Science.gov

Sample records for aircraft environmental systems

  1. Aircraft Environmental Systems Mechanic. Part 2.

    ERIC Educational Resources Information Center

    Chanute AFB Technical Training Center, IL.

    This packet contains learning modules designed for a self-paced course in aircraft environmental systems mechanics that was developed for the Air Force. Learning modules consist of some or all of the following materials: objectives, instructions, equipment, procedures, information sheets, handouts, workbooks, self-tests with answers, review…

  2. Aircraft Environmental Systems Mechanic. Part 1.

    ERIC Educational Resources Information Center

    Chanute AFB Technical Training Center, IL.

    This packet contains learning modules for a self-paced course in aircraft environmental systems mechanics that was developed for the Air Force. Each learning module consists of some or all of the following: objectives, instructions, equipment, procedures, information sheets, handouts, self-tests with answers, review section, tests, and response…

  3. Environmental fog/rain visual display system for aircraft simulators

    NASA Technical Reports Server (NTRS)

    Chase, W. D. (Inventor)

    1982-01-01

    An environmental fog/rain visual display system for aircraft simulators is described. The electronic elements of the system include a real time digital computer, a caligraphic color display which simulates landing lights of selective intensity, and a color television camera for producing a moving color display of the airport runway as depicted on a model terrain board. The mechanical simulation elements of the system include an environmental chamber which can produce natural fog, nonhomogeneous fog, rain and fog combined, or rain only. A pilot looking through the aircraft wind screen will look through the fog and/or rain generated in the environmental chamber onto a viewing screen with the simulated color image of the airport runway thereon, and observe a very real simulation of actual conditions of a runway as it would appear through actual fog and/or rain.

  4. Aircraft Environmental System Mechanic, 2-9. Block III--Aircraft Environmental Systems Units. Military Curriculum Materials for Vocational and Technical Education.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. National Center for Research in Vocational Education.

    This publication contains a teaching guide and student instructional materials for conducting a high school or adult vocational education course to train persons to perform duties as an aircraft environmental systems mechanic. Course content has been adapted from a military course. The instructional design for this course is self-paced and/or…

  5. Changes in structural health monitoring system capability due to aircraft environmental factors

    NASA Astrophysics Data System (ADS)

    Kuhn, Jeffrey D.

    Structural Health Monitoring (SHM) promises to decrease the maintenance cost and increase the availability of aging aircraft fleets by fundamentally changing the way structural inspections are performed. But this promise can only be realized through the consistent and predictable performance of a SHM system throughout the entire remaining life of an aircraft. In a sensor-based SHM system, sensor signal changes are analyzed and interpreted to identify structural flaws. But aircraft environmental factors such as temperature fluctuations, cyclic strain and exposure to various aircraft fluids also have the potential to change SHM sensor signals, raising questions about long term SHM system capability. This research begins by analyzing the current USAF inspection paradigm, known aircraft environmental factors, representative structural inspection locations for the F-15 and C-130, and current SHM technologies. A design of experiments approach is used to build and execute an experiment to determine the effect of one aircraft environmental factor (cyclic strain) on a common SHM technology (PZT-based sensors). Analysis of the experimental results shows the sensors to be significantly affected by cyclic strain, and that the effects can be estimated using a power equation model. A "probability of detection (POD) degradation model" is then developed by extending existing nondestructive evaluation (NDE) POD analysis techniques. This model demonstrates how changes in sensor performance due to an aircraft environmental factor can be used to estimate the change in overall performance of the SHM system. This POD degradation model provides a common framework to predict changes in SHM system performance over the remaining life of an aircraft. An example combining the experimental results with an existing SHM POD analysis shows how the POD degradation model can be applied to current SHM research.

  6. Aircraft Cabin Environmental Quality Sensors

    SciTech Connect

    Gundel, Lara; Kirchstetter, Thomas; Spears, Michael; Sullivan, Douglas

    2010-05-06

    The Indoor Environment Department at Lawrence Berkeley National Laboratory (LBNL) teamed with seven universities to participate in a Federal Aviation Administration (FAA) Center of Excellence (COE) for research on environmental quality in aircraft. This report describes research performed at LBNL on selecting and evaluating sensors for monitoring environmental quality in aircraft cabins, as part of Project 7 of the FAA's COE for Airliner Cabin Environmental Research (ACER)1 effort. This part of Project 7 links to the ozone, pesticide, and incident projects for data collection and monitoring and is a component of a broader research effort on sensors by ACER. Results from UCB and LBNL's concurrent research on ozone (ACER Project 1) are found in Weschler et al., 2007; Bhangar et al. 2008; Coleman et al., 2008 and Strom-Tejsen et al., 2008. LBNL's research on pesticides (ACER Project 2) in airliner cabins is described in Maddalena and McKone (2008). This report focused on the sensors needed for normal contaminants and conditions in aircraft. The results are intended to complement and coordinate with results from other ACER members who concentrated primarily on (a) sensors for chemical and biological pollutants that might be released intentionally in aircraft; (b) integration of sensor systems; and (c) optimal location of sensors within aircraft. The parameters and sensors were selected primarily to satisfy routine monitoring needs for contaminants and conditions that commonly occur in aircraft. However, such sensor systems can also be incorporated into research programs on environmental quality in aircraft cabins.

  7. Air cycle machine for an aircraft environmental control system

    NASA Technical Reports Server (NTRS)

    Decrisantis, Angelo A. (Inventor); O'Coin, James R. (Inventor); Taddey, Edmund P. (Inventor)

    2010-01-01

    An ECS system includes an ACM mounted adjacent an air-liquid heat exchanger through a diffuser that contains a diffuser plate. The diffuser plate receives airflow from the ACM which strikes the diffuser plate and flows radially outward and around the diffuser plate and into the air-liquid heat exchanger to provide minimal pressure loss and proper flow distribution into the air-liquid heat exchanger with significantly less packaging space.

  8. Aircraft Operations Classification System

    NASA Technical Reports Server (NTRS)

    Harlow, Charles; Zhu, Weihong

    2001-01-01

    Accurate data is important in the aviation planning process. In this project we consider systems for measuring aircraft activity at airports. This would include determining the type of aircraft such as jet, helicopter, single engine, and multiengine propeller. Some of the issues involved in deploying technologies for monitoring aircraft operations are cost, reliability, and accuracy. In addition, the system must be field portable and acceptable at airports. A comparison of technologies was conducted and it was decided that an aircraft monitoring system should be based upon acoustic technology. A multimedia relational database was established for the study. The information contained in the database consists of airport information, runway information, acoustic records, photographic records, a description of the event (takeoff, landing), aircraft type, and environmental information. We extracted features from the time signal and the frequency content of the signal. A multi-layer feed-forward neural network was chosen as the classifier. Training and testing results were obtained. We were able to obtain classification results of over 90 percent for training and testing for takeoff events.

  9. Progress of Aircraft System Noise Assessment with Uncertainty Quantification for the Environmentally Responsible Aviation Project

    NASA Technical Reports Server (NTRS)

    Thomas, Russell H.; Burley, Casey L.; Guo, Yueping

    2016-01-01

    Aircraft system noise predictions have been performed for NASA modeled hybrid wing body aircraft advanced concepts with 2025 entry-into-service technology assumptions. The system noise predictions developed over a period from 2009 to 2016 as a result of improved modeling of the aircraft concepts, design changes, technology development, flight path modeling, and the use of extensive integrated system level experimental data. In addition, the system noise prediction models and process have been improved in many ways. An additional process is developed here for quantifying the uncertainty with a 95% confidence level. This uncertainty applies only to the aircraft system noise prediction process. For three points in time during this period, the vehicle designs, technologies, and noise prediction process are documented. For each of the three predictions, and with the information available at each of those points in time, the uncertainty is quantified using the direct Monte Carlo method with 10,000 simulations. For the prediction of cumulative noise of an advanced aircraft at the conceptual level of design, the total uncertainty band has been reduced from 12.2 to 9.6 EPNL dB. A value of 3.6 EPNL dB is proposed as the lower limit of uncertainty possible for the cumulative system noise prediction of an advanced aircraft concept.

  10. Aircraft Environmental System Mechanic, 2-9. Block I--Fundamentals. Military Curriculum Materials for Vocational and Technical Education.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. National Center for Research in Vocational Education.

    This publication contains a teaching guide and student instructional materials for conducting a high school or adult vocational education course to train persons to perform duties as an aircraft environmental systems mechanic. Course content has been adapted from a military course. The instructional design for this course is self-paced and/or…

  11. Unmanned aircraft systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Unmanned platforms have become increasingly more common in recent years for acquiring remotely sensed data. These aircraft are referred to as Unmanned Airborne Vehicles (UAV), Remotely Piloted Aircraft (RPA), Remotely Piloted Vehicles (RPV), or Unmanned Aircraft Systems (UAS), the official term used...

  12. Data-acquisition system for environmental monitoring aboard a twin-engined aircraft

    SciTech Connect

    Tichler, J.; Bernstein, H.; Brown, R.M.; Daum, P.

    1983-01-01

    A number of experimental platforms have been used in support of the Multistate Atmospheric Power Production Study (MAP3S) and the Coastal Meteorology programs at Brookhaven National Laboratory. These platforms include a twin-engine Britten Norman Islander aircraft, a motorized van, a variety of boats and temporary enclosures set up in the field. Each platform carried a data logger consisting of a multiplexer, an analog to digital (A/D) converter and a four track endless loop magnetic tape for data storage. In recent years it has become increasingly evident that the data loggers in use were no longer adequate. Since the aircraft provided the most constraints on the data acquisition system as well as being the most important research platform, a data system was designed for that platform with the secondary goal that the system would serve as a prototype for systems to be used on other platforms.

  13. Aircraft Environmental System Mechanic, 2-9. Block IV--Utility Systems and Flight Line Maintenance. Military Curriculum Materials for Vocational and Technical Education.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. National Center for Research in Vocational Education.

    This publication contains a teaching guide and student instructional materials for conducting a high school or adult vocational education course to train persons to perform duties as an aircraft environmental systems mechanic. The instructional design for this course is self-paced and/or small group-paced. Instructor materials contained in the…

  14. Aircraft Environmental System Mechanic, 2-9. Block II--Air Conditioning Systems. Military Curriculum Materials for Vocational and Technical Education.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. National Center for Research in Vocational Education.

    This publication contains a teaching guide and student instructional materials for conducting a high school or adult vocational education course to train persons to perform duties as an aircraft environmental systems mechanic. Course content has been adapted from a military course. The instructional design for this course is self-pace and/or small…

  15. Aircraft noise synthesis system

    NASA Technical Reports Server (NTRS)

    Mccurdy, David A.; Grandle, Robert E.

    1987-01-01

    A second-generation Aircraft Noise Synthesis System has been developed to provide test stimuli for studies of community annoyance to aircraft flyover noise. The computer-based system generates realistic, time-varying, audio simulations of aircraft flyover noise at a specified observer location on the ground. The synthesis takes into account the time-varying aircraft position relative to the observer; specified reference spectra consisting of broadband, narrowband, and pure-tone components; directivity patterns; Doppler shift; atmospheric effects; and ground effects. These parameters can be specified and controlled in such a way as to generate stimuli in which certain noise characteristics, such as duration or tonal content, are independently varied, while the remaining characteristics, such as broadband content, are held constant. The system can also generate simulations of the predicted noise characteristics of future aircraft. A description of the synthesis system and a discussion of the algorithms and methods used to generate the simulations are provided. An appendix describing the input data and providing user instructions is also included.

  16. Fault diagnosis for the heat exchanger of the aircraft environmental control system based on the strong tracking filter.

    PubMed

    Ma, Jian; Lu, Chen; Liu, Hongmei

    2015-01-01

    The aircraft environmental control system (ECS) is a critical aircraft system, which provides the appropriate environmental conditions to ensure the safe transport of air passengers and equipment. The functionality and reliability of ECS have received increasing attention in recent years. The heat exchanger is a particularly significant component of the ECS, because its failure decreases the system's efficiency, which can lead to catastrophic consequences. Fault diagnosis of the heat exchanger is necessary to prevent risks. However, two problems hinder the implementation of the heat exchanger fault diagnosis in practice. First, the actual measured parameter of the heat exchanger cannot effectively reflect the fault occurrence, whereas the heat exchanger faults are usually depicted by utilizing the corresponding fault-related state parameters that cannot be measured directly. Second, both the traditional Extended Kalman Filter (EKF) and the EKF-based Double Model Filter have certain disadvantages, such as sensitivity to modeling errors and difficulties in selection of initialization values. To solve the aforementioned problems, this paper presents a fault-related parameter adaptive estimation method based on strong tracking filter (STF) and Modified Bayes classification algorithm for fault detection and failure mode classification of the heat exchanger, respectively. Heat exchanger fault simulation is conducted to generate fault data, through which the proposed methods are validated. The results demonstrate that the proposed methods are capable of providing accurate, stable, and rapid fault diagnosis of the heat exchanger.

  17. Fault diagnosis for the heat exchanger of the aircraft environmental control system based on the strong tracking filter.

    PubMed

    Ma, Jian; Lu, Chen; Liu, Hongmei

    2015-01-01

    The aircraft environmental control system (ECS) is a critical aircraft system, which provides the appropriate environmental conditions to ensure the safe transport of air passengers and equipment. The functionality and reliability of ECS have received increasing attention in recent years. The heat exchanger is a particularly significant component of the ECS, because its failure decreases the system's efficiency, which can lead to catastrophic consequences. Fault diagnosis of the heat exchanger is necessary to prevent risks. However, two problems hinder the implementation of the heat exchanger fault diagnosis in practice. First, the actual measured parameter of the heat exchanger cannot effectively reflect the fault occurrence, whereas the heat exchanger faults are usually depicted by utilizing the corresponding fault-related state parameters that cannot be measured directly. Second, both the traditional Extended Kalman Filter (EKF) and the EKF-based Double Model Filter have certain disadvantages, such as sensitivity to modeling errors and difficulties in selection of initialization values. To solve the aforementioned problems, this paper presents a fault-related parameter adaptive estimation method based on strong tracking filter (STF) and Modified Bayes classification algorithm for fault detection and failure mode classification of the heat exchanger, respectively. Heat exchanger fault simulation is conducted to generate fault data, through which the proposed methods are validated. The results demonstrate that the proposed methods are capable of providing accurate, stable, and rapid fault diagnosis of the heat exchanger. PMID:25823010

  18. Fault Diagnosis for the Heat Exchanger of the Aircraft Environmental Control System Based on the Strong Tracking Filter

    PubMed Central

    Ma, Jian; Lu, Chen; Liu, Hongmei

    2015-01-01

    The aircraft environmental control system (ECS) is a critical aircraft system, which provides the appropriate environmental conditions to ensure the safe transport of air passengers and equipment. The functionality and reliability of ECS have received increasing attention in recent years. The heat exchanger is a particularly significant component of the ECS, because its failure decreases the system’s efficiency, which can lead to catastrophic consequences. Fault diagnosis of the heat exchanger is necessary to prevent risks. However, two problems hinder the implementation of the heat exchanger fault diagnosis in practice. First, the actual measured parameter of the heat exchanger cannot effectively reflect the fault occurrence, whereas the heat exchanger faults are usually depicted by utilizing the corresponding fault-related state parameters that cannot be measured directly. Second, both the traditional Extended Kalman Filter (EKF) and the EKF-based Double Model Filter have certain disadvantages, such as sensitivity to modeling errors and difficulties in selection of initialization values. To solve the aforementioned problems, this paper presents a fault-related parameter adaptive estimation method based on strong tracking filter (STF) and Modified Bayes classification algorithm for fault detection and failure mode classification of the heat exchanger, respectively. Heat exchanger fault simulation is conducted to generate fault data, through which the proposed methods are validated. The results demonstrate that the proposed methods are capable of providing accurate, stable, and rapid fault diagnosis of the heat exchanger. PMID:25823010

  19. Fiber Optic Control System integration for advanced aircraft. Electro-optic and sensor fabrication, integration, and environmental testing for flight control systems

    NASA Technical Reports Server (NTRS)

    Seal, Daniel W.; Weaver, Thomas L.; Kessler, Bradley L.; Bedoya, Carlos A.; Mattes, Robert E.

    1994-01-01

    This report describes the design, development, and testing of passive fiber optic sensors and a multiplexing electro-optic architecture (EOA) for installation and flight test on a NASA-owned F-18 aircraft. This hardware was developed under the Fiber Optic Control Systems for Advanced Aircraft program, part of a multiyear NASA initiative to design, develop, and demonstrate through flight test 'fly-by-light' systems for application to advanced aircraft flight and propulsion control. This development included the design and production of 10 passive optical sensors and associated multiplexed EOA hardware based on wavelength division multiplexed (WDM) technology. A variety of sensor types (rotary position, linear position, temperature, and pressure) incorporating a broad range of sensor technologies (WDM analog, WDM digital, analog microbend, and fluorescent time rate of decay) were obtained from different manufacturers and functionally integrated with an independently designed EOA. The sensors were built for installation in a variety of aircraft locations, placing the sensors in a variety of harsh environments. The sensors and EOA were designed and built to have the resulting devices be as close as practical to a production system. The integrated system was delivered to NASA for flight testing on a NASA-owned F-18 aircraft. Development and integration testing of the system provided valuable information as to which sensor types were simplest to design and build for a military aircraft environment and which types were simplest to operate with a multiplexed EOA. Not all sensor types met the full range of performance and environmental requirements. EOA development problems provided information on directions to pursue in future fly-by-light flight control development programs. Lessons learned in the development of the EOA and sensor hardware are summarized.

  20. Turboprop cargo aircraft systems study

    NASA Technical Reports Server (NTRS)

    Muehlbauer, J. C.; Hewell, J. G., Jr.; Lindenbaum, S. P.; Randall, C. C.; Searle, N.; Stone, R. G., Jr.

    1981-01-01

    The effects of using advanced turboprop propulsion systems to reduce the fuel consumption and direct operating costs of cargo aircraft were studied, and the impact of these systems on aircraft noise and noise prints around a terminal area was determined. Parametric variations of aircraft and propeller characteristics were investigated to determine their effects on noiseprint areas, fuel consumption, and direct operating costs. From these results, three aircraft designs were selected and subjected to design refinements and sensitivity analyses. Three competitive turbofan aircraft were also defined from parametric studies to provide a basis for comparing the two types of propulsion.

  1. Aircraft Optimization for Minimum Environmental Impact

    NASA Technical Reports Server (NTRS)

    Antoine, Nicolas; Kroo, Ilan M.

    2001-01-01

    The objective of this research is to investigate the tradeoff between operating cost and environmental acceptability of commercial aircraft. This involves optimizing the aircraft design and mission to minimize operating cost while constraining exterior noise and emissions. Growth in air traffic and airport neighboring communities has resulted in increased pressure to severely penalize airlines that do not meet strict local noise and emissions requirements. As a result, environmental concerns have become potent driving forces in commercial aviation. Traditionally, aircraft have been first designed to meet performance and cost goals, and adjusted to satisfy the environmental requirements at given airports. The focus of the present study is to determine the feasibility of including noise and emissions constraints in the early design of the aircraft and mission. This paper introduces the design tool and results from a case study involving a 250-passenger airliner.

  2. Aircraft landing gear systems

    NASA Technical Reports Server (NTRS)

    Tanner, John A. (Editor)

    1990-01-01

    Topics presented include the laboratory simulation of landing gear pitch-plane dynamics, a summary of recent aircraft/ground vehicle friction measurement tests, some recent aircraft tire thermal studies, and an evaluation of critical speeds in high-speed aircraft. Also presented are a review of NASA antiskid braking research, titanium matrix composite landing gear development, the current methods and perspective of aircraft flotation analysis, the flow rate and trajectory of water spray produced by an aircraft tire, and spin-up studies of the Space Shuttle Orbiter main gear tire.

  3. Intelligent aircraft/airspace systems

    NASA Technical Reports Server (NTRS)

    Wangermann, John P.

    1995-01-01

    Projections of future air traffic predict at least a doubling of the number of revenue passenger miles flown by the year 2025. To meet this demand, an Intelligent Aircraft/Airspace System (IAAS) has been proposed. The IAAS operates on the basis of principled negotiation between intelligent agents. The aircraft/airspace system today consists of many agents, such as airlines, control facilities, and aircraft. All the agents are becoming increasingly capable as technology develops. These capabilities should be exploited to create an Intelligent Aircraft/Airspace System (IAAS) that would meet the predicted traffic levels of 2005.

  4. Aircraft Engine Systems

    NASA Technical Reports Server (NTRS)

    Veres, Joseph

    2001-01-01

    This report outlines the detailed simulation of Aircraft Turbofan Engine. The objectives were to develop a detailed flow model of a full turbofan engine that runs on parallel workstation clusters overnight and to develop an integrated system of codes for combustor design and analysis to enable significant reduction in design time and cost. The model will initially simulate the 3-D flow in the primary flow path including the flow and chemistry in the combustor, and ultimately result in a multidisciplinary model of the engine. The overnight 3-D simulation capability of the primary flow path in a complete engine will enable significant reduction in the design and development time of gas turbine engines. In addition, the NPSS (Numerical Propulsion System Simulation) multidisciplinary integration and analysis are discussed.

  5. Aircraft hydraulic systems. Third edition

    SciTech Connect

    Neese, W.A.

    1991-12-31

    The first nine chapters concern hydraulic components including: tubing, hoses, fittings, seals, pumps, valves, cylinders, and motors. General hydraulic system considerations are included in chapters five and nine, while pneumatic systems are covered in chapter ten. Chapters eleven through fifteen are devoted to aircraft-specific systems such as: landing gear, flight controls, brakes, etc. The material is rounded out with excerpts from the Canadair Challenger 601 training guide to illustrate the use of hydraulic systems in a specific aircraft application.

  6. A Dynamic Navigation Model for Unmanned Aircraft Systems and an Application to Autonomous Front-On Environmental Sensing and Photography Using Low-Cost Sensor Systems

    PubMed Central

    Cooper, Andrew James; Redman, Chelsea Anne; Stoneham, David Mark; Gonzalez, Luis Felipe; Etse, Victor Kwesi

    2015-01-01

    This paper presents an unmanned aircraft system (UAS) that uses a probabilistic model for autonomous front-on environmental sensing or photography of a target. The system is based on low-cost and readily-available sensor systems in dynamic environments and with the general intent of improving the capabilities of dynamic waypoint-based navigation systems for a low-cost UAS. The behavioural dynamics of target movement for the design of a Kalman filter and Markov model-based prediction algorithm are included. Geometrical concepts and the Haversine formula are applied to the maximum likelihood case in order to make a prediction regarding a future state of a target, thus delivering a new waypoint for autonomous navigation. The results of the application to aerial filming with low-cost UAS are presented, achieving the desired goal of maintained front-on perspective without significant constraint to the route or pace of target movement. PMID:26343680

  7. A Dynamic Navigation Model for Unmanned Aircraft Systems and an Application to Autonomous Front-On Environmental Sensing and Photography Using Low-Cost Sensor Systems.

    PubMed

    Cooper, Andrew James; Redman, Chelsea Anne; Stoneham, David Mark; Gonzalez, Luis Felipe; Etse, Victor Kwesi

    2015-01-01

    This paper presents an unmanned aircraft system (UAS) that uses a probabilistic model for autonomous front-on environmental sensing or photography of a target. The system is based on low-cost and readily-available sensor systems in dynamic environments and with the general intent of improving the capabilities of dynamic waypoint-based navigation systems for a low-cost UAS. The behavioural dynamics of target movement for the design of a Kalman filter and Markov model-based prediction algorithm are included. Geometrical concepts and the Haversine formula are applied to the maximum likelihood case in order to make a prediction regarding a future state of a target, thus delivering a new waypoint for autonomous navigation. The results of the application to aerial filming with low-cost UAS are presented, achieving the desired goal of maintained front-on perspective without significant constraint to the route or pace of target movement.

  8. A Dynamic Navigation Model for Unmanned Aircraft Systems and an Application to Autonomous Front-On Environmental Sensing and Photography Using Low-Cost Sensor Systems.

    PubMed

    Cooper, Andrew James; Redman, Chelsea Anne; Stoneham, David Mark; Gonzalez, Luis Felipe; Etse, Victor Kwesi

    2015-01-01

    This paper presents an unmanned aircraft system (UAS) that uses a probabilistic model for autonomous front-on environmental sensing or photography of a target. The system is based on low-cost and readily-available sensor systems in dynamic environments and with the general intent of improving the capabilities of dynamic waypoint-based navigation systems for a low-cost UAS. The behavioural dynamics of target movement for the design of a Kalman filter and Markov model-based prediction algorithm are included. Geometrical concepts and the Haversine formula are applied to the maximum likelihood case in order to make a prediction regarding a future state of a target, thus delivering a new waypoint for autonomous navigation. The results of the application to aerial filming with low-cost UAS are presented, achieving the desired goal of maintained front-on perspective without significant constraint to the route or pace of target movement. PMID:26343680

  9. Promising Electric Aircraft Drive Systems

    NASA Technical Reports Server (NTRS)

    Dudley, Michael R.

    2010-01-01

    An overview of electric aircraft propulsion technology performance thresholds for key power system components is presented. A weight comparison of electric drive systems with equivalent total delivered energy is made to help identify component performance requirements, and promising research and development opportunities.

  10. Aircraft control system

    NASA Technical Reports Server (NTRS)

    Lisoski, Derek L. (Inventor); Kendall, Greg T. (Inventor)

    2007-01-01

    A solar rechargeable, long-duration, span-loaded flying wing, having no fuselage or rudder. Having a two-hundred foot wingspan that mounts photovoltaic cells on most all of the wing's top surface, the aircraft uses only differential thrust of its eight propellers to turn, pitch and yaw. The wing is configured to deform under flight loads to position the propellers such that the control can be achieved. Each of five segments of the wing has one or more motors and photovoltaic arrays, and produces its own lift independent of the other segments, to avoid loading them. Five two-sided photovoltaic arrays, in all, are mounted on the wing, and receive photovoltaic energy both incident on top of the wing, and which is incident also from below, through a bottom, transparent surface.

  11. Environmental effects on composites for aircraft

    NASA Technical Reports Server (NTRS)

    Pride, R. A.

    1978-01-01

    A number of ongoing, long-term environmental effects programs for composite materials are evaluated. The flight service experience was evaluated for 142 composite aircraft components after more than 5 years and 1 million successful component flight hours. Ground-based outdoor exposures of composite material coupons after 3 years of exposure at 5 sites have reached equilibrium levels of moisture pickup which are predictable. Solar ultraviolet-induced material loss is discussed for these same exposures. No significant degradation was observed in residual strength for either stressed or unstressed specimens, or for exposures to aviation fuels and fluids.

  12. Environmental effects on composites for aircraft

    NASA Technical Reports Server (NTRS)

    Pride, R. A.

    1978-01-01

    The influence of the operational environment on the behavior of composite materials and aircraft components fabricated with these composite materials was considered. Structural weight savings, manufacturing cost savings, and long-term environmental durability are among the factors examined. The flight service experience to date of composite components is evaluated. In addition, the influence of a number of worldwide, ground based outdoor exposures on the physical and mechanical properties of six composite materials is discussed. In particular, the current extent of the ultraviolet surface degradation and the moisture gained by diffusion is shown.

  13. Unmanned Aircraft Systems at NASA Dryden

    NASA Video Gallery

    NASA Dryden has a heritage of developmental and operational experience with unmanned aircraft systems. Work on Boeing's sub-scale X-36 Tailless Fighter Agility Research Aircraft, X-48 Blended Wing ...

  14. Aircraft Fuel Cell Power Systems

    NASA Technical Reports Server (NTRS)

    Needham, Robert

    2004-01-01

    In recent years, fuel cells have been explored for use in aircraft. While the weight and size of fuel cells allows only the smallest of aircraft to use fuel cells for their primary engines, fuel cells have showed promise for use as auxiliary power units (APUs), which power aircraft accessories and serve as an electrical backup in case of an engine failure. Fuel cell MUS are both more efficient and emit fewer pollutants. However, sea-level fuel cells need modifications to be properly used in aircraft applications. At high altitudes, the ambient air has a much lower pressure than at sea level, which makes it much more difficult to get air into the fuel cell to react and produce electricity. Compressors can be used to pressurize the air, but this leads to added weight, volume, and power usage, all of which are undesirable things. Another problem is that fuel cells require hydrogen to create electricity, and ever since the Hindenburg burst into flames, aircraft carrying large quantities of hydrogen have not been in high demand. However, jet fuel is a hydrocarbon, so it is possible to reform it into hydrogen. Since jet fuel is already used to power conventional APUs, it is very convenient to use this to generate the hydrogen for fuel-cell-based APUs. Fuel cells also tend to get large and heavy when used for applications that require a large amount of power. Reducing the size and weight becomes especially beneficial when it comes to fuel cells for aircraft. My goal this summer is to work on several aspects of Aircraft Fuel Cell Power System project. My first goal is to perform checks on a newly built injector rig designed to test different catalysts to determine the best setup for reforming Jet-A fuel into hydrogen. These checks include testing various thermocouples, transmitters, and transducers, as well making sure that the rig was actually built to the design specifications. These checks will help to ensure that the rig will operate properly and give correct results

  15. Electrical power generation systems - Combat aircraft perspective

    NASA Astrophysics Data System (ADS)

    Moeller, R.

    The electrical power generation system requirements of combat aircraft are briefly examined. In particular, attention is given to customer requirements, development of the installed electrical power in aircraft, electrical load analysis for designing the power generation system, and definition of aircraft electrical power supply characteristics and consumer qualities. The discussion also covers reliability requirements for power generation systems, design of a power generation system, control and protection equipment in power generation systems, and helicopter electrical power systems.

  16. An aircraft sensor fault tolerant system

    NASA Technical Reports Server (NTRS)

    Caglayan, A. K.; Lancraft, R. E.

    1982-01-01

    The design of a sensor fault tolerant system which uses analytical redundancy for the Terminal Configured Vehicle (TCV) research aircraft in a Microwave Landing System (MLS) environment was studied. The fault tolerant system provides reliable estimates for aircraft position, velocity, and attitude in the presence of possible failures in navigation aid instruments and onboard sensors. The estimates, provided by the fault tolerant system, are used by the automated guidance and control system to land the aircraft along a prescribed path. Sensor failures are identified by utilizing the analytic relationship between the various sensor outputs arising from the aircraft equations of motion.

  17. The F-18 systems research aircraft facility

    NASA Technical Reports Server (NTRS)

    Sitz, Joel R.

    1992-01-01

    To help ensure that new aerospace initiatives rapidly transition to competitive U.S. technologies, NASA Dryden Flight Research Facility has dedicated a systems research aircraft facility. The primary goal is to accelerate the transition of new aerospace technologies to commercial, military, and space vehicles. Key technologies include more-electric aircraft concepts, fly-by-light systems, flush airdata systems, and advanced computer architectures. Future aircraft that will benefit are the high-speed civil transport and the National AeroSpace Plane. This paper describes the systems research aircraft flight research vehicle and outlines near-term programs.

  18. Environmental exposure effects on composite materials for commercial aircraft

    NASA Technical Reports Server (NTRS)

    Hoffman, Daniel J.; Bielawski, William J.

    1991-01-01

    A study was conducted to determine the effects of long term flight and ground exposure on three commercially available graphite-epoxy material systems: T300/5208, T300/5209, and T300/934. Sets of specimens were exposed on commercial aircraft and ground racks for 1, 2, 3, 5, and 10 years. Inflight specimen sites included both the interior and exterior of aircraft based in Hawaii, Texas, and New Zealand. Ground racks were located at NASA-Dryden and the above mentioned states. Similar specimens were exposed to controlled lab conditions for up to 2 years. After each exposure, specimens were tested for residual strength and a dryout procedure was used to measure moisture content. Both room and high temperature residual strengths were measured and expressed as a pct. of the unexposed strength. Lab exposures included the effects of time alone, moisture, time on moist specimens, weatherometer, and simulated ground-air-ground cycling. Residual strengths of the long term specimens were compared with residual strengths of the lab specimens. Strength retention depended on the exposure condition and the material system. Results showed that composite materials can be successfully used on commercial aircraft if environmental effects are considered.

  19. Environmental protection agency aircraft emissions standards

    NASA Technical Reports Server (NTRS)

    Kittredge, G. D.

    1977-01-01

    Emissions of air pollutants from aircraft were investigated in order to determine: (1) the extent to which such emissions affect air quality in air quality control regions throughout the United States; and (2) the technological feasibility of controlling such emissions. The basic information supporting the need for aircraft emissions standards is summarized. The EPA ambient air quality standards are presented. Only the primary (health related) standards are shown. Of the six pollutants, only the first three, carbon monoxide (CO), hydrocarbons (HC), and nitrogen oxides, are influenced significantly by aircraft.

  20. Comparison of Mars Aircraft Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Colozza, Anthony J.

    2003-01-01

    The propulsion system is a critical aspect of the performance and feasibility of a Mars aircraft. Propulsion system mass and performance greatly influence the aircraft s design and mission capabilities. Various propulsion systems were analyzed to estimate the system mass necessary for producing 35N of thrust within the Mars environment. Three main categories of propulsion systems were considered: electric systems, combustion engine systems and rocket systems. Also, the system masses were compared for mission durations of 1, 2, and 4 h.

  1. Environmental exposure effects on composite materials for commercial aircraft

    NASA Technical Reports Server (NTRS)

    Gibbins, M. N.; Hoffman, D. J.

    1982-01-01

    The effects of environmental exposure on composite materials are studied. The environments considered are representative of those experienced by commercial jet aircraft. Initial results have been compiled for the following material systems: T300/5208, T300/5209 and T300/934. Specimens were exposed on the exterior and interior of Boeing 737 airplanes of three airlines, and to continuous ground level exposure at four locations. In addition specimens were exposed in the laboratory to conditions such as: simulated ground-air-ground, weatherometer, and moisture. Residual strength results are presented for specimens exposed for up to two years at three ground level exposure locations and on airplanes from two airlines. Test results are also given for specimens exposed to the laboratory simulated environments. Test results indicate that short beam shear strength is sensitive to environmental exposure and dependent on the level of absorbed moisture.

  2. Fireworthiness of transport aircraft interior systems

    NASA Technical Reports Server (NTRS)

    Parker, J. A.; Kourtides, D. A.

    1982-01-01

    The fire worthiness of air transport interiors was evaluated. The effect of interior systems on the survival of passengers and crew in an uncontrolled transport aircraft fire is addressed. Modification of aircraft interior subsystem components which provide improvements in aircraft fire safety are examined. Three specific subsystem components, interior panels, seats and windows, offer the most immediate and highest payoff by modifying interior materials of existing aircrafts. It is shown that the new materials modifications reduce the fire hazards because of significant reduction in their characteristic flame spread, heat release, and smoke and toxic gas emissions.

  3. Systems integration studies for supersonic cruise aircraft

    NASA Technical Reports Server (NTRS)

    Mascitti, V. R.

    1975-01-01

    Technical progress in each of the disciplinary research areas affecting the design of supersonic cruise aircraft is discussed. The NASA AST/SCAR Program supported the integration of these technical advances into supersonic cruise aircraft configuration concepts. While the baseline concepts reflect differing design philosophy, all reflect a level of economic performance considerably above the current foreign aircraft as well as the former U.S. SST. Range-payload characteristics of the study configurating show significant improvement, while meeting environmental goals such as takeoff and landing noise and upper atmospheric pollution.

  4. Advanced secondary power system for transport aircraft

    NASA Technical Reports Server (NTRS)

    Hoffman, A. C.; Hansen, I. G.; Beach, R. F.; Plencner, R. M.; Dengler, R. P.; Jefferies, K. S.; Frye, R. J.

    1985-01-01

    A concept for an advanced aircraft power system was identified that uses 20-kHz, 440-V, sin-wave power distribution. This system was integrated with an electrically powered flight control system and with other aircraft systems requiring secondary power. The resulting all-electric secondary power configuration reduced the empty weight of a modern 200-passenger, twin-engine transport by 10 percent and the mission fuel by 9 percent.

  5. Aircraft system modeling error and control error

    NASA Technical Reports Server (NTRS)

    Kulkarni, Nilesh V. (Inventor); Kaneshige, John T. (Inventor); Krishnakumar, Kalmanje S. (Inventor); Burken, John J. (Inventor)

    2012-01-01

    A method for modeling error-driven adaptive control of an aircraft. Normal aircraft plant dynamics is modeled, using an original plant description in which a controller responds to a tracking error e(k) to drive the component to a normal reference value according to an asymptote curve. Where the system senses that (1) at least one aircraft plant component is experiencing an excursion and (2) the return of this component value toward its reference value is not proceeding according to the expected controller characteristics, neural network (NN) modeling of aircraft plant operation may be changed. However, if (1) is satisfied but the error component is returning toward its reference value according to expected controller characteristics, the NN will continue to model operation of the aircraft plant according to an original description.

  6. Fireworthiness of transport aircraft interior systems

    NASA Technical Reports Server (NTRS)

    Parker, J. A.; Kourtides, D. A.

    1981-01-01

    The key materials question is addressed concerning the effect of interior systems on the survival of passengers and crew in the case of an uncontrolled transport aircraft fire. Technical opportunities are examined which are available through the modification of aircraft interior subsystem components, modifications that may reasonably be expected to provide improvements in aircraft fire safety. Subsystem components discussed are interior panels, seats, and windows. By virtue of their role in real fire situations and as indicated by the results of large scale simulation tests, these components appear to offer the most immediate and highest payoff possible by modifying interior materials of existing aircraft. These modifications have the potential of reducing the rate of fire growth, with a consequent reduction of heat, toxic gas, and smoke emission throughout the habitable interior of an aircraft, whatever the initial source of the fire.

