of aircraft/engine integration studies conducted on an advanced flight propulsion system are reported. Economic evaluations of the preliminary design are included and indicate that program goals will be met. Installed sfc, DOC, noise, and emissions were evaluated. Aircraft installation considerations and growth were reviewed.

  14. Energy efficient engine flight propulsion system: Aircraft/engine integration evaluation

    SciTech Connect

    Patt, R.F.

    1980-06-01

    Results of aircraft/engine integration studies conducted on an advanced flight propulsion system are reported. Economic evaluations of the preliminary design are included and indicate that program goals will be met. Installed sfc, DOC, noise, and emissions were evaluated. Aircraft installation considerations and growth were reviewed.

  15. Calculation of the pressures on aircraft engine bearings

    NASA Technical Reports Server (NTRS)

    Steigenberger, O

    1929-01-01

    For aircraft engines the three principal operating conditions are idling speed, cruising speed, and diving with the engine stopped. In what follows, we will discuss a method which affords a good idea of the course of pressure for the above mentioned operating conditions. The pressures produced in the driving gear are of three kinds; namely, the pressure due to gases, the pressure due to the inertia of the rotating masses, and the pressure due to the inertia of the reciprocating masses.

  16. Combustion system CFD modeling at GE Aircraft Engines

    NASA Technical Reports Server (NTRS)

    Burrus, D.; Mongia, H.; Tolpadi, Anil K.; Correa, S.; Braaten, M.

    1995-01-01

    This viewgraph presentation discusses key features of current combustion system CFD modeling capabilities at GE Aircraft Engines provided by the CONCERT code; CONCERT development history; modeling applied for designing engine combustion systems; modeling applied to improve fundamental understanding; CONCERT3D results for current production combustors; CONCERT3D model of NASA/GE E3 combustor; HYBRID CONCERT CFD/Monte-Carlo modeling approach; and future modeling directions.

  17. Optimal Discrete Event Supervisory Control of Aircraft Gas Turbine Engines

    NASA Technical Reports Server (NTRS)

    Litt, Jonathan (Technical Monitor); Ray, Asok

    2004-01-01

    This report presents an application of the recently developed theory of optimal Discrete Event Supervisory (DES) control that is based on a signed real measure of regular languages. The DES control techniques are validated on an aircraft gas turbine engine simulation test bed. The test bed is implemented on a networked computer system in which two computers operate in the client-server mode. Several DES controllers have been tested for engine performance and reliability.

  18. Energy efficient engine: Propulsion system-aircraft integration evaluation

    NASA Technical Reports Server (NTRS)

    Owens, R. E.

    1979-01-01

    Flight performance and operating economics of future commercial transports utilizing the energy efficient engine were assessed as well as the probability of meeting NASA's goals for TSFC, DOC, noise, and emissions. Results of the initial propulsion systems aircraft integration evaluation presented include estimates of engine performance, predictions of fuel burns, operating costs of the flight propulsion system installed in seven selected advanced study commercial transports, estimates of noise and emissions, considerations of thrust growth, and the achievement-probability analysis.

  19. Advanced materials research for long-haul aircraft turbine engines

    NASA Technical Reports Server (NTRS)

    Signorelli, R. A.; Blankenship, C. P.

    1978-01-01

    The status of research efforts to apply low to intermediate temperature composite materials and advanced high temperature materials to engine components is reviewed. Emerging materials technologies and their potential benefits to aircraft gas turbines were emphasized. The problems were identified, and the general state of the technology for near term use was assessed.

  20. The Power of Aircraft Engines at Altitude

    NASA Technical Reports Server (NTRS)

    Ragazzi, Paolo

    1939-01-01

    The subject of the present paper is confined to the investigations and methods employed by the Fiat company in their studies on the altitude performance of an air-cooled engine of the production type. The experimental set-up as well as test engine data are provided.

  1. Analytical and experimental evaluations of the effect of broad property fuels on combustors for commercial aircraft gas turbine engines

    NASA Technical Reports Server (NTRS)

    Smith, A. L.

    1980-01-01

    The impacts of broad property fuels on the design, performance, durability, emissions, and operational characteristics of current and advanced combustors for commercial aircraft gas turbine engines were studied. The effect of fuel thermal stability on engine and airframe fuel system was evaluated. Tradeoffs between fuel properties, exhaust emissions, and combustor life were also investigated. Results indicate major impacts of broad property fuels on allowable metal temperatures in fuel manifolds and injector support, combustor cyclic durability, and somewhat lesser impacts on starting characteristics, lightoff, emissions, and smoke.

  2. Chronic lymphatic leukaemia and engine exhausts, fresh wood, and DDT: a case-referent study.

    PubMed

    Flodin, U; Fredriksson, M; Persson, B; Axelson, O

    1988-01-01

    The effect of potential risk factors for chronic lymphatic leukaemia was evaluated in a case-referent study encompassing 111 cases and 431 randomised referents, all alive. Information on exposure was obtained by questionnaires posted to the subjects. Crude rate ratios were increased for occupational exposure to solvents. DDT, engine exhausts, fresh wood (lumberjacks, paper pulp workers, and sawmill workers, for example) and also in farming. Further analysis of the material by means of the Miettinen confounder score technique reduced the number of rate ratios significantly exceeding unity to encompass only occupational exposure to engine exhaust, fresh wood, DDT, and contact with horses.

  3. Chronic lymphatic leukaemia and engine exhausts, fresh wood, and DDT: a case-referent study.

    PubMed Central

    Flodin, U; Fredriksson, M; Persson, B; Axelson, O

    1988-01-01

    The effect of potential risk factors for chronic lymphatic leukaemia was evaluated in a case-referent study encompassing 111 cases and 431 randomised referents, all alive. Information on exposure was obtained by questionnaires posted to the subjects. Crude rate ratios were increased for occupational exposure to solvents. DDT, engine exhausts, fresh wood (lumberjacks, paper pulp workers, and sawmill workers, for example) and also in farming. Further analysis of the material by means of the Miettinen confounder score technique reduced the number of rate ratios significantly exceeding unity to encompass only occupational exposure to engine exhaust, fresh wood, DDT, and contact with horses. PMID:2449239

  4. Design of the exhaust device for light vehicle engine pedestal experiment

    NASA Astrophysics Data System (ADS)

    Sun, Shuguang

    2017-01-01

    In view of the shortcomings and the insufficiency of the existing exhaust device for light vehicle engine pedestal experiment, improvement scheme is proposed to design a suitable multi-type exhaust device for light vehicle engine pedestal experiment, which has flex space and a certain degree of freedom in six directions x, y, z, x, y, z, so the problem of interference during the process of installation can be solved, the cost on research and development and test can be reduced and the development cycle can be shorten and it can also be multi-usage.

  5. Advanced Technology Spark-Ignition Aircraft Piston Engine Design Study

    NASA Technical Reports Server (NTRS)

    Stuckas, K. J.

    1980-01-01

    The advanced technology, spark ignition, aircraft piston engine design study was conducted to determine the improvements that could be made by taking advantage of technology that could reasonably be expected to be made available for an engine intended for production by January 1, 1990. Two engines were proposed to account for levels of technology considered to be moderate risk and high risk. The moderate risk technology engine is a homogeneous charge engine operating on avgas and offers a 40% improvement in transportation efficiency over present designs. The high risk technology engine, with a stratified charge combustion system using kerosene-based jet fuel, projects a 65% improvement in transportation efficiency. Technology enablement program plans are proposed herein to set a timetable for the successful integration of each item of required advanced technology into the engine design.

  6. Stratified charge rotary aircraft engine technology enablement program

    NASA Technical Reports Server (NTRS)

    Badgley, P. R.; Irion, C. E.; Myers, D. M.

    1985-01-01

    The multifuel stratified charge rotary engine is discussed. A single rotor, 0.7L/40 cu in displacement, research rig engine was tested. The research rig engine was designed for operation at high speeds and pressures, combustion chamber peak pressure providing margin for speed and load excursions above the design requirement for a high is advanced aircraft engine. It is indicated that the single rotor research rig engine is capable of meeting the established design requirements of 120 kW, 8,000 RPM, 1,379 KPA BMEP. The research rig engine, when fully developed, will be a valuable tool for investigating, advanced and highly advanced technology components, and provide an understanding of the stratified charge rotary engine combustion process.

  7. Study of advanced rotary combustion engines for commuter aircraft

    NASA Technical Reports Server (NTRS)

    Berkowitz, M.; Jones, C.; Myers, D.

    1983-01-01

    Performance, weight, size, and maintenance data for advanced rotary aircraft engines suitable for comparative commuter aircraft system evaluation studies of alternate engine candidates are provided. These are turbocharged, turbocompounded, direct injected, stratified charge rotary engines. Hypothetical engines were defined (an RC4-74 at 895 kW and an RC6-87 at 1490 kW) based on the technologies and design approaches used in the highly advanced engine of a study of advanced general aviation rotary engines. The data covers the size range of shaft power from 597 kW (800 hp) to 1865 kW (2500 hp) and is in the form of drawings, tables, curves and written text. These include data on internal geometry and configuration, installation information, turbocharging and turbocompounding arrangements, design features and technologies, engine cooling, fuels, scaling for weight size BSFC and heat rejection for varying horsepower, engine operating and performance data, and TBO and maintenance requirements. The basic combustion system was developed and demonstrated; however the projected power densities and performance efficiencies require increases in engine internal pressures, thermal loading, and rotative speed.

  8. A 150 and 300 kW lightweight diesel aircraft engine design study

    NASA Technical Reports Server (NTRS)

    Brouwers, A. P.

    1980-01-01

    The diesel engine was reinvestigated as an aircraft powerplant through design study conducted to arrive at engine configurations and applicable advanced technologies. Two engines are discussed, a 300 kW six-cylinder engine for twin engine general aviation aircraft and a 150 kW four-cylinder engine for single engine aircraft. Descriptions of each engine include concept drawings, a performance analysis, stress and weight data, and a cost study. This information was used to develop two airplane concepts, a six-place twin and a four-place single engine aircraft. The aircraft study consists of installation drawings, computer generated performance data, aircraft operating costs, and drawings of the resulting airplanes. The performance data show a vast improvement over current gasoline-powered aircraft.

  9. Fluid dynamic modeling of junctions in internal combustion engine inlet and exhaust systems

    NASA Astrophysics Data System (ADS)

    Chalet, David; Chesse, Pascal

    2010-10-01

    The modeling of inlet and exhaust systems of internal combustion engine is very important in order to evaluate the engine performance. This paper presents new pressure losses models which can be included in a one dimensional engine simulation code. In a first part, a CFD analysis is made in order to show the importance of the density in the modeling approach. Then, the CFD code is used, as a numerical test bench, for the pressure losses models development. These coefficients depend on the geometrical characteristics of the junction and an experimental validation is made with the use of a shock tube test bench. All the models are then included in the engine simulation code of the laboratory. The numerical calculation of unsteady compressible flow, in each pipe of the inlet and exhaust systems, is made and the calculated engine torque is compared with experimental measurements.

  10. 14 CFR 34.62 - Test procedure (propulsion engines).

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Test procedure (propulsion engines). 34.62... FUEL VENTING AND EXHAUST EMISSION REQUIREMENTS FOR TURBINE ENGINE POWERED AIRPLANES Test Procedures for Engine Exhaust Gaseous Emissions (Aircraft and Aircraft Gas Turbine Engines) § 34.62 Test...

  11. Real-time and integrated measurement of potential human exposure to particle-bound polycyclic aromatic hydrocarbons (PAHs) from aircraft exhaust.

    PubMed Central

    Childers, J W; Witherspoon, C L; Smith, L B; Pleil, J D

    2000-01-01

    We used real-time monitors and low-volume air samplers to measure the potential human exposure to airborne polycyclic aromatic hydrocarbon (PAH) concentrations during various flight-related and ground-support activities of C-130H aircraft at an Air National Guard base. We used three types of photoelectric aerosol sensors (PASs) to measure real-time concentrations of particle-bound PAHs in a break room, downwind from a C-130H aircraft during a four-engine run-up test, in a maintenance hangar, in a C-130H aircraft cargo bay during cargo-drop training, downwind from aerospace ground equipment (AGE), and in a C-130H aircraft cargo bay during engine running on/off (ERO) loading and backup exercises. Two low-volume air samplers were collocated with the real-time monitors for all monitoring events except those in the break room and during in-flight activities. Total PAH concentrations in the integrated-air samples followed a general trend: downwind from two AGE units > ERO-loading exercise > four-engine run-up test > maintenance hangar during taxi and takeoff > background measurements in maintenance hangar. Each PAH profile was dominated by naphthalene, the alkyl-substituted naphthalenes, and other PAHs expected to be in the vapor phase. We also found particle-bound PAHs, such as fluoranthene, pyrene, and benzo[a]pyrene in some of the sample extracts. During flight-related exercises, total PAH concentrations in the integrated-air samples were 10-25 times higher than those commonly found in ambient air. Real-time monitor mean responses generally followed the integrated-air sample trends. These monitors provided a semiquantitative temporal profile of ambient PAH concentrations and showed that PAH concentrations can fluctuate rapidly from a baseline level < 20 to > 4,000 ng/m(3) during flight-related activities. Small handheld models of the PAS monitors exhibited potential for assessing incidental personal exposure to particle-bound PAHs in engine exhaust and for serving as

  12. Advanced technology for reducing aircraft engine pollution

    NASA Technical Reports Server (NTRS)

    Jones, R. E.

    1973-01-01

    Combustor research programs are described whose purpose is to demonstrate significantly lower exhaust emission levels. The proposed EPA regulations covering the allowable levels of emissions will require a major technological effort if these levels are to be met by 1979. Pollution reduction technology is being pursued by NASA through a combination of in-house research, contracted progams, and university grants. In-house research with the swirl-can modular combustor and the double-annular combustor has demonstrated significant reduction in the level of NO(x) emissions. The work is continuing in an attempt to further reduce these levels by improvements in module design and in air-fuel scheduling. Research on the reduction of idle emissions has included the conversion of conventional duplex fuel nozzles to air-assisted nozzles and exploration of the potential improvements possible with fuel staging and variable combustor geometry.

  13. Aircraft Turbine Engine Reliability and Inspection Investigations

    DTIC Science & Technology

    1993-10-01

    controls and accessories typically produced the largest number of in-flight flameouts, compressor stalls , and engine shutdowns. In addition to the actuarial...typically produced the largest number of in-flight flameouts, compressor stalls , and engine shutdowns. Diagnostic troubleshooting procedures for controls...airfoils suffer because these * materials are damaged during compressor stalls when cooling air flows are disrupted. 3. Fuel/oil system failures are

  14. 46 CFR 119.430 - Engine exhaust pipe installation.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... protected from mechanical damage. (e) Where flexibility is necessary, a section of flexible metallic hose... the material requirements of part 56 of subchapter F (Marine Engineering) of this chapter. (k)...

  15. 46 CFR 182.430 - Engine exhaust pipe installation.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... adequately protected from mechanical damage. (e) Where flexibility is necessary, a section of flexible... meet the material requirements of part 56 of subchapter F (Marine Engineering) of this chapter....

  16. 46 CFR 182.430 - Engine exhaust pipe installation.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... adequately protected from mechanical damage. (e) Where flexibility is necessary, a section of flexible... meet the material requirements of part 56 of subchapter F (Marine Engineering) of this chapter....

  17. Cabin Noise Control for Twin Engine General Aviation Aircraft

    NASA Technical Reports Server (NTRS)

    Vaicaitis, R.; Slazak, M.

    1982-01-01

    An analytical model based on modal analysis was developed to predict the noise transmission into a twin-engine light aircraft. The model was applied to optimize the interior noise to an A-weighted level of 85 dBA. To achieve the required noise attenuation, add-on treatments in the form of honeycomb panels, damping tapes, acoustic blankets, septum barriers and limp trim panels were added to the existing structure. The added weight of the noise control treatment is about 1.1 percent of the total gross take-off weight of the aircraft.

  18. Toward improved durability in advanced aircraft engine hot sections

    NASA Technical Reports Server (NTRS)

    Sokolowski, Daniel E. (Editor)

    1989-01-01

    The conference on durability improvement methods for advanced aircraft gas turbine hot-section components discussed NASA's Hot Section Technology (HOST) project, advanced high-temperature instrumentation for hot-section research, the development and application of combustor aerothermal models, and the evaluation of a data base and numerical model for turbine heat transfer. Also discussed are structural analysis methods for gas turbine hot section components, fatigue life-prediction modeling for turbine hot section materials, and the service life modeling of thermal barrier coatings for aircraft gas turbine engines.

