Science.gov

Sample records for aircraft engine manufacturers

  1. 14 CFR 21.6 - Manufacture of new aircraft, aircraft engines, and propellers.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Manufacture of new aircraft, aircraft..., DEPARTMENT OF TRANSPORTATION AIRCRAFT CERTIFICATION PROCEDURES FOR PRODUCTS AND PARTS General § 21.6 Manufacture of new aircraft, aircraft engines, and propellers. (a) Except as specified in paragraphs (b)...

  2. 14 CFR 21.6 - Manufacture of new aircraft, aircraft engines, and propellers.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Manufacture of new aircraft, aircraft..., DEPARTMENT OF TRANSPORTATION AIRCRAFT CERTIFICATION PROCEDURES FOR PRODUCTS AND PARTS General § 21.6 Manufacture of new aircraft, aircraft engines, and propellers. (a) Except as specified in paragraphs (b)...

  3. 14 CFR 21.6 - Manufacture of new aircraft, aircraft engines, and propellers.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Manufacture of new aircraft, aircraft..., DEPARTMENT OF TRANSPORTATION AIRCRAFT CERTIFICATION PROCEDURES FOR PRODUCTS AND PARTS General § 21.6 Manufacture of new aircraft, aircraft engines, and propellers. (a) Except as specified in paragraphs (b)...

  4. Summary of the general aviation manufacturers' position on aircraft piston engine emissions

    NASA Technical Reports Server (NTRS)

    Helms, J. L.

    1976-01-01

    The General Aviation Manufacturers recommended that the EPA rescind the aircraft piston engine emissions regulations currently on the books. The reason was the very small emission reduction potential and the very poor benefit-cost ratio involved in this form of emission reduction. The limited resources of this industry can far better be devoted to items of much greater benefit to the citizens of this country - reducing noise, improving fuel efficiency (which will incidently reduce exhaust emissions), and improving the safety, operational, and economic aspects of aircraft, all far greater contributions to our total national transportation system.

  5. Aircraft Engine Emissions. [conference

    NASA Technical Reports Server (NTRS)

    1977-01-01

    A conference on a aircraft engine emissions was held to present the results of recent and current work. Such diverse areas as components, controls, energy efficient engine designs, and noise and pollution reduction are discussed.

  6. Investigation of Respiratory and Dermal Symptoms Associated with Metal Working Fluids at an Aircraft Engine Manufacturing Facility

    PubMed Central

    Meza, Francisco; Chen, Lilia; Hudson, Naomi

    2015-01-01

    Background Each year, 1.2 million metalworkers are exposed to metalworking fluids (MWFs), which can cause dermal and respiratory disease. The National Institute for Occupational Safety and Health (NIOSH) conducted a health hazard evaluation of MWF exposures at an aircraft engine manufacturing facility. The objectives were to determine employee exposures to endotoxin and MWFs in the air, characterize symptoms experienced by employees working with MWFs, compare them to symptoms of employees unexposed to MWFs, and make recommendations for reducing exposures based on results. Methods 407 workers were categorized as MWF exposed or MWF unexposed and completed questionnaires. Estimated prevalence ratios (PR) of dermatitis, asthma, and work-related asthma (WRA) symptoms were calculated. Airborne concentrations of MWF and endotoxin were measured, and work practices observed. Results MWF exposed workers had a significantly higher prevalence of dermatitis on wrists/forearms (PR 2.59; 95% CI 1.22, 5.46), asthma symptoms (PR 1.49; 95% CI 1.05, 2.13) and WRA symptoms (PR 2.10; 95% CI 1.22, 3.30) than unexposed workers. Airborne concentrations of MWF were below the NIOSH recommended exposure limit (REL) for MWF aerosols (thoracic particulate mass). Conclusions Despite MWF exposures below the NIOSH REL, exposed workers had a higher prevalence of asthma, WRA, and dermatitis symptoms than unexposed workers. Recommendations to reduce exposure included configuring mist collectors to automatically turn on when the machine is in use, and enforcing enclosure use. PMID:24122918

  7. 14 CFR 21.128 - Tests: aircraft engines.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Tests: aircraft engines. 21.128 Section 21... engines. (a) Each person manufacturing aircraft engines under a type certificate only shall subject each engine (except rocket engines for which the manufacturer must establish a sampling technique) to...

  8. 14 CFR 21.128 - Tests: aircraft engines.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Tests: aircraft engines. 21.128 Section 21... engines. (a) Each person manufacturing aircraft engines under a type certificate only shall subject each engine (except rocket engines for which the manufacturer must establish a sampling technique) to...

  9. Energy efficient aircraft engines

    NASA Technical Reports Server (NTRS)

    Chamberlin, R.; Miller, B.

    1979-01-01

    The three engine programs that constitute the propulsion portion of NASA's Aircraft Energy Efficiency Program are described, their status indicated, and anticipated improvements in SFC discussed. The three engine programs are: (1) engine component improvement, directed at current engines, (2) energy efficient engine, directed at new turbofan engines, and (3) advanced turboprops, directed at technology for advanced turboprop-powered aircraft with cruise speeds to Mach 0.8. Unique propulsion system interactive ties to the airframe resulting from engine design features to reduce fuel consumption are discussed. Emphasis is placed on the advanced turboprop since it offers the largest potential fuel savings of the three propulsion programs and also has the strongest interactive ties to the airframe.

  10. Energy efficient aircraft engines

    NASA Technical Reports Server (NTRS)

    Chamberlin, R.; Miller, B.

    1979-01-01

    The three engine programs that constitute the propulsion portion of NASA's Aircraft Energy Efficiency Program are described, their status indicated, and anticipated improvements in SFC discussed. The three engine programs are (1) Engine Component Improvement--directed at current engines, (2) Energy Efficiency Engine directed at new turbofan engines, and (3) Advanced Turboprops--directed at technology for advanced turboprop--powered aircraft with cruise speeds to Mach 0.8. Unique propulsion system interactive ties to the airframe resulting from engine design features to reduce fuel consumption are discussed. Emphasis is placed on the advanced turboprop since it offers the largest potential fuel savings of the three propulsion programs and also has the strongest interactive ties to the airframe.

  11. Aircraft engines. II

    SciTech Connect

    Smith, M.G. Jr.

    1988-01-01

    An account is given of the design features and prospective performance gains of ultrahigh bypass subsonic propulsion configurations and various candidate supersonic commercial aircraft powerplants. The supersonic types, whose enhanced thermodynamic cycle efficiency is considered critical to the economic viability of a second-generation SST, are the variable-cycle engine, the variable stream control engine, the turbine-bypass engine, and the supersonic-throughflow fan. Also noted is the turboramjet concept, which will be applicable to hypersonic aircraft whose airframe structure materials can withstand the severe aerothermodynamic conditions of this flight regime.

  12. Aircraft engine pollution reduction

    NASA Technical Reports Server (NTRS)

    Rudey, R. A.

    1972-01-01

    The effect of engine operation on the types and levels of the major aircraft engine pollutants is described and the major factors governing the formation of these pollutants during the burning of hydrocarbon fuel are discussed. Methods which are being explored to reduce these pollutants are discussed and their application to several experimental research programs are pointed out. Results showing significant reductions in the levels of carbon monoxide, unburned hydrocarbons, and oxides of nitrogen obtained from experimental combustion research programs are presented and discussed to point out potential application to aircraft engines.

  13. Aircraft Manufacturing Occupations. Aviation Careers Series.

    ERIC Educational Resources Information Center

    Zaharevitz, Walter

    This booklet, one in a series on aviation careers, outlines the variety of careers available in the aircraft manufacturing industry. The first part of the booklet provides general information about careers in the aerospace industry (of which aircraft manufacturing is one part), including the numbers of various types of workers employed in those…

  14. Mortality among aircraft manufacturing workers

    PubMed Central

    Boice, J. D.; Marano, D. E.; Fryzek, J. P.; Sadler, C. J.; McLaughlin, J. K.

    1999-01-01

    OBJECTIVES: To evaluate the risk of cancer and other diseases among workers engaged in aircraft manufacturing and potentially exposed to compounds containing chromate, trichloroethylene (TCE), perchloroethylene (PCE), and mixed solvents. METHODS: A retrospective cohort mortality study was conducted of workers employed for at least 1 year at a large aircraft manufacturing facility in California on or after 1 January 1960. The mortality experience of these workers was determined by examination of national, state, and company records to the end of 1996. Standardised mortality ratios (SMRs) were evaluated comparing the observed numbers of deaths among workers with those expected in the general population adjusting for age, sex, race, and calendar year. The SMRs for 40 cause of death categories were computed for the total cohort and for subgroups defined by sex, race, position in the factory, work duration, year of first employment, latency, and broad occupational groups. Factory job titles were classified as to likely use of chemicals, and internal Poisson regression analyses were used to compute mortality risk ratios for categories of years of exposure to chromate, TCE, PCE, and mixed solvents, with unexposed factory workers serving as referents. RESULTS: The study cohort comprised 77,965 workers who accrued nearly 1.9 million person-years of follow up (mean 24.2 years). Mortality follow up, estimated as 99% complete, showed that 20,236 workers had died by 31 December 1996, with cause of death obtained for 98%. Workers experienced low overall mortality (all causes of death SMR 0.83) and low cancer mortality (SMR 0.90). No significant increases in risk were found for any of the 40 specific cause of death categories, whereas for several causes the numbers of deaths were significantly below expectation. Analyses by occupational group and specific job titles showed no remarkable mortality patterns. Factory workers estimated to have been routinely exposed to chromate were

  15. Optics in aircraft engines

    NASA Astrophysics Data System (ADS)

    Vachon, James; Malhotra, Subhash

    The authors describe optical IR&D (independent research and development) programs designed to demonstrate and evaluate optical technologies for incorporation into next-generation military and commercial aircraft engines. Using a comprehensive demonstration program to validate this technology in an on-engine environment, problems encountered can be resolved early and risk can be minimized. In addition to specific activities related to the optics demonstration on the fighter engine, there are other optical programs underway, including a solenoid control system, a light off detection system, and an optical communication link. Research is also underway in simplifying opto-electronics and exploiting multiplexing to further reduce cost and weight.

  16. Aircraft Engine Systems

    NASA Technical Reports Server (NTRS)

    Veres, Joseph

    2001-01-01

    This report outlines the detailed simulation of Aircraft Turbofan Engine. The objectives were to develop a detailed flow model of a full turbofan engine that runs on parallel workstation clusters overnight and to develop an integrated system of codes for combustor design and analysis to enable significant reduction in design time and cost. The model will initially simulate the 3-D flow in the primary flow path including the flow and chemistry in the combustor, and ultimately result in a multidisciplinary model of the engine. The overnight 3-D simulation capability of the primary flow path in a complete engine will enable significant reduction in the design and development time of gas turbine engines. In addition, the NPSS (Numerical Propulsion System Simulation) multidisciplinary integration and analysis are discussed.

  17. Fuel conservative aircraft engine technology

    NASA Technical Reports Server (NTRS)

    Nored, D. L.

    1978-01-01

    Technology developments for more fuel-efficiency subsonic transport aircraft are reported. Three major propulsion projects were considered: (1) engine component improvement - directed at current engines; (2) energy efficient engine - directed at new turbofan engines; and (3) advanced turboprops - directed at technology for advanced turboprop-powered aircraft. Each project is reviewed and some of the technologies and recent accomplishments are described.

  18. Gluing Practice at Aircraft Manufacturing Plants

    NASA Technical Reports Server (NTRS)

    Truax, T R

    1928-01-01

    This report records observations and recommendations resulting from an inspection trip to representative aircraft manufacturing establishments and repair stations. This inspection was made for the Navy Department and was specifically in reference to gluing practice at the various places visited. The period of the visits was between November 23, 1926 and February 16, 1927.

  19. An aircraft manufacturer's approach to rideability criteria

    NASA Technical Reports Server (NTRS)

    Omassey, R. C.; Leve, H.; Gaume, J. G.

    1972-01-01

    The approach of an aircraft manufacturer to ride quality in air transportation is presented. The subjects discussed are: (1) the external and internal environment in terms of vibration and acoustic sources and general response, (2) guidelines and criteria reflecting current practice, (3) present and future efforts to develop rideability criteria, and (4) requirements for data, criteria, and research in various rideability areas.

  20. Alloy design for aircraft engines

    NASA Astrophysics Data System (ADS)

    Pollock, Tresa M.

    2016-08-01

    Metallic materials are fundamental to advanced aircraft engines. While perceived as mature, emerging computational, experimental and processing innovations are expanding the scope for discovery and implementation of new metallic materials for future generations of advanced propulsion systems.

  1. Aircraft and Engine Development Testing

    DTIC Science & Technology

    1986-09-01

    Control in Flight * Integrated Inlet- engine * Power/weight Exceeds Unity F-lll * Advanced Engines * Augmented Turbofan * High Turbine Temperature...residence times). Also, fabrication of a small scale "hot" engine with rotating components such as compressors and turbines with cooled blades , is...capabil- ities are essential to meet the needs of current and projected aircraft and engine programs. The required free jet nozzles should be capable of

  2. Microphone Boom for Aircraft-Engine Monitoring

    NASA Technical Reports Server (NTRS)

    Cohn, R.; Economu, M.; Albrecht, W.

    1986-01-01

    Microphone for measuring aircraft engine noise mounted on lengthwise boom supported away from fuselage and engine. This configuration minimizes boundary-layer effects and pressure doubling that is present if microphone were mounted in aircraft fuselage.

  3. Inspection of aging aircraft: A manufacturer's perspective

    NASA Technical Reports Server (NTRS)

    Hagemaier, Donald J.

    1992-01-01

    Douglas, in conjunction with operators and regulators, has established interrelated programs to identify and address issues regarding inspection of aging aircraft. These inspection programs consist of the following: Supplemental Inspection Documents; Corrosion Prevention and Control Documents; Repair Assessment Documents; and Service Bulletin Compliance Documents. In addition, airframe manufacturers perform extended airframe fatigue tests to deal with potential problems before they can develop in the fleet. Lastly, nondestructive inspection (NDI) plays a role in all these programs through the detection of cracks, corrosion, and disbonds. However, improved and more cost effective NDI methods are needed. Some methods such as magneto-optic imaging, electronic shearography, Diffractor-Sight, and multi-parameter eddy current testing appear viable for near-term improvements in NDI of aging aircraft.

  4. Fretting in aircraft turbine engines

    NASA Technical Reports Server (NTRS)

    Johnson, R. L.; Bill, R. C.

    1974-01-01

    The problem of fretting in aircraft turbine engines is discussed. Critical fretting can occur on fan, compressor, and turbine blade mountings, as well as on splines, rolling element bearing races, and secondary sealing elements of face type seals. Structural fatigue failures have been shown to occur at fretted areas on component parts. Methods used by designers to reduce the effects of fretting are given.

  5. 19 CFR 10.183 - Duty-free entry of civil aircraft, aircraft engines, ground flight simulators, parts, components...

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... Duty-free entry of civil aircraft, aircraft engines, ground flight simulators, parts, components, and... aircraft, aircraft engines, and ground flight simulators, including their parts, components, and... United States Coast Guard, aircraft, aircraft engines, and ground flight simulators, including...

  6. 19 CFR 10.183 - Duty-free entry of civil aircraft, aircraft engines, ground flight simulators, parts, components...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Duty-free entry of civil aircraft, aircraft engines, ground flight simulators, parts, components, and... aircraft, aircraft engines, and ground flight simulators, including their parts, components, and... United States Coast Guard, aircraft, aircraft engines, and ground flight simulators, including...

  7. 19 CFR 10.183 - Duty-free entry of civil aircraft, aircraft engines, ground flight simulators, parts, components...

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... Duty-free entry of civil aircraft, aircraft engines, ground flight simulators, parts, components, and... aircraft, aircraft engines, and ground flight simulators, including their parts, components, and... United States Coast Guard, aircraft, aircraft engines, and ground flight simulators, including...

  8. 19 CFR 10.183 - Duty-free entry of civil aircraft, aircraft engines, ground flight simulators, parts, components...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... Duty-free entry of civil aircraft, aircraft engines, ground flight simulators, parts, components, and... aircraft, aircraft engines, and ground flight simulators, including their parts, components, and... United States Coast Guard, aircraft, aircraft engines, and ground flight simulators, including...

  9. 19 CFR 10.183 - Duty-free entry of civil aircraft, aircraft engines, ground flight simulators, parts, components...

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... Duty-free entry of civil aircraft, aircraft engines, ground flight simulators, parts, components, and... aircraft, aircraft engines, and ground flight simulators, including their parts, components, and... United States Coast Guard, aircraft, aircraft engines, and ground flight simulators, including...

  10. 75 FR 32315 - Airworthiness Directives; Various Aircraft Equipped With Rotax Aircraft Engines 912 A Series Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-08

    ..., 912 F, and 912 S series engines. Versions of the 912 F series and 912 S series engines are type... not have an engine type certificate; instead, the engine is part of the aircraft type design. You may... Equipped With Rotax Aircraft Engines 912 A Series Engines AGENCY: Federal Aviation Administration...

  11. Advanced control for airbreathing engines, volume 2: General Electric aircraft engines

    NASA Technical Reports Server (NTRS)

    Bansal, Indar

    1993-01-01

    The application of advanced control concepts to air breathing engines may yield significant improvements in aircraft/engine performance and operability. Screening studies of advanced control concepts for air breathing engines were conducted by three major domestic aircraft engine manufacturers to determine the potential impact of concepts on turbine engine performance and operability. The purpose of the studies was to identify concepts which offered high potential yet may incur high research and development risk. A target suite of proposed advanced control concepts was formulated and evaluated in a two phase study to quantify each concept's impact on desired engine characteristics. To aid in the evaluation specific aircraft/engine combinations were considered: a Military High Performance Fighter mission, a High Speed Civil Transport mission, and a Civil Tiltrotor mission. Each of the advanced control concepts considered in the study are defined and described. The concept potential impact on engine performance was determined. Relevant figures of merit on which to evaluate the concepts are determined. Finally, the concepts are ranked with respect to the target aircraft/engine missions. A final report describing the screening studies was prepared by each engine manufacturer. Volume 2 of these reports describes the studies performed by GE Aircraft Engines.

  12. Lightweight diesel aircraft engines for general aviation

    NASA Technical Reports Server (NTRS)

    Berenyi, S. G.; Brouwers, A. P.

    1980-01-01

    A methodical design study was conducted to arrive at new diesel engine configurations and applicable advanced technologies. Two engines are discussed and the description of each engine includes concept drawings. A performance analysis, stress and weight prediction, and a cost study were also conducted. This information was then applied to two airplane concepts, a six-place twin and a four-place single engine aircraft. The aircraft study consisted of installation drawings, computer generated performance data, aircraft operating costs and drawings of the resulting airplanes. The performance data shows a vast improvement over current gasoline-powered aircraft. At the completion of this basic study, the program was expanded to evaluate a third engine configuration. This third engine incorporates the best features of the original two, and its design is currently in progress. Preliminary information on this engine is presented.

  13. Technology for reducing aircraft engine pollution

    NASA Technical Reports Server (NTRS)

    Rudey, R. A.; Kempke, E. E., Jr.

    1975-01-01

    Programs have been initiated by NASA to develop and demonstrate advanced technology for reducing aircraft gas turbine and piston engine pollutant emissions. These programs encompass engines currently in use for a wide variety of aircraft from widebody-jets to general aviation. Emission goals for these programs are consistent with the established EPA standards. Full-scale engine demonstrations of the most promising pollutant reduction techniques are planned within the next three years. Preliminary tests of advanced technology gas turbine engine combustors indicate that significant reductions in all major pollutant emissions should be attainable in present generation aircraft engines without adverse effects on fuel consumption. Fundamental-type programs are yielding results which indicate that future generation gas turbine aircraft engines may be able to utilize extremely low pollutant emission combustion systems.

  14. GENERAL VIEW OF THE AIRCRAFT MANUFACTURING AND ASSEMBLY BUILDING LOOKING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    GENERAL VIEW OF THE AIRCRAFT MANUFACTURING AND ASSEMBLY BUILDING LOOKING SOUTH FROM "HOSPITAL HILL" SHOWING THE CONCRETE CONSTRUCTION OF THE LOWER MANUFACTURING LEVEL WITH RAIL TRACKS IN THE FOREGROUND AND FORT CROOK IN THE BACKGROUND. Peter Kiewit Sons, Inc. (PKS), 1941. - Offutt Air Force Base, Glenn L. Martin-Nebraska Bomber Plant, Building D, Peacekeeper Drive, Bellevue, Sarpy County, NE

  15. Improvements in teaching aircraft engine design

    SciTech Connect

    Mattingly, J.D.; Heiser, W.H. Tennessee, University, Tullahoma )

    1992-07-01

    Aircraft gas turbine analysis and design pedagogy can be enriched through the incorporation improved preliminary engine thrust and fuel consumption models, novel computer programs for both aircraft system analysis and turbomechanical design, and a new perspective for engine-cycle analysis. Four computer programs have been developed for preliminary engine design; two of these automate aircraft system analysis, while another designs multistage axial-flow compressors and the last designs multistage axial-flow turbines. Student confusion with 'design-point' and 'off-design' concepts is by these means reduced. 6 refs.

  16. Supersonic fan engines for military aircraft

    NASA Technical Reports Server (NTRS)

    Franciscus, L. C.

    1983-01-01

    Engine performance and mission studies were performed for turbofan engines with supersonic through-flow fans. A Mach 2.4 CTOL aircraft was used in the study. Two missions were considered: a long range penetrator mission and a long range intercept mission. The supersonic fan engine is compared with an augmented mixed flow turbofan in terms of mission radius for a fixed takeoff gross weight of 75,000 lbm. The mission radius of aircraft powered by supersonic fan engines could be 15 percent longer than aircraft powered with conventional turbofan engines at moderate thrust to gross weight ratios. The climb and acceleration performance of the supersonic fan engines is better than that of the conventional turbofan engines.

  17. Integrated engine generator for aircraft secondary power

    NASA Technical Reports Server (NTRS)

    Secunde, R. R.

    1972-01-01

    An integrated engine-generator for aircraft secondary power generation is described. The concept consists of an electric generator located inside a turbojet or turbofan engine and both concentric with and driven by one of the main engine shafts. The electric power conversion equipment and generator controls are located in the aircraft. When properly rated, the generator serves as an engine starter as well as a source of electric power. This configuration reduces or eliminates the need for an external gear box on the engine and permits reduction in the nacelle diameter.

  18. Cycle Counting Methods of the Aircraft Engine

    ERIC Educational Resources Information Center

    Fedorchenko, Dmitrii G.; Novikov, Dmitrii K.

    2016-01-01

    The concept of condition-based gas turbine-powered aircraft operation is realized all over the world, which implementation requires knowledge of the end-of-life information related to components of aircraft engines in service. This research proposes an algorithm for estimating the equivalent cyclical running hours. This article provides analysis…

  19. Review of Aircraft Engine Fan Noise Reduction

    NASA Technical Reports Server (NTRS)

    VanZante, Dale

    2008-01-01

    Aircraft turbofan engines incorporate multiple technologies to enhance performance and durability while reducing noise emissions. Both careful aerodynamic design of the fan and proper installation of the fan into the system are requirements for achieving the performance and acoustic objectives. The design and installation characteristics of high performance aircraft engine fans will be discussed along with some lessons learned that may be applicable to spaceflight fan applications.

  20. Aircraft

    DTIC Science & Technology

    2002-01-01

    Company, Washington, DC Boeing Commercial Aircraft Division, Seattle, WA and Long Beach, CA Boeing Military Aircraft and Missile Division, St. Louis, MO and... aircraft ; military fixed-wing aircraft ; rotorcraft (helicopters and tiltrotor aircraft ); and aircraft jet engines. Two companies dominate the commercial... aircraft business, Boeing and Airbus. Four companies dominate the military fixed-wing market, Boeing, Lockheed Martin, BAE Systems, and European

  1. Engine selection for transport and combat aircraft

    NASA Technical Reports Server (NTRS)

    Dugan, J. F., Jr.

    1972-01-01

    The procedures that are used to select engines for transport and combat aircraft are discussed. In general, the problem is to select the engine parameters including engine size in such a way that all constraints are satisfied and airplane performance is maximized. This is done for four different classes of aircraft: (1) a long haul conventional takeoff and landing (CTOL) transport, (2) a short haul vertical takeoff and landing (VTOL) transport, (3) a long range supersonic transport (SST), and (4) a fighter aircraft. For the commercial airplanes the critical constraints have to do with noise while for the fighter, maneuverability requirements define the engine. Generally, the resultant airplane performance (range or payload) is far less than that achievable without these constraints and would suffer more if nonoptimum engines were selected.

  2. Energy and emissions saving potential of additive manufacturing: the case of lightweight aircraft components

    SciTech Connect

    Huang, Runze; Riddle, Matthew; Graziano, Diane; Warren, Joshua; Das, Sujit; Nimbalkar, Sachin; Cresko, Joe; Masanet, Eric

    2015-05-08

    Additive manufacturing (AM) holds great potential for improving materials efficiency, reducing life-cycle impacts, and enabling greater engineering functionality compared to conventional manufacturing (CM) processes. For these reasons, AM has been adopted by a growing number of aircraft component manufacturers to achieve more lightweight, cost-effective designs. This study estimates the net changes in life-cycle primary energy and greenhouse gas emissions associated with AM technologies for lightweight metallic aircraft components through the year 2050, to shed light on the environmental benefits of a shift from CM to AM processes in the U.S. aircraft industry. A systems modeling framework is presented, with integrates engineering criteria, life-cycle environmental data, and aircraft fleet stock and fuel use models under different AM adoption scenarios. Estimated fleetwide life-cycle primary energy savings in a rapid adoption scenario reach 70-174 million GJ/year in 2050, with cumulative savings of 1.2-2.8 billion GJ. Associated cumulative emission reduction potentials of CO2e were estimated at 92.8-217.4 million metric tons. About 95% of the savings is attributed to airplane fuel consumption reductions due to lightweighting. In addition, about 4050 tons aluminum, 7600 tons titanium and 8100 tons of nickel alloys could be saved per year in 2050. The results indicate a significant role of AM technologies in helping society meet its long-term energy use and GHG emissions reduction goals, and highlight barriers and opportunities for AM adoption for the aircraft industry.

  3. 77 FR 44429 - Airworthiness Directives; Various Aircraft Equipped With Rotax Aircraft Engines 912 A Series Engine

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-30

    ... this AD: Aeromot AMT 300 Turbo Super Ximango and Stemme S10 VT have a Rotax 914 engine installed, not a... certificate holder Aircraft model Engine model Aeromot-Ind stria AMT-200 912 A2 Mec nico- Metal rgica...

  4. 77 FR 39623 - Airworthiness Standards: Aircraft Engines; Technical Amendment

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-05

    ... Part 33 [Amendment No. 33-33] Airworthiness Standards: Aircraft Engines; Technical Amendment AGENCY... amendment clarifies aircraft engine vibration test requirements in the airworthiness standards. The clarification is in response to inquiries from applicants requesting FAA engine type certifications...

  5. Price-Weight Relationships of General Aviation, Helicopters, Transport Aircraft and Engines

    NASA Technical Reports Server (NTRS)

    Anderson, Joseph L.

    1981-01-01

    The NASA must assess its aeronautical research program with economic as well as performance measures. It thus is interested in what price a new technology aircraft would carry to make it attractive to the buyer. But what price a given airplane or helicopter will carry is largely a reflection of the manufacturer's assessment of the competitive market into which the new aircraft will be introduced. The manufacturer must weigh any new aerodynamic or system technology innovation he would add to an aircraft by the impact of this innovation upon the aircraft's cost to manufacture, economic attractiveness and price. The intent of this paper is to give price standards against which new technologies and the NASA's research program can be assessed. Using reported prices for sailplanes, general aviation, agriculture, helicopter, business and transport aircraft, price estimating relations in terms of engine and airframe characteristics have been developed. The relations are given in terms of the aircraft type, its manufactured empty weight, engine weight, horsepower or thrust. Factors for the effects of inflation are included to aid in making predictions of future aircraft prices. There are discussions of aircraft price in terms of number of passenger seats, airplane size and research and development costs related to an aircraft model, and indirectly how new technologies, aircraft complexity and inflation have affected these.

  6. OBLIQUE VIEW OF THE WEST FACADE OF THE AIRCRAFT MANUFACTURING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    OBLIQUE VIEW OF THE WEST FACADE OF THE AIRCRAFT MANUFACTURING AND ASSEMBLY BUILDING LOOKING SOUTHWEST SHOWING ROOF MONITORS, NORTH RAIL, DOCK AND BOILER HOUSE. - Offutt Air Force Base, Glenn L. Martin-Nebraska Bomber Plant, Building D, Peacekeeper Drive, Bellevue, Sarpy County, NE

  7. 75 FR 70098 - Airworthiness Directives; Various Aircraft Equipped With Rotax Aircraft Engines 912 A Series Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-17

    ... crankcase surface to remove any oil. (ii) Warm up the engine to a minimum oil temperature of 50 degrees C (120 degrees F). Information about warming up the engine can be found in the applicable line... Aircraft Engines 912 A series engine with a crankcase assembly S/N up to and including S/N...

  8. Cobalt: A vital element in the aircraft engine industry

    NASA Technical Reports Server (NTRS)

    Stephens, J. R.

    1981-01-01

    Recent trends in the United States consumption of cobalt indicate that superalloys for aircraft engine manufacture require increasing amounts of this strategic element. Superalloys consume a lion's share of total U.S. cobalt usage which was about 16 million pounds in 1980. In excess of 90 percent of the cobalt used in this country was imported, principally from the African countries of Zaire and Zambia. Early studies on the roles of cobalt as an alloying element in high temperature alloys concentrated on the simple Ni-Cr and Nimonic alloy series. The role of cobalt in current complex nickel base superalloys is not well defined and indeed, the need for the high concentration of cobalt in widely used nickel base superalloys is not firmly established. The current cobalt situation is reviewed as it applies to superalloys and the opportunities for research to reduce the consumption of cobalt in the aircraft engine industry are described.

  9. Method of vibration isolating an aircraft engine

    NASA Technical Reports Server (NTRS)

    Bender, Stanley I. (Inventor); Butler, Lawrence (Inventor); Dawes, Peter W. (Inventor)

    1991-01-01

    A method for coupling an engine to a support frame for mounting to a fuselage of an aircraft using a three point vibration isolating mounting system in which the load reactive forces at each mounting point are statically and dynamically determined. A first vibration isolating mount pivotably couples a first end of an elongated support beam to a stator portion of an engine with the pivoting action of the vibration mount being oriented such that it is pivotable about a line parallel to a center line of the engine. An aft end of the supporting frame is coupled to the engine through an additional pair of vibration isolating mounts with the mounts being oriented such that they are pivotable about a circumference of the engine. The aft mounts are symmetrically spaced to each side of the supporting frame by 45 degrees. The relative orientation between the front mount and the pair of rear mounts is such that only the rear mounts provide load reactive forces parallel to the engine center line, in support of the engine to the aircraft against thrust forces. The forward mount is oriented so as to provide only radial forces to the engine and some lifting forces to maintain the engine in position adjacent a fuselage. Since each mount is connected to provide specific forces to support the engine, forces required of each mount are statically and dynamically determinable.

  10. Aircraft engine mathematical model - linear system approach

    NASA Astrophysics Data System (ADS)

    Rotaru, Constantin; Roateşi, Simona; Cîrciu, Ionicǎ

    2016-06-01

    This paper examines a simplified mathematical model of the aircraft engine, based on the theory of linear and nonlinear systems. The dynamics of the engine was represented by a linear, time variant model, near a nominal operating point within a finite time interval. The linearized equations were expressed in a matrix form, suitable for the incorporation in the MAPLE program solver. The behavior of the engine was included in terms of variation of the rotational speed following a deflection of the throttle. The engine inlet parameters can cover a wide range of altitude and Mach numbers.

  11. 78 FR 54385 - Airworthiness Directives; Various Aircraft Equipped With Rotax Aircraft Engines 912 A Series Engine

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-04

    ... condition exists and is likely to exist or develop on other products of the same type design. FAA's.... Table 1 of Paragraph (c)--Affected Airplanes Type certificate holder Aircraft model Engine model Aeromot-Ind stria AMT-200 912 A2 Mec nico- Metal rgica Ltda. Diamond Aircraft Industries...... HK 36 R...

  12. Aircraft Engineering Conference 1934 - Full Scale Tunnel

    NASA Technical Reports Server (NTRS)

    1934-01-01

    Gathered together in the only facility big enough to hold them, attendees at Langleys 1934 aircraft Engineering Conference pose in the Full Scale Wind Tunnel underneath a Boeing P-26A Peashooter. Present, among other notables, were Orville Wright, Charles Lindbergh, and Howard Hughes.

  13. Electronic materials testing in commercial aircraft engines

    NASA Astrophysics Data System (ADS)

    Brand, Dieter

    A device for the electronic testing of materials used in commercial aircraft engines is described. The instrument can be used for ferromagnetic, ferrimagnetic, and nonferromagnetic metallic materials, and it functions either optically or acoustically. The design of the device is described and technical data are given. The device operates under the principle of controlled self-inductivity. Its mode of operation is described.

  14. Flow Forming of Aircraft Engine Components

    DTIC Science & Technology

    2006-05-01

    Canada 1000 Marie Victorin, Longueuil Québec J4G 1A1 CANADA jean.Savoie@pwc.ca ABSTRACT Aircraft engine components are often an assembly of...1000 Marie Victorin, Longueuil Québec J4G 1A1 CANADA 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES

  15. Aircraft Piston Engine Exhaust Emission Symposium

    NASA Technical Reports Server (NTRS)

    1976-01-01

    A 2-day symposium on the reduction of exhaust emissions from aircraft piston engines was held on September 14 and 15, 1976, at the Lewis Research Center in Cleveland, Ohio. Papers were presented by both government organizations and the general aviation industry on the status of government contracts, emission measurement problems, data reduction procedures, flight testing, and emission reduction techniques.

  16. Near-field commercial aircraft contribution to nitrogen oxides by engine, aircraft type, and airline by individual plume sampling.

    PubMed

    Carslaw, David C; Ropkins, Karl; Laxen, Duncan; Moorcroft, Stephen; Marner, Ben; Williams, Martin L

    2008-03-15

    Nitrogen oxides (NOx) concentrations were measured in individual plumes from aircraft departing on the northern runway at Heathrow Airport in west London. Over a period of four weeks 5618 individual plumes were sampled by a chemiluminescence monitor located 180 m from the runway. Results were processed and matched with detailed aircraft movement and aircraft engine data using chromatographic techniques. Peak concentrations associated with 29 commonly used engines were calculated and found to have a good relationship with N0x emissions taken from the International Civil Aviation Organization (ICAO) databank. However, it is found that engines with higher reported NOx emissions result in proportionately lower NOx concentrations than engines with lower emissions. We show that it is likely that aircraft operational factors such as takeoff weight and aircraftthrust setting have a measurable and important effect on concentrations of N0x. For example, NOx concentrations can differ by up to 41% for aircraft using the same airframe and engine type, while those due to the same engine type in different airframes can differ by 28%. These differences are as great as, if not greater than, the reported differences in NOx emissions between different engine manufacturers for engines used on the same airframe.

  17. Advanced aircraft engine materials trends

    NASA Technical Reports Server (NTRS)

    Dreshfield, R. L.; Gray, H. R.; Levine, S. R.; Signorelli, R.

    1981-01-01

    Recent activities of the Lewis Research Center are reviewed which are directed toward developing materials for rotating hot section components for aircraft gas turbines. Turbine blade materials activities are directed at increasing metal temperatures approximately 100 C compared to current directionally solidified alloys by use of oxide dispersion strengthening or tungsten alloy wire reinforcement of nickel or iron base superalloys. The application of thermal barrier coatings offers a promise of increasing gas temperatures an additional 100 C with current cooling technology. For turbine disk alloys, activities are directed toward reducing the cost of turbine disks by 50 percent through near net shape fabrication of prealloyed powders as well as towards improved performance. In addition, advanced alloy concepts and fabrication methods for dual alloy disks are being studied as having potential for improving the life of future high performance disks and reducing the amount of strategic materials required in these components.

  18. Diesel engine catalytic combustor system. [aircraft engines

    NASA Technical Reports Server (NTRS)

    Ream, L. W. (Inventor)

    1984-01-01

    A low compression turbocharged diesel engine is provided in which the turbocharger can be operated independently of the engine to power auxiliary equipment. Fuel and air are burned in a catalytic combustor to drive the turbine wheel of turbine section which is initially caused to rotate by starter motor. By opening a flapper value, compressed air from the blower section is directed to catalytic combustor when it is heated and expanded, serving to drive the turbine wheel and also to heat the catalytic element. To start, engine valve is closed, combustion is terminated in catalytic combustor, and the valve is then opened to utilize air from the blower for the air driven motor. When the engine starts, the constituents in its exhaust gas react in the catalytic element and the heat generated provides additional energy for the turbine section.

  19. Energy and emissions saving potential of additive manufacturing: the case of lightweight aircraft components

    DOE PAGES

    Huang, Runze; Riddle, Matthew; Graziano, Diane; ...

    2015-05-08

    Additive manufacturing (AM) holds great potential for improving materials efficiency, reducing life-cycle impacts, and enabling greater engineering functionality compared to conventional manufacturing (CM) processes. For these reasons, AM has been adopted by a growing number of aircraft component manufacturers to achieve more lightweight, cost-effective designs. This study estimates the net changes in life-cycle primary energy and greenhouse gas emissions associated with AM technologies for lightweight metallic aircraft components through the year 2050, to shed light on the environmental benefits of a shift from CM to AM processes in the U.S. aircraft industry. A systems modeling framework is presented, with integratesmore » engineering criteria, life-cycle environmental data, and aircraft fleet stock and fuel use models under different AM adoption scenarios. Estimated fleetwide life-cycle primary energy savings in a rapid adoption scenario reach 70-174 million GJ/year in 2050, with cumulative savings of 1.2-2.8 billion GJ. Associated cumulative emission reduction potentials of CO2e were estimated at 92.8-217.4 million metric tons. About 95% of the savings is attributed to airplane fuel consumption reductions due to lightweighting. In addition, about 4050 tons aluminum, 7600 tons titanium and 8100 tons of nickel alloys could be saved per year in 2050. The results indicate a significant role of AM technologies in helping society meet its long-term energy use and GHG emissions reduction goals, and highlight barriers and opportunities for AM adoption for the aircraft industry.« less

  20. Helping Aircraft Engines Lighten Up

    NASA Technical Reports Server (NTRS)

    2004-01-01

    High-temperature polyimide/carbon fiber matrix composites are developed by the Polymers Branch at NASA's Glenn Research Center. These materials can withstand high temperatures and have good processing properties, which make them particularly useful for jet and rocket engines and for components such as fan blades, bushings, and duct segments. Applying polyimide composites as components for aerospace structures can lead to substantial vehicle weight reductions. A typical polyimide composite is made up of layers of carbon or glass fibers glued together by a high-temperature polymer to make the material strong, stiff, and lightweight. Organic molecules containing carbon, nitrogen, oxygen, and hydrogen within the polyimide keep the material s density low, resulting in the light weight. The strength of a component or part made from a polyimide comes mainly from the reinforcing high-strength fibers. The strength of the carbon fibers coupled with the stiffness of polyimides allows engineers to make a very rigid structure without it being massive. Another benefit of a polyimide s suitability for aerospace applications is its reduced need for machining. When polyimide parts are removed from a mold, they are nearly in their final shape. Usually, very little machining is needed before a part is ready for use.

  1. Aircraft Engine Exhaust Nozzle System for Jet Noise Reduction

    NASA Technical Reports Server (NTRS)

    Thomas, Russell H. (Inventor); Czech, Michael J. (Inventor); Elkoby, Ronen (Inventor)

    2014-01-01

    The aircraft exhaust engine nozzle system includes a fan nozzle to receive a fan flow from a fan disposed adjacent to an engine disposed above an airframe surface of the aircraft, a core nozzle disposed within the fan nozzle and receiving an engine core flow, and a pylon structure connected to the core nozzle and structurally attached with the airframe surface to secure the engine to the aircraft.

  2. Aircraft Engine Sump Fire Mitigation

    NASA Technical Reports Server (NTRS)

    Rosenlieb, J. W.

    1973-01-01

    An investigation was performed of the conditions in which fires can result and be controlled within the bearing sump simulating that of a gas turbine engine; Esso 4040 Turbo Oil, Mobil Jet 2, and Monsanto MCS-2931 lubricants were used. Control variables include the oil inlet temperature, bearing temperature, oil inlet and scavenge rates, hot air inlet temperature and flow rate, and internal sump baffling. In addition to attempting spontaneous combustion, an electric spark and a rub (friction) mechanism were employed to ignite fires. Spontaneous combustion was not obtained; however, fires were readily ignited with the electric spark while using each of the three test lubricants. Fires were also ignited using the rub mechanism with the only test lubricant evaluated, Esso 4040. Major parameters controlling ignitions were: Sump configuration; Bearing and oil temperatures, hot air temperature and flow and bearing speed. Rubbing between stationary parts and rotating parts (eg. labyrinth seal and mating rub strip) is a very potent fire source suggesting that observed accidental fires in gas turbine sumps may well arise from this cause.

  3. Additive Manufacturing for Affordable Rocket Engines

    NASA Technical Reports Server (NTRS)

    West, Brian; Robertson, Elizabeth; Osborne, Robin; Calvert, Marty

    2016-01-01

    Additive manufacturing (also known as 3D printing) technology has the potential to drastically reduce costs and lead times associated with the development of complex liquid rocket engine systems. NASA is using 3D printing to manufacture rocket engine components including augmented spark igniters, injectors, turbopumps, and valves. NASA is advancing the process to certify these components for flight. Success Story: MSFC has been developing rocket 3D-printing technology using the Selective Laser Melting (SLM) process. Over the last several years, NASA has built and tested several injectors and combustion chambers. Recently, MSFC has 3D printed an augmented spark igniter for potential use the RS-25 engines that will be used on the Space Launch System. The new design is expected to reduce the cost of the igniter by a factor of four. MSFC has also 3D printed and tested a liquid hydrogen turbopump for potential use on an Upper Stage Engine. Additive manufacturing of the turbopump resulted in a 45% part count reduction. To understanding how the 3D printed parts perform and to certify them for flight, MSFC built a breadboard liquid rocket engine using additive manufactured components including injectors, turbomachinery, and valves. The liquid rocket engine was tested seven times in 2016 using liquid oxygen and liquid hydrogen. In addition to exposing the hardware to harsh environments, engineers learned to design for the new manufacturing technique, taking advantage of its capabilities and gaining awareness of its limitations. Benefit: The 3D-printing technology promises reduced cost and schedule for rocket engines. Cost is a function of complexity, and the most complicated features provide the largest opportunities for cost reductions. This is especially true where brazes or welds can be eliminated. The drastic reduction in part count achievable with 3D printing creates a waterfall effect that reduces the number of processes and drawings, decreases the amount of touch

  4. Tribological systems as applied to aircraft engines

    NASA Technical Reports Server (NTRS)

    Buckley, D. H.

    1985-01-01

    Tribological systems as applied to aircraft are reviewed. The importance of understanding the fundamental concepts involved in such systems is discussed. Basic properties of materials which can be related to adhesion, friction and wear are presented and correlated with tribology. Surface processes including deposition and treatment are addressed in relation to their present and future application to aircraft components such as bearings, gears and seals. Lubrication of components with both liquids and solids is discussed. Advances in both new liquid molecular structures and additives for those structures are reviewed and related to the needs of advanced engines. Solids and polymer composites are suggested for increasing use and ceramic coatings containing fluoride compounds are offered for the extreme temperatures encountered in such components as advanced bearings and seals.

  5. Study of unconventional aircraft engines designed for low energy consumption

    NASA Technical Reports Server (NTRS)

    Gray, D. E.

    1976-01-01

    Declining U.S. oil reserves and escalating energy costs underline the need for reducing fuel consumption in aircraft engines. The most promising unconventional aircraft engines based on their potential for fuel savings and improved economics are identified. The engines installed in both a long-range and medium-range aircraft were evaluated. Projected technology advances are identified and evaluated for their state-of-readiness for application to a commercial transport. Programs are recommended for developing the necessary technology.

  6. Damage Propagation Modeling for Aircraft Engine Prognostics

    NASA Technical Reports Server (NTRS)

    Saxena, Abhinav; Goebel, Kai; Simon, Don; Eklund, Neil

    2008-01-01

    This paper describes how damage propagation can be modeled within the modules of aircraft gas turbine engines. To that end, response surfaces of all sensors are generated via a thermo-dynamical simulation model for the engine as a function of variations of flow and efficiency of the modules of interest. An exponential rate of change for flow and efficiency loss was imposed for each data set, starting at a randomly chosen initial deterioration set point. The rate of change of the flow and efficiency denotes an otherwise unspecified fault with increasingly worsening effect. The rates of change of the faults were constrained to an upper threshold but were otherwise chosen randomly. Damage propagation was allowed to continue until a failure criterion was reached. A health index was defined as the minimum of several superimposed operational margins at any given time instant and the failure criterion is reached when health index reaches zero. Output of the model was the time series (cycles) of sensed measurements typically available from aircraft gas turbine engines. The data generated were used as challenge data for the Prognostics and Health Management (PHM) data competition at PHM 08.

  7. 77 FR 1626 - Airworthiness Directives; Various Aircraft Equipped With Rotax Aircraft Engines 912 A Series Engine

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-11

    ... determined the unsafe condition exists and is likely to exist or develop on other products of the same type... 40507; and (2) Certificated in any category. Table 1--Affected Airplanes Type certificate holder Aircraft model Engine model Aeromot-Ind stria AMT-200 912 A2 Mec nico- Metal rgica Ltda. Diamond...

  8. Advanced Engineering Environments: Implications for Aerospace Manufacturing

    NASA Technical Reports Server (NTRS)

    Thomas, D.

    2001-01-01

    There are significant challenges facing today's aerospace industry. Global competition, more complex products, geographically-distributed design teams, demands for lower cost, higher reliability and safer vehicles, and the need to incorporate the latest technologies quicker all face the developer of aerospace systems. New information technologies offer promising opportunities to develop advanced engineering environments (AEEs) to meet these challenges. Significant advances in the state-of-the-art of aerospace engineering practice are envisioned in the areas of engineering design and analytical tools, cost and risk tools, collaborative engineering, and high-fidelity simulations early in the development cycle. These advances will enable modeling and simulation of manufacturing methods, which will in turn allow manufacturing considerations to be included much earlier in the system development cycle. Significant cost savings, increased quality, and decreased manufacturing cycle time are expected to result. This paper will give an overview of the NASA's Intelligent Synthesis Environment, the agency initiative to develop an AEE, with a focus on the anticipated benefits in aerospace manufacturing.

  9. 77 FR 22187 - Technical Amendment; Airworthiness Standards-Aircraft Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-13

    ... Federal Aviation Administration 14 CFR Part 33 Technical Amendment; Airworthiness Standards--Aircraft.... SUMMARY: This amendment corrects a number of errors in the airworthiness standards for aircraft engine... additional burden on any person. List of Subjects 14 CFR Part 33 Air transportation, Aircraft,...

  10. An integrated systems engineering approach to aircraft design

    NASA Astrophysics Data System (ADS)

    Price, M.; Raghunathan, S.; Curran, R.

    2006-06-01

    The challenge in Aerospace Engineering, in the next two decades as set by Vision 2020, is to meet the targets of reduction of nitric oxide emission by 80%, carbon monoxide and carbon dioxide both by 50%, reduce noise by 50% and of course with reduced cost and improved safety. All this must be achieved with expected increase in capacity and demand. Such a challenge has to be in a background where the understanding of physics of flight has changed very little over the years and where industrial growth is driven primarily by cost rather than new technology. The way forward to meet the challenges is to introduce innovative technologies and develop an integrated, effective and efficient process for the life cycle design of aircraft, known as systems engineering (SE). SE is a holistic approach to a product that comprises several components. Customer specifications, conceptual design, risk analysis, functional analysis and architecture, physical architecture, design analysis and synthesis, and trade studies and optimisation, manufacturing, testing validation and verification, delivery, life cycle cost and management. Further, it involves interaction between traditional disciplines such as Aerodynamics, Structures and Flight Mechanics with people- and process-oriented disciplines such as Management, Manufacturing, and Technology Transfer. SE has become the state-of-the-art methodology for organising and managing aerospace production. However, like many well founded methodologies, it is more difficult to embody the core principles into formalised models and tools. The key contribution of the paper will be to review this formalisation and to present the very latest knowledge and technology that facilitates SE theory. Typically, research into SE provides a deeper understanding of the core principles and interactions, and helps one to appreciate the required technical architecture for fully exploiting it as a process, rather than a series of events. There are major issues as

  11. Improving safety of aircraft engines: a consortium approach

    NASA Astrophysics Data System (ADS)

    Brasche, Lisa J. H.

    1996-11-01

    With over seven million departures per year, air transportation has become not a luxury, but a standard mode of transportation for the United States. A critical aspect of modern air transport is the jet engine, a complex engineered component that has enabled the rapid travel to which we have all become accustomed. One of the enabling technologies for safe air travel is nondestructive evaluation, or NDE, which includes various inspection techniques used to assess the health or integrity of a structure, component, or material. The Engine Titanium Consortium (ETC) was established in 1993 to respond to recommendations made by the Federal Aviation Administration (FAA) Titanium Rotating Components Review Team (TRCRT) for improvements in inspection of engine titanium. Several recent accomplishments of the ETC are detailed in this paper. The objective of the Engine Titanium Consortium is to provide the FAAand the manufacturers with reliable and costeffective new methods and/or improvements in mature methods for detecting cracks, inclusions, and imperfections in titanium. The consortium consists of a team of researchers from academia and industry-namely, Iowa State University, Allied Signal Propulsion Engines, General Electric Aircraft Engines, and Pratt & Whitney Engines-who work together to develop program priorities, organize a program plan, conduct the research, and implement the solutions. The true advantage of the consortium approach is that it brings together the research talents of academia and the engineering talents of industry to tackle a technology-base problem. In bringing industrial competitors together, the consortium ensures that the research results, which have safety implications and result from FAA funds, are shared and become part of the public domain.

  12. Integrated engine-generator concept for aircraft electric secondary power

    NASA Technical Reports Server (NTRS)

    Secunde, R. R.; Macosko, R. P.; Repas, D. S.

    1972-01-01

    The integrated engine-generator concept of locating an electric generator inside an aircraft turbojet or turbofan engine concentric with, and driven by, one of the main engine shafts is discussed. When properly rated, the generator can serve as an engine starter as well as a generator of electric power. The electric power conversion equipment and generator controls are conveniently located in the aircraft. Preliminary layouts of generators in a large engine together with their physical sizes and weights indicate that this concept is a technically feasible approach to aircraft secondary power.

  13. 78 FR 65554 - Exhaust Emission Standards for New Aircraft Turbine Engines and Identification Plate for Aircraft...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-01

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF TRANSPORTATION Federal Aviation Administration 14 CFR Parts 34 and 45 RIN 2120-AK15 Exhaust Emission Standards for New Aircraft Turbine Engines and Identification Plate for Aircraft Engines Correction In rule document 2013-24712, appearing on pages 63015-63017...

  14. Microfog lubrication for aircraft engine bearings

    NASA Technical Reports Server (NTRS)

    Rosenlieb, J. W.

    1976-01-01

    An analysis and system study was performed to provide design information regarding lubricant and coolant flow rates and flow paths for effective utilization of the lubricant and coolant in a once through bearing oil mist (microfog) and coolant air system. Both static and dynamic tests were performed. Static tests were executed to evaluate and calibrate the mist supply system. A total of thirteen dynamic step speed bearing tests were performed using four different lubricants and several different mist and air supply configurations. The most effective configuration consisted of supplying the mist and the major portion of the cooling air axially through the bearing. The results of these tests have shown the feasibility of using a once through oil mist and cooling air system to lubricate and cool a high speed, high temperature aircraft engine mainshaft bearing.