  7. National Unmanned Aircraft Systems Project Office

    USGS Publications Warehouse

    Goplen, Susan E.; Sloan, Jeff L.

    2015-01-01

    The U.S. Geological Survey (USGS) National Unmanned Aircraft Systems (UAS) Project Office leads the implementation of UAS technology in the Department of the Interior (DOI). Our mission is to support the transition of UAS into DOI as a new cost-effective tool for collecting remote-sensing data to monitor environmental conditions, respond to natural hazards, recognize the consequences and benefits of land and climate change and conduct wildlife inventories. The USGS is teaming with all DOI agencies and academia as well as local, State, and Tribal governments with guidance from the Federal Aviation Administration and the DOI Office of Aviation Services (OAS) to lead the safe, efficient, costeffective and leading-edge adoption of UAS technology into the scientific research and operational activities of the DOI.

  8. Multidisciplinary Techniques and Novel Aircraft Control Systems

    NASA Technical Reports Server (NTRS)

    Padula, Sharon L.; Rogers, James L.; Raney, David L.

    2000-01-01

    The Aircraft Morphing Program at NASA Langley Research Center explores opportunities to improve airframe designs with smart technologies. Two elements of this basic research program are multidisciplinary design optimization (MDO) and advanced flow control. This paper describes examples where MDO techniques such as sensitivity analysis, automatic differentiation, and genetic algorithms contribute to the design of novel control systems. In the test case, the design and use of distributed shapechange devices to provide low-rate maneuvering capability for a tailless aircraft is considered. The ability of MDO to add value to control system development is illustrated using results from several years of research funded by the Aircraft Morphing Program.

  9. Environmental exposure effects on composite materials for commercial aircraft

    NASA Technical Reports Server (NTRS)

    Coggeshall, R. L.

    1985-01-01

    The effects of environmental exposure on composite materials are determined. The environments considered are representative of those experienced by commercial jet aircraft. Initial results have been compiled for the following material systems: T300/5208, T300/5209, and T300/934. Future results will include AS-1/3501-6 and Kevlar 49/F161-188. Specimens are exposed on the exterior and interior of 737 airplanes of three airlines, and to continuous ground-level exposure at four locations. In addition, specimens are exposed in the laboratory to conditions such as: simulated ground-air-ground, weatherometer, and moisture. Residual strength results are presented for specimens exposed for up to five years at five ground-level exposure locations and on airplanes from one airline.

  10. Vertical flight path steering system for aircraft

    NASA Technical Reports Server (NTRS)

    Lambregts, Antonius A. (Inventor)

    1983-01-01

    Disclosed is a vertical flight path angle steering system for aircraft, utilizing a digital flight control computer which processes pilot control inputs and aircraft response parameters into suitable elevator commands and control information for display to the pilot on a cathode ray tube. The system yields desirable airplane control handling qualities and responses as well as improvements in pilot workload and safety during airplane operation in the terminal area and under windshear conditions.

  11. Aircraft anti-insect system

    NASA Technical Reports Server (NTRS)

    Spiro, Clifford Lawrence (Inventor); Fric, Thomas Frank (Inventor); Leon, Ross Michael (Inventor)

    1997-01-01

    Insect debris is removed from or prevented from adhering to insect impingement areas of an aircraft, particularly on an inlet cowl of an engine, by heating the area to 180.degree.-500.degree. C. An apparatus comprising a means to bring hot air from the aircraft engine to a plenum contiguous to the insect impingement area provides for the heating of the insect impingement areas to the required temperatures. The plenum can include at least one tube with a plurality of holes contained in a cavity within the inlet cowl. It can also include an envelope with a plurality of holes on its surface contained in a cavity within the inlet cowl.

  12. Fireworthiness of transport aircraft interior systems

    NASA Technical Reports Server (NTRS)

    Parker, J. A.; Kourtides, D. A.

    1981-01-01

    This paper presents an overview of certain aspects of the evaluation of the fireworthiness of transport aircraft interiors. First, it addresses the key materials question concerning the effect of interior systems on the survival of passengers and crew in the case of an uncontrolled fire. Second, it examines some technical opportunities that are available today through the modification of aircraft interior subsystem components, modifications that may reasonably by expected to provide improvements in aircraft fire safety. Cost and risk benefits still remain to be determined.

  13. An economic assessment of STOL aircraft potential including terminal area environmental considerations, volume 1

    NASA Technical Reports Server (NTRS)

    Solomon, H. L.; Sokolsky, S.

    1974-01-01

    The results of an economic and environmental study of short haul airline systems using short takeoff and landing (STOL) aircraft are presented. The STOL system characteristics were optimized for maximum patronage at a specified return on investment, while maintaining noise impact compatibility with the terminal area. Supporting studies of aircraft air pollution and hub airport congestion relief were also performed. The STOL concept specified for this study was an Augmentor Wing turbofan aircraft having a field length capability of 2,000 ft. and an effective perceived noise level of 95 EPNdB at 500 ft. sideline distance. An economic and environmental assessment of the defined STOL system and a summary of the methodology, STOL system characteristics and arena characteristics are provided.

  14. Internal-flow systems for aircraft

    NASA Technical Reports Server (NTRS)

    Rogallo, F M

    1941-01-01

    An investigation has been made to determine efficient arrangements for an internal-flow system of an aircraft when such a system operates by itself or in combination with other flow systems. The investigation included a theoretical treatment of the problem and tests in the NACA 5-foot vertical wind tunnel of inlet and outlet openings in a flat plate and in a wing.

  15. Affordable MMW aircraft collision avoidance system

    NASA Astrophysics Data System (ADS)

    Almsted, Larry D.; Becker, Robert C.; Zelenka, Richard E.

    1997-06-01

    Collision avoidance is of concern to all aircraft, requiring the detection and identification of hazardous terrain or obstacles in sufficient time for clearance maneuvers. The collision avoidance requirement is even more demanding for helicopters, as their unique capabilities result in extensive operations at low-altitude, near to terrain and other hazardous obstacles. TO augment the pilot's visual collision avoidance abilities, some aircraft are equipped with 'enhanced-vision' systems or terrain collision warning systems. Enhanced-vision systems are typically very large and costly systems that are not very covert and are also difficult to install in a helicopter. The display is typically raw images from infrared or radar sensors, and can require a high degree of pilot interpretation and attention. Terrain collision warning system that rely on stored terrain maps are often of low resolution and accuracy and do not represent hazards to the aircraft placed after map sampling. Such hazards could include aircraft parked on runway, man- made towers or buildings and hills. In this paper, a low cost dual-function scanning pencil-beam, millimeter-wave radar forward sensor is used to determine whether an aircraft's flight path is clear of obstructions. Due to the limited space and weight budget in helicopters, the system is a dual function system that is substituted in place of the existing radar altimeter. The system combines a 35 GHz forward looking obstacle avoidance radar and a 4.3 GHz radar altimeter. The forward looking 35 GHz 3D radar's returns are used to construct a terrain and obstruction database surrounding an aircraft, which is presented to the pilot as a synthetic perspective display. The 35 GHz forward looking radar and the associated display was evaluated in a joint NASA Honeywell flight test program in 1996. The tests were conducted on a NASA/Army test helicopter. The test program clearly demonstrated the systems potential usefulness for collision avoidance.

  16. Smart aircraft fastener evaluation (SAFE) system: a condition-based corrosion detection system for aging aircraft

    NASA Astrophysics Data System (ADS)

    Schoess, Jeffrey N.; Seifert, Greg; Paul, Clare A.

    1996-05-01

    The smart aircraft fastener evaluation (SAFE) system is an advanced structural health monitoring effort to detect and characterize corrosion in hidden and inaccessible locations of aircraft structures. Hidden corrosion is the number one logistics problem for the U.S. Air Force, with an estimated maintenance cost of $700M per year in 1990 dollars. The SAFE system incorporates a solid-state electrochemical microsensor and smart sensor electronics in the body of a Hi-Lok aircraft fastener to process and autonomously report corrosion status to aircraft maintenance personnel. The long-term payoff for using SAFE technology will be in predictive maintenance for aging aircraft and rotorcraft systems, fugitive emissions applications such as control valves, chemical pipeline vessels, and industrial boilers. Predictive maintenance capability, service, and repair will replace the current practice of scheduled maintenance to substantially reduce operational costs. A summary of the SAFE concept, laboratory test results, and future field test plans is presented.

  17. Aircraft Pneudraulic Systems Mechanic (AFSC 42354).

    ERIC Educational Resources Information Center

    Air Univ., Gunter AFS, Ala. Extension Course Inst.

    This four-volume student text is designed for use by Air Force personnel enrolled in a self-study extension course for aircraft pneudraulic systems mechanics. Covered in the individual volumes are shop administration; fundamentals, materials, and equipment of pneudraulics; pneudraulic components; and pneudraulic systems. Each volume in the set…

  18. Study of advanced fuel system concepts for commercial aircraft

    NASA Technical Reports Server (NTRS)

    Coffinberry, G. A.

    1985-01-01

    An analytical study was performed in order to assess relative performance and economic factors involved with alternative advanced fuel systems for future commercial aircraft operating with broadened property fuels. The DC-10-30 wide-body tri-jet aircraft and the CF6-8OX engine were used as a baseline design for the study. Three advanced systems were considered and were specifically aimed at addressing freezing point, thermal stability and lubricity fuel properties. Actual DC-10-30 routes and flight profiles were simulated by computer modeling and resulted in prediction of aircraft and engine fuel system temperatures during a nominal flight and during statistical one-day-per-year cold and hot flights. Emergency conditions were also evaluated. Fuel consumption and weight and power extraction results were obtained. An economic analysis was performed for new aircraft and systems. Advanced system means for fuel tank heating included fuel recirculation loops using engine lube heat and generator heat. Environmental control system bleed air heat was used for tank heating in a water recirculation loop. The results showed that fundamentally all of the three advanced systems are feasible but vary in their degree of compatibility with broadened-property fuel.

  19. Reconfiguration control system for an aircraft wing

    NASA Technical Reports Server (NTRS)

    Wakayama, Sean R. (Inventor)

    2008-01-01

    Independently deflectable control surfaces are located on the trailing edge of the wing of a blended wing-body aircraft. The reconfiguration control system of the present invention controls the deflection of each control surface to optimize the spanwise lift distribution across the wing for each of several flight conditions, e.g., cruise, pitch maneuver, and high lift at low speed. The control surfaces are deflected and reconfigured to their predetermined optimal positions when the aircraft is in each of the aforementioned flight conditions. With respect to cruise, the reconfiguration control system will maximize the lift to drag ratio and keep the aircraft trimmed at a stable angle of attack. In a pitch maneuver, the control surfaces are deflected to pitch the aircraft and increase lift. Moreover, this increased lift has its spanwise center of pressure shifted inboard relative to its location for cruise. This inboard shifting reduces the increased bending moment about the aircraft's x-axis occasioned by the increased pitch force acting normal to the wing. To optimize high lift at low speed, during take-off and landing for example, the control surfaces are reconfigured to increase the local maximum coefficient of lift at stall-critical spanwise locations while providing pitch trim with control surfaces that are not stall critical.

  20. Aircraft body-axis rotation measurement system

    NASA Technical Reports Server (NTRS)

    Cowdin, K. T. (Inventor)

    1983-01-01

    A two gyro four gimbal attitude sensing system having gimbal lock avoidance is provided with continuous azimuth information, rather than roll information, relative to the magnetic cardinal headings while in near vertical attitudes to allow recovery from vertical on a desired heading. The system is comprised of a means for stabilizing an outer roll gimbal that is common to a vertical gyro and a directional gyro with respect to the aircraft platform which is being angularly displaced about an axis substantially parallel to the outer roll gyro axis. A means is also provided for producing a signal indicative of the magnitude of such displacement as an indication of aircraft heading. Additional means are provided to cause stabilization of the outer roll gimbal whenever the pitch angle of the aircraft passes through a threshold prior to entering vertical flight and destabilization of the outer roll gimbal upon passing through the threshold when departing vertical flight.

  1. Next Generation Civil Transport Aircraft Design Considerations for Improving Vehicle and System-Level Efficiency

    NASA Technical Reports Server (NTRS)

    Acosta, Diana M.; Guynn, Mark D.; Wahls, Richard A.; DelRosario, Ruben,

    2013-01-01

    The future of aviation will benefit from research in aircraft design and air transportation management aimed at improving efficiency and reducing environmental impacts. This paper presents civil transport aircraft design trends and opportunities for improving vehicle and system-level efficiency. Aircraft design concepts and the emerging technologies critical to reducing thrust specific fuel consumption, reducing weight, and increasing lift to drag ratio currently being developed by NASA are discussed. Advancements in the air transportation system aimed towards system-level efficiency are discussed as well. Finally, the paper describes the relationship between the air transportation system, aircraft, and efficiency. This relationship is characterized by operational constraints imposed by the air transportation system that influence aircraft design, and operational capabilities inherent to an aircraft design that impact the air transportation system.

  2. An environmentally safe and effective paint removal process for aircraft

    NASA Astrophysics Data System (ADS)

    Kozol, Joseph

    2001-03-01

    To reduce hazardous waste from fleet and depot aircraft paint stripping and to conform to regulations banning toxic chemical paint strippers, the U.S. Naval Air Systems Team (materials division, depots, and head-quarters) teamed with the U.S. Air Force at Warner Robins Air Logistics Center for concept development, characterization, and demonstration of a mature, advanced paint-removal system, the Boeing xenon/flashlamp CO2 (Flashjet®) process. Extensive metallic and composite-materials testing was conducted. This paper describes the development and characterization program leading to authorization of the process for use on fixed-wing navy aircraft.

  3. Oxidized starch solutions for environmentally friendly aircraft deicers.

    PubMed

    Plahuta, Joseph M; Teel, Amy L; Ahmad, Mushtaque; Beutel, Mark W; Rentz, Jeremy A; Watts, Richard J

    2011-09-01

    Deicers currently used for aircraft deicing, including ethylene glycol and propylene glycol, pose significant threats to surface waters, as a result of high biochemical oxygen demand (BOD) and toxicity to aquatic organisms. Oxidized starch may provide a less toxic deicer with lower BOD. The freezing point depression of starch formulations oxidized using hydrogen peroxide and catalysts (i.e., catalyzed hydrogen peroxide [H2O2] propagations-CHP) was 28 degrees C, and viscosities similar to those of commercial deicers were achieved after post-treatment with granular activated carbon. The most effective oxidized starch formulation exerted a 5-day BOD up to 6 times lower than glycol deicers (103 versus 400 to 800 g O2/L). Toxicity to Ceriodaphnia dubia for this formulation (48-hour lethal concentration, 50% [LC50] of 2.73 g/L) was greater than pure propylene glycol (13.1 g/ L), but lower than propylene glycol deicer formulations (1.02 g/L). Organic acids were identified by gas chromatography/mass spectrometry as the primary constituents in the oxidized starch solution. The proposed deicing system would provide effective deicing while exerting minimal environmental effects (e.g., lower toxicity to aquatic organisms and lower BOD). Furthermore, these deicers could be made from waste starch, promoting sustainability. PMID:22073730

  4. Oxidized starch solutions for environmentally friendly aircraft deicers.

    PubMed

    Plahuta, Joseph M; Teel, Amy L; Ahmad, Mushtaque; Beutel, Mark W; Rentz, Jeremy A; Watts, Richard J

    2011-09-01

    Deicers currently used for aircraft deicing, including ethylene glycol and propylene glycol, pose significant threats to surface waters, as a result of high biochemical oxygen demand (BOD) and toxicity to aquatic organisms. Oxidized starch may provide a less toxic deicer with lower BOD. The freezing point depression of starch formulations oxidized using hydrogen peroxide and catalysts (i.e., catalyzed hydrogen peroxide [H2O2] propagations-CHP) was 28 degrees C, and viscosities similar to those of commercial deicers were achieved after post-treatment with granular activated carbon. The most effective oxidized starch formulation exerted a 5-day BOD up to 6 times lower than glycol deicers (103 versus 400 to 800 g O2/L). Toxicity to Ceriodaphnia dubia for this formulation (48-hour lethal concentration, 50% [LC50] of 2.73 g/L) was greater than pure propylene glycol (13.1 g/ L), but lower than propylene glycol deicer formulations (1.02 g/L). Organic acids were identified by gas chromatography/mass spectrometry as the primary constituents in the oxidized starch solution. The proposed deicing system would provide effective deicing while exerting minimal environmental effects (e.g., lower toxicity to aquatic organisms and lower BOD). Furthermore, these deicers could be made from waste starch, promoting sustainability.

  5. Aircraft signal definition for flight safety system monitoring system

    NASA Technical Reports Server (NTRS)

    Gibbs, Michael (Inventor); Omen, Debi Van (Inventor)

    2003-01-01

    A system and method compares combinations of vehicle variable values against known combinations of potentially dangerous vehicle input signal values. Alarms and error messages are selectively generated based on such comparisons. An aircraft signal definition is provided to enable definition and monitoring of sets of aircraft input signals to customize such signals for different aircraft. The input signals are compared against known combinations of potentially dangerous values by operational software and hardware of a monitoring function. The aircraft signal definition is created using a text editor or custom application. A compiler receives the aircraft signal definition to generate a binary file that comprises the definition of all the input signals used by the monitoring function. The binary file also contains logic that specifies how the inputs are to be interpreted. The file is then loaded into the monitor function, where it is validated and used to continuously monitor the condition of the aircraft.

  6. Transport aircraft loading and balancing system: Using a CLIPS expert system for military aircraft load planning

    NASA Technical Reports Server (NTRS)

    Richardson, J.; Labbe, M.; Belala, Y.; Leduc, Vincent

    1994-01-01

    The requirement for improving aircraft utilization and responsiveness in airlift operations has been recognized for quite some time by the Canadian Forces. To date, the utilization of scarce airlift resources has been planned mainly through the employment of manpower-intensive manual methods in combination with the expertise of highly qualified personnel. In this paper, we address the problem of facilitating the load planning process for military aircraft cargo planes through the development of a computer-based system. We introduce TALBAS (Transport Aircraft Loading and BAlancing System), a knowledge-based system designed to assist personnel involved in preparing valid load plans for the C130 Hercules aircraft. The main features of this system which are accessible through a convivial graphical user interface, consists of the automatic generation of valid cargo arrangements given a list of items to be transported, the user-definition of load plans and the automatic validation of such load plans.

  7. Control technology for future aircraft propulsion systems

    NASA Technical Reports Server (NTRS)

    Zeller, J. R.; Szuch, J. R.; Merrill, W. C.; Lehtinen, B.; Soeder, J. F.

    1984-01-01

    The need for a more sophisticated engine control system is discussed. The improvements in better thrust-to-weight ratios demand the manipulation of more control inputs. New technological solutions to the engine control problem are practiced. The digital electronic engine control (DEEC) system is a step in the evolution to digital electronic engine control. Technology issues are addressed to ensure a growth in confidence in sophisticated electronic controls for aircraft turbine engines. The need of a control system architecture which permits propulsion controls to be functionally integrated with other aircraft systems is established. Areas of technology studied include: (1) control design methodology; (2) improved modeling and simulation methods; and (3) implementation technologies. Objectives, results and future thrusts are summarized.

  8. Systems Analysis Initiated for All-Electric Aircraft Propulsion

    NASA Technical Reports Server (NTRS)

    Kohout, Lisa L.

    2003-01-01

    A multidisciplinary effort is underway at the NASA Glenn Research Center to develop concepts for revolutionary, nontraditional fuel cell power and propulsion systems for aircraft applications. There is a growing interest in the use of fuel cells as a power source for electric propulsion as well as an auxiliary power unit to substantially reduce or eliminate environmentally harmful emissions. A systems analysis effort was initiated to assess potential concepts in an effort to identify those configurations with the highest payoff potential. Among the technologies under consideration are advanced proton exchange membrane (PEM) and solid oxide fuel cells, alternative fuels and fuel processing, and fuel storage. Prior to this effort, the majority of fuel cell analysis done at Glenn was done for space applications. Because of this, a new suite of models was developed. These models include the hydrogen-air PEM fuel cell; internal reforming solid oxide fuel cell; balance-of-plant components (compressor, humidifier, separator, and heat exchangers); compressed gas, cryogenic, and liquid fuel storage tanks; and gas turbine/generator models for hybrid system applications. Initial mass, volume, and performance estimates of a variety of PEM systems operating on hydrogen and reformate have been completed for a baseline general aviation aircraft. Solid oxide/turbine hybrid systems are being analyzed. In conjunction with the analysis efforts, a joint effort has been initiated with Glenn s Computer Services Division to integrate fuel cell stack and component models with the visualization environment that supports the GRUVE lab, Glenn s virtual reality facility. The objective of this work is to provide an environment to assist engineers in the integration of fuel cell propulsion systems into aircraft and provide a better understanding of the interaction between system components and the resulting effect on the overall design and performance of the aircraft. Initially, three

  9. Active Aircraft Pylon Noise Control System

    NASA Technical Reports Server (NTRS)

    Thomas, Russell H. (Inventor); Czech, Michael J (Inventor); Elmiligui, Alaa A. (Inventor)

    2015-01-01

    An active pylon noise control system for an aircraft includes a pylon structure connecting an engine system with an airframe surface of the aircraft and having at least one aperture to supply a gas or fluid therethrough, an intake portion attached to the pylon structure to intake a gas or fluid, a regulator connected with the intake portion via a plurality of pipes, to regulate a pressure of the gas or fluid, a plenum chamber formed within the pylon structure and connected with the regulator, and configured to receive the gas or fluid as regulated by the regulator, and a plurality of injectors in communication with the plenum chamber to actively inject the gas or fluid through the plurality of apertures of the pylon structure.

  10. Tribological systems as applied to aircraft engines

    NASA Technical Reports Server (NTRS)

    Buckley, D. H.

    1985-01-01

    Tribological systems as applied to aircraft are reviewed. The importance of understanding the fundamental concepts involved in such systems is discussed. Basic properties of materials which can be related to adhesion, friction and wear are presented and correlated with tribology. Surface processes including deposition and treatment are addressed in relation to their present and future application to aircraft components such as bearings, gears and seals. Lubrication of components with both liquids and solids is discussed. Advances in both new liquid molecular structures and additives for those structures are reviewed and related to the needs of advanced engines. Solids and polymer composites are suggested for increasing use and ceramic coatings containing fluoride compounds are offered for the extreme temperatures encountered in such components as advanced bearings and seals.

  11. Ride quality systems for commuter aircraft

    NASA Technical Reports Server (NTRS)

    Downing, D. R.; Hammond, T. A.; Amin, S. P.

    1983-01-01

    The state-of-the-art in Active Ride Augmentation, specifically in terms of its feasibility for commuter aircraft applications. A literature survey was done, and the principal results are presented here through discussion of different Ride Quality Augmentation System (RQAS) designs and advances in related technologies. Recommended follow-on research areas are discussed, and a preliminary RQAS configuration for detailed design and development is proposed.

  12. Emergency Control Aircraft System Using Thrust Modulation

    NASA Technical Reports Server (NTRS)

    Burken, John J. (Inventor); Burcham, Frank W., Jr. (Inventor)

    2000-01-01

    A digital longitudinal Aircraft Propulsion Control (APC system of a multiengine aircraft is provided by engine thrust modulation in response to comparing an input flightpath angle signal (gamma)c from a pilot thumbwheel. or an ILS system with a sensed flightpath angle y to produce an error signal (gamma)e that is then integrated (with reasonable limits) to generate a drift correction signal to be added to the error signal (gamma)e after first subtracting a lowpass filtered velocity signal Vel(sub f) for phugoid damping. The output error signal is multiplied by a constant to produce an aircraft thrust control signal ATC of suitable amplitude to drive a throttle servo for all engines. each of which includes its own full-authority digital engine control (FADEC) computer. An alternative APC system omits sensed flightpath angle feedback and instead controls the flightpath angle by feedback of the lowpass filtered velocity signal Vel(sub f) which also inherently provides phugoid damping. The feature of drift compensation is retained.

  13. Small Aircraft Transportation System Concept and Technologies

    NASA Technical Reports Server (NTRS)

    Holmes, Bruce J.; Durham, Michael H.; Tarry, Scott E.

    2005-01-01

    This paper summarizes both the vision and the early public-private collaborative research for the Small Aircraft Transportation System (SATS). The paper outlines an operational definition of SATS, describes how SATS conceptually differs from current air transportation capabilities, introduces four SATS operating capabilities, and explains the relation between the SATS operating capabilities and the potential for expanded air mobility. The SATS technology roadmap encompasses on-demand, widely distributed, point-to-point air mobility, through hired-pilot modes in the nearer-term, and through self-operated user modes in the farther-term. The nearer-term concept is based on aircraft and airspace technologies being developed to make the use of smaller, more widely distributed community reliever and general aviation airports and their runways more useful in more weather conditions, in commercial hired-pilot service modes. The farther-term vision is based on technical concepts that could be developed to simplify or automate many of the operational functions in the aircraft and the airspace for meeting future public transportation needs, in personally operated modes. NASA technology strategies form a roadmap between the nearer-term concept and the farther-term vision. This paper outlines a roadmap for scalable, on-demand, distributed air mobility technologies for vehicle and airspace systems. The audiences for the paper include General Aviation manufacturers, small aircraft transportation service providers, the flight training industry, airport and transportation authorities at the Federal, state and local levels, and organizations involved in planning for future National Airspace System advancements.

  14. An economic assessment of STOL aircraft potential including terminal area environmental considerations. Volume 2: Appendices

    NASA Technical Reports Server (NTRS)

    Solomon, H. L.; Sokolsky, S.

    1973-01-01

    An economic assessment of short takeoff aircraft for short haul air transportation applications is presented. The economic viability and environmental compatibility of short takeoff aircraft service in high density areas were evaluated. The subjects discussed are: (1) aircraft configurations and performance, (2) airfield and terminal requirements, and (3) direct and indirect operating costs.

  15. A system approach to aircraft optimization

    NASA Technical Reports Server (NTRS)

    Sobieszczanski-Sobieski, Jaroslaw

    1991-01-01

    Mutual couplings among the mathematical models of physical phenomena and parts of a system such as an aircraft complicate the design process because each contemplated design change may have a far reaching consequence throughout the system. Techniques are outlined for computing these influences as system design derivatives useful for both judgemental and formal optimization purposes. The techniques facilitate decomposition of the design process into smaller, more manageable tasks and they form a methodology that can easily fit into existing engineering organizations and incorporate their design tools.

  16. Fires in P-3 Aircraft Oxygen Systems

    NASA Technical Reports Server (NTRS)

    Stoltzfus, Joel

    2006-01-01

    Fires in three P3 aircraft oxygen systems have occurred: one in the Royal Australian Air Force (RAAF) in 1984 and two in the U.S. Navy in 1998 and 2003. All three fires started in the aluminum manifold and check valve (MCV) assembly and produced similar damages to the aircraft in which they occurred. This paper discusses a failure analysis conducted by the NASA Johnson Space Center White Sands Test Facility (WSTF) Oxygen Hazards and Testing Team on the 2003 U.S. Navy VP62 fire. It was surmised that the fire started due to heat generated by an oxygen leak past a silicone check valve seal or possibly because of particle impact near the seat of one of the MCV assembly check valves. An additional analysis of fires in several check valve poppet seals from other aircraft is discussed. These burned poppet seals came from P3 oxygen systems that had been serviced at the Naval Air Station (NAS) in Jacksonville following standard fill procedures. It was concluded that these seal fires occurred due to the heat from compression heating, particle impact, or the heat generated by an oxygen leak past the silicone check valve seal. The fact that catastrophic fires did not occur in the case of each check valve seal fire was attributed to the protective nature of the aluminum oxide layer on the check valve poppets. To prevent future fires of this nature, the U.S. and Canadian fleets of P3 aircraft have been retrofitted with MCV assemblies with an upgraded design and more burn-resistant materials.

  17. Turboprop Cargo Aircraft Systems study, phase 1

    NASA Technical Reports Server (NTRS)

    Muehlbauer, J. C.; Hewell, J. G., Jr.; Lindenbaum, S. P.; Randall, C. C.; Searle, N.; Stone, F. R., Jr.

    1980-01-01

    The effects of advanced propellers (propfan) on aircraft direct operating costs, fuel consumption, and noiseprints were determined. A comparison of three aircraft selected from the results with competitive turbofan aircraft shows that advanced turboprop aircraft offer these potential benefits, relative to advanced turbofan aircraft: 21 percent fuel saving, 26 percent higher fuel efficiency, 15 percent lower DOCs, and 25 percent shorter field lengths. Fuel consumption for the turboprop is nearly 40 percent less than for current commercial turbofan aircraft. Aircraft with both types of propulsion satisfy current federal noise regulations. Advanced turboprop aircraft have smaller noiseprints at 90 EPNdB than advanced turbofan aircraft, but large noiseprints at 70 and 80 EPNdB levels, which are usually suggested as quietness goals. Accelerated development of advanced turboprops is strongly recommended to permit early attainment of the potential fuel saving. Several areas of work are identified which may produce quieter turboprop aircraft.

  18. YO-3A acoustics research aircraft systems manual

    NASA Technical Reports Server (NTRS)

    Cross, J. L.

    1984-01-01

    The flight testing techniques, equipment, and procedures employed during air-to-air acoustic testing of helicopters using the NASA YO-3A Acoustic Research Aircraft are discussed. The research aircraft instrumentation system is described as well as hardware installation on the test aircraft and techniques used during the tests. Emphasis is placed on formation flying, position locations, test matrices, and test procedures.

  19. Performance and Environmental Assessment of an Advanced Aircraft with Open Rotor Propulsion

    NASA Technical Reports Server (NTRS)

    Guynn, Mark D.; Berton, Jeffrey J.; Haller, William J.; Hendricks, Eric S.; Tong, Michael T.

    2012-01-01

    Application of high speed, advanced turboprops, or "propfans," to transonic transport aircraft received significant attention during the 1970s and 1980s when fuel efficiency was the driving focus of aeronautical research. Unfortunately, after fuel prices declined sharply there was no longer sufficient motivation to continue maturing this technology. Recent volatility in fuel prices and increasing concern for aviation s environmental impact, however, have renewed interest in unducted, open rotor propulsion. Because of the renewed interest in open rotor propulsion, the lack of publicly available up-to-date studies assessing its benefits, and NASA s focus on reducing fuel consumption, a preliminary aircraft system level study on open rotor propulsion was initiated to inform decisions concerning research in this area. New analysis processes were established to assess the characteristics of open rotor aircraft. These processes were then used to assess the performance, noise, and emissions characteristics of an advanced, single-aisle aircraft using open rotor propulsion. The results of this initial study indicate open rotor engines have the potential to provide significant reductions in fuel consumption and landing-takeoff cycle NOX emissions. Noise analysis of the study configuration indicates that an open rotor aircraft in the single-aisle class would be able to meet current noise regulations with margin.

  20. Environmental exposure effects on composite materials for commercial aircraft

    NASA Technical Reports Server (NTRS)

    Hoffman, D. J.

    1978-01-01

    Activities reported include completion of the program design tasks, resolution of a high fiber volume problem and resumption of specimen fabrication, fixture fabrication, and progress on the analysis methodology and definition of the typical aircraft environment. Program design activities including test specimens, specimen holding fixtures, flap-track fairing tailcones, and ground exposure racks were completed. The problem experienced in obtaining acceptable fiber volume fraction results on two of the selected graphite epoxy material systems was resolved with an alteration to the bagging procedure called out in BAC 5562. The revised bagging procedure, involving lower numbers of bleeder plies, produces acceptable results. All required laminates for the contract have now been laid up and cured. Progress in the area of analysis methodology has been centered about definition of the environment that a commercial transport aircraft undergoes. The selected methodology is analagous to fatigue life assessment.

  1. NASA Aircraft Vortex Spacing System Development Status

    NASA Technical Reports Server (NTRS)

    Hinton, David A.; Charnock, James K.; Bagwell, Donald R.; Grigsby, Donner

    1999-01-01

    The National Aeronautics and Space Administration (NASA) is addressing airport capacity enhancements during instrument meteorological conditions through the Terminal Area Productivity (TAP) program. Within TAP, the Reduced Spacing Operations (RSO) subelement at the NASA Langley Research Center is developing an Aircraft VOrtex Spacing System (AVOSS). AVOSS will integrate the output of several systems to produce weather dependent, dynamic wake vortex spacing criteria. These systems provide current and predicted weather conditions, models of wake vortex transport and decay in these weather conditions, and real-time feedback of wake vortex behavior from sensors. The goal of the NASA program is to provide the research and development to demonstrate an engineering model AVOSS in real-time operation at a major airport. The demonstration is only of concept feasibility, and additional effort is required to deploy an operational system for actual aircraft spacing reduction. This paper describes the AVOSS system architecture, a wake vortex facility established at the Dallas-Fort Worth International Airport (DFW), initial operational experience with the AVOSS system, and emerging considerations for subsystem requirements. Results of the initial system operation suggest a significant potential for reduced spacing.

  2. Systems Analysis Developed for All-Electric Aircraft Propulsion

    NASA Technical Reports Server (NTRS)

    Kohout, Lisa L.

    2004-01-01

    There is a growing interest in the use of fuel cells as a power source for all-electric aircraft propulsion as a means to substantially reduce or eliminate environmentally harmful emissions. Among the technologies under consideration for these concepts are advanced proton exchange membrane (PEM) and solid oxide fuel cells (SOFCs), alternative fuels and fuel processing, and fuel storage. A multidisciplinary effort is underway at the NASA Glenn Research Center to develop and evaluate concepts for revolutionary, nontraditional fuel cell power and propulsion systems for aircraft applications. As part of this effort, system studies are being conducted to identify concepts with high payoff potential and associated technology areas for further development. To support this effort, a suite of component models was developed to estimate the mass, volume, and performance for a given system architecture. These models include a hydrogen-air PEM fuel cell; an SOFC; balance-of-plant components (compressor, humidifier, separator, and heat exchangers); compressed gas, cryogenic, and liquid fuel storage tanks; and gas turbine/generator models for hybrid system applications. First-order feasibility studies were completed for an all-electric personal air vehicle utilizing a fuel-cell-powered propulsion system. A representative aircraft with an internal combustion engine was chosen as a baseline to provide key parameters to the study, including engine power and subsystem mass, fuel storage volume and mass, and aircraft range. The engine, fuel tank, and associated ancillaries were then replaced with a fuel cell subsystem. Various configurations were considered including a PEM fuel cell with liquid hydrogen storage, a direct methanol PEM fuel cell, and a direct internal reforming SOFC/turbine hybrid system using liquid methane fuel. Each configuration was compared with the baseline case on a mass and range basis.

  3. Microwave System for Detecting Ice on Aircraft

    NASA Technical Reports Server (NTRS)

    Joseph, Philip J.; Glynn, Dennis P., Jr.; Joseph, John C.

    2004-01-01

    A microwave-based system has been developed as a means of detecting ice on aircraft surfaces, with enough sensitivity to provide a warning before the ice accretes to a dangerous thickness. The system can measure the thickness of ice from a few mils (1 mil = 0.0254 mm) to about 1/4 in. (.6 mm) and can distinguish among (1) ice, (2) water (or deicing fluid), and (3) a mixture of ice and water (or deicing fluid). Sensors have been ruggedized to withstand the rain erosion environment.

  4. Cryogenic system options for a superconducting aircraft propulsion system

    NASA Astrophysics Data System (ADS)

    Berg, F.; Palmer, J.; Bertola, L.; Miller, Paul; Dodds, Graham

    2015-12-01

    There is a perceived need in the future for a move away from traditional aircraft designs in order to meet ambitious emissions and fuel burn targets. High temperature superconducting distributed propulsion may be an enabler for aircraft designs that have better propulsive efficiency and lower drag. There has been significant work considering the electrical systems required, but less on the cryogenics to enable it. This paper discusses some of the major choices to be faced in cryocooling for aircraft. The likely need for a disposable cryogen to reduce power demand is explained. A set of cryocooling methods are considered in a sensitivity study, which shows that the feasibility of the cryogenic system will depend strongly on the superconducting technology and the aircraft platform. It is argued that all three aspects must be researched and designed in close collaboration to reach a viable solution.

  5. Deicing System Protects General Aviation Aircraft

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Kelly Aerospace Thermal Systems LLC worked with researchers at Glenn Research Center on deicing technology with assistance from the Small Business Innovation Research (SBIR) program. Kelly Aerospace acquired Northcoast Technologies Ltd., a firm that had conducted work on a graphite foil heating element under a NASA SBIR contract and developed a lightweight, easy-to-install, reliable wing and tail deicing system. Kelly Aerospace engineers combined their experiences with those of the Northcoast engineers, leading to the certification and integration of a thermoelectric deicing system called Thermawing, a DC-powered air conditioner for single-engine aircraft called Thermacool, and high-output alternators to run them both. Thermawing, a reliable anti-icing and deicing system, allows pilots to safely fly through ice encounters and provides pilots of single-engine aircraft the heated wing technology usually reserved for larger, jet-powered craft. Thermacool, an innovative electric air conditioning system, uses a new compressor whose rotary pump design runs off an energy-efficient, brushless DC motor and allows pilots to use the air conditioner before the engine even starts

  6. An Immunized Aircraft Maneuver Selection System

    NASA Technical Reports Server (NTRS)

    Karr, Charles L.

    2003-01-01

    The objective of this project, as stated in the original proposal, was to develop an immunized aircraft maneuver selection (IAMS) system. The IAMS system was to be composed of computational and informational building blocks that resemble structures in natural immune systems. The ultimate goal of the project was to develop a software package that could be flight tested on aircraft models. This report describes the work performed in the first year of what was to have been a two year project. This report also describes efforts that would have been made in the final year to have completed the project, had it been continued for the final year. After introductory material is provided in Section 2, the end-of-year-one status of the effort is discussed in Section 3. The remainder of the report provides an accounting of first year efforts. Section 4 provides background information on natural immune systems while Section 5 describes a generic ar&itecture developed for use in the IAMS. Section 6 describes the application of the architecture to a system identification problem. Finally, Section 7 describes steps necessary for completing the project.

  7. Aircraft engine mathematical model - linear system approach

    NASA Astrophysics Data System (ADS)

    Rotaru, Constantin; Roateşi, Simona; Cîrciu, Ionicǎ

    2016-06-01

    This paper examines a simplified mathematical model of the aircraft engine, based on the theory of linear and nonlinear systems. The dynamics of the engine was represented by a linear, time variant model, near a nominal operating point within a finite time interval. The linearized equations were expressed in a matrix form, suitable for the incorporation in the MAPLE program solver. The behavior of the engine was included in terms of variation of the rotational speed following a deflection of the throttle. The engine inlet parameters can cover a wide range of altitude and Mach numbers.

  8. Immunity-Based Aircraft Fault Detection System

    NASA Technical Reports Server (NTRS)

    Dasgupta, D.; KrishnaKumar, K.; Wong, D.; Berry, M.

    2004-01-01

    In the study reported in this paper, we have developed and applied an Artificial Immune System (AIS) algorithm for aircraft fault detection, as an extension to a previous work on intelligent flight control (IFC). Though the prior studies had established the benefits of IFC, one area of weakness that needed to be strengthened was the control dead band induced by commanding a failed surface. Since the IFC approach uses fault accommodation with no detection, the dead band, although it reduces over time due to learning, is present and causes degradation in handling qualities. If the failure can be identified, this dead band can be further A ed to ensure rapid fault accommodation and better handling qualities. The paper describes the application of an immunity-based approach that can detect a broad spectrum of known and unforeseen failures. The approach incorporates the knowledge of the normal operational behavior of the aircraft from sensory data, and probabilistically generates a set of pattern detectors that can detect any abnormalities (including faults) in the behavior pattern indicating unsafe in-flight operation. We developed a tool called MILD (Multi-level Immune Learning Detection) based on a real-valued negative selection algorithm that can generate a small number of specialized detectors (as signatures of known failure conditions) and a larger set of generalized detectors for unknown (or possible) fault conditions. Once the fault is detected and identified, an adaptive control system would use this detection information to stabilize the aircraft by utilizing available resources (control surfaces). We experimented with data sets collected under normal and various simulated failure conditions using a piloted motion-base simulation facility. The reported results are from a collection of test cases that reflect the performance of the proposed immunity-based fault detection algorithm.

  9. NASA's UAS [Unmanned Aircraft Systems] Related Activities

    NASA Technical Reports Server (NTRS)

    Bauer, Jeffrey

    2012-01-01

    NASA continues to operate all sizes of UAS in all classes of airspace both domestically and internationally. Missions range from highly complex operations in coordination with piloted aircraft, ground, and space systems in support of science objectives to single aircraft operations in support of aeronautics research. One such example is a scaled commercial transport aircraft being used to study recovery techniques due to large upsets. NASA's efforts to support routine UAS operations continued on several fronts last year. At the national level in the United States (U.S.), NASA continued its support of the UAS Executive Committee (ExCom) comprised of the Federal Aviation Administration (FAA), Department of Defense (DoD), Department of Homeland Security (DHS), and NASA. The committee was formed in recognition of the need of UAS operated by these agencies to access to the National Airspace System (NAS) to support operational, training, development and research requirements. Recommendations were received on how to operate both manned and unmanned aircraft in class D airspace and plans are being developed to validate and implement those recommendations. In addition the UAS ExCom has begun developing recommendations for how to achieve routine operations in remote areas as well as for small UAS operations in class G airspace. As well as supporting the UAS ExCom, NASA is a participant in the recently formed Aviation Rule Making Committee for UAS. This committee, established by the FAA, is intended to propose regulatory guidance which would enable routine civil UAS operations. As that effort matures NASA stands ready to supply the necessary technical expertise to help that committee achieve its objectives. By supporting both the UAS ExCom and UAS ARC, NASA is positioned to provide its technical expertise across the full spectrum of UAS airspace access related topic areas. The UAS NAS Access Project got underway this past year under the leadership of NASA s Aeronautics

  10. An adaptive learning control system for aircraft

    NASA Technical Reports Server (NTRS)

    Mekel, R.; Nachmias, S.

    1978-01-01

    A learning control system and its utilization as a flight control system for F-8 Digital Fly-By-Wire (DFBW) research aircraft is studied. The system has the ability to adjust a gain schedule to account for changing plant characteristics and to improve its performance and the plant's performance in the course of its own operation. Three subsystems are detailed: (1) the information acquisition subsystem which identifies the plant's parameters at a given operating condition; (2) the learning algorithm subsystem which relates the identified parameters to predetermined analytical expressions describing the behavior of the parameters over a range of operating conditions; and (3) the memory and control process subsystem which consists of the collection of updated coefficients (memory) and the derived control laws. Simulation experiments indicate that the learning control system is effective in compensating for parameter variations caused by changes in flight conditions.

  11. 77 FR 14319 - Unmanned Aircraft System Test Sites

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-09

    ... can be found in the Federal Register published on April 11, 2000 (65 FR 19477-19478), as well as at... Federal Aviation Administration 14 CFR Part 91 Unmanned Aircraft System Test Sites AGENCY: Federal... test ranges/sites to integrate unmanned aircraft systems (UAS) into the National Airspace System...

  12. System design requirements for advanced rotary-wing agricultural aircraft

    NASA Technical Reports Server (NTRS)

    Lemont, H. E.

    1979-01-01

    Helicopter aerial dispersal systems were studied to ascertain constraints to the system, the effects of removal of limitations (technical and FAA regulations), and subsystem improvements. Productivity indices for the aircraft and swath effects were examined. Typical missions were formulated through conversations with operators, and differing gross weight aircraft were synthesized to perform these missions. Economic analysis of missions and aircraft indicated a general correlation of small aircraft (3000 lb gross weight) suitability for small fields (25 acres), and low dispersion rates (less than 32 lb/acre), with larger aircraft (12,000 lb gross weight) being more favorable for bigger fields (200 acres) and heavier dispersal rates (100 lb/acre). Operator problems, possible aircraft and system improvements, and selected removal of operating limitations were reviewed into recommendations for future NASA research items.

  13. Aircraft

    DOEpatents

    Hibbs, B.D.; Lissaman, P.B.S.; Morgan, W.R.; Radkey, R.L.

    1998-09-22

    This disclosure provides a solar rechargeable aircraft that is inexpensive to produce, is steerable, and can remain airborne almost indefinitely. The preferred aircraft is a span-loaded flying wing, having no fuselage or rudder. Travelling at relatively slow speeds, and having a two-hundred foot wingspan that mounts photovoltaic cells on most all of the wing`s top surface, the aircraft uses only differential thrust of its eight propellers to turn. Each of five sections of the wing has one or more engines and photovoltaic arrays, and produces its own lift independent of the other sections, to avoid loading them. Five two-sided photovoltaic arrays, in all, are mounted on the wing, and receive photovoltaic energy both incident on top of the wing, and which is incident also from below, through a bottom, transparent surface. The aircraft is capable of a top speed of about ninety miles per hour, which enables the aircraft to attain and can continuously maintain altitudes of up to sixty-five thousand feet. Regenerative fuel cells in the wing store excess electricity for use at night, such that the aircraft can sustain its elevation indefinitely. A main spar of the wing doubles as a pressure vessel that houses hydrogen and oxygen gases for use in the regenerative fuel cell. The aircraft has a wide variety of applications, which include weather monitoring and atmospheric testing, communications, surveillance, and other applications as well. 31 figs.

  14. Aircraft

    DOEpatents

    Hibbs, Bart D.; Lissaman, Peter B. S.; Morgan, Walter R.; Radkey, Robert L.

    1998-01-01

    This disclosure provides a solar rechargeable aircraft that is inexpensive to produce, is steerable, and can remain airborne almost indefinitely. The preferred aircraft is a span-loaded flying wing, having no fuselage or rudder. Travelling at relatively slow speeds, and having a two-hundred foot wingspan that mounts photovoltaic cells on most all of the wing's top surface, the aircraft uses only differential thrust of its eight propellers to turn. Each of five sections of the wing has one or more engines and photovoltaic arrays, and produces its own lift independent of the other sections, to avoid loading them. Five two-sided photovoltaic arrays, in all, are mounted on the wing, and receive photovoltaic energy both incident on top of the wing, and which is incident also from below, through a bottom, transparent surface. The aircraft is capable of a top speed of about ninety miles per hour, which enables the aircraft to attain and can continuously maintain altitudes of up to sixty-five thousand feet. Regenerative fuel cells in the wing store excess electricity for use at night, such that the aircraft can sustain its elevation indefinitely. A main spar of the wing doubles as a pressure vessel that houses hydrogen and oxygen gasses for use in the regenerative fuel cell. The aircraft has a wide variety of applications, which include weather monitoring and atmospheric testing, communications, surveillance, and other applications as well.

  15. Small Aircraft Transportation System Higher Volume Operations Concept

    NASA Technical Reports Server (NTRS)

    Abbott, Terence S.; Consiglio, Maria C.; Baxley, Brian T.; Williams, Daniel M.; Jones, Kenneth M.; Adams, Catherine A.

    2006-01-01

    This document defines the Small Aircraft Transportation System (SATS) Higher Volume Operations concept. The general philosophy underlying this concept is the establishment of a newly defined area of flight operations called a Self-Controlled Area (SCA). Within the SCA, pilots would take responsibility for separation assurance between their aircraft and other similarly equipped aircraft. This document also provides details for a number of off-nominal and emergency procedures which address situations that could be expected to occur in a future SCA. The details for this operational concept along with a description of candidate aircraft systems to support this concept are provided.

  16. Laser beacon system for aircraft collision hazard determination.

    PubMed

    Miles, R B

    1980-07-01

    A laser beacon collision hazard determination system is capable of simultaneously determining range, bearing, and heading of threat aircraft. Calculations demonstrate that threat aircraft may be observed at > 10 km under good visibility conditions. When the visibility is limited to 5.6 km (3 nautical miles), the shortest possible warning time for aircraft below 3000 m (10,000 ft) can be > 15 sec. A wide variety of detection systems may be chosen based on cost, detection range, and sophistication. Traffic saturation is not a problem since closer aircraft produce easily distinguishable signals so traffic may be prioritized. Preliminary tests demonstrate that accurate range measurements are possible under daylight conditions.

  17. Rotor systems research aircraft airplane configuration flight-test results

    NASA Technical Reports Server (NTRS)

    Painter, W. D.; Erickson, R. E.

    1984-01-01

    The Rotor Systems Research Aircraft (RSRA) has been undergoing ground and flight tests by Ames Research Center since late 1979, primarily as a compound aircraft. The purpose was to train pilots and to check out and develop the design flight envelope established by the Sikorsky Aircraft Company. This paper reviews the preparation and flight test of the RSRA in the airplane, or fixed-wing, configuration and discusses the results of that test.

  18. Aircraft Engine Exhaust Nozzle System for Jet Noise Reduction

    NASA Technical Reports Server (NTRS)

    Thomas, Russell H. (Inventor); Czech, Michael J. (Inventor); Elkoby, Ronen (Inventor)

    2014-01-01

    The aircraft exhaust engine nozzle system includes a fan nozzle to receive a fan flow from a fan disposed adjacent to an engine disposed above an airframe surface of the aircraft, a core nozzle disposed within the fan nozzle and receiving an engine core flow, and a pylon structure connected to the core nozzle and structurally attached with the airframe surface to secure the engine to the aircraft.

  19. Assessment System for Aircraft Noise (ASAN): Development of alpha-test prototype system software

    NASA Astrophysics Data System (ADS)

    Reddingius, Nicholaas H.; Smyth, John S.

    1990-02-01

    The Alpha-Test version of the Assessment System for Aircraft Noise (ASAN) is described. ASAN was developed for the United States Air Force's Noise and Sonic Boom Impact Technology Advanced Development Program Office (NSBIT ADPO). The Purpose of ASAN is to provide Air Force route and environmental planners with a set of tools for preparing the noise portion of environmental impact statements (EIS), environmental assessments (EA), and findings of no significant impact (FONSI). ASAN provides a consistent set of procedures and models which represent the current state-of-the-art in noise engineering practice. A brief overview is given of the technical issues of developing the ASAN system.

  20. Pseudo Aircraft Systems - A multi-aircraft simulation system for air traffic control research

    NASA Technical Reports Server (NTRS)

    Weske, Reid A.; Danek, George L.

    1993-01-01

    Pseudo Aircraft Systems (PAS) is a computerized flight dynamics and piloting system designed to provide a high fidelity multi-aircraft real-time simulation environment to support Air Traffic Control research. PAS is composed of three major software components that run on a network of computer workstations. Functionality is distributed among these components to allow the system to execute fast enough to support real-time operation. PAS workstations are linked by an Ethernet Local Area Network, and standard UNIX socket protocol is used for data transfer. Each component of PAS is controlled and operated using a custom designed Graphical User Interface. Each of these is composed of multiple windows, and many of the windows and sub-windows are used in several of the components. Aircraft models and piloting logic are sophisticated and realistic and provide complex maneuvering and navigational capabilities. PAS will continually be enhanced with new features and improved capabilities to support ongoing and future Air Traffic Control system development.

  1. The rotor systems research aircraft - A flying wind tunnel

    NASA Technical Reports Server (NTRS)

    Linden, A. W.; Hellyar, M. W.

    1974-01-01

    The Sikorsky Aircraft division of United Aircraft Corporation is constructing two uniquely designed Rotor Systems Research Aircraft (RSRA). These aircraft will be used through the 1980's to comparatively test many different types of rotors - articulated, hingeless, teetering, and gimballed, as well as advanced rotor concepts, such as reverse velocity and variable diameter rotors. The RSRA combines a new airframe with existing Sikorsky H-3 (S-61) dynamic components. A force measurement system is incorporated to permit accurate evaluation of significant rotor characteristics. Both rotor and fixed-wing control systems are provided, appropriately integrated for operation in the pure helicopter mode, compound helicopter mode, and fixed-wing mode. The RSRA is the first rotary wing aircraft designed with a crew escape system, including a pyrotechnic system to sever the main rotor blades.

  2. Smart Camera System for Aircraft and Spacecraft

    NASA Technical Reports Server (NTRS)

    Delgado, Frank; White, Janis; Abernathy, Michael F.

    2003-01-01

    This paper describes a new approach to situation awareness that combines video sensor technology and synthetic vision technology in a unique fashion to create a hybrid vision system. Our implementation of the technology, called "SmartCam3D" (SC3D) has been flight tested by both NASA and the Department of Defense with excellent results. This paper details its development and flight test results. Windshields and windows add considerable weight and risk to vehicle design, and because of this, many future vehicles will employ a windowless cockpit design. This windowless cockpit design philosophy prompted us to look at what would be required to develop a system that provides crewmembers and awareness. The system created to date provides a real-time operations personnel an appropriate level of situation 3D perspective display that can be used during all-weather and visibility conditions. While the advantages of a synthetic vision only system are considerable, the major disadvantage of such a system is that it displays the synthetic scene created using "static" data acquired by an aircraft or satellite at some point in the past. The SC3D system we are presenting in this paper is a hybrid synthetic vision system that fuses live video stream information with a computer generated synthetic scene. This hybrid system can display a dynamic, real-time scene of a region of interest, enriched by information from a synthetic environment system, see figure 1. The SC3D system has been flight tested on several X-38 flight tests performed over the last several years and on an ARMY Unmanned Aerial Vehicle (UAV) ground control station earlier this year. Additional testing using an assortment of UAV ground control stations and UAV simulators from the Army and Air Force will be conducted later this year.

  3. Smart camera system for aircraft and spacecraft

    NASA Astrophysics Data System (ADS)

    Delgado, Francisco J.; White, Janis; Abernathy, Michael F.

    2003-09-01

    This paper describes a new approach to situation awareness that combines video sensor technology and synthetic vision technology in a unique fashion to create a hybrid vision system. Our implementation of the technology, called "SmartCam3D" (SCS3D) has been flight tested by both NASA and the Department of Defense with excellent results. This paper details its development and flight test results. Windshields and windows add considerable weight and risk to vehicle design, and because of this, many future vehicles will employ a windowless cockpit design. This windowless cockpit design philosophy prompted us to look at what would be required to develop a system that provides crewmembers and operations personnel an appropriate level of situation awareness. The system created to date provides a real-time 3D perspective display that can be used during all-weather and visibility conditions. While the advantages of a synthetic vision only system are considerable, the major disadvantage of such a system is that it displays the synthetic scene created using "static" data acquired by an aircraft or satellite at some point in the past. The SCS3D system we are presenting in this paper is a hybrid synthetic vision system that fuses live video stream information with a computer generated synthetic scene. This hybrid system can display a dynamic, real-time scene of a region of interest, enriched by information from a synthetic environment system, see figure 1. The SCS3D system has been flight tested on several X-38 flight tests performed over the last several years and on an ARMY Unmanned Aerial Vehicle (UAV) ground control station earlier this year. Additional testing using an assortment of UAV ground control stations and UAV simulators from the Army and Air Force will be conducted later this year. We are also identifying other NASA programs that would benefit from the use of this technology.

  4. X-ray fluorescence spectrometry using Synchrotron Radiation with applications in unmanned aircraft environmental sensing

    NASA Astrophysics Data System (ADS)

    Barberie, Sean Richard Gopal

    In this thesis I present an analytical optimization of the Synchrotron Radiation X-Ray Fluorescence (SR-XRF) technique for applications in unmanned aircraft aerosol studies. In environmental and atmospheric science, there is a pressing need for aerosol measurements at various altitudes in the atmosphere and spanning large regions. This need is currently either ignored, or met to a limited degree by studies that employ manned aircraft. There is, however, a great deal of opportunity to improve and expand on these studies using the emerging technology of unmanned aircraft systems. A newly developed aerosol sampler makes this opportunity a near-reality by its ability to collect aerosol samples in-situ from unmanned aircraft platforms. The challenge lies in analyzing these samples for elemental composition. In airborne aerosol studies, the ability to resolve where a sample was collected both spatially and temporally is limited by the sensitivity of the analysis technique. In aircraft-based aerosol collection, the length of the aerosol sample spot corresponds to distance. Thus the spatial resolution of an airborne study is limited by the amount of mass that must be collected for analysis. The SR-XRF optimizations outlined in this thesis decrease the amount of sample mass required for detectable elemental concentrations, allowing aerosol samples to be analyzed in smaller areas corresponding to smaller time steps. Since, in a flight path, time steps are directly correlated with distance, analysis of smaller time steps results in the ability to measure aerosols at higher spatial resolution. Four SR-XRF analysis configurations were experimentally tested: monochromatic beam, white beam, filtered white beam, and filtered white beam-filtered detector to determine which configuration gave the highest elemental sensitivity and selectivity. Of these tested methods, the straight polychromatic white beam configuration resulted in the best sensitivity for elements across a large

  5. Automatic Aircraft Collision Avoidance System and Method

    NASA Technical Reports Server (NTRS)

    Skoog, Mark (Inventor); Hook, Loyd (Inventor); McWherter, Shaun (Inventor); Willhite, Jaimie (Inventor)

    2014-01-01

    The invention is a system and method of compressing a DTM to be used in an Auto-GCAS system using a semi-regular geometric compression algorithm. In general, the invention operates by first selecting the boundaries of the three dimensional map to be compressed and dividing the three dimensional map data into regular areas. Next, a type of free-edged, flat geometric surface is selected which will be used to approximate terrain data of the three dimensional map data. The flat geometric surface is used to approximate terrain data for each regular area. The approximations are checked to determine if they fall within selected tolerances. If the approximation for a specific regular area is within specified tolerance, the data is saved for that specific regular area. If the approximation for a specific area falls outside the specified tolerances, the regular area is divided and a flat geometric surface approximation is made for each of the divided areas. This process is recursively repeated until all of the regular areas are approximated by flat geometric surfaces. Finally, the compressed three dimensional map data is provided to the automatic ground collision system for an aircraft.

  6. Rotor systems research aircraft airplane configuration flight-test results

    NASA Technical Reports Server (NTRS)

    Painter, W. D.; Erickson, R. E.

    1984-01-01

    The rotor systems research aircraft (RSRA) has undergone ground and flight tests, primarily as a compound aircraft. The purpose was to train pilots and to check out and develop the design flight envelope. The preparation and flight test of the RSRA in the airplane, or fixed-wind, configuration are reviewed and the test results are discussed.

  7. Aircraft Electric Propulsion Systems Applied Research at NASA

    NASA Technical Reports Server (NTRS)

    Clarke, Sean

    2015-01-01

    Researchers at NASA are investigating the potential for electric propulsion systems to revolutionize the design of aircraft from the small-scale general aviation sector to commuter and transport-class vehicles. Electric propulsion provides new degrees of design freedom that may enable opportunities for tightly coupled design and optimization of the propulsion system with the aircraft structure and control systems. This could lead to extraordinary reductions in ownership and operating costs, greenhouse gas emissions, and noise annoyance levels. We are building testbeds, high-fidelity aircraft simulations, and the first highly distributed electric inhabited flight test vehicle to begin to explore these opportunities.

  8. Application of active controls technology to aircraft bide smoothing systems

    NASA Technical Reports Server (NTRS)

    Lapins, M.; Jacobson, I. D.

    1975-01-01

    A critical review of past efforts in the design and testing of ride smoothing and gust alleviation systems is presented. Design trade offs involving sensor types, choice of feedback loops, human comfort, and aircraft handling-qualities criteria are discussed. Synthesis of a system designed to employ direct-lift and side-force producing surfaces is reported. Two STOL aircraft and an executive transport are considered. Theoretically predicted system performance is compared with hybrid simulation and flight test data. Pilot opinion rating, pilot workload, and passenger comfort rating data for the basic and augmented aircraft are included.

  9. Application of Active Controls Technology to Aircraft Ride Smoothing Systems

    NASA Technical Reports Server (NTRS)

    Lapins, Maris; Jacobson, Ira D.

    1975-01-01

    A critical review of past efforts in the design and testing of ride smoothing and gust alleviation systems is presented. Design trade-offs involving sensor types, choice of feedback loops, human comfort and aircraft handling-qualities criteria are discussed. Synthesis of a system designed to employ direct-lift and side-force producing surfaces is reported. Two STOL-class aircraft and an executive transport are considered. Theoretically-predicted system performance is compared with hybrid simulation and flight test data. Pilot opinion rating, pilot workload, and passenger comfort rating data for the basic and augmented aircraft are included.

  10. Advanced Air Data Systems for Commercial Aircraft

    NASA Technical Reports Server (NTRS)

    2006-01-01

    It is possible to get a crude estimate of wind speed and direction while driving a car at night in the rain, with the motion of the raindrop reflections in the headlights providing clues about the wind. The clues are difficult to interpret, though, because of the relative motions of ground, car, air, and raindrops. More subtle interpretation is possible if the rain is replaced by fog, because the tiny droplets would follow the swirling currents of air around an illuminated object, like, for example, a walking pedestrian. Microscopic particles in the air (aerosols) are better for helping make assessments of the wind, and reflective air molecules are best of all, providing the most refined measurements. It takes a bright light to penetrate fog, so it is easy to understand how other factors, like replacing the headlights with the intensity of a searchlight, can be advantageous. This is the basic principle behind a lidar system. While a radar system transmits a pulse of radiofrequency energy and interprets the received reflections, a lidar system works in a similar fashion, substituting a near-optical laser pulse. The technique allows the measurement of relative positions and velocities between the transmitter and the air, which allows measurements of relative wind and of air temperature (because temperature is associated with high-frequency random motions on a molecular level). NASA, as well as the National Oceanic and Atmospheric Administration (NOAA), have interests in this advanced lidar technology, as much of their explorative research requires the ability to measure winds and turbulent regions within the atmosphere. Lidar also shows promise for providing warning of turbulent regions within the National Airspace System to allow commercial aircraft to avoid encounters with turbulence and thereby increase the safety of the traveling public. Both agencies currently employ lidar and optical sensing for a variety of weather-related research projects, such as analyzing

  11. Conceptual Design and Structural Optimization of NASA Environmentally Responsible Aviation (ERA) Hybrid Wing Body Aircraft

    NASA Technical Reports Server (NTRS)

    Quinlan, Jesse R.; Gern, Frank H.

    2016-01-01

    Simultaneously achieving the fuel consumption and noise reduction goals set forth by NASA's Environmentally Responsible Aviation (ERA) project requires innovative and unconventional aircraft concepts. In response, advanced hybrid wing body (HWB) aircraft concepts have been proposed and analyzed as a means of meeting these objectives. For the current study, several HWB concepts were analyzed using the Hybrid wing body Conceptual Design and structural optimization (HCDstruct) analysis code. HCDstruct is a medium-fidelity finite element based conceptual design and structural optimization tool developed to fill the critical analysis gap existing between lower order structural sizing approaches and detailed, often finite element based sizing methods for HWB aircraft concepts. Whereas prior versions of the tool used a half-model approach in building the representative finite element model, a full wing-tip-to-wing-tip modeling capability was recently added to HCDstruct, which alleviated the symmetry constraints at the model centerline in place of a free-flying model and allowed for more realistic center body, aft body, and wing loading and trim response. The latest version of HCDstruct was applied to two ERA reference cases, including the Boeing Open Rotor Engine Integration On an HWB (OREIO) concept and the Boeing ERA-0009H1 concept, and results agreed favorably with detailed Boeing design data and related Flight Optimization System (FLOPS) analyses. Following these benchmark cases, HCDstruct was used to size NASA's ERA HWB concepts and to perform a related scaling study.

  12. Atmospheric Observations from Unmanned Aircraft Systems

    NASA Technical Reports Server (NTRS)

    Newman, Paul A.

    2008-01-01

    Unmanned Aircraft Systems (UASs) provide a new and exciting avenue for atmospheric observations. NASA has a number of UASs. Amongst these are the Ikhana (24 hrs., 7000 km), the Altair (120 hrs., 6500 km), the Aerosonde (30 hrs., 3000 km), and the Global Hawk (30 hrs., 22,000 km). This presentation provides a brief history of UASs which is followed by a description of their capabilities. The presentation concludes by describing an example mission - the UAS Aura Validation Experiment (UAS-AVE). This mission will be flown on the NASA Global Hawk in the Spring/Summer of 2009. The goals fo the mission are to: 1) provide Aura validation observations, 2) sample the break up of the Arctic polar vortex, 3) observed cross-Pacific transport of aerosols and pollutants such as ozone, and 4) sample intense water advective events that impact the U.S. west coast (atmospheric rivers). Because of their range and duration, UASs provide new and exciting opportunities for atmospheric science.

  13. Environmental effects of an aircraft at cruise: An update

    NASA Technical Reports Server (NTRS)

    Sundararaman, N.

    1980-01-01

    The status of the calculations of ozone change due to high altitude aircraft is critically reviewed and important areas of uncertainty identified. Laboratory determinations of chemical reaction rates and modeling refinements show that the effect of cruise altitude emissions on stratospheric ozone has changed from one of ozone decrease to one of slight increase. It is concluded that the uncertainties in the present understanding of the effects of high altitude aircraft are such as to warrant continued studies.

  14. Method and System for Active Noise Control of Tiltrotor Aircraft

    NASA Technical Reports Server (NTRS)

    Betzina, Mark D. (Inventor); Nguyen, Khanh Q. (Inventor)

    2003-01-01

    Methods and systems for reducing noise generated by rotating blades of a tiltrotor aircraft. A rotor-blade pitch angle associated with the tiltrotor aircraft can be controlled utilizing a swashplate connected to rotating blades of the tiltrotor aircraft. One or more Higher Harmonic Control (HHC) signals can be transmitted and input to a swashplate control actuator associated with the swashplate. A particular blade pitch oscillation (e.g., four cycles per revolution) is there-after produced in a rotating frame of reference associated with the rotating blades in response to input of an HHC signal to the swashplate control actuator associated with the swashplate to thereby reduce noise associated with the rotating blades of the tiltrotor aircraft. The HHC signal can be transmitted and input to the swashplate control actuator to reduce noise of the tiltrotor aircraft in response to a user input utilizing an open-loop configuration.

  15. Parametric study of transport aircraft systems cost and weight

    NASA Technical Reports Server (NTRS)

    Beltramo, M. N.; Trapp, D. L.; Kimoto, B. W.; Marsh, D. P.

    1977-01-01

    The results of a NASA study to develop production cost estimating relationships (CERs) and weight estimating relationships (WERs) for commercial and military transport aircraft at the system level are presented. The systems considered correspond to the standard weight groups defined in Military Standard 1374 and are listed. These systems make up a complete aircraft exclusive of engines. The CER for each system (or CERs in several cases) utilize weight as the key parameter. Weights may be determined from detailed weight statements, if available, or by using the WERs developed, which are based on technical and performance characteristics generally available during preliminary design. The CERs that were developed provide a very useful tool for making preliminary estimates of the production cost of an aircraft. Likewise, the WERs provide a very useful tool for making preliminary estimates of the weight of aircraft based on conceptual design information.

  16. Inerting Aircraft Fuel Systems Using Exhaust Gases

    NASA Technical Reports Server (NTRS)

    Hehemann, David G.

    2002-01-01

    Our purpose in this proposal was to determine the feasibility of using carbon dioxide, possibly obtained from aircraft exhaust gases as a substance to inert the fuel contained in fuel tanks aboard aircraft. To do this, we decided to look at the effects carbon dioxide has upon commercial Jet-A aircraft fuel. In particular, we looked at the solubility of CO2 in Jet-A fuel, the pumpability of CO2-saturated Jet-A fuel, the flashpoint of Jet-A fuel under various mixtures of air and CO2, the static outgassing of CO2-Saturated Jet-A fuel and the dynamic outgassing of Jet-A fuel during pumping of Jet-A fuel.

  17. Variable-Speed Induction Motor Drives for Aircraft Environmental Control Compressors

    NASA Technical Reports Server (NTRS)

    Mildice, J. W.; Hansen, I. G.; Schreiner, K. E.; Roth, M. E.

    1996-01-01

    New, more-efficient designs for aircraft jet engines are not capable of supplying the large quantities of bleed air necessary to provide pressurization and air conditioning for the environmental control systems (ECS) of the next generation of large passenger aircraft. System analysis and engineering have determined that electrically-driven ECS can help to maintain the improved fuel efficiencies; and electronic controllers and induction motors are now being developed in a NASA/NPD SBIR Program to drive both types of ECS compressors. Previous variable-speed induction motor/controller system developments and publications have primarily focused on field-oriented control, with large transient reserve power, for maximum acceleration and optimum response in actuator and robotics systems. The application area addressed herein is characterized by slowly-changing inputs and outputs, small reserve power capability for acceleration, and optimization for maximum efficiency. This paper therefore focuses on the differences between this case and the optimum response case, and shows the development of this new motor/controller approach. It starts with the creation of a new set of controller requirements. In response to those requirements, new control algorithms are being developed and implemented in an embedded computer, which is integrated into the motor controller closed loop. Buffered logic outputs are used to drive the power switches in a resonant-technology, power processor/motor-controller, at switching/resonant frequencies high enough to support efficient high-frequency induction motor operation at speeds up to 50,000-RPA

  18. Fuel-conservative guidance system for powered-lift aircraft

    NASA Technical Reports Server (NTRS)

    Erzberger, H.; Mclean, J. D.

    1979-01-01

    A concept for automatic terminal area guidance, comprising two modes of operation, was developed and evaluated in flight tests. In the predictive mode, fuel efficient approach trajectories are synthesized in fast time. In the tracking mode, the synthesized trajectories are reconstructed and tracked automatically. An energy rate performance model derived from the lift, drag, and propulsion system characteristics of the aircraft is used in the synthesis algorithm. The method optimizes the trajectory for the initial aircraft position and wind and temperature profiles encountered during each landing approach. The design theory and the results of simulations and flight tests using the Augmentor Wing Jet STOL Research Aircraft are described.

  19. Small Aircraft Transportation System, Higher Volume Operations Concept: Normal Operations

    NASA Technical Reports Server (NTRS)

    Abbott, Terence S.; Jones, Kenneth M.; Consiglio, Maria C.; Williams, Daniel M.; Adams, Catherine A.

    2004-01-01

    This document defines the Small Aircraft Transportation System (SATS), Higher Volume Operations (HVO) concept for normal conditions. In this concept, a block of airspace would be established around designated non-towered, non-radar airports during periods of poor weather. Within this new airspace, pilots would take responsibility for separation assurance between their aircraft and other similarly equipped aircraft. Using onboard equipment and procedures, they would then approach and land at the airport. Departures would be handled in a similar fashion. The details for this operational concept are provided in this document.

  20. Preliminary Considerations for Classifying Hazards of Unmanned Aircraft Systems

    NASA Technical Reports Server (NTRS)

    Hayhurst, Kelly J.; Maddalon, Jeffrey M.; Miner, Paul S.; Szatkowski, George N.; Ulrey, Michael L.; DeWalt, Michael P.; Spitzer, Cary R.

    2007-01-01

    The use of unmanned aircraft in national airspace has been characterized as the next great step forward in the evolution of civil aviation. To make routine and safe operation of these aircraft a reality, a number of technological and regulatory challenges must be overcome. This report discusses some of the regulatory challenges with respect to deriving safety and reliability requirements for unmanned aircraft. In particular, definitions of hazards and their classification are discussed and applied to a preliminary functional hazard assessment of a generic unmanned system.

  1. Overview of Propulsion Systems for a Mars Aircraft

    NASA Technical Reports Server (NTRS)

    Colozza, Anthony J.; Miller, Christopher J.; Reed, Brian D.; Kohout, Lisa L.; Loyselle, Patricia L.

    2001-01-01

    The capabilities and performance of an aircraft depends greatly on the ability of the propulsion system to provide thrust. Since the beginning of powered flight, performance has increased in step with advancements in aircraft propulsion systems. These advances in technology from combustion engines to jets and rockets have enabled aircraft to exploit our atmospheric environment and fly at altitudes near the Earth's surface to near orbit at speeds ranging from hovering to several times the speed of sound. One of the main advantages of our atmosphere for these propulsion systems is the availability of oxygen. Getting oxygen basically "free" from the atmosphere dramatically increases the performance and capabilities of an aircraft. This is one of the reasons our present-day aircraft can perform such a wide range of tasks. But this advantage is limited to Earth; if we want to fly an aircraft on another planetary body, such as Mars, we will either have to carry our own source of oxygen or use a propulsion system that does not require it. The Mars atmosphere, composed mainly of carbon dioxide, is very thin. Because of this low atmospheric density, an aircraft flying on Mars will most likely be operating, in aerodynamical terms, within a very low Reynolds number regime. Also, the speed of sound within the Martian environment is approximately 20 percent less than it is on Earth. The reduction in the speed of sound plays an important role in the aerodynamic performance of both the aircraft itself and the components of the propulsion system, such as the propeller. This low Reynolds number-high Mach number flight regime is a unique flight environment that is very rarely encountered here on Earth.

  2. Flying qualities and control system characteristics for superaugmented aircraft

    NASA Technical Reports Server (NTRS)

    Myers, T. T.; Mcruer, D. T.; Johnston, D. E.

    1984-01-01

    Aircraft-alone dynamics and superaugmented control system fundamental regulatory properties including stability and regulatory responses of the basic closed-loop systems; fundamental high and low frequency margins and governing factors; and sensitivity to aircraft and controller parameters are addressed. Alternative FCS mechanizations, and mechanizational side effects are also discussed. An overview of flying qualities considerations encompasses general pilot operations as a controller in unattended, intermittent and trim, and full-attention regulatory or command control; effective vehicle primary and secondary response properties to pilot inputs and disturbances; pilot control architectural possibilities; and comparison of superaugmented and conventional aircraft path responses for different forms of pilot control. Results of a simple experimental investigation into pilot dynamic behavior in attitude control of superaugmented aircraft configurations with high frequency time laps and time delays are presented.

  3. Systems study of transport aircraft incorporating advanced aluminum alloys

    NASA Technical Reports Server (NTRS)

    Sakata, I. F.

    1982-01-01

    A study was performed to quantify the potential benefits of utilizing advanced aluminum alloys in commercial transport aircraft and to define the effort necessary to develop fully the alloys to a viable commercial production capability. The comprehensive investigation (1) established realistic advanced aluminum alloy property goals to maximize aircraft systems effectiveness (2) identified performance and economic benefits of incorporating the advanced alloy in future advanced technology commercial aircraft designs (3) provided a recommended plan for development and integration of the alloys into commercial aircraft production (4) provided an indication of the timing and investigation required by the metal producing industry to support the projected market and (5) evaluate application of advanced aluminum alloys to other aerospace and transit systems as a secondary objective. The results of the investigation provided a roadmap and identified key issues requiring attention in an advanced aluminum alloy and applications technology development program.

  4. Inefficiency of sanitation measures aboard commercial aircraft: environmental pollution and disease.

    PubMed

    Kikuchi, R

    1977-07-01

    Recent investigations at Tokyo International Airport have proven that environmental pollution resulting from the inefficient disposal of human excretion aboard aircraft is an important problem from the standpoint of quarantine. It is, therefore, recommended that the worldwide aviation industry take immediate measures to improve conditions and eliminate this problem, which has thus far been ignored by aircraft designers, airport administration, and CAB personnel. PMID:329830

  5. System identification methods for aircraft flight control development and validation

    NASA Technical Reports Server (NTRS)

    Tischler, Mark B.

    1995-01-01

    System-identification methods compose a mathematical model, or series of models, from measurements of inputs and outputs of dynamic systems. The extracted models allow the characterization of the response of the overall aircraft or component subsystem behavior, such as actuators and on-board signal processing algorithms. This paper discusses the use of frequency-domain system-identification methods for the development and integration of aircraft flight-control systems. The extraction and analysis of models of varying complexity from nonparametric frequency-responses to transfer-functions and high-order state-space representations is illustrated using the Comprehensive Identification from FrEquency Responses (CIFER) system-identification facility. Results are presented for test data of numerous flight and simulation programs at the Ames Research Center including rotorcraft, fixed-wing aircraft, advanced short takeoff and vertical landing (ASTOVL), vertical/short takeoff and landing (V/STOL), tiltrotor aircraft, and rotor experiments in the wind tunnel. Excellent system characterization and dynamic response prediction is achieved for this wide class of systems. Examples illustrate the role of system-identification technology in providing an integrated flow of dynamic response data around the entire life-cycle of aircraft development from initial specifications, through simulation and bench testing, and into flight-test optimization.

  6. Some wear studies on aircraft brake systems

    NASA Technical Reports Server (NTRS)

    Ho, T. L.

    1975-01-01

    An initial investigation of worn surfaces in friction pads and steel rotors used in current aircraft brakes was carried out using electron microprobe and X-ray diffraction analysis. It consists of the topographical study and the analysis of chemical element distribution. Based upon this initial examination, two approaches, microscopic and macroscopic have been conducted to interpret and formulate the wear mechanism of the aircraft brake materials. Microscopically, the wear particles were examined. The initiation and growth of surface cracks and the oxidation were emphasized in this investigation. Macroscopically, it has been found that, for the current copper based brake material sliding against 17-22 AS steel in a caliper brake, the surface temperature raised due to frictional heat is nonlinearly proportional to the load applied and slide time with speed at 1750 rpm. The wear of brake materials is then proportional to this temperature and is also a function of the melting temperature for copper.

  7. Project ADIOS: Aircraft Deployable Ice Observation System

    NASA Astrophysics Data System (ADS)

    Gudmundsson, G. H.

    2013-12-01

    Regions of the Antarctic that are of scientific interest are often too heavily crevassed to enable a plane to land, or permit safe access from a field camp. We have developed an alternative strategy for instrumenting these regions: a sensor that can be dropped from an overflying aircraft. Existing aircraft deployable sensors are not suitable for long term operations in areas where snow accumulates, as they are quickly buried. We have overcome this problem by shaping the sensor like an aerodynamic mast with fins and a small parachute. After being released from the aircraft, the sensor accelerates to 42m/s and stabilizes during a 10s descent. On impact with the snow surface the sensor package buries itself to a depth of 1m then uses the large surface area of the fins to stop it burying further. This leaves a 1.5m mast protruding high above the snow surface to ensure a long operating life. The high impact kinetic energy and robust fin braking mechanism ensure that the design works in both soft and hard snow. Over the past two years we have developed and tested our design with a series of aircraft and wind tunnel tests. Last season we used this deployment strategy to successfully install a network of 31 single band GPS sensors in regions where crevassing has previously prevented science operations: Pine Island Glacier, West Antarctica, and Scar Inlet, Antarctic Peninsula. This season we intend to expand on this network by deploying a further 25 single and dual band GPS sensors on Thwaites Glacier, West Antarctica.

  8. Application of aircraft navigation sensors to enhanced vision systems

    NASA Technical Reports Server (NTRS)

    Sweet, Barbara T.

    1993-01-01

    In this presentation, the applicability of various aircraft navigation sensors to enhanced vision system design is discussed. First, the accuracy requirements of the FAA for precision landing systems are presented, followed by the current navigation systems and their characteristics. These systems include Instrument Landing System (ILS), Microwave Landing System (MLS), Inertial Navigation, Altimetry, and Global Positioning System (GPS). Finally, the use of navigation system data to improve enhanced vision systems is discussed. These applications include radar image rectification, motion compensation, and image registration.

  9. Study of aircraft in intraurban transportation systems, volume 1

    NASA Technical Reports Server (NTRS)

    Stout, E. G.; Kesling, P. H.; Matteson, H. C.; Sherwood, D. E.; Tuck, W. R., Jr.; Vaughn, L. A.

    1971-01-01

    An analysis of an effective short range, high density computer transportation system for intraurban systems is presented. The seven county Detroit, Michigan, metropolitan area, was chosen as the scenario for the analysis. The study consisted of an analysis and forecast of the Detroit market through 1985, a parametric analysis of appropriate short haul aircraft concepts and associated ground systems, and a preliminary overall economic analysis of a simplified total system designed to evaluate the candidate vehicles and select the most promising VTOL and STOL aircraft. Data are also included on the impact of advanced technology on the system, the sensitivity of mission performance to changes in aircraft characteristics and system operations, and identification of key problem areas that may be improved by additional research. The approach, logic, and computer models used are adaptable to other intraurban or interurban areas.

  10. Propulsion system study for Small Transport Aircraft Technology (STAT)

    NASA Technical Reports Server (NTRS)

    Smith, C. E.; Hirschkron, R.; Warren, R. E.

    1981-01-01

    Propulsion system technologies applicable to the generation of commuter airline aircraft expected to enter service in the 1990's are identified and evaluated in terms of their impact on aircraft operating economics and fuel consumption. The most promising technologies in the areas of engine, propeller, gearbox, and nacelle design are recommended for future research. Each item under consideration is evaluated relative to a modern baseline engine, the General Electric CT7-5, in a current technology aircraft flying a fixed range and payload. The analysis is presented for two aircraft sizes (30 and 50 passenger), over a range of mission lengths (100 to 1100 km) and fuel costs ($264 to $396 per cu m).

  11. Aircraft conceptual design study of the canard and threesurface unconventional configurations for the purposes of reducing environmental impacts

    NASA Astrophysics Data System (ADS)

    Desharnais, Olivier

    With a constant increase in the demand for air transport and today's high fuel price, the aerospace industry is actively searching for new operation methods and technologies to improve efficiency and to reduce the impact it has on the environment. Aircraft manufacturers are exploring many different ways of designing and building better airplanes. One of the considered methods is the use of unconventional aircraft configurations. The objective of this research is to study two configurations, the canard and three-surface, by applying them into a typical high-speed jet aircraft using the conceptual design tools for conventional aircraft available at Bombardier Aerospace (some of them have been modified and validated for the two configurations of interest). This included a weight estimation of the foreplane, an extensive validation of the aerodynamic tool, AVL, and a modification of a physics-based tail-sizing tool. The last tool was found necessary for an accurate foreplane/tailplane sizing, aircraft balancing, establishing the CG envelope and for the assessment of all stability and control requirements. Then, a canard aircraft comparable to the Bombardier research platform aircraft was designed. Final solutions were not obtained from a complete optimization because of some limitations in the design process. The preliminary results show an increase of fuel burn of 10%, leading to an increase of the environmental impacts. The theoretical advantage of not generating any download lift is clearly overwhelmed by the poor effectiveness of the high-lift system. The incapacity to reach a level of high-lift performance close to the one of conventional high-speed aircrafts mostly explains why the canard configuration was found to have no true benefits in this application. Even if no final solution of a three-surface aircraft was obtained in this research, this configuration was identified as being better than the canard case according to the information found in the literature

  12. Personal Electronic Devices and Their Interference with Aircraft Systems

    NASA Technical Reports Server (NTRS)

    Ross, Elden; Ely, Jay J. (Technical Monitor)

    2001-01-01

    A compilation of data on personal electronic devices (PEDs) attributed to having created anomalies with aircraft systems. Charts and tables display 14 years of incidents reported by pilots to the Aviation Safety Reporting System (ASRS). Affected systems, incident severity, sources of anomaly detection, and the most frequently identified PEDs are some of the more significant data. Several reports contain incidents of aircraft off course when all systems indicated on course and of critical events that occurred during landings and takeoffs. Additionally, PEDs that should receive priority in testing are identified.

  13. Analysis of LPFG sensor systems for aircraft wing drag optimization

    NASA Astrophysics Data System (ADS)

    Kazemi, Alex A.; Ishihara, Abe

    2014-09-01

    In normal fiber, the refractive indices of the core and cladding do not change along the length of the fiber; however, by inducing a periodic modulation of refractive index along the length in the core of the optical fiber, the optical fiber grating is produced. This exhibits very interesting spectral properties and for this reason we propose to develop and integrate a distributed sensor network based on long period fiber gratings (LPFGs) technology which has grating periods on the order of 100 μm to 1 mm to be embedded in the wing section of aircraft to measure bending and torsion in real-time in order to measure wing deformation of commercial airplanes resulting in extensive benefits such as reduced structural weight, mitigation of induced drag and lower fuel consumption which is fifty percent of total cost of operation for airline industry. Fiber optic sensors measurement capabilities are as vital as they are for other sensing technologies, but optical measurements differ in important ways. In this paper we focus on the testing and aviation requirements for LPFG sensors. We discuss the bases of aviation standards for fiber optic sensor measurements, and the quantities that are measured. Our main objective is to optimize the design for material, mechanical, optical and environmental requirements. We discuss the analysis and evaluation of extensive testing of LPFG sensor systems such as attenuation, environmental, humidity, fluid immersion, temperature cycling, aging, smoke, flammability, impact resistance, flexure endurance, tensile, vitiation and shock.

  14. Aircraft skin cooling system for thermal management of onboard high power electronic equipment

    SciTech Connect

    Hashemi, A.; Dyson, E.

    1996-12-31

    Integration of high-power electronic devices into existing aircraft, while minimizing the impact of additional heat load on the environmental control system of the aircraft, requires innovative approaches. One such approach is to reject heat through the aircraft skin by use of internal skin ducts with enhanced surfaces. This approach requires a system level consideration of the effect of cooling ducts, inlets and outlets on the performance of the electronic equipment and effectiveness of the heat rejection system. This paper describes the development of a system-level model to evaluate the performance of electronic equipment in an aircraft cabin and heat rejection through the skin. In this model, the outer surface of the fuselage is treated as a heat exchanger. Hot air from an equipment exhaust plenum is drawn into a series of baffled ducts within the fuselage support structure, where the heat is rejected, and then recirculated into the cabin. The cooler air form the cabin is then drawn into the electronic equipment. The aircraft air conditioning unit is also modeled to provide chilled air directly into the cabin. In addition, this paper describes a series of tests which were performed to verify the model assumptions for heat dissipation from and air flow through the equipment. The tests were performed using the actual electronic equipment in a representative cabin configuration. Results indicate very good agreement between the analytical calculations for the design point and model predictions.

  15. Impact of environmental constraints and aircraft technology on airline fleet composition

    NASA Astrophysics Data System (ADS)

    Moolchandani, Kushal A.

    This thesis models an airline's decisions about fleet evolution in order to maintain economic and regulatory viability. The aim is to analyze the fleet evolution under different scenarios of environmental policy and technology availability in order to suggest an optimal fleet under each case. An understanding of the effect of aircraft technologies, fleet size and age distribution, and operational procedures on airline performance may improve the quality of policies to achieve environmental goals. Additionally, the effect of decisions about fleet evolution on air travel is assessed as the change in market demand and profits of an abstracted, benevolent monopolist airline. Attention to the environmental impact of aviation has grown, and this has prompted several organizations such as ICAO (and, in response, NASA) to establish emissions reduction targets to reduce aviation's global climate impact. The introduction of new technology, change in operational procedures, etc. are some of the proposed means to achieve these targets. Of these, this thesis studies the efficacy of implementation of environmental policies in form of emissions constraints as a means to achieve these goals and assesses their impact on an airline's fleet evolution and technology use (along with resulting effects on air travel demand). All studies in this thesis are conducted using the Fleet-level Environmental Evaluation Tool (FLEET), a NASA sponsored simulation tool developed at Purdue University. This tool models airline operational decisions via a resource allocation problem and uses a system dynamics type approach to mimic airline economics, their decisions regarding retirement and acquisition of aircraft and evolution of market demand in response to the economic conditions. The development of an aircraft acquisition model for FLEET is a significant contribution of the author. Further, the author conducted a study of various environmental policies using FLEET. Studies introduce constraints on

  16. Aircraft Icing Weather Data Reporting and Dissemination System

    NASA Technical Reports Server (NTRS)

    Bass, Ellen J.; Minsk, Brian; Lindholm, Tenny; Politovich, Marcia; Reehorst, Andrew (Technical Monitor)

    2002-01-01

    The long-term operational concept of this research is to develop an onboard aircraft system that assesses and reports atmospheric icing conditions automatically and in a timely manner in order to improve aviation safety and the efficiency of aircraft operations via improved real-time and forecast weather products. The idea is to use current measurement capabilities on aircraft equipped with icing sensors and in-flight data communication technologies as a reporting source. Without requiring expensive avionics upgrades, aircraft data must be processed and available for downlink. Ideally, the data from multiple aircraft can then be integrated (along with other real-time and modeled data) on the ground such that aviation-centered icing hazard metrics for volumes of airspace can be assessed. As the effect of icing on different aircraft types can vary, the information should be displayed in meaningful ways such that multiple types of users can understand the information. That is, information must be presented in a manner to allow users to understand the icing conditions with respect to individual concerns and aircraft capabilities. This research provides progress toward this operational concept by: identifying an aircraft platform capable of digitally capturing, processing, and downlinking icing data; identifying the required in situ icing data processing; investigating the requirements for routing the icing data for use by weather products; developing an icing case study in order to gain insight into major air carrier needs; developing and prototyping icing display concepts based on the National Center for Atmospheric Research's existing diagnostic and forecast experimental icing products; and conducting a usability study for the prototyped icing display concepts.

  17. Fire blocking systems for aircraft seat cushions

    NASA Technical Reports Server (NTRS)

    Parker, J. A.; Kourtides, D. A. (Inventor)

    1984-01-01

    A configuration and method for reducing the flammability of bodies of organic materials that thermally decompose to give flammable gases comprises covering the body with a flexible matrix that catalytically cracks the flammable gases to less flammable species. Optionally, the matrix is covered with a gas impermeable outer layer. In a preferred embodiment, the invention takes the form of an aircraft seat in which the body is a poly(urethane) seat cushion, the matrix is an aramid fabric or felt and the outer layer is an aluminum film.

  18. Determination and Applications of Environmental Costs at Different Sized Airports: Aircraft Noise and Engine Emissions

    NASA Technical Reports Server (NTRS)

    Lu, Cherie; Lierens, Abigail

    2003-01-01

    With the increasing trend of charging for externalities and the aim of encouraging the sustainable development of the air transport industry, there is a need to evaluate the social costs of these undesirable side effects, mainly aircraft noise and engine emissions, for different airports. The aircraft noise and engine emissions social costs are calculated in monetary terms for five different airports, ranging from hub airports to small regional airports. The number of residences within different levels of airport noise contours and the aircraft noise classifications are the main determinants for accessing aircraft noise social costs. Whist, based on the damages of different engine pollutants on the human health, vegetation, materials, aquatic ecosystem and climate, the aircraft engine emissions social costs vary from engine types to aircraft categories. The results indicate that the relationship appears to be curvilinear between environmental costs and the traffic volume of an airport. The results and methodology of environmental cost calculation could input for to the proposed European wide harmonized noise charges as well as the social cost benefit analysis of airports.

  19. Design and flight test of the Propulsion Controlled Aircraft (PCA) flight control system on the NASA F-15 test aircraft

    NASA Technical Reports Server (NTRS)

    Wells, Edward A.; Urnes, James M., Sr.

    1994-01-01

    This report describes the design, development and flight testing of the Propulsion Controlled Aircraft (PCA) flight control system performed at McDonnell Douglas Aerospace (MDA), St. Louis, Missouri and at the NASA Dryden Flight Research Facility, Edwards Air Force Base, California. This research and development program was conducted by MDA and directed by NASA through the Dryden Flight Research Facility for the period beginning January 1991 and ending December 1993. A propulsion steering backup to the aircraft conventional flight control system has been developed and flight demonstrated on a NASA F-15 test aircraft. The Propulsion Controlled Aircraft (PCA) flight system utilizes collective and differential thrust changes to steer an aircraft that experiences partial or complete failure of the hydraulically actuated control surfaces. The PCA flight control research has shown that propulsion steering is a viable backup flight control mode and can assist the pilot in safe landing recovery of a fighter aircraft that has damage to or loss of the flight control surfaces. NASA, USAF and Navy evaluation test pilots stated that the F-15 PCA design provided the control necessary to land the aircraft. Moreover, the feasibility study showed that PCA technology can be directly applied to transport aircraft and provide a major improvement in the survivability of passengers and crew of controls damaged aircraft.

  20. Flight Testing the Rotor Systems Research Aircraft (RSRA)

    NASA Technical Reports Server (NTRS)

    Hall, G. W.; Merrill, R. K.

    1983-01-01

    In the late 1960s, efforts to advance the state-of-the-art in rotor systems technology indicated a significant gap existed between our ability to accurately predict the characteristics of a complex rotor system and the results obtained through flight verification. Even full scale wind tunnel efforts proved inaccurate because of the complex nature of a rotating, maneuvering rotor system. The key element missing, which prevented significant advances, was our inability to precisely measure the exact rotor state as a function of time and flight condition. Two Rotor Research Aircraft (RSRA) were designed as pure research aircraft and dedicated rotor test vehicles whose function is to fill the gap between theory, wind tunnel testing, and flight verification. The two aircraft, the development of the piloting techniques required to safely fly the compound helicopter, the government flight testing accomplished to date, and proposed future research programs.

  1. An efficient navigation-control system for small unmanned aircraft

    NASA Astrophysics Data System (ADS)

    Girwar-Nath, Jonathan Alejandro

    Unmanned Aerial Vehicles have been research in the past decade for a broad range of tasks and application domains such as search and rescue, reconnaissance, traffic control, pipe line inspections, surveillance, border patrol, and communication bridging. This work describes the design and implementation of a lightweight Commercial-Off-The-Shelf (COTS) semi-autonomous Fixed-Wing Unmanned Aerial Vehicle (UAV). Presented here is a methodology for System Identification utilizing the Box-Jenkins model estimator on recorded flight data to characterize the system and develop a mathematical model of the aircraft. Additionally, a novel microprocessor, the XMOS, is utilized to navigate and maneuver the aircraft utilizing a PD control system. In this thesis is a description of the aircraft and the sensor suite utilized, as well as the flight data and supporting videos for the benefit of the UAV research community.

  2. Delivering better power: the role of simulation in reducing the environmental impact of aircraft engines.

    PubMed

    Menzies, Kevin

    2014-08-13

    The growth in simulation capability over the past 20 years has led to remarkable changes in the design process for gas turbines. The availability of relatively cheap computational power coupled to improvements in numerical methods and physical modelling in simulation codes have enabled the development of aircraft propulsion systems that are more powerful and yet more efficient than ever before. However, the design challenges are correspondingly greater, especially to reduce environmental impact. The simulation requirements to achieve a reduced environmental impact are described along with the implications of continued growth in available computational power. It is concluded that achieving the environmental goals will demand large-scale multi-disciplinary simulations requiring significantly increased computational power, to enable optimization of the airframe and propulsion system over the entire operational envelope. However even with massive parallelization, the limits imposed by communications latency will constrain the time required to achieve a solution, and therefore the position of such large-scale calculations in the industrial design process. PMID:25024416

  3. Delivering better power: the role of simulation in reducing the environmental impact of aircraft engines.

    PubMed

    Menzies, Kevin

    2014-08-13

    The growth in simulation capability over the past 20 years has led to remarkable changes in the design process for gas turbines. The availability of relatively cheap computational power coupled to improvements in numerical methods and physical modelling in simulation codes have enabled the development of aircraft propulsion systems that are more powerful and yet more efficient than ever before. However, the design challenges are correspondingly greater, especially to reduce environmental impact. The simulation requirements to achieve a reduced environmental impact are described along with the implications of continued growth in available computational power. It is concluded that achieving the environmental goals will demand large-scale multi-disciplinary simulations requiring significantly increased computational power, to enable optimization of the airframe and propulsion system over the entire operational envelope. However even with massive parallelization, the limits imposed by communications latency will constrain the time required to achieve a solution, and therefore the position of such large-scale calculations in the industrial design process.

  4. Analysis and testing of stability augmentation systems. [for supersonic transport aircraft wing and B-52 aircraft control system

    NASA Technical Reports Server (NTRS)

    Sevart, F. D.; Patel, S. M.; Wattman, W. J.

    1972-01-01

    Testing and evaluation of stability augmentation systems for aircraft flight control were conducted. The flutter suppression system analysis of a scale supersonic transport wing model is described. Mechanization of the flutter suppression system is reported. The ride control synthesis for the B-52 aeroelastic model is discussed. Model analyses were conducted using equations of motion generated from generalized mass and stiffness data.

  5. Aircraft Detection System Ensures Free-Space Laser Safety

    NASA Technical Reports Server (NTRS)

    Smithgall, Brian; Wilson, Keith E.

    2004-01-01

    As scientists continue to explore our solar system, there are increasing demands to return greater volumes of data from smaller deep-space probes. Accordingly, NASA is studying advanced strategies based on free-space laser transmissions, which offer secure, high-bandwidth communications using smaller subsystems of much lower power and mass than existing ones. These approaches, however, can pose a danger to pilots in the beam path because the lasers may illuminate aircraft and blind them. Researchers thus are investigating systems that will monitor the surrounding airspace for aircraft that could be affected. This paper presents current methods for safe free space laser propagation.

  6. Lightweight, Efficient Power Converters for Advanced Turboelectric Aircraft Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Hennessy, Michael J.

    2014-01-01

    NASA is investigating advanced turboelectric aircraft propulsion systems that use superconducting motors to drive multiple distributed turbofans. Conventional electric motors are too large and heavy to be practical for this application; therefore, superconducting motors are required. In order to improve aircraft maneuverability, variable-speed power converters are required to throttle power to the turbofans. The low operating temperature and the need for lightweight components that place a minimum of additional heat load on the refrigeration system open the possibility of incorporating extremely efficient cryogenic power conversion technology. This Phase II project is developing critical components required to meet these goals.

  7. Detailed design specification for a prototype Assessment System for Aircraft Noise (ASAN)

    NASA Astrophysics Data System (ADS)

    Sanford, Fidell; Harris, Michael; Reddinguis, Nicholaas

    1988-07-01

    The U.S. Air Force Noise and Sonic Boom Impact Technology (NSBIT) Program is sponsoring a multi-stage effort to create a computer system containing tools needed by the environmental planning community to perform a variety of tasks related to assessing the environmental impacts of aircraft noise on people, animals, and structures. This interim report provides a detailed design specification for a prototype version of the NSBIT Assessment System for Aircraft Noise (ASAN) that is the major project of the first stage of this effort. The purposes and expected uses of ASAN are presented in Fidell and Harris (1987). The general functional capabilities of this system are described by Harris and Fidell (1987). The current report describes the organization of ASAN, its functional capabilities, and its major software modules.

  8. Linear tracking systems with applications to aircraft control system design

    NASA Technical Reports Server (NTRS)

    Lee, W. H.; Athans, M.; Castanon, D.; Bacchioloni, F.

    1977-01-01

    A class of optimal linear time invariant tracking systems, both in continuous time and discrete time, of which the number of inputs (which are restricted to be step functions) is equal to the number of system outputs, is studied. Along with derivation of equations and design procedures, two discretization schemes are presented, constraining either the control or its time derivative, to be a constant over each sampling period. Descriptions are given for the linearized model of the F-8C aircraft longitudinal dynamics, and the C* handling qualities criterion, which then serve as an illustration of the applications of these linear tracking designs. A suboptimal reduced state design is also presented. Numerical results are given for both the continuous time and discrete time designs.

  9. Enhanced Airport Capacity Through Safe, Dynamic Reductions in Aircraft Separation: NASA's Aircraft VOrtex Spacing System (AVOSS)

    NASA Technical Reports Server (NTRS)

    OConnor, Cornelius J.; Rutishauser, David K.

    2001-01-01

    An aspect of airport terminal operations that holds potential for efficiency improvements is the separation criteria applied to aircraft for wake vortex avoidance. These criteria evolved to represent safe spacing under weather conditions conducive to the longest wake hazards, and are consequently overly conservative during a significant portion of operations. Under many ambient conditions, such as moderate crosswinds or turbulence, wake hazard durations are substantially reduced. To realize this reduction NASA has developed a proof-of-concept Aircraft Vortex Spacing System (AVOSS). Successfully operated in a real-time field demonstration during July 2000 at the Dallas Ft. Worth International Airport, AVOSS is a novel integration of weather sensors, wake sensors, and analytical wake prediction algorithms. Gains in airport throughput using AVOSS spacing as compared to the current criteria averaged 6%, with peak values approaching the theoretical maximum of 16%. The average throughput gain translates to 15-40% reductions in delay when applied to realistic capacity ratios at major airports.

  10. The Small Aircraft Transportation System Project: An Update

    NASA Technical Reports Server (NTRS)

    Kemmerly, Guy T.

    2006-01-01

    To all peoples in all parts of the world throughout history, the ability to move about easily is a fundamental element of freedom. The American people have charged NASA to increase their freedom and that of their children knowing that their quality of life will improve as our nation s transportation systems improve. In pursuit of this safe, reliable, and affordable personalized air transportation option, in 2000 NASA established the Small Aircraft Transportation System (SATS) Project. As the name suggests personalized air transportation would be built on smaller aircraft than those used by the airlines. Of course, smaller aircraft can operate from smaller airports and 96% of the American population is within thirty miles of a high-quality, underutilized community airport as are the vast majority of their customers, family members, and favorite vacation destinations.

  11. Systems and Methods for Collaboratively Controlling at Least One Aircraft

    NASA Technical Reports Server (NTRS)

    Estkowski, Regina I. (Inventor)

    2016-01-01

    An unmanned vehicle management system includes an unmanned aircraft system (UAS) control station controlling one or more unmanned vehicles (UV), a collaborative routing system, and a communication network connecting the UAS and the collaborative routing system. The collaborative routing system being configured to receive flight parameters from an operator of the UAS control station and, based on the received flight parameters, automatically present the UAS control station with flight plan options to enable the operator to operate the UV in a defined airspace.

  12. Aircraft noise synthesis system: Version 4 user instructions

    NASA Technical Reports Server (NTRS)

    Mccurdy, David A.; Sullivan, Brenda M.; Grandle, Robert E.

    1987-01-01

    A modified version of the Aircraft Noise Synthesis System with improved directivity and tonal content modeling has been developed. The synthesis system is used to provide test stimuli for studies of community annoyance to aircraft flyover noise. The computer-based system generates realistic, time-varying audio simulations of aircraft flyover noise at a specified observer location on the ground. The synthesis takes into account the time-varying aircraft position relative to the observer; specified reference spectra consisting of broadband, narrowband, and pure tone components; directivity patterns; Doppler shift; atmospheric effects; and ground effects. These parameters can be specified and controlled in such a way as to generate stimuli in which certain noise characteristics such as duration or tonal content are independently varied while the remaining characteristics such as broadband content are held constant. The modified version of the system provides improved modeling of noise directivity patterns and an increased number of pure tone components. User instructions for the modified version of the synthesis system are provided.

  13. The Design of a Literature File in Aircraft-Related Environmental Medicine.

    ERIC Educational Resources Information Center

    Hody, George L.

    The U.S. Army Aeromedical Research Laboratory (USAARL) is often required to make specialized measurements and perform applied research in aircraft-related areas of environmental medicine. Rapid access to the periodical literature is essential for the completion of many of these projects. A growing file of reprints from the periodical literature is…

  14. Assessing the environmental impacts of aircraft noise and emissions

    NASA Astrophysics Data System (ADS)

    Mahashabde, Anuja; Wolfe, Philip; Ashok, Akshay; Dorbian, Christopher; He, Qinxian; Fan, Alice; Lukachko, Stephen; Mozdzanowska, Aleksandra; Wollersheim, Christoph; Barrett, Steven R. H.; Locke, Maryalice; Waitz, Ian A.

    2011-01-01

    With the projected growth in demand for commercial aviation, many anticipate increased environmental impacts associated with noise, air quality, and climate change. Therefore, decision-makers and stakeholders are seeking policies, technologies, and operational procedures that balance environmental and economic interests. The main objective of this paper is to address shortcomings in current decision-making practices for aviation environmental policies. We review knowledge of the noise, air quality, and climate impacts of aviation, and demonstrate how including environmental impact assessment and quantifying uncertainties can enable a more comprehensive evaluation of aviation environmental policies. A comparison is presented between the cost-effectiveness analysis currently used for aviation environmental policy decision-making and an illustrative cost-benefit analysis. We focus on assessing a subset of the engine NO X emissions certification stringency options considered at the eighth meeting of the International Civil Aviation Organization’s Committee on Aviation Environmental Protection. The FAA Aviation environmental Portfolio Management Tool (APMT) is employed to conduct the policy assessments. We show that different conclusions may be drawn about the same policy options depending on whether benefits and interdependencies are estimated in terms of health and welfare impacts versus changes in NO X emissions inventories as is the typical practice. We also show that these conclusions are sensitive to a variety of modeling uncertainties. While our more comprehensive analysis makes the best policy option less clear, it represents a more accurate characterization of the scientific and economic uncertainties underlying impacts and the policy choices.

  15. Integrated numerical methods for hypersonic aircraft cooling systems analysis

    NASA Technical Reports Server (NTRS)

    Petley, Dennis H.; Jones, Stuart C.; Dziedzic, William M.

    1992-01-01

    Numerical methods have been developed for the analysis of hypersonic aircraft cooling systems. A general purpose finite difference thermal analysis code is used to determine areas which must be cooled. Complex cooling networks of series and parallel flow can be analyzed using a finite difference computer program. Both internal fluid flow and heat transfer are analyzed, because increased heat flow causes a decrease in the flow of the coolant. The steady state solution is a successive point iterative method. The transient analysis uses implicit forward-backward differencing. Several examples of the use of the program in studies of hypersonic aircraft and rockets are provided.

  16. Comparison of methodologies estimating emissions of aircraft pollutants, environmental impact assessment around airports

    SciTech Connect

    Kurniawan, Jermanto S. Khardi, S.

    2011-04-15

    Air transportation growth has increased continuously over the years. The rise in air transport activity has been accompanied by an increase in the amount of energy used to provide air transportation services. It is also assumed to increase environmental impacts, in particular pollutant emissions. Traditionally, the environmental impacts of atmospheric emissions from aircraft have been addressed in two separate ways; aircraft pollutant emissions occurring during the landing and take-off (LTO) phase (local pollutant emissions) which is the focus of this study, and the non-LTO phase (global/regional pollutant emissions). Aircraft pollutant emissions are an important source of pollution and directly or indirectly harmfully affect human health, ecosystems and cultural heritage. There are many methods to asses pollutant emissions used by various countries. However, using different and separate methodology will cause a variation in results, some lack of information and the use of certain methods will require justification and reliability that must be demonstrated and proven. In relation to this issue, this paper presents identification, comparison and reviews of some of the methodologies of aircraft pollutant assessment from the past, present and future expectations of some studies and projects focusing on emissions factors, fuel consumption, and uncertainty. This paper also provides reliable information on the impacts of aircraft pollutant emissions in short term and long term predictions.

  17. Impact of flight systems integration on future aircraft design

    NASA Technical Reports Server (NTRS)

    Hood, R. V.; Dollyhigh, S. M.; Newsom, J. R.

    1984-01-01

    Integrations trends in aircraft are discussed with an eye to manifestations in future aircraft designs through interdisciplinary technology integration. Current practices use software changes or small hardware fixes to solve problems late in the design process, e.g., low static stability to upgrade fuel efficiency. A total energy control system has been devised to integrate autopilot and autothrottle functions, thereby eliminating hardware, reducing the software, pilot workload, and cost, and improving flight efficiency and performance. Integrated active controls offer reduced weight and larger payloads for transport aircraft. The introduction of vectored thrust may eliminate horizontal and vertical stabilizers, and location of the thrust at the vehicle center of gravity can provide vertical takeoff and landing capabilities. It is suggested that further efforts will open a new discipline, aeroservoelasticity, and tests will become multidisciplinary, involving controls, aerodynamics, propulsion and structures.

  18. Fiber Optic Experience with the Smart Actuation System on the F-18 Systems Research Aircraft

    NASA Technical Reports Server (NTRS)

    Zavala, Eddie

    1997-01-01

    High bandwidth, immunity to electromagnetic interference, and potential weight savings have led to the development of fiber optic technology for future aerospace vehicle systems. This technology has been incorporated in a new smart actuator as the primary communication interface. The use of fiber optics simplified system integration and significantly reduced wire count. Flight test results showed that fiber optics could be used in aircraft systems and identified critical areas of development of fly-by-light technology. This paper documents the fiber optic experience gained as a result of this program, and identifies general design considerations that could be used in a variety of specific applications of fiber optic technology. Environmental sensitivities of fiber optic system components that significantly contribute to optical power variation are discussed. Although a calibration procedure successfully minimized the effect of fiber optic sensitivities, more standardized calibration methods are needed to ensure system operation and reliability in future aerospace vehicle systems.

  19. Propulsion Systems for Aircraft. Aerospace Education II. Instructional Unit II.

    ERIC Educational Resources Information Center

    Elmer, James D.

    This curriculum guide accompanies another publication in the Aerospace Education II series entitled "Propulsion Systems for Aircraft." The guide includes specific guidelines for teachers on each chapter in the textbook. Suggestions are included for objectives (traditional and behavioral), suggested outline, orientation, suggested key points,…

  20. 78 FR 12259 - Unmanned Aircraft System Test Site Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-22

    ... Privacy Act Statement can be found in the Federal Register published on April 11, 2000 (65 FR 19477-19478... Federal Aviation Administration 14 CFR Part 91 Unmanned Aircraft System Test Site Program AGENCY: Federal... Administration and the Department of Defense, develop a test site program for the integration of...

  1. 78 FR 68360 - Unmanned Aircraft System Test Site Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-14

    ... comments published in the Federal Register on February 22, 2013 (78 FR 12259), Docket No. FAA-2013-0061... (78 FR 18932), Docket No. FAA-2013-0061- 0050. In addition, this document publishes the FAA's Final... Federal Aviation Administration 14 CFR Part 91 Unmanned Aircraft System Test Site Program AGENCY:...

  2. Remote sensing with unmanned aircraft systems for precision agriculture applications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Federal Aviation Administration is revising regulations for using unmanned aircraft systems (UAS) in the national airspace. An important potential application of UAS may be as a remote-sensing platform for precision agriculture, but simply down-scaling remote sensing methodologies developed usi...

  3. A multiple objective optimization approach to aircraft control systems design

    NASA Technical Reports Server (NTRS)

    Tabak, D.; Schy, A. A.; Johnson, K. G.; Giesy, D. P.

    1979-01-01

    The design of an aircraft lateral control system, subject to several performance criteria and constraints, is considered. While in the previous studies of the same model a single criterion optimization, with other performance requirements expressed as constraints, has been pursued, the current approach involves a multiple criteria optimization. In particular, a Pareto optimal solution is sought.

  4. Detection of nitrogen deficiency in potatoes using unmanned aircraft systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Small Unmanned Aircraft Systems (sUAS) are recognized as potentially important remote-sensing platforms for precision agriculture. We set up a nitrogen rate experiment in 2013 with ‘Ranger Russet’ potatoes by applying four rates of nitrogen fertilizer (112, 224, 337, and 449 kg N/ha) in a randomized...

  5. Aircraft Weather Mitigation for the Next Generation Air Transportation System

    NASA Technical Reports Server (NTRS)

    Stough, H. Paul, III

    2007-01-01

    Atmospheric effects on aviation are described by Mahapatra (1999) as including (1) atmospheric phenomena involving air motion - wind shear and turbulence; (2) hydrometeorological phenomena - rain, snow and hail; (3) aircraft icing; (4) low visibility; and (5) atmospheric electrical phenomena. Aircraft Weather Mitigation includes aircraft systems (e.g. airframe, propulsion, avionics, controls) that can be enacted (by a pilot, automation or hybrid systems) to suppress and/or prepare for the effects of encountered or unavoidable weather or to facilitate a crew operational decision-making process relative to weather. Aircraft weather mitigation can be thought of as a continuum (Figure 1) with the need to avoid all adverse weather at one extreme and the ability to safely operate in all weather conditions at the other extreme. Realistic aircraft capabilities fall somewhere between these two extremes. The capabilities of small general aviation aircraft would be expected to fall closer to the "Avoid All Adverse Weather" point, and the capabilities of large commercial jet transports would fall closer to the "Operate in All Weather Conditions" point. The ability to safely operate in adverse weather conditions is dependent upon the pilot s capabilities (training, total experience and recent experience), the airspace in which the operation is taking place (terrain, navigational aids, traffic separation), the capabilities of the airport (approach guidance, runway and taxiway lighting, availability of air traffic control), as well as the capabilities of the airplane. The level of mitigation may vary depending upon the type of adverse weather. For example, a small general aviation airplane may be equipped to operate "in the clouds" without outside visual references, but not be equipped to prevent airframe ice that could be accreted in those clouds.

  6. Loss-of-Control-Inhibitor Systems for Aircraft

    NASA Technical Reports Server (NTRS)

    AHarrah, Ralph C.

    2007-01-01

    Systems to provide improved tactile feedback to aircraft pilots are being developed to help the pilots maintain harmony between their control actions and the positions of aircraft control surfaces, thereby helping to prevent loss of control. A system of this type, denoted a loss-of-control-inhibitor system (LOCIS) can be implemented as a relatively simple addition to almost any pre-existing flight-control system. The LOCIS concept offers at least a partial solution to the problem of (1) keeping a pilot aware of the state of the control system and the aircraft and (2) maintaining sufficient control under conditions that, as described below, have been known to lead to loss of control. Current commercial aircraft exhibit uneven responses of primary flight-control surfaces to aggressive pilot control commands, leading to deterioration of pilots ability to control their aircraft. In severe cases, this phenomenon can result in loss of control and consequent loss of aircraft. For an older aircraft equipped with a purely mechanical control system, the loss of harmony between a pilot s command action and the control- surface response can be attributed to compliance in the control system (caused, for example, by stretching of control cables, flexing of push rods, or servo-valve distortion). In a newer aircraft equipped with a fly-by-wire control system, the major contributions to loss of harmony between the pilot and the control surfaces are delays attributable to computer cycle time, control shaping, filtering, aliasing, servo-valve distortion, and actuator rate limiting. In addition, a fly-by-wire control system provides no tactile feedback that would enable the pilot to sense such features of the control state as surface flutter, surface jam, position limiting, actuator rate limiting, and control limiting imposed by the aircraft operational envelope. Hence, for example, when a pilot is involved in aggressive closed-loop maneuvering, as when encountering a wake

  7. An Environmental Library System.

    ERIC Educational Resources Information Center

    Tenopir, Carol; Cibbarelli, Pamela

    An environmental library system (ELS) for the United States Department of Housing and Urban Development has been developed and installed in six HUD offices to bring together all nationwide and local environmental source materials in an information system with comprehensive cataloging and computer-assisted access. The accompanying manuals…

  8. Environmental geographic information system.

    SciTech Connect

    Peek, Dennis W; Helfrich, Donald Alan; Gorman, Susan

    2010-08-01

    This document describes how the Environmental Geographic Information System (EGIS) was used, along with externally received data, to create maps for the Site-Wide Environmental Impact Statement (SWEIS) Source Document project. Data quality among the various classes of geographic information system (GIS) data is addressed. A complete listing of map layers used is provided.

  9. Information fusion based optimal control for large civil aircraft system.

    PubMed

    Zhen, Ziyang; Jiang, Ju; Wang, Xinhua; Gao, Chen

    2015-03-01

    Wind disturbance has a great influence on landing security of Large Civil Aircraft. Through simulation research and engineering experience, it can be found that PID control is not good enough to solve the problem of restraining the wind disturbance. This paper focuses on anti-wind attitude control for Large Civil Aircraft in landing phase. In order to improve the riding comfort and the flight security, an information fusion based optimal control strategy is presented to restrain the wind in landing phase for maintaining attitudes and airspeed. Data of Boeing707 is used to establish a nonlinear mode with total variables of Large Civil Aircraft, and then two linear models are obtained which are divided into longitudinal and lateral equations. Based on engineering experience, the longitudinal channel adopts PID control and C inner control to keep longitudinal attitude constant, and applies autothrottle system for keeping airspeed constant, while an information fusion based optimal regulator in the lateral control channel is designed to achieve lateral attitude holding. According to information fusion estimation, by fusing hard constraint information of system dynamic equations and the soft constraint information of performance index function, optimal estimation of the control sequence is derived. Based on this, an information fusion state regulator is deduced for discrete time linear system with disturbance. The simulation results of nonlinear model of aircraft indicate that the information fusion optimal control is better than traditional PID control, LQR control and LQR control with integral action, in anti-wind disturbance performance in the landing phase.

  10. 75 FR 60495 - Eighteenth Plenary Meeting: RTCA Special Committee 203: Unmanned Aircraft Systems

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-30

    ... Federal Aviation Administration Eighteenth Plenary Meeting: RTCA Special Committee 203: Unmanned Aircraft Systems AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of RTCA Special Committee 203... RTCA Special Committee 203: Unmanned Aircraft Systems. DATES: The meeting will be held October...

  11. 75 FR 2925 - Sixteenth Plenary Meeting: RTCA Special Committee 203: Unmanned Aircraft Systems

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-19

    ... Federal Aviation Administration Sixteenth Plenary Meeting: RTCA Special Committee 203: Unmanned Aircraft Systems AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of RTCA Special Committee 203... RTCA Special Committee 203: Unmanned Aircraft Systems. DATES: The meeting will be held February...

  12. Subminiaturization for ERAST instrumentation (Environmental Research Aircraft and Sensor Technology)

    NASA Technical Reports Server (NTRS)

    Madou, Marc; Lowenstein, Max; Wegener, Steven

    1995-01-01

    We are focusing on the Argus as an example to demonstrate our philosophy on miniaturization of airborne analytical instruments for the study of atmospheric chemistry. Argus is a two channel, tunable-diode laser absorption spectrometer developed at NASA for the measurement of nitrogen dioxide (N2O) (4.5 micrometers) and ammonia (CH3) (3.3 micrometers) at the 0.1 parts per billion (ppb) level from the Perseus aircraft platform at altitudes up to 30 km. Although Argus' mass is down to 23 kg from the 197 kg Atlas, its predecessor, our goal is to design a next-generation subminiaturized instrument weighing less than 1 kg, measuring a few cm(exp 3) and able to eliminate dewars for cooling. Current designs enable use to make a small,inexpensive, monolithic spectrometer without the required sensitivity range. Further work is on its way to increase sensitivity. We are continuing to zero-base the technical approach in terms of the specifications for the given instrument. We are establishing a check list of questions to hone into the best micromachining approach and to superpose on the answers insights in scaling laws and flexible engineering designs to enable more relaxed tolerances for the smallest of the components.

  13. Unmanned Aircraft Systems for Monitoring Department of the Interior Lands

    NASA Astrophysics Data System (ADS)

    Hutt, M. E.; Quirk, B.

    2013-12-01

    Unmanned Aircraft Systems (UAS) technology is quickly evolving and will have a significant impact on Earth science research. The U.S. Geological Survey (USGS) is conducting an operational test and evaluation of UAS to see how this technology supports the mission of the Department of the Interior (DOI). Over the last 4 years, the USGS, working with many partners, has been actively conducting proof of concept UAS operations, which are designed to evaluate the potential of UAS technology to support the mandated DOI scientific, resource and land management missions. UAS technology is being made available to monitor environmental conditions, analyze the impacts of climate change, respond to natural hazards, understand landscape change rates and consequences, conduct wildlife inventories and support related land management and law enforcement missions. Using small UAS (sUAS), the USGS is able to tailor solutions to meet project requirements by obtaining very high resolution video data, acquiring thermal imagery, detecting chemical plumes, and generating digital terrain models at a fraction of the cost of conventional surveying methods. UAS technology is providing a mechanism to collect timely remote sensing data at a low cost and at low risk over DOI lands that can be difficult to monitor and consequently enhances our ability to provide unbiased scientific information to better enable decision makers to make informed decisions. This presentation describes the UAS technology and infrastructure being employed, the application projects already accomplished, lessons learned and future of UAS within the DOI. We fully expect that by 2020 UAS will emerge as a primary platform for all DOI remote sensing applications. Much like the use of Internet technology, Geographic Information Systems (GIS) and Global Positioning Systems (GPS), UAS have the potential of enabling the DOI to be better stewards of the land.

  14. Flight testing the Rotor Systems Research Aircraft (RSRA)

    NASA Technical Reports Server (NTRS)

    Merrill, R. K.; Hall, G. W.

    1982-01-01

    The Rotor Systems Research Aircraft (RSRA) is a dedicated rotor test vehicle whose function is to fill the gap between theory, wind tunnel tests and flight verification data. Its flight test envelope has been designed to encompass the expected envelopes of future rotor systems under all flight conditions. The test configurations of the RSRA include pure helicopter and compound (winged helicopter) modes. In addition, should it become necessary to jettison an unstable rotor system in flight, the RSRA may be flown as a fixed wing aircraft. The heart of the RSRA's electronic flight control system is the TDY-43 computer, which can be programmed in numerous ways to change stability and control or force feel system gains. Computer programming changes allow the RSRA to be used as a five-degree-of-freedom inflight simulator for studying the handling qualities of research rotors.

  15. An integrated computer system for preliminary design of advanced aircraft.

    NASA Technical Reports Server (NTRS)

    Fulton, R. E.; Sobieszczanski, J.; Landrum, E. J.

    1972-01-01

    A progress report is given on the first phase of a research project to develop a system of Integrated Programs for Aerospace-Vehicle Design (IPAD) which is intended to automate to the largest extent possible the preliminary and detailed design of advanced aircraft. The approach used is to build a pilot system and simultaneously to carry out two major contractual studies to define a practical IPAD system preparatory to programing. The paper summarizes the specifications and goals of the IPAD system, the progress to date, and any conclusion reached regarding its feasibility and scope. Sample calculations obtained with the pilot system are given for aircraft preliminary designs optimized with respect to discipline parameters, such as weight or L/D, and these results are compared with designs optimized with respect to overall performance parameters, such as range or payload.

  16. Survey of aircraft electrical power systems

    NASA Technical Reports Server (NTRS)

    Lee, C. H.; Brandner, J. J.

    1972-01-01

    Areas investigated include: (1) load analysis; (2) power distribution, conversion techniques and generation; (3) design criteria and performance capabilities of hydraulic and pneumatic systems; (4) system control and protection methods; (5) component and heat transfer systems cooling; and (6) electrical system reliability.

  17. Environmental Exposure Effects on Composite Materials for Commercial Aircraft

    NASA Technical Reports Server (NTRS)

    Hoffman, D. J.

    1980-01-01

    The test program concentrates on three major areas: flight exposure; ground based exposure; and accelerated environmental effects and data correlation. Among the parameters investigated were: geographic location, flight profiles, solar heating effects, ultraviolet degradation, retrieval times, and test temperatures. Data from the tests can be used to effectively plan the cost of production and viable alternatives in materials selection.

  18. Combustion system CFD modeling at GE Aircraft Engines

    NASA Technical Reports Server (NTRS)

    Burrus, D.; Mongia, H.; Tolpadi, Anil K.; Correa, S.; Braaten, M.

    1995-01-01

    This viewgraph presentation discusses key features of current combustion system CFD modeling capabilities at GE Aircraft Engines provided by the CONCERT code; CONCERT development history; modeling applied for designing engine combustion systems; modeling applied to improve fundamental understanding; CONCERT3D results for current production combustors; CONCERT3D model of NASA/GE E3 combustor; HYBRID CONCERT CFD/Monte-Carlo modeling approach; and future modeling directions.

  19. Energy efficient engine: Propulsion system-aircraft integration evaluation

    NASA Technical Reports Server (NTRS)

    Owens, R. E.

    1979-01-01

    Flight performance and operating economics of future commercial transports utilizing the energy efficient engine were assessed as well as the probability of meeting NASA's goals for TSFC, DOC, noise, and emissions. Results of the initial propulsion systems aircraft integration evaluation presented include estimates of engine performance, predictions of fuel burns, operating costs of the flight propulsion system installed in seven selected advanced study commercial transports, estimates of noise and emissions, considerations of thrust growth, and the achievement-probability analysis.

  20. Aircraft optimization by a system approach: Achievements and trends

    NASA Technical Reports Server (NTRS)

    Sobieszczanski-Sobieski, Jaroslaw

    1992-01-01

    Recently emerging methodology for optimal design of aircraft treated as a system of interacting physical phenomena and parts is examined. The methodology is found to coalesce into methods for hierarchic, non-hierarchic, and hybrid systems all dependent on sensitivity analysis. A separate category of methods has also evolved independent of sensitivity analysis, hence suitable for discrete problems. References and numerical applications are cited. Massively parallel computer processing is seen as enabling technology for practical implementation of the methodology.

  1. Environmental exposure effects on composite materials for commercial aircraft

    NASA Technical Reports Server (NTRS)

    Gibbons, M. N.

    1982-01-01

    The data base for composite materials' properties as they are affected by the environments encountered in operating conditions, both in flight and at ground terminals is expanded. Absorbed moisture degrades the mechanical properties of graphite/epoxy laminates at elevated temperatures. Since airplane components are frequently exposed to atmospheric moisture, rain, and accumulated water, quantitative data are required to evaluate the amount of fluids absorbed under various environmental conditions and the subsequent effects on material properties. In addition, accelerated laboratory test techniques are developed are reliably capable of predicting long term behavior. An accelerated environmental exposure testing procedure is developed, and experimental results are correlated and compared with analytical results to establish the level of confidence for predicting composite material properties.

  2. High-speed rail with emerging automobiles and aircraft can reduce environmental impacts in California’s future

    NASA Astrophysics Data System (ADS)

    Chester, Mikhail; Horvath, Arpad

    2012-09-01

    Sustainable mobility policy for long-distance transportation services should consider emerging automobiles and aircraft as well as infrastructure and supply chain life-cycle effects in the assessment of new high-speed rail systems. Using the California corridor, future automobiles, high-speed rail and aircraft long-distance travel are evaluated, considering emerging fuel-efficient vehicles, new train designs and the possibility that the region will meet renewable electricity goals. An attributional per passenger-kilometer-traveled life-cycle inventory is first developed including vehicle, infrastructure and energy production components. A consequential life-cycle impact assessment is then established to evaluate existing infrastructure expansion against the construction of a new high-speed rail system. The results show that when using the life-cycle assessment framework, greenhouse gas footprints increase significantly and human health and environmental damage potentials may be dominated by indirect and supply chain components. The environmental payback is most sensitive to the number of automobile trips shifted to high-speed rail, and for greenhouse gases is likely to occur in 20-30 years. A high-speed rail system that is deployed with state-of-the-art trains, electricity that has met renewable goals, and in a configuration that endorses high ridership will provide significant environmental benefits over existing modes. Opportunities exist for reducing the long-distance transportation footprint by incentivizing large automobile trip shifts, meeting clean electricity goals and reducing material production effects.

  3. Design of an infrared camera based aircraft detection system for laser guide star installations

    SciTech Connect

    Friedman, H.; Macintosh, B.

    1996-03-05

    There have been incidents in which the irradiance resulting from laser guide stars have temporarily blinded pilots or passengers of aircraft. An aircraft detection system based on passive near infrared cameras (instead of active radar) is described in this report.

  4. 77 FR 3029 - Twentieth Meeting: RTCA Special Committee 203, Unmanned Aircraft Systems

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-20

    ... Federal Aviation Administration Twentieth Meeting: RTCA Special Committee 203, Unmanned Aircraft Systems... RTCA Special Committee 203, Unmanned Aircraft Systems. SUMMARY: The FAA is issuing this notice to advise the public of the twentieth meeting of RTCA Special Committee 203, Unmanned Aircraft...

  5. 40 CFR 141.804 - Aircraft water system operations and maintenance plan.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Aircraft Drinking Water Rule § 141.804 Aircraft water system operations and maintenance plan. (a) Each air carrier must develop and... 40 Protection of Environment 23 2011-07-01 2011-07-01 false Aircraft water system operations...

  6. 40 CFR 141.804 - Aircraft water system operations and maintenance plan.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Aircraft Drinking Water Rule § 141.804 Aircraft water system operations and maintenance plan. (a) Each air carrier must develop and... 40 Protection of Environment 23 2014-07-01 2014-07-01 false Aircraft water system operations...

  7. 40 CFR 141.804 - Aircraft water system operations and maintenance plan.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Aircraft Drinking Water Rule § 141.804 Aircraft water system operations and maintenance plan. (a) Each air carrier must develop and... 40 Protection of Environment 24 2012-07-01 2012-07-01 false Aircraft water system operations...

  8. 40 CFR 141.804 - Aircraft water system operations and maintenance plan.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Aircraft Drinking Water Rule § 141.804 Aircraft water system operations and maintenance plan. (a) Each air carrier must develop and... 40 Protection of Environment 24 2013-07-01 2013-07-01 false Aircraft water system operations...

  9. 40 CFR 141.804 - Aircraft water system operations and maintenance plan.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Aircraft Drinking Water Rule § 141.804 Aircraft water system operations and maintenance plan. (a) Each air carrier must develop and... 40 Protection of Environment 22 2010-07-01 2010-07-01 false Aircraft water system operations...

  10. Aircraft Engine-Monitoring System And Display

    NASA Technical Reports Server (NTRS)

    Abbott, Terence S.; Person, Lee H., Jr.

    1992-01-01

    Proposed Engine Health Monitoring System and Display (EHMSD) provides enhanced means for pilot to control and monitor performances of engines. Processes raw sensor data into information meaningful to pilot. Provides graphical information about performance capabilities, current performance, and operational conditions in components or subsystems of engines. Provides means to control engine thrust directly and innovative means to monitor performance of engine system rapidly and reliably. Features reduce pilot workload and increase operational safety.

  11. Electric airplane environmental control systems energy requirements

    SciTech Connect

    Buss, L.B.

    1984-05-01

    The electric airplane environmental control system (ECS) design drivers is discussed for an electric airplane from two aspects. The first aspect considered is the type of aircraft. The three examples selected are the 150-passenger commercial airline transport, the military on-station electronic-surveillance patrol aircraft, and the air-defense interceptor fighter. These vehicle examples illustrate the effect of both mission and mission profile on the design requirements of the ECS and the differences that the requirements make on the resulting advantages and disadvantages of electrification. For the commercial transport, the selection of the air source for ventilation will be featured. For the patrol aircraft, the cooling unit will be evaluated. For the fighter, emphasis will be placed on the need for systems integration. The second and more important consideration is the definition of the environmental control system requirements for both energy supply and heat sink thermal management integration from the power plant (engine) that make an electric ECS viable for each type of vehicle.

  12. Semi-automatic aircraft control system

    NASA Technical Reports Server (NTRS)

    Gilson, Richard D. (Inventor)

    1978-01-01

    A flight control type system which provides a tactile readout to the hand of a pilot for directing elevator control during both approach to flare-out and departure maneuvers. For altitudes above flare-out, the system sums the instantaneous coefficient of lift signals of a lift transducer with a generated signal representing ideal coefficient of lift for approach to flare-out, i.e., a value of about 30% below stall. Error signals resulting from the summation are read out by the noted tactile device. Below flare altitude, an altitude responsive variation is summed with the signal representing ideal coefficient of lift to provide error signal readout.

  13. Study of aircraft in intraurban transportation systems, volume 3

    NASA Technical Reports Server (NTRS)

    Stout, E. G.; Kesling, P. H.; Matteson, D. E.; Sherwood, D. E.; Tuck, W. R., Jr.; Vaughn, L. A.

    1971-01-01

    An investigation of three aircraft concepts, deflected slipstream STOL, helicopter VTOL, and fixed wing STOL, is presented. An attempt was made to determine the best concept for the intraurban transportation system. Desirability of the concept was based on ease of maintenance, development timing, reliability, operating costs, and the noise produced. Indications are that the deflected slipstream STOL is best suited for intraurban transportation. Tables and graphs are included.

  14. Hierarchical Discrete Event Supervisory Control of Aircraft Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Yasar, Murat; Tolani, Devendra; Ray, Asok; Shah, Neerav; Litt, Jonathan S.

    2004-01-01

    This paper presents a hierarchical application of Discrete Event Supervisory (DES) control theory for intelligent decision and control of a twin-engine aircraft propulsion system. A dual layer hierarchical DES controller is designed to supervise and coordinate the operation of two engines of the propulsion system. The two engines are individually controlled to achieve enhanced performance and reliability, necessary for fulfilling the mission objectives. Each engine is operated under a continuously varying control system that maintains the specified performance and a local discrete-event supervisor for condition monitoring and life extending control. A global upper level DES controller is designed for load balancing and overall health management of the propulsion system.

  15. Supporting the Use of Unmanned Aircraft Systems(UAS) for Global Science Observations in Civil and Segregated Airspace

    NASA Technical Reports Server (NTRS)

    Mulac, B. L.; Reider. K/

    2010-01-01

    Unmanned Aircraft Systems (UAS) are growing more popular within the earth science community as a way to augment measurements currently made with manned aircraft. UAS arc uniquely suited for applications that require long dwell times and/or in locations that are generally too dangerous for manned aircraft. Environmental monitoring in areas like the Arctic or obtaining data within a hurricane are just a couple of examples of many applications to which UAS are ideally suited. However, UAS are not without their challenges. Most unmanned aircraft are unable to meet current airspace regulations that are in place for manned aircraft, and specific airspace standards and regulations for unmanned aircraft do not exist. As a result, gaining access to civil airspace for flights is very difficult around the world. Under Term of Reference 48 within the ISPRS Commission 1, WGI/I: Standardization of Aircraft Interfaces, efforts have been made to understand and quantify the current state of UAS airspace access on a global scale. The results of these efforts will be presented along with examples of successful science missions that have been conducted internationally during the past year.

  16. System IDentification Programs for AirCraft (SIDPAC)

    NASA Technical Reports Server (NTRS)

    Morelli, Eugene A.

    2002-01-01

    A collection of computer programs for aircraft system identification is described and demonstrated. The programs, collectively called System IDentification Programs for AirCraft, or SIDPAC, were developed in MATLAB as m-file functions. SIDPAC has been used successfully at NASA Langley Research Center with data from many different flight test programs and wind tunnel experiments. SIDPAC includes routines for experiment design, data conditioning, data compatibility analysis, model structure determination, equation-error and output-error parameter estimation in both the time and frequency domains, real-time and recursive parameter estimation, low order equivalent system identification, estimated parameter error calculation, linear and nonlinear simulation, plotting, and 3-D visualization. An overview of SIDPAC capabilities is provided, along with a demonstration of the use of SIDPAC with real flight test data from the NASA Glenn Twin Otter aircraft. The SIDPAC software is available without charge to U.S. citizens by request to the author, contingent on the requestor completing a NASA software usage agreement.

  17. A Small Aircraft Transportation System (SATS) Demand Model

    NASA Technical Reports Server (NTRS)

    Long, Dou; Lee, David; Johnson, Jesse; Kostiuk, Peter; Yackovetsky, Robert (Technical Monitor)

    2001-01-01

    The Small Aircraft Transportation System (SATS) demand modeling is a tool that will be useful for decision-makers to analyze SATS demands in both airport and airspace. We constructed a series of models following the general top-down, modular principles in systems engineering. There are three principal models, SATS Airport Demand Model (SATS-ADM), SATS Flight Demand Model (SATS-FDM), and LMINET-SATS. SATS-ADM models SATS operations, by aircraft type, from the forecasts in fleet, configuration and performance, utilization, and traffic mixture. Given the SATS airport operations such as the ones generated by SATS-ADM, SATS-FDM constructs the SATS origin and destination (O&D) traffic flow based on the solution of the gravity model, from which it then generates SATS flights using the Monte Carlo simulation based on the departure time-of-day profile. LMINET-SATS, an extension of LMINET, models SATS demands at airspace and airport by all aircraft operations in US The models use parameters to provide the user with flexibility and ease of use to generate SATS demand for different scenarios. Several case studies are included to illustrate the use of the models, which are useful to identify the need for a new air traffic management system to cope with SATS.

  18. Aircraft Low Altitude Wind Shear Detection and Warning System.

    NASA Astrophysics Data System (ADS)

    Sinclair, Peter C.; Kuhn, Peter M.

    1991-01-01

    There is now considerable evidence to substantiate the causal relationship between low altitude wind shear (LAWS) and the recent increase in low-altitude aircraft accidents. The National Research Council has found that for the period 1964 to 1982, LAWS was involved in nearly all the weather-related air carrier fatalities. However, at present, there is no acceptable method, technique, or hardware system that provides the necessary safety margins, for spatial and timely detection of LAWS from an aircraft during the critical phases of landing and takeoff. The Federal Aviation Administration (FAA) has addressed this matter and supports the development of an airborne system for detecting hazardous LAWS with at least a one minute warning of the potential hazard to the pilot. One of the purposes of this paper is to show from some of our preliminary flight measurement research that a forward looking infrared radiometer (FLIR) system can be used to successfully detect the cool downdraft of downbursts [microbursts/macrobursts (MB)] and thunderstorm gust front outflows that are responsible for most of the LAWS events. The FLIR system provides a much greater safety margin for the pilot than that provided by reactive designs such as inertial-air speed systems that require the actual penetration of the MB before a pilot warning can be initiated. Our preliminary results indicate that an advanced airborne FLIR system could provide the pilot with remote indication of MB threat, location, movement, and predicted MB hazards along the flight path ahead of the aircraft.In a proof-of-concept experiment, we have flight tested a prototype FLIR system (nonscanning, fixed range) near and within Colorado MBs with excellent detectability. The results show that a minimum warning time of one-four minutes (5×10 km), depending on aircraft speed, is available to the pilot prior to a MB encounter. Analysis of the flight data with respect to a modified `hazard index' indicates the severe hazard

  19. On the safety of aircraft systems: A case study

    SciTech Connect

    Martinez-Guridi, G.; Hall, R.E.; Fullwood, R.R.

    1997-05-14

    An airplane is a highly engineered system incorporating control- and feedback-loops which often, and realistically, are non-linear because the equations describing such feedback contain products of state variables, trigonometric or square-root functions, or other types of non-linear terms. The feedback provided by the pilot (crew) of the airplane also is typically non-linear because it has the same mathematical characteristics. An airplane is designed with systems to prevent and mitigate undesired events. If an undesired triggering event occurs, an accident may process in different ways depending on the effectiveness of such systems. In addition, the progression of some accidents requires that the operating crew take corrective action(s), which may modify the configuration of some systems. The safety assessment of an aircraft system typically is carried out using ARP (Aerospace Recommended Practice) 4761 (SAE, 1995) methods, such as Fault Tree Analysis (FTA) and Failure Mode and Effects Analysis (FMEA). Such methods may be called static because they model an aircraft system on its nominal configuration during a mission time, but they do not incorporate the action(s) taken by the operating crew, nor the dynamic behavior (non-linearities) of the system (airplane) as a function of time. Probabilistic Safety Assessment (PSA), also known as Probabilistic Risk Assessment (PRA), has been applied to highly engineered systems, such as aircraft and nuclear power plants. PSA encompasses a wide variety of methods, including event tree analysis (ETA), FTA, and common-cause analysis, among others. PSA should not be confused with ARP 4761`s proposed PSSA (Preliminary System Safety Assessment); as its name implies, PSSA is a preliminary assessment at the system level consisting of FTA and FMEA.

  20. Flight Test of ASAC Aircraft Interior Noise Control System

    NASA Technical Reports Server (NTRS)

    Palumbo, Dan; Cabell, Ran; Cline, John; Sullivan, Brenda

    1999-01-01

    A flight test is described in which an active structural/acoustic control system reduces turboprop induced interior noise on a Raytheon Aircraft Company 1900D airliner. Control inputs to 21 inertial force actuators were computed adaptively using a transform domain version of the multichannel filtered-X LMS algorithm to minimize the mean square response of 32 microphones. A combinatorial search algorithm was employed to optimize placement of the force actuators on the aircraft frame. Both single frequency and multi-frequency results are presented. Reductions of up to 15 dB were obtained at the blade passage frequency (BPF) during single frequency control tests. Simultaneous reductions of the BPF and next 2 harmonics of 10 dB, 2.5 dB and 3.0 dB, were obtained in a multi-frequency test.

  1. Fire deaths in aircraft without the crashworthy fuel system.

    PubMed

    Springate, C S; McMeekin, R R; Ruehle, C J

    1989-10-01

    Cases reported to the Armed Forces Institute of Pathology were examined for occupants of helicopters without the crashworthy fuel system (CWFS) who survived crashes but died as a result of postcrash fires. There were 16 fire deaths in the 9 such accidents which occurred between January 1976 and April 1984. All of these victims would have survived if there had been no postcrash fire. Partial body destruction by fire probably prevented inclusion of many other cases. The dramatic reduction in fire deaths and injuries due to installation of the CWFS in Army helicopters is discussed. The author concludes that fire deaths and injuries in aircraft accidents could almost be eliminated by fitting current and future aircraft with the CWFS.

  2. Real-Time Minimization of Tracking Error for Aircraft Systems

    NASA Technical Reports Server (NTRS)

    Garud, Sumedha; Kaneshige, John T.; Krishnakumar, Kalmanje S.; Kulkarni, Nilesh V.; Burken, John

    2013-01-01

    This technology presents a novel, stable, discrete-time adaptive law for flight control in a Direct adaptive control (DAC) framework. Where errors are not present, the original control design has been tuned for optimal performance. Adaptive control works towards achieving nominal performance whenever the design has modeling uncertainties/errors or when the vehicle suffers substantial flight configuration change. The baseline controller uses dynamic inversion with proportional-integral augmentation. On-line adaptation of this control law is achieved by providing a parameterized augmentation signal to a dynamic inversion block. The parameters of this augmentation signal are updated to achieve the nominal desired error dynamics. If the system senses that at least one aircraft component is experiencing an excursion and the return of this component value toward its reference value is not proceeding according to the expected controller characteristics, then the neural network (NN) modeling of aircraft operation may be changed.

  3. An operational approach for aircraft crew dosimetry: the SIEVERT system.

    PubMed

    Bottollier-Depois, J F; Blanchard, P; Clairand, I; Dessarps, P; Fuller, N; Lantos, P; Saint-Lô, D; Trompier, F

    2007-01-01

    The study of naturally occurring radiation and its associated risk is one of the preoccupations of bodies responsible for radiation protection. Cosmic particle flux is significantly higher on-board the aircraft that at ground level. Furthermore, its intensity depends on solar activity and eruptions. Due to their professional activity, flight crews and frequent flyers may receive an annual dose of some millisieverts. This is why the European directive adopted in 1996 requires the aircraft operators to assess the dose and to inform their flight crews about the risk. The effective dose is to be estimated using various experimental and calculation means. In France, the computerised system for flight assessment of exposure to cosmic radiation in air transport (SIEVERT) is delivered to airlines for assisting them in the application of the European directive. This professional service is available on an Internet server accessible to companies with a public section. The system provides doses that consider the routes flown by aircraft. Various results obtained are presented.

  4. Structural Configuration Systems Analysis for Advanced Aircraft Fuselage Concepts

    NASA Technical Reports Server (NTRS)

    Mukhopadhyay, Vivek; Welstead, Jason R.; Quinlan, Jesse R.; Guynn, Mark D.

    2016-01-01

    Structural configuration analysis of an advanced aircraft fuselage concept is investigated. This concept is characterized by a double-bubble section fuselage with rear mounted engines. Based on lessons learned from structural systems analysis of unconventional aircraft, high-fidelity finite-element models (FEM) are developed for evaluating structural performance of three double-bubble section configurations. Structural sizing and stress analysis are applied for design improvement and weight reduction. Among the three double-bubble configurations, the double-D cross-section fuselage design was found to have a relatively lower structural weight. The structural FEM weights of these three double-bubble fuselage section concepts are also compared with several cylindrical fuselage models. Since these fuselage concepts are different in size, shape and material, the fuselage structural FEM weights are normalized by the corresponding passenger floor area for a relative comparison. This structural systems analysis indicates that an advanced composite double-D section fuselage may have a relative structural weight ratio advantage over a conventional aluminum fuselage. Ten commercial and conceptual aircraft fuselage structural weight estimates, which are empirically derived from the corresponding maximum takeoff gross weight, are also presented and compared with the FEM- based estimates for possible correlation. A conceptual full vehicle FEM model with a double-D fuselage is also developed for preliminary structural analysis and weight estimation.

  5. Aircraft and satellite thermographic systems for wildfire mapping and assessment

    NASA Technical Reports Server (NTRS)

    Brass, J. A.; Arvesen, J. C.; Ambrosia, V. G.; Riggan, P. J.; Myers, J. S.

    1987-01-01

    Two complementary sensors, the DAEDALUS DEI-1260 Multispectral Scanner aboard the NASA U-2 aircraft and the Advanced Very High Resolution Radiometer aboard National Oceanographic and Atmospheric Administration orbiting satellites were tested for their applicability in monitoring and predicting parameters such as fire location, temperature and rate of spread, soil heating and cooling rates, and plume characteristics and dimensions. In addition, the satellite system was tested for its ability to extend the relationships found between fire characteristics and biospheric consequences to regional and global scales. An overall system design is presented, and special requirements are documented for the application of this system for fire research and management.

  6. Fuel characteristics pertinent to the design of aircraft fuel systems

    NASA Technical Reports Server (NTRS)

    Barnett, Henry C; Hibbard, R R

    1953-01-01

    Because of the importance of fuel properties in design of aircraft fuel systems the present report has been prepared to provide information on the characteristics of current jet fuels. In addition to information on fuel properties, discussions are presented on fuel specifications, the variations among fuels supplied under a given specification, fuel composition, and the pertinence of fuel composition and physical properties to fuel system design. In some instances the influence of variables such as pressure and temperature on physical properties is indicated. References are cited to provide fuel system designers with sources of information containing more detail than is practicable in the present report.

  7. Dynamics of aircraft antiskid braking systems. [conducted at the Langley aircraft landing loads and traction facility

    NASA Technical Reports Server (NTRS)

    Tanner, J. A.; Stubbs, S. M.; Dreher, R. C.; Smith, E. G.

    1982-01-01

    A computer study was performed to assess the accuracy of three brake pressure-torque mathematical models. The investigation utilized one main gear wheel, brake, and tire assembly of a McDonnell Douglas DC-9 series 10 airplane. The investigation indicates that the performance of aircraft antiskid braking systems is strongly influenced by tire characteristics, dynamic response of the antiskid control valve, and pressure-torque response of the brake. The computer study employed an average torque error criterion to assess the accuracy of the models. The results indicate that a variable nonlinear spring with hysteresis memory function models the pressure-torque response of the brake more accurately than currently used models.

  8. Environmental management system.

    SciTech Connect

    Salinas, Stephanie A.

    2010-08-01

    The purpose of the Sandia National Laboratories/New Mexico (SNL/NM) Environmental Management System (EMS) is identification of environmental consequences from SNL/NM activities, products, and/or services to develop objectives and measurable targets for mitigation of any potential impacts to the environment. This Source Document discusses the annual EMS process for analysis of environmental aspects and impacts and also provides the fiscal year (FY) 2010 analysis. Further information on the EMS structure, processes, and procedures are described within the programmatic EMS Manual (PG470222).

  9. Portable Integrated Wireless Device Threat Assessment to Aircraft Radio Systems

    NASA Technical Reports Server (NTRS)

    Salud, Maria Theresa P.; Williams, Reuben A. (Technical Monitor)

    2004-01-01

    An assessment was conducted on multiple wireless local area network (WLAN) devices using the three wireless standards for spurious radiated emissions to determine their threat to aircraft radio navigation systems. The measurement process, data and analysis are provided for devices tested using IEEE 802.11a, IEEE 802.11b, and Bluetooth as well as data from portable laptops/tablet PCs and PDAs (grouping known as PEDs). A comparison was made between wireless LAN devices and portable electronic devices. Spurious radiated emissions were investigated in the radio frequency bands for the following aircraft systems: Instrument Landing System Localizer and Glideslope, Very High Frequency (VHF) Communication, VHF Omnidirectional Range, Traffic Collision Avoidance System, Air Traffic Control Radar Beacon System, Microwave Landing System and Global Positioning System. Since several of the contiguous navigation systems were grouped under one encompassing measurement frequency band, there were five measurement frequency bands where spurious radiated emissions data were collected for the PEDs and WLAN devices. The report also provides a comparison between emissions data and regulatory emission limit.

  10. Propulsion System for Very High Altitude Subsonic Unmanned Aircraft

    NASA Technical Reports Server (NTRS)

    Bents, David J.; Mockler, Ted; Maldonado, Jaime; Harp, James L., Jr.; King, Joseph F.; Schmitz, Paul C.

    1998-01-01

    This paper explains why a spark ignited gasoline engine, intake pressurized with three cascaded stages of turbocharging, was selected to power NASA's contemplated next generation of high altitude atmospheric science aircraft. Beginning with the most urgent science needs (the atmospheric sampling mission) and tracing through the mission requirements which dictate the unique flight regime in which this aircraft has to operate (subsonic flight at greater then 80 kft) we briefly explore the physical problems and constraints, the available technology options and the cost drivers associated with developing a viable propulsion system for this highly specialized aircraft. The paper presents the two available options (the turbojet and the turbocharged spark ignited engine) which are discussed and compared in the context of the flight regime. We then show how the unique nature of the sampling mission, coupled with the economic considerations pursuant to aero engine development, point to the spark ignited engine as the only cost effective solution available. Surprisingly, this solution compares favorably with the turbojet in the flight regime of interest. Finally, some remarks are made about NASA's present state of development, and future plans to flight demonstrate the three stage turbocharged powerplant.

  11. Analysis of Small Aircraft as a Transportation System

    NASA Technical Reports Server (NTRS)

    Dollyhigh, Samuel M.; Yackovetsky, Robert E. (Technical Monitor)

    2002-01-01

    An analysis was conducted to examine the market viability of small aircraft as a transportation mode in competition with automobile and scheduled commercial air travel by estimating the pool of users that would potentially switch to on-demand air travel due to cost/time savings. The basis for the analysis model was the Integrated Air Transportation System Evaluation Tool (IATSET) which was developed under contract to NASA by the Logistics Management Institute. IATSET is a macroeconomic model that predicts at a National level the mode choice between automobile, scheduled air, and on-demand air travel based on the value of a travelers time and monetary cost of the trip. A number of modifications are detailed to the original IATSET to better model the changing small aircraft environment. The potential trip market was modeled for the Eclipse 500 operated as a corporate jet and as an air taxi for the business travel market. The Cirrus 20R and a $80K single engine piston aircraft (based on automobile manufacturing technology) are evaluated in the pleasure and personal business travel market.