  19. Characterization of lubrication oil emissions from aircraft engines.

    PubMed

    Yu, Zhenhong; Liscinsky, David S; Winstead, Edward L; True, Bruce S; Timko, Michael T; Bhargava, Anuj; Herndon, Scott C; Miake-Lye, Richard C; Anderson, Bruce E

    2010-12-15

    In this first ever study, particulate matter (PM) emitted from the lubrication system overboard breather vent for two different models of aircraft engines has been systematically characterized. Lubrication oil was confirmed as the predominant component of the emitted particulate matter based upon the characteristic mass spectrum of the pure oil. Total particulate mass and size distributions of the emitted oil are also investigated by several high-sensitivity aerosol characterization instruments. The emission index (EI) of lubrication oil at engine idle is in the range of 2-12 mg kg(-1) and increases with engine power. The chemical composition of the oil droplets is essentially independent of engine thrust, suggesting that engine oil does not undergo thermally driven chemical transformations during the ∼4 h test window. Volumetric mean diameter is around 250-350 nm for all engine power conditions with a slight power dependence.

  20. Aircraft

    DOEpatents

    Hibbs, B.D.; Lissaman, P.B.S.; Morgan, W.R.; Radkey, R.L.

    1998-09-22

    This disclosure provides a solar rechargeable aircraft that is inexpensive to produce, is steerable, and can remain airborne almost indefinitely. The preferred aircraft is a span-loaded flying wing, having no fuselage or rudder. Travelling at relatively slow speeds, and having a two-hundred foot wingspan that mounts photovoltaic cells on most all of the wing`s top surface, the aircraft uses only differential thrust of its eight propellers to turn. Each of five sections of the wing has one or more engines and photovoltaic arrays, and produces its own lift independent of the other sections, to avoid loading them. Five two-sided photovoltaic arrays, in all, are mounted on the wing, and receive photovoltaic energy both incident on top of the wing, and which is incident also from below, through a bottom, transparent surface. The aircraft is capable of a top speed of about ninety miles per hour, which enables the aircraft to attain and can continuously maintain altitudes of up to sixty-five thousand feet. Regenerative fuel cells in the wing store excess electricity for use at night, such that the aircraft can sustain its elevation indefinitely. A main spar of the wing doubles as a pressure vessel that houses hydrogen and oxygen gases for use in the regenerative fuel cell. The aircraft has a wide variety of applications, which include weather monitoring and atmospheric testing, communications, surveillance, and other applications as well. 31 figs.

  1. Aircraft

    DOEpatents

    Hibbs, Bart D.; Lissaman, Peter B. S.; Morgan, Walter R.; Radkey, Robert L.

    1998-01-01

    This disclosure provides a solar rechargeable aircraft that is inexpensive to produce, is steerable, and can remain airborne almost indefinitely. The preferred aircraft is a span-loaded flying wing, having no fuselage or rudder. Travelling at relatively slow speeds, and having a two-hundred foot wingspan that mounts photovoltaic cells on most all of the wing's top surface, the aircraft uses only differential thrust of its eight propellers to turn. Each of five sections of the wing has one or more engines and photovoltaic arrays, and produces its own lift independent of the other sections, to avoid loading them. Five two-sided photovoltaic arrays, in all, are mounted on the wing, and receive photovoltaic energy both incident on top of the wing, and which is incident also from below, through a bottom, transparent surface. The aircraft is capable of a top speed of about ninety miles per hour, which enables the aircraft to attain and can continuously maintain altitudes of up to sixty-five thousand feet. Regenerative fuel cells in the wing store excess electricity for use at night, such that the aircraft can sustain its elevation indefinitely. A main spar of the wing doubles as a pressure vessel that houses hydrogen and oxygen gasses for use in the regenerative fuel cell. The aircraft has a wide variety of applications, which include weather monitoring and atmospheric testing, communications, surveillance, and other applications as well.

  2. Turbine engine exhaust gas measurements using in-situ FT-IR emission/transmission spectroscopy

    NASA Astrophysics Data System (ADS)

    Marran, David F.; Cosgrove, Joseph E.; Neira, Jorge; Markham, James R.; Rutka, Ronald; Strange, Richard R.

    2001-02-01

    12 An advanced multiple gas analyzer based on in-situ Fourier transform infrared spectroscopy has been used to successfully measure the exhaust plume composition and temperature of an operating gas turbine engine at a jet engine test stand. The sensor, which was optically coupled to the test cell using novel broadband hollow glass waveguides, performed well in this harsh environment (high acoustical noise and vibration, considerable temperature swings in the ambient with engine operation), providing quantitative gas phase information. Measurements were made through the diameter of the engine's one meter exhaust plume, about 0.7 meters downstream of the engine exit plane. The sensor performed near simultaneous infrared transmission and infrared emission measurements through the centerline of the plume. Automated analysis of the emission and transmission spectra provided the temperature and concentration information needed for engine tuning and control that will ensure optimal engine operation and reduced emissions. As a demonstration of the utility and accuracy of the technique, carbon monoxide, nitric oxide, water, and carbon dioxide were quantified in spite of significant variations in the exhaust gas temperature. At some conditions, unburned fuel, particulates (soot/fuel droplets), methane, ethylene and aldehydes were identified, but not yet quantified.

  3. Extending acoustic data measured with small-scale supersonic model jets to practical aircraft exhaust jets

    NASA Astrophysics Data System (ADS)

    Kuo, Ching-Wen

    2010-06-01

    Modern military aircraft jet engines are designed with variable geometry nozzles to provide optimum thrust in different operating conditions within the flight envelope. However, the acoustic measurements for such nozzles are scarce, due to the cost involved in making full-scale measurements and the lack of details about the exact geometry of these nozzles. Thus the present effort at The Pennsylvania State University and the NASA Glenn Research Center, in partnership with GE Aviation, is aiming to study and characterize the acoustic field produced by supersonic jets issuing from converging-diverging military style nozzles. An equally important objective is to develop a scaling methodology for using data obtained from small- and moderate-scale experiments which exhibits the independence of the jet sizes to the measured noise levels. The experimental results presented in this thesis have shown reasonable agreement between small-scale and moderate-scale jet acoustic data, as well as between heated jets and heat-simulated ones. As the scaling methodology is validated, it will be extended to using acoustic data measured with small-scale supersonic model jets to the prediction of the most important components of full-scale engine noise. When comparing the measured acoustic spectra with a microphone array set at different radial locations, the characteristics of the jet noise source distribution may induce subtle inaccuracies, depending on the conditions of jet operation. A close look is taken at the details of the noise generation region in order to better understand the mismatch between spectra measured at various acoustic field radial locations. A processing methodology was developed to correct the effect of the noise source distribution and efficiently compare near-field and far-field spectra with unprecedented accuracy. This technique then demonstrates that the measured noise levels in the physically restricted space of an anechoic chamber can be appropriately

  4. Liquid lubricants for advanced aircraft engines

    NASA Technical Reports Server (NTRS)

    Loomis, William R.; Fusaro, Robert L.

    1992-01-01

    An overview of liquid lubricants for use in current and projected high performance turbojet engines is discussed. Chemical and physical properties are reviewed with special emphasis placed on the oxidation and thermal stability requirements imposed upon the lubrication system. A brief history is given of the development of turbine engine lubricants which led to the present day synthetic oils with their inherent modification advantages. The status and state of development of some eleven candidate classes of fluids for use in advanced turbine engines are discussed. Published examples of fundamental studies to obtain a better understanding of the chemistry involved in fluid degradation are reviewed. Alternatives to high temperature fluid development are described. The importance of continuing work on improving current high temperature lubricant candidates and encouraging development of new and improved fluid base stocks are discussed.

  5. Liquid lubricants for advanced aircraft engines

    SciTech Connect

    Loomis, W.R.; Fusaro, R.L.

    1992-08-01

    An overview of liquid lubricants for use in current and projected high performance turbojet engines is discussed. Chemical and physical properties are reviewed with special emphasis placed on the oxidation and thermal stability requirements imposed upon the lubrication system. A brief history is given of the development of turbine engine lubricants which led to the present day synthetic oils with their inherent modification advantages. The status and state of development of some eleven candidate classes of fluids for use in advanced turbine engines are discussed. Published examples of fundamental studies to obtain a better understanding of the chemistry involved in fluid degradation are reviewed. Alternatives to high temperature fluid development are described. The importance of continuing work on improving current high temperature lubricant candidates and encouraging development of new and improved fluid base stocks are discussed.

  6. Liquid lubricants for advanced aircraft engines

    NASA Technical Reports Server (NTRS)

    Loomis, William R.; Fusaro, Robert L.

    1993-01-01

    An overview of liquid lubricants for use in current and projected high performance turbojet engines is discussed. Chemical and physical properties are reviewed with special emphasis placed on the oxidation and thermal stability requirements imposed upon the lubrication system. A brief history is given of the development of turbine engine lubricants which led to the present day synthetic oils with their inherent modification advantages. The status and state of development of some eleven candidate classes of fluids for use in advanced turbine engines are discussed. Published examples of fundamental studies to obtain a better understanding of the chemistry involved in fluid degradation are reviewed. Alternatives to high temperature fluid development are described. The importance of continuing work on improving current high temperature lubricant candidates and encouraging development of new and improved fluid base stocks are discussed.

  7. Shuttle primary reaction control system engine exhaust plume contamination effects

    NASA Technical Reports Server (NTRS)

    Koontz, Steve; Ehlers, Horst; Pedley, Mike; Cross, John; Hakes, Charles

    1993-01-01

    Space Shuttle proximity operations constitute an important part of the SSF induced external environment. The impingement of primary reaction control system (PRCS) engine plumes on SSF functional surfaces during docking or berthing and separation leads to concerns about molecular contamination and high speed particle impact. The Shuttle Plume Impingement flight Experiment (SPIE) was designed to provide a direct measure of both the molecular contamination and particle impact rates produced by Shuttle PRCS engines in the LEO environment. The measured permanent deposition produced by PRCS engine firings was less than that assumed in current SSF programatic assessments. Only two to three possible high velocity particle impact pits were observed on the RMS end effector hardware.

  8. 40 CFR 1042.104 - Exhaust emission standards for Category 3 engines.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE MARINE COMPRESSION-IGNITION... subject to not-to-exceed standards. (d) Useful life. Your engines must meet the exhaust emission standards of this section over their full useful life, expressed as a period in years or hours of...

  9. 40 CFR 1042.104 - Exhaust emission standards for Category 3 engines.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE MARINE COMPRESSION-IGNITION... subject to not-to-exceed standards. (d) Useful life. Your engines must meet the exhaust emission standards of this section over their full useful life, expressed as a period in years or hours of...

  10. [Preparation of ethanol-diesel fuel blends and exhausts emission characteristics in diesel engine].

    PubMed

    Zhang, Runduo; He, Hong; Zhang, Changbin; Shi, Xiaoyan

    2003-07-01

    The technology that diesel oil is partly substituted by ethanol can reduce diesel engine exhausts emission, especially fuel soot. This research is concentrated on preparation of ethanol-diesel blend fuel and exhausts emission characteristics using diesel engine bench. Absolute ethanol can dissolve into diesel fuel at an arbitrary ratio. However, a trace of water (0.2%) addition can lead to the phase separation of blends. Organic additive synthesized during this research can develop the ability of resistance to water and maintain the stability of ethanol-diesel-trace amounts of water system. The effects of 10%, 20%, and 30% ethanol-diesel fuel blends on exhausts emission, were compared with that of diesel fuel in direct injection (DI) diesel engine. The optimum ethanol percentage for ethanol-diesel fuel blends was 20%. Using 20% ethanol-diesel fuel blend with 2% additive of the total volume, bench diesel engine showed a large amount decrease of exhaust gas, e.g. 55% of Bosch smoke number, 70% of HC emission, and 45% of CO emission at 13 kW and 1540 r/min. Without the addition of additive, the blend of ethanol produced new organic compounds such as ethanol and acetaldehyde in tail gas. However, the addition of additive obviously reduced the emission of ethanol and acetaldehyde.

  11. Engine Performance (Section B: Fuel and Exhaust Systems). Auto Mechanics Curriculum Guide. Module 3. Instructor's Guide.

    ERIC Educational Resources Information Center

    Rains, Larry

    This module is the third of nine modules in the competency-based Missouri Auto Mechanics Curriculum Guide. Six units cover: fuel supply systems; carburetion; carburetor service; gasoline engine electronic fuel injection; diesel fuel injection; and exhaust systems and turbochargers. Introductory materials include a competency profile and…

  12. Introduction to NASA contracts. [on engine modifications to reduce exhaust emissions

    NASA Technical Reports Server (NTRS)

    Kempke, E. E., Jr.

    1976-01-01

    The NASA Lewis Research Center issued requests for proposal to Avco Lycoming and Teledyne Continental Motors for a contractual effort to establish and demonstrate engine modifications to reduce exhaust emissions safely with minimum adverse effects on cost, weight, and fuel economy. The secondary objective was reducing fuel consumption.

  13. Factors to Consider in Designing Aerosol Inlet Systems for Engine Exhaust Plume Sampling

    NASA Technical Reports Server (NTRS)

    Anderson, Bruce

    2004-01-01

    This document consists of viewgraphs of charts and diagrams of considerations to take when sampling the engine exhaust plume. It includes a chart that compares the emissions from various fuels, a diagram and charts of the various processes and conditions that influence the particulate size and concentration,

  14. 40 CFR 1045.101 - What exhaust emission standards and requirements must my engines meet?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 34 2012-07-01 2012-07-01 false What exhaust emission standards and requirements must my engines meet? 1045.101 Section 1045.101 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION...

  15. 40 CFR 1045.101 - What exhaust emission standards and requirements must my engines meet?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 34 2013-07-01 2013-07-01 false What exhaust emission standards and requirements must my engines meet? 1045.101 Section 1045.101 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION...

  16. 40 CFR 1045.101 - What exhaust emission standards and requirements must my engines meet?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 33 2011-07-01 2011-07-01 false What exhaust emission standards and requirements must my engines meet? 1045.101 Section 1045.101 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION...

  17. 40 CFR 1045.101 - What exhaust emission standards and requirements must my engines meet?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 33 2014-07-01 2014-07-01 false What exhaust emission standards and requirements must my engines meet? 1045.101 Section 1045.101 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION...

  18. 40 CFR 1045.105 - What exhaust emission standards must my sterndrive/inboard engines meet?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 34 2013-07-01 2013-07-01 false What exhaust emission standards must my sterndrive/inboard engines meet? 1045.105 Section 1045.105 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION...

  19. Lightweight diesel aircraft engines for general aviation

    NASA Technical Reports Server (NTRS)

    Berenyi, S. G.

    1983-01-01

    Two different engines were studied. The advantages of a diesel to general aviation were reduced to fuel consumption, reduced operating costs, and reduced fire and explosion hazard. There were no ignition mixture control or inlet icing problems. There are fewer controls and no electrical interference problems.

  20. Effectiveness of combined aircraft engine noise suppressors

    NASA Astrophysics Data System (ADS)

    Khaletskiy, Yu. D.

    2012-07-01

    We consider the design features of fan noise suppressors in application to air intakes and the bypass duct of a turbofan engine. A combined liner is developed that has increased acoustic efficiency in comparison to conventional honeycomb liner. We demonstrate the important role of the area of the sound-absorbing liner between fan Rotor and Stator ensuring significant noise reduction.

  1. Engine Conceptual Design Studies for a Hybrid Wing Body Aircraft

    NASA Technical Reports Server (NTRS)

    Tong, Michael T.; Jones, Scott M.; Haller, William J.; Handschuh, Robert F.

    2009-01-01

    Worldwide concerns of air quality and climate change have made environmental protection one of the most critical issues in aviation today. NASA's current Fundamental Aeronautics research program is directed at three generations of aircraft in the near, mid and far term, with initial operating capability around 2015, 2020, and 2030, respectively. Each generation has associated goals for fuel burn, NOx, noise, and field-length reductions relative to today's aircrafts. The research for the 2020 generation is directed at enabling a hybrid wing body (HWB) aircraft to meet NASA's aggressive technology goals. This paper presents the conceptual cycle and mechanical designs of the two engine concepts, podded and embedded systems, which were proposed for a HWB cargo freighter. They are expected to offer significant benefits in noise reductions without compromising the fuel burn.

  2. NASA Glenn's Contributions to Aircraft Engine Noise Research

    NASA Technical Reports Server (NTRS)

    Huff, Dennis L.