  15. 76 FR 72128 - Airworthiness Directives; Thielert Aircraft Engines GmbH (TAE) Reciprocating Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-22

    ... Directives; Thielert Aircraft Engines GmbH (TAE) Reciprocating Engines AGENCY: Federal Aviation... engines installed on, but not limited to, Diamond Aircraft Industries Model DA 42 airplanes. The existing... the PPRV, part number (P/N) 05-7212- E002801, on TAE 125-02-99 engines, from 300 hours to 600...

  16. Development of the Junkers-diesel Aircraft Engine

    NASA Technical Reports Server (NTRS)

    Gasterstadt,

    1930-01-01

    The working process of the Junkers engine has resulted from a series of attempts to attain high performance and to control the necessarily rapid and complete combustion at extremely high speeds. The two main problems of Diesel engines in aircraft are addressed; namely, incomplete combustion and the greater weight of Diesel engine parts compared to gasoline engines.

  17. The application of manufacturing systems engineering for aero engine gears

    NASA Astrophysics Data System (ADS)

    Pewsey, Stephen M. S.

    1991-10-01

    The adoption of manufacturing systems engineering principles in order to improve cost effectiveness of manufacturing operations is considered. The introduction of cells where families of parts are made from raw material to finished product using a team approach has been initiated. The benefits to date are significant in terms of lead time reductions, inventory, and nonconformance savings as well as improvements in work force motivation and morale. The overall corporate manufacturing strategy of gears is explained. Some of the problems encountered with the transfer of gear production from one site to another with minimum disruption are described. Some of the radical changes being made in the manufacture of gears in line with the strategy of making Rolls-Royce a total quality organization are also described.

  18. 78 FR 47228 - Airworthiness Directives; Thielert Aircraft Engines GmbH Reciprocating Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-05

    ... Engines GmbH Reciprocating Engines AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of... Thielert Aircraft Engines GmbH TAE 125-01 reciprocating engines. This proposed AD was prompted by a report of engine power loss due to engine coolant contaminating the engine clutch. The design of the...

  19. Investigating a persistent odor at an aircraft seat manufacturer.

    PubMed

    Broadwater, Kendra; de Perio, Marie A; Roberts, Jennifer; Burton, Nancy C; Lemons, Angela R; Green, Brett J; Brueck, Scott E

    2016-10-01

    An aircraft seat manufacturing company requested a NIOSH health hazard evaluation to help identify a strong odor that had persisted throughout the facility for over a year. Employees reported experiencing health effects thought to be related to the odor. We collected and analyzed area air samples for volatile organic compounds, endotoxin, bacterial and fungal metagenome, and metalworking fluid aerosol. Bulk metalworking fluid samples were analyzed for endotoxin, bacterial and fungal metagenome, and viable bacteria and fungus. We also evaluated the building ventilation systems and water diversion systems. Employees underwent confidential medical interviews about work practices, medical history, and health concerns. Based on our analyses, the odor was likely 2-methoxy-3,5-dimethylpyrazine. This pyrazine was found in air samples across the facility and originated from bacteria in the metalworking fluid. We did not identify bacteria known to produce the compound but bacteria from the same Proteobacteria order were found as well as bacteria from orders known to produce other pyrazines. Chemical and biological contaminants and odors could have contributed to health symptoms reported by employees, but it is likely that the symptoms were caused by several factors. We provided several recommendations to eliminate the odor including washing and disinfecting the metalworking machines and metalworking fluid recycling equipment, discarding all used metalworking fluid, instituting a metalworking fluid maintenance program at the site, and physically isolating the metalworking department from other departments.

  20. Supersonic through-flow fan engine and aircraft mission performance

    NASA Technical Reports Server (NTRS)

    Franciscus, Leo C.; Maldonado, Jaime J.

    1989-01-01

    A study was made to evaluate potential improvement to a commercial supersonic transport by powering it with supersonic through-flow fan turbofan engines. A Mach 3.2 mission was considered. The three supersonic fan engines considered were designed to operate at bypass ratios of 0.25, 0.5, and 0.75 at supersonic cruise. For comparison a turbine bypass turbojet was included in the study. The engines were evaluated on the basis of aircraft takeoff gross weight with a payload of 250 passengers for a fixed range of 5000 N.MI. The installed specific fuel consumption of the supersonic fan engines was 7 to 8 percent lower than that of the turbine bypass engine. The aircraft powered by the supersonic fan engines had takeoff gross weights 9 to 13 percent lower than aircraft powered by turbine bypass engines.

  1. Re-engining - The sound case for aircraft noise reduction

    NASA Astrophysics Data System (ADS)

    Goddard, K.

    1991-06-01

    The paper reviews the history of legislation to reduce jet-powered aircraft noise, particularly in the U.S.A. Recently introduced legislation is discussed and the paper goes on to explain the fundamental advantage of re-engining as a means of reducing aircraft noise. Th Rolls-Royce Tay engine is introduced and the two re-engine programs already launched are described. The expected large reductions in noise level which result from re-engining are illustrated. The paper concludes with a discussion on new programs, on the current airline business scene and on some aspects of the economics of re-engining.

  2. The 300 H.P. Benz Aircraft Engine

    NASA Technical Reports Server (NTRS)

    Heller, A

    1921-01-01

    A description is given of the Benz 12-cylinder aircraft engine. The 300 H.P. engine, with the cylinders placed at an angle of 60 degrees not only realizes a long-cherished conception, but has received refinement in detail. It may be described as a perfect example of modern German aircraft engine construction. Here, a detailed description is given of the construction of this engine. Emphasis is placed on the design and construction of the cylinders, pistons, and connecting rods. Also discussed are engine fitting, lubrication, oil pumps, bearings, the oil tank, fuel pump, carburetors, and cooling system.

  3. 14 CFR 21.128 - Tests: aircraft engines.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Tests: aircraft engines. 21.128 Section 21.128 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT CERTIFICATION PROCEDURES FOR PRODUCTS AND PARTS Production Under Type Certificate § 21.128 Tests:...

  4. 14 CFR 21.128 - Tests: aircraft engines.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Tests: aircraft engines. 21.128 Section 21.128 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT CERTIFICATION PROCEDURES FOR PRODUCTS AND PARTS Production Under Type Certificate § 21.128 Tests:...

  5. 14 CFR 21.128 - Tests: aircraft engines.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Tests: aircraft engines. 21.128 Section 21.128 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT CERTIFICATION PROCEDURES FOR PRODUCTS AND PARTS Production Under Type Certificate § 21.128 Tests:...

  6. 76 FR 68636 - Airworthiness Directives; Thielert Aircraft Engines GmbH (TAE) Reciprocating Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-07

    ...-01] RIN 2120-AA64 Airworthiness Directives; Thielert Aircraft Engines GmbH (TAE) Reciprocating Engines AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule; request for comments. SUMMARY: We are superseding an existing airworthiness directive (AD) for Thielert Aircraft Engines...

  7. Flutter of aircraft engine turbine blades

    NASA Astrophysics Data System (ADS)

    Panovsky, Josef, Jr.

    1997-11-01

    The goal of this research is to eliminate occurrences of flutter of low-pressure turbine blades in aircraft engines. Fundamental unsteady aerodynamic experiments in an annular cascade plus correlating analyses are conducted to improve the understanding of the flutter mechanism in these blades and to identify the key flutter parameters. The use of two- and three-dimensional linearized Euler methods for the calculation of the unsteady pressures due to the blade motion are validated through detailed comparison with the experimental data. Unexpected features of the steady and unsteady flows are also investigated using these computational tools. The validated computer codes are used to extend the range of the experimental data in a series of parametric studies, where the influence of mode shape, reduced frequency, and blade loading are investigated. Mode shape is identified as the most important contributor to determining the stability of a blade design. A new stability parameter is introduced to gain additional insight into the key contributors to flutter. This stability parameter is derived from the influence coefficient representation of the cascade, and includes only contributions from the reference blade and its immediate neighbors. This has the effect of retaining the most important contributions while filtering out terms of less significance. Design rules for the preliminary concept phase and procedures for the detailed analysis phase of the typical blade design process are defined. Utilization of these procedures will lead to blade designs which are free of flutter.

  8. Aircraft Engine Sump Fire Mitigation, Phase 2

    NASA Technical Reports Server (NTRS)

    Rosenlieb, J. W.

    1978-01-01

    The effect of changes in the input parameters (air leakage flow rate and temperature and lubricating oil inlet flow rate and temperature) over a specified range on the flammability conditions within an aircraft engine bearing sump was investigated. An analytical study was performed to determine the effect of various parameters on the generation rate of oil vapor from oil droplets in a hot air stream flowing in a cylindrical tube. The ignition of the vapor-air mixture by an ignition source was considered. The experimental investigation demonstrated that fires would be ignited by a spark ignitor over the full range of air and oil flow rates and air temperatures evaluated. However, no fires could be ignited when the oil inlet temperature was maintained below 41.7 K (290 F). The severity of the fires ignited were found to be directly proportional to the hot air flow rate. Reasonably good correlation was found between the mixture temperature in the sump at the ignitor location and the flammability limits as defined by flammability theory; thus a fairly reliable experimental method of determining flammable conditions within a sump was demonstrated. The computerized mathematical model shows that oil droplet size and air temperature have the greatest influence on the generation rate of oil vapor.

  9. Calculation of odour emissions from aircraft engines at Copenhagen Airport.

    PubMed

    Winther, Morten; Kousgaard, Uffe; Oxbøl, Arne

    2006-07-31

    In a new approach the odour emissions from aircraft engines at Copenhagen Airport are calculated using actual fuel flow and emission measurements (one main engine and one APU: Auxiliary Power Unit), odour panel results, engine specific data and aircraft operational data for seven busy days. The calculation principle assumes a linear relation between odour and HC emissions. Using a digitalisation of the aircraft movements in the airport area, the results are depicted on grid maps, clearly reflecting aircraft operational statistics as single flights or total activity during a whole day. The results clearly reflect the short-term temporal fluctuations of the emissions of odour (and exhaust gases). Aircraft operating at low engine thrust (taxiing, queuing and landing) have a total odour emission share of almost 98%, whereas the shares for the take off/climb out phases (2%) and APU usage (0.5%) are only marginal. In most hours of the day, the largest odour emissions occur, when the total amount of fuel burned during idle is high. However, significantly higher HC emissions for one specific engine cause considerable amounts of odour emissions during limited time periods. The experimentally derived odour emission factor of 57 OU/mg HC is within the range of 23 and 110 OU/mg HC used in other airport odour studies. The distribution of odour emission results between aircraft operational phases also correspond very well with the results for these other studies. The present study uses measurement data for a representative engine. However, the uncertainties become large when the experimental data is used to estimate the odour emissions for all aircraft engines. More experimental data is needed to increase inventory accuracy, and in terms of completeness it is recommended to make odour emission estimates also for engine start and the fuelling of aircraft at Copenhagen Airport in the future.

  10. Fiber-Optic Circuits For Aircraft Engine Controls

    NASA Astrophysics Data System (ADS)

    Glomb, Walter L.

    1987-12-01

    This paper describes environmental effects which impact the design of interfaces to fiber-optic sensors and data buses in aircraft engine controls. Emphasis is placed on selection of components and designs which maintain their performance and reliability in the harsh environment of an electronics enclosure mounted on a modern aircraft turbine engine. Particular attention is given to the effects of temperature on electro-optical component and system performance. The main conclusion is that electro-optical interfaces to a variety of fiber-optic systems can be installed in an engine-mounted control if the designs and components are selected after careful analysis of the effects of the engine environment.

  11. A Roadmap for Aircraft Engine Life Extending Control

    NASA Technical Reports Server (NTRS)

    Guo, Ten-Huei

    2001-01-01

    The concept of Aircraft Engine Life Extending Control is introduced. A brief description of the tradeoffs between performance and engine life are first explained. The overall goal of the life extending controller is to reduce the engine operating cost by extending the on-wing engine life while improving operational safety. The research results for NASA's Rocket Engine life extending control program are also briefly described. Major building blocks of the Engine Life Extending Control architecture are examined. These blocks include: life prediction models, engine operation models, stress and thermal analysis tools, control schemes, and intelligent control systems. The technology areas that would likely impact the successful implementation of an aircraft engine life extending control are also briefly described. Near, intermediate, and long term goals of NASA's activities are also presented.

  12. 78 FR 70216 - Airworthiness Directives; Thielert Aircraft Engines GmbH Reciprocating Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-25

    ... Engines GmbH Reciprocating Engines AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: We are adopting a new airworthiness directive (AD) for all Thielert Aircraft Engines GmbH TAE 125-01 reciprocating engines. This AD requires applying sealant to close the engine clutch...

  13. Intelligent Life-Extending Controls for Aircraft Engines Studied

    NASA Technical Reports Server (NTRS)

    Guo, Ten-Huei

    2005-01-01

    Current aircraft engine controllers are designed and operated to provide desired performance and stability margins. Except for the hard limits for extreme conditions, engine controllers do not usually take engine component life into consideration during the controller design and operation. The end result is that aircraft pilots regularly operate engines under unnecessarily harsh conditions to strive for optimum performance. The NASA Glenn Research Center and its industrial and academic partners have been working together toward an intelligent control concept that will include engine life as part of the controller design criteria. This research includes the study of the relationship between control action and engine component life as well as the design of an intelligent control algorithm to provide proper tradeoffs between performance and engine life. This approach is expected to maintain operating safety while minimizing overall operating costs. In this study, the thermomechanical fatigue (TMF) of a critical component was selected to demonstrate how an intelligent engine control algorithm can significantly extend engine life with only a very small sacrifice in performance. An intelligent engine control scheme based on modifying the high-pressure spool speed (NH) was proposed to reduce TMF damage from ground idle to takeoff. The NH acceleration schedule was optimized to minimize the TMF damage for a given rise-time constraint, which represents the performance requirement. The intelligent engine control scheme was used to simulate a commercial short-haul aircraft engine.

  14. Combined additive manufacturing approaches in tissue engineering.

    PubMed

    Giannitelli, S M; Mozetic, P; Trombetta, M; Rainer, A

    2015-09-01

    Advances introduced by additive manufacturing (AM) have significantly improved the control over the microarchitecture of scaffolds for tissue engineering. This has led to the flourishing of research works addressing the optimization of AM scaffolds microarchitecture to optimally trade-off between conflicting requirements (e.g. mechanical stiffness and porosity level). A fascinating trend concerns the integration of AM with other scaffold fabrication methods (i.e. "combined" AM), leading to hybrid architectures with complementary structural features. Although this innovative approach is still at its beginning, significant results have been achieved in terms of improved biological response to the scaffold, especially targeting the regeneration of complex tissues. This review paper reports the state of the art in the field of combined AM, posing the accent on recent trends, challenges, and future perspectives.

  15. Lightweight, low compression aircraft diesel engine. [converting a spark ignition engine to the diesel cycle

    NASA Technical Reports Server (NTRS)

    Gaynor, T. L.; Bottrell, M. S.; Eagle, C. D.; Bachle, C. F.

    1977-01-01

    The feasibility of converting a spark ignition aircraft engine to the diesel cycle was investigated. Procedures necessary for converting a single cylinder GTS10-520 are described as well as a single cylinder diesel engine test program. The modification of the engine for the hot port cooling concept is discussed. A digital computer graphics simulation of a twin engine aircraft incorporating the diesel engine and Hot Fort concept is presented showing some potential gains in aircraft performance. Sample results of the computer program used in the simulation are included.

  16. Integrated engine-generator for aircraft secondary power.

    NASA Technical Reports Server (NTRS)

    Secunde, R. R.

    1972-01-01

    The integrated engine-generator concept consists of an electric generator located inside a turbojet or turbofan engine and both concentric with and driven by one of the main engine shafts. The electric power-conversion equipment and generator controls are conveniently located in the aircraft. When properly rated, the generator serves as an engine starter as well as a source of electric power. The available generating capacity permits use of electrically driven engine accessories. This reduces or eliminates the need for an external gearbox on the engine, thereby simplifying the engine and nacelle assembly and increasing aircraft design flexibility. The nacelle diameter can then be decreased, resulting in less aerodynamic drag and reduced takeoff gross weight.

  17. 76 FR 82110 - Airworthiness Directives; Thielert Aircraft Engines GmbH Reciprocating Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-30

    ...-30-AD; Amendment 39-16906; AD 2010-06-12R1] RIN 2120-AA64 Airworthiness Directives; Thielert Aircraft.... SUMMARY: We are revising an existing airworthiness directive (AD) for Thielert Aircraft Engines GmbH models TAE 125-02-99 and TAE 125-01 reciprocating engines. That AD currently requires replacing...

  18. Further studies of methods for reducing community noise around airports. [aircraft noise - aircraft engines

    NASA Technical Reports Server (NTRS)

    Petersen, R. H.; Barry, D. J.; Kline, D. M.

    1975-01-01

    A simplified method of analysis was used in which all flights at a 'simulated' airport were assumed to operate from one runway in a single direction. For this simulated airport, contours of noise exposure forecast were obtained and evaluated. A flight schedule of the simulated airport which is representative of the 23 major U. S. airports was used. The effect of banning night-time operations by four-engine, narrow-body aircraft in combination with other noise reduction options was studied. The reductions in noise which would occur of two- and three-engine, narrow-body aircraft equipped with a refanned engine was examined. A detailed comparison of the effects of engine cutback on takeoff versus the effects of retrofitting quiet nacelles for narrow-body aircraft was also examined. A method of presenting the effects of various noise reduction options was treated.

  19. Lifecycle Information of Aircraft Engine Components

    DTIC Science & Technology

    2010-04-14

    commercial aircraft, the industry generated a number of potential RFID-based applications for airlines, air- freight carriers, aircraft maintenance and...adoption of RFID technologies to track serially controlled items requires careful planning and design. Data overload and data noise also affect the...performance of RFID systems. Data overload results from continuously scanning the RFID tags within reader range and sending the repeated information

  20. 77 FR 58301 - Technical Amendment; Airworthiness Standards: Aircraft Engines; Correction

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-20

    ... technical amendment, the FAA clarified aircraft engine vibration test requirements in the airworthiness... amendment, the FAA intended to clarify vibration test requirements in Sec. 33.83 of 14 Code of Federal... read as follows: Sec. 33.83 Vibration test. (a) Each engine must undergo vibration surveys to...

  1. Condensed data on the aircraft engines of the world

    NASA Technical Reports Server (NTRS)

    Fliedner, C S

    1929-01-01

    This compilation of the outstanding characteristics of the available aircraft engines of the world was prepared as a compact ready reference for desk use. It does not pretend to be anything but a skeleton outline of the characteristics of engines reported in the technical press as being in either the experimental, development, or production stage.

  2. Workshop on Aerosols and Particulates from Aircraft Gas Turbine Engines

    NASA Technical Reports Server (NTRS)

    Wey, Chown Chou (Compiler)

    1999-01-01

    In response to the National Research Council (NRC) recommendations, the Workshop on Aerosols and Particulates from Aircraft Gas Turbine Engines was organized by the NASA Lewis Research Center and held on July 29-30, 1997 at the Ohio Aerospace Institute in Cleveland, Ohio. The objective is to develop consensus among experts in the field of aerosols from gas turbine combustors and engines as to important issues and venues to be considered. Workshop participants' expertise included engine and aircraft design, combustion processes and kinetics, atmospheric science, fuels, and flight operations and instrumentation.

  3. Control Design for a Generic Commercial Aircraft Engine

    NASA Technical Reports Server (NTRS)

    Csank, Jeffrey; May, Ryan D.

    2010-01-01

    This paper describes the control algorithms and control design process for a generic commercial aircraft engine simulation of a 40,000 lb thrust class, two spool, high bypass ratio turbofan engine. The aircraft engine is a complex nonlinear system designed to operate over an extreme range of environmental conditions, at temperatures from approximately -60 to 120+ F, and at altitudes from below sea level to 40,000 ft, posing multiple control design constraints. The objective of this paper is to provide the reader an overview of the control design process, design considerations, and justifications as to why the particular architecture and limits have been chosen. The controller architecture contains a gain-scheduled Proportional Integral controller along with logic to protect the aircraft engine from exceeding any limits. Simulation results illustrate that the closed loop system meets the Federal Aviation Administration s thrust response requirements

  4. QCGAT aircraft/engine design for reduced noise and emissions

    NASA Technical Reports Server (NTRS)

    Lanson, L.; Terrill, K. M.

    1980-01-01

    The high bypass ratio QCGAT engine played an important role in shaping the aircraft design. The aircraft which evolved is a sleek, advanced design, six-place aircraft with 3538 kg (7,800 lb) maximum gross weight. It offers a 2778 kilometer (1500 nautical mile) range with cruise speed of 0.5 Mach number and will take-off and land on the vast majority of general aviation airfields. Advanced features include broad application of composite materials and a supercritical wing design with winglets. Full-span fowler flaps were introduced to improve landing capability. Engines are fuselage-mounted with inlets over the wing to provide shielding of fan noise by the wing surfaces. The design objectives, noise, and emission considerations, engine cycle and engine description are discussed as well as specific design features.

  5. Aircraft stress sequence development: A complex engineering process made simple

    NASA Technical Reports Server (NTRS)

    Schrader, K. H.; Butts, D. G.; Sparks, W. A.

    1994-01-01

    Development of stress sequences for critical aircraft structure requires flight measured usage data, known aircraft loads, and established relationships between aircraft flight loads and structural stresses. Resulting cycle-by-cycle stress sequences can be directly usable for crack growth analysis and coupon spectra tests. Often, an expert in loads and spectra development manipulates the usage data into a typical sequence of representative flight conditions for which loads and stresses are calculated. For a fighter/trainer type aircraft, this effort is repeated many times for each of the fatigue critical locations (FCL) resulting in expenditure of numerous engineering hours. The Aircraft Stress Sequence Computer Program (ACSTRSEQ), developed by Southwest Research Institute under contract to San Antonio Air Logistics Center, presents a unique approach for making complex technical computations in a simple, easy to use method. The program is written in Microsoft Visual Basic for the Microsoft Windows environment.

  6. Rankline-Brayton engine powered solar thermal aircraft

    SciTech Connect

    Bennett, Charles L

    2012-03-13

    A solar thermal powered aircraft powered by heat energy from the sun. A Rankine-Brayton hybrid cycle heat engine is carried by the aircraft body for producing power for a propulsion mechanism, such as a propeller or other mechanism for enabling sustained free flight. The Rankine-Brayton engine has a thermal battery, preferably containing a lithium-hydride and lithium mixture, operably connected to it so that heat is supplied from the thermal battery to a working fluid. A solar concentrator, such as reflective parabolic trough, is movably connected to an optically transparent section of the aircraft body for receiving and concentrating solar energy from within the aircraft. Concentrated solar energy is collected by a heat collection and transport conduit, and heat transported to the thermal battery. A solar tracker includes a heliostat for determining optimal alignment with the sun, and a drive motor actuating the solar concentrator into optimal alignment with the sun based on a determination by the heliostat.

  7. Rankine-Brayton engine powered solar thermal aircraft

    SciTech Connect

    Bennett, Charles L.

    2009-12-29

    A solar thermal powered aircraft powered by heat energy from the sun. A Rankine-Brayton hybrid cycle heat engine is carried by the aircraft body for producing power for a propulsion mechanism, such as a propeller or other mechanism for enabling sustained free flight. The Rankine-Brayton engine has a thermal battery, preferably containing a lithium-hydride and lithium mixture, operably connected to it so that heat is supplied from the thermal battery to a working fluid. A solar concentrator, such as reflective parabolic trough, is movably connected to an optically transparent section of the aircraft body for receiving and concentrating solar energy from within the aircraft. Concentrated solar energy is collected by a heat collection and transport conduit, and heat transported to the thermal battery. A solar tracker includes a heliostat for determining optimal alignment with the sun, and a drive motor actuating the solar concentrator into optimal alignment with the sun based on a determination by the heliostat.

  8. Conceptual design of single turbofan engine powered light aircraft

    NASA Technical Reports Server (NTRS)

    Snyder, F. S.; Voorhees, C. G.; Heinrich, A. M.; Baisden, D. N.

    1977-01-01

    The conceptual design of a four place single turbofan engine powered light aircraft was accomplished utilizing contemporary light aircraft conventional design techniques as a means of evaluating the NASA-Ames General Aviation Synthesis Program (GASP) as a preliminary design tool. In certain areas, disagreement or exclusion were found to exist between the results of the conventional design and GASP processes. Detail discussion of these points along with the associated contemporary design methodology are presented.

  9. Effects of Structural Flexibility on Aircraft-Engine Mounts

    NASA Technical Reports Server (NTRS)

    Phillips, W. H.

    1986-01-01

    Analysis extends technique for design of widely used type of vibration-isolating mounts for aircraft engines, in which rubber mounting pads located in plane behind center of gravity of enginepropeller combination. New analysis treats problem in statics. Results of simple approach useful in providing equations for design of vibrationisolating mounts. Equations applicable in usual situation in which engine-mount structure itself relatively light and placed between large mass of engine and other heavy components of airplane.

  10. Small Engine Manufacturing in Wisconsin: Work Reorganization and Training Needs.

    ERIC Educational Resources Information Center

    Wisconsin Univ., Madison. Center on Wisconsin Strategy.

    Wisconsin is the country's leading manufacturer of small engines, and the network of companies and suppliers constituting the small engine industry accounts for more than 5% of the state's entire manufacturing base. For the past 15 years, the industry has been rocked by intensified international competition and rapid technological advancement. A…

  11. Aircraft Turbine Engine Control Research at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Garg, Sanjay

    2014-01-01

    This lecture will provide an overview of the aircraft turbine engine control research at NASA (National Aeronautics and Space Administration) Glenn Research Center (GRC). A brief introduction to the engine control problem is first provided with a description of the current state-of-the-art control law structure. A historical aspect of engine control development since the 1940s is then provided with a special emphasis on the contributions of GRC. The traditional engine control problem has been to provide a means to safely transition the engine from one steady-state operating point to another based on the pilot throttle inputs. With the increased emphasis on aircraft safety, enhanced performance and affordability, and the need to reduce the environmental impact of aircraft, there are many new challenges being faced by the designers of aircraft propulsion systems. The Controls and Dynamics Branch (CDB) at GRC is leading and participating in various projects in partnership with other organizations within GRC and across NASA, other government agencies, the U.S. aerospace industry, and academia to develop advanced propulsion controls and diagnostics technologies that will help meet the challenging goals of NASA programs under the Aeronautics Research Mission. The second part of the lecture provides an overview of the various CDB technology development activities in aircraft engine control and diagnostics, both current and some accomplished in the recent past. The motivation for each of the research efforts, the research approach, technical challenges and the key progress to date are summarized. The technologies to be discussed include system level engine control concepts, gas path diagnostics, active component control, and distributed engine control architecture. The lecture will end with a futuristic perspective of how the various current technology developments will lead to an Intelligent and Autonomous Propulsion System requiring none to very minimum pilot interface

  12. Multi-fuel rotary engine for general aviation aircraft

    NASA Technical Reports Server (NTRS)

    Jones, C.; Ellis, D. R.; Meng, P. R.

    1983-01-01

    Design studies of advanced multifuel general aviation and commuter aircraft rotary stratified charge engines are summarized. Conceptual design studies were performed at two levels of technology, on advanced general aviation engines sized to provide 186/250 shaft kW/hp under cruise conditions at 7620 (25000 m/ft) altitude. A follow on study extended the results to larger (2500 hp max.) engine sizes suitable for applications such as commuter transports and helicopters. The study engine designs were derived from relevant engine development background including both prior and recent engine test results using direct injected unthrottled rotary engine technology. Aircraft studies, using these resultant growth engines, define anticipated system effects of the performance and power density improvements for both single engine and twin engine airplanes. The calculated results indicate superior system performance and 27 to 33 percent fuel economy improvement for the rotary engine airplanes as compared to equivalent airframe concept designs with current baseline engines. The research and technology activities required to attain the projected engine performance levels are also discussed.

  13. The Aerothermodynamics of Aircraft Gas Turbine Engines

    DTIC Science & Technology

    1978-07-01

    line and staggered tube ~ anks . Another way to get the coolant out of the trailing edge is to use drilled holes. These are normally calculated using...Pittsburgh, PA, 1976. 20.35 Butze, H. F., and Ehlers , R. C., "Effect of FUel Properties on Performance of a Single Aircraft Turbojet Combustor," NASA-Tl~-X...20.75 Butze, H. F .. and Ehlers , R. C., "Effect of Fuel Properties on Performance of A Single Aircraft Turboj et Combustor," NASA-TM-X-71789

  14. 77 FR 13488 - Airworthiness Directives; Thielert Aircraft Engines GmbH (TAE) Reciprocating Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-07

    ... Engines GmbH (TAE) Reciprocating Engines AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final... TAE 125-02-99 reciprocating engines installed on, but not limited to, Diamond Aircraft Industries...-E002801, on TAE 125-02-99 engine. This AD was prompted by TAE increasing the life of the PPRV, part...

  15. 78 FR 1733 - Airworthiness Directives; Thielert Aircraft Engines GmbH Reciprocating Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-09

    ... Engines GmbH Reciprocating Engines AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: We are superseding an existing airworthiness directive (AD) for all Thielert Aircraft Engines GmbH models TAE 125-01, TAE 125-02- 99, and TAE 125-02-114 reciprocating engines. That AD...

  16. 77 FR 4217 - Airworthiness Directives; Thielert Aircraft Engines GmbH Reciprocating Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-27

    ... Engines GmbH Reciprocating Engines AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: We are adopting a new airworthiness directive (AD) for all Thielert Aircraft Engines GmbH (TAE) ] TAE 125-02-99 and TAE 125-02-114 reciprocating engines. This AD was prompted by in-flight...

  17. 78 FR 1728 - Airworthiness Directives; Thielert Aircraft Engines GmbH Reciprocating Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-09

    ... Engines GmbH Reciprocating Engines AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: We are adopting a new airworthiness directive (AD) for all Thielert Aircraft Engines GmbH (TAE) TAE 125-02-99 and TAE 125-02-114 reciprocating engines. This AD requires inspection of the oil...

  18. Aircraft Turbine Engine Control Research at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Garg, Sanjay

    2013-01-01

    This paper provides an overview of the aircraft turbine engine control research at the NASA Glenn Research Center (GRC). A brief introduction to the engine control problem is first provided with a description of the state-of-the-art control law structure. A historical aspect of engine control development since the 1940s is then provided with a special emphasis on the contributions of GRC. With the increased emphasis on aircraft safety, enhanced performance, and affordability, as well as the need to reduce the environmental impact of aircraft, there are many new challenges being faced by the designers of aircraft propulsion systems. The Controls and Dynamics Branch (CDB) at GRC is leading and participating in various projects to develop advanced propulsion controls and diagnostics technologies that will help meet the challenging goals of NASA Aeronautics Research Mission programs. The rest of the paper provides an overview of the various CDB technology development activities in aircraft engine control and diagnostics, both current and some accomplished in the recent past. The motivation for each of the research efforts, the research approach, technical challenges, and the key progress to date are summarized.

  19. Real-Time Aircraft Engine-Life Monitoring

    NASA Technical Reports Server (NTRS)

    Klein, Richard

    2014-01-01

    This project developed an inservice life-monitoring system capable of predicting the remaining component and system life of aircraft engines. The embedded system provides real-time, inflight monitoring of the engine's thrust, exhaust gas temperature, efficiency, and the speed and time of operation. Based upon this data, the life-estimation algorithm calculates the remaining life of the engine components and uses this data to predict the remaining life of the engine. The calculations are based on the statistical life distribution of the engine components and their relationship to load, speed, temperature, and time.

  20. Some aspects of aircraft jet engine fuels

    NASA Technical Reports Server (NTRS)

    Bekiesinski, R.

    1979-01-01

    Technologies are reviewed for improving the thermal stability of jet fuels, with reference to the overheating of fuel tanks in supersonic aircraft. Consideration is given to the development of a jet fuel with high thermal stability by the Polish petroleum industry.

  1. Recent Progress in Engine Noise Reduction for Commercial Aircraft Applications

    NASA Technical Reports Server (NTRS)

    Huff, Dennis L.

    2003-01-01

    Considerable progress has been made over the past ten years developing technologies for reducing aircraft noise. Engine noise continues to be a dominate source, particularly for aircraft departing from airports. Research efforts have concentrated on developing noise prediction methods, experimental validation, and developing noise reduction concepts that have been verified through model scale and static engine tests. Most of the work has concentrated on fan and jet components for commercial turbofan engines. In this seminar, an overview of the engine noise reduction work that was sponsored by NASA s Advanced Subsonic Technology Noise Reduction Program will be given, along with background information on turbofan noise sources and certification procedures. Concepts like "chevron" nozzles for jet noise reduction and swept stators for fan noise reduction will be highlighted. A preliminary assessment on how the new technologies will impact future engines will be given.

  2. Characterization of chemical and particulate emissions from aircraft engines

    NASA Astrophysics Data System (ADS)

    Agrawal, Harshit; Sawant, Aniket A.; Jansen, Karel; Wayne Miller, J.; Cocker, David R.

    2008-06-01

    This paper presents a series of measurements from four on-wing, commercial aircraft engines, including two newer CFM56-7 engines and two earlier CFM56-3 engines. Samples were collected from each engine using a probe positioned behind the exhaust nozzle of the aircraft, chocked on a concrete testing pad. The emission factors for particulate matter mass, elemental and organic carbon, carbonyls, polycyclic aromatic hydrocarbons, n-alkanes, dioxins, metals and ions are reported for four different engine power setting modes. The emissions indices of particulate matter, elemental and organic carbon are highly power dependent for these engines. Particulate matter emission indices (g kg-1 fuel) are found to increase from 1.1E-02 to 2.05E-01 with increase in power from idle to 85%. The elemental carbon to organic carbon varies from 0.5 to 3.8 with change in power from idle to 85%. The carbonyl emissions are dominated by formaldehyde. The emission index of formaldehyde ranges from 2.3E-01 to 4.8E-01 g kg-1 fuel. The distribution of metals depends on the difference in the various engines. The dioxin emissions from the aircraft engines are observed to be below detection limit.

  3. Multi-Fuel Rotary Engine for General Aviation Aircraft

    NASA Technical Reports Server (NTRS)

    Jones, C.; Ellis, D. R.; Meng, P. R.

    1983-01-01

    Design studies, conducted for NASA, of Advanced Multi-fuel General Aviation and Commuter Aircraft Rotary Stratified Charge Engines are summarized. Conceptual design studies of an advanced engine sized to provide 186/250 shaft KW/HP under cruise conditions at 7620/25,000 m/ft. altitude were performed. Relevant engine development background covering both prior and recent engine test results of the direct injected unthrottled rotary engine technology, including the capability to interchangeably operate on gasoline, diesel fuel, kerosene, or aviation jet fuel, are presented and related to growth predictions. Aircraft studies, using these resultant growth engines, define anticipated system effects of the performance and power density improvements for both single engine and twin engine airplanes. The calculated results indicate superior system performance and 30 to 35% fuel economy improvement for the Rotary-engine airplanes as compared to equivalent airframe concept designs with current baseline engines. The research and technology activities required to attain the projected engine performance levels are also discussed.

  4. An economic model of the manufacturers' aircraft production and airline earnings potential, volume 3

    NASA Technical Reports Server (NTRS)

    Kneafsey, J. T.; Hill, R. M.

    1978-01-01

    A behavioral explanation of the process of technological change in the U. S. aircraft manufacturing and airline industries is presented. The model indicates the principal factors which influence the aircraft (airframe) manufacturers in researching, developing, constructing and promoting new aircraft technology; and the financial requirements which determine the delivery of new aircraft to the domestic trunk airlines. Following specification and calibration of the model, the types and numbers of new aircraft were estimated historically for each airline's fleet. Examples of possible applications of the model to forecasting an individual airline's future fleet also are provided. The functional form of the model is a composite which was derived from several preceding econometric models developed on the foundations of the economics of innovation, acquisition, and technological change and represents an important contribution to the improved understanding of the economic and financial requirements for aircraft selection and production. The model's primary application will be to forecast the future types and numbers of new aircraft required for each domestic airline's fleet.

  5. Small transport aircraft technology

    NASA Technical Reports Server (NTRS)

    Williams, L. J.

    1983-01-01

    Information on commuter airline trends and aircraft developments is provided to upgrade the preliminary findings of a NASA-formed small transport aircraft technology (STAT) team, established to determine whether the agency's research and development programs could help commuter aircraft manufacturers solve technical problems related to passenger acceptance and use of 19- to 50-passenger aircraft. The results and conclusions of the full set of completed STAT studies are presented. These studies were performed by five airplane manufacturers, five engine manufacturers, and two propeller manufacturers. Those portions of NASA's overall aeronautics research and development programs which are applicable to commuter aircraft design are summarized. Areas of technology that might beneficially be expanded or initiated to aid the US commuter aircraft manufacturers in the evolution of improved aircraft for the market are suggested.

  6. Adaptive Optimization of Aircraft Engine Performance Using Neural Networks

    NASA Technical Reports Server (NTRS)

    Simon, Donald L.; Long, Theresa W.

    1995-01-01

    Preliminary results are presented on the development of an adaptive neural network based control algorithm to enhance aircraft engine performance. This work builds upon a previous National Aeronautics and Space Administration (NASA) effort known as Performance Seeking Control (PSC). PSC is an adaptive control algorithm which contains a model of the aircraft's propulsion system which is updated on-line to match the operation of the aircraft's actual propulsion system. Information from the on-line model is used to adapt the control system during flight to allow optimal operation of the aircraft's propulsion system (inlet, engine, and nozzle) to improve aircraft engine performance without compromising reliability or operability. Performance Seeking Control has been shown to yield reductions in fuel flow, increases in thrust, and reductions in engine fan turbine inlet temperature. The neural network based adaptive control, like PSC, will contain a model of the propulsion system which will be used to calculate optimal control commands on-line. Hopes are that it will be able to provide some additional benefits above and beyond those of PSC. The PSC algorithm is computationally intensive, it is valid only at near steady-state flight conditions, and it has no way to adapt or learn on-line. These issues are being addressed in the development of the optimal neural controller. Specialized neural network processing hardware is being developed to run the software, the algorithm will be valid at steady-state and transient conditions, and will take advantage of the on-line learning capability of neural networks. Future plans include testing the neural network software and hardware prototype against an aircraft engine simulation. In this paper, the proposed neural network software and hardware is described and preliminary neural network training results are presented.

  7. Organic positive ions in aircraft gas-turbine engine exhaust

    NASA Astrophysics Data System (ADS)

    Sorokin, Andrey; Arnold, Frank

    Volatile organic compounds (VOCs) represent a significant fraction of atmospheric aerosol. However the role of organic species emitted by aircraft (as a consequence of the incomplete combustion of fuel in the engine) in nucleation of new volatile particles still remains rather speculative and requires a much more detailed analysis of the underlying mechanisms. Measurements in aircraft exhaust plumes have shown the presence of both different non-methane VOCs (e.g. PartEmis project) and numerous organic cluster ions (MPIK-Heidelberg). However the link between detected organic gas-phase species and measured mass spectrum of cluster ions is uncertain. Unfortunately, up to now there are no models describing the thermodynamics of the formation of primary organic cluster ions in the exhaust of aircraft engines. The aim of this work is to present first results of such a model development. The model includes the block of thermodynamic data based on proton affinities and gas basicities of organic molecules and the block of non-equilibrium kinetics of the cluster ions evolution in the exhaust. The model predicts important features of the measured spectrum of positive ions in the exhaust behind aircraft. It is shown that positive ions emitted by aircraft engines into the atmosphere mostly consist of protonated and hydrated organic cluster ions. The developed model may be explored also in aerosol investigations of the background atmosphere as well as in the analysis of the emission of fine aerosol particles by automobiles.

  8. Research on hypersonic aircraft using pre-cooled turbojet engines

    NASA Astrophysics Data System (ADS)

    Taguchi, Hideyuki; Kobayashi, Hiroaki; Kojima, Takayuki; Ueno, Atsushi; Imamura, Shunsuke; Hongoh, Motoyuki; Harada, Kenya

    2012-04-01

    Systems analysis of a Mach 5 class hypersonic aircraft is performed. The aircraft can fly across the Pacific Ocean in 2 h. A multidisciplinary optimization program for aerodynamics, structure, propulsion, and trajectory is used in the analysis. The result of each element model is improved using higher accuracy analysis tools. The aerodynamic performance of the hypersonic aircraft is examined through hypersonic wind tunnel tests. A thermal management system based on the data of the wind tunnel tests is proposed. A pre-cooled turbojet engine is adopted as the propulsion system for the hypersonic aircraft. The engine can be operated continuously from take-off to Mach 5. This engine uses a pre-cooling cycle using cryogenic liquid hydrogen. The high temperature inlet air of hypersonic flight would be cooled by the same liquid hydrogen used as fuel. The engine is tested under sea level static conditions. The engine is installed on a flight test vehicle. Both liquid hydrogen fuel and gaseous hydrogen fuel are supplied to the engine from a tank and cylinders installed within the vehicle. The designed operation of major components of the engine is confirmed. A large amount of liquid hydrogen is supplied to the pre-cooler in order to make its performance sufficient for Mach 5 flight. Thus, fuel rich combustion is adopted at the afterburner. The experiments are carried out under the conditions that the engine is mounted upon an experimental airframe with both set up either horizontally or vertically. As a result, the operating procedure of the pre-cooled turbojet engine is demonstrated.

  9. A Systems Engineering Approach to Aircraft Kinetic Kill Countermeasures Technology: Development of an Active Aircraft Defense System for the C/KC-135 Aircraft. Volume 1

    DTIC Science & Technology

    1995-12-01

    AFIT/GSE/ENY/95D-01 A SYSTEMS ENGINEERING APPROACH TO AIRCRAFT KINETIC KILL COUNTERMEASURE TECHNOLOGY: DEVELOPMENT OF AN ACTIVE AIR DEFENSE SYSTEM...AFIT/GSE/ENY/95D-01 A SYSTEMS ENGINEERING APPROACH TO AIRCRAFT KINETIC KILL COUNTERMEASURE TECHNOLOGY: DEVELOPMENT OF AN ACTIVE AIR DEFENSE SYSTEM FOR...THE C/KC-135 AIRCRAFT THESIS (1 of2) Presented to the Faculty of the Graduate School of Engineering of the Air Force Institute of Technology Air

  10. Review of the Rhein-Flugzeugbau Wankel powered aircraft program. [ducted fan engines

    NASA Technical Reports Server (NTRS)

    Riethmueller, M.

    1978-01-01

    The development of light aircraft with special emphasis on modern propulsion systems and production is discussed in terms of the application of rotary engines to aircraft. Emphasis is placed on the integrated ducted-fan propulsion system using rotary engines.

  11. NO(x) reduction additives for aircraft gas turbine engines

    NASA Technical Reports Server (NTRS)

    Adelman, Henry G.; Menees, Gene P.; Cambier, Jean-Luc

    1993-01-01

    The reduction of oxides of nitrogen (NO(x)) emissions from aircraft gas turbine engines is a vital part of the NASA High Speed Research Program. Emissions reductions are critical to the feasibility of future High Speed Civil Transports which operate at supersonic speeds in the stratosphere. It is believed that large fleets of such aircraft using conventional gas turbine engines would emit levels of NO(x) that would be harmful to the stratospheric ozone layer. Previous studies have shown that NO(x) emissions can be reduced from stationary powerplant exhausts by the addition of additives such as ammonia to the exhaust gases. Since the exhaust residence times, pressures and temperatures may be different for aircraft gas turbines, a study has been made of additive effectiveness for high speed, high altitude flight.

  12. Energy efficient engine flight propulsion system: Aircraft/engine integration evaluation

    NASA Technical Reports Server (NTRS)

    Patt, R. F.

    1980-01-01

    Results of aircraft/engine integration studies conducted on an advanced flight propulsion system are reported. Economic evaluations of the preliminary design are included and indicate that program goals will be met. Installed sfc, DOC, noise, and emissions were evaluated. Aircraft installation considerations and growth were reviewed.

  13. Energy efficient engine flight propulsion system: Aircraft/engine integration evaluation

    SciTech Connect

    Patt, R.F.

    1980-06-01

    Results of aircraft/engine integration studies conducted on an advanced flight propulsion system are reported. Economic evaluations of the preliminary design are included and indicate that program goals will be met. Installed sfc, DOC, noise, and emissions were evaluated. Aircraft installation considerations and growth were reviewed.

  14. Calculation of the pressures on aircraft engine bearings

    NASA Technical Reports Server (NTRS)

    Steigenberger, O

    1929-01-01

    For aircraft engines the three principal operating conditions are idling speed, cruising speed, and diving with the engine stopped. In what follows, we will discuss a method which affords a good idea of the course of pressure for the above mentioned operating conditions. The pressures produced in the driving gear are of three kinds; namely, the pressure due to gases, the pressure due to the inertia of the rotating masses, and the pressure due to the inertia of the reciprocating masses.

  15. Combustion system CFD modeling at GE Aircraft Engines

    NASA Technical Reports Server (NTRS)

    Burrus, D.; Mongia, H.; Tolpadi, Anil K.; Correa, S.; Braaten, M.

    1995-01-01

    This viewgraph presentation discusses key features of current combustion system CFD modeling capabilities at GE Aircraft Engines provided by the CONCERT code; CONCERT development history; modeling applied for designing engine combustion systems; modeling applied to improve fundamental understanding; CONCERT3D results for current production combustors; CONCERT3D model of NASA/GE E3 combustor; HYBRID CONCERT CFD/Monte-Carlo modeling approach; and future modeling directions.

  16. Optimal Discrete Event Supervisory Control of Aircraft Gas Turbine Engines

    NASA Technical Reports Server (NTRS)

    Litt, Jonathan (Technical Monitor); Ray, Asok

    2004-01-01

    This report presents an application of the recently developed theory of optimal Discrete Event Supervisory (DES) control that is based on a signed real measure of regular languages. The DES control techniques are validated on an aircraft gas turbine engine simulation test bed. The test bed is implemented on a networked computer system in which two computers operate in the client-server mode. Several DES controllers have been tested for engine performance and reliability.

  17. Exhaust emissions reduction for intermittent combustion aircraft engines

    NASA Technical Reports Server (NTRS)

    Rezy, B. J.; Stuckas, K. J.; Tucker, J. R.; Meyers, J. E.

    1982-01-01

    Three concepts which, to an aircraft piston engine, provide reductions in exhaust emissions of hydrocarbons and carbon monoxide while simultaneously improving fuel economy. The three chosen concepts, (1) an improved fuel injection system, (2) an improved cooling cylinder head, and (3) exhaust air injection, when combined, show a synergistic relationship in achieving these goals. In addition, the benefits of variable ignition timing were explored and both dynamometer and flight testing of the final engine configuration were accomplished.

  18. Energy efficient engine: Propulsion system-aircraft integration evaluation

    NASA Technical Reports Server (NTRS)

    Owens, R. E.

    1979-01-01

    Flight performance and operating economics of future commercial transports utilizing the energy efficient engine were assessed as well as the probability of meeting NASA's goals for TSFC, DOC, noise, and emissions. Results of the initial propulsion systems aircraft integration evaluation presented include estimates of engine performance, predictions of fuel burns, operating costs of the flight propulsion system installed in seven selected advanced study commercial transports, estimates of noise and emissions, considerations of thrust growth, and the achievement-probability analysis.

  19. Advanced materials research for long-haul aircraft turbine engines

    NASA Technical Reports Server (NTRS)

    Signorelli, R. A.; Blankenship, C. P.

    1978-01-01

    The status of research efforts to apply low to intermediate temperature composite materials and advanced high temperature materials to engine components is reviewed. Emerging materials technologies and their potential benefits to aircraft gas turbines were emphasized. The problems were identified, and the general state of the technology for near term use was assessed.

  20. Advanced composite aileron for L-1011 transport aircraft: Aileron manufacture

    NASA Technical Reports Server (NTRS)

    Dunning, E. G.; Cobbs, W. L.; Legg, R. L.

    1981-01-01

    The fabrication activities of the Advanced Composite Aileron (ACA) program are discussed. These activities included detail fabrication, manufacturing development, assembly, repair and quality assurance. Five ship sets of ailerons were manufactured. The detail fabrication effort of ribs, spar and covers was accomplished on male tools to a common cure cycle. Graphite epoxy tape and fabric and syntactic epoxy materials were utilized in the fabrication. The ribs and spar were net cured and required no post cure trim. Material inconsistencies resulted in manufacturing development of the front spar during the production effort. The assembly effort was accomplished in subassembly and assembly fixtures. The manual drilling system utilized a dagger type drill in a hydraulic feed control hand drill. Coupon testing for each detail was done.

  1. The Power of Aircraft Engines at Altitude

    NASA Technical Reports Server (NTRS)

    Ragazzi, Paolo

    1939-01-01

    The subject of the present paper is confined to the investigations and methods employed by the Fiat company in their studies on the altitude performance of an air-cooled engine of the production type. The experimental set-up as well as test engine data are provided.

  2. Advanced Technology Spark-Ignition Aircraft Piston Engine Design Study

    NASA Technical Reports Server (NTRS)

    Stuckas, K. J.

    1980-01-01

    The advanced technology, spark ignition, aircraft piston engine design study was conducted to determine the improvements that could be made by taking advantage of technology that could reasonably be expected to be made available for an engine intended for production by January 1, 1990. Two engines were proposed to account for levels of technology considered to be moderate risk and high risk. The moderate risk technology engine is a homogeneous charge engine operating on avgas and offers a 40% improvement in transportation efficiency over present designs. The high risk technology engine, with a stratified charge combustion system using kerosene-based jet fuel, projects a 65% improvement in transportation efficiency. Technology enablement program plans are proposed herein to set a timetable for the successful integration of each item of required advanced technology into the engine design.

  3. Swirling-flow jet noise suppressors for aircraft engines

    NASA Technical Reports Server (NTRS)

    Schwartz, I. R.

    1976-01-01

    Experimental investigations of the effects of swirling the jet exhausts of small turbofan and turbojet engines have indicated significant progress towards predicting and attaining substantial jet noise abatement with minimum thrust losses in large aircraft engines. Systematic variations of the important swirl vane and swirling flow parameters were conducted to determine their effects on jet noise reduction and engine performance. Since swirling flow becomes more effective in reducing jet noise as the density and temperature gradients increase, the significant trends in noise reduction and engine performance that were established by these parametric studies could be projected into potentially greater reductions of sound pressure levels with minimum thrust losses by controlled swirling of the jets of high thrust engines. The density and temperature gradients in the jet exhausts of high thrust engines are larger by comparison with gradients in small engines.

  4. Stratified charge rotary aircraft engine technology enablement program

    NASA Technical Reports Server (NTRS)

    Badgley, P. R.; Irion, C. E.; Myers, D. M.

    1985-01-01

    The multifuel stratified charge rotary engine is discussed. A single rotor, 0.7L/40 cu in displacement, research rig engine was tested. The research rig engine was designed for operation at high speeds and pressures, combustion chamber peak pressure providing margin for speed and load excursions above the design requirement for a high is advanced aircraft engine. It is indicated that the single rotor research rig engine is capable of meeting the established design requirements of 120 kW, 8,000 RPM, 1,379 KPA BMEP. The research rig engine, when fully developed, will be a valuable tool for investigating, advanced and highly advanced technology components, and provide an understanding of the stratified charge rotary engine combustion process.

  5. Study of advanced rotary combustion engines for commuter aircraft

    NASA Technical Reports Server (NTRS)

    Berkowitz, M.; Jones, C.; Myers, D.