  12. Environmental Monitoring Data System

    2004-04-21

    A set of database management tools, data processing tools, and auxiliary support functionality for processing and handling semi-structured environmental monitoring data. The system provides a flexible description language for describing the data, allowing the database to store disparate data from many different sources without changes to the configuration. The system employs XML to support unlimited named allribute/value pairs for each object defined in the system.

  13. Optical wireless networked-systems: applications to aircrafts

    NASA Astrophysics Data System (ADS)

    Kavehrad, Mohsen; Fadlullah, Jarir

    2011-01-01

    This paper focuses on leveraging the progress in semiconductor technologies to facilitate production of efficient light-based in-flight entertainment (IFE), distributed sensing, navigation and control systems. We demonstrate the ease of configuring "engineered pipes" using cheap lenses, etc. to achieve simple linear transmission capacity growth. Investigation of energy-efficient, miniaturized transceivers will create a wireless medium, for both inter and intra aircrafts, providing enhanced security, and improved quality-of-service for communications links in greater harmony with onboard systems. The applications will seamlessly inter-connect multiple intelligent devices in a network that is deployable for aircrafts navigation systems, onboard sensors and entertainment data delivery systems, and high-definition audio-visual broadcasting systems. Recent experimental results on a high-capacity infrared (808 nm) system are presented. The light source can be applied in a hybrid package along with a visible lighting LED for both lighting and communications. Also, we present a pragmatic combination of light communications through "Spotlighting" and existing onboard power-lines. It is demonstrated in details that a high-capacity IFE visible light system communicating over existing power-lines (VLC/PLC) may lead to savings in many areas through reduction of size, weight and energy consumption. This paper addresses the challenges of integrating optimized optical devices in the variety of environments described above, and presents mitigation and tailoring approaches for a multi-purpose optical network.

  14. The StarBooster System: A Cargo Aircraft for Space

    NASA Technical Reports Server (NTRS)

    Davis, Hubert P.; Dula, Arthur M.; McLaughlin, Don; Frassanito, John; Andrews, Jason (Editor)

    1999-01-01

    Starcraft Boosters has developed a different approach for lowering the cost of access to space. We propose developing a new aircraft that will house an existing expendable rocket stage. This vehicle, termed StarBooster, will be the first stage of a family of launch vehicles. By combining these elements, we believe we can reduce the cost and risk of fielding a new partially reusable launch system. This report summarizes the work performed on the StarBooster concept since the company's inception in 1996. Detailed analyses are on-going and future reports will focus on the maturation of the vehicle and system design.

  15. Aircraft wire system laboratory development : phase I progress report.

    SciTech Connect

    Dinallo, Michael Anthony; Lopez, Christopher D.

    2003-08-01

    An aircraft wire systems laboratory has been developed to support technical maturation of diagnostic technologies being used in the aviation community for detection of faulty attributes of wiring systems. The design and development rationale of the laboratory is based in part on documented findings published by the aviation community. The main resource at the laboratory is a test bed enclosure that is populated with aged and newly assembled wire harnesses that have known defects. This report provides the test bed design and harness selection rationale, harness assembly and defect fabrication procedures, and descriptions of the laboratory for usage by the aviation community.

  16. Accurate aircraft wind measurements using the global positioning system (GPS)

    SciTech Connect

    Dobosy, R.J.; Crawford, T.L., McMillen, R.T., Dumas, E.J.

    1996-11-01

    High accuracy measurements of the spatial distribution of wind speed are required in the study of turbulent exchange between the atmosphere and the earth. The use of a differential global positioning system (GPS) to determine the sensor velocity vector component of wind speed is discussed in this paper. The results of noise and rocking testing are summarized, and fluxes obtained from the GPS-based methods are compared to those measured from systems on towers and airplanes. The GPS-based methods provided usable measurements that compared well with tower and aircraft data at a significantly lower cost. 21 refs., 1 fig., 2 tabs.

  17. The Proposed Use of Unmanned Aerial System Surrogate Research Aircraft for National Airspace System Integration Research

    NASA Technical Reports Server (NTRS)

    Howell, Charles T., III

    2011-01-01

    Research is needed to determine what procedures, aircraft sensors and other systems will be required to allow Unmanned Aerial Systems (UAS) to safely operate with manned aircraft in the National Airspace System (NAS). This paper explores the use of Unmanned Aerial System (UAS) Surrogate research aircraft to serve as platforms for UAS systems research, development, and flight testing. These aircraft would be manned with safety pilots and researchers that would allow for flight operations almost anywhere in the NAS without the need for a Federal Aviation Administration (FAA) Certificate of Authorization (COA). With pilot override capability, these UAS Surrogate aircraft would be controlled from ground stations like true UAS s. It would be possible to file and fly these UAS Surrogate aircraft in the NAS with normal traffic and they would be better platforms for real world UAS research and development over existing vehicles flying in restricted ranges or other sterilized airspace. These UAS surrogate aircraft could be outfitted with research systems as required such as computers, state sensors, video recording, data acquisition, data link, telemetry, instrumentation, and Automatic Dependent Surveillance-Broadcast (ADS-B). These surrogate aircraft could also be linked to onboard or ground based simulation facilities to further extend UAS research capabilities. Potential areas for UAS Surrogate research include the development, flight test and evaluation of sensors to aide in the process of air traffic "see-and-avoid". These and other sensors could be evaluated in real-time and compared with onboard human evaluation pilots. This paper examines the feasibility of using UAS Surrogate research aircraft as test platforms for a variety of UAS related research.

  18. The development of a parachute system for aerial delivery from high speed cargo aircraft

    SciTech Connect

    Behr, V.L.

    1992-12-31

    Supply of military personnel on the ground with cargo has long been accomplished with parachute delivery systems from aircraft. Structural limits of aircraft have typically limited these operations to no more than 150 KCAS. A desire for increased survivability of cargo delivery aircraft has led to the development and fielding of aircraft capable of delivering cargo at substantially higher speeds. This paper describes efforts undertaken to design develop and test a cargo delivery system for use at speeds compatible with those high speed cargo aircraft.

  19. The development of a parachute system for aerial delivery from high speed cargo aircraft

    SciTech Connect

    Behr, V.L.

    1992-01-01

    Supply of military personnel on the ground with cargo has long been accomplished with parachute delivery systems from aircraft. Structural limits of aircraft have typically limited these operations to no more than 150 KCAS. A desire for increased survivability of cargo delivery aircraft has led to the development and fielding of aircraft capable of delivering cargo at substantially higher speeds. This paper describes efforts undertaken to design develop and test a cargo delivery system for use at speeds compatible with those high speed cargo aircraft.

  20. Control law system for X-Wing aircraft

    NASA Technical Reports Server (NTRS)

    Lawrence, Thomas H. (Inventor); Gold, Phillip J. (Inventor)

    1990-01-01

    Control law system for the collective axis, as well as pitch and roll axes, of an X-Wing aircraft and for the pneumatic valving controlling circulation control blowing for the rotor. As to the collective axis, the system gives the pilot single-lever direct lift control and insures that maximum cyclic blowing control power is available in transition. Angle-of-attach de-coupling is provided in rotary wing flight, and mechanical collective is used to augment pneumatic roll control when appropriate. Automatic gain variations with airspeed and rotor speed are provided, so a unitary set of control laws works in all three X-Wing flight modes. As to pitch and roll axes, the system produces essentially the same aircraft response regardless of flight mode or condition. Undesirable cross-couplings are compensated for in a manner unnoticeable to the pilot without requiring pilot action, as flight mode or condition is changed. A hub moment feedback scheme is implemented, utilizing a P+I controller, significantly improving bandwidth. Limits protect aircraft structure from inadvertent damage. As to pneumatic valving, the system automatically provides the pressure required at each valve azimuth location, as dictated by collective, cyclic and higher harmonic blowing commands. Variations in the required control phase angle are automatically introduced, and variations in plenum pressure are compensated for. The required switching for leading, trailing and dual edge blowing is automated, using a simple table look-up procedure. Non-linearities due to valve characteristics of circulation control lift are linearized by map look-ups.

  1. Multi-level systems modeling and optimization for novel aircraft

    NASA Astrophysics Data System (ADS)

    Subramanian, Shreyas Vathul

    This research combines the disciplines of system-of-systems (SoS) modeling, platform-based design, optimization and evolving design spaces to achieve a novel capability for designing solutions to key aeronautical mission challenges. A central innovation in this approach is the confluence of multi-level modeling (from sub-systems to the aircraft system to aeronautical system-of-systems) in a way that coordinates the appropriate problem formulations at each level and enables parametric search in design libraries for solutions that satisfy level-specific objectives. The work here addresses the topic of SoS optimization and discusses problem formulation, solution strategy, the need for new algorithms that address special features of this problem type, and also demonstrates these concepts using two example application problems - a surveillance UAV swarm problem, and the design of noise optimal aircraft and approach procedures. This topic is critical since most new capabilities in aeronautics will be provided not just by a single air vehicle, but by aeronautical Systems of Systems (SoS). At the same time, many new aircraft concepts are pressing the boundaries of cyber-physical complexity through the myriad of dynamic and adaptive sub-systems that are rising up the TRL (Technology Readiness Level) scale. This compositional approach is envisioned to be active at three levels: validated sub-systems are integrated to form conceptual aircraft, which are further connected with others to perform a challenging mission capability at the SoS level. While these multiple levels represent layers of physical abstraction, each discipline is associated with tools of varying fidelity forming strata of 'analysis abstraction'. Further, the design (composition) will be guided by a suitable hierarchical complexity metric formulated for the management of complexity in both the problem (as part of the generative procedure and selection of fidelity level) and the product (i.e., is the mission

  2. Mountain Search and Rescue with Remotely Piloted Aircraft Systems

    NASA Astrophysics Data System (ADS)

    Silvagni, Mario; Tonoli, Andrea; Zenerino, Enrico; Chiaberge, Marcello

    2016-04-01

    Remotely Piloted Aircraft Systems (RPAS) also known as Unmanned Aerial Systems (UAS) are nowadays becoming more and more popular in several applications. Even though a complete regulation is not yet available all over the world, researches, tests and some real case applications are wide spreading. These technologies can bring many benefits also to the mountain operations especially in emergencies and harsh environmental conditions, such as Search and Rescue (SAR) and avalanche rescue missions. In fact, during last decade, the number of people practicing winter sports in backcountry environment is increased and one of the greatest hazards for recreationists and professionals are avalanches. Often these accidents have severe consequences leading, mostly, to asphyxia-related death, which is confirmed by the hard drop of survival probability after ten minutes from the burying. Therefore, it is essential to minimize the time of burial. Modern avalanche beacon (ARTVA) interface guides the rescuer during the search phase reducing its time. Even if modern avalanche beacons are valid and reliable, the seeking range influences the rescue time. Furthermore, the environment and morphologic conditions of avalanches usually complicates the rescues. The recursive methodology of this kind of searching offers the opportunity to use automatic device like drones (RPAS). These systems allow performing all the required tasks autonomously, with high accuracy and without exposing the rescuers to additional risks due to secondary avalanches. The availability of highly integrated electronics and subsystems specifically meant for the applications, better batteries, miniaturized payload and, in general, affordable prices, has led to the availability of small RPAS with very good performances that can give interesting application opportunities in unconventional environments. The present work is one of the outcome from the experience made by the authors in RPAS fields and in Mechatronics

  3. Unmanned Aircraft Systems For CryoSat-2 Validation

    NASA Astrophysics Data System (ADS)

    Crocker, Roger Ian; Maslanik, James A.

    2011-02-01

    A suite of sensors has been assembled to map surface elevation with fine-resolution from small unmanned aircraft systems (UAS). The sensor package consists of a light detecting and ranging (LIDAR) instrument, an inertial measurement unit (IMU), a GPS module, and digital still and video cameras. It has been utilized to map ice sheet topography in Greenland and to measure sea ice freeboard and roughness in Fram Strait. Data collected during these campaigns illustrate its potential to compliment ongoing CryoSat-2 (CS-2) calibration and validation efforts.

  4. A Review of System Identification Methods Applied to Aircraft

    NASA Technical Reports Server (NTRS)

    Klein, V.

    1983-01-01

    Airplane identification, equation error method, maximum likelihood method, parameter estimation in frequency domain, extended Kalman filter, aircraft equations of motion, aerodynamic model equations, criteria for the selection of a parsimonious model, and online aircraft identification are addressed.

  5. Experience gained from using water and steam for bringing the operation of aircraft- and marine-derivative gas-turbine engines in compliance with environmental standards

    NASA Astrophysics Data System (ADS)

    Datsenko, V. V.; Zeigarnik, Yu. A.; Kosoi, A. S.

    2014-04-01

    Practical experience gained from using water and steam admission into the combustion chambers of aircraft- and marine-derivative gas turbines for bringing their operation in compliance with the requirements of environmental standards is described. The design and schematic modifications of combustion chambers and fuel system through which this goal is achieved are considered. The results obtained from industrial and rig tests of combustion chambers fitted with water or steam admission systems are presented.

  6. Aircraft Electric/Hybrid-Electric Power and Propulsion Workshop Perspective of the V/STOL Aircraft Systems Tech Committee

    NASA Technical Reports Server (NTRS)

    Hange, Craig E.

    2016-01-01

    This presentation will be given at the AIAA Electric Hybrid-Electric Power Propulsion Workshop on July 29, 2016. The workshop is being held so the AIAA can determine how it can support the introduction of electric aircraft into the aerospace industry. This presentation will address the needs of the community within the industry that advocates the use of powered-lift as important new technologies for future aircraft and air transportation systems. As the current chairman of the VSTOL Aircraft Systems Technical Committee, I will be presenting generalized descriptions of the past research in developing powered-lift and generalized observations on how electric and hybrid-electric propulsion may provide advances in the powered-lift field.

  7. Implementation of unmanned aircraft systems by the U.S. Geological Survey

    USGS Publications Warehouse

    Cress, J.J.; Sloan, J.L.; Hutt, M.E.

    2011-01-01

    The U.S. Geological Survey (USGS) Unmanned Aircraft Systems (UAS) Project Office is leading the implementation of UAS technology in anticipation of transforming the research methods and management techniques employed across the Department of the Interior. UAS technology is being made available to monitor environmental conditions, analyse the impacts of climate change, respond to natural hazards, understand landscape change rates and consequences, conduct wildlife inventories and support related land management missions. USGS is teaming with the Department of the Interior Aviation Management Directorate (AMD) to lead the safe and cost-effective adoption of UAS technology by the Department of the Interior Agencies and USGS scientists.

  8. Energy Absorbing Seat System for an Agricultural Aircraft

    NASA Technical Reports Server (NTRS)

    Kellas, Sotiris; Jones, Lisa E. (Technical Monitor)

    2002-01-01

    A task was initiated to improve the energy absorption capability of an existing aircraft seat through cost-effective retrofitting, while keeping seat-weight increase to a minimum. This task was undertaken as an extension of NASA ongoing safety research and commitment to general aviation customer needs. Only vertical crash scenarios have been considered in this task which required the energy absorbing system to protect the seat occupant in a range of crash speeds up to 31 ft/sec. It was anticipated that, the forward and/or side crash accelerations could be attenuated with the aid of airbags, the technology of which is currently available in automobiles and military helicopters. Steps which were followed include, preliminary crush load determination, conceptual design of cost effective energy absorbers, fabrication and testing (static and dynamic) of energy absorbers, system analysis, design and fabrication of dummy seat/rail assembly, dynamic testing of dummy seat/rail assembly, and finally, testing of actual modified seat system with a dummy occupant. A total of ten full scale tests have been performed including three of the actual aircraft seat. Results from full-scale tests indicated that occupant loads were attenuated successfully to survivable levels.

  9. Advanced Propulsion System Studies for General Aviation Aircraft

    NASA Technical Reports Server (NTRS)

    Eisenberg, Joseph D. (Technical Monitor); German, Jon

    2003-01-01

    This final report addresses the following topics: Market Impact Analysis (1) assessment of general aviation, including commuter/regional, aircraft market impact due to incorporation of advanced technology propulsion system on acquisition and operating costs, job creation and/or manpower demand, and future fleet size; (2) selecting an aircraft and engine for the study by focusing on the next generation 19-passenger commuter and the Williams International FJ44 turbofan engine growth. Propulsion System Analysis Conducted mission analysis studies and engine cycle analysis to define a new commuter mission and required engine performance, define acquisition and operating costs and, select engine configuration and initiated preliminary design for hardware modifications required. Propulsion System Benefits (1) assessed and defined engine emissions improvements, (2) assessed and defined noise reduction potential and, (3) conducted a cost analysis impact study. Review of Relevant NASA Programs Conducted literature searches using NERAC and NASA RECON services for related technology in the emissions and acoustics area. Preliminary Technology Development Plans Defined plan to incorporate technology improvements for an FJ44-2 growth engine in performance, emissions, and noise suppression.

  10. Smart Sensor System for NDE or Corrosion in Aging Aircraft

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Y.; Marzwell, N.; Osegueda, R.; Ferregut, C.

    1998-01-01

    The extension of the operation life of military and civilian aircraft rather than replacing them with new ones is increasing the probability of aircraft component failure as a result of aging. Aircraft that already have endured a long srvice life of more than 40 years are now being considered for another 40 years of service.

  11. ADAM: An Axisymmetric Duct Aeroacoustic Modeling system. [aircraft turbofan engines

    NASA Technical Reports Server (NTRS)

    Abrahamson, A. L.

    1983-01-01

    An interconnected system of computer programs for analyzing the propagation and attenuation of sound in aeroengine ducts containing realistic compressible subsonic mean flows, ADAM was developed primarily for research directed towards the reduction of noise emitted from turbofan aircraft engines. The two basic components are a streamtube curvature program for determination of the mean flow, and a finite element code for solution of the acoustic propagation problem. The system, which has been specifically tailored for ease of use, is presently installed at NASA Langley Reseach Center on a Control Data Cyber 175 Computer under the NOS Operating system employing a Tektronix terminal for interactive graphics. The scope and organization of the ADAM system is described. A users guide, examples of input data, and results for selected cases are included.

  12. A knowledge-based system design/information tool for aircraft flight control systems

    NASA Technical Reports Server (NTRS)

    Mackall, Dale A.; Allen, James G.

    1989-01-01

    Research aircraft have become increasingly dependent on advanced control systems to accomplish program goals. These aircraft are integrating multiple disciplines to improve performance and satisfy research objectives. This integration is being accomplished through electronic control systems. Because of the number of systems involved and the variety of engineering disciplines, systems design methods and information management have become essential to program success. The primary objective of the system design/information tool for aircraft flight control system is to help transfer flight control system design knowledge to the flight test community. By providing all of the design information and covering multiple disciplines in a structured, graphical manner, flight control systems can more easily be understood by the test engineers. This will provide the engineers with the information needed to thoroughly ground test the system and thereby reduce the likelihood of serious design errors surfacing in flight. The secondary objective is to apply structured design techniques to all of the design domains. By using the techniques in the top level system design down through the detailed hardware and software designs, it is hoped that fewer design anomalies will result. The flight test experiences of three highly complex, integrated aircraft programs are reviewed: the X-29 forward-swept wing, the advanced fighter technology integration (AFTI) F-16, and the highly maneuverable aircraft technology (HiMAT) program. Significant operating anomalies and the design errors which cause them, are examined to help identify what functions a system design/information tool should provide to assist designers in avoiding errors.

  13. Interim results of long-term environmental exposures of advanced composites for aircraft applications

    NASA Technical Reports Server (NTRS)

    Pride, R. A.

    1978-01-01

    Interim results from a number of ongoing, long-term environmental effects programs for composite materials are reported. The flight service experience is evaluated for 142 composite aircraft components after more than five years and one million successful component flight hours. Ground-based outdoor exposures of composite material coupons after 3 years of exposure at five sites have reached equilibrium levels of moisture pickup which are predictable. Solar ultraviolet-induced material loss is discussed for these same exposures. No significant degradation has been observed in residual strength for either stressed or unstressed specimens, or for exposures to aviation fuels and fluids.

  14. Environmental Management System Plan

    SciTech Connect

    Fox, Robert; Thorson, Patrick; Horst, Blair; Speros, John; Rothermich, Nancy; Hatayama, Howard

    2009-03-24

    Executive Order 13423, Strengthening Federal Environmental, Energy, and Transportation Management establishes the policy that Federal agencies conduct their environmental, transportation, and energy-related activities in a manner that is environmentally, economically and fiscally sound, integrated, continually improving, efficient, and sustainable. The Department of Energy (DOE) has approved DOE Order 450.1A, Environmental Protection Program and DOE Order 430.2B, Departmental Energy, Renewable Energy and Transportation Management as the means of achieving the provisions of this Executive Order. DOE Order 450.1A mandates the development of Environmental Management Systems (EMS) to implement sustainable environmental stewardship practices that: (1) Protect the air, water, land, and other natural and cultural resources potentially impacted by facility operations; (2) Meet or exceed applicable environmental, public health, and resource protection laws and regulations; and (3) Implement cost-effective business practices. In addition, the DOE Order 450.1A mandates that the EMS must be integrated with a facility's Integrated Safety Management System (ISMS) established pursuant to DOE P 450.4, 'Safety Management System Policy'. DOE Order 430.2B mandates an energy management program that considers energy use and renewable energy, water, new and renovated buildings, and vehicle fleet activities. The Order incorporates the provisions of the Energy Policy Act of 2005 and Energy Independence and Security Act of 2007. The Order also includes the DOE's Transformational Energy Action Management initiative, which assures compliance is achieved through an Executable Plan that is prepared and updated annually by Lawrence Berkeley National Laboratory (LBNL, Berkeley Lab, or the Laboratory) and then approved by the DOE Berkeley Site Office. At the time of this revision to the EMS plan, the 'FY2009 LBNL Sustainability Executable Plan' represented the most current Executable Plan. These

  15. Evaluation of Mobile Phone Interference With Aircraft GPS Navigation Systems

    NASA Technical Reports Server (NTRS)

    Pace, Scott; Oria, A. J.; Guckian, Paul; Nguyen, Truong X.

    2004-01-01

    This report compiles and analyzes tests that were conducted to measure cell phone spurious emissions in the Global Positioning System (GPS) radio frequency band that could affect the navigation system of an aircraft. The cell phone in question had, as reported to the FAA (Federal Aviation Administration), caused interference to several GPS receivers on-board a small single engine aircraft despite being compliant with data filed at the time with the FCC by the manufacturer. NASA (National Aeronautics and Space Administration) and industry tests show that while there is an emission in the 1575 MHz GPS band due to a specific combination of amplifier output impedance and load impedance that induces instability in the power amplifier, these spurious emissions (i.e., not the intentional transmit signal) are similar to those measured on non-intentionally transmitting devices such as, for example, laptop computers. Additional testing on a wide sample of different commercial cell phones did not result in any emission in the 1575 MHz GPS Band above the noise floor of the measurement receiver.

  16. System Synthesis in Preliminary Aircraft Design using Statistical Methods

    NASA Technical Reports Server (NTRS)

    DeLaurentis, Daniel; Mavris, Dimitri N.; Schrage, Daniel P.

    1996-01-01

    This paper documents an approach to conceptual and preliminary aircraft design in which system synthesis is achieved using statistical methods, specifically design of experiments (DOE) and response surface methodology (RSM). These methods are employed in order to more efficiently search the design space for optimum configurations. In particular, a methodology incorporating three uses of these techniques is presented. First, response surface equations are formed which represent aerodynamic analyses, in the form of regression polynomials, which are more sophisticated than generally available in early design stages. Next, a regression equation for an overall evaluation criterion is constructed for the purpose of constrained optimization at the system level. This optimization, though achieved in a innovative way, is still traditional in that it is a point design solution. The methodology put forward here remedies this by introducing uncertainty into the problem, resulting a solutions which are probabilistic in nature. DOE/RSM is used for the third time in this setting. The process is demonstrated through a detailed aero-propulsion optimization of a high speed civil transport. Fundamental goals of the methodology, then, are to introduce higher fidelity disciplinary analyses to the conceptual aircraft synthesis and provide a roadmap for transitioning from point solutions to probabalistic designs (and eventually robust ones).

  17. System Synthesis in Preliminary Aircraft Design Using Statistical Methods

    NASA Technical Reports Server (NTRS)

    DeLaurentis, Daniel; Mavris, Dimitri N.; Schrage, Daniel P.

    1996-01-01

    This paper documents an approach to conceptual and early preliminary aircraft design in which system synthesis is achieved using statistical methods, specifically Design of Experiments (DOE) and Response Surface Methodology (RSM). These methods are employed in order to more efficiently search the design space for optimum configurations. In particular, a methodology incorporating three uses of these techniques is presented. First, response surface equations are formed which represent aerodynamic analyses, in the form of regression polynomials, which are more sophisticated than generally available in early design stages. Next, a regression equation for an Overall Evaluation Criterion is constructed for the purpose of constrained optimization at the system level. This optimization, though achieved in an innovative way, is still traditional in that it is a point design solution. The methodology put forward here remedies this by introducing uncertainty into the problem, resulting in solutions which are probabilistic in nature. DOE/RSM is used for the third time in this setting. The process is demonstrated through a detailed aero-propulsion optimization of a High Speed Civil Transport. Fundamental goals of the methodology, then, are to introduce higher fidelity disciplinary analyses to the conceptual aircraft synthesis and provide a roadmap for transitioning from point solutions to probabilistic designs (and eventually robust ones).

  18. Fan Noise Prediction with Applications to Aircraft System Noise Assessment

    NASA Technical Reports Server (NTRS)

    Nark, Douglas M.; Envia, Edmane; Burley, Casey L.

    2009-01-01

    This paper describes an assessment of current fan noise prediction tools by comparing measured and predicted sideline acoustic levels from a benchmark fan noise wind tunnel test. Specifically, an empirical method and newly developed coupled computational approach are utilized to predict aft fan noise for a benchmark test configuration. Comparisons with sideline noise measurements are performed to assess the relative merits of the two approaches. The study identifies issues entailed in coupling the source and propagation codes, as well as provides insight into the capabilities of the tools in predicting the fan noise source and subsequent propagation and radiation. In contrast to the empirical method, the new coupled computational approach provides the ability to investigate acoustic near-field effects. The potential benefits/costs of these new methods are also compared with the existing capabilities in a current aircraft noise system prediction tool. The knowledge gained in this work provides a basis for improved fan source specification in overall aircraft system noise studies.

  19. Modeling Pilot State in Next Generation Aircraft Alert Systems

    NASA Technical Reports Server (NTRS)

    Carlin, Alan S.; Alexander, Amy L.; Schurr, Nathan

    2011-01-01

    The Next Generation Air Transportation System will introduce new, advanced sensor technologies into the cockpit that must convey a large number of potentially complex alerts. Our work focuses on the challenges associated with prioritizing aircraft sensor alerts in a quick and efficient manner, essentially determining when and how to alert the pilot This "alert decision" becomes very difficult in NextGen due to the following challenges: 1) the increasing number of potential hazards, 2) the uncertainty associated with the state of potential hazards as well as pilot slate , and 3) the limited time to make safely-critical decisions. In this paper, we focus on pilot state and present a model for anticipating duration and quality of pilot behavior, for use in a larger system which issues aircraft alerts. We estimate pilot workload, which we model as being dependent on factors including mental effort, task demands. and task performance. We perform a mathematically rigorous analysis of the model and resulting alerting plans. We simulate the model in software and present simulated results with respect to manipulation of the pilot measures.

  20. Demand for large freighter aircraft as projected by the NASA cargo/logistics airlift system studies

    NASA Technical Reports Server (NTRS)

    Whitehead, A. H., Jr.; Kuhlman, W. H.

    1979-01-01

    The market conditions are examined up through the year 2008 to provide a preliminary assessment of the potential for and the characteristics of an advanced, all-cargo transport aircraft. Any new freighter must compete with current wide-body aircraft and their derivatives. Aircraft larger than the wide-bodies may incur economic penalties and operational problems. A lower direct operating cost is not a sufficient criterion to base a decision for the initiation of a new aircraft development or to select aircraft characteristics. Other factors of equal importance that are reviewed in this paper include considerations of the system infrastructure, the economics of the airlines, and the aircraft manufacturer return on investment. The results of the market forecast and a computer simulation show that an advanced long range aircraft with a payload between 68 to 181 tonnes (75 to 200 tons) could generate a solid foothold beginning around 1994.

  1. Design of aircraft turbine fan drive gear transmission system

    NASA Technical Reports Server (NTRS)

    Dent, E.; Hirsch, R. A.; Peterson, V. W.

    1970-01-01

    The following basic types of gear reduction concepts were studied as being feasible power train systems for a low-bypass-ratio, single-spool, geared turbofan engine for general aircraft use: (1) single-stage external-internal reduction, (2) gears (offset shafting), (3) multiple compound idler gear system (concentric shafting), and (4) star gear planetary system with internal ring gear final output member (concentric shafting-counterrotation). In addition, studies were made of taking the accessories drive power off both the high-speed and low-speed shafting, using either face gears or spiral bevel gears. Both antifriction and sleeve-type bearings were considered for the external-internal and star-planet reduction concepts.

  2. Systems study for an Integrated Digital-Electric Aircraft (IDEA)

    NASA Technical Reports Server (NTRS)

    Tagge, G. E.; Irish, L. A.; Bailey, A. R.

    1985-01-01

    The results of the Integrated Digital/Electric Aircraft (IDEA) Study are presented. Airplanes with advanced systems were, defined and evaluated, as a means of identifying potential high payoff research tasks. A baseline airplane was defined for comparison, typical of a 1990's airplane with advanced active controls, propulsion, aerodynamics, and structures technology. Trade studies led to definition of an IDEA airplane, with extensive digital systems and electric secondary power distribution. This airplane showed an improvement of 3% in fuel use and 1.8% in DOC relative to the baseline configuration. An alternate configuration, an advanced technology turboprop, was also evaluated, with greater improvement supported by digital electric systems. Recommended research programs were defined for high risk, high payoff areas appropriate for implementation under NASA leadership.

  3. Fault tolerant architectures for integrated aircraft electronics systems, task 2

    NASA Technical Reports Server (NTRS)

    Levitt, K. N.; Melliar-Smith, P. M.; Schwartz, R. L.

    1984-01-01

    The architectural basis for an advanced fault tolerant on-board computer to succeed the current generation of fault tolerant computers is examined. The network error tolerant system architecture is studied with particular attention to intercluster configurations and communication protocols, and to refined reliability estimates. The diagnosis of faults, so that appropriate choices for reconfiguration can be made is discussed. The analysis relates particularly to the recognition of transient faults in a system with tasks at many levels of priority. The demand driven data-flow architecture, which appears to have possible application in fault tolerant systems is described and work investigating the feasibility of automatic generation of aircraft flight control programs from abstract specifications is reported.

  4. A knowledge-based system design/information tool for aircraft flight control systems

    NASA Technical Reports Server (NTRS)

    Mackall, Dale A.; Allen, James G.

    1991-01-01

    Research aircraft have become increasingly dependent on advanced electronic control systems to accomplish program goals. These aircraft are integrating multiple disciplines to improve performance and satisfy research objective. This integration is being accomplished through electronic control systems. Systems design methods and information management have become essential to program success. The primary objective of the system design/information tool for aircraft flight control is to help transfer flight control system design knowledge to the flight test community. By providing all of the design information and covering multiple disciplines in a structured, graphical manner, flight control systems can more easily be understood by the test engineers. This will provide the engineers with the information needed to thoroughly ground test the system and thereby reduce the likelihood of serious design errors surfacing in flight. The secondary object is to apply structured design techniques to all of the design domains. By using the techniques in the top level system design down through the detailed hardware and software designs, it is hoped that fewer design anomalies will result. The flight test experiences are reviewed of three highly complex, integrated aircraft programs: the X-29 forward swept wing; the advanced fighter technology integration (AFTI) F-16; and the highly maneuverable aircraft technology (HiMAT) program. Significant operating technologies, and the design errors which cause them, is examined to help identify what functions a system design/informatin tool should provide to assist designers in avoiding errors.

  5. Practical Ranges of Loudness Levels of Various Types of Environmental Noise, Including Traffic Noise, Aircraft Noise, and Industrial Noise

    PubMed Central

    Salomons, Erik M.; Janssen, Sabine A.

    2011-01-01

    In environmental noise control one commonly employs the A-weighted sound level as an approximate measure of the effect of noise on people. A measure that is more closely related to direct human perception of noise is the loudness level. At constant A-weighted sound level, the loudness level of a noise signal varies considerably with the shape of the frequency spectrum of the noise signal. In particular the bandwidth of the spectrum has a large effect on the loudness level, due to the effect of critical bands in the human hearing system. The low-frequency content of the spectrum also has an effect on the loudness level. In this note the relation between loudness level and A-weighted sound level is analyzed for various environmental noise spectra, including spectra of traffic noise, aircraft noise, and industrial noise. From loudness levels calculated for these environmental noise spectra, diagrams are constructed that show the relation between loudness level, A-weighted sound level, and shape of the spectrum. The diagrams show that the upper limits of the loudness level for broadband environmental noise spectra are about 20 to 40 phon higher than the lower limits for narrowband spectra, which correspond to the loudness levels of pure tones. The diagrams are useful for assessing limitations and potential improvements of environmental noise control methods and policy based on A-weighted sound levels. PMID:21776205

  6. The Pilatus unmanned aircraft system for lower atmospheric research

    SciTech Connect

    de Boer, Gijs; Palo, Scott; Argrow, Brian; LoDolce, Gabriel; Mack, James; Gao, Ru-Shan; Telg, Hagen; Trussel, Cameron; Fromm, Joshua; Long, Charles N.; Bland, Geoff; Maslanik, James; Schmid, Beat; Hock, Terry

    2016-01-01

    This paper presents details of the University of Colorado (CU) “Pilatus” unmanned research aircraft, assembled to provide measurements of aerosols, radiation and thermodynamics in the lower troposphere. This aircraft has a wingspan of 3.2 m and a maximum take-off weight of 25 kg, and it is powered by an electric motor to reduce engine exhaust and concerns about carburetor icing. It carries instrumentation to make measurements of broadband up- and downwelling shortwave and longwave radiation, aerosol particle size distribution, atmospheric temperature, relative humidity and pressure and to collect video of flights for subsequent analysis of atmospheric conditions during flight. In order to make the shortwave radiation measurements, care was taken to carefully position a high-quality compact inertial measurement unit (IMU) and characterize the attitude of the aircraft and its orientation to the upward-looking radiation sensor. Using measurements from both of these sensors, a correction is applied to the raw radiometer measurements to correct for aircraft attitude and sensor tilt relative to the sun. The data acquisition system was designed from scratch based on a set of key driving requirements to accommodate the variety of sensors deployed. Initial test flights completed in Colorado provide promising results with measurements from the radiation sensors agreeing with those from a nearby surface site. Additionally, estimates of surface albedo from onboard sensors were consistent with local surface conditions, including melting snow and bright runway surface. Aerosol size distributions collected are internally consistent and have previously been shown to agree well with larger, surface-based instrumentation. Finally the atmospheric state measurements evolve as expected, with the near-surface atmosphere warming over time as the day goes on, and the atmospheric relative humidity decreasing with increased temperature. No directional bias on measured temperature

  7. The Pilatus unmanned aircraft system for lower atmospheric research

    NASA Astrophysics Data System (ADS)

    de Boer, Gijs; Palo, Scott; Argrow, Brian; LoDolce, Gabriel; Mack, James; Gao, Ru-Shan; Telg, Hagen; Trussel, Cameron; Fromm, Joshua; Long, Charles N.; Bland, Geoff; Maslanik, James; Schmid, Beat; Hock, Terry

    2016-04-01

    This paper presents details of the University of Colorado (CU) "Pilatus" unmanned research aircraft, assembled to provide measurements of aerosols, radiation and thermodynamics in the lower troposphere. This aircraft has a wingspan of 3.2 m and a maximum take-off weight of 25 kg, and it is powered by an electric motor to reduce engine exhaust and concerns about carburetor icing. It carries instrumentation to make measurements of broadband up- and downwelling shortwave and longwave radiation, aerosol particle size distribution, atmospheric temperature, relative humidity and pressure and to collect video of flights for subsequent analysis of atmospheric conditions during flight. In order to make the shortwave radiation measurements, care was taken to carefully position a high-quality compact inertial measurement unit (IMU) and characterize the attitude of the aircraft and its orientation to the upward-looking radiation sensor. Using measurements from both of these sensors, a correction is applied to the raw radiometer measurements to correct for aircraft attitude and sensor tilt relative to the sun. The data acquisition system was designed from scratch based on a set of key driving requirements to accommodate the variety of sensors deployed. Initial test flights completed in Colorado provide promising results with measurements from the radiation sensors agreeing with those from a nearby surface site. Additionally, estimates of surface albedo from onboard sensors were consistent with local surface conditions, including melting snow and bright runway surface. Aerosol size distributions collected are internally consistent and have previously been shown to agree well with larger, surface-based instrumentation. Finally the atmospheric state measurements evolve as expected, with the near-surface atmosphere warming over time as the day goes on, and the atmospheric relative humidity decreasing with increased temperature. No directional bias on measured temperature, as might

  8. The pilatus unmanned aircraft system for lower atmospheric research

    NASA Astrophysics Data System (ADS)

    de Boer, G.; Palo, S.; Argrow, B.; LoDolce, G.; Mack, J.; Gao, R.-S.; Telg, H.; Trussel, C.; Fromm, J.; Long, C. N.; Bland, G.; Maslanik, J.; Schmid, B.; Hock, T.

    2015-11-01

    This paper presents details of the University of Colorado (CU) Pilatus unmanned research aircraft, assembled to provide measurements of aerosols, radiation and thermodynamics in the lower troposphere. This aircraft has a wingspan of 3.2 m and a maximum take off weight of 25 kg and is powered by an electric motor to reduce engine exhaust and concerns about carburetor icing. It carries instrumentation to make measurements of broadband up- and downwelling shortwave and longwave radiation, aerosol particle size distribution, atmospheric temperature, relative humidity and pressure and to collect video of flights for subsequent analysis of atmospheric conditions during flight. In order to make the shortwave radiation measurements, care was taken to carefully position a high-quality compact inertial measurement unit (IMU) and characterize the attitude of the aircraft and it's orientation to the upward looking radiation sensor. Using measurements from both of these sensors, a correction is applied to the raw radiometer measurements to correct for aircraft attitude and sensor tilt relative to the sun. The data acquisition system was designed from scratch based on a set of key driving requirements to accommodate the variety of sensors deployed. Initial test flights completed in Colorado provide promising results with measurements from the radiation sensors agreeing with those from a nearby surface site. Additionally, estimates of surface albedo from onboard sensors were consistent with local surface conditions, including melting snow and bright runway surface. Aerosol size distributions collected are internally consistent and have previously been shown to agree well with larger, surface-based instrumentation. Finally the atmospheric state measurements evolve as expected, with the near-surface atmosphere warming over time as the day goes on, and the atmospheric relative humidity decreasing with increased temperature. No directional bias on measured temperature, as might be

  9. The Pilatus unmanned aircraft system for lower atmospheric research

    DOE PAGES

    de Boer, Gijs; Palo, Scott; Argrow, Brian; LoDolce, Gabriel; Mack, James; Gao, Ru -Shan; Telg, Hagen; Trussel, Cameron; Fromm, Joshua; Long, Charles N.; et al

    2016-04-28

    This study presents details of the University of Colorado (CU) “Pilatus” unmanned research aircraft, assembled to provide measurements of aerosols, radiation and thermodynamics in the lower troposphere. This aircraft has a wingspan of 3.2 m and a maximum take-off weight of 25 kg, and it is powered by an electric motor to reduce engine exhaust and concerns about carburetor icing. It carries instrumentation to make measurements of broadband up- and downwelling shortwave and longwave radiation, aerosol particle size distribution, atmospheric temperature, relative humidity and pressure and to collect video of flights for subsequent analysis of atmospheric conditions during flight. Inmore » order to make the shortwave radiation measurements, care was taken to carefully position a high-quality compact inertial measurement unit (IMU) and characterize the attitude of the aircraft and its orientation to the upward-looking radiation sensor. Using measurements from both of these sensors, a correction is applied to the raw radiometer measurements to correct for aircraft attitude and sensor tilt relative to the sun. The data acquisition system was designed from scratch based on a set of key driving requirements to accommodate the variety of sensors deployed. Initial test flights completed in Colorado provide promising results with measurements from the radiation sensors agreeing with those from a nearby surface site. Additionally, estimates of surface albedo from onboard sensors were consistent with local surface conditions, including melting snow and bright runway surface. Aerosol size distributions collected are internally consistent and have previously been shown to agree well with larger, surface-based instrumentation. Finally the atmospheric state measurements evolve as expected, with the near-surface atmosphere warming over time as the day goes on, and the atmospheric relative humidity decreasing with increased temperature. No directional bias on measured

  10. Spacelab environmental control system

    NASA Technical Reports Server (NTRS)

    Mitchell, K. L.; Sessions, B. W.; Turner, L. D.

    1976-01-01

    This paper describes the NASA/MSFC thermal control activities performed in support of the European design and development of the Spacelab environmental control system (ECS) and the integration of the ECS with experiments and with the Shuttle Orbiter. Thermal interfaces with the Orbiter are reviewed, including payload bay temperature profiles for the long module and pallet Spacelab configuration for the on-orbit mission phase. Thermal designs and predicted thermal performance are also reviewed for the module air cooling systems and specific experiment interfaces, such as the experiment dedicated heat exchanger and rack cooling.

  11. The environmental impact of 4(5)-methylbenzotriazole from aircraft deicing operations

    NASA Astrophysics Data System (ADS)

    Cornell, Jeffrey Scott

    2002-01-01

    Hundreds of millions of gallons of aircraft deicer fluid (ADF) are applied to aircraft and runway surfaces annually. Recently public and regulatory attention has forced the air transport industry and military aviation community to examine the environmental impacts of aircraft deicing operations (ADOs), and to seek a balance between flight safety and environmental impact. Little data exists which is useful to evaluate the impact of ADF additives. 4(5)-methylbenzotriazole (MeBT) is used in a variety of industrial and commercial fluids to inhibit metal corrosion; it is a standard additive to most common ADF (approx. 0.5%). This MeBT component is actually a mixture of two isomers: 4-methylbenzotriazole (4-MeBT) and 5-methylbenzotriazole (5-MeBT). A significant amount of MeBT enters the natural environment through aircraft deicing operations. Research was conducted to address important data gaps impacting the ability to assess the environmental impact of MeBT and ADOs. Matrixed toxicity studies were conducted to determine the effect of different additives on ADF ecotoxicity. Aerobic liquid batch-fed microcosms were employed to investigate how MeBT affects the toxicity of wastewater containing ADF, describe how MeBT affects the aerobic biodegradation of propylene glycol (PG), and determine the biodegradability of MeBT. Field samples from contaminated areas were collected and analyzed for comparison. Cell energy production and electron transport assays were conducted to determine if MeBT was capable of disrupting oxidative phosphorylation via uncoupling, as its chemical structure would suggest. MicrotoxRTM studies indicated MeBT was toxic to test bacteria below 10 mg/L. C. dubia and P. promelas , however, were less sensitive to MeBT than bacteria but more sensitive to other ADF additives. The effect of MeBT on PG biodegradation was complex and concentration-dependent. Cell yield and PG biodegradation rates generally decreased with increasing reactor MeBT concentration

  12. Autonomous Flight Safety System September 27, 2005, Aircraft Test

    NASA Technical Reports Server (NTRS)

    Simpson, James C.

    2005-01-01

    This report describes the first aircraft test of the Autonomous Flight Safety System (AFSS). The test was conducted on September 27, 2005, near Kennedy Space Center (KSC) using a privately-owned single-engine plane and evaluated the performance of several basic flight safety rules using real-time data onboard a moving aerial vehicle. This test follows the first road test of AFSS conducted in February 2005 at KSC. AFSS is a joint KSC and Wallops Flight Facility (WEF) project that is in its third phase of development. AFSS is an independent subsystem intended for use with Expendable Launch Vehicles that uses tracking data from redundant onboard sensors to autonomously make flight termination decisions using software-based rules implemented on redundant flight processors. The goals of this project are to increase capabilities by allowing launches from locations that do not have or cannot afford extensive ground-based range safety assets, to decrease range costs, and to decrease reaction time for special situations. The mission rules are configured for each operation by the responsible Range Safety authorities and can be loosely categorized in four major categories: Parameter Threshold Violations, Physical Boundary Violations present position and instantaneous impact point (TIP), Gate Rules static and dynamic, and a Green-Time Rule. Examples of each of these rules were evaluated during this aircraft test.

  13. Neural network application to aircraft control system design

    NASA Technical Reports Server (NTRS)

    Troudet, Terry; Garg, Sanjay; Merrill, Walter C.

    1991-01-01

    The feasibility of using artificial neural networks as control systems for modern, complex aerospace vehicles is investigated via an example aircraft control design study. The problem considered is that of designing a controller for an integrated airframe/propulsion longitudinal dynamics model of a modern fighter aircraft to provide independent control of pitch rate and airspeed responses to pilot command inputs. An explicit model following controller using H infinity control design techniques is first designed to gain insight into the control problem as well as to provide a baseline for evaluation of the neurocontroller. Using the model of the desired dynamics as a command generator, a multilayer feedforward neural network is trained to control the vehicle model within the physical limitations of the actuator dynamics. This is achieved by minimizing an objective function which is a weighted sum of tracking errors and control input commands and rates. To gain insight in the neurocontrol, linearized representations of the nonlinear neurocontroller are analyzed along a commanded trajectory. Linear robustness analysis tools are then applied to the linearized neurocontroller models and to the baseline H infinity based controller. Future areas of research are identified to enhance the practical applicability of neural networks to flight control design.

  14. The Effect of Functional Flow Diagrams on the Technical System Understanding of Apprentice Aircraft Maintenance Mechanics.

    ERIC Educational Resources Information Center

    Johnson, Scott D.; Satchwell, Richard E.

    A quasiexperimental study involved 18 male students enrolled in an aircraft systems course at the University of Illinois. The control group of 10 students studied 39 schematic diagrams of aircraft systems. The treatment group of eight students studied the same schematic diagrams plus conceptual diagrams of the systems. Otherwise, the instruction…

  15. Models and techniques for evaluating the effectiveness of aircraft computing systems

    NASA Technical Reports Server (NTRS)

    Meyer, J. F.

    1979-01-01

    System models that provide a basis for the formulation and evaluation of the performability of commercial aircraft computer system are developed. Quantitative measures of the system effectiveness are formulated. Analytic and simulation techniques for evaluation of the effectiveness and performability of a proposed or existing aircraft computer were studied.

  16. Wide field of view laser beacon system for three dimensional aircraft range measurements

    NASA Technical Reports Server (NTRS)

    Wong, E. Y.

    1982-01-01

    A system that measures accurately the distance from an aircraft to a helicoper for rotor noise flight testing was developed. The system measures the range and angles between two aircraft using laser optics. This system can be applied in collision avoidance, robotics and other measurement critical tasks.

  17. Laser Doppler velocimeter system simulation for sensing aircraft wake vortices

    NASA Technical Reports Server (NTRS)

    Thomson, J. A. L.; Meng, J. C. S.

    1974-01-01

    A hydrodynamic model of aircraft vortex wakes in an irregular wind shear field near the ground is developed and used as a basis for modeling the characteristics of a laser Doppler detection and vortex location system. The trailing vortex sheet and the wind shear are represented by discrete free vortices distributed over a two-dimensional grid. The time dependent hydrodynamic equations are solved by direct numerical integration in the Boussinesq approximation. The ground boundary is simulated by images, and fast Fourier Transform techniques are used to evaluate the vorticity stream function. The atmospheric turbulence was simulated by constructing specific realizations at time equal to zero, assuming that Kolmogoroff's law applies, and that the dissipation rate is constant throughout the flow field. The response of a simulated laser Doppler velocimeter is analyzed by simulating the signal return from the flow field as sensed by a simulation of the optical/electronic system.

  18. TRUSS: An intelligent design system for aircraft wings

    NASA Technical Reports Server (NTRS)

    Bates, Preston R.; Schrage, Daniel P.

    1989-01-01

    Competitive leadership in the international marketplace, superiority in national defense, excellence in productivity, and safety of both private and public systems are all national defense goals which are dependent on superior engineering design. In recent years, it has become more evident that early design decisions are critical, and when only based on performance often result in products which are too expensive, hard to manufacture, or unsupportable. Better use of computer-aided design tools and information-based technologies is required to produce better quality United States products. A program is outlined here to explore the use of knowledge based expert systems coupled with numerical optimization, database management techniques, and designer interface methods in a networked design environment to improve and assess design changes due to changing emphasis or requirements. The initial structural design of a tiltrotor aircraft wing is used as a representative example to demonstrate the approach being followed.

  19. Environmentally responsive graphene systems.

    PubMed

    Zhang, Jing; Song, Long; Zhang, Zhipan; Chen, Nan; Qu, Liangti

    2014-06-12

    Graphene materials have been attracting significant research interest in the past few years, with the recent focuses on graphene-based electronic devices and smart stimulus-responsive systems that have a certain degree of automatism. Owing to its huge specific surface area, large room-temperature electron mobility, excellent mechanical flexibility, exceptionally high thermal conductivity and environmental stability, graphene is identified as a beneficial additive or an effective responding component by itself to improve the conductivity, flexibility, mechanical strength and/or the overall responsive performance of smart systems. In this review article, we aim to present the recent advances in graphene systems that are of spontaneous responses to external stimulations, such as environmental variation in pH, temperature, electric current, light, moisture and even gas ambient. These smart stimulus-responsive graphene systems are believed to have great theoretical and practical interests to a wide range of device applications including actuators, switches, robots, sensors, drug/gene deliveries, etc. PMID:24376152

  20. CID-720 aircraft high-environment flight instrumentation system

    NASA Technical Reports Server (NTRS)

    Calloway, R. S.

    1986-01-01

    The high-environment flight instrumentation system was designed to acquire Langley's structural response data during the full scale transport-controlled impact demonstration test. There was only one opportunity for data acquisition. Thus, a high reliability and crashworthy design approach was implemented. The approach featured multi-level redundancy and a vigorous quality assurance testing program. Complying with an accelerated schedule, the instrumentation system was developed, tested and shipped within 18 months to Dryden Flight Research Facility. The flight instrumentation system consists of two autonomous data systems, DAS #1 and #2, and an excellent checkout subsystem. Each data system is partitioned into four pallets. The system was designed to operate on manned and unmanned flights. There are 176 data channels per data system. These channels are sequentially sampled and encoded into 1 megabit/sec pulse code modulation (PCM) data signal. To increase the probability of success, a special PCM distribution subsystem was developed. This subsystem distributes the PCM signal to two transmitters, one delay memory, and eight recorder tracks. The data on four of these trackes was digitally delayed approximately 300 msec to maximize data acquisition during impact. Therefore each data system's data is redundantly recorded onboard and on the ground. There are two time code generators. Parallel time from each is encoded into both data systems. Serial time from each is redundantly recorded on both onboard recorders. Instrumentation power is independent of aircraft power and self-contained.

  1. A methodology to enable rapid evaluation of aviation environmental impacts and aircraft technologies

    NASA Astrophysics Data System (ADS)

    Becker, Keith Frederick

    Commercial aviation has become an integral part of modern society and enables unprecedented global connectivity by increasing rapid business, cultural, and personal connectivity. In the decades following World War II, passenger travel through commercial aviation quickly grew at a rate of roughly 8% per year globally. The FAA's most recent Terminal Area Forecast predicts growth to continue at a rate of 2.5% domestically, and the market outlooks produced by Airbus and Boeing generally predict growth to continue at a rate of 5% per year globally over the next several decades, which translates into a need for up to 30,000 new aircraft produced by 2025. With such large numbers of new aircraft potentially entering service, any negative consequences of commercial aviation must undergo examination and mitigation by governing bodies so that growth may still be achieved. Options to simultaneously grow while reducing environmental impact include evolution of the commercial fleet through changes in operations, aircraft mix, and technology adoption. Methods to rapidly evaluate fleet environmental metrics are needed to enable decision makers to quickly compare the impact of different scenarios and weigh the impact of multiple policy options. As the fleet evolves, interdependencies may emerge in the form of tradeoffs between improvements in different environmental metrics as new technologies are brought into service. In order to include the impacts of these interdependencies on fleet evolution, physics-based modeling is required at the appropriate level of fidelity. Evaluation of environmental metrics in a physics-based manner can be done at the individual aircraft level, but will then not capture aggregate fleet metrics. Contrastingly, evaluation of environmental metrics at the fleet level is already being done for aircraft in the commercial fleet, but current tools and approaches require enhancement because they currently capture technology implementation through post

  2. Rotor systems research aircraft predesign study. Volume 3: Predesign report

    NASA Technical Reports Server (NTRS)

    Schmidt, S. A.; Linden, A. W.

    1972-01-01

    The features of two aircraft designs were selected to be included in the single RSRA configuration. A study was conducted for further preliminary design and a more detailed analysis of development plans and costs. An analysis was also made of foreseeable technical problems and risks, identification of parallel research which would reduce risks and/or add to the basic capability of the aircraft, and a draft aircraft specification.

  3. Small Engine Technology (SET) Task 24 Business and Regional Aircraft System Studies

    NASA Technical Reports Server (NTRS)

    Lieber, Lysbeth

    2003-01-01

    This final report has been prepared by Honeywell Engines & Systems, Phoenix, Arizona, a unit of Honeywell International Inc., documenting work performed during the period June 1999 through December 1999 for the National Aeronautics and Space Administration (NASA) Glenn Research Center, Cleveland, Ohio, under the Small Engine Technology (SET) Program, Contract No. NAS3-27483, Task Order 24, Business and Regional Aircraft System Studies. The work performed under SET Task 24 consisted of evaluating the noise reduction benefits compared to the baseline noise levels of representative 1992 technology aircraft, obtained by applying different combinations of noise reduction technologies to five business and regional aircraft configurations. This report focuses on the selection of the aircraft configurations and noise reduction technologies, the prediction of noise levels for those aircraft, and the comparison of the noise levels with those of the baseline aircraft.

  4. Comparison of piezoelectric systems and aerodynamic systems for aircraft vibration alleviation

    NASA Astrophysics Data System (ADS)

    Becker, Juergen; Luber, Wolfgang G.

    1998-06-01

    A comparison of active smart structure - piezoelectric control system and aerodynamic active systems for vibration alleviation and elastic mode damping of a military aircraft structure is presented. The vibration alleviation systems which are operative at flight in turbulence or during maneuvers at high incidence corresponding to severe buffeting conditions are under investigation by DASA as a part of research study on advanced aircraft structures. The active systems for elastic mode damping are designed as digital systems to provide vibration alleviation and have an interface to the flight control system (FCS) or are directly part of the FCS. The sensor concept of all different systems is the same as the sensor concept used for the FCS with the corresponding benefits of redundancy and safety. The design of systems and the comparisons of system properties are based on open and closed loop response calculations, performed with the dynamic model of the total aircraft including coupling of flight mechanics, structural dynamics, FCS dynamics and hydraulic actuator or piezo-actuator dynamics. Aerodynamic systems, like active foreplane and flap concepts, rudder and auxiliary rudder concepts, and piezoelectric systems, like piezo interface at the interconnection fin to rear fuselage and integrated piezo concepts are compared. Besides the essential effects on flexible aircraft mode stability and vibration alleviation factors system complexity and safety aspects are described.

  5. An integrated systems engineering approach to aircraft design

    NASA Astrophysics Data System (ADS)

    Price, M.; Raghunathan, S.; Curran, R.

    2006-06-01

    The challenge in Aerospace Engineering, in the next two decades as set by Vision 2020, is to meet the targets of reduction of nitric oxide emission by 80%, carbon monoxide and carbon dioxide both by 50%, reduce noise by 50% and of course with reduced cost and improved safety. All this must be achieved with expected increase in capacity and demand. Such a challenge has to be in a background where the understanding of physics of flight has changed very little over the years and where industrial growth is driven primarily by cost rather than new technology. The way forward to meet the challenges is to introduce innovative technologies and develop an integrated, effective and efficient process for the life cycle design of aircraft, known as systems engineering (SE). SE is a holistic approach to a product that comprises several components. Customer specifications, conceptual design, risk analysis, functional analysis and architecture, physical architecture, design analysis and synthesis, and trade studies and optimisation, manufacturing, testing validation and verification, delivery, life cycle cost and management. Further, it involves interaction between traditional disciplines such as Aerodynamics, Structures and Flight Mechanics with people- and process-oriented disciplines such as Management, Manufacturing, and Technology Transfer. SE has become the state-of-the-art methodology for organising and managing aerospace production. However, like many well founded methodologies, it is more difficult to embody the core principles into formalised models and tools. The key contribution of the paper will be to review this formalisation and to present the very latest knowledge and technology that facilitates SE theory. Typically, research into SE provides a deeper understanding of the core principles and interactions, and helps one to appreciate the required technical architecture for fully exploiting it as a process, rather than a series of events. There are major issues as

  6. A Turbo-Brayton Cryocooler for Aircraft Superconducting Systems

    NASA Technical Reports Server (NTRS)

    Dietz, Anthony

    2014-01-01

    Hybrid turboelectric aircraft-with gas turbines driving electric generators connected to electric propulsion motors-have the potential to transform aircraft design. Decoupling power generation from propulsion enables innovative aircraft designs, such as blended-wing bodies, with distributed propulsion. These hybrid turboelectric aircraft have the potential to significantly reduce emissions, decrease fuel burn, and reduce noise, all of which are required to make air transportation growth projections sustainable. The power density requirements for these electric machines can only be achieved with superconductors, which in turn require lightweight, high-capacity cryocoolers.

  7. Advanced Propulsion System Studies for General Aviation Aircraft

    NASA Technical Reports Server (NTRS)

    Eisenberg, Joseph D. (Technical Monitor); Elliott, Kathryn A.; Huebner, Steven R.

    2003-01-01

    In this study, new technology engines were defined in two power classes: a 200 hp class, for a light, 4-place personal aircraft, and a 1500 pound thrust class for a twin-engined, 6 place business jet type aircraft. The engines were evaluated for retrofitting suitable current production aircraft for comparison to the existing engines. The engines were evaluated for performance using a typical mission for each aircraft, as well as a variant mission to further appraise performance.Issues of cost, safety, maintenance, and reliability were also addressed. Manufacturing plans were then constructed.

  8. Effect of power system technology and mission requirements on high altitude long endurance aircraft

    NASA Technical Reports Server (NTRS)

    Colozza, Anthony J.

    1994-01-01

    An analysis was performed to determine how various power system components and mission requirements affect the sizing of a solar powered long endurance aircraft. The aircraft power system consists of photovoltaic cells and a regenerative fuel cell. Various characteristics of these components, such as PV cell type, PV cell mass, PV cell efficiency, fuel cell efficiency, and fuel cell specific mass, were varied to determine what effect they had on the aircraft sizing for a given mission. Mission parameters, such as time of year, flight altitude, flight latitude, and payload mass and power, were also altered to determine how mission constraints affect the aircraft sizing. An aircraft analysis method which determines the aircraft configuration, aspect ratio, wing area, and total mass, for maximum endurance or minimum required power based on the stated power system and mission parameters is presented. The results indicate that, for the power system, the greatest benefit can be gained by increasing the fuel cell specific energy. Mission requirements also substantially affect the aircraft size. By limiting the time of year the aircraft is required to fly at high northern or southern latitudes, a significant reduction in aircraft size or increase in payload capacity can be achieved.

  9. Algorithm of Unmanned Aircraft Systems Displacement in Airspace

    NASA Astrophysics Data System (ADS)

    Gugała, Tomasz

    Despite the fact Unmanned Aerial Vehicles have been used for more than 70 years and their uncommon development has taken place in the first decade of the 21st Century, there is still no elaboration of "Uniform Concept of the Unmanned Aircraft Systems Displacement in Airspace". The indispensable condition of the above mentioned concept has to be flight safety of all airspace users. To achieve this goal, it is necessary to work out the adequate procedures and regulations in the scope of airspace usage taking into consideration this upto- date means of air transport. Therefore, elaboration of the algorithm by the author, can be a reason of achievement for the above mentioned object in the near future. Under such circumstances, the author has taken the trial to perform this challenging task.

  10. A conceptual study of the rotor systems research aircraft

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The analytical comparison of the two candidate Rotor Systems Research Aircraft (RSRA) configurations selected by the Government at the completion of Part 1 of the RSRA Conceptual Predesign Study is presented. The purpose of the comparison was to determine the relative suitability of both vehicles for the RSRA missions described in the Government Statement of Work, and to assess their versatility in the testing of new rotor concepts. The analytical comparison was performed primarily with regard to performance and stability and control. A weights, center-of-gravity, and inertia computation was performed for each iteration in the analysis process. The dynamics investigation was not concerned so much with a comparison of the two vehicles, but explored the dynamic problems attending operation of any RSRA operating with large rotor RPM and diameter ranges over large forward speed ranges. Several means of isolating in- and out-of-plane rotor vibrations were analyzed. An optimum isolation scheme was selected.

  11. Conceptual design of an aircraft automated coating removal system

    SciTech Connect

    Baker, J.E.; Draper, J.V.; Pin, F.G.; Primm, A.H.; Shekhar, S.

    1996-05-01

    Paint stripping of the U.S. Air Force`s large transport aircrafts is currently a labor-intensive, manual process. Significant reductions in costs, personnel and turnaround time can be accomplished by the judicious use of automation in some process tasks. This paper presents the conceptual design of a coating removal systems for the tail surfaces of the C-5 plane. Emphasis is placed on the technology selection to optimize human-automation synergy with respect to overall costs, throughput, quality, safety, and reliability. Trade- offs between field-proven vs. research-requiring technologies, and between expected gain vs. cost and complexity, have led to a conceptual design which is semi-autonomous (relying on the human for task specification and disturbance handling) yet incorporates sensor- based automation (for sweep path generation and tracking, surface following, stripping quality control and tape/breach handling).

  12. European activities in civil applications of drones: an overview of remotely piloted aircraft systems (RPAS)

    NASA Astrophysics Data System (ADS)

    Creutzburg, Reiner

    2015-05-01

    The aim of this paper is to give an overview of recent research, development and civil application of remotely piloted aircraft systems (RPAS) in Europe. It describes a European strategy for the development of civil applications of Remotely Piloted Aircraft Systems (RPAS) and reflects most of the contents of the European staff working document SWD(2012) 259 final.

  13. The Design and Implementation of Aircraft Maintenance On-site Control System

    NASA Astrophysics Data System (ADS)

    Zhou, Guilin; Zhang, Huawei

    Based on the desire of aircraft maintenance, combined with the situation in work, this paper present the design and implementation of aircraft maintenance system based dot Net. For a partial page refresh object, AJAX is used through the system. New technology is used in a creative way and will promote innovation and transformation of the business.

  14. 76 FR 24957 - Nineteenth Meeting: RTCA Special Committee 203: Unmanned Aircraft Systems

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-03

    ... Federal Aviation Administration Nineteenth Meeting: RTCA Special Committee 203: Unmanned Aircraft Systems AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of RTCA Special Committee 203 meeting... RTCA Special Committee 203: Unmanned Aircraft Systems. DATES: The meeting will be held May 17-19,...

  15. 75 FR 26321 - Seventeenth Plenary Meeting: RTCA Special Committee 203: Unmanned Aircraft Systems

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-11

    ... Federal Aviation Administration Seventeenth Plenary Meeting: RTCA Special Committee 203: Unmanned Aircraft Systems AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of RTCA Special Committee 203... RTCA Special Committee 203: Unmanned Aircraft Systems. DATES: The meeting will be held June 8-10,...

  16. Portable device to assess dynamic accuracy of global positioning systems (GPS) receivers used in agricultural aircraft

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A device was designed to test the dynamic accuracy of Global Positioning System (GPS) receivers used in aerial vehicles. The system works by directing a sun-reflected light beam from the ground to the aircraft using mirrors. A photodetector is placed pointing downward from the aircraft and circuitry...

  17. Future Integrated Systems Concept for Preventing Aircraft Loss-of-Control Accidents

    NASA Technical Reports Server (NTRS)

    Belcastro, Christine M.; Jacobson, Steven r.

    2010-01-01

    Loss of control remains one of the largest contributors to aircraft fatal accidents worldwide. Aircraft loss-of-control accidents are highly complex in that they can result from numerous causal and contributing factors acting alone or (more often) in combination. Hence, there is no single intervention strategy to prevent these accidents. This paper presents future system concepts and research directions for preventing aircraft loss-of-control accidents.

  18. Aircraft Noise Perception Study in Brazil: A Perspective on Airport Sustainable Growth and Environmental Awareness

    NASA Technical Reports Server (NTRS)

    deArantesGomesEller, Rogerio; Urbina, Ligia Maria Soto; Porto, Protogenes Pires

    2003-01-01

    Aircraft noise perception is related to several variables that are tangible and objective, such as the number of operations, flight schedules. Other variables, instead, are more subjective, such as preferences. However, although their elusiveness, they contribute to determine the individuals' perception of this type of externality. Despite the fact that the complaints related to aeronautical noise have been registered since the decade of 50, it has been observed that the perception of noise seems to have grown, especially since the 80's. It has been argued that this change in noise perception has its roots on the accelerated expansion of air traffic. But, it is necessary to point out the important role played on modeling preferences, by the growing environmental conscience and the higher welfare and quality of life standards and expectations. In that context, the main objective of this paper is to study the aeronautical noise perception in the neighborhoods of the Aeroporto Internacional de Sao Paulo - AISP (the biggest airport of South America). Specifically, it analyzes the relationship between aircraft noise perception and social class, which is expected to be positive. Since noise perception is an intangible variable, this study chose as a proxy the value losses of residential properties, caused by aeronautical noise. The variable social class has been measured utilizing average per capita income of the population who live nearby the airport. The comparison of both, the lowest and the highest social class suggests that the relationship between social class and noise perception is positive in the AISP region. Moreover, it was observed that all social classes are very susceptible to aircraft noise annoyance. In fact, the magnitude of the noise perception proxy for both social classes -the residential value losses- was found to be comparable to levels encountered in developed countries.

  19. Nondestructive detection and assessment of damage in aging aircraft using a novel stress-strain microprobe system

    NASA Astrophysics Data System (ADS)

    Haggag, Fahmy M.; Wang, J. A.

    1996-11-01

    Aging of current commercial and military aircraft has become a major concern as many older aircraft are reaching their original design life. Service failures due to inaccurate characterization of aging responses might result in costly repair, premature component replacement, and loss of human lives. The properties of aluminum alloys, titanium alloys, and nickel-based superalloys used in aircraft structures and engines might degrade with service conditions associated with the operation of the aircraft. Important aspects of environmental conditions encountered in service cannot be accurately simulated. Thus, it will be a great advantage that the in-situ mechanical properties can be obtained nondestructively. A novel portable/in-situ stress-strain microprobe (SSM) system was developed to use an automated ball indentation technique to measure, yield strength, true- stress versus true-plastic-strain curve, strength coefficient, strain-hardening-exponent, and to estimate fracture toughness. Example test results on metallic structural components and samples are given in this paper and a video demonstration will be presented at the conference. Furthermore, potential applications of the SSM technology to assess the integrity of aging aircraft are briefly discussed.

  20. The Development of a Highly Reliable Power Management and Distribution System for Civil Transport Aircraft

    NASA Technical Reports Server (NTRS)

    Coleman, Anthony S.; Hansen, Irving G.

    1994-01-01

    NASA is pursuing a program in Advanced Subsonic Transport (AST) to develop the technology for a highly reliable Fly-By-Light/Power-By-WIre aircraft. One of the primary objectives of the program is to develop the technology base for confident application of integrated PBW components and systems to transport aircraft to improve operating reliability and efficiency. Technology will be developed so that the present hydraulic and pneumatic systems of the aircraft can be systematically eliminated and replaced by electrical systems. These motor driven actuators would move the aircraft wing surfaces as well as the rudder to provide steering controls for the pilot. Existing aircraft electrical systems are not flight critical and are prone to failure due to Electromagnetic Interference (EMI) (1), ground faults and component failures. In order to successfully implement electromechanical flight control actuation, a Power Management and Distribution (PMAD) System must be designed having a reliability of 1 failure in 10(exp +9) hours, EMI hardening and a fault tolerance architecture to ensure uninterrupted power to all aircraft flight critical systems. The focus of this paper is to analyze, define, and describe technically challenging areas associated with the development of a Power By Wire Aircraft and typical requirements to be established at the box level. The authors will attempt to propose areas of investigation, citing specific military standards and requirements that need to be revised to accommodate the 'More Electric Aircraft Systems'.

  1. Understanding electrostatic charge behaviour in aircraft fuel systems

    NASA Astrophysics Data System (ADS)

    Ogilvy, Jill A.; Hooker, Phil; Bennett, Darrell

    2015-10-01

    This paper presents work on the simulation of electrostatic charge build-up and decay in aircraft fuel systems. A model (EC-Flow) has been developed by BAE Systems under contract to Airbus, to allow the user to assess the effects of changes in design or in refuel conditions. Some of the principles behind the model are outlined. The model allows for a range of system components, including metallic and non-metallic pipes, valves, filters, junctions, bends and orifices. A purpose-built experimental rig was built at the Health and Safety Laboratory in Buxton, UK, to provide comparison data. The rig comprises a fuel delivery system, a test section where different components may be introduced into the system, and a Faraday Pail for measuring generated charge. Diagnostics include wall currents, charge densities and pressure losses. This paper shows sample results from the fitting of model predictions to measurement data and shows how analysis may be used to explain some of the observed trends.

  2. Acceleration display system for aircraft zero-gravity research

    NASA Technical Reports Server (NTRS)

    Millis, Marc G.

    1987-01-01

    The features, design, calibration, and testing of Lewis Research Center's acceleration display system for aircraft zero-gravity research are described. Specific circuit schematics and system specifications are included as well as representative data traces from flown trajectories. Other observations learned from developing and using this system are mentioned where appropriate. The system, now a permanent part of the Lewis Learjet zero-gravity program, provides legible, concise, and necessary guidance information enabling pilots to routinely fly accurate zero-gravity trajectories. Regular use of this system resulted in improvements of the Learjet zero-gravity flight techniques, including a technique to minimize later accelerations. Lewis Gates Learjet trajectory data show that accelerations can be reliably sustained within 0.01 g for 5 consecutive seconds, within 0.02 g for 7 consecutive seconds, and within 0.04 g for up to 20 second. Lewis followed the past practices of acceleration measurement, yet focussed on the acceleration displays. Refinements based on flight experience included evolving the ranges, resolutions, and frequency responses to fit the pilot and the Learjet responses.

  3. Advanced Propulsion Systems Study for General Aviation Aircraft

    NASA Technical Reports Server (NTRS)

    Mount, R.

    2003-01-01

    This study defines a family of advanced technology Stratified Charge Rotary Engines (SCRE) appropriate for the enablement of the development of a new generation of general aviation aircraft. High commonality, affordability, and environmental compatibility are considerations influencing the family composition and ratings. The SCRE family is comprised of three engines in the 70 Series (40 cu in. displacement per rotor), i.e. one, two, and four rotor and two engines in the 170 Series (105 cu in. displacement per rotor), i.e., two and four rotor. The two rotor engines are considered the primary engines in each series. A wide power range is considered covering 125 to 2500 HP through growth and compounding/dual pac considerations. Mission requirements, TBO, FAA Certification, engine development cycles, and costs are examined. Comparisons to current and projected reciprocating and turbine engine configurations in the 125 to 1000 HP class are provided. Market impact, estimated sales, and U.S. job creation (R&D, manufacturing and infractures) are examined.

  4. Integrated controls pay-off. [for flight/propulsion aircraft systems

    NASA Technical Reports Server (NTRS)

    Putnam, Terrill W.; Christiansen, Richard S.

    1989-01-01

    It is shown that the integration of the propulsion and flight control systems for high performance aircraft can help reduce pilot workload while simultaneously increasing overall aircraft performance. Results of the Highly Integrated Digital Electronic Control (HiDEC) flight research program are presented to demonstrate the emerging payoffs of controls integration. Ways in which the performance of fighter aircraft can be improved through the use of propulsion for primary aircraft control are discussed. Research being conducted by NASA with the F-18 High Angle-of Attack Research Vehicle is described.

  5. Design of a digital ride quality augmentation system for commuter aircraft

    NASA Technical Reports Server (NTRS)

    Hammond, T. A.; Amin, S. P.; Paduano, J. D.; Downing, D. R.

    1984-01-01

    Commuter aircraft typically have low wing loadings, and fly at low altitudes, and so they are susceptible to undesirable accelerations caused by random atmospheric turbulence. Larger commercial aircraft typically have higher wing loadings and fly at altitudes where the turbulence level is lower, and so they provide smoother rides. This project was initiated based on the goal of making the ride of the commuter aircraft as smooth as the ride experienced on the major commercial airliners. The objectives of this project were to design a digital, longitudinal mode ride quality augmentation system (RQAS) for a commuter aircraft, and to investigate the effect of selected parameters on those designs.

  6. Rotor systems research aircraft predesign study. Volume 2: Conceptual study report

    NASA Technical Reports Server (NTRS)

    Schmidt, S. A.; Linden, A. W.

    1972-01-01

    The overall feasibility of the technical requirements and concepts for a rotor system research aircraft (RSRA) was determined. The designs of two aircraft were then compared against the RSRA requirements. One of these is an all new aircraft specifically designed as an RSRA vehicle. A new main rotor, transmission, wings, and fuselage are included in this design. The second aircraft uses an existing Sikorsky S-61 main rotor, an S-61 roller gearbox, and a highly modified Sikorsky S-67 airframe. The wing for this aircraft is a new design. Both aircraft employ a fan-in-fin anti-torque/yaw control system, T58-GE-16 engines for rotor power, and TF34-GE-2 turbofans for auxiliary thrust. Each aircraft meets the basic requirements and goals of the program. The all new aircraft has inflight variable main rotor shaft tilt, a side-by-side cockpit seating arrangement, and is slightly faster in the compound mode. It is also somewhat lighter since it uses new dynamic components specifically designed for the RSRA. Preliminary development plans, including schedules and costs, were prepared for both of these aircraft.

  7. Effects of cable geometry and aircraft attitude on the accuracy of a magnetic leader cable system for aircraft guidance during rollout and turnoff

    NASA Technical Reports Server (NTRS)

    Bundick, W. T.

    1982-01-01

    A theoretical analysis of a single wire magnetic leader cable system for aircraft rollout and turnoff guidance was performed to determine the errors produced by the leader cable installation geometry and aircraft attitude. It was found that errors in the measurement of lateral displacement from the cable are smaller than errors in the measurement of aircraft heading and that both errors are smallest at or near the cable.

  8. Human Performance Considerations for Remotely Piloted Aircraft Systems (RPAS)

    NASA Technical Reports Server (NTRS)

    Shively, R. Jay; Hobbs, Alan; Lyall, Beth; Rorie, Conrad

    2015-01-01

    Successful integration of Remotely Piloted Aircraft Systems (RPAS) into civil airspace will not only require solutions to technical challenges, but will also require that the design and operation of RPAS take into account human limitations and capabilities. Human factors can affect overall system performance whenever the system relies on people to interact with another element of the system. Four types of broad interactions can be described. These are (1) interactions between people and hardware, such as controls and displays; (2) human use of procedures and documentation; (3) impact of the task environment, including lighting, noise and monotony; and lastly, (4) interactions between operational personnel, including communication and coordination. In addition to the human factors that have been identified for conventional aviation, RPAS operations introduce a set of unique human challenges. The purpose of document is to raise human factors issues for consideration by workgroups of the ICAO RPAS panel as they work to develop guidance material and additions to ICAO annexes. It is anticipated that the content of this document will be revised and updated as the work of the panel progresses.

  9. Environmental Systems Test Stand

    NASA Astrophysics Data System (ADS)

    Barta, D.; Young, J.; Ewert, M.; Lee, S.; Wells, P.; Fortson, R.; Castillo, J.

    A test stand has been developed for the evaluation of prototype lighting, environmental control and crop cultivation technologies for plant production within an advanced life support system. Design of the test stand was based on preliminary designs of the center growth bay of the Biomass Production Chamber, one of several modules of the Bioregenerative Planetary Life Support Systems Test Complex (BIO- Plex). It consists of two controlled-environment shelves, each with 4.7 m2 of area for crop growth (150 cm width, 315 cm length). There are two chilled water loops, one for operation at conventional temperatures (5-10C) for air temperature and humidity control and one for operation at higher temperatures (15-50C) for waste heat acquisition and heating. Modular light boxes, utilizing either air-cooled or water- jacketed HPS lamps, have been developed. This modular design will allow for easy replacement of new lighting technologies within the light banks. An advanced data acquisition and control system has been developed utilizing localized, networked- based data acquisition modules and programmed with object-based control software.

  10. The F-12 series aircraft approach to design for control system reliability

    NASA Technical Reports Server (NTRS)

    Schenk, F. L.; Mcmaster, J. R.

    1976-01-01

    The F-12 series aircraft control system design philosophy is reviewed as it pertains to functional reliability. The basic control system, i.e., cables, mixer, feel system, trim devices, and hydraulic systems are described and discussed. In addition, the implementation of the redundant stability augmentation system in the F-12 aircraft is described. Finally, the functional reliability record that has been achieved is presented.

  11. Development of a 21st Century Small Aircraft Transportation System

    NASA Technical Reports Server (NTRS)

    Bowen, Brent D.; Holmes, Bruce J.; Hansen, Frederick

    2000-01-01

    The National Aeronautics and Space Administration (NASA), U.S. Department of Transportation, Federal Aviation Administration, industry stakeholders, and academia, have joined forces to pursue the NASA National General Aviation Roadmap leading to a Small Aircraft Transportation System (SATS). This strategic undertaking has a 25-year goal to bring the next-generation technologies and improve travel between remote communities and transportation centers in urban areas by utilizing the nation's 5,400 public use general aviation airports. To facilitate this initiative, a comprehensive upgrade of public infrastructure must be planned, coordinated, and implemented within the framework of the national air transportation system. The Nebraska NASA EPSCoR Program has proposed to deliver research support in key public infrastructure areas in coordination with the General Aviation Program Office at the NASA Langley Research Center. Ultimately, SATS may permit tripling aviation system throughput capacity by tapping the underutilized general aviation facilities to achieve the national goal of doorstep-to-destination travel at four times the speed of highways for the nation's suburban, rural, and remote communities.

  12. New Mobile Lidar Systems Aboard Ultra-Light Aircrafts

    NASA Astrophysics Data System (ADS)

    Chazette, Patrick; Shang, Xiaoxia; Totems, Julien; Marnas, Fabien; Sanak, Joseph

    2013-04-01

    Two lidar systems embedded on ultra light aircraft (ULA) flew over the Rhone valley, south-east of France, to characterize the vertical extend of pollution aerosols in this area influenced by large industrial sites. The main industrial source is the Etang de Berre (43°28' N, 5°01' E), close to Marseille city. The emissions are mainly due to metallurgy and petrochemical factories. Traffic related to Marseille's area contribute to pollution with its ~1500000 inhabitants. Note that the maritime traffic close to Marseille may play an important role due to its position as the leading French harbor . For the previous scientific purpose and for the first time on ULA, we flew a mini-N2 Raman lidar system to help the assessment of the aerosol optical properties. Another Ultra-Violet Rayleigh-Mie lidar has been integrated aboard a second ULA. The lidars are compact and eye safe instruments. They operate at the wavelength of 355 nm with a sampling along the line-of-sight of 0.75 m. Different flights plans were tested to use the two lidars in synergy. We will present the different approaches and discuss both their advantages and limitations. Acknowledgements: the lidar systems have been developed by CEA. They have been deployed with the support of FERRING France. We acknowledge the ULA pilots Franck Toussaint, François Bernard and José Coutet, and the Air Creation ULA Company for logistical help during the ULA campaign.

  13. Advanced electrical power system technology for the all electric aircraft

    NASA Technical Reports Server (NTRS)

    Finke, R. C.; Sundberg, G. R.

    1983-01-01

    The application of advanced electric power system technology to an all electric airplane results in an estimated reduction of the total takeoff gross weight of over 23,000 pounds for a large airplane. This will result in a 5 to 10 percent reduction in direct operating costs (DOC). Critical to this savings is the basic electrical power system component technology. These advanced electrical power components will provide a solid foundation for the materials, devices, circuits, and subsystems needed to satisfy the unique requirements of advanced all electric aircraft power systems. The program for the development of advanced electrical power component technology is described. The program is divided into five generic areas: semiconductor devices (transistors, thyristors, and diodes); conductors (materials and transmission lines); dielectrics; magnetic devices; and load management devices. Examples of progress in each of the five areas are discussed. Bipolar power transistors up to 1000 V at 100 A with a gain of 10 and a 0.5 microsec rise and fall time are presented. A class of semiconductor devices with a possibility of switching up to 100 kV is described. Solid state power controllers for load management at 120 to 1000 V and power levels to 25 kW were developed along with a 25 kW, 20 kHz transformer weighing only 3.2 kg.

  14. Advanced electrical power system technology for the all electric aircraft

    NASA Technical Reports Server (NTRS)

    Finke, R. C.; Sundberg, G. R.

    1983-01-01

    The application of advanced electric power system technology to an all electric airplane results in an estimated reduction of the total takeoff gross weight of over 23,000 pounds for a large airplane. This will result in a 5 to 10 percent reduction in direct operating costs (DOC). Critical to this savings is the basic electrical power system component technology. These advanced electrical power components will provide a solid foundation for the materials, devices, circuits, and subsystems needed to satisfy the unique requirements of advanced all electric aircraft power systems. The program for the development of advanced electrical power component technology is described. The program is divided into five generic areas: semiconductor devices (transistors, thyristors, and diodes); conductors (materials and transmission lines); dielectrics; magnetic devices; and load management devices. Examples of progress in each of the five areas are discussed. Bipolar power transistors up to 1000 V at 100 A with a gain of 10 and a 0.5 microsec rise and fall time are presented. A class of semiconductor devices with a possibility of switching up to 100 kV is described. Solid state power controllers for load management at 120 to 1000 V and power levels to 25 kW were developed along with a 25 kW, 20 kHz transformer weighing only 3.2 kg. Previously announced in STAR as N83-24764

  15. Energy efficient engine flight propulsion system: Aircraft/engine integration evaluation

    NASA Technical Reports Server (NTRS)

    Patt, R. F.

    1980-01-01

    Results of aircraft/engine integration studies conducted on an advanced flight propulsion system are reported. Economic evaluations of the preliminary design are included and indicate that program goals will be met. Installed sfc, DOC, noise, and emissions were evaluated. Aircraft installation considerations and growth were reviewed.

  16. 78 FR 20168 - Twenty Fourth Meeting: RTCA Special Committee 203, Unmanned Aircraft Systems

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-03

    ... Federal Aviation Administration Twenty Fourth Meeting: RTCA Special Committee 203, Unmanned Aircraft...: Meeting Notice of RTCA Special Committee 203, Unmanned Aircraft Systems. SUMMARY: The FAA is issuing this notice to advise the public of the twenty third meeting of RTCA Special Committee 203, Unmanned...

  17. 77 FR 25781 - Twenty-First Meeting: RTCA Special Committee 203, Unmanned Aircraft Systems

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-01

    ... Federal Aviation Administration Twenty-First Meeting: RTCA Special Committee 203, Unmanned Aircraft...: Meeting Notice of RTCA Special Committee 203, Unmanned Aircraft Systems. SUMMARY: The FAA is issuing this notice to advise the public of the twenty-first meeting of RTCA Special Committee 203, Unmanned...

  18. 77 FR 50207 - Twenty-Second Meeting: RTCA Special Committee 203, Unmanned Aircraft Systems

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-20

    ... Federal Aviation Administration Twenty-Second Meeting: RTCA Special Committee 203, Unmanned Aircraft...: Meeting notice of RTCA Special Committee 203, Unmanned Aircraft Systems. SUMMARY: The FAA is issuing this notice to advise the public of the twenty-second meeting of RTCA Special Committee 203, Unmanned...

  19. 78 FR 6400 - Twenty Third Meeting: RTCA Special Committee 203, Unmanned Aircraft Systems

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-30

    ... Federal Aviation Administration Twenty Third Meeting: RTCA Special Committee 203, Unmanned Aircraft...: Meeting Notice of RTCA Special Committee 203, Unmanned Aircraft Systems. SUMMARY: The FAA is issuing this notice to advise the public of the twenty third meeting of RTCA Special Committee 203, Unmanned...

  20. STOL terminal area operating systems (aircraft and onboard avionics, ATC, navigation aids)

    NASA Technical Reports Server (NTRS)

    Burrous, C.; Erzberger, H.; Johnson, N.; Neuman, F.

    1974-01-01

    Operational procedures and systems onboard the STOL aircraft which are required to enable the aircraft to perform acceptably in restricted airspace in all types of atmospheric conditions and weather are discussed. Results of simulation and flight investigations to establish operational criteria are presented.

  1. Aircraft as adaptive nonlinear system which must be in the adaptational maximum zone for safety

    SciTech Connect

    Ignative, M.; Simatos, N.; Sivasundaram, S.

    1994-12-31

    Safety is a main problem in aircraft. We are considering this problem from the point of view related to existence of the adaptational maximum in complex developing systems. Safety space of aircraft parameters are determined. This space is transformed to different regimes of flight, when one engine malfunctions etc., are considered. Also it is shown that maximum safety is in adaptational maximum zone.

  2. Aircraft System Analysis of Technology Benefits to Civil Transport Rotorcraft

    NASA Technical Reports Server (NTRS)

    Wilkerson, Joseph B.; Smith, Roger L.

    2008-01-01

    An aircraft systems analysis was conducted to evaluate the net benefits of advanced technologies on two conceptual civil transport rotorcraft, to quantify the potential of future civil rotorcraft to become operationally viable and economically competitive, with the ultimate goal of alleviating congestion in our airways, runways and terminals. These questions are three of many that must be resolved for the successful introduction of civil transport rotorcraft: 1) Can civil transport rotorcraft actually relieve current airport congestion and improve overall air traffic and passenger throughput at busy hub airports? What is that operational scenario? 2) Can advanced technology make future civil rotorcraft economically competitive in scheduled passenger transport? What are those enabling technologies? 3) What level of investment is necessary to mature the key enabling technologies? This study addresses the first two questions, and several others, by applying a systems analysis approach to a broad spectrum of potential advanced technologies at a conceptual level of design. The method was to identify those advanced technologies that showed the most promise and to quantify their benefits to the design, development, production, and operation of future civil rotorcraft. Adjustments are made to sizing data by subject matter experts to reflect the introduction of new technologies that offer improved performance, reduced weight, reduced maintenance, or reduced cost. This study used projected benefits from new, advanced technologies, generally based on research results, analysis, or small-scale test data. The technologies are identified, categorized and quantified in the report. The net benefit of selected advanced technologies is quantified for two civil transport rotorcraft concepts, a Single Main Rotor Compound (SMRC) helicopter designed for 250 ktas cruise airspeed and a Civil Tilt Rotor (CTR) designed for 350 ktas cruise airspeed. A baseline design of each concept was

  3. Detailed design of a Ride Quality Augmentation System for commuter aircraft

    NASA Technical Reports Server (NTRS)

    Suikat, Reiner; Donaldson, Kent E.; Downing, David R.

    1989-01-01

    The design of a Ride Quality Augmentation System (RQAS) for commuter aircraft is documented. The RQAS is designed for a Cessna 402B, an 8 passenger prop twin representative to this class of aircraft. The purpose of the RQAS is the reduction of vertical and lateral accelerations of the aircraft due to atmospheric turbulence by the application of active control. The detailed design of the hardware (the aircraft modifications, the Ride Quality Instrumentation System (RQIS), and the required computer software) is examined. The aircraft modifications, consisting of the dedicated control surfaces and the hydraulic actuation system, were designed at Cessna Aircraft by Kansas University-Flight Research Laboratory. The instrumentation system, which consist of the sensor package, the flight computer, a Data Acquisition System, and the pilot and test engineer control panels, was designed by NASA-Langley. The overall system design and the design of the software, both for flight control algorithms and ground system checkout are detailed. The system performance is predicted from linear simulation results and from power spectral densities of the aircraft response to a Dryden gust. The results indicate that both accelerations are possible.

  4. Environmental control system

    SciTech Connect

    Foley, P. N.; Turbard, A. M.

    1985-05-21

    An environmental control system for controlling the environmental conditions in a swimming pool hall 1 comprises a heat pump having a multi-section evaporator 8, compressors 23a and 23b and a multi-section condensor 18. In the day-time, the dry bulb temperature in the pool hall is maintained by circulating space air through a duct 3 to the evaporator 8 where the latent heat is recovered from the moisture laden air. This heat is rejected via the condensor 18 either to the now drier recirculated air or fresh air from an inlet 13 or a mixture of air from the two sources. In a night mode of operation, circulation of space air through the duct 3 is prevented and instead it is recirculated via a direct recirculation duct 53 and is heated by the condensor 18, the heat used to do this being recovered from outside air inducted into the evaporator 8 via an inlet 50. In order to prevent frosting of the evaporator when the outside air temperature is too low, a damper 52 may be opened to allow some space air to pass through the evaporator 8 and raise its temperature. In order to increase the heat recovery capability of the compressor, storage tank 56 is used to collect waste water from showers etc. and also from backwash through the pool water filter and when this tank is full, its water is chilled by means of a water chiller 15 in parallel with the evaporator and the heat so recovered is rejected to the re-circulating space air by means of the condensor 18.

  5. Large Aircraft Robotic Paint Stripping (LARPS) system and the high pressure water process

    NASA Astrophysics Data System (ADS)

    See, David W.; Hofacker, Scott A.; Stone, M. Anthony; Harbaugh, Darcy

    1993-03-01

    The aircraft maintenance industry is beset by new Environmental Protection Agency (EPA) guidelines on air emissions, Occupational Safety and Health Administration (OSHA) standards, dwindling labor markets, Federal Aviation Administration (FAA) safety guidelines, and increased operating costs. In light of these factors, the USAF's Wright Laboratory Manufacturing Technology Directorate and the Aircraft Division of the Oklahoma City Air Logistics Center initiated a MANTECH/REPTECH effort to automate an alternate paint removal method and eliminate the current manual methylene chloride chemical stripping methods. This paper presents some of the background and history of the LARPS program, describes the LARPS system, documents the projected operational flow, quantifies some of the projected system benefits and describes the High Pressure Water Stripping Process. Certification of an alternative paint removal method to replace the current chemical process is being performed in two phases: Process Optimization and Process Validation. This paper also presents the results of the Process Optimization for metal substrates. Data on the coating removal rate, residual stresses, surface roughness, preliminary process envelopes, and technical plans for process Validation Testing will be discussed.

  6. Unmanned Aircraft System Control and ATC Communications Bandwidth Requirements

    NASA Technical Reports Server (NTRS)

    Henriksen, Steve

    2008-01-01

    There are significant activities taking place to establish the procedures and requirements for safe and routine operation of unmanned aircraft systems (UAS) in the National Airspace System (NAS). Among the barriers to overcome in achieving this goal is the lack of sufficient frequency spectrum necessary for the UAS control and air traffic control (ATC) communications links. This shortcoming is compounded by the fact that the UAS control communications links will likely be required to operate in protected frequency spectrum, just as ATC communications links are, because they relate to "safety and regularity of flight." To support future International Telecommunications Union (ITU) World Radio Conference (WRC) agenda items concerning new frequency allocations for UAS communications links, and to augment the Future Communications Study (FCS) Technology Evaluation Group efforts, NASA Glenn Research Center has sponsored a task to estimate the UAS control and ATC communications bandwidth requirements for safe, reliable, and routine operation of UAS in the NAS. This report describes the process and results of that task. The study focused on long-term bandwidth requirements for UAS approximately through 2030.

  7. Future Air Force aircraft propulsion control systems: The extended summary paper

    NASA Technical Reports Server (NTRS)

    Skira, C. A.

    1980-01-01

    Hydromechanical control technology simply cannot compete against the performance benefits offered by electronics. Future military aircraft propulsion control systems will be full authority, digital electronic, microprocessor base systems. Anticipating the day when microprocessor technology will permit the integration and management of aircraft flight control, fire control and propulsion control systems, the Air Force Aero Propulsion Laboratory is developing control logic algorithms for a real time, adaptive control and diagnostic information system.

  8. A low cost maritime control aircraft-ship-weapons system. [antiship missile defense

    NASA Technical Reports Server (NTRS)

    Fluk, H.

    1981-01-01

    It is pointed out that the long-range antiship standoff missile is emerging as the foremost threat on the seas. Delivered by high speed bombers, surface ships, and submarines, a missile attack can be mounted against selected targets from any point on the compass. An investigation is conducted regarding the configuration of a system which could most efficiently identify and destroy standoff threats before they launch their weapons. It is found that by using ships for carrying and launching missiles, and employing aircraft with a powerful radar only for search and missile directing operations, aircraft cost and weight can be greatly reduced. The employment of V/STOL aircraft in preference to other types of aircraft makes it possible to use ships of smaller size for carrying the aircraft. However, in order to obtain an all-weather operational capability for the system, ships are selected which are still big enough to display the required stability in heavy seas.

  9. Flight test of ARINC 741 configuration low gain SATCOM system on Boeing 747-400 aircraft

    NASA Technical Reports Server (NTRS)

    Murphy, Timothy A.; Stapleton, Brian P.

    1990-01-01

    The Boeing company conducted a flight test of a SATCOM system similar to the ARINC 741 configuration on a production model 747-400. A flight plan was specifically designed to test the system over a wide variety of satellite elevations and aircraft attitudes as well as over land and sea. Interface bit errors, signal quality and aircraft position and navigational inputs were all recorded as a function of time. Special aircraft maneuvers were performed to demonstrate the potential for shadowing by aircraft structures. Both a compass rose test and the flight test indicated that shadowing from the tail is insignificant for the 747-400. However, satellite elevation angles below the aircraft horizon during banking maneuvers were shown to have a significant deleterious effect on SATCOM communications.

  10. Models and techniques for evaluating the effectiveness of aircraft computing systems

    NASA Technical Reports Server (NTRS)

    Meyer, J. F.

    1982-01-01

    Models, measures, and techniques for evaluating the effectiveness of aircraft computing systems were developed. By "effectiveness" in this context we mean the extent to which the user, i.e., a commercial air carrier, may expect to benefit from the computational tasks accomplished by a computing system in the environment of an advanced commercial aircraft. Thus, the concept of effectiveness involves aspects of system performance, reliability, and worth (value, benefit) which are appropriately integrated in the process of evaluating system effectiveness. Specifically, the primary objectives are: the development of system models that provide a basis for the formulation and evaluation of aircraft computer system effectiveness, the formulation of quantitative measures of system effectiveness, and the development of analytic and simulation techniques for evaluating the effectiveness of a proposed or existing aircraft computer.

  11. Application of variable structure system theory to aircraft flight control. [AV-8A and the Augmentor Wing Jet STOL Research Aircraft

    NASA Technical Reports Server (NTRS)

    Calise, A. J.; Kadushin, I.; Kramer, F.

    1981-01-01

    The current status of research on the application of variable structure system (VSS) theory to design aircraft flight control systems is summarized. Two aircraft types are currently being investigated: the Augmentor Wing Jet STOL Research Aircraft (AWJSRA), and AV-8A Harrier. The AWJSRA design considers automatic control of longitudinal dynamics during the landing phase. The main task for the AWJSRA is to design an automatic landing system that captures and tracks a localizer beam. The control task for the AV-8A is to track velocity commands in a hovering flight configuration. Much effort was devoted to developing computer programs that are needed to carry out VSS design in a multivariable frame work, and in becoming familiar with the dynamics and control problems associated with the aircraft types under investigation. Numerous VSS design schemes were explored, particularly for the AWJSRA. The approaches that appear best suited for these aircraft types are presented. Examples are given of the numerical results currently being generated.

  12. Aircraft Measurements of Convective System Vertical Structure and Coldpools during the DYNAMO Project

    NASA Astrophysics Data System (ADS)

    Guy, N.; Jorgensen, D. P.; Chen, S. S.; Wang, Q.

    2012-12-01

    The DYNAMO (Dynamics of the Madden-Julian Oscillation) field experiment employed a large number of measurement platforms with which to study environmental and convective cloud system characteristics of the MJO initiation region in the Indian Ocean. One such platform, the NOAA P-3 instrumented aircraft, provided mobility to sample convective cloud systems along with the surrounding environment. The tail-mounted, X-band Doppler radar allowed a pseudo-dual-Doppler analysis technique to study system kinematics and derive vertical wind motion. GPS dropwindsondes provided a robust means for thermodynamic characterization both in and around the sampled convective cloud systems. This presentation will focus on the relationships between coldpool strength and depth (along with other environmental characteristics) and the vertical structure of convective systems. In addition, a comparison of the DYNAMO observations to previous results in the region (e.g. TOGA COARE) will be presented. Differences in organizational aspects of convective clouds into mesoscale convective systems between the studies will provide a context of regional differences, which may serve as a basis for future model simulations.

  13. NASA-Langley Research Center's Aircraft Condition Analysis and Management System Implementation

    NASA Technical Reports Server (NTRS)

    Frye, Mark W.; Bailey, Roger M.; Jessup, Artie D.

    2004-01-01

    This document describes the hardware implementation design and architecture of Aeronautical Radio Incorporated (ARINC)'s Aircraft Condition Analysis and Management System (ACAMS), which was developed at NASA-Langley Research Center (LaRC) for use in its Airborne Research Integrated Experiments System (ARIES) Laboratory. This activity is part of NASA's Aviation Safety Program (AvSP), the Single Aircraft Accident Prevention (SAAP) project to develop safety-enabling technologies for aircraft and airborne systems. The fundamental intent of these technologies is to allow timely intervention or remediation to improve unsafe conditions before they become life threatening.

  14. Problems related to the integration of fault tolerant aircraft electronic systems

    NASA Technical Reports Server (NTRS)

    Bannister, J. A.; Adlakha, V.; Triyedi, K.; Alspaugh, T. A., Jr.

    1982-01-01

    Problems related to the design of the hardware for an integrated aircraft electronic system are considered. Taxonomies of concurrent systems are reviewed and a new taxonomy is proposed. An informal methodology intended to identify feasible regions of the taxonomic design space is described. Specific tools are recommended for use in the methodology. Based on the methodology, a preliminary strawman integrated fault tolerant aircraft electronic system is proposed. Next, problems related to the programming and control of inegrated aircraft electronic systems are discussed. Issues of system resource management, including the scheduling and allocation of real time periodic tasks in a multiprocessor environment, are treated in detail. The role of software design in integrated fault tolerant aircraft electronic systems is discussed. Conclusions and recommendations for further work are included.

  15. RSRA vertical drag test report. [rotor systems research aircraft

    NASA Technical Reports Server (NTRS)

    Flemming, R. J.

    1981-01-01

    The Rotor Systems Research Aircraft (RSRA), because of its ability to measure rotor loads, was used to conduct an experiment to determine vertical drag, tail rotor blockage, and thrust augmentation as affected by ground clearance and flight velocity. The RSRA was flown in the helicopter configuration at speeds from 0 to 15 knots for wheel heights from 5 to 150 feet, and to 60 knots out of ground effect. The vertical drag trends in hover, predicted by theory and shown in model tests, were generally confirmed. The OGE hover vertical drag is 4.0 percent, 1.1 percent greater than predicted. The vertical drag decreases rapidly as wheel height is reduced, and is zero at a wheel height of 6 feet. The vertical drag also decreases with forward speed, approaching zero at sixty knots. The test data show the effect of wheel height and forward speed on thrust, gross weight capability, and power, and provide the relationships for power and collective pitch at constant gross weight required for the simulation of helicopter takeoffs and landings.

  16. Exploring Science Applications for Unmanned Aircraft Systems Aboard UNOLS Ships

    NASA Astrophysics Data System (ADS)

    Bailey, R.; Lachenmeier, T.; Hatfield, M. C.

    2014-12-01

    The University of Alaska Fairbanks has been expanding the use of small Unmanned Aircraft Systems (UAS) for science support from a variety of ships for several years. The ease and safety of flying from research vessels offers the science community lower cost access to overhead surveys of marine mammals without impact on sensitive populations, monitoring of AUV operations and collection of transmitted data, extensive surveys of sea ice during formation, melt, and sea temperatures through multiple seasons. As FAA expands access to the Arctic airspace over the Chukchi, Beaufort, and Bering Seas, the opportunities to employ UAS in science applications will become easier to exploit. This presentation describes the changes coming through new FAA rules, through the Alaska FAA Test Site, the Pan-Pacific UAS Test Range Complex which includes Oregon and Hawaii, and even Iceland. Airspace access advances associated with recent operations including the NASA-sponsored MIZOPEX, whale detection, and forming sea ice work in October will be presented, as well as a glider UAS connected to very high altitude balloons collecting atmospheric data. Development of safety procedures for use of UAS on UNOLS ships will be discussed.

  17. Unmanned Aircraft Systems complement biologging in spatial ecology studies.

    PubMed

    Mulero-Pázmány, Margarita; Barasona, Jose Ángel; Acevedo, Pelayo; Vicente, Joaquín; Negro, Juan José

    2015-11-01

    The knowledge about the spatial ecology and distribution of organisms is important for both basic and applied science. Biologging is one of the most popular methods for obtaining information about spatial distribution of animals, but requires capturing the animals and is often limited by costs and data retrieval. Unmanned Aircraft Systems (UAS) have proven their efficacy for wildlife surveillance and habitat monitoring, but their potential contribution to the prediction of animal distribution patterns and abundance has not been thoroughly evaluated. In this study, we assess the usefulness of UAS overflights to (1) get data to model the distribution of free-ranging cattle for a comparison with results obtained from biologged (GPS-GSM collared) cattle and (2) predict species densities for a comparison with actual density in a protected area. UAS and biologging derived data models provided similar distribution patterns. Predictions from the UAS model overestimated cattle densities, which may be associated with higher aggregated distributions of this species. Overall, while the particular researcher interests and species characteristics will influence the method of choice for each study, we demonstrate here that UAS constitute a noninvasive methodology able to provide accurate spatial data useful for ecological research, wildlife management and rangeland planning. PMID:26640661

  18. The NASA aircraft noise prediction program improved propeller analysis system

    NASA Technical Reports Server (NTRS)

    Nguyen, L. Cathy

    1991-01-01

    The improvements and the modifications of the NASA Aircraft Noise Prediction Program (ANOPP) and the Propeller Analysis System (PAS) are described. Comparisons of the predictions and the test data are included in the case studies for the flat plate model in the Boundary Layer Module, for the effects of applying compressibility corrections to the lift and pressure coefficients, for the use of different weight factors in the Propeller Performance Module, for the use of the improved retarded time equation solution, and for the effect of the number grids in the Transonic Propeller Noise Module. The DNW tunnel test data of a propeller at different angles of attack and the Dowty Rotol data are compared with ANOPP predictions. The effect of the number of grids on the Transonic Propeller Noise Module predictions and the comparison of ANOPP TPN and DFP-ATP codes are studied. In addition to the above impact studies, the transonic propeller noise predictions for the SR-7, the UDF front rotor, and the support of the enroute noise test program are included.

  19. Application of EREP, LANDSAT, and aircraft image data to environmental problems related to coal mining

    NASA Technical Reports Server (NTRS)

    Amato, R. V.; Russell, O. R.; Martin, K. R.; Wier, C. E.

    1975-01-01

    Remote sensing techniques were used to study coal mining sites within the Eastern Interior Coal Basin (Indiana, Illinois, and western Kentucky), the Appalachian Coal Basin (Ohio, West Virginia, and Pennsylvania) and the anthracite coal basins of northeastern Pennsylvania. Remote sensor data evaluated during these studies were acquired by LANDSAT, Skylab and both high and low altitude aircraft. Airborne sensors included multispectral scanners, multiband cameras and standard mapping cameras loaded with panchromatic, color and color infrared films. The research conducted in these areas is a useful prerequisite to the development of an operational monitoring system that can be peridically employed to supply state and federal regulatory agencies with supportive data. Further research, however, must be undertaken to systematically examine those mining processes and features that can be monitored cost effectively using remote sensors and for determining what combination of sensors and ground sampling processes provide the optimum combination for an operational system.

  20. Recent developments in aircraft protection systems for laser guide star operations

    NASA Astrophysics Data System (ADS)

    Stomski, Paul J.; Murphy, Thomas W.; Campbell, Randy

    2012-07-01

    The astronomical community's use of high power laser guide star adaptive optics (LGS-AO) systems presents a potential hazard to aviation. Historically, the most common and trusted means of protecting aircraft and their occupants has been the use of safety observers (aka spotters) armed with shut-off switches. These safety observers watch for aircraft at risk and terminate laser propagation before the aircraft can be adversely affected by the laser. Efforts to develop safer and more cost-effective automated aircraft protection systems for use by the astronomical community have been inhibited by both technological and regulatory challenges. This paper discusses recent developments in these two areas. Specifically, with regard to regulation and guidance we discuss the 2011 release of AS-6029 by the SAE as well as the potential impact of RTCA DO-278A. With regard to the recent developments in the technology used to protect aircraft from laser illumination, we discuss the novel Transponder Based Aircraft Detection (TBAD) system being installed at W. M. Keck Observatory (WMKO). Finally, we discuss our strategy for evaluating TBAD compliance with the regulations and for seeking appropriate approvals for LGS operations at WMKO using a fully automated, flexibly configured, multi-tier aircraft protection system incorporating this new technology.

  1. Evaluating the Handling Qualities of Flight Control Systems Including Nonlinear Aircraft and System Dynamics

    NASA Astrophysics Data System (ADS)

    Lin, Raymond Chao

    The handling qualities evaluation of nonlinear aircraft systems is an area of concern in loss-of-control (LOC) prevention. The Get Transfer Function (GetTF) method was demonstrated for evaluating the handling qualities of flight control systems and aircraft containing nonlinearities. NASA's Generic Transport Model (GTM), a nonlinear model of a civilian jet transport aircraft, was evaluated. Using classical techniques, the stability, control, and augmentation (SCAS) systems were designed to control pitch rate, roll rate, and airspeed. Hess's structural pilot model was used to model pilot dynamics in pitch and roll-attitude tracking. The simulated task was simultaneous tracking of, both, pitch and roll attitudes. Eight cases were evaluated: 1) gain increase of pitch-attitude command signal, 2) gain increase of roll-attitude command signal, 3) gain reduction of elevator command signal, 4) backlash in elevator actuator, 5) combination 3 and 4 in elevator actuator, 6) gain reduction of aileron command signal, 7) backlash in aileron actuator, and 8) combination of 6 and 7 in aileron actuator. The GetTF method was used to estimate the transfer function approximating a linear relationship between the proprioceptive signal of the pilot model and the command input. The transfer function was then used to predict the handling qualities ratings (HQR) and pilot-induced oscillation ratings (PIOR). The HQR is based on the Cooper-Harper rating scale. In pitch-attitude tracking, the nominal aircraft is predicted to have Level 2* HQRpitch and 2 < PIORpitch < 4. The GetTF method generally predicted degraded handling qualities for cases with impaired actuators. The results demonstrate GetTF's utility in evaluating the handling qualities during the design phase of flight control and aircraft systems. A limited human-in-the-loop pitch tracking exercise was also conducted to validate the structural pilot model.

  2. Crew systems and flight station concepts for a 1995 transport aircraft

    NASA Technical Reports Server (NTRS)

    Sexton, G. A.

    1983-01-01

    Aircraft functional systems and crew systems were defined for a 1995 transport aircraft through a process of mission analysis, preliminary design, and evaluation in a soft mockup. This resulted in a revolutionary pilot's desk flight station design featuring an all-electric aircraft, fly-by-wire/light flight and thrust control systems, large electronic color head-down displays, head-up displays, touch panel controls for aircraft functional systems, voice command and response systems, and air traffic control systems projected for the 1990s. The conceptual aircraft, for which crew systems were designed, is a generic twin-engine wide-body, low-wing transport, capable of worldwide operation. The flight control system consists of conventional surfaces (some employed in unique ways) and new surfaces not used on current transports. The design will be incorporated into flight simulation facilities at NASA-Langley, NASA-Ames, and the Lockheed-Georgia Company. When interfaced with advanced air traffic control system models, the facilities will provide full-mission capability for researching issues affecting transport aircraft flight stations and crews of the 1990s.

  3. Experimental Study of Turbine Fuel Thermal Stability in an Aircraft Fuel System Simulator

    NASA Technical Reports Server (NTRS)

    Vranos, A.; Marteney, P. J.

    1980-01-01

    The thermal stability of aircraft gas turbines fuels was investigated. The objectives were: (1) to design and build an aircraft fuel system simulator; (2) to establish criteria for quantitative assessment of fuel thermal degradation; and (3) to measure the thermal degradation of Jet A and an alternative fuel. Accordingly, an aircraft fuel system simulator was built and the coking tendencies of Jet A and a model alternative fuel (No. 2 heating oil) were measured over a range of temperatures, pressures, flows, and fuel inlet conditions.

  4. Nonlinear control design for slightly nonminimum phase systems - Application to V/STOL aircraft

    NASA Technical Reports Server (NTRS)

    Hauser, John; Sastry, Shankar; Meyer, George

    1992-01-01

    The paper describes the application of techniques of exact I/O linearization of nonlinear control systems to the flight control of V/STOL aircraft. It is seen that the application of the theory to this example is not straightforward; in particular, the direct application of the theory yielded an undesirable controller. The situation was remedied by neglecting the coupling between the rolling moment input to the aircraft dynamics and the dynamics along the y-axis. An approximate I/O linearization procedure developed for slightly nonminimum phase nonlinear systems is shown to be effective for V/STOL aircraft.

  5. Evaluation of laminar flow control systems concepts for subsonic commercial transport aircraft

    NASA Technical Reports Server (NTRS)

    Pearce, W. E.

    1983-01-01

    An evaluation was made of laminar flow control (LFC) system concepts for subsonic commercial transport aircraft. Configuration design studies, performance analyses, fabrication development, structural testing, wind tunnel testing, and contamination-avoidance techniques were included. As a result of trade studies, a configuration with LFC on the upper wing surface only, utilizing an electron beam-perforated suction surface, and employing a retractable high-lift shield for contamination avoidance, was selected as the most practical LFC system. The LFC aircraft was then compared with an advanced turbulent aircraft designed for the same mission. This comparison indicated significant fuel savings and reduced direct operating cost benefits would result from using LFC.

  6. Evaluation of laminar flow control systems for subsonic commercial transport aircraft: Executive summary

    NASA Technical Reports Server (NTRS)

    Pearce, W. E.

    1982-01-01

    An evaluation was made of laminar flow control (LFC) system concepts for subsonic commercial transport aircraft. Configuration design studies, performance analyses, fabrication development, structural testing, wind tunnel testing, and contamination-avoidance techniques were included. As a result of trade studies, a configuration with LFC on the upper wing surface only, utilizing an electron beam-perforated suction surface, and employing a retractable high-lift shield for contamination avoidance, was selected as the most practical LFC system. The LFC aircraft was then compared with an advanced turbulent aircraft designed for the same mission. This comparison indicated significant fuel savings.

  7. Flight research capabilities of the NASA/Army rotor systems research aircraft

    NASA Technical Reports Server (NTRS)

    White, S., Jr.; Condon, G. W.

    1978-01-01

    A description is given of the capabilities and limitations of the Rotor Systems Research Aircraft (RSRA) that was demonstrated during the development contract, and assesses the expected research capabilities of the RSRA on delivery to the government.

  8. 78 FR 7816 - NASA Advisory Council; Aeronautics Committee; Unmanned Aircraft Systems Subcommittee Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-04

    ... From the