    2013-01-01

    This report reviews all engine noise research conducted at the NASA Glenn Research Center over the past 70 years. This report includes a historical perspective of the Center and the facilities used to conduct the research. Major noise research programs are highlighted to show their impact on industry and on the development of aircraft noise reduction technology. Noise reduction trends are discussed, and future aircraft concepts are presented. Since the 1960s, research results show that the average perceived noise level has been reduced by about 20 decibels (dB). Studies also show that, depending on the size of the airport, the aircraft fleet mix, and the actual growth in air travel, another 15 to 17 dB reduction will be required to achieve NASA's long-term goal of providing technologies to limit objectionable noise to the boundaries of an average airport.

  3. NASA Glenn's Contributions to Aircraft Engine Noise Research

    NASA Technical Reports Server (NTRS)

    Huff, Dennis L.

    2014-01-01

    This presentation reviews engine noise research conducted at the NASA Glenn Research Center over the past 70 years. This report includes a historical perspective of the Center and the facilities used to conduct the research. Major noise research programs are highlighted to show their impact on industry and on the development of aircraft noise reduction technology. Noise reduction trends are discussed, and future aircraft concepts are presented. Since the 1960s, research results show that the average perceived noise level has been reduced by about 20 decibels (dB). Studies also show that, depending on the size of the airport, the aircraft fleet mix, and the actual growth in air travel, another 15 to 17 dB reduction will be required to achieve NASAs long-term goal of providing technologies to limit objectionable noise to the boundaries of an average airport.

  4. Aircraft Engine Technology for Green Aviation to Reduce Fuel Burn

    NASA Technical Reports Server (NTRS)

    Hughes, Christopher E.; VanZante, Dale E.; Heidmann, James D.

    2013-01-01

    The NASA Fundamental Aeronautics Program Subsonic Fixed Wing Project and Integrated Systems Research Program Environmentally Responsible Aviation Project in the Aeronautics Research Mission Directorate are conducting research on advanced aircraft technology to address the environmental goals of reducing fuel burn, noise and NOx emissions for aircraft in 2020 and beyond. Both Projects, in collaborative partnerships with U.S. Industry, Academia, and other Government Agencies, have made significant progress toward reaching the N+2 (2020) and N+3 (beyond 2025) installed fuel burn goals by fundamental aircraft engine technology development, subscale component experimental investigations, full scale integrated systems validation testing, and development validation of state of the art computation design and analysis codes. Specific areas of propulsion technology research are discussed and progress to date.

  5. Engine Conceptual Design Studies for a Hybrid Wing Body Aircraft

    NASA Technical Reports Server (NTRS)

    Tong, Michael T.; Jones, Scott M.; Haller, William J.; Handschuh, Robert F.

    2009-01-01

    Worldwide concerns of air quality and climate change have made environmental protection one of the most critical issues in aviation today. NASA s current Fundamental Aeronautics Research program is directed at three generations of aircraft in the near, mid and far term, with initial operating capability around 2015, 2020, and 2030, respectively. Each generation has associated goals for fuel burn, NOx, noise, and field-length reductions relative to today s aircrafts. The research for the 2020 generation is directed at enabling a hybrid wing body (HWB) aircraft to meet NASA s aggressive technology goals. This paper presents the conceptual cycle and mechanical designs of the two engine concepts, podded and embedded systems, which were proposed for a HWB cargo freighter. They are expected to offer significant benefits in noise reductions without compromising the fuel burn.

  6. Aircraft Turbine Engine Monitoring Experience: Implications for the F100 Engine Diagnostic System Program

    DTIC Science & Technology

    1979-04-01

    malfunction re- port data were obtained from the Program Office. -8- EHMS (T-38 / J85 ) ACTIVITY OUTCOMES JULY 76 - MAY 77 INSTRUMENTED ENGINES CONTROL...interesting to note that the J85 was a mature engine and that the number of engine problems encountered was not very great. Also, the EHMS was not a new...copyright notation hereon. Library of Congress Cataloging In PObNiation Data Birkier, John L Aircraft turbine engine monitoring experience. ([Report

  7. Gas Turbine Engine Having Fan Rotor Driven by Turbine Exhaust and with a Bypass

    NASA Technical Reports Server (NTRS)

    Suciu, Gabriel L. (Inventor); Chandler, Jesse M. (Inventor)

    2016-01-01

    A gas turbine engine has a core engine incorporating a core engine turbine. A fan rotor is driven by a fan rotor turbine. The fan rotor turbine is in the path of gases downstream from the core engine turbine. A bypass door is moveable from a closed position at which the gases from the core engine turbine pass over the fan rotor turbine, and moveable to a bypass position at which the gases are directed away from the fan rotor turbine. An aircraft is also disclosed.

  8. Gaseous exhaust emissions from a J-58 engine at simulated supersonic flight conditions

    NASA Technical Reports Server (NTRS)

    Holdeman, J. D.

    1974-01-01

    Emissions of total oxides of nitrogen, unburned hydrocarbons, carbon monoxide, and carbon dioxide from a J-58 engine at simulated flight conditions of Mach 2.0, 2.4, and 2.8 at 19.8 km altitude are reported. For each flight condition, measurements were made for four engine power levels from maximum power without afterburning through maximum afterburning. These measurements were made 7 cm downstream of the engine primary nozzle using a single point traversing gas sample probe. Results show that emissions vary with flight speed, engine power level, and with radial position across the exhaust.

  9. Predictive Acoustic Modelling Applied to the Control of Intake/exhaust Noise of Internal Combustion Engines

    NASA Astrophysics Data System (ADS)

    Davies, P. O. A. L.; Harrison, M. F.

    1997-05-01

    The application of validated acoustic models to intake/exhaust system acoustic design is described with reference to a sequence of specific practical examples. These include large turbocharged diesel generating sets, truck engines and high performance petrol engines. The discussion includes a comparison of frequency domain, time domain and hybrid modelling approaches to design methodology. The calculation of sound emission from open terminations is summarized in an appendix.

  10. Flight effects on exhaust noise for turbojet and turbofan engines: Comparison of experimental data with prediction

    NASA Technical Reports Server (NTRS)

    Stone, J. R.

    1976-01-01

    It was demonstrated that static and in flight jet engine exhaust noise can be predicted with reasonable accuracy when the multiple source nature of the problem is taken into account. Jet mixing noise was predicted from the interim prediction method. Provisional methods of estimating internally generated noise and shock noise flight effects were used, based partly on existing prediction methods and partly on recent reported engine data.

  11. Thermoelectric generators incorporating phase-change materials for waste heat recovery from engine exhaust

    SciTech Connect

    Meisner, Gregory P; Yang, Jihui

    2014-02-11

    Thermoelectric devices, intended for placement in the exhaust of a hydrocarbon fuelled combustion device and particularly suited for use in the exhaust gas stream of an internal combustion engine propelling a vehicle, are described. Exhaust gas passing through the device is in thermal communication with one side of a thermoelectric module while the other side of the thermoelectric module is in thermal communication with a lower temperature environment. The heat extracted from the exhaust gasses is converted to electrical energy by the thermoelectric module. The performance of the generator is enhanced by thermally coupling the hot and cold junctions of the thermoelectric modules to phase-change materials which transform at a temperature compatible with the preferred operating temperatures of the thermoelectric modules. In a second embodiment, a plurality of thermoelectric modules, each with a preferred operating temperature and each with a uniquely-matched phase-change material may be used to compensate for the progressive lowering of the exhaust gas temperature as it traverses the length of the exhaust pipe.

  12. An Extended Combustion Model for the Aircraft Turbojet Engine

    NASA Astrophysics Data System (ADS)

    Rotaru, Constantin; Andres-Mihăilă, Mihai; Matei, Pericle Gabriel

    2014-08-01

    The paper consists in modelling and simulation of the combustion in a turbojet engine in order to find optimal characteristics of the burning process and the optimal shape of combustion chambers. The main focus of this paper is to find a new configuration of the aircraft engine combustion chambers, namely an engine with two main combustion chambers, one on the same position like in classical configuration, between compressor and turbine and the other, placed behind the turbine but not performing the role of the afterburning. This constructive solution could allow a lower engine rotational speed, a lower temperature in front of the first stage of the turbine and the possibility to increase the turbine pressure ratio by extracting the flow stream after turbine in the inner nozzle. Also, a higher thermodynamic cycle efficiency and thrust in comparison to traditional constant-pressure combustion gas turbine engines could be obtained.

  13. Particulate control for coal-fueled diesel engine exhaust

    SciTech Connect

    Smolensky, L.A.; Easom, B.H.

    1993-11-01

    The Core Separator is a cylindrical vessel having one tangential inlet and two outlets at the opposite end of the vessel. It contains an outlet for the clean flow and a second outlet for the recirculating flow. The solids-laden flue gas is introduced through a fan to the inlet of the Core Separator. Due to the swirling motion of the flow, solids move to the periphery as the central jet leaving the system through the central outlet is cleaned of particulates. The peripheral flow with most of the particles is exhausted to the cyclone and then recirculates back to the Core Separator by means of the fan. The processes of separation and solids collection are accomplished separately and in different components. The Core Separator cleans the flow discharged from the system and detains solids within the system If the Core Separator efficiency is high enough, particles cannot leave the system. They recirculate again and again until the cyclone finally collects them for removal. An analytical formula can be derived that defines the system performance. E = E{sub c}E{sub s}/1{minus}E{sub s}(1{minus}E{sub c}), where E, E{sub c}, and E{sub s} are the system, collector, and Core Separator partial separation efficiencies respectively. Examination of this equation shows that the system efficiency remains high even with poor performance in the collector, as long as the efficiency of the Core Separator is high. For example, if E{sub s} is 99% and E{sub c} is 30%, the system efficiency is 96.7%.

  14. Three dimensional model calculations of the global dispersion of high speed aircraft exhaust and implications for stratospheric ozone loss

    NASA Technical Reports Server (NTRS)

    Douglass, Anne R.; Rood, Richard B.; Jackman, Charles H.; Weaver, Clark J.

    1994-01-01

    Two-dimensional (zonally averaged) photochemical models are commonly used for calculations of ozone changes due to various perturbations. These include calculating the ozone change expected as a result of change in the lower stratospheric composition due to the exhaust of a fleet of supersonic aircraft flying in the lower stratosphere. However, zonal asymmetries are anticipated to be important to this sort of calculation. The aircraft are expected to be restricted from flying over land at supersonic speed due to sonic booms, thus the pollutant source will not be zonally symmetric. There is loss of pollutant through stratosphere/troposphere exchange, but these processes are spatially and temporally inhomogeneous. Asymmetry in the pollutant distribution contributes to the uncertainty in the ozone changes calculated with two dimensional models. Pollutant distributions for integrations of at least 1 year of continuous pollutant emissions along flight corridors are calculated using a three dimensional chemistry and transport model. These distributions indicate the importance of asymmetry in the pollutant distributions to evaluation of the impact of stratospheric aircraft on ozone. The implications of such pollutant asymmetries to assessment calculations are discussed, considering both homogeneous and heterogeneous reactions.

  15. Airflow calibration and exhaust pressure/temperature survey of an F404, S/N 215-109, turbofan engine

    NASA Technical Reports Server (NTRS)

    Burns, Maureen E.; Kirchgessner, Thomas A.

    1987-01-01

    A General Electric F-404 turbofan engine was calibrated for thrust and airflow at the NASA Lewis Propulsion System Laboratory in support of future flight tests of the X-29 aircraft. Tests were conducted with and without augmentation, over a range of flight conditions, including the two design points of the airplane. Data obtained during the altitude tests will be used to correct two independent gross thrust calculation routines which will be installed and operated on the airplane to determine in-flight gross thrust. Corrected airflow data as a function of corrected fan speed collapsed onto a single curve. Similarly, trends were observed and defined for both augmented and dry thrust. Overall agreement between measured data and F-404 Engine Spec Deck data was within 2 percent for airflow and 6 percent for thrust. The results of an uncertainty analysis for thrust and airflow is presented. In addition to the thrust calibration, the exhaust gas boundary layer pressure and temperatures were surveyed at selected condition and engine power levels to obtain data for another NASA F-404 program. Test data for these surveys are presented.

  16. Cobalt: A vital element in the aircraft engine industry

    NASA Technical Reports Server (NTRS)

    Stephens, J. R.

    1981-01-01

    Recent trends in the United States consumption of cobalt indicate that superalloys for aircraft engine manufacture require increasing amounts of this strategic element. Superalloys consume a lion's share of total U.S. cobalt usage which was about 16 million pounds in 1980. In excess of 90 percent of the cobalt used in this country was imported, principally from the African countries of Zaire and Zambia. Early studies on the roles of cobalt as an alloying element in high temperature alloys concentrated on the simple Ni-Cr and Nimonic alloy series. The role of cobalt in current complex nickel base superalloys is not well defined and indeed, the need for the high concentration of cobalt in widely used nickel base superalloys is not firmly established. The current cobalt situation is reviewed as it applies to superalloys and the opportunities for research to reduce the consumption of cobalt in the aircraft engine industry are described.

  17. Active Combustion Control for Aircraft Gas Turbine Engines

    NASA Technical Reports Server (NTRS)

    DeLaat, John C.; Breisacher, Kevin J.; Saus, Joseph R.; Paxson, Daniel E.

    2000-01-01

    Lean-burning combustors are susceptible to combustion instabilities. Additionally, due to non-uniformities in the fuel-air mixing and in the combustion process, there typically exist hot areas in the combustor exit plane. These hot areas limit the operating temperature at the turbine inlet and thus constrain performance and efficiency. Finally, it is necessary to optimize the fuel-air ratio and flame temperature throughout the combustor to minimize the production of pollutants. In recent years, there has been considerable activity addressing Active Combustion Control. NASA Glenn Research Center's Active Combustion Control Technology effort aims to demonstrate active control in a realistic environment relevant to aircraft engines. Analysis and experiments are tied to aircraft gas turbine combustors. Considerable progress has been shown in demonstrating technologies for Combustion Instability Control, Pattern Factor Control, and Emissions Minimizing Control. Future plans are to advance the maturity of active combustion control technology to eventual demonstration in an engine environment.

  18. Hydrazine engine plume contamination mapping. [measuring instruments for rocket exhaust from liquid propellant rocket engines

    NASA Technical Reports Server (NTRS)

    Chirivella, J. E.

    1975-01-01

    Instrumentation for the measurement of plume exhaust specie deposition rates were developed and demonstrated. The instruments, two sets of quartz crystal microbalances, were designed for low temperature operation in the back flow and variable temperature operation in the core flow regions of an exhaust plume. These quartz crystal microbalances performed nominally, and measurements of exhaust specie deposition rates for 8400 number of pulses for a 0.1-lb monopropellant thruster are reported.

  19. Carbureting conditions characteristics of aircraft engines

    NASA Technical Reports Server (NTRS)

    Tice, Percival S

    1920-01-01

    Tests were conducted at the altitude laboratory erected at the Bureau of Standards for the National Advisory Committee for Aeronautics to determine the changes in engine performance with changes in atmospheric temperature and pressure at various levels above the earth's surface, with special reference to (a) the variables affecting the functioning of the carburetor and (b) the changes in performance resulting from variables in the carburetor itself. This report constitutes a concise statement of the difficulties to be encountered in this branch of carburetion.

  20. Determination of two-stroke engine exhaust noise by the method of characteristics

    NASA Technical Reports Server (NTRS)

    Jones, A. D.; Brown, G. L.

    1981-01-01

    A computational technique was developed for the method of characteristics solution of a one-dimensional flow in a duct as applied to the wave action in an engine exhaust system. By using the method, it was possible to compute the unsteady flow in both straight pipe and tuned expansion chamber exhaust systems as matched to the flow from the cylinder of a small two-stroke engine. The radiated exhaust noise was then determined by assuming monopole radiation from the tailpipe outlet. Very good agreement with experiment on an operation engine was achieved in the calculation of both the third octave radiated noise and the associated pressure cycles at several locations in the different exhaust systems. Of particular interest is the significance of nonlinear behavior which results in wave steepening and shock wave formation. The method computes the precise paths on the x-t plane of a finite number of C(sub +), C(sub -) and P characteristics, thereby obtaining high accuracy in determining the tailpipe outlet velocity and the radiated noise.

  1. Rapid Measurement of Emissions From Military Aircraft Turbine Engines by Downstream Extractive Sampling of Aircraft on the Ground: Results for C-130 and F-15 Aircraft (POSTPRINT)

    DTIC Science & Technology

    2009-02-01

    engines were tested using indoor engine test facilities (F110, F101, J85 -GE-5M, PT6A-68, TF41-A2, TF30-P103 and TF30- P109), while others were studied while...afterburning). Engine T56-A-15 F100-PW-100 F110 F101 J85 -GE-5M PT6A-68 TF-39-1C CFM-56-3 TF41-A2 TF30-P103 TF30-P109 Misc. Type Turboprop Turbofan...AIRCRAFT TURBINE ENGINES BY DOWNSTREAM EXTRACTIVE SAMPLING OF AIRCRAFT ON THE GROUND: RESULTS FOR C-130 AND F-15 AIRCRAFT Chester Spicer and

  2. 76 FR 19903 - Special Conditions: Diamond Aircraft Industry Model DA-40NG; Diesel Cycle Engine

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-11

    ... Conditions: Diamond Aircraft Industry Model DA-40NG; Diesel Cycle Engine AGENCY: Federal Aviation... conditions are issued for the Diamond Aircraft Industry (DAI) GmbH model DA-40NG the Austro Engine GmbH model... the postcard and mail it back to you. Background On May 11, 2010 Diamond Aircraft Industry...

  3. Methodology for measuring exhaust aerosol size distributions using an engine test under transient operating conditions

    NASA Astrophysics Data System (ADS)

    María Desantes, José; Bermúdez, Vicente; Molina, Santiago; Linares, Waldemar G.

    2011-11-01

    A study on the sources of variability in the measurement of particle size distribution using a two-stage dilution system and an engine exhaust particle sizer was conducted to obtain a comprehensive and repeatable methodology that can be used to measure the particle size distribution of aerosols emitted by a light-duty diesel engine under transient operating conditions. The paper includes three experimental phases: an experimental validation of the measurement method; an evaluation of the influence of sampling factors, such as dilution system pre-conditioning; and a study of the effects of the dilution conditions, such as the dilution ratio and the dilution air temperature. An examination of the type and degree of influence of each studied factor is presented, recommendations for reducing variability are given and critical parameter values are identified to develop a highly reliable measurement methodology that could be applied to further studies on the effect of engine operating parameters on exhaust particle size distributions.

  4. Impact of the injection dose of exhaust gases, on work parameters of combustion engine

    NASA Astrophysics Data System (ADS)

    Marek, W.; Śliwiński, K.

    2016-09-01

    This article is another one from the series in which were presented research results indicated the possible areas of application of the pneumatic injection using hot combustion gases proposed by Professor Jarnuszkiewicz. This publication present the results of the control system of exhaust gas recirculation. The main aim of this research was to determine the effect of exhaust gas recirculation to the operating parameters of the internal combustion engine on the basis of laboratory measurements. All measurements were performed at a constant engine speed. These conditions correspond to the operation of the motor operating an electrical generator. The study was conducted on the four-stroke two-cylinder engine with spark ignition. The study were specifically tested on the air injection system and therefore the selection of the rotational speed was not bound, as in conventional versions of operating parameters of the electrical machine. During the measurement there were applied criterion which used power control corresponding to the requirements of load power, at minimal values of engine speed. Recirculation value determined by the following recurrent position control valve of the injection doses inflator gas for pneumatic injection system. They were studied and recorded, the impact of dose of gases recirculation to the operating and ecological engine parameters such as power, torque, specific fuel consumption, efficiency, air fuel ratio, exhaust gas temperature and nitrogen oxides and hydrocarbons.

  5. Falcon 20-E5 Aircraft Flies Close Behind NASA DC-8 to Sample Exhaust

    NASA Video Gallery

    This video was taken from a NASA HU-25C Guardian chase plane looking toward NASA's DC-8, with a Falcon 20-E5 from the German Aerospace Agency (DLR) soon to fly into the DC-8's exhaust. The Falcon i...

  6. Cooling Air Inlet and Exit Geometries on Aircraft Engine Installations

    NASA Technical Reports Server (NTRS)

    Katz, Joseph; Corsiglia, Victor R.; Barlow, Philip R.

    1982-01-01

    A semispan wing and nacelle of a typical general aviation twin-engine aircraft was tested to evaluate the cooling capability and drag or several nacelle shapes; the nacelle shapes included cooling air inlet and exit variations. The tests were conducted in the Ames Research Center 40 x 80-ft Wind Tunnel. It was found that the cooling air inlet geometry of opposed piston engine installations has a major effect on inlet pressure recovery, but only a minor effect on drag. Exit location showed large effect on drag, especially for those locations on the sides of the nacelle where the suction characteristics were based on interaction with the wing surface pressures.

  7. Computation of Engine Noise Propagation and Scattering Off an Aircraft

    NASA Technical Reports Server (NTRS)

    Xu, J.; Stanescu, D.; Hussaini, M. Y.; Farassat, F.

    2003-01-01

    The paper presents a comparison of experimental noise data measured in flight on a two-engine business jet aircraft with Kulite microphones placed on the suction surface of the wing with computational results. Both a time-domain discontinuous Galerkin spectral method and a frequency-domain spectral element method are used to simulate the radiation of the dominant spinning mode from the engine and its reflection and scattering by the fuselage and the wing. Both methods are implemented in computer codes that use the distributed memory model to make use of large parallel architectures. The results show that trends of the noise field are well predicted by both methods.

  8. Real Time Diagnostics of Jet Engine Exhaust Plumes Using a Chirped QC Laser Spectrometer

    NASA Astrophysics Data System (ADS)

    Hay, K. G.; Duxbury, G.; Langford, N.

    2010-06-01

    Quantitative measurements of real-time variations of the chemical composition of a jet engine exhaust plume is demonstrated using a 4.86 μmn intra-pulse quantum cascade laser spectrometer. The measurements of the gas turbine exhaust were carried out in collaboration with John Black and Mark Johnson at Rolls Royce. The recording of five sets of averaged spectra a second has allowed us to follow the build up of the combustion products within the exhaust, and to demonstrate the large variation of the integrated absorption of these absorption lines with temperature. The absorption cross sections of the lines of both carbon monoxide and water increase with temperature, whereas those of the three main absorption lines of carbon dioxide decrease. At the steady state limit the absorption lines of carbon dioxide are barely visible, and the spectrum is dominated by absorption lines of carbon monoxide and water.

  9. Range safety signal attenuation by the Space Shuttle main engine exhaust plumes

    NASA Technical Reports Server (NTRS)

    Pearce, B. E.

    1983-01-01

    An analysis of attenuation of the range safety signal at 416.5 MHz observed after SRB separation and ending at hand over to Bermuda, during which transmission must pass through the LOX/H2 propelled main engine exhaust plumes, is summarized. Absorption by free electrons in the exhaust plume can account for the nearly constant magnitude of the observed attenuation during this period; it does not explain the short term transient increases that occur at one or more times during this portion of the flight. It is necessary to assume that a trace amount (about 0.5 ppm) of easily ionizable impurity must be present in the exhaust flow. Other mechanisms of attenuation, such as scattering by turbulent fluctuations of both free and bound electrons and absorption by water vapor, were examined but found to be inadequate to explain the observations.

  10. Measurement of exhaust emissions from two J-58 engines at simulated supersonic cruise flight conditions

    NASA Technical Reports Server (NTRS)

    Holdeman, J. D.

    1976-01-01

    Emissions of total oxides of nitrogen, unburned hydrocarbons, carbon monoxide, and carbon dioxide from two J-58 afterburning turbojet engines at simulated high-altitude flight conditions are reported. Test conditions included flight speeds from Mach 2 to 3 at altitudes from 16 to 23 km. For each flight condition, exhaust measurements were made for four or five power levels from maximum power without afterburning through maximum afterburning. The data show that exhaust emissions vary with flight speed, altitude, power level, and radial position across the exhaust. Oxides of nitrogen (NOX) emissions decreased with increasing altitude, and increased with increasing flight speed. NOX emission indices with afterburning were less than half the value without afterburning. Carbon monoxide and hydrocarbon emissions increased with increasing altitude, and decreased with increasing flight speed. Emissions of these species were substantially higher with afterburning than without.

  11. Fast exhaust channel optical absorption method and apparatus to study the gas exchange in large diesel engines

    NASA Astrophysics Data System (ADS)

    Vattulainen, J.; Hernberg, R.; Hattar, C.; Gros, S.

    1998-01-01

    An optical absorption spectroscopic method and apparatus with shorter than 1 ms response time have been used to study the gas exchange processes in realistic conditions for a single cylinder of a large diesel engine. The method is based on measuring the differential line-of-sight optical uv absorption of the exhaust-gas-contained SO2 as a function of time in the exhaust port area just after the exhaust valves. The optical absorption by SO2 is determined from light transmission measurements at 280 and 340 nm performed through optical probes installed into the exhaust channel wall. The method has been applied to a continuously fired, large, medium speed production-line-type diesel engine with 990 kW rated power. The test engine was operated with standard light fuel oil (MDO Termoshell) and with light fuel oil treated with a sulfur additive {Di-Tert-Butyldisulfid [(CH3)3C]2S2}. The latter was to improve the optical absorption signals without increasing the fouling of the exhaust channel optical probes as in the case of heavier fuel oil qualities. In the reported case of a four-stroke diesel engine measurement results show that the method can provide time-resolved information of the SO2 density in the exhaust channel and thus give information on the single-cylinder gas exchange. During the inlet and exhaust valve overlap period the moment of fresh air entering into the measurement volume can be detected. If independent exhaust gas temperature and pressure data are available, the absorption measurements can readily be used for determining the burnt gas fraction in the exhaust channel. In this work the possibility of using the optical absorption measurement to determine the instaneous exhaust gas temperature was studied. Based on known fuel properties and conventional averaged SO2 measurements from the exhaust channel a known concentration of SO2 was assumed in the exhaust gas after the exhaust valves opening and before the inlet and exhaust valves overlap period

  12. Turboelectric Distributed Propulsion Engine Cycle Analysis for Hybrid-Wing-Body Aircraft

    NASA Technical Reports Server (NTRS)

    Felder, James L.; Kim, Hyun Dae; Brown, Gerald V.

    2009-01-01

    Meeting NASA's N+3 goals requires a fundamental shift in approach to aircraft and engine design. Material and design improvements allow higher pressure and higher temperature core engines which improve the thermal efficiency. Propulsive efficiency, the other half of the overall efficiency equation, however, is largely determined by the fan pressure ratio (FPR). Lower FPR increases propulsive efficiency, but also dramatically reduces fan shaft speed through the combination of larger diameter fans and reduced fan tip speed limits. The result is that below an FPR of 1.5 the maximum fan shaft speed makes direct drive turbines problematic. However, it is the low pressure ratio fans that allow the improvement in propulsive efficiency which, along with improvements in thermal efficiency in the core, contributes strongly to meeting the N+3 goals for fuel burn reduction. The lower fan exhaust velocities resulting from lower FPRs are also key to meeting the aircraft noise goals. Adding a gear box to the standard turbofan engine allows acceptable turbine speeds to be maintained. However, development of a 50,000+ hp gearbox required by fans in a large twin engine transport aircraft presents an extreme technical challenge, therefore another approach is needed. This paper presents a propulsion system which transmits power from the turbine to the fan electrically rather than mechanically. Recent and anticipated advances in high temperature superconducting generators, motors, and power lines offer the possibility that such devices can be used to transmit turbine power in aircraft without an excessive weight penalty. Moving to such a power transmission system does more than provide better matching between fan and turbine shaft speeds. The relative ease with which electrical power can be distributed throughout the aircraft opens up numerous other possibilities for new aircraft and propulsion configurations and modes of operation. This paper discusses a number of these new

  13. DEVELOPMENT OF A SUPERSONIC TRANSPORT AIRCRAFT ENGINE - PHASE II-A.

    DTIC Science & Technology

    JET TRANSPORT PLANES, *SUPERSONIC AIRCRAFT ) (U) TURBOJET ENGINES , PERFORMANCE( ENGINEERING ), TURBOFAN ENGINES , AFTERBURNING, SPECIFICATIONS...COMPRESSORS, GEOMETRY, TURBOJET INLETS, COMBUSTION, TEST EQUIPMENT, TURBINE BLADES , HEAT TRANSFER, AIRFOILS , CASCADE STRUCTURES, EVAPOTRANSPIRATION, PLUG NOZZLES, ANECHOIC CHAMBERS, BEARINGS, SEALS, DESIGN, FATIGUE(MECHANICS)

  14. Real-Time Analysis of Raman Spectra for Temperature Field Characterization in Aircraft Exhaust Noise Studies

    NASA Astrophysics Data System (ADS)

    Wormhoudt, J.; Nelson, D. D.; Annen, K.; Locke, R. J.; Wernet, M.

    2009-06-01

    Raman scattering has long been used as a non-intrusive diagnostic of temperatures in combustion exhaust flows, using a variety of spectral analysis techniques. As part of their ongoing program of experiments to support development of computer codes that calculate exhaust flow fields and predict jet noise, NASA Glenn Research Center is developing a laser Raman diagnostic system that will measure mean temperatures and temperature fluctuations in hot and cold jet flows. We describe a software package, ART (Analysis for Raman Temperatures), that analyzes Raman spectra of air for temperature and density using vibrational or resolved or unresolved rotational bands, presenting results in a variety of real-time displays. Each analysis technique presents its own challenges in obtaining the most precise and accurate values, and we will comment on these issues by exhibiting example spectra of each type. The ART program is closely related to another Aerodyne software package (TDLWintel) which automates the acquisition and analysis of tunable laser absorption spectra.

  15. Sensor Selection for Aircraft Engine Performance Estimation and Gas Path Fault Diagnostics

    NASA Technical Reports Server (NTRS)

    Simon, Donald L.; Rinehart, Aidan W.

    2016-01-01

    This paper presents analytical techniques for aiding system designers in making aircraft engine health management sensor selection decisions. The presented techniques, which are based on linear estimation and probability theory, are tailored for gas turbine engine performance estimation and gas path fault diagnostics applications. They enable quantification of the performance estimation and diagnostic accuracy offered by different candidate sensor suites. For performance estimation, sensor selection metrics are presented for two types of estimators including a Kalman filter and a maximum a posteriori estimator. For each type of performance estimator, sensor selection is based on minimizing the theoretical sum of squared estimation errors in health parameters representing performance deterioration in the major rotating modules of the engine. For gas path fault diagnostics, the sensor selection metric is set up to maximize correct classification rate for a diagnostic strategy that performs fault classification by identifying the fault type that most closely matches the observed measurement signature in a weighted least squares sense. Results from the application of the sensor selection metrics to a linear engine model are presented and discussed. Given a baseline sensor suite and a candidate list of optional sensors, an exhaustive search is performed to determine the optimal sensor suites for performance estimation and fault diagnostics. For any given sensor suite, Monte Carlo simulation results are found to exhibit good agreement with theoretical predictions of estimation and diagnostic accuracies.

  16. Sensor Selection for Aircraft Engine Performance Estimation and Gas Path Fault Diagnostics

    NASA Technical Reports Server (NTRS)

    Simon, Donald L.

    2015-01-01

    This paper presents analytical techniques for aiding system designers in making aircraft engine health management sensor selection decisions. The presented techniques, which are based on linear estimation and probability theory, are tailored for gas turbine engine performance estimation and gas path fault diagnostics applications. They enable quantification of the performance estimation and diagnostic accuracy offered by different candidate sensor suites. For performance estimation, sensor selection metrics are presented for two types of estimators including a Kalman filter and a maximum a posteriori estimator. For each type of performance estimator, sensor selection is based on minimizing the theoretical sum of squared estimation errors in health parameters representing performance deterioration in the major rotating modules of the engine. For gas path fault diagnostics, the sensor selection metric is set up to maximize correct classification rate for a diagnostic strategy that performs fault classification by identifying the fault type that most closely matches the observed measurement signature in a weighted least squares sense. Results from the application of the sensor selection metrics to a linear engine model are presented and discussed. Given a baseline sensor suite and a candidate list of optional sensors, an exhaustive search is performed to determine the optimal sensor suites for performance estimation and fault diagnostics. For any given sensor suite, Monte Carlo simulation results are found to exhibit good agreement with theoretical predictions of estimation and diagnostic accuracies.

  17. IR signature study of aircraft engine for variation in nozzle exit area

    NASA Astrophysics Data System (ADS)

    Baranwal, Nidhi; Mahulikar, Shripad P.

    2016-01-01

    In general, jet engines operate with choked nozzle during take-off, climb and cruise, whereas unchoking occurs while landing and taxiing (when engine is not running at full power). Appropriate thrust in an aircraft in all stages of the flight, i.e., take-off, climb, cruise, descent and landing is achieved through variation in the nozzle exit area. This paper describes the effect on thrust and IR radiance of a turbojet engine due to variation in the exit area of a just choked converging nozzle (Me = 1). The variations in the nozzle exit area result in either choking or unchoking of a just choked converging nozzle. Results for the change in nozzle exit area are analyzed in terms of thrust, mass flow rate and specific fuel consumption. The solid angle subtended (Ω) by the exhaust system is estimated analytically, for the variation in nozzle exit area (Ane), as it affects the visibility of the hot engine parts from the rear aspect. For constant design point thrust, IR radiance is studied from the boresight (ϕ = 0°, directly from the rear side) for various percentage changes in nozzle exit area (%ΔAne), in the 1.9-2.9 μm and 3-5 μm bands.

  18. Advanced optical smoke meters for jet engine exhaust measurement

    NASA Technical Reports Server (NTRS)

    Pitz, R. W.

    1986-01-01

    Smoke meters with increased sensitivity, improved accuracy, and rapid response are needed to measure the smoke levels emitted by modern jet engines. The standard soiled tape meter in current use is based on filtering, which yields long term averages and is insensitive to low smoke levels. Two new optical smoke meter techniques that promise to overcome these difficulties have been experimentally evaluated: modulated transmission (MODTRAN) and photothermal deflection spectroscopy (PDS). Both techniques are based on light absorption by smoke, which is closely related to smoke density. They are variations on direct transmission measurements which produce a modulated signal that can be easily measured with phase sensitive detection. The MODTRAN and PDS techniques were tested on low levels of smoke and diluted samples of NO2 in nitrogen, simulating light adsorption due to smoke. The results are evaluated against a set of ideal smoke meter criteria that include a desired smoke measurement range of 0.1 to 12 mg cu.m. (smoke numbers of 1 to 50) and a frequency response of 1 per second. The MODTRAN instrument is found to be inaccurate for smoke levels below 3 mg/cu.m. and is able to make a only about once every 20 seconds because of its large sample cell. The PDS instrument meets nearly all the characteristics of an ideal smoke meter: it has excellent sensitivity over a range of smoke levels from 0.1 to 20 mg/cu.m. (smoke numbers of 1 to 60) and good frequency response (1 per second).

  19. A study of external fuel vaporization. [for aircraft gas turbine engines

    NASA Technical Reports Server (NTRS)

    Szetela, E. J.; Chiappetta, L.; Baker, C. E.

    1981-01-01

    Candidate external vaporizer designs for an aircraft gas turbine engine are evaluated with respect to fuel thermal stability, integration of the vaporizer system into the aircraft engine, engine and vaporizer dynamic response, startup and altitude restart, engine performance, control requirements, safety, and maintenance. The selected concept is shown to offer potential gains in engine performance in terms of reduced specific fuel consumption and improved engine thrust/weight ratio. The thrust/weight improvement can be traded against vaporization system weight.

  20. Characterization of emissions from commercial aircraft engines during the Aircraft Particle Emissions eXperiment (APEX) 1 to 3

    EPA Science Inventory

    The fine particulate matter emissions from aircraft operations at large airports located in areas of the U. S. designated as non-attainment for the National Ambient Air Quality Standard for PM-2.5 are of major environmental concern. PM emissions data for commercial aircraft engin...

  1. 76 FR 45011 - Control of Air Pollution From Aircraft and Aircraft Engines; Proposed Emission Standards and Test...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-27

    ... Environmental Protection Agency 40 CFR Parts 87 and 1068 Control of Air Pollution From Aircraft and Aircraft... AGENCY 40 CFR Parts 87 and 1068 [EPA-HQ-OAR-2010-0687; FRL-9437-2] RIN 2060-AO70 Control of Air Pollution... engines which in her judgment causes or contributes to air pollution that may reasonably be anticipated...

  2. 77 FR 65823 - Control of Air Pollution From Aircraft and Aircraft Engines; Emission Standards and Test Procedures

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-31

    ... From the Federal Register Online via the Government Publishing Office ENVIRONMENTAL PROTECTION AGENCY 40 CFR Parts 87 RIN 2060-AO70 Control of Air Pollution From Aircraft and Aircraft Engines; Emission Standards and Test Procedures Correction In rule document 2012-13828 appearing on pages...

  3. 77 FR 36341 - Control of Air Pollution From Aircraft and Aircraft Engines; Emission Standards and Test Procedures

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-18

    ... nitrogen (NO X ), compliance flexibilities, and other regulatory requirements for aircraft turbofan or... Exposure to Ozone, PM and NO X a. Deposition of Nitrogen b. Visibility Effects c. Plant and Ecosystem... nitrogen (NO X ) emission standards for aircraft engines with rated thrusts greater than 26.7 kN...

  4. Effects of water-emulsified fuel on a diesel engine generator's thermal efficiency and exhaust.

    PubMed

    Syu, Jin-Yuan; Chang, Yuan-Yi; Tseng, Chao-Heng; Yan, Yeou-Lih; Chang, Yu-Min; Chen, Chih-Chieh; Lin, Wen-Yinn

    2014-08-01

    Water-emulsified diesel has proven itself as a technically sufficient improvement fuel to improve diesel engine fuel combustion emissions and engine performance. However, it has seldom been used in light-duty diesel engines. Therefore, this paper focuses on an investigation into the thermal efficiency and pollution emission analysis of a light-duty diesel engine generator fueled with different water content emulsified diesel fuels (WD, including WD-0, WD-5, WD-10, and WD-15). In this study, nitric oxide, carbon monoxide, hydrocarbons, and carbon dioxide were analyzed by a vehicle emission gas analyzer and the particle size and number concentration were measured by an electrical low-pressure impactor. In addition, engine loading and fuel consumption were also measured to calculate the thermal efficiency. Measurement results suggested that water-emulsified diesel was useful to improve the thermal efficiency and the exhaust emission of a diesel engine. Obviously, the thermal efficiency was increased about 1.2 to 19.9%. In addition, water-emulsified diesel leads to a significant reduction of nitric oxide emission (less by about 18.3 to 45.4%). However the particle number concentration emission might be increased if the loading of the generator becomes lower than or equal to 1800 W. In addition, exhaust particle size distributions were shifted toward larger particles at high loading. The consequence of this research proposed that the water-emulsified diesel was useful to improve the engine performance and some of exhaust emissions, especially the NO emission reduction. Implications: The accumulated test results provide a good basis to resolve the corresponding pollutants emitted from a light-duty diesel engine generator. By measuring and analyzing transforms of exhaust pollutant from this engine generator, the effects of water-emulsified diesel fuel and loading on emission characteristics might be more clear. Understanding reduction of pollutant emissions during the use

  5. Oxidative damage of the extracts of condensate, particulate and semivolatile organic compounds from gasoline engine exhausts on testicles of rats.

    PubMed

    Che, Wangjun; Qiu, Hong; Liu, Guiming; Ran, Yun; Zhang, Hao; Zhang, Li; Wen, Weihua

    2009-07-01

    Oxidative damage induced by extracts of condensate, particulate matters and semivolatile organic compounds from gasoline engine exhausts were investigated in testicles of adult Sprague-Dawley rats. The results showed that gasoline engine exhaust could increase the contents of malondialdehyde and carbonyl protein, decrease activities of superoxide dismutase and glutathione peroxidase, and induce DNA damage in testicle of rat. Taking together, the gasoline engine exhaust could promote oxidative damage of bio-macromolecular in testicles of rat and oxidative stress might be an alternative mechanism for male reproductive function of male mammals.

  6. Procedure for generating global atmospheric engine emissions data from future supersonic transport aircraft. The 1990 high speed civil transport studies

    NASA Technical Reports Server (NTRS)

    Sohn, R. A.; Stroup, J. W.

    1990-01-01

    The input for global atmospheric chemistry models was generated for baseline High Speed Civil Transport (HSCT) configurations at Mach 1.6, 2.2, and 3.2. The input is supplied in the form of number of molecules of specific exhaust constituents injected into the atmosphere per year by latitude and by altitude (for 2-D codes). Seven exhaust constituents are currently supplied: NO, NO2, CO, CO2, H2O, SO2, and THC (Trace Hydrocarbons). An eighth input is also supplied, NO(x), the sum of NO and NO2. The number of molecules of a given constituent emitted per year is a function of the total fuel burned by a supersonic fleet and the emission index (EI) of the aircraft engine for the constituent in question. The EIs for an engine are supplied directly by the engine manufacturers. The annual fuel burn of a supersonic fleet is calculated from aircraft performance and economic criteria, both of which are strongly dependent on basic design parameters such as speed and range. The altitude and latitude distribution of the emission is determined based on 10 Intern. Air Transport Assoc. (IATA) regions chosen to define the worldwide route structure for future HSCT operations and the mission flight profiles.

  7. Advanced engine management of individual cylinders for control of exhaust species

    DOEpatents

    Graves, Ronald L [Knoxville, TN; West, Brian H [Knoxville, TN; Huff, Shean P [Knoxville, TN; Parks, II, James E

    2008-12-30

    A method and system controls engine-out exhaust species of a combustion engine having a plurality of cylinders. The method typically includes various combinations of steps such as controlling combustion parameters in individual cylinders, grouping the individual cylinders into a lean set and a rich set of one or more cylinders, combusting the lean set in a lean combustion parameter condition having a lean air:fuel equivalence ratio, combusting the rich set in a rich combustion parameter condition having a rich air:fuel equivalence ratio, and adjusting the lean set and the rich set of one or more cylinders to generate net-lean combustion. The exhaust species may have elevated concentrations of hydrogen and oxygen.

  8. The Appearance of a Boric Oxide Exhaust Cloud from a Turbojet Engine Operating on Trimethylborate Fuel

    NASA Technical Reports Server (NTRS)

    Lord, Albert M; Kaufman, Warner B

    1956-01-01

    An investigation was conducted on the size and density of the boric oxide exhaust cloud from a J47-25 turbojet engine operating on trimethylborate fuel at sea-level static condition. Movies and still photographs were taken from the ground and from a helicopter. Objects could not be perceived through the main body of the cloud at distances up to 800 feet from the engine. Data are included on the amount of fallout from the cloud and the concentration of boric oxide in the cloud. A radiation detection device was set up to determine whether the glowing oxide particles would be more susceptible than hydrocarbon exhaust gases to this type of tracking device. The device showed an increase in radiation by a factor of 3 for trimethylborate over that for JP-4.

  9. Correlation of Exhaust-Valve Temperatures with Engine Operating Conditions and Valve Design in an Air-Cooled Cylinder

    NASA Technical Reports Server (NTRS)

    Zipkin, M A; Sanders, J C

    1945-01-01

    A semiempirical equation correlating exhaust-valve temperatures with engine operating conditions and exhaust-valve design has been developed. The correlation is based on the theory correlating engine and cooling variables developed in a previous NACA report. In addition to the parameters ordinarily used in the correlating equation, a term is included in the equation that is a measure of the resistance of the complex heat-flow paths between the crown of the exhaust valve and a point on the outside surface of the cylinder head. A means for comparing exhaust valves of different designs with respect to cooling is consequently provided. The necessary empirical constants included in the equation were determined from engine investigations of a large air-cooled cylinder. Tests of several valve designs showed that the calculated and experimentally determined exhaust-valve temperatures were in good agreement.

  10. Biofuel Blending Impacts on Aircraft Engine Particle Emissions at Cruise Conditions

    NASA Astrophysics Data System (ADS)

    Moore, R.

    2015-12-01

    We present measurements of aerosol emissions indices and microphysical properties measured in-situ behind the CFM56-2-C1 engines of the NASA DC-8 aircraft during the 2014 Alternative Fuel Effects on Contrails and Cruise Emissions (ACCESS) project. Aircraft engine emissions can have a disproportionately large climatic impact since they are emitted high in the troposphere and in remote regions with otherwise low aerosol concentrations. This has motivated numerous past ground-based studies focused on quantifying the emissions indices of non-volatile and semi-volatile aerosol species, however, it is unclear the extent to which emissions on the ground translate to emissions at cruise conditions. In addition, the ability of engine-emitted aerosols to nucleate ice crystals and form linear contrails or contrail cirrus clouds remains poorly understood. To better understand these effects, two chase plane experiments were carried out in 2013 and 2014. Three different fuel types are discussed: a low-sulfur JP-8 fuel, a 50:50 blend of JP-8 and a camelina-based HEFA fuel, and the JP-8 fuel doped with sulfur. Emissions were sampled using a large number of aerosol and gas instruments integrated on HU-25 and Falcon 20 jets that were positioned in the DC-8 exhaust plume at approximately 50-500 m distance behind the engines. It was found that the biojet fuel blend substantially decreases the aerosol number and mass emissions indices, while the gas phase emission indices were similar across fuels. The magnitude of the effects of these fuel-induced changes of aerosol emissions and implications for future aviation biofuel blending impacts will be discussed.

  11. Aircraft Engine Noise Scattering - A Discontinuous Spectral Element Approach

    NASA Technical Reports Server (NTRS)

    Stanescu, D.; Hussaini, M. Y.; Farassat, F.

    2002-01-01

    The paper presents a time-domain method for computation of sound radiation from aircraft engine sources to the far-field. The effects of nonuniform flow around the aircraft and scattering of sound by fuselage and wings are accounted for in the formulation. Our approach is based on the discretization of the inviscid flow equations through a collocation form of the Discontinuous Galerkin spectral element method. An isoparametric representation of the underlying geometry is used in order to take full advantage of the spectral accuracy of the method. Largescale computations are made possible by a parallel implementation based on message passing. Results obtained for radiation from an axisymmetric nacelle alone are compared with those obtained when the same nacelle is installed in a generic con.guration, with and without a wing.

  12. Aircraft Engine Gas Path Diagnostic Methods: Public Benchmarking Results

    NASA Technical Reports Server (NTRS)

    Simon, Donald L.; Borguet, Sebastien; Leonard, Olivier; Zhang, Xiaodong (Frank)

    2013-01-01

    Recent technology reviews have identified the need for objective assessments of aircraft engine health management (EHM) technologies. To help address this issue, a gas path diagnostic benchmark problem has been created and made publicly available. This software tool, referred to as the Propulsion Diagnostic Method Evaluation Strategy (ProDiMES), has been constructed based on feedback provided by the aircraft EHM community. It provides a standard benchmark problem enabling users to develop, evaluate and compare diagnostic methods. This paper will present an overview of ProDiMES along with a description of four gas path diagnostic methods developed and applied to the problem. These methods, which include analytical and empirical diagnostic techniques, will be described and associated blind-test-case metric results will be presented and compared. Lessons learned along with recommendations for improving the public benchmarking processes will also be presented and discussed.

  13. Experimental investigation on performance and exhaust emissions of castor oil biodiesel from a diesel engine.

    PubMed

    Shojaeefard, M H; Etgahni, M M; Meisami, F; Barari, A

    2013-01-01

    Biodiesel, produced from plant and animal oils, is an important alternative to fossil fuels because, apart from dwindling supply, the latter are a major source of air pollution. In this investigation, effects of castor oil biodiesel blends have been examined on diesel engine performance and emissions. After producing castor methyl ester by the transesterification method and measuring its characteristics, the experiments were performed on a four cylinder, turbocharged, direct injection, diesel engine. Engine performance (power, torque, brake specific fuel consumption and thermal efficiency) and exhaust emissions were analysed at various engine speeds. All the tests were done under 75% full load. Furthermore, the volumetric blending ratios of biodiesel with conventional diesel fuel were set at 5, 10, 15, 20 and 30%. The results indicate that lower blends of biodiesel provide acceptable engine performance and even improve it. Meanwhile, exhaust emissions are much decreased. Finally, a 15% blend of castor oil-biodiesel was picked as the optimized blend of biodiesel-diesel. It was found that lower blends of castor biodiesel are an acceptable fuel alternative for the engine.

  14. Modified pressure loss model for T-junctions of engine exhaust manifold

    NASA Astrophysics Data System (ADS)

    Wang, Wenhui; Lu, Xiaolu; Cui, Yi; Deng, Kangyao

    2014-11-01

    The T-junction model of engine exhaust manifolds significantly influences the simulation precision of the pressure wave and mass flow rate in the intake and exhaust manifolds of diesel engines. Current studies have focused on constant pressure models, constant static pressure models and pressure loss models. However, low model precision is a common disadvantage when simulating engine exhaust manifolds, particularly for turbocharged systems. To study the performance of junction flow, a cold wind tunnel experiment with high velocities at the junction of a diesel exhaust manifold is performed, and the variation in the pressure loss in the T-junction under different flow conditions is obtained. Despite the trend of the calculated total pressure loss coefficient, which is obtained by using the original pressure loss model and is the same as that obtained from the experimental results, large differences exist between the calculated and experimental values. Furthermore, the deviation becomes larger as the flow velocity increases. By improving the Vazsonyi formula considering the flow velocity and introducing the distribution function, a modified pressure loss model is established, which is suitable for a higher velocity range. Then, the new model is adopted to solve one-dimensional, unsteady flow in a D6114 turbocharged diesel engine. The calculated values are compared with the measured data, and the result shows that the simulation accuracy of the pressure wave before the turbine is improved by 4.3% with the modified pressure loss model because gas compressibility is considered when the flow velocities are high. The research results provide valuable information for further junction flow research, particularly the correction of the boundary condition in one-dimensional simulation models.

  15. The Intrusion of Engine Exhaust into the Passenger Areas of Recreational Power Boats

    DTIC Science & Technology

    1991-07-01

    Annapolis, Maryland. The test boat was a 34-foot Silverton sedan cruiser equipped with twin 302 CID engines with exhaust exits located on each side of the...40.60 30.14 1.42 09:36:31 51.80 41.90 30.14 2.74 -001 -000 -@00 @00 test oeat: 361 Silverton Sedan Cruiser 19:27:01 51.30 42.70 30.14 1.53 *forever

  16. Performance of a 2D-CD nonaxisymmetric exhaust nozzle on a turbojet engine at altitude

    NASA Technical Reports Server (NTRS)

    Straight, D. M.; Cullom, R. R.

    1982-01-01

    Baseline thrust and cooling data obtained with a 2D-CD versatile research exhaust nozzle mounted on a turbojet engine in an altitude chamber are presented. The tests covered a range of nozzle pressure ratios, nozzle pressure ratios, nozzle throat areas, and internal expansion area ratios. The thrust data obtained show good agreement with theory and scale model results after correcting the data for leakage and bypass cooling flows. Additional work is needed to improve predictability of cooling performance.

  17. Multi-stage selective catalytic reduction of NOx in lean burn engine exhaust

    SciTech Connect

    Penetrante, B.M.; Hsaio, M.C.; Merritt, B.T.; Vogtlin, G.E.

    1997-12-31

    Many studies suggest that the conversion of NO to NO{sub 2} is an important intermediate step in the selective catalytic reduction (SCR) of NO{sub x} to N{sub 2}. Some effort has been devoted to separating the oxidative and reductive functions of the catalyst in a multi-stage system. This method works fine for systems that require hydrocarbon addition. The hydrocarbon has to be injected between the NO oxidation catalyst and the NO{sub 2} reduction catalyst; otherwise, the first-stage oxidation catalyst will also oxidize the hydrocarbon and decrease its effectiveness as a reductant. The multi-stage catalytic scheme is appropriate for diesel engine exhausts since they contain insufficient hydrocarbons for SCR, and the hydrocarbons can be added at the desired location. For lean-burn gasoline engine exhausts, the hydrocarbons already present in the exhausts will make it necessary to find an oxidation catalyst that can oxidize NO to NO{sub 2} but not oxidize the hydrocarbon. A plasma can also be used to oxidize NO to NO{sub 2}. Plasma oxidation has several advantages over catalytic oxidation. Plasma-assisted catalysis can work well for both diesel engine and lean-burn gasoline engine exhausts. This is because the plasma can oxidize NO in the presence of hydrocarbons without degrading the effectiveness of the hydrocarbon as a reductant for SCR. In the plasma, the hydrocarbon enhances the oxidation of NO, minimizes the electrical energy requirement, and prevents the oxidation of SO{sub 2}. This paper discusses the use of multi-stage systems for selective catalytic reduction of NO{sub x}. The multi-stage catalytic scheme is compared to the plasma-assisted catalytic scheme.

  18. Lightweight diesel engine designs for commuter type aircraft

    NASA Technical Reports Server (NTRS)

    Brouwers, A. P.

    1981-01-01

    Conceptual designs and performance of advanced technology lightweight diesel engines, suitable for commuter type aircraft power plants are defined. Two engines are discussed, a 1491 kW (2000 SHP) eight-cylinder engine and a 895 kW (1200 SHP) six-cylinder engine. High performance and related advanced technologies are proposed such as insulated cylinders, very high injection pressures and high compressor and turbine efficiencies. The description of each engine includes concept drawings, a performance analysis, and weight data. Fuel flow data are given for full and partial power up to 7620m altitude. The performance data are also extrapolated over a power range from 671 kW(900SHP) to 1864 kW (2500 SHP). The specific fuel consumption of the 1491 kW (2000 SHP) engine is 182 g/hWh (.299 lb/HPh) at cruise altitude, its weight 620 kg (1365 lb.) and specific weight .415 kg/kW (.683 lb/HP). The specific fuel consumption of the 895 kW (1200 SHP) engine is 187 g/hWh (.308 lb/HPh) at cruise altitude, its weight 465 kg (1025 lb.) and specific weight .520 kg/kW (.854 lb/HP).

  19. Transonic aerodynamic characteristics of a supersonic cruise aircraft research model with the engines suspended above the wing

    NASA Technical Reports Server (NTRS)

    Mercer, C. E.; Carson, G. T., Jr.

    1979-01-01

    The influence of upper-surface nacelle exhaust flow on the aerodynamic characteristics of a supersonic cruise aircraft research configuration was investigated in a 16 foot transonic tunnel over a range of Mach numbers from 0.60 to 1.20. The arrow-wing transport configuration with engines suspended over the wing was tested at angles of attack from -4 deg to 6 deg and jet total pressure ratios from 1 to approximately 13. Wing-tip leading edge flap deflections of -10 deg to 10 deg were tested with the wing-body configuration. Various nacelle locations (chordwise, spanwise, and vertical) were tested over the ranges of Mach numbers, angles of attack, and jet total-pressure ratios. The results show that reflecting the wing-tip leading edge flap from 0 deg to -10 deg increased the maximum lift-drag ratio by 1.0 at subsonic speeds. Jet exhaust interference effects were negligible.

  20. Effect of jet engine exhaust on SOFIA straylight performance. [Stratospheric Observatory For Infrared Astronomy

    NASA Technical Reports Server (NTRS)

    St. Clair Dinger, Ann

    1993-01-01

    The Stratospheric Observatory For Infrared Astronomy (SOFIA) is being designed at NASA's Ames Research Center as a replacement for the Kuiper Airborne Observatory (KAO). A 2.5-m Nasmyth telescope will be mounted in a Boeing 747 SP and flown at 41,000 ft, above most of the H2O in the earth's atmosphere. In the original SOFIA design, the telescope is located in front of the wings, as it is in the KAO. An alternative design with the telescope placed behind the wings is being studied as part of an effort to reduce cost and weight. In this location, the emission from the engines and the hot H2O molecules in the exhaust become significant straylight sources. The engines and exhaust radiate into the telescope cavity, and illuminate the primary and tertiary mirrors at low telescope elevation angles. The APART/PADE program was used to analyze the straylight at the SOFIA focal plane as a function of wavelength and telescope elevation angle. The emission from the engines and exhaust gas is compared to that from the earth and the telescope itself. Based on the results of this analysis, the SOFIA telescope has been moved behind the wings.

  1. Influence of the exhaust system on performance of a 4-cylinder supercharged engine

    SciTech Connect

    Trenc, F.; Bizjan, F.; Hribernik, A.

    1998-10-01

    Twin entry radial turbines are mostly used to drive compressors of small and medium size 6-cylinder diesel engines where the available energy of the undisturbed exhaust pulses can be efficiently used to drive the turbine of a turbocharger. Three selected cylinders feed two separated manifold branches and two turbine inlets and prevent negative interaction of pressure waves and its influence on the scavenging process of the individual cylinders. In the case of a four-stroke, 4-cylinder engine, two selected cylinders, directed by the firing order, can be connected to one (of the two) separated manifold branches that feeds one turbine entry. Good utilization of the pressure pulse energy, together with typically longer periods of reduced exhaust flow can lead to good overall efficiency of the two-pulse system. Sometimes this system can be superior to the single manifold system with four cylinders connected to one single-entry turbine. The paper describes advantages and disadvantages of the above described exhaust systems applied to a turbocharged and aftercooled 4-cylinder Diesel engine. Comparisons supported by the analyses of the numerical and experimental results are also given in the presented paper.

  2. Diesel Engine Exhaust Initiates a Sequence of Pulmonary and Cardiovascular Effects in Rats

    PubMed Central

    Kooter, Ingeborg M.; Gerlofs-Nijland, Miriam E.; Boere, A. John F.; Leseman, Daan L. A. C.; Fokkens, Paul H. B.; Spronk, Henri M. H.; Frederix, Kim; ten Cate, Hugo; Knaapen, Ad M.; Vreman, Hendrik J.; Cassee, Flemming R.

    2010-01-01

    This study was designed to determine the sequence of events leading to cardiopulmonary effects following acute inhalation of diesel engine exhaust in rats. Rats were exposed for 2 h to diesel engine exhaust (1.9 mg/m3), and biological parameters related to antioxidant defense, inflammation, and procoagulation were examined after 4, 18, 24, 48, and 72 h. This in vivo inhalation study showed a pulmonary anti-oxidant response (an increased activity of the anti-oxidant enzymes glutathione peroxidase and superoxide dismutase and an increase in heme oxygenase-1 protein, heme oxygenase activity, and uric acid) which precedes the inflammatory response (an increase in IL-6 and TNF-α). In addition, increased plasma thrombogenicity and immediate anti-oxidant defense gene expression in aorta tissue shortly after the exposure might suggest direct translocation of diesel engine exhaust components to the vasculature but mediation by other pathways cannot be ruled out. This study therefore shows that different stages in oxidative stress are not only affected by dose increments but are also time dependent. PMID:21052503

  3. The knocking characteristics of fuels in relation to maximum permissible performance of aircraft engines

    NASA Technical Reports Server (NTRS)

    Rothrock, A M; Biermann, Arnold E

    1939-01-01

    An analysis is presented of the relationship of various engine factors to knock in preignition in an aircraft engine. From this analysis and from the available experimental data, a method of evaluating the knocking characteristics of the fuel in an aircraft-engine cylinder is suggested.

  4. Life-Extending Control for Aircraft Engines Studied

    NASA Technical Reports Server (NTRS)

    Guo, Te-Huei

    2002-01-01

    Current aircraft engine controllers are designed and operated to provide both performance and stability margins. However, the standard method of operation results in significant wear and tear on the engine and negatively affects the on-wing life--the time between cycles when the engine must be physically removed from the aircraft for maintenance. The NASA Glenn Research Center and its industrial and academic partners have been working together toward a new control concept that will include engine life usage as part of the control function. The resulting controller will be able to significantly extend the engine's on-wing life with little or no impact on engine performance and operability. The new controller design will utilize damage models to estimate and mitigate the rate and overall accumulation of damage to critical engine parts. The control methods will also provide a means to assess tradeoffs between performance and structural durability on the basis of mission requirements and remaining engine life. Two life-extending control methodologies were studied to reduce the overall life-cycle cost of aircraft engines. The first methodology is to modify the baseline control logic to reduce the thermomechanical fatigue (TMF) damage of cooled stators during acceleration. To accomplish this, an innovative algorithm limits the low-speed rotor acceleration command when the engine has reached a threshold close to the requested thrust. This algorithm allows a significant reduction in TMF damage with only a very small increase in the rise time to reach the commanded rotor speed. The second methodology is to reduce stress rupture/creep damage to turbine blades and uncooled stators by incorporating an engine damage model into the flight mission. Overall operation cost is reduced by an optimization among the flight time, fuel consumption, and component damages. Recent efforts have focused on applying life-extending control technology to an existing commercial turbine engine

  5. Condensation of water vapor and carbon dioxide in the jet exhausts of rocket engines: 1. Model calculation of the physical conditions in a jet exhaust

    NASA Astrophysics Data System (ADS)

    Platov, Yu. V.; Alpatov, V. V.; Klyushnikov, V. Yu.

    2014-01-01

    Model calculations have been performed for the temperature and pressure of combustion products in the jet exhaust of rocket engines of last stages of Proton, Molniya, and Start launchers operating in the upper atmosphere at altitudes above 120 km. It has been shown that the condensation of water vapor and carbon dioxide can begin at distances of 100-150 and 450-650 m away from the engine nozzle, respectively.

  6. A Study of Bird Ingestions Into Large High Bypass Ratio Turbine Aircraft Engines.

    DTIC Science & Technology

    1983-03-01

    into large high bypass ratio turbine aircraft engines on a worldwide basis and what damage , if any, resulted. This interim report presents a summary...operations. These aircraft experienced 289 engine ingestion events during the initial contract * period, May 1961 through April 1982. The FAA is...Airports involved 88 3. Total events 289 4. hngine damage , minor and/or major 188 5. Multiple engine ingestions per aircraft 11 6. MuLtiple bird

  7. Experimental Studies of Coal and Biomass Fuel Synthesis and Flame Characterization for Aircraft Engines

    DTIC Science & Technology

    2012-03-31

    Synthesis and Flame Characterization for Aircraft Engines 5a. CONTRACT NUMBER 5b. GRANT NUMBER FA9550-10-1-0344 5c. PROGRAM ELEMENT NUMBER 61102F... Flame Characterization for Aircraft Engines AFOSR Grant Number: FA9550-10-1-0344 Final Performance Report Report Period: September 1, 2008 to... Flame Characterization for Aircraft Engines (Final Performance Report) Project Period: September 1, 2008 to March 31, 2012 Report Period

  8. Design and evaluation of combustors for reducing aircraft engine pollution

    NASA Technical Reports Server (NTRS)

    Jones, R. E.; Grobman, J.

    1973-01-01

    Efforts in reducing exhaust emissions from turbine engines are reported. Various techniques employed and the results of testing are briefly described and referenced for detail. The experimental approaches taken to reduce oxides of nitrogen emissions include the use of: (1) multizone combustors incorporating reduced dwell times, (2) fuel-air premixing, (3) air atomization, (4) fuel prevaporization, and (5) gaseous fuel. Since emissions of unburned hydrocarbons and carbon monoxide are caused by poor combustion efficiency at engine idle, the studies of fuel staging in multizone combustors and air assist fuel nozzles have indicated that large reductions in these emissions can be achieved. Also, the effect of inlet-air humidity on oxides of nitrogen was studied as well as the very effective technique of direct water injection. The emission characteristics of natural gas and propane fuels were measured and compared with those of ASTM-Al kerosene fuel.

  9. Aircraft emissions characterization: TF41-a2, TF30-p103, and TF30-p109 engines. Final report, December 1985-March 1987

    SciTech Connect

    Spicer, C.W.; Holdren, M.W.; Miller, S.E.; Smith, D.L.; Smith, R.N.

    1987-12-01

    Assessment of the environmental impact of aircraft operations is required by Air Force regulations. This program was undertaken with the aim of quantifying the gaseous and particulate emissions associated with three Air Force turbine engines. These engines were TF41-A2, TF30-P103, and TF30-P109. The emissions tests were carried out, using a test cell Tinker AFP, Oklahoma City, OK. All tests employed JP-4 as the fuel, and fuel samples were characterized by standard tests and analyzed for composition. Emissions were measured at power settings of idle, 30%, 75%, 100%, and afterburner (where appropriate). Measurements were made of detailed organic composition, CO, CO/sub 2/, NO, NOx, smoke number, particle concentration, and particle-size distribution. A multiport sampling rake was used to sample the exhaust, and heated Teflon tubing was used to transfer exhaust to the monitoring instrumentation. Measured and calculated fuel/air ratios were compared to assure representative sampling of the exhaust.

  10. Near-field commercial aircraft contribution to nitrogen oxides by engine, aircraft type, and airline by individual plume sampling.

    PubMed

    Carslaw, David C; Ropkins, Karl; Laxen, Duncan; Moorcroft, Stephen; Marner, Ben; Williams, Martin L

    2008-03-15

    Nitrogen oxides (NOx) concentrations were measured in individual plumes from aircraft departing on the northern runway at Heathrow Airport in west London. Over a period of four weeks 5618 individual plumes were sampled by a chemiluminescence monitor located 180 m from the runway. Results were processed and matched with detailed aircraft movement and aircraft engine data using chromatographic techniques. Peak concentrations associated with 29 commonly used engines were calculated and found to have a good relationship with N0x emissions taken from the International Civil Aviation Organization (ICAO) databank. However, it is found that engines with higher reported NOx emissions result in proportionately lower NOx concentrations than engines with lower emissions. We show that it is likely that aircraft operational factors such as takeoff weight and aircraftthrust setting have a measurable and important effect on concentrations of N0x. For example, NOx concentrations can differ by up to 41% for aircraft using the same airframe and engine type, while those due to the same engine type in different airframes can differ by 28%. These differences are as great as, if not greater than, the reported differences in NOx emissions between different engine manufacturers for engines used on the same airframe.

  11. Effects of injection pressure and injection timing to exhaust gas opacity for a conventional indirect diesel engine

    NASA Astrophysics Data System (ADS)

    Budiman, Agus; Majid, Akmal Irfan; Pambayun, Nirmala Adhi Yoga; Yuswono, Lilik Chaerul; Sukoco

    2016-06-01

    In relation to pollution control and environmental friendliness, the quality of exhaust gas from diesel engine needs to be considered. The influences of injection pressure and timing to exhaust gas opacity were investigated. A series of experiments were conducted in a one-cylinder conventional diesel engine with a naturally aspirated system and indirect injection. The default specification of injection pressure was 120 kg/cm2. To investigate the injection pressure, the engine speed was retained on 1000 rpm with pressure variations from 80 to 215 kg/cm2. On the other hand, the various injection timing (8, 10, 12, 16 degrees before TDC point and exact 18 degrees before TDC point) were used to determine their effects to exhaust gas opacity. In this case, the engine speed was varied from 1000 to 2400 rpm. The injector tester was used to measure injection pressure whereas the exhaust gas opacity was determined by the smoke meter. Those data were also statistically analyzed by product moment correlation. As the results, the injection pressure of diesel engine had a non-significant positive correlation to the exhaust gas opacity with r = 0.113 and p > 5 %. Injection pressure should be adjusted to the specification listed on the diesel engine as if it was too high or too low will lead to the higher opacity. Moreover, there was a significant positive correlation between injection timing and the exhaust gas opacity in all engine speeds.

  12. NACA's 9th Annual Aircraft Engineering Research Conference

    NASA Technical Reports Server (NTRS)

    1934-01-01

    Eight of the twelve members of the National Advisory Committee for Aeronautics attending the 9th Annual Aircraft Engineering Research Conference posed for this photograph at Langley Field, Virginia, on May 23, 1934. Those pictured are (left to right): Brig. Gen. Charles A. Lindbergh, USAFR Vice Admiral Arthur B. Cook, USN Charles G. Abbot, Secretary of the Smithsonian Institution Dr. Joseph S. Ames, Committee Chairman Orville Wright Edward P. Warner Fleet Admiral Ernest J. King, USN Eugene L. Vidal, Director, Bureau of Air Commerce.

  13. Structureborne noise measurements on a small twin-engine aircraft

    NASA Technical Reports Server (NTRS)

    Cole, J. E., III; Martini, K. F.

    1988-01-01

    Structureborne noise measurements performed on a twin-engine aircraft (Beechcraft Baron) are reported. There are two overall objectives of the test program. The first is to obtain data to support the development of analytical models of the wing and fuselage, while the second is to evaluate effects of structural parameters on cabin noise. Measurements performed include structural and acoustic responses to impact excitation, structural and acoustic loss factors, and modal parameters of the wing. Path alterations include added mass to simulate fuel, variations in torque of bolts joining wing and fuselage, and increased acoustic absorption. Conclusions drawn regarding these measurements are presented.

  14. Structureborne noise measurements on a small twin-engine aircraft

    NASA Astrophysics Data System (ADS)

    Cole, J. E., III; Martini, K. F.

    1988-06-01

    Structureborne noise measurements performed on a twin-engine aircraft (Beechcraft Baron) are reported. There are two overall objectives of the test program. The first is to obtain data to support the development of analytical models of the wing and fuselage, while the second is to evaluate effects of structural parameters on cabin noise. Measurements performed include structural and acoustic responses to impact excitation, structural and acoustic loss factors, and modal parameters of the wing. Path alterations include added mass to simulate fuel, variations in torque of bolts joining wing and fuselage, and increased acoustic absorption. Conclusions drawn regarding these measurements are presented.

  15. A technique for integrating engine cycle and aircraft configuration optimization

    NASA Technical Reports Server (NTRS)

    Geiselhart, Karl A.

    1994-01-01

    A method for conceptual aircraft design that incorporates the optimization of major engine design variables for a variety of cycle types was developed. The methodology should improve the lengthy screening process currently involved in selecting an appropriate engine cycle for a given application or mission. The new capability will allow environmental concerns such as airport noise and emissions to be addressed early in the design process. The ability to rapidly perform optimization and parametric variations using both engine cycle and aircraft design variables, and to see the impact on the aircraft, should provide insight and guidance for more detailed studies. A brief description of the aircraft performance and mission analysis program and the engine cycle analysis program that were used is given. A new method of predicting propulsion system weight and dimensions using thermodynamic cycle data, preliminary design, and semi-empirical techniques is introduced. Propulsion system performance and weights data generated by the program are compared with industry data and data generated using well established codes. The ability of the optimization techniques to locate an optimum is demonstrated and some of the problems that had to be solved to accomplish this are illustrated. Results from the application of the program to the analysis of three supersonic transport concepts installed with mixed flow turbofans are presented. The results from the application to a Mach 2.4, 5000 n.mi. transport indicate that the optimum bypass ratio is near 0.45 with less than 1 percent variation in minimum gross weight for bypass ratios ranging from 0.3 to 0.6. In the final application of the program, a low sonic boom fix a takeoff gross weight concept that would fly at Mach 2.0 overwater and at Mach 1.6 overland is compared with a baseline concept of the same takeoff gross weight that would fly Mach 2.4 overwater and subsonically overland. The results indicate that for the design mission

  16. Effective density measurements of fresh particulate matter emitted by an aircraft engine

    NASA Astrophysics Data System (ADS)

    Abegglen, Manuel; Durdina, Lukas; Mensah, Amewu; Brem, Benjamin; Corbin, Joel; Rindlisbacher, Theo; Wang, Jing; Lohmann, Ulrike; Sierau, Berko

    2014-05-01

    Introduction Carbonaceous particulate matter (commonly referred to as soot), once emitted into the atmosphere affects the global radiation budget by absorbing and scattering solar radiation. Furthermore, it can alter the formation, lifetime and distribution of clouds by acting as cloud condensation nuclei (CCN) or ice nuclei (IN). The ability of soot particles to act as CCN and IN depends on their size, morphology and chemical composition. Soot particles are known to consist of spherical, primary particles that tend to arrange in chain-like structures. The structure of soot particles typically changes in the atmosphere when the particles are coated with secondary material, thus changing their radiative and cloud microphysical properties. Bond et al. (Journal of Geophysical Research, 2013: Bounding the Role of Black Carbon in the Climate System.) estimated the total industrial-era (1750 to 2005) climate forcing of black carbon to be 1.1 W/m2 ranging from the uncertainty bonds of 0.17 W/m2 to 2.1 W/m2. Facing the large uncertainty range, there is a need for a better characterization of soot particles abundant in the atmosphere. We provide experimental data on physical properties such as size, mass, density and morphology of freshly produced soot particles from a regularly used aircraft engine and from four laboratory generated soot types. This was done using a Differential Mobility Analyzer (DMA) and a Centrifugal Particle Mass Analyzer (CPMA), a relatively new instrument that records mass distributions of aerosol particles. Experimental Aircraft engine exhaust particles were collected and analysed during the Aviation Particle Regulatory Instrumentation Demonstration Experiments (A-PRIDE) campaigns in a test facility at the Zurich airport in November 2012 and August 2013. The engines were operated at different relative thrust levels spanning 7 % to 100 %. The sample was led into a heated line in order to prevent condensation of water and evolution of secondary

  17. An Integrated Architecture for Aircraft Engine Performance Monitoring and Fault Diagnostics: Engine Test Results

    NASA Technical Reports Server (NTRS)

    Rinehart, Aidan W.; Simon, Donald L.

    2015-01-01

    This paper presents a model-based architecture for performance trend monitoring and gas path fault diagnostics designed for analyzing streaming transient aircraft engine measurement data. The technique analyzes residuals between sensed engine outputs and model predicted outputs for fault detection and isolation purposes. Diagnostic results from the application of the approach to test data acquired from an aircraft turbofan engine are presented. The approach is found to avoid false alarms when presented nominal fault-free data. Additionally, the approach is found to successfully detect and isolate gas path seeded-faults under steady-state operating scenarios although some fault misclassifications are noted during engine transients. Recommendations for follow-on maturation and evaluation of the technique are also presented.

  18. An Integrated Architecture for Aircraft Engine Performance Monitoring and Fault Diagnostics: Engine Test Results

    NASA Technical Reports Server (NTRS)

    Rinehart, Aidan W.; Simon, Donald L.

    2014-01-01

    This paper presents a model-based architecture for performance trend monitoring and gas path fault diagnostics designed for analyzing streaming transient aircraft engine measurement data. The technique analyzes residuals between sensed engine outputs and model predicted outputs for fault detection and isolation purposes. Diagnostic results from the application of the approach to test data acquired from an aircraft turbofan engine are presented. The approach is found to avoid false alarms when presented nominal fault-free data. Additionally, the approach is found to successfully detect and isolate gas path seeded-faults under steady-state operating scenarios although some fault misclassifications are noted during engine transients. Recommendations for follow-on maturation and evaluation of the technique are also presented.

  19. Reduction of NOx and PM in marine diesel engine exhaust gas using microwave plasma

    NASA Astrophysics Data System (ADS)

    Balachandran, W.; FInst, P.; Manivannan, N.; Beleca, R.; Abbod, M.

    2015-10-01

    Abatement of NOx and particulate matters (PM) of marine diesel exhaust gas using microwave (MW) non-thermal plasma is presented in this paper. NOx mainly consist of NO and less concentration of NO2 in a typical two stoke marine diesel engine and microwave plasma generation can completely remove NO. MW was generated using two 2kW microwave sources and a saw tooth passive electrode. Passive electrode was used to generate high electric field region within microwave environment where high energetic electrons (1-3eV) are produced for the generation of non-thermal plasma (NTP). 2kW gen-set diesel exhaust gas was used to test our pilot-scale MW plasma reactor. The experimental results show that almost 100% removal of NO is possible for the exhaust gas flow rate of 60l/s. It was also shown that MW can significantly remove soot particles (PM, 10nm to 365nm) entrained in the exhaust gas of 200kW marine diesel engine with 40% engine load and gas flow rate of 130l/s. MW without generating plasma showed reduction up to 50% reduction of PM and with the plasma up to 90% reduction. The major challenge in these experiments was that igniting the desired plasma and sustaining it with passive electrodes for longer period (10s of minutes) as it required fine tuning of electrode position, which was influenced by many factors such as gas flow rate, geometry of reactor and MW power.

  20. Improving safety of aircraft engines: a consortium approach

    NASA Astrophysics Data System (ADS)

    Brasche, Lisa J. H.

    1996-11-01

    With over seven million departures per year, air transportation has become not a luxury, but a standard mode of transportation for the United States. A critical aspect of modern air transport is the jet engine, a complex engineered component that has enabled the rapid travel to which we have all become accustomed. One of the enabling technologies for safe air travel is nondestructive evaluation, or NDE, which includes various inspection techniques used to assess the health or integrity of a structure, component, or material. The Engine Titanium Consortium (ETC) was established in 1993 to respond to recommendations made by the Federal Aviation Administration (FAA) Titanium Rotating Components Review Team (TRCRT) for improvements in inspection of engine titanium. Several recent accomplishments of the ETC are detailed in this paper. The objective of the Engine Titanium Consortium is to provide the FAAand the manufacturers with reliable and costeffective new methods and/or improvements in mature methods for detecting cracks, inclusions, and imperfections in titanium. The consortium consists of a team of researchers from academia and industry-namely, Iowa State University, Allied Signal Propulsion Engines, General Electric Aircraft Engines, and Pratt & Whitney Engines-who work together to develop program priorities, organize a program plan, conduct the research, and implement the solutions. The true advantage of the consortium approach is that it brings together the research talents of academia and the engineering talents of industry to tackle a technology-base problem. In bringing industrial competitors together, the consortium ensures that the research results, which have safety implications and result from FAA funds, are shared and become part of the public domain.

  1. Effects of the biodiesel blend fuel on aldehyde emissions from diesel engine exhaust

    NASA Astrophysics Data System (ADS)

    Peng, Chiung-Yu; Yang, Hsi-Hsien; Lan, Cheng-Hang; Chien, Shu-Mei

    Interest in use of biodiesel fuels derived from vegetable oils or animal fats as alternative fuels for petroleum-based diesels has increased due to biodiesels having similar properties of those of diesels, and characteristics of renewability, biodegradability and potential beneficial effects on exhaust emissions. Generally, exhaust emissions of regulated pollutants are widely studied and the results favor biodiesels on CO, HC and particulate emissions; however, limited and inconsistent data are showed for unregulated pollutants, such as carbonyl compounds, which are also important indicators for evaluating available vehicle fuels. For better understanding biodiesel, this study examines the effects of the biodiesel blend fuel on aldehyde chemical emissions from diesel engine exhausts in comparison with those from the diesel fuel. Test engines (Mitsubishi 4M40-2AT1) with four cylinders, a total displacement of 2.84 L, maximum horsepower of 80.9 kW at 3700 rpm, and maximum torque of 217.6 N m at 2000 rpm, were mounted and operated on a Schenck DyNAS 335 dynamometer. Exhaust emission tests were performed several times for each fuel under the US transient cycle protocol from mileages of 0-80,000 km with an interval of 20,000 km, and two additional measurements were carried out at 40,000 and 80,000 km after maintenance, respectively. Aldehyde samples were collected from diluted exhaust by using a constant volume sampling system. Samples were extracted and analyzed by the HPLC/UV system. Dominant aldehydes of both fuels' exhausts are formaldehyde and acetaldehyde. These compounds together account for over 75% of total aldehyde emissions. Total aldehyde emissions for B20 (20% waste cooking oil biodiesel and 80% diesel) and diesel fuels are in the ranges of 15.4-26.9 mg bhp-h -1 and 21.3-28.6 mg bhp-h -1, respectively. The effects of increasing mileages and maintenance practice on aldehyde emissions are insignificant for both fuels. B20 generates slightly less emission than

  2. Heat Transfer Analysis of an Engine Exhaust-Based Thermoelectric Evaporation System

    NASA Astrophysics Data System (ADS)

    Chen, Ming; Tan, Gangfeng; Guo, Xuexun; Deng, Yadong; Zhang, Hongguang; Yang, Kai

    2016-03-01

    Engine exhaust can be used by thermoelectric generators for improving thermal efficiency of internal combustion engines. In his paper, the performance of a thermoelectric evaporation system is investigated. First, the thermal characteristics of diesel engines are obtained according to the experiment data. Then, mathematical models are created based on the specified conditions of the coolant cycle and the evaporator geometric parameters. Finally, the heat transfer characteristics and power performance of the thermoelectric evaporation system are estimated, and a comparison with the system in which the heat exchanger operates with all-liquid coolant is investigated. The results show that the overall heat transfer rate of the thermoelectric evaporator system increases with engine power. At the rated condition, the two-phase zone with an area of 0.8689 m2 dominates the evaporator's heat transfer area compared with the preheated zone area of 0.0055 m2, and for the thermoelectric module, the cold-side temperature is stable at 74°C while the hot-side temperature drops from 341.8°C to 304.9°C along the exhaust direction. For certain thermoelectric cells, the temperature difference between the cold side and hot side rises with the engine load, and the temperature difference drops from 266.9°C to 230.6°C along the exhaust direction. For two cold-side systems with the same heat transfer, coolant mass flow rate in the evaporator with two-phase state is much less, and the temperature difference along with equivalent heat transfer length L is significantly larger than in the all-liquid one. At rated power point, power generated by thermoelectric cells in the two-phase evaporation system is 508.4 W, while the other is only 328.8 W.

  3. Comparison of Waste Heat Recovery from the Exhaust of a Spark Ignition and a Diesel Engine

    NASA Astrophysics Data System (ADS)

    Wojciechowski, K. T.; Schmidt, M.; Zybala, R.; Merkisz, J.; Fuć, P.; Lijewski, P.

    2010-09-01

    We present herein a design for and performance measurements of a prototype thermoelectric generator (TEG) mounted on both a spark ignition engine (0.9 dm3) and a self-ignition engine (1.3 dm3). Using the prototype TEG as a tool, benchmark studies were performed in order to compare its parameters in terms of heat recovery from exhaust gases of both engine types. The test bed study was performed with an Automex AMX-210/100 eddy-current brake dynamometer. To provide a comprehensive overview of the TEG operating conditions, characterization of its parameters such as temperature distribution, heat flux density, and efficiency was done at engine speeds and loads similar to those within the range of operation of real road conditions.

  4. Fiber optics for aircraft engine/inlet control

    NASA Technical Reports Server (NTRS)

    Baumbick, R. J.

    1981-01-01

    NASA programs that focus on the use of fiber optics for aircraft engine/inlet control are reviewed. Fiber optics for aircraft control is attractive because of its inherent immunity to EMI and RFI noise. Optical signals can be safely transmitted through areas that contain flammable or explosive materials. The use of optics also makes remote sensing feasible by eliminating the need for electrical wires to be connected between sensors and computers. Using low-level optical signals to control actuators is also feasible when power is generated at the actuator. Each application of fiber optics for aircraft control has different requirements for both the optical cables and the optical connectors. Sensors that measure position and speed by using slotted plates can use lossy cables and bundle connectors if data transfer is in the parallel mode. If position and speed signals are multiplexed, cable and connector requirements change. Other sensors that depend on changes in transmission through materials require dependable characteristics of both the optical cables and the optical connectors. A variety of sensor types are reviewed, including rotary position encoders, tachometers, temperature sensors, and blade tip clearance sensors for compressors and turbines. Research on a gallium arsenide photoswitch for optically switched actuators that operate at 250 C is also described.

  5. Investigation of the misfueling of reciprocating piston aircraft engines

    NASA Technical Reports Server (NTRS)

    Scott, J. Holland, Jr.

    1988-01-01

    The Aircraft Misfueling Detection Project was developed by the Goddard Space Flight Center/Wallops Flight Facility at Wallops Island, Virginia. Its purpose was to investigate the misfueling of reciprocating piston aircraft engines by the inadvertent introduction of jet fuel in lieu of or as a contaminant of aviation gasoline. The final objective was the development of a device(s) that will satisfactorily detect misfueling and provide pilots with sufficient warning to avoid injury, fatality, or equipment damage. Two devices have been developed and successfully tested: one, a small contamination detection kit, for use by the pilot, and a second, more sensitive, modified gas chromatograph for use by the fixed-base operator. The gas chromatograph, in addition to providing excellent quality control of the fixed-base operator's fuel handling, is a very good backup for the detection kit in the event it produces negative results. Design parameters were developed to the extent that they may be applied easily to commercial production by the aircraft industry.

  6. 40 CFR 1045.103 - What exhaust emission standards must my outboard and personal watercraft engines meet?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... types. The exhaust emission standards in this section apply for engines using the fuel type on which the... hydrocarbons in this section based on the following types of hydrocarbon emissions for engines powered by the... my outboard and personal watercraft engines meet? 1045.103 Section 1045.103 Protection of...

  7. 40 CFR 86.1309-90 - Exhaust gas sampling system; Otto-cycle and non-petroleum-fueled engines.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...-cycle and non-petroleum-fueled engines. 86.1309-90 Section 86.1309-90 Protection of Environment...-cycle and non-petroleum-fueled engines. (a)(1) General. The exhaust gas sampling system described in... gasoline-fueled, natural gas-fueled, liquefied petroleum gas-fueled or methanol-fueled engines. In the...

  8. 40 CFR 86.1309-90 - Exhaust gas sampling system; Otto-cycle and non-petroleum-fueled engines.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...-cycle and non-petroleum-fueled engines. 86.1309-90 Section 86.1309-90 Protection of Environment...-cycle and non-petroleum-fueled engines. (a)(1) General. The exhaust gas sampling system described in... gasoline-fueled, natural gas-fueled, liquefied petroleum gas-fueled or methanol-fueled engines. In the...

  9. 40 CFR 86.1309-90 - Exhaust gas sampling system; Otto-cycle and non-petroleum-fueled engines.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...-cycle and non-petroleum-fueled engines. 86.1309-90 Section 86.1309-90 Protection of Environment...-cycle and non-petroleum-fueled engines. (a)(1) General. The exhaust gas sampling system described in... gasoline-fueled, natural gas-fueled, liquefied petroleum gas-fueled or methanol-fueled engines. In the...

  10. CF6 jet engine performance improvement program. Short core exhaust nozzle performance improvement concept. [specific fuel consumption reduction

    NASA Technical Reports Server (NTRS)

    Fasching, W. A.

    1979-01-01

    The short core exhaust nozzle was evaluated in CF6-50 engine ground tests including performance, acoustic, and endurance tests. The test results verified the performance predictions from scale model tests. The short core exhaust nozzle provides an internal cruise sfc reduction of 0.9 percent without an increase in engine noise. The nozzle hardware successfully completed 1000 flight cycles of endurance testing without any signs of distress.

  11. Development of an Organic Rankine Cycle system for exhaust energy recovery in internal combustion engines

    NASA Astrophysics Data System (ADS)

    Cipollone, Roberto; Bianchi, Giuseppe; Gualtieri, Angelo; Di Battista, Davide; Mauriello, Marco; Fatigati, Fabio

    2015-11-01

    Road transportation is currently one of the most influencing sectors for global energy consumptions and CO2 emissions. Nevertheless, more than one third of the fuel energy supplied to internal combustion engines is still rejected to the environment as thermal waste at the exhaust. Therefore, a greater fuel economy might be achieved recovering the energy from exhaust gases and converting it into useful power on board. In the current research activity, an ORC-based energy recovery system was developed and coupled with a diesel engine. The innovative feature of the recovery power unit relies upon the usage of sliding vane rotary machines as pump and expander. After a preliminary exhaust gas mapping, which allowed to assess the magnitude of the thermal power to be recovered, a thermodynamic analysis was carried out to design the ORC system and the sliding vane machines using R236fa as working fluid. An experimental campaign was eventually performed at different operating regimes according to the ESC procedure and investigated the recovery potential of the power unit at design and off-design conditions. Mechanical power recovered ranged from 0.7 kW up to 1.9 kW, with an overall cycle efficiency from 3.8% up to 4.8% respectively. These results candidate sliding vane machines as efficient and reliable devices for waste heat recovery applications.

  12. Structural Optimization Methodology for Rotating Disks of Aircraft Engines

    NASA Technical Reports Server (NTRS)

    Armand, Sasan C.

    1995-01-01

    In support of the preliminary evaluation of various engine technologies, a methodology has been developed for structurally designing the rotating disks of an aircraft engine. The structural design methodology, along with a previously derived methodology for predicting low-cycle fatigue life, was implemented in a computer program. An interface computer program was also developed that gathers the required data from a flowpath analysis program (WATE) being used at NASA Lewis. The computer program developed for this study requires minimum interaction with the user, thus allowing engineers with varying backgrounds in aeropropulsion to successfully execute it. The stress analysis portion of the methodology and the computer program were verified by employing the finite element analysis method. The 10th- stage, high-pressure-compressor disk of the Energy Efficient Engine Program (E3) engine was used to verify the stress analysis; the differences between the stresses and displacements obtained from the computer program developed for this study and from the finite element analysis were all below 3 percent for the problem solved. The computer program developed for this study was employed to structurally optimize the rotating disks of the E3 high-pressure compressor. The rotating disks designed by the computer program in this study were approximately 26 percent lighter than calculated from the E3 drawings. The methodology is presented herein.

  13. Application of superalloy powder metallurgy for aircraft engines

    NASA Technical Reports Server (NTRS)

    Dreshfield, R. L.; Miner, R. V., Jr.

    1980-01-01

    In the last decade, Government/Industry programs have advanced powder metallurgy-near-net-shape technology to permit the use of hot isostatic pressed (HIP) turbine disks in the commercial aircraft fleet. These disks offer a 30% savings of input weight and an 8% savings in cost compared in cast-and-wrought disks. Similar savings were demonstrated for other rotating engine components. A compressor rotor fabricated from hot-die-forged-HIP superalloy billets revealed input weight savings of 54% and cost savings of 35% compared to cast-and-wrought parts. Engine components can be produced from compositions such as Rene 95 and Astroloy by conventional casting and forging, by forging of HIP powder billets, or by direct consolidation of powder by HIP. However, each process produces differences in microstructure or introduces different defects in the parts. As a result, their mechanical properties are not necessarily identical. Acceptance methods should be developed which recognize and account for the differences.

  14. Commercial Aircraft Maintenance Experience Relating to Engine External Hardware

    NASA Technical Reports Server (NTRS)

    Soditus, Sharon M.

    2006-01-01

    Airlines are extremely sensitive to the amount of dollars spent on maintaining the external engine hardware in the field. Analysis reveals that many problems revolve around a central issue, reliability. Fuel and oil leakage due to seal failure and electrical fault messages due to wire harness failures play a major role in aircraft delays and cancellations (D&C's) and scheduled maintenance. Correcting these items on the line requires a large investment of engineering resources and manpower after the fact. The smartest and most cost effective philosophy is to build the best hardware the first time. The only way to do that is to completely understand and model the operating environment, study the field experience of similar designs and to perform extensive testing.

  15. On-line analysis of diesel engine exhaust gases by selected ion flow tube mass spectrometry.

    PubMed

    Smith, David; Spanĕl, Patrik; Dabill, David; Cocker, John; Rajan, Bob

    2004-01-01

    Selected ion flow tube mass spectrometry (SIFT-MS) has been used to analyse on-line and in real time the exhaust gas emissions from a Caterpillar 3304 diesel engine under different conditions of load (idle and 50% of rated load) and speed (910, 1500 and 2200 rpm) using three types of fuel: an ultra-low-sulphur diesel, a rapeseed methyl ester and gas oil. SIFT-MS analyses of the alkanes, alkenes and aromatic hydrocarbons in the headspace of these fuels were also performed, but the headspace of the rapeseed methyl ester consists mainly of methanol and a compound with the molecular formula C4H8O. The exhaust gases were analysed for NO and NO2 using O2+* reagent ions and for HNO2 using H3O+ reagent ions. The following aldehydes and ketones in the exhaust gases were quantified by using the combination of H3O+ and NO+ reagent ions: formaldehyde, acetaldehyde, propenal, propanal, acetone, butanal, pentanal, butanone and pentanone. Formaldehyde, acetaldehyde and pentenal, all known respiratory irritants associated with sensitisation to asthma of workers exposed to diesel exhaust, are variously present within the range 100-2000 ppb. Hydrocarbons in the exhaust gases accessible to SIFT-MS analyses were also quantified as total concentrations of the various isomers of C3H4, C3H6, C4H6, C5H8, C5H10, C6H8, C6H10, C7H14, C6H6, C7H8, C8H10 and C9H12.

  16. Subchronic (12-week) inhalation toxicity study of methanol-fueled engine exhaust in rats

    SciTech Connect

    Maejima, Kazuhito; Suzuki, Tadao ); Numata, Hiroaki ); Maekawa, Akihiko ); Nagase, Sumi ); Ishinishi, Noburu )

    1994-01-01

    To evaluate the inhalation toxicity to rats of exhaust at low concentration for longer periods, Fischer 344 rats were exposed to 3 concentrations of exhaust generated by an M85 methanol-fueled engine (methanol with 15% gasoline) without catalyst for 8 h/d, 6 d/wk for 4, 8, or 12 wk. Concentration- and time-dependent increase carboxyhemoglobin in the erythrocytes and decrease in cytochrome P-450 in the lungs were observed in all treated groups. Furthermore, significant increases in plasma formaldehyde were observed in the group exposed to the highest concentration of exhaust (carbon monoxide, 89.8 ppm; formaldehyde, 2.3 ppm; methanol, 8.1 ppm; nitrogen oxides, 22.9 ppm; nitrogen dioxide, 1.1 ppm) for 8 or 12 wk. No change of plasma folic acid was observed in any group, and no methanol or formic acid was detected in the plasma in any animals. Histopathologically, exposure-related changes were found only in the nasal cavity of the high-concentration group. Slight hyperplasia/squamous metaplasias of the respiratory epithelium lining the nasoturbinate and maxilloturbinate were observed after 4 wk of exposure, and the incidences and degrees of these lesions increased slightly with the exposure time. No changes were found in the olfactory epithelium of the nasal cavity. As judged by optical microscopy, the exhaust concentration with no effect on the nasal cavity under the experimental conditions was concluded to be the medium concentration level containing 0.55 ppm formaldehyde. In the present study, however, concentration- and time-dependent increase of carboxyhemoglobin in the erythrocytes and decrease of the lung P-450 level were observed. Therefore, further study on more long-term inhalation of lower concentrations of exhaust might be needed. 31 refs., 2 figs., 3 tabs.

  17. Simulation of Aircraft Engine Blade-Out Structural Dynamics. Revised

    NASA Technical Reports Server (NTRS)

    Lawrence, Charles; Carney, Kelly; Gallardo, Vicente

    2001-01-01

    A primary concern of aircraft structure designers is the accurate simulation of the blade-out event and the subsequent windmilling of the engine. Reliable simulations of the blade-out event are required to insure structural integrity during flight as well as to guarantee successful blade-out certification testing. The system simulation includes the lost blade loadings and the interactions between the rotating turbomachinery and the remaining aircraft structural components. General-purpose finite element structural analysis codes such as MSC NASTRAN are typically used and special provisions are made to include transient effects from the blade loss and rotational effects resulting from the engine's turbomachinery. The present study provides the equations of motion for rotordynamic response including the effect of spooldown speed and rotor unbalance and examines the effects of these terms on a cantilevered rotor. The effect of spooldown speed is found to be greater with increasing spooldown rate. The parametric term resulting from the mass unbalance has a more significant effect on the rotordynamic response than does the spooldown term. The parametric term affects both the peak amplitudes as well as the resonant frequencies of the rotor.

  18. Simulation of Aircraft Engine Blade-Out Structural Dynamics

    NASA Technical Reports Server (NTRS)

    Lawrence, Charles; Carney, Kelly; Gallardo, Vicente

    2001-01-01

    A primary concern of aircraft structure designers is the accurate simulation of the blade-out event and the subsequent windmilling of the engine. Reliable simulations of the blade-out event are required to insure structural integrity during flight as well as to guarantee successful blade-out certification testing. The system simulation includes the lost blade loadings and the interactions between the rotating turbomachinery and the remaining aircraft structural components. General-purpose finite element structural analysis codes such as MSC NASTRAN are typically used and special provisions are made to include transient effects from the blade loss and rotational effects resulting from the engine's turbomachinery. The present study provides the equations of motion for rotordynamic response including the effect of spooldown speed and rotor unbalance and examines the effects of these terms on a cantilevered rotor. The effect of spooldown speed is found to be greater with increasing spooldown rate. The parametric term resulting from the mass unbalance has a more significant effect on the rotordynamic response than does the spooldown term. The parametric term affects both the peak amplitudes as well as the resonant frequencies of the rotor.

  19. Ion beam analyses of particulate matter in exhaust gas of a ship diesel engine

    NASA Astrophysics Data System (ADS)

    Furuyama, Yuichi; Fujita, Hirotsugu; Taniike, Akira; Kitamura, Akira

    2011-12-01

    There is an urgent need to reduce emission of the particulate matter (PM) in the exhaust gas from ship diesel engines causing various health hazards and serious environmental pollution. Usually the heavy fuel oil (HFO) for ships is of low quality, and contains various kinds of impurities. Therefore, the emission of PM along with exhaust gas from ship diesel engines is one of the most serious environmental issues. However, the PM fundamental properties are not well known. Therefore, it is important to perform elemental analysis of the PM. The HFO contains sulfur with a relatively high concentration of a few percent. It is important to make quantitative measurements of sulfur in the PM, because this element is poisonous for the human body. In the present work, PM samples were collected from exhaust gas of a test engine, and RBS and PIXE analyses were applied successfully to quantitative analysis of the PM samples. The RBS analysis enabled quantitative analysis of sulfur and carbon in the collected PM, while heavier elements such as vanadium and iron were analyzed quantitatively with the PIXE analysis. It has been found that the concentration ratio of sulfur to carbon was between 0.007 and 0.012, and did not strongly depend on the output power of the engine. The S/ C ratio is approximately equal to the original composition of the HFO used in the present work, 0.01. From the known conversion ratio 0.015 of sulfur in the HFO to sulfates, the conversion ratio of carbon in the HFO to the PM is found to be 0.01-0.02 by the RBS measurements. On the other hand, the PIXE analysis revealed a vanadium enrichment of one order of magnitude in the PM.

  20. Highly integrated digital electronic control: Digital flight control, aircraft model identification, and adaptive engine control

    NASA Technical Reports Server (NTRS)

    Baer-Riedhart, Jennifer L.; Landy, Robert J.

    1987-01-01

    The highly integrated digital electronic control (HIDEC) program at NASA Ames Research Center, Dryden Flight Research Facility is a multiphase flight research program to quantify the benefits of promising integrated control systems. McDonnell Aircraft Company is the prime contractor, with United Technologies Pratt and Whitney Aircraft, and Lear Siegler Incorporated as major subcontractors. The NASA F-15A testbed aircraft was modified by the HIDEC program by installing a digital electronic flight control system (DEFCS) and replacing the standard F100 (Arab 3) engines with F100 engine model derivative (EMD) engines equipped with digital electronic engine controls (DEEC), and integrating the DEEC's and DEFCS. The modified aircraft provides the capability for testing many integrated control modes involving the flight controls, engine controls, and inlet controls. This paper focuses on the first two phases of the HIDEC program, which are the digital flight control system/aircraft model identification (DEFCS/AMI) phase and the adaptive engine control system (ADECS) phase.