    1983-01-01

    Performance, weight, size, and maintenance data for advanced rotary aircraft engines suitable for comparative commuter aircraft system evaluation studies of alternate engine candidates are provided. These are turbocharged, turbocompounded, direct injected, stratified charge rotary engines. Hypothetical engines were defined (an RC4-74 at 895 kW and an RC6-87 at 1490 kW) based on the technologies and design approaches used in the highly advanced engine of a study of advanced general aviation rotary engines. The data covers the size range of shaft power from 597 kW (800 hp) to 1865 kW (2500 hp) and is in the form of drawings, tables, curves and written text. These include data on internal geometry and configuration, installation information, turbocharging and turbocompounding arrangements, design features and technologies, engine cooling, fuels, scaling for weight size BSFC and heat rejection for varying horsepower, engine operating and performance data, and TBO and maintenance requirements. The basic combustion system was developed and demonstrated; however the projected power densities and performance efficiencies require increases in engine internal pressures, thermal loading, and rotative speed.

  6. The global decentralization of commercial aircraft production: Implications for United States-based manufacturing activity

    NASA Astrophysics Data System (ADS)

    Pritchard, David John

    This research explores the role of industrial offset agreements and international subcontracting patterns in the global decentralization of US commercial aircraft production. Particular attention is given to the manufacturing processes involved in the design and assembly of large passenger jets (100 seats or more). It is argued that the current geography of aircraft production at the global level has been shaped by a new international distribution of input costs and technological capability. Specifically, low-cost producers within several of the newly emerging markets (NEMs) have acquired front-end manufacturing expertise as a direct result of industrial offset contracts and/or other forms of technology transfer (e.g. international joint-ventures, imports of advanced machine tools). The economic and technological implications of industrial offset (compensatory trade) are examined with reference to the commercial future of US aircraft production. Evidence gathered via personal interviews with both US and foreign producers suggests that the current Western duopoly (Boeing and Airbus) faces a rather uncertain future. In particular, the dissertation shows that the growth of subcontracting and industrial offset portends the transformation of Boeing from an aircraft manufacturer to a systems integrator. The economic implications of this potential reconfiguration of the US aircraft industry are discussed in the context of several techno-market futures, some of which look rather bleak for US workers in this industry.

  7. A 150 and 300 kW lightweight diesel aircraft engine design study

    NASA Technical Reports Server (NTRS)

    Brouwers, A. P.

    1980-01-01

    The diesel engine was reinvestigated as an aircraft powerplant through design study conducted to arrive at engine configurations and applicable advanced technologies. Two engines are discussed, a 300 kW six-cylinder engine for twin engine general aviation aircraft and a 150 kW four-cylinder engine for single engine aircraft. Descriptions of each engine include concept drawings, a performance analysis, stress and weight data, and a cost study. This information was used to develop two airplane concepts, a six-place twin and a four-place single engine aircraft. The aircraft study consists of installation drawings, computer generated performance data, aircraft operating costs, and drawings of the resulting airplanes. The performance data show a vast improvement over current gasoline-powered aircraft.

  8. Visit to China’s ARJ21 Aircraft Manufacturing Facility

    DTIC Science & Technology

    2008-04-01

    dimensional Interactive Application ( CATIA ) system, and although the separate systems were not integrated, they were able to share design data. He...Design CAM Computer Aided Manufacturing CATIA Computer Aided Three-dimensional Interactive Application CMC Central Military Commission FAI First

  9. Aircraft Turbine Engine Reliability and Inspection Investigations

    DTIC Science & Technology

    1993-10-01

    controls and accessories typically produced the largest number of in-flight flameouts, compressor stalls , and engine shutdowns. In addition to the actuarial...typically produced the largest number of in-flight flameouts, compressor stalls , and engine shutdowns. Diagnostic troubleshooting procedures for controls...airfoils suffer because these * materials are damaged during compressor stalls when cooling air flows are disrupted. 3. Fuel/oil system failures are

  10. Dr. von Braun at the Manufacturing and Engineering Laboratory

    NASA Technical Reports Server (NTRS)

    1967-01-01

    Dr. von Braun, Director of the Marshall Space Flight Center, listens attentively to a briefing on the metal forming techniques by Dr. Mathias Siebel of the Manufacturing and Engineering Laboratory at MSFC on October 17, 1967.

  11. Acellular assessments of engineered-manufactured nanoparticle biological surface reactivity

    EPA Science Inventory

    It is critical to assess the surface properties and reactivity of engineered-manufactured nanoparticles (NPs) as these will influence their interactions with biological systems, biokinetics and toxicity. We examined the physicochemical properties and surface reactivity of metal o...

  12. Cabin Noise Control for Twin Engine General Aviation Aircraft

    NASA Technical Reports Server (NTRS)

    Vaicaitis, R.; Slazak, M.

    1982-01-01

    An analytical model based on modal analysis was developed to predict the noise transmission into a twin-engine light aircraft. The model was applied to optimize the interior noise to an A-weighted level of 85 dBA. To achieve the required noise attenuation, add-on treatments in the form of honeycomb panels, damping tapes, acoustic blankets, septum barriers and limp trim panels were added to the existing structure. The added weight of the noise control treatment is about 1.1 percent of the total gross take-off weight of the aircraft.

  13. Toward improved durability in advanced aircraft engine hot sections

    NASA Technical Reports Server (NTRS)

    Sokolowski, Daniel E. (Editor)

    1989-01-01

    The conference on durability improvement methods for advanced aircraft gas turbine hot-section components discussed NASA's Hot Section Technology (HOST) project, advanced high-temperature instrumentation for hot-section research, the development and application of combustor aerothermal models, and the evaluation of a data base and numerical model for turbine heat transfer. Also discussed are structural analysis methods for gas turbine hot section components, fatigue life-prediction modeling for turbine hot section materials, and the service life modeling of thermal barrier coatings for aircraft gas turbine engines.

  14. Characterization of lubrication oil emissions from aircraft engines.

    PubMed

    Yu, Zhenhong; Liscinsky, David S; Winstead, Edward L; True, Bruce S; Timko, Michael T; Bhargava, Anuj; Herndon, Scott C; Miake-Lye, Richard C; Anderson, Bruce E

    2010-12-15

    In this first ever study, particulate matter (PM) emitted from the lubrication system overboard breather vent for two different models of aircraft engines has been systematically characterized. Lubrication oil was confirmed as the predominant component of the emitted particulate matter based upon the characteristic mass spectrum of the pure oil. Total particulate mass and size distributions of the emitted oil are also investigated by several high-sensitivity aerosol characterization instruments. The emission index (EI) of lubrication oil at engine idle is in the range of 2-12 mg kg(-1) and increases with engine power. The chemical composition of the oil droplets is essentially independent of engine thrust, suggesting that engine oil does not undergo thermally driven chemical transformations during the ∼4 h test window. Volumetric mean diameter is around 250-350 nm for all engine power conditions with a slight power dependence.

  15. Aircraft

    DOEpatents

    Hibbs, B.D.; Lissaman, P.B.S.; Morgan, W.R.; Radkey, R.L.

    1998-09-22

    This disclosure provides a solar rechargeable aircraft that is inexpensive to produce, is steerable, and can remain airborne almost indefinitely. The preferred aircraft is a span-loaded flying wing, having no fuselage or rudder. Travelling at relatively slow speeds, and having a two-hundred foot wingspan that mounts photovoltaic cells on most all of the wing`s top surface, the aircraft uses only differential thrust of its eight propellers to turn. Each of five sections of the wing has one or more engines and photovoltaic arrays, and produces its own lift independent of the other sections, to avoid loading them. Five two-sided photovoltaic arrays, in all, are mounted on the wing, and receive photovoltaic energy both incident on top of the wing, and which is incident also from below, through a bottom, transparent surface. The aircraft is capable of a top speed of about ninety miles per hour, which enables the aircraft to attain and can continuously maintain altitudes of up to sixty-five thousand feet. Regenerative fuel cells in the wing store excess electricity for use at night, such that the aircraft can sustain its elevation indefinitely. A main spar of the wing doubles as a pressure vessel that houses hydrogen and oxygen gases for use in the regenerative fuel cell. The aircraft has a wide variety of applications, which include weather monitoring and atmospheric testing, communications, surveillance, and other applications as well. 31 figs.

  16. Aircraft

    DOEpatents

    Hibbs, Bart D.; Lissaman, Peter B. S.; Morgan, Walter R.; Radkey, Robert L.

    1998-01-01

    This disclosure provides a solar rechargeable aircraft that is inexpensive to produce, is steerable, and can remain airborne almost indefinitely. The preferred aircraft is a span-loaded flying wing, having no fuselage or rudder. Travelling at relatively slow speeds, and having a two-hundred foot wingspan that mounts photovoltaic cells on most all of the wing's top surface, the aircraft uses only differential thrust of its eight propellers to turn. Each of five sections of the wing has one or more engines and photovoltaic arrays, and produces its own lift independent of the other sections, to avoid loading them. Five two-sided photovoltaic arrays, in all, are mounted on the wing, and receive photovoltaic energy both incident on top of the wing, and which is incident also from below, through a bottom, transparent surface. The aircraft is capable of a top speed of about ninety miles per hour, which enables the aircraft to attain and can continuously maintain altitudes of up to sixty-five thousand feet. Regenerative fuel cells in the wing store excess electricity for use at night, such that the aircraft can sustain its elevation indefinitely. A main spar of the wing doubles as a pressure vessel that houses hydrogen and oxygen gasses for use in the regenerative fuel cell. The aircraft has a wide variety of applications, which include weather monitoring and atmospheric testing, communications, surveillance, and other applications as well.

  17. Liquid lubricants for advanced aircraft engines

    NASA Technical Reports Server (NTRS)

    Loomis, William R.; Fusaro, Robert L.

    1992-01-01

    An overview of liquid lubricants for use in current and projected high performance turbojet engines is discussed. Chemical and physical properties are reviewed with special emphasis placed on the oxidation and thermal stability requirements imposed upon the lubrication system. A brief history is given of the development of turbine engine lubricants which led to the present day synthetic oils with their inherent modification advantages. The status and state of development of some eleven candidate classes of fluids for use in advanced turbine engines are discussed. Published examples of fundamental studies to obtain a better understanding of the chemistry involved in fluid degradation are reviewed. Alternatives to high temperature fluid development are described. The importance of continuing work on improving current high temperature lubricant candidates and encouraging development of new and improved fluid base stocks are discussed.

  18. Liquid lubricants for advanced aircraft engines

    SciTech Connect

    Loomis, W.R.; Fusaro, R.L.

    1992-08-01

    An overview of liquid lubricants for use in current and projected high performance turbojet engines is discussed. Chemical and physical properties are reviewed with special emphasis placed on the oxidation and thermal stability requirements imposed upon the lubrication system. A brief history is given of the development of turbine engine lubricants which led to the present day synthetic oils with their inherent modification advantages. The status and state of development of some eleven candidate classes of fluids for use in advanced turbine engines are discussed. Published examples of fundamental studies to obtain a better understanding of the chemistry involved in fluid degradation are reviewed. Alternatives to high temperature fluid development are described. The importance of continuing work on improving current high temperature lubricant candidates and encouraging development of new and improved fluid base stocks are discussed.

  19. Liquid lubricants for advanced aircraft engines

    NASA Technical Reports Server (NTRS)

    Loomis, William R.; Fusaro, Robert L.

    1993-01-01

    An overview of liquid lubricants for use in current and projected high performance turbojet engines is discussed. Chemical and physical properties are reviewed with special emphasis placed on the oxidation and thermal stability requirements imposed upon the lubrication system. A brief history is given of the development of turbine engine lubricants which led to the present day synthetic oils with their inherent modification advantages. The status and state of development of some eleven candidate classes of fluids for use in advanced turbine engines are discussed. Published examples of fundamental studies to obtain a better understanding of the chemistry involved in fluid degradation are reviewed. Alternatives to high temperature fluid development are described. The importance of continuing work on improving current high temperature lubricant candidates and encouraging development of new and improved fluid base stocks are discussed.

  20. Phase 1 Development Testing of the Advanced Manufacturing Demonstrator Engine

    NASA Technical Reports Server (NTRS)

    Case, Nicholas L.; Eddleman, David E.; Calvert, Marty R.; Bullard, David B.; Martin, Michael A.; Wall, Thomas R.

    2016-01-01

    The Additive Manufacturing Development Breadboard Engine (BBE) is a pressure-fed liquid oxygen/pump-fed liquid hydrogen (LOX/LH2) expander cycle engine that was built and operated by NASA at Marshall Space Flight Center's East Test Area. The breadboard engine was conceived as a technology demonstrator for the additive manufacturing technologies for an advanced upper stage prototype engine. The components tested on the breadboard engine included an ablative chamber, injector, main fuel valve, turbine bypass valve, a main oxidizer valve, a mixer and the fuel turbopump. All parts minus the ablative chamber were additively manufactured. The BBE was successfully hot fire tested seven times. Data collected from the test series will be used for follow on demonstration tests with a liquid oxygen turbopump and a regeneratively cooled chamber and nozzle.

  1. Lightweight diesel aircraft engines for general aviation

    NASA Technical Reports Server (NTRS)

    Berenyi, S. G.

    1983-01-01

    Two different engines were studied. The advantages of a diesel to general aviation were reduced to fuel consumption, reduced operating costs, and reduced fire and explosion hazard. There were no ignition mixture control or inlet icing problems. There are fewer controls and no electrical interference problems.

  2. Effectiveness of combined aircraft engine noise suppressors

    NASA Astrophysics Data System (ADS)

    Khaletskiy, Yu. D.

    2012-07-01

    We consider the design features of fan noise suppressors in application to air intakes and the bypass duct of a turbofan engine. A combined liner is developed that has increased acoustic efficiency in comparison to conventional honeycomb liner. We demonstrate the important role of the area of the sound-absorbing liner between fan Rotor and Stator ensuring significant noise reduction.

  3. Engine Conceptual Design Studies for a Hybrid Wing Body Aircraft

    NASA Technical Reports Server (NTRS)

    Tong, Michael T.; Jones, Scott M.; Haller, William J.; Handschuh, Robert F.

    2009-01-01

    Worldwide concerns of air quality and climate change have made environmental protection one of the most critical issues in aviation today. NASA's current Fundamental Aeronautics research program is directed at three generations of aircraft in the near, mid and far term, with initial operating capability around 2015, 2020, and 2030, respectively. Each generation has associated goals for fuel burn, NOx, noise, and field-length reductions relative to today's aircrafts. The research for the 2020 generation is directed at enabling a hybrid wing body (HWB) aircraft to meet NASA's aggressive technology goals. This paper presents the conceptual cycle and mechanical designs of the two engine concepts, podded and embedded systems, which were proposed for a HWB cargo freighter. They are expected to offer significant benefits in noise reductions without compromising the fuel burn.

  4. NASA Glenn's Contributions to Aircraft Engine Noise Research

    NASA Technical Reports Server (NTRS)

    Huff, Dennis L.

    2013-01-01

    This report reviews all engine noise research conducted at the NASA Glenn Research Center over the past 70 years. This report includes a historical perspective of the Center and the facilities used to conduct the research. Major noise research programs are highlighted to show their impact on industry and on the development of aircraft noise reduction technology. Noise reduction trends are discussed, and future aircraft concepts are presented. Since the 1960s, research results show that the average perceived noise level has been reduced by about 20 decibels (dB). Studies also show that, depending on the size of the airport, the aircraft fleet mix, and the actual growth in air travel, another 15 to 17 dB reduction will be required to achieve NASA's long-term goal of providing technologies to limit objectionable noise to the boundaries of an average airport.

  5. NASA Glenn's Contributions to Aircraft Engine Noise Research

    NASA Technical Reports Server (NTRS)

    Huff, Dennis L.

    2014-01-01

    This presentation reviews engine noise research conducted at the NASA Glenn Research Center over the past 70 years. This report includes a historical perspective of the Center and the facilities used to conduct the research. Major noise research programs are highlighted to show their impact on industry and on the development of aircraft noise reduction technology. Noise reduction trends are discussed, and future aircraft concepts are presented. Since the 1960s, research results show that the average perceived noise level has been reduced by about 20 decibels (dB). Studies also show that, depending on the size of the airport, the aircraft fleet mix, and the actual growth in air travel, another 15 to 17 dB reduction will be required to achieve NASAs long-term goal of providing technologies to limit objectionable noise to the boundaries of an average airport.

  6. Aircraft Engine Technology for Green Aviation to Reduce Fuel Burn

    NASA Technical Reports Server (NTRS)

    Hughes, Christopher E.; VanZante, Dale E.; Heidmann, James D.

    2013-01-01

    The NASA Fundamental Aeronautics Program Subsonic Fixed Wing Project and Integrated Systems Research Program Environmentally Responsible Aviation Project in the Aeronautics Research Mission Directorate are conducting research on advanced aircraft technology to address the environmental goals of reducing fuel burn, noise and NOx emissions for aircraft in 2020 and beyond. Both Projects, in collaborative partnerships with U.S. Industry, Academia, and other Government Agencies, have made significant progress toward reaching the N+2 (2020) and N+3 (beyond 2025) installed fuel burn goals by fundamental aircraft engine technology development, subscale component experimental investigations, full scale integrated systems validation testing, and development validation of state of the art computation design and analysis codes. Specific areas of propulsion technology research are discussed and progress to date.

  7. Engine Conceptual Design Studies for a Hybrid Wing Body Aircraft

    NASA Technical Reports Server (NTRS)

    Tong, Michael T.; Jones, Scott M.; Haller, William J.; Handschuh, Robert F.

    2009-01-01

    Worldwide concerns of air quality and climate change have made environmental protection one of the most critical issues in aviation today. NASA s current Fundamental Aeronautics Research program is directed at three generations of aircraft in the near, mid and far term, with initial operating capability around 2015, 2020, and 2030, respectively. Each generation has associated goals for fuel burn, NOx, noise, and field-length reductions relative to today s aircrafts. The research for the 2020 generation is directed at enabling a hybrid wing body (HWB) aircraft to meet NASA s aggressive technology goals. This paper presents the conceptual cycle and mechanical designs of the two engine concepts, podded and embedded systems, which were proposed for a HWB cargo freighter. They are expected to offer significant benefits in noise reductions without compromising the fuel burn.

  8. Aircraft Turbine Engine Monitoring Experience: Implications for the F100 Engine Diagnostic System Program

    DTIC Science & Technology

    1979-04-01

    malfunction re- port data were obtained from the Program Office. -8- EHMS (T-38 / J85 ) ACTIVITY OUTCOMES JULY 76 - MAY 77 INSTRUMENTED ENGINES CONTROL...interesting to note that the J85 was a mature engine and that the number of engine problems encountered was not very great. Also, the EHMS was not a new...copyright notation hereon. Library of Congress Cataloging In PObNiation Data Birkier, John L Aircraft turbine engine monitoring experience. ([Report

  9. An Extended Combustion Model for the Aircraft Turbojet Engine

    NASA Astrophysics Data System (ADS)

    Rotaru, Constantin; Andres-Mihăilă, Mihai; Matei, Pericle Gabriel

    2014-08-01

    The paper consists in modelling and simulation of the combustion in a turbojet engine in order to find optimal characteristics of the burning process and the optimal shape of combustion chambers. The main focus of this paper is to find a new configuration of the aircraft engine combustion chambers, namely an engine with two main combustion chambers, one on the same position like in classical configuration, between compressor and turbine and the other, placed behind the turbine but not performing the role of the afterburning. This constructive solution could allow a lower engine rotational speed, a lower temperature in front of the first stage of the turbine and the possibility to increase the turbine pressure ratio by extracting the flow stream after turbine in the inner nozzle. Also, a higher thermodynamic cycle efficiency and thrust in comparison to traditional constant-pressure combustion gas turbine engines could be obtained.

  10. Primary VOC emissions from Commercial Aircraft Jet Engines

    NASA Astrophysics Data System (ADS)

    Kilic, Dogushan; Huang, Rujin; Slowik, Jay; Brem, Benjamin; Durdina, Lukas; Rindlisbacher, Theo; Baltensperger, Urs; Prevot, Andre

    2014-05-01

    Air traffic is growing continuously [1]. The increasing number of airplanes leads to an increase of aviation emissions giving rise to environmental concerns globally by high altitude emissions and, locally on air quality at the ground level [2]. The overall impact of aviation emissions on the environment is likely to increase when the growing air transportation trend [2] is considered. The Aviation Particle Regulatory Instrumentation Demonstration Experiment (APRIDE)-5 campaign took place at Zurich Airport in 2013. In this campaign, aircraft exhaust is sampled during engine acceptance tests after engine overhaul at the facilities of SR Technics. Direct sampling from the engine core is made possible due to the unique fixed installation of a retractable sampling probe and the use of a standardized sampling system designed for the new particulate matter regulation in development for aircraft engines. Many of the gas-phase aircraft emissions, e.g. CO2, NOX, CO, SO2, hydrocarbons, and volatile organic compounds (VOC) were detected by the instruments in use. This study, part of the APRIDE-5 campaign, focuses on the primary VOC emissions in order to produce emission factors of VOC species for varying engine operating conditions which are the surrogates for the flight cycles. Previously, aircraft plumes were sampled in order to quantify VOCs by a proton transfer reaction quadrupole mass spectrometer (PTR-MS) [3]. This earlier study provided a preliminary knowledge on the emission of species such as methanol, acetaldehyde, acetone, benzene and toluene by varying engine thrust levels. The new setup was (i) designed to sample from the diluted engine exhaust and the new tool and (ii) used a high resolution time of flight PTR-MS with higher accuracy for many new species, therefore providing a more detailed and accurate inventory. We will present the emission factors for species that were quantified previously, as well as for many additional VOCs detected during the campaign

  11. Active Combustion Control for Aircraft Gas Turbine Engines

    NASA Technical Reports Server (NTRS)

    DeLaat, John C.; Breisacher, Kevin J.; Saus, Joseph R.; Paxson, Daniel E.

    2000-01-01

    Lean-burning combustors are susceptible to combustion instabilities. Additionally, due to non-uniformities in the fuel-air mixing and in the combustion process, there typically exist hot areas in the combustor exit plane. These hot areas limit the operating temperature at the turbine inlet and thus constrain performance and efficiency. Finally, it is necessary to optimize the fuel-air ratio and flame temperature throughout the combustor to minimize the production of pollutants. In recent years, there has been considerable activity addressing Active Combustion Control. NASA Glenn Research Center's Active Combustion Control Technology effort aims to demonstrate active control in a realistic environment relevant to aircraft engines. Analysis and experiments are tied to aircraft gas turbine combustors. Considerable progress has been shown in demonstrating technologies for Combustion Instability Control, Pattern Factor Control, and Emissions Minimizing Control. Future plans are to advance the maturity of active combustion control technology to eventual demonstration in an engine environment.

  12. Carbureting conditions characteristics of aircraft engines

    NASA Technical Reports Server (NTRS)

    Tice, Percival S

    1920-01-01

    Tests were conducted at the altitude laboratory erected at the Bureau of Standards for the National Advisory Committee for Aeronautics to determine the changes in engine performance with changes in atmospheric temperature and pressure at various levels above the earth's surface, with special reference to (a) the variables affecting the functioning of the carburetor and (b) the changes in performance resulting from variables in the carburetor itself. This report constitutes a concise statement of the difficulties to be encountered in this branch of carburetion.

  13. Rapid Measurement of Emissions From Military Aircraft Turbine Engines by Downstream Extractive Sampling of Aircraft on the Ground: Results for C-130 and F-15 Aircraft (POSTPRINT)

    DTIC Science & Technology

    2009-02-01

    engines were tested using indoor engine test facilities (F110, F101, J85 -GE-5M, PT6A-68, TF41-A2, TF30-P103 and TF30- P109), while others were studied while...afterburning). Engine T56-A-15 F100-PW-100 F110 F101 J85 -GE-5M PT6A-68 TF-39-1C CFM-56-3 TF41-A2 TF30-P103 TF30-P109 Misc. Type Turboprop Turbofan...AIRCRAFT TURBINE ENGINES BY DOWNSTREAM EXTRACTIVE SAMPLING OF AIRCRAFT ON THE GROUND: RESULTS FOR C-130 AND F-15 AIRCRAFT Chester Spicer and

  14. 76 FR 19903 - Special Conditions: Diamond Aircraft Industry Model DA-40NG; Diesel Cycle Engine

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-11

    ... Conditions: Diamond Aircraft Industry Model DA-40NG; Diesel Cycle Engine AGENCY: Federal Aviation... conditions are issued for the Diamond Aircraft Industry (DAI) GmbH model DA-40NG the Austro Engine GmbH model... the postcard and mail it back to you. Background On May 11, 2010 Diamond Aircraft Industry...

  15. Manufacturing and Cost Considerations in Multidisciplinary Aircraft Design (Research on Mathematical Modeling of Manufacturability Factors)

    NASA Technical Reports Server (NTRS)

    Rais-Rohani, Masoud

    1996-01-01

    The identification of airframe Manufacturability Factors/Cost Drivers (MFCD) and the method by which the relationships between MFCD and designer-controlled parameters could be properly modeled are described.

  16. Using Innovative Technologies for Manufacturing and Evaluating Rocket Engine Hardware

    NASA Technical Reports Server (NTRS)

    Betts, Erin M.; Hardin, Andy

    2011-01-01

    Many of the manufacturing and evaluation techniques that are currently used for rocket engine component production are traditional methods that have been proven through years of experience and historical precedence. As we enter into a new space age where new launch vehicles are being designed and propulsion systems are being improved upon, it is sometimes necessary to adopt new and innovative techniques for manufacturing and evaluating hardware. With a heavy emphasis on cost reduction and improvements in manufacturing time, manufacturing techniques such as Direct Metal Laser Sintering (DMLS) and white light scanning are being adopted and evaluated for their use on J-2X, with hopes of employing both technologies on a wide variety of future projects. DMLS has the potential to significantly reduce the processing time and cost of engine hardware, while achieving desirable material properties by using a layered powdered metal manufacturing process in order to produce complex part geometries. The white light technique is a non-invasive method that can be used to inspect for geometric feature alignment. Both the DMLS manufacturing method and the white light scanning technique have proven to be viable options for manufacturing and evaluating rocket engine hardware, and further development and use of these techniques is recommended.

  17. Additive Manufacturing a Liquid Hydrogen Rocket Engine

    NASA Technical Reports Server (NTRS)

    Jones, Carl P.; Robertson, Elizabeth H.; Koelbl, Mary Beth; Singer, Chris

    2016-01-01

    Space Propulsion is a 5 day event being held from 2nd May to the 6th May 2016 at the Rome Marriott Park Hotel in Rome, Italy. This event showcases products like Propulsion sub-systems and components, Production and manufacturing issues, Liquid, Solid, Hybrid and Air-breathing Propulsion Systems for Launcher and Upper Stages, Overview of current programmes, AIV issues and tools, Flight testing and experience, Technology building blocks for Future Space Transportation Propulsion Systems : Launchers, Exploration platforms & Space Tourism, Green Propulsion for Space Transportation, New propellants, Rocket propulsion & global environment, Cost related aspects of Space Transportation propulsion, Modelling, Pressure-Thrust oscillations issues, Impact of new requirements and regulations on design etc. in the Automotive, Manufacturing, Fabrication, Repair & Maintenance industries.

  18. Using Innovative Technologies for Manufacturing Rocket Engine Hardware

    NASA Technical Reports Server (NTRS)

    Betts, E. M.; Eddleman, D. E.; Reynolds, D. C.; Hardin, N. A.

    2011-01-01

    Many of the manufacturing techniques that are currently used for rocket engine component production are traditional methods that have been proven through years of experience and historical precedence. As the United States enters into the next space age where new launch vehicles are being designed and propulsion systems are being improved upon, it is sometimes necessary to adopt innovative techniques for manufacturing hardware. With a heavy emphasis on cost reduction and improvements in manufacturing time, rapid manufacturing techniques such as Direct Metal Laser Sintering (DMLS) are being adopted and evaluated for their use on NASA s Space Launch System (SLS) upper stage engine, J-2X, with hopes of employing this technology on a wide variety of future projects. DMLS has the potential to significantly reduce the processing time and cost of engine hardware, while achieving desirable material properties by using a layered powder metal manufacturing process in order to produce complex part geometries. Marshall Space Flight Center (MSFC) has recently hot-fire tested a J-2X gas generator (GG) discharge duct that was manufactured using DMLS. The duct was inspected and proof tested prior to the hot-fire test. Using a workhorse gas generator (WHGG) test fixture at MSFC's East Test Area, the duct was subjected to extreme J-2X hot gas environments during 7 tests for a total of 537 seconds of hot-fire time. The duct underwent extensive post-test evaluation and showed no signs of degradation. DMLS manufacturing has proven to be a viable option for manufacturing rocket engine hardware, and further development and use of this manufacturing method is recommended.

  19. Cooling Air Inlet and Exit Geometries on Aircraft Engine Installations

    NASA Technical Reports Server (NTRS)

    Katz, Joseph; Corsiglia, Victor R.; Barlow, Philip R.

    1982-01-01

    A semispan wing and nacelle of a typical general aviation twin-engine aircraft was tested to evaluate the cooling capability and drag or several nacelle shapes; the nacelle shapes included cooling air inlet and exit variations. The tests were conducted in the Ames Research Center 40 x 80-ft Wind Tunnel. It was found that the cooling air inlet geometry of opposed piston engine installations has a major effect on inlet pressure recovery, but only a minor effect on drag. Exit location showed large effect on drag, especially for those locations on the sides of the nacelle where the suction characteristics were based on interaction with the wing surface pressures.

  20. Computation of Engine Noise Propagation and Scattering Off an Aircraft

    NASA Technical Reports Server (NTRS)

    Xu, J.; Stanescu, D.; Hussaini, M. Y.; Farassat, F.

    2003-01-01

    The paper presents a comparison of experimental noise data measured in flight on a two-engine business jet aircraft with Kulite microphones placed on the suction surface of the wing with computational results. Both a time-domain discontinuous Galerkin spectral method and a frequency-domain spectral element method are used to simulate the radiation of the dominant spinning mode from the engine and its reflection and scattering by the fuselage and the wing. Both methods are implemented in computer codes that use the distributed memory model to make use of large parallel architectures. The results show that trends of the noise field are well predicted by both methods.

  1. TCM aircraft piston engine emission reduction program

    NASA Technical Reports Server (NTRS)

    Rezy, B. J.

    1976-01-01

    The technology necessary to safely reduce general aviation piston engine exhaust emissions to meet the EPA 1980 Emission Standards with minimum adverse effects on cost, weight, fuel economy, and performance was demonstrated. A screening and assessment of promising emission reduction concepts was provided, and the preliminary design and development of those concepts was established. A system analysis study and a decision making procedure were used by TCM to evaluate, trade off, and rank the candidate concepts from a list of 14 alternatives. Cost, emissions, and 13 other design criteria considerations were defined and traded off against each candidate concept to establish its merit and emission reduction usefulness. A computer program was used to aid the evaluators in making the final choice of three concepts.

  2. Advanced composites structural concepts and materials technologies for primary aircraft structures: Design/manufacturing concept assessment

    NASA Technical Reports Server (NTRS)

    Chu, Robert L.; Bayha, Tom D.; Davis, HU; Ingram, J. ED; Shukla, Jay G.

    1992-01-01

    Composite Wing and Fuselage Structural Design/Manufacturing Concepts have been developed and evaluated. Trade studies were performed to determine how well the concepts satisfy the program goals of 25 percent cost savings, 40 percent weight savings with aircraft resizing, and 50 percent part count reduction as compared to the aluminum Lockheed L-1011 baseline. The concepts developed using emerging technologies such as large scale resin transfer molding (RTM), automatic tow placed (ATP), braiding, out-of-autoclave and automated manufacturing processes for both thermoset and thermoplastic materials were evaluated for possible application in the design concepts. Trade studies were used to determine which concepts carry into the detailed design development subtask.

  3. A Fully Nonmetallic Gas Turbine Engine Enabled by Additive Manufacturing, Part II: Additive Manufacturing and Characterization of Polymer Composites

    NASA Technical Reports Server (NTRS)

    Chuang, Kathy C.; Grady, Joseph E.; Arnold, Steven M.; Draper, Robert D.; Shin, Eugene; Patterson, Clark; Santelle, Tom; Lao, Chao; Rhein, Morgan; Mehl, Jeremy

    2015-01-01

    This publication is the second part of the three part report of the project entitled "A Fully Nonmetallic Gas Turbine Engine Enabled by Additive Manufacturing" funded by NASA Aeronautics Research Institute (NARI). The objective of this project was to conduct additive manufacturing to produce aircraft engine components by Fused Deposition Modeling (FDM), using commercially available polyetherimides-Ultem 9085 and experimental Ultem 1000 mixed with 10% chopped carbon fiber. A property comparison between FDM-printed and injection molded coupons for Ultem 9085, Ultem 1000 resin and the fiber-filled composite Ultem 1000 was carried out. Furthermore, an acoustic liner was printed from Ultem 9085 simulating conventional honeycomb structured liners and tested in a wind tunnel. Composite compressor inlet guide vanes were also printed using fiber-filled Ultem 1000 filaments and tested in a cascade rig. The fiber-filled Ultem 1000 filaments and composite vanes were characterized by scanning electron microscope (SEM) and acid digestion to determine the porosity of FDM-printed articles which ranged from 25 to 31%. Coupons of Ultem 9085, experimental Ultem 1000 composites and XH6050 resin were tested at room temperature and 400F to evaluate their corresponding mechanical properties. A preliminary modeling was also initiated to predict the mechanical properties of FDM-printed Ultem 9085 coupons in relation to varied raster angles and void contents, using the GRC-developed MAC/GMC program.

  4. DEVELOPMENT OF A SUPERSONIC TRANSPORT AIRCRAFT ENGINE - PHASE II-A.

    DTIC Science & Technology

    JET TRANSPORT PLANES, *SUPERSONIC AIRCRAFT ) (U) TURBOJET ENGINES , PERFORMANCE( ENGINEERING ), TURBOFAN ENGINES , AFTERBURNING, SPECIFICATIONS...COMPRESSORS, GEOMETRY, TURBOJET INLETS, COMBUSTION, TEST EQUIPMENT, TURBINE BLADES , HEAT TRANSFER, AIRFOILS , CASCADE STRUCTURES, EVAPOTRANSPIRATION, PLUG NOZZLES, ANECHOIC CHAMBERS, BEARINGS, SEALS, DESIGN, FATIGUE(MECHANICS)

  5. Manufacturing Laboratory for Next Generation Engineers

    DTIC Science & Technology

    2013-12-16

    2626 XP Operating Instructions 3 P r o g r a m Page 3 Set Up 1.) The Reverse Osmosis (RO) system should be plugged into the wall and...bottom of the cutting tank. 11.) The power to the Reverse Osmosis (RO) system should be on 24/7. Bradley University College of Engineering Omax 2626

  6. Using Innovative Techniques for Manufacturing Rocket Engine Hardware

    NASA Technical Reports Server (NTRS)

    Betts, Erin M.; Reynolds, David C.; Eddleman, David E.; Hardin, Andy

    2011-01-01

    Many of the manufacturing techniques that are currently used for rocket engine component production are traditional methods that have been proven through years of experience and historical precedence. As we enter into a new space age where new launch vehicles are being designed and propulsion systems are being improved upon, it is sometimes necessary to adopt new and innovative techniques for manufacturing hardware. With a heavy emphasis on cost reduction and improvements in manufacturing time, manufacturing techniques such as Direct Metal Laser Sintering (DMLS) are being adopted and evaluated for their use on J-2X, with hopes of employing this technology on a wide variety of future projects. DMLS has the potential to significantly reduce the processing time and cost of engine hardware, while achieving desirable material properties by using a layered powder metal manufacturing process in order to produce complex part geometries. Marshall Space Flight Center (MSFC) has recently hot-fire tested a J-2X gas generator discharge duct that was manufactured using DMLS. The duct was inspected and proof tested prior to the hot-fire test. Using the Workhorse Gas Generator (WHGG) test setup at MSFC?s East Test Area test stand 116, the duct was subject to extreme J-2X gas generator environments and endured a total of 538 seconds of hot-fire time. The duct survived the testing and was inspected after the test. DMLS manufacturing has proven to be a viable option for manufacturing rocket engine hardware, and further development and use of this manufacturing method is recommended.

  7. A study of external fuel vaporization. [for aircraft gas turbine engines

    NASA Technical Reports Server (NTRS)

    Szetela, E. J.; Chiappetta, L.; Baker, C. E.

    1981-01-01

    Candidate external vaporizer designs for an aircraft gas turbine engine are evaluated with respect to fuel thermal stability, integration of the vaporizer system into the aircraft engine, engine and vaporizer dynamic response, startup and altitude restart, engine performance, control requirements, safety, and maintenance. The selected concept is shown to offer potential gains in engine performance in terms of reduced specific fuel consumption and improved engine thrust/weight ratio. The thrust/weight improvement can be traded against vaporization system weight.

  8. Characterization of emissions from commercial aircraft engines during the Aircraft Particle Emissions eXperiment (APEX) 1 to 3

    EPA Science Inventory

    The fine particulate matter emissions from aircraft operations at large airports located in areas of the U. S. designated as non-attainment for the National Ambient Air Quality Standard for PM-2.5 are of major environmental concern. PM emissions data for commercial aircraft engin...

  9. 76 FR 45011 - Control of Air Pollution From Aircraft and Aircraft Engines; Proposed Emission Standards and Test...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-27

    ... Environmental Protection Agency 40 CFR Parts 87 and 1068 Control of Air Pollution From Aircraft and Aircraft... AGENCY 40 CFR Parts 87 and 1068 [EPA-HQ-OAR-2010-0687; FRL-9437-2] RIN 2060-AO70 Control of Air Pollution... engines which in her judgment causes or contributes to air pollution that may reasonably be anticipated...

  10. 77 FR 65823 - Control of Air Pollution From Aircraft and Aircraft Engines; Emission Standards and Test Procedures

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-31

    ... From the Federal Register Online via the Government Publishing Office ENVIRONMENTAL PROTECTION AGENCY 40 CFR Parts 87 RIN 2060-AO70 Control of Air Pollution From Aircraft and Aircraft Engines; Emission Standards and Test Procedures Correction In rule document 2012-13828 appearing on pages...

  11. 77 FR 36341 - Control of Air Pollution From Aircraft and Aircraft Engines; Emission Standards and Test Procedures

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-18

    ... nitrogen (NO X ), compliance flexibilities, and other regulatory requirements for aircraft turbofan or... Exposure to Ozone, PM and NO X a. Deposition of Nitrogen b. Visibility Effects c. Plant and Ecosystem... nitrogen (NO X ) emission standards for aircraft engines with rated thrusts greater than 26.7 kN...

  12. Defense Suppliers: Factors Affecting U.S. Titanium Aircraft Component Manufacturers’ Market Share of DOD Business

    DTIC Science & Technology

    2013-07-01

    DEFENSE SUPPLIERS Factors Affecting U.S. Titanium Aircraft Component Manufacturers’ Market Share of DOD Business...Report to Congressional Committees July 2013 GAO-13-539 United States Government Accountability Office Report Documentation Page Form...COVERED 00-00-2013 to 00-00-2013 4. TITLE AND SUBTITLE Defense Suppliers: Factors Affecting U.S. Titanium Aircraft Component Manufacturers’ Market

  13. Aircraft Engine Noise Scattering - A Discontinuous Spectral Element Approach

    NASA Technical Reports Server (NTRS)

    Stanescu, D.; Hussaini, M. Y.; Farassat, F.

    2002-01-01

    The paper presents a time-domain method for computation of sound radiation from aircraft engine sources to the far-field. The effects of nonuniform flow around the aircraft and scattering of sound by fuselage and wings are accounted for in the formulation. Our approach is based on the discretization of the inviscid flow equations through a collocation form of the Discontinuous Galerkin spectral element method. An isoparametric representation of the underlying geometry is used in order to take full advantage of the spectral accuracy of the method. Largescale computations are made possible by a parallel implementation based on message passing. Results obtained for radiation from an axisymmetric nacelle alone are compared with those obtained when the same nacelle is installed in a generic con.guration, with and without a wing.

  14. Aircraft Engine Gas Path Diagnostic Methods: Public Benchmarking Results

    NASA Technical Reports Server (NTRS)

    Simon, Donald L.; Borguet, Sebastien; Leonard, Olivier; Zhang, Xiaodong (Frank)

    2013-01-01

    Recent technology reviews have identified the need for objective assessments of aircraft engine health management (EHM) technologies. To help address this issue, a gas path diagnostic benchmark problem has been created and made publicly available. This software tool, referred to as the Propulsion Diagnostic Method Evaluation Strategy (ProDiMES), has been constructed based on feedback provided by the aircraft EHM community. It provides a standard benchmark problem enabling users to develop, evaluate and compare diagnostic methods. This paper will present an overview of ProDiMES along with a description of four gas path diagnostic methods developed and applied to the problem. These methods, which include analytical and empirical diagnostic techniques, will be described and associated blind-test-case metric results will be presented and compared. Lessons learned along with recommendations for improving the public benchmarking processes will also be presented and discussed.

  15. Lightweight diesel engine designs for commuter type aircraft

    NASA Technical Reports Server (NTRS)

    Brouwers, A. P.

    1981-01-01

    Conceptual designs and performance of advanced technology lightweight diesel engines, suitable for commuter type aircraft power plants are defined. Two engines are discussed, a 1491 kW (2000 SHP) eight-cylinder engine and a 895 kW (1200 SHP) six-cylinder engine. High performance and related advanced technologies are proposed such as insulated cylinders, very high injection pressures and high compressor and turbine efficiencies. The description of each engine includes concept drawings, a performance analysis, and weight data. Fuel flow data are given for full and partial power up to 7620m altitude. The performance data are also extrapolated over a power range from 671 kW(900SHP) to 1864 kW (2500 SHP). The specific fuel consumption of the 1491 kW (2000 SHP) engine is 182 g/hWh (.299 lb/HPh) at cruise altitude, its weight 620 kg (1365 lb.) and specific weight .415 kg/kW (.683 lb/HP). The specific fuel consumption of the 895 kW (1200 SHP) engine is 187 g/hWh (.308 lb/HPh) at cruise altitude, its weight 465 kg (1025 lb.) and specific weight .520 kg/kW (.854 lb/HP).

  16. Tip-Clearance Measurement in the First Stage of the Compressor of an Aircraft Engine.

    PubMed

    García, Iker; Przysowa, Radosław; Amorebieta, Josu; Zubia, Joseba

    2016-11-11

    In this article, we report the design of a reflective intensity-modulated optical fiber sensor for blade tip-clearance measurement, and the experimental results for the first stage of a compressor of an aircraft engine operating in real conditions. The tests were performed in a ground test cell, where the engine completed four cycles from idling state to takeoff and back to idling state. During these tests, the rotational speed of the compressor ranged between 7000 and 15,600 rpm. The main component of the sensor is a tetrafurcated bundle of optical fibers, with which the resulting precision of the experimental measurements was 12 µm for a measurement range from 2 to 4 mm. To get this precision the effect of temperature on the optoelectronic components of the sensor was compensated by calibrating the sensor in a climate chamber. A custom-designed MATLAB program was employed to simulate the behavior of the sensor prior to its manufacture.

  17. Tip-Clearance Measurement in the First Stage of the Compressor of an Aircraft Engine

    PubMed Central

    García, Iker; Przysowa, Radosław; Amorebieta, Josu; Zubia, Joseba

    2016-01-01

    In this article, we report the design of a reflective intensity-modulated optical fiber sensor for blade tip-clearance measurement, and the experimental results for the first stage of a compressor of an aircraft engine operating in real conditions. The tests were performed in a ground test cell, where the engine completed four cycles from idling state to takeoff and back to idling state. During these tests, the rotational speed of the compressor ranged between 7000 and 15,600 rpm. The main component of the sensor is a tetrafurcated bundle of optical fibers, with which the resulting precision of the experimental measurements was 12 µm for a measurement range from 2 to 4 mm. To get this precision the effect of temperature on the optoelectronic components of the sensor was compensated by calibrating the sensor in a climate chamber. A custom-designed MATLAB program was employed to simulate the behavior of the sensor prior to its manufacture. PMID:27845709

  18. A Modular Aerospike Engine Design Using Additive Manufacturing

    NASA Technical Reports Server (NTRS)

    Peugeot, John; Garcia, Chance; Burkhardt, Wendel

    2014-01-01

    A modular aerospike engine concept has been developed with the objective of demonstrating the viability of the aerospike design using additive manufacturing techniques. The aerospike system is a self-compensating design that allows for optimal performance over the entire flight regime and allows for the lowest possible mass vehicle designs. At low altitudes, improvements in Isp can be traded against chamber pressure, staging, and payload. In upper stage applications, expansion ratio and engine envelope can be traded against nozzle efficiency. These features provide flexibility to the System Designer optimizing a complete vehicle stage. The aerospike concept is a good example of a component that has demonstrated improved performance capability, but traditionally has manufacturing requirements that are too expensive and complex to use in a production vehicle. In recent years, additive manufacturing has emerged as a potential method for improving the speed and cost of building geometrically complex components in rocket engines. It offers a reduction in tooling overhead and significant improvements in the integration of the designer and manufacturing method. In addition, the modularity of the engine design provides the ability to perform full scale testing on the combustion devices outside of the full engine configuration. The proposed design uses a hydrocarbon based gas-generator cycle, with plans to take advantage of existing powerhead hardware while focusing DDT&E resources on manufacturing and sub-system testing of the combustion devices. The major risks for the modular aerospike concept lie in the performance of the propellant feed system, the structural integrity of the additive manufactured components, and the aerodynamic efficiency of the exhaust flow.

  19. The knocking characteristics of fuels in relation to maximum permissible performance of aircraft engines

    NASA Technical Reports Server (NTRS)

    Rothrock, A M; Biermann, Arnold E

    1939-01-01

    An analysis is presented of the relationship of various engine factors to knock in preignition in an aircraft engine. From this analysis and from the available experimental data, a method of evaluating the knocking characteristics of the fuel in an aircraft-engine cylinder is suggested.

  20. Life-Extending Control for Aircraft Engines Studied

    NASA Technical Reports Server (NTRS)

    Guo, Te-Huei

    2002-01-01

    Current aircraft engine controllers are designed and operated to provide both performance and stability margins. However, the standard method of operation results in significant wear and tear on the engine and negatively affects the on-wing life--the time between cycles when the engine must be physically removed from the aircraft for maintenance. The NASA Glenn Research Center and its industrial and academic partners have been working together toward a new control concept that will include engine life usage as part of the control function. The resulting controller will be able to significantly extend the engine's on-wing life with little or no impact on engine performance and operability. The new controller design will utilize damage models to estimate and mitigate the rate and overall accumulation of damage to critical engine parts. The control methods will also provide a means to assess tradeoffs between performance and structural durability on the basis of mission requirements and remaining engine life. Two life-extending control methodologies were studied to reduce the overall life-cycle cost of aircraft engines. The first methodology is to modify the baseline control logic to reduce the thermomechanical fatigue (TMF) damage of cooled stators during acceleration. To accomplish this, an innovative algorithm limits the low-speed rotor acceleration command when the engine has reached a threshold close to the requested thrust. This algorithm allows a significant reduction in TMF damage with only a very small increase in the rise time to reach the commanded rotor speed. The second methodology is to reduce stress rupture/creep damage to turbine blades and uncooled stators by incorporating an engine damage model into the flight mission. Overall operation cost is reduced by an optimization among the flight time, fuel consumption, and component damages. Recent efforts have focused on applying life-extending control technology to an existing commercial turbine engine

  1. A Study of Bird Ingestions Into Large High Bypass Ratio Turbine Aircraft Engines.

    DTIC Science & Technology

    1983-03-01

    into large high bypass ratio turbine aircraft engines on a worldwide basis and what damage , if any, resulted. This interim report presents a summary...operations. These aircraft experienced 289 engine ingestion events during the initial contract * period, May 1961 through April 1982. The FAA is...Airports involved 88 3. Total events 289 4. hngine damage , minor and/or major 188 5. Multiple engine ingestions per aircraft 11 6. MuLtiple bird

  2. Experimental Studies of Coal and Biomass Fuel Synthesis and Flame Characterization for Aircraft Engines

    DTIC Science & Technology

    2012-03-31

    Synthesis and Flame Characterization for Aircraft Engines 5a. CONTRACT NUMBER 5b. GRANT NUMBER FA9550-10-1-0344 5c. PROGRAM ELEMENT NUMBER 61102F... Flame Characterization for Aircraft Engines AFOSR Grant Number: FA9550-10-1-0344 Final Performance Report Report Period: September 1, 2008 to... Flame Characterization for Aircraft Engines (Final Performance Report) Project Period: September 1, 2008 to March 31, 2012 Report Period

  3. Additive Manufacturing Design Considerations for Liquid Engine Components

    NASA Technical Reports Server (NTRS)

    Whitten, Dave; Hissam, Andy; Baker, Kevin; Rice, Darron

    2014-01-01

    The Marshall Space Flight Center's Propulsion Systems Department has gained significant experience in the last year designing, building, and testing liquid engine components using additive manufacturing. The department has developed valve, duct, turbo-machinery, and combustion device components using this technology. Many valuable lessons were learned during this process. These lessons will be the focus of this presentation. We will present criteria for selecting part candidates for additive manufacturing. Some part characteristics are 'tailor made' for this process. Selecting the right parts for the process is the first step to maximizing productivity gains. We will also present specific lessons we learned about feature geometry that can and cannot be produced using additive manufacturing machines. Most liquid engine components were made using a two-step process. The base part was made using additive manufacturing and then traditional machining processes were used to produce the final part. The presentation will describe design accommodations needed to make the base part and lessons we learned about which features could be built directly and which require the final machine process. Tolerance capabilities, surface finish, and material thickness allowances will also be covered. Additive Manufacturing can produce internal passages that cannot be made using traditional approaches. It can also eliminate a significant amount of manpower by reducing part count and leveraging model-based design and analysis techniques. Information will be shared about performance enhancements and design efficiencies we experienced for certain categories of engine parts.

  4. High-Temperature, Lightweight, Self-Healing Ceramic Composites for Aircraft Engine Applications

    NASA Technical Reports Server (NTRS)

    Raj, Sai V.; Bhatt, Ramkrishna

    2013-01-01

    The use of reliable, high-temperature, lightweight materials in the manufacture of aircraft engines is expected to result in lower fossil and biofuel consumption, thereby leading to cost savings and lower carbon emissions due to air travel. Although nickel-based superalloy blades and vanes have been successfully used in aircraft engines for several decades, there has been an increased effort to develop high-temperature, lightweight, creep-resistant substitute materials under various NASA programs over the last two decades. As a result, there has been a great deal of interest in developing SiC/SiC ceramic matrix composites (CMCs) due to their higher damage tolerance compared to monolithic ceramics. Current-generation SiC/SiC ceramic matrix composites rely almost entirely on the SiC fibers to carry the load, owing to the premature cracking of the matrix during loading. Thus, the high-temperature usefulness of these CMCs falls well below their theoretical capabilities. The objective of this work is to develop a new class of high-temperature, lightweight, self-healing, SiC fiber-reinforced, engineered matrix ceramic composites.

  5. Engineering robot actions in a computer integrated manufacturing environment

    NASA Astrophysics Data System (ADS)

    Vanwaning, W. E.

    1984-10-01

    A model according to which robot actions and the activities in manufacturing cells can be designed is presented. In the model, design activities have three major aspects: specification, analysis and synthesis. Principles for the construction of programming systems for designing operations of robots and manufacturing cells are derived. The specification describes an external environment (the device to make and the tools to make it with). Given the outer environment and the knowledge specific to the discipline, the engineer designs possible inner structures that serve as strategies specifying how to make that device. It is important that the engineer can express the designs symbolically. When synthesizing the process-structure the designed manufacturing process is matched against the external environment. The need for simulation environments so that it is possible to test the design thoroughly on the basis of actually observed sensor-data before the programs are taken into production is stressed.

  6. NACA's 9th Annual Aircraft Engineering Research Conference

    NASA Technical Reports Server (NTRS)

    1934-01-01

    Eight of the twelve members of the National Advisory Committee for Aeronautics attending the 9th Annual Aircraft Engineering Research Conference posed for this photograph at Langley Field, Virginia, on May 23, 1934. Those pictured are (left to right): Brig. Gen. Charles A. Lindbergh, USAFR Vice Admiral Arthur B. Cook, USN Charles G. Abbot, Secretary of the Smithsonian Institution Dr. Joseph S. Ames, Committee Chairman Orville Wright Edward P. Warner Fleet Admiral Ernest J. King, USN Eugene L. Vidal, Director, Bureau of Air Commerce.

  7. Exhaust emission reduction for intermittent combustion aircraft engines

    NASA Technical Reports Server (NTRS)

    Moffett, R. N.

    1979-01-01

    Three concepts for optimizing the performance, increasing the fuel economy, and reducing exhaust emission of the piston aircraft engine were investigated. High energy-multiple spark discharge and spark plug tip penetration, ultrasonic fuel vaporization, and variable valve timing were evaluated individually. Ultrasonic fuel vaporization did not demonstrate sufficient improvement in distribution to offset the performance loss caused by the additional manifold restriction. High energy ignition and revised spark plug tip location provided no change in performance or emissions. Variable valve timing provided some performance benefit; however, even greater performance improvement was obtained through induction system tuning which could be accomplished with far less complexity.

  8. Structureborne noise measurements on a small twin-engine aircraft

    NASA Technical Reports Server (NTRS)

    Cole, J. E., III; Martini, K. F.

    1988-01-01

    Structureborne noise measurements performed on a twin-engine aircraft (Beechcraft Baron) are reported. There are two overall objectives of the test program. The first is to obtain data to support the development of analytical models of the wing and fuselage, while the second is to evaluate effects of structural parameters on cabin noise. Measurements performed include structural and acoustic responses to impact excitation, structural and acoustic loss factors, and modal parameters of the wing. Path alterations include added mass to simulate fuel, variations in torque of bolts joining wing and fuselage, and increased acoustic absorption. Conclusions drawn regarding these measurements are presented.

  9. Structureborne noise measurements on a small twin-engine aircraft

    NASA Astrophysics Data System (ADS)

    Cole, J. E., III; Martini, K. F.

    1988-06-01

    Structureborne noise measurements performed on a twin-engine aircraft (Beechcraft Baron) are reported. There are two overall objectives of the test program. The first is to obtain data to support the development of analytical models of the wing and fuselage, while the second is to evaluate effects of structural parameters on cabin noise. Measurements performed include structural and acoustic responses to impact excitation, structural and acoustic loss factors, and modal parameters of the wing. Path alterations include added mass to simulate fuel, variations in torque of bolts joining wing and fuselage, and increased acoustic absorption. Conclusions drawn regarding these measurements are presented.

  10. A technique for integrating engine cycle and aircraft configuration optimization

    NASA Technical Reports Server (NTRS)

    Geiselhart, Karl A.

    1994-01-01

    A method for conceptual aircraft design that incorporates the optimization of major engine design variables for a variety of cycle types was developed. The methodology should improve the lengthy screening process currently involved in selecting an appropriate engine cycle for a given application or mission. The new capability will allow environmental concerns such as airport noise and emissions to be addressed early in the design process. The ability to rapidly perform optimization and parametric variations using both engine cycle and aircraft design variables, and to see the impact on the aircraft, should provide insight and guidance for more detailed studies. A brief description of the aircraft performance and mission analysis program and the engine cycle analysis program that were used is given. A new method of predicting propulsion system weight and dimensions using thermodynamic cycle data, preliminary design, and semi-empirical techniques is introduced. Propulsion system performance and weights data generated by the program are compared with industry data and data generated using well established codes. The ability of the optimization techniques to locate an optimum is demonstrated and some of the problems that had to be solved to accomplish this are illustrated. Results from the application of the program to the analysis of three supersonic transport concepts installed with mixed flow turbofans are presented. The results from the application to a Mach 2.4, 5000 n.mi. transport indicate that the optimum bypass ratio is near 0.45 with less than 1 percent variation in minimum gross weight for bypass ratios ranging from 0.3 to 0.6. In the final application of the program, a low sonic boom fix a takeoff gross weight concept that would fly at Mach 2.0 overwater and at Mach 1.6 overland is compared with a baseline concept of the same takeoff gross weight that would fly Mach 2.4 overwater and subsonically overland. The results indicate that for the design mission

  11. An Integrated Architecture for Aircraft Engine Performance Monitoring and Fault Diagnostics: Engine Test Results

    NASA Technical Reports Server (NTRS)

    Rinehart, Aidan W.; Simon, Donald L.

    2015-01-01

    This paper presents a model-based architecture for performance trend monitoring and gas path fault diagnostics designed for analyzing streaming transient aircraft engine measurement data. The technique analyzes residuals between sensed engine outputs and model predicted outputs for fault detection and isolation purposes. Diagnostic results from the application of the approach to test data acquired from an aircraft turbofan engine are presented. The approach is found to avoid false alarms when presented nominal fault-free data. Additionally, the approach is found to successfully detect and isolate gas path seeded-faults under steady-state operating scenarios although some fault misclassifications are noted during engine transients. Recommendations for follow-on maturation and evaluation of the technique are also presented.

  12. An Integrated Architecture for Aircraft Engine Performance Monitoring and Fault Diagnostics: Engine Test Results

    NASA Technical Reports Server (NTRS)

    Rinehart, Aidan W.; Simon, Donald L.

    2014-01-01

    This paper presents a model-based architecture for performance trend monitoring and gas path fault diagnostics designed for analyzing streaming transient aircraft engine measurement data. The technique analyzes residuals between sensed engine outputs and model predicted outputs for fault detection and isolation purposes. Diagnostic results from the application of the approach to test data acquired from an aircraft turbofan engine are presented. The approach is found to avoid false alarms when presented nominal fault-free data. Additionally, the approach is found to successfully detect and isolate gas path seeded-faults under steady-state operating scenarios although some fault misclassifications are noted during engine transients. Recommendations for follow-on maturation and evaluation of the technique are also presented.

  13. Fiber optics for aircraft engine/inlet control

    NASA Technical Reports Server (NTRS)

    Baumbick, R. J.

    1981-01-01

    NASA programs that focus on the use of fiber optics for aircraft engine/inlet control are reviewed. Fiber optics for aircraft control is attractive because of its inherent immunity to EMI and RFI noise. Optical signals can be safely transmitted through areas that contain flammable or explosive materials. The use of optics also makes remote sensing feasible by eliminating the need for electrical wires to be connected between sensors and computers. Using low-level optical signals to control actuators is also feasible when power is generated at the actuator. Each application of fiber optics for aircraft control has different requirements for both the optical cables and the optical connectors. Sensors that measure position and speed by using slotted plates can use lossy cables and bundle connectors if data transfer is in the parallel mode. If position and speed signals are multiplexed, cable and connector requirements change. Other sensors that depend on changes in transmission through materials require dependable characteristics of both the optical cables and the optical connectors. A variety of sensor types are reviewed, including rotary position encoders, tachometers, temperature sensors, and blade tip clearance sensors for compressors and turbines. Research on a gallium arsenide photoswitch for optically switched actuators that operate at 250 C is also described.

  14. Investigation of the misfueling of reciprocating piston aircraft engines

    NASA Technical Reports Server (NTRS)

    Scott, J. Holland, Jr.

    1988-01-01

    The Aircraft Misfueling Detection Project was developed by the Goddard Space Flight Center/Wallops Flight Facility at Wallops Island, Virginia. Its purpose was to investigate the misfueling of reciprocating piston aircraft engines by the inadvertent introduction of jet fuel in lieu of or as a contaminant of aviation gasoline. The final objective was the development of a device(s) that will satisfactorily detect misfueling and provide pilots with sufficient warning to avoid injury, fatality, or equipment damage. Two devices have been developed and successfully tested: one, a small contamination detection kit, for use by the pilot, and a second, more sensitive, modified gas chromatograph for use by the fixed-base operator. The gas chromatograph, in addition to providing excellent quality control of the fixed-base operator's fuel handling, is a very good backup for the detection kit in the event it produces negative results. Design parameters were developed to the extent that they may be applied easily to commercial production by the aircraft industry.

  15. Manufacturing Road Map for Tissue Engineering and Regenerative Medicine Technologies

    PubMed Central

    Hunsberger, Joshua; Harrysson, Ola; Shirwaiker, Rohan; Starly, Binil; Wysk, Richard; Cohen, Paul; Allickson, Julie; Yoo, James

    2015-01-01

    Summary The Regenerative Medicine Foundation Annual Conference held on May 6 and 7, 2014, had a vision of assisting with translating tissue engineering and regenerative medicine (TERM)-based technologies closer to the clinic. This vision was achieved by assembling leaders in the field to cover critical areas. Some of these critical areas included regulatory pathways for regenerative medicine therapies, strategic partnerships, coordination of resources, developing standards for the field, government support, priorities for industry, biobanking, and new technologies. The final day of this conference featured focused sessions on manufacturing, during which expert speakers were invited from industry, government, and academia. The speakers identified and accessed roadblocks plaguing the field where improvements in advanced manufacturing offered many solutions. The manufacturing sessions included (a) product development toward commercialization in regenerative medicine, (b) process challenges to scale up manufacturing in regenerative medicine, and (c) infrastructure needs for manufacturing in regenerative medicine. Subsequent to this, industry was invited to participate in a survey to further elucidate the challenges to translation and scale-up. This perspective article will cover the lessons learned from these manufacturing sessions and early results from the survey. We also outline a road map for developing the manufacturing infrastructure, resources, standards, capabilities, education, training, and workforce development to realize the promise of TERM. PMID:25575525

  16. Manufacturing road map for tissue engineering and regenerative medicine technologies.

    PubMed

    Hunsberger, Joshua; Harrysson, Ola; Shirwaiker, Rohan; Starly, Binil; Wysk, Richard; Cohen, Paul; Allickson, Julie; Yoo, James; Atala, Anthony

    2015-02-01

    The Regenerative Medicine Foundation Annual Conference held on May 6 and 7, 2014, had a vision of assisting with translating tissue engineering and regenerative medicine (TERM)-based technologies closer to the clinic. This vision was achieved by assembling leaders in the field to cover critical areas. Some of these critical areas included regulatory pathways for regenerative medicine therapies, strategic partnerships, coordination of resources, developing standards for the field, government support, priorities for industry, biobanking, and new technologies. The final day of this conference featured focused sessions on manufacturing, during which expert speakers were invited from industry, government, and academia. The speakers identified and accessed roadblocks plaguing the field where improvements in advanced manufacturing offered many solutions. The manufacturing sessions included (a) product development toward commercialization in regenerative medicine, (b) process challenges to scale up manufacturing in regenerative medicine, and (c) infrastructure needs for manufacturing in regenerative medicine. Subsequent to this, industry was invited to participate in a survey to further elucidate the challenges to translation and scale-up. This perspective article will cover the lessons learned from these manufacturing sessions and early results from the survey. We also outline a road map for developing the manufacturing infrastructure, resources, standards, capabilities, education, training, and workforce development to realize the promise of TERM.

  17. 10 CFR 32.53 - Luminous safety devices for use in aircraft: Requirements for license to manufacture, assemble...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Luminous safety devices for use in aircraft: Requirements for license to manufacture, assemble, repair or initially transfer. 32.53 Section 32.53 Energy NUCLEAR REGULATORY COMMISSION SPECIFIC DOMESTIC LICENSES TO MANUFACTURE OR TRANSFER CERTAIN ITEMS...

  18. A simple dynamic engine model for use in a real-time aircraft simulation with thrust vectoring

    NASA Technical Reports Server (NTRS)

    Johnson, Steven A.

    1990-01-01

    A simple dynamic engine model was developed at the NASA Ames Research Center, Dryden Flight Research Facility, for use in thrust vectoring control law development and real-time aircraft simulation. The simple dynamic engine model of the F404-GE-400 engine (General Electric, Lynn, Massachusetts) operates within the aircraft simulator. It was developed using tabular data generated from a complete nonlinear dynamic engine model supplied by the manufacturer. Engine dynamics were simulated using a throttle rate limiter and low-pass filter. Included is a description of a method to account for axial thrust loss resulting from thrust vectoring. In addition, the development of the simple dynamic engine model and its incorporation into the F-18 high alpha research vehicle (HARV) thrust vectoring simulation. The simple dynamic engine model was evaluated at Mach 0.2, 35,000 ft altitude and at Mach 0.7, 35,000 ft altitude. The simple dynamic engine model is within 3 percent of the steady state response, and within 25 percent of the transient response of the complete nonlinear dynamic engine model.

  19. Structural Optimization Methodology for Rotating Disks of Aircraft Engines

    NASA Technical Reports Server (NTRS)

    Armand, Sasan C.

    1995-01-01

    In support of the preliminary evaluation of various engine technologies, a methodology has been developed for structurally designing the rotating disks of an aircraft engine. The structural design methodology, along with a previously derived methodology for predicting low-cycle fatigue life, was implemented in a computer program. An interface computer program was also developed that gathers the required data from a flowpath analysis program (WATE) being used at NASA Lewis. The computer program developed for this study requires minimum interaction with the user, thus allowing engineers with varying backgrounds in aeropropulsion to successfully execute it. The stress analysis portion of the methodology and the computer program were verified by employing the finite element analysis method. The 10th- stage, high-pressure-compressor disk of the Energy Efficient Engine Program (E3) engine was used to verify the stress analysis; the differences between the stresses and displacements obtained from the computer program developed for this study and from the finite element analysis were all below 3 percent for the problem solved. The computer program developed for this study was employed to structurally optimize the rotating disks of the E3 high-pressure compressor. The rotating disks designed by the computer program in this study were approximately 26 percent lighter than calculated from the E3 drawings. The methodology is presented herein.

  20. Application of superalloy powder metallurgy for aircraft engines

    NASA Technical Reports Server (NTRS)

    Dreshfield, R. L.; Miner, R. V., Jr.

    1980-01-01

    In the last decade, Government/Industry programs have advanced powder metallurgy-near-net-shape technology to permit the use of hot isostatic pressed (HIP) turbine disks in the commercial aircraft fleet. These disks offer a 30% savings of input weight and an 8% savings in cost compared in cast-and-wrought disks. Similar savings were demonstrated for other rotating engine components. A compressor rotor fabricated from hot-die-forged-HIP superalloy billets revealed input weight savings of 54% and cost savings of 35% compared to cast-and-wrought parts. Engine components can be produced from compositions such as Rene 95 and Astroloy by conventional casting and forging, by forging of HIP powder billets, or by direct consolidation of powder by HIP. However, each process produces differences in microstructure or introduces different defects in the parts. As a result, their mechanical properties are not necessarily identical. Acceptance methods should be developed which recognize and account for the differences.

  1. Commercial Aircraft Maintenance Experience Relating to Engine External Hardware

    NASA Technical Reports Server (NTRS)

    Soditus, Sharon M.

    2006-01-01

    Airlines are extremely sensitive to the amount of dollars spent on maintaining the external engine hardware in the field. Analysis reveals that many problems revolve around a central issue, reliability. Fuel and oil leakage due to seal failure and electrical fault messages due to wire harness failures play a major role in aircraft delays and cancellations (D&C's) and scheduled maintenance. Correcting these items on the line requires a large investment of engineering resources and manpower after the fact. The smartest and most cost effective philosophy is to build the best hardware the first time. The only way to do that is to completely understand and model the operating environment, study the field experience of similar designs and to perform extensive testing.

  2. Weight Assessment for Fuselage Shielding on Aircraft With Open-Rotor Engines and Composite Blade Loss

    NASA Technical Reports Server (NTRS)

    Carney, Kelly; Pereira, Michael; Kohlman, Lee; Goldberg, Robert; Envia, Edmane; Lawrence, Charles; Roberts, Gary; Emmerling, William

    2013-01-01

    The Federal Aviation Administration (FAA) has been engaged in discussions with airframe and engine manufacturers concerning regulations that would apply to new technology fuel efficient "openrotor" engines. Existing regulations for the engines and airframe did not envision features of these engines that include eliminating the fan blade containment systems and including two rows of counter-rotating blades. Damage to the airframe from a failed blade could potentially be catastrophic. Therefore the feasibility of using aircraft fuselage shielding was investigated. In order to establish the feasibility of this shielding, a study was conducted to provide an estimate for the fuselage shielding weight required to provide protection from an open-rotor blade loss. This estimate was generated using a two-step procedure. First, a trajectory analysis was performed to determine the blade orientation and velocity at the point of impact with the fuselage. The trajectory analysis also showed that a blade dispersion angle of 3deg bounded the probable dispersion pattern and so was used for the weight estimate. Next, a finite element impact analysis was performed to determine the required shielding thickness to prevent fuselage penetration. The impact analysis was conducted using an FAA-provided composite blade geometry. The fuselage geometry was based on a medium-sized passenger composite airframe. In the analysis, both the blade and fuselage were assumed to be constructed from a T700S/PR520 triaxially-braided composite architecture. Sufficient test data on T700S/PR520 is available to enable reliable analysis, and also demonstrate its good impact resistance properties. This system was also used in modeling the surrogate blade. The estimated additional weight required for fuselage shielding for a wing- mounted counterrotating open-rotor blade is 236 lb per aircraft. This estimate is based on the shielding material serving the dual use of shielding and fuselage structure. If the

  3. Simulation of Aircraft Engine Blade-Out Structural Dynamics. Revised

    NASA Technical Reports Server (NTRS)

    Lawrence, Charles; Carney, Kelly; Gallardo, Vicente

    2001-01-01

    A primary concern of aircraft structure designers is the accurate simulation of the blade-out event and the subsequent windmilling of the engine. Reliable simulations of the blade-out event are required to insure structural integrity during flight as well as to guarantee successful blade-out certification testing. The system simulation includes the lost blade loadings and the interactions between the rotating turbomachinery and the remaining aircraft structural components. General-purpose finite element structural analysis codes such as MSC NASTRAN are typically used and special provisions are made to include transient effects from the blade loss and rotational effects resulting from the engine's turbomachinery. The present study provides the equations of motion for rotordynamic response including the effect of spooldown speed and rotor unbalance and examines the effects of these terms on a cantilevered rotor. The effect of spooldown speed is found to be greater with increasing spooldown rate. The parametric term resulting from the mass unbalance has a more significant effect on the rotordynamic response than does the spooldown term. The parametric term affects both the peak amplitudes as well as the resonant frequencies of the rotor.

  4. Simulation of Aircraft Engine Blade-Out Structural Dynamics

    NASA Technical Reports Server (NTRS)

    Lawrence, Charles; Carney, Kelly; Gallardo, Vicente

    2001-01-01

    A primary concern of aircraft structure designers is the accurate simulation of the blade-out event and the subsequent windmilling of the engine. Reliable simulations of the blade-out event are required to insure structural integrity during flight as well as to guarantee successful blade-out certification testing. The system simulation includes the lost blade loadings and the interactions between the rotating turbomachinery and the remaining aircraft structural components. General-purpose finite element structural analysis codes such as MSC NASTRAN are typically used and special provisions are made to include transient effects from the blade loss and rotational effects resulting from the engine's turbomachinery. The present study provides the equations of motion for rotordynamic response including the effect of spooldown speed and rotor unbalance and examines the effects of these terms on a cantilevered rotor. The effect of spooldown speed is found to be greater with increasing spooldown rate. The parametric term resulting from the mass unbalance has a more significant effect on the rotordynamic response than does the spooldown term. The parametric term affects both the peak amplitudes as well as the resonant frequencies of the rotor.

  5. Highly integrated digital electronic control: Digital flight control, aircraft model identification, and adaptive engine control

    NASA Technical Reports Server (NTRS)

    Baer-Riedhart, Jennifer L.; Landy, Robert J.

    1987-01-01

    The highly integrated digital electronic control (HIDEC) program at NASA Ames Research Center, Dryden Flight Research Facility is a multiphase flight research program to quantify the benefits of promising integrated control systems. McDonnell Aircraft Company is the prime contractor, with United Technologies Pratt and Whitney Aircraft, and Lear Siegler Incorporated as major subcontractors. The NASA F-15A testbed aircraft was modified by the HIDEC program by installing a digital electronic flight control system (DEFCS) and replacing the standard F100 (Arab 3) engines with F100 engine model derivative (EMD) engines equipped with digital electronic engine controls (DEEC), and integrating the DEEC's and DEFCS. The modified aircraft provides the capability for testing many integrated control modes involving the flight controls, engine controls, and inlet controls. This paper focuses on the first two phases of the HIDEC program, which are the digital flight control system/aircraft model identification (DEFCS/AMI) phase and the adaptive engine control system (ADECS) phase.

  6. Comparison of predicted engine core noise with current and proposed aircraft noise certification requirements

    NASA Technical Reports Server (NTRS)

    Vonglahn, U. H.; Groesbeck, D. E.

    1981-01-01

    Predicted engine core noise levels are compared with measured total aircraft noise levels and with current and proposed federal noise certification requirements. Comparisons are made at the FAR-36 measuring stations and include consideration of both full- and cutback-power operation at takeoff. In general, core noise provides a barrier to achieving proposed EPA stage 5 noise levels for all types of aircraft. More specifically, core noise levels will limit further reductions in aircraft noise levels for current widebody commercial aircraft.

  7. Failure Investigation of WB-57 Aircraft Engine Cowling

    NASA Technical Reports Server (NTRS)

    Martinez, J. E.; Gafka, T.; Figert, J.

    2014-01-01

    The NASA Johnson Space Center (JSC) in Houston, Texas is the home of the NASA WB-57 High Altitude Research Program. Three fully operational WB-57 aircraft are based near JSC at Ellington Field. The aircraft have been flying research missions since the early 1960's, and continue to be an asset to the scientific community with professional, reliable, customer-oriented service designed to meet all scientific objectives. The NASA WB-57 Program provides unique, high-altitude airborne platforms to US Government agencies, academic institutions, and commercial customers in order to support scientific research and advanced technology development and testing at locations around the world. Mission examples include atmospheric and earth science, ground mapping, cosmic dust collection, rocket launch support, and test bed operations for future airborne or spaceborne systems. During the return from a 6 hour flight, at 30,000 feet, in the clean configuration, traveling at 175 knots indicated airspeed, in un-accelerated flight with the auto pilot engaged, in calm air, the 2-man crew heard a mechanical bang and felt a slight shudder followed by a few seconds of high frequency vibration. The crew did not notice any other abnormalities leading up to, or for the remaining 1 hour of flight and made an uneventful landing. Upon taxi into the chocks, the recovery ground crew noticed the high frequency long wire antenna had become disconnected from the vertical stabilizer and was trailing over the left inboard wing, and that the left engine upper center removable cowling panel was missing, with noticeable damage to the left engine inboard cowling fixed structure. The missing cowling panel was never recovered. Each engine cowling panel is attached to the engine nacelle using six bushings made of 17-4 PH steel. The cylinder portions of four of the six bushings were found still attached to the aircraft (Fig 1). The other two bushings were lost with the panel. The other four bushings exhibited

  8. Energy efficient engine program contributions to aircraft fuel conservation

    NASA Technical Reports Server (NTRS)

    Batterton, P. G.

    1984-01-01

    Significant advances in high bypass turbofan technologies that enhance fuel efficiency have been demonstrated in the NASA Energy Efficient Engine Program. This highly successful second propulsion element of the NASA Aircraft Energy Efficiency Program included major contract efforts with both General Electric and Pratt & Whitney. Major results of these efforts will be presented including highlights from the NASA/General Electric E3 research turbofan engine test. Direct application of all the E3 technologies could result in fuel savings of over 18% compared to the CF6-50 and JT9D-7. Application of the E3 technologies to new and derivative engines such as the CF6-80C and PW 2037, as well as others, will be discussed. Significant portions of the fuel savings benefit for these new products can be directly related to the E3 technology program. Finally, results of a study looking at far term advanced turbofan engines will be briefly described. The study shows that substantial additional fuel savings over E3 are possible with additional turbofan technology programs.

  9. Proposed Rule and Related Materials for Control of Emissions of Air Pollution From Nonroad Diesel Engines Control of Air Pollution From Aircraft and Aircraft Engines; Proposed Emission Standards and Test Procedures

    EPA Pesticide Factsheets

    Proposed Rule and Related Materials for Control of Emissions of Air Pollution From Nonroad Diesel Engines Control of Air Pollution From Aircraft and Aircraft Engines; Proposed Emission Standards and Test Procedures

  10. 75 FR 28504 - Airworthiness Directives; Various Aircraft Equipped With Rotax Aircraft Engines 912 A Series Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-21

    ...) Perform a leak check as follows: (i) Clean the crankcase surface to remove any oil. (ii) Warm up the engine to a minimum oil temperature of 50 degrees C (120 degrees F). Information about warming up the... crankcase assembly S/N up to and including S/N 27811, certificated in any category: Type certificate...

  11. Metabolic engineering: the ultimate paradigm for continuous pharmaceutical manufacturing.

    PubMed

    Yadav, Vikramaditya G; Stephanopoulos, Gregory

    2014-07-01

    Research and development (R&D) expenditures by pharmaceutical companies doubled over the past decade, yet candidate attrition rates and development times rose markedly during this period. Understandably, companies have begun downsizing their pipelines and diverting investments away from R&D in favor of manufacturing. It is estimated that transitioning to continuous manufacturing could enable companies to compete for a share in emerging markets. Accordingly, the model for continuous manufacturing that has emerged commences with the conversion of late-stage intermediates into the active pharmaceutical ingredient (API) in a series of continuous flow reactors, followed by continuous solid processing to form finished tablets. The use of flow reactions for API synthesis will certainly generate purer products at higher yields in shorter times compared to equivalent batch reactions. However, transitioning from batch to flow configuration simply alleviates transport limitations within the reaction milieu. As the catalogue of reactions used in flow syntheses is a subset of batch-based chemistries, molecules such as natural products will continue to evade drug prospectors. Also, it is uncertain whether flow synthesis can deliver improvements in the atom and energy economies of API production at the scales that would achieve the levels of revenue growth targeted by companies. Instead, it is argued that implementing metabolic engineering for the production of oxidized scaffolds as gateway molecules for flow-based addition of electrophiles is a more effective and scalable strategy for accessing natural product chemical space. This new paradigm for manufacturing, with metabolic engineering as its engine, would also permit rapid optimization of production variables and allow facile scale-up from gram to ton scale to meet material requirements for clinical trials, thus recasting manufacturing as a tool for discovery.

  12. Fatigue Lifetime Assessment of Aircraft Engine Disc via Multi-source Information Fusion

    NASA Astrophysics Data System (ADS)

    Huang, Hong-Zhong; Cui, Ping-Liang; Peng, Weiwen; Gao, Hui-Ying; Wang, Hai-Kun

    2014-06-01

    Fatigue lifetime assessment for aircraft engine discs is an important issue for the operation and health management of aircraft engines. Due to the lack of field test data, traditional methods can hardly meet the requirements of fatigue lifetime assessment of aircraft engine discs. By combining a multi-source information fusion method with a Bayesian inference technique, this paper develops a practical approach for fatigue lifetime assessment of aircraft engine discs. Subjective information and historical data are combined coherently with the sparse test data to generate a credible fatigue lifetime assessment of aircraft engine discs. Methods for quantifying subjective information, checking different experts' information, and fusing multiple prior distributions are presented to facilitate the implementation of fatigue lifetime assessment. An illustrative example is presented to demonstrate the procedures and the implication of the proposed method.

  13. Design Exploration of Engineered Materials, Products, and Associated Manufacturing Processes

    NASA Astrophysics Data System (ADS)

    Shukla, Rishabh; Kulkarni, Nagesh H.; Gautham, B. P.; Singh, Amarendra K.; Mistree, Farrokh; Allen, Janet K.; Panchal, Jitesh H.

    2015-01-01

    In the past few years, ICME-related research has been directed towards the study of multi-scale materials design. However, relatively little has been reported on model-based methods that are of relevance to industry for the realization of engineered materials, products, and associated industrial manufacturing processes. Computational models used in the realization of engineered materials and products are fraught with uncertainty, have different levels of fidelity, are incomplete and are even likely to be inaccurate. In light of this, we adopt a robust design strategy that facilitates the exploration of the solution space thereby providing decision support to a design engineer. In this paper, we describe a foundational construct embodied in our method for design exploration, namely, the compromise Decision Support Problem. We introduce a problem that we are using to establish the efficacy of our method. It involves the integrated design of steel and gears, traversing the chain of steel making, mill production, and evolution of the material during these processes, and linking this to the mechanical design and manufacture of the gear. We provide an overview of our method to determine the operating set points for the ladle, tundish and caster operations necessary to manufacture steel of a desired set of properties. Finally, we highlight the efficacy of our method.

  14. Optimization applications in aircraft engine design and test

    NASA Technical Reports Server (NTRS)

    Pratt, T. K.

    1984-01-01

    Starting with the NASA-sponsored STAEBL program, optimization methods based primarily upon the versatile program COPES/CONMIN were introduced over the past few years to a broad spectrum of engineering problems in structural optimization, engine design, engine test, and more recently, manufacturing processes. By automating design and testing processes, many repetitive and costly trade-off studies have been replaced by optimization procedures. Rather than taking engineers and designers out of the loop, optimization has, in fact, put them more in control by providing sophisticated search techniques. The ultimate decision whether to accept or reject an optimal feasible design still rests with the analyst. Feedback obtained from this decision process has been invaluable since it can be incorporated into the optimization procedure to make it more intelligent. On several occasions, optimization procedures have produced novel designs, such as the nonsymmetric placement of rotor case stiffener rings, not anticipated by engineering designers. In another case, a particularly difficult resonance contraint could not be satisfied using hand iterations for a compressor blade, when the STAEBL program was applied to the problem, a feasible solution was obtained in just two iterations.

  15. Aircraft Turbine Engine Monitoring Systems: Overview and Lessons Learned from Six Case Studies

    DTIC Science & Technology

    1979-05-01

    engines of both groups. EHMS (T-38 / J85 ) ACTIVITY OUTCOMES JULY 󈨐 - MAY 󈨑 INSIRUMENTED ENGINES CONTROL ENGINES NUMBER OF ENGINES 26 26 TOTAL...Kreviews the experience gained from several aircraft turbine engine monitoring systems used over the last decade and a half and examines the...the supporting research. -,Two different approaches to engine monitoring have evolved in attempts to achieve the goals of improved engine operations

  16. Exposure assessment for a large epidemiological study of aircraft manufacturing workers.

    PubMed

    Marano, D E; Boice, J D; Fryzek, J P; Morrison, J A; Sadler, C J; McLaughlin, J K

    2000-08-01

    Methods were developed to assess exposure to a wide variety of chemicals for nearly 80,000 workers involved in manufacturing aircraft since 1928. The facilities, now closed, consisted of four major plants, over 200 buildings, and a changing workforce during 60 years of operation. To access chemical exposures by specific jobs and calendar years, we reviewed complete work histories, examined detailed job descriptions available going back to 1940, interviewed long-term employees, conducted walk-through visits of aircraft manufacturing plants, reviewed comprehensive environmental assessment reports and industrial hygiene surveys on the facilities, and built on experience gained in previous studies of the aircraft industry. Using computer-based imaging systems, we examined and evaluated the complete work histories found on service record cards for the cohort and abstracted detailed information on all jobs held among the factory workers who had been employed for at least one year. Jobs were classified into one of three exposure categories related to the use of specific chemicals: routine, intermittent, and none, and these classifications were subsequently used in the epidemiological analyses. The approach to exposure assessment began with the most general categorization of employees (i.e., all workers) and then became progressively more specific, that is, factor workers, job families (similar activities), job titles, and jobs with chemical usage (exposure potential). Because exposure surveys were limited or absent during the early years of plant operations, we did not assign quantitative measures of exposure to individual job activities. Instead, we used as our exposure metric, the length of time spent in jobs with potential exposure to the chemical. Important occupational exposures included chromate-containing compounds such as used in paint primers, trichloroethylene and perchloroethylene used as vapor-state degreasing solvents, and a broad range of other solvents.

  17. Real-time measurements of jet aircraft engine exhaust.

    PubMed

    Rogers, Fred; Arnott, Pat; Zielinska, Barbara; Sagebiel, John; Kelly, Kerry E; Wagner, David; Lighty, JoAnn S; Sarofim, Adel F

    2005-05-01

    Particulate-phase exhaust properties from two different types of ground-based jet aircraft engines--high-thrust and turboshaft--were studied with real-time instruments on a portable pallet and additional time-integrated sampling devices. The real-time instruments successfully characterized rapidly changing particulate mass, light absorption, and polycyclic aromatic hydrocarbon (PAH) content. The integrated measurements included particulate-size distributions, PAH, and carbon concentrations for an entire test run (i.e., "run-integrated" measurements). In all cases, the particle-size distributions showed single modes peaking at 20-40nm diameter. Measurements of exhaust from high-thrust F404 engines showed relatively low-light absorption compared with exhaust from a turboshaft engine. Particulate-phase PAH measurements generally varied in phase with both net particulate mass and with light-absorbing particulate concentrations. Unexplained response behavior sometimes occurred with the real-time PAH analyzer, although on average the real-time and integrated PAH methods agreed within the same order of magnitude found in earlier investigations.

  18. Performance of Several Combustion Chambers Designed for Aircraft Oil Engines

    NASA Technical Reports Server (NTRS)

    Joachim, William F; Kemper, Carlton

    1928-01-01

    Several investigations have been made on single-cylinder test engines to determine the performance characteristics of four types of combustion chambers designed for aircraft oil engines. Two of the combustion chambers studied were bulb-type precombustion chambers, the connecting orifice of one having been designed to produce high turbulence by tangential air flow in both the precombustion chamber and the cylinder. The other two were integral combustion chambers, one being dome-shaped and the other pent-roof shaped. The injection systems used included cam and eccentric driven fuel pumps, and diaphragm and spring-loaded fuel-injection valves. A diaphragm type maximum cylinder pressure indicator was used in part of these investigations with which the cylinder pressures were controlled to definite valves. The performance of the engines when equipped with each of the combustion chambers is discussed. The best performance for the tests reported was obtained with a bulb-type combustion chamber designed to give a high degree of turbulence within the bulb and cylinder. (author)

  19. ADAM: An Axisymmetric Duct Aeroacoustic Modeling system. [aircraft turbofan engines

    NASA Technical Reports Server (NTRS)

    Abrahamson, A. L.

    1983-01-01

    An interconnected system of computer programs for analyzing the propagation and attenuation of sound in aeroengine ducts containing realistic compressible subsonic mean flows, ADAM was developed primarily for research directed towards the reduction of noise emitted from turbofan aircraft engines. The two basic components are a streamtube curvature program for determination of the mean flow, and a finite element code for solution of the acoustic propagation problem. The system, which has been specifically tailored for ease of use, is presently installed at NASA Langley Reseach Center on a Control Data Cyber 175 Computer under the NOS Operating system employing a Tektronix terminal for interactive graphics. The scope and organization of the ADAM system is described. A users guide, examples of input data, and results for selected cases are included.

  20. Aircraft engine with inter-turbine engine frame supported counter rotating low pressure turbine rotors

    NASA Technical Reports Server (NTRS)

    Seda, Jorge F. (Inventor); Dunbar, Lawrence W. (Inventor); Gliebe, Philip R. (Inventor); Szucs, Peter N. (Inventor); Brauer, John C. (Inventor); Johnson, James E. (Inventor); Moniz, Thomas (Inventor); Steinmetz, Gregory T. (Inventor)

    2003-01-01

    An aircraft gas turbine engine assembly includes an inter-turbine frame axially located between high and low pressure turbines. Low pressure turbine has counter rotating low pressure inner and outer rotors with low pressure inner and outer shafts which are at least in part rotatably disposed co-axially within a high pressure rotor. Inter-turbine frame includes radially spaced apart radially outer first and inner second structural rings disposed co-axially about a centerline and connected by a plurality of circumferentially spaced apart struts. Forward and aft sump members having forward and aft central bores are fixedly joined to axially spaced apart forward and aft portions of the inter-turbine frame. Low pressure inner and outer rotors are rotatably supported by a second turbine frame bearing mounted in aft central bore of aft sump member. A mount for connecting the engine to an aircraft is located on first structural ring.

  1. Model-Based Engineering and Manufacturing CAD/CAM Benchmark

    SciTech Connect

    Domm, T.D.; Underwood, R.S.

    1999-04-26

    The Benehmark Project was created from a desire to identify best practices and improve the overall efficiency and performance of the Y-12 Plant's systems and personnel supprting the manufacturing mission. The mission of the benchmark team was to search out industry leaders in manufacturing and evaluate lheir engineering practices and processes to determine direction and focus fm Y-12 modmizadon efforts. The companies visited included several large established companies and anew, small, high-tech machining firm. As a result of this efforL changes are recommended that will enable Y-12 to become a more responsive cost-effective manufacturing facility capable of suppordng the needs of the Nuclear Weapons Complex (NW@) and Work Fw Others into the 21' century. The benchmark team identified key areas of interest, both focused and gencml. The focus arm included Human Resources, Information Management, Manufacturing Software Tools, and Standarda/ Policies and Practices. Areas of general interest included Inhstructure, Computer Platforms and Networking, and Organizational Structure. The method for obtaining the desired information in these areas centered on the creation of a benchmark questionnaire. The questionnaire was used throughout each of the visits as the basis for information gathering. The results of this benchmark showed that all companies are moving in the direction of model-based engineering and manufacturing. There was evidence that many companies are trying to grasp how to manage current and legacy data. In terms of engineering design software tools, the companies contacted were using both 3-D solid modeling and surfaced Wire-frame models. The manufacturing computer tools were varie4 with most companies using more than one software product to generate machining data and none currently performing model-based manufacturing (MBM) ftom a common medel. The majority of companies were closer to identifying or using a single computer-aided design (CAD) system than a

  2. Control systems engineering in continuous pharmaceutical manufacturing. May 20-21, 2014 Continuous Manufacturing Symposium.

    PubMed

    Myerson, Allan S; Krumme, Markus; Nasr, Moheb; Thomas, Hayden; Braatz, Richard D

    2015-03-01

    This white paper provides a perspective of the challenges, research needs, and future directions for control systems engineering in continuous pharmaceutical processing. The main motivation for writing this paper is to facilitate the development and deployment of control systems technologies so as to ensure quality of the drug product. Although the main focus is on small-molecule pharmaceutical products, most of the same statements apply to biological drug products. An introduction to continuous manufacturing and control systems is followed by a discussion of the current status and technical needs in process monitoring and control, systems integration, and risk analysis. Some key points are that: (1) the desired objective in continuous manufacturing should be the satisfaction of all critical quality attributes (CQAs), not for all variables to operate at steady-state values; (2) the design of start-up and shutdown procedures can significantly affect the economic operation of a continuous manufacturing process; (3) the traceability of material as it moves through the manufacturing facility is an important consideration that can at least in part be addressed using residence time distributions; and (4) the control systems technologies must assure quality in the presence of disturbances, dynamics, uncertainties, nonlinearities, and constraints. Direct measurement, first-principles and empirical model-based predictions, and design space approaches are described for ensuring that CQA specifications are met. Ways are discussed for universities, regulatory bodies, and industry to facilitate working around or through barriers to the development of control systems engineering technologies for continuous drug manufacturing. Industry and regulatory bodies should work with federal agencies to create federal funding mechanisms to attract faculty to this area. Universities should hire faculty interested in developing first-principles models and control systems technologies for

  3. Engine Performance and Knock Rating of Fuels for High-output Aircraft Engines

    NASA Technical Reports Server (NTRS)

    Rothbrock, A M; Biermann, Arnold E

    1938-01-01

    Data are presented to show the effects of inlet-air pressure, inlet-air temperature, and compression ratio on the maximum permissible performance obtained on a single-cylinder test engine with aircraft-engine fuels varying from a fuel of 87 octane number to one 100 octane number plus 1 ml of tetraethyl lead per gallon. The data were obtained on a 5-inch by 5.75-inch liquid-cooled engine operating at 2,500 r.p.m. The compression ratio was varied from 6.50 to 8.75. The inlet-air temperature was varied from 120 to 280 F. and the inlet-air pressure from 30 inches of mercury absolute to the highest permissible. The limiting factors for the increase in compression ratio and in inlet-air pressure was the occurrence of either audible or incipient knock. The data are correlated to show that, for any one fuel,there is a definite relationship between the limiting conditions of inlet-air temperature and density at any compression ratio. This relationship is dependent on the combustion-gas temperature and density relationship that causes knock. The report presents a suggested method of rating aircraft-engine fuels based on this relationship. It is concluded that aircraft-engine fuels cannot be satisfactorily rated by any single factor, such as octane number, highest useful compression ratio, or allowable boost pressure. The fuels should be rated by a curve that expresses the limitations of the fuel over a variety of engine conditions.

  4. Oil-Free Turbomachinery Team Passed Milestone on Path to the First Oil-Free Turbine Aircraft Engine

    NASA Technical Reports Server (NTRS)

    Bream, Bruce L.

    2002-01-01

    The Oil-Free Turbine Engine Technology Project team successfully demonstrated a foil-air bearing designed for the core rotor shaft of a turbine engine. The bearings were subjected to test conditions representative of the engine core environment through a combination of high speeds, sustained loads, and elevated temperatures. The operational test envelope was defined during conceptual design studies completed earlier this year by bearing manufacturer Mohawk Innovative Technologies and the turbine engine company Williams International. The prototype journal foil-air bearings were tested at the NASA Glenn Research Center. Glenn is working with Williams and Mohawk to create a revolution in turbomachinery by developing the world's first Oil-Free turbine aircraft engine. NASA's General Aviation Propulsion project and Williams International recently developed the FJX-2 turbofan engine that is being commercialized as the EJ-22. This core bearing milestone is a first step toward a future version of the EJ-22 that will take advantage of recent advances in foil-air bearings by eliminating the need for oil lubrication systems and rolling element bearings. Oil-Free technology can reduce engine weight by 15 percent and let engines operate at very high speeds, yielding power density improvements of 20 percent, and reducing engine maintenance costs. In addition, with NASA coating technology, engines can operate at temperatures up to 1200 F. Although the project is still a couple of years from a full engine test of the bearings, this milestone shows that the bearing design exceeds the expected environment, thus providing confidence that an Oil-Free turbine aircraft engine will be attained. The Oil-Free Turbomachinery Project is supported through the Aeropropulsion Base Research Program.

  5. Adaptive Failure Compensation for Aircraft Flight Control Using Engine Differentials: Regulation

    NASA Technical Reports Server (NTRS)

    Yu, Liu; Xidong, Tang; Gang, Tao; Joshi, Suresh M.

    2005-01-01

    The problem of using engine thrust differentials to compensate for rudder and aileron failures in aircraft flight control is addressed in this paper in a new framework. A nonlinear aircraft model that incorporates engine di erentials in the dynamic equations is employed and linearized to describe the aircraft s longitudinal and lateral motion. In this model two engine thrusts of an aircraft can be adjusted independently so as to provide the control flexibility for rudder or aileron failure compensation. A direct adaptive compensation scheme for asymptotic regulation is developed to handle uncertain actuator failures in the linearized system. A design condition is specified to characterize the system redundancy needed for failure compensation. The adaptive regulation control scheme is applied to the linearized model of a large transport aircraft in which the longitudinal and lateral motions are coupled as the result of using engine thrust differentials. Simulation results are presented to demonstrate the effectiveness of the adaptive compensation scheme.

  6. Role of structural noise in aircraft pressure cockpit from vibration action of new-generation engines

    NASA Astrophysics Data System (ADS)

    Baklanov, V. S.

    2016-07-01

    The evolution of new-generation aircraft engines is transitioning from a bypass ratio of 4-6 to an increased ratio of 8-12. This is leading to substantial broadening of the vibration spectrum of engines with a shift to the low-frequency range due to decreased rotation speed of the fan rotor, in turn requiring new solutions to decrease structural noise from engine vibrations to ensure comfort in the cockpits and cabins of aircraft.

  7. Advanced manufacturing development of a composite empennage component for L-1011 aircraft

    NASA Technical Reports Server (NTRS)

    Alva, T.; Henkel, J.; Johnson, R.; Carll, B.; Jackson, A.; Mosesian, B.; Brozovic, R.; Obrien, R.; Eudaily, R.

    1982-01-01

    This is the final report of technical work conducted during the fourth phase of a multiphase program having the objective of the design, development and flight evaluation of an advanced composite empennage component manufactured in a production environment at a cost competitive with those of its metal counterpart, and at a weight savings of at least 20 percent. The empennage component selected for this program is the vertical fin box of the L-1011 aircraft. The box structure extends from the fuselage production joint to the tip rib and includes front and rear spars. During Phase 4 of the program, production quality tooling was designed and manufactured to produce three sets of covers, ribs, spars, miscellaneous parts, and subassemblies to assemble three complete ACVF units. Recurring and nonrecurring cost data were compiled and documented in the updated producibility/design to cost plan. Nondestruct inspections, quality control tests, and quality acceptance tests were performed in accordance with the quality assurance plan and the structural integrity control plan. Records were maintained to provide traceability of material and parts throughout the manufacturing development phase. It was also determined that additional tooling would not be required to support the current and projected L-1011 production rate.

  8. Technology Needs for Reduced Design and Manufacturing Cost of Commercial Transport Engines

    NASA Technical Reports Server (NTRS)

    Rohn, Douglas A.

    1997-01-01

    The objective of the study was to assess the needs in the design and manufacturing processes and identify areas where technology could impact in cost and cycle-time reduction. At the highest level, the team first identified the goals that were in line with long-range needs of the aeropropulsion industry, and to which technology and process improvements would be required to contribute. These goals are to reduce the time and costs in the development cycle of aircraft engines by a factor of two, reduce production cycle time by a factor of four, and to reduce production costs by 25%. Also, it was the intent of the team to identify the highest impact technologies that could be developed and demonstrated in five years.

  9. 40 CFR 87.21 - Exhaust emission standards for Tier 4 and earlier engines.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF AIR POLLUTION FROM AIRCRAFT AND AIRCRAFT ENGINES Exhaust Emissions (New Aircraft Gas Turbine Engines) § 87.21 Exhaust emission standards for Tier 4 and earlier... apply for aircraft engines manufactured before July 18, 2012 and certain engines exempted under §...

  10. 40 CFR 87.21 - Exhaust emission standards for Tier 4 and earlier engines.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF AIR POLLUTION FROM AIRCRAFT AND AIRCRAFT ENGINES Exhaust Emissions (New Aircraft Gas Turbine Engines) § 87.21 Exhaust emission standards for Tier 4 and earlier... apply for aircraft engines manufactured before July 18, 2012 and certain engines exempted under §...

  11. Modern design methodology and problems in training aircraft engineers

    NASA Technical Reports Server (NTRS)

    Liseitsev, N. K.

    1989-01-01

    A brief report on the problem of modern aircraft specialist education is presented that is devoted to the content and methods of teaching a course in General Aircraft Design in the Moscow Aviation Institute.

  12. Boundary layer effects on liners for aircraft engines

    NASA Astrophysics Data System (ADS)

    Gabard, Gwénaël

    2016-10-01

    The performance of acoustic treatments installed on aircraft engines is strongly influenced by the boundary layer of the grazing flow on the surface of the liner. The parametric study presented in this paper illustrates the extent of this effect and identifies when it is significant. The acoustic modes of a circular duct with flow are calculated using a finite difference method. The parameters are representative of the flow conditions, liners and sound fields found in current turbofan engines. Both the intake and bypass ducts are considered. Results show that there is a complex interplay between the boundary layer thickness, the direction of propagation and the liner impedance and that the boundary layer can have a strong impact on liner performance for typical configurations (including changes of the order of 30 dB on the attenuation of modes associated with tonal fan noise). A modified impedance condition including the effect of a small but finite boundary layer thickness is considered and compared to the standard Myers condition based on an infinitely thin boundary layer. We show how this impedance condition can be implemented in a mode calculation method by introducing auxiliary variables. This condition is able to capture the trends associated with the boundary layer effects and in most cases provides improved predictions of liner performance.

  13. Additive manufacturing techniques for the production of tissue engineering constructs.

    PubMed

    Mota, Carlos; Puppi, Dario; Chiellini, Federica; Chiellini, Emo

    2015-03-01

    'Additive manufacturing' (AM) refers to a class of manufacturing processes based on the building of a solid object from three-dimensional (3D) model data by joining materials, usually layer upon layer. Among the vast array of techniques developed for the production of tissue-engineering (TE) scaffolds, AM techniques are gaining great interest for their suitability in achieving complex shapes and microstructures with a high degree of automation, good accuracy and reproducibility. In addition, the possibility of rapidly producing tissue-engineered constructs meeting patient's specific requirements, in terms of tissue defect size and geometry as well as autologous biological features, makes them a powerful way of enhancing clinical routine procedures. This paper gives an extensive overview of different AM techniques classes (i.e. stereolithography, selective laser sintering, 3D printing, melt-extrusion-based techniques, solution/slurry extrusion-based techniques, and tissue and organ printing) employed for the development of tissue-engineered constructs made of different materials (i.e. polymeric, ceramic and composite, alone or in combination with bioactive agents), by highlighting their principles and technological solutions.

  14. Small Engine Technology (SET) Task 24 Business and Regional Aircraft System Studies

    NASA Technical Reports Server (NTRS)

    Lieber, Lysbeth

    2003-01-01

    This final report has been prepared by Honeywell Engines & Systems, Phoenix, Arizona, a unit of Honeywell International Inc., documenting work performed during the period June 1999 through December 1999 for the National Aeronautics and Space Administration (NASA) Glenn Research Center, Cleveland, Ohio, under the Small Engine Technology (SET) Program, Contract No. NAS3-27483, Task Order 24, Business and Regional Aircraft System Studies. The work performed under SET Task 24 consisted of evaluating the noise reduction benefits compared to the baseline noise levels of representative 1992 technology aircraft, obtained by applying different combinations of noise reduction technologies to five business and regional aircraft configurations. This report focuses on the selection of the aircraft configurations and noise reduction technologies, the prediction of noise levels for those aircraft, and the comparison of the noise levels with those of the baseline aircraft.

  15. 2014 International Conference on Manufacturing, Optimization, Industrial and Material Engineering

    NASA Astrophysics Data System (ADS)

    Lumban Gaol, Ford; Webb, Jeff; Ding, Jun

    2014-06-01

    The 2nd International Conference on Manufacturing, Optimization, Industrial and Material Engineering 2014 (MOIME 2014), was held at the Grand Mercure Harmoni, Opal Room 3rd Floor, Jakarta, Indonesia, during 29-30 March 2014. The MOIME 2014 conference is designed to bring together researchers, engineers and scientists in the domain of interest from around the world. MOIME 2014 is placed on promoting interaction between the theoretical, experimental, and applied communities, so that a high level exchange is achieved in new and emerging areas within Material Engineering, Industrial Engineering and all areas that relate to Optimization. We would like to express our sincere gratitude to all in the Technical Program Committee who have reviewed the papers and developed a very interesting Conference Program as well as the invited and plenary speakers. This year, we received 97 papers and after rigorous review, 24 papers were accepted. The participants come from 7 countries. There are 4 (four) parallel session and 2 Invited Speakers and one workshop. It is an honour to present this volume of IOP Conference Series: Materials Science and Engineering (MSE) and we deeply thank the authors for their enthusiastic and high-grade contributions. Finally, we would like to thank the conference chairmen, the members of the steering committee, the organizing committee, the organizing secretariat and the financial support from the conference sponsors that allowed the success of MOIME 2014. The Editors of the MOIME 2014 Proceedings Editors Dr Ford Lumban Gaol Jeff Webb, PhD Professor Jun Ding, PhD

  16. Data Fusion for Enhanced Aircraft Engine Prognostics and Health Management

    NASA Technical Reports Server (NTRS)

    Volponi, Al

    2005-01-01

    Aircraft gas-turbine engine data is available from a variety of sources, including on-board sensor measurements, maintenance histories, and component models. An ultimate goal of Propulsion Health Management (PHM) is to maximize the amount of meaningful information that can be extracted from disparate data sources to obtain comprehensive diagnostic and prognostic knowledge regarding the health of the engine. Data fusion is the integration of data or information from multiple sources for the achievement of improved accuracy and more specific inferences than can be obtained from the use of a single sensor alone. The basic tenet underlying the data/ information fusion concept is to leverage all available information to enhance diagnostic visibility, increase diagnostic reliability and reduce the number of diagnostic false alarms. This report describes a basic PHM data fusion architecture being developed in alignment with the NASA C-17 PHM Flight Test program. The challenge of how to maximize the meaningful information extracted from disparate data sources to obtain enhanced diagnostic and prognostic information regarding the health and condition of the engine is the primary goal of this endeavor. To address this challenge, NASA Glenn Research Center, NASA Dryden Flight Research Center, and Pratt & Whitney have formed a team with several small innovative technology companies to plan and conduct a research project in the area of data fusion, as it applies to PHM. Methodologies being developed and evaluated have been drawn from a wide range of areas including artificial intelligence, pattern recognition, statistical estimation, and fuzzy logic. This report will provide a chronology and summary of the work accomplished under this research contract.

  17. Application of Additively Manufactured Components in Rocket Engine Turbopumps

    NASA Technical Reports Server (NTRS)

    Calvert, Marty, Jr.; Hanks, Andrew; Schmauch, Preston; Delessio, Steve

    2015-01-01

    The use of additive manufacturing technology has the potential to revolutionize the development of turbopump components in liquid rocket engines. When designing turbomachinery with the additive process there are several benefits and risks that are leveraged relative to a traditional development cycle. This topic explores the details and development of a 90,000 RPM Liquid Hydrogen Turbopump from which 90% of the parts were derived from the additive process. This turbopump was designed, developed and will be tested later this year at Marshall Space Flight Center.

  18. Microstereolithography-based computer-aided manufacturing for tissue engineering.

    PubMed

    Cho, Dong-Woo; Kang, Hyun-Wook

    2012-01-01

    Various solid freeform fabrication technologies have been introduced for constructing three-dimensional (3-D) freeform structures. Of these, microstereolithography (MSTL) technology performs the best in 3-D space because it not only has high resolution, but also fast fabrication speed. Using this technology, 3-D structures with mesoscale size and microscale resolution are achievable. Many researchers have been trying to apply this technology to tissue engineering to construct medically applicable scaffolds, which require a 3-D shape that fits a defect with a mesoscale size and microscale inner architecture for efficient regeneration of artificial tissue. This chapter introduces the principles of MSTL technology and representative systems. It includes fabrication and computer-aided design/computer-aided manufacturing (CAD/CAM) processes to show the automation process by which measurements from medical images are used to fabricate the required 3-D shape. Then, various tissue engineering applications based on MSTL are summarized.

  19. Development potential of Intermittent Combustion (I.C.) aircraft engines for commuter transport applications

    NASA Technical Reports Server (NTRS)

    Willis, E. A.

    1982-01-01

    An update on general aviation (g/a) and commuter aircraft propulsion research effort is reviewed. The following topics are discussed: on several advanced intermittent combustion engines emphasizing lightweight diesels and rotary stratified charge engines. The current state-of-the-art is evaluated for lightweight, aircraft suitable versions of each engine. This information is used to project the engine characteristics that can be expected on near-term and long-term time horizons. The key enabling technology requirements are identified for each engine on the long-term time horizon.

  20. Engineering computer graphics in gas turbine engine design, analysis and manufacture

    NASA Technical Reports Server (NTRS)

    Lopatka, R. S.

    1975-01-01

    A time-sharing and computer graphics facility designed to provide effective interactive tools to a large number of engineering users with varied requirements was described. The application of computer graphics displays at several levels of hardware complexity and capability is discussed, with examples of graphics systems tracing gas turbine product development, beginning with preliminary design through manufacture. Highlights of an operating system stylized for interactive engineering graphics is described.

  1. CIM's bridge from CADD to CAM: Data management requirements for manufacturing engineering

    NASA Technical Reports Server (NTRS)

    Ford, S. J.

    1984-01-01

    Manufacturing engineering represents the crossroads of technical data management in a Computer Integrated Manufacturing (CIM) environment. Process planning, numerical control programming and tool design are the key functions which translate information from as engineered to as assembled. In order to transition data from engineering to manufacturing, it is necessary to introduce a series of product interpretations which contain an interim introduction of technical parameters. The current automation of the product definition and the production process places manufacturing engineering in the center of CAD/CAM with the responsibility of communicating design data to the factory floor via a manufacturing model of the data. A close look at data management requirements for manufacturing engineering is necessary in order to establish the overall specifications for CADD output, CAM input, and CIM integration. The functions and issues associated with the orderly evolution of computer aided engineering and manufacturing are examined.

  2. 48 CFR 31.205-25 - Manufacturing and production engineering costs.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 1 2011-10-01 2011-10-01 false Manufacturing and... Commercial Organizations 31.205-25 Manufacturing and production engineering costs. (a) The costs of manufacturing and production engineering effort as described in (1) through (4) below are all allowable:...

  3. 48 CFR 31.205-25 - Manufacturing and production engineering costs.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 1 2014-10-01 2014-10-01 false Manufacturing and... Commercial Organizations 31.205-25 Manufacturing and production engineering costs. (a) The costs of manufacturing and production engineering effort as described in (1) through (4) below are all allowable:...

  4. 48 CFR 31.205-25 - Manufacturing and production engineering costs.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 48 Federal Acquisition Regulations System 1 2012-10-01 2012-10-01 false Manufacturing and... Commercial Organizations 31.205-25 Manufacturing and production engineering costs. (a) The costs of manufacturing and production engineering effort as described in (1) through (4) below are all allowable:...

  5. 48 CFR 31.205-25 - Manufacturing and production engineering costs.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 48 Federal Acquisition Regulations System 1 2013-10-01 2013-10-01 false Manufacturing and... Commercial Organizations 31.205-25 Manufacturing and production engineering costs. (a) The costs of manufacturing and production engineering effort as described in (1) through (4) below are all allowable:...

  6. Computer code for estimating installed performance of aircraft gas turbine engines. Volume 2: Users manual

    NASA Technical Reports Server (NTRS)

    Kowalski, E. J.

    1979-01-01

    A computerized method which utilizes the engine performance data and estimates the installed performance of aircraft gas turbine engines is presented. This installation includes: engine weight and dimensions, inlet and nozzle internal performance and drag, inlet and nacelle weight, and nacelle drag. A user oriented description of the program input requirements, program output, deck setup, and operating instructions is presented.

  7. Computer code for estimating installed performance of aircraft gas turbine engines. Volume 1: Final report

    NASA Technical Reports Server (NTRS)

    Kowalski, E. J.

    1979-01-01

    A computerized method which utilizes the engine performance data is described. The method estimates the installed performance of aircraft gas turbine engines. This installation includes: engine weight and dimensions, inlet and nozzle internal performance and drag, inlet and nacelle weight, and nacelle drag.

  8. Pollution reduction technology program for small jet aircraft engines: Class T1

    NASA Technical Reports Server (NTRS)

    Bruce, T. W.; Davis, F. G.; Mongia, H. C.

    1977-01-01

    Small jet aircraft engines (EPA class T1, turbojet and turbofan engines of less than 35.6 kN thrust) were evaluated with the objective of attaining emissions reduction consistent with performance constraints. Configurations employing the technological advances were screened and developed through full scale rig testing. The most promising approaches in full-scale engine testing were evaluated.

  9. The Role of Modern Control Theory in the Design of Controls for Aircraft Turbine Engines

    NASA Technical Reports Server (NTRS)

    Zeller, J.; Lehtinen, B.; Merrill, W.

    1982-01-01

    Accomplishments in applying Modern Control Theory to the design of controls for advanced aircraft turbine engines were reviewed. The results of successful research programs are discussed. Ongoing programs as well as planned or recommended future thrusts are also discussed.

  10. Jet-engine combustor spectral radiation measurements using fiberoptic instrumentation system. Radiant energy power source for jet aircraft. Final report

    SciTech Connect

    Doellner, O.L.

    1986-02-01

    This report is a summary of spectral radiation measurements made at Williams Air Force Base, Chandler, Arizona on a General Electric J-85-5 engine. The spectral radiation measurements consisted of a complete axial profile down the combustor and are directed toward the application of Radiant Energy Power Source for Jet Aircraft. Radiant Energy Power Source for Jet Aircraft relates to the use of photovoltaic cells to generate the electrical power demands of the aircraft. The photovoltaic cells are mounted inside the casing of the jet engine, are thermally insulated from the normally hot engine casing, and are appropriately cooled. The photovoltaic cells receive their required radiant energy from the combustion flame by holes in the combustion liner. The instrumentation system used to make these measurements employed fiberoptic probes - entering the engine by way of an existing (modified) access plate - to obtain the radiation measurements. Such an instrumentation system has the strong advantage of being able to measure radiation from all the holes running axially down the combustor without making any holes in the plenum/engine casing - as would be necessary if sapphire observation windows were used. This report is thus more than a discussion of spectral radiation measurements made on a jet engine: it is also a report of the design and evolution of the fiberoptic instrumentation system used to make these measurements. The instrumentation system was designed and built from fundamental first principles, as described in detail in this report. It is believed that this fiberoptic instrumentation system will find application with gas-turbine manufacturers.

  11. Methodology to estimate particulate matter emissions from certified commercial aircraft engines.

    PubMed

    Wayson, Roger L; Fleming, Gregg G; Lovinelli, Ralph

    2009-01-01

    Today, about one-fourth of U.S. commercial service airports, including 41 of the busiest 50, are either in nonattainment or maintenance areas per the National Ambient Air Quality Standards. U.S. aviation activity is forecasted to triple by 2025, while at the same time, the U.S. Environmental Protection Agency (EPA) is evaluating stricter particulate matter (PM) standards on the basis of documented human health and welfare impacts. Stricter federal standards are expected to impede capacity and limit aviation growth if regulatory mandated emission reductions occur as for other non-aviation sources (i.e., automobiles, power plants, etc.). In addition, strong interest exists as to the role aviation emissions play in air quality and climate change issues. These reasons underpin the need to quantify and understand PM emissions from certified commercial aircraft engines, which has led to the need for a methodology to predict these emissions. Standardized sampling techniques to measure volatile and nonvolatile PM emissions from aircraft engines do not exist. As such, a first-order approximation (FOA) was derived to fill this need based on available information. FOA1.0 only allowed prediction of nonvolatile PM. FOA2.0 was a change to include volatile PM emissions on the basis of the ratio of nonvolatile to volatile emissions. Recent collaborative efforts by industry (manufacturers and airlines), research establishments, and regulators have begun to provide further insight into the estimation of the PM emissions. The resultant PM measurement datasets are being analyzed to refine sampling techniques and progress towards standardized PM measurements. These preliminary measurement datasets also support the continued refinement of the FOA methodology. FOA3.0 disaggregated the prediction techniques to allow for independent prediction of nonvolatile and volatile emissions on a more theoretical basis. The Committee for Aviation Environmental Protection of the International Civil

  12. Study of aerodynamic technology for single-cruise-engine VSTOL fighter/attack aircraft, phase 1

    NASA Technical Reports Server (NTRS)

    Foley, W. H.; Sheridan, A. E.; Smith, C. W.

    1982-01-01

    A conceptual design and analysis on a single engine VSTOL fighter/attack aircraft is completed. The aircraft combines a NASA/deHavilland ejector with vectored thrust and is capable of accomplishing the mission and point performance of type Specification 169, and a flight demonstrator could be built with an existing F101/DFE engine. The aerodynamic, aero/propulsive, and propulsive uncertainties are identified, and a wind tunnel program is proposed to address those uncertainties associated with wing borne flight.

  13. Results and status of the NASA aircraft engine emission reduction technology programs

    NASA Technical Reports Server (NTRS)

    Jones, R. E.; Diehl, L. A.; Petrash, D. A.; Grobman, J.

    1978-01-01

    The results of an aircraft engine emission reduction study are reviewed in detail. The capability of combustor concepts to produce significantly lower levels of exhaust emissions than present production combustors was evaluated. The development status of each combustor concept is discussed relative to its potential for implementation in aircraft engines. Also, the ability of these combustor concepts to achieve proposed NME and NCE EPA standards is discussed.

  14. Development of EPA aircraft piston engine emission standards. [for air quality

    NASA Technical Reports Server (NTRS)

    Houtman, W.

    1976-01-01

    Piston engine light aircraft are significant sources of carbon monoxide in the vicinity of high activity general aviation airports. Substantial reductions in carbon monoxide were achieved by fuel mixture leaning using improved fuel management systems. The air quality impact of the hydrocarbon and oxides of nitrogen emissions from piston engine light aircraft were insufficient to justify the design constraints being confronted in present control system developments.

  15. Fault mechanism analysis and simulation for continuity resistance test of electrical components in aircraft engine

    NASA Astrophysics Data System (ADS)

    Shi, Xudong; Yin, Yaping; Wang, Jialin; Sun, Zhaorong

    2017-01-01

    A large number of electrical components are used in civil aircraft engines, whose electrical circuits are usually intricate and complicated. Continuity resistance is an important parameter for the operating state of electrical components. Electrical continuity fault has serious impact on the reliability of the aircraft engine. In this paper, mathematical models of electrical components are established, and simulation is made by Simulink to analyze the electrical continuity fault.

  16. Jet aircraft engine exhaust emissions database development: Year 1990 and 2015 scenarios

    NASA Technical Reports Server (NTRS)

    Landau, Z. Harry; Metwally, Munir; Vanalstyne, Richard; Ward, Clay A.

    1994-01-01

    Studies relating to environmental emissions associated with the High Speed Civil Transport (HSCT) military jet and charter jet aircraft were conducted by McDonnell Douglas Aerospace Transport Aircraft. The report includes engine emission results for baseline 1990 charter and military scenario and the projected jet engine emissions results for a 2015 scenario for a Mach 1.6 HSCT charter and military fleet. Discussions of the methodology used in formulating these databases are provided.

  17. Physical characterization of the fine particle emissions from commercial aircraft engines during the Aircraft Particle Emissions Experiment (APEX) 1 to 3

    EPA Science Inventory

    The f1me particulate matter (PM) emissions from nine commercial aircraft engine models were determined by plume sampling during the three field campaigns of the Aircraft Particle Emissions Experiment (APEX). Ground-based measurements were made primarily at 30 m behind the engine ...

  18. Determination of Tasks Required by Graduates of Manufacturing Engineering Technology Programs.

    ERIC Educational Resources Information Center

    Zirbel, Jay H.

    1993-01-01

    A Delphi panel of 14 experts identified 37 tasks performed by/qualities needed by manufacturing engineering technologists. Most important were work ethic, performance quality, communication skills, teamwork, computer applications, manufacturing basics, materials knowledge, troubleshooting, supervision, and global issues. (SK)

  19. 48 CFR 31.205-25 - Manufacturing and production engineering costs.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... production engineering costs. 31.205-25 Section 31.205-25 Federal Acquisition Regulations System FEDERAL... Commercial Organizations 31.205-25 Manufacturing and production engineering costs. (a) The costs of manufacturing and production engineering effort as described in (1) through (4) below are all allowable:...

  20. 40 CFR 86.1851-01 - Application of good engineering judgment to manufacturers' decisions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 19 2010-07-01 2010-07-01 false Application of good engineering... Application of good engineering judgment to manufacturers' decisions. (a) The manufacturer shall exercise good engineering judgment in making all decisions called for under this subpart, including but not limited...

  1. 75 FR 12148 - Airworthiness Directives; Ontic Engineering and Manufacturing, Inc. Propeller Governors, Part...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-15

    ... Federal Aviation Administration 14 CFR Part 39 RIN 2120-AA64 Airworthiness Directives; Ontic Engineering... Ontic Engineering and Manufacturing, Inc. propeller governors, part numbers (P/Ns) C210776, T210761... Federal holidays. Fax: (202) 493-2251. Contact Ontic Engineering and Manufacturing, Inc., 20400...

  2. 40 CFR 86.1851-01 - Application of good engineering judgment to manufacturers' decisions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 20 2013-07-01 2013-07-01 false Application of good engineering... Application of good engineering judgment to manufacturers' decisions. (a) The manufacturer shall exercise good engineering judgment in making all decisions called for under this subpart, including but not limited...

  3. 40 CFR 86.1851-01 - Application of good engineering judgment to manufacturers' decisions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 20 2012-07-01 2012-07-01 false Application of good engineering... Application of good engineering judgment to manufacturers' decisions. (a) The manufacturer shall exercise good engineering judgment in making all decisions called for under this subpart, including but not limited...

  4. 40 CFR 86.1851-01 - Application of good engineering judgment to manufacturers' decisions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 19 2014-07-01 2014-07-01 false Application of good engineering... of good engineering judgment to manufacturers' decisions. (a) The manufacturer shall exercise good engineering judgment in making all decisions called for under this subpart, including but not limited...

  5. 40 CFR 86.1851-01 - Application of good engineering judgment to manufacturers' decisions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 19 2011-07-01 2011-07-01 false Application of good engineering... Application of good engineering judgment to manufacturers' decisions. (a) The manufacturer shall exercise good engineering judgment in making all decisions called for under this subpart, including but not limited...

  6. Initiate Instruction in Manufacturing Systems Engineering by Industrial and Government Experts over NTU Satellite Network.

    ERIC Educational Resources Information Center

    Baldwin, Lionel V.

    Based on the assumption that there is a need for advanced education among both new graduates of programs for manufacturing engineers and currently practicing engineers, a National Technological University (NTU) project produced instructional modules on manufacturing engineering topics developed by industrial, government, consulting, and academic…

  7. An inventory of particle and gaseous emissions from large aircraft thrust engine operations at an airport

    NASA Astrophysics Data System (ADS)

    Mazaheri, M.; Johnson, G. R.; Morawska, L.

    2011-07-01

    Published particle number emission factors for aircraft operations remain very sparse and so far such emissions have not been included in the International Civil Aviation Organization (ICAO) databases. This work addresses this gap in knowledge by utilizing recent progress in the quantification of aircraft particle emissions. Annual emissions of particle number (PN), particle mass (PM 2.5) and NO x throughout the aircraft landing and takeoff (LTO) cycles and ground running procedures (GRP) are presented for aircraft using Brisbane Airport BNE (domestic and international). The aircraft are grouped according to an airframe based classification system. The resulting data are then used to develop an emissions inventory for large aircraft thrust engine operations on the ground, during LTO cycles and GRP, at the Airport. Annual PN, PM 2.5 and NO x emissions from large aircraft operations during LTO cycles and GRP at BNE were 1.98 × 10 24 yr -1, 1.35 × 10 4 kg yr -1 and 8.13 × 10 5 kg yr -1, respectively. Results showed that LTO cycles contribute more than 97% of these annual emissions at BNE in comparison to GRP related emissions. Analysis of the LTO cycle contribution to the daily emissions showed that the contribution of the climbout mode is considerably higher than for other individual LTO operational modes. Emissions during aircraft departures were significantly higher than those during arrival operations, due to the higher aircraft engine emission rates during takeoff and climbout.

  8. Adaptive Failure Compensation for Aircraft Tracking Control Using Engine Differential Based Model

    NASA Technical Reports Server (NTRS)

    Liu, Yu; Tang, Xidong; Tao, Gang; Joshi, Suresh M.

    2006-01-01

    An aircraft model that incorporates independently adjustable engine throttles and ailerons is employed to develop an adaptive control scheme in the presence of actuator failures. This model captures the key features of aircraft flight dynamics when in the engine differential mode. Based on this model an adaptive feedback control scheme for asymptotic state tracking is developed and applied to a transport aircraft model in the presence of two types of failures during operation, rudder failure and aileron failure. Simulation results are presented to demonstrate the adaptive failure compensation scheme.

  9. 14 CFR 43.7 - Persons authorized to approve aircraft, airframes, aircraft engines, propellers, appliances, or...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... data approved by the Administrator. (e) The holder of an air carrier operating certificate or an... holder of a repairman certificate (light-sport aircraft) with a maintenance rating may approve an aircraft issued a special airworthiness certificate in light-sport category for return to service,...

  10. Engineering and Technical Configuration Aspects of HIAPER, the new NSF/NCAR Research Aircraft

    NASA Astrophysics Data System (ADS)

    Friesen, R.; Laursen, K.

    2002-12-01

    The High-performance Instrumented Airborne Platform for Environmental Research, or HIAPER, is the new research aircraft presently being developed at the National Center for Atmospheric Research (NCAR) to serve the environmental research needs of the National Science Foundation (NSF) for the next several decades. The basic aircraft -- a Gulfstream V (G-V) business jet -- has been completed and will shortly undergo extensive modification to prepare it for future deployments in support of a variety of geosciences research missions. This presentation will focus on the many design and engineering considerations that have been made and are yet to come in converting a "green" business jet into a versatile research aircraft to serve the environmental research community. The project teams composed of engineers and scientists from NCAR and the scientific community at large are faced with trade offs involving costs of modifications, airframe structural integrity, aircraft performance (e.g. weight, drag), cabin environment, locations of inlet and sampling ports and FAA certification requirements. Many of the specific engineering specifications and modifications that have been made to date will be presented by way of engineering drawings, graphical depictions and actual photographs of the aircraft structure. Additionally, projected performance data of the modified-for-research aircraft will be presented along with some of the analyses performed to arrive at critical decisions (e.g. CFD airflow analysis). Finally, some of the details of the aircraft "infrastructure" such as signal and power wiring, generic cabin layout and data acquisition will be discussed.

  11. 40 CFR 1054.612 - What special provisions apply for equipment manufacturers modifying certified nonhandheld engines?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... certified nonhandheld engines for installation in equipment you produce, but you install the engines such... requirements in subpart D of this part do not apply for engines certified under this section. You must meet all the other requirements that apply to engine manufacturers for engines subject to standards under...

  12. 40 CFR 1054.612 - What special provisions apply for equipment manufacturers modifying certified nonhandheld engines?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... certified nonhandheld engines for installation in equipment you produce, but you install the engines such... requirements in subpart D of this part do not apply for engines certified under this section. You must meet all the other requirements that apply to engine manufacturers for engines subject to standards under...

  13. 40 CFR 1054.612 - What special provisions apply for equipment manufacturers modifying certified nonhandheld engines?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... certified nonhandheld engines for installation in equipment you produce, but you install the engines such... requirements in subpart D of this part do not apply for engines certified under this section. You must meet all the other requirements that apply to engine manufacturers for engines subject to standards under...

  14. 40 CFR 1054.612 - What special provisions apply for equipment manufacturers modifying certified nonhandheld engines?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... certified nonhandheld engines for installation in equipment you produce, but you install the engines such... requirements in subpart D of this part do not apply for engines certified under this section. You must meet all the other requirements that apply to engine manufacturers for engines subject to standards under...

  15. 40 CFR 1054.612 - What special provisions apply for equipment manufacturers modifying certified nonhandheld engines?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... certified nonhandheld engines for installation in equipment you produce, but you install the engines such... requirements in subpart D of this part do not apply for engines certified under this section. You must meet all the other requirements that apply to engine manufacturers for engines subject to standards under...

  16. Maritime Patrol Aircraft Engine Study P&WA Derivative Engines. Volume II. Performance Data.

    DTIC Science & Technology

    1979-04-30

    U) APR 79 R C NEWELL. P W HERRICK N62269-78C-0GIG UNCLASSIFIED PWA -FR-10966B/C"VOL-2 NAC-79132-60-VOL-2 NL mmEhE mhm 111 1 4;.c~ 111128 12.5 IIIIIII...MARITIME PATROL AIRCRAFT ENGINE STUDT PIWA DERIVATIVE ENGINES. --EC(U) APR 79 R C NEWELL. P W HERRICK N62269-78-C-010 UNCLASSIFIED PWA -FR-10966B/C-VOL-2 NADC...0.80 823. n. 524 -165. 51.3 5.8 1635. MAX .LIft 5.000. 0.85 6289 o 0.333 249. 125.3 17.*6 2535. MAX CKUISE 45000. 0.85 5629. 0.331 150.. 11,.6 16.3

  17. Engine-induced structural-borne noise in a general aviation aircraft

    NASA Technical Reports Server (NTRS)

    Unruh, J. F.; Scheidt, D. C.; Pomerening, D. J.

    1979-01-01

    Structural borne interior noise in a single engine general aviation aircraft was studied to determine the importance of engine induced structural borne noise and to determine the necessary modeling requirements for the prediction of structural borne interior noise. Engine attached/detached ground test data show that engine induced structural borne noise is a primary interior noise source for the single engine test aircraft, cabin noise is highly influenced by responses at the propeller tone, and cabin acoustic resonances can influence overall noise levels. Results from structural and acoustic finite element coupled models of the test aircraft show that wall flexibility has a strong influence on fundamental cabin acoustic resonances, the lightweight fuselage structure has a high modal density, and finite element analysis procedures are appropriate for the prediction of structural borne noise.

  18. Effect of broadened-specification fuels on aircraft engines and fuel systems

    NASA Technical Reports Server (NTRS)

    Rudey, R. A.

    1979-01-01

    A wide variety of studies on the potential effects of broadened-specification fuels on future aircraft engines and fuel systems are summarized. The compositions and characteristics of aircraft fuels that may be derived from current and future crude-oil sources are described, and the most critical properties that may effect aircraft engines and fuel systems are identified and discussed. The problems that are most likely to be encountered because of changes in selected fuel properties are explored; and the related effects on engine performance, component durability and maintenance, and aircraft fuel-system performance are examined. The ability of current technology to accept possible future fuel specification changes is assessed and selected technological advances that can reduce the severity of the potential problems are illustrated.

  19. On architecting and composing engineering information services to enable smart manufacturing.

    PubMed

    Kulvatunyou, Boonserm Serm; Ivezic, Nenad; Srinivasan, Vijay

    2016-09-01

    Engineering information systems play an important role in the current era of digitization of manufacturing, which is a key component to enable smart manufacturing. Traditionally, these engineering information systems spanned the lifecycle of a product by providing interoperability of software subsystems through a combination of open and proprietary exchange of data. But research and development efforts are underway to replace this paradigm with engineering information services that can be composed dynamically to meet changing needs in the operation of smart manufacturing systems. This paper describes the opportunities and challenges in architecting such engineering information services and composing them to enable smarter manufacturing.

  20. Determination and Applications of Environmental Costs at Different Sized Airports: Aircraft Noise and Engine Emissions

    NASA Technical Reports Server (NTRS)

    Lu, Cherie; Lierens, Abigail

    2003-01-01

    With the increasing trend of charging for externalities and the aim of encouraging the sustainable development of the air transport industry, there is a need to evaluate the social costs of these undesirable side effects, mainly aircraft noise and engine emissions, for different airports. The aircraft noise and engine emissions social costs are calculated in monetary terms for five different airports, ranging from hub airports to small regional airports. The number of residences within different levels of airport noise contours and the aircraft noise classifications are the main determinants for accessing aircraft noise social costs. Whist, based on the damages of different engine pollutants on the human health, vegetation, materials, aquatic ecosystem and climate, the aircraft engine emissions social costs vary from engine types to aircraft categories. The results indicate that the relationship appears to be curvilinear between environmental costs and the traffic volume of an airport. The results and methodology of environmental cost calculation could input for to the proposed European wide harmonized noise charges as well as the social cost benefit analysis of airports.

  1. Engineering and manufacturing of pharmaceutical co-crystals: a review of solvent-free manufacturing technologies.

    PubMed

    Ross, S A; Lamprou, D A; Douroumis, D

    2016-07-07

    Design and synthesis of pharmaceutical cocrystals have received great interest in recent years. Cocrystallization of drug substances offers a tremendous opportunity for the development of new drug products with superior physical and pharmacological properties such as solubility, stability, hydroscopicity, dissolution rates and bioavailability. It is now possible to engineer and develop cocrystals via 'green chemistry' and environmentally friendly approaches such as solid-state synthesis in the absence of organic solvents. In addition, significant efforts have been directed towards computational screening, cocrystal manufacturing in a continuous manner and real-time monitoring for quality purposes by using various analytical tools. Pharmaceutical cocrystals are not fully exploited yet and there is a lot of ground to cover before they can be successfully utilized as medical products.

  2. Lightweight two-stroke cycle aircraft diesel engine technology enablement program, volume 3

    NASA Technical Reports Server (NTRS)

    Freen, P. D.; Berenyi, S. G.; Brouwers, A. P.; Moynihan, M. E.

    1985-01-01

    An experimental Single Cylinder Test Engine Program is conducted to confirm the analytically projected performance of a two-stroke cycle diesel engine for aircraft applications. Testing confirms the ability of a proposed 4-cylinder version of such an engine to reach the target power at altitude in a highly turbocharged configuration. The experimental program defines all necessary parameters to permit design of a multicylinder engine for eventual flight applications.

  3. Advanced liquid-cooled, turbocharged and intercooled stratified charge rotary engines for aircraft

    NASA Technical Reports Server (NTRS)

    Mount, Robert E.; Bartel, John; Hady, William F.

    1987-01-01

    Developments concerning stratified-charge rotary (SCR) engines over the past 10 years are reviewed. Aircraft engines being developed using SCR technology are shown and described, and the ability of such technology to meet general aviation engine needs is considered. Production timing and availability of SCR technology for the development of aviation rotary engines are discussed, and continuing efforts toward improving this technology, including NASA efforts, are described.

  4. Lightweight two-stroke cycle aircraft diesel engine technology enablement program, volume 2

    NASA Technical Reports Server (NTRS)

    Freen, P. D.; Berenyi, S. G.; Brouwers, A. P.; Moynihan, M. E.

    1985-01-01

    An experimental Single Cylinder Test Engine Program is conducted to confirm the analytically projected performance of a two-stroke cycle diesel engine for aircraft applications. Testing confirms the ability of a proposed 4-cylinder version of such an engine to reach the target power at altitude in a highly turbocharged configuration. The experimental program defines all necessary parameters to permit a design of a multicylinder engine for eventual flight applications.

  5. Thermodynamic efficiency of present types of internal combustion engines for aircraft

    NASA Technical Reports Server (NTRS)

    Lucke, Charles E

    1917-01-01

    Report presents requirements of internal combustion engines suitable for aircraft. Topics include: (1) service requirements for aeronautic engines - power versus weight, reliability, and adaptability factors, (2) general characteristics of present aero engines, (3) aero engine processes and functions of parts versus power-weight ratio, reliability, and adaptability factors, and (4) general arrangement, form, proportions, and materials of aero parts - power-weight ratio, reliability, and adaptability.

  6. Results of T56 Engine Performance Monitoring Trial in Hercules Aircraft, February-July 1977.

    DTIC Science & Technology

    1981-04-01

    Engine Removals/Rejections 2 3.1.1 Resume 5 3.2 Faults not Associated with Engine Removals 5 * NOTATION REFERENCES I TABLES FIGURES APPENDIX 1 ANNEX A...in those cases in which performance monitoring could have been expected to reflect the fault , the appropriate engine performance trend plots were...the appropriate EL 500. (ihis form is used by aircrew and maiintenazice personnel to record any aircraft/ engine fault and its subsequent

  7. Cost Estimation in Engineer-to-Order Manufacturing

    NASA Astrophysics Data System (ADS)

    Hooshmand, Yousef; Köhler, Peter; Korff-Krumm, Andrea

    2016-02-01

    In Engineer-to-Order (ETO) manufacturing the price of products must be defined during early stages of product design and during the bidding process, thus an overestimation of product development (PD) costs may lead to the loss of orders and an underestimation causes a profit loss. What many ETO systems have in common is that the products have to be developed based on different customer requirements so that each order usually results in a new variant. Furthermore, many customer requirement change-requests may arise in different phases of the PD, which is to be considered properly. Thus it is utmost important for ETO systems to have an accurate cost estimation in first stages of the product design and to be able to determine the cost of customer requirement changes in different phases of PD. This paper aims to present a cost estimation methodology as well as a cost estimation model, which estimate the cost of products by relative comparison of the attributes of new product variants with the attributes of standard product variants. In addition, as a necessity in ETO manufacturing, the cost calculation of customer requirement changes in different phases of PD is integrated in the presented method.

  8. MPT Prediction of Aircraft-Engine Fan Noise

    NASA Technical Reports Server (NTRS)

    Connell, Stuart D.

    2004-01-01

    A collection of computer programs has been developed that implements a procedure for predicting multiple-pure-tone (MPT) noise generated by fan blades of an aircraft engine (e.g., a turbofan engine). MPT noise arises when the fan is operating with supersonic relative tip Mach No. Under this flow condition, there is a strong upstream running shock. The strength and position of this shock are very sensitive to blade geometry variations. For a fan where all the blades are identical, the primary tone observed upstream of the fan will be the blade passing frequency. If there are small variations in geometry between blades, then tones below the blade passing frequency arise MPTs. Stagger angle differences as small as 0.1 can give rise to significant MPT. It is also noted that MPT noise is more pronounced when the fan is operating in an unstarted mode. Computational results using a three-dimensional flow solver to compute the complete annulus flow with non-uniform fans indicate that MPT noise can be estimated in a relatively simple way. Hence, once the effect of a typical geometry variation of one blade in an otherwise uniform blade row is known, the effect of all the blades being different can be quickly computed via superposition. Two computer programs that were developed as part of this work are used in conjunction with a user s computational fluid dynamics (CFD) code to predict MPT spectra for a fan with a specified set of geometric variations: (1) The first program ROTBLD reads the users CFD solution files for a single blade passage via an API (Application Program Interface). There are options to replicate and perturb the geometry with typical variations stagger, camber, thickness, and pitch. The multi-passage CFD solution files are then written in the user s file format using the API. (2) The second program SUPERPOSE requires two input files: the first is the circumferential upstream pressure distribution extracted from the CFD solution on the multi-passage mesh

  9. Modal analysis of an aircraft engine fan noise

    NASA Astrophysics Data System (ADS)

    Gorodkova, Natalia; Chursin, Valeriy; Bersenev, Yuliy; Burdakov, Ruslan; Siner, Aleksandr; Viskova, Tatiana

    2016-10-01

    The fan is one of the main noise sources of an aircraft engine. To reduce fan noise and provide liner optimization in the inlet it is necessary to research modal structure of the fan noise. The present paper contains results of acoustic tests on installation for mode generation that consists of 34-channel generator and the inlet updated for mounting of 100 microphones, the experiments were provided in new anechoic chamber of Perm National Research Polytechnic University, the engine with the same inlet was also tested in the open test bench conditions, and results of the fan noise modal structure are presented. For modal structure educting, all 100 channels were synchronously registered in a given frequency range. The measured data were analyzed with PULSE analyzer using fast Fourier transform with a frequency resolution 8..16 Hz. Single modes with numbers from 0 to 35 at frequencies 500; 630; 800; 1000; 1250; 1600 Hz and different combinations of modes at frequencies 1000, 1600, 2000, 2500 Hz were set during tests. Modes with small enough numbers are generated well on the laboratory installation, high-number modes generate additional modes caused by a complicated interference pattern of sound field in the inlet. Open test bench results showed that there are also a lot of harmonic components at frequencies lower than fan BPF. Under 0.65 of cut off there is only one distinct mode, other modes with close and less numbers appear from 0.7 of cut off and above. At power regimes 0.76 and 0.94 of cut off the highest mode also changes from positive to negative mode number area. Numbers of the highest modes change smoothly enough with the growth of power regime. At power regimes with Mach>1 (0.7 of cut off and above) on circumference of blade wheel there is a well-defined noise of shock waves at rotor frequency harmonics that appears at the range between the first rotor frequency and fan blade passing frequency (BPF). It is planned to continue researching of sound field

  10. Characterization of Gas-Phase Organics Using Proton Transfer Reaction Time-of-Flight Mass Spectrometry: Aircraft Turbine Engines.

    PubMed

    Kilic, Dogushan; Brem, Benjamin T; Klein, Felix; El-Haddad, Imad; Durdina, Lukas; Rindlisbacher, Theo; Setyan, Ari; Huang, Rujin; Wang, Jing; Slowik, Jay G; Baltensperger, Urs; Prevot, Andre S H

    2017-04-04

    Nonmethane organic gas emissions (NMOGs) from in-service aircraft turbine engines were investigated using a proton transfer reaction time-of-flight mass spectrometer (PTR-ToF-MS) at an engine test facility at Zurich Airport, Switzerland. Experiments consisted of 60 exhaust samples for seven engine types (used in commercial aviation) from two manufacturers at thrust levels ranging from idle to takeoff. Emission indices (EIs) for more than 200 NMOGs were quantified, and the functional group fractions (including acids, carbonyls, aromatics, and aliphatics) were calculated to characterize the exhaust chemical composition at different engine operation modes. Total NMOG emissions were highest at idling with an average EI of 7.8 g/kg fuel and were a factor of ∼40 lower at takeoff thrust. The relative contribution of pure hydrocarbons (particularly aromatics and aliphatics) of the engine exhaust decreased with increasing thrust while the fraction of oxidized compounds, for example, acids and carbonyls increased. Exhaust chemical composition at idle was also affected by engine technology. Older engines emitted a higher fraction of nonoxidized NMOGs compared to newer ones. Idling conditions dominated ground level organic gas emissions. Based on the EI determined here, we estimate that reducing idle emissions could substantially improve air quality near airports.

  11. Census U.S. Civil Aircraft Calendar Year 1993

    DTIC Science & Technology

    1993-12-31

    Turbojet 1.020 Helicopter 1,977 Total 10,692 2-3 TABLE 2.2 AIRCRAFT REPORTED IN OPERATION BY AIR CARRIERS, BY MANUFACTURER AND MODEL 1984-1993 Aircraft...2 41 1 0 146 146 A-49 U.S. REGISTERED CIVIL AIRCRAFT BY MANUFACTURER AND MODEL -NUMBER OF SEATS PISTON AS OF DECEMBER 31, 1993...AS OF DECEMBER 31, 1993 Total General TotalEngine Make Engine Model Engine Power Engines Air Carrier Aviation Aircraft ROLL-ROYCE ........... GRIFFON

  12. Study of LH2-fueled topping cycle engine for aircraft propulsion

    NASA Technical Reports Server (NTRS)

    Turney, G. E.; Fishbach, L. H.

    1983-01-01

    An analytical investigation was made of a topping cycle aircraft engine system which uses a cryogenic fuel. This system consists of a main turboshaft engine which is mechanically coupled (by cross-shafting) to a topping loop which augments the shaft power output of the system. The thermodynamic performance of the topping cycle engine was analyzed and compared with that of a reference (conventional-type) turboshaft engine. For the cycle operating conditions selected, the performance of the topping cycle engine in terms of brake specific fuel consumption (bsfc) was determined to be about 12 percent better than that of the reference turboshaft engine. Engine weights were estimated for both the topping cycle engine and the reference turboshaft engine. These estimates were based on a common shaft power output for each engine. Results indicate that the weight of the topping cycle engine is comparable to that of the reference turboshaft engine.

  13. 14 CFR 43.7 - Persons authorized to approve aircraft, airframes, aircraft engines, propellers, appliances, or...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... maintenance, preventive maintenance, rebuilding, or alteration. 43.7 Section 43.7 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT MAINTENANCE, PREVENTIVE MAINTENANCE..., propellers, appliances, or component parts for return to service after maintenance, preventive...

  14. 14 CFR 43.7 - Persons authorized to approve aircraft, airframes, aircraft engines, propellers, appliances, or...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... maintenance, preventive maintenance, rebuilding, or alteration. 43.7 Section 43.7 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT MAINTENANCE, PREVENTIVE MAINTENANCE..., propellers, appliances, or component parts for return to service after maintenance, preventive...

  15. 14 CFR 43.7 - Persons authorized to approve aircraft, airframes, aircraft engines, propellers, appliances, or...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... maintenance, preventive maintenance, rebuilding, or alteration. 43.7 Section 43.7 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT MAINTENANCE, PREVENTIVE MAINTENANCE..., propellers, appliances, or component parts for return to service after maintenance, preventive...

  16. 14 CFR 43.7 - Persons authorized to approve aircraft, airframes, aircraft engines, propellers, appliances, or...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... maintenance, preventive maintenance, rebuilding, or alteration. 43.7 Section 43.7 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT MAINTENANCE, PREVENTIVE MAINTENANCE..., propellers, appliances, or component parts for return to service after maintenance, preventive...

  17. An engine trade study for a supersonic STOVL fighter-attack aircraft, volume 1

    NASA Technical Reports Server (NTRS)

    Beard, B. B.; Foley, W. H.

    1982-01-01

    The best main engine for an advanced STOVL aircraft flight demonstrator was studied. The STOVL aircraft uses ejectors powered by engine bypass flow together with vectored core exhaust to achieve vertical thrust capability. Bypass flow and core flow are exhausted through separate nozzles during wingborne flight. Six near term turbofan engines were examined for suitability for this aircraft concept. Fan pressure ratio, thrust split between bypass and core flow, and total thrust level were used to compare engines. One of the six candidate engines was selected for the flight demonstrator configuration. Propulsion related to this aircraft concept was studied. A preliminary candidate for the aircraft reaction control system for hover attitude control was selected. A mathematical model of transfer of bypass thrust from ejectors to aft directed nozzle during the transition to wingborne flight was developed. An equation to predict ejector secondary air flow rate and ram drag is derived. Additional topics discussed include: nozzle area control, ejector to engine inlet reingestion, bypass/core thrust split variation, and gyroscopic behavior during hover.

  18. Overview of additive manufacturing activities at MTU aero engines

    NASA Astrophysics Data System (ADS)

    Bamberg, Joachim; Dusel, Karl-Heinz; Satzger, Wilhelm

    2015-03-01

    Additive Manufacturing (AM) is a promising technology to produce parts easily and effectively, just by using metallic powder or wire as starting material and a sophisticated melting process. In contrast to milling or turning technologies complex shaped and hollow parts can be built up in one step. That reduces the production costs and allows the implementation of complete new 3D designs. Therefore AM is also of great interest for aerospace and aero engine industry. MTU Aero Engines has focused its AM activities to the selective laser melting technique (SLM). This technique uses metallic powder and a laser for melting and building up the part layer by layer. It is shown which lead part was selected for AM and how the first production line was established. A special focus is set on the quality assurance of the selective laser melting process. In addition to standard non-destructive inspection techniques a new online monitoring tool was developed and integrated into the SLM machines. The basics of this technique is presented.

  19. A simulator investigation of engine failure compensation for powered-lift STOL aircraft

    NASA Technical Reports Server (NTRS)

    Nieuwenhuijse, A. W.; Franklin, J. A.

    1974-01-01

    A piloted simulator investigation of various engine failure compensation concepts for powered-lift STOL aircraft was carried out at the Ames Research Center. The purpose of this investigation was to determine the influence of engine failure compensation on recovery from an engine failure during the landing approach and on the precision of the STOL landing. The various concepts include: (1) cockpit warning lights to cue the pilot of an engine failure, (2) programmed thrust and roll trim compensation, (3) thrust command and (4) flight-path stabilization. The aircraft simulated was a 150 passenger four-engine, externally blown flap civil STOL transport having a 90 psf wing loading and a .56 thrust to weight ratio. Results of the simulation indicate that the combination of thrust command and flight-path stabilization offered the best engine-out landing performance in turbulence and did so over the entire range of altitudes for which engine failures occurred.

  20. 75 FR 69861 - Airworthiness Directives; Cessna Aircraft Company (Cessna) 172, 175, 177, 180, 182, 185, 206, 207...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-16

    ... INFORMATION CONTACT: Ann Johnson, Aerospace Engineer, FAA, Wichita Aircraft Certification Office, 1801 Airport... Figure 1, in the address for the Wichita Manufacturing Inspection District Office, change 1804 to...

  1. Evaluation of Methods for the Determination of Black Carbon Emissions from an Aircraft Gas Turbine Engine

    EPA Science Inventory

    The emissions from aircraft gas turbine engines consist of nanometer size black carbon (BC) particles plus gas-phase sulfur and organic compounds which undergo gas-to-particle conversion downstream of the engine as the plume cools and dilutes. In this study, four BC measurement ...

  2. Minimum time acceleration of aircraft turbofan engines by using an algorithm based on nonlinear programming

    NASA Technical Reports Server (NTRS)

    Teren, F.

    1977-01-01

    Minimum time accelerations of aircraft turbofan engines are presented. The calculation of these accelerations was made by using a piecewise linear engine model, and an algorithm based on nonlinear programming. Use of this model and algorithm allows such trajectories to be readily calculated on a digital computer with a minimal expenditure of computer time.

  3. The Effect of Modified Control Limits on the Performance of a Generic Commercial Aircraft Engine

    NASA Technical Reports Server (NTRS)

    Csank, Jeffrey T.; May, Ryan D.; Gou, Ten-Huei; Litt, Jonathan S.

    2012-01-01

    This paper studies the effect of modifying the control limits of an aircraft engine to obtain additional performance. In an emergency situation, the ability to operate an engine above its normal operating limits and thereby gain additional performance may aid in the recovery of a distressed aircraft. However, the modification of an engine s limits is complex due to the risk of an engine failure. This paper focuses on the tradeoff between enhanced performance and risk of either incurring a mechanical engine failure or compromising engine operability. The ultimate goal is to increase the engine performance, without a large increase in risk of an engine failure, in order to increase the probability of recovering the distressed aircraft. The control limit modifications proposed are to extend the rotor speeds, temperatures, and pressures to allow more thrust to be produced by the engine, or to increase the rotor accelerations and allow the engine to follow a fast transient. These modifications do result in increased performance; however this study indicates that these modifications also lead to an increased risk of engine failure.

  4. Commercial aircraft engine emissions characterization of in-use aircraft at Hartsfield-Jackson Atlanta International Airport.

    PubMed

    Herndon, Scott C; Jayne, John T; Lobo, Prem; Onasch, Timothy B; Fleming, Gregg; Hagen, Donald E; Whitefield, Philip D; Miake-Lye, Richard C

    2008-03-15

    The emissions from in-use commercial aircraft engines have been analyzed for selected gas-phase species and particulate characteristics using continuous extractive sampling 1-2 min downwind from operational taxi- and runways at Hartsfield-Jackson Atlanta International Airport. Using the aircraft tail numbers, 376 plumes were associated with specific engine models. In general, for takeoff plumes, the measured NOx emission index is lower (approximately 18%) than that predicted by engine certification data corrected for ambient conditions. These results are an in-service observation of the practice of "reduced thrust takeoff". The CO emission index observed in ground idle plumes was greater (up to 100%) than predicted by engine certification data for the 7% thrust condition. Significant differences are observed in the emissions of black carbon and particle number among different engine models/technologies. The presence of a mode at approximately 65 nm (mobility diameter) associated with takeoff plumes and a smaller mode at approximately 25 nm associated with idle plumes has been observed. An anticorrelation between particle mass loading and particle number concentration is observed.

  5. Procedure for generating global atmospheric engine emissions data from future supersonic transport aircraft. The 1990 high speed civil transport studies

    NASA Technical Reports Server (NTRS)

    Sohn, R. A.; Stroup, J. W.

    1990-01-01

    The input for global atmospheric chemistry models was generated for baseline High Speed Civil Transport (HSCT) configurations at Mach 1.6, 2.2, and 3.2. The input is supplied in the form of number of molecules of specific exhaust constituents injected into the atmosphere per year by latitude and by altitude (for 2-D codes). Seven exhaust constituents are currently supplied: NO, NO2, CO, CO2, H2O, SO2, and THC (Trace Hydrocarbons). An eighth input is also supplied, NO(x), the sum of NO and NO2. The number of molecules of a given constituent emitted per year is a function of the total fuel burned by a supersonic fleet and the emission index (EI) of the aircraft engine for the constituent in question. The EIs for an engine are supplied directly by the engine manufacturers. The annual fuel burn of a supersonic fleet is calculated from aircraft performance and economic criteria, both of which are strongly dependent on basic design parameters such as speed and range. The altitude and latitude distribution of the emission is determined based on 10 Intern. Air Transport Assoc. (IATA) regions chosen to define the worldwide route structure for future HSCT operations and the mission flight profiles.

  6. A Feasibility Study of Life-Extending Controls for Aircraft Turbine Engines Using a Generic Air Force Model (Preprint)

    DTIC Science & Technology

    2006-12-01

    engine model is a detailed, physics-based engine model of a two-spool, non-augmented, low bypass ratio engine developed using MATLAB/ Simulink ® [9]. The...AFRL-PR-WP-TP-2007-218 A FEASIBILITY STUDY OF LIFE- EXTENDING CONTROLS FOR AIRCRAFT TURBINE ENGINES USING A GENERIC AIR FORCE MODEL (PREPRINT...SUBTITLE A FEASIBILITY STUDY OF LIFE-EXTENDING CONTROLS FOR AIRCRAFT TURBINE ENGINES USING A GENERIC AIR FORCE MODEL (PREPRINT) 5c. PROGRAM ELEMENT

  7. Lightweight aircraft engines, the potential and problems for use of automotive fuels

    NASA Technical Reports Server (NTRS)

    Patterson, D. J.

    1983-01-01

    A comprehensive data research and analysis for evaluating the use of automotive fuels as a substitute for aviation grade fuel by piston-type general aviation aircraft engines is presented. Historically known problems and potential problems with fuels were reviewed for possible impact relative to application to an aircraft operational environment. This report reviews areas such as: fuel specification requirements, combustion knock, preignition, vapor lock, spark plug fouling, additives for fuel and oil, and storage stability.

  8. Design study: A 186 kW lightweight diesel aircraft engine

    NASA Technical Reports Server (NTRS)

    Brouwers, A. P.

    1980-01-01

    The design of an aircraft engine capable of developing 186 kW shaft power at a 7620 m altitude is described. The 186 kW design takes into account expected new developments in aircraft designs resulting in a reassessment of the power requirements at the cruise mode operation. Based on the results of this analysis a three phase technology development program is projected resulting in production dates of 1985, 1992, and 2000.

  9. Global engineering teams - a programme promoting teamwork in engineering design and manufacturing

    NASA Astrophysics Data System (ADS)

    Oladiran, M. T.; Uziak, J.; Eisenberg, M.; Scheffer, C.

    2011-05-01

    Engineering graduates are expected to possess various competencies categorised into hard and soft skills. The hard skills are acquired through specific coursework, but the soft skills are often treated perfunctorily. Global Engineering Teams (GET) is a programme that promotes project-oriented tasks in virtual student teams working in collaboration with industry partners. Teamwork is a major success factor for GET as students always work in groups of varying sizes. A questionnaire-based survey of the 2008 cohort of GET students was conducted to assess teamwork, communication and conflict resolution among group members. The results confirmed that deliverables are readily achieved in teams and communication was open. A challenge of using virtual teams is the availability of high-speed Internet access. The GET programme shows that it is possible to deliver engineering design and manufacturing via industry/university collaboration. The programme also facilitates multidisciplinary teamwork at an international level.

  10. A Study of Bird Ingestions Into Large High Bypass Ratio Turbine Aircraft Engines.

    DTIC Science & Technology

    1984-09-01

    4. SUMMARY 37 5. CONCLUSIONS 39 6. UEFERENCES 41 APPENDICES A - Comparison of HBPR Engine Aircraft B - HIVE Engines C - Statistical Procesures D...allow a reliable assessment of the bird ingestion phenomenon. Sufficient data to conduct a statistical analysis based upon the numbers, weights, and...species of birds. Sufficient data to conduct a statistical analysis of the engine damage resulting from a bird ingestion - considering the bird number

  11. The impact of emissions standards on the design of aircraft gas turbine engine combustors

    NASA Technical Reports Server (NTRS)

    Rudey, R. A.

    1976-01-01

    Effective emission control techniques have been identified and a wide spectrum of potential applications for these techniques to existing and advanced engines are being considered. Results from advanced combustor concept evaluations and from fundamental experiments are presented and discussed and comparisons are made with existing EPA emission standards and recommended levels for high altitude cruise. The impact that the advanced low emission concepts may impose on future aircraft engine combustor designs and related engine components is discussed.

  12. An Object-oriented Computer Code for Aircraft Engine Weight Estimation

    NASA Technical Reports Server (NTRS)

    Tong, Michael T.; Naylor, Bret A.

    2008-01-01

    Reliable engine-weight estimation at the conceptual design stage is critical to the development of new aircraft engines. It helps to identify the best engine concept amongst several candidates. At NASA Glenn (GRC), the Weight Analysis of Turbine Engines (WATE) computer code, originally developed by Boeing Aircraft, has been used to estimate the engine weight of various conceptual engine designs. The code, written in FORTRAN, was originally developed for NASA in 1979. Since then, substantial improvements have been made to the code to improve the weight calculations for most of the engine components. Most recently, to improve the maintainability and extensibility of WATE, the FORTRAN code has been converted into an object-oriented version. The conversion was done within the NASA s NPSS (Numerical Propulsion System Simulation) framework. This enables WATE to interact seamlessly with the thermodynamic cycle model which provides component flow data such as airflows, temperatures, and pressures, etc. that are required for sizing the components and weight calculations. The tighter integration between the NPSS and WATE would greatly enhance system-level analysis and optimization capabilities. It also would facilitate the enhancement of the WATE code for next-generation aircraft and space propulsion systems. In this paper, the architecture of the object-oriented WATE code (or WATE++) is described. Both the FORTRAN and object-oriented versions of the code are employed to compute the dimensions and weight of a 300- passenger aircraft engine (GE90 class). Both versions of the code produce essentially identical results as should be the case. Keywords: NASA, aircraft engine, weight, object-oriented

  13. Engine/airframe compatibility studies for supersonic cruise aircraft

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Technology assessment studies were conducted to provide an updated technology base from which an advanced supersonic cruise aircraft can be produced with a high probability of success. An assessment of the gains available through the application of advanced technologies in aerodynamics, propulsion, acoustics, structures, materials, and active controls is developed. The potential market and range requirements as well as economic factors including payload, speed, airline operating costs, and airline profitability are analyzed. The conceptual design of the baseline aircraft to be used in assessing the technology requirements is described.

  14. The STOL performance of a two-engine, USB powered-lift aircraft with cross-shafted fans

    NASA Technical Reports Server (NTRS)

    Stevens, V. C.; Wilson, S. B., III; Zola, C. A.

    1985-01-01

    The short takeoff and landing capabilities that characterize the performance of powered-lift aircraft are dependent on engine thrust and are, therefore, severely affected by loss of an engine. This paper shows that the effects of engine loss on the short takeoff and landing performance of powered-lift aircraft can be effectively mitigated by cross-shafting the engine fans in a twin-engine configuration. Engine-out takeoff and landing performances are compared for three powered-lift aircraft configurations: one with four engines, one with two engines, and one with two engines in which the fans are cross-shafted. The results show that the engine-out takeoff and landing performance of the cross-shafted two-engine configuration is significantly better than that of the two-engine configuration without cross-shafting.

  15. A Sensitivity Study of Commercial Aircraft Engine Response for Emergency Situations

    NASA Technical Reports Server (NTRS)

    Csank, Jeffrey T.; May, Ryan D.; Litt, Jonathan S.; Guo, Ten-Huei

    2011-01-01

    This paper contains the details of a sensitivity study in which the variation in a commercial aircraft engine's outputs is observed for perturbations in its operating condition inputs or control parameters. This study seeks to determine the extent to which various controller limits can be modified to improve engine performance, while capturing the increased risk that results from the changes. In an emergency, the engine may be required to produce additional thrust, respond faster, or both, to improve the survivability of the aircraft. The objective of this paper is to propose changes to the engine controller and determine the costs and benefits of the additional capabilities produced by the engine. This study indicates that the aircraft engine is capable of producing additional thrust, but at the cost of an increased risk of an engine failure due to higher turbine temperatures and rotor speeds. The engine can also respond more quickly to transient commands, but this action reduces the remaining stall margin to possibly dangerous levels. To improve transient response in landing scenarios, a control mode known as High Speed Idle is proposed that increases the responsiveness of the engine and conserves stall margin

  16. Computer code for estimating installed performance of aircraft gas turbine engines. Volume 3: Library of maps

    NASA Technical Reports Server (NTRS)

    Kowalski, E. J.

    1979-01-01

    A computerized method which utilizes the engine performance data and estimates the installed performance of aircraft gas turbine engines is presented. This installation includes: engine weight and dimensions, inlet and nozzle internal performance and drag, inlet and nacelle weight, and nacelle drag. The use of two data base files to represent the engine and the inlet/nozzle/aftbody performance characteristics is discussed. The existing library of performance characteristics for inlets and nozzle/aftbodies and an example of the 1000 series of engine data tables is presented.

  17. A Study on Aircraft Engine Control Systems for Integrated Flight and Propulsion Control

    NASA Astrophysics Data System (ADS)

    Yamane, Hideaki; Matsunaga, Yasushi; Kusakawa, Takeshi

    A flyable FADEC system engineering model incorporating Integrated Flight and Propulsion Control (IFPC) concept is developed for a highly maneuverable aircraft and a fighter-class engine. An overview of the FADEC system and functional assignments for its components such as the Engine Control Unit (ECU) and the Integrated Control Unit (ICU) are described. Overall system reliability analysis, convex analysis and multivariable controller design for the engine, fault detection/redundancy management, and response characteristics of a fuel system are addressed. The engine control performance of the FADEC is demonstrated by hardware-in-the-loop simulation for fast acceleration and thrust transient characteristics.

  18. Analytical Design Package (ADP2): A computer aided engineering tool for aircraft transparency design

    NASA Technical Reports Server (NTRS)

    Wuerer, J. E.; Gran, M.; Held, T. W.

    1994-01-01

    The Analytical Design Package (ADP2) is being developed as a part of the Air Force Frameless Transparency Program (FTP). ADP2 is an integrated design tool consisting of existing analysis codes and Computer Aided Engineering (CAE) software. The objective of the ADP2 is to develop and confirm an integrated design methodology for frameless transparencies, related aircraft interfaces, and their corresponding tooling. The application of this methodology will generate high confidence for achieving a qualified part prior to mold fabrication. ADP2 is a customized integration of analysis codes, CAE software, and material databases. The primary CAE integration tool for the ADP2 is P3/PATRAN, a commercial-off-the-shelf (COTS) software tool. The open architecture of P3/PATRAN allows customized installations with different applications modules for specific site requirements. Integration of material databases allows the engineer to select a material, and those material properties are automatically called into the relevant analysis code. The ADP2 materials database will be composed of four independent schemas: CAE Design, Processing, Testing, and Logistics Support. The design of ADP2 places major emphasis on the seamless integration of CAE and analysis modules with a single intuitive graphical interface. This tool is being designed to serve and be used by an entire project team, i.e., analysts, designers, materials experts, and managers. The final version of the software will be delivered to the Air Force in Jan. 1994. The Analytical Design Package (ADP2) will then be ready for transfer to industry. The package will be capable of a wide range of design and manufacturing applications.

  19. Improvements in Numerical Modeling Methodology of Dry Woven Fabrics for Aircraft Engine Containment Systems

    NASA Astrophysics Data System (ADS)

    Fein, Jonathan

    Woven fabric composite materials are widely used in the construction of aircraft engine fan containment systems, mostly due to their high strength to weight ratios and ease of implementation. The development of a predictive model for fan blade containment would provide great benefit to engine manufactures in shortened development cycle time, less risk in certification and fewer dollars lost to redesign/recertification cycles. A mechanistic user-defined material model subroutine has been developed at Arizona State University (ASU) that captures the behavioral response of these fabrics, namely Kevlar ® 49, under ballistic loading. Previously developed finite element models used to validate the consistency of this material model neglected the effects of the physical constraints imposed on the test setup during ballistic testing performed at NASA Glenn Research Center (NASA GRC). Part of this research was to explore the effects of these boundary conditions on the results of the numerical simulations. These effects were found to be negligible in most instances. Other material models for woven fabrics are available in the LS-DYNA finite element code. One of these models, MAT234: MAT_VISCOELASTIC_LOOSE_FABRIC (Ivanov & Tabiei, 2004) was studied and implemented in the finite element simulations of ballistic testing associated with the FAA ASU research. The results from these models are compared to results obtained from the ASU UMAT as part of this research. The results indicate an underestimation in the energy absorption characteristics of the Kevlar 49 fabric containment systems. More investigation needs to be performed in the implementation of MAT234 for Kevlar 49 fabric. Static penetrator testing of Kevlar® 49 fabric was performed at ASU in conjunction with this research. These experiments are designed to mimic the type of loading experienced during fan blade out events. The resulting experimental strains were measured using a non-contact optical strain measurement

  20. 14 CFR 21.500 - Approval of engines and propellers.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... AIRCRAFT CERTIFICATION PROCEDURES FOR PRODUCTS AND PARTS Approval of Engines, Propellers, Materials, Parts.... type certificate for an aircraft engine or propeller manufactured in a foreign country with which the... with each such aircraft engine or propeller imported into this country, a certificate of...

  1. Integration of On-Line and Off-Line Diagnostic Algorithms for Aircraft Engine Health Management

    NASA Technical Reports Server (NTRS)

    Kobayashi, Takahisa; Simon, Donald L.

    2007-01-01

    This paper investigates the integration of on-line and off-line diagnostic algorithms for aircraft gas turbine engines. The on-line diagnostic algorithm is designed for in-flight fault detection. It continuously monitors engine outputs for anomalous signatures induced by faults. The off-line diagnostic algorithm is designed to track engine health degradation over the lifetime of an engine. It estimates engine health degradation periodically over the course of the engine s life. The estimate generated by the off-line algorithm is used to update the on-line algorithm. Through this integration, the on-line algorithm becomes aware of engine health degradation, and its effectiveness to detect faults can be maintained while the engine continues to degrade. The benefit of this integration is investigated in a simulation environment using a nonlinear engine model.

  2. Polymer, metal, and ceramic matrix composites for advanced aircraft engine applications

    SciTech Connect

    Mc Daniels, D.L.; Serafini, T.T.; Di Carlo, J.A.

    1986-06-01

    Advanced aircraft engine research within NASA Lewis focuses on propulsion systems for subsonic, supersonic, and hypersonic aircraft. Each of these flight regimes requires different types of engines, but all require advanced materials to meet their goals of performance, thrust-to-weight ratio, and fuel efficiency. The high strength/weight and stiffness/weight properties of resin, metal, and ceramic matrix composites will play an increasingly key role in meeting these performance requirements. At NASA Lewis, research is ongoing to apply graphite/polyimide composites to engine components and to develop polymer matrices with higher operating temperature capabilities. Metal matrix composites, using magnesium, aluminum, titanium, and superalloy matrices, are being developed for application to static and rotating engine components, as well as for space applications, over a broad temperature range. Ceramic matrix composites are also being examined to increase the toughness and reliability of ceramics for application to high-temperature engine structures and components.

  3. Computerized systems analysis and optimization of aircraft engine performance, weight, and life cycle costs

    NASA Technical Reports Server (NTRS)

    Fishbach, L. H.

    1980-01-01

    The computational techniques are described which are utilized at Lewis Research Center to determine the optimum propulsion systems for future aircraft applications and to identify system tradeoffs and technology requirements. Cycle performance, and engine weight can be calculated along with costs and installation effects as opposed to fuel consumption alone. Almost any conceivable turbine engine cycle can be studied. These computer codes are: NNEP, WATE, LIFCYC, INSTAL, and POD DRG. Examples are given to illustrate how these computer techniques can be applied to analyze and optimize propulsion system fuel consumption, weight and cost for representative types of aircraft and missions.

  4. Jet engine exhaust emissions of high altitude commercial aircraft projected to 1990

    NASA Technical Reports Server (NTRS)

    Grobman, J.; Ingebo, R. D.

    1974-01-01

    Projected minimum levels of engine exhaust emissions that may be practicably achievable for future commercial aircraft operating at high-altitude cruise conditions are presented. The forecasts are based on:(1) current knowledge of emission characteristics of combustors and augmentors; (2) the status of combustion research in emission reduction technology; and (3) predictable trends in combustion systems and operating conditions as required for projected engine designs that are candidates for advanced subsonic or supersonic commercial aircraft fueled by either JP fuel, liquefied natural gas, or hydrogen. Results are presented for cruise conditions in terms of both an emission index (g constituent/kg fuel) and an emission rate (g constituent/hr).

  5. Sonic IR crack detection of aircraft turbine engine blades with multi-frequency ultrasound excitations

    SciTech Connect

    Zhang, Ding; Han, Xiaoyan; Newaz, Golam

    2014-02-18

    Effectively and accurately detecting cracks or defects in critical engine components, such as turbine engine blades, is very important for aircraft safety. Sonic Infrared (IR) Imaging is such a technology with great potential for these applications. This technology combines ultrasound excitation and IR imaging to identify cracks and flaws in targets. In general, failure of engine components, such as blades, begins with tiny cracks. Since the attenuation of the ultrasound wave propagation in turbine engine blades is small, the efficiency of crack detection in turbine engine blades can be quite high. The authors at Wayne State University have been developing the technology as a reliable tool for the future field use in aircraft engines and engine parts. One part of the development is to use finite element modeling to assist our understanding of effects of different parameters on crack heating while experimentally hard to achieve. The development has been focused with single frequency ultrasound excitation and some results have been presented in a previous conference. We are currently working on multi-frequency excitation models. The study will provide results and insights of the efficiency of different frequency excitation sources to foster the development of the technology for crack detection in aircraft engine components.

  6. Advanced stratified charge rotary aircraft engine design study

    NASA Technical Reports Server (NTRS)

    Badgley, P.; Berkowitz, M.; Jones, C.; Myers, D.; Norwood, E.; Pratt, W. B.; Ellis, D. R.; Huggins, G.; Mueller, A.; Hembrey, J. H.

    1982-01-01

    A technology base of new developments which offered potential benefits to a general aviation engine was compiled and ranked. Using design approaches selected from the ranked list, conceptual design studies were performed of an advanced and a highly advanced engine sized to provide 186/250 shaft Kw/HP under cruise conditions at 7620/25,000 m/ft altitude. These are turbocharged, direct-injected stratified charge engines intended for commercial introduction in the early 1990's. The engine descriptive data includes tables, curves, and drawings depicting configuration, performance, weights and sizes, heat rejection, ignition and fuel injection system descriptions, maintenance requirements, and scaling data for varying power. An engine-airframe integration study of the resulting engines in advanced airframes was performed on a comparative basis with current production type engines. The results show airplane performance, costs, noise & installation factors. The rotary-engined airplanes display substantial improvements over the baseline, including 30 to 35% lower fuel usage.

  7. A Fully Non-Metallic Gas Turbine Engine Enabled by Additive Manufacturing

    NASA Technical Reports Server (NTRS)

    Grady, Joseph E.; Halbig, Michael C.; Singh, Mrityunjay

    2015-01-01

    In a NASA Aeronautics Research Institute (NARI) sponsored program entitled "A Fully Non-Metallic Gas Turbine Engine Enabled by Additive Manufacturing", evaluation of emerging materials and additive manufacturing technologies was carried out. These technologies may enable fully non-metallic gas turbine engines in the future. This paper highlights the results of engine system trade studies which were carried out to estimate reduction in engine emissions and fuel burn enabled due to advanced materials and manufacturing processes. A number of key engine components were identified in which advanced materials and additive manufacturing processes would provide the most significant benefits to engine operation. In addition, feasibility of using additive manufacturing technologies to fabricate gas turbine engine components from polymer and ceramic matrix composite were demonstrated. A wide variety of prototype components (inlet guide vanes (IGV), acoustic liners, engine access door) were additively manufactured using high temperature polymer materials. Ceramic matrix composite components included first stage nozzle segments and high pressure turbine nozzle segments for a cooled doublet vane. In addition, IGVs and acoustic liners were tested in simulated engine conditions in test rigs. The test results are reported and discussed in detail.

  8. A Fully Non-Metallic Gas Turbine Engine Enabled by Additive Manufacturing

    NASA Technical Reports Server (NTRS)

    Grady, Joseph E.; Halbig, Michael C.; Singh, Mrityunjay

    2015-01-01

    In a NASA Aeronautics Research Institute (NARI) sponsored program entitled "A Fully Non-Metallic Gas Turbine Engine Enabled by Additive Manufacturing," evaluation of emerging materials and additive manufacturing technologies was carried out. These technologies may enable fully non-metallic gas turbine engines in the future. This paper highlights the results of engine system trade studies which were carried out to estimate reduction in engine emissions and fuel burn enabled due to advanced materials and manufacturing processes. A number of key engine components were identified in which advanced materials and additive manufacturing processes would provide the most significant benefits to engine operation. In addition, feasibility of using additive manufacturing technologies to fabricate gas turbine engine components from polymer and ceramic matrix composite were demonstrated. A wide variety of prototype components (inlet guide vanes (IGV), acoustic liners, engine access door, were additively manufactured using high temperature polymer materials. Ceramic matrix composite components included first stage nozzle segments and high pressure turbine nozzle segments for a cooled doublet vane. In addition, IGVs and acoustic liners were tested in simulated engine conditions in test rigs. The test results are reported and discussed in detail.

  9. The horsepower of aircraft engines and their maximum frontal area

    NASA Technical Reports Server (NTRS)

    Precoul, Michel

    1936-01-01

    This adaptation of a Russian report reveals the effect of maximum cross section of an engine as well as the interest attaching to a choice not solely based on horsepower. The tabulation gives a comparison between different engines restored at 5,000 meters. Radial versus inverted in-line engines are also compared.

  10. Practical Education Support to Foster Engineers at Manufacturing and Engineering Design Center in Muroran Institute of Technology

    NASA Astrophysics Data System (ADS)

    Kazama, Toshiharu; Hanajima, Naohiko; Shimizu, Kazumichi; Satoh, Kohki

    To foster engineers with creative power, Muroran Institute of Technology established Manufacturing and Engineering Design Center (MEDeC) that concentrates on Monozukuri. MEDeC consists of three project groups : i) Education Support Group provides educational support for practical training classes on and off campus and PDCA (plan-do-check-action) -conscious engineering design education related to Monozukuri ; ii) Fundamental Manufacturing Research Group carries out nurture research into fundamental and innovative technology of machining and manufacturing, and iii) Regional Cooperation Group coordinates the activities in cooperation with bureau, schools and industries in and around Muroran City. MEDeC has a fully integrated collection of machine tools and hand tools for manufacturing, an atelier, a tatara workplace, implements for measurement and related equipment designed for practically teaching state-of-the-practice manufacturing methods.

  11. Air Force F-16 Aircraft Engine Aerosol Emissions Under Cruise Altitude Conditions

    NASA Technical Reports Server (NTRS)

    Anderson, Bruce E.; Cofer, W. Randy, III; McDougal, David S.

    1999-01-01

    Selected results from the June 1997 Third Subsonic Assessment Near-Field Interactions Flight (SNIF-III) Experiment are documented. The primary objectives of the SNIF-III experiment were to determine the partitioning and abundance of sulfur species and to examine the formation and growth of aerosol particles in the exhaust of F-16 aircraft as a function of atmospheric and aircraft operating conditions and fuel sulfur concentration. This information is, in turn, being used to address questions regarding the fate of aircraft fuel sulfur impurities and to evaluate the potential of their oxidation products to perturb aerosol concentrations and surface areas in the upper troposphere. SNIF-III included participation of the Vermont and New Jersey Air National Guard F-16's as source aircraft and the Wallops Flight Facility T-39 Sabreliner as the sampling platform. F-16's were chosen as a source aircraft because they are powered by the modern F-100 Series 220 engine which is projected to be representative of future commercial aircraft engine technology. The T-39 instrument suite included sensors for measuring volatile and non-volatile condensation nuclei (CN), aerosol size distributions over the range from 0.1 to 3.0 (micro)m, 3-D winds, temperature, dewpoint, carbon dioxide (CO2), sulfur dioxide (SO2), sulfuric acid (H2SO4), and nitric acid (HNO3).

  12. Roles, uses, and benefits of general aviation aircraft in aerospace engineering education

    NASA Technical Reports Server (NTRS)

    Odonoghue, Dennis P.; Mcknight, Robert C.

    1994-01-01

    Many colleges and universities throughout the United States offer outstanding programs in aerospace engineering. In addition to the fundamentals of aerodynamics, propulsion, flight dynamics, and air vehicle design, many of the best programs have in the past provided students the opportunity to design and fly airborne experiments on board various types of aircraft. Sadly, however, the number of institutions offering such 'airborne laboratories' has dwindled in recent years. As a result, opportunities for students to apply their classroom knowledge, analytical skills, and engineering judgement to the development and management of flight experiments on an actual aircraft are indeed rare. One major reason for the elimination of flight programs by some institutions, particularly the smaller colleges, is the prohibitive cost of operating and maintaining an aircraft as a flying laboratory. The purpose of this paper is to discuss simple, low-cost, relevant flight experiments that can be performed using readily available general aviation aircraft. This paper examines flight experiments that have been successfully conducted on board the NASA Lewis Research Center's T-34B aircraft, as part of the NASA/AIAA/University Flight Experiment Program for Students (NAUFEPS) and discusses how similar experiments could be inexpensively performed on other general aviation aircraft.

  13. Aircraft Design Considerations to Meet One Engine Inoperative (OEI) Safety Requirements

    NASA Technical Reports Server (NTRS)

    Scott, Mark W.

    2012-01-01

    Commercial airlines are obligated to operate such that an aircraft can suffer an engine failure at any point in its mission and terminate the flight without an accident. Only minimal aircraft damage is allowable, such as brake replacement due to very heavy application, or an engine inspection and/or possible removal due to use of an emergency rating. Such performance criteria are often referred to as zero exposure, referring to zero accident exposure to an engine failure. The critical mission segment for meeting one engine inoperative (OEI) criteria is takeoff. For a given weight, wind, and ambient condition, fixed wing aircraft require a balanced field length. This is the longer of the distance to take off if an engine fails at a predetermined critical point in the takeoff profile, or the distance to reject the takeoff and brake to a stop. Rotorcraft have requirements for horizontal takeoff procedures that are equivalent to a balanced field length requirements for fixed wing aircraft. Rotorcraft also perform vertical procedures where no runway or heliport distance is available. These were developed primarily for elevated heliports as found on oil rigs or rooftops. They are also used for ground level operations as might be found at heliports at the end of piers or other confined areas.

  14. Description and Laboratory Tests of a Roots Type Aircraft Engine Supercharger

    NASA Technical Reports Server (NTRS)

    Ware, Marsden

    1926-01-01

    This report describes a roots type aircraft engine supercharger and presents the results of some tests made with it at the Langley Field Laboratories of the National Advisory Committee for Aeronautics. The supercharger used in these tests was constructed largely of aluminum, weighed 88 pounds and was arranged to be operated from the rear of a standard aircraft engine at a speed of 1 1/2 engine crankshaft speed. The rotors of the supercharger were cycloidal in form and were 11 inches long and 9 1/2 inches in diameter. The displacement of the supercharger was 0.51 cubic feet of air per revolution of the rotors. The supercharger was tested in the laboratory, independently and in combination with a Liberty-12 aircraft engine, under simulated altitude pressure conditions in order to obtain information on its operation and performance. From these tests it seems evident that the Roots blower compares favorably with other compressor types used as aircraft engine superchargers and that it has several features that make it particularly attractive for such use.

  15. Advanced Propulsion System Studies for General Aviation Aircraft

    NASA Technical Reports Server (NTRS)

    Eisenberg, Joseph D. (Technical Monitor); Elliott, Kathryn A.; Huebner, Steven R.

    2003-01-01

    In this study, new technology engines were defined in two power classes: a 200 hp class, for a light, 4-place personal aircraft, and a 1500 pound thrust class for a twin-engined, 6 place business jet type aircraft. The engines were evaluated for retrofitting suitable current production aircraft for comparison to the existing engines. The engines were evaluated for performance using a typical mission for each aircraft, as well as a variant mission to further appraise performance.Issues of cost, safety, maintenance, and reliability were also addressed. Manufacturing plans were then constructed.

  16. A plume capture technique for the remote characterization of aircraft engine emissions.

    PubMed

    Johnson, G R; Mazaheri, M; Ristovski, Z D; Morawska, L

    2008-07-01

    A technique for capturing and analyzing plumes from unmodified aircraft or other combustion sources under real world conditions is described and applied to the task of characterizing plumes from commercial aircraft during the taxiing phase of the Landing/Take-Off (LTO) cycle. The method utilizes a Plume Capture and Analysis System (PCAS) mounted in a four-wheel drive vehicle which is positioned in the airfield 60 to 180 m downwind of aircraft operations. The approach offers low test turnaround times with the ability to complete careful measurements of particle and gaseous emission factors and sequentially scanned particle size distributions without distortion due to plume concentration fluctuations. These measurements can be performed for individual aircraft movements at five minute intervals. A Plume Capture Device (PCD) collected samples of the naturally diluted plume in a 200 L conductive membrane conforming to a defined shape. Samples from over 60 aircraft movements were collected and analyzed in situ for particulate and gaseous concentrations and for particle size distribution using a Scanning Particle Mobility Sizer (SMPS). Emission factors are derived for particle number, NO(x), and PM2.5 for a widely used commercial aircraft type, Boeing 737 airframes with predominantly CFM56 class engines, during taxiing. The practical advantages of the PCAS include the capacity to perform well targeted and controlled emission factor and size distribution measurements using instrumentation with varying response times within an airport facility, in close proximity to aircraft during their normal operations.

  17. Altitude and airspeed effects on the optimum synchrophase angles for a four-engine propeller aircraft

    NASA Astrophysics Data System (ADS)

    Blunt, David M.

    2014-08-01

    Noise and vibration is a serious problem in all types of aircraft. Any techniques that lower cabin noise and vibration levels by even a few decibels with little or no weight or performance penalties are worth pursuing. Propeller synchrophasing is one such technique that has shown potential in aircraft with two or more propellers; however this technique is not being used to its full potential because the synchrophase angles are typically fixed. This paper provides a detailed examination of how the optimum synchrophase angles in a typical four-engine propeller aircraft vary with different altitudes and airspeeds, and how this information could lead to the design of new adaptive propeller synchrophasing systems and potentially yield improvements to other active noise control measures in propeller aircraft.

  18. USAF Aircraft Engine Emission Goals: A Critical Review.

    DTIC Science & Technology

    1979-09-01

    dif- ficult to obtain. Combustion product gases at the exhaust plane are extremely reactive and at high temperature; consequently, much of the CO and...19. KEY WORDS (Continue on reverse side if necessary and identify by block number) J Pollution Abatement Exhaust Emissions Combustion Aircraft...The USAF must continue basic research in areas of combustion , smoke formation, etc. it - -W: (7) Variability of emissions is an area where more

  19. Preliminary Fatigue Studies on Aluminum Alloy Aircraft Engines

    NASA Technical Reports Server (NTRS)

    1938-01-01

    Preliminary information on the complex subject of the fatigue strength of fabricated structural members for aircraft is presented in the test results obtained on several different types of airship girders subjected to axial tension and compression in a resonance fatigue machine. A description of this machine as well as numerous photographs of the fatigue failures are given. There is also presented an extended bibliography on the subject of fatigue strength.

  20. Emergency Multiengine Aircraft System for Lateral Control Using Differential Thrust Control of Wing Engines

    NASA Technical Reports Server (NTRS)

    Burken, John J. (Inventor); Burcham, Frank W., Jr. (Inventor); Bull, John (Inventor)

    2000-01-01

    Development of an emergency flight control system is disclosed for lateral control using only differential engine thrust modulation of multiengine aircraft is currently underway. The multiengine has at least two engines laterally displaced to the left and right from the axis of the aircraft. In response to a heading angle command psi(sub c) is to be tracked. By continually sensing the heading angle psi of the aircraft and computing a heading error signal psi(sub e) as a function of the difference between the heading angle command psi(sub c) and the sensed heading angle psi, a track control signal is developed with compensation as a function of sensed bank angle phi. Bank angle rate phi, or roll rate p, yaw rate tau, and true velocity produce an aircraft thrust control signal ATC(sub psi(L,R)). The thrust control signal is differentially applied to the left and right engines, with equal amplitude and opposite sign, such that a negative sign is applied to the control signal on the side of the aircraft. A turn is required to reduce the error signal until the heading feedback reduces the error to zero.

  1. 75 FR 37990 - Airworthiness Directives; Ontic Engineering and Manufacturing, Inc. Propeller Governors, Part...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-01

    ...-09-AD; Amendment 39-16341; AD 2010-13-10] RIN 2120-AA64 Airworthiness Directives; Ontic Engineering... new airworthiness directive (AD) for certain serial numbers (S/Ns) of Ontic Engineering and... Engineering and Manufacturing, Inc., 20400 Plummer Sreet, Chatsworth, CA 91311, e-mail:...

  2. 40 CFR 59.603 - How must manufacturers apply good engineering judgment?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... engineering judgment? 59.603 Section 59.603 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... and Applicability § 59.603 How must manufacturers apply good engineering judgment? (a) In addition to other requirements and prohibitions set forth in this subpart, you must use good engineering...

  3. 40 CFR 1068.5 - How must manufacturers apply good engineering judgment?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... engineering judgment? 1068.5 Section 1068.5 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... PROGRAMS Applicability and Miscellaneous Provisions § 1068.5 How must manufacturers apply good engineering judgment? (a) You must use good engineering judgment for decisions related to any requirements under...

  4. 40 CFR 59.603 - How must manufacturers apply good engineering judgment?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... engineering judgment? 59.603 Section 59.603 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... and Applicability § 59.603 How must manufacturers apply good engineering judgment? (a) In addition to other requirements and prohibitions set forth in this subpart, you must use good engineering...

  5. 40 CFR 59.603 - How must manufacturers apply good engineering judgment?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... engineering judgment? 59.603 Section 59.603 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... and Applicability § 59.603 How must manufacturers apply good engineering judgment? (a) In addition to other requirements and prohibitions set forth in this subpart, you must use good engineering...

  6. 40 CFR 1068.5 - How must manufacturers apply good engineering judgment?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... engineering judgment? 1068.5 Section 1068.5 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... PROGRAMS Applicability and Miscellaneous Provisions § 1068.5 How must manufacturers apply good engineering judgment? (a) You must use good engineering judgment for decisions related to any requirements under...

  7. 40 CFR 59.603 - How must manufacturers apply good engineering judgment?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... engineering judgment? 59.603 Section 59.603 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... and Applicability § 59.603 How must manufacturers apply good engineering judgment? (a) In addition to other requirements and prohibitions set forth in this subpart, you must use good engineering...

  8. 40 CFR 59.603 - How must manufacturers apply good engineering judgment?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... engineering judgment? 59.603 Section 59.603 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... and Applicability § 59.603 How must manufacturers apply good engineering judgment? (a) In addition to other requirements and prohibitions set forth in this subpart, you must use good engineering...

  9. 40 CFR 1068.5 - How must manufacturers apply good engineering judgment?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... engineering judgment? 1068.5 Section 1068.5 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... PROGRAMS Applicability and Miscellaneous Provisions § 1068.5 How must manufacturers apply good engineering judgment? (a) You must use good engineering judgment for decisions related to any requirements under...

  10. 40 CFR 1068.5 - How must manufacturers apply good engineering judgment?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... engineering judgment? 1068.5 Section 1068.5 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Miscellaneous Provisions § 1068.5 How must manufacturers apply good engineering judgment? (a) You must use good engineering judgment for decisions related to any requirements under this chapter. This includes...

  11. Design and test of aircraft engine isolators for reduced interior noise

    NASA Technical Reports Server (NTRS)

    Unruh, J. F.; Scheidt, D. C.

    1982-01-01

    Improved engine vibration isolation was proposed to be the most weight and cost efficient retrofit structure-borne noise control measure for single engine general aviation aircraft. A study was carried out the objectives: (1) to develop an engine isolator design specification for reduced interior noise transmission, (2) select/design candidate isolators to meet a 15 dB noise reduction design goal, and (3) carry out a proof of concept evaluation test. Analytical model of the engine, vibration isolators and engine mount structure were coupled to an empirical model of the fuselage for noise transmission evaluation. The model was used to develop engine isolator dynamic properties design specification for reduced noise transmission. Candidate isolators ere chosen from available product literature and retrofit to a test aircraft. A laboratory based test procedure was then developed to simulate engine induced noise transmission in the aircraft for a proof of concept evaluation test. Three candidate isolator configurations were evaluated for reduced structure-borne noise transmission relative to the original equipment isolators.

  12. 75 FR 5147 - Global Engine Manufacturing Alliance a Subsidiary of the Chrysler Group LLC Including On-Site...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-01

    ... Services were employed on-site at the Dundee, Michigan location of Global Engine Manufacturing Alliance, a...-site at the Dundee, Michigan location of Global Engine Manufacturing Alliance, a subsidiary of The... Employment and Training Administration Global Engine Manufacturing Alliance a Subsidiary of the...

  13. The Effect of Faster Engine Response on the Lateral Directional Control of a Damaged Aircraft

    NASA Technical Reports Server (NTRS)

    May, Ryan D.; Lemon, Kimberly A.; Csank, Jeffrey T.; Litt, Jonathan S.; Guo, Ten-Huei

    2012-01-01

    The integration of flight control and propulsion control has been a much discussed topic, especially for emergencies where the engines may be able to help stabilize and safely land a damaged aircraft. Previous research has shown that for the engines to be effective as flight control actuators, the response time to throttle commands must be improved. Other work has developed control modes that accept a higher risk of engine failure in exchange for improved engine response during an emergency. In this effort, a nonlinear engine model (the Commercial Modular Aero-Propulsion System Simulation 40k) has been integrated with a nonlinear airframe model (the Generic Transport Model) in order to evaluate the use of enhanced-response engines as alternative yaw rate control effectors. Tests of disturbance rejection and command tracking were used to determine the impact of the engines on the aircraft's dynamical behavior. Three engine control enhancements that improve the response time of the engine were implemented and tested in the integrated simulation. The enhancements were shown to increase the engine s effectiveness as a yaw rate control effector when used in an automatic feedback loop. The improvement is highly dependent upon flight condition; the airframe behavior is markedly improved at low altitude, low speed conditions, and relatively unchanged at high altitude, high speed.

  14. A method to estimate weight and dimensions of small aircraft propulsion gas turbine engines: User's guide

    NASA Technical Reports Server (NTRS)

    Hale, P. L.

    1982-01-01

    The weight and major envelope dimensions of small aircraft propulsion gas turbine engines are estimated. The computerized method, called WATE-S (Weight Analysis of Turbine Engines-Small) is a derivative of the WATE-2 computer code. WATE-S determines the weight of each major component in the engine including compressors, burners, turbines, heat exchangers, nozzles, propellers, and accessories. A preliminary design approach is used where the stress levels, maximum pressures and temperatures, material properties, geometry, stage loading, hub/tip radius ratio, and mechanical overspeed are used to determine the component weights and dimensions. The accuracy of the method is generally better than + or - 10 percent as verified by analysis of four small aircraft propulsion gas turbine engines.

  15. Impacts of broadened-specification fuels on aircraft turbine engine combustors

    SciTech Connect

    Bahr, D.W.

    1982-11-01

    In the future, aircraft turbine engines may be required to accommodate fuels with lower hydrogen contents, fluidity/volatility characteristics, and thermal stability ratings than those of present-day jet fuels. The key results of several investigations conducted to quantify the impacts of such fuel property changes on the performance, pollutant emission, and durability characteristics of aircraft turbine engine combustors are reviewed. These results were obtained in both component and engine tests of the current production combustors used in the CF6-6, CF6-50, F101/CFM56, and J79/CJ805 engines. Based on these results, it is concluded that the most significant concerns associated with such fuel property changes are decreased combustor life, decreased ground starting/altitude relight capabilities, and increased fuel injector gumming/coking tendencies. The combustor design improvements that appear to be needed to permit the use of jet fuels of significantly lower quality than present day fuels are also reviewed.

  16. Effect of NACA Injection Impeller on Mixture Distribution of Double-Row Radial Aircraft Engine

    NASA Technical Reports Server (NTRS)

    Marble, Frank E; Ritter, William K; Miller, Mahlon A

    1945-01-01

    The NACA injection impeller was developed to improve the mixture distribution of aircraft engines by discharging the fuel from a centrifugal supercharger impeller and thus to promote a thorough mixing of fuel and charge air. Experiments with a double-row radial aircraft engine indicated that for the normal range of engine power the NACA injection impeller provided marked improvement in mixture distribution over the standard spray-bar injection system used in the same engine. The mixture distribution at cruising conditions was excellent; at 1200, 1500, and 1700 brake horsepower, the differences between the fuel-air ratios of the richest and the leanest cylinders were reduced to approximately one-third their former values.

  17. Performance degradation of a typical twin engine commuter type aircraft in measured natural icing conditions

    NASA Technical Reports Server (NTRS)

    Ranaudo, R. J.; Mikkelsen, K. L.; Mcknight, R. C.; Perkins, P. J., Jr.

    1984-01-01

    The performance of an aircraft in various measured icing conditions was investigated. Icing parameters such as liquid water content, temperature, cloud droplet sizes and distributions were measured continuously while in icinig. Flight data wre reduced to provide plots of the aircraft drag polars and lift curves (CL vs. alpha) for the measured 'iced' condition as referenced to the uniced aircraft. These data were also reduced to provide plots of thrust horsepower required vs. single engine power available to show how icing affects engine out capability. It is found that performance degradation is primarily influenced by the amount and shape of the accumulated ice. Glaze icing caused the greatest aerodynamic performance penalties in terms of increased drag and reduction in lift while aerodynamic penalties due to rime icing were significantly lower. Previously announced in STAR as N84-13173

  18. Performance degradation of a typical twin engine commuter type aircraft in measured natural icing conditions

    NASA Technical Reports Server (NTRS)

    Ranaudo, R. J.; Mikkelsen, K. L.; Mcknight, R. C.; Perkins, P. J., Jr.

    1984-01-01

    The performance of an aircraft in various measured icing conditions was investigated. Icing parameters such as liquid water content, temperature, cloud droplet sizes and distributions were measured continuously while in icing. Flight data were reduced to provide plots of the aircraft drag polars and lift curves (CL vs. alpha) for the measured ""iced'' condition as referenced to the uniced aircraft. These data were also reduced to provide plots of thrust horsepower required vs. single engine power available to show how icing affects engine out capability. It is found that performance degradation is primarily influenced by the amount and shape of the accumulated ice. Glaze icing caused the greatest aerodynamic performance penalties in terms of increased drag and reduction in lift while aerodynamic penalties due to rime icing were significantly lower.

  19. Status review of NASA programs for reducing aircraft gas turbine engine emissions

    NASA Technical Reports Server (NTRS)

    Rudey, R. A.

    1976-01-01

    Programs initiated by NASA to develop and demonstrate low emission advanced technology combustors for reducing aircraft gas turbine engine pollution are reviewed. Program goals are consistent with urban emission level requirements as specified by the U. S. Environmental Protection Agency and with upper atmosphere cruise emission levels as recommended by the U. S. Climatic Impact Assessment Program and National Research Council. Preliminary tests of advanced technology combustors indicate that significant reductions in all major pollutant emissions should be attainable in present generation aircraft gas turbine engines without adverse effects on fuel consumption. Preliminary test results from fundamental studies indicate that extremely low emission combustion systems may be possible for future generation jet aircraft. The emission reduction techniques currently being evaluated in these programs are described along with the results and a qualitative assessment of development difficulty.

  20. Process quality engineering for bioreactor-driven manufacturing of tissue-engineered constructs for bone regeneration.

    PubMed

    Papantoniou Ir, Ioannis; Chai, Yoke Chin; Luyten, Frank P; Schrooten Ir, Jan

    2013-08-01

    The incorporation of Quality-by-Design (QbD) principles in tissue-engineering bioprocess development toward clinical use will ensure that manufactured constructs possess prerequisite quality characteristics addressing emerging regulatory requirements and ensuring the functional in vivo behavior. In this work, the QbD principles were applied on a manufacturing process step for the in vitro production of osteogenic three-dimensional (3D) hybrid scaffolds that involves cell matrix deposition on a 3D titanium (Ti) alloy scaffold. An osteogenic cell source (human periosteum-derived cells) cultured in a bioinstructive medium was used to functionalize regular Ti scaffolds in a perfusion bioreactor, resulting in an osteogenic hybrid carrier. A two-level three-factor fractional factorial design of experiments was employed to explore a range of production-relevant process conditions by simultaneously changing value levels of the following parameters: flow rate (0.5-2 mL/min), cell culture duration (7-21 days), and cell-seeding density (1.5×10(3)-3×10(3) cells/cm(2)). This approach allowed to evaluate the individual impact of the aforementioned process parameters upon key quality attributes of the produced hybrids, such as collagen production, mineralization level, and cell number. The use of a fractional factorial design approach helped create a design space in which hybrid scaffolds of predefined quality attributes may be robustly manufactured while minimizing the number of required experiments.

  1. Study of aerodynamic technology for single-cruise-engine V/STOL fighter/attack aircraft

    NASA Technical Reports Server (NTRS)

    Hess, J. R.; Bear, R. L.

    1982-01-01

    A viable, single engine, supersonic V/STOL fighter/attack aircraft concept was defined. This vectored thrust, canard wing configuration utilizes an advanced technology separated flow engine with fan stream burning. The aerodynamic characteristics of this configuration were estimated and performance evaluated. Significant aerodynamic and aerodynamic propulsion interaction uncertainties requiring additional investigation were identified. A wind tunnel model concept and test program to resolve these uncertainties and validate the aerodynamic prediction methods were defined.

  2. An Object-Oriented Computer Code for Aircraft Engine Weight Estimation

    NASA Technical Reports Server (NTRS)

    Tong, Michael T.; Naylor, Bret A.

    2009-01-01

    Reliable engine-weight estimation at the conceptual design stage is critical to the development of new aircraft engines. It helps to identify the best engine concept amongst several candidates. At NASA Glenn Research Center (GRC), the Weight Analysis of Turbine Engines (WATE) computer code, originally developed by Boeing Aircraft, has been used to estimate the engine weight of various conceptual engine designs. The code, written in FORTRAN, was originally developed for NASA in 1979. Since then, substantial improvements have been made to the code to improve the weight calculations for most of the engine components. Most recently, to improve the maintainability and extensibility of WATE, the FORTRAN code has been converted into an object-oriented version. The conversion was done within the NASA's NPSS (Numerical Propulsion System Simulation) framework. This enables WATE to interact seamlessly with the thermodynamic cycle model which provides component flow data such as airflows, temperatures, and pressures, etc., that are required for sizing the components and weight calculations. The tighter integration between the NPSS and WATE would greatly enhance system-level analysis and optimization capabilities. It also would facilitate the enhancement of the WATE code for next-generation aircraft and space propulsion systems. In this paper, the architecture of the object-oriented WATE code (or WATE++) is described. Both the FORTRAN and object-oriented versions of the code are employed to compute the dimensions and weight of a 300-passenger aircraft engine (GE90 class). Both versions of the code produce essentially identical results as should be the case.

  3. A Fully Nonmetallic Gas Turbine Engine Enabled by Additive Manufacturing of Ceramic Composites. Part III; Additive Manufacturing and Characterization of Ceramic Composites

    NASA Technical Reports Server (NTRS)

    Halbig, Michael C.; Grady, Joseph E.; Singh, Mrityunjay; Ramsey, Jack; Patterson, Clark; Santelle, Tom

    2015-01-01

    This publication is the third part of a three part report of the project entitled "A Fully Nonmetallic Gas Turbine Engine Enabled by Additive Manufacturing" funded by NASA Aeronautics Research Institute (NARI). The objective of this project was to conduct additive manufacturing to produce ceramic matrix composite materials and aircraft engine components by the binder jet process. Different SiC powders with median sizes ranging from 9.3 to 53.0 microns were investigated solely and in powder blends in order to maximize powder packing. Various infiltration approaches were investigated to include polycarbosilane (SMP-10), phenolic, and liquid silicon. Single infiltrations of SMP-10 and phenolic only slightly filled in the interior. When the SMP-10 was loaded with sub-micron sized SiC powders, the infiltrant gave a much better result of filling in the interior. Silicon carbide fibers were added to the powder bed to make ceramic matrix composite materials. Microscopy showed that the fibers were well distributed with no preferred orientation on the horizontal plane and fibers in the vertical plane were at angles as much as 45deg. Secondary infiltration steps were necessary to further densify the material. Two to three extra infiltration steps of SMP-10 increased the density by 0.20 to 0.55 g/cc. However, the highest densities achieved were 2.10 to 2.15 g/cc. Mechanical tests consisting of 4 point bend tests were conducted. Samples from the two CMC panels had higher strengths and strains to failure than the samples from the two nonfiber reinforced panels. The highest strengths were from Set N with 65 vol% fiber loading which had an average strength of 66 MPa. Analysis of the fracture surfaces did not reveal pullout of the reinforcing fibers. Blunt fiber failure suggested that there was not composite behavior. The binder jet additive manufacturing method was used to also demonstrate the fabrication of turbine engine vane components of two different designs and sizes. The

  4. Avco Lycoming/NASA contract status. [on reduction of emissions from aircraft piston engines

    NASA Technical Reports Server (NTRS)

    Duke, L. C.

    1976-01-01

    The standards promulgated by the Environmental Protection Agency (EPA) for carbon monoxide (CO), unburned hydrocarbon (HC), and oxides-of-nitrogen (NOx) emissions were the basis in a study of ways to reduce emissions from aircraft piston engines. A variable valve timing system, ultrasonic fuel atomization, and ignition system changes were postulated.

  5. 77 FR 76842 - Exhaust Emissions Standards for New Aircraft Gas Turbine Engines and Identification Plate for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-31

    ... action revises the standards for oxides of nitrogen and test procedures for exhaust emissions based on... Environmental Protection Agency (EPA) proposed new aircraft engine emission standards for oxides of nitrogen (NO... Protection (CAEP) of ICAO uses to differentiate the CAEP work cycles that produce new standards. For...

  6. Weibull-Based Design Methodology for Rotating Aircraft Engine Structures

    NASA Technical Reports Server (NTRS)

    Zaretsky, Erwin; Hendricks, Robert C.; Soditus, Sherry

    2002-01-01

    The NASA Energy Efficient Engine (E(sup 3)-Engine) is used as the basis of a Weibull-based life and reliability analysis. Each component's life and thus the engine's life is defined by high-cycle fatigue (HCF) or low-cycle fatigue (LCF). Knowing the cumulative life distribution of each of the components making up the engine as represented by a Weibull slope is a prerequisite to predicting the life and reliability of the entire engine. As the engine Weibull slope increases, the predicted lives decrease. The predicted engine lives L(sub 5) (95 % probability of survival) of approximately 17,000 and 32,000 hr do correlate with current engine maintenance practices without and with refurbishment. respectively. The individual high pressure turbine (HPT) blade lives necessary to obtain a blade system life L(sub 0.1) (99.9 % probability of survival) of 9000 hr for Weibull slopes of 3, 6 and 9, are 47,391 and 20,652 and 15,658 hr, respectively. For a design life of the HPT disks having probable points of failure equal to or greater than 36,000 hr at a probability of survival of 99.9 %, the predicted disk system life L(sub 0.1) can vary from 9,408 to 24,911 hr.

  7. Pollution reduction technology program small jet aircraft engines, phase 3

    NASA Technical Reports Server (NTRS)

    Bruce, T. W.; Davis, F. G.; Kuhn, T. E.; Mongia, H. C.

    1981-01-01

    A series of Model TFE731-2 engine tests were conducted with the Concept 2 variable geometry airblast fuel injector combustion system installed. The engine was tested to: (1) establish the emission levels over the selected points which comprise the Environmental Protection Agency Landing-Takeoff Cycle; (2) determine engine performance with the combustion system; and (3) evaulate the engine acceleration/deceleration characteristics. The hydrocarbon (HC), carbon monoxide (CO), and smoke goals were met. Oxides of nitrogen (NOx) were above the goal for the same configuration that met the other pollutant goals. The engine and combustor performance, as well as acceleration/deceleration characteristics, were acceptable. The Concept 3 staged combustor system was refined from earlier phase development and subjected to further rig refinement testing. The concept met all of the emissions goals.

  8. Aircraft Engine Sensor/Actuator/Component Fault Diagnosis Using a Bank of Kalman Filters

    NASA Technical Reports Server (NTRS)

    Kobayashi, Takahisa; Simon, Donald L. (Technical Monitor)

    2003-01-01

    In this report, a fault detection and isolation (FDI) system which utilizes a bank of Kalman filters is developed for aircraft engine sensor and actuator FDI in conjunction with the detection of component faults. This FDI approach uses multiple Kalman filters, each of which is designed based on a specific hypothesis for detecting a specific sensor or actuator fault. In the event that a fault does occur, all filters except the one using the correct hypothesis will produce large estimation errors, from which a specific fault is isolated. In the meantime, a set of parameters that indicate engine component performance is estimated for the detection of abrupt degradation. The performance of the FDI system is evaluated against a nonlinear engine simulation for various engine faults at cruise operating conditions. In order to mimic the real engine environment, the nonlinear simulation is executed not only at the nominal, or healthy, condition but also at aged conditions. When the FDI system designed at the healthy condition is applied to an aged engine, the effectiveness of the FDI system is impacted by the mismatch in the engine health condition. Depending on its severity, this mismatch can cause the FDI system to generate incorrect diagnostic results, such as false alarms and missed detections. To partially recover the nominal performance, two approaches, which incorporate information regarding the engine s aging condition in the FDI system, will be discussed and evaluated. The results indicate that the proposed FDI system is promising for reliable diagnostics of aircraft engines.

  9. 75 FR 7947 - Airworthiness Directives; Thielert Aircraft Engines GmbH (TAE) Model TAE 125-01 Reciprocating...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-23

    ... Engines GmbH (TAE) Model TAE 125-01 Reciprocating Engines AGENCY: Federal Aviation Administration (FAA.... The MCAI describes the unsafe condition as: An in-flight engine shutdown incident was reported on an aircraft equipped with a TAE 125-01 engine. This was found to be mainly the result of a blockage of...

  10. Aircraft

    DTIC Science & Technology

    2003-01-01

    national power. But with the recent events such as the war with Iraq, the Severe Acute Respiratory Syndrome (SARS) outbreak, some major carriers... TITLE AND SUBTITLE 2003 Industry Studies: Aircraft 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER

  11. Gaseous Emissions from Aircraft Engines. A Handbook for the Calculation of Emission Indexes and Gaseous Emissions from Aircraft Engines

    DTIC Science & Technology

    1987-09-01

    corresponded to intervals of stable engine operation, as specified by the operators of the engine. Each laboratory reported emission indexes for the read ...period. The test established 50 read periods for gaseous emissions. Tabl, 5-1 gives the emission indexes at idle, high idle, approach, cruise and...emission indexes from a T58-GE-8F engine Test Cell - 12 Location - Naval Air Rework Facility, North Island IDLE Date Time Reading Prior Emission index

  12. Chemical composition and photochemical reactivity of exhaust from aircraft turbine engines

    NASA Astrophysics Data System (ADS)

    Spicer, C. W.; Holdren, M. W.; Riggin, R. M.; Lyon, T. F.

    1994-10-01

    Assessment of the environmental impact of aircraft emissions is required by planners and policy makers. Seveal areas of concern are: 1. exposure of airport workers and urban residents to toxic chemicals emitted when the engines operate at low power (idle and taxi) on the ground; 2. contributions to urban photochemical air pollution of aircraft volatile organic and nitrogen oxides emissions from operations around airports; and 3. emissions of nitrogen oxides and particles during high-altitude operation. The environmental impact of chemicals emitted from jet aircraft turbine engines has not been firmly established due to lack of data regarding emission rates and identities of the compounds emitted. This paper describes an experimental study of two different aircraft turbine engines designed to determine detailed organic emissions, as well as emissions of inorganic gases. Emissions were measured at several engine power settings. Measurements were made of detailed organic composition from C1 through C17, CO, CO2, NO, NOx, and polycyclic aromatic hydrocarbons. Measurements were made using a multi-port sampling pro be positioned directly behind the engine in the exhaust exit plane. The emission measurements have been used to determine the organic distribution by carbon number and the distribution by compound class at each engine power level. The sum of the organic species was compared with an independent measurement of total organic carbon to assess the carbon mass balance. A portion of the exhaust was captured and irradiated in outdoor smog chambers to assess the photochemical reactivity of the emissions with respect to ozone formation. The reactivity of emissions from the two engines was apportioned by chemical compound class.

  13. A Fully Non-Metallic Gas Turbine Engine Enabled by Additive Manufacturing Part I: System Analysis, Component Identification, Additive Manufacturing, and Testing of Polymer Composites

    NASA Technical Reports Server (NTRS)

    Grady, Joseph E.; Haller, William J.; Poinsatte, Philip E.; Halbig, Michael C.; Schnulo, Sydney L.; Singh, Mrityunjay; Weir, Don; Wali, Natalie; Vinup, Michael; Jones, Michael G.; Patterson, Clark; Santelle, Tom; Mehl, Jeremy

    2015-01-01

    The research and development activities reported in this publication were carried out under NASA Aeronautics Research Institute (NARI) funded project entitled "A Fully Nonmetallic Gas Turbine Engine Enabled by Additive Manufacturing." The objective of the project was to conduct evaluation of emerging materials and manufacturing technologies that will enable fully nonmetallic gas turbine engines. The results of the activities are described in three part report. The first part of the report contains the data and analysis of engine system trade studies, which were carried out to estimate reduction in engine emissions and fuel burn enabled due to advanced materials and manufacturing processes. A number of key engine components were identified in which advanced materials and additive manufacturing processes would provide the most significant benefits to engine operation. The technical scope of activities included an assessment of the feasibility of using additive manufacturing technologies to fabricate gas turbine engine components from polymer and ceramic matrix composites, which were accomplished by fabricating prototype engine components and testing them in simulated engine operating conditions. The manufacturing process parameters were developed and optimized for polymer and ceramic composites (described in detail in the second and third part of the report). A number of prototype components (inlet guide vane (IGV), acoustic liners, engine access door) were additively manufactured using high temperature polymer materials. Ceramic matrix composite components included turbine nozzle components. In addition, IGVs and acoustic liners were tested in simulated engine conditions in test rigs. The test results are reported and discussed in detail.

  14. Changing Employment Patterns of Scientists, Engineers, and Technicians in Manufacturing Industries: 1977-80. Final Report.

    ERIC Educational Resources Information Center

    National Science Foundation, Washington, DC.

    This report presents an analysis of science, engineering, and technician (SET) employment within manufacturing industries based on data from the 1977 and 1980 Occupational Employment Statistics survey. The purposes of the report are to: (1) summarize employment data for detailed SET occupations in manufacturing to describe demand patterns; (2)…

  15. Closing the Competency Gap in Manufacturing Processes as It Applies to New Engineering Graduates

    ERIC Educational Resources Information Center

    Ssemakula, Mukasa; Liao, Gene; Ellis, Darin

    2010-01-01

    Industry has consistently identified lack of experience in manufacturing processes as one of the key competency gaps among new engineering graduates. This paper discusses a laboratory-based course that provides realistic hands-on manufacturing experiences to students. The course uses team-based projects that help students gain hands-on experience…

  16. Variable-cycle engines for supersonic cruise aircraft

    NASA Technical Reports Server (NTRS)

    Willis, E.

    1976-01-01

    Progress and the current status of the Variable Cycle Engine (VCE) study are reviewed with emphasis placed on the impact of technology advancements and design specifications. A large variety of VCE concepts are also examined.

  17. Study of unconventional aircraft engines designed for low energy consumption

    NASA Technical Reports Server (NTRS)

    Neitzel, R. E.; Hirschkron, R.; Johnston, R. P.

    1976-01-01

    A study of unconventional engine cycle concepts, which may offer significantly lower energy consumption than conventional subsonic transport turbofans, is described herein. A number of unconventional engine concepts were identified and parametrically studied to determine their relative fuel-saving potential. Based on results from these studies, regenerative, geared, and variable-boost turbofans, and combinations thereof, were selected along with advanced turboprop cycles for further evaluation and refinement. Preliminary aerodynamic and mechanical designs of these unconventional engine configurations were conducted and mission performance was compared to a conventional, direct-drive turofan reference engine. Consideration is given to the unconventional concepts, and their state of readiness for application. Areas of needed technology advancement are identified.

  18. NASA Now: Engineering Design: Tilt Rotors, Aircraft of the Future

    NASA Video Gallery

    Meet Carl Russell, a research aerospace engineer who is working on developing new innovations for air travel. Russell discusses how tilt rotors work, including a demonstration on how rotors use Ber...

  19. Chemical characterization of the fine particle emissions from commercial aircraft engines during the Aircraft Particle Emissions eXperiment (APEX) 1 to 3

    EPA Science Inventory

    This paper addresses the need for detailed chemical information on the fine particulate matter (PM2.5) generated by commercial aviation engines. The exhaust plumes of nine engine models were sampled during the three test campaigns of the Aircraft Particle Emissions eXperiment (AP...

  20. Total Quality Management in Space Shuttle Main Engine manufacturing

    NASA Technical Reports Server (NTRS)

    Ding, J.

    1992-01-01

    The Total Quality Management (TQM) philosophy developed in the Marshall Space Flight Center (MSFC) is briefly reviewed and the ongoing TQM implementation effort which is being pursued through the continuous improvement (CI) process is discussed. TQM is based on organizational excellence which integrates the new supportive culture with the technical tools necessary to identify, assess, and correct manufacturing processes. Particular attention is given to the prime contractor's change to the organizational excellence management philosophy in SSME manufacturing facilities.

  1. Optimal Tuner Selection for Kalman-Filter-Based Aircraft Engine Performance Estimation

    NASA Technical Reports Server (NTRS)

    Simon, Donald L.; Garg, Sanjay

    2011-01-01

    An emerging approach in the field of aircraft engine controls and system health management is the inclusion of real-time, onboard models for the inflight estimation of engine performance variations. This technology, typically based on Kalman-filter concepts, enables the estimation of unmeasured engine performance parameters that can be directly utilized by controls, prognostics, and health-management applications. A challenge that complicates this practice is the fact that an aircraft engine s performance is affected by its level of degradation, generally described in terms of unmeasurable health parameters such as efficiencies and flow capacities related to each major engine module. Through Kalman-filter-based estimation techniques, the level of engine performance degradation can be estimated, given that there are at least as many sensors as health parameters to be estimated. However, in an aircraft engine, the number of sensors available is typically less than the number of health parameters, presenting an under-determined estimation problem. A common approach to address this shortcoming is to estimate a subset of the health parameters, referred to as model tuning parameters. The problem/objective is to optimally select the model tuning parameters to minimize Kalman-filterbased estimation error. A tuner selection technique has been developed that specifically addresses the under-determined estimation problem, where there are more unknown parameters than available sensor measurements. A systematic approach is applied to produce a model tuning parameter vector of appropriate dimension to enable estimation by a Kalman filter, while minimizing the estimation error in the parameters of interest. Tuning parameter selection is performed using a multi-variable iterative search routine that seeks to minimize the theoretical mean-squared estimation error of the Kalman filter. This approach can significantly reduce the error in onboard aircraft engine parameter estimation

  2. 40 CFR 60.4210 - What are my compliance requirements if I am a stationary CI internal combustion engine manufacturer?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... I am a stationary CI internal combustion engine manufacturer? 60.4210 Section 60.4210 Protection of... CI internal combustion engine manufacturer? (a) Stationary CI internal combustion engine... certified to the standards in 40 CFR part 1039. (b) Stationary CI internal combustion engine...

  3. Robust In-Flight Sensor Fault Diagnostics for Aircraft Engine Based on Sliding Mode Observers.

    PubMed

    Chang, Xiaodong; Huang, Jinquan; Lu, Feng

    2017-04-11

    For a sensor fault diagnostic system of aircraft engines, the health performance degradation is an inevitable interference that cannot be neglected. To address this issue, this paper investigates an integrated on-line sensor fault diagnostic scheme for a commercial aircraft engine based on a sliding mode observer (SMO). In this approach, one sliding mode observer is designed for engine health performance tracking, and another for sensor fault reconstruction. Both observers are employed in in-flight applications. The results of the former SMO are analyzed for post-flight updating the baseline model of the latter. This idea is practical and feasible since the updating process does not require the algorithm to be regulated or redesigned, so that ground-based intervention is avoided, and the update process is implemented in an economical and efficient way. With this setup, the robustness of the proposed scheme to the health degradation is much enhanced and the latter SMO is able to fulfill sensor fault reconstruction over the course of the engine life. The proposed sensor fault diagnostic system is applied to a nonlinear simulation of a commercial aircraft engine, and its effectiveness is evaluated in several fault scenarios.

  4. Accurate Measurements of Aircraft Engine Soot Emissions Using a CAPS PMssa Monitor

    NASA Astrophysics Data System (ADS)

    Onasch, Timothy; Thompson, Kevin; Renbaum-Wolff, Lindsay; Smallwood, Greg; Make-Lye, Richard; Freedman, Andrew

    2016-04-01

    We present results of aircraft engine soot emissions measurements during the VARIAnT2 campaign using CAPS PMssa monitors. VARIAnT2, an aircraft engine non-volatile particulate matter (nvPM) emissions field campaign, was focused on understanding the variability in nvPM mass measurements using different measurement techniques and accounting for possible nvPM sampling system losses. The CAPS PMssa monitor accurately measures both the optical extinction and scattering (and thus single scattering albedo and absorption) of an extracted sample using the same sample volume for both measurements with a time resolution of 1 second and sensitivity of better than 1 Mm-1. Absorption is obtained by subtracting the scattering signal from the total extinction. Given that the single scattering albedo of the particulates emitted from the aircraft engine measured at both 630 and 660 nm was on the order of 0.1, any inaccuracy in the scattering measurement has little impact on the accuracy of the ddetermined absorption coefficient. The absorption is converted into nvPM mass using a documented Mass Absorption Coefficient (MAC). Results of soot emission indices (mass soot emitted per mass of fuel consumed) for a turbojet engine as a function of engine power will be presented and compared to results obtained using an EC/OC monitor.

  5. Reducing Conservatism in Aircraft Engine Response Using Conditionally Active Min-Max Limit Regulators

    NASA Technical Reports Server (NTRS)

    May, Ryan D.; Garg, Sanjay

    2012-01-01

    Current aircraft engine control logic uses a Min-Max control selection structure to prevent the engine from exceeding any safety or operational limits during transients due to throttle commands. This structure is inherently conservative and produces transient responses that are slower than necessary. In order to utilize the existing safety margins more effectively, a modification to this architecture is proposed, referred to as a Conditionally Active (CA) limit regulator. This concept uses the existing Min-Max architecture with the modification that limit regulators are active only when the operating point is close to a particular limit. This paper explores the use of CA limit regulators using a publicly available commercial aircraft engine simulation. The improvement in thrust response while maintaining all necessary safety limits is demonstrated in a number of cases.

  6. An Adaptive Instability Suppression Controls Method for Aircraft Gas Turbine Engine Combustors

    NASA Technical Reports Server (NTRS)

    Kopasakis, George; DeLaat, John C.; Chang, Clarence T.

    2008-01-01

    An adaptive controls method for instability suppression in gas turbine engine combustors has been developed and successfully tested with a realistic aircraft engine combustor rig. This testing was part of a program that demonstrated, for the first time, successful active combustor instability control in an aircraft gas turbine engine-like environment. The controls method is called Adaptive Sliding Phasor Averaged Control. Testing of the control method has been conducted in an experimental rig with different configurations designed to simulate combustors with instabilities of about 530 and 315 Hz. Results demonstrate the effectiveness of this method in suppressing combustor instabilities. In addition, a dramatic improvement in suppression of the instability was achieved by focusing control on the second harmonic of the instability. This is believed to be due to a phenomena discovered and reported earlier, the so called Intra-Harmonic Coupling. These results may have implications for future research in combustor instability control.

  7. Integration of Engine, Plume, and CFD Analyses in Conceptual Design of Low-Boom Supersonic Aircraft

    NASA Technical Reports Server (NTRS)

    Li, Wu; Campbell, Richard; Geiselhart, Karl; Shields, Elwood; Nayani, Sudheer; Shenoy, Rajiv

    2009-01-01

    This paper documents an integration of engine, plume, and computational fluid dynamics (CFD) analyses in the conceptual design of low-boom supersonic aircraft, using a variable fidelity approach. In particular, the Numerical Propulsion Simulation System (NPSS) is used for propulsion system cycle analysis and nacelle outer mold line definition, and a low-fidelity plume model is developed for plume shape prediction based on NPSS engine data and nacelle geometry. This model provides a capability for the conceptual design of low-boom supersonic aircraft that accounts for plume effects. Then a newly developed process for automated CFD analysis is presented for CFD-based plume and boom analyses of the conceptual geometry. Five test cases are used to demonstrate the integrated engine, plume, and CFD analysis process based on a variable fidelity approach, as well as the feasibility of the automated CFD plume and boom analysis capability.

  8. Forecast of jet engine exhaust emissions for future high altitude commercial aircraft

    NASA Technical Reports Server (NTRS)

    Grobman, J.; Ingebo, R. D.

    1974-01-01

    Projected minimum levels of engine exhaust emissions that may be practicably achievable for future commercial aircraft operating at high altitude cruise conditions are presented. The forecasts are based on: (1) current knowledge of emission characteristics of combustors and augmentors; (2) the current status of combustion research in emission reduction technology; (3) predictable trends in combustion systems and operating conditions as required for projected engine designs that are candidates for advanced subsonic or supersonic commercial aircraft. Results are presented for cruise conditions in terms of an emission index, g pollutant/kg fuel. Two sets of engine exhaust emission predictions are presented: the first, based on an independent NASA study and the second, based on the consensus of an ad hoc committee composed of industry, university, and government representatives. The consensus forecasts are in general agreement with the NASA forecasts.

  9. Aircraft Wing for Over-The-Wing Mounting of Engine Nacelle

    NASA Technical Reports Server (NTRS)

    Hahn, Andrew S. (Inventor); Kinney, David J. (Inventor)

    2011-01-01

    An aircraft wing has an inboard section and an outboard section. The inboard section is attached (i) on one side thereof to the aircraft's fuselage, and (ii) on an opposing side thereof to an inboard side of a turbofan engine nacelle in an over-the-wing mounting position. The outboard section's leading edge has a sweep of at least 20 degrees. The inboard section's leading edge has a sweep between -15 and +15 degrees, and extends from the fuselage to an attachment position on the nacelle that is forward of an index position defined as an imaginary intersection between the sweep of the outboard section's leading edge and the inboard side of the nacelle. In an alternate embodiment, the turbofan engine nacelle is replaced with an open rotor engine nacelle.

  10. Propeller swirl effect on single-engine general-aviation aircraft stall-spin tendencies

    NASA Technical Reports Server (NTRS)

    Katz, Joseph; Feistel, Terry W.

    1987-01-01

    An investigation is conducted of the effect of a single engine, untapered low wing general aviation aircraft propeller's swirl on the craft's stall pattern. The asymmetrical character of the propeller's swirl can trigger an early stall of one of the wings, aggravating the spin-entry condition. It is shown that the combination of this propeller-induced effect with adverse sideslip can result in large and abrupt changes in the rolling moment, in such conditions as uncoordinated low speed turning maneuvers where the pilot yaws the aircraft with wings level, rather than rolling it.

  11. Impact of future fuel properties on aircraft engines and fuel systems

    NASA Technical Reports Server (NTRS)

    Rudey, R. A.; Grobman, J. S.

    1978-01-01

    The effect of modifications in hydrocarbon jet fuels specifications on engine performance, component durability and maintenance, and aircraft fuel system performance is discussed. Specific topics covered include: specific fuel consumption; ignition at relight limits; exhaust emissions; combustor liner temperatures; carbon deposition; gum formation in fuel nozzles, erosion and corrosion of turbine blades and vanes; deposits in fuel system heat exchangers; and pumpability and flowability of the fuel. Data that evaluate the ability of current technology aircraft to accept fuel specification changes are presented, and selected technological advances that can reduce the severity of the problems are described and discussed.

  12. Self diagnostic accelerometer ground testing on a C-17 aircraft engine

    NASA Astrophysics Data System (ADS)

    Tokars, Roger P.; Lekki, John D.

    The self diagnostic accelerometer (SDA) developed by the NASA Glenn Research Center was tested for the first time in an aircraft engine environment as part of the Vehicle Integrated Propulsion Research (VIPR) program. The VIPR program includes testing multiple critical flight sensor technologies. One such sensor, the accelerometer, measures vibrations to detect faults in the engine. In order to rely upon the accelerometer, the health of the accelerometer must be ensured. Sensor system malfunction is a significant contributor to propulsion in flight shutdowns (IFSD) which can lead to aircraft accidents when the issue is compounded with an inappropriate crew response. The development of the SDA is important for both reducing the IFSD rate, and hence reducing the rate at which this component failure type can put an aircraft in jeopardy, and also as a critical enabling technology for future automated malfunction diagnostic systems. The SDA is a sensor system designed to actively determine the accelerometer structural health and attachment condition, in addition to making vibration measurements. The SDA uses a signal conditioning unit that sends an electrical chirp to the accelerometer and recognizes changes in the response due to changes in the accelerometer health and attachment condition. In an effort toward demonstrating the SDA's flight worthiness and robustness, multiple SDAs were mounted and tested on a C-17 aircraft engine. The engine test conditions varied from engine off, to idle, to maximum power. The two SDA attachment conditions used were fully tight and loose. The newly developed SDA health algorithm described herein uses cross correlation pattern recognition to discriminate a healthy from a faulty SDA. The VIPR test results demonstrate for the first time the robustness of the SDA in an engine environment characterized by high vibration levels.

  13. Self Diagnostic Accelerometer Ground Testing on a C-17 Aircraft Engine

    NASA Technical Reports Server (NTRS)

    Tokars, Roger P.; Lekki, John D.

    2013-01-01

    The self diagnostic accelerometer (SDA) developed by the NASA Glenn Research Center was tested for the first time in an aircraft engine environment as part of the Vehicle Integrated Propulsion Research (VIPR) program. The VIPR program includes testing multiple critical flight sensor technologies. One such sensor, the accelerometer, measures vibrations to detect faults in the engine. In order to rely upon the accelerometer, the health of the accelerometer must be ensured. Sensor system malfunction is a significant contributor to propulsion in flight shutdowns (IFSD) which can lead to aircraft accidents when the issue is compounded with an inappropriate crew response. The development of the SDA is important for both reducing the IFSD rate, and hence reducing the rate at which this component failure type can put an aircraft in jeopardy, and also as a critical enabling technology for future automated malfunction diagnostic systems. The SDA is a sensor system designed to actively determine the accelerometer structural health and attachment condition, in addition to making vibration measurements. The SDA uses a signal conditioning unit that sends an electrical chirp to the accelerometer and recognizes changes in the response due to changes in the accelerometer health and attachment condition. In an effort toward demonstrating the SDAs flight worthiness and robustness, multiple SDAs were mounted and tested on a C-17 aircraft engine. The engine test conditions varied from engine off, to idle, to maximum power. The two SDA attachment conditions used were fully tight and loose. The newly developed SDA health algorithm described herein uses cross correlation pattern recognition to discriminate a healthy from a faulty SDA. The VIPR test results demonstrate for the first time the robustness of the SDA in an engine environment characterized by high vibration levels.

  14. Constructing an Efficient Self-Tuning Aircraft Engine Model for Control and Health Management Applications

    NASA Technical Reports Server (NTRS)

    Armstrong, Jeffrey B.; Simon, Donald L.

    2012-01-01

    Self-tuning aircraft engine models can be applied for control and health management applications. The self-tuning feature of these models minimizes the mismatch between any given engine and the underlying engineering model describing an engine family. This paper provides details of the construction of a self-tuning engine model centered on a piecewise linear Kalman filter design. Starting from a nonlinear transient aerothermal model, a piecewise linear representation is first extracted. The linearization procedure creates a database of trim vectors and state-space matrices that are subsequently scheduled for interpolation based on engine operating point. A series of steady-state Kalman gains can next be constructed from a reduced-order form of the piecewise linear model. Reduction of the piecewise linear model to an observable dimension with respect to available sensed engine measurements can be achieved using either a subset or an optimal linear combination of "health" parameters, which describe engine performance. The resulting piecewise linear Kalman filter is then implemented for faster-than-real-time processing of sensed engine measurements, generating outputs appropriate for trending engine performance, estimating both measured and unmeasured parameters for control purposes, and performing on-board gas-path fault diagnostics. Computational efficiency is achieved by designing multidimensional interpolation algorithms that exploit the shared scheduling of multiple trim vectors and system matrices. An example application illustrates the accuracy of a self-tuning piecewise linear Kalman filter model when applied to a nonlinear turbofan engine simulation. Additional discussions focus on the issue of transient response accuracy and the advantages of a piecewise linear Kalman filter in the context of validation and verification. The techniques described provide a framework for constructing efficient self-tuning aircraft engine models from complex nonlinear

  15. The Further Development of Heat-Resistant Materials for Aircraft Engines

    NASA Technical Reports Server (NTRS)

    Bollenrath, Franz

    1946-01-01

    The present report deals with the problems involved in the greater utilization and development of aircraft engine materials, and specifically; piston materials, cylinder heads, exhaust valves, and exhaust gas turbine blading. The blades of the exhaust gas turbine are likely to be the highest stressed components of modern power plants from a thermal-mechanical and chemical standpoint, even though the requirements on exhaust valves of engines with gasoline injection are in general no less stringent. For the fire plate in Diesel engines the specifications for mechanical strength and design are not so stringent, and the question of heat resistance, which under these circumstances is easier obtainable, predominates.

  16. Reduction of aircraft gas turbine engine pollutant emissions

    NASA Technical Reports Server (NTRS)

    Diehl, L. A.

    1978-01-01

    To accomplish simultaneous reduction of unburned hydrocarbons, carbon monoxide, and oxides of nitrogen, required major modifications to the combustor. The modification most commonly used was a staged combustion technique. While these designs are more complicated than production combustors, no insurmountable operational difficulties were encountered in either high pressure rig or engine tests which could not be resolved with additional normal development. The emission reduction results indicate that reductions in unburned hydrocarbons were sufficient to satisfy both near and far-termed EPA requirements. Although substantial reductions were observed, the success in achieving the CO and NOx standards was mixed and depended heavily on the engine/engine cycle on which it was employed. Technology for near term CO reduction was satisfactory or marginally satisfactory. Considerable doubt exists if this technology will satisfy all far-term requirements.

  17. Policy Options for the Aircraft Turbine Engine Component Improvement Program.

    DTIC Science & Technology

    1987-05-01

    should also investigate competing CIP tasks or functions within a CIP engine program ( FADEC fuel control for the F404 or accelerated mission testing...AH- I) Some. commercial coenhlp. pnmanly derived T55 (0,147) (tom military programs. Army discontinued CIP T63 (OHA6 OH-SI) for som older engines for...Army did not fund CIP and T55 (CH-47) company did proceed with improved commercial derivatives. T63 (OH-6, OH-58) T700 has CIP and also commercial

  18. Sensor Needs for Control and Health Management of Intelligent Aircraft Engines

    NASA Technical Reports Server (NTRS)

    Simon, Donald L.; Gang, Sanjay; Hunter, Gary W.; Guo, Ten-Huei; Semega, Kenneth J.

    2004-01-01

    NASA and the U.S. Department of Defense are conducting programs which support the future vision of "intelligent" aircraft engines for enhancing the affordability, performance, operability, safety, and reliability of aircraft propulsion systems. Intelligent engines will have advanced control and health management capabilities enabling these engines to be self-diagnostic, self-prognostic, and adaptive to optimize performance based upon the current condition of the engine or the current mission of the vehicle. Sensors are a critical technology necessary to enable the intelligent engine vision as they are relied upon to accurately collect the data required for engine control and health management. This paper reviews the anticipated sensor requirements to support the future vision of intelligent engines from a control and health management perspective. Propulsion control and health management technologies are discussed in the broad areas of active component controls, propulsion health management and distributed controls. In each of these three areas individual technologies will be described, input parameters necessary for control feedback or health management will be discussed, and sensor performance specifications for measuring these parameters will be summarized.

  19. Application of superalloy powder metallurgy for aircraft engines

    NASA Technical Reports Server (NTRS)

    Dreshfield, R. L.; Miner, R. V., Jr.

    1980-01-01

    The results of the Materials for Advanced Turbine Engines (MATE) program initiated by NASA are presented. Mechanical properties comparisons are made for superalloy parts produced by as-HIP powder consolidation and by forging of HIP consolidated billets. The effect of various defects on the mechanical properties of powder parts are shown.

  20. Results of the independent radiological verification survey at the former Associate Aircraft Tool and Manufacturing Company site, Fairfield, Ohio (FOH001)

    SciTech Connect

    Rice, D.E.; Murray, M.E.; Brown, K.S.

    1996-01-01

    The former Associate Aircraft Tool and Manufacturing Company site is located at 3550 Dixie Highway, Fairfield, Ohio. Associate Aircraft Tool and Manufacturing Company produced hollow uranium slugs in a machine shop at the site in 1956. The work was performed for National Lead of Ohio in a contract with the Atomic Energy Commission to augment the capacity of the Feed Materials Production Center at Fernald in the development of nuclear energy for defense-related projects. The current occupant of the building, Force Control, operates a multipurpose machine shop. At the request of the US Department of Energy (DOE), a team from Oak Ridge National Laboratory conducted an independent radiological verification survey at the former Associate Aircraft Tool and Manufacturing Company Site, Fairfield, Ohio. The survey was performed from February to May of 1995. The purpose of the survey was to verify that radioactivity from residues of {sup 238}U was remediated to a level below acceptable DOE guidelines levels.

  1. Use of the LITEE Lorn Manufacturing Case Study in a Senior Chemical Engineering Unit Operations Laboratory

    ERIC Educational Resources Information Center

    Abraham, Nithin Susan; Abulencia, James Patrick

    2011-01-01

    This study focuses on the effectiveness of incorporating the Laboratory for Innovative Technology and Engineering Education (LITEE) Lorn Manufacturing case into a senior level chemical engineering unit operations course at Manhattan College. The purpose of using the case study is to demonstrate the relevance of ethics to chemical engineering…

  2. Extractive sampling and optical remote sensing of F100 aircraft engine emissions.

    PubMed

    Cowen, Kenneth; Goodwin, Bradley; Joseph, Darrell; Tefend, Matthew; Satola, Jan; Kagann, Robert; Hashmonay, Ram; Spicer, Chester; Holdren, Michael; Mayfield, Howard

    2009-05-01

    The Strategic Environmental Research and Development Program (SERDP) has initiated several programs to develop and evaluate techniques to characterize emissions from military aircraft to meet increasingly stringent regulatory requirements. This paper describes the results of a recent field study using extractive and optical remote sensing (ORS) techniques to measure emissions from six F-15 fighter aircraft. Testing was performed between November 14 and 16, 2006 on the trim-pad facility at Tyndall Air Force Base in Panama City, FL. Measurements were made on eight different F100 engines, and the engines were tested on-wing of in-use aircraft. A total of 39 test runs were performed at engine power levels that ranged from idle to military power. The approach adopted for these tests involved extractive sampling with collocated ORS measurements at a distance of approximately 20-25 nozzle diameters downstream of the engine exit plane. The emission indices calculated for carbon dioxide, carbon monoxide, nitric oxide, and several volatile organic compounds showed very good agreement when comparing the extractive and ORS sampling methods.

  3. Combustion Dynamics and Control for Ultra Low Emissions in Aircraft Gas-Turbine Engines

    NASA Technical Reports Server (NTRS)

    DeLaat, John C.

    2011-01-01

    Future aircraft engines must provide ultra-low emissions and high efficiency at low cost while maintaining the reliability and operability of present day engines. The demands for increased performance and decreased emissions have resulted in advanced combustor designs that are critically dependent on efficient fuel/air mixing and lean operation. However, all combustors, but most notably lean-burning low-emissions combustors, are susceptible to combustion instabilities. These instabilities are typically caused by the interaction of the fluctuating heat release of the combustion process with naturally occurring acoustic resonances. These interactions can produce large pressure oscillations within the combustor and can reduce component life and potentially lead to premature mechanical failures. Active Combustion Control which consists of feedback-based control of the fuel-air mixing process can provide an approach to achieving acceptable combustor dynamic behavior while minimizing emissions, and thus can provide flexibility during the combustor design process. The NASA Glenn Active Combustion Control Technology activity aims to demonstrate active control in a realistic environment relevant to aircraft engines by providing experiments tied to aircraft gas turbine combustors. The intent is to allow the technology maturity of active combustion control to advance to eventual demonstration in an engine environment. Work at NASA Glenn has shown that active combustion control, utilizing advanced algorithms working through high frequency fuel actuation, can effectively suppress instabilities in a combustor which emulates the instabilities found in an aircraft gas turbine engine. Current efforts are aimed at extending these active control technologies to advanced ultra-low-emissions combustors such as those employing multi-point lean direct injection.

  4. Design and evaluation of combustors for reducing aircraft engine pollution

    NASA Technical Reports Server (NTRS)

    Jones, R. E.; Grobman, J.

    1973-01-01

    Efforts in reducing exhaust emissions from turbine engines are reported. Various techniques employed and the results of testing are briefly described and referenced for detail. The experimental approaches taken to reduce oxides of nitrogen emissions include the use of: (1) multizone combustors incorporating reduced dwell times, (2) fuel-air premixing, (3) air atomization, (4) fuel prevaporization, and (5) gaseous fuel. Since emissions of unburned hydrocarbons and carbon monoxide are caused by poor combustion efficiency at engine idle, the studies of fuel staging in multizone combustors and air assist fuel nozzles have indicated that large reductions in these emissions can be achieved. Also, the effect of inlet-air humidity on oxides of nitrogen was studied as well as the very effective technique of direct water injection. The emission characteristics of natural gas and propane fuels were measured and compared with those of ASTM-Al kerosene fuel.

  5. Life-Cycle Analysis of Aircraft Turbine Engines

    DTIC Science & Technology

    1977-11-01

    8217total dej’ot wind batse) costs , Theii other budget. ctcourbta, providted by vi’giite flintily (not, by application). include BPI&5)0, Suppor’t...acquire early visibility of cost magnitudes, proportions, and trends associated with a new engine’s life cycle, and to identify "drivers" that increase... cost and can have the effect of lowering capability. Later in the life cycle, logistics managers can use the methodology and the feedback it produces

  6. Project-Based Manufacturing Engineering Practice at Ibaraki University and Its Outcomes

    NASA Astrophysics Data System (ADS)

    Yamasaki, Kazuhiko; Wang, Dong F.; Maekawa, Katsuhiro

    The real world experience of manufacturing processes from an idea stage to a final product must be related to classroom lectures in mechanical engineering curriculum, including design, materials engineering, dynamics and control. Various challenges and difficulties encountered during the manufacturing engineering practice also let students recognize their creativity as well as what kinds of knowledge is missing. Awareness is the start of growth. In line with this principle we have carried out the mechanical engineering practice for 10 years. Some modifications toward “project-based practice” , however, have been made through manufacturing engineers’ real activities. Drawing and specification, process control, cost management, and role-sharing arrangement are stressed during the semester course. The present paper describes how it works and what is left to improve further, such as a refinement of themes and a coaching method for bringing out the hidden talent in students.

  7. Video-based cargo fire verification system with fuzzy inference engine for commercial aircraft

    NASA Astrophysics Data System (ADS)

    Sadok, Mokhtar; Zakrzewski, Radek; Zeliff, Bob

    2005-02-01

    Conventional smoke detection systems currently installed onboard aircraft are often subject to high rates of false alarms. Under current procedures, whenever an alarm is issued the pilot is obliged to release fire extinguishers and to divert to the nearest airport. Aircraft diversions are costly and dangerous in some situations. A reliable detection system that minimizes false-alarm rate and allows continuous monitoring of cargo compartments is highly desirable. A video-based system has been recently developed by Goodrich Corporation to address this problem. The Cargo Fire Verification System (CFVS) is a multi camera system designed to provide live stream video to the cockpit crew and to perform hotspot, fire, and smoke detection in aircraft cargo bays. In addition to video frames, the CFVS uses other sensor readings to discriminate between genuine events such as fire or smoke and nuisance alarms such as fog or dust. A Mamdani-type fuzzy inference engine is developed to provide approximate reasoning for decision making. In one implementation, Gaussian membership functions for frame intensity-based features, relative humidity, and temperature are constructed using experimental data to form the system inference engine. The CFVS performed better than conventional aircraft smoke detectors in all standardized tests.

  8. Computerized systems analysis and optimization of aircraft engine performance, weight, and life cycle costs

    NASA Technical Reports Server (NTRS)

    Fishbach, L. H.

    1979-01-01

    The paper describes the computational techniques employed in determining the optimal propulsion systems for future aircraft applications and to identify system tradeoffs and technology requirements. The computer programs used to perform calculations for all the factors that enter into the selection process of determining the optimum combinations of airplanes and engines are examined. Attention is given to the description of the computer codes including NNEP, WATE, LIFCYC, INSTAL, and POD DRG. A process is illustrated by which turbine engines can be evaluated as to fuel consumption, engine weight, cost and installation effects. Examples are shown as to the benefits of variable geometry and of the tradeoff between fuel burned and engine weights. Future plans for further improvements in the analytical modeling of engine systems are also described.

  9. A Preliminary Study of Fuel Injection and Compression Ignition as Applied to an Aircraft Engine Cylinder

    NASA Technical Reports Server (NTRS)

    Gardiner, Arthur W

    1927-01-01

    This report summarizes some results obtained with a single cylinder test engine at the Langley Field Laboratory during a preliminary investigation of the problem of applying fuel injection and compression ignition to aircraft engines. For this work a standard Liberty Engine cylinder was fitted with a high compression, 11.4 : 1 compression ratio, piston, and equipped with an airless injection system, including a primary fuel pump, an injection pump, and an automatic injection valve. The results obtained during this investigation have indicated the possibility of applying airless injection and compression ignition to a cylinder of this size, 8-inch bore by 7-inch stroke, when operating at engine speeds as high as 1,850 R. P. M. A minimum specific fuel consumption with diesel engine fuel oil of 0.30 pound per I. HP. Hour was obtained when developing about 16 B. HP. At 1,730 R. P. M.

  10. A Modular Aero-Propulsion System Simulation of a Large Commercial Aircraft Engine

    NASA Technical Reports Server (NTRS)

    DeCastro, Jonathan A.; Litt, Jonathan S.; Frederick, Dean K.

    2008-01-01

    A simulation of a commercial engine has been developed in a graphical environment to meet the increasing need across the controls and health management community for a common research and development platform. This paper describes the Commercial Modular Aero Propulsion System Simulation (C-MAPSS), which is representative of a 90,000-lb thrust class two spool, high bypass ratio commercial turbofan engine. A control law resembling the state-of-the-art on board modern aircraft engines is included, consisting of a fan-speed control loop supplemented by relevant engine limit protection regulator loops. The objective of this paper is to provide a top-down overview of the complete engine simulation package.

  11. Effects of Induction-System Icing on Aircraft-Engine Operating Characteristics

    NASA Technical Reports Server (NTRS)

    Stevens, Howard C., Jr.

    1947-01-01

    An investigation was conducted on a multicylinder aircraft engine on a dynamometer stand to determine the effect of induction-system icing on engine operating characteristics and to compare the results with those of a previous laboratory investigation in which only the carburetor and the engine-stage supercharger assembly from the engine were used. The experiments were conducted at simulated glide power, low cruise power, and normal rated power through a range of humidity ratios and air temperatures at approximately sea-level pressure. Induction-system icing was found to occur within approximately the same limits as those established by the previous laboratory investigation after making suitable allowances for the difference in fuel volatility and throttle angles. Rough operation of the engine was experienced when ice caused a marked reduction in the air flow. Photographs of typical ice formations from this investigation indicate close similarity to icing previously observed in the laboratory.

  12. Hybrid Neural-Network: Genetic Algorithm Technique for Aircraft Engine Performance Diagnostics Developed and Demonstrated

    NASA Technical Reports Server (NTRS)

    Kobayashi, Takahisa; Simon, Donald L.

    2002-01-01

    As part of the NASA Aviation Safety Program, a unique model-based diagnostics method that employs neural networks and genetic algorithms for aircraft engine performance diagnostics has been developed and demonstrated at the NASA Glenn Research Center against a nonlinear gas turbine engine model. Neural networks are applied to estimate the internal health condition of the engine, and genetic algorithms are used for sensor fault detection, isolation, and quantification. This hybrid architecture combines the excellent nonlinear estimation capabilities of neural networks with the capability to rank the likelihood of various faults given a specific sensor suite signature. The method requires a significantly smaller data training set than a neural network approach alone does, and it performs the combined engine health monitoring objectives of performance diagnostics and sensor fault detection and isolation in the presence of nominal and degraded engine health conditions.

  13. Advanced composite rudders for DC-10 aircraft: Design, manufacturing, and ground tests

    NASA Technical Reports Server (NTRS)

    Lehman, G. M.; Purdy, D. M.; Cominsky, A.; Hawley, A. V.; Amason, M. P.; Kung, J. T.; Palmer, R. J.; Purves, N. B.; Marra, P. J.; Hancock, G. R.

    1976-01-01

    Design synthesis, tooling and process development, manufacturing, and ground testing of a graphite epoxy rudder for the DC-10 commercial transport are discussed. The composite structure was fabricated using a unique processing method in which the thermal expansion characteristics of rubber tooling mandrels were used to generate curing pressures during an oven cure cycle. The ground test program resulted in certification of the rudder for passenger-carrying flights. Results of the structural and environmental tests are interpreted and detailed development of the rubber tooling and manufacturing process is described. Processing, tooling, and manufacturing problems encountered during fabrication of four development rudders and ten flight-service rudders are discussed and the results of corrective actions are described. Non-recurring and recurring manufacturing labor man-hours are tabulated at the detailed operation level. A weight reduction of 13.58 kg (33 percent) was attained in the composite rudder.

  14. Engine Company Evaluation of Feasibility of Aircraft Retrofit Water-Injected Turbomachines

    NASA Technical Reports Server (NTRS)

    Becker, Arthur

    2006-01-01

    This study supports the NASA Glenn Research Center and the U.S. Air Force Research Laboratory in their efforts to evaluate the effect of water injection on aircraft engine performance and emissions. In this study, water is only injected during the takeoff and initial climb phase of a flight. There is no water injection during engine start or ground operations, nor during climb, cruise, descent, or landing. This study determined the maintenance benefit of water injection during takeoff and initial climb and evaluated the feasibility of retrofitting a current production engine, the PW4062 (Pratt & Whitney, East Hartford, CT), with a water injection system. Predicted NO(x) emissions based on a 1:1 water-tofuel ratio are likely to be reduced between 30 to 60 percent in Environmental Protection Agency parameter (EPAP). The maintenance cost benefit for an idealized combustor water injection system installed on a PW4062 engine in a Boeing 747-400ER aircraft (The Boeing Company, Chicago, IL) is computed to be $22 per engine flight hour (EFH). Adding water injection as a retrofit kit would cost up to $375,000 per engine because of the required modifications to the fuel system and addition of the water supply system. There would also be significant nonrecurring costs associated with the development and certification of the system that may drive the system price beyond affordability.

  15. Manufacturing in Mechanical Engineering Education in Developing Countries.

    ERIC Educational Resources Information Center

    Peters, J.

    1989-01-01

    Discusses four problems which concern engineering education in developing countries: (1) less value of handiwork; (2) lack of industrial culture; (3) low salary of faculty; and (4) cultural distortions. Describes three successful cases in Indonesia and Thailand. (YP)

  16. Aircraft Engine Noise Research and Testing at the NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Elliott, Dave

    2015-01-01

    The presentation will begin with a brief introduction to the NASA Glenn Research Center as well as an overview of how aircraft engine noise research fits within the organization. Some of the NASA programs and projects with noise content will be covered along with the associated goals of aircraft noise reduction. Topics covered within the noise research being presented will include noise prediction versus experimental results, along with engine fan, jet, and core noise. Details of the acoustic research conducted at NASA Glenn will include the test facilities available, recent test hardware, and data acquisition and analysis methods. Lastly some of the actual noise reduction methods investigated along with their results will be shown.

  17. Engine Yaw Augmentation for Hybrid-Wing-Body Aircraft via Optimal Control Allocation Techniques

    NASA Technical Reports Server (NTRS)

    Taylor, Brian R.; Yoo, Seung-Yeun

    2011-01-01

    Asymmetric engine thrust was implemented in a hybrid-wing-body non-linear simulation to reduce the amount of aerodynamic surface deflection required for yaw stability and control. Hybrid-wing-body aircraft are especially susceptible to yaw surface deflection due to their decreased bare airframe yaw stability resulting from the lack of a large vertical tail aft of the center of gravity. Reduced surface deflection, especially for trim during cruise flight, could reduce the fuel consumption of future aircraft. Designed as an add-on, optimal control allocation techniques were used to create a control law that tracks total thrust and yaw moment commands with an emphasis on not degrading the baseline system. Implementation of engine yaw augmentation is shown and feasibility is demonstrated in simulation with a potential drag reduction of 2 to 4 percent. Future flight tests are planned to demonstrate feasibility in a flight environment.

  18. Performance, emissions, and physical characteristics of a rotating combustion aircraft engine

    NASA Technical Reports Server (NTRS)

    Berkowitz, M.; Hermes, W. L.; Mount, R. E.; Myers, D.

    1976-01-01

    The RC2-75, a liquid cooled two chamber rotary combustion engine (Wankel type), designed for aircraft use, was tested and representative baseline (212 KW, 285 BHP) performance and emissions characteristics established. The testing included running fuel/air mixture control curves and varied ignition timing to permit selection of desirable and practical settings for running wide open throttle curves, propeller load curves, variable manifold pressure curves covering cruise conditions, and EPA cycle operating points. Performance and emissions data were recorded for all of the points run. In addition to the test data, information required to characterize the engine and evaluate its performance in aircraft use is provided over a range from one half to twice its present power. The exhaust emissions results are compared to the 1980 EPA requirements. Standard day take-off brake specific fuel consumption is 356 g/KW-HR (.585 lb/BHP-HR) for the configuration tested.

  19. Status review of NASA programs for reducing aircraft gas turbine engine emissions

    NASA Technical Reports Server (NTRS)

    Rudey, R. A.

    1976-01-01

    The paper describes and discusses the results from some of the research and development programs for reducing aircraft gas turbine engine emissions. Although the paper concentrates on NASA programs only, work supported by other U.S. government agencies and industry has provided considerable data on low emission advanced technology for aircraft gas turbine engine combustors. The results from the two major NASA technology development programs, the ECCP (Experimental Clean Combustor Program) and the PRTP (Pollution Reduction Technology Program), are presented and compared with the requirements of the 1979 U.S. EPA standards. Emission reduction techniques currently being evaluated in these programs are described along with the results and a qualitative assessment of development difficulty.

  20. Statistics on Aircraft Gas Turbine Engine Rotor Failures That Occurred in U.S. Commercial Aviation During 1984

    DTIC Science & Technology

    1989-06-01

    Accession No. 3 . Recipient s Cetlog No. DOT/FMA/CT-89/6 4. Tile nd Subtitle S. Report 06. STATISTICS ON AIRCRAFT GAS TURBINE ENGINE ROTOR June 1989...Special / iii TABLE OF CONTENTS Page EXECUTIVE SUMMARY vii INTRODUCTION 1 RESULTS 2 DISCUSSION AND CONCLUSIONS 3 APPENDIX A - Data of Engine Rotor...Incidence of Engine Rotor Failures in U.S. Commercial 6 Aviation According to Affected Engine Model and Engine Fleet Hours - 1984 3 Component and

  1. Engine Systems Ownership Cost Reduction - Aircraft Propulsion Subsystems Integration (APSI)

    DTIC Science & Technology

    1975-08-01

    Counter-Rotating Shafts 101 4.2.11-1 Welded LP Turbine Assembly 103 4.2.12-1 Typical Cooled Turbine Blade Schematic Illustrating Jet Flap Airflow 105...the need to iterate and test sensitivity, will re- quire a computer capability. Based on these criteria, a hierarchial no- tation scheme, was assembled ...one engine "cost group" are listed in the DTC worksheet of Figure 2.2.3-1\\c). These DTC "Cost Group" worksheets are then assembled and used to produce

  2. A Study on Aircraft Structure and Jet Engine

    NASA Astrophysics Data System (ADS)

    Park, Gil Moon; Park, Hwan Kyu; Kim, Jong Il; Kim, Jin Won; Kim, Jin Heung; Lee, Moo Seok; Chung, Nak Kyu

    1985-12-01

    The one of critical factor in gas turbine engine performance is high turbine inlet gas temperature. Therefore, the turbine rotor has so many problems which must be considered such as the turbine blade cooling, thermal stress of turbine disk due to severe temperature gradient, turbine rotor tip clearance, under the high operation temperature. The purpose of this study is to provide the temperature distribution and heat flux in turbine disk which is required to considered premensioned problem by the Finite Difference Method and the Finite Element Methods on the steady state condition.

  3. Performance Characteristics of an Aircraft Engine with Exhaust Turbine Supercharger

    DTIC Science & Technology

    1941-05-01

    installation of’the ex- haust turbine supercha~ger. The two piston rods at oppb- si t e ends of the s e r vo c~rl iuder ware connect a d to the aut 0... crankshaft through multispeed gears. INTRODUCTION It is the function of superchargers in general to aug- Dent the porforcance of an internal-combustion engine...to the arbitrary design limit of the turbine and blower combination, the unit should be capable of main- taining approximate12r sea-level operating

  4. The FEM simulation of the thin walled aircraft engine corpus deformation during milling

    NASA Astrophysics Data System (ADS)

    Matras, A.; Plaza, M.

    2016-09-01

    This paper discusses the results of the experimental research performed with the support of finite element method. The deformation of the thin walled aircraft engine corpus was analyzed based on a geometric model. Then, the boundary of the outer side of the part was loaded by the components of a cutting force during milling. The material model of the part was also defined in the simulation software. The analysis allowed to optimize feed rate in order to decrease the deformation of the part.

  5. An experimental evaluation of the performance deficit of an aircraft engine starter turbine

    NASA Technical Reports Server (NTRS)

    Hass, J. E.; Roelke, R. J.; Hermann, P.

    1980-01-01

    An experimental investigation was made to determine the reasons for the low aerodynamic performance of a 13.5 centimeter tip diameter aircraft engine starter turbine. The investigation consisted of an evaluation of both the stator and the stage. An approximate ten percent improvement in turbine efficiency was obtained when the honeycomb shroud over the rotor blade tips was filled to obtain a solid shroud surface.

  6. Field Tests of a Laser Raman Measurement System for Aircraft Engine Exhaust Emissions

    DTIC Science & Technology

    1974-10-01

    practical one. The advantages of optical exhaust gas measurements versus probing systems has been demonstrated. It now remains to solve the remaining...Raman system NOVA digital data processor has the capability to service such additional measurements. If velocity information is desired a study should be...AD/A-003 648 FIELD TESTS OF A LASER RAMAN MEASURE- MENT SYSTEM FOR AIRCRAFT ENGINE EXHAUST EMISSIONS Donald A. Leunard Avoo Everett Researoh

  7. Identification of Spey engine dynamics in the augmentor wing jet STOL research aircraft from flight data

    NASA Technical Reports Server (NTRS)

    Dehoff, R. L.; Reed, W. B.; Trankle, T. L.

    1977-01-01

    The development and validation of a spey engine model is described. An analysis of the dynamical interactions involved in the propulsion unit is presented. The model was reduced to contain only significant effects, and was used, in conjunction with flight data obtained from an augmentor wing jet STOL research aircraft, to develop initial estimates of parameters in the system. The theoretical background employed in estimating the parameters is outlined. The software package developed for processing the flight data is described. Results are summarized.

  8. Early engineering approaches to improve peptide developability and manufacturability.

    PubMed

    Furman, Jennifer L; Chiu, Mark; Hunter, Michael J

    2015-01-01

    Downstream success in Pharmaceutical Development requires thoughtful molecule design early in the lifetime of any potential therapeutic. Most therapeutic monoclonal antibodies are quite similar with respect to their developability properties. However, the properties of therapeutic peptides tend to be as diverse as the molecules themselves. Analysis of the primary sequence reveals sites of potential adverse posttranslational modifications including asparagine deamidation, aspartic acid isomerization, methionine, tryptophan, and cysteine oxidation and, potentially, chemical and proteolytic degradation liabilities that can impact the developability and manufacturability of a potential therapeutic peptide. Assessing these liabilities, both biophysically and functionally, early in a molecule's lifetime can drive a more effective path forward in the drug discovery process. In addition to these potential liabilities, more complex peptides that contain multiple disulfide bonds can pose particular challenges with respect to production and manufacturability. Approaches to reducing the disulfide bond complexity of these peptides are often explored with mixed success. Proteolytic degradation is a major contributor to decreased half-life and efficacy. Addressing this aspect of peptide stability early in the discovery process increases downstream success. We will address aspects of peptide sequence analysis, molecule complexity, developability analysis, and manufacturing routes that drive the decision making processes during peptide therapeutic development.

  9. High temperature aircraft turbine engine bearing and lubrication system development

    SciTech Connect

    Grant, D.H.; Chin, H.A.; Klenke, C.; Galbato, A.T.; Ragen, M.A.; Spitzer, R.F.

    1998-12-31

    Results are reported for a project sponsored by the US Air Force Wright Laboratories. The major emphasis of this project was the evaluation of bearing materials with improved corrosion resistance, high hot hardness, and high fracture toughness, intended to meet the requirements of the Integrated High Performance Turbine Engine Technologies (IHPTET) Phase 2 engine. The project included material property studies on candidate bearing materials and lubricants which formed the selection basis for subscale and full-scale bearing rig verification tests. The carburizing stainless steel alloy Pyrowear 675 demonstrated significant fatigue life, fracture toughness, and corrosion resistance improvements relative to the M50 NiL baseline bearing material. The new Skylube 2 (MCS-2482) lubricant provided significant thermal degradation improvements with respect to the Skylube 600 (PWA-524, MIL-L-87100) lubricant. Two 130 mm bore Pyrowear 675 hybrid ball bearings with silicon nitride balls were run successfully for 231 hours with Skylube 2 lubricant at temperatures consistent with IHPTET 2 requirements.

  10. Characterization and manufacture of braided composites for large commercial aircraft structures

    NASA Technical Reports Server (NTRS)

    Fedro, Mark J.; Willden, Kurtis

    1992-01-01

    Braided composite materials, one of the advanced material forms which is under investigation in Boeing's ATCAS program, have been recognized as a potential cost-effective material form for fuselage structural elements. Consequently, there is a strong need for more knowledge in the design, manufacture, test, and analysis of textile structural composites. The overall objective of this work is to advance braided composite technology towards applications to a large commercial transport fuselage. This paper summarizes the mechanics of materials and manufacturing demonstration results which have been obtained in order to acquire an understanding of how braided composites can be applied to a commercial fuselage. Textile composites consisting of 1D, 2D triaxial, and 3D braid patterns with thermoplastic and two RTM resin systems were investigated. The structural performance of braided composites was evaluated through an extensive mechanical test program. Analytical methods were also developed and applied to predict the following: internal fiber architectures, stiffnesses, fiber stresses, failure mechanisms, notch effects, and the entire history of failure of the braided composites specimens. The applicability of braided composites to a commercial transport fuselage was further assessed through a manufacturing demonstration. Three foot fuselage circumferential hoop frames were manufactured to demonstrate the feasibility of consistently producing high quality braided/RTM composite primary structures. The manufacturing issues (tooling requirements, processing requirements, and process/quality control) addressed during the demonstration are summarized. The manufacturing demonstration in conjunction with the mechanical test results and developed analytical methods increased the confidence in the ATCAS approach to the design, manufacture, test, and analysis of braided composites.

  11. A personal sampler for aircraft engine cold start particles: laboratory development and testing.

    PubMed

    Armendariz, Alfredo; Leith, David

    2003-01-01

    Industrial hygienists in the U.S. Air Force are concerned about exposure of their personnel to jet fuel. One potential source of exposure for flightline ground crews is the plume emitted during the start of aircraft engines in extremely cold weather. The purpose of this study was to investigate a personal sampler, a small tube-and-wire electrostatic precipitator (ESP), for assessing exposure to aircraft engine cold start particles. Tests were performed in the laboratory to characterize the sampler's collection efficiency and to determine the magnitude of adsorption and evaporation artifacts. A low-temperature chamber was developed for the artifact experiments so tests could be performed at temperatures similar to actual field conditions. The ESP collected particles from 0.5 to 20 micro m diameter with greater than 98% efficiency at particle concentrations up to 100 mg/m(3). Adsorption artifacts were less than 5 micro g/m(3) when sampling a high concentration vapor stream. Evaporation artifacts were significantly lower for the ESP than for PVC membrane filters across a range of sampling times and incoming vapor concentrations. These tests indicate that the ESP provides more accurate exposure assessment results than traditional filter-based particle samplers when sampling cold start particles produced by an aircraft engine.

  12. Aircraft Turbine Engine Monitoring Experience: An Overview and Lessons Learned from Selected Case Studies.

    DTIC Science & Technology

    1980-08-01

    Engines DMMH/FH 1.12 0.80 Removal rate/1000 hr 1.74 1.85 The OPTEVFOR analysis was limited on several counts: (1) The evaluation failed to consider or...investigate aircraft turbine engine monitoring experience. Conducted under the Project AIR FORCE project, "Methods and Applications of Life-Cycle Analysis for...for hot-section parts; o Hot-section parts vary in age and accumulated creep ; o Other failure modes (low cycle fatigue , thermal shock, etc.) were

  13. Advanced Methods for Acoustic and Thrust Benefits for Aircraft Engine Nozzles

    NASA Technical Reports Server (NTRS)

    Morgan, Morris H., III; Gilinsky, Mikhail M.

    2000-01-01

    The Fluid Mechanics and Acoustics Laboratory (FM&AL) was established At Hampton University in June of 1996. In addition, the FM&AL jointly conducted research with the Central AeroHydrodynamics Institute (TsAGI, Moscow) in Russia under a 2.5 year Civilian Research and Development Foundation (CRDF). The goals of the FM&AL programs are two fold: 1) to improve the working efficiency of the FM&AL team in generating new innovative ideas and in conducting research in the field of fluid dynamics and acoustics, basically for improvement of supersonic and subsonic aircraft engines, and 2) to attract promising minority students to this research and training and, in cooperation with other HU departments, to teach them basic knowledge in Aerodynamics, Gas Dynamics, and Theoretical and Experimental Methods in Aeroacoustics and Computational Fluid Dynamics (CFD). The research at the FM&AL supports reduction schemes associated with the emission of engine pollutants for commercial aircraft and concepts for reduction of observables for military aircraft. These research endeavors relate to the goals of the NASA Strategic Enterprise in Aeronautics concerning the development of environmentally acceptable aircraft. It is in this precise area, where the US aircraft industry, academia, and Government are in great need of trained professionals and which is a high priority goal of the Minority University Research and Education (MUREP) Program, that the HU FM&AL can make its most important contribution. This project already benefits NASA and HU because: First, the innovation, testing, and further development of new techniques for advanced propulsion systems are necessary for the successful attainment of the NASA Long Term Goals in Aeronautics and Space Transportation Technology (ASTT) including Global Civil Aviation, Revolutionary Technology Leaps, Access to Space, R&D Services, and the economic competitiveness of the US Aircraft Industry in the 2 1 st century. Secondly, the joint

  14. Engine Lubricant

    NASA Technical Reports Server (NTRS)

    1993-01-01

    PS 212, a plasma-sprayed coating developed by NASA, is used to coat valves in a new rotorcam engine. The coating eliminates the need for a liquid lubricant in the rotorcam, which has no crankshaft, flywheel, distributor or water pump. Developed by Murray United Development Corporation, it is a rotary engine only 10 inches long with four cylinders radiating outward from a central axle. Company officials say the engine will be lighter, more compact and cheaper to manufacture than current engines and will feature cleaner exhaust emissions. A licensing arrangement with a manufacturer is under negotiation. Primary applications are for automobiles, but the engine may also be used in light aircraft.

  15. Aircraft Turbofan Engine Health Estimation Using Constrained Kalman Filtering

    NASA Technical Reports Server (NTRS)

    Simon, Dan; Simon, Donald L.

    2003-01-01

    Kalman filters are often used to estimate the state variables of a dynamic system. However, in the application of Kalman filters some known signal information is often either ignored or dealt with heuristically. For instance, state variable constraints (which may be based on physical considerations) are often neglected because they do not fit easily into the structure of the Kalman filter. This paper develops an analytic method of incorporating state variable inequality constraints in the Kalman filter. The resultant filter is a combination of a standard Kalman filter and a quadratic programming problem. The incorporation of state variable constraints increases the computational effort of the filter but significantly improves its estimation accuracy. The improvement is proven theoretically and shown via simulation results obtained from application to a turbofan engine model. This model contains 16 state variables, 12 measurements, and 8 component health parameters. It is shown that the new algorithms provide improved performance in this example over unconstrained Kalman filtering.

  16. 41 CFR 102-36.340 - What must we do when disposing of excess aircraft?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... information on the SF 120: (1) Manufacturer, date of manufacture, model, serial number. (2) Major components missing from the aircraft, such as engines, electronics. (3) Whether or not the: (i) Aircraft is operational; (ii) Data plate is available; (iii) Historical and maintenance records are available;...

  17. Proceedings of the Annual Tri-Service Meeting for Aircraft Engine Monitoring and Diagnostics (7th) Held on 5-7 December 1978, at Arnold Engineering Development Center, Arnold AFS, Tennessee

    DTIC Science & Technology

    1979-07-01

    Annual Tri-Service meeting on Aircraft Engine Monitoring and Diagnostics held last fall. 2. For all turbojet and turbofan engines , low cycle fatigue...7 December 1978. Each presentation contains an over-, view of the results and conclusions of the aircraft turbine engine diagnostic efforts that have... AIRCRAFT ENGINE 2-41 MONITORING AND DIAGNOSTIC MEETING T-38 EHMS UPDATE 2-43 A-10 TURBINE ENGINE EVALUATION (TEMS) 2-47 USAF TERMINOLOGY FOR SCORING

  18. Lightweight two-stroke cycle aircraft diesel engine technology enablement program, volume 1

    NASA Technical Reports Server (NTRS)

    Freen, P. D.; Berenyi, S. G.; Brouwers, A. P.; Moynihan, M. E.

    1985-01-01

    An experimental Single Cylinder Test Engine Program is conducted to confirm the analytically projected performance of a two-stroke cycle diesel engine for aircraft applications. The test engine delivered 78kW indicated power from 1007cc displacement, operating at 3500 RPM on Schnuerle loop scavenged two-stroke cycle. Testing confirms the ability of a proposed 4-cylinder version of such an engine to reach the target power at altitude, in a highly turbocharged configuration. The experimental program defines all necessary parameters to permit design of a multicylinder engine for eventual flight applications; including injection system requirement, turbocharging, heat rejection, breathing, scavenging, and structural requirements. The multicylinder engine concept is configured to operate with an augmented turbocharger, but with no primary scavenge blower. The test program is oriented to provide a balanced turbocharger compressor to turbine power balance without an auxiliary scavenging system. Engine cylinder heat rejection to the ambient air has been significantly reduced and the minimum overall turbocharger efficiency required is within the range of commercially available turbochargers. Analytical studies and finite element modeling is made of insulated configurations of the engines - including both ceramic and metallic versions. A second generation test engine is designed based on current test results.

  19. Hybrid Kalman Filter: A New Approach for Aircraft Engine In-Flight Diagnostics

    NASA Technical Reports Server (NTRS)

    Kobayashi, Takahisa; Simon, Donald L.

    2006-01-01

    In this paper, a uniquely structured Kalman filter is developed for its application to in-flight diagnostics of aircraft gas turbine engines. The Kalman filter is a hybrid of a nonlinear on-board engine model (OBEM) and piecewise linear models. The utilization of the nonlinear OBEM allows the reference health baseline of the in-flight diagnostic system to be updated to the degraded health condition of the engines through a relatively simple process. Through this health baseline update, the effectiveness of the in-flight diagnostic algorithm can be maintained as the health of the engine degrades over time. Another significant aspect of the hybrid Kalman filter methodology is its capability to take advantage of conventional linear and nonlinear Kalman filter approaches. Based on the hybrid Kalman filter, an in-flight fault detection system is developed, and its diagnostic capability is evaluated in a simulation environment. Through the evaluation, the suitability of the hybrid Kalman filter technique for aircraft engine in-flight diagnostics is demonstrated.

  20. A Systematic Approach to Sensor Selection for Aircraft Engine Health Estimation

    NASA Technical Reports Server (NTRS)

    Simon, Donald L.; Garg, Sanjay

    2009-01-01

    A systematic approach for selecting an optimal suite of sensors for on-board aircraft gas turbine engine health estimation is presented. The methodology optimally chooses the engine sensor suite and the model tuning parameter vector to minimize the Kalman filter mean squared estimation error in the engine s health parameters or other unmeasured engine outputs. This technique specifically addresses the underdetermined estimation problem where there are more unknown system health parameters representing degradation than available sensor measurements. This paper presents the theoretical estimation error equations, and describes the optimization approach that is applied to select the sensors and model tuning parameters to minimize these errors. Two different model tuning parameter vector selection approaches are evaluated: the conventional approach of selecting a subset of health parameters to serve as the tuning parameters, and an alternative approach that selects tuning parameters as a linear combination of all health parameters. Results from the application of the technique to an aircraft engine simulation are presented, and compared to those from an alternative sensor selection strategy.

  1. A Fully Non-Metallic Gas Turbine Engine Enabled by Additive Manufacturing

    NASA Technical Reports Server (NTRS)

    Grady, Joseph E.

    2015-01-01

    The Non-Metallic Gas Turbine Engine project, funded by NASA Aeronautics Research Institute, represents the first comprehensive evaluation of emerging materials and manufacturing technologies that will enable fully nonmetallic gas turbine engines. This will be achieved by assessing the feasibility of using additive manufacturing technologies to fabricate polymer matrix composite and ceramic matrix composite turbine engine components. The benefits include: 50 weight reduction compared to metallic parts, reduced manufacturing costs, reduced part count and rapid design iterations. Two high payoff metallic components have been identified for replacement with PMCs and will be fabricated using fused deposition modeling (FDM) with high temperature polymer filaments. The CMC effort uses a binder jet process to fabricate silicon carbide test coupons and demonstration articles. Microstructural analysis and mechanical testing will be conducted on the PMC and CMC materials. System studies will assess the benefits of fully nonmetallic gas turbine engine in terms of fuel burn, emissions, reduction of part count, and cost. The research project includes a multidisciplinary, multiorganization NASA - industry team that includes experts in ceramic materials and CMCs, polymers and PMCs, structural engineering, additive manufacturing, engine design and analysis, and system analysis.

  2. Interactive, Secure Web-enabled Aircraft Engine Simulation Using XML Databinding Integration

    NASA Technical Reports Server (NTRS)

    Lin, Risheng; Afjeh, Abdollah A.

    2003-01-01

    This paper discusses the detailed design of an XML databinding framework for aircraft engine simulation. The framework provides an object interface to access and use engine data. while at the same time preserving the meaning of the original data. The Language independent representation of engine component data enables users to move around XML data using HTTP through disparate networks. The application of this framework is demonstrated via a web-based turbofan propulsion system simulation using the World Wide Web (WWW). A Java Servlet based web component architecture is used for rendering XML engine data into HTML format and dealing with input events from the user, which allows users to interact with simulation data from a web browser. The simulation data can also be saved to a local disk for archiving or to restart the simulation at a later time.

  3. Implementation of an Integrated On-Board Aircraft Engine Diagnostic Architecture

    NASA Technical Reports Server (NTRS)

    Armstrong, Jeffrey B.; Simon, Donald L.

    2012-01-01

    An on-board diagnostic architecture for aircraft turbofan engine performance trending, parameter estimation, and gas-path fault detection and isolation has been developed and evaluated in a simulation environment. The architecture incorporates two independent models: a realtime self-tuning performance model providing parameter estimates and a performance baseline model for diagnostic purposes reflecting long-term engine degradation trends. This architecture was evaluated using flight profiles generated from a nonlinear model with realistic fleet engine health degradation distributions and sensor noise. The architecture was found to produce acceptable estimates of engine health and unmeasured parameters, and the integrated diagnostic algorithms were able to perform correct fault isolation in approximately 70 percent of the tested cases

  4. A summary of computational experience at GE Aircraft Engines for complex turbulent flows in gas turbines

    NASA Technical Reports Server (NTRS)

    Zerkle, Ronald D.; Prakash, Chander

    1995-01-01

    This viewgraph presentation summarizes some CFD experience at GE Aircraft Engines for flows in the primary gaspath of a gas turbine engine and in turbine blade cooling passages. It is concluded that application of the standard k-epsilon turbulence model with wall functions is not adequate for accurate CFD simulation of aerodynamic performance and heat transfer in the primary gas path of a gas turbine engine. New models are required in the near-wall region which include more physics than wall functions. The two-layer modeling approach appears attractive because of its computational complexity. In addition, improved CFD simulation of film cooling and turbine blade internal cooling passages will require anisotropic turbulence models. New turbulence models must be practical in order to have a significant impact on the engine design process. A coordinated turbulence modeling effort between NASA centers would be beneficial to the gas turbine industry.

  5. Application of a Bank of Kalman Filters for Aircraft Engine Fault Diagnostics

    NASA Technical Reports Server (NTRS)

    Kobayashi, Takahisa; Simon, Donald L.

    2003-01-01

    In this paper, a bank of Kalman filters is applied to aircraft gas turbine engine sensor and actuator fault detection and isolation (FDI) in conjunction with the detection of component faults. This approach uses multiple Kalman filters, each of which is designed for detecting a specific sensor or actuator fault. In the event that a fault does occur, all filters except the one using the correct hypothesis will produce large estimation errors, thereby isolating the specific fault. In the meantime, a set of parameters that indicate engine component performance is estimated for the detection of abrupt degradation. The proposed FDI approach is applied to a nonlinear engine simulation at nominal and aged conditions, and the evaluation results for various engine faults at cruise operating conditions are given. The ability of the proposed approach to reliably detect and isolate sensor and actuator faults is demonstrated.

  6. New technique for the direct measurement of core noise from aircraft engines

    NASA Technical Reports Server (NTRS)

    Krejsa, E. A.

    1981-01-01

    A new technique is presented for directly measuring the core noise levels from gas turbine aircraft engines. The technique requires that fluctuating pressures be measured in the far-field and at two locations within the engine core. The cross-spectra of these measurements are used to determine the levels of the far-field noise that propagated from the engine core. The technique makes it possible to measure core noise levels even when other noise sources dominate. The technique was applied to signals measured from an AVCO Lycoming YF102 turbofan engine. Core noise levels as a function of frequency and radiation angle were measured and are presented over a range of power settings.

  7. A Fully Non-metallic Gas Turbine Engine Enabled by Additive Manufacturing

    NASA Technical Reports Server (NTRS)

    Grady, Joseph E.

    2014-01-01

    The Non-Metallic Gas Turbine Engine project, funded by NASA Aeronautics Research Institute (NARI), represents the first comprehensive evaluation of emerging materials and manufacturing technologies that will enable fully nonmetallic gas turbine engines. This will be achieved by assessing the feasibility of using additive manufacturing technologies for fabricating polymer matrix composite (PMC) and ceramic matrix composite (CMC) gas turbine engine components. The benefits of the proposed effort include: 50 weight reduction compared to metallic parts, reduced manufacturing costs due to less machining and no tooling requirements, reduced part count due to net shape single component fabrication, and rapid design change and production iterations. Two high payoff metallic components have been identified for replacement with PMCs and will be fabricated using fused deposition modeling (FDM) with high temperature capable polymer filaments. The first component is an acoustic panel treatment with a honeycomb structure with an integrated back sheet and perforated front sheet. The second component is a compressor inlet guide vane. The CMC effort, which is starting at a lower technology readiness level, will use a binder jet process to fabricate silicon carbide test coupons and demonstration articles. The polymer and ceramic additive manufacturing efforts will advance from monolithic materials toward silicon carbide and carbon fiber reinforced composites for improved properties. Microstructural analysis and mechanical testing will be conducted on the PMC and CMC materials. System studies will assess the benefits of fully nonmetallic gas turbine engine in terms of fuel burn, emissions, reduction of part count, and cost. The proposed effort will be focused on a small 7000 lbf gas turbine engine. However, the concepts are equally applicable to large gas turbine engines. The proposed effort includes a multidisciplinary, multiorganization NASA - industry team that includes experts in

  8. A Systematic Approach for Model-Based Aircraft Engine Performance Estimation

    NASA Technical Reports Server (NTRS)

    Simon, Donald L.; Garg, Sanjay

    2010-01-01

    A requirement for effective aircraft engine performance estimation is the ability to account for engine degradation, generally described in terms of unmeasurable health parameters such as efficiencies and flow capacities related to each major engine module. This paper presents a linear point design methodology for minimizing the degradation-induced error in model-based aircraft engine performance estimation applications. The technique specifically focuses on the underdetermined estimation problem, where there are more unknown health parameters than available sensor measurements. A condition for Kalman filter-based estimation is that the number of health parameters estimated cannot exceed the number of sensed measurements. In this paper, the estimated health parameter vector will be replaced by a reduced order tuner vector whose dimension is equivalent to the sensed measurement vector. The reduced order tuner vector is systematically selected to minimize the theoretical mean squared estimation error of a maximum a posteriori estimator formulation. This paper derives theoretical estimation errors at steady-state operating conditions, and presents the tuner selection routine applied to minimize these values. Results from the application of the technique to an aircraft engine simulation are presented and compared to the estimation accuracy achieved through conventional maximum a posteriori and Kalman filter estimation approaches. Maximum a posteriori estimation results demonstrate that reduced order tuning parameter vectors can be found that approximate the accuracy of estimating all health parameters directly. Kalman filter estimation results based on the same reduced order tuning parameter vectors demonstrate that significantly improved estimation accuracy can be achieved over the conventional approach of selecting a subset of health parameters to serve as the tuner vector. However, additional development is necessary to fully extend the methodology to Kalman filter

  9. Thermal-mechanical fatigue crack growth in aircraft engine materials

    NASA Astrophysics Data System (ADS)

    Dai, Yi

    1993-08-01

    This thesis summarizes the major technical achievements obtained as a part of a collaborative research and development project between Ecole Polytechnique and Pratt & Whitney Canada. These achievements include: (1) a thermal-mechanical fatigue (TMF) testing rig which is capable of studying the fatigue behaviors of gas turbine materials under simultaneous changes of temperatures and strains or stress; (2) an advanced alternative current potential drop (ACPD) measurement system which is capable of performing on-line monitoring of fatigue crack initiation and growth in specimen testing under isothermal and TMF conditions; (3) fatigue crack initiation and short crack growth data for the titanium specimens designed with notch features associated with bolt holes of compressor discs; (4) thermal-mechanical fatigue crack growth data for two titanium alloys being used in PWC engine components, which explained the material fatigue behavior encountered in full-scale component testing; (5) a complete fractographic analysis for the tested specimens which enhanced the understanding of the fatigue crack growth mechanisms and helped to establish an analytical crack growth model; and (6) application of the ACPD fatigue crack monitoring technique to single tooth firtree specimen (STFT) LCF testing of PWA 1480 single crystal alloy. Finally, a comprehensive discussion concerning the results pertaining to this research project is presented.

  10. Impact Testing of Composites for Aircraft Engine Fan Cases

    NASA Technical Reports Server (NTRS)

    Roberts, Gary D.; Revilock, Duane M.; Binienda, Wieslaw K.; Nie, Walter Z.; Mackenzie, S. Ben; Todd, Kevin B.

    2001-01-01

    Before composite materials can be considered for use in the fan case of a commercial jet engine, the performance of a composite structure under blade-out loads needs to be demonstrated. The objective of this program is to develop an efficient test and analysis method for evaluating potential composite case concepts. Ballistic impact tests were performed on laminated glass/epoxy composites in order to identify potential failure modes and to provide data for analysis. Flat 7x7 in. panels were impacted with cylindrical titanium projectiles, and 15 in. diameter half-rings were impacted with wedge-shaped titanium projectiles. Composite failure involved local fiber fracture as well as tearing and delamination on a larger scale. A 36 in. diameter full-ring subcomponent was proposed for larger scale testing. Explicit, transient, finite element analyses were used to evaluate impact dynamics and subsequent global deformation for the proposed full-ring subcomponent test. Analyses on half-ring and quarter ring configurations indicated that less expensive smaller scale tests could be used to screen potential composite concepts when evaluation of local impact damage is the primary concern.

  11. Environmental research brief: Pollution prevention assessment for a manufacturer of aircraft landing gear

    SciTech Connect

    Jendrucko, R.J.; Morton, S.D.; Thomas, T.M.; Looby, G.P.

    1995-08-01

    The US Environmental Protection Agency (EPA) has funded a Pilot project to assist small and medium-size manufacture who want to minimize their generation of waste but who lac the expertise to do so. In an effort to assist these manufacturers Waste Minimization Assessment Centers (WMACs) we established at selected universities and procedures were adapted from the EPA Waste Minimization Opportunity Assessment Manual. The WMAC team at the University of Tennessee performed an assessment at a plant that manufactures outboard motors for water craft. Three basic subunits received from other manufacturing plants undergo primarily painting and assembly operations in order to produce the final product. The team`s report, detailing findings and recommendations, indicated that paint overspray waste and spent clean-up solvent are generated in large quantities and that significant cost savings could be achieved by installing robotic paint application equipment. This Research Brief was developed by the principal investigators and EPA`s National Risk Management Research Laboratory, Cincinnati, OH, to announce key findings of an ongoing research project that is fully documented in a separate report of the same title available from University City Science Center.

  12. Transition from glass to graphite in manufacture of composite aircraft structure

    NASA Technical Reports Server (NTRS)

    Buffum, H. E.; Thompson, V. S.

    1978-01-01

    The transition from fiberglass reinforced plastic composites to graphite reinforced plastic composites is described. Structural fiberglass design and manufacturing background are summarized. How this experience provides a technology base for moving into graphite composite secondary structure and then to composite primary structure is considered. The technical requirements that must be fulfilled in the transition from glass to graphite composite structure are also included.

  13. Turboelectric Distributed Propulsion Engine Cycle Analysis for Hybrid-Wing-Body Aircraft

    NASA Technical Reports Server (NTRS)

    Felder, James L.; Kim, Hyun Dae; Brown, Gerald V.

    2009-01-01

    Meeting NASA's N+3 goals requires a fundamental shift in approach to aircraft and engine design. Material and design improvements allow higher pressure and higher temperature core engines which improve the thermal efficiency. Propulsive efficiency, the other half of the overall efficiency equation, however, is largely determined by the fan pressure ratio (FPR). Lower FPR increases propulsive efficiency, but also dramatically reduces fan shaft speed through the combination of larger diameter fans and reduced fan tip speed limits. The result is that below an FPR of 1.5 the maximum fan shaft speed makes direct drive turbines problematic. However, it is the low pressure ratio fans that allow the improvement in propulsive efficiency which, along with improvements in thermal efficiency in the core, contributes strongly to meeting the N+3 goals for fuel burn reduction. The lower fan exhaust velocities resulting from lower FPRs are also key to meeting the aircraft noise goals. Adding a gear box to the standard turbofan engine allows acceptable turbine speeds to be maintained. However, development of a 50,000+ hp gearbox required by fans in a large twin engine transport aircraft presents an extreme technical challenge, therefore another approach is needed. This paper presents a propulsion system which transmits power from the turbine to the fan electrically rather than mechanically. Recent and anticipated advances in high temperature superconducting generators, motors, and power lines offer the possibility that such devices can be used to transmit turbine power in aircraft without an excessive weight penalty. Moving to such a power transmission system does more than provide better matching between fan and turbine shaft speeds. The relative ease with which electrical power can be distributed throughout the aircraft opens up numerous other possibilities for new aircraft and propulsion configurations and modes of operation. This paper discusses a number of these new

  14. Model-Based Control of an Aircraft Engine using an Optimal Tuner Approach

    NASA Technical Reports Server (NTRS)

    Connolly, Joseph W.; Chicatelli, Amy; Garg, Sanjay

    2012-01-01

    This paper covers the development of a model-based engine control (MBEC) method- ology applied to an aircraft turbofan engine. Here, a linear model extracted from the Commercial Modular Aero-Propulsion System Simulation 40,000 (CMAPSS40k) at a cruise operating point serves as the engine and the on-board model. The on-board model is up- dated using an optimal tuner Kalman Filter (OTKF) estimation routine, which enables the on-board model to self-tune to account for engine performance variations. The focus here is on developing a methodology for MBEC with direct control of estimated parameters of interest such as thrust and stall margins. MBEC provides the ability for a tighter control bound of thrust over the entire life cycle of the engine that is not achievable using traditional control feedback, which uses engine pressure ratio or fan speed. CMAPSS40k is capable of modeling realistic engine performance, allowing for a verification of the MBEC tighter thrust control. In addition, investigations of using the MBEC to provide a surge limit for the controller limit logic are presented that could provide benefits over a simple acceleration schedule that is currently used in engine control architectures.

  15. Design and optimization of the micro-engine turbine rotor manufacturing using the rapid prototyping technology

    NASA Astrophysics Data System (ADS)

    Vdovin, R. A.; Smelov, V. G.

    2017-02-01

    This work describes the experience in manufacturing the turbine rotor for the micro-engine. It demonstrates the design principles for the complex investment casting process combining the use of the ProCast software and the rapid prototyping techniques. At the virtual modelling stage, in addition to optimized process parameters, the casting structure was improved to obtain the defect-free section. The real production stage allowed demonstrating the performance and fitness of rapid prototyping techniques for the manufacture of geometrically-complex engine-building parts.

  16. Exergy as a useful tool for the performance assessment of aircraft gas turbine engines: A key review

    NASA Astrophysics Data System (ADS)

    Şöhret, Yasin; Ekici, Selcuk; Altuntaş, Önder; Hepbasli, Arif; Karakoç, T. Hikmet

    2016-05-01

    It is known that aircraft gas turbine engines operate according to thermodynamic principles. Exergy is considered a very useful tool for assessing machines working on the basis of thermodynamics. In the current study, exergy-based assessment methodologies are initially explained in detail. A literature overview is then presented. According to the literature overview, turbofans may be described as the most investigated type of aircraft gas turbine engines. The combustion chamber is found to be the most irreversible component, and the gas turbine component needs less exergetic improvement compared to all other components of an aircraft gas turbine engine. Finally, the need for analyses of exergy, exergo-economic, exergo-environmental and exergo-sustainability for aircraft gas turbine engines is emphasized. A lack of agreement on exergy analysis paradigms and assumptions is noted by the authors. Exergy analyses of aircraft gas turbine engines, fed with conventional fuel as well as alternative fuel using advanced exergy analysis methodology to understand the interaction among components, are suggested to those interested in thermal engineering, aerospace engineering and environmental sciences.

  17. The role of chemical engineering in space manufacturing

    NASA Technical Reports Server (NTRS)

    Waldron, R. D.; Criswell, D. R.; Erstfeld, T. E.

    1979-01-01

    A survey of factors involved in space manufacturing is presented. It is shown that it will be more economical to obtain the necessary raw materials from the moon than from earth due to earth's greater gravity and atmosphere. Discussion covers what resources can be mined and recovered from the moon and what ranges of industrial feedstock can be provided from lunar materials, noting that metallurgy will be different in space due to the lack of key elements such as H, C, Na, Cl, etc. Also covered are chemical plant design, space environmental factors such as vacuum and zero gravity, recycling requirments, reagent and equipment mass, and unit operations such as materials handling and phase separation. It is concluded that a pilot plant in space could be an economic boon to mankind.

  18. Chemistry Characterization of Jet Aircraft Engine Particulate by XPS: Results from APEX III

    NASA Technical Reports Server (NTRS)

    Vander Wal, Randy L.; Bryg, Victoria M.

    2014-01-01

    This paper reports XPS analysis of jet exhaust particulate from a B737, Lear, ERJ, and A300 aircraft during the APEX III NASA led field campaign. Carbon hybridization and bonding chemistry are identified by high-resolution scans about the C1s core-shell region. Significant organic content as gauged by the sp3/sp2 ratio is found across engines and platforms. Polar oxygen functional groups include carboxylic, carbonyl and phenol with combined content of 20 percent or more. By lower resolution survey scans various elements including transition metals are identified along with lighter elements such as S, N, and O in the form of oxides. Burning additives within lubricants are probable sources of Na, Ba, Ca, Zn, P and possibly Sn. Elements present and their percentages varied significantly across all engines, not revealing any trend or identifiable cause for the differences, though the origin is likely the same for the same element when observed. This finding suggests that their presence can be used as a tracer for identifying soots from aircraft engines as well as diagnostic for monitoring engine performance and wear.

  19. Chemistry characterization of jet aircraft engine particulate matter by XPS: Results from APEX III

    NASA Astrophysics Data System (ADS)

    Vander Wal, Randy L.; Bryg, Victoria M.; Huang, Chung-Hsuan

    2016-09-01

    This paper reports X-ray photoelectron spectroscopy (XPS) analysis of jet exhaust particulate matter (PM) from a B737, Lear, ERJ and A300 aircraft during the APEX III NASA led field campaign. Carbon hybridization and bonding chemistry are identified by high-resolution scans about the C1s core-shell region. Significant organic content as gauged by the sp3/sp2 ratio is found across engines and powers. Polar oxygen functional groups include carboxylic, carbonyl and phenol with combined content of 20% or more. By survey scans various elements including transition metals are identified along with lighter elements such as S, N and O in the form of oxides. Additives within lubricants are probable sources of Na, Ba, Ca, Zn, P and possibly Sn. Elements present and their percentages varied significantly across all engines, not revealing any trend or identifiable cause for the differences, though the origin is likely the same for the same element when observed. This finding suggests that their collective presence could serve as an environmental tracer for identifying PM originating from aircraft engines and serving as a diagnostic for engine performance and wear.

  20. Biofuel blending reduces particle emissions from aircraft engines at cruise conditions

    NASA Astrophysics Data System (ADS)

    Moore, Richard H.; Thornhill, Kenneth L.; Weinzierl, Bernadett; Sauer, Daniel; D’Ascoli, Eugenio; Kim, Jin; Lichtenstern, Michael; Scheibe, Monika; Beaton, Brian; Beyersdorf, Andreas J.; Barrick, John; Bulzan, Dan; Corr, Chelsea A.; Crosbie, Ewan; Jurkat, Tina; Martin, Robert; Riddick, Dean; Shook, Michael; Slover, Gregory; Voigt, Christiane; White, Robert; Winstead, Edward; Yasky, Richard; Ziemba, Luke D.; Brown, Anthony; Schlager, Hans; Anderson, Bruce E.

    2017-03-01

    Aviation-related aerosol emissions contribute to the formation of contrail cirrus clouds that can alter upper tropospheric radiation and water budgets, and therefore climate. The magnitude of air-traffic-related aerosol–cloud interactions and the ways in which these interactions might change in the future remain uncertain. Modelling studies of the present and future effects of aviation on climate require detailed information about the number of aerosol particles emitted per kilogram of fuel burned and the microphysical properties of those aerosols that are relevant for cloud formation. However, previous observational data at cruise altitudes are sparse for engines burning conventional fuels, and no data have previously been reported for biofuel use in-flight. Here we report observations from research aircraft that sampled the exhaust of engines onboard a NASA DC-8 aircraft as they burned conventional Jet A fuel and a 50:50 (by volume) blend of Jet A fuel and a biofuel derived from Camelina oil. We show that, compared to using conventional fuels, biofuel blending reduces particle number and mass emissions immediately behind the aircraft by 50 to 70 per cent. Our observations quantify the impact of biofuel blending on aerosol emissions at cruise conditions and provide key microphysical parameters, which will be useful to assess the potential of biofuel use in aviation as a viable strategy to mitigate climate change.

  1. Biofuel blending reduces particle emissions from aircraft engines at cruise conditions.

    PubMed

    Moore, Richard H; Thornhill, Kenneth L; Weinzierl, Bernadett; Sauer, Daniel; D'Ascoli, Eugenio; Kim, Jin; Lichtenstern, Michael; Scheibe, Monika; Beaton, Brian; Beyersdorf, Andreas J; Barrick, John; Bulzan, Dan; Corr, Chelsea A; Crosbie, Ewan; Jurkat, Tina; Martin, Robert; Riddick, Dean; Shook, Michael; Slover, Gregory; Voigt, Christiane; White, Robert; Winstead, Edward; Yasky, Richard; Ziemba, Luke D; Brown, Anthony; Schlager, Hans; Anderson, Bruce E

    2017-03-15

    Aviation-related aerosol emissions contribute to the formation of contrail cirrus clouds that can alter upper tropospheric radiation and water budgets, and therefore climate. The magnitude of air-traffic-related aerosol-cloud interactions and the ways in which these interactions might change in the future remain uncertain. Modelling studies of the present and future effects of aviation on climate require detailed information about the number of aerosol particles emitted per kilogram of fuel burned and the microphysical properties of those aerosols that are relevant for cloud formation. However, previous observational data at cruise altitudes are sparse for engines burning conventional fuels, and no data have previously been reported for biofuel use in-flight. Here we report observations from research aircraft that sampled the exhaust of engines onboard a NASA DC-8 aircraft as they burned conventional Jet A fuel and a 50:50 (by volume) blend of Jet A fuel and a biofuel derived from Camelina oil. We show that, compared to using conventional fuels, biofuel blending reduces particle number and mass emissions immediately behind the aircraft by 50 to 70 per cent. Our observations quantify the impact of biofuel blending on aerosol emissions at cruise conditions and provide key microphysical parameters, which will be useful to assess the potential of biofuel use in aviation as a viable strategy to mitigate climate change.

  2. The new low nitrogen steel LNS -- A material for advanced aircraft engine and aerospace bearing applications

    SciTech Connect

    Berns, H.; Ebert, F.J.

    1998-12-31

    Development tendencies for future aircraft jet engines require new design concepts for rolling element bearings because of an overall increase of loads, temperatures, rotational speeds and the use of new high temperature lubricants. This paper reviews some of the key parameters which in the past led to the development and application of the known aircraft bearing steels such as M50, M50 NiL and recently Cronidur 30{reg_sign} (AMS 5898). The performance limits of the currently used aerospace bearing steels and the increasing demands on bearing performance for future aerospace applications gave the impact to the design of a new corrosion resistant steel grade of the nitrogen alloyed type, which is suitable for case hardening by nitrogen--the so called Low nitrogen steel (LNS). The development of the alloy (US pat. 5,503,797), the attainable properties and the corresponding heat treatment process are presented. Achievable hardness, case depth, residual stress pattern and corrosion resistance prove the new LNS to be a promising candidate for the next generation of aircraft engine bearings and for advanced, integrated bearing-gear-shaft design concepts.

  3. Impact of future fuel properties on aircraft engines and fuel systems

    NASA Technical Reports Server (NTRS)

    Rudey, R. A.; Grobman, J. S.

    1978-01-01

    From current projections of the availability of high-quality petroleum crude oils, it is becoming increasingly apparent that the specifications for hydrocarbon jet fuels may have to be modified. The problems that are most likely to be encountered as a result of these modifications relate to engine performance, component durability and maintenance, and aircraft fuel-system performance. The effect on engine performance will be associated with changes in specific fuel consumption, ignition at relight limits, at exhaust emissions. Durability and maintenance will be affected by increases in combustor liner temperatures, carbon deposition, gum formation in fuel nozzles, and erosion and corrosion of turbine blades and vanes. Aircraft fuel-system performance will be affected by increased deposits in fuel-system heat exchangers and changes in the pumpability and flowability of the fuel. The severity of the potential problems is described in terms of the fuel characteristics most likely to change in the future. Recent data that evaluate the ability of current-technology aircraft to accept fuel specification changes are presented, and selected technological advances that can reduce the severity of the problems are described and discussed.

  4. Characterization and manufacture of braided composites for large commercial aircraft structures

    NASA Technical Reports Server (NTRS)

    Fedro, Mark J.; Willden, Kurtis

    1992-01-01

    Braided composite materials has been recognized as a potential cost effective material form for fuselage structural elements. Consequently, there is a strong need for more knowledge in the design, manufacture, test, and analysis of textile structural composites. Advance braided composite technology is advanced towards applications to a large commercial transport fuselage. The mechanics are summarized of materials and manufacturing demonstration results which were obtained in order to acquire an understanding of how braided composites can be applied to a commercial fuselage. Textile composites consisting of 2-D, 2-D triaxial, and 3-D braid patterns with thermoplastic and two resin transfer molding resin systems were studied. The structural performance of braided composites was evaluated through an extensive mechanical test program. Analytical methods were also developed and applied to predict the following: internal fiber architecture; stiffness; fiber stresses; failure mechanisms; notch effects; and the history of failure of the braided composite specimens. The applicability of braided composites to a commercial transport fuselage was further assessed through a manufacturing demonstration.

  5. Aircraft Engine Noise Scattering By Fuselage and Wings: A Computational Approach

    NASA Technical Reports Server (NTRS)

    Stanescu, D.; Hussaini, M. Y.; Farassat, F.

    2003-01-01

    The paper presents a time-domain method for computation of sound radiation from aircraft engine sources to the far-field. The effects of nonuniform flow around the aircraft and scattering of sound by fuselage and wings are accounted for in the formulation. The approach is based on the discretization of the inviscid flow equations through a collocation form of the Discontinuous Galerkin spectral element method. An isoparametric representation of the underlying geometry is used in order to take full advantage of the spectral accuracy of the method. Large-scale computations are made possible by a parallel implementation based on message passing. Results obtained for radiation from an axisymmetric nacelle alone are compared with those obtained when the same nacelle is installed in a generic configuration, with and without a wing.

  6. Aircraft Engine Noise Scattering by Fuselage and Wings: A Computational Approach

    NASA Technical Reports Server (NTRS)

    Stanescu, D.; Hussaini, M. Y.; Farassat, F.

    2003-01-01

    The paper presents a time-domain method for computation of sound radiation from aircraft engine sources to the far-field. The effects of nonuniform flow around the aircraft and scattering of sound by fuselage and wings are accounted for in the formulation. The approach is based on the discretization of the inviscid flow equations through a collocation form of the Discontinuous Galerkin spectral element method. An isoparametric representation of the underlying geometry is used in order to take full advantage of the spectral accuracy of the method. Large-scale computations are made possible by a parallel implementation based on message passing. Results obtained for radiation from an axisymmetric nacelle alone are compared with those obtained when the same nacelle is installed in a generic configuration, with and without a wing.

  7. Aircraft Engine Noise Scattering by Fuselage and Wings: A Computational Approach

    NASA Technical Reports Server (NTRS)

    Farassat, F.; Stanescu, D.; Hussaini, M. Y.

    2003-01-01

    The paper presents a time-domain method for computation of sound radiation from aircraft engine sources to the far field. The effects of non-uniform flow around the aircraft and scattering of sound by fuselage and wings are accounted for in the formulation. The approach is based on the discretization of the inviscid flow equations through a collocation form of the discontinuous Galerkin spectral element method. An isoparametric representation of the underlying geometry is used in order to take full advantage of the spectral accuracy of the method. Large-scale computations are made possible by a parallel implementation based on message passing. Results obtained for radiation from an axisymmetric nacelle alone are compared with those obtained when the same nacelle is installed in a generic configuration, with and without a wing. 0 2002 Elsevier Science Ltd. All rights reserved.

  8. Design of sidewall treatment of cabin noise control of a twin engine turboprop aircraft

    NASA Technical Reports Server (NTRS)

    Vaicaitis, R.; Slazak, M.

    1983-01-01

    An analytical procedure was used to predict the noise transmission into the cabin of a twin engine general aviation aircraft. This model was then used to optimize the interior A weighted noise levels to an average value of about 85 dBA. The surface pressure noise spectral levels were selected utilizing experimental flight data and empirical predictions. The add on treatments considered in this optimization study include aluminum honeycomb panels, constrained layer damping tape, porous acoustic blankets, acoustic foams, septum barriers and limp trim panels which are isolated from the vibration of the main sidewall structure. To reduce the average noise level in the cabin from about 102 kBA (baseline) to 85 dBA (optimized), the added weight of the noise control treatment is about 2% of the total gross takeoff weight of the aircraft.

  9. Modeling and Detection of Ice Particle Accretion in Aircraft Engine Compression Systems

    NASA Technical Reports Server (NTRS)

    May, Ryan D.; Simon, Donald L.; Guo, Ten-Huei

    2012-01-01

    The accretion of ice particles in the core of commercial aircraft engines has been an ongoing aviation safety challenge. While no accidents have resulted from this phenomenon to date, numerous engine power loss events ranging from uneventful recoveries to forced landings have been recorded. As a first step to enabling mitigation strategies during ice accretion, a detection scheme must be developed that is capable of being implemented on board modern engines. In this paper, a simple detection scheme is developed and tested using a realistic engine simulation with approximate ice accretion models based on data from a compressor design tool. These accretion models are implemented as modified Low Pressure Compressor maps and have the capability to shift engine performance based on a specified level of ice blockage. Based on results from this model, it is possible to detect the accretion of ice in the engine core by observing shifts in the typical sensed engine outputs. Results are presented in which, for a 0.1 percent false positive rate, a true positive detection rate of 98 percent is achieved.

  10. Application of automotive engine control technology to general aviation aircraft powerplants

    NASA Astrophysics Data System (ADS)

    Tennant, Christopher John

    1997-10-01

    The general aviation industry has lagged behind the automotive industry in powerplant development due to depressed economic conditions in their marketplace. Recent efforts to revitalize the industry have encountered the hindrance of thirty-year-old engine technology. Current automotive engine control technology has been reviewed for its potential for transfer to existing general aviation powerplants. Current automotive engine control technology was classified into basic, correction, and feedback elements for the control of fuel flow and ignition timing. The value of each element was assessed for application to a general aviation powerplant in terms of an aviation duty cycle. An extensive database produced from tests of a 1.9 liter Saturn automotive engine was used to quantify potential benefits by providing information about engine operation over a wide range of air/fuel ratios and ignition timings. It was assumed that compliance with future emissions regulations for aircraft was a serious concern. A method for quantifying the effects of some controller elements that took into account emissions, thermal efficiency and power output of the engine was developed. The study concluded that all existing automotive engine control elements offer benefits to aviation powerplants, the most predominant of which are those that control fuel delivery.

  11. Coaxial additive manufacture of biomaterial composite scaffolds for tissue engineering.

    PubMed

    Cornock, R; Beirne, S; Thompson, B; Wallace, G G

    2014-06-01

    An inherent difficulty associated with the application of suitable bioscaffolds for tissue engineering is the incorporation of adequate mechanical characteristics into the materials which recapitulate that of the native tissue, whilst maintaining cell proliferation and nutrient transfer qualities. Biomaterial composites fabricated using rapid prototyping techniques can potentially improve the functionality and patient-specific processing of tissue engineering scaffolds. In this work, a technique for the coaxial melt extrusion printing of core-shell scaffold structures was designed, implemented and assessed with respect to the repeatability, cell efficacy and scaffold porosity obtainable. Encapsulated alginate hydrogel/thermoplastic polycaprolactone (Alg-PCL) cofibre scaffolds were fabricated. Selective laser melting was used to produce a high resolution stainless steel 316 L coaxial extrusion nozzle, exhibiting diameters of 300 μm/900 μm for the inner and outer nozzles respectively. We present coaxial melt extrusion printed scaffolds of Alg-PCL cofibres with ~0.4 volume fraction alginate, with total fibre diameter as low as 600 μm and core material offset as low as 10% of the total diameter. Furthermore the tuneability of scaffold porosity, pore size and interconnectivity, as well as the preliminary inclusion, compatibility and survival of an L-929 mouse fibroblast cell-line within the scaffolds were explored. This preliminary cell work highlighted the need for optimal material selection and further design reiteration in future research.

  12. Aircraft engine hot section technology: An overview of the HOST Project

    NASA Technical Reports Server (NTRS)

    Sokolowski, Daniel E.; Hirschberg, Marvin H.

    1987-01-01

    NASA sponsored the Turbine Engine Hot Section Technology (HOST) Project to address the need for improved durability in advanced aircraft engine combustors and turbines. Analytical and experimental activities aimed at more accurate prediction of the aerothermal environment, the thermomechanical loads, the material behavior and structural responses to loads, and life predictions for cyclic high-temperature operation were underway for the last 7 years. The project has involved representatives from six engineering disciplines who are spread across three work sectors (industry, academia, and NASA). The HOST Project not only initiated and sponsored 70 major activities, but was also the keystone in joining the multiple disciplines and work sectors to focus on critical research needs. A broad overview of the project is given along with initial indications of the project's impact.

  13. Hydraulic fluids and jet engine oil: pyrolysis and aircraft air quality.

    PubMed

    van Netten, C; Leung, V

    2001-01-01

    Incidents of smoke in aircraft cabins often result from jet engine oil and/or hydraulic fluid that leaks into ventilation air, which can be subjected to temperatures that exceed 500 degrees C. Exposed flight-crew members have reported symptoms, including dizziness, nausea, disorientation, blurred vision, and tingling in the legs and arms. In this study, the authors investigated pyrolysis products of one jet engine oil and two hydraulic fluids at 525 degrees C. Engine oil was an important source of carbon monoxide. Volatile agents and organophosphate constituents were released from all the agents tested; however, the neurotoxin trimethyl propane phosphate was not found. The authors hypothesized that localized condensation of pyrolysis products in ventilation ducts, followed by mobilization when cabin heat demand was high, accounted for mid-flight incidents. The authors recommended that carbon monoxide data be logged continuously to capture levels during future incidents.

  14. Aircraft engine hot section technology: An overview of the HOST Project

    NASA Technical Reports Server (NTRS)

    Sokolowski, Daniel E.; Hirschberg, Marvin H.

    1990-01-01

    NASA sponsored the Turbine Engine Hot Section (HOST) project to address the need for improved durability in advanced aircraft engine combustors and turbines. Analytical and experimental activities aimed at more accurate prediction of the aerothermal environment, the thermomechanical loads, the material behavior and structural responses to loads, and life predictions for cyclic high temperature operation were conducted from 1980 to 1987. The project involved representatives from six engineering disciplines who are spread across three work disciplines - industry, academia, and NASA. The HOST project not only initiated and sponsored 70 major activities, but also was the keystone in joining the multiple disciplines and work sectors to focus on critical research needs. A broad overview of the project is given along with initial indications of the project's impact.

  15. A Hybrid Neural Network-Genetic Algorithm Technique for Aircraft Engine Performance Diagnostics

    NASA Technical Reports Server (NTRS)

    Kobayashi, Takahisa; Simon, Donald L.

    2001-01-01

    In this paper, a model-based diagnostic method, which utilizes Neural Networks and Genetic Algorithms, is investigated. Neural networks are applied to estimate the engine internal health, and Genetic Algorithms are applied for sensor bias detection and estimation. This hybrid approach takes advantage of the nonlinear estimation capability provided by neural networks while improving the robustness to measurement uncertainty through the application of Genetic Algorithms. The hybrid diagnostic technique also has the ability to rank multiple potential solutions for a given set of anomalous sensor measurements in order to reduce false alarms and missed detections. The performance of the hybrid diagnostic technique is evaluated through some case studies derived from a turbofan engine simulation. The results show this approach is promising for reliable diagnostics of aircraft engines.

  16. Impact Analyses and Tests of Metal Cask Considering Aircraft Engine Crash - 12308

    SciTech Connect

    Lee, Sanghoon; Choi, Woo-Seok; Kim, Ki-Young; Jeon, Je-Eon; Seo, Ki-Seog

    2012-07-01

    The structural integrity of a dual purpose metal cask currently under development by the Korea Radioactive Waste Management Cooperation (KRMC) is evaluated through analyses and tests under a high-speed missile impact considering the targeted aircraft crash conditions. The impact conditions were carefully chosen through a survey on accident cases and recommendations from the literature. The missile impact velocity was set at 150 m/s, and two impact orientations were considered. A simplified missile simulating a commercial aircraft engine is designed from an impact load history curve provided in the literature. In the analyses, the focus is on the evaluation of the containment boundary integrity of the metal cask. The analyses results are compared with the results of tests using a 1/3 scale model. The results show very good agreements, and the procedure and methodology adopted in the structural analyses are validated. While the integrity of the cask is maintained in one evaluation where the missile impacts the top side of the free standing cask, the containment boundary is breached in another case in which the missile impacts the center of the cask lid in a perpendicular orientation. A safety assessment using a numerical simulation of an aircraft engine crash into spent nuclear fuel storage systems is performed. A commercially available explicit finite element code is utilized for the dynamic simulation, and the strain rate effect is included in the modeling of the materials used in the target system and missile. The simulation results show very good agreement with the test results. It is noted that this is the first test considering an aircraft crash in Korea. (authors)

  17. 76 FR 6525 - Airworthiness Directives; Cessna Aircraft Company (Type Certificate Previously Held by Columbia...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-07

    ... Company (Type Certificate Previously Held by Columbia Aircraft Manufacturing (Previously the Lancair... Aircraft Company (Type Certificate Previously Held by Columbia Aircraft Manufacturing (Previously The... Aircraft Company (type certificate previously held by Columbia Aircraft Manufacturing (previously...

  18. Fault detection and isolation of systems with slowly varying parameters—simulation with a simplified aircraft turbo engine model

    NASA Astrophysics Data System (ADS)

    Wu, Xuekui; Campion, Guy

    2004-03-01

    This paper is directly related to an ongoing research and development project concerned with identification, diagnosis and control of aircraft engines. Within these topics, this paper focuses on fault diagnosis using the parametric statistical approach. As a continuation work of G. Gomez, et al. (A case study of physical diagnosis for aircraft engines, Proceedings of ACC'2000, USA, 2000, pp. 2383-2387.), the analysis of deterioration cases, often encountered in practical engineering, in which several health parameters are changing slowly at different rate, constitutes the main contribution of this paper. Some questions concerning this deterioration situation are discussed and some simulation experiments are given.

  19. Dual-Mission Large Aircraft Feasibility Study and Aerodynamic Investigation

    NASA Technical Reports Server (NTRS)

    Mavris, Dimitri

    1997-01-01

    A Dual-Mission Large Aircraft, or DMLA, represents the possibility of a single aircraft capable of fulfilling both a Global Reach Aircraft (GRA) and Very Large Transport (VLT) roles. The DMLA, by combining the GRA and VLT into a single new aircraft, could possibly lower the aircraft manufacturer's production costs through the resulting increase in production quantity. This translates into lower aircraft acquisition costs, a primary concern for both the Air Force and commercial airlines. This report outlines the first steps taken in this study, namely the assessment of technical and economic feasibility of the DMLA concept. In the course of this project, specialized GRA and VLT aircraft were sized for their respective missions, using baseline conventional (i.e., lacking advanced enabling technologies) aircraft models from previous work for the Air Force's Wright Laboratory and NASA-Langley. DMLA baseline aircraft were then also developed, by first sizing the aircraft for the more critical of the two missions and then analyzing the aircraft's performance over the other mission. The resulting aircraft performance values were then compared to assess technical feasibility. Finally, the life-cycle costs of each aircraft (GRA, VLT, and DMLA) were analyzed to quantify economic feasibility. These steps were applied to both a two-engine aircraft set, and a four-engine aircraft set.

  20. 40 CFR 1068.5 - How must manufacturers apply good engineering judgment?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false How must manufacturers apply good engineering judgment? 1068.5 Section 1068.5 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... incorrect information or overlooked important information, that you did not decide in good faith, or...