Science.gov

Sample records for aircraft engine nacelle

  1. Aircraft Wing for Over-The-Wing Mounting of Engine Nacelle

    NASA Technical Reports Server (NTRS)

    Hahn, Andrew S. (Inventor); Kinney, David J. (Inventor)

    2011-01-01

    An aircraft wing has an inboard section and an outboard section. The inboard section is attached (i) on one side thereof to the aircraft's fuselage, and (ii) on an opposing side thereof to an inboard side of a turbofan engine nacelle in an over-the-wing mounting position. The outboard section's leading edge has a sweep of at least 20 degrees. The inboard section's leading edge has a sweep between -15 and +15 degrees, and extends from the fuselage to an attachment position on the nacelle that is forward of an index position defined as an imaginary intersection between the sweep of the outboard section's leading edge and the inboard side of the nacelle. In an alternate embodiment, the turbofan engine nacelle is replaced with an open rotor engine nacelle.

  2. Status of Duct Liner Technology for Application to Aircraft Engine Nacelles

    NASA Technical Reports Server (NTRS)

    Parrott, Tony L.; Jones, Michael G.; Watson, Willie R.

    2005-01-01

    Grazing flows and high acoustic intensities impose unusual design requirements on acoustic liner treatments used in aircraft engine nacelles. Increased sound absorption efficiency (requiring increased accuracy of liner impedance specification) is particularly critical in the face of ever decreasing nacelle wall area available for liner treatments in modern, high-bypass ratio engines. This paper reviews the strategy developed at Langley Research Center for achieving a robust measurement technology that is crucial for validating impedance models for aircraft liners. Specifically, the paper describes the current status of computational and data acquisition technologies for reducing impedance in a flow duct. Comparisons of reduced impedances for a "validation liner" using 1980's and 2000's measurement technology are consistent, but show significant deviations (up to 0.5 c exclusive of liner anti-resonance region) from a first principles impedance prediction model as grazing flow centerline Mach numbers increase up to 0.5. The deviations, in part, are believed related to uncertainty in the choice of grazing flow parameters (e.g. cross-section averaged, core-flow averaged, or centerline Mach number?). Also, there may be an issue with incorporating the impedance discontinuities corresponding to the hard wall to liner interface (i.e. leading and trailing edge of test liner) within the discretized finite element model.

  3. Annoyance judgements of aircraft with and without acoustically treated nacelles

    NASA Technical Reports Server (NTRS)

    Borsky, P. N.; Leonard, S.

    1973-01-01

    A series of subjective response laboratory tests were conducted to determine the effectiveness of reducing aircraft noise by treating the aircraft engine nacelles with acoustically absorbent material. A total of 108 subjects participated in the magnitude estimation tests. The subjects were selected from persons who had previously been interviewed and classified according to selected psychological characteristics. The subjects lived in three general areas located at three specified distances from New York's Kennedy Airport. The aircraft signals used in the tests consisted of tape recordings of the landing approach noise of a B-727 aircraft under normal operating conditions. These recordings were electronically altered to simulate an aircraft with acoustically treated nacelles to achieve noise reductions of approximately 6 EPNdB and 12 EPNdB. The results from these tests indicate that significant reductions in annoyance resulted from the synthesized nacelle treatments.

  4. An inverse method for the aerodynamic design of three-dimensional aircraft engine nacelles

    NASA Technical Reports Server (NTRS)

    Bell, R. A.; Cedar, R. D.

    1991-01-01

    A fast, efficient and user friendly inverse design system for 3-D nacelles was developed. The system is a product of a 2-D inverse design method originally developed at NASA-Langley and the CFL3D analysis code which was also developed at NASA-Langley and modified for nacelle analysis. The design system uses a predictor/corrector design approach in which an analysis code is used to calculate the flow field for an initial geometry, the geometry is then modified based on the difference between the calculated and target pressures. A detailed discussion of the design method, the process of linking it to the modified CFL3D solver and its extension to 3-D is presented. This is followed by a number of examples of the use of the design system for the design of both axisymmetric and 3-D nacelles.

  5. Nacelle Integration to Reduce the Sonic Boom of Aircraft Designed to Cruise at Supersonic Speeds

    NASA Technical Reports Server (NTRS)

    Mack, Robert J.

    1999-01-01

    An empirical method for integrating the engine nacelles on a wing-fuselage-fin(s) configuration has been described. This method is based on Whitham theory and Seebass and George sonic-boom minimization theory, With it, both reduced sonic-boom as well as high aerodynamic efficiency methods can be applied to the conceptual design of a supersonic-cruise aircraft. Two high-speed civil transport concepts were used as examples to illustrate the application of this engine-nacelle integration methodology: (1) a concept with engine nacelles mounted on the aft-fuselage, the HSCT-1OB; and (2) a concept with engine nacelles mounted under an extended-wing center section, the HSCT-11E. In both cases, the key to a significant reduction in the sonic-boom contribution from the engine nacelles was to use the F-function shape of the concept as a guide to move the nacelles further aft on the configuration.

  6. Communal Sensor Network for Adaptive Noise Reduction in Aircraft Engine Nacelles

    NASA Technical Reports Server (NTRS)

    Jones, Kennie H.; Nark, Douglas M.; Jones, Michael G.

    2011-01-01

    Emergent behavior, a subject of much research in biology, sociology, and economics, is a foundational element of Complex Systems Science and is apropos in the design of sensor network systems. To demonstrate engineering for emergent behavior, a novel approach in the design of a sensor/actuator network is presented maintaining optimal noise attenuation as an adaptation to changing acoustic conditions. Rather than use the conventional approach where sensors are managed by a central controller, this new paradigm uses a biomimetic model where sensor/actuators cooperate as a community of autonomous organisms, sharing with neighbors to control impedance based on local information. From the combination of all individual actions, an optimal attenuation emerges for the global system.

  7. Program on ground test of modified quiet, clean, JT3D and JT8D turbofan engines in their respective nacelles. [modification of Boeing 707, 727, and 737 aircraft for aircraft noise reduction

    NASA Technical Reports Server (NTRS)

    1973-01-01

    A program to reduce the community noise levels of commercial jet aircraft is summarized. The program objective is the development of three acoustically treated nacelle configurations for the 707, 727, and 737 series aircraft to provide maximum noise reduction with minimum performance loss, modification requirements, and economic impact. The preliminary design, model testing, data analyses, and economic studies of proposed nacelle configurations are discussed.

  8. Investigation of upper-surface-blowing nacelle integration at cruise speeds utilizing powered engine simulators

    NASA Technical Reports Server (NTRS)

    Meleason, E. T.; Wells, O. D.

    1976-01-01

    Various overwing nacelle designs were investigated on a representative four engine short haul aircraft configuration during a combined analytical and experimental program. Design conditions were M sub o = 0.7 and C sub L = 0.4. All nacelles had D shaped nozzle exits and included a streamline contoured design, a low boattail angle reference configuration, and a high boattail angle powered lift design. Testing was done with the design four engine airplane configuration as well as with only inboard nacelles installed. Turbopowered engine simulators were used to provide realistic representation of nacelle flows. Performance trends are compared for the various nacelle designs. In addition, comparisons are presented between analytical and experimental pressure distributions and between flow through and powered simulator results.

  9. Energy efficient engine ICLS Nacelle detail design report

    NASA Technical Reports Server (NTRS)

    Eskridge, R. R.; Kuchar, A. P.; Stotler, C. L.

    1982-01-01

    The results of the detail design of the Nacelle for the General Electric Energy Efficient Engine (E3) Integrated Core Low Spool (ICLS) test vehicles are presented. A slave nacelle is designed for the ICLS test. Cost and reliability are the important factors considered. The slave nacelle simulates the internal flow lines of the actual Flight Propulsion System (FPS) but has no external fairing. The aerodynamic differences between the ICLS and FPS nacelles are presented, followed by the structural description and analysis of the various nacelle components.

  10. Acoustic Panel Liner for an Engine Nacelle

    NASA Technical Reports Server (NTRS)

    Jones, Michael G. (Inventor); Nark, Douglas M. (Inventor); Ayle, Earl (Inventor); Ichihashi, Fumitaka (Inventor)

    2016-01-01

    An acoustic panel liner includes a face sheet, back plate, and liner core positioned there-between, which may be used in an engine nacelle. Elongated chambers contain variable amounts of septa at a calibrated depth or depths. The septa may have varying DC flow resistance. The chambers may have a hexagonal or other polygonal cross sections. The septa, such as mesh caps, may be bonded to an inner wall of a corresponding chamber. The insertion depths may be the same or different. If different, the pattern of distribution of the depths may be randomized.

  11. Wind tunnel tests of a zero length, slotted-lip engine air inlet for a fixed nacelle V/STOL aircraft

    NASA Technical Reports Server (NTRS)

    Woollett, R. R.; Beck, W. E., Jr.; Glasgow, E. R.

    1982-01-01

    Zero length, slotted lip inlet performance and associated fan blade stresses were determined during model tests using a 20 inch diameter fan simulator in the NASA-LeRC 9 by 15 foot low speed wind tunnel. The model configuration variables consisted of inlet contraction ratio, slot width, circumferential extent of slot fillers, and length of a constant area section between the inlet throat and fan face. The inlet performance was dependent on slot gap width and relatively independent of inlet throat/fan face spacer length and slot flow blockage created by 90 degree slot fillers. Optimum performance was obtained at a slot gap width of 0.36 inch. The zero length, slotted lip inlet satisfied all critical low speed inlet operating requirements for fixed horizontal nacelles subsonic V/STOL aircraft.

  12. Optimized bio-inspired stiffening design for an engine nacelle.

    PubMed

    Lazo, Neil; Vodenitcharova, Tania; Hoffman, Mark

    2015-11-04

    Structural efficiency is a common engineering goal in which an ideal solution provides a structure with optimized performance at minimized weight, with consideration of material mechanical properties, structural geometry, and manufacturability. This study aims to address this goal in developing high performance lightweight, stiff mechanical components by creating an optimized design from a biologically-inspired template. The approach is implemented on the optimization of rib stiffeners along an aircraft engine nacelle. The helical and angled arrangements of cellulose fibres in plants were chosen as the bio-inspired template. Optimization of total displacement and weight was carried out using a genetic algorithm (GA) coupled with finite element analysis. Iterations showed a gradual convergence in normalized fitness. Displacement was given higher emphasis in optimization, thus the GA optimization tended towards individual designs with weights near the mass constraint. Dominant features of the resulting designs were helical ribs with rectangular cross-sections having large height-to-width ratio. Displacement reduction was at 73% as compared to an unreinforced nacelle, and is attributed to the geometric features and layout of the stiffeners, while mass is maintained within the constraint.

  13. The handling qualities and flight characteristics of the Grumman design 698 simulated twin-engine tilt Nacelle V/STOL aircraft

    NASA Technical Reports Server (NTRS)

    Eskey, M. A.; Wilson, S. B., III

    1986-01-01

    This paper describes three government-conducted, piloted flight simulations of the Grumman Design 698 vertical and short takeoff and landing (V/STOL) aircraft. Emphasis is placed on the aircraft's handling qualities as rated by various NASA, Navy, and Grumman Aerospace Corporating pilots with flight experience ranging from conventional takeoff and landing (CTOL) to V/STOL aircraft. Each successive simulation incorporated modifications to the aircraft in order to resolve the flight problems which were of most concern to the pilots in the previous simulation. The objective of the first simulation was to assess the basic handling qualities of the aircraft with the noncross-shafted propulsion system. The objective of the second simulation was to examine the effects of incorporating the cross-shafted propulsion system. The objective of the third simulation was to examine inoperative single-engine characteristics with and without cross-shafted engines.

  14. Automated design of minimum drag light aircraft fuselages and nacelles

    NASA Technical Reports Server (NTRS)

    Smetana, F. O.; Fox, S. R.; Karlin, B. E.

    1982-01-01

    The constrained minimization algorithm of Vanderplaats is applied to the problem of designing minimum drag faired bodies such as fuselages and nacelles. Body drag is computed by a variation of the Hess-Smith code. This variation includes a boundary layer computation. The encased payload provides arbitrary geometric constraints, specified a priori by the designer, below which the fairing cannot shrink. The optimization may include engine cooling air flows entering and exhausting through specific port locations on the body.

  15. Energy Efficient Engine program advanced turbofan nacelle definition study

    NASA Technical Reports Server (NTRS)

    Howe, David C.; Wynosky, T. A.

    1985-01-01

    Advanced, low drag, nacelle configurations were defined for some of the more promising propulsion systems identified in the earlier Benefit/Cost Study, to assess the benefits associated with these advanced technology nacelles and formulate programs for developing these nacelles and low volume thrust reversers/spoilers to a state of technology readiness in the early 1990's. The study results established the design feasibility of advanced technology, slim line nacelles applicable to advanced technology, high bypass ratio turbofan engines. Design feasibility was also established for two low volume thrust reverse/spoiler concepts that meet or exceed the required effectiveness for these engines. These nacelle and thrust reverse/spoiler designs were shown to be applicable in engines with takeoff thrust sizes ranging from 24,000 to 60,000 pounds. The reduced weight, drag, and cost of the advanced technology nacelle installations relative to current technology nacelles offer a mission fuel burn savings ranging from 3.0 to 4.5 percent and direct operating cost plus interest improvements from 1.6 to 2.2 percent.

  16. AiResearch QCGAT engine, airplane, and nacelle design features

    NASA Technical Reports Server (NTRS)

    Heldenbrand, R. W.

    1980-01-01

    The quiet, clean, general aviation turbofan engine and nacelle system was designed and tested. The engine utilized the core of the AiResearch model TFE731-3 engine and incorporated several unique noise- and emissions-reduction features. Components that were successfully adapted to this core include the fan, gearbox, combustor, low-pressure turbine, and associated structure. A highly versatile workhorse nacelle incorporating interchangeable acoustic and hardwall duct liners, showed that large-engine attenuation technology could be applied to small propulsion engines. The application of the mixer compound nozzle demonstrated both performance and noise advantages on the engine. Major performance, emissions, and noise goals were demonstrated.

  17. Arousal from sleep by noises from aircraft with and without acoustically treated nacelles

    NASA Technical Reports Server (NTRS)

    Lukas, J. S.; Peeler, D. J.; Dobbs, M. E.

    1973-01-01

    The electroencephalographic and behavioral responses during sleep of four subjects, aged 46 to 58 years, to three types of noises were tested over 14 consecutive nights. The stimuli were two DC-8 jet landing noises (each 30 seconds in duration and coming from DC-8 aircraft with and without acoustical treatment on the engine nacelles) and a 4-second burst of pink noise. Each of the noises was tested at nominal intensities of 61 and 79 dBA. Other physical descriptors of the noises were measured or computed. The results indicate that for an equivalent degree of sleep disruption, noise form the jet aircraft with untreated nacelles must be about 6 dBA less intense than the jet with acoustically treated nacelles. Predictions of the effects of noise on sleep appear, tentatively, to attain the highest accuracy when the physical descriptor of noise intensity includes information about the impulsive characteristics of that noise as well as its long-term spectral content.

  18. Simulated transonic flows for aircraft with nacelles, pylons, and winglets

    NASA Technical Reports Server (NTRS)

    Boppe, C. W.; Stern, M. A.

    1980-01-01

    A computational method which simulates transonic flow about wing-fuselage configurations has been extended to include the treatment of multiple body and non-planar wing surfaces. The finite difference relaxation scheme is characterized by a modified small disturbance flow equation and multiple embedded grid system. Wing-body combinations with as many as four nacelles/pods, four pylons, and wing-tip-mounted winglets can be analyzed. A scheme for modeling inlet spillage and engine exhaust interference effects has been included. Computed results are correlated with experimental data for three transport configurations.

  19. Application of fiber-reinforced bismaleimide materials to aircraft nacelle structures

    NASA Technical Reports Server (NTRS)

    Peros, Vasilios; Ruth, John; Trawinski, David

    1992-01-01

    Existing aircraft engine nacelle structures employ advanced composite materials to reduce weight and thereby increase overall performance. Use of advanced composite materials on existing aircraft nacelle structures includes fiber-reinforced epoxy structures and has typically been limited to regions furthest away from the hot engine core. Portions of the nacelle structure that are closer to the engine require materials with a higher temperature capability. In these portions, existing nacelle structures employ aluminum sandwich construction and skin/stringer construction. The aluminum structure is composed of many detail parts and assemblies and is usually protected by some form of ablative, insulator, or metallic thermal shield. A one-piece composite inner cowl for a new-generation engine nacelle structure has been designed using fiber-reinforced bismaleimide (BMI) materials and honeycomb core in a sandwich construction. The new composite design has many advantages over the existing aluminum structure. Multiple details were integrated into the one-piece composite design, thereby significantly reducing the number of detail parts and fasteners. The use of lightweight materials and the reduction of the number of joints result in a significant weight reduction over the aluminum design; manufacturing labor and the overall number of tools required have also been reduced. Several significant technical issues were addressed in the development of a BMI composite design. Technical evaluation of the available BMI systems led to the selection of a toughened BMI material which was resistant to microcracking under thermal cyclic loading and enhanced the damage tolerance of the structure. Technical evaluation of the degradation of BMI materials in contact with aluminum and other metals validated methods for isolation of the various materials. Graphite-reinforced BMI in contact with aluminum and some steels was found to degrade in salt spray testing. Isolation techniques such as

  20. Vulnerability Methodology and Protective Measures for Aircraft Fire and Explosion Hazards. Volume 2. Aircraft Engine Nacelle Fire Test Programs. Part 1. Fire Detection, Fire Extinguishment and Surface Ignition Studies

    DTIC Science & Technology

    1986-01-01

    injection method , has a negative margin of fifty (50) degrees ( 975 minus 1025). MIL-H—5606 has a zero margin, ie, the HIT is equal to but not less...Development of "Standard" Fires in F~16 Simulator 54 6.2.1 Selection of Fuel Flow Rate 54 6.2.2 "Standard" F-16 Nacelle Simulator Fire Test 55 6.3...variables which affect the hazard of accidental fire in an engine compartment are complex: 0 The fuel type, its temperature and pressure, and its method of

  1. Quiet Clean Short-haul Experimental Engine (QCSEE). Under-The-Wing (UTW) engine boilerplate nacelle test report, volume 1

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The design and testing of high bypass geared turbofan engines with nacelles forming the propulsion systems for short haul passenger aircraft are considered. The test results demonstrate the technology required for externally blown flap aircraft for introduction into passenger service in the 1980's. The equipment tested is described along with the test facility and instrumentation. A chronological history of the test and a summary of results are given.

  2. Effects of Bifurcations on Aft-Fan Engine Nacelle Noise

    NASA Technical Reports Server (NTRS)

    Nark, Douglas M.; Farassat, Fereidoun; Pope, D. Stuart; Vatsa, Veer N.

    2004-01-01

    Aft-fan engine nacelle noise is a significant factor in the increasingly important issue of aircraft community noise. The ability to predict such noise within complex duct geometries is a valuable tool in studying possible noise attenuation methods. A recent example of code development for such predictions is the ducted fan noise propagation and radiation code CDUCT-LaRC. This work focuses on predicting the effects of geometry changes (i.e. bifurcations, pylons) on aft fan noise propagation. Beginning with simplified geometries, calculations show that bifurcations lead to scattering of acoustic energy into higher order modes. In addition, when circumferential mode number and the number of bifurcations are properly commensurate, bifurcations increase the relative importance of the plane wave mode near the exhaust plane of the bypass duct. This is particularly evident when the bypass duct surfaces include acoustic treatment. Calculations involving more complex geometries further illustrate that bifurcations and pylons clearly affect modal content, in both propagation and radiation calculations. Additionally, results show that consideration of acoustic radiation results may provide further insight into acoustic treatment effectiveness for situations in which modal decomposition may not be straightforward. The ability of CDUCT-LaRC to handle complex (non-axisymmetric) multi-block geometries, as well as axially and circumferentially segmented liners, allows investigation into the effects of geometric elements (bifurcations, pylons).

  3. Drag and Propulsive Characteristics of Air-Cooled Engine-Nacelle Installations for Large Airplane

    NASA Technical Reports Server (NTRS)

    Silverstein, Abe; Wilson, Herbert A , Jr

    1942-01-01

    An investigation was conducted in the NACA full-scale wind tunnel to determine the drag and the propulsive efficiency of nacelle-propeller arrangements for a large range of nacelle sizes. In contrast with usual tests with a single nacelle, these tests were conducted with nacelle-propeller installations on a large model of a four-engine airplane. Data are presented on the first part of the investigation, covering seven nacelle arrangements with nacelle diameters from 0.53 to 1.5 times the wing thickness. These ratios are similar to those occurring on airplanes weighing from about 20 to 100 tons. The results show the drag, the propulsive efficiency, and the over-all efficiency of the various nacelle arrangements as functions of the nacelle size, the propeller position, and the airplane lift coefficient. The effect of the nacelles on the aerodynamic characteristics of the model is shown for both propeller-removed and propeller-operating conditions.

  4. Cooling Air Inlet and Exit Geometries on Aircraft Engine Installations

    NASA Technical Reports Server (NTRS)

    Katz, Joseph; Corsiglia, Victor R.; Barlow, Philip R.

    1982-01-01

    A semispan wing and nacelle of a typical general aviation twin-engine aircraft was tested to evaluate the cooling capability and drag or several nacelle shapes; the nacelle shapes included cooling air inlet and exit variations. The tests were conducted in the Ames Research Center 40 x 80-ft Wind Tunnel. It was found that the cooling air inlet geometry of opposed piston engine installations has a major effect on inlet pressure recovery, but only a minor effect on drag. Exit location showed large effect on drag, especially for those locations on the sides of the nacelle where the suction characteristics were based on interaction with the wing surface pressures.

  5. Computational fluid dynamics simulation of the air/suppressant flow in an uncluttered F18 engine nacelle

    SciTech Connect

    Lopez, A.R.; Gritzo, L.A.; Hassan, B.

    1997-06-01

    For the purposes of designing improved Halon-alternative fire suppression strategies for aircraft applications, Computational Fluid Dynamics (CFD) simulations of the air flow, suppressant transport, and air-suppressant mixing within an uncluttered F18 engine nacelle were performed. The release of inert gases from a Solid Propellant Gas Generator (SPGG) was analyzed at two different injection locations in order to understand the effect of injection position on the flow patterns and the mixing of air and suppression agent. An uncluttered engine nacelle was simulated to provide insight into the global flow features as well as to promote comparisons with previous nacelle fire tests and recent water tunnel tests which included little or no clutter. Oxygen concentration levels, fuel/air residence times that would exist if a small fuel leak were present, velocity contours, and streamline patterns are presented inside the engine nacelle. The numerical results show the influence of the gent release location on regions of potential flame extinction due to oxygen inerting and high flame strain. The occurrence of inflow through the exhaust ducts on the aft end of the nacelle is also predicted. As expected, the predicted oxygen concentration levels were consistently higher than the measured levels since a fire was not modeled in this analysis. Despite differences in the conditions of these simulations and the experiments, good agreement was obtained between the CFD predictions and the experimental measurements.

  6. Development of a Tunable Electromechanical Acoustic Liner for Engine Nacelles

    NASA Technical Reports Server (NTRS)

    Liu, Fei; Sheplak, Mark; Cattafesta, Louis N., III

    2007-01-01

    This report describes the development of a tunable electromechanical Helmholtz resonator (EMHR) for engine nacelles using smart materials technology. This effort addresses both near-term and long-term goals for tunable electromechanical acoustic liner technology for the Quiet Aircraft Technology (QAT) Program. Analytical models, i.e. lumped element model (LEM) and transfer matrix (TM) representation of the EMHR, have been developed to predict the acoustic behavior of the EMHR. The models have been implemented in a MATLAB program and used to compare with measurement results. Moreover, the prediction performance of models is further improved with the aid of parameter extraction of the piezoelectric backplate. The EMHR has been experimentally investigated using standard two-microphone method (TMM). The measurement results validated both the LEM and TM models of the EMHR. Good agreement between predicted and measured impedance is obtained. Short- and open circuit loads define the limits of the tuning range using resistive and capacitive loads. There is approximately a 9% tuning limit under these conditions for the non-optimized resonator configuration studied. Inductive shunt loads result in a 3 degree-of-freedom DOF) system and an enhanced tuning range of over 20% that is not restricted by the short- and open-circuit limits. Damping coefficient ' measurements for piezoelectric backplates in a vacuum chamber are also performed and indicate that the damping is dominated by the structural damping losses, such as compliant boundaries, and other intrinsic loss mechanisms. Based on models of the EMHR, a Pareto optimization design of the EMHR has been performed for the EMHR with non-inductive loads. The EMHR with non-inductive loads is a 2DOF system with two resonant fiequencies. The tuning ranges of the two resonant frequencies of the EMHR with non-inductive loads cannot be optimized simultaneously; a trade-off (i.e., a Pareto solution) must be reached. The Pareto solution

  7. Computer code for estimating installed performance of aircraft gas turbine engines. Volume 2: Users manual

    NASA Technical Reports Server (NTRS)

    Kowalski, E. J.

    1979-01-01

    A computerized method which utilizes the engine performance data and estimates the installed performance of aircraft gas turbine engines is presented. This installation includes: engine weight and dimensions, inlet and nozzle internal performance and drag, inlet and nacelle weight, and nacelle drag. A user oriented description of the program input requirements, program output, deck setup, and operating instructions is presented.

  8. Computer code for estimating installed performance of aircraft gas turbine engines. Volume 1: Final report

    NASA Technical Reports Server (NTRS)

    Kowalski, E. J.

    1979-01-01

    A computerized method which utilizes the engine performance data is described. The method estimates the installed performance of aircraft gas turbine engines. This installation includes: engine weight and dimensions, inlet and nozzle internal performance and drag, inlet and nacelle weight, and nacelle drag.

  9. On the Installation of Jet Engine Nacelles on a Wing Fourth Partial Report: Pressure-Distribution Measurements on a Sweptback Wing with Jet Engine Nacelle

    NASA Technical Reports Server (NTRS)

    Buschner, R.

    1949-01-01

    The present report, which deals with pressure-distribution measurements made on a sweptback wing with a jet engine nacelle, is similar to a report on pressure-distribution measurements on a rectangular wing with a jet engine nacelle (second partial report). Here, in investigations preliminary to high-speed measurements, as in the second partial report, useful arrangements and fillet designs have been discovered.

  10. Integrated engine generator for aircraft secondary power

    NASA Technical Reports Server (NTRS)

    Secunde, R. R.

    1972-01-01

    An integrated engine-generator for aircraft secondary power generation is described. The concept consists of an electric generator located inside a turbojet or turbofan engine and both concentric with and driven by one of the main engine shafts. The electric power conversion equipment and generator controls are located in the aircraft. When properly rated, the generator serves as an engine starter as well as a source of electric power. This configuration reduces or eliminates the need for an external gear box on the engine and permits reduction in the nacelle diameter.

  11. Nacelle/pylon interference study on a 1/17th-scale, twin-engine, low-wing transport model

    NASA Technical Reports Server (NTRS)

    Pendergraft, Odis C., Jr.; Ingraldi, Anthony M.; Re, Richard J.; Kariya, Timmy T.

    1989-01-01

    NASA-Langley has conducted wind tunnel tests of a twin-engine, low-wing transport aircraft configuration with 10.8-aspect ratio supercritical wing, in order to ascertain and compare the wing/nacelle interference effects of through-flow nacelled simulating 'superfan' very high bypass ratio (BPR=20) turbofans and current-technology (BPR=6) turbofans. Measurements of model forces and moments have been obtained, together with extensive external static pressure measurement on the model's wings, nacelles, and pylons in the Mach 0.5-0.8 range, at angles of attack in the -4 to +8 deg range. The superfan nacelles exhibit a significant advantage over current-technology turbofan nacelles, when the superfan's SFC gains are taken into account.

  12. Finite Difference Time Marching in the Frequency Domain: A Parabolic Formulation for Aircraft Acoustic Nacelle Design

    NASA Technical Reports Server (NTRS)

    Baumeister, Kenneth J.; Kreider, Kevin L.

    1996-01-01

    An explicit finite difference iteration scheme is developed to study harmonic sound propagation in aircraft engine nacelles. To reduce storage requirements for large 3D problems, the time dependent potential form of the acoustic wave equation is used. To insure that the finite difference scheme is both explicit and stable, time is introduced into the Fourier transformed (steady-state) acoustic potential field as a parameter. Under a suitable transformation, the time dependent governing equation in frequency space is simplified to yield a parabolic partial differential equation, which is then marched through time to attain the steady-state solution. The input to the system is the amplitude of an incident harmonic sound source entering a quiescent duct at the input boundary, with standard impedance boundary conditions on the duct walls and duct exit. The introduction of the time parameter eliminates the large matrix storage requirements normally associated with frequency domain solutions, and time marching attains the steady-state quickly enough to make the method favorable when compared to frequency domain methods. For validation, this transient-frequency domain method is applied to sound propagation in a 2D hard wall duct with plug flow.

  13. The Development of Jet-engine Nacelles for a High-speed Bomber Design

    NASA Technical Reports Server (NTRS)

    Dannenberg, Robert E

    1947-01-01

    The results of an experimental investigation made for the purpose of developing suitable jet-engine nacelle designs for a high-speed medium bomber are presented. Two types of nacelles were investigated, the first enclosing two 4000-pounds-thrust jet engines and a 65-inch-diameter landing wheel and the second enclosing a single 4000-pounds-thrust jet engine. Both types of nacelles were tested in positions underslung beneath the wing and centrally located on the wing. This report summarizes the investigation which was performed at low speed for the purpose of developing entrance and body shapes of suitable form. Included are results from the high-speed portion of the investigation on the characteristics of an underslung nacelle.

  14. Quiet Clean Short-haul Experimental Engine (QCSEE) Under-The-Wing (UTW) composite Nacelle test report. Volume 2: Acoustic performance

    NASA Technical Reports Server (NTRS)

    Stimpert, D. L.

    1979-01-01

    High bypass geared turbofan engines with nacelles forming the propulsion system for short-haul passenger aircraft were tested for use in externally blown flap-type aircraft. System noise levels for a four-engine, UTW-powered aircraft operating in the powered lift mode were calculated to be 97.2 and 95.7 EPNdB at takeoff and approach, respectively, on a 152.4 m (500 ft) sideline compared to a goal of 95.0 EPNdB.

  15. Integrated engine-generator for aircraft secondary power.

    NASA Technical Reports Server (NTRS)

    Secunde, R. R.

    1972-01-01

    The integrated engine-generator concept consists of an electric generator located inside a turbojet or turbofan engine and both concentric with and driven by one of the main engine shafts. The electric power-conversion equipment and generator controls are conveniently located in the aircraft. When properly rated, the generator serves as an engine starter as well as a source of electric power. The available generating capacity permits use of electrically driven engine accessories. This reduces or eliminates the need for an external gearbox on the engine, thereby simplifying the engine and nacelle assembly and increasing aircraft design flexibility. The nacelle diameter can then be decreased, resulting in less aerodynamic drag and reduced takeoff gross weight.

  16. Quiet Clean Short-haul Experimental Engine (QCSEE) Over-The-Wing (OTW) boilerplate nacelle design report

    NASA Technical Reports Server (NTRS)

    1977-01-01

    A summary of the mechanical design of the boiler plate nacelle for the QCSEE over the wing (OTW) engine is presented. The nacelle, which features a D-shaped nozzle/thrust reverser and interchangeable hard wall and acoustic panels, is utilized in the engine testing to establish the aerodynamic and acoustic requirements for nozzles and reversers of this type.

  17. 14 CFR 25.1182 - Nacelle areas behind firewalls, and engine pod attaching structures containing flammable fluid...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Nacelle areas behind firewalls, and engine...: TRANSPORT CATEGORY AIRPLANES Powerplant Powerplant Fire Protection § 25.1182 Nacelle areas behind firewalls... immediately behind the firewall, and each portion of any engine pod attaching structure containing...

  18. 14 CFR 25.1182 - Nacelle areas behind firewalls, and engine pod attaching structures containing flammable fluid...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Nacelle areas behind firewalls, and engine...: TRANSPORT CATEGORY AIRPLANES Powerplant Powerplant Fire Protection § 25.1182 Nacelle areas behind firewalls... immediately behind the firewall, and each portion of any engine pod attaching structure containing...

  19. Parametric Study of the Flutter Stability of a Semi-Rigid 3-D Wing-With-Engine Nacelle Model in Subsonic Flow

    NASA Astrophysics Data System (ADS)

    Försching, H.; Knaack, J. M.

    1993-08-01

    A parametric investigation is performed of the aeroelastic flutter stability behaviour of a semi-rigid 3-D wing-with-engine nacelle model in subsonic flow. The system under investigation is a wind tunnel model that was flutter tested some years ago. It consists of a swept-back half wing with a pylon-mounted engine nacelle, representative of modern large transport aircraft, and is elastically restrained at its wing root, so that it may execute decoupled (rigid body) rolling and pitching oscillations about two orthogonal axes. For this binary aeroelastic system, first the equations of motion and then the aeroelastic stability equations are set up in terms of generalized coordinates. In addition to the basic wind tunnel model configuration, two artificial configurations with other positions of the rotation axes and corresponding mode shapes are investigated. For the computation of the motion-induced generalized airloads, a panel technique is used for both the wing and the engine nacelle that is replaced by an annular wing. Numerical results are presented for several systematic parameter variations and Mach numbers, where special emphasis is placed on the effects of the motion-induced unsteady airloads acting on the engine nacelle, the position of the rotation axes, and the frequency ratio of the two modes in roll and pitch. Moreover, a comparison is made with some wind tunnel test results.

  20. Quiet Clean Short-haul Experimental Engine (QCSEE) Under-The-Wing (UTW) boiler plate nacelle and core exhaust nozzle design report

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The mechanical design of the boiler plate nacelle and core exhaust nozzle for the QCSEE under the wing engine is presented. The nacelle, which features interchangeable hard-wall and acoustic panels, is to be utilized in the initial engine testing to establish acoustic requirements for the subsequent composite nacelle as well as in the QCSEE over the wing engine configuration.

  1. Aircraft Engine Emissions. [conference

    NASA Technical Reports Server (NTRS)

    1977-01-01

    A conference on a aircraft engine emissions was held to present the results of recent and current work. Such diverse areas as components, controls, energy efficient engine designs, and noise and pollution reduction are discussed.

  2. Aerodynamic analysis for aircraft with nacelles, pylons, and winglets at transonic speeds

    NASA Technical Reports Server (NTRS)

    Boppe, Charles W.

    1987-01-01

    A computational method has been developed to provide an analysis for complex realistic aircraft configurations at transonic speeds. Wing-fuselage configurations with various combinations of pods, pylons, nacelles, and winglets can be analyzed along with simpler shapes such as airfoils, isolated wings, and isolated bodies. The flexibility required for the treatment of such diverse geometries is obtained by using a multiple nested grid approach in the finite-difference relaxation scheme. Aircraft components (and their grid systems) can be added or removed as required. As a result, the computational method can be used in the same manner as a wind tunnel to study high-speed aerodynamic interference effects. The multiple grid approach also provides high boundary point density/cost ratio. High resolution pressure distributions can be obtained. Computed results are correlated with wind tunnel and flight data using four different transport configurations. Experimental/computational component interference effects are included for cases where data are available. The computer code used for these comparisons is described in the appendices.

  3. Computer code for estimating installed performance of aircraft gas turbine engines. Volume 3: Library of maps

    NASA Technical Reports Server (NTRS)

    Kowalski, E. J.

    1979-01-01

    A computerized method which utilizes the engine performance data and estimates the installed performance of aircraft gas turbine engines is presented. This installation includes: engine weight and dimensions, inlet and nozzle internal performance and drag, inlet and nacelle weight, and nacelle drag. The use of two data base files to represent the engine and the inlet/nozzle/aftbody performance characteristics is discussed. The existing library of performance characteristics for inlets and nozzle/aftbodies and an example of the 1000 series of engine data tables is presented.

  4. Energy efficient aircraft engines

    NASA Technical Reports Server (NTRS)

    Chamberlin, R.; Miller, B.

    1979-01-01

    The three engine programs that constitute the propulsion portion of NASA's Aircraft Energy Efficiency Program are described, their status indicated, and anticipated improvements in SFC discussed. The three engine programs are: (1) engine component improvement, directed at current engines, (2) energy efficient engine, directed at new turbofan engines, and (3) advanced turboprops, directed at technology for advanced turboprop-powered aircraft with cruise speeds to Mach 0.8. Unique propulsion system interactive ties to the airframe resulting from engine design features to reduce fuel consumption are discussed. Emphasis is placed on the advanced turboprop since it offers the largest potential fuel savings of the three propulsion programs and also has the strongest interactive ties to the airframe.

  5. Energy efficient aircraft engines

    NASA Technical Reports Server (NTRS)

    Chamberlin, R.; Miller, B.

    1979-01-01

    The three engine programs that constitute the propulsion portion of NASA's Aircraft Energy Efficiency Program are described, their status indicated, and anticipated improvements in SFC discussed. The three engine programs are (1) Engine Component Improvement--directed at current engines, (2) Energy Efficiency Engine directed at new turbofan engines, and (3) Advanced Turboprops--directed at technology for advanced turboprop--powered aircraft with cruise speeds to Mach 0.8. Unique propulsion system interactive ties to the airframe resulting from engine design features to reduce fuel consumption are discussed. Emphasis is placed on the advanced turboprop since it offers the largest potential fuel savings of the three propulsion programs and also has the strongest interactive ties to the airframe.

  6. Aircraft engines. II

    SciTech Connect

    Smith, M.G. Jr.

    1988-01-01

    An account is given of the design features and prospective performance gains of ultrahigh bypass subsonic propulsion configurations and various candidate supersonic commercial aircraft powerplants. The supersonic types, whose enhanced thermodynamic cycle efficiency is considered critical to the economic viability of a second-generation SST, are the variable-cycle engine, the variable stream control engine, the turbine-bypass engine, and the supersonic-throughflow fan. Also noted is the turboramjet concept, which will be applicable to hypersonic aircraft whose airframe structure materials can withstand the severe aerothermodynamic conditions of this flight regime.

  7. Aircraft engine pollution reduction

    NASA Technical Reports Server (NTRS)

    Rudey, R. A.

    1972-01-01

    The effect of engine operation on the types and levels of the major aircraft engine pollutants is described and the major factors governing the formation of these pollutants during the burning of hydrocarbon fuel are discussed. Methods which are being explored to reduce these pollutants are discussed and their application to several experimental research programs are pointed out. Results showing significant reductions in the levels of carbon monoxide, unburned hydrocarbons, and oxides of nitrogen obtained from experimental combustion research programs are presented and discussed to point out potential application to aircraft engines.

  8. Computation of the transonic flow about a swept wing in the presence of an engine nacelle

    SciTech Connect

    Ross, D.

    1985-12-01

    We have developed a method to model the effects of an engine nacelle on the transonic flow about a swept wing. The nacelle is modelled by adding an inhomogeneous term, which represents a source distribution, to the potential equation, which is solved by relaxation. Our method is an extension of the design code FL22INV of Bauer, Garabedian, and McFadden, which was based on Caughy and Jameson's FLO22 and on the oblique wing code FLO16. In order to obtain a sharply defined obstacle using a source distribution on a finite difference grid, we must use a small grid size near the source. We accomplish this through a mapping of the flow domain to the computational domain. We thus obtain a concentrated source distribution which, for transonic Mach numbers, will cause high speeds and cavitation. To overcome this problem we use a constant coefficient equation for the velocity potential near the source. Once the flow has been computed, the size and position of the nacelle are found by tracing streamlines. We have used our code to study the effect of the presence of an engine nacelle on the shock waves which form above a swept wing in transonic flight. It was found that sizeable shocks appear on wings that were previously nearly shockless. By applying the free boundary redesign technique of FL22INV we were able to minimize the wave drag due to these shocks. The results of these studies are included along with a listing of our new FORTRAN code NACROSS, in which an effort has been made to improve the implementation. 26 refs., 14 figs.

  9. Aircraft Engine Noise Scattering - A Discontinuous Spectral Element Approach

    NASA Technical Reports Server (NTRS)

    Stanescu, D.; Hussaini, M. Y.; Farassat, F.

    2002-01-01

    The paper presents a time-domain method for computation of sound radiation from aircraft engine sources to the far-field. The effects of nonuniform flow around the aircraft and scattering of sound by fuselage and wings are accounted for in the formulation. Our approach is based on the discretization of the inviscid flow equations through a collocation form of the Discontinuous Galerkin spectral element method. An isoparametric representation of the underlying geometry is used in order to take full advantage of the spectral accuracy of the method. Largescale computations are made possible by a parallel implementation based on message passing. Results obtained for radiation from an axisymmetric nacelle alone are compared with those obtained when the same nacelle is installed in a generic con.guration, with and without a wing.

  10. Further studies of methods for reducing community noise around airports. [aircraft noise - aircraft engines

    NASA Technical Reports Server (NTRS)

    Petersen, R. H.; Barry, D. J.; Kline, D. M.

    1975-01-01

    A simplified method of analysis was used in which all flights at a 'simulated' airport were assumed to operate from one runway in a single direction. For this simulated airport, contours of noise exposure forecast were obtained and evaluated. A flight schedule of the simulated airport which is representative of the 23 major U. S. airports was used. The effect of banning night-time operations by four-engine, narrow-body aircraft in combination with other noise reduction options was studied. The reductions in noise which would occur of two- and three-engine, narrow-body aircraft equipped with a refanned engine was examined. A detailed comparison of the effects of engine cutback on takeoff versus the effects of retrofitting quiet nacelles for narrow-body aircraft was also examined. A method of presenting the effects of various noise reduction options was treated.

  11. Preliminary Wind-Tunnel Tests of the Effect of Nacelles on the Characteristics of a Twin-Engine Bomber Model with Low-Drag Wing, Special Report

    NASA Technical Reports Server (NTRS)

    Wenzinger, Carl J.; Sivells, James C.

    1942-01-01

    Tests were made in the NACA 19-foot pressure tunnel of a simplified twin-engine bomber model with an NACA low-drag wing primarily to obtain an indication of the effects of engine nacelles on the characteristics of the model both with and without simple split trailing-edge flaps. Nacelles with conventional-type cowlings representative of those used on an existing high-performance airplane and with NACA high-speed type E cowlings were tested. The tests were made without propeller slipstream. The aerodynamic effects of adding the nacelles to the low-drag wing were similar to the effects commonly obtained by adding similar nacelles to conventional wings. The maximum lift coefficient without flaps was slightly increased, but the increment in maximum lift due to deflecting the flaps was somewhat decreased. The stalling characteristics were improved by the presence of the nacelles. Addition of the nacelles had a destabilizing effect on the pitching moments, as is usual for nacelles that project forward of the wing. The drag increments due to the nacelles were of the usual order of magnitude, with the increment due to the nacelles with NACA type E cowlings approximately one-third less than that of the nacelles with conventional cowlings with built-in air scoops.

  12. Effects of nacelle position and shape on performance of subsonic cruise aircraft

    NASA Technical Reports Server (NTRS)

    Bangert, L. H.; Krivec, D. K.; Segall, R. N.

    1983-01-01

    The reduction of installed-propulsion-system drag by installing circular and D-shaped-cross-section nacelles in an underwing-aft position is investigated experimentally in the NASA-Langley 16-foot transonic wind tunnel. Measurements were made at Mach 0.70 to 0.85, -2.5 to 4.1-deg angle of attack, and 3.4 to 4.0 million/ft Reynolds numbers using the NASA USB full-span transonic transport model; and results were compared with those for the wing-body and underwing-forward/pylon-mounted-nacelle (UTW) configurations. While all nacelle configurations are found to have interference drag, which can probably be reduced by eliminating supersonic flows, both aft configurations are shown to reduce drag relative to UTW and increase lift coefficients. The aft D-nacelle had the lowest drag, 6.8 percent of airplane drag lower than UTW at Mach 8.0 and lift coefficient 0.45. Wing pressure distributions and the effects of deflectors are discussed.

  13. Optics in aircraft engines

    NASA Astrophysics Data System (ADS)

    Vachon, James; Malhotra, Subhash

    The authors describe optical IR&D (independent research and development) programs designed to demonstrate and evaluate optical technologies for incorporation into next-generation military and commercial aircraft engines. Using a comprehensive demonstration program to validate this technology in an on-engine environment, problems encountered can be resolved early and risk can be minimized. In addition to specific activities related to the optics demonstration on the fighter engine, there are other optical programs underway, including a solenoid control system, a light off detection system, and an optical communication link. Research is also underway in simplifying opto-electronics and exploiting multiplexing to further reduce cost and weight.

  14. Aircraft Engine Systems

    NASA Technical Reports Server (NTRS)

    Veres, Joseph

    2001-01-01

    This report outlines the detailed simulation of Aircraft Turbofan Engine. The objectives were to develop a detailed flow model of a full turbofan engine that runs on parallel workstation clusters overnight and to develop an integrated system of codes for combustor design and analysis to enable significant reduction in design time and cost. The model will initially simulate the 3-D flow in the primary flow path including the flow and chemistry in the combustor, and ultimately result in a multidisciplinary model of the engine. The overnight 3-D simulation capability of the primary flow path in a complete engine will enable significant reduction in the design and development time of gas turbine engines. In addition, the NPSS (Numerical Propulsion System Simulation) multidisciplinary integration and analysis are discussed.

  15. Fuel conservative aircraft engine technology

    NASA Technical Reports Server (NTRS)

    Nored, D. L.

    1978-01-01

    Technology developments for more fuel-efficiency subsonic transport aircraft are reported. Three major propulsion projects were considered: (1) engine component improvement - directed at current engines; (2) energy efficient engine - directed at new turbofan engines; and (3) advanced turboprops - directed at technology for advanced turboprop-powered aircraft. Each project is reviewed and some of the technologies and recent accomplishments are described.

  16. Quiet Clean Short-Haul Experimental Engine (QCSEE). Preliminary analyses and design report, volume 2

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The experimental and flight propulsion systems are presented. The following areas are discussed: engine core and low pressure turbine design; bearings and seals design; controls and accessories design; nacelle aerodynamic design; nacelle mechanical design; weight; and aircraft systems design.

  17. CFD Design for Bypass Ratio 15 Nacelle Integration

    NASA Technical Reports Server (NTRS)

    Milholen, William E., II

    2001-01-01

    A computational study is being conducted to evaluate the installation effects of ultra-high bypass ratio (BPR) nacelles on conventional twin-engine transonic transport aircraft. An unstructured Navier-Stokes flow solver, USM3D, is being utilized for the study. The results have been compared to wind tunnel data obtained in the NASA LaRC 16-Foot Transonic Tunnel, for nacelle BPRs of nine and twelve. The USM3D flow solver was found to adequately predict the flows of interest, and has subsequently been used to analyze the installation effects of a theoretical BPR-15 nacelle. In addition, a design code is being used in conjunction with USM3D to redesign the wing in the presence of the BPR-15 nacelle. The preliminary design results will be presented.

  18. Development and testing of dry chemicals in advanced extinguishing systems for jet engine nacelle fires

    NASA Technical Reports Server (NTRS)

    Altman, R. L.; Ling, A. C. (Editor); Mayer, L. A.; Myronik, D. J.

    1979-01-01

    The effectiveness of dry chemical in extinguishing and delaying reignition of fires resulting from hydrocarbon fuel leaking onto heated surfaces such as can occur in jet engine nacelles is studied. The commercial fire extinguishant dry chemical tried are sodium and potassium bicarbonate, carbonate, chloride, carbamate (Monnex), metal halogen, and metal hydroxycarbonate compounds. Synthetic and preparative procedures for new materials developed, a new concept of fire control by dry chemical agents, descriptions of experiment assemblages to test dry chemical fire extinguishant efficiencies in controlling fuel fires initiated by hot surfaces, comparative testing data for more than 25 chemical systems in a 'static' assemblage with no air flow across the heated surface, and similar comparative data for more than ten compounds in a dynamic system with air flows up to 350 ft/sec are presented.

  19. Tests of Nacelle-Propeller Combinations in Various Positions with Reference to Wings III : Clark Y Wing - Various Radial-engine Cowlings - Tractor Propeller

    NASA Technical Reports Server (NTRS)

    Wood, Donald H

    1933-01-01

    This report is the third of a series giving the results obtained in the 20-foot wind tunnel on the interference drag, and propulsive efficiency of nacelle-propeller-wing combinations. The first report gave the results of the tests of an NACA cowled air-cooled engine nacelle with tractor propeller located in 21 positions with reference to a thick wing. The second report gave the results for several engine cowlings and nacelles with tractor propeller located in four positions with reference to same wing. The present report gives results of tests of the same nacelles and cowlings in the same positions with reference to a smaller wing of Clark y section. The lift, drag, and propulsive efficiency were determined at several angles of attack for each cowling and in each nacelle location.

  20. Simulated blood levels of CF3I in personnel exposed during its release from an F-15 jet engine nacelle and during intentional inhalation.

    PubMed

    Vinegar, A; Jepson, G W; Hammann, S J; Harper, G; Dierdorf, D S; Overton, J H

    1999-01-01

    Of the agents under consideration for protecting unoccupied areas from fire, CF3I (trifluoroiodomethane) has physicochemical properties that give it potential as a "drop-in" replacement for halon 1301. One of the issues concerning the use of CF3I is the potential hazard to ground crews should an inadvertent discharge occur while workers are in or near an engine nacelle. A discharge test of CF3I was conducted on an F-15A jet to record CF3I concentration time histories at locations near the aircraft. The conditions of the discharges simulated an inadvertent ground discharge with the engine nacelle doors open and also with the doors closed. The use of three types of gas analysis instrumentation allowed gas sampling from several locations during the discharge tests. Concentrations measured at selected sensor locations were used as the input to a physiologically based pharmacokinetic model to simulate blood levels that would be attained by individuals inhaling CF3I at sensor locations. Blood levels reached during these exposures were compared with the blood level associated with the lowest observable adverse effect level (LOAEL) for cardiac sensitization to evaluate the possibility of safe egress. The highest blood concentrations simulated were twice the target blood concentration associated with cardiac sensitization. However, simulated blood concentrations of subjects who actually inhaled CF3I reached levels that were 100 times the target level without reported adverse effect. Thus, actual human data may supersede the use of the cardiac sensitization LOAEL obtained from animal studies.

  1. Theoretical and Experimental studies of aerodynamic interference effects. [aerodynamic forces on winglets and on wing nacelle configurations for the YC-14 and KC-135 aircraft

    NASA Technical Reports Server (NTRS)

    Rettie, I. H.

    1980-01-01

    Theoretical studies of aerodynamic forces on winglets shed considerable light on the mechanism by which these devices can reduce drag at constant total lift and on the necessity for proper alignment and cambering to achieve optimum favorable interference. Results of engineering studies, wind tunnel tests and performance predictions are reviewed for installations proposed for the AMST YC-14 and the KC-135 airplanes. The other major area of aerodynamic interference discussed is that of engine nacelle installations. Slipper and overwing nacelles have received much attention because of their potential for noise reduction, propulsive lift and improved ground clearance. A major challenge is the integration of such nacelles with the supercritical flow on the upper surface of a swept wing in cruise at high subsonic speeds.

  2. Tests of Nacelle-Propeller Combinations in Various Positions with Reference to Wings II : Thick Wing - Various Radial-Engine Cowlings - Tractor Propeller

    NASA Technical Reports Server (NTRS)

    Wood, Donald H

    1932-01-01

    This report is the second of a series giving the results obtained in the 20-foot wind tunnel of the National Advisory Committee for Aeronautics on the interference drag and propulsive efficiency of nacelle-propeller-wing combinations. The first report gave the results of the test of a N.A.C.A. cowled air-cooled engine nacelle located in 21 positions with reference to a thick wing. The present report gives results of tests of a normal engine nacelle with several types of cowling and fairings in four of the positions with reference to the same wing. (author)

  3. Integration of Engine, Plume, and CFD Analyses in Conceptual Design of Low-Boom Supersonic Aircraft

    NASA Technical Reports Server (NTRS)

    Li, Wu; Campbell, Richard; Geiselhart, Karl; Shields, Elwood; Nayani, Sudheer; Shenoy, Rajiv

    2009-01-01

    This paper documents an integration of engine, plume, and computational fluid dynamics (CFD) analyses in the conceptual design of low-boom supersonic aircraft, using a variable fidelity approach. In particular, the Numerical Propulsion Simulation System (NPSS) is used for propulsion system cycle analysis and nacelle outer mold line definition, and a low-fidelity plume model is developed for plume shape prediction based on NPSS engine data and nacelle geometry. This model provides a capability for the conceptual design of low-boom supersonic aircraft that accounts for plume effects. Then a newly developed process for automated CFD analysis is presented for CFD-based plume and boom analyses of the conceptual geometry. Five test cases are used to demonstrate the integrated engine, plume, and CFD analysis process based on a variable fidelity approach, as well as the feasibility of the automated CFD plume and boom analysis capability.

  4. Quiet Clean Short-haul Experimental Engine (QCSEE). Under-The-Wing (UTW) engine boilerplate nacelle test report. Volume 3: Mechanical performance

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Results of initial tests of the under the wing experimental engine and boilerplate nacelle are presented. The mechanical performance of the engine is reported with emphasis on the advanced technology components. Technology elements of the propulsion system covered include: system dynamics, composite fan blades, reduction gear, lube and accessory drive system, fan frame, inlet, core cowl cooling, fan exhaust nozzle, and digital control system.

  5. Alloy design for aircraft engines

    NASA Astrophysics Data System (ADS)

    Pollock, Tresa M.

    2016-08-01

    Metallic materials are fundamental to advanced aircraft engines. While perceived as mature, emerging computational, experimental and processing innovations are expanding the scope for discovery and implementation of new metallic materials for future generations of advanced propulsion systems.

  6. Suppression of pool fires with HRC-125 in a simulated engine nacelle.

    SciTech Connect

    Keyser, David R.; Hewson, John C.

    2007-06-01

    CFD simulations are conducted to predict the distribution of fire suppressant in an engine nacelle and to predict the suppression of pool fires by the application of this suppressant. In the baseline configuration, which is based on an installed system, suppressant is injected through four nozzles at a rate fast enough to suppress all simulated pool fires. Variations that reduce the mass of the suppression system (reducing the impact of the suppression system on meeting mission needs) are considered, including a reduction in the rate of suppressant injection, a reduction in the mass of suppressant and a reduction in the number of nozzles. In general, these variations should work to reduce the effectiveness of the suppression system, but the CFD results point out certain changes that have negligible impact, at least for the range of phenomena considered here. The results are compared with measurements where available. Comparisons with suppressant measurements are reasonable. A series of twenty-three fire suppression tests were conducted to check the predictions. The pre-test predictions were generally successful in identifying the range of successful suppression tests. In two separate cases, each where one nozzle of the suppression system was capped, the simulation results did indicate a failure to suppress for a condition where the tests indicated successful suppression. When the test-suppressant discharge rate was reduced by roughly 25%, the tests were in agreement with the predictions. That is, the simulations predict a failure to suppress slightly before observed in these cases.

  7. Aircraft and Engine Development Testing

    DTIC Science & Technology

    1986-09-01

    Control in Flight * Integrated Inlet- engine * Power/weight Exceeds Unity F-lll * Advanced Engines * Augmented Turbofan * High Turbine Temperature...residence times). Also, fabrication of a small scale "hot" engine with rotating components such as compressors and turbines with cooled blades , is...capabil- ities are essential to meet the needs of current and projected aircraft and engine programs. The required free jet nozzles should be capable of

  8. Installation effects of wing-mounted turbofan nacelle-pylons on a 1/17-scale, twin-engine, low-wing transport model

    NASA Technical Reports Server (NTRS)

    Pendergraft, Odis C., Jr.; Ingraldi, Anthony M.; Re, Richard J.; Kariya, Timmy T.

    1992-01-01

    A twin-engine, low-wing transport model, with a supercritical wing of aspect ratio 10.8 designed for a cruise Mach number of 0.77 and a lift coefficient of 0.55, was tested in the Langley 16-Foot Transonic Tunnel. The purpose of this test was to compare the wing-nacelle interference effects of flow-through nacelles simulating superfan engines (very high bypass ratio (BPR is approx. = 18) turbofan engines) with the wing-nacelle interference effects of current-technology turbofans (BPR is approx. = 6). Forces and moments on the complete model were measured with a strain-gage balance, and extensive external static-pressure measurements (383 orifice locations) were made on the wing, nacelles, and pylons of the model. Data were taken at Mach numbers from 0.50 to 0.80 and at model angles of attack from -4 deg to 8 deg. Test results indicate that flow-through nacelles with a very high bypass ratio can be installed on a low-wing transport model with a lower installation drag penalty than for a conventional turbofan nacelle at a design cruise Mach number of 0.77 and lift coefficient of 0.55.

  9. Aircraft Engine Noise Scattering By Fuselage and Wings: A Computational Approach

    NASA Technical Reports Server (NTRS)

    Stanescu, D.; Hussaini, M. Y.; Farassat, F.

    2003-01-01

    The paper presents a time-domain method for computation of sound radiation from aircraft engine sources to the far-field. The effects of nonuniform flow around the aircraft and scattering of sound by fuselage and wings are accounted for in the formulation. The approach is based on the discretization of the inviscid flow equations through a collocation form of the Discontinuous Galerkin spectral element method. An isoparametric representation of the underlying geometry is used in order to take full advantage of the spectral accuracy of the method. Large-scale computations are made possible by a parallel implementation based on message passing. Results obtained for radiation from an axisymmetric nacelle alone are compared with those obtained when the same nacelle is installed in a generic configuration, with and without a wing.

  10. Aircraft Engine Noise Scattering by Fuselage and Wings: A Computational Approach

    NASA Technical Reports Server (NTRS)

    Stanescu, D.; Hussaini, M. Y.; Farassat, F.

    2003-01-01

    The paper presents a time-domain method for computation of sound radiation from aircraft engine sources to the far-field. The effects of nonuniform flow around the aircraft and scattering of sound by fuselage and wings are accounted for in the formulation. The approach is based on the discretization of the inviscid flow equations through a collocation form of the Discontinuous Galerkin spectral element method. An isoparametric representation of the underlying geometry is used in order to take full advantage of the spectral accuracy of the method. Large-scale computations are made possible by a parallel implementation based on message passing. Results obtained for radiation from an axisymmetric nacelle alone are compared with those obtained when the same nacelle is installed in a generic configuration, with and without a wing.

  11. Aircraft Engine Noise Scattering by Fuselage and Wings: A Computational Approach

    NASA Technical Reports Server (NTRS)

    Farassat, F.; Stanescu, D.; Hussaini, M. Y.

    2003-01-01

    The paper presents a time-domain method for computation of sound radiation from aircraft engine sources to the far field. The effects of non-uniform flow around the aircraft and scattering of sound by fuselage and wings are accounted for in the formulation. The approach is based on the discretization of the inviscid flow equations through a collocation form of the discontinuous Galerkin spectral element method. An isoparametric representation of the underlying geometry is used in order to take full advantage of the spectral accuracy of the method. Large-scale computations are made possible by a parallel implementation based on message passing. Results obtained for radiation from an axisymmetric nacelle alone are compared with those obtained when the same nacelle is installed in a generic configuration, with and without a wing. 0 2002 Elsevier Science Ltd. All rights reserved.

  12. Design and Test of Fan/Nacelle Models Quiet High-Speed Fan

    NASA Technical Reports Server (NTRS)

    Miller, Christopher J. (Technical Monitor); Weir, Donald

    2003-01-01

    The Quiet High-Speed Fan program is a cooperative effort between Honeywell Engines & Systems (formerly AlliedSignal Engines & Systems) and the NASA Glenn Research Center. Engines & Systems has designed an advanced high-speed fan that will be tested on the Ultra High Bypass Propulsion Simulator in the NASA Glenn 9 x 15 foot wind tunnel, currently scheduled for the second quarter of 2000. An Engines & Systems modern fan design will be used as a baseline. A nacelle model is provided that is characteristic of a typical, modern regional aircraft nacelle and meets all of the program test objectives.

  13. Altitude performance of a low-noise-technology fan in a turbofan engine with and without a sound suppressing nacelle

    NASA Technical Reports Server (NTRS)

    Biesiadny, T. J.; Grey, R. E.; Abdelwahah, M.

    1976-01-01

    Test variables were inlet Reynolds number index (0.2 to 0.5), flight Mach number (0.2 to 0.8), and flow distortion (tip radial and combined circumferential - tip radial patterns). Results are limited to fan bypass and overall engine performance. There were no discernible effects of Reynolds number on fan performance. Increasing flight Mach number shifted the fan operating line such that pressure ratio decreased and airflow increased. Inlet flow distortion lowered stall margin. For a Reynolds number index of 0.2 and flight Mach number of 0.54, the sound suppressing nacelle lowered fan efficiency three points and increased specific fuel consumption about 10 percent.

  14. Microphone Boom for Aircraft-Engine Monitoring

    NASA Technical Reports Server (NTRS)

    Cohn, R.; Economu, M.; Albrecht, W.

    1986-01-01

    Microphone for measuring aircraft engine noise mounted on lengthwise boom supported away from fuselage and engine. This configuration minimizes boundary-layer effects and pressure doubling that is present if microphone were mounted in aircraft fuselage.

  15. Fretting in aircraft turbine engines

    NASA Technical Reports Server (NTRS)

    Johnson, R. L.; Bill, R. C.

    1974-01-01

    The problem of fretting in aircraft turbine engines is discussed. Critical fretting can occur on fan, compressor, and turbine blade mountings, as well as on splines, rolling element bearing races, and secondary sealing elements of face type seals. Structural fatigue failures have been shown to occur at fretted areas on component parts. Methods used by designers to reduce the effects of fretting are given.

  16. Quiet Clean Short-haul Experimental Engine (QCSEE) Under-The-Wing (UTW) composite nacelle

    NASA Technical Reports Server (NTRS)

    Johnston, E. A.

    1978-01-01

    The detail design of the under the wing experimental composite nacelle components is summarized. Analysis of an inlet, fan bypass duct doors, core cowl doors, and variable fan nozzle are given. The required technology to meet propulsion system performance, weight, and operational characteristics is discussed. The materials, design, and fabrication technology for quiet propulsion systems which will yield installed thrust to weight ratios greater than 3.5 to 1 are described.

  17. The effects on cruise drag of installing long-duct refan-engine nacelles on the McDonnell Douglas DC-8-50 and -61

    NASA Technical Reports Server (NTRS)

    Callaghan, J. T.; Donelson, J. E.; Morelli, J. P.

    1973-01-01

    A high-speed wind tunnel test was conducted to determine the effect on cruise performance of installing long-duct refan-engine nacelles on the DC-8-50 and -61 models. Drag data and wing/pylon/nacelle channel pressure data are presented. At a typical cruise condition there exists a very small interference drag penalty of less than one-percent of total cruise data for the Refan installation. Pressure data indicate that some supersonic flow is present in the inboard channel of the inboard refan nacelle installation, but it is not sufficient to cause any wave drag on boundary layer separation. One pylon modification, which takes the form of pylon bumps, was tested. It resulted in a drag penalty, because its design goal of eliminating shock-related interference drag was not required and the bump thus became a source of additional parasite drag.

  18. 19 CFR 10.183 - Duty-free entry of civil aircraft, aircraft engines, ground flight simulators, parts, components...

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... Duty-free entry of civil aircraft, aircraft engines, ground flight simulators, parts, components, and... aircraft, aircraft engines, and ground flight simulators, including their parts, components, and... United States Coast Guard, aircraft, aircraft engines, and ground flight simulators, including...

  19. 19 CFR 10.183 - Duty-free entry of civil aircraft, aircraft engines, ground flight simulators, parts, components...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Duty-free entry of civil aircraft, aircraft engines, ground flight simulators, parts, components, and... aircraft, aircraft engines, and ground flight simulators, including their parts, components, and... United States Coast Guard, aircraft, aircraft engines, and ground flight simulators, including...

  20. 19 CFR 10.183 - Duty-free entry of civil aircraft, aircraft engines, ground flight simulators, parts, components...

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... Duty-free entry of civil aircraft, aircraft engines, ground flight simulators, parts, components, and... aircraft, aircraft engines, and ground flight simulators, including their parts, components, and... United States Coast Guard, aircraft, aircraft engines, and ground flight simulators, including...

  1. 19 CFR 10.183 - Duty-free entry of civil aircraft, aircraft engines, ground flight simulators, parts, components...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... Duty-free entry of civil aircraft, aircraft engines, ground flight simulators, parts, components, and... aircraft, aircraft engines, and ground flight simulators, including their parts, components, and... United States Coast Guard, aircraft, aircraft engines, and ground flight simulators, including...

  2. 19 CFR 10.183 - Duty-free entry of civil aircraft, aircraft engines, ground flight simulators, parts, components...

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... Duty-free entry of civil aircraft, aircraft engines, ground flight simulators, parts, components, and... aircraft, aircraft engines, and ground flight simulators, including their parts, components, and... United States Coast Guard, aircraft, aircraft engines, and ground flight simulators, including...

  3. 75 FR 32315 - Airworthiness Directives; Various Aircraft Equipped With Rotax Aircraft Engines 912 A Series Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-08

    ..., 912 F, and 912 S series engines. Versions of the 912 F series and 912 S series engines are type... not have an engine type certificate; instead, the engine is part of the aircraft type design. You may... Equipped With Rotax Aircraft Engines 912 A Series Engines AGENCY: Federal Aviation Administration...

  4. Structural testing of concorde aircraft: Further report on United Kingdom tests

    NASA Technical Reports Server (NTRS)

    Harpur, N.

    1972-01-01

    A summary of tests conducted on the Concorde aircraft nacelle structure is presented. The tests were conducted as a part of the structural development and certification program. The nacelle structural specimens are described. The problems associated with the intake testing and engine-bay and nozzle testing are discussed.

  5. Lightweight diesel aircraft engines for general aviation

    NASA Technical Reports Server (NTRS)

    Berenyi, S. G.; Brouwers, A. P.

    1980-01-01

    A methodical design study was conducted to arrive at new diesel engine configurations and applicable advanced technologies. Two engines are discussed and the description of each engine includes concept drawings. A performance analysis, stress and weight prediction, and a cost study were also conducted. This information was then applied to two airplane concepts, a six-place twin and a four-place single engine aircraft. The aircraft study consisted of installation drawings, computer generated performance data, aircraft operating costs and drawings of the resulting airplanes. The performance data shows a vast improvement over current gasoline-powered aircraft. At the completion of this basic study, the program was expanded to evaluate a third engine configuration. This third engine incorporates the best features of the original two, and its design is currently in progress. Preliminary information on this engine is presented.

  6. Quiet engine program flight engine design study

    NASA Technical Reports Server (NTRS)

    Klapproth, J. F.; Neitzel, R. E.; Seeley, C. T.

    1974-01-01

    The results are presented of a preliminary flight engine design study based on the Quiet Engine Program high-bypass, low-noise turbofan engines. Engine configurations, weight, noise characteristics, and performance over a range of flight conditions typical of a subsonic transport aircraft were considered. High and low tip speed engines in various acoustically treated nacelle configurations were included.

  7. Technology for reducing aircraft engine pollution

    NASA Technical Reports Server (NTRS)

    Rudey, R. A.; Kempke, E. E., Jr.

    1975-01-01

    Programs have been initiated by NASA to develop and demonstrate advanced technology for reducing aircraft gas turbine and piston engine pollutant emissions. These programs encompass engines currently in use for a wide variety of aircraft from widebody-jets to general aviation. Emission goals for these programs are consistent with the established EPA standards. Full-scale engine demonstrations of the most promising pollutant reduction techniques are planned within the next three years. Preliminary tests of advanced technology gas turbine engine combustors indicate that significant reductions in all major pollutant emissions should be attainable in present generation aircraft engines without adverse effects on fuel consumption. Fundamental-type programs are yielding results which indicate that future generation gas turbine aircraft engines may be able to utilize extremely low pollutant emission combustion systems.

  8. Improvements in teaching aircraft engine design

    SciTech Connect

    Mattingly, J.D.; Heiser, W.H. Tennessee, University, Tullahoma )

    1992-07-01

    Aircraft gas turbine analysis and design pedagogy can be enriched through the incorporation improved preliminary engine thrust and fuel consumption models, novel computer programs for both aircraft system analysis and turbomechanical design, and a new perspective for engine-cycle analysis. Four computer programs have been developed for preliminary engine design; two of these automate aircraft system analysis, while another designs multistage axial-flow compressors and the last designs multistage axial-flow turbines. Student confusion with 'design-point' and 'off-design' concepts is by these means reduced. 6 refs.

  9. Supersonic fan engines for military aircraft

    NASA Technical Reports Server (NTRS)

    Franciscus, L. C.

    1983-01-01

    Engine performance and mission studies were performed for turbofan engines with supersonic through-flow fans. A Mach 2.4 CTOL aircraft was used in the study. Two missions were considered: a long range penetrator mission and a long range intercept mission. The supersonic fan engine is compared with an augmented mixed flow turbofan in terms of mission radius for a fixed takeoff gross weight of 75,000 lbm. The mission radius of aircraft powered by supersonic fan engines could be 15 percent longer than aircraft powered with conventional turbofan engines at moderate thrust to gross weight ratios. The climb and acceleration performance of the supersonic fan engines is better than that of the conventional turbofan engines.

  10. Optimal design and installation of ultra high bypass ratio turbofan nacelle

    NASA Astrophysics Data System (ADS)

    Savelyev, Andrey; Zlenko, Nikolay; Matyash, Evgeniy; Mikhaylov, Sergey; Shenkin, Andrey

    2016-10-01

    The paper is devoted to the problem of designing and optimizing the nacelle of turbojet bypass engine with high bypass ratio and high thrust. An optimization algorithm EGO based on development of surrogate models and the method for maximizing the probability of improving the objective function has been used. The designing methodology has been based on the numerical solution of the Reynolds equations system. Spalart-Allmaras turbulence model has been chosen for RANS closure. The effective thrust losses has been uses as an objective function in optimizing the engine nacelle. As a result of optimization, effective thrust has been increased by 1.5 %. The Blended wing body aircraft configuration has been studied as a possible application. Two variants of the engine layout arrangement have been considered. It has been shown that the power plant changes the pressure distribution on the aircraft surface. It results in essential diminishing the configuration lift-drag ratio.

  11. Cycle Counting Methods of the Aircraft Engine

    ERIC Educational Resources Information Center

    Fedorchenko, Dmitrii G.; Novikov, Dmitrii K.

    2016-01-01

    The concept of condition-based gas turbine-powered aircraft operation is realized all over the world, which implementation requires knowledge of the end-of-life information related to components of aircraft engines in service. This research proposes an algorithm for estimating the equivalent cyclical running hours. This article provides analysis…

  12. Transonic aerodynamic characteristics of a supersonic cruise aircraft research model with the engines suspended above the wing

    NASA Technical Reports Server (NTRS)

    Mercer, C. E.; Carson, G. T., Jr.

    1979-01-01

    The influence of upper-surface nacelle exhaust flow on the aerodynamic characteristics of a supersonic cruise aircraft research configuration was investigated in a 16 foot transonic tunnel over a range of Mach numbers from 0.60 to 1.20. The arrow-wing transport configuration with engines suspended over the wing was tested at angles of attack from -4 deg to 6 deg and jet total pressure ratios from 1 to approximately 13. Wing-tip leading edge flap deflections of -10 deg to 10 deg were tested with the wing-body configuration. Various nacelle locations (chordwise, spanwise, and vertical) were tested over the ranges of Mach numbers, angles of attack, and jet total-pressure ratios. The results show that reflecting the wing-tip leading edge flap from 0 deg to -10 deg increased the maximum lift-drag ratio by 1.0 at subsonic speeds. Jet exhaust interference effects were negligible.

  13. Nacelle aerodynamic performance

    NASA Technical Reports Server (NTRS)

    Obara, Clifford J.; Dodbele, S. S.

    1987-01-01

    The boundary layer transition location was measured on a nacelle shape using the sublimating chemical flow visualization technique. This technique involves coating the surface with a thin film of volatile chemical solid, which, during exposure to a free stream airflow, rapidly sublimates in the turbulent boundary layer as a result of high shear stress and high mass transfer near the surface. Transition is indicated because the chemical coating remains relatively unaffected in the laminar region due to lower shear and low mass transfer. The slow response time of the chemical in a laminar boundary allowed for two test conditions during the same flight. The aircraft was first flown at the desired airspeed and altitude with the noise source off. Once a pattern had developed, the noise source was turned on to the desired setting and a new chemical pattern was sought. In this fashion a direct comparison of the effect of the noise could be determined.

  14. Review of Aircraft Engine Fan Noise Reduction

    NASA Technical Reports Server (NTRS)

    VanZante, Dale

    2008-01-01

    Aircraft turbofan engines incorporate multiple technologies to enhance performance and durability while reducing noise emissions. Both careful aerodynamic design of the fan and proper installation of the fan into the system are requirements for achieving the performance and acoustic objectives. The design and installation characteristics of high performance aircraft engine fans will be discussed along with some lessons learned that may be applicable to spaceflight fan applications.

  15. Aircraft

    DTIC Science & Technology

    2002-01-01

    Company, Washington, DC Boeing Commercial Aircraft Division, Seattle, WA and Long Beach, CA Boeing Military Aircraft and Missile Division, St. Louis, MO and... aircraft ; military fixed-wing aircraft ; rotorcraft (helicopters and tiltrotor aircraft ); and aircraft jet engines. Two companies dominate the commercial... aircraft business, Boeing and Airbus. Four companies dominate the military fixed-wing market, Boeing, Lockheed Martin, BAE Systems, and European

  16. Failure Investigation of WB-57 Aircraft Engine Cowling

    NASA Technical Reports Server (NTRS)

    Martinez, J. E.; Gafka, T.; Figert, J.

    2014-01-01

    The NASA Johnson Space Center (JSC) in Houston, Texas is the home of the NASA WB-57 High Altitude Research Program. Three fully operational WB-57 aircraft are based near JSC at Ellington Field. The aircraft have been flying research missions since the early 1960's, and continue to be an asset to the scientific community with professional, reliable, customer-oriented service designed to meet all scientific objectives. The NASA WB-57 Program provides unique, high-altitude airborne platforms to US Government agencies, academic institutions, and commercial customers in order to support scientific research and advanced technology development and testing at locations around the world. Mission examples include atmospheric and earth science, ground mapping, cosmic dust collection, rocket launch support, and test bed operations for future airborne or spaceborne systems. During the return from a 6 hour flight, at 30,000 feet, in the clean configuration, traveling at 175 knots indicated airspeed, in un-accelerated flight with the auto pilot engaged, in calm air, the 2-man crew heard a mechanical bang and felt a slight shudder followed by a few seconds of high frequency vibration. The crew did not notice any other abnormalities leading up to, or for the remaining 1 hour of flight and made an uneventful landing. Upon taxi into the chocks, the recovery ground crew noticed the high frequency long wire antenna had become disconnected from the vertical stabilizer and was trailing over the left inboard wing, and that the left engine upper center removable cowling panel was missing, with noticeable damage to the left engine inboard cowling fixed structure. The missing cowling panel was never recovered. Each engine cowling panel is attached to the engine nacelle using six bushings made of 17-4 PH steel. The cylinder portions of four of the six bushings were found still attached to the aircraft (Fig 1). The other two bushings were lost with the panel. The other four bushings exhibited

  17. Engine selection for transport and combat aircraft

    NASA Technical Reports Server (NTRS)

    Dugan, J. F., Jr.

    1972-01-01

    The procedures that are used to select engines for transport and combat aircraft are discussed. In general, the problem is to select the engine parameters including engine size in such a way that all constraints are satisfied and airplane performance is maximized. This is done for four different classes of aircraft: (1) a long haul conventional takeoff and landing (CTOL) transport, (2) a short haul vertical takeoff and landing (VTOL) transport, (3) a long range supersonic transport (SST), and (4) a fighter aircraft. For the commercial airplanes the critical constraints have to do with noise while for the fighter, maneuverability requirements define the engine. Generally, the resultant airplane performance (range or payload) is far less than that achievable without these constraints and would suffer more if nonoptimum engines were selected.

  18. Variation of pitching moment with engine thrust for a twin-engine commercial jet aircraft

    NASA Technical Reports Server (NTRS)

    Shanks, R. E.

    1977-01-01

    Flight tests were made to determine the effect of engine net thrust on airplane pitching moment for a twin-engine commercial jet transport in the approach, climbout and descent, and cruise configurations. The results indicate that for all the conditions analyzed, the pitching moment due to thrust is somewhat higher than that estimated from the product of net thrust and its moment arm (perpendicular distance from thrust axis to the airplane center of gravity). The differences are attributed to additional moments produced by nacelle normal force, jet-induced downwash, and interaction between wing flow and engine nacelle flow.

  19. 77 FR 44429 - Airworthiness Directives; Various Aircraft Equipped With Rotax Aircraft Engines 912 A Series Engine

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-30

    ... this AD: Aeromot AMT 300 Turbo Super Ximango and Stemme S10 VT have a Rotax 914 engine installed, not a... certificate holder Aircraft model Engine model Aeromot-Ind stria AMT-200 912 A2 Mec nico- Metal rgica...

  20. 77 FR 39623 - Airworthiness Standards: Aircraft Engines; Technical Amendment

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-05

    ... Part 33 [Amendment No. 33-33] Airworthiness Standards: Aircraft Engines; Technical Amendment AGENCY... amendment clarifies aircraft engine vibration test requirements in the airworthiness standards. The clarification is in response to inquiries from applicants requesting FAA engine type certifications...

  1. 75 FR 70098 - Airworthiness Directives; Various Aircraft Equipped With Rotax Aircraft Engines 912 A Series Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-17

    ... crankcase surface to remove any oil. (ii) Warm up the engine to a minimum oil temperature of 50 degrees C (120 degrees F). Information about warming up the engine can be found in the applicable line... Aircraft Engines 912 A series engine with a crankcase assembly S/N up to and including S/N...

  2. The results of low-speed wind tunnel tests to investigate the effects of the NASA refan JT8D engine nacelles on the stability and control characteristics of the Boeing 727-200

    NASA Technical Reports Server (NTRS)

    Shirkey, M. D.

    1973-01-01

    The results from two low-speed wind tunnel tests of the Boeing 727-200 airplane as configured with the NASA refan JT8D-109 turbofan engines are presented. The objective of these tests was to determine the effects of the refan installation on the low-speed stability and control characteristics of the 727 airplane. Four side nacelle locations were tested to insure that aerodynamic interactions of the nacelles and empennage would be optimized. The optimum location was judged to be the same as that of the production JT8D-9 engines; the current production engine mounts can be used for this location. Some small changes in the basic airplane characteristics are attributable to the refan nacelles. The flaps up longitudinal and lateral-directional stability are both slightly increased for low angles of attack and sideslip respectively. The longitudinal stability at stall is improved for both the flaps up and landing flap configurations. The high attitude characteristics of the basic airplane are not significantly altered by the refan nacelle installation. Directional control capability is not affected by the refan nacelles.

  3. 14 CFR 21.6 - Manufacture of new aircraft, aircraft engines, and propellers.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Manufacture of new aircraft, aircraft..., DEPARTMENT OF TRANSPORTATION AIRCRAFT CERTIFICATION PROCEDURES FOR PRODUCTS AND PARTS General § 21.6 Manufacture of new aircraft, aircraft engines, and propellers. (a) Except as specified in paragraphs (b)...

  4. 14 CFR 21.6 - Manufacture of new aircraft, aircraft engines, and propellers.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Manufacture of new aircraft, aircraft..., DEPARTMENT OF TRANSPORTATION AIRCRAFT CERTIFICATION PROCEDURES FOR PRODUCTS AND PARTS General § 21.6 Manufacture of new aircraft, aircraft engines, and propellers. (a) Except as specified in paragraphs (b)...

  5. 14 CFR 21.6 - Manufacture of new aircraft, aircraft engines, and propellers.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Manufacture of new aircraft, aircraft..., DEPARTMENT OF TRANSPORTATION AIRCRAFT CERTIFICATION PROCEDURES FOR PRODUCTS AND PARTS General § 21.6 Manufacture of new aircraft, aircraft engines, and propellers. (a) Except as specified in paragraphs (b)...

  6. Quiet Clean Short-haul Experimental Engine (QCSEE) Under-The-Wing (UTW) composite nacelle subsystem test report. [to verify strength of selected composite materials

    NASA Technical Reports Server (NTRS)

    Stotler, C. L., Jr.; Johnston, E. A.; Freeman, D. S.

    1977-01-01

    The element and subcomponent testing conducted to verify the under the wing composite nacelle design is reported. This composite nacelle consists of an inlet, outer cowl doors, inner cowl doors, and a variable fan nozzle. The element tests provided the mechanical properties used in the nacelle design. The subcomponent tests verified that the critical panel and joint areas of the nacelle had adequate structural integrity.

  7. Method of vibration isolating an aircraft engine

    NASA Technical Reports Server (NTRS)

    Bender, Stanley I. (Inventor); Butler, Lawrence (Inventor); Dawes, Peter W. (Inventor)

    1991-01-01

    A method for coupling an engine to a support frame for mounting to a fuselage of an aircraft using a three point vibration isolating mounting system in which the load reactive forces at each mounting point are statically and dynamically determined. A first vibration isolating mount pivotably couples a first end of an elongated support beam to a stator portion of an engine with the pivoting action of the vibration mount being oriented such that it is pivotable about a line parallel to a center line of the engine. An aft end of the supporting frame is coupled to the engine through an additional pair of vibration isolating mounts with the mounts being oriented such that they are pivotable about a circumference of the engine. The aft mounts are symmetrically spaced to each side of the supporting frame by 45 degrees. The relative orientation between the front mount and the pair of rear mounts is such that only the rear mounts provide load reactive forces parallel to the engine center line, in support of the engine to the aircraft against thrust forces. The forward mount is oriented so as to provide only radial forces to the engine and some lifting forces to maintain the engine in position adjacent a fuselage. Since each mount is connected to provide specific forces to support the engine, forces required of each mount are statically and dynamically determinable.

  8. Aircraft engine mathematical model - linear system approach

    NASA Astrophysics Data System (ADS)

    Rotaru, Constantin; Roateşi, Simona; Cîrciu, Ionicǎ

    2016-06-01

    This paper examines a simplified mathematical model of the aircraft engine, based on the theory of linear and nonlinear systems. The dynamics of the engine was represented by a linear, time variant model, near a nominal operating point within a finite time interval. The linearized equations were expressed in a matrix form, suitable for the incorporation in the MAPLE program solver. The behavior of the engine was included in terms of variation of the rotational speed following a deflection of the throttle. The engine inlet parameters can cover a wide range of altitude and Mach numbers.

  9. 78 FR 54385 - Airworthiness Directives; Various Aircraft Equipped With Rotax Aircraft Engines 912 A Series Engine

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-04

    ... condition exists and is likely to exist or develop on other products of the same type design. FAA's.... Table 1 of Paragraph (c)--Affected Airplanes Type certificate holder Aircraft model Engine model Aeromot-Ind stria AMT-200 912 A2 Mec nico- Metal rgica Ltda. Diamond Aircraft Industries...... HK 36 R...

  10. Aircraft Engineering Conference 1934 - Full Scale Tunnel

    NASA Technical Reports Server (NTRS)

    1934-01-01

    Gathered together in the only facility big enough to hold them, attendees at Langleys 1934 aircraft Engineering Conference pose in the Full Scale Wind Tunnel underneath a Boeing P-26A Peashooter. Present, among other notables, were Orville Wright, Charles Lindbergh, and Howard Hughes.

  11. Electronic materials testing in commercial aircraft engines

    NASA Astrophysics Data System (ADS)

    Brand, Dieter

    A device for the electronic testing of materials used in commercial aircraft engines is described. The instrument can be used for ferromagnetic, ferrimagnetic, and nonferromagnetic metallic materials, and it functions either optically or acoustically. The design of the device is described and technical data are given. The device operates under the principle of controlled self-inductivity. Its mode of operation is described.

  12. Flow Forming of Aircraft Engine Components

    DTIC Science & Technology

    2006-05-01

    Canada 1000 Marie Victorin, Longueuil Québec J4G 1A1 CANADA jean.Savoie@pwc.ca ABSTRACT Aircraft engine components are often an assembly of...1000 Marie Victorin, Longueuil Québec J4G 1A1 CANADA 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES

  13. Aircraft Piston Engine Exhaust Emission Symposium

    NASA Technical Reports Server (NTRS)

    1976-01-01

    A 2-day symposium on the reduction of exhaust emissions from aircraft piston engines was held on September 14 and 15, 1976, at the Lewis Research Center in Cleveland, Ohio. Papers were presented by both government organizations and the general aviation industry on the status of government contracts, emission measurement problems, data reduction procedures, flight testing, and emission reduction techniques.

  14. 14 CFR 21.128 - Tests: aircraft engines.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Tests: aircraft engines. 21.128 Section 21... engines. (a) Each person manufacturing aircraft engines under a type certificate only shall subject each engine (except rocket engines for which the manufacturer must establish a sampling technique) to...

  15. 14 CFR 21.128 - Tests: aircraft engines.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Tests: aircraft engines. 21.128 Section 21... engines. (a) Each person manufacturing aircraft engines under a type certificate only shall subject each engine (except rocket engines for which the manufacturer must establish a sampling technique) to...

  16. Advanced aircraft engine materials trends

    NASA Technical Reports Server (NTRS)

    Dreshfield, R. L.; Gray, H. R.; Levine, S. R.; Signorelli, R.

    1981-01-01

    Recent activities of the Lewis Research Center are reviewed which are directed toward developing materials for rotating hot section components for aircraft gas turbines. Turbine blade materials activities are directed at increasing metal temperatures approximately 100 C compared to current directionally solidified alloys by use of oxide dispersion strengthening or tungsten alloy wire reinforcement of nickel or iron base superalloys. The application of thermal barrier coatings offers a promise of increasing gas temperatures an additional 100 C with current cooling technology. For turbine disk alloys, activities are directed toward reducing the cost of turbine disks by 50 percent through near net shape fabrication of prealloyed powders as well as towards improved performance. In addition, advanced alloy concepts and fabrication methods for dual alloy disks are being studied as having potential for improving the life of future high performance disks and reducing the amount of strategic materials required in these components.

  17. Diesel engine catalytic combustor system. [aircraft engines

    NASA Technical Reports Server (NTRS)

    Ream, L. W. (Inventor)

    1984-01-01

    A low compression turbocharged diesel engine is provided in which the turbocharger can be operated independently of the engine to power auxiliary equipment. Fuel and air are burned in a catalytic combustor to drive the turbine wheel of turbine section which is initially caused to rotate by starter motor. By opening a flapper value, compressed air from the blower section is directed to catalytic combustor when it is heated and expanded, serving to drive the turbine wheel and also to heat the catalytic element. To start, engine valve is closed, combustion is terminated in catalytic combustor, and the valve is then opened to utilize air from the blower for the air driven motor. When the engine starts, the constituents in its exhaust gas react in the catalytic element and the heat generated provides additional energy for the turbine section.

  18. Computerized systems analysis and optimization of aircraft engine performance, weight, and life cycle costs

    NASA Technical Reports Server (NTRS)

    Fishbach, L. H.

    1979-01-01

    The computational techniques utilized to determine the optimum propulsion systems for future aircraft applications and to identify system tradeoffs and technology requirements are described. The characteristics and use of the following computer codes are discussed: (1) NNEP - a very general cycle analysis code that can assemble an arbitrary matrix fans, turbines, ducts, shafts, etc., into a complete gas turbine engine and compute on- and off-design thermodynamic performance; (2) WATE - a preliminary design procedure for calculating engine weight using the component characteristics determined by NNEP; (3) POD DRG - a table look-up program to calculate wave and friction drag of nacelles; (4) LIFCYC - a computer code developed to calculate life cycle costs of engines based on the output from WATE; and (5) INSTAL - a computer code developed to calculate installation effects, inlet performance and inlet weight. Examples are given to illustrate how these computer techniques can be applied to analyze and optimize propulsion system fuel consumption, weight, and cost for representative types of aircraft and missions.

  19. Nacelle Chine Installation Based on Wind-Tunnel Test Using Efficient Global Optimization

    NASA Astrophysics Data System (ADS)

    Kanazaki, Masahiro; Yokokawa, Yuzuru; Murayama, Mitsuhiro; Ito, Takeshi; Jeong, Shinkyu; Yamamoto, Kazuomi

    Design exploration of a nacelle chine installation was carried out. The nacelle chine improves stall performance when deploying multi-element high-lift devices. This study proposes an efficient design process using a Kriging surrogate model to determine the nacelle chine installation point in wind-tunnel tests. The design exploration was conducted in a wind-tunnel using the JAXA high-lift aircraft model at the JAXA Large-scale Low-speed Wind Tunnel. The objective was to maximize the maximum lift. The chine installation points were designed on the engine nacelle in the axial and chord-wise direction, while the geometry of the chine was fixed. In the design process, efficient global optimization (EGO) which includes Kriging model and genetic algorithm (GA) was employed. This method makes it possible both to improve the accuracy of the response surface and to explore the global optimum efficiently. Detailed observations of flowfields using the Particle Image Velocimetry method confirmed the chine effect and design results.

  20. Helping Aircraft Engines Lighten Up

    NASA Technical Reports Server (NTRS)

    2004-01-01

    High-temperature polyimide/carbon fiber matrix composites are developed by the Polymers Branch at NASA's Glenn Research Center. These materials can withstand high temperatures and have good processing properties, which make them particularly useful for jet and rocket engines and for components such as fan blades, bushings, and duct segments. Applying polyimide composites as components for aerospace structures can lead to substantial vehicle weight reductions. A typical polyimide composite is made up of layers of carbon or glass fibers glued together by a high-temperature polymer to make the material strong, stiff, and lightweight. Organic molecules containing carbon, nitrogen, oxygen, and hydrogen within the polyimide keep the material s density low, resulting in the light weight. The strength of a component or part made from a polyimide comes mainly from the reinforcing high-strength fibers. The strength of the carbon fibers coupled with the stiffness of polyimides allows engineers to make a very rigid structure without it being massive. Another benefit of a polyimide s suitability for aerospace applications is its reduced need for machining. When polyimide parts are removed from a mold, they are nearly in their final shape. Usually, very little machining is needed before a part is ready for use.

  1. Large scale static tests of a tilt-nacelle V/STOL propulsion/attitude control system

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The concept of a combined V/STOL propulsion and aircraft attitude control system was subjected to large scale engine tests. The tilt nacelle/attitude control vane package consisted of the T55 powered Hamilton Standard Q-Fan demonstrator. Vane forces, moments, thermal and acoustic characteristics as well as the effects on propulsion system performance were measured under conditions simulating hover in and out of ground effect.

  2. Aircraft Engine Exhaust Nozzle System for Jet Noise Reduction

    NASA Technical Reports Server (NTRS)

    Thomas, Russell H. (Inventor); Czech, Michael J. (Inventor); Elkoby, Ronen (Inventor)

    2014-01-01

    The aircraft exhaust engine nozzle system includes a fan nozzle to receive a fan flow from a fan disposed adjacent to an engine disposed above an airframe surface of the aircraft, a core nozzle disposed within the fan nozzle and receiving an engine core flow, and a pylon structure connected to the core nozzle and structurally attached with the airframe surface to secure the engine to the aircraft.

  3. Aircraft Engine Sump Fire Mitigation

    NASA Technical Reports Server (NTRS)

    Rosenlieb, J. W.

    1973-01-01

    An investigation was performed of the conditions in which fires can result and be controlled within the bearing sump simulating that of a gas turbine engine; Esso 4040 Turbo Oil, Mobil Jet 2, and Monsanto MCS-2931 lubricants were used. Control variables include the oil inlet temperature, bearing temperature, oil inlet and scavenge rates, hot air inlet temperature and flow rate, and internal sump baffling. In addition to attempting spontaneous combustion, an electric spark and a rub (friction) mechanism were employed to ignite fires. Spontaneous combustion was not obtained; however, fires were readily ignited with the electric spark while using each of the three test lubricants. Fires were also ignited using the rub mechanism with the only test lubricant evaluated, Esso 4040. Major parameters controlling ignitions were: Sump configuration; Bearing and oil temperatures, hot air temperature and flow and bearing speed. Rubbing between stationary parts and rotating parts (eg. labyrinth seal and mating rub strip) is a very potent fire source suggesting that observed accidental fires in gas turbine sumps may well arise from this cause.

  4. Computational Assessment of the Benefits of Boundary Layer Ingestion for the D8 Aircraft

    NASA Technical Reports Server (NTRS)

    Pandya, Shishir A.; Uranga, Alejandra

    2013-01-01

    To substantially reduce the fuel burn of future commercial transportation aircraft, the boundary layer ingestion idea is investigated. The idea is that an engine placed in the wake of the aircraft it is propelling is more efficient than a conventional engine placement under the wing or on pods mounted to the rear of the fuselage. The top, rear of the fuselage is thus designed to act as a diffuser such that the engines can be placed there with a minimal nacelle. The boundary layer thickens over the rear of the fuselage such that a large portion of it is ingested by the fan. To assess whether the boundary layer ingesting (BLI) engine placement is indeed advantageous, a study of the nacelle aerodynamics is carried out using Overflow, a viscous CFD flow solver that uses overset meshes. The computed forces and moments are compared to a wind tunnel experiment for validation. Some aspects of the design are verified using the simulation results. Finally, the effect of the nacelle placement is assessed by comparing the BLI nacelle configuration to a podded nacelle configuration and to the unpowered (without nacelles) aircraft.

  5. Tribological systems as applied to aircraft engines

    NASA Technical Reports Server (NTRS)

    Buckley, D. H.

    1985-01-01

    Tribological systems as applied to aircraft are reviewed. The importance of understanding the fundamental concepts involved in such systems is discussed. Basic properties of materials which can be related to adhesion, friction and wear are presented and correlated with tribology. Surface processes including deposition and treatment are addressed in relation to their present and future application to aircraft components such as bearings, gears and seals. Lubrication of components with both liquids and solids is discussed. Advances in both new liquid molecular structures and additives for those structures are reviewed and related to the needs of advanced engines. Solids and polymer composites are suggested for increasing use and ceramic coatings containing fluoride compounds are offered for the extreme temperatures encountered in such components as advanced bearings and seals.

  6. Prediction of nacelle aerodynamic interference effects at low supersonic Mach numbers

    NASA Technical Reports Server (NTRS)

    Kulfan, R. M.

    1980-01-01

    The accuracy of analytical predictions of nacelle aerodynamic interference effects at low supersonic speeds are studied by means of test versus theory comparisons. Comparisons shown include: (1) isolated wing body lift, drag, and pitching moments; (2) isolated nacelle drag and pressure distributions; (3) nacelle interference shock wave patterns and pressure distributions on the wing lower surface; (4) nacelle interference effects on wing body lift, drag, and pitching moments; and (5) total installed nacelle interference effects on lift, drag, and pitching moment. The comparisons also illustrate effects of nacelle location, nacelle spillage, angle of attack, and Mach numbers on the aerodynamic interference. The initial results seem to indicate that the methods can satisfactorily predict lift, drag, pitching moment, and pressure distributions of installed engine nacelles at low supersonic Mach numbers with mass flow ratios from 0.7 to 1.0 for configurations typical of efficient supersonic cruise airplanes.

  7. Study of unconventional aircraft engines designed for low energy consumption

    NASA Technical Reports Server (NTRS)

    Gray, D. E.

    1976-01-01

    Declining U.S. oil reserves and escalating energy costs underline the need for reducing fuel consumption in aircraft engines. The most promising unconventional aircraft engines based on their potential for fuel savings and improved economics are identified. The engines installed in both a long-range and medium-range aircraft were evaluated. Projected technology advances are identified and evaluated for their state-of-readiness for application to a commercial transport. Programs are recommended for developing the necessary technology.

  8. Damage Propagation Modeling for Aircraft Engine Prognostics

    NASA Technical Reports Server (NTRS)

    Saxena, Abhinav; Goebel, Kai; Simon, Don; Eklund, Neil

    2008-01-01

    This paper describes how damage propagation can be modeled within the modules of aircraft gas turbine engines. To that end, response surfaces of all sensors are generated via a thermo-dynamical simulation model for the engine as a function of variations of flow and efficiency of the modules of interest. An exponential rate of change for flow and efficiency loss was imposed for each data set, starting at a randomly chosen initial deterioration set point. The rate of change of the flow and efficiency denotes an otherwise unspecified fault with increasingly worsening effect. The rates of change of the faults were constrained to an upper threshold but were otherwise chosen randomly. Damage propagation was allowed to continue until a failure criterion was reached. A health index was defined as the minimum of several superimposed operational margins at any given time instant and the failure criterion is reached when health index reaches zero. Output of the model was the time series (cycles) of sensed measurements typically available from aircraft gas turbine engines. The data generated were used as challenge data for the Prognostics and Health Management (PHM) data competition at PHM 08.

  9. 77 FR 1626 - Airworthiness Directives; Various Aircraft Equipped With Rotax Aircraft Engines 912 A Series Engine

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-11

    ... determined the unsafe condition exists and is likely to exist or develop on other products of the same type... 40507; and (2) Certificated in any category. Table 1--Affected Airplanes Type certificate holder Aircraft model Engine model Aeromot-Ind stria AMT-200 912 A2 Mec nico- Metal rgica Ltda. Diamond...

  10. 77 FR 22187 - Technical Amendment; Airworthiness Standards-Aircraft Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-13

    ... Federal Aviation Administration 14 CFR Part 33 Technical Amendment; Airworthiness Standards--Aircraft.... SUMMARY: This amendment corrects a number of errors in the airworthiness standards for aircraft engine... additional burden on any person. List of Subjects 14 CFR Part 33 Air transportation, Aircraft,...

  11. Quiet Clean Short-haul Experimental Engine (QCSEE)

    NASA Technical Reports Server (NTRS)

    Willis, W. S.

    1979-01-01

    The design, fabrication, and testing of two experimental propulsion systems for powered lift transport aircraft are given. The under the wing (UTW) engine was intended for installation in an externally blown flap configuration and the over the wing (OTW) engine for use in an upper surface blowing aircraft. The UTW engine included variable pitch composite fan blades, main reduction gear, composite fan frame and nacelle, and a digital control system. The OTW engine included a fixed pitch fan, composite fan frame, boilerplate nacelle, and a full authority digital control. Many acoustic, pollution, performance, and weight goals were demonstrated.

  12. Integrated engine-generator concept for aircraft electric secondary power

    NASA Technical Reports Server (NTRS)

    Secunde, R. R.; Macosko, R. P.; Repas, D. S.

    1972-01-01

    The integrated engine-generator concept of locating an electric generator inside an aircraft turbojet or turbofan engine concentric with, and driven by, one of the main engine shafts is discussed. When properly rated, the generator can serve as an engine starter as well as a generator of electric power. The electric power conversion equipment and generator controls are conveniently located in the aircraft. Preliminary layouts of generators in a large engine together with their physical sizes and weights indicate that this concept is a technically feasible approach to aircraft secondary power.

  13. Evaluation of propeller/nacelle interactions in the PTA program

    NASA Technical Reports Server (NTRS)

    Aljabri, A. S.; Lyman, V.; Parker, R. J.

    1986-01-01

    Advanced highly-loaded propellers are proposed to power transport aircraft that cruise at high subsonic speeds giving significant fuel savings over the equivalent turbofan engine. In order to realize these savings, the propeller must be installed so that the aerodynamics of the propeller/nacelle combination do not lead to excessive cyclic blade stresses or installation losses. The on-going, NASA sponsored, Propfan Test Assessment Program (PTA) has provided the first high-speed wind-tunnel data on an installed propfan complete with an inlet. This paper presents computational techniques that allow: (1) optimization of inlet plane location, (2) contouring of lip and cowl, and (3) estimation of propeller cyclic loads due to a nonuniform flowfield. These computational methods, in spite of the complexity of the configuration and the slipstream effects, provide predictions of aerodynamic performance which are in excellent agreement with wind-tunnel data.

  14. Variable Radius Nacelle Studies

    NASA Technical Reports Server (NTRS)

    McGowan, David M.

    2001-01-01

    An overview of the active shape control for a variable radius nacelle leading edge program is presented. The current technical plan and schedule will be discussed. Results from the structural shape change of curved plates demonstration will be presented, as well as the NASA LaRC concept for a variable radius nacelle leading edge. Results of a Boeing systems integration study of this concept will be discussed briefly. The status of the sensors, actuators, and computational design tools tasks will also be presented.

  15. Nacelle-wing integration

    NASA Technical Reports Server (NTRS)

    Cappuccio, Gelsomina

    1992-01-01

    The Aerodynamics Division at NASA ARC is participating in the propulsion airframe integration phase of the High Speed Research Program. The two areas of research being pursued include an experimental program and analysis using computational fluid dynamics. The applied Aerodynamics Branch is conducting the experimental program, which will involve a nacelle airframe model that was tested in the Ames 11- by 11-Foot Transonic Wind Tunnel in 1973. This branch will also assess various Euler codes in predicting nacelle airframe interference effects. The goal is to provide the industry with the necessary data and tools to design a high speed civil transport with favorable propulsion airframe interference.

  16. 78 FR 65554 - Exhaust Emission Standards for New Aircraft Turbine Engines and Identification Plate for Aircraft...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-01

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF TRANSPORTATION Federal Aviation Administration 14 CFR Parts 34 and 45 RIN 2120-AK15 Exhaust Emission Standards for New Aircraft Turbine Engines and Identification Plate for Aircraft Engines Correction In rule document 2013-24712, appearing on pages 63015-63017...

  17. Microfog lubrication for aircraft engine bearings

    NASA Technical Reports Server (NTRS)

    Rosenlieb, J. W.

    1976-01-01

    An analysis and system study was performed to provide design information regarding lubricant and coolant flow rates and flow paths for effective utilization of the lubricant and coolant in a once through bearing oil mist (microfog) and coolant air system. Both static and dynamic tests were performed. Static tests were executed to evaluate and calibrate the mist supply system. A total of thirteen dynamic step speed bearing tests were performed using four different lubricants and several different mist and air supply configurations. The most effective configuration consisted of supplying the mist and the major portion of the cooling air axially through the bearing. The results of these tests have shown the feasibility of using a once through oil mist and cooling air system to lubricate and cool a high speed, high temperature aircraft engine mainshaft bearing.

  18. Cost/benefit analysis of advanced materials technologies for future aircraft turbine engines

    NASA Technical Reports Server (NTRS)

    Stephens, G. E.

    1980-01-01

    The materials technologies studied included thermal barrier coatings for turbine airfoils, turbine disks, cases, turbine vanes and engine and nacelle composite materials. The cost/benefit of each technology was determined in terms of Relative Value defined as change in return on investment times probability of success divided by development cost. A recommended final ranking of technologies was based primarily on consideration of Relative Values with secondary consideration given to changes in other economic parameters. Technologies showing the most promising cost/benefits were thermal barrier coated temperature nacelle/engine system composites.

  19. 76 FR 72128 - Airworthiness Directives; Thielert Aircraft Engines GmbH (TAE) Reciprocating Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-22

    ... Directives; Thielert Aircraft Engines GmbH (TAE) Reciprocating Engines AGENCY: Federal Aviation... engines installed on, but not limited to, Diamond Aircraft Industries Model DA 42 airplanes. The existing... the PPRV, part number (P/N) 05-7212- E002801, on TAE 125-02-99 engines, from 300 hours to 600...

  20. Phase 2 program on ground test of refanned JT8D turbofan engines and nacelles for the 727 airplane. Volume 4: Airplane evaluation and analysis

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The retrofit of JT8D-109 (refan) engines are evaluated on a 727-200 airplane in terms of airworthiness, performance, and noise. Design of certifiable hardware, manufacture, and ground testing of the essential nacelle components is included along with analysis of the certifiable airplane design to ensure airworthiness compliance and to predict the in-flight performance and noise characteristics of the modified airplane. The analyses confirm that the 727 refan airplane is certifiable. The refan airplane range would be 15% less that of the baseline airplane and block fuel would be increased by 1.5% to 3%. However, with this particular 727-200 model, with a brake release gross weight of 172,500 lb (78,245 kg), it is possible to operate the airplane (with minor structural modifications) at higher gross weights and increase the range up to 15% over the 727-200 (baseline) airplane. The refan airplane FAR Part 36 noise levels would be 6 to 8 EPNdB (effective perceived noise in decibels) below the baseline. Noise footprint studies showed that approach noise contour areas are small compared to takeoff areas. The 727 refan realizes a 68% to 83% reduction in annoyance-weighted area when compared to the 727-200 over a range of gross weights and operational procedures.

  1. Development of the Junkers-diesel Aircraft Engine

    NASA Technical Reports Server (NTRS)

    Gasterstadt,

    1930-01-01

    The working process of the Junkers engine has resulted from a series of attempts to attain high performance and to control the necessarily rapid and complete combustion at extremely high speeds. The two main problems of Diesel engines in aircraft are addressed; namely, incomplete combustion and the greater weight of Diesel engine parts compared to gasoline engines.

  2. 78 FR 47228 - Airworthiness Directives; Thielert Aircraft Engines GmbH Reciprocating Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-05

    ... Engines GmbH Reciprocating Engines AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of... Thielert Aircraft Engines GmbH TAE 125-01 reciprocating engines. This proposed AD was prompted by a report of engine power loss due to engine coolant contaminating the engine clutch. The design of the...

  3. Supersonic through-flow fan engine and aircraft mission performance

    NASA Technical Reports Server (NTRS)

    Franciscus, Leo C.; Maldonado, Jaime J.

    1989-01-01

    A study was made to evaluate potential improvement to a commercial supersonic transport by powering it with supersonic through-flow fan turbofan engines. A Mach 3.2 mission was considered. The three supersonic fan engines considered were designed to operate at bypass ratios of 0.25, 0.5, and 0.75 at supersonic cruise. For comparison a turbine bypass turbojet was included in the study. The engines were evaluated on the basis of aircraft takeoff gross weight with a payload of 250 passengers for a fixed range of 5000 N.MI. The installed specific fuel consumption of the supersonic fan engines was 7 to 8 percent lower than that of the turbine bypass engine. The aircraft powered by the supersonic fan engines had takeoff gross weights 9 to 13 percent lower than aircraft powered by turbine bypass engines.

  4. Methods for comparative evaluation of propulsion system designs for supersonic aircraft

    NASA Technical Reports Server (NTRS)

    Tyson, R. M.; Mairs, R. Y.; Halferty, F. D., Jr.; Moore, B. E.; Chaloff, D.; Knudsen, A. W.

    1976-01-01

    The propulsion system comparative evaluation study was conducted to define a rapid, approximate method for evaluating the effects of propulsion system changes for an advanced supersonic cruise airplane, and to verify the approximate method by comparing its mission performance results with those from a more detailed analysis. A table look up computer program was developed to determine nacelle drag increments for a range of parametric nacelle shapes and sizes. Aircraft sensitivities to propulsion parameters were defined. Nacelle shapes, installed weights, and installed performance was determined for four study engines selected from the NASA supersonic cruise aircraft research (SCAR) engine studies program. Both rapid evaluation method (using sensitivities) and traditional preliminary design methods were then used to assess the four engines. The method was found to compare well with the more detailed analyses.

  5. Re-engining - The sound case for aircraft noise reduction

    NASA Astrophysics Data System (ADS)

    Goddard, K.

    1991-06-01

    The paper reviews the history of legislation to reduce jet-powered aircraft noise, particularly in the U.S.A. Recently introduced legislation is discussed and the paper goes on to explain the fundamental advantage of re-engining as a means of reducing aircraft noise. Th Rolls-Royce Tay engine is introduced and the two re-engine programs already launched are described. The expected large reductions in noise level which result from re-engining are illustrated. The paper concludes with a discussion on new programs, on the current airline business scene and on some aspects of the economics of re-engining.

  6. The 300 H.P. Benz Aircraft Engine

    NASA Technical Reports Server (NTRS)

    Heller, A

    1921-01-01

    A description is given of the Benz 12-cylinder aircraft engine. The 300 H.P. engine, with the cylinders placed at an angle of 60 degrees not only realizes a long-cherished conception, but has received refinement in detail. It may be described as a perfect example of modern German aircraft engine construction. Here, a detailed description is given of the construction of this engine. Emphasis is placed on the design and construction of the cylinders, pistons, and connecting rods. Also discussed are engine fitting, lubrication, oil pumps, bearings, the oil tank, fuel pump, carburetors, and cooling system.

  7. 14 CFR 21.128 - Tests: aircraft engines.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Tests: aircraft engines. 21.128 Section 21.128 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT CERTIFICATION PROCEDURES FOR PRODUCTS AND PARTS Production Under Type Certificate § 21.128 Tests:...

  8. 14 CFR 21.128 - Tests: aircraft engines.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Tests: aircraft engines. 21.128 Section 21.128 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT CERTIFICATION PROCEDURES FOR PRODUCTS AND PARTS Production Under Type Certificate § 21.128 Tests:...

  9. 14 CFR 21.128 - Tests: aircraft engines.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Tests: aircraft engines. 21.128 Section 21.128 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT CERTIFICATION PROCEDURES FOR PRODUCTS AND PARTS Production Under Type Certificate § 21.128 Tests:...

  10. Turboelectric Distributed Propulsion Engine Cycle Analysis for Hybrid-Wing-Body Aircraft

    NASA Technical Reports Server (NTRS)

    Felder, James L.; Kim, Hyun Dae; Brown, Gerald V.

    2009-01-01

    possibilities. The Boeing N2 hybrid-wing-body (HWB) is used as a baseline aircraft for this study. The two pylon mounted conventional turbofans are replaced by two wing-tip mounted turboshaft engines, each driving a superconducting generator. Both generators feed a common electrical bus which distributes power to an array of superconducting motor-driven fans in a continuous nacelle centered along the trailing edge of the upper surface of the wing-body. A key finding was that traditional inlet performance methodology has to be modified when most of the air entering the inlet is boundary layer air. A very thorough and detailed propulsion/airframe integration (PAI) analysis is required at the very beginning of the design process since embedded engine inlet performance must be based on conditions at the inlet lip rather than freestream conditions. Examination of a range of fan pressure ratios yielded a minimum Thrust-specific-fuel-consumption (TSFC) at the aerodynamic design point of the vehicle (31,000 ft /Mach 0.8) between 1.3 and 1.35 FPR. We deduced that this was due to the higher pressure losses prior to the fan inlet as well as higher losses in the 2-D inlets and nozzles. This FPR is likely to be higher than the FPR that yields a minimum TSFC in a pylon mounted engine. 1

  11. 76 FR 68636 - Airworthiness Directives; Thielert Aircraft Engines GmbH (TAE) Reciprocating Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-07

    ...-01] RIN 2120-AA64 Airworthiness Directives; Thielert Aircraft Engines GmbH (TAE) Reciprocating Engines AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule; request for comments. SUMMARY: We are superseding an existing airworthiness directive (AD) for Thielert Aircraft Engines...

  12. Flutter of aircraft engine turbine blades

    NASA Astrophysics Data System (ADS)

    Panovsky, Josef, Jr.

    1997-11-01

    The goal of this research is to eliminate occurrences of flutter of low-pressure turbine blades in aircraft engines. Fundamental unsteady aerodynamic experiments in an annular cascade plus correlating analyses are conducted to improve the understanding of the flutter mechanism in these blades and to identify the key flutter parameters. The use of two- and three-dimensional linearized Euler methods for the calculation of the unsteady pressures due to the blade motion are validated through detailed comparison with the experimental data. Unexpected features of the steady and unsteady flows are also investigated using these computational tools. The validated computer codes are used to extend the range of the experimental data in a series of parametric studies, where the influence of mode shape, reduced frequency, and blade loading are investigated. Mode shape is identified as the most important contributor to determining the stability of a blade design. A new stability parameter is introduced to gain additional insight into the key contributors to flutter. This stability parameter is derived from the influence coefficient representation of the cascade, and includes only contributions from the reference blade and its immediate neighbors. This has the effect of retaining the most important contributions while filtering out terms of less significance. Design rules for the preliminary concept phase and procedures for the detailed analysis phase of the typical blade design process are defined. Utilization of these procedures will lead to blade designs which are free of flutter.

  13. Aircraft Engine Sump Fire Mitigation, Phase 2

    NASA Technical Reports Server (NTRS)

    Rosenlieb, J. W.

    1978-01-01

    The effect of changes in the input parameters (air leakage flow rate and temperature and lubricating oil inlet flow rate and temperature) over a specified range on the flammability conditions within an aircraft engine bearing sump was investigated. An analytical study was performed to determine the effect of various parameters on the generation rate of oil vapor from oil droplets in a hot air stream flowing in a cylindrical tube. The ignition of the vapor-air mixture by an ignition source was considered. The experimental investigation demonstrated that fires would be ignited by a spark ignitor over the full range of air and oil flow rates and air temperatures evaluated. However, no fires could be ignited when the oil inlet temperature was maintained below 41.7 K (290 F). The severity of the fires ignited were found to be directly proportional to the hot air flow rate. Reasonably good correlation was found between the mixture temperature in the sump at the ignitor location and the flammability limits as defined by flammability theory; thus a fairly reliable experimental method of determining flammable conditions within a sump was demonstrated. The computerized mathematical model shows that oil droplet size and air temperature have the greatest influence on the generation rate of oil vapor.

  14. Numerical Predictions and Experimental Results of Air Flow in a Smooth Quarter-Scale Nacelle

    SciTech Connect

    BLACK, AMALIA R.; SUO-ANTTILA, JILL M.; GRITZO, LOUIS A.; DISIMILE, PETER J.; TUCKER, JAMES R.

    2002-06-01

    Fires in aircraft engine nacelles must be rapidly suppressed to avoid loss of life and property. The design of new and retrofit suppression systems has become significantly more challenging due to the ban on production of Halon 1301 for environmental concerns. Since fire dynamics and the transport of suppressants within the nacelle are both largely determined by the available air flow, efforts to define systems using less effective suppressants greatly benefit from characterization of nacelle air flow fields. A combined experimental and computational study of nacelle air flow therefore has been initiated. Calculations have been performed using both CFD-ACE (a Computational Fluid Dynamics (CFD) model with a body-fitted coordinate grid) and WLCAN (a CFD-based fire field model with a Cartesian ''brick'' shaped grid). The flow conditions examined in this study correspond to the same Reynolds number as test data from the full-scale nacelle simulator at the 46 Test Wing. Pre-test simulations of a quarter-scale test fixture were performed using CFD-ACE and WLCAN prior to fabrication. Based on these pre-test simulations, a quarter-scale test fixture was designed and fabricated for the purpose of obtaining spatially-resolved measurements of velocity and turbulence intensity in a smooth nacelle. Post-test calculations have been performed for the conditions of the experiment and compared with experimental results obtained from the quarter-scale test fixture. In addition, several different simulations were performed to assess the sensitivity of the predictions to the grid size, to the turbulence models, and to the use of wall functions. In general, the velocity predictions show very good agreement with the data in the center of the channel but deviate near the walls. The turbulence intensity results tend to amplify the differences in velocity, although most of the trends are in agreement. In addition, there were some differences between WLCAN and CFD-ACE results in the angled

  15. Calculation of odour emissions from aircraft engines at Copenhagen Airport.

    PubMed

    Winther, Morten; Kousgaard, Uffe; Oxbøl, Arne

    2006-07-31

    In a new approach the odour emissions from aircraft engines at Copenhagen Airport are calculated using actual fuel flow and emission measurements (one main engine and one APU: Auxiliary Power Unit), odour panel results, engine specific data and aircraft operational data for seven busy days. The calculation principle assumes a linear relation between odour and HC emissions. Using a digitalisation of the aircraft movements in the airport area, the results are depicted on grid maps, clearly reflecting aircraft operational statistics as single flights or total activity during a whole day. The results clearly reflect the short-term temporal fluctuations of the emissions of odour (and exhaust gases). Aircraft operating at low engine thrust (taxiing, queuing and landing) have a total odour emission share of almost 98%, whereas the shares for the take off/climb out phases (2%) and APU usage (0.5%) are only marginal. In most hours of the day, the largest odour emissions occur, when the total amount of fuel burned during idle is high. However, significantly higher HC emissions for one specific engine cause considerable amounts of odour emissions during limited time periods. The experimentally derived odour emission factor of 57 OU/mg HC is within the range of 23 and 110 OU/mg HC used in other airport odour studies. The distribution of odour emission results between aircraft operational phases also correspond very well with the results for these other studies. The present study uses measurement data for a representative engine. However, the uncertainties become large when the experimental data is used to estimate the odour emissions for all aircraft engines. More experimental data is needed to increase inventory accuracy, and in terms of completeness it is recommended to make odour emission estimates also for engine start and the fuelling of aircraft at Copenhagen Airport in the future.

  16. Tests of Nacelle-Propeller Combinations in Various Positions with Reference to Wings V : Clark Y Biplane Cellule - NACA Cowled Nacelle - Tractor Propeller

    NASA Technical Reports Server (NTRS)

    Valentine, E Floyd

    1935-01-01

    This report is the fifth of a series giving the results obtained from wind tunnel tests on the interference drag and propulsive efficiency of nacelle-propeller-wing combinations. This report gives results of tests of an NACA cowled air-cooled engine nacelle with tractor propeller located in 12 positions with reference to a Clark Y biplane cellule.

  17. Fiber-Optic Circuits For Aircraft Engine Controls

    NASA Astrophysics Data System (ADS)

    Glomb, Walter L.

    1987-12-01

    This paper describes environmental effects which impact the design of interfaces to fiber-optic sensors and data buses in aircraft engine controls. Emphasis is placed on selection of components and designs which maintain their performance and reliability in the harsh environment of an electronics enclosure mounted on a modern aircraft turbine engine. Particular attention is given to the effects of temperature on electro-optical component and system performance. The main conclusion is that electro-optical interfaces to a variety of fiber-optic systems can be installed in an engine-mounted control if the designs and components are selected after careful analysis of the effects of the engine environment.

  18. A Roadmap for Aircraft Engine Life Extending Control

    NASA Technical Reports Server (NTRS)

    Guo, Ten-Huei

    2001-01-01

    The concept of Aircraft Engine Life Extending Control is introduced. A brief description of the tradeoffs between performance and engine life are first explained. The overall goal of the life extending controller is to reduce the engine operating cost by extending the on-wing engine life while improving operational safety. The research results for NASA's Rocket Engine life extending control program are also briefly described. Major building blocks of the Engine Life Extending Control architecture are examined. These blocks include: life prediction models, engine operation models, stress and thermal analysis tools, control schemes, and intelligent control systems. The technology areas that would likely impact the successful implementation of an aircraft engine life extending control are also briefly described. Near, intermediate, and long term goals of NASA's activities are also presented.

  19. 78 FR 70216 - Airworthiness Directives; Thielert Aircraft Engines GmbH Reciprocating Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-25

    ... Engines GmbH Reciprocating Engines AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: We are adopting a new airworthiness directive (AD) for all Thielert Aircraft Engines GmbH TAE 125-01 reciprocating engines. This AD requires applying sealant to close the engine clutch...

  20. Intelligent Life-Extending Controls for Aircraft Engines Studied

    NASA Technical Reports Server (NTRS)

    Guo, Ten-Huei

    2005-01-01

    Current aircraft engine controllers are designed and operated to provide desired performance and stability margins. Except for the hard limits for extreme conditions, engine controllers do not usually take engine component life into consideration during the controller design and operation. The end result is that aircraft pilots regularly operate engines under unnecessarily harsh conditions to strive for optimum performance. The NASA Glenn Research Center and its industrial and academic partners have been working together toward an intelligent control concept that will include engine life as part of the controller design criteria. This research includes the study of the relationship between control action and engine component life as well as the design of an intelligent control algorithm to provide proper tradeoffs between performance and engine life. This approach is expected to maintain operating safety while minimizing overall operating costs. In this study, the thermomechanical fatigue (TMF) of a critical component was selected to demonstrate how an intelligent engine control algorithm can significantly extend engine life with only a very small sacrifice in performance. An intelligent engine control scheme based on modifying the high-pressure spool speed (NH) was proposed to reduce TMF damage from ground idle to takeoff. The NH acceleration schedule was optimized to minimize the TMF damage for a given rise-time constraint, which represents the performance requirement. The intelligent engine control scheme was used to simulate a commercial short-haul aircraft engine.

  1. Lightweight, low compression aircraft diesel engine. [converting a spark ignition engine to the diesel cycle

    NASA Technical Reports Server (NTRS)

    Gaynor, T. L.; Bottrell, M. S.; Eagle, C. D.; Bachle, C. F.

    1977-01-01

    The feasibility of converting a spark ignition aircraft engine to the diesel cycle was investigated. Procedures necessary for converting a single cylinder GTS10-520 are described as well as a single cylinder diesel engine test program. The modification of the engine for the hot port cooling concept is discussed. A digital computer graphics simulation of a twin engine aircraft incorporating the diesel engine and Hot Fort concept is presented showing some potential gains in aircraft performance. Sample results of the computer program used in the simulation are included.

  2. 76 FR 82110 - Airworthiness Directives; Thielert Aircraft Engines GmbH Reciprocating Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-30

    ...-30-AD; Amendment 39-16906; AD 2010-06-12R1] RIN 2120-AA64 Airworthiness Directives; Thielert Aircraft.... SUMMARY: We are revising an existing airworthiness directive (AD) for Thielert Aircraft Engines GmbH models TAE 125-02-99 and TAE 125-01 reciprocating engines. That AD currently requires replacing...

  3. Lifecycle Information of Aircraft Engine Components

    DTIC Science & Technology

    2010-04-14

    commercial aircraft, the industry generated a number of potential RFID-based applications for airlines, air- freight carriers, aircraft maintenance and...adoption of RFID technologies to track serially controlled items requires careful planning and design. Data overload and data noise also affect the...performance of RFID systems. Data overload results from continuously scanning the RFID tags within reader range and sending the repeated information

  4. 77 FR 58301 - Technical Amendment; Airworthiness Standards: Aircraft Engines; Correction

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-20

    ... technical amendment, the FAA clarified aircraft engine vibration test requirements in the airworthiness... amendment, the FAA intended to clarify vibration test requirements in Sec. 33.83 of 14 Code of Federal... read as follows: Sec. 33.83 Vibration test. (a) Each engine must undergo vibration surveys to...

  5. Condensed data on the aircraft engines of the world

    NASA Technical Reports Server (NTRS)

    Fliedner, C S

    1929-01-01

    This compilation of the outstanding characteristics of the available aircraft engines of the world was prepared as a compact ready reference for desk use. It does not pretend to be anything but a skeleton outline of the characteristics of engines reported in the technical press as being in either the experimental, development, or production stage.

  6. Workshop on Aerosols and Particulates from Aircraft Gas Turbine Engines

    NASA Technical Reports Server (NTRS)

    Wey, Chown Chou (Compiler)

    1999-01-01

    In response to the National Research Council (NRC) recommendations, the Workshop on Aerosols and Particulates from Aircraft Gas Turbine Engines was organized by the NASA Lewis Research Center and held on July 29-30, 1997 at the Ohio Aerospace Institute in Cleveland, Ohio. The objective is to develop consensus among experts in the field of aerosols from gas turbine combustors and engines as to important issues and venues to be considered. Workshop participants' expertise included engine and aircraft design, combustion processes and kinetics, atmospheric science, fuels, and flight operations and instrumentation.

  7. Control Design for a Generic Commercial Aircraft Engine

    NASA Technical Reports Server (NTRS)

    Csank, Jeffrey; May, Ryan D.

    2010-01-01

    This paper describes the control algorithms and control design process for a generic commercial aircraft engine simulation of a 40,000 lb thrust class, two spool, high bypass ratio turbofan engine. The aircraft engine is a complex nonlinear system designed to operate over an extreme range of environmental conditions, at temperatures from approximately -60 to 120+ F, and at altitudes from below sea level to 40,000 ft, posing multiple control design constraints. The objective of this paper is to provide the reader an overview of the control design process, design considerations, and justifications as to why the particular architecture and limits have been chosen. The controller architecture contains a gain-scheduled Proportional Integral controller along with logic to protect the aircraft engine from exceeding any limits. Simulation results illustrate that the closed loop system meets the Federal Aviation Administration s thrust response requirements

  8. QCGAT aircraft/engine design for reduced noise and emissions

    NASA Technical Reports Server (NTRS)

    Lanson, L.; Terrill, K. M.

    1980-01-01

    The high bypass ratio QCGAT engine played an important role in shaping the aircraft design. The aircraft which evolved is a sleek, advanced design, six-place aircraft with 3538 kg (7,800 lb) maximum gross weight. It offers a 2778 kilometer (1500 nautical mile) range with cruise speed of 0.5 Mach number and will take-off and land on the vast majority of general aviation airfields. Advanced features include broad application of composite materials and a supercritical wing design with winglets. Full-span fowler flaps were introduced to improve landing capability. Engines are fuselage-mounted with inlets over the wing to provide shielding of fan noise by the wing surfaces. The design objectives, noise, and emission considerations, engine cycle and engine description are discussed as well as specific design features.

  9. Flow prediction for propfan engine installation effects on transport aircraft at transonic speeds

    NASA Technical Reports Server (NTRS)

    Samant, S. S.; Yu, N. J.

    1986-01-01

    An Euler-based method for aerodynamic analysis of turboprop transport aircraft at transonic speeds has been developed. In this method, inviscid Euler equations are solved over surface-fitted grids constructed about aircraft configurations. Propeller effects are simulated by specifying sources of momentum and energy on an actuator disc located in place of the propeller. A stripwise boundary layer procedure is included to account for the viscous effects. A preliminary version of an approach to embed the exhaust plume within the global Euler solution has also been developed for more accurate treatment of the exhaust flow. The resulting system of programs is capable of handling wing-body-nacelle-propeller configurations. The propeller disks may be tractors or pushers and may represent single or counterrotation propellers. Results from analyses of three test cases of interest (a wing alone, a wing-body-nacelle model, and a wing-nacelle-endplate model) are presented. A user's manual for executing the system of computer programs with formats of various input files, sample job decks, and sample input files is provided in appendices.

  10. A Survey of Aircraft Structural-Life Management Programs in the U.S. Navy, the Canadian Forces, and the U.S. Air Force

    DTIC Science & Technology

    2006-01-01

    the fuselage, wing , empennage , landing gear, control systems, engine section, nacelles, air induction, weapon mounts, engine mounts, structural ...managing and executing the program. The military standard includes require- ments for design , analysis, and test procedures to establish structural ...strength-based design concept, in which the aircraft structure was designed to prevent structural failure resulting from a single application of a load

  11. Aircraft stress sequence development: A complex engineering process made simple

    NASA Technical Reports Server (NTRS)

    Schrader, K. H.; Butts, D. G.; Sparks, W. A.

    1994-01-01

    Development of stress sequences for critical aircraft structure requires flight measured usage data, known aircraft loads, and established relationships between aircraft flight loads and structural stresses. Resulting cycle-by-cycle stress sequences can be directly usable for crack growth analysis and coupon spectra tests. Often, an expert in loads and spectra development manipulates the usage data into a typical sequence of representative flight conditions for which loads and stresses are calculated. For a fighter/trainer type aircraft, this effort is repeated many times for each of the fatigue critical locations (FCL) resulting in expenditure of numerous engineering hours. The Aircraft Stress Sequence Computer Program (ACSTRSEQ), developed by Southwest Research Institute under contract to San Antonio Air Logistics Center, presents a unique approach for making complex technical computations in a simple, easy to use method. The program is written in Microsoft Visual Basic for the Microsoft Windows environment.

  12. Rankline-Brayton engine powered solar thermal aircraft

    SciTech Connect

    Bennett, Charles L

    2012-03-13

    A solar thermal powered aircraft powered by heat energy from the sun. A Rankine-Brayton hybrid cycle heat engine is carried by the aircraft body for producing power for a propulsion mechanism, such as a propeller or other mechanism for enabling sustained free flight. The Rankine-Brayton engine has a thermal battery, preferably containing a lithium-hydride and lithium mixture, operably connected to it so that heat is supplied from the thermal battery to a working fluid. A solar concentrator, such as reflective parabolic trough, is movably connected to an optically transparent section of the aircraft body for receiving and concentrating solar energy from within the aircraft. Concentrated solar energy is collected by a heat collection and transport conduit, and heat transported to the thermal battery. A solar tracker includes a heliostat for determining optimal alignment with the sun, and a drive motor actuating the solar concentrator into optimal alignment with the sun based on a determination by the heliostat.

  13. Rankine-Brayton engine powered solar thermal aircraft

    SciTech Connect

    Bennett, Charles L.

    2009-12-29

    A solar thermal powered aircraft powered by heat energy from the sun. A Rankine-Brayton hybrid cycle heat engine is carried by the aircraft body for producing power for a propulsion mechanism, such as a propeller or other mechanism for enabling sustained free flight. The Rankine-Brayton engine has a thermal battery, preferably containing a lithium-hydride and lithium mixture, operably connected to it so that heat is supplied from the thermal battery to a working fluid. A solar concentrator, such as reflective parabolic trough, is movably connected to an optically transparent section of the aircraft body for receiving and concentrating solar energy from within the aircraft. Concentrated solar energy is collected by a heat collection and transport conduit, and heat transported to the thermal battery. A solar tracker includes a heliostat for determining optimal alignment with the sun, and a drive motor actuating the solar concentrator into optimal alignment with the sun based on a determination by the heliostat.

  14. Conceptual design of single turbofan engine powered light aircraft

    NASA Technical Reports Server (NTRS)

    Snyder, F. S.; Voorhees, C. G.; Heinrich, A. M.; Baisden, D. N.

    1977-01-01

    The conceptual design of a four place single turbofan engine powered light aircraft was accomplished utilizing contemporary light aircraft conventional design techniques as a means of evaluating the NASA-Ames General Aviation Synthesis Program (GASP) as a preliminary design tool. In certain areas, disagreement or exclusion were found to exist between the results of the conventional design and GASP processes. Detail discussion of these points along with the associated contemporary design methodology are presented.

  15. Wind tunnel and analytical investigation of over-the-wing propulsion/air frame interferences for a short-haul aircraft at Mach numbers from 0.6 to 0.78. [conducted in the Lewis 8 by 6 foot tunnel

    NASA Technical Reports Server (NTRS)

    Wells, O. D.; Lopez, M. L.; Welge, H. R.; Henne, P. A.; Sewell, A. E.

    1977-01-01

    Results of analytical calculations and wind tunnel tests at cruise speeds of a representative four engine short haul aircraft employing upper surface blowing (USB) with a supercritical wing are discussed. Wind tunnel tests covered a range of Mach number M from 0.6 to 0.78. Tests explored the use of three USB nozzle configurations. Results are shown for the isolated wing body and for each of the three nozzle types installed. Experimental results indicate that a low angle nacelle and streamline contoured nacelle yielded the same interference drag at the design Mach number. A high angle powered lift nacelle had higher interference drag primarily because of nacelle boattail low pressures and flow separation. Results of varying the spacing between the nacelles and the use of trailing edge flap deflections, wing upper surface contouring, and a convergent-divergent nozzle to reduce potential adverse jet effects were also discussed. Analytical comparisons with experimental data, made for selected cases, indicate favorable agreement.

  16. The tilt rotor research aircraft (XV-15) program

    NASA Technical Reports Server (NTRS)

    Magee, J. P.

    1983-01-01

    The tilt rotor concept is introduced and the performance capabilities and noise characteristics of the XV-15 aircraft are discussed. In hover, the aircraft is lifted by the two wing tip mounted rotors with the nacelles in the vertical position. In this flight mode, the vehicle is a twin rotor helicopter and is controlled by rotor cyclic and collective controls. The aircraft can fly as a helicopter or tilt the nacelle to the propeller mode and operate as a fixed-wing twin turboprop airplane. It is also possible to stop the conversion at any intermediate angle and fly continuously or reconvert. The rotors are powered by two modified T-53 engines and the power train includes a cross shaft located in the wing, to allow for the engine failure case and still retain power to both rotors.

  17. Effects of Structural Flexibility on Aircraft-Engine Mounts

    NASA Technical Reports Server (NTRS)

    Phillips, W. H.

    1986-01-01

    Analysis extends technique for design of widely used type of vibration-isolating mounts for aircraft engines, in which rubber mounting pads located in plane behind center of gravity of enginepropeller combination. New analysis treats problem in statics. Results of simple approach useful in providing equations for design of vibrationisolating mounts. Equations applicable in usual situation in which engine-mount structure itself relatively light and placed between large mass of engine and other heavy components of airplane.

  18. Aircraft Turbine Engine Control Research at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Garg, Sanjay

    2014-01-01

    This lecture will provide an overview of the aircraft turbine engine control research at NASA (National Aeronautics and Space Administration) Glenn Research Center (GRC). A brief introduction to the engine control problem is first provided with a description of the current state-of-the-art control law structure. A historical aspect of engine control development since the 1940s is then provided with a special emphasis on the contributions of GRC. The traditional engine control problem has been to provide a means to safely transition the engine from one steady-state operating point to another based on the pilot throttle inputs. With the increased emphasis on aircraft safety, enhanced performance and affordability, and the need to reduce the environmental impact of aircraft, there are many new challenges being faced by the designers of aircraft propulsion systems. The Controls and Dynamics Branch (CDB) at GRC is leading and participating in various projects in partnership with other organizations within GRC and across NASA, other government agencies, the U.S. aerospace industry, and academia to develop advanced propulsion controls and diagnostics technologies that will help meet the challenging goals of NASA programs under the Aeronautics Research Mission. The second part of the lecture provides an overview of the various CDB technology development activities in aircraft engine control and diagnostics, both current and some accomplished in the recent past. The motivation for each of the research efforts, the research approach, technical challenges and the key progress to date are summarized. The technologies to be discussed include system level engine control concepts, gas path diagnostics, active component control, and distributed engine control architecture. The lecture will end with a futuristic perspective of how the various current technology developments will lead to an Intelligent and Autonomous Propulsion System requiring none to very minimum pilot interface

  19. Multi-fuel rotary engine for general aviation aircraft

    NASA Technical Reports Server (NTRS)

    Jones, C.; Ellis, D. R.; Meng, P. R.

    1983-01-01

    Design studies of advanced multifuel general aviation and commuter aircraft rotary stratified charge engines are summarized. Conceptual design studies were performed at two levels of technology, on advanced general aviation engines sized to provide 186/250 shaft kW/hp under cruise conditions at 7620 (25000 m/ft) altitude. A follow on study extended the results to larger (2500 hp max.) engine sizes suitable for applications such as commuter transports and helicopters. The study engine designs were derived from relevant engine development background including both prior and recent engine test results using direct injected unthrottled rotary engine technology. Aircraft studies, using these resultant growth engines, define anticipated system effects of the performance and power density improvements for both single engine and twin engine airplanes. The calculated results indicate superior system performance and 27 to 33 percent fuel economy improvement for the rotary engine airplanes as compared to equivalent airframe concept designs with current baseline engines. The research and technology activities required to attain the projected engine performance levels are also discussed.

  20. The Aerothermodynamics of Aircraft Gas Turbine Engines

    DTIC Science & Technology

    1978-07-01

    line and staggered tube ~ anks . Another way to get the coolant out of the trailing edge is to use drilled holes. These are normally calculated using...Pittsburgh, PA, 1976. 20.35 Butze, H. F., and Ehlers , R. C., "Effect of FUel Properties on Performance of a Single Aircraft Turbojet Combustor," NASA-Tl~-X...20.75 Butze, H. F .. and Ehlers , R. C., "Effect of Fuel Properties on Performance of A Single Aircraft Turboj et Combustor," NASA-TM-X-71789

  1. 77 FR 13488 - Airworthiness Directives; Thielert Aircraft Engines GmbH (TAE) Reciprocating Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-07

    ... Engines GmbH (TAE) Reciprocating Engines AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final... TAE 125-02-99 reciprocating engines installed on, but not limited to, Diamond Aircraft Industries...-E002801, on TAE 125-02-99 engine. This AD was prompted by TAE increasing the life of the PPRV, part...

  2. 78 FR 1733 - Airworthiness Directives; Thielert Aircraft Engines GmbH Reciprocating Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-09

    ... Engines GmbH Reciprocating Engines AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: We are superseding an existing airworthiness directive (AD) for all Thielert Aircraft Engines GmbH models TAE 125-01, TAE 125-02- 99, and TAE 125-02-114 reciprocating engines. That AD...

  3. 77 FR 4217 - Airworthiness Directives; Thielert Aircraft Engines GmbH Reciprocating Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-27

    ... Engines GmbH Reciprocating Engines AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: We are adopting a new airworthiness directive (AD) for all Thielert Aircraft Engines GmbH (TAE) ] TAE 125-02-99 and TAE 125-02-114 reciprocating engines. This AD was prompted by in-flight...

  4. 78 FR 1728 - Airworthiness Directives; Thielert Aircraft Engines GmbH Reciprocating Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-09

    ... Engines GmbH Reciprocating Engines AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: We are adopting a new airworthiness directive (AD) for all Thielert Aircraft Engines GmbH (TAE) TAE 125-02-99 and TAE 125-02-114 reciprocating engines. This AD requires inspection of the oil...

  5. Aircraft Turbine Engine Control Research at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Garg, Sanjay

    2013-01-01

    This paper provides an overview of the aircraft turbine engine control research at the NASA Glenn Research Center (GRC). A brief introduction to the engine control problem is first provided with a description of the state-of-the-art control law structure. A historical aspect of engine control development since the 1940s is then provided with a special emphasis on the contributions of GRC. With the increased emphasis on aircraft safety, enhanced performance, and affordability, as well as the need to reduce the environmental impact of aircraft, there are many new challenges being faced by the designers of aircraft propulsion systems. The Controls and Dynamics Branch (CDB) at GRC is leading and participating in various projects to develop advanced propulsion controls and diagnostics technologies that will help meet the challenging goals of NASA Aeronautics Research Mission programs. The rest of the paper provides an overview of the various CDB technology development activities in aircraft engine control and diagnostics, both current and some accomplished in the recent past. The motivation for each of the research efforts, the research approach, technical challenges, and the key progress to date are summarized.

  6. Real-Time Aircraft Engine-Life Monitoring

    NASA Technical Reports Server (NTRS)

    Klein, Richard

    2014-01-01

    This project developed an inservice life-monitoring system capable of predicting the remaining component and system life of aircraft engines. The embedded system provides real-time, inflight monitoring of the engine's thrust, exhaust gas temperature, efficiency, and the speed and time of operation. Based upon this data, the life-estimation algorithm calculates the remaining life of the engine components and uses this data to predict the remaining life of the engine. The calculations are based on the statistical life distribution of the engine components and their relationship to load, speed, temperature, and time.

  7. High-Speed Propeller for Aircraft

    NASA Technical Reports Server (NTRS)

    Sagerser, D. A.; Gatzen, B. S.

    1986-01-01

    Engine efficiency increased. Propeller blades required to be quite thin and highly swept to minimize compressibility losses and propeller noise during high-speed cruise. Use of 8 or 10 blades with highpropeller-power loading allows overall propeller diameter to be kept relatively small. Area-ruled spinner and integrated nacelle shape reduce compressibility losses in propeller hub region. Finally, large modern turboshaft engine and gearbox provide power to advanced propeller. Fuel savings of 30 to 50 percent over present systems anticipated. Propfan system adaptable to number of applications, such as highspeed (subsonic) business and general-aviation aircraft, and military aircraft including V/STOL.

  8. Some aspects of aircraft jet engine fuels

    NASA Technical Reports Server (NTRS)

    Bekiesinski, R.

    1979-01-01

    Technologies are reviewed for improving the thermal stability of jet fuels, with reference to the overheating of fuel tanks in supersonic aircraft. Consideration is given to the development of a jet fuel with high thermal stability by the Polish petroleum industry.

  9. Analysis of the flow field generated near an aircraft engine operating in reverse thrust. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Ledwith, W. A., Jr.

    1972-01-01

    A computer solution is developed to the exhaust gas reingestion problem for aircraft operating in the reverse thrust mode on a crosswind-free runway. The computer program determines the location of the inlet flow pattern, whether the exhaust efflux lies within the inlet flow pattern or not, and if so, the approximate time before the reversed flow reaches the engine inlet. The program is written so that the user is free to select discrete runway speeds or to study the entire aircraft deceleration process for both the far field and cross-ingestion problems. While developed with STOL applications in mind, the solution is equally applicable to conventional designs. The inlet and reversed jet flow fields involved in the problem are assumed to be noninteracting. The nacelle model used in determining the inlet flow field is generated using an iterative solution to the Neuman problem from potential flow theory while the reversed jet flow field is adapted using an empirical correlation from the literature. Sample results obtained using the program are included.

  10. Recent Progress in Engine Noise Reduction for Commercial Aircraft Applications

    NASA Technical Reports Server (NTRS)

    Huff, Dennis L.

    2003-01-01

    Considerable progress has been made over the past ten years developing technologies for reducing aircraft noise. Engine noise continues to be a dominate source, particularly for aircraft departing from airports. Research efforts have concentrated on developing noise prediction methods, experimental validation, and developing noise reduction concepts that have been verified through model scale and static engine tests. Most of the work has concentrated on fan and jet components for commercial turbofan engines. In this seminar, an overview of the engine noise reduction work that was sponsored by NASA s Advanced Subsonic Technology Noise Reduction Program will be given, along with background information on turbofan noise sources and certification procedures. Concepts like "chevron" nozzles for jet noise reduction and swept stators for fan noise reduction will be highlighted. A preliminary assessment on how the new technologies will impact future engines will be given.

  11. Characterization of chemical and particulate emissions from aircraft engines

    NASA Astrophysics Data System (ADS)

    Agrawal, Harshit; Sawant, Aniket A.; Jansen, Karel; Wayne Miller, J.; Cocker, David R.

    2008-06-01

    This paper presents a series of measurements from four on-wing, commercial aircraft engines, including two newer CFM56-7 engines and two earlier CFM56-3 engines. Samples were collected from each engine using a probe positioned behind the exhaust nozzle of the aircraft, chocked on a concrete testing pad. The emission factors for particulate matter mass, elemental and organic carbon, carbonyls, polycyclic aromatic hydrocarbons, n-alkanes, dioxins, metals and ions are reported for four different engine power setting modes. The emissions indices of particulate matter, elemental and organic carbon are highly power dependent for these engines. Particulate matter emission indices (g kg-1 fuel) are found to increase from 1.1E-02 to 2.05E-01 with increase in power from idle to 85%. The elemental carbon to organic carbon varies from 0.5 to 3.8 with change in power from idle to 85%. The carbonyl emissions are dominated by formaldehyde. The emission index of formaldehyde ranges from 2.3E-01 to 4.8E-01 g kg-1 fuel. The distribution of metals depends on the difference in the various engines. The dioxin emissions from the aircraft engines are observed to be below detection limit.

  12. Advanced control for airbreathing engines, volume 2: General Electric aircraft engines

    NASA Technical Reports Server (NTRS)

    Bansal, Indar

    1993-01-01

    The application of advanced control concepts to air breathing engines may yield significant improvements in aircraft/engine performance and operability. Screening studies of advanced control concepts for air breathing engines were conducted by three major domestic aircraft engine manufacturers to determine the potential impact of concepts on turbine engine performance and operability. The purpose of the studies was to identify concepts which offered high potential yet may incur high research and development risk. A target suite of proposed advanced control concepts was formulated and evaluated in a two phase study to quantify each concept's impact on desired engine characteristics. To aid in the evaluation specific aircraft/engine combinations were considered: a Military High Performance Fighter mission, a High Speed Civil Transport mission, and a Civil Tiltrotor mission. Each of the advanced control concepts considered in the study are defined and described. The concept potential impact on engine performance was determined. Relevant figures of merit on which to evaluate the concepts are determined. Finally, the concepts are ranked with respect to the target aircraft/engine missions. A final report describing the screening studies was prepared by each engine manufacturer. Volume 2 of these reports describes the studies performed by GE Aircraft Engines.

  13. Multi-Fuel Rotary Engine for General Aviation Aircraft

    NASA Technical Reports Server (NTRS)

    Jones, C.; Ellis, D. R.; Meng, P. R.

    1983-01-01

    Design studies, conducted for NASA, of Advanced Multi-fuel General Aviation and Commuter Aircraft Rotary Stratified Charge Engines are summarized. Conceptual design studies of an advanced engine sized to provide 186/250 shaft KW/HP under cruise conditions at 7620/25,000 m/ft. altitude were performed. Relevant engine development background covering both prior and recent engine test results of the direct injected unthrottled rotary engine technology, including the capability to interchangeably operate on gasoline, diesel fuel, kerosene, or aviation jet fuel, are presented and related to growth predictions. Aircraft studies, using these resultant growth engines, define anticipated system effects of the performance and power density improvements for both single engine and twin engine airplanes. The calculated results indicate superior system performance and 30 to 35% fuel economy improvement for the Rotary-engine airplanes as compared to equivalent airframe concept designs with current baseline engines. The research and technology activities required to attain the projected engine performance levels are also discussed.

  14. Adaptive Optimization of Aircraft Engine Performance Using Neural Networks

    NASA Technical Reports Server (NTRS)

    Simon, Donald L.; Long, Theresa W.

    1995-01-01

    Preliminary results are presented on the development of an adaptive neural network based control algorithm to enhance aircraft engine performance. This work builds upon a previous National Aeronautics and Space Administration (NASA) effort known as Performance Seeking Control (PSC). PSC is an adaptive control algorithm which contains a model of the aircraft's propulsion system which is updated on-line to match the operation of the aircraft's actual propulsion system. Information from the on-line model is used to adapt the control system during flight to allow optimal operation of the aircraft's propulsion system (inlet, engine, and nozzle) to improve aircraft engine performance without compromising reliability or operability. Performance Seeking Control has been shown to yield reductions in fuel flow, increases in thrust, and reductions in engine fan turbine inlet temperature. The neural network based adaptive control, like PSC, will contain a model of the propulsion system which will be used to calculate optimal control commands on-line. Hopes are that it will be able to provide some additional benefits above and beyond those of PSC. The PSC algorithm is computationally intensive, it is valid only at near steady-state flight conditions, and it has no way to adapt or learn on-line. These issues are being addressed in the development of the optimal neural controller. Specialized neural network processing hardware is being developed to run the software, the algorithm will be valid at steady-state and transient conditions, and will take advantage of the on-line learning capability of neural networks. Future plans include testing the neural network software and hardware prototype against an aircraft engine simulation. In this paper, the proposed neural network software and hardware is described and preliminary neural network training results are presented.

  15. Organic positive ions in aircraft gas-turbine engine exhaust

    NASA Astrophysics Data System (ADS)

    Sorokin, Andrey; Arnold, Frank

    Volatile organic compounds (VOCs) represent a significant fraction of atmospheric aerosol. However the role of organic species emitted by aircraft (as a consequence of the incomplete combustion of fuel in the engine) in nucleation of new volatile particles still remains rather speculative and requires a much more detailed analysis of the underlying mechanisms. Measurements in aircraft exhaust plumes have shown the presence of both different non-methane VOCs (e.g. PartEmis project) and numerous organic cluster ions (MPIK-Heidelberg). However the link between detected organic gas-phase species and measured mass spectrum of cluster ions is uncertain. Unfortunately, up to now there are no models describing the thermodynamics of the formation of primary organic cluster ions in the exhaust of aircraft engines. The aim of this work is to present first results of such a model development. The model includes the block of thermodynamic data based on proton affinities and gas basicities of organic molecules and the block of non-equilibrium kinetics of the cluster ions evolution in the exhaust. The model predicts important features of the measured spectrum of positive ions in the exhaust behind aircraft. It is shown that positive ions emitted by aircraft engines into the atmosphere mostly consist of protonated and hydrated organic cluster ions. The developed model may be explored also in aerosol investigations of the background atmosphere as well as in the analysis of the emission of fine aerosol particles by automobiles.

  16. Research on hypersonic aircraft using pre-cooled turbojet engines

    NASA Astrophysics Data System (ADS)

    Taguchi, Hideyuki; Kobayashi, Hiroaki; Kojima, Takayuki; Ueno, Atsushi; Imamura, Shunsuke; Hongoh, Motoyuki; Harada, Kenya

    2012-04-01

    Systems analysis of a Mach 5 class hypersonic aircraft is performed. The aircraft can fly across the Pacific Ocean in 2 h. A multidisciplinary optimization program for aerodynamics, structure, propulsion, and trajectory is used in the analysis. The result of each element model is improved using higher accuracy analysis tools. The aerodynamic performance of the hypersonic aircraft is examined through hypersonic wind tunnel tests. A thermal management system based on the data of the wind tunnel tests is proposed. A pre-cooled turbojet engine is adopted as the propulsion system for the hypersonic aircraft. The engine can be operated continuously from take-off to Mach 5. This engine uses a pre-cooling cycle using cryogenic liquid hydrogen. The high temperature inlet air of hypersonic flight would be cooled by the same liquid hydrogen used as fuel. The engine is tested under sea level static conditions. The engine is installed on a flight test vehicle. Both liquid hydrogen fuel and gaseous hydrogen fuel are supplied to the engine from a tank and cylinders installed within the vehicle. The designed operation of major components of the engine is confirmed. A large amount of liquid hydrogen is supplied to the pre-cooler in order to make its performance sufficient for Mach 5 flight. Thus, fuel rich combustion is adopted at the afterburner. The experiments are carried out under the conditions that the engine is mounted upon an experimental airframe with both set up either horizontally or vertically. As a result, the operating procedure of the pre-cooled turbojet engine is demonstrated.

  17. A Systems Engineering Approach to Aircraft Kinetic Kill Countermeasures Technology: Development of an Active Aircraft Defense System for the C/KC-135 Aircraft. Volume 1

    DTIC Science & Technology

    1995-12-01

    AFIT/GSE/ENY/95D-01 A SYSTEMS ENGINEERING APPROACH TO AIRCRAFT KINETIC KILL COUNTERMEASURE TECHNOLOGY: DEVELOPMENT OF AN ACTIVE AIR DEFENSE SYSTEM...AFIT/GSE/ENY/95D-01 A SYSTEMS ENGINEERING APPROACH TO AIRCRAFT KINETIC KILL COUNTERMEASURE TECHNOLOGY: DEVELOPMENT OF AN ACTIVE AIR DEFENSE SYSTEM FOR...THE C/KC-135 AIRCRAFT THESIS (1 of2) Presented to the Faculty of the Graduate School of Engineering of the Air Force Institute of Technology Air

  18. Review of the Rhein-Flugzeugbau Wankel powered aircraft program. [ducted fan engines

    NASA Technical Reports Server (NTRS)

    Riethmueller, M.

    1978-01-01

    The development of light aircraft with special emphasis on modern propulsion systems and production is discussed in terms of the application of rotary engines to aircraft. Emphasis is placed on the integrated ducted-fan propulsion system using rotary engines.

  19. NO(x) reduction additives for aircraft gas turbine engines

    NASA Technical Reports Server (NTRS)

    Adelman, Henry G.; Menees, Gene P.; Cambier, Jean-Luc

    1993-01-01

    The reduction of oxides of nitrogen (NO(x)) emissions from aircraft gas turbine engines is a vital part of the NASA High Speed Research Program. Emissions reductions are critical to the feasibility of future High Speed Civil Transports which operate at supersonic speeds in the stratosphere. It is believed that large fleets of such aircraft using conventional gas turbine engines would emit levels of NO(x) that would be harmful to the stratospheric ozone layer. Previous studies have shown that NO(x) emissions can be reduced from stationary powerplant exhausts by the addition of additives such as ammonia to the exhaust gases. Since the exhaust residence times, pressures and temperatures may be different for aircraft gas turbines, a study has been made of additive effectiveness for high speed, high altitude flight.

  20. Energy efficient engine flight propulsion system: Aircraft/engine integration evaluation

    NASA Technical Reports Server (NTRS)

    Patt, R. F.

    1980-01-01

    Results of aircraft/engine integration studies conducted on an advanced flight propulsion system are reported. Economic evaluations of the preliminary design are included and indicate that program goals will be met. Installed sfc, DOC, noise, and emissions were evaluated. Aircraft installation considerations and growth were reviewed.

  1. Energy efficient engine flight propulsion system: Aircraft/engine integration evaluation

    SciTech Connect

    Patt, R.F.

    1980-06-01

    Results of aircraft/engine integration studies conducted on an advanced flight propulsion system are reported. Economic evaluations of the preliminary design are included and indicate that program goals will be met. Installed sfc, DOC, noise, and emissions were evaluated. Aircraft installation considerations and growth were reviewed.

  2. Calculation of the pressures on aircraft engine bearings

    NASA Technical Reports Server (NTRS)

    Steigenberger, O

    1929-01-01

    For aircraft engines the three principal operating conditions are idling speed, cruising speed, and diving with the engine stopped. In what follows, we will discuss a method which affords a good idea of the course of pressure for the above mentioned operating conditions. The pressures produced in the driving gear are of three kinds; namely, the pressure due to gases, the pressure due to the inertia of the rotating masses, and the pressure due to the inertia of the reciprocating masses.

  3. Combustion system CFD modeling at GE Aircraft Engines

    NASA Technical Reports Server (NTRS)

    Burrus, D.; Mongia, H.; Tolpadi, Anil K.; Correa, S.; Braaten, M.

    1995-01-01

    This viewgraph presentation discusses key features of current combustion system CFD modeling capabilities at GE Aircraft Engines provided by the CONCERT code; CONCERT development history; modeling applied for designing engine combustion systems; modeling applied to improve fundamental understanding; CONCERT3D results for current production combustors; CONCERT3D model of NASA/GE E3 combustor; HYBRID CONCERT CFD/Monte-Carlo modeling approach; and future modeling directions.

  4. Optimal Discrete Event Supervisory Control of Aircraft Gas Turbine Engines

    NASA Technical Reports Server (NTRS)

    Litt, Jonathan (Technical Monitor); Ray, Asok

    2004-01-01

    This report presents an application of the recently developed theory of optimal Discrete Event Supervisory (DES) control that is based on a signed real measure of regular languages. The DES control techniques are validated on an aircraft gas turbine engine simulation test bed. The test bed is implemented on a networked computer system in which two computers operate in the client-server mode. Several DES controllers have been tested for engine performance and reliability.

  5. Exhaust emissions reduction for intermittent combustion aircraft engines

    NASA Technical Reports Server (NTRS)

    Rezy, B. J.; Stuckas, K. J.; Tucker, J. R.; Meyers, J. E.

    1982-01-01

    Three concepts which, to an aircraft piston engine, provide reductions in exhaust emissions of hydrocarbons and carbon monoxide while simultaneously improving fuel economy. The three chosen concepts, (1) an improved fuel injection system, (2) an improved cooling cylinder head, and (3) exhaust air injection, when combined, show a synergistic relationship in achieving these goals. In addition, the benefits of variable ignition timing were explored and both dynamometer and flight testing of the final engine configuration were accomplished.

  6. Energy efficient engine: Propulsion system-aircraft integration evaluation

    NASA Technical Reports Server (NTRS)

    Owens, R. E.

    1979-01-01

    Flight performance and operating economics of future commercial transports utilizing the energy efficient engine were assessed as well as the probability of meeting NASA's goals for TSFC, DOC, noise, and emissions. Results of the initial propulsion systems aircraft integration evaluation presented include estimates of engine performance, predictions of fuel burns, operating costs of the flight propulsion system installed in seven selected advanced study commercial transports, estimates of noise and emissions, considerations of thrust growth, and the achievement-probability analysis.

  7. Advanced materials research for long-haul aircraft turbine engines

    NASA Technical Reports Server (NTRS)

    Signorelli, R. A.; Blankenship, C. P.

    1978-01-01

    The status of research efforts to apply low to intermediate temperature composite materials and advanced high temperature materials to engine components is reviewed. Emerging materials technologies and their potential benefits to aircraft gas turbines were emphasized. The problems were identified, and the general state of the technology for near term use was assessed.

  8. The Power of Aircraft Engines at Altitude

    NASA Technical Reports Server (NTRS)

    Ragazzi, Paolo

    1939-01-01

    The subject of the present paper is confined to the investigations and methods employed by the Fiat company in their studies on the altitude performance of an air-cooled engine of the production type. The experimental set-up as well as test engine data are provided.

  9. Calculation procedures for potential and viscous flow solutions for engine inlets

    NASA Technical Reports Server (NTRS)

    Albers, J. A.; Stockman, N. O.

    1973-01-01

    The method and basic elements of computer solutions for both potential flow and viscous flow calculations for engine inlets are described. The procedure is applicable to subsonic conventional (CTOL), short-haul (STOL), and vertical takeoff (VTOL) aircraft engine nacelles operating in a compressible viscous flow. The calculated results compare well with measured surface pressure distributions for a number of model inlets. The paper discusses the uses of the program in both the design and analysis of engine inlets, with several examples given for VTOL lift fans, acoustic splitters, and for STOL engine nacelles. Several test support applications are also given.

  10. Advanced Technology Spark-Ignition Aircraft Piston Engine Design Study

    NASA Technical Reports Server (NTRS)

    Stuckas, K. J.

    1980-01-01

    The advanced technology, spark ignition, aircraft piston engine design study was conducted to determine the improvements that could be made by taking advantage of technology that could reasonably be expected to be made available for an engine intended for production by January 1, 1990. Two engines were proposed to account for levels of technology considered to be moderate risk and high risk. The moderate risk technology engine is a homogeneous charge engine operating on avgas and offers a 40% improvement in transportation efficiency over present designs. The high risk technology engine, with a stratified charge combustion system using kerosene-based jet fuel, projects a 65% improvement in transportation efficiency. Technology enablement program plans are proposed herein to set a timetable for the successful integration of each item of required advanced technology into the engine design.

  11. Swirling-flow jet noise suppressors for aircraft engines

    NASA Technical Reports Server (NTRS)

    Schwartz, I. R.

    1976-01-01

    Experimental investigations of the effects of swirling the jet exhausts of small turbofan and turbojet engines have indicated significant progress towards predicting and attaining substantial jet noise abatement with minimum thrust losses in large aircraft engines. Systematic variations of the important swirl vane and swirling flow parameters were conducted to determine their effects on jet noise reduction and engine performance. Since swirling flow becomes more effective in reducing jet noise as the density and temperature gradients increase, the significant trends in noise reduction and engine performance that were established by these parametric studies could be projected into potentially greater reductions of sound pressure levels with minimum thrust losses by controlled swirling of the jets of high thrust engines. The density and temperature gradients in the jet exhausts of high thrust engines are larger by comparison with gradients in small engines.

  12. Stratified charge rotary aircraft engine technology enablement program

    NASA Technical Reports Server (NTRS)

    Badgley, P. R.; Irion, C. E.; Myers, D. M.

    1985-01-01

    The multifuel stratified charge rotary engine is discussed. A single rotor, 0.7L/40 cu in displacement, research rig engine was tested. The research rig engine was designed for operation at high speeds and pressures, combustion chamber peak pressure providing margin for speed and load excursions above the design requirement for a high is advanced aircraft engine. It is indicated that the single rotor research rig engine is capable of meeting the established design requirements of 120 kW, 8,000 RPM, 1,379 KPA BMEP. The research rig engine, when fully developed, will be a valuable tool for investigating, advanced and highly advanced technology components, and provide an understanding of the stratified charge rotary engine combustion process.

  13. Study of advanced rotary combustion engines for commuter aircraft

    NASA Technical Reports Server (NTRS)

    Berkowitz, M.; Jones, C.; Myers, D.

    1983-01-01

    Performance, weight, size, and maintenance data for advanced rotary aircraft engines suitable for comparative commuter aircraft system evaluation studies of alternate engine candidates are provided. These are turbocharged, turbocompounded, direct injected, stratified charge rotary engines. Hypothetical engines were defined (an RC4-74 at 895 kW and an RC6-87 at 1490 kW) based on the technologies and design approaches used in the highly advanced engine of a study of advanced general aviation rotary engines. The data covers the size range of shaft power from 597 kW (800 hp) to 1865 kW (2500 hp) and is in the form of drawings, tables, curves and written text. These include data on internal geometry and configuration, installation information, turbocharging and turbocompounding arrangements, design features and technologies, engine cooling, fuels, scaling for weight size BSFC and heat rejection for varying horsepower, engine operating and performance data, and TBO and maintenance requirements. The basic combustion system was developed and demonstrated; however the projected power densities and performance efficiencies require increases in engine internal pressures, thermal loading, and rotative speed.

  14. A 150 and 300 kW lightweight diesel aircraft engine design study

    NASA Technical Reports Server (NTRS)

    Brouwers, A. P.

    1980-01-01

    The diesel engine was reinvestigated as an aircraft powerplant through design study conducted to arrive at engine configurations and applicable advanced technologies. Two engines are discussed, a 300 kW six-cylinder engine for twin engine general aviation aircraft and a 150 kW four-cylinder engine for single engine aircraft. Descriptions of each engine include concept drawings, a performance analysis, stress and weight data, and a cost study. This information was used to develop two airplane concepts, a six-place twin and a four-place single engine aircraft. The aircraft study consists of installation drawings, computer generated performance data, aircraft operating costs, and drawings of the resulting airplanes. The performance data show a vast improvement over current gasoline-powered aircraft.

  15. Quiet Clean Short-haul Experimental Engine (QCSEE) Under-The-Wing (UTW) engine composite nacelle test report. Volume 1: Summary, aerodynamic and mechanical performance

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The performance test results of the final under-the-wing engine configuration are presented. One hundred and six hours of engine operation were completed, including mechanical and performance checkout, baseline acoustic testing with a bellmouth inlet, reverse thrust testing, acoustic technology tests, and limited controls testing. The engine includes a variable pitch fan having advanced composite fan blades and using a ball-spline pitch actuation system.

  16. Aircraft Turbine Engine Reliability and Inspection Investigations

    DTIC Science & Technology

    1993-10-01

    controls and accessories typically produced the largest number of in-flight flameouts, compressor stalls , and engine shutdowns. In addition to the actuarial...typically produced the largest number of in-flight flameouts, compressor stalls , and engine shutdowns. Diagnostic troubleshooting procedures for controls...airfoils suffer because these * materials are damaged during compressor stalls when cooling air flows are disrupted. 3. Fuel/oil system failures are

  17. Driving Torque Control for a Nacelle Test Bench

    NASA Astrophysics Data System (ADS)

    Jassmann, Uwe; Reiter, Matthias; Abel, Dirk

    2014-06-01

    Recently wind industry paid a lot of attention to ground testing facilities in order to improve reliability of wind turbines by undergoing overall system tests at an early stage of development. Some experience has been gained during the last years with drive train test benches, that allow for pure mechanical and electrical tests of the turbine's components. Since the loads occurring inside a wind turbine significantly depend on its control strategy, the natural extension of drive train test benches are so-called nacelle test benches, which also include the wind turbine's controller. The worldwide first nacelle test bench was installed and launched at RWTH Aachen University in 2013. This nacelle test bench was set up as a demonstrator and has a rated power of 1 MW. For the demonstrator test bench a gearbox-based drive train concept, which does not intrinsically meet the high dynamic requirements of the real-time aerodynamics simulation, was chosen. In this paper the mechanical concept is reviewed from a control engineering point of view and a detailed control model is presented and validated using measurement data. In order to minimize the impact this mechanical limitations have and to achieve the dynamics and accuracy required, a driving torque controller is proposed. Due to the communication layout at the nacelle test bench, time delay in data transfer cannot be omitted for controller design. Experiments confirm that the driving torque controller allows to operate a wind turbine at the nacelle test bench and suppresses unrealistic, test bench-related torque dynamics.

  18. Cabin Noise Control for Twin Engine General Aviation Aircraft

    NASA Technical Reports Server (NTRS)

    Vaicaitis, R.; Slazak, M.

    1982-01-01

    An analytical model based on modal analysis was developed to predict the noise transmission into a twin-engine light aircraft. The model was applied to optimize the interior noise to an A-weighted level of 85 dBA. To achieve the required noise attenuation, add-on treatments in the form of honeycomb panels, damping tapes, acoustic blankets, septum barriers and limp trim panels were added to the existing structure. The added weight of the noise control treatment is about 1.1 percent of the total gross take-off weight of the aircraft.

  19. Toward improved durability in advanced aircraft engine hot sections

    NASA Technical Reports Server (NTRS)

    Sokolowski, Daniel E. (Editor)

    1989-01-01

    The conference on durability improvement methods for advanced aircraft gas turbine hot-section components discussed NASA's Hot Section Technology (HOST) project, advanced high-temperature instrumentation for hot-section research, the development and application of combustor aerothermal models, and the evaluation of a data base and numerical model for turbine heat transfer. Also discussed are structural analysis methods for gas turbine hot section components, fatigue life-prediction modeling for turbine hot section materials, and the service life modeling of thermal barrier coatings for aircraft gas turbine engines.

  20. Characterization of lubrication oil emissions from aircraft engines.

    PubMed

    Yu, Zhenhong; Liscinsky, David S; Winstead, Edward L; True, Bruce S; Timko, Michael T; Bhargava, Anuj; Herndon, Scott C; Miake-Lye, Richard C; Anderson, Bruce E

    2010-12-15

    In this first ever study, particulate matter (PM) emitted from the lubrication system overboard breather vent for two different models of aircraft engines has been systematically characterized. Lubrication oil was confirmed as the predominant component of the emitted particulate matter based upon the characteristic mass spectrum of the pure oil. Total particulate mass and size distributions of the emitted oil are also investigated by several high-sensitivity aerosol characterization instruments. The emission index (EI) of lubrication oil at engine idle is in the range of 2-12 mg kg(-1) and increases with engine power. The chemical composition of the oil droplets is essentially independent of engine thrust, suggesting that engine oil does not undergo thermally driven chemical transformations during the ∼4 h test window. Volumetric mean diameter is around 250-350 nm for all engine power conditions with a slight power dependence.

  1. Aircraft

    DOEpatents

    Hibbs, B.D.; Lissaman, P.B.S.; Morgan, W.R.; Radkey, R.L.

    1998-09-22

    This disclosure provides a solar rechargeable aircraft that is inexpensive to produce, is steerable, and can remain airborne almost indefinitely. The preferred aircraft is a span-loaded flying wing, having no fuselage or rudder. Travelling at relatively slow speeds, and having a two-hundred foot wingspan that mounts photovoltaic cells on most all of the wing`s top surface, the aircraft uses only differential thrust of its eight propellers to turn. Each of five sections of the wing has one or more engines and photovoltaic arrays, and produces its own lift independent of the other sections, to avoid loading them. Five two-sided photovoltaic arrays, in all, are mounted on the wing, and receive photovoltaic energy both incident on top of the wing, and which is incident also from below, through a bottom, transparent surface. The aircraft is capable of a top speed of about ninety miles per hour, which enables the aircraft to attain and can continuously maintain altitudes of up to sixty-five thousand feet. Regenerative fuel cells in the wing store excess electricity for use at night, such that the aircraft can sustain its elevation indefinitely. A main spar of the wing doubles as a pressure vessel that houses hydrogen and oxygen gases for use in the regenerative fuel cell. The aircraft has a wide variety of applications, which include weather monitoring and atmospheric testing, communications, surveillance, and other applications as well. 31 figs.

  2. Aircraft

    DOEpatents

    Hibbs, Bart D.; Lissaman, Peter B. S.; Morgan, Walter R.; Radkey, Robert L.

    1998-01-01

    This disclosure provides a solar rechargeable aircraft that is inexpensive to produce, is steerable, and can remain airborne almost indefinitely. The preferred aircraft is a span-loaded flying wing, having no fuselage or rudder. Travelling at relatively slow speeds, and having a two-hundred foot wingspan that mounts photovoltaic cells on most all of the wing's top surface, the aircraft uses only differential thrust of its eight propellers to turn. Each of five sections of the wing has one or more engines and photovoltaic arrays, and produces its own lift independent of the other sections, to avoid loading them. Five two-sided photovoltaic arrays, in all, are mounted on the wing, and receive photovoltaic energy both incident on top of the wing, and which is incident also from below, through a bottom, transparent surface. The aircraft is capable of a top speed of about ninety miles per hour, which enables the aircraft to attain and can continuously maintain altitudes of up to sixty-five thousand feet. Regenerative fuel cells in the wing store excess electricity for use at night, such that the aircraft can sustain its elevation indefinitely. A main spar of the wing doubles as a pressure vessel that houses hydrogen and oxygen gasses for use in the regenerative fuel cell. The aircraft has a wide variety of applications, which include weather monitoring and atmospheric testing, communications, surveillance, and other applications as well.

  3. Liquid lubricants for advanced aircraft engines

    NASA Technical Reports Server (NTRS)

    Loomis, William R.; Fusaro, Robert L.

    1992-01-01

    An overview of liquid lubricants for use in current and projected high performance turbojet engines is discussed. Chemical and physical properties are reviewed with special emphasis placed on the oxidation and thermal stability requirements imposed upon the lubrication system. A brief history is given of the development of turbine engine lubricants which led to the present day synthetic oils with their inherent modification advantages. The status and state of development of some eleven candidate classes of fluids for use in advanced turbine engines are discussed. Published examples of fundamental studies to obtain a better understanding of the chemistry involved in fluid degradation are reviewed. Alternatives to high temperature fluid development are described. The importance of continuing work on improving current high temperature lubricant candidates and encouraging development of new and improved fluid base stocks are discussed.

  4. Liquid lubricants for advanced aircraft engines

    SciTech Connect

    Loomis, W.R.; Fusaro, R.L.

    1992-08-01

    An overview of liquid lubricants for use in current and projected high performance turbojet engines is discussed. Chemical and physical properties are reviewed with special emphasis placed on the oxidation and thermal stability requirements imposed upon the lubrication system. A brief history is given of the development of turbine engine lubricants which led to the present day synthetic oils with their inherent modification advantages. The status and state of development of some eleven candidate classes of fluids for use in advanced turbine engines are discussed. Published examples of fundamental studies to obtain a better understanding of the chemistry involved in fluid degradation are reviewed. Alternatives to high temperature fluid development are described. The importance of continuing work on improving current high temperature lubricant candidates and encouraging development of new and improved fluid base stocks are discussed.

  5. Liquid lubricants for advanced aircraft engines

    NASA Technical Reports Server (NTRS)

    Loomis, William R.; Fusaro, Robert L.

    1993-01-01

    An overview of liquid lubricants for use in current and projected high performance turbojet engines is discussed. Chemical and physical properties are reviewed with special emphasis placed on the oxidation and thermal stability requirements imposed upon the lubrication system. A brief history is given of the development of turbine engine lubricants which led to the present day synthetic oils with their inherent modification advantages. The status and state of development of some eleven candidate classes of fluids for use in advanced turbine engines are discussed. Published examples of fundamental studies to obtain a better understanding of the chemistry involved in fluid degradation are reviewed. Alternatives to high temperature fluid development are described. The importance of continuing work on improving current high temperature lubricant candidates and encouraging development of new and improved fluid base stocks are discussed.

  6. Interference effects of very high bypass ratio nacelle installations on a low-wing transport

    NASA Technical Reports Server (NTRS)

    Ingraldi, Anthony M.; Re, Richard J.; Pendergraft, Odis C., Jr.; Kariya, Timmy T.

    1991-01-01

    A twin-engine, low-wing transport model, with a supercritical wing designed for a cruise Mach number of 0.77 and a lift coefficient of 0.55 was tested in the 16-Foot Transonic Tunnel at NASA Langley Research Center. The purpose of this test was to compare the wing/nacelle interference effects of superfans (BPR 18) with the interference effects of advanced turbofans (BPR 6). Flow-through nacelles were used. Forces and moments on the complete model were measured using a strain gage balance, and extensive surface static pressure measurements were made on the model's wing, nacelles, and pylons. Results of the investigation indicate that superfan nacelles can be installed with approximately the same drag penalty as conventional turbofan nacelles.

  7. Lightweight diesel aircraft engines for general aviation

    NASA Technical Reports Server (NTRS)

    Berenyi, S. G.

    1983-01-01

    Two different engines were studied. The advantages of a diesel to general aviation were reduced to fuel consumption, reduced operating costs, and reduced fire and explosion hazard. There were no ignition mixture control or inlet icing problems. There are fewer controls and no electrical interference problems.

  8. Effectiveness of combined aircraft engine noise suppressors

    NASA Astrophysics Data System (ADS)

    Khaletskiy, Yu. D.

    2012-07-01

    We consider the design features of fan noise suppressors in application to air intakes and the bypass duct of a turbofan engine. A combined liner is developed that has increased acoustic efficiency in comparison to conventional honeycomb liner. We demonstrate the important role of the area of the sound-absorbing liner between fan Rotor and Stator ensuring significant noise reduction.

  9. Engine Conceptual Design Studies for a Hybrid Wing Body Aircraft

    NASA Technical Reports Server (NTRS)

    Tong, Michael T.; Jones, Scott M.; Haller, William J.; Handschuh, Robert F.

    2009-01-01

    Worldwide concerns of air quality and climate change have made environmental protection one of the most critical issues in aviation today. NASA's current Fundamental Aeronautics research program is directed at three generations of aircraft in the near, mid and far term, with initial operating capability around 2015, 2020, and 2030, respectively. Each generation has associated goals for fuel burn, NOx, noise, and field-length reductions relative to today's aircrafts. The research for the 2020 generation is directed at enabling a hybrid wing body (HWB) aircraft to meet NASA's aggressive technology goals. This paper presents the conceptual cycle and mechanical designs of the two engine concepts, podded and embedded systems, which were proposed for a HWB cargo freighter. They are expected to offer significant benefits in noise reductions without compromising the fuel burn.

  10. NASA Glenn's Contributions to Aircraft Engine Noise Research

    NASA Technical Reports Server (NTRS)

    Huff, Dennis L.

    2013-01-01

    This report reviews all engine noise research conducted at the NASA Glenn Research Center over the past 70 years. This report includes a historical perspective of the Center and the facilities used to conduct the research. Major noise research programs are highlighted to show their impact on industry and on the development of aircraft noise reduction technology. Noise reduction trends are discussed, and future aircraft concepts are presented. Since the 1960s, research results show that the average perceived noise level has been reduced by about 20 decibels (dB). Studies also show that, depending on the size of the airport, the aircraft fleet mix, and the actual growth in air travel, another 15 to 17 dB reduction will be required to achieve NASA's long-term goal of providing technologies to limit objectionable noise to the boundaries of an average airport.

  11. NASA Glenn's Contributions to Aircraft Engine Noise Research

    NASA Technical Reports Server (NTRS)

    Huff, Dennis L.

    2014-01-01

    This presentation reviews engine noise research conducted at the NASA Glenn Research Center over the past 70 years. This report includes a historical perspective of the Center and the facilities used to conduct the research. Major noise research programs are highlighted to show their impact on industry and on the development of aircraft noise reduction technology. Noise reduction trends are discussed, and future aircraft concepts are presented. Since the 1960s, research results show that the average perceived noise level has been reduced by about 20 decibels (dB). Studies also show that, depending on the size of the airport, the aircraft fleet mix, and the actual growth in air travel, another 15 to 17 dB reduction will be required to achieve NASAs long-term goal of providing technologies to limit objectionable noise to the boundaries of an average airport.

  12. Aircraft Engine Technology for Green Aviation to Reduce Fuel Burn

    NASA Technical Reports Server (NTRS)

    Hughes, Christopher E.; VanZante, Dale E.; Heidmann, James D.

    2013-01-01

    The NASA Fundamental Aeronautics Program Subsonic Fixed Wing Project and Integrated Systems Research Program Environmentally Responsible Aviation Project in the Aeronautics Research Mission Directorate are conducting research on advanced aircraft technology to address the environmental goals of reducing fuel burn, noise and NOx emissions for aircraft in 2020 and beyond. Both Projects, in collaborative partnerships with U.S. Industry, Academia, and other Government Agencies, have made significant progress toward reaching the N+2 (2020) and N+3 (beyond 2025) installed fuel burn goals by fundamental aircraft engine technology development, subscale component experimental investigations, full scale integrated systems validation testing, and development validation of state of the art computation design and analysis codes. Specific areas of propulsion technology research are discussed and progress to date.

  13. Engine Conceptual Design Studies for a Hybrid Wing Body Aircraft

    NASA Technical Reports Server (NTRS)

    Tong, Michael T.; Jones, Scott M.; Haller, William J.; Handschuh, Robert F.

    2009-01-01

    Worldwide concerns of air quality and climate change have made environmental protection one of the most critical issues in aviation today. NASA s current Fundamental Aeronautics Research program is directed at three generations of aircraft in the near, mid and far term, with initial operating capability around 2015, 2020, and 2030, respectively. Each generation has associated goals for fuel burn, NOx, noise, and field-length reductions relative to today s aircrafts. The research for the 2020 generation is directed at enabling a hybrid wing body (HWB) aircraft to meet NASA s aggressive technology goals. This paper presents the conceptual cycle and mechanical designs of the two engine concepts, podded and embedded systems, which were proposed for a HWB cargo freighter. They are expected to offer significant benefits in noise reductions without compromising the fuel burn.

  14. Aircraft Turbine Engine Monitoring Experience: Implications for the F100 Engine Diagnostic System Program

    DTIC Science & Technology

    1979-04-01

    malfunction re- port data were obtained from the Program Office. -8- EHMS (T-38 / J85 ) ACTIVITY OUTCOMES JULY 76 - MAY 77 INSTRUMENTED ENGINES CONTROL...interesting to note that the J85 was a mature engine and that the number of engine problems encountered was not very great. Also, the EHMS was not a new...copyright notation hereon. Library of Congress Cataloging In PObNiation Data Birkier, John L Aircraft turbine engine monitoring experience. ([Report

  15. An Extended Combustion Model for the Aircraft Turbojet Engine

    NASA Astrophysics Data System (ADS)

    Rotaru, Constantin; Andres-Mihăilă, Mihai; Matei, Pericle Gabriel

    2014-08-01

    The paper consists in modelling and simulation of the combustion in a turbojet engine in order to find optimal characteristics of the burning process and the optimal shape of combustion chambers. The main focus of this paper is to find a new configuration of the aircraft engine combustion chambers, namely an engine with two main combustion chambers, one on the same position like in classical configuration, between compressor and turbine and the other, placed behind the turbine but not performing the role of the afterburning. This constructive solution could allow a lower engine rotational speed, a lower temperature in front of the first stage of the turbine and the possibility to increase the turbine pressure ratio by extracting the flow stream after turbine in the inner nozzle. Also, a higher thermodynamic cycle efficiency and thrust in comparison to traditional constant-pressure combustion gas turbine engines could be obtained.

  16. B-1 AFT Nacelle Flow Visualization Study

    NASA Technical Reports Server (NTRS)

    Celniker, Robert

    1975-01-01

    A 2-month program was conducted to perform engineering evaluation and design tasks to prepare for visualization and photography of the airflow along the aft portion of the B-1 nacelles and nozzles during flight test. Several methods of visualizing the flow were investigated and compared with respect to cost, impact of the device on the flow patterns, suitability for use in the flight environment, and operability throughout the flight. Data were based on a literature search and discussions with the test personnel. Tufts were selected as the flow visualization device in preference to several other devices studied. A tuft installation pattern has been prepared for the right-hand aft nacelle area of B-1 air vehicle No.2. Flight research programs to develop flow visualization devices other than tufts for use in future testing are recommended. A design study was conducted to select a suitable motion picture camera, to select the camera location, and to prepare engineering drawings sufficient to permit installation of the camera. Ten locations on the air vehicle were evaluated before the selection of the location in the horizontal stabilizer actuator fairing. The considerations included cost, camera angle, available volume, environmental control, flutter impact, and interference with antennas or other instrumentation.

  17. Nacelle Aerodynamic and Inertial Loads (NAIL) project

    NASA Technical Reports Server (NTRS)

    1982-01-01

    A flight test survey of pressures measured on wing, pylon, and nacelle surfaces and of the operating loads on Boeing 747/Pratt & Whitney JT9D-7A nacelles was made to provide information on airflow patterns surrounding the propulsion system installations and to clarify processes responsible for inservice deterioration of fuel economy. Airloads at takeoff rotation were found to be larger than at any other normal service condition because of the combined effects of high angle of attack and high engine airflow. Inertial loads were smaller than previous estimates indicated. A procedure is given for estimating inlet airloads at low speeds and high angles of attack for any underwing high bypass ratio turbofan installation approximately resembling the one tested. Flight procedure modifications are suggested that may result in better fuel economy retention in service. Pressures were recorded on the core cowls and pylons of both engine installations and on adjacent wing surfaces for use in development of computer codes for analysis of installed propulsion system aerodynamic drag interference effects.

  18. Primary VOC emissions from Commercial Aircraft Jet Engines

    NASA Astrophysics Data System (ADS)

    Kilic, Dogushan; Huang, Rujin; Slowik, Jay; Brem, Benjamin; Durdina, Lukas; Rindlisbacher, Theo; Baltensperger, Urs; Prevot, Andre

    2014-05-01

    Air traffic is growing continuously [1]. The increasing number of airplanes leads to an increase of aviation emissions giving rise to environmental concerns globally by high altitude emissions and, locally on air quality at the ground level [2]. The overall impact of aviation emissions on the environment is likely to increase when the growing air transportation trend [2] is considered. The Aviation Particle Regulatory Instrumentation Demonstration Experiment (APRIDE)-5 campaign took place at Zurich Airport in 2013. In this campaign, aircraft exhaust is sampled during engine acceptance tests after engine overhaul at the facilities of SR Technics. Direct sampling from the engine core is made possible due to the unique fixed installation of a retractable sampling probe and the use of a standardized sampling system designed for the new particulate matter regulation in development for aircraft engines. Many of the gas-phase aircraft emissions, e.g. CO2, NOX, CO, SO2, hydrocarbons, and volatile organic compounds (VOC) were detected by the instruments in use. This study, part of the APRIDE-5 campaign, focuses on the primary VOC emissions in order to produce emission factors of VOC species for varying engine operating conditions which are the surrogates for the flight cycles. Previously, aircraft plumes were sampled in order to quantify VOCs by a proton transfer reaction quadrupole mass spectrometer (PTR-MS) [3]. This earlier study provided a preliminary knowledge on the emission of species such as methanol, acetaldehyde, acetone, benzene and toluene by varying engine thrust levels. The new setup was (i) designed to sample from the diluted engine exhaust and the new tool and (ii) used a high resolution time of flight PTR-MS with higher accuracy for many new species, therefore providing a more detailed and accurate inventory. We will present the emission factors for species that were quantified previously, as well as for many additional VOCs detected during the campaign

  19. Cobalt: A vital element in the aircraft engine industry

    NASA Technical Reports Server (NTRS)

    Stephens, J. R.

    1981-01-01

    Recent trends in the United States consumption of cobalt indicate that superalloys for aircraft engine manufacture require increasing amounts of this strategic element. Superalloys consume a lion's share of total U.S. cobalt usage which was about 16 million pounds in 1980. In excess of 90 percent of the cobalt used in this country was imported, principally from the African countries of Zaire and Zambia. Early studies on the roles of cobalt as an alloying element in high temperature alloys concentrated on the simple Ni-Cr and Nimonic alloy series. The role of cobalt in current complex nickel base superalloys is not well defined and indeed, the need for the high concentration of cobalt in widely used nickel base superalloys is not firmly established. The current cobalt situation is reviewed as it applies to superalloys and the opportunities for research to reduce the consumption of cobalt in the aircraft engine industry are described.

  20. Active Combustion Control for Aircraft Gas Turbine Engines

    NASA Technical Reports Server (NTRS)

    DeLaat, John C.; Breisacher, Kevin J.; Saus, Joseph R.; Paxson, Daniel E.

    2000-01-01

    Lean-burning combustors are susceptible to combustion instabilities. Additionally, due to non-uniformities in the fuel-air mixing and in the combustion process, there typically exist hot areas in the combustor exit plane. These hot areas limit the operating temperature at the turbine inlet and thus constrain performance and efficiency. Finally, it is necessary to optimize the fuel-air ratio and flame temperature throughout the combustor to minimize the production of pollutants. In recent years, there has been considerable activity addressing Active Combustion Control. NASA Glenn Research Center's Active Combustion Control Technology effort aims to demonstrate active control in a realistic environment relevant to aircraft engines. Analysis and experiments are tied to aircraft gas turbine combustors. Considerable progress has been shown in demonstrating technologies for Combustion Instability Control, Pattern Factor Control, and Emissions Minimizing Control. Future plans are to advance the maturity of active combustion control technology to eventual demonstration in an engine environment.

  1. Carbureting conditions characteristics of aircraft engines

    NASA Technical Reports Server (NTRS)

    Tice, Percival S

    1920-01-01

    Tests were conducted at the altitude laboratory erected at the Bureau of Standards for the National Advisory Committee for Aeronautics to determine the changes in engine performance with changes in atmospheric temperature and pressure at various levels above the earth's surface, with special reference to (a) the variables affecting the functioning of the carburetor and (b) the changes in performance resulting from variables in the carburetor itself. This report constitutes a concise statement of the difficulties to be encountered in this branch of carburetion.

  2. Rapid Measurement of Emissions From Military Aircraft Turbine Engines by Downstream Extractive Sampling of Aircraft on the Ground: Results for C-130 and F-15 Aircraft (POSTPRINT)

    DTIC Science & Technology

    2009-02-01

    engines were tested using indoor engine test facilities (F110, F101, J85 -GE-5M, PT6A-68, TF41-A2, TF30-P103 and TF30- P109), while others were studied while...afterburning). Engine T56-A-15 F100-PW-100 F110 F101 J85 -GE-5M PT6A-68 TF-39-1C CFM-56-3 TF41-A2 TF30-P103 TF30-P109 Misc. Type Turboprop Turbofan...AIRCRAFT TURBINE ENGINES BY DOWNSTREAM EXTRACTIVE SAMPLING OF AIRCRAFT ON THE GROUND: RESULTS FOR C-130 AND F-15 AIRCRAFT Chester Spicer and

  3. 76 FR 19903 - Special Conditions: Diamond Aircraft Industry Model DA-40NG; Diesel Cycle Engine

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-11

    ... Conditions: Diamond Aircraft Industry Model DA-40NG; Diesel Cycle Engine AGENCY: Federal Aviation... conditions are issued for the Diamond Aircraft Industry (DAI) GmbH model DA-40NG the Austro Engine GmbH model... the postcard and mail it back to you. Background On May 11, 2010 Diamond Aircraft Industry...

  4. Effect of underwing aft-mounted nacelles on the longitudinal aerodynamic characteristics of a high-wing transport airplane

    NASA Technical Reports Server (NTRS)

    Abeyounis, W. K.; Patterson, J. C., Jr.

    1985-01-01

    As part of a propulsion/airframe integration program, tests were conducted in the Langley 16-Foot Transonic Tunnel to determine the longitudinal aerodynamic effects of installing flow through engine nacelles in the aft underwing position of a high wing transonic transfer airplane. Mixed flow nacelles with circular and D-shaped inlets were tested at free stream Mach numbers from 0.70 to 0.85 and angles of attack from -2.5 deg to 4.0 deg. The aerodynamic effects of installing antishock bodies on the wing and nacelle upper surfaces as a means of attaching and supporting nacelles in an extreme aft position were investigated.

  5. Computation of Engine Noise Propagation and Scattering Off an Aircraft

    NASA Technical Reports Server (NTRS)

    Xu, J.; Stanescu, D.; Hussaini, M. Y.; Farassat, F.

    2003-01-01

    The paper presents a comparison of experimental noise data measured in flight on a two-engine business jet aircraft with Kulite microphones placed on the suction surface of the wing with computational results. Both a time-domain discontinuous Galerkin spectral method and a frequency-domain spectral element method are used to simulate the radiation of the dominant spinning mode from the engine and its reflection and scattering by the fuselage and the wing. Both methods are implemented in computer codes that use the distributed memory model to make use of large parallel architectures. The results show that trends of the noise field are well predicted by both methods.

  6. TCM aircraft piston engine emission reduction program

    NASA Technical Reports Server (NTRS)

    Rezy, B. J.

    1976-01-01

    The technology necessary to safely reduce general aviation piston engine exhaust emissions to meet the EPA 1980 Emission Standards with minimum adverse effects on cost, weight, fuel economy, and performance was demonstrated. A screening and assessment of promising emission reduction concepts was provided, and the preliminary design and development of those concepts was established. A system analysis study and a decision making procedure were used by TCM to evaluate, trade off, and rank the candidate concepts from a list of 14 alternatives. Cost, emissions, and 13 other design criteria considerations were defined and traded off against each candidate concept to establish its merit and emission reduction usefulness. A computer program was used to aid the evaluators in making the final choice of three concepts.

  7. DEVELOPMENT OF A SUPERSONIC TRANSPORT AIRCRAFT ENGINE - PHASE II-A.

    DTIC Science & Technology

    JET TRANSPORT PLANES, *SUPERSONIC AIRCRAFT ) (U) TURBOJET ENGINES , PERFORMANCE( ENGINEERING ), TURBOFAN ENGINES , AFTERBURNING, SPECIFICATIONS...COMPRESSORS, GEOMETRY, TURBOJET INLETS, COMBUSTION, TEST EQUIPMENT, TURBINE BLADES , HEAT TRANSFER, AIRFOILS , CASCADE STRUCTURES, EVAPOTRANSPIRATION, PLUG NOZZLES, ANECHOIC CHAMBERS, BEARINGS, SEALS, DESIGN, FATIGUE(MECHANICS)

  8. System for Centering a Turbofan in a Nacelle During Tests

    NASA Technical Reports Server (NTRS)

    Cunningham, Cameron C.; Thompson, William K.; Hughes, Christopher E.; Shook, Tony D.

    2003-01-01

    A feedback position-control system has been developed for maintaining the concentricity of a turbofan with respect to a nacelle during acoustic and flow tests in a wind tunnel. The system is needed for the following reasons: Thermal and thrust loads can displace the fan relative to the nacelle; In the particular test apparatus (see Figure 1), denoted as a rotor-only nacelle (RAN), the struts, vanes, and other stator components of a turbofan engine that ordinarily maintain the required concentricity in the face of thermal and thrust loads are not present; and The struts and stator components are not present because it is necessary to provide a flow path that is acoustically clean in the sense that the measured noise can be attributed to the fan alone. The system is depicted schematically in Figure 2. The nacelle is supported by two struts attached to a two-axis traverse table located outside the wind-tunnel wall. Two servomotors acting through 100:1 gearboxes drive the table along the Y and Z axes, which are perpendicular to the axis of rotation. The Y and Z components of the deviation from concentricity are measured by four laser displacement sensors mounted on the nacelle and aimed at reflective targets on the center body, which is part of the fan assembly. The outputs of the laser displacement sensors are digitized and processed through a personal computer programmed with control software. The control output of the computer commands the servomotors to move the table as needed to restore concentricity. Numerous software and hardware travel limits and alarms are provided to maximize safety. A highly ablative rub strip in the nacelle minimizes the probability of damage in the event that a deviation from concentricity exceeds the radial clearance [<0.004 in. (<0.1 mm)] between the inner surface of the nacelle and the tips of the fan blades. To be able to prevent an excursion in excess of the tip clearance, the system must be accurate enough to control X and Y

  9. A study of external fuel vaporization. [for aircraft gas turbine engines

    NASA Technical Reports Server (NTRS)

    Szetela, E. J.; Chiappetta, L.; Baker, C. E.

    1981-01-01

    Candidate external vaporizer designs for an aircraft gas turbine engine are evaluated with respect to fuel thermal stability, integration of the vaporizer system into the aircraft engine, engine and vaporizer dynamic response, startup and altitude restart, engine performance, control requirements, safety, and maintenance. The selected concept is shown to offer potential gains in engine performance in terms of reduced specific fuel consumption and improved engine thrust/weight ratio. The thrust/weight improvement can be traded against vaporization system weight.

  10. Characterization of emissions from commercial aircraft engines during the Aircraft Particle Emissions eXperiment (APEX) 1 to 3

    EPA Science Inventory

    The fine particulate matter emissions from aircraft operations at large airports located in areas of the U. S. designated as non-attainment for the National Ambient Air Quality Standard for PM-2.5 are of major environmental concern. PM emissions data for commercial aircraft engin...

  11. 76 FR 45011 - Control of Air Pollution From Aircraft and Aircraft Engines; Proposed Emission Standards and Test...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-27

    ... Environmental Protection Agency 40 CFR Parts 87 and 1068 Control of Air Pollution From Aircraft and Aircraft... AGENCY 40 CFR Parts 87 and 1068 [EPA-HQ-OAR-2010-0687; FRL-9437-2] RIN 2060-AO70 Control of Air Pollution... engines which in her judgment causes or contributes to air pollution that may reasonably be anticipated...

  12. 77 FR 65823 - Control of Air Pollution From Aircraft and Aircraft Engines; Emission Standards and Test Procedures

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-31

    ... From the Federal Register Online via the Government Publishing Office ENVIRONMENTAL PROTECTION AGENCY 40 CFR Parts 87 RIN 2060-AO70 Control of Air Pollution From Aircraft and Aircraft Engines; Emission Standards and Test Procedures Correction In rule document 2012-13828 appearing on pages...

  13. 77 FR 36341 - Control of Air Pollution From Aircraft and Aircraft Engines; Emission Standards and Test Procedures

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-18

    ... nitrogen (NO X ), compliance flexibilities, and other regulatory requirements for aircraft turbofan or... Exposure to Ozone, PM and NO X a. Deposition of Nitrogen b. Visibility Effects c. Plant and Ecosystem... nitrogen (NO X ) emission standards for aircraft engines with rated thrusts greater than 26.7 kN...

  14. Aircraft Engine Gas Path Diagnostic Methods: Public Benchmarking Results

    NASA Technical Reports Server (NTRS)

    Simon, Donald L.; Borguet, Sebastien; Leonard, Olivier; Zhang, Xiaodong (Frank)

    2013-01-01

    Recent technology reviews have identified the need for objective assessments of aircraft engine health management (EHM) technologies. To help address this issue, a gas path diagnostic benchmark problem has been created and made publicly available. This software tool, referred to as the Propulsion Diagnostic Method Evaluation Strategy (ProDiMES), has been constructed based on feedback provided by the aircraft EHM community. It provides a standard benchmark problem enabling users to develop, evaluate and compare diagnostic methods. This paper will present an overview of ProDiMES along with a description of four gas path diagnostic methods developed and applied to the problem. These methods, which include analytical and empirical diagnostic techniques, will be described and associated blind-test-case metric results will be presented and compared. Lessons learned along with recommendations for improving the public benchmarking processes will also be presented and discussed.

  15. Lightweight diesel engine designs for commuter type aircraft

    NASA Technical Reports Server (NTRS)

    Brouwers, A. P.

    1981-01-01

    Conceptual designs and performance of advanced technology lightweight diesel engines, suitable for commuter type aircraft power plants are defined. Two engines are discussed, a 1491 kW (2000 SHP) eight-cylinder engine and a 895 kW (1200 SHP) six-cylinder engine. High performance and related advanced technologies are proposed such as insulated cylinders, very high injection pressures and high compressor and turbine efficiencies. The description of each engine includes concept drawings, a performance analysis, and weight data. Fuel flow data are given for full and partial power up to 7620m altitude. The performance data are also extrapolated over a power range from 671 kW(900SHP) to 1864 kW (2500 SHP). The specific fuel consumption of the 1491 kW (2000 SHP) engine is 182 g/hWh (.299 lb/HPh) at cruise altitude, its weight 620 kg (1365 lb.) and specific weight .415 kg/kW (.683 lb/HP). The specific fuel consumption of the 895 kW (1200 SHP) engine is 187 g/hWh (.308 lb/HPh) at cruise altitude, its weight 465 kg (1025 lb.) and specific weight .520 kg/kW (.854 lb/HP).

  16. The knocking characteristics of fuels in relation to maximum permissible performance of aircraft engines

    NASA Technical Reports Server (NTRS)

    Rothrock, A M; Biermann, Arnold E

    1939-01-01

    An analysis is presented of the relationship of various engine factors to knock in preignition in an aircraft engine. From this analysis and from the available experimental data, a method of evaluating the knocking characteristics of the fuel in an aircraft-engine cylinder is suggested.

  17. Life-Extending Control for Aircraft Engines Studied

    NASA Technical Reports Server (NTRS)

    Guo, Te-Huei

    2002-01-01

    Current aircraft engine controllers are designed and operated to provide both performance and stability margins. However, the standard method of operation results in significant wear and tear on the engine and negatively affects the on-wing life--the time between cycles when the engine must be physically removed from the aircraft for maintenance. The NASA Glenn Research Center and its industrial and academic partners have been working together toward a new control concept that will include engine life usage as part of the control function. The resulting controller will be able to significantly extend the engine's on-wing life with little or no impact on engine performance and operability. The new controller design will utilize damage models to estimate and mitigate the rate and overall accumulation of damage to critical engine parts. The control methods will also provide a means to assess tradeoffs between performance and structural durability on the basis of mission requirements and remaining engine life. Two life-extending control methodologies were studied to reduce the overall life-cycle cost of aircraft engines. The first methodology is to modify the baseline control logic to reduce the thermomechanical fatigue (TMF) damage of cooled stators during acceleration. To accomplish this, an innovative algorithm limits the low-speed rotor acceleration command when the engine has reached a threshold close to the requested thrust. This algorithm allows a significant reduction in TMF damage with only a very small increase in the rise time to reach the commanded rotor speed. The second methodology is to reduce stress rupture/creep damage to turbine blades and uncooled stators by incorporating an engine damage model into the flight mission. Overall operation cost is reduced by an optimization among the flight time, fuel consumption, and component damages. Recent efforts have focused on applying life-extending control technology to an existing commercial turbine engine

  18. A Study of Bird Ingestions Into Large High Bypass Ratio Turbine Aircraft Engines.

    DTIC Science & Technology

    1983-03-01

    into large high bypass ratio turbine aircraft engines on a worldwide basis and what damage , if any, resulted. This interim report presents a summary...operations. These aircraft experienced 289 engine ingestion events during the initial contract * period, May 1961 through April 1982. The FAA is...Airports involved 88 3. Total events 289 4. hngine damage , minor and/or major 188 5. Multiple engine ingestions per aircraft 11 6. MuLtiple bird

  19. Experimental Studies of Coal and Biomass Fuel Synthesis and Flame Characterization for Aircraft Engines

    DTIC Science & Technology

    2012-03-31

    Synthesis and Flame Characterization for Aircraft Engines 5a. CONTRACT NUMBER 5b. GRANT NUMBER FA9550-10-1-0344 5c. PROGRAM ELEMENT NUMBER 61102F... Flame Characterization for Aircraft Engines AFOSR Grant Number: FA9550-10-1-0344 Final Performance Report Report Period: September 1, 2008 to... Flame Characterization for Aircraft Engines (Final Performance Report) Project Period: September 1, 2008 to March 31, 2012 Report Period

  20. Near-field commercial aircraft contribution to nitrogen oxides by engine, aircraft type, and airline by individual plume sampling.

    PubMed

    Carslaw, David C; Ropkins, Karl; Laxen, Duncan; Moorcroft, Stephen; Marner, Ben; Williams, Martin L

    2008-03-15

    Nitrogen oxides (NOx) concentrations were measured in individual plumes from aircraft departing on the northern runway at Heathrow Airport in west London. Over a period of four weeks 5618 individual plumes were sampled by a chemiluminescence monitor located 180 m from the runway. Results were processed and matched with detailed aircraft movement and aircraft engine data using chromatographic techniques. Peak concentrations associated with 29 commonly used engines were calculated and found to have a good relationship with N0x emissions taken from the International Civil Aviation Organization (ICAO) databank. However, it is found that engines with higher reported NOx emissions result in proportionately lower NOx concentrations than engines with lower emissions. We show that it is likely that aircraft operational factors such as takeoff weight and aircraftthrust setting have a measurable and important effect on concentrations of N0x. For example, NOx concentrations can differ by up to 41% for aircraft using the same airframe and engine type, while those due to the same engine type in different airframes can differ by 28%. These differences are as great as, if not greater than, the reported differences in NOx emissions between different engine manufacturers for engines used on the same airframe.

  1. NACA's 9th Annual Aircraft Engineering Research Conference

    NASA Technical Reports Server (NTRS)

    1934-01-01

    Eight of the twelve members of the National Advisory Committee for Aeronautics attending the 9th Annual Aircraft Engineering Research Conference posed for this photograph at Langley Field, Virginia, on May 23, 1934. Those pictured are (left to right): Brig. Gen. Charles A. Lindbergh, USAFR Vice Admiral Arthur B. Cook, USN Charles G. Abbot, Secretary of the Smithsonian Institution Dr. Joseph S. Ames, Committee Chairman Orville Wright Edward P. Warner Fleet Admiral Ernest J. King, USN Eugene L. Vidal, Director, Bureau of Air Commerce.

  2. Exhaust emission reduction for intermittent combustion aircraft engines

    NASA Technical Reports Server (NTRS)

    Moffett, R. N.

    1979-01-01

    Three concepts for optimizing the performance, increasing the fuel economy, and reducing exhaust emission of the piston aircraft engine were investigated. High energy-multiple spark discharge and spark plug tip penetration, ultrasonic fuel vaporization, and variable valve timing were evaluated individually. Ultrasonic fuel vaporization did not demonstrate sufficient improvement in distribution to offset the performance loss caused by the additional manifold restriction. High energy ignition and revised spark plug tip location provided no change in performance or emissions. Variable valve timing provided some performance benefit; however, even greater performance improvement was obtained through induction system tuning which could be accomplished with far less complexity.

  3. Structureborne noise measurements on a small twin-engine aircraft

    NASA Technical Reports Server (NTRS)

    Cole, J. E., III; Martini, K. F.

    1988-01-01

    Structureborne noise measurements performed on a twin-engine aircraft (Beechcraft Baron) are reported. There are two overall objectives of the test program. The first is to obtain data to support the development of analytical models of the wing and fuselage, while the second is to evaluate effects of structural parameters on cabin noise. Measurements performed include structural and acoustic responses to impact excitation, structural and acoustic loss factors, and modal parameters of the wing. Path alterations include added mass to simulate fuel, variations in torque of bolts joining wing and fuselage, and increased acoustic absorption. Conclusions drawn regarding these measurements are presented.

  4. Structureborne noise measurements on a small twin-engine aircraft

    NASA Astrophysics Data System (ADS)

    Cole, J. E., III; Martini, K. F.

    1988-06-01

    Structureborne noise measurements performed on a twin-engine aircraft (Beechcraft Baron) are reported. There are two overall objectives of the test program. The first is to obtain data to support the development of analytical models of the wing and fuselage, while the second is to evaluate effects of structural parameters on cabin noise. Measurements performed include structural and acoustic responses to impact excitation, structural and acoustic loss factors, and modal parameters of the wing. Path alterations include added mass to simulate fuel, variations in torque of bolts joining wing and fuselage, and increased acoustic absorption. Conclusions drawn regarding these measurements are presented.

  5. A technique for integrating engine cycle and aircraft configuration optimization

    NASA Technical Reports Server (NTRS)

    Geiselhart, Karl A.

    1994-01-01

    A method for conceptual aircraft design that incorporates the optimization of major engine design variables for a variety of cycle types was developed. The methodology should improve the lengthy screening process currently involved in selecting an appropriate engine cycle for a given application or mission. The new capability will allow environmental concerns such as airport noise and emissions to be addressed early in the design process. The ability to rapidly perform optimization and parametric variations using both engine cycle and aircraft design variables, and to see the impact on the aircraft, should provide insight and guidance for more detailed studies. A brief description of the aircraft performance and mission analysis program and the engine cycle analysis program that were used is given. A new method of predicting propulsion system weight and dimensions using thermodynamic cycle data, preliminary design, and semi-empirical techniques is introduced. Propulsion system performance and weights data generated by the program are compared with industry data and data generated using well established codes. The ability of the optimization techniques to locate an optimum is demonstrated and some of the problems that had to be solved to accomplish this are illustrated. Results from the application of the program to the analysis of three supersonic transport concepts installed with mixed flow turbofans are presented. The results from the application to a Mach 2.4, 5000 n.mi. transport indicate that the optimum bypass ratio is near 0.45 with less than 1 percent variation in minimum gross weight for bypass ratios ranging from 0.3 to 0.6. In the final application of the program, a low sonic boom fix a takeoff gross weight concept that would fly at Mach 2.0 overwater and at Mach 1.6 overland is compared with a baseline concept of the same takeoff gross weight that would fly Mach 2.4 overwater and subsonically overland. The results indicate that for the design mission

  6. An Integrated Architecture for Aircraft Engine Performance Monitoring and Fault Diagnostics: Engine Test Results

    NASA Technical Reports Server (NTRS)

    Rinehart, Aidan W.; Simon, Donald L.

    2015-01-01

    This paper presents a model-based architecture for performance trend monitoring and gas path fault diagnostics designed for analyzing streaming transient aircraft engine measurement data. The technique analyzes residuals between sensed engine outputs and model predicted outputs for fault detection and isolation purposes. Diagnostic results from the application of the approach to test data acquired from an aircraft turbofan engine are presented. The approach is found to avoid false alarms when presented nominal fault-free data. Additionally, the approach is found to successfully detect and isolate gas path seeded-faults under steady-state operating scenarios although some fault misclassifications are noted during engine transients. Recommendations for follow-on maturation and evaluation of the technique are also presented.

  7. An Integrated Architecture for Aircraft Engine Performance Monitoring and Fault Diagnostics: Engine Test Results

    NASA Technical Reports Server (NTRS)

    Rinehart, Aidan W.; Simon, Donald L.

    2014-01-01

    This paper presents a model-based architecture for performance trend monitoring and gas path fault diagnostics designed for analyzing streaming transient aircraft engine measurement data. The technique analyzes residuals between sensed engine outputs and model predicted outputs for fault detection and isolation purposes. Diagnostic results from the application of the approach to test data acquired from an aircraft turbofan engine are presented. The approach is found to avoid false alarms when presented nominal fault-free data. Additionally, the approach is found to successfully detect and isolate gas path seeded-faults under steady-state operating scenarios although some fault misclassifications are noted during engine transients. Recommendations for follow-on maturation and evaluation of the technique are also presented.

  8. Improving safety of aircraft engines: a consortium approach

    NASA Astrophysics Data System (ADS)

    Brasche, Lisa J. H.

    1996-11-01

    With over seven million departures per year, air transportation has become not a luxury, but a standard mode of transportation for the United States. A critical aspect of modern air transport is the jet engine, a complex engineered component that has enabled the rapid travel to which we have all become accustomed. One of the enabling technologies for safe air travel is nondestructive evaluation, or NDE, which includes various inspection techniques used to assess the health or integrity of a structure, component, or material. The Engine Titanium Consortium (ETC) was established in 1993 to respond to recommendations made by the Federal Aviation Administration (FAA) Titanium Rotating Components Review Team (TRCRT) for improvements in inspection of engine titanium. Several recent accomplishments of the ETC are detailed in this paper. The objective of the Engine Titanium Consortium is to provide the FAAand the manufacturers with reliable and costeffective new methods and/or improvements in mature methods for detecting cracks, inclusions, and imperfections in titanium. The consortium consists of a team of researchers from academia and industry-namely, Iowa State University, Allied Signal Propulsion Engines, General Electric Aircraft Engines, and Pratt & Whitney Engines-who work together to develop program priorities, organize a program plan, conduct the research, and implement the solutions. The true advantage of the consortium approach is that it brings together the research talents of academia and the engineering talents of industry to tackle a technology-base problem. In bringing industrial competitors together, the consortium ensures that the research results, which have safety implications and result from FAA funds, are shared and become part of the public domain.

  9. Fiber optics for aircraft engine/inlet control

    NASA Technical Reports Server (NTRS)

    Baumbick, R. J.

    1981-01-01

    NASA programs that focus on the use of fiber optics for aircraft engine/inlet control are reviewed. Fiber optics for aircraft control is attractive because of its inherent immunity to EMI and RFI noise. Optical signals can be safely transmitted through areas that contain flammable or explosive materials. The use of optics also makes remote sensing feasible by eliminating the need for electrical wires to be connected between sensors and computers. Using low-level optical signals to control actuators is also feasible when power is generated at the actuator. Each application of fiber optics for aircraft control has different requirements for both the optical cables and the optical connectors. Sensors that measure position and speed by using slotted plates can use lossy cables and bundle connectors if data transfer is in the parallel mode. If position and speed signals are multiplexed, cable and connector requirements change. Other sensors that depend on changes in transmission through materials require dependable characteristics of both the optical cables and the optical connectors. A variety of sensor types are reviewed, including rotary position encoders, tachometers, temperature sensors, and blade tip clearance sensors for compressors and turbines. Research on a gallium arsenide photoswitch for optically switched actuators that operate at 250 C is also described.

  10. Investigation of the misfueling of reciprocating piston aircraft engines

    NASA Technical Reports Server (NTRS)

    Scott, J. Holland, Jr.

    1988-01-01

    The Aircraft Misfueling Detection Project was developed by the Goddard Space Flight Center/Wallops Flight Facility at Wallops Island, Virginia. Its purpose was to investigate the misfueling of reciprocating piston aircraft engines by the inadvertent introduction of jet fuel in lieu of or as a contaminant of aviation gasoline. The final objective was the development of a device(s) that will satisfactorily detect misfueling and provide pilots with sufficient warning to avoid injury, fatality, or equipment damage. Two devices have been developed and successfully tested: one, a small contamination detection kit, for use by the pilot, and a second, more sensitive, modified gas chromatograph for use by the fixed-base operator. The gas chromatograph, in addition to providing excellent quality control of the fixed-base operator's fuel handling, is a very good backup for the detection kit in the event it produces negative results. Design parameters were developed to the extent that they may be applied easily to commercial production by the aircraft industry.

  11. Structural Optimization Methodology for Rotating Disks of Aircraft Engines

    NASA Technical Reports Server (NTRS)

    Armand, Sasan C.

    1995-01-01

    In support of the preliminary evaluation of various engine technologies, a methodology has been developed for structurally designing the rotating disks of an aircraft engine. The structural design methodology, along with a previously derived methodology for predicting low-cycle fatigue life, was implemented in a computer program. An interface computer program was also developed that gathers the required data from a flowpath analysis program (WATE) being used at NASA Lewis. The computer program developed for this study requires minimum interaction with the user, thus allowing engineers with varying backgrounds in aeropropulsion to successfully execute it. The stress analysis portion of the methodology and the computer program were verified by employing the finite element analysis method. The 10th- stage, high-pressure-compressor disk of the Energy Efficient Engine Program (E3) engine was used to verify the stress analysis; the differences between the stresses and displacements obtained from the computer program developed for this study and from the finite element analysis were all below 3 percent for the problem solved. The computer program developed for this study was employed to structurally optimize the rotating disks of the E3 high-pressure compressor. The rotating disks designed by the computer program in this study were approximately 26 percent lighter than calculated from the E3 drawings. The methodology is presented herein.

  12. Application of superalloy powder metallurgy for aircraft engines

    NASA Technical Reports Server (NTRS)

    Dreshfield, R. L.; Miner, R. V., Jr.

    1980-01-01

    In the last decade, Government/Industry programs have advanced powder metallurgy-near-net-shape technology to permit the use of hot isostatic pressed (HIP) turbine disks in the commercial aircraft fleet. These disks offer a 30% savings of input weight and an 8% savings in cost compared in cast-and-wrought disks. Similar savings were demonstrated for other rotating engine components. A compressor rotor fabricated from hot-die-forged-HIP superalloy billets revealed input weight savings of 54% and cost savings of 35% compared to cast-and-wrought parts. Engine components can be produced from compositions such as Rene 95 and Astroloy by conventional casting and forging, by forging of HIP powder billets, or by direct consolidation of powder by HIP. However, each process produces differences in microstructure or introduces different defects in the parts. As a result, their mechanical properties are not necessarily identical. Acceptance methods should be developed which recognize and account for the differences.

  13. Commercial Aircraft Maintenance Experience Relating to Engine External Hardware

    NASA Technical Reports Server (NTRS)

    Soditus, Sharon M.

    2006-01-01

    Airlines are extremely sensitive to the amount of dollars spent on maintaining the external engine hardware in the field. Analysis reveals that many problems revolve around a central issue, reliability. Fuel and oil leakage due to seal failure and electrical fault messages due to wire harness failures play a major role in aircraft delays and cancellations (D&C's) and scheduled maintenance. Correcting these items on the line requires a large investment of engineering resources and manpower after the fact. The smartest and most cost effective philosophy is to build the best hardware the first time. The only way to do that is to completely understand and model the operating environment, study the field experience of similar designs and to perform extensive testing.

  14. Simulation of Aircraft Engine Blade-Out Structural Dynamics. Revised

    NASA Technical Reports Server (NTRS)

    Lawrence, Charles; Carney, Kelly; Gallardo, Vicente

    2001-01-01

    A primary concern of aircraft structure designers is the accurate simulation of the blade-out event and the subsequent windmilling of the engine. Reliable simulations of the blade-out event are required to insure structural integrity during flight as well as to guarantee successful blade-out certification testing. The system simulation includes the lost blade loadings and the interactions between the rotating turbomachinery and the remaining aircraft structural components. General-purpose finite element structural analysis codes such as MSC NASTRAN are typically used and special provisions are made to include transient effects from the blade loss and rotational effects resulting from the engine's turbomachinery. The present study provides the equations of motion for rotordynamic response including the effect of spooldown speed and rotor unbalance and examines the effects of these terms on a cantilevered rotor. The effect of spooldown speed is found to be greater with increasing spooldown rate. The parametric term resulting from the mass unbalance has a more significant effect on the rotordynamic response than does the spooldown term. The parametric term affects both the peak amplitudes as well as the resonant frequencies of the rotor.

  15. Simulation of Aircraft Engine Blade-Out Structural Dynamics

    NASA Technical Reports Server (NTRS)

    Lawrence, Charles; Carney, Kelly; Gallardo, Vicente

    2001-01-01

    A primary concern of aircraft structure designers is the accurate simulation of the blade-out event and the subsequent windmilling of the engine. Reliable simulations of the blade-out event are required to insure structural integrity during flight as well as to guarantee successful blade-out certification testing. The system simulation includes the lost blade loadings and the interactions between the rotating turbomachinery and the remaining aircraft structural components. General-purpose finite element structural analysis codes such as MSC NASTRAN are typically used and special provisions are made to include transient effects from the blade loss and rotational effects resulting from the engine's turbomachinery. The present study provides the equations of motion for rotordynamic response including the effect of spooldown speed and rotor unbalance and examines the effects of these terms on a cantilevered rotor. The effect of spooldown speed is found to be greater with increasing spooldown rate. The parametric term resulting from the mass unbalance has a more significant effect on the rotordynamic response than does the spooldown term. The parametric term affects both the peak amplitudes as well as the resonant frequencies of the rotor.

  16. Experimental Investigation of a Morphing Nacelle Ducted Fan

    NASA Technical Reports Server (NTRS)

    Kondor, Shayne A.; Moore, Mark

    2005-01-01

    The application of Circulation Control to the nacelle of a shrouded fan is proposed as a means to enhance off-design performance of the shrouded fan. Typically, a fixed geometry shroud is efficient at a single operating condition. Modifying circulation about the fixed geometry is proposed as a means to virtually morph the shroud without moving surfaces. This approach will enhance off-design-point performance with minimal complexity, weight, and cost. Termed the Morphing Nacelle, this concept provides an attractive propulsion option for Vertical Take-off and Landing (VTOL) aircraft, such conceptual Personal Air Vehicle (PAV) configurations proposed by NASA. An experimental proof of concept investigation of the Morphing Nacelle is detailed in this paper. A powered model shrouded fan model was constructed with Circulation Control (CC) devices integrated in the inlet and exit of the nacelle. Both CC devices consisted of an annular jet slot directing a jet sheet tangent to a curved surface, generally described as a Coanda surface. The model shroud was tailored for axial flight, with a diffusing inlet, but was operated off-design condition as a static lifting fan. Thrust stand experiments were conducted to determine if the CC devices could effectively improve off-design performance of the shrouded fan. Additional tests were conducted to explore the effectiveness of the CC devices a means to reduce peak static pressure on the ground below a lifting fan. Experimental results showed that off-design static thrust performance of the model was improved when the CC devices were employed under certain conditions. The exhaust CC device alone, while effective in diffusing the fan exhaust and improving weight flow into shroud inlet, tended to diminish performance of the fan with increased CC jet momentum. The inlet CC device was effective at reattaching a normally stalled inlet flow condition, proving an effective means of enhancing performance. A more dramatic improvement in

  17. Highly integrated digital electronic control: Digital flight control, aircraft model identification, and adaptive engine control

    NASA Technical Reports Server (NTRS)

    Baer-Riedhart, Jennifer L.; Landy, Robert J.

    1987-01-01

    The highly integrated digital electronic control (HIDEC) program at NASA Ames Research Center, Dryden Flight Research Facility is a multiphase flight research program to quantify the benefits of promising integrated control systems. McDonnell Aircraft Company is the prime contractor, with United Technologies Pratt and Whitney Aircraft, and Lear Siegler Incorporated as major subcontractors. The NASA F-15A testbed aircraft was modified by the HIDEC program by installing a digital electronic flight control system (DEFCS) and replacing the standard F100 (Arab 3) engines with F100 engine model derivative (EMD) engines equipped with digital electronic engine controls (DEEC), and integrating the DEEC's and DEFCS. The modified aircraft provides the capability for testing many integrated control modes involving the flight controls, engine controls, and inlet controls. This paper focuses on the first two phases of the HIDEC program, which are the digital flight control system/aircraft model identification (DEFCS/AMI) phase and the adaptive engine control system (ADECS) phase.

  18. Comparison of predicted engine core noise with current and proposed aircraft noise certification requirements

    NASA Technical Reports Server (NTRS)

    Vonglahn, U. H.; Groesbeck, D. E.

    1981-01-01

    Predicted engine core noise levels are compared with measured total aircraft noise levels and with current and proposed federal noise certification requirements. Comparisons are made at the FAR-36 measuring stations and include consideration of both full- and cutback-power operation at takeoff. In general, core noise provides a barrier to achieving proposed EPA stage 5 noise levels for all types of aircraft. More specifically, core noise levels will limit further reductions in aircraft noise levels for current widebody commercial aircraft.

  19. The Effect of Propellers and Nacelles on the Landing Speeds of Tractor Monoplanes

    NASA Technical Reports Server (NTRS)

    Windler, Ray

    1932-01-01

    This paper reports wind-tunnel tests giving the lift coefficients of large-scale wing-nacelle combinations both with and without the propeller. The tests were made to show the effect of nacelles, and idling and stopped propellers on the landing speeds of tractor monoplanes. Four types of nacelles with various cowlings were used in numerous positions with respect to both a Clark Y and a thick airfoil. The effect of both the idling and stopped propeller on lift, and consequently on landing speed, was negligible. A nacelle with exposed engine cylinders when placed directly in front of an airfoil caused a slight reduction in lift, consequently an increase in landing speed, over the condition with the wing alone. With this exception no appreciable effect on landing speed was indicated for any of the other combinations.

  20. Energy efficient engine program contributions to aircraft fuel conservation

    NASA Technical Reports Server (NTRS)

    Batterton, P. G.

    1984-01-01

    Significant advances in high bypass turbofan technologies that enhance fuel efficiency have been demonstrated in the NASA Energy Efficient Engine Program. This highly successful second propulsion element of the NASA Aircraft Energy Efficiency Program included major contract efforts with both General Electric and Pratt & Whitney. Major results of these efforts will be presented including highlights from the NASA/General Electric E3 research turbofan engine test. Direct application of all the E3 technologies could result in fuel savings of over 18% compared to the CF6-50 and JT9D-7. Application of the E3 technologies to new and derivative engines such as the CF6-80C and PW 2037, as well as others, will be discussed. Significant portions of the fuel savings benefit for these new products can be directly related to the E3 technology program. Finally, results of a study looking at far term advanced turbofan engines will be briefly described. The study shows that substantial additional fuel savings over E3 are possible with additional turbofan technology programs.

  1. Proposed Rule and Related Materials for Control of Emissions of Air Pollution From Nonroad Diesel Engines Control of Air Pollution From Aircraft and Aircraft Engines; Proposed Emission Standards and Test Procedures

    EPA Pesticide Factsheets

    Proposed Rule and Related Materials for Control of Emissions of Air Pollution From Nonroad Diesel Engines Control of Air Pollution From Aircraft and Aircraft Engines; Proposed Emission Standards and Test Procedures

  2. 75 FR 28504 - Airworthiness Directives; Various Aircraft Equipped With Rotax Aircraft Engines 912 A Series Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-21

    ...) Perform a leak check as follows: (i) Clean the crankcase surface to remove any oil. (ii) Warm up the engine to a minimum oil temperature of 50 degrees C (120 degrees F). Information about warming up the... crankcase assembly S/N up to and including S/N 27811, certificated in any category: Type certificate...

  3. Nacelle/pylon/wing integration on a transport model with a natural laminar flow nacelle

    NASA Technical Reports Server (NTRS)

    Lamb, M.; Aabeyounis, W. K.; Patterson, J. C., Jr.

    1985-01-01

    Tests were conducted in the Langley 16-Foot Transonic Tunnel at free-stream Mach numbers from 0.70 to 0.82 and angles of attack from -2.5 deg to 4.0 deg to determine if nacelle/pylon/wing integration affects the achievement of natural laminar flow on a long-duct flow-through nacelle for a high-wing transonic transport configuration. In order to fully assess the integration effect on a nacelle designed to achieve laminar flow, the effects of fixed and free nacelle transitions as well as nacelle longitudinal position and pylon contouring were obtained. The results indicate that the ability to achieve laminar flow on the nacelle is not significantly altered by nacelle/pylon/wing integration. The increment in installed drag between free and fixed transition for the nacelles on symmetrical pylons is essentially the calculated differences between turbulent and laminar flow on the nacelles. The installed drag of the contoured pylon is less than that of the symmetrical pylon. The installed drag for the nacelles in a rearward position is greater than that for the nacelles in a forward position.

  4. Fatigue Lifetime Assessment of Aircraft Engine Disc via Multi-source Information Fusion

    NASA Astrophysics Data System (ADS)

    Huang, Hong-Zhong; Cui, Ping-Liang; Peng, Weiwen; Gao, Hui-Ying; Wang, Hai-Kun

    2014-06-01

    Fatigue lifetime assessment for aircraft engine discs is an important issue for the operation and health management of aircraft engines. Due to the lack of field test data, traditional methods can hardly meet the requirements of fatigue lifetime assessment of aircraft engine discs. By combining a multi-source information fusion method with a Bayesian inference technique, this paper develops a practical approach for fatigue lifetime assessment of aircraft engine discs. Subjective information and historical data are combined coherently with the sparse test data to generate a credible fatigue lifetime assessment of aircraft engine discs. Methods for quantifying subjective information, checking different experts' information, and fusing multiple prior distributions are presented to facilitate the implementation of fatigue lifetime assessment. An illustrative example is presented to demonstrate the procedures and the implication of the proposed method.

  5. An integrated systems engineering approach to aircraft design

    NASA Astrophysics Data System (ADS)

    Price, M.; Raghunathan, S.; Curran, R.

    2006-06-01

    The challenge in Aerospace Engineering, in the next two decades as set by Vision 2020, is to meet the targets of reduction of nitric oxide emission by 80%, carbon monoxide and carbon dioxide both by 50%, reduce noise by 50% and of course with reduced cost and improved safety. All this must be achieved with expected increase in capacity and demand. Such a challenge has to be in a background where the understanding of physics of flight has changed very little over the years and where industrial growth is driven primarily by cost rather than new technology. The way forward to meet the challenges is to introduce innovative technologies and develop an integrated, effective and efficient process for the life cycle design of aircraft, known as systems engineering (SE). SE is a holistic approach to a product that comprises several components. Customer specifications, conceptual design, risk analysis, functional analysis and architecture, physical architecture, design analysis and synthesis, and trade studies and optimisation, manufacturing, testing validation and verification, delivery, life cycle cost and management. Further, it involves interaction between traditional disciplines such as Aerodynamics, Structures and Flight Mechanics with people- and process-oriented disciplines such as Management, Manufacturing, and Technology Transfer. SE has become the state-of-the-art methodology for organising and managing aerospace production. However, like many well founded methodologies, it is more difficult to embody the core principles into formalised models and tools. The key contribution of the paper will be to review this formalisation and to present the very latest knowledge and technology that facilitates SE theory. Typically, research into SE provides a deeper understanding of the core principles and interactions, and helps one to appreciate the required technical architecture for fully exploiting it as a process, rather than a series of events. There are major issues as

  6. Aircraft Turbine Engine Monitoring Systems: Overview and Lessons Learned from Six Case Studies

    DTIC Science & Technology

    1979-05-01

    engines of both groups. EHMS (T-38 / J85 ) ACTIVITY OUTCOMES JULY 󈨐 - MAY 󈨑 INSIRUMENTED ENGINES CONTROL ENGINES NUMBER OF ENGINES 26 26 TOTAL...Kreviews the experience gained from several aircraft turbine engine monitoring systems used over the last decade and a half and examines the...the supporting research. -,Two different approaches to engine monitoring have evolved in attempts to achieve the goals of improved engine operations

  7. Real-time measurements of jet aircraft engine exhaust.

    PubMed

    Rogers, Fred; Arnott, Pat; Zielinska, Barbara; Sagebiel, John; Kelly, Kerry E; Wagner, David; Lighty, JoAnn S; Sarofim, Adel F

    2005-05-01

    Particulate-phase exhaust properties from two different types of ground-based jet aircraft engines--high-thrust and turboshaft--were studied with real-time instruments on a portable pallet and additional time-integrated sampling devices. The real-time instruments successfully characterized rapidly changing particulate mass, light absorption, and polycyclic aromatic hydrocarbon (PAH) content. The integrated measurements included particulate-size distributions, PAH, and carbon concentrations for an entire test run (i.e., "run-integrated" measurements). In all cases, the particle-size distributions showed single modes peaking at 20-40nm diameter. Measurements of exhaust from high-thrust F404 engines showed relatively low-light absorption compared with exhaust from a turboshaft engine. Particulate-phase PAH measurements generally varied in phase with both net particulate mass and with light-absorbing particulate concentrations. Unexplained response behavior sometimes occurred with the real-time PAH analyzer, although on average the real-time and integrated PAH methods agreed within the same order of magnitude found in earlier investigations.

  8. Performance of Several Combustion Chambers Designed for Aircraft Oil Engines

    NASA Technical Reports Server (NTRS)

    Joachim, William F; Kemper, Carlton

    1928-01-01

    Several investigations have been made on single-cylinder test engines to determine the performance characteristics of four types of combustion chambers designed for aircraft oil engines. Two of the combustion chambers studied were bulb-type precombustion chambers, the connecting orifice of one having been designed to produce high turbulence by tangential air flow in both the precombustion chamber and the cylinder. The other two were integral combustion chambers, one being dome-shaped and the other pent-roof shaped. The injection systems used included cam and eccentric driven fuel pumps, and diaphragm and spring-loaded fuel-injection valves. A diaphragm type maximum cylinder pressure indicator was used in part of these investigations with which the cylinder pressures were controlled to definite valves. The performance of the engines when equipped with each of the combustion chambers is discussed. The best performance for the tests reported was obtained with a bulb-type combustion chamber designed to give a high degree of turbulence within the bulb and cylinder. (author)

  9. Propulsion system study for Small Transport Aircraft Technology (STAT)

    NASA Technical Reports Server (NTRS)

    Smith, C. E.; Hirschkron, R.; Warren, R. E.

    1981-01-01

    Propulsion system technologies applicable to the generation of commuter airline aircraft expected to enter service in the 1990's are identified and evaluated in terms of their impact on aircraft operating economics and fuel consumption. The most promising technologies in the areas of engine, propeller, gearbox, and nacelle design are recommended for future research. Each item under consideration is evaluated relative to a modern baseline engine, the General Electric CT7-5, in a current technology aircraft flying a fixed range and payload. The analysis is presented for two aircraft sizes (30 and 50 passenger), over a range of mission lengths (100 to 1100 km) and fuel costs ($264 to $396 per cu m).

  10. ADAM: An Axisymmetric Duct Aeroacoustic Modeling system. [aircraft turbofan engines

    NASA Technical Reports Server (NTRS)

    Abrahamson, A. L.

    1983-01-01

    An interconnected system of computer programs for analyzing the propagation and attenuation of sound in aeroengine ducts containing realistic compressible subsonic mean flows, ADAM was developed primarily for research directed towards the reduction of noise emitted from turbofan aircraft engines. The two basic components are a streamtube curvature program for determination of the mean flow, and a finite element code for solution of the acoustic propagation problem. The system, which has been specifically tailored for ease of use, is presently installed at NASA Langley Reseach Center on a Control Data Cyber 175 Computer under the NOS Operating system employing a Tektronix terminal for interactive graphics. The scope and organization of the ADAM system is described. A users guide, examples of input data, and results for selected cases are included.

  11. Hover in-ground-effect testing of a full-scale, tilt-nacelle V/STOL model

    NASA Technical Reports Server (NTRS)

    Eshleman, J. E.; Dudley, M. R.; Schell, C. J.

    1986-01-01

    A full-scale, tilt-nacelle V/STOL aircraft model was tested in hover at the National Full Scale Aerodynamics Complex (NFAC), NASA Ames Research Center. The model was powered by two TF-34 turbofan engines. It was tested at several ground heights and control deflections. Test technique and test setup were documented. Limited results show that: (1) a small change in control power with ground height was measured, and control power was found to be good over + or - 20 deg of horizontal vane deflection; (2) integrated fuselage undersurface pressures, when compared with the total model loads and measured thrust, defined the effect of the fountain and its related flow field on model forces and moments; and (3) there was no indication of hot gas ingestion during simulated takeoff in calm winds from wheels on deck ground height.

  12. Energy efficient engine preliminary design and integration study

    NASA Technical Reports Server (NTRS)

    Gray, D. E.

    1978-01-01

    The technology and configurational requirements of an all new 1990's energy efficient turbofan engine having a twin spool arrangement with a directly coupled fan and low-pressure turbine, a mixed exhaust nacelle, and a high 38.6:1 overall pressure ratio were studied. Major advanced technology design features required to provide the overall benefits were a high pressure ratio compression system, a thermally actuated advanced clearance control system, lightweight shroudless fan blades, a low maintenance cost one-stage high pressure turbine, a short efficient mixer and structurally integrated engine and nacelle. A conceptual design analysis was followed by integration and performance analyses of geared and direct-drive fan engines with separate or mixed exhaust nacelles to refine previously designed engine cycles. Preliminary design and more detailed engine-aircraft integration analysis were then conducted on the more promising configurations. Engine and aircraft sizing, fuel burned, and airframe noise studies on projected 1990's domestic and international aircraft produced sufficient definition of configurational and advanced technology requirements to allow immediate initiation of component technology development.

  13. Aircraft engine with inter-turbine engine frame supported counter rotating low pressure turbine rotors

    NASA Technical Reports Server (NTRS)

    Seda, Jorge F. (Inventor); Dunbar, Lawrence W. (Inventor); Gliebe, Philip R. (Inventor); Szucs, Peter N. (Inventor); Brauer, John C. (Inventor); Johnson, James E. (Inventor); Moniz, Thomas (Inventor); Steinmetz, Gregory T. (Inventor)

    2003-01-01

    An aircraft gas turbine engine assembly includes an inter-turbine frame axially located between high and low pressure turbines. Low pressure turbine has counter rotating low pressure inner and outer rotors with low pressure inner and outer shafts which are at least in part rotatably disposed co-axially within a high pressure rotor. Inter-turbine frame includes radially spaced apart radially outer first and inner second structural rings disposed co-axially about a centerline and connected by a plurality of circumferentially spaced apart struts. Forward and aft sump members having forward and aft central bores are fixedly joined to axially spaced apart forward and aft portions of the inter-turbine frame. Low pressure inner and outer rotors are rotatably supported by a second turbine frame bearing mounted in aft central bore of aft sump member. A mount for connecting the engine to an aircraft is located on first structural ring.

  14. Engine Performance and Knock Rating of Fuels for High-output Aircraft Engines

    NASA Technical Reports Server (NTRS)

    Rothbrock, A M; Biermann, Arnold E

    1938-01-01

    Data are presented to show the effects of inlet-air pressure, inlet-air temperature, and compression ratio on the maximum permissible performance obtained on a single-cylinder test engine with aircraft-engine fuels varying from a fuel of 87 octane number to one 100 octane number plus 1 ml of tetraethyl lead per gallon. The data were obtained on a 5-inch by 5.75-inch liquid-cooled engine operating at 2,500 r.p.m. The compression ratio was varied from 6.50 to 8.75. The inlet-air temperature was varied from 120 to 280 F. and the inlet-air pressure from 30 inches of mercury absolute to the highest permissible. The limiting factors for the increase in compression ratio and in inlet-air pressure was the occurrence of either audible or incipient knock. The data are correlated to show that, for any one fuel,there is a definite relationship between the limiting conditions of inlet-air temperature and density at any compression ratio. This relationship is dependent on the combustion-gas temperature and density relationship that causes knock. The report presents a suggested method of rating aircraft-engine fuels based on this relationship. It is concluded that aircraft-engine fuels cannot be satisfactorily rated by any single factor, such as octane number, highest useful compression ratio, or allowable boost pressure. The fuels should be rated by a curve that expresses the limitations of the fuel over a variety of engine conditions.

  15. Quiet Clean Short-haul Experimental Engine (QCSEE) preliminary over-the-wing flight propulsion system analysis report

    NASA Technical Reports Server (NTRS)

    Howard, D. F.

    1977-01-01

    The preliminary design of the over-the-wing flight propulsion system installation and nacelle component and systems design features of a short-haul, powered lift aircraft are presented. Economic studies are also presented and show that high bypass, low pressure ratio turbofan engines have the potential of providing an economical propulsion system for achieving the very quiet aircraft noise level of 95 EPNdB on a 152.4 m sideline.

  16. Adaptive Failure Compensation for Aircraft Flight Control Using Engine Differentials: Regulation

    NASA Technical Reports Server (NTRS)

    Yu, Liu; Xidong, Tang; Gang, Tao; Joshi, Suresh M.

    2005-01-01

    The problem of using engine thrust differentials to compensate for rudder and aileron failures in aircraft flight control is addressed in this paper in a new framework. A nonlinear aircraft model that incorporates engine di erentials in the dynamic equations is employed and linearized to describe the aircraft s longitudinal and lateral motion. In this model two engine thrusts of an aircraft can be adjusted independently so as to provide the control flexibility for rudder or aileron failure compensation. A direct adaptive compensation scheme for asymptotic regulation is developed to handle uncertain actuator failures in the linearized system. A design condition is specified to characterize the system redundancy needed for failure compensation. The adaptive regulation control scheme is applied to the linearized model of a large transport aircraft in which the longitudinal and lateral motions are coupled as the result of using engine thrust differentials. Simulation results are presented to demonstrate the effectiveness of the adaptive compensation scheme.

  17. Additional testing of the inlets designed for a tandem fan V/STOL nacelle

    NASA Technical Reports Server (NTRS)

    Ybarra, A. H.

    1981-01-01

    The wind tunnel testing of a scale model of a tandem fan nacelle designed for a type (subsonic cruise) V/STOL aircraft configuration is discussed. The performance for the isolated front inlet and for the combined front and aft inlets is reported. Model variables include front and aft inlets with aft inlet variations of short and long aft inlet cowls, with a shaft simulator and diffuser vortex generators, cowl lip fillets, and nacelle strakes. Inlet pressure recovery, distortion, and inlet angle-to-attack separation limits were evaluated at tunnel velocity from 0 to 240 knots, angles-of-attack from -10 to +40 degrees and inlet flow rates corresponding to throat Mach number from 0.0 to 0.6. Combined nacelle pitch and yaw runs up to 30 deg. were also made.

  18. Role of structural noise in aircraft pressure cockpit from vibration action of new-generation engines

    NASA Astrophysics Data System (ADS)

    Baklanov, V. S.

    2016-07-01

    The evolution of new-generation aircraft engines is transitioning from a bypass ratio of 4-6 to an increased ratio of 8-12. This is leading to substantial broadening of the vibration spectrum of engines with a shift to the low-frequency range due to decreased rotation speed of the fan rotor, in turn requiring new solutions to decrease structural noise from engine vibrations to ensure comfort in the cockpits and cabins of aircraft.

  19. Modern design methodology and problems in training aircraft engineers

    NASA Technical Reports Server (NTRS)

    Liseitsev, N. K.

    1989-01-01

    A brief report on the problem of modern aircraft specialist education is presented that is devoted to the content and methods of teaching a course in General Aircraft Design in the Moscow Aviation Institute.

  20. Boundary layer effects on liners for aircraft engines

    NASA Astrophysics Data System (ADS)

    Gabard, Gwénaël

    2016-10-01

    The performance of acoustic treatments installed on aircraft engines is strongly influenced by the boundary layer of the grazing flow on the surface of the liner. The parametric study presented in this paper illustrates the extent of this effect and identifies when it is significant. The acoustic modes of a circular duct with flow are calculated using a finite difference method. The parameters are representative of the flow conditions, liners and sound fields found in current turbofan engines. Both the intake and bypass ducts are considered. Results show that there is a complex interplay between the boundary layer thickness, the direction of propagation and the liner impedance and that the boundary layer can have a strong impact on liner performance for typical configurations (including changes of the order of 30 dB on the attenuation of modes associated with tonal fan noise). A modified impedance condition including the effect of a small but finite boundary layer thickness is considered and compared to the standard Myers condition based on an infinitely thin boundary layer. We show how this impedance condition can be implemented in a mode calculation method by introducing auxiliary variables. This condition is able to capture the trends associated with the boundary layer effects and in most cases provides improved predictions of liner performance.

  1. 76 FR 10328 - Grant of Authority for Subzone Status; Vestas Nacelles America, Inc. (Wind Turbine Nacelles, Hubs...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-24

    ... manufacturing and warehousing of wind turbine nacelles, hubs, blades and towers at the Vestas Nacelles America... Foreign-Trade Zones Board Grant of Authority for Subzone Status; Vestas Nacelles America, Inc. (Wind Turbine Nacelles, Hubs, Blades and Towers), Brighton, Denver, Pueblo, and Windsor, CO Pursuant to...

  2. Atmospheric turbulence affects wind turbine nacelle transferfunctions

    SciTech Connect

    St. Martin, Clara M.; Lundquist, Julie K.; Clifton, Andrew; Poulos, Gregory S.; Schreck, Scott J.

    2016-12-14

    Despite their potential as a valuable source of individual turbine power performance and turbine array energy production optimization information, nacelle-mounted anemometers have often been neglected because complex flows around the blades and nacelle interfere with their measurements. This work quantitatively explores the accuracy of and potential corrections to nacelle anemometer measurements to determine the degree to which they may be useful when corrected for these complex flows, particularly for calculating annual energy production (AEP) in the absence of other meteorological data. Using upwind meteorological tower measurements along with nacelle-based measurements from a General Electric (GE) 1.5sle model, we calculate empirical nacelle transfer functions (NTFs) and explore how they are impacted by different atmospheric and turbulence parameters. This work provides guidelines for the use of NTFs for deriving useful wind measurements from nacelle-mounted anemometers. Corrections to the nacelle anemometer wind speed measurements can be made with NTFs and used to calculate an AEP that comes within 1 % of an AEP calculated with upwind measurements. We also calculate unique NTFs for different atmospheric conditions defined by temperature stratification as well as turbulence intensity, turbulence kinetic energy, and wind shear. During periods of low stability as defined by the Bulk Richardson number (RB), the nacelle-mounted anemometer underestimates the upwind wind speed more than during periods of high stability at some wind speed bins below rated speed, leading to a more steep NTF during periods of low stability. Similarly, during periods of high turbulence, the nacelle-mounted anemometer underestimates the upwind wind speed more than during periods of low turbulence at most wind bins between cut-in and rated wind speed. Based on these results, we suggest different NTFs be calculated for different regimes of atmospheric stability

  3. Atmospheric turbulence affects wind turbine nacelle transferfunctions

    DOE PAGES

    St. Martin, Clara M.; Lundquist, Julie K.; Clifton, Andrew; ...

    2016-12-14

    Despite their potential as a valuable source of individual turbine power performance and turbine array energy production optimization information, nacelle-mounted anemometers have often been neglected because complex flows around the blades and nacelle interfere with their measurements. This work quantitatively explores the accuracy of and potential corrections to nacelle anemometer measurements to determine the degree to which they may be useful when corrected for these complex flows, particularly for calculating annual energy production (AEP) in the absence of other meteorological data. Using upwind meteorological tower measurements along with nacelle-based measurements from a General Electric (GE) 1.5sle model, we calculate empiricalmore » nacelle transfer functions (NTFs) and explore how they are impacted by different atmospheric and turbulence parameters. This work provides guidelines for the use of NTFs for deriving useful wind measurements from nacelle-mounted anemometers. Corrections to the nacelle anemometer wind speed measurements can be made with NTFs and used to calculate an AEP that comes within 1 % of an AEP calculated with upwind measurements. We also calculate unique NTFs for different atmospheric conditions defined by temperature stratification as well as turbulence intensity, turbulence kinetic energy, and wind shear. During periods of low stability as defined by the Bulk Richardson number (RB), the nacelle-mounted anemometer underestimates the upwind wind speed more than during periods of high stability at some wind speed bins below rated speed, leading to a more steep NTF during periods of low stability. Similarly, during periods of high turbulence, the nacelle-mounted anemometer underestimates the upwind wind speed more than during periods of low turbulence at most wind bins between cut-in and rated wind speed. Based on these results, we suggest different NTFs be calculated for different regimes of atmospheric stability and turbulence for

  4. Small Engine Technology (SET) Task 24 Business and Regional Aircraft System Studies

    NASA Technical Reports Server (NTRS)

    Lieber, Lysbeth

    2003-01-01

    This final report has been prepared by Honeywell Engines & Systems, Phoenix, Arizona, a unit of Honeywell International Inc., documenting work performed during the period June 1999 through December 1999 for the National Aeronautics and Space Administration (NASA) Glenn Research Center, Cleveland, Ohio, under the Small Engine Technology (SET) Program, Contract No. NAS3-27483, Task Order 24, Business and Regional Aircraft System Studies. The work performed under SET Task 24 consisted of evaluating the noise reduction benefits compared to the baseline noise levels of representative 1992 technology aircraft, obtained by applying different combinations of noise reduction technologies to five business and regional aircraft configurations. This report focuses on the selection of the aircraft configurations and noise reduction technologies, the prediction of noise levels for those aircraft, and the comparison of the noise levels with those of the baseline aircraft.

  5. Test of P3M-1 nacelle in Full-Scale Tunnel (FST)

    NASA Technical Reports Server (NTRS)

    1931-01-01

    Test of P3M-1 nacelle in Full-Scale Tunnel (FST). The NACA conducted drag tests on P3M-1 nacelle in 1931 which were presented in a special report to the Navy. Smith DeFrance described this work in the report's introduction: 'Tests were conducted in the full-scale wind tunnel on a five to four geared Pratt and Whitney Wasp engine mounted in a P3M-1 nacelle. In order to simulate the flight conditions the nacelle was assembled on a 15-foot span of wing from the same airplane. The purpose of the tests was to improve the cooling of the engine and to reduce the drag of the nacelle combination. Thermocouples were installed at various points on the cylinders and temperature readings were obtained from these by the power plants division. These results will be reported in a memorandum by that division. The drag results, which are covered by this memorandum, were obtained with the original nacelle condition as received from the Navy with the tail of the nacelle modified, with the nose section of the nacelle modified, with a Curtiss anti-drag ring attached to the engine, with a Type G ring developed by the N.A.C.A., and with a Type D cowling which was also developed by the N.A.C.A.' (p. 1) This picture shows the engine with a Curtiss anti-drag ring attached. The NACA tested several different modifications and cowlings as noted above. The Navy did not want to make any major structural alterations to the original wing and nacelle installation. Thus, the NACA did not conduct a full investigation of the aerodynamics of this particular configuration. DeFrance concludes his report with this note: 'in view of the limitations of the test, the drag data for the combinations tested may be summarized, and considering the necessity of temperature control and accessibility to the engine it is apparent that the best combination tested was with the large nose piece, the Curtiss anti-drag ring, and the modified tail section.'

  6. Data Fusion for Enhanced Aircraft Engine Prognostics and Health Management

    NASA Technical Reports Server (NTRS)

    Volponi, Al

    2005-01-01

    Aircraft gas-turbine engine data is available from a variety of sources, including on-board sensor measurements, maintenance histories, and component models. An ultimate goal of Propulsion Health Management (PHM) is to maximize the amount of meaningful information that can be extracted from disparate data sources to obtain comprehensive diagnostic and prognostic knowledge regarding the health of the engine. Data fusion is the integration of data or information from multiple sources for the achievement of improved accuracy and more specific inferences than can be obtained from the use of a single sensor alone. The basic tenet underlying the data/ information fusion concept is to leverage all available information to enhance diagnostic visibility, increase diagnostic reliability and reduce the number of diagnostic false alarms. This report describes a basic PHM data fusion architecture being developed in alignment with the NASA C-17 PHM Flight Test program. The challenge of how to maximize the meaningful information extracted from disparate data sources to obtain enhanced diagnostic and prognostic information regarding the health and condition of the engine is the primary goal of this endeavor. To address this challenge, NASA Glenn Research Center, NASA Dryden Flight Research Center, and Pratt & Whitney have formed a team with several small innovative technology companies to plan and conduct a research project in the area of data fusion, as it applies to PHM. Methodologies being developed and evaluated have been drawn from a wide range of areas including artificial intelligence, pattern recognition, statistical estimation, and fuzzy logic. This report will provide a chronology and summary of the work accomplished under this research contract.

  7. Effect of location of aft-mounted nacelles on the longitudinal aerodynamic characteristics of a high-wing transport airplane

    NASA Technical Reports Server (NTRS)

    Abeyounis, William K.; Patterson, James C., Jr.

    1990-01-01

    As part of a propulsion/airframe integration program at Langley Research Center, tests were conducted in the Langley 16-Foot Transonic Tunnel to determine the effects of locating flow-through mixed flow engine nacelles in several aft underwing positions on the longitudinal aerodynamics of a high wing transport airplane. D-shaped inlet nacelles were used in the test. Some configurations with antishock bodies and with nacelle toe-in were also tested. Data were obtained for a free stream Mach number range of 0.70 to 0.85 and a model angle-of-attack range from -2.5 to 4.0 degrees.

  8. Phase 2 program on ground test of refanned JT8D turbofan engines and nacelles for the 727 airplane. Volume 3: Ground tests

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The NASA Refan Program included full-scale performance and noise ground tests of both a current production (JT8D-15) and a refanned (JT8D-115) engine. A description of the two ground tests including detailed propulsion, noise, and structural test results is presented. The primary objectives of the total test program were comparison of JT8D-15 and JT8D-115 overall propulsion system performance and noise characteristics and determination of incremental component noise levels. Other objectives of the test program included: (1) determination of acoustic treatment effectiveness; (2) measurement of internal sound pressure levels; (3) measurement of inlet and exhaust hardware performance; (4) determination of center-engine surge margin; and (5) evaluation of certain structural characteristics associated with the 727 refan center-engine inlet duct and JT8D refan engine exhaust system. The JT8D-15 and -115 tests were conducted during September 1974 and January to March 1975, respectively. Analyses of the test data indicated that the JT8D-115, as compared to the JT8D-15, demonstrates a 12.5 percent to 13.2 percent reduction in static specific fuel consumption, and a reduction of 6 to 7 PNdB in a weighted average value of static tone corrected perceived noise level. Separated into noise components, a significant reduction was shown for the inlet fan, aft fan, exhaust duct flow, turbine, and jet noises. However, core noise was increased. Photographs of test stands and test equipment are shown.

  9. Development potential of Intermittent Combustion (I.C.) aircraft engines for commuter transport applications

    NASA Technical Reports Server (NTRS)

    Willis, E. A.

    1982-01-01

    An update on general aviation (g/a) and commuter aircraft propulsion research effort is reviewed. The following topics are discussed: on several advanced intermittent combustion engines emphasizing lightweight diesels and rotary stratified charge engines. The current state-of-the-art is evaluated for lightweight, aircraft suitable versions of each engine. This information is used to project the engine characteristics that can be expected on near-term and long-term time horizons. The key enabling technology requirements are identified for each engine on the long-term time horizon.

  10. Price-Weight Relationships of General Aviation, Helicopters, Transport Aircraft and Engines

    NASA Technical Reports Server (NTRS)

    Anderson, Joseph L.

    1981-01-01

    The NASA must assess its aeronautical research program with economic as well as performance measures. It thus is interested in what price a new technology aircraft would carry to make it attractive to the buyer. But what price a given airplane or helicopter will carry is largely a reflection of the manufacturer's assessment of the competitive market into which the new aircraft will be introduced. The manufacturer must weigh any new aerodynamic or system technology innovation he would add to an aircraft by the impact of this innovation upon the aircraft's cost to manufacture, economic attractiveness and price. The intent of this paper is to give price standards against which new technologies and the NASA's research program can be assessed. Using reported prices for sailplanes, general aviation, agriculture, helicopter, business and transport aircraft, price estimating relations in terms of engine and airframe characteristics have been developed. The relations are given in terms of the aircraft type, its manufactured empty weight, engine weight, horsepower or thrust. Factors for the effects of inflation are included to aid in making predictions of future aircraft prices. There are discussions of aircraft price in terms of number of passenger seats, airplane size and research and development costs related to an aircraft model, and indirectly how new technologies, aircraft complexity and inflation have affected these.

  11. Pollution reduction technology program for small jet aircraft engines: Class T1

    NASA Technical Reports Server (NTRS)

    Bruce, T. W.; Davis, F. G.; Mongia, H. C.

    1977-01-01

    Small jet aircraft engines (EPA class T1, turbojet and turbofan engines of less than 35.6 kN thrust) were evaluated with the objective of attaining emissions reduction consistent with performance constraints. Configurations employing the technological advances were screened and developed through full scale rig testing. The most promising approaches in full-scale engine testing were evaluated.

  12. The Role of Modern Control Theory in the Design of Controls for Aircraft Turbine Engines

    NASA Technical Reports Server (NTRS)

    Zeller, J.; Lehtinen, B.; Merrill, W.

    1982-01-01

    Accomplishments in applying Modern Control Theory to the design of controls for advanced aircraft turbine engines were reviewed. The results of successful research programs are discussed. Ongoing programs as well as planned or recommended future thrusts are also discussed.

  13. Study of aerodynamic technology for single-cruise-engine VSTOL fighter/attack aircraft, phase 1

    NASA Technical Reports Server (NTRS)

    Foley, W. H.; Sheridan, A. E.; Smith, C. W.

    1982-01-01

    A conceptual design and analysis on a single engine VSTOL fighter/attack aircraft is completed. The aircraft combines a NASA/deHavilland ejector with vectored thrust and is capable of accomplishing the mission and point performance of type Specification 169, and a flight demonstrator could be built with an existing F101/DFE engine. The aerodynamic, aero/propulsive, and propulsive uncertainties are identified, and a wind tunnel program is proposed to address those uncertainties associated with wing borne flight.

  14. Results and status of the NASA aircraft engine emission reduction technology programs

    NASA Technical Reports Server (NTRS)

    Jones, R. E.; Diehl, L. A.; Petrash, D. A.; Grobman, J.

    1978-01-01

    The results of an aircraft engine emission reduction study are reviewed in detail. The capability of combustor concepts to produce significantly lower levels of exhaust emissions than present production combustors was evaluated. The development status of each combustor concept is discussed relative to its potential for implementation in aircraft engines. Also, the ability of these combustor concepts to achieve proposed NME and NCE EPA standards is discussed.

  15. Development of EPA aircraft piston engine emission standards. [for air quality

    NASA Technical Reports Server (NTRS)

    Houtman, W.

    1976-01-01

    Piston engine light aircraft are significant sources of carbon monoxide in the vicinity of high activity general aviation airports. Substantial reductions in carbon monoxide were achieved by fuel mixture leaning using improved fuel management systems. The air quality impact of the hydrocarbon and oxides of nitrogen emissions from piston engine light aircraft were insufficient to justify the design constraints being confronted in present control system developments.

  16. Fault mechanism analysis and simulation for continuity resistance test of electrical components in aircraft engine

    NASA Astrophysics Data System (ADS)

    Shi, Xudong; Yin, Yaping; Wang, Jialin; Sun, Zhaorong

    2017-01-01

    A large number of electrical components are used in civil aircraft engines, whose electrical circuits are usually intricate and complicated. Continuity resistance is an important parameter for the operating state of electrical components. Electrical continuity fault has serious impact on the reliability of the aircraft engine. In this paper, mathematical models of electrical components are established, and simulation is made by Simulink to analyze the electrical continuity fault.

  17. Jet aircraft engine exhaust emissions database development: Year 1990 and 2015 scenarios

    NASA Technical Reports Server (NTRS)

    Landau, Z. Harry; Metwally, Munir; Vanalstyne, Richard; Ward, Clay A.

    1994-01-01

    Studies relating to environmental emissions associated with the High Speed Civil Transport (HSCT) military jet and charter jet aircraft were conducted by McDonnell Douglas Aerospace Transport Aircraft. The report includes engine emission results for baseline 1990 charter and military scenario and the projected jet engine emissions results for a 2015 scenario for a Mach 1.6 HSCT charter and military fleet. Discussions of the methodology used in formulating these databases are provided.

  18. Physical characterization of the fine particle emissions from commercial aircraft engines during the Aircraft Particle Emissions Experiment (APEX) 1 to 3

    EPA Science Inventory

    The f1me particulate matter (PM) emissions from nine commercial aircraft engine models were determined by plume sampling during the three field campaigns of the Aircraft Particle Emissions Experiment (APEX). Ground-based measurements were made primarily at 30 m behind the engine ...

  19. An inventory of particle and gaseous emissions from large aircraft thrust engine operations at an airport

    NASA Astrophysics Data System (ADS)

    Mazaheri, M.; Johnson, G. R.; Morawska, L.

    2011-07-01

    Published particle number emission factors for aircraft operations remain very sparse and so far such emissions have not been included in the International Civil Aviation Organization (ICAO) databases. This work addresses this gap in knowledge by utilizing recent progress in the quantification of aircraft particle emissions. Annual emissions of particle number (PN), particle mass (PM 2.5) and NO x throughout the aircraft landing and takeoff (LTO) cycles and ground running procedures (GRP) are presented for aircraft using Brisbane Airport BNE (domestic and international). The aircraft are grouped according to an airframe based classification system. The resulting data are then used to develop an emissions inventory for large aircraft thrust engine operations on the ground, during LTO cycles and GRP, at the Airport. Annual PN, PM 2.5 and NO x emissions from large aircraft operations during LTO cycles and GRP at BNE were 1.98 × 10 24 yr -1, 1.35 × 10 4 kg yr -1 and 8.13 × 10 5 kg yr -1, respectively. Results showed that LTO cycles contribute more than 97% of these annual emissions at BNE in comparison to GRP related emissions. Analysis of the LTO cycle contribution to the daily emissions showed that the contribution of the climbout mode is considerably higher than for other individual LTO operational modes. Emissions during aircraft departures were significantly higher than those during arrival operations, due to the higher aircraft engine emission rates during takeoff and climbout.

  20. Adaptive Failure Compensation for Aircraft Tracking Control Using Engine Differential Based Model

    NASA Technical Reports Server (NTRS)

    Liu, Yu; Tang, Xidong; Tao, Gang; Joshi, Suresh M.

    2006-01-01

    An aircraft model that incorporates independently adjustable engine throttles and ailerons is employed to develop an adaptive control scheme in the presence of actuator failures. This model captures the key features of aircraft flight dynamics when in the engine differential mode. Based on this model an adaptive feedback control scheme for asymptotic state tracking is developed and applied to a transport aircraft model in the presence of two types of failures during operation, rudder failure and aileron failure. Simulation results are presented to demonstrate the adaptive failure compensation scheme.

  1. 14 CFR 43.7 - Persons authorized to approve aircraft, airframes, aircraft engines, propellers, appliances, or...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... data approved by the Administrator. (e) The holder of an air carrier operating certificate or an... holder of a repairman certificate (light-sport aircraft) with a maintenance rating may approve an aircraft issued a special airworthiness certificate in light-sport category for return to service,...

  2. Engineering and Technical Configuration Aspects of HIAPER, the new NSF/NCAR Research Aircraft

    NASA Astrophysics Data System (ADS)

    Friesen, R.; Laursen, K.

    2002-12-01

    The High-performance Instrumented Airborne Platform for Environmental Research, or HIAPER, is the new research aircraft presently being developed at the National Center for Atmospheric Research (NCAR) to serve the environmental research needs of the National Science Foundation (NSF) for the next several decades. The basic aircraft -- a Gulfstream V (G-V) business jet -- has been completed and will shortly undergo extensive modification to prepare it for future deployments in support of a variety of geosciences research missions. This presentation will focus on the many design and engineering considerations that have been made and are yet to come in converting a "green" business jet into a versatile research aircraft to serve the environmental research community. The project teams composed of engineers and scientists from NCAR and the scientific community at large are faced with trade offs involving costs of modifications, airframe structural integrity, aircraft performance (e.g. weight, drag), cabin environment, locations of inlet and sampling ports and FAA certification requirements. Many of the specific engineering specifications and modifications that have been made to date will be presented by way of engineering drawings, graphical depictions and actual photographs of the aircraft structure. Additionally, projected performance data of the modified-for-research aircraft will be presented along with some of the analyses performed to arrive at critical decisions (e.g. CFD airflow analysis). Finally, some of the details of the aircraft "infrastructure" such as signal and power wiring, generic cabin layout and data acquisition will be discussed.

  3. Maritime Patrol Aircraft Engine Study P&WA Derivative Engines. Volume II. Performance Data.

    DTIC Science & Technology

    1979-04-30

    U) APR 79 R C NEWELL. P W HERRICK N62269-78C-0GIG UNCLASSIFIED PWA -FR-10966B/C"VOL-2 NAC-79132-60-VOL-2 NL mmEhE mhm 111 1 4;.c~ 111128 12.5 IIIIIII...MARITIME PATROL AIRCRAFT ENGINE STUDT PIWA DERIVATIVE ENGINES. --EC(U) APR 79 R C NEWELL. P W HERRICK N62269-78-C-010 UNCLASSIFIED PWA -FR-10966B/C-VOL-2 NADC...0.80 823. n. 524 -165. 51.3 5.8 1635. MAX .LIft 5.000. 0.85 6289 o 0.333 249. 125.3 17.*6 2535. MAX CKUISE 45000. 0.85 5629. 0.331 150.. 11,.6 16.3

  4. Engine-induced structural-borne noise in a general aviation aircraft

    NASA Technical Reports Server (NTRS)

    Unruh, J. F.; Scheidt, D. C.; Pomerening, D. J.

    1979-01-01

    Structural borne interior noise in a single engine general aviation aircraft was studied to determine the importance of engine induced structural borne noise and to determine the necessary modeling requirements for the prediction of structural borne interior noise. Engine attached/detached ground test data show that engine induced structural borne noise is a primary interior noise source for the single engine test aircraft, cabin noise is highly influenced by responses at the propeller tone, and cabin acoustic resonances can influence overall noise levels. Results from structural and acoustic finite element coupled models of the test aircraft show that wall flexibility has a strong influence on fundamental cabin acoustic resonances, the lightweight fuselage structure has a high modal density, and finite element analysis procedures are appropriate for the prediction of structural borne noise.

  5. Effect of broadened-specification fuels on aircraft engines and fuel systems

    NASA Technical Reports Server (NTRS)

    Rudey, R. A.

    1979-01-01

    A wide variety of studies on the potential effects of broadened-specification fuels on future aircraft engines and fuel systems are summarized. The compositions and characteristics of aircraft fuels that may be derived from current and future crude-oil sources are described, and the most critical properties that may effect aircraft engines and fuel systems are identified and discussed. The problems that are most likely to be encountered because of changes in selected fuel properties are explored; and the related effects on engine performance, component durability and maintenance, and aircraft fuel-system performance are examined. The ability of current technology to accept possible future fuel specification changes is assessed and selected technological advances that can reduce the severity of the potential problems are illustrated.

  6. Aircraft turbofans: new economic and environmental benefits

    SciTech Connect

    Sampl, F.R.; Shank, M.E.

    1985-09-01

    This article describes turbofan and turboprop engines. Advanced turbofans and turboprop engines, by continuing to reduce the velocities of the jet exhaust and fan tip speed, can provide significant noise reductions. New combustors incorporated into these engines have reduced smoke, hydrocarbons and carbon monoxide to levels below the current requirements. The third generation of turbofans will continue to increase fuel efficiency and reduce aircraft operating costs. They are more modular in design and consist of half as many parts as the earlier engines, reducing maintenance time by half. Some of the key features of the new turbofan concept include: a very high bypass ratio/compression ratio cycle; swept fan blades; a thin, low-loss nacelle; low-loss reduction gearing; new materials; advanced compressor/turbine airfoils; and high-speed rotors with improved clearance control.

  7. Determination and Applications of Environmental Costs at Different Sized Airports: Aircraft Noise and Engine Emissions

    NASA Technical Reports Server (NTRS)

    Lu, Cherie; Lierens, Abigail

    2003-01-01

    With the increasing trend of charging for externalities and the aim of encouraging the sustainable development of the air transport industry, there is a need to evaluate the social costs of these undesirable side effects, mainly aircraft noise and engine emissions, for different airports. The aircraft noise and engine emissions social costs are calculated in monetary terms for five different airports, ranging from hub airports to small regional airports. The number of residences within different levels of airport noise contours and the aircraft noise classifications are the main determinants for accessing aircraft noise social costs. Whist, based on the damages of different engine pollutants on the human health, vegetation, materials, aquatic ecosystem and climate, the aircraft engine emissions social costs vary from engine types to aircraft categories. The results indicate that the relationship appears to be curvilinear between environmental costs and the traffic volume of an airport. The results and methodology of environmental cost calculation could input for to the proposed European wide harmonized noise charges as well as the social cost benefit analysis of airports.

  8. Design of the Hybrid Wing Body with Nacelle: N3-X Propulsion-Airframe Configuration

    NASA Technical Reports Server (NTRS)

    Kim, Hyoungjin; Harding, David; Gronstal, David T.; Liou, May-Fun; Liou, Meng-Sing

    2016-01-01

    The Hybrid Wing Body (HWB) aircraft is of great interest for future transport concepts due to itspromises of reduced aircraft noise, nitrous-oxide emissions, and fuel consumption. A design parameterizationmethod for HWB configurations with mail slot nacelle has been developed for a fast exploration of designspace in conceptual and preliminary design phases of a HWB configuration. A HWB planform model byLaughlin [11] was implemented, and the Class Shape Transformation (CST) airfoil generation method byKulfan [10] was utilized to construct the needed geometry for computational high fidelity aerodynamicsimulations. Geometric constraints for the parameterization such as internal cabin and cargo hold layoutswere imposed on the geometry generation. A CFD simulation was performed for a HWB configurationgenerated by the current geometric modeler, clearly showing a significant effect of the installed nacelle on theflowfield.

  9. Lightweight two-stroke cycle aircraft diesel engine technology enablement program, volume 3

    NASA Technical Reports Server (NTRS)

    Freen, P. D.; Berenyi, S. G.; Brouwers, A. P.; Moynihan, M. E.

    1985-01-01

    An experimental Single Cylinder Test Engine Program is conducted to confirm the analytically projected performance of a two-stroke cycle diesel engine for aircraft applications. Testing confirms the ability of a proposed 4-cylinder version of such an engine to reach the target power at altitude in a highly turbocharged configuration. The experimental program defines all necessary parameters to permit design of a multicylinder engine for eventual flight applications.

  10. Advanced liquid-cooled, turbocharged and intercooled stratified charge rotary engines for aircraft

    NASA Technical Reports Server (NTRS)

    Mount, Robert E.; Bartel, John; Hady, William F.

    1987-01-01

    Developments concerning stratified-charge rotary (SCR) engines over the past 10 years are reviewed. Aircraft engines being developed using SCR technology are shown and described, and the ability of such technology to meet general aviation engine needs is considered. Production timing and availability of SCR technology for the development of aviation rotary engines are discussed, and continuing efforts toward improving this technology, including NASA efforts, are described.

  11. Lightweight two-stroke cycle aircraft diesel engine technology enablement program, volume 2

    NASA Technical Reports Server (NTRS)

    Freen, P. D.; Berenyi, S. G.; Brouwers, A. P.; Moynihan, M. E.

    1985-01-01

    An experimental Single Cylinder Test Engine Program is conducted to confirm the analytically projected performance of a two-stroke cycle diesel engine for aircraft applications. Testing confirms the ability of a proposed 4-cylinder version of such an engine to reach the target power at altitude in a highly turbocharged configuration. The experimental program defines all necessary parameters to permit a design of a multicylinder engine for eventual flight applications.

  12. Thermodynamic efficiency of present types of internal combustion engines for aircraft

    NASA Technical Reports Server (NTRS)

    Lucke, Charles E

    1917-01-01

    Report presents requirements of internal combustion engines suitable for aircraft. Topics include: (1) service requirements for aeronautic engines - power versus weight, reliability, and adaptability factors, (2) general characteristics of present aero engines, (3) aero engine processes and functions of parts versus power-weight ratio, reliability, and adaptability factors, and (4) general arrangement, form, proportions, and materials of aero parts - power-weight ratio, reliability, and adaptability.

  13. Results of T56 Engine Performance Monitoring Trial in Hercules Aircraft, February-July 1977.

    DTIC Science & Technology

    1981-04-01

    Engine Removals/Rejections 2 3.1.1 Resume 5 3.2 Faults not Associated with Engine Removals 5 * NOTATION REFERENCES I TABLES FIGURES APPENDIX 1 ANNEX A...in those cases in which performance monitoring could have been expected to reflect the fault , the appropriate engine performance trend plots were...the appropriate EL 500. (ihis form is used by aircrew and maiintenazice personnel to record any aircraft/ engine fault and its subsequent

  14. MPT Prediction of Aircraft-Engine Fan Noise

    NASA Technical Reports Server (NTRS)

    Connell, Stuart D.

    2004-01-01

    A collection of computer programs has been developed that implements a procedure for predicting multiple-pure-tone (MPT) noise generated by fan blades of an aircraft engine (e.g., a turbofan engine). MPT noise arises when the fan is operating with supersonic relative tip Mach No. Under this flow condition, there is a strong upstream running shock. The strength and position of this shock are very sensitive to blade geometry variations. For a fan where all the blades are identical, the primary tone observed upstream of the fan will be the blade passing frequency. If there are small variations in geometry between blades, then tones below the blade passing frequency arise MPTs. Stagger angle differences as small as 0.1 can give rise to significant MPT. It is also noted that MPT noise is more pronounced when the fan is operating in an unstarted mode. Computational results using a three-dimensional flow solver to compute the complete annulus flow with non-uniform fans indicate that MPT noise can be estimated in a relatively simple way. Hence, once the effect of a typical geometry variation of one blade in an otherwise uniform blade row is known, the effect of all the blades being different can be quickly computed via superposition. Two computer programs that were developed as part of this work are used in conjunction with a user s computational fluid dynamics (CFD) code to predict MPT spectra for a fan with a specified set of geometric variations: (1) The first program ROTBLD reads the users CFD solution files for a single blade passage via an API (Application Program Interface). There are options to replicate and perturb the geometry with typical variations stagger, camber, thickness, and pitch. The multi-passage CFD solution files are then written in the user s file format using the API. (2) The second program SUPERPOSE requires two input files: the first is the circumferential upstream pressure distribution extracted from the CFD solution on the multi-passage mesh

  15. Modal analysis of an aircraft engine fan noise

    NASA Astrophysics Data System (ADS)

    Gorodkova, Natalia; Chursin, Valeriy; Bersenev, Yuliy; Burdakov, Ruslan; Siner, Aleksandr; Viskova, Tatiana

    2016-10-01

    The fan is one of the main noise sources of an aircraft engine. To reduce fan noise and provide liner optimization in the inlet it is necessary to research modal structure of the fan noise. The present paper contains results of acoustic tests on installation for mode generation that consists of 34-channel generator and the inlet updated for mounting of 100 microphones, the experiments were provided in new anechoic chamber of Perm National Research Polytechnic University, the engine with the same inlet was also tested in the open test bench conditions, and results of the fan noise modal structure are presented. For modal structure educting, all 100 channels were synchronously registered in a given frequency range. The measured data were analyzed with PULSE analyzer using fast Fourier transform with a frequency resolution 8..16 Hz. Single modes with numbers from 0 to 35 at frequencies 500; 630; 800; 1000; 1250; 1600 Hz and different combinations of modes at frequencies 1000, 1600, 2000, 2500 Hz were set during tests. Modes with small enough numbers are generated well on the laboratory installation, high-number modes generate additional modes caused by a complicated interference pattern of sound field in the inlet. Open test bench results showed that there are also a lot of harmonic components at frequencies lower than fan BPF. Under 0.65 of cut off there is only one distinct mode, other modes with close and less numbers appear from 0.7 of cut off and above. At power regimes 0.76 and 0.94 of cut off the highest mode also changes from positive to negative mode number area. Numbers of the highest modes change smoothly enough with the growth of power regime. At power regimes with Mach>1 (0.7 of cut off and above) on circumference of blade wheel there is a well-defined noise of shock waves at rotor frequency harmonics that appears at the range between the first rotor frequency and fan blade passing frequency (BPF). It is planned to continue researching of sound field

  16. Performance Optimization of a Rotor Alone Nacelle for Acoustic Fan Testing

    NASA Technical Reports Server (NTRS)

    Cunningham, C. C.; Thompson, W. K.; Hughes, C. E.

    2000-01-01

    This paper describes the techniques, equipment, and results from the optimization of a two-axis traverse actuation system used to maintain concentricity between a sting-mounted fan and a wall-mounted nacelle in the 9 x 15 (9 Foot by 15 Foot Test Section) Low Speed Wind Tunnel (LSWT) at the NASA Glenn Research Center (GRC). The Rotor Alone Nacelle (RAN) system, developed at GRC by the Engineering Design and Analysis Division (EDAD) and the Acoustics Branch, used nacelle-mounted lasers and an automated control system to maintain concentricity as thermal and thrust operating loads displace the fan relative to the nacelle. This effort was critical to ensuring rig/facility safety and experimental consistency of the acoustic data from a statorless, externally supported nacelle configuration. Although the tip clearances were originally predicted to be about 0.020 in. at maximum rotor (fan) operating speed, proximity probe measurements showed that the nominal clearance was less than 0.004 in. As a result, the system was optimized through control-loop modifications, active laser cooling, data filtering and averaging, and the development of strict operational procedures. The resultant concentricity error of RAN was reduced to +/- 0.0031 in. in the Y-direction (horizontal) and +0.0035 in./-0.001 3 in. in the Z-direction (vertical), as determined by error analysis and experimental results. Based on the success of this project, the RAN system will be transitioned to other wind tunnel research programs at NASA GRC.

  17. Design and Integration of a Rotor Alone Nacelle for Acoustic Fan Testing

    NASA Technical Reports Server (NTRS)

    Shook, Tony D.; Hughes, Christoper E.; Thompson, William K.; Tavernelli, Paul F.; Cunningham, Cameron C.; Shah, Ashwin

    2001-01-01

    A brief summary of the design, integration and testing of a rotor alone nacelle (RAN) in NASA Glenn's 9'x 15' Low Speed Wind Tunnel (LSWT) is presented. The purpose of the RAN system was to provide an "acoustically clean" flow path within the nacelle to isolate that portion of the total engine system acoustic signature attributed to fan noise. The RAN design accomplished this by removing the stators that provided internal support to the nacelle. In its place, two external struts mounted to a two-axis positioning table located behind the tunnel wall provided the support. Nacelle-mounted lasers and a closed-loop control system provided the input to the table to maintain nacelle to fan concentricity as thermal and thrust loads displaced the strut-mounted fan. This unique design required extensive analysis and verification testing to ensure the safety of the fan model, propulsion simulator drive rig, and facility, along with experimental consistency of acoustic data obtained while using the RAN system. Initial testing was used to optimize the positioning system and resulted in concentricity errors of +/- 0.0031 in. in the horizontal direction and +0.0035/-0.0013 in, in the vertical direction. As a result of successful testing, the RAN system will be transitioned into other acoustic research programs at NASA Glenn Research Center.

  18. Study of LH2-fueled topping cycle engine for aircraft propulsion

    NASA Technical Reports Server (NTRS)

    Turney, G. E.; Fishbach, L. H.

    1983-01-01

    An analytical investigation was made of a topping cycle aircraft engine system which uses a cryogenic fuel. This system consists of a main turboshaft engine which is mechanically coupled (by cross-shafting) to a topping loop which augments the shaft power output of the system. The thermodynamic performance of the topping cycle engine was analyzed and compared with that of a reference (conventional-type) turboshaft engine. For the cycle operating conditions selected, the performance of the topping cycle engine in terms of brake specific fuel consumption (bsfc) was determined to be about 12 percent better than that of the reference turboshaft engine. Engine weights were estimated for both the topping cycle engine and the reference turboshaft engine. These estimates were based on a common shaft power output for each engine. Results indicate that the weight of the topping cycle engine is comparable to that of the reference turboshaft engine.

  19. On the Solution of the Three-Dimensional Flowfield About a Flow-Through Nacelle. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Compton, William Bernard

    1985-01-01

    The solution of the three dimensional flow field for a flow through nacelle was studied. Both inviscid and viscous inviscid interacting solutions were examined. Inviscid solutions were obtained with two different computational procedures for solving the three dimensional Euler equations. The first procedure employs an alternating direction implicit numerical algorithm, and required the development of a complete computational model for the nacelle problem. The second computational technique employs a fourth order Runge-Kutta numerical algorithm which was modified to fit the nacelle problem. Viscous effects on the flow field were evaluated with a viscous inviscid interacting computational model. This model was constructed by coupling the explicit Euler solution procedure with a flag entrainment boundary layer solution procedure in a global iteration scheme. The computational techniques were used to compute the flow field for a long duct turbofan engine nacelle at free stream Mach numbers of 0.80 and 0.94 and angles of attack of 0 and 4 deg.

  20. Development of analytical methods of predicting the pressure distribution about a nacelle at transonic speeds: Exact solution

    NASA Technical Reports Server (NTRS)

    Grossman, B.; Moretti, G.

    1973-01-01

    A computer program to predict the inviscid, transonic flow field about isolated nacelles was developed. The problem was to be formulated to solve Euler's equations without any approximation (such as small disturbances) and hence the terminology exact solution. The flow field was complicated by the presence of imbedded shock waves, an engine-inlet interface, and exhaust plumes. Furthermore, the transonic nacelles of interest had a very slender but blunt cowl lip. This created two distinct length scales, the length of the nacelle and the cowl lip radius that can differ by several orders of magnitude. These aspects of the flow field presented many numerical difficulties. The approach to the problem was to calculate the nacelle flow field using the method of time-dependent computations (TDC). Although at the time of the issuance of this contract, other approaches to transonic flow calculations existed, it was felt that TDC offered the most effective means of meeting the goals of the contract.

  1. 14 CFR 43.7 - Persons authorized to approve aircraft, airframes, aircraft engines, propellers, appliances, or...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... maintenance, preventive maintenance, rebuilding, or alteration. 43.7 Section 43.7 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT MAINTENANCE, PREVENTIVE MAINTENANCE..., propellers, appliances, or component parts for return to service after maintenance, preventive...

  2. 14 CFR 43.7 - Persons authorized to approve aircraft, airframes, aircraft engines, propellers, appliances, or...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... maintenance, preventive maintenance, rebuilding, or alteration. 43.7 Section 43.7 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT MAINTENANCE, PREVENTIVE MAINTENANCE..., propellers, appliances, or component parts for return to service after maintenance, preventive...

  3. 14 CFR 43.7 - Persons authorized to approve aircraft, airframes, aircraft engines, propellers, appliances, or...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... maintenance, preventive maintenance, rebuilding, or alteration. 43.7 Section 43.7 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT MAINTENANCE, PREVENTIVE MAINTENANCE..., propellers, appliances, or component parts for return to service after maintenance, preventive...

  4. 14 CFR 43.7 - Persons authorized to approve aircraft, airframes, aircraft engines, propellers, appliances, or...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... maintenance, preventive maintenance, rebuilding, or alteration. 43.7 Section 43.7 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT MAINTENANCE, PREVENTIVE MAINTENANCE..., propellers, appliances, or component parts for return to service after maintenance, preventive...

  5. An engine trade study for a supersonic STOVL fighter-attack aircraft, volume 1

    NASA Technical Reports Server (NTRS)

    Beard, B. B.; Foley, W. H.

    1982-01-01

    The best main engine for an advanced STOVL aircraft flight demonstrator was studied. The STOVL aircraft uses ejectors powered by engine bypass flow together with vectored core exhaust to achieve vertical thrust capability. Bypass flow and core flow are exhausted through separate nozzles during wingborne flight. Six near term turbofan engines were examined for suitability for this aircraft concept. Fan pressure ratio, thrust split between bypass and core flow, and total thrust level were used to compare engines. One of the six candidate engines was selected for the flight demonstrator configuration. Propulsion related to this aircraft concept was studied. A preliminary candidate for the aircraft reaction control system for hover attitude control was selected. A mathematical model of transfer of bypass thrust from ejectors to aft directed nozzle during the transition to wingborne flight was developed. An equation to predict ejector secondary air flow rate and ram drag is derived. Additional topics discussed include: nozzle area control, ejector to engine inlet reingestion, bypass/core thrust split variation, and gyroscopic behavior during hover.

  6. A simulator investigation of engine failure compensation for powered-lift STOL aircraft

    NASA Technical Reports Server (NTRS)

    Nieuwenhuijse, A. W.; Franklin, J. A.

    1974-01-01

    A piloted simulator investigation of various engine failure compensation concepts for powered-lift STOL aircraft was carried out at the Ames Research Center. The purpose of this investigation was to determine the influence of engine failure compensation on recovery from an engine failure during the landing approach and on the precision of the STOL landing. The various concepts include: (1) cockpit warning lights to cue the pilot of an engine failure, (2) programmed thrust and roll trim compensation, (3) thrust command and (4) flight-path stabilization. The aircraft simulated was a 150 passenger four-engine, externally blown flap civil STOL transport having a 90 psf wing loading and a .56 thrust to weight ratio. Results of the simulation indicate that the combination of thrust command and flight-path stabilization offered the best engine-out landing performance in turbulence and did so over the entire range of altitudes for which engine failures occurred.

  7. Evaluation of Methods for the Determination of Black Carbon Emissions from an Aircraft Gas Turbine Engine

    EPA Science Inventory

    The emissions from aircraft gas turbine engines consist of nanometer size black carbon (BC) particles plus gas-phase sulfur and organic compounds which undergo gas-to-particle conversion downstream of the engine as the plume cools and dilutes. In this study, four BC measurement ...

  8. Minimum time acceleration of aircraft turbofan engines by using an algorithm based on nonlinear programming

    NASA Technical Reports Server (NTRS)

    Teren, F.

    1977-01-01

    Minimum time accelerations of aircraft turbofan engines are presented. The calculation of these accelerations was made by using a piecewise linear engine model, and an algorithm based on nonlinear programming. Use of this model and algorithm allows such trajectories to be readily calculated on a digital computer with a minimal expenditure of computer time.

  9. The Effect of Modified Control Limits on the Performance of a Generic Commercial Aircraft Engine

    NASA Technical Reports Server (NTRS)

    Csank, Jeffrey T.; May, Ryan D.; Gou, Ten-Huei; Litt, Jonathan S.

    2012-01-01

    This paper studies the effect of modifying the control limits of an aircraft engine to obtain additional performance. In an emergency situation, the ability to operate an engine above its normal operating limits and thereby gain additional performance may aid in the recovery of a distressed aircraft. However, the modification of an engine s limits is complex due to the risk of an engine failure. This paper focuses on the tradeoff between enhanced performance and risk of either incurring a mechanical engine failure or compromising engine operability. The ultimate goal is to increase the engine performance, without a large increase in risk of an engine failure, in order to increase the probability of recovering the distressed aircraft. The control limit modifications proposed are to extend the rotor speeds, temperatures, and pressures to allow more thrust to be produced by the engine, or to increase the rotor accelerations and allow the engine to follow a fast transient. These modifications do result in increased performance; however this study indicates that these modifications also lead to an increased risk of engine failure.

  10. Commercial aircraft engine emissions characterization of in-use aircraft at Hartsfield-Jackson Atlanta International Airport.

    PubMed

    Herndon, Scott C; Jayne, John T; Lobo, Prem; Onasch, Timothy B; Fleming, Gregg; Hagen, Donald E; Whitefield, Philip D; Miake-Lye, Richard C

    2008-03-15

    The emissions from in-use commercial aircraft engines have been analyzed for selected gas-phase species and particulate characteristics using continuous extractive sampling 1-2 min downwind from operational taxi- and runways at Hartsfield-Jackson Atlanta International Airport. Using the aircraft tail numbers, 376 plumes were associated with specific engine models. In general, for takeoff plumes, the measured NOx emission index is lower (approximately 18%) than that predicted by engine certification data corrected for ambient conditions. These results are an in-service observation of the practice of "reduced thrust takeoff". The CO emission index observed in ground idle plumes was greater (up to 100%) than predicted by engine certification data for the 7% thrust condition. Significant differences are observed in the emissions of black carbon and particle number among different engine models/technologies. The presence of a mode at approximately 65 nm (mobility diameter) associated with takeoff plumes and a smaller mode at approximately 25 nm associated with idle plumes has been observed. An anticorrelation between particle mass loading and particle number concentration is observed.

  11. A Feasibility Study of Life-Extending Controls for Aircraft Turbine Engines Using a Generic Air Force Model (Preprint)

    DTIC Science & Technology

    2006-12-01

    engine model is a detailed, physics-based engine model of a two-spool, non-augmented, low bypass ratio engine developed using MATLAB/ Simulink ® [9]. The...AFRL-PR-WP-TP-2007-218 A FEASIBILITY STUDY OF LIFE- EXTENDING CONTROLS FOR AIRCRAFT TURBINE ENGINES USING A GENERIC AIR FORCE MODEL (PREPRINT...SUBTITLE A FEASIBILITY STUDY OF LIFE-EXTENDING CONTROLS FOR AIRCRAFT TURBINE ENGINES USING A GENERIC AIR FORCE MODEL (PREPRINT) 5c. PROGRAM ELEMENT

  12. Aircraft propeller induced structure-borne noise

    NASA Technical Reports Server (NTRS)

    Unruh, James F.

    1989-01-01

    A laboratory-based test apparatus employing components typical of aircraft construction was developed that would allow the study of structure-borne noise transmission due to propeller induced wake/vortex excitation of in-wake structural appendages. The test apparatus was employed to evaluate several aircraft installation effects (power plant placement, engine/nacelle mass loading, and wing/fuselage attachment methods) and several structural response modifications for structure-borne noise control (the use of wing blocking mass/fuel, wing damping treaments, and tuned mechanical dampers). Most important was the development of in-flight structure-borne noise transmission detection techniques using a combination of ground-based frequency response function testing and in-flight structural response measurement. Propeller wake/vortex excitation simulation techniques for improved ground-based testing were also developed to support the in-flight structure-borne noise transmission detection development.

  13. Lightweight aircraft engines, the potential and problems for use of automotive fuels

    NASA Technical Reports Server (NTRS)

    Patterson, D. J.

    1983-01-01

    A comprehensive data research and analysis for evaluating the use of automotive fuels as a substitute for aviation grade fuel by piston-type general aviation aircraft engines is presented. Historically known problems and potential problems with fuels were reviewed for possible impact relative to application to an aircraft operational environment. This report reviews areas such as: fuel specification requirements, combustion knock, preignition, vapor lock, spark plug fouling, additives for fuel and oil, and storage stability.

  14. Design study: A 186 kW lightweight diesel aircraft engine

    NASA Technical Reports Server (NTRS)

    Brouwers, A. P.

    1980-01-01

    The design of an aircraft engine capable of developing 186 kW shaft power at a 7620 m altitude is described. The 186 kW design takes into account expected new developments in aircraft designs resulting in a reassessment of the power requirements at the cruise mode operation. Based on the results of this analysis a three phase technology development program is projected resulting in production dates of 1985, 1992, and 2000.

  15. Effect of Propeller on Engine Cooling System Drag and Performance

    NASA Technical Reports Server (NTRS)

    Katz, Joseph; Corsiglia, Victor R.; Barlow, Philip R.

    1982-01-01

    The pressure recovery of incoming cooling air and the drag associated with engine cooling of a typical general aviation twin-engine aircraft was Investigated experimentally. The semispan model was mounted vertically in the 40 x 80-Foot Wind Tunnel at Ames Research Center. The propeller was driven by an electric motor to provide thrust with low vibration levels for the cold-now configuration. It was found that the propeller slip-stream reduces the frontal air spillage around the blunt nacelle shape. Consequently, this slip-stream effect promotes flow reattachment at the rear section of the engine nacelle and improves inlet pressure recovery. These effects are most pronounced at high angles of attack; that is, climb condition. For the cruise condition those improvements were more moderate.

  16. New Research on the Cowling and Cooling of Radial Engines

    NASA Technical Reports Server (NTRS)

    Molloy, Richard C.; Brewster, James H., III

    1943-01-01

    An extensive series of wind-tunnel tests on a half-scale conventional, nacelle model were made by the United Aircraft Corporation to determine and correlate the effects of many variables on cooling air flow and nacelle drag. The primary investigation was concerned with the reaction of these factors to varying conditions ahead of, across, and behind the engine. In the light of this investigation, common misconceptions and factors which are frequently overlooked in the cooling and cowling of radial engines are considered in some detail. Data are presented to support certain design recommendations and conclusions which should lead toward the improvement of present engine installations. Several charts are included to facilitate the estimation of cooling drag, available cooling pressure, and cowl exit area.

  17. A Study of Bird Ingestions Into Large High Bypass Ratio Turbine Aircraft Engines.

    DTIC Science & Technology

    1984-09-01

    4. SUMMARY 37 5. CONCLUSIONS 39 6. UEFERENCES 41 APPENDICES A - Comparison of HBPR Engine Aircraft B - HIVE Engines C - Statistical Procesures D...allow a reliable assessment of the bird ingestion phenomenon. Sufficient data to conduct a statistical analysis based upon the numbers, weights, and...species of birds. Sufficient data to conduct a statistical analysis of the engine damage resulting from a bird ingestion - considering the bird number

  18. The impact of emissions standards on the design of aircraft gas turbine engine combustors

    NASA Technical Reports Server (NTRS)

    Rudey, R. A.

    1976-01-01

    Effective emission control techniques have been identified and a wide spectrum of potential applications for these techniques to existing and advanced engines are being considered. Results from advanced combustor concept evaluations and from fundamental experiments are presented and discussed and comparisons are made with existing EPA emission standards and recommended levels for high altitude cruise. The impact that the advanced low emission concepts may impose on future aircraft engine combustor designs and related engine components is discussed.

  19. An Object-oriented Computer Code for Aircraft Engine Weight Estimation

    NASA Technical Reports Server (NTRS)

    Tong, Michael T.; Naylor, Bret A.

    2008-01-01

    Reliable engine-weight estimation at the conceptual design stage is critical to the development of new aircraft engines. It helps to identify the best engine concept amongst several candidates. At NASA Glenn (GRC), the Weight Analysis of Turbine Engines (WATE) computer code, originally developed by Boeing Aircraft, has been used to estimate the engine weight of various conceptual engine designs. The code, written in FORTRAN, was originally developed for NASA in 1979. Since then, substantial improvements have been made to the code to improve the weight calculations for most of the engine components. Most recently, to improve the maintainability and extensibility of WATE, the FORTRAN code has been converted into an object-oriented version. The conversion was done within the NASA s NPSS (Numerical Propulsion System Simulation) framework. This enables WATE to interact seamlessly with the thermodynamic cycle model which provides component flow data such as airflows, temperatures, and pressures, etc. that are required for sizing the components and weight calculations. The tighter integration between the NPSS and WATE would greatly enhance system-level analysis and optimization capabilities. It also would facilitate the enhancement of the WATE code for next-generation aircraft and space propulsion systems. In this paper, the architecture of the object-oriented WATE code (or WATE++) is described. Both the FORTRAN and object-oriented versions of the code are employed to compute the dimensions and weight of a 300- passenger aircraft engine (GE90 class). Both versions of the code produce essentially identical results as should be the case. Keywords: NASA, aircraft engine, weight, object-oriented

  20. Quiet Clean Short-haul Experimental Engine (QCSEE) preliminary under the wing flight propulsion system analysis report

    NASA Technical Reports Server (NTRS)

    Howard, D. F.

    1976-01-01

    The preliminary design and installation of high bypass, geared turbofan engine with a composite nacelle forming the propulsion system for a short haul passenger aircraft are described. The technology required for externally blown flap aircraft with under the wing (UTW) propulsion system installations for introduction into passenger service in the mid 1980's is included. The design, fabrication, and testing of this UTW experimental engine containing the required technology items for low noise, fuel economy, with composite structure for reduced weight and digital engine control are provided.

  1. Engine/airframe compatibility studies for supersonic cruise aircraft

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Technology assessment studies were conducted to provide an updated technology base from which an advanced supersonic cruise aircraft can be produced with a high probability of success. An assessment of the gains available through the application of advanced technologies in aerodynamics, propulsion, acoustics, structures, materials, and active controls is developed. The potential market and range requirements as well as economic factors including payload, speed, airline operating costs, and airline profitability are analyzed. The conceptual design of the baseline aircraft to be used in assessing the technology requirements is described.

  2. The STOL performance of a two-engine, USB powered-lift aircraft with cross-shafted fans

    NASA Technical Reports Server (NTRS)

    Stevens, V. C.; Wilson, S. B., III; Zola, C. A.

    1985-01-01

    The short takeoff and landing capabilities that characterize the performance of powered-lift aircraft are dependent on engine thrust and are, therefore, severely affected by loss of an engine. This paper shows that the effects of engine loss on the short takeoff and landing performance of powered-lift aircraft can be effectively mitigated by cross-shafting the engine fans in a twin-engine configuration. Engine-out takeoff and landing performances are compared for three powered-lift aircraft configurations: one with four engines, one with two engines, and one with two engines in which the fans are cross-shafted. The results show that the engine-out takeoff and landing performance of the cross-shafted two-engine configuration is significantly better than that of the two-engine configuration without cross-shafting.

  3. A Sensitivity Study of Commercial Aircraft Engine Response for Emergency Situations

    NASA Technical Reports Server (NTRS)

    Csank, Jeffrey T.; May, Ryan D.; Litt, Jonathan S.; Guo, Ten-Huei

    2011-01-01

    This paper contains the details of a sensitivity study in which the variation in a commercial aircraft engine's outputs is observed for perturbations in its operating condition inputs or control parameters. This study seeks to determine the extent to which various controller limits can be modified to improve engine performance, while capturing the increased risk that results from the changes. In an emergency, the engine may be required to produce additional thrust, respond faster, or both, to improve the survivability of the aircraft. The objective of this paper is to propose changes to the engine controller and determine the costs and benefits of the additional capabilities produced by the engine. This study indicates that the aircraft engine is capable of producing additional thrust, but at the cost of an increased risk of an engine failure due to higher turbine temperatures and rotor speeds. The engine can also respond more quickly to transient commands, but this action reduces the remaining stall margin to possibly dangerous levels. To improve transient response in landing scenarios, a control mode known as High Speed Idle is proposed that increases the responsiveness of the engine and conserves stall margin

  4. A Study on Aircraft Engine Control Systems for Integrated Flight and Propulsion Control

    NASA Astrophysics Data System (ADS)

    Yamane, Hideaki; Matsunaga, Yasushi; Kusakawa, Takeshi

    A flyable FADEC system engineering model incorporating Integrated Flight and Propulsion Control (IFPC) concept is developed for a highly maneuverable aircraft and a fighter-class engine. An overview of the FADEC system and functional assignments for its components such as the Engine Control Unit (ECU) and the Integrated Control Unit (ICU) are described. Overall system reliability analysis, convex analysis and multivariable controller design for the engine, fault detection/redundancy management, and response characteristics of a fuel system are addressed. The engine control performance of the FADEC is demonstrated by hardware-in-the-loop simulation for fast acceleration and thrust transient characteristics.

  5. Integration of On-Line and Off-Line Diagnostic Algorithms for Aircraft Engine Health Management

    NASA Technical Reports Server (NTRS)

    Kobayashi, Takahisa; Simon, Donald L.

    2007-01-01

    This paper investigates the integration of on-line and off-line diagnostic algorithms for aircraft gas turbine engines. The on-line diagnostic algorithm is designed for in-flight fault detection. It continuously monitors engine outputs for anomalous signatures induced by faults. The off-line diagnostic algorithm is designed to track engine health degradation over the lifetime of an engine. It estimates engine health degradation periodically over the course of the engine s life. The estimate generated by the off-line algorithm is used to update the on-line algorithm. Through this integration, the on-line algorithm becomes aware of engine health degradation, and its effectiveness to detect faults can be maintained while the engine continues to degrade. The benefit of this integration is investigated in a simulation environment using a nonlinear engine model.

  6. Polymer, metal, and ceramic matrix composites for advanced aircraft engine applications

    SciTech Connect

    Mc Daniels, D.L.; Serafini, T.T.; Di Carlo, J.A.

    1986-06-01

    Advanced aircraft engine research within NASA Lewis focuses on propulsion systems for subsonic, supersonic, and hypersonic aircraft. Each of these flight regimes requires different types of engines, but all require advanced materials to meet their goals of performance, thrust-to-weight ratio, and fuel efficiency. The high strength/weight and stiffness/weight properties of resin, metal, and ceramic matrix composites will play an increasingly key role in meeting these performance requirements. At NASA Lewis, research is ongoing to apply graphite/polyimide composites to engine components and to develop polymer matrices with higher operating temperature capabilities. Metal matrix composites, using magnesium, aluminum, titanium, and superalloy matrices, are being developed for application to static and rotating engine components, as well as for space applications, over a broad temperature range. Ceramic matrix composites are also being examined to increase the toughness and reliability of ceramics for application to high-temperature engine structures and components.

  7. Computerized systems analysis and optimization of aircraft engine performance, weight, and life cycle costs

    NASA Technical Reports Server (NTRS)

    Fishbach, L. H.

    1980-01-01

    The computational techniques are described which are utilized at Lewis Research Center to determine the optimum propulsion systems for future aircraft applications and to identify system tradeoffs and technology requirements. Cycle performance, and engine weight can be calculated along with costs and installation effects as opposed to fuel consumption alone. Almost any conceivable turbine engine cycle can be studied. These computer codes are: NNEP, WATE, LIFCYC, INSTAL, and POD DRG. Examples are given to illustrate how these computer techniques can be applied to analyze and optimize propulsion system fuel consumption, weight and cost for representative types of aircraft and missions.

  8. Jet engine exhaust emissions of high altitude commercial aircraft projected to 1990

    NASA Technical Reports Server (NTRS)

    Grobman, J.; Ingebo, R. D.

    1974-01-01

    Projected minimum levels of engine exhaust emissions that may be practicably achievable for future commercial aircraft operating at high-altitude cruise conditions are presented. The forecasts are based on:(1) current knowledge of emission characteristics of combustors and augmentors; (2) the status of combustion research in emission reduction technology; and (3) predictable trends in combustion systems and operating conditions as required for projected engine designs that are candidates for advanced subsonic or supersonic commercial aircraft fueled by either JP fuel, liquefied natural gas, or hydrogen. Results are presented for cruise conditions in terms of both an emission index (g constituent/kg fuel) and an emission rate (g constituent/hr).

  9. Sonic IR crack detection of aircraft turbine engine blades with multi-frequency ultrasound excitations

    SciTech Connect

    Zhang, Ding; Han, Xiaoyan; Newaz, Golam

    2014-02-18

    Effectively and accurately detecting cracks or defects in critical engine components, such as turbine engine blades, is very important for aircraft safety. Sonic Infrared (IR) Imaging is such a technology with great potential for these applications. This technology combines ultrasound excitation and IR imaging to identify cracks and flaws in targets. In general, failure of engine components, such as blades, begins with tiny cracks. Since the attenuation of the ultrasound wave propagation in turbine engine blades is small, the efficiency of crack detection in turbine engine blades can be quite high. The authors at Wayne State University have been developing the technology as a reliable tool for the future field use in aircraft engines and engine parts. One part of the development is to use finite element modeling to assist our understanding of effects of different parameters on crack heating while experimentally hard to achieve. The development has been focused with single frequency ultrasound excitation and some results have been presented in a previous conference. We are currently working on multi-frequency excitation models. The study will provide results and insights of the efficiency of different frequency excitation sources to foster the development of the technology for crack detection in aircraft engine components.

  10. Advanced stratified charge rotary aircraft engine design study

    NASA Technical Reports Server (NTRS)

    Badgley, P.; Berkowitz, M.; Jones, C.; Myers, D.; Norwood, E.; Pratt, W. B.; Ellis, D. R.; Huggins, G.; Mueller, A.; Hembrey, J. H.

    1982-01-01

    A technology base of new developments which offered potential benefits to a general aviation engine was compiled and ranked. Using design approaches selected from the ranked list, conceptual design studies were performed of an advanced and a highly advanced engine sized to provide 186/250 shaft Kw/HP under cruise conditions at 7620/25,000 m/ft altitude. These are turbocharged, direct-injected stratified charge engines intended for commercial introduction in the early 1990's. The engine descriptive data includes tables, curves, and drawings depicting configuration, performance, weights and sizes, heat rejection, ignition and fuel injection system descriptions, maintenance requirements, and scaling data for varying power. An engine-airframe integration study of the resulting engines in advanced airframes was performed on a comparative basis with current production type engines. The results show airplane performance, costs, noise & installation factors. The rotary-engined airplanes display substantial improvements over the baseline, including 30 to 35% lower fuel usage.

  11. The horsepower of aircraft engines and their maximum frontal area

    NASA Technical Reports Server (NTRS)

    Precoul, Michel

    1936-01-01

    This adaptation of a Russian report reveals the effect of maximum cross section of an engine as well as the interest attaching to a choice not solely based on horsepower. The tabulation gives a comparison between different engines restored at 5,000 meters. Radial versus inverted in-line engines are also compared.

  12. Air Force F-16 Aircraft Engine Aerosol Emissions Under Cruise Altitude Conditions

    NASA Technical Reports Server (NTRS)

    Anderson, Bruce E.; Cofer, W. Randy, III; McDougal, David S.

    1999-01-01

    Selected results from the June 1997 Third Subsonic Assessment Near-Field Interactions Flight (SNIF-III) Experiment are documented. The primary objectives of the SNIF-III experiment were to determine the partitioning and abundance of sulfur species and to examine the formation and growth of aerosol particles in the exhaust of F-16 aircraft as a function of atmospheric and aircraft operating conditions and fuel sulfur concentration. This information is, in turn, being used to address questions regarding the fate of aircraft fuel sulfur impurities and to evaluate the potential of their oxidation products to perturb aerosol concentrations and surface areas in the upper troposphere. SNIF-III included participation of the Vermont and New Jersey Air National Guard F-16's as source aircraft and the Wallops Flight Facility T-39 Sabreliner as the sampling platform. F-16's were chosen as a source aircraft because they are powered by the modern F-100 Series 220 engine which is projected to be representative of future commercial aircraft engine technology. The T-39 instrument suite included sensors for measuring volatile and non-volatile condensation nuclei (CN), aerosol size distributions over the range from 0.1 to 3.0 (micro)m, 3-D winds, temperature, dewpoint, carbon dioxide (CO2), sulfur dioxide (SO2), sulfuric acid (H2SO4), and nitric acid (HNO3).

  13. Roles, uses, and benefits of general aviation aircraft in aerospace engineering education

    NASA Technical Reports Server (NTRS)

    Odonoghue, Dennis P.; Mcknight, Robert C.

    1994-01-01

    Many colleges and universities throughout the United States offer outstanding programs in aerospace engineering. In addition to the fundamentals of aerodynamics, propulsion, flight dynamics, and air vehicle design, many of the best programs have in the past provided students the opportunity to design and fly airborne experiments on board various types of aircraft. Sadly, however, the number of institutions offering such 'airborne laboratories' has dwindled in recent years. As a result, opportunities for students to apply their classroom knowledge, analytical skills, and engineering judgement to the development and management of flight experiments on an actual aircraft are indeed rare. One major reason for the elimination of flight programs by some institutions, particularly the smaller colleges, is the prohibitive cost of operating and maintaining an aircraft as a flying laboratory. The purpose of this paper is to discuss simple, low-cost, relevant flight experiments that can be performed using readily available general aviation aircraft. This paper examines flight experiments that have been successfully conducted on board the NASA Lewis Research Center's T-34B aircraft, as part of the NASA/AIAA/University Flight Experiment Program for Students (NAUFEPS) and discusses how similar experiments could be inexpensively performed on other general aviation aircraft.

  14. Aircraft Design Considerations to Meet One Engine Inoperative (OEI) Safety Requirements

    NASA Technical Reports Server (NTRS)

    Scott, Mark W.

    2012-01-01

    Commercial airlines are obligated to operate such that an aircraft can suffer an engine failure at any point in its mission and terminate the flight without an accident. Only minimal aircraft damage is allowable, such as brake replacement due to very heavy application, or an engine inspection and/or possible removal due to use of an emergency rating. Such performance criteria are often referred to as zero exposure, referring to zero accident exposure to an engine failure. The critical mission segment for meeting one engine inoperative (OEI) criteria is takeoff. For a given weight, wind, and ambient condition, fixed wing aircraft require a balanced field length. This is the longer of the distance to take off if an engine fails at a predetermined critical point in the takeoff profile, or the distance to reject the takeoff and brake to a stop. Rotorcraft have requirements for horizontal takeoff procedures that are equivalent to a balanced field length requirements for fixed wing aircraft. Rotorcraft also perform vertical procedures where no runway or heliport distance is available. These were developed primarily for elevated heliports as found on oil rigs or rooftops. They are also used for ground level operations as might be found at heliports at the end of piers or other confined areas.

  15. Description and Laboratory Tests of a Roots Type Aircraft Engine Supercharger

    NASA Technical Reports Server (NTRS)

    Ware, Marsden

    1926-01-01

    This report describes a roots type aircraft engine supercharger and presents the results of some tests made with it at the Langley Field Laboratories of the National Advisory Committee for Aeronautics. The supercharger used in these tests was constructed largely of aluminum, weighed 88 pounds and was arranged to be operated from the rear of a standard aircraft engine at a speed of 1 1/2 engine crankshaft speed. The rotors of the supercharger were cycloidal in form and were 11 inches long and 9 1/2 inches in diameter. The displacement of the supercharger was 0.51 cubic feet of air per revolution of the rotors. The supercharger was tested in the laboratory, independently and in combination with a Liberty-12 aircraft engine, under simulated altitude pressure conditions in order to obtain information on its operation and performance. From these tests it seems evident that the Roots blower compares favorably with other compressor types used as aircraft engine superchargers and that it has several features that make it particularly attractive for such use.

  16. A plume capture technique for the remote characterization of aircraft engine emissions.

    PubMed

    Johnson, G R; Mazaheri, M; Ristovski, Z D; Morawska, L

    2008-07-01

    A technique for capturing and analyzing plumes from unmodified aircraft or other combustion sources under real world conditions is described and applied to the task of characterizing plumes from commercial aircraft during the taxiing phase of the Landing/Take-Off (LTO) cycle. The method utilizes a Plume Capture and Analysis System (PCAS) mounted in a four-wheel drive vehicle which is positioned in the airfield 60 to 180 m downwind of aircraft operations. The approach offers low test turnaround times with the ability to complete careful measurements of particle and gaseous emission factors and sequentially scanned particle size distributions without distortion due to plume concentration fluctuations. These measurements can be performed for individual aircraft movements at five minute intervals. A Plume Capture Device (PCD) collected samples of the naturally diluted plume in a 200 L conductive membrane conforming to a defined shape. Samples from over 60 aircraft movements were collected and analyzed in situ for particulate and gaseous concentrations and for particle size distribution using a Scanning Particle Mobility Sizer (SMPS). Emission factors are derived for particle number, NO(x), and PM2.5 for a widely used commercial aircraft type, Boeing 737 airframes with predominantly CFM56 class engines, during taxiing. The practical advantages of the PCAS include the capacity to perform well targeted and controlled emission factor and size distribution measurements using instrumentation with varying response times within an airport facility, in close proximity to aircraft during their normal operations.

  17. Altitude and airspeed effects on the optimum synchrophase angles for a four-engine propeller aircraft

    NASA Astrophysics Data System (ADS)

    Blunt, David M.

    2014-08-01

    Noise and vibration is a serious problem in all types of aircraft. Any techniques that lower cabin noise and vibration levels by even a few decibels with little or no weight or performance penalties are worth pursuing. Propeller synchrophasing is one such technique that has shown potential in aircraft with two or more propellers; however this technique is not being used to its full potential because the synchrophase angles are typically fixed. This paper provides a detailed examination of how the optimum synchrophase angles in a typical four-engine propeller aircraft vary with different altitudes and airspeeds, and how this information could lead to the design of new adaptive propeller synchrophasing systems and potentially yield improvements to other active noise control measures in propeller aircraft.

  18. USAF Aircraft Engine Emission Goals: A Critical Review.

    DTIC Science & Technology

    1979-09-01

    dif- ficult to obtain. Combustion product gases at the exhaust plane are extremely reactive and at high temperature; consequently, much of the CO and...19. KEY WORDS (Continue on reverse side if necessary and identify by block number) J Pollution Abatement Exhaust Emissions Combustion Aircraft...The USAF must continue basic research in areas of combustion , smoke formation, etc. it - -W: (7) Variability of emissions is an area where more

  19. Preliminary Fatigue Studies on Aluminum Alloy Aircraft Engines

    NASA Technical Reports Server (NTRS)

    1938-01-01

    Preliminary information on the complex subject of the fatigue strength of fabricated structural members for aircraft is presented in the test results obtained on several different types of airship girders subjected to axial tension and compression in a resonance fatigue machine. A description of this machine as well as numerous photographs of the fatigue failures are given. There is also presented an extended bibliography on the subject of fatigue strength.

  20. Emergency Multiengine Aircraft System for Lateral Control Using Differential Thrust Control of Wing Engines

    NASA Technical Reports Server (NTRS)

    Burken, John J. (Inventor); Burcham, Frank W., Jr. (Inventor); Bull, John (Inventor)

    2000-01-01

    Development of an emergency flight control system is disclosed for lateral control using only differential engine thrust modulation of multiengine aircraft is currently underway. The multiengine has at least two engines laterally displaced to the left and right from the axis of the aircraft. In response to a heading angle command psi(sub c) is to be tracked. By continually sensing the heading angle psi of the aircraft and computing a heading error signal psi(sub e) as a function of the difference between the heading angle command psi(sub c) and the sensed heading angle psi, a track control signal is developed with compensation as a function of sensed bank angle phi. Bank angle rate phi, or roll rate p, yaw rate tau, and true velocity produce an aircraft thrust control signal ATC(sub psi(L,R)). The thrust control signal is differentially applied to the left and right engines, with equal amplitude and opposite sign, such that a negative sign is applied to the control signal on the side of the aircraft. A turn is required to reduce the error signal until the heading feedback reduces the error to zero.

  1. Design and test of aircraft engine isolators for reduced interior noise

    NASA Technical Reports Server (NTRS)

    Unruh, J. F.; Scheidt, D. C.

    1982-01-01

    Improved engine vibration isolation was proposed to be the most weight and cost efficient retrofit structure-borne noise control measure for single engine general aviation aircraft. A study was carried out the objectives: (1) to develop an engine isolator design specification for reduced interior noise transmission, (2) select/design candidate isolators to meet a 15 dB noise reduction design goal, and (3) carry out a proof of concept evaluation test. Analytical model of the engine, vibration isolators and engine mount structure were coupled to an empirical model of the fuselage for noise transmission evaluation. The model was used to develop engine isolator dynamic properties design specification for reduced noise transmission. Candidate isolators ere chosen from available product literature and retrofit to a test aircraft. A laboratory based test procedure was then developed to simulate engine induced noise transmission in the aircraft for a proof of concept evaluation test. Three candidate isolator configurations were evaluated for reduced structure-borne noise transmission relative to the original equipment isolators.

  2. The Effect of Faster Engine Response on the Lateral Directional Control of a Damaged Aircraft

    NASA Technical Reports Server (NTRS)

    May, Ryan D.; Lemon, Kimberly A.; Csank, Jeffrey T.; Litt, Jonathan S.; Guo, Ten-Huei

    2012-01-01

    The integration of flight control and propulsion control has been a much discussed topic, especially for emergencies where the engines may be able to help stabilize and safely land a damaged aircraft. Previous research has shown that for the engines to be effective as flight control actuators, the response time to throttle commands must be improved. Other work has developed control modes that accept a higher risk of engine failure in exchange for improved engine response during an emergency. In this effort, a nonlinear engine model (the Commercial Modular Aero-Propulsion System Simulation 40k) has been integrated with a nonlinear airframe model (the Generic Transport Model) in order to evaluate the use of enhanced-response engines as alternative yaw rate control effectors. Tests of disturbance rejection and command tracking were used to determine the impact of the engines on the aircraft's dynamical behavior. Three engine control enhancements that improve the response time of the engine were implemented and tested in the integrated simulation. The enhancements were shown to increase the engine s effectiveness as a yaw rate control effector when used in an automatic feedback loop. The improvement is highly dependent upon flight condition; the airframe behavior is markedly improved at low altitude, low speed conditions, and relatively unchanged at high altitude, high speed.

  3. A method to estimate weight and dimensions of small aircraft propulsion gas turbine engines: User's guide

    NASA Technical Reports Server (NTRS)

    Hale, P. L.

    1982-01-01

    The weight and major envelope dimensions of small aircraft propulsion gas turbine engines are estimated. The computerized method, called WATE-S (Weight Analysis of Turbine Engines-Small) is a derivative of the WATE-2 computer code. WATE-S determines the weight of each major component in the engine including compressors, burners, turbines, heat exchangers, nozzles, propellers, and accessories. A preliminary design approach is used where the stress levels, maximum pressures and temperatures, material properties, geometry, stage loading, hub/tip radius ratio, and mechanical overspeed are used to determine the component weights and dimensions. The accuracy of the method is generally better than + or - 10 percent as verified by analysis of four small aircraft propulsion gas turbine engines.

  4. Impacts of broadened-specification fuels on aircraft turbine engine combustors

    SciTech Connect

    Bahr, D.W.

    1982-11-01

    In the future, aircraft turbine engines may be required to accommodate fuels with lower hydrogen contents, fluidity/volatility characteristics, and thermal stability ratings than those of present-day jet fuels. The key results of several investigations conducted to quantify the impacts of such fuel property changes on the performance, pollutant emission, and durability characteristics of aircraft turbine engine combustors are reviewed. These results were obtained in both component and engine tests of the current production combustors used in the CF6-6, CF6-50, F101/CFM56, and J79/CJ805 engines. Based on these results, it is concluded that the most significant concerns associated with such fuel property changes are decreased combustor life, decreased ground starting/altitude relight capabilities, and increased fuel injector gumming/coking tendencies. The combustor design improvements that appear to be needed to permit the use of jet fuels of significantly lower quality than present day fuels are also reviewed.

  5. Effect of NACA Injection Impeller on Mixture Distribution of Double-Row Radial Aircraft Engine

    NASA Technical Reports Server (NTRS)

    Marble, Frank E; Ritter, William K; Miller, Mahlon A

    1945-01-01

    The NACA injection impeller was developed to improve the mixture distribution of aircraft engines by discharging the fuel from a centrifugal supercharger impeller and thus to promote a thorough mixing of fuel and charge air. Experiments with a double-row radial aircraft engine indicated that for the normal range of engine power the NACA injection impeller provided marked improvement in mixture distribution over the standard spray-bar injection system used in the same engine. The mixture distribution at cruising conditions was excellent; at 1200, 1500, and 1700 brake horsepower, the differences between the fuel-air ratios of the richest and the leanest cylinders were reduced to approximately one-third their former values.

  6. Performance degradation of a typical twin engine commuter type aircraft in measured natural icing conditions

    NASA Technical Reports Server (NTRS)

    Ranaudo, R. J.; Mikkelsen, K. L.; Mcknight, R. C.; Perkins, P. J., Jr.

    1984-01-01

    The performance of an aircraft in various measured icing conditions was investigated. Icing parameters such as liquid water content, temperature, cloud droplet sizes and distributions were measured continuously while in icinig. Flight data wre reduced to provide plots of the aircraft drag polars and lift curves (CL vs. alpha) for the measured 'iced' condition as referenced to the uniced aircraft. These data were also reduced to provide plots of thrust horsepower required vs. single engine power available to show how icing affects engine out capability. It is found that performance degradation is primarily influenced by the amount and shape of the accumulated ice. Glaze icing caused the greatest aerodynamic performance penalties in terms of increased drag and reduction in lift while aerodynamic penalties due to rime icing were significantly lower. Previously announced in STAR as N84-13173

  7. Performance degradation of a typical twin engine commuter type aircraft in measured natural icing conditions

    NASA Technical Reports Server (NTRS)

    Ranaudo, R. J.; Mikkelsen, K. L.; Mcknight, R. C.; Perkins, P. J., Jr.

    1984-01-01

    The performance of an aircraft in various measured icing conditions was investigated. Icing parameters such as liquid water content, temperature, cloud droplet sizes and distributions were measured continuously while in icing. Flight data were reduced to provide plots of the aircraft drag polars and lift curves (CL vs. alpha) for the measured ""iced'' condition as referenced to the uniced aircraft. These data were also reduced to provide plots of thrust horsepower required vs. single engine power available to show how icing affects engine out capability. It is found that performance degradation is primarily influenced by the amount and shape of the accumulated ice. Glaze icing caused the greatest aerodynamic performance penalties in terms of increased drag and reduction in lift while aerodynamic penalties due to rime icing were significantly lower.

  8. Status review of NASA programs for reducing aircraft gas turbine engine emissions

    NASA Technical Reports Server (NTRS)

    Rudey, R. A.

    1976-01-01

    Programs initiated by NASA to develop and demonstrate low emission advanced technology combustors for reducing aircraft gas turbine engine pollution are reviewed. Program goals are consistent with urban emission level requirements as specified by the U. S. Environmental Protection Agency and with upper atmosphere cruise emission levels as recommended by the U. S. Climatic Impact Assessment Program and National Research Council. Preliminary tests of advanced technology combustors indicate that significant reductions in all major pollutant emissions should be attainable in present generation aircraft gas turbine engines without adverse effects on fuel consumption. Preliminary test results from fundamental studies indicate that extremely low emission combustion systems may be possible for future generation jet aircraft. The emission reduction techniques currently being evaluated in these programs are described along with the results and a qualitative assessment of development difficulty.

  9. Study of aerodynamic technology for single-cruise-engine V/STOL fighter/attack aircraft

    NASA Technical Reports Server (NTRS)

    Hess, J. R.; Bear, R. L.

    1982-01-01

    A viable, single engine, supersonic V/STOL fighter/attack aircraft concept was defined. This vectored thrust, canard wing configuration utilizes an advanced technology separated flow engine with fan stream burning. The aerodynamic characteristics of this configuration were estimated and performance evaluated. Significant aerodynamic and aerodynamic propulsion interaction uncertainties requiring additional investigation were identified. A wind tunnel model concept and test program to resolve these uncertainties and validate the aerodynamic prediction methods were defined.

  10. An Object-Oriented Computer Code for Aircraft Engine Weight Estimation

    NASA Technical Reports Server (NTRS)

    Tong, Michael T.; Naylor, Bret A.

    2009-01-01

    Reliable engine-weight estimation at the conceptual design stage is critical to the development of new aircraft engines. It helps to identify the best engine concept amongst several candidates. At NASA Glenn Research Center (GRC), the Weight Analysis of Turbine Engines (WATE) computer code, originally developed by Boeing Aircraft, has been used to estimate the engine weight of various conceptual engine designs. The code, written in FORTRAN, was originally developed for NASA in 1979. Since then, substantial improvements have been made to the code to improve the weight calculations for most of the engine components. Most recently, to improve the maintainability and extensibility of WATE, the FORTRAN code has been converted into an object-oriented version. The conversion was done within the NASA's NPSS (Numerical Propulsion System Simulation) framework. This enables WATE to interact seamlessly with the thermodynamic cycle model which provides component flow data such as airflows, temperatures, and pressures, etc., that are required for sizing the components and weight calculations. The tighter integration between the NPSS and WATE would greatly enhance system-level analysis and optimization capabilities. It also would facilitate the enhancement of the WATE code for next-generation aircraft and space propulsion systems. In this paper, the architecture of the object-oriented WATE code (or WATE++) is described. Both the FORTRAN and object-oriented versions of the code are employed to compute the dimensions and weight of a 300-passenger aircraft engine (GE90 class). Both versions of the code produce essentially identical results as should be the case.

  11. Avco Lycoming/NASA contract status. [on reduction of emissions from aircraft piston engines

    NASA Technical Reports Server (NTRS)

    Duke, L. C.

    1976-01-01

    The standards promulgated by the Environmental Protection Agency (EPA) for carbon monoxide (CO), unburned hydrocarbon (HC), and oxides-of-nitrogen (NOx) emissions were the basis in a study of ways to reduce emissions from aircraft piston engines. A variable valve timing system, ultrasonic fuel atomization, and ignition system changes were postulated.

  12. 77 FR 76842 - Exhaust Emissions Standards for New Aircraft Gas Turbine Engines and Identification Plate for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-31

    ... action revises the standards for oxides of nitrogen and test procedures for exhaust emissions based on... Environmental Protection Agency (EPA) proposed new aircraft engine emission standards for oxides of nitrogen (NO... Protection (CAEP) of ICAO uses to differentiate the CAEP work cycles that produce new standards. For...

  13. Weibull-Based Design Methodology for Rotating Aircraft Engine Structures

    NASA Technical Reports Server (NTRS)

    Zaretsky, Erwin; Hendricks, Robert C.; Soditus, Sherry

    2002-01-01

    The NASA Energy Efficient Engine (E(sup 3)-Engine) is used as the basis of a Weibull-based life and reliability analysis. Each component's life and thus the engine's life is defined by high-cycle fatigue (HCF) or low-cycle fatigue (LCF). Knowing the cumulative life distribution of each of the components making up the engine as represented by a Weibull slope is a prerequisite to predicting the life and reliability of the entire engine. As the engine Weibull slope increases, the predicted lives decrease. The predicted engine lives L(sub 5) (95 % probability of survival) of approximately 17,000 and 32,000 hr do correlate with current engine maintenance practices without and with refurbishment. respectively. The individual high pressure turbine (HPT) blade lives necessary to obtain a blade system life L(sub 0.1) (99.9 % probability of survival) of 9000 hr for Weibull slopes of 3, 6 and 9, are 47,391 and 20,652 and 15,658 hr, respectively. For a design life of the HPT disks having probable points of failure equal to or greater than 36,000 hr at a probability of survival of 99.9 %, the predicted disk system life L(sub 0.1) can vary from 9,408 to 24,911 hr.

  14. Pollution reduction technology program small jet aircraft engines, phase 3

    NASA Technical Reports Server (NTRS)

    Bruce, T. W.; Davis, F. G.; Kuhn, T. E.; Mongia, H. C.

    1981-01-01

    A series of Model TFE731-2 engine tests were conducted with the Concept 2 variable geometry airblast fuel injector combustion system installed. The engine was tested to: (1) establish the emission levels over the selected points which comprise the Environmental Protection Agency Landing-Takeoff Cycle; (2) determine engine performance with the combustion system; and (3) evaulate the engine acceleration/deceleration characteristics. The hydrocarbon (HC), carbon monoxide (CO), and smoke goals were met. Oxides of nitrogen (NOx) were above the goal for the same configuration that met the other pollutant goals. The engine and combustor performance, as well as acceleration/deceleration characteristics, were acceptable. The Concept 3 staged combustor system was refined from earlier phase development and subjected to further rig refinement testing. The concept met all of the emissions goals.

  15. Aircraft Engine Sensor/Actuator/Component Fault Diagnosis Using a Bank of Kalman Filters

    NASA Technical Reports Server (NTRS)

    Kobayashi, Takahisa; Simon, Donald L. (Technical Monitor)

    2003-01-01

    In this report, a fault detection and isolation (FDI) system which utilizes a bank of Kalman filters is developed for aircraft engine sensor and actuator FDI in conjunction with the detection of component faults. This FDI approach uses multiple Kalman filters, each of which is designed based on a specific hypothesis for detecting a specific sensor or actuator fault. In the event that a fault does occur, all filters except the one using the correct hypothesis will produce large estimation errors, from which a specific fault is isolated. In the meantime, a set of parameters that indicate engine component performance is estimated for the detection of abrupt degradation. The performance of the FDI system is evaluated against a nonlinear engine simulation for various engine faults at cruise operating conditions. In order to mimic the real engine environment, the nonlinear simulation is executed not only at the nominal, or healthy, condition but also at aged conditions. When the FDI system designed at the healthy condition is applied to an aged engine, the effectiveness of the FDI system is impacted by the mismatch in the engine health condition. Depending on its severity, this mismatch can cause the FDI system to generate incorrect diagnostic results, such as false alarms and missed detections. To partially recover the nominal performance, two approaches, which incorporate information regarding the engine s aging condition in the FDI system, will be discussed and evaluated. The results indicate that the proposed FDI system is promising for reliable diagnostics of aircraft engines.

  16. 75 FR 7947 - Airworthiness Directives; Thielert Aircraft Engines GmbH (TAE) Model TAE 125-01 Reciprocating...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-23

    ... Engines GmbH (TAE) Model TAE 125-01 Reciprocating Engines AGENCY: Federal Aviation Administration (FAA.... The MCAI describes the unsafe condition as: An in-flight engine shutdown incident was reported on an aircraft equipped with a TAE 125-01 engine. This was found to be mainly the result of a blockage of...

  17. Aircraft

    DTIC Science & Technology

    2003-01-01

    national power. But with the recent events such as the war with Iraq, the Severe Acute Respiratory Syndrome (SARS) outbreak, some major carriers... TITLE AND SUBTITLE 2003 Industry Studies: Aircraft 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER

  18. Gaseous Emissions from Aircraft Engines. A Handbook for the Calculation of Emission Indexes and Gaseous Emissions from Aircraft Engines

    DTIC Science & Technology

    1987-09-01

    corresponded to intervals of stable engine operation, as specified by the operators of the engine. Each laboratory reported emission indexes for the read ...period. The test established 50 read periods for gaseous emissions. Tabl, 5-1 gives the emission indexes at idle, high idle, approach, cruise and...emission indexes from a T58-GE-8F engine Test Cell - 12 Location - Naval Air Rework Facility, North Island IDLE Date Time Reading Prior Emission index

  19. Chemical composition and photochemical reactivity of exhaust from aircraft turbine engines

    NASA Astrophysics Data System (ADS)

    Spicer, C. W.; Holdren, M. W.; Riggin, R. M.; Lyon, T. F.

    1994-10-01

    Assessment of the environmental impact of aircraft emissions is required by planners and policy makers. Seveal areas of concern are: 1. exposure of airport workers and urban residents to toxic chemicals emitted when the engines operate at low power (idle and taxi) on the ground; 2. contributions to urban photochemical air pollution of aircraft volatile organic and nitrogen oxides emissions from operations around airports; and 3. emissions of nitrogen oxides and particles during high-altitude operation. The environmental impact of chemicals emitted from jet aircraft turbine engines has not been firmly established due to lack of data regarding emission rates and identities of the compounds emitted. This paper describes an experimental study of two different aircraft turbine engines designed to determine detailed organic emissions, as well as emissions of inorganic gases. Emissions were measured at several engine power settings. Measurements were made of detailed organic composition from C1 through C17, CO, CO2, NO, NOx, and polycyclic aromatic hydrocarbons. Measurements were made using a multi-port sampling pro be positioned directly behind the engine in the exhaust exit plane. The emission measurements have been used to determine the organic distribution by carbon number and the distribution by compound class at each engine power level. The sum of the organic species was compared with an independent measurement of total organic carbon to assess the carbon mass balance. A portion of the exhaust was captured and irradiated in outdoor smog chambers to assess the photochemical reactivity of the emissions with respect to ozone formation. The reactivity of emissions from the two engines was apportioned by chemical compound class.

  20. The design of a wind tunnel VSTOL fighter model incorporating turbine powered engine simulators

    NASA Technical Reports Server (NTRS)

    Bailey, R. O.; Maraz, M. R.; Hiley, P. E.

    1981-01-01

    A wind-tunnel model of a supersonic VSTOL fighter aircraft configuration has been developed for use in the evaluation of airframe-propulsion system aerodynamic interactions. The model may be employed with conventional test techniques, where configuration aerodynamics are measured in a flow-through mode and incremental nozzle-airframe interactions are measured in a jet-effects mode, and with the Compact Multimission Aircraft Propulsion Simulator which is capable of the simultaneous simulation of inlet and exhaust nozzle flow fields so as to allow the evaluation of the extent of inlet and nozzle flow field coupling. The basic configuration of the twin-engine model has a geometrically close-coupled canard and wing, and a moderately short nacelle with nonaxisymmetric vectorable exhaust nozzles near the wing trailing edge, and may be converted to a canardless configuration with an extremely short nacelle. Testing is planned to begin in the summer of 1982.

  1. Variable-cycle engines for supersonic cruise aircraft

    NASA Technical Reports Server (NTRS)

    Willis, E.

    1976-01-01

    Progress and the current status of the Variable Cycle Engine (VCE) study are reviewed with emphasis placed on the impact of technology advancements and design specifications. A large variety of VCE concepts are also examined.

  2. Study of unconventional aircraft engines designed for low energy consumption

    NASA Technical Reports Server (NTRS)

    Neitzel, R. E.; Hirschkron, R.; Johnston, R. P.

    1976-01-01

    A study of unconventional engine cycle concepts, which may offer significantly lower energy consumption than conventional subsonic transport turbofans, is described herein. A number of unconventional engine concepts were identified and parametrically studied to determine their relative fuel-saving potential. Based on results from these studies, regenerative, geared, and variable-boost turbofans, and combinations thereof, were selected along with advanced turboprop cycles for further evaluation and refinement. Preliminary aerodynamic and mechanical designs of these unconventional engine configurations were conducted and mission performance was compared to a conventional, direct-drive turofan reference engine. Consideration is given to the unconventional concepts, and their state of readiness for application. Areas of needed technology advancement are identified.

  3. NASA Now: Engineering Design: Tilt Rotors, Aircraft of the Future

    NASA Video Gallery

    Meet Carl Russell, a research aerospace engineer who is working on developing new innovations for air travel. Russell discusses how tilt rotors work, including a demonstration on how rotors use Ber...

  4. Chemical characterization of the fine particle emissions from commercial aircraft engines during the Aircraft Particle Emissions eXperiment (APEX) 1 to 3

    EPA Science Inventory

    This paper addresses the need for detailed chemical information on the fine particulate matter (PM2.5) generated by commercial aviation engines. The exhaust plumes of nine engine models were sampled during the three test campaigns of the Aircraft Particle Emissions eXperiment (AP...

  5. Optimal Tuner Selection for Kalman-Filter-Based Aircraft Engine Performance Estimation

    NASA Technical Reports Server (NTRS)

    Simon, Donald L.; Garg, Sanjay

    2011-01-01

    An emerging approach in the field of aircraft engine controls and system health management is the inclusion of real-time, onboard models for the inflight estimation of engine performance variations. This technology, typically based on Kalman-filter concepts, enables the estimation of unmeasured engine performance parameters that can be directly utilized by controls, prognostics, and health-management applications. A challenge that complicates this practice is the fact that an aircraft engine s performance is affected by its level of degradation, generally described in terms of unmeasurable health parameters such as efficiencies and flow capacities related to each major engine module. Through Kalman-filter-based estimation techniques, the level of engine performance degradation can be estimated, given that there are at least as many sensors as health parameters to be estimated. However, in an aircraft engine, the number of sensors available is typically less than the number of health parameters, presenting an under-determined estimation problem. A common approach to address this shortcoming is to estimate a subset of the health parameters, referred to as model tuning parameters. The problem/objective is to optimally select the model tuning parameters to minimize Kalman-filterbased estimation error. A tuner selection technique has been developed that specifically addresses the under-determined estimation problem, where there are more unknown parameters than available sensor measurements. A systematic approach is applied to produce a model tuning parameter vector of appropriate dimension to enable estimation by a Kalman filter, while minimizing the estimation error in the parameters of interest. Tuning parameter selection is performed using a multi-variable iterative search routine that seeks to minimize the theoretical mean-squared estimation error of the Kalman filter. This approach can significantly reduce the error in onboard aircraft engine parameter estimation

  6. Robust In-Flight Sensor Fault Diagnostics for Aircraft Engine Based on Sliding Mode Observers.

    PubMed

    Chang, Xiaodong; Huang, Jinquan; Lu, Feng

    2017-04-11

    For a sensor fault diagnostic system of aircraft engines, the health performance degradation is an inevitable interference that cannot be neglected. To address this issue, this paper investigates an integrated on-line sensor fault diagnostic scheme for a commercial aircraft engine based on a sliding mode observer (SMO). In this approach, one sliding mode observer is designed for engine health performance tracking, and another for sensor fault reconstruction. Both observers are employed in in-flight applications. The results of the former SMO are analyzed for post-flight updating the baseline model of the latter. This idea is practical and feasible since the updating process does not require the algorithm to be regulated or redesigned, so that ground-based intervention is avoided, and the update process is implemented in an economical and efficient way. With this setup, the robustness of the proposed scheme to the health degradation is much enhanced and the latter SMO is able to fulfill sensor fault reconstruction over the course of the engine life. The proposed sensor fault diagnostic system is applied to a nonlinear simulation of a commercial aircraft engine, and its effectiveness is evaluated in several fault scenarios.

  7. Accurate Measurements of Aircraft Engine Soot Emissions Using a CAPS PMssa Monitor

    NASA Astrophysics Data System (ADS)

    Onasch, Timothy; Thompson, Kevin; Renbaum-Wolff, Lindsay; Smallwood, Greg; Make-Lye, Richard; Freedman, Andrew

    2016-04-01

    We present results of aircraft engine soot emissions measurements during the VARIAnT2 campaign using CAPS PMssa monitors. VARIAnT2, an aircraft engine non-volatile particulate matter (nvPM) emissions field campaign, was focused on understanding the variability in nvPM mass measurements using different measurement techniques and accounting for possible nvPM sampling system losses. The CAPS PMssa monitor accurately measures both the optical extinction and scattering (and thus single scattering albedo and absorption) of an extracted sample using the same sample volume for both measurements with a time resolution of 1 second and sensitivity of better than 1 Mm-1. Absorption is obtained by subtracting the scattering signal from the total extinction. Given that the single scattering albedo of the particulates emitted from the aircraft engine measured at both 630 and 660 nm was on the order of 0.1, any inaccuracy in the scattering measurement has little impact on the accuracy of the ddetermined absorption coefficient. The absorption is converted into nvPM mass using a documented Mass Absorption Coefficient (MAC). Results of soot emission indices (mass soot emitted per mass of fuel consumed) for a turbojet engine as a function of engine power will be presented and compared to results obtained using an EC/OC monitor.

  8. Reducing Conservatism in Aircraft Engine Response Using Conditionally Active Min-Max Limit Regulators

    NASA Technical Reports Server (NTRS)

    May, Ryan D.; Garg, Sanjay

    2012-01-01

    Current aircraft engine control logic uses a Min-Max control selection structure to prevent the engine from exceeding any safety or operational limits during transients due to throttle commands. This structure is inherently conservative and produces transient responses that are slower than necessary. In order to utilize the existing safety margins more effectively, a modification to this architecture is proposed, referred to as a Conditionally Active (CA) limit regulator. This concept uses the existing Min-Max architecture with the modification that limit regulators are active only when the operating point is close to a particular limit. This paper explores the use of CA limit regulators using a publicly available commercial aircraft engine simulation. The improvement in thrust response while maintaining all necessary safety limits is demonstrated in a number of cases.

  9. An Adaptive Instability Suppression Controls Method for Aircraft Gas Turbine Engine Combustors

    NASA Technical Reports Server (NTRS)

    Kopasakis, George; DeLaat, John C.; Chang, Clarence T.

    2008-01-01

    An adaptive controls method for instability suppression in gas turbine engine combustors has been developed and successfully tested with a realistic aircraft engine combustor rig. This testing was part of a program that demonstrated, for the first time, successful active combustor instability control in an aircraft gas turbine engine-like environment. The controls method is called Adaptive Sliding Phasor Averaged Control. Testing of the control method has been conducted in an experimental rig with different configurations designed to simulate combustors with instabilities of about 530 and 315 Hz. Results demonstrate the effectiveness of this method in suppressing combustor instabilities. In addition, a dramatic improvement in suppression of the instability was achieved by focusing control on the second harmonic of the instability. This is believed to be due to a phenomena discovered and reported earlier, the so called Intra-Harmonic Coupling. These results may have implications for future research in combustor instability control.

  10. Forecast of jet engine exhaust emissions for future high altitude commercial aircraft

    NASA Technical Reports Server (NTRS)

    Grobman, J.; Ingebo, R. D.

    1974-01-01

    Projected minimum levels of engine exhaust emissions that may be practicably achievable for future commercial aircraft operating at high altitude cruise conditions are presented. The forecasts are based on: (1) current knowledge of emission characteristics of combustors and augmentors; (2) the current status of combustion research in emission reduction technology; (3) predictable trends in combustion systems and operating conditions as required for projected engine designs that are candidates for advanced subsonic or supersonic commercial aircraft. Results are presented for cruise conditions in terms of an emission index, g pollutant/kg fuel. Two sets of engine exhaust emission predictions are presented: the first, based on an independent NASA study and the second, based on the consensus of an ad hoc committee composed of industry, university, and government representatives. The consensus forecasts are in general agreement with the NASA forecasts.

  11. Summary of the general aviation manufacturers' position on aircraft piston engine emissions

    NASA Technical Reports Server (NTRS)

    Helms, J. L.

    1976-01-01

    The General Aviation Manufacturers recommended that the EPA rescind the aircraft piston engine emissions regulations currently on the books. The reason was the very small emission reduction potential and the very poor benefit-cost ratio involved in this form of emission reduction. The limited resources of this industry can far better be devoted to items of much greater benefit to the citizens of this country - reducing noise, improving fuel efficiency (which will incidently reduce exhaust emissions), and improving the safety, operational, and economic aspects of aircraft, all far greater contributions to our total national transportation system.

  12. Propeller swirl effect on single-engine general-aviation aircraft stall-spin tendencies

    NASA Technical Reports Server (NTRS)

    Katz, Joseph; Feistel, Terry W.

    1987-01-01

    An investigation is conducted of the effect of a single engine, untapered low wing general aviation aircraft propeller's swirl on the craft's stall pattern. The asymmetrical character of the propeller's swirl can trigger an early stall of one of the wings, aggravating the spin-entry condition. It is shown that the combination of this propeller-induced effect with adverse sideslip can result in large and abrupt changes in the rolling moment, in such conditions as uncoordinated low speed turning maneuvers where the pilot yaws the aircraft with wings level, rather than rolling it.

  13. Impact of future fuel properties on aircraft engines and fuel systems

    NASA Technical Reports Server (NTRS)

    Rudey, R. A.; Grobman, J. S.

    1978-01-01

    The effect of modifications in hydrocarbon jet fuels specifications on engine performance, component durability and maintenance, and aircraft fuel system performance is discussed. Specific topics covered include: specific fuel consumption; ignition at relight limits; exhaust emissions; combustor liner temperatures; carbon deposition; gum formation in fuel nozzles, erosion and corrosion of turbine blades and vanes; deposits in fuel system heat exchangers; and pumpability and flowability of the fuel. Data that evaluate the ability of current technology aircraft to accept fuel specification changes are presented, and selected technological advances that can reduce the severity of the problems are described and discussed.

  14. Self diagnostic accelerometer ground testing on a C-17 aircraft engine

    NASA Astrophysics Data System (ADS)

    Tokars, Roger P.; Lekki, John D.

    The self diagnostic accelerometer (SDA) developed by the NASA Glenn Research Center was tested for the first time in an aircraft engine environment as part of the Vehicle Integrated Propulsion Research (VIPR) program. The VIPR program includes testing multiple critical flight sensor technologies. One such sensor, the accelerometer, measures vibrations to detect faults in the engine. In order to rely upon the accelerometer, the health of the accelerometer must be ensured. Sensor system malfunction is a significant contributor to propulsion in flight shutdowns (IFSD) which can lead to aircraft accidents when the issue is compounded with an inappropriate crew response. The development of the SDA is important for both reducing the IFSD rate, and hence reducing the rate at which this component failure type can put an aircraft in jeopardy, and also as a critical enabling technology for future automated malfunction diagnostic systems. The SDA is a sensor system designed to actively determine the accelerometer structural health and attachment condition, in addition to making vibration measurements. The SDA uses a signal conditioning unit that sends an electrical chirp to the accelerometer and recognizes changes in the response due to changes in the accelerometer health and attachment condition. In an effort toward demonstrating the SDA's flight worthiness and robustness, multiple SDAs were mounted and tested on a C-17 aircraft engine. The engine test conditions varied from engine off, to idle, to maximum power. The two SDA attachment conditions used were fully tight and loose. The newly developed SDA health algorithm described herein uses cross correlation pattern recognition to discriminate a healthy from a faulty SDA. The VIPR test results demonstrate for the first time the robustness of the SDA in an engine environment characterized by high vibration levels.

  15. Self Diagnostic Accelerometer Ground Testing on a C-17 Aircraft Engine

    NASA Technical Reports Server (NTRS)

    Tokars, Roger P.; Lekki, John D.

    2013-01-01

    The self diagnostic accelerometer (SDA) developed by the NASA Glenn Research Center was tested for the first time in an aircraft engine environment as part of the Vehicle Integrated Propulsion Research (VIPR) program. The VIPR program includes testing multiple critical flight sensor technologies. One such sensor, the accelerometer, measures vibrations to detect faults in the engine. In order to rely upon the accelerometer, the health of the accelerometer must be ensured. Sensor system malfunction is a significant contributor to propulsion in flight shutdowns (IFSD) which can lead to aircraft accidents when the issue is compounded with an inappropriate crew response. The development of the SDA is important for both reducing the IFSD rate, and hence reducing the rate at which this component failure type can put an aircraft in jeopardy, and also as a critical enabling technology for future automated malfunction diagnostic systems. The SDA is a sensor system designed to actively determine the accelerometer structural health and attachment condition, in addition to making vibration measurements. The SDA uses a signal conditioning unit that sends an electrical chirp to the accelerometer and recognizes changes in the response due to changes in the accelerometer health and attachment condition. In an effort toward demonstrating the SDAs flight worthiness and robustness, multiple SDAs were mounted and tested on a C-17 aircraft engine. The engine test conditions varied from engine off, to idle, to maximum power. The two SDA attachment conditions used were fully tight and loose. The newly developed SDA health algorithm described herein uses cross correlation pattern recognition to discriminate a healthy from a faulty SDA. The VIPR test results demonstrate for the first time the robustness of the SDA in an engine environment characterized by high vibration levels.

  16. Constructing an Efficient Self-Tuning Aircraft Engine Model for Control and Health Management Applications

    NASA Technical Reports Server (NTRS)

    Armstrong, Jeffrey B.; Simon, Donald L.

    2012-01-01

    Self-tuning aircraft engine models can be applied for control and health management applications. The self-tuning feature of these models minimizes the mismatch between any given engine and the underlying engineering model describing an engine family. This paper provides details of the construction of a self-tuning engine model centered on a piecewise linear Kalman filter design. Starting from a nonlinear transient aerothermal model, a piecewise linear representation is first extracted. The linearization procedure creates a database of trim vectors and state-space matrices that are subsequently scheduled for interpolation based on engine operating point. A series of steady-state Kalman gains can next be constructed from a reduced-order form of the piecewise linear model. Reduction of the piecewise linear model to an observable dimension with respect to available sensed engine measurements can be achieved using either a subset or an optimal linear combination of "health" parameters, which describe engine performance. The resulting piecewise linear Kalman filter is then implemented for faster-than-real-time processing of sensed engine measurements, generating outputs appropriate for trending engine performance, estimating both measured and unmeasured parameters for control purposes, and performing on-board gas-path fault diagnostics. Computational efficiency is achieved by designing multidimensional interpolation algorithms that exploit the shared scheduling of multiple trim vectors and system matrices. An example application illustrates the accuracy of a self-tuning piecewise linear Kalman filter model when applied to a nonlinear turbofan engine simulation. Additional discussions focus on the issue of transient response accuracy and the advantages of a piecewise linear Kalman filter in the context of validation and verification. The techniques described provide a framework for constructing efficient self-tuning aircraft engine models from complex nonlinear

  17. The Further Development of Heat-Resistant Materials for Aircraft Engines

    NASA Technical Reports Server (NTRS)

    Bollenrath, Franz

    1946-01-01

    The present report deals with the problems involved in the greater utilization and development of aircraft engine materials, and specifically; piston materials, cylinder heads, exhaust valves, and exhaust gas turbine blading. The blades of the exhaust gas turbine are likely to be the highest stressed components of modern power plants from a thermal-mechanical and chemical standpoint, even though the requirements on exhaust valves of engines with gasoline injection are in general no less stringent. For the fire plate in Diesel engines the specifications for mechanical strength and design are not so stringent, and the question of heat resistance, which under these circumstances is easier obtainable, predominates.

  18. Optimization applications in aircraft engine design and test

    NASA Technical Reports Server (NTRS)

    Pratt, T. K.

    1984-01-01

    Starting with the NASA-sponsored STAEBL program, optimization methods based primarily upon the versatile program COPES/CONMIN were introduced over the past few years to a broad spectrum of engineering problems in structural optimization, engine design, engine test, and more recently, manufacturing processes. By automating design and testing processes, many repetitive and costly trade-off studies have been replaced by optimization procedures. Rather than taking engineers and designers out of the loop, optimization has, in fact, put them more in control by providing sophisticated search techniques. The ultimate decision whether to accept or reject an optimal feasible design still rests with the analyst. Feedback obtained from this decision process has been invaluable since it can be incorporated into the optimization procedure to make it more intelligent. On several occasions, optimization procedures have produced novel designs, such as the nonsymmetric placement of rotor case stiffener rings, not anticipated by engineering designers. In another case, a particularly difficult resonance contraint could not be satisfied using hand iterations for a compressor blade, when the STAEBL program was applied to the problem, a feasible solution was obtained in just two iterations.

  19. Reduction of aircraft gas turbine engine pollutant emissions

    NASA Technical Reports Server (NTRS)

    Diehl, L. A.

    1978-01-01

    To accomplish simultaneous reduction of unburned hydrocarbons, carbon monoxide, and oxides of nitrogen, required major modifications to the combustor. The modification most commonly used was a staged combustion technique. While these designs are more complicated than production combustors, no insurmountable operational difficulties were encountered in either high pressure rig or engine tests which could not be resolved with additional normal development. The emission reduction results indicate that reductions in unburned hydrocarbons were sufficient to satisfy both near and far-termed EPA requirements. Although substantial reductions were observed, the success in achieving the CO and NOx standards was mixed and depended heavily on the engine/engine cycle on which it was employed. Technology for near term CO reduction was satisfactory or marginally satisfactory. Considerable doubt exists if this technology will satisfy all far-term requirements.

  20. Policy Options for the Aircraft Turbine Engine Component Improvement Program.

    DTIC Science & Technology

    1987-05-01

    should also investigate competing CIP tasks or functions within a CIP engine program ( FADEC fuel control for the F404 or accelerated mission testing...AH- I) Some. commercial coenhlp. pnmanly derived T55 (0,147) (tom military programs. Army discontinued CIP T63 (OHA6 OH-SI) for som older engines for...Army did not fund CIP and T55 (CH-47) company did proceed with improved commercial derivatives. T63 (OH-6, OH-58) T700 has CIP and also commercial

  1. Wind tunnel test of model target thrust reversers for the Pratt and Whitney aircraft JT8D-100 series engines installed on a 727-200 airplane

    NASA Technical Reports Server (NTRS)

    Hambly, D.

    1974-01-01

    The results of a low speed wind tunnel test of 0.046 scale model target thrust reversers installed on a 727-200 model airplane are presented. The full airplane model was mounted on a force balance, except for the nacelles and thrust reversers, which were independently mounted and isolated from it. The installation had the capability of simulating the inlet airflows and of supplying the correct proportions of primary and secondary air to the nozzles. The objectives of the test were to assess the compatibility of the thrust reversers target door design with the engine and airplane. The following measurements were made: hot gas ingestion at the nacelle inlets; model lift, drag, and pitching moment; hot gas impingement on the airplane structure; and qualitative assessment of the rudder effectiveness. The major parameters controlling hot gas ingestion were found to be thrust reverser orientation, engine power setting, and the lip height of the bottom thrust reverser doors on the side nacelles. The thrust reversers tended to increase the model lift, decrease the drag, and decrease the pitching moment.

  2. Cruise aerodynamics of USB nacelle/wing geometric variations

    NASA Technical Reports Server (NTRS)

    Braden, J. A.; Hancock, J. P.; Burdges, K. P.

    1976-01-01

    Experimental results are presented on aerodynamic effects of geometric variations in upper surface blown nacelle configurations at high speed cruise conditions. Test data include both force and pressure measurements on two and three dimensional models powered by upper surface blowing nacelles of varying geometries. Experimental results are provided on variations in nozzle aspect ratio, nozzle boattail angle, and multiple nacelle installations. The nacelles are ranked according to aerodynamic drag penalties as well as overall installed drag penalties. Sample effects and correlations are shown for data obtained with the pressure model.

  3. Sensor Needs for Control and Health Management of Intelligent Aircraft Engines

    NASA Technical Reports Server (NTRS)

    Simon, Donald L.; Gang, Sanjay; Hunter, Gary W.; Guo, Ten-Huei; Semega, Kenneth J.

    2004-01-01

    NASA and the U.S. Department of Defense are conducting programs which support the future vision of "intelligent" aircraft engines for enhancing the affordability, performance, operability, safety, and reliability of aircraft propulsion systems. Intelligent engines will have advanced control and health management capabilities enabling these engines to be self-diagnostic, self-prognostic, and adaptive to optimize performance based upon the current condition of the engine or the current mission of the vehicle. Sensors are a critical technology necessary to enable the intelligent engine vision as they are relied upon to accurately collect the data required for engine control and health management. This paper reviews the anticipated sensor requirements to support the future vision of intelligent engines from a control and health management perspective. Propulsion control and health management technologies are discussed in the broad areas of active component controls, propulsion health management and distributed controls. In each of these three areas individual technologies will be described, input parameters necessary for control feedback or health management will be discussed, and sensor performance specifications for measuring these parameters will be summarized.

  4. Application of superalloy powder metallurgy for aircraft engines

    NASA Technical Reports Server (NTRS)

    Dreshfield, R. L.; Miner, R. V., Jr.

    1980-01-01

    The results of the Materials for Advanced Turbine Engines (MATE) program initiated by NASA are presented. Mechanical properties comparisons are made for superalloy parts produced by as-HIP powder consolidation and by forging of HIP consolidated billets. The effect of various defects on the mechanical properties of powder parts are shown.

  5. Extractive sampling and optical remote sensing of F100 aircraft engine emissions.

    PubMed

    Cowen, Kenneth; Goodwin, Bradley; Joseph, Darrell; Tefend, Matthew; Satola, Jan; Kagann, Robert; Hashmonay, Ram; Spicer, Chester; Holdren, Michael; Mayfield, Howard

    2009-05-01

    The Strategic Environmental Research and Development Program (SERDP) has initiated several programs to develop and evaluate techniques to characterize emissions from military aircraft to meet increasingly stringent regulatory requirements. This paper describes the results of a recent field study using extractive and optical remote sensing (ORS) techniques to measure emissions from six F-15 fighter aircraft. Testing was performed between November 14 and 16, 2006 on the trim-pad facility at Tyndall Air Force Base in Panama City, FL. Measurements were made on eight different F100 engines, and the engines were tested on-wing of in-use aircraft. A total of 39 test runs were performed at engine power levels that ranged from idle to military power. The approach adopted for these tests involved extractive sampling with collocated ORS measurements at a distance of approximately 20-25 nozzle diameters downstream of the engine exit plane. The emission indices calculated for carbon dioxide, carbon monoxide, nitric oxide, and several volatile organic compounds showed very good agreement when comparing the extractive and ORS sampling methods.

  6. Combustion Dynamics and Control for Ultra Low Emissions in Aircraft Gas-Turbine Engines

    NASA Technical Reports Server (NTRS)

    DeLaat, John C.

    2011-01-01

    Future aircraft engines must provide ultra-low emissions and high efficiency at low cost while maintaining the reliability and operability of present day engines. The demands for increased performance and decreased emissions have resulted in advanced combustor designs that are critically dependent on efficient fuel/air mixing and lean operation. However, all combustors, but most notably lean-burning low-emissions combustors, are susceptible to combustion instabilities. These instabilities are typically caused by the interaction of the fluctuating heat release of the combustion process with naturally occurring acoustic resonances. These interactions can produce large pressure oscillations within the combustor and can reduce component life and potentially lead to premature mechanical failures. Active Combustion Control which consists of feedback-based control of the fuel-air mixing process can provide an approach to achieving acceptable combustor dynamic behavior while minimizing emissions, and thus can provide flexibility during the combustor design process. The NASA Glenn Active Combustion Control Technology activity aims to demonstrate active control in a realistic environment relevant to aircraft engines by providing experiments tied to aircraft gas turbine combustors. The intent is to allow the technology maturity of active combustion control to advance to eventual demonstration in an engine environment. Work at NASA Glenn has shown that active combustion control, utilizing advanced algorithms working through high frequency fuel actuation, can effectively suppress instabilities in a combustor which emulates the instabilities found in an aircraft gas turbine engine. Current efforts are aimed at extending these active control technologies to advanced ultra-low-emissions combustors such as those employing multi-point lean direct injection.

  7. Propulsion-airframe integration for commercial and military aircraft

    NASA Technical Reports Server (NTRS)

    Henderson, William P.

    1988-01-01

    A significant level of research is ongoing at NASA's Langley Research Center on integrating the propulsion system with the aircraft. This program has included nacelle/pylon/wing integration for turbofan transports, propeller/nacelle/wing integration for turboprop transports, and nozzle/afterbody/empennage integration for high performance aircraft. The studies included in this paper focus more specifically on pylon shaping and nacelle location studies for turbofan transports, nacelle and wing contouring and propeller location effects for turboprop transports, and nozzle shaping and empennage effects for high performance aircraft. The studies were primarily conducted in NASA Langley's 16-Foot Transonic Tunnel at Mach numbers up to 1.20. Some higher Mach number data obtained at NASA's Lewis Research Center is also included.

  8. Design and evaluation of combustors for reducing aircraft engine pollution

    NASA Technical Reports Server (NTRS)

    Jones, R. E.; Grobman, J.

    1973-01-01

    Efforts in reducing exhaust emissions from turbine engines are reported. Various techniques employed and the results of testing are briefly described and referenced for detail. The experimental approaches taken to reduce oxides of nitrogen emissions include the use of: (1) multizone combustors incorporating reduced dwell times, (2) fuel-air premixing, (3) air atomization, (4) fuel prevaporization, and (5) gaseous fuel. Since emissions of unburned hydrocarbons and carbon monoxide are caused by poor combustion efficiency at engine idle, the studies of fuel staging in multizone combustors and air assist fuel nozzles have indicated that large reductions in these emissions can be achieved. Also, the effect of inlet-air humidity on oxides of nitrogen was studied as well as the very effective technique of direct water injection. The emission characteristics of natural gas and propane fuels were measured and compared with those of ASTM-Al kerosene fuel.

  9. Life-Cycle Analysis of Aircraft Turbine Engines

    DTIC Science & Technology

    1977-11-01

    8217total dej’ot wind batse) costs , Theii other budget. ctcourbta, providted by vi’giite flintily (not, by application). include BPI&5)0, Suppor’t...acquire early visibility of cost magnitudes, proportions, and trends associated with a new engine’s life cycle, and to identify "drivers" that increase... cost and can have the effect of lowering capability. Later in the life cycle, logistics managers can use the methodology and the feedback it produces

  10. An intermediate solution between basic and expanded aircraft integrated data systems (AIDS)

    NASA Astrophysics Data System (ADS)

    Robert, C.

    1981-11-01

    A single digital flight data acquisition and management unit, divided for reliability into two parts, is proposed as an alternative to ARINC 717. One part deals with mandatory parameters which are sampled, coded, and transmitted in a PCM stream to the digital flight data recorder. The second part processes the parameters and is user programmable. Analysis consists of exceedance processing (e.g., engine, nacelle) gas pass analysis, AIDS monitoring and aircraft system warning from the flight warning computer. Airline response indicates that this system meets their requirements.

  11. Video-based cargo fire verification system with fuzzy inference engine for commercial aircraft

    NASA Astrophysics Data System (ADS)

    Sadok, Mokhtar; Zakrzewski, Radek; Zeliff, Bob

    2005-02-01

    Conventional smoke detection systems currently installed onboard aircraft are often subject to high rates of false alarms. Under current procedures, whenever an alarm is issued the pilot is obliged to release fire extinguishers and to divert to the nearest airport. Aircraft diversions are costly and dangerous in some situations. A reliable detection system that minimizes false-alarm rate and allows continuous monitoring of cargo compartments is highly desirable. A video-based system has been recently developed by Goodrich Corporation to address this problem. The Cargo Fire Verification System (CFVS) is a multi camera system designed to provide live stream video to the cockpit crew and to perform hotspot, fire, and smoke detection in aircraft cargo bays. In addition to video frames, the CFVS uses other sensor readings to discriminate between genuine events such as fire or smoke and nuisance alarms such as fog or dust. A Mamdani-type fuzzy inference engine is developed to provide approximate reasoning for decision making. In one implementation, Gaussian membership functions for frame intensity-based features, relative humidity, and temperature are constructed using experimental data to form the system inference engine. The CFVS performed better than conventional aircraft smoke detectors in all standardized tests.

  12. Computerized systems analysis and optimization of aircraft engine performance, weight, and life cycle costs

    NASA Technical Reports Server (NTRS)

    Fishbach, L. H.

    1979-01-01

    The paper describes the computational techniques employed in determining the optimal propulsion systems for future aircraft applications and to identify system tradeoffs and technology requirements. The computer programs used to perform calculations for all the factors that enter into the selection process of determining the optimum combinations of airplanes and engines are examined. Attention is given to the description of the computer codes including NNEP, WATE, LIFCYC, INSTAL, and POD DRG. A process is illustrated by which turbine engines can be evaluated as to fuel consumption, engine weight, cost and installation effects. Examples are shown as to the benefits of variable geometry and of the tradeoff between fuel burned and engine weights. Future plans for further improvements in the analytical modeling of engine systems are also described.

  13. A Preliminary Study of Fuel Injection and Compression Ignition as Applied to an Aircraft Engine Cylinder

    NASA Technical Reports Server (NTRS)

    Gardiner, Arthur W

    1927-01-01

    This report summarizes some results obtained with a single cylinder test engine at the Langley Field Laboratory during a preliminary investigation of the problem of applying fuel injection and compression ignition to aircraft engines. For this work a standard Liberty Engine cylinder was fitted with a high compression, 11.4 : 1 compression ratio, piston, and equipped with an airless injection system, including a primary fuel pump, an injection pump, and an automatic injection valve. The results obtained during this investigation have indicated the possibility of applying airless injection and compression ignition to a cylinder of this size, 8-inch bore by 7-inch stroke, when operating at engine speeds as high as 1,850 R. P. M. A minimum specific fuel consumption with diesel engine fuel oil of 0.30 pound per I. HP. Hour was obtained when developing about 16 B. HP. At 1,730 R. P. M.

  14. A Modular Aero-Propulsion System Simulation of a Large Commercial Aircraft Engine

    NASA Technical Reports Server (NTRS)

    DeCastro, Jonathan A.; Litt, Jonathan S.; Frederick, Dean K.

    2008-01-01

    A simulation of a commercial engine has been developed in a graphical environment to meet the increasing need across the controls and health management community for a common research and development platform. This paper describes the Commercial Modular Aero Propulsion System Simulation (C-MAPSS), which is representative of a 90,000-lb thrust class two spool, high bypass ratio commercial turbofan engine. A control law resembling the state-of-the-art on board modern aircraft engines is included, consisting of a fan-speed control loop supplemented by relevant engine limit protection regulator loops. The objective of this paper is to provide a top-down overview of the complete engine simulation package.

  15. Effects of Induction-System Icing on Aircraft-Engine Operating Characteristics

    NASA Technical Reports Server (NTRS)

    Stevens, Howard C., Jr.

    1947-01-01

    An investigation was conducted on a multicylinder aircraft engine on a dynamometer stand to determine the effect of induction-system icing on engine operating characteristics and to compare the results with those of a previous laboratory investigation in which only the carburetor and the engine-stage supercharger assembly from the engine were used. The experiments were conducted at simulated glide power, low cruise power, and normal rated power through a range of humidity ratios and air temperatures at approximately sea-level pressure. Induction-system icing was found to occur within approximately the same limits as those established by the previous laboratory investigation after making suitable allowances for the difference in fuel volatility and throttle angles. Rough operation of the engine was experienced when ice caused a marked reduction in the air flow. Photographs of typical ice formations from this investigation indicate close similarity to icing previously observed in the laboratory.

  16. Hybrid Neural-Network: Genetic Algorithm Technique for Aircraft Engine Performance Diagnostics Developed and Demonstrated

    NASA Technical Reports Server (NTRS)

    Kobayashi, Takahisa; Simon, Donald L.

    2002-01-01

    As part of the NASA Aviation Safety Program, a unique model-based diagnostics method that employs neural networks and genetic algorithms for aircraft engine performance diagnostics has been developed and demonstrated at the NASA Glenn Research Center against a nonlinear gas turbine engine model. Neural networks are applied to estimate the internal health condition of the engine, and genetic algorithms are used for sensor fault detection, isolation, and quantification. This hybrid architecture combines the excellent nonlinear estimation capabilities of neural networks with the capability to rank the likelihood of various faults given a specific sensor suite signature. The method requires a significantly smaller data training set than a neural network approach alone does, and it performs the combined engine health monitoring objectives of performance diagnostics and sensor fault detection and isolation in the presence of nominal and degraded engine health conditions.

  17. Installation effects of long-duct pylon-mounted nacelles on a twin-jet transport model with swept supercritical wing

    NASA Technical Reports Server (NTRS)

    Lee, E. E., Jr.; Pendergraft, O. C., Jr.

    1985-01-01

    The installation interference effects of an underwing-mounted, long duct, turbofan nacelle were evaluated in the Langley 16-Foot Transonic Tunnel with two different pylon shapes installed on a twin engine transport model having a supercritical wing swept 30 deg. Wing, pylon, and nacelle pressures and overall model force data were obtained at Mach numbers from 0.70 to 0.83 and nominal angles of attack from -2 deg to 4 deg at an average unit Reynolds number of 11.9 x 1,000,000 per meter. The results show that adding the long duct nacelles to the supercritical wing, in the near sonic flow field, changed the magnitude and direction of flow velocities over the entire span, significantly reduced cruise lift, and caused large interference drag on the nacelle afterbody.

  18. Theoretical prediction of thick wing and pylon-fuselage-fanpod-nacelle aerodynamic characteristics at subcritical speeds. Part 1: Theory and results

    NASA Technical Reports Server (NTRS)

    Tulinius, J. R.

    1974-01-01

    The theoretical development and the comparison of results with data of a thick wing and pylon-fuselage-fanpod-nacelle analysis are presented. The analysis utilizes potential flow theory to compute the surface velocities and pressures, section lift and center of pressure, and the total configuration lift, moment, and vortex drag. The skin friction drag is also estimated in the analysis. The perturbation velocities induced by the wing and pylon, fuselage and fanpod, and nacelle are represented by source and vortex lattices, quadrilateral vortices, and source frustums, respectively. The strengths of these singularities are solved for simultaneously including all interference effects. The wing and pylon planforms, twists, cambers, and thickness distributions, and the fuselage and fanpod geometries can be arbitrary in shape, provided the surface gradients are smooth. The flow through nacelle is assumed to be axisymmetric. An axisymmetric center engine hub can also be included. The pylon and nacelle can be attached to the wing, fuselage, or fanpod.

  19. Engine Company Evaluation of Feasibility of Aircraft Retrofit Water-Injected Turbomachines

    NASA Technical Reports Server (NTRS)

    Becker, Arthur

    2006-01-01

    This study supports the NASA Glenn Research Center and the U.S. Air Force Research Laboratory in their efforts to evaluate the effect of water injection on aircraft engine performance and emissions. In this study, water is only injected during the takeoff and initial climb phase of a flight. There is no water injection during engine start or ground operations, nor during climb, cruise, descent, or landing. This study determined the maintenance benefit of water injection during takeoff and initial climb and evaluated the feasibility of retrofitting a current production engine, the PW4062 (Pratt & Whitney, East Hartford, CT), with a water injection system. Predicted NO(x) emissions based on a 1:1 water-tofuel ratio are likely to be reduced between 30 to 60 percent in Environmental Protection Agency parameter (EPAP). The maintenance cost benefit for an idealized combustor water injection system installed on a PW4062 engine in a Boeing 747-400ER aircraft (The Boeing Company, Chicago, IL) is computed to be $22 per engine flight hour (EFH). Adding water injection as a retrofit kit would cost up to $375,000 per engine because of the required modifications to the fuel system and addition of the water supply system. There would also be significant nonrecurring costs associated with the development and certification of the system that may drive the system price beyond affordability.

  20. Aircraft Engine Noise Research and Testing at the NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Elliott, Dave

    2015-01-01

    The presentation will begin with a brief introduction to the NASA Glenn Research Center as well as an overview of how aircraft engine noise research fits within the organization. Some of the NASA programs and projects with noise content will be covered along with the associated goals of aircraft noise reduction. Topics covered within the noise research being presented will include noise prediction versus experimental results, along with engine fan, jet, and core noise. Details of the acoustic research conducted at NASA Glenn will include the test facilities available, recent test hardware, and data acquisition and analysis methods. Lastly some of the actual noise reduction methods investigated along with their results will be shown.

  1. Engine Yaw Augmentation for Hybrid-Wing-Body Aircraft via Optimal Control Allocation Techniques

    NASA Technical Reports Server (NTRS)

    Taylor, Brian R.; Yoo, Seung-Yeun

    2011-01-01

    Asymmetric engine thrust was implemented in a hybrid-wing-body non-linear simulation to reduce the amount of aerodynamic surface deflection required for yaw stability and control. Hybrid-wing-body aircraft are especially susceptible to yaw surface deflection due to their decreased bare airframe yaw stability resulting from the lack of a large vertical tail aft of the center of gravity. Reduced surface deflection, especially for trim during cruise flight, could reduce the fuel consumption of future aircraft. Designed as an add-on, optimal control allocation techniques were used to create a control law that tracks total thrust and yaw moment commands with an emphasis on not degrading the baseline system. Implementation of engine yaw augmentation is shown and feasibility is demonstrated in simulation with a potential drag reduction of 2 to 4 percent. Future flight tests are planned to demonstrate feasibility in a flight environment.

  2. Performance, emissions, and physical characteristics of a rotating combustion aircraft engine

    NASA Technical Reports Server (NTRS)

    Berkowitz, M.; Hermes, W. L.; Mount, R. E.; Myers, D.

    1976-01-01

    The RC2-75, a liquid cooled two chamber rotary combustion engine (Wankel type), designed for aircraft use, was tested and representative baseline (212 KW, 285 BHP) performance and emissions characteristics established. The testing included running fuel/air mixture control curves and varied ignition timing to permit selection of desirable and practical settings for running wide open throttle curves, propeller load curves, variable manifold pressure curves covering cruise conditions, and EPA cycle operating points. Performance and emissions data were recorded for all of the points run. In addition to the test data, information required to characterize the engine and evaluate its performance in aircraft use is provided over a range from one half to twice its present power. The exhaust emissions results are compared to the 1980 EPA requirements. Standard day take-off brake specific fuel consumption is 356 g/KW-HR (.585 lb/BHP-HR) for the configuration tested.

  3. Status review of NASA programs for reducing aircraft gas turbine engine emissions

    NASA Technical Reports Server (NTRS)

    Rudey, R. A.

    1976-01-01

    The paper describes and discusses the results from some of the research and development programs for reducing aircraft gas turbine engine emissions. Although the paper concentrates on NASA programs only, work supported by other U.S. government agencies and industry has provided considerable data on low emission advanced technology for aircraft gas turbine engine combustors. The results from the two major NASA technology development programs, the ECCP (Experimental Clean Combustor Program) and the PRTP (Pollution Reduction Technology Program), are presented and compared with the requirements of the 1979 U.S. EPA standards. Emission reduction techniques currently being evaluated in these programs are described along with the results and a qualitative assessment of development difficulty.

  4. Statistics on Aircraft Gas Turbine Engine Rotor Failures That Occurred in U.S. Commercial Aviation During 1984

    DTIC Science & Technology

    1989-06-01

    Accession No. 3 . Recipient s Cetlog No. DOT/FMA/CT-89/6 4. Tile nd Subtitle S. Report 06. STATISTICS ON AIRCRAFT GAS TURBINE ENGINE ROTOR June 1989...Special / iii TABLE OF CONTENTS Page EXECUTIVE SUMMARY vii INTRODUCTION 1 RESULTS 2 DISCUSSION AND CONCLUSIONS 3 APPENDIX A - Data of Engine Rotor...Incidence of Engine Rotor Failures in U.S. Commercial 6 Aviation According to Affected Engine Model and Engine Fleet Hours - 1984 3 Component and

  5. Engine Systems Ownership Cost Reduction - Aircraft Propulsion Subsystems Integration (APSI)

    DTIC Science & Technology

    1975-08-01

    Counter-Rotating Shafts 101 4.2.11-1 Welded LP Turbine Assembly 103 4.2.12-1 Typical Cooled Turbine Blade Schematic Illustrating Jet Flap Airflow 105...the need to iterate and test sensitivity, will re- quire a computer capability. Based on these criteria, a hierarchial no- tation scheme, was assembled ...one engine "cost group" are listed in the DTC worksheet of Figure 2.2.3-1\\c). These DTC "Cost Group" worksheets are then assembled and used to produce

  6. A Study on Aircraft Structure and Jet Engine

    NASA Astrophysics Data System (ADS)

    Park, Gil Moon; Park, Hwan Kyu; Kim, Jong Il; Kim, Jin Won; Kim, Jin Heung; Lee, Moo Seok; Chung, Nak Kyu

    1985-12-01

    The one of critical factor in gas turbine engine performance is high turbine inlet gas temperature. Therefore, the turbine rotor has so many problems which must be considered such as the turbine blade cooling, thermal stress of turbine disk due to severe temperature gradient, turbine rotor tip clearance, under the high operation temperature. The purpose of this study is to provide the temperature distribution and heat flux in turbine disk which is required to considered premensioned problem by the Finite Difference Method and the Finite Element Methods on the steady state condition.

  7. Performance Characteristics of an Aircraft Engine with Exhaust Turbine Supercharger

    DTIC Science & Technology

    1941-05-01

    installation of’the ex- haust turbine supercha~ger. The two piston rods at oppb- si t e ends of the s e r vo c~rl iuder ware connect a d to the aut 0... crankshaft through multispeed gears. INTRODUCTION It is the function of superchargers in general to aug- Dent the porforcance of an internal-combustion engine...to the arbitrary design limit of the turbine and blower combination, the unit should be capable of main- taining approximate12r sea-level operating

  8. The FEM simulation of the thin walled aircraft engine corpus deformation during milling

    NASA Astrophysics Data System (ADS)

    Matras, A.; Plaza, M.

    2016-09-01

    This paper discusses the results of the experimental research performed with the support of finite element method. The deformation of the thin walled aircraft engine corpus was analyzed based on a geometric model. Then, the boundary of the outer side of the part was loaded by the components of a cutting force during milling. The material model of the part was also defined in the simulation software. The analysis allowed to optimize feed rate in order to decrease the deformation of the part.

  9. An experimental evaluation of the performance deficit of an aircraft engine starter turbine

    NASA Technical Reports Server (NTRS)

    Hass, J. E.; Roelke, R. J.; Hermann, P.

    1980-01-01

    An experimental investigation was made to determine the reasons for the low aerodynamic performance of a 13.5 centimeter tip diameter aircraft engine starter turbine. The investigation consisted of an evaluation of both the stator and the stage. An approximate ten percent improvement in turbine efficiency was obtained when the honeycomb shroud over the rotor blade tips was filled to obtain a solid shroud surface.

  10. Field Tests of a Laser Raman Measurement System for Aircraft Engine Exhaust Emissions

    DTIC Science & Technology

    1974-10-01

    practical one. The advantages of optical exhaust gas measurements versus probing systems has been demonstrated. It now remains to solve the remaining...Raman system NOVA digital data processor has the capability to service such additional measurements. If velocity information is desired a study should be...AD/A-003 648 FIELD TESTS OF A LASER RAMAN MEASURE- MENT SYSTEM FOR AIRCRAFT ENGINE EXHAUST EMISSIONS Donald A. Leunard Avoo Everett Researoh

  11. Identification of Spey engine dynamics in the augmentor wing jet STOL research aircraft from flight data

    NASA Technical Reports Server (NTRS)

    Dehoff, R. L.; Reed, W. B.; Trankle, T. L.

    1977-01-01

    The development and validation of a spey engine model is described. An analysis of the dynamical interactions involved in the propulsion unit is presented. The model was reduced to contain only significant effects, and was used, in conjunction with flight data obtained from an augmentor wing jet STOL research aircraft, to develop initial estimates of parameters in the system. The theoretical background employed in estimating the parameters is outlined. The software package developed for processing the flight data is described. Results are summarized.

  12. High temperature aircraft turbine engine bearing and lubrication system development

    SciTech Connect

    Grant, D.H.; Chin, H.A.; Klenke, C.; Galbato, A.T.; Ragen, M.A.; Spitzer, R.F.

    1998-12-31

    Results are reported for a project sponsored by the US Air Force Wright Laboratories. The major emphasis of this project was the evaluation of bearing materials with improved corrosion resistance, high hot hardness, and high fracture toughness, intended to meet the requirements of the Integrated High Performance Turbine Engine Technologies (IHPTET) Phase 2 engine. The project included material property studies on candidate bearing materials and lubricants which formed the selection basis for subscale and full-scale bearing rig verification tests. The carburizing stainless steel alloy Pyrowear 675 demonstrated significant fatigue life, fracture toughness, and corrosion resistance improvements relative to the M50 NiL baseline bearing material. The new Skylube 2 (MCS-2482) lubricant provided significant thermal degradation improvements with respect to the Skylube 600 (PWA-524, MIL-L-87100) lubricant. Two 130 mm bore Pyrowear 675 hybrid ball bearings with silicon nitride balls were run successfully for 231 hours with Skylube 2 lubricant at temperatures consistent with IHPTET 2 requirements.

  13. A personal sampler for aircraft engine cold start particles: laboratory development and testing.

    PubMed

    Armendariz, Alfredo; Leith, David

    2003-01-01

    Industrial hygienists in the U.S. Air Force are concerned about exposure of their personnel to jet fuel. One potential source of exposure for flightline ground crews is the plume emitted during the start of aircraft engines in extremely cold weather. The purpose of this study was to investigate a personal sampler, a small tube-and-wire electrostatic precipitator (ESP), for assessing exposure to aircraft engine cold start particles. Tests were performed in the laboratory to characterize the sampler's collection efficiency and to determine the magnitude of adsorption and evaporation artifacts. A low-temperature chamber was developed for the artifact experiments so tests could be performed at temperatures similar to actual field conditions. The ESP collected particles from 0.5 to 20 micro m diameter with greater than 98% efficiency at particle concentrations up to 100 mg/m(3). Adsorption artifacts were less than 5 micro g/m(3) when sampling a high concentration vapor stream. Evaporation artifacts were significantly lower for the ESP than for PVC membrane filters across a range of sampling times and incoming vapor concentrations. These tests indicate that the ESP provides more accurate exposure assessment results than traditional filter-based particle samplers when sampling cold start particles produced by an aircraft engine.

  14. Aircraft Turbine Engine Monitoring Experience: An Overview and Lessons Learned from Selected Case Studies.

    DTIC Science & Technology

    1980-08-01

    Engines DMMH/FH 1.12 0.80 Removal rate/1000 hr 1.74 1.85 The OPTEVFOR analysis was limited on several counts: (1) The evaluation failed to consider or...investigate aircraft turbine engine monitoring experience. Conducted under the Project AIR FORCE project, "Methods and Applications of Life-Cycle Analysis for...for hot-section parts; o Hot-section parts vary in age and accumulated creep ; o Other failure modes (low cycle fatigue , thermal shock, etc.) were

  15. Advanced Methods for Acoustic and Thrust Benefits for Aircraft Engine Nozzles

    NASA Technical Reports Server (NTRS)

    Morgan, Morris H., III; Gilinsky, Mikhail M.

    2000-01-01

    The Fluid Mechanics and Acoustics Laboratory (FM&AL) was established At Hampton University in June of 1996. In addition, the FM&AL jointly conducted research with the Central AeroHydrodynamics Institute (TsAGI, Moscow) in Russia under a 2.5 year Civilian Research and Development Foundation (CRDF). The goals of the FM&AL programs are two fold: 1) to improve the working efficiency of the FM&AL team in generating new innovative ideas and in conducting research in the field of fluid dynamics and acoustics, basically for improvement of supersonic and subsonic aircraft engines, and 2) to attract promising minority students to this research and training and, in cooperation with other HU departments, to teach them basic knowledge in Aerodynamics, Gas Dynamics, and Theoretical and Experimental Methods in Aeroacoustics and Computational Fluid Dynamics (CFD). The research at the FM&AL supports reduction schemes associated with the emission of engine pollutants for commercial aircraft and concepts for reduction of observables for military aircraft. These research endeavors relate to the goals of the NASA Strategic Enterprise in Aeronautics concerning the development of environmentally acceptable aircraft. It is in this precise area, where the US aircraft industry, academia, and Government are in great need of trained professionals and which is a high priority goal of the Minority University Research and Education (MUREP) Program, that the HU FM&AL can make its most important contribution. This project already benefits NASA and HU because: First, the innovation, testing, and further development of new techniques for advanced propulsion systems are necessary for the successful attainment of the NASA Long Term Goals in Aeronautics and Space Transportation Technology (ASTT) including Global Civil Aviation, Revolutionary Technology Leaps, Access to Space, R&D Services, and the economic competitiveness of the US Aircraft Industry in the 2 1 st century. Secondly, the joint

  16. Aircraft Turbofan Engine Health Estimation Using Constrained Kalman Filtering

    NASA Technical Reports Server (NTRS)

    Simon, Dan; Simon, Donald L.

    2003-01-01

    Kalman filters are often used to estimate the state variables of a dynamic system. However, in the application of Kalman filters some known signal information is often either ignored or dealt with heuristically. For instance, state variable constraints (which may be based on physical considerations) are often neglected because they do not fit easily into the structure of the Kalman filter. This paper develops an analytic method of incorporating state variable inequality constraints in the Kalman filter. The resultant filter is a combination of a standard Kalman filter and a quadratic programming problem. The incorporation of state variable constraints increases the computational effort of the filter but significantly improves its estimation accuracy. The improvement is proven theoretically and shown via simulation results obtained from application to a turbofan engine model. This model contains 16 state variables, 12 measurements, and 8 component health parameters. It is shown that the new algorithms provide improved performance in this example over unconstrained Kalman filtering.

  17. 14 CFR 25.1193 - Cowling and nacelle skin.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Cowling and nacelle skin. 25.1193 Section... and nacelle skin. (a) Each cowling must be constructed and supported so that it can resist any... openings or by burning through external skin, any other zone or region where it would create...

  18. 14 CFR 25.1193 - Cowling and nacelle skin.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Cowling and nacelle skin. 25.1193 Section... and nacelle skin. (a) Each cowling must be constructed and supported so that it can resist any... openings or by burning through external skin, any other zone or region where it would create...

  19. 14 CFR 25.1193 - Cowling and nacelle skin.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Cowling and nacelle skin. 25.1193 Section... and nacelle skin. (a) Each cowling must be constructed and supported so that it can resist any... openings or by burning through external skin, any other zone or region where it would create...

  20. 14 CFR 25.1193 - Cowling and nacelle skin.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Cowling and nacelle skin. 25.1193 Section... and nacelle skin. (a) Each cowling must be constructed and supported so that it can resist any... openings or by burning through external skin, any other zone or region where it would create...

  1. 14 CFR 25.1193 - Cowling and nacelle skin.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Cowling and nacelle skin. 25.1193 Section... and nacelle skin. (a) Each cowling must be constructed and supported so that it can resist any... openings or by burning through external skin, any other zone or region where it would create...

  2. Proceedings of the Annual Tri-Service Meeting for Aircraft Engine Monitoring and Diagnostics (7th) Held on 5-7 December 1978, at Arnold Engineering Development Center, Arnold AFS, Tennessee

    DTIC Science & Technology

    1979-07-01

    Annual Tri-Service meeting on Aircraft Engine Monitoring and Diagnostics held last fall. 2. For all turbojet and turbofan engines , low cycle fatigue...7 December 1978. Each presentation contains an over-, view of the results and conclusions of the aircraft turbine engine diagnostic efforts that have... AIRCRAFT ENGINE 2-41 MONITORING AND DIAGNOSTIC MEETING T-38 EHMS UPDATE 2-43 A-10 TURBINE ENGINE EVALUATION (TEMS) 2-47 USAF TERMINOLOGY FOR SCORING

  3. Lightweight two-stroke cycle aircraft diesel engine technology enablement program, volume 1

    NASA Technical Reports Server (NTRS)

    Freen, P. D.; Berenyi, S. G.; Brouwers, A. P.; Moynihan, M. E.

    1985-01-01

    An experimental Single Cylinder Test Engine Program is conducted to confirm the analytically projected performance of a two-stroke cycle diesel engine for aircraft applications. The test engine delivered 78kW indicated power from 1007cc displacement, operating at 3500 RPM on Schnuerle loop scavenged two-stroke cycle. Testing confirms the ability of a proposed 4-cylinder version of such an engine to reach the target power at altitude, in a highly turbocharged configuration. The experimental program defines all necessary parameters to permit design of a multicylinder engine for eventual flight applications; including injection system requirement, turbocharging, heat rejection, breathing, scavenging, and structural requirements. The multicylinder engine concept is configured to operate with an augmented turbocharger, but with no primary scavenge blower. The test program is oriented to provide a balanced turbocharger compressor to turbine power balance without an auxiliary scavenging system. Engine cylinder heat rejection to the ambient air has been significantly reduced and the minimum overall turbocharger efficiency required is within the range of commercially available turbochargers. Analytical studies and finite element modeling is made of insulated configurations of the engines - including both ceramic and metallic versions. A second generation test engine is designed based on current test results.

  4. Cost/benefit assessment of the application of composite materials to subsonic commercial transport engines

    NASA Technical Reports Server (NTRS)

    Faddoul, J. R.; Signorelli, R. A.

    1976-01-01

    Results from a number of studies concerned with the cost and benefits of applying advanced composite materials to commercial turbofan engines are summarized. For each application area the optimistic and pessimistic benefit projections were averaged to arrive at a projected yearly percentage fuel savings for a commercial fleet of advanced technology transport aircraft. Engine components included in the summary are the fan section which includes fan blades, fan frame/case, and the blade containment ring; the nacelle; and the high pressure turbine blades and vanes. The projected fuel savings resulting from the application of composites are 1.85 percent for the fan section, 1.75 percent for the nacelle, and 2.35 percent for the high pressure turbine.

  5. Hybrid Kalman Filter: A New Approach for Aircraft Engine In-Flight Diagnostics

    NASA Technical Reports Server (NTRS)

    Kobayashi, Takahisa; Simon, Donald L.

    2006-01-01

    In this paper, a uniquely structured Kalman filter is developed for its application to in-flight diagnostics of aircraft gas turbine engines. The Kalman filter is a hybrid of a nonlinear on-board engine model (OBEM) and piecewise linear models. The utilization of the nonlinear OBEM allows the reference health baseline of the in-flight diagnostic system to be updated to the degraded health condition of the engines through a relatively simple process. Through this health baseline update, the effectiveness of the in-flight diagnostic algorithm can be maintained as the health of the engine degrades over time. Another significant aspect of the hybrid Kalman filter methodology is its capability to take advantage of conventional linear and nonlinear Kalman filter approaches. Based on the hybrid Kalman filter, an in-flight fault detection system is developed, and its diagnostic capability is evaluated in a simulation environment. Through the evaluation, the suitability of the hybrid Kalman filter technique for aircraft engine in-flight diagnostics is demonstrated.

  6. A Systematic Approach to Sensor Selection for Aircraft Engine Health Estimation

    NASA Technical Reports Server (NTRS)

    Simon, Donald L.; Garg, Sanjay

    2009-01-01

    A systematic approach for selecting an optimal suite of sensors for on-board aircraft gas turbine engine health estimation is presented. The methodology optimally chooses the engine sensor suite and the model tuning parameter vector to minimize the Kalman filter mean squared estimation error in the engine s health parameters or other unmeasured engine outputs. This technique specifically addresses the underdetermined estimation problem where there are more unknown system health parameters representing degradation than available sensor measurements. This paper presents the theoretical estimation error equations, and describes the optimization approach that is applied to select the sensors and model tuning parameters to minimize these errors. Two different model tuning parameter vector selection approaches are evaluated: the conventional approach of selecting a subset of health parameters to serve as the tuning parameters, and an alternative approach that selects tuning parameters as a linear combination of all health parameters. Results from the application of the technique to an aircraft engine simulation are presented, and compared to those from an alternative sensor selection strategy.

  7. On-Board Aircraft Damage Assessment.

    DTIC Science & Technology

    1978-09-01

    ports 2. Engines a. Surge, stall, flameout b. Nacelle damage c. Engine/nacelles lost 3. Primary structure a. Warping, denting of wings , empennage ...temperature, amount of wing tip deflection, strain of structural members, and accelerations which potentially can give assurance that no damage occurred or...Strain gages can measure the peak strains in selected structural members to determine fin bending loads, horizointal tail bending loads, wing and

  8. Interactive, Secure Web-enabled Aircraft Engine Simulation Using XML Databinding Integration

    NASA Technical Reports Server (NTRS)

    Lin, Risheng; Afjeh, Abdollah A.

    2003-01-01

    This paper discusses the detailed design of an XML databinding framework for aircraft engine simulation. The framework provides an object interface to access and use engine data. while at the same time preserving the meaning of the original data. The Language independent representation of engine component data enables users to move around XML data using HTTP through disparate networks. The application of this framework is demonstrated via a web-based turbofan propulsion system simulation using the World Wide Web (WWW). A Java Servlet based web component architecture is used for rendering XML engine data into HTML format and dealing with input events from the user, which allows users to interact with simulation data from a web browser. The simulation data can also be saved to a local disk for archiving or to restart the simulation at a later time.

  9. Implementation of an Integrated On-Board Aircraft Engine Diagnostic Architecture

    NASA Technical Reports Server (NTRS)

    Armstrong, Jeffrey B.; Simon, Donald L.

    2012-01-01

    An on-board diagnostic architecture for aircraft turbofan engine performance trending, parameter estimation, and gas-path fault detection and isolation has been developed and evaluated in a simulation environment. The architecture incorporates two independent models: a realtime self-tuning performance model providing parameter estimates and a performance baseline model for diagnostic purposes reflecting long-term engine degradation trends. This architecture was evaluated using flight profiles generated from a nonlinear model with realistic fleet engine health degradation distributions and sensor noise. The architecture was found to produce acceptable estimates of engine health and unmeasured parameters, and the integrated diagnostic algorithms were able to perform correct fault isolation in approximately 70 percent of the tested cases

  10. A summary of computational experience at GE Aircraft Engines for complex turbulent flows in gas turbines

    NASA Technical Reports Server (NTRS)

    Zerkle, Ronald D.; Prakash, Chander

    1995-01-01

    This viewgraph presentation summarizes some CFD experience at GE Aircraft Engines for flows in the primary gaspath of a gas turbine engine and in turbine blade cooling passages. It is concluded that application of the standard k-epsilon turbulence model with wall functions is not adequate for accurate CFD simulation of aerodynamic performance and heat transfer in the primary gas path of a gas turbine engine. New models are required in the near-wall region which include more physics than wall functions. The two-layer modeling approach appears attractive because of its computational complexity. In addition, improved CFD simulation of film cooling and turbine blade internal cooling passages will require anisotropic turbulence models. New turbulence models must be practical in order to have a significant impact on the engine design process. A coordinated turbulence modeling effort between NASA centers would be beneficial to the gas turbine industry.

  11. Application of a Bank of Kalman Filters for Aircraft Engine Fault Diagnostics

    NASA Technical Reports Server (NTRS)

    Kobayashi, Takahisa; Simon, Donald L.

    2003-01-01

    In this paper, a bank of Kalman filters is applied to aircraft gas turbine engine sensor and actuator fault detection and isolation (FDI) in conjunction with the detection of component faults. This approach uses multiple Kalman filters, each of which is designed for detecting a specific sensor or actuator fault. In the event that a fault does occur, all filters except the one using the correct hypothesis will produce large estimation errors, thereby isolating the specific fault. In the meantime, a set of parameters that indicate engine component performance is estimated for the detection of abrupt degradation. The proposed FDI approach is applied to a nonlinear engine simulation at nominal and aged conditions, and the evaluation results for various engine faults at cruise operating conditions are given. The ability of the proposed approach to reliably detect and isolate sensor and actuator faults is demonstrated.

  12. New technique for the direct measurement of core noise from aircraft engines

    NASA Technical Reports Server (NTRS)

    Krejsa, E. A.

    1981-01-01

    A new technique is presented for directly measuring the core noise levels from gas turbine aircraft engines. The technique requires that fluctuating pressures be measured in the far-field and at two locations within the engine core. The cross-spectra of these measurements are used to determine the levels of the far-field noise that propagated from the engine core. The technique makes it possible to measure core noise levels even when other noise sources dominate. The technique was applied to signals measured from an AVCO Lycoming YF102 turbofan engine. Core noise levels as a function of frequency and radiation angle were measured and are presented over a range of power settings.

  13. A Systematic Approach for Model-Based Aircraft Engine Performance Estimation

    NASA Technical Reports Server (NTRS)

    Simon, Donald L.; Garg, Sanjay

    2010-01-01

    A requirement for effective aircraft engine performance estimation is the ability to account for engine degradation, generally described in terms of unmeasurable health parameters such as efficiencies and flow capacities related to each major engine module. This paper presents a linear point design methodology for minimizing the degradation-induced error in model-based aircraft engine performance estimation applications. The technique specifically focuses on the underdetermined estimation problem, where there are more unknown health parameters than available sensor measurements. A condition for Kalman filter-based estimation is that the number of health parameters estimated cannot exceed the number of sensed measurements. In this paper, the estimated health parameter vector will be replaced by a reduced order tuner vector whose dimension is equivalent to the sensed measurement vector. The reduced order tuner vector is systematically selected to minimize the theoretical mean squared estimation error of a maximum a posteriori estimator formulation. This paper derives theoretical estimation errors at steady-state operating conditions, and presents the tuner selection routine applied to minimize these values. Results from the application of the technique to an aircraft engine simulation are presented and compared to the estimation accuracy achieved through conventional maximum a posteriori and Kalman filter estimation approaches. Maximum a posteriori estimation results demonstrate that reduced order tuning parameter vectors can be found that approximate the accuracy of estimating all health parameters directly. Kalman filter estimation results based on the same reduced order tuning parameter vectors demonstrate that significantly improved estimation accuracy can be achieved over the conventional approach of selecting a subset of health parameters to serve as the tuner vector. However, additional development is necessary to fully extend the methodology to Kalman filter

  14. Thermal-mechanical fatigue crack growth in aircraft engine materials

    NASA Astrophysics Data System (ADS)

    Dai, Yi

    1993-08-01

    This thesis summarizes the major technical achievements obtained as a part of a collaborative research and development project between Ecole Polytechnique and Pratt & Whitney Canada. These achievements include: (1) a thermal-mechanical fatigue (TMF) testing rig which is capable of studying the fatigue behaviors of gas turbine materials under simultaneous changes of temperatures and strains or stress; (2) an advanced alternative current potential drop (ACPD) measurement system which is capable of performing on-line monitoring of fatigue crack initiation and growth in specimen testing under isothermal and TMF conditions; (3) fatigue crack initiation and short crack growth data for the titanium specimens designed with notch features associated with bolt holes of compressor discs; (4) thermal-mechanical fatigue crack growth data for two titanium alloys being used in PWC engine components, which explained the material fatigue behavior encountered in full-scale component testing; (5) a complete fractographic analysis for the tested specimens which enhanced the understanding of the fatigue crack growth mechanisms and helped to establish an analytical crack growth model; and (6) application of the ACPD fatigue crack monitoring technique to single tooth firtree specimen (STFT) LCF testing of PWA 1480 single crystal alloy. Finally, a comprehensive discussion concerning the results pertaining to this research project is presented.

  15. Impact Testing of Composites for Aircraft Engine Fan Cases

    NASA Technical Reports Server (NTRS)

    Roberts, Gary D.; Revilock, Duane M.; Binienda, Wieslaw K.; Nie, Walter Z.; Mackenzie, S. Ben; Todd, Kevin B.

    2001-01-01

    Before composite materials can be considered for use in the fan case of a commercial jet engine, the performance of a composite structure under blade-out loads needs to be demonstrated. The objective of this program is to develop an efficient test and analysis method for evaluating potential composite case concepts. Ballistic impact tests were performed on laminated glass/epoxy composites in order to identify potential failure modes and to provide data for analysis. Flat 7x7 in. panels were impacted with cylindrical titanium projectiles, and 15 in. diameter half-rings were impacted with wedge-shaped titanium projectiles. Composite failure involved local fiber fracture as well as tearing and delamination on a larger scale. A 36 in. diameter full-ring subcomponent was proposed for larger scale testing. Explicit, transient, finite element analyses were used to evaluate impact dynamics and subsequent global deformation for the proposed full-ring subcomponent test. Analyses on half-ring and quarter ring configurations indicated that less expensive smaller scale tests could be used to screen potential composite concepts when evaluation of local impact damage is the primary concern.

  16. Model-Based Control of an Aircraft Engine using an Optimal Tuner Approach

    NASA Technical Reports Server (NTRS)

    Connolly, Joseph W.; Chicatelli, Amy; Garg, Sanjay

    2012-01-01

    This paper covers the development of a model-based engine control (MBEC) method- ology applied to an aircraft turbofan engine. Here, a linear model extracted from the Commercial Modular Aero-Propulsion System Simulation 40,000 (CMAPSS40k) at a cruise operating point serves as the engine and the on-board model. The on-board model is up- dated using an optimal tuner Kalman Filter (OTKF) estimation routine, which enables the on-board model to self-tune to account for engine performance variations. The focus here is on developing a methodology for MBEC with direct control of estimated parameters of interest such as thrust and stall margins. MBEC provides the ability for a tighter control bound of thrust over the entire life cycle of the engine that is not achievable using traditional control feedback, which uses engine pressure ratio or fan speed. CMAPSS40k is capable of modeling realistic engine performance, allowing for a verification of the MBEC tighter thrust control. In addition, investigations of using the MBEC to provide a surge limit for the controller limit logic are presented that could provide benefits over a simple acceleration schedule that is currently used in engine control architectures.

  17. Exergy as a useful tool for the performance assessment of aircraft gas turbine engines: A key review

    NASA Astrophysics Data System (ADS)

    Şöhret, Yasin; Ekici, Selcuk; Altuntaş, Önder; Hepbasli, Arif; Karakoç, T. Hikmet

    2016-05-01

    It is known that aircraft gas turbine engines operate according to thermodynamic principles. Exergy is considered a very useful tool for assessing machines working on the basis of thermodynamics. In the current study, exergy-based assessment methodologies are initially explained in detail. A literature overview is then presented. According to the literature overview, turbofans may be described as the most investigated type of aircraft gas turbine engines. The combustion chamber is found to be the most irreversible component, and the gas turbine component needs less exergetic improvement compared to all other components of an aircraft gas turbine engine. Finally, the need for analyses of exergy, exergo-economic, exergo-environmental and exergo-sustainability for aircraft gas turbine engines is emphasized. A lack of agreement on exergy analysis paradigms and assumptions is noted by the authors. Exergy analyses of aircraft gas turbine engines, fed with conventional fuel as well as alternative fuel using advanced exergy analysis methodology to understand the interaction among components, are suggested to those interested in thermal engineering, aerospace engineering and environmental sciences.

  18. Chemistry Characterization of Jet Aircraft Engine Particulate by XPS: Results from APEX III

    NASA Technical Reports Server (NTRS)

    Vander Wal, Randy L.; Bryg, Victoria M.

    2014-01-01

    This paper reports XPS analysis of jet exhaust particulate from a B737, Lear, ERJ, and A300 aircraft during the APEX III NASA led field campaign. Carbon hybridization and bonding chemistry are identified by high-resolution scans about the C1s core-shell region. Significant organic content as gauged by the sp3/sp2 ratio is found across engines and platforms. Polar oxygen functional groups include carboxylic, carbonyl and phenol with combined content of 20 percent or more. By lower resolution survey scans various elements including transition metals are identified along with lighter elements such as S, N, and O in the form of oxides. Burning additives within lubricants are probable sources of Na, Ba, Ca, Zn, P and possibly Sn. Elements present and their percentages varied significantly across all engines, not revealing any trend or identifiable cause for the differences, though the origin is likely the same for the same element when observed. This finding suggests that their presence can be used as a tracer for identifying soots from aircraft engines as well as diagnostic for monitoring engine performance and wear.

  19. Chemistry characterization of jet aircraft engine particulate matter by XPS: Results from APEX III

    NASA Astrophysics Data System (ADS)

    Vander Wal, Randy L.; Bryg, Victoria M.; Huang, Chung-Hsuan

    2016-09-01

    This paper reports X-ray photoelectron spectroscopy (XPS) analysis of jet exhaust particulate matter (PM) from a B737, Lear, ERJ and A300 aircraft during the APEX III NASA led field campaign. Carbon hybridization and bonding chemistry are identified by high-resolution scans about the C1s core-shell region. Significant organic content as gauged by the sp3/sp2 ratio is found across engines and powers. Polar oxygen functional groups include carboxylic, carbonyl and phenol with combined content of 20% or more. By survey scans various elements including transition metals are identified along with lighter elements such as S, N and O in the form of oxides. Additives within lubricants are probable sources of Na, Ba, Ca, Zn, P and possibly Sn. Elements present and their percentages varied significantly across all engines, not revealing any trend or identifiable cause for the differences, though the origin is likely the same for the same element when observed. This finding suggests that their collective presence could serve as an environmental tracer for identifying PM originating from aircraft engines and serving as a diagnostic for engine performance and wear.

  20. Biofuel blending reduces particle emissions from aircraft engines at cruise conditions

    NASA Astrophysics Data System (ADS)

    Moore, Richard H.; Thornhill, Kenneth L.; Weinzierl, Bernadett; Sauer, Daniel; D’Ascoli, Eugenio; Kim, Jin; Lichtenstern, Michael; Scheibe, Monika; Beaton, Brian; Beyersdorf, Andreas J.; Barrick, John; Bulzan, Dan; Corr, Chelsea A.; Crosbie, Ewan; Jurkat, Tina; Martin, Robert; Riddick, Dean; Shook, Michael; Slover, Gregory; Voigt, Christiane; White, Robert; Winstead, Edward; Yasky, Richard; Ziemba, Luke D.; Brown, Anthony; Schlager, Hans; Anderson, Bruce E.

    2017-03-01

    Aviation-related aerosol emissions contribute to the formation of contrail cirrus clouds that can alter upper tropospheric radiation and water budgets, and therefore climate. The magnitude of air-traffic-related aerosol–cloud interactions and the ways in which these interactions might change in the future remain uncertain. Modelling studies of the present and future effects of aviation on climate require detailed information about the number of aerosol particles emitted per kilogram of fuel burned and the microphysical properties of those aerosols that are relevant for cloud formation. However, previous observational data at cruise altitudes are sparse for engines burning conventional fuels, and no data have previously been reported for biofuel use in-flight. Here we report observations from research aircraft that sampled the exhaust of engines onboard a NASA DC-8 aircraft as they burned conventional Jet A fuel and a 50:50 (by volume) blend of Jet A fuel and a biofuel derived from Camelina oil. We show that, compared to using conventional fuels, biofuel blending reduces particle number and mass emissions immediately behind the aircraft by 50 to 70 per cent. Our observations quantify the impact of biofuel blending on aerosol emissions at cruise conditions and provide key microphysical parameters, which will be useful to assess the potential of biofuel use in aviation as a viable strategy to mitigate climate change.

  1. Biofuel blending reduces particle emissions from aircraft engines at cruise conditions.

    PubMed

    Moore, Richard H; Thornhill, Kenneth L; Weinzierl, Bernadett; Sauer, Daniel; D'Ascoli, Eugenio; Kim, Jin; Lichtenstern, Michael; Scheibe, Monika; Beaton, Brian; Beyersdorf, Andreas J; Barrick, John; Bulzan, Dan; Corr, Chelsea A; Crosbie, Ewan; Jurkat, Tina; Martin, Robert; Riddick, Dean; Shook, Michael; Slover, Gregory; Voigt, Christiane; White, Robert; Winstead, Edward; Yasky, Richard; Ziemba, Luke D; Brown, Anthony; Schlager, Hans; Anderson, Bruce E

    2017-03-15

    Aviation-related aerosol emissions contribute to the formation of contrail cirrus clouds that can alter upper tropospheric radiation and water budgets, and therefore climate. The magnitude of air-traffic-related aerosol-cloud interactions and the ways in which these interactions might change in the future remain uncertain. Modelling studies of the present and future effects of aviation on climate require detailed information about the number of aerosol particles emitted per kilogram of fuel burned and the microphysical properties of those aerosols that are relevant for cloud formation. However, previous observational data at cruise altitudes are sparse for engines burning conventional fuels, and no data have previously been reported for biofuel use in-flight. Here we report observations from research aircraft that sampled the exhaust of engines onboard a NASA DC-8 aircraft as they burned conventional Jet A fuel and a 50:50 (by volume) blend of Jet A fuel and a biofuel derived from Camelina oil. We show that, compared to using conventional fuels, biofuel blending reduces particle number and mass emissions immediately behind the aircraft by 50 to 70 per cent. Our observations quantify the impact of biofuel blending on aerosol emissions at cruise conditions and provide key microphysical parameters, which will be useful to assess the potential of biofuel use in aviation as a viable strategy to mitigate climate change.

  2. The new low nitrogen steel LNS -- A material for advanced aircraft engine and aerospace bearing applications

    SciTech Connect

    Berns, H.; Ebert, F.J.

    1998-12-31

    Development tendencies for future aircraft jet engines require new design concepts for rolling element bearings because of an overall increase of loads, temperatures, rotational speeds and the use of new high temperature lubricants. This paper reviews some of the key parameters which in the past led to the development and application of the known aircraft bearing steels such as M50, M50 NiL and recently Cronidur 30{reg_sign} (AMS 5898). The performance limits of the currently used aerospace bearing steels and the increasing demands on bearing performance for future aerospace applications gave the impact to the design of a new corrosion resistant steel grade of the nitrogen alloyed type, which is suitable for case hardening by nitrogen--the so called Low nitrogen steel (LNS). The development of the alloy (US pat. 5,503,797), the attainable properties and the corresponding heat treatment process are presented. Achievable hardness, case depth, residual stress pattern and corrosion resistance prove the new LNS to be a promising candidate for the next generation of aircraft engine bearings and for advanced, integrated bearing-gear-shaft design concepts.

  3. Impact of future fuel properties on aircraft engines and fuel systems

    NASA Technical Reports Server (NTRS)

    Rudey, R. A.; Grobman, J. S.

    1978-01-01

    From current projections of the availability of high-quality petroleum crude oils, it is becoming increasingly apparent that the specifications for hydrocarbon jet fuels may have to be modified. The problems that are most likely to be encountered as a result of these modifications relate to engine performance, component durability and maintenance, and aircraft fuel-system performance. The effect on engine performance will be associated with changes in specific fuel consumption, ignition at relight limits, at exhaust emissions. Durability and maintenance will be affected by increases in combustor liner temperatures, carbon deposition, gum formation in fuel nozzles, and erosion and corrosion of turbine blades and vanes. Aircraft fuel-system performance will be affected by increased deposits in fuel-system heat exchangers and changes in the pumpability and flowability of the fuel. The severity of the potential problems is described in terms of the fuel characteristics most likely to change in the future. Recent data that evaluate the ability of current-technology aircraft to accept fuel specification changes are presented, and selected technological advances that can reduce the severity of the problems are described and discussed.

  4. Preliminary design of propulsion system for V/STOL research and technology aircraft

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The V/STOL Research and Technology Aircraft (RTA)propulsion system design effort is limited to components of the lift/cruise engines, turboshaft engine modifications, lift fan assembly, and propulsion system performance generation. The uninstalled total net thrust with all engines and fans operating at intermediate power was 37,114 pounds. Uninstalled system total net thrust was 27,102 pounds when one lift/cruise is inoperative. Components have lives above the 500 hours of the RTA duty cycle. The L/C engine used in a fixed nacelle has the cross shaft forward of the reduction gear whereas the cross shaft is aft of the reduction gear in a tilt nacelle L/C engine. The lift/cruise gearbox contains components and technologies from other DDA engines. The rotor has a 62-inch diameter and contains 22 composite blades that have a hub/tip ratio of 0.454. The blade pitch change mechanism contains hydraulic and mechanical redundancy. The lift fan assembly is completely self-contained including oil cooling in 10 exit vanes.

  5. Design of sidewall treatment of cabin noise control of a twin engine turboprop aircraft

    NASA Technical Reports Server (NTRS)

    Vaicaitis, R.; Slazak, M.

    1983-01-01

    An analytical procedure was used to predict the noise transmission into the cabin of a twin engine general aviation aircraft. This model was then used to optimize the interior A weighted noise levels to an average value of about 85 dBA. The surface pressure noise spectral levels were selected utilizing experimental flight data and empirical predictions. The add on treatments considered in this optimization study include aluminum honeycomb panels, constrained layer damping tape, porous acoustic blankets, acoustic foams, septum barriers and limp trim panels which are isolated from the vibration of the main sidewall structure. To reduce the average noise level in the cabin from about 102 kBA (baseline) to 85 dBA (optimized), the added weight of the noise control treatment is about 2% of the total gross takeoff weight of the aircraft.

  6. Modeling and Detection of Ice Particle Accretion in Aircraft Engine Compression Systems

    NASA Technical Reports Server (NTRS)

    May, Ryan D.; Simon, Donald L.; Guo, Ten-Huei

    2012-01-01

    The accretion of ice particles in the core of commercial aircraft engines has been an ongoing aviation safety challenge. While no accidents have resulted from this phenomenon to date, numerous engine power loss events ranging from uneventful recoveries to forced landings have been recorded. As a first step to enabling mitigation strategies during ice accretion, a detection scheme must be developed that is capable of being implemented on board modern engines. In this paper, a simple detection scheme is developed and tested using a realistic engine simulation with approximate ice accretion models based on data from a compressor design tool. These accretion models are implemented as modified Low Pressure Compressor maps and have the capability to shift engine performance based on a specified level of ice blockage. Based on results from this model, it is possible to detect the accretion of ice in the engine core by observing shifts in the typical sensed engine outputs. Results are presented in which, for a 0.1 percent false positive rate, a true positive detection rate of 98 percent is achieved.

  7. Application of automotive engine control technology to general aviation aircraft powerplants

    NASA Astrophysics Data System (ADS)

    Tennant, Christopher John

    1997-10-01

    The general aviation industry has lagged behind the automotive industry in powerplant development due to depressed economic conditions in their marketplace. Recent efforts to revitalize the industry have encountered the hindrance of thirty-year-old engine technology. Current automotive engine control technology has been reviewed for its potential for transfer to existing general aviation powerplants. Current automotive engine control technology was classified into basic, correction, and feedback elements for the control of fuel flow and ignition timing. The value of each element was assessed for application to a general aviation powerplant in terms of an aviation duty cycle. An extensive database produced from tests of a 1.9 liter Saturn automotive engine was used to quantify potential benefits by providing information about engine operation over a wide range of air/fuel ratios and ignition timings. It was assumed that compliance with future emissions regulations for aircraft was a serious concern. A method for quantifying the effects of some controller elements that took into account emissions, thermal efficiency and power output of the engine was developed. The study concluded that all existing automotive engine control elements offer benefits to aviation powerplants, the most predominant of which are those that control fuel delivery.

  8. Aircraft engine hot section technology: An overview of the HOST Project

    NASA Technical Reports Server (NTRS)

    Sokolowski, Daniel E.; Hirschberg, Marvin H.

    1987-01-01

    NASA sponsored the Turbine Engine Hot Section Technology (HOST) Project to address the need for improved durability in advanced aircraft engine combustors and turbines. Analytical and experimental activities aimed at more accurate prediction of the aerothermal environment, the thermomechanical loads, the material behavior and structural responses to loads, and life predictions for cyclic high-temperature operation were underway for the last 7 years. The project has involved representatives from six engineering disciplines who are spread across three work sectors (industry, academia, and NASA). The HOST Project not only initiated and sponsored 70 major activities, but was also the keystone in joining the multiple disciplines and work sectors to focus on critical research needs. A broad overview of the project is given along with initial indications of the project's impact.

  9. Hydraulic fluids and jet engine oil: pyrolysis and aircraft air quality.

    PubMed

    van Netten, C; Leung, V

    2001-01-01

    Incidents of smoke in aircraft cabins often result from jet engine oil and/or hydraulic fluid that leaks into ventilation air, which can be subjected to temperatures that exceed 500 degrees C. Exposed flight-crew members have reported symptoms, including dizziness, nausea, disorientation, blurred vision, and tingling in the legs and arms. In this study, the authors investigated pyrolysis products of one jet engine oil and two hydraulic fluids at 525 degrees C. Engine oil was an important source of carbon monoxide. Volatile agents and organophosphate constituents were released from all the agents tested; however, the neurotoxin trimethyl propane phosphate was not found. The authors hypothesized that localized condensation of pyrolysis products in ventilation ducts, followed by mobilization when cabin heat demand was high, accounted for mid-flight incidents. The authors recommended that carbon monoxide data be logged continuously to capture levels during future incidents.

  10. Aircraft engine hot section technology: An overview of the HOST Project

    NASA Technical Reports Server (NTRS)

    Sokolowski, Daniel E.; Hirschberg, Marvin H.

    1990-01-01

    NASA sponsored the Turbine Engine Hot Section (HOST) project to address the need for improved durability in advanced aircraft engine combustors and turbines. Analytical and experimental activities aimed at more accurate prediction of the aerothermal environment, the thermomechanical loads, the material behavior and structural responses to loads, and life predictions for cyclic high temperature operation were conducted from 1980 to 1987. The project involved representatives from six engineering disciplines who are spread across three work disciplines - industry, academia, and NASA. The HOST project not only initiated and sponsored 70 major activities, but also was the keystone in joining the multiple disciplines and work sectors to focus on critical research needs. A broad overview of the project is given along with initial indications of the project's impact.

  11. A Hybrid Neural Network-Genetic Algorithm Technique for Aircraft Engine Performance Diagnostics

    NASA Technical Reports Server (NTRS)

    Kobayashi, Takahisa; Simon, Donald L.

    2001-01-01

    In this paper, a model-based diagnostic method, which utilizes Neural Networks and Genetic Algorithms, is investigated. Neural networks are applied to estimate the engine internal health, and Genetic Algorithms are applied for sensor bias detection and estimation. This hybrid approach takes advantage of the nonlinear estimation capability provided by neural networks while improving the robustness to measurement uncertainty through the application of Genetic Algorithms. The hybrid diagnostic technique also has the ability to rank multiple potential solutions for a given set of anomalous sensor measurements in order to reduce false alarms and missed detections. The performance of the hybrid diagnostic technique is evaluated through some case studies derived from a turbofan engine simulation. The results show this approach is promising for reliable diagnostics of aircraft engines.

  12. Impact Analyses and Tests of Metal Cask Considering Aircraft Engine Crash - 12308

    SciTech Connect

    Lee, Sanghoon; Choi, Woo-Seok; Kim, Ki-Young; Jeon, Je-Eon; Seo, Ki-Seog

    2012-07-01

    The structural integrity of a dual purpose metal cask currently under development by the Korea Radioactive Waste Management Cooperation (KRMC) is evaluated through analyses and tests under a high-speed missile impact considering the targeted aircraft crash conditions. The impact conditions were carefully chosen through a survey on accident cases and recommendations from the literature. The missile impact velocity was set at 150 m/s, and two impact orientations were considered. A simplified missile simulating a commercial aircraft engine is designed from an impact load history curve provided in the literature. In the analyses, the focus is on the evaluation of the containment boundary integrity of the metal cask. The analyses results are compared with the results of tests using a 1/3 scale model. The results show very good agreements, and the procedure and methodology adopted in the structural analyses are validated. While the integrity of the cask is maintained in one evaluation where the missile impacts the top side of the free standing cask, the containment boundary is breached in another case in which the missile impacts the center of the cask lid in a perpendicular orientation. A safety assessment using a numerical simulation of an aircraft engine crash into spent nuclear fuel storage systems is performed. A commercially available explicit finite element code is utilized for the dynamic simulation, and the strain rate effect is included in the modeling of the materials used in the target system and missile. The simulation results show very good agreement with the test results. It is noted that this is the first test considering an aircraft crash in Korea. (authors)

  13. Short Haul Civil Tiltrotor Study in MIDAS: Auto versus Manual Nacelle Procedures for Commanded Go-Around

    NASA Technical Reports Server (NTRS)

    Atencio, Adolph, Jr.; Banda, Carolyn

    1998-01-01

    Tiltrotor aircraft combine the speed and range of a turboprop performance with the ability to take off and land in a vertical mode like a helicopter. These aircraft will transport passengers from city center to city center and from satellite airports to major hub airports to make connections to long range travel. The Short Haul Civil Tiltrotor (SH(CT)) being studied by NASA is a concept 40 passenger civil tiltrotor (CTR) transport. The Man-machine Integration Design and Analysis System (MIDAS) was used to evaluate human performance in terms of crew procedures and pilot workload for a simulated 40 passenger Civil Tiltrotor Transport on a steep approach to a vertiport. The scenario for the simulation was a normal approach to the vertiport that is interrupted by a commanded go-around at the landing decision point. The simulation contrasted an automated discrete nacelle mode control with a fully manual nacelle control mode for the go-around. The MIDAS simulation showed that the pilot task loading during approach and for the commanded go-around is high and that pilot workload is near capacity throughout. The go-around in manual nacelle mode was most demanding, resulting in additional time requirements to complete necessary tasks.

  14. Fault detection and isolation of systems with slowly varying parameters—simulation with a simplified aircraft turbo engine model

    NASA Astrophysics Data System (ADS)

    Wu, Xuekui; Campion, Guy

    2004-03-01

    This paper is directly related to an ongoing research and development project concerned with identification, diagnosis and control of aircraft engines. Within these topics, this paper focuses on fault diagnosis using the parametric statistical approach. As a continuation work of G. Gomez, et al. (A case study of physical diagnosis for aircraft engines, Proceedings of ACC'2000, USA, 2000, pp. 2383-2387.), the analysis of deterioration cases, often encountered in practical engineering, in which several health parameters are changing slowly at different rate, constitutes the main contribution of this paper. Some questions concerning this deterioration situation are discussed and some simulation experiments are given.

  15. High-Temperature, Lightweight, Self-Healing Ceramic Composites for Aircraft Engine Applications

    NASA Technical Reports Server (NTRS)

    Raj, Sai V.; Bhatt, Ramkrishna

    2013-01-01

    The use of reliable, high-temperature, lightweight materials in the manufacture of aircraft engines is expected to result in lower fossil and biofuel consumption, thereby leading to cost savings and lower carbon emissions due to air travel. Although nickel-based superalloy blades and vanes have been successfully used in aircraft engines for several decades, there has been an increased effort to develop high-temperature, lightweight, creep-resistant substitute materials under various NASA programs over the last two decades. As a result, there has been a great deal of interest in developing SiC/SiC ceramic matrix composites (CMCs) due to their higher damage tolerance compared to monolithic ceramics. Current-generation SiC/SiC ceramic matrix composites rely almost entirely on the SiC fibers to carry the load, owing to the premature cracking of the matrix during loading. Thus, the high-temperature usefulness of these CMCs falls well below their theoretical capabilities. The objective of this work is to develop a new class of high-temperature, lightweight, self-healing, SiC fiber-reinforced, engineered matrix ceramic composites.

  16. Optimal Tuner Selection for Kalman Filter-Based Aircraft Engine Performance Estimation

    NASA Technical Reports Server (NTRS)

    Simon, Donald L.; Garg, Sanjay

    2010-01-01

    A linear point design methodology for minimizing the error in on-line Kalman filter-based aircraft engine performance estimation applications is presented. This technique specifically addresses the underdetermined estimation problem, where there are more unknown parameters than available sensor measurements. A systematic approach is applied to produce a model tuning parameter vector of appropriate dimension to enable estimation by a Kalman filter, while minimizing the estimation error in the parameters of interest. Tuning parameter selection is performed using a multi-variable iterative search routine which seeks to minimize the theoretical mean-squared estimation error. This paper derives theoretical Kalman filter estimation error bias and variance values at steady-state operating conditions, and presents the tuner selection routine applied to minimize these values. Results from the application of the technique to an aircraft engine simulation are presented and compared to the conventional approach of tuner selection. Experimental simulation results are found to be in agreement with theoretical predictions. The new methodology is shown to yield a significant improvement in on-line engine performance estimation accuracy

  17. An Integrated Approach for Aircraft Engine Performance Estimation and Fault Diagnostics

    NASA Technical Reports Server (NTRS)

    imon, Donald L.; Armstrong, Jeffrey B.

    2012-01-01

    A Kalman filter-based approach for integrated on-line aircraft engine performance estimation and gas path fault diagnostics is presented. This technique is specifically designed for underdetermined estimation problems where there are more unknown system parameters representing deterioration and faults than available sensor measurements. A previously developed methodology is applied to optimally design a Kalman filter to estimate a vector of tuning parameters, appropriately sized to enable estimation. The estimated tuning parameters can then be transformed into a larger vector of health parameters representing system performance deterioration and fault effects. The results of this study show that basing fault isolation decisions solely on the estimated health parameter vector does not provide ideal results. Furthermore, expanding the number of the health parameters to address additional gas path faults causes a decrease in the estimation accuracy of those health parameters representative of turbomachinery performance deterioration. However, improved fault isolation performance is demonstrated through direct analysis of the estimated tuning parameters produced by the Kalman filter. This was found to provide equivalent or superior accuracy compared to the conventional fault isolation approach based on the analysis of sensed engine outputs, while simplifying online implementation requirements. Results from the application of these techniques to an aircraft engine simulation are presented and discussed.

  18. Experimental investigation and modeling of an aircraft Otto engine operating with gasoline and heavier fuels

    NASA Astrophysics Data System (ADS)

    Saldivar Olague, Jose

    A Continental "O-200" aircraft Otto-cycle engine has been modified to burn diesel fuel. Algebraic models of the different processes of the cycle were developed from basic principles applied to a real engine, and utilized in an algorithm for the simulation of engine performance. The simulation provides a means to investigate the performance of the modified version of the Continental engine for a wide range of operating parameters. The main goals of this study are to increase the range of a particular aircraft by reducing the specific fuel consumption of the engine, and to show that such an engine can burn heavier fuels (such as diesel, kerosene, and jet fuel) instead of gasoline. Such heavier fuels are much less flammable during handling operations making them safer than aviation gasoline and very attractive for use in flight operations from naval vessels. The cycle uses an electric spark to ignite the heavier fuel at low to moderate compression ratios, The stratified charge combustion process is utilized in a pre-chamber where the spray injection of the fuel occurs at a moderate pressure of 1200 psi (8.3 MPa). One advantage of fuel injection into the combustion chamber instead of into the intake port, is that the air-to-fuel ratio can be widely varied---in contrast to the narrower limits of the premixed combustion case used in gasoline engines---in order to obtain very lean combustion. Another benefit is that higher compression ratios can be attained in the modified cycle with heavier fuels. The combination of injection into the chamber for lean combustion, and higher compression ratios allow to limit the peak pressure in the cylinder, and to avoid engine damage. Such high-compression ratios are characteristic of Diesel engines and lead to increase in thermal efficiency without pre-ignition problems. In this experimental investigation, operations with diesel fuel have shown that considerable improvements in the fuel efficiency are possible. The results of

  19. A One Dimensional, Time Dependent Inlet/Engine Numerical Simulation for Aircraft Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Garrard, Doug; Davis, Milt, Jr.; Cole, Gary

    1999-01-01

    The NASA Lewis Research Center (LeRC) and the Arnold Engineering Development Center (AEDC) have developed a closely coupled computer simulation system that provides a one dimensional, high frequency inlet/engine numerical simulation for aircraft propulsion systems. The simulation system, operating under the LeRC-developed Application Portable Parallel Library (APPL), closely coupled a supersonic inlet with a gas turbine engine. The supersonic inlet was modeled using the Large Perturbation Inlet (LAPIN) computer code, and the gas turbine engine was modeled using the Aerodynamic Turbine Engine Code (ATEC). Both LAPIN and ATEC provide a one dimensional, compressible, time dependent flow solution by solving the one dimensional Euler equations for the conservation of mass, momentum, and energy. Source terms are used to model features such as bleed flows, turbomachinery component characteristics, and inlet subsonic spillage while unstarted. High frequency events, such as compressor surge and inlet unstart, can be simulated with a high degree of fidelity. The simulation system was exercised using a supersonic inlet with sixty percent of the supersonic area contraction occurring internally, and a GE J85-13 turbojet engine.

  20. Performance Evaluation of Particle Sampling Probes for Emission Measurements of Aircraft Jet Engines

    NASA Technical Reports Server (NTRS)

    Lee, Poshin; Chen, Da-Ren; Sanders, Terry (Technical Monitor)

    2001-01-01

    Considerable attention has been recently received on the impact of aircraft-produced aerosols upon the global climate. Sampling particles directly from jet engines has been performed by different research groups in the U.S. and Europe. However, a large variation has been observed among published data on the conversion efficiency and emission indexes of jet engines. The variation results surely from the differences in test engine types, engine operation conditions, and environmental conditions. The other factor that could result in the observed variation is the performance of sampling probes used. Unfortunately, it is often neglected in the jet engine community. Particle losses during the sampling, transport, and dilution processes are often not discussed/considered in literatures. To address this issue, we evaluated the performance of one sampling probe by challenging it with monodisperse particles. A significant performance difference was observed on the sampling probe evaluated under different temperature conditions. Thermophoretic effect, nonisokinetic sampling and turbulence loss contribute to the loss of particles in sampling probes. The results of this study show that particle loss can be dramatic if the sampling probe is not well designed. Further, the result allows ones to recover the actual size distributions emitted from jet engines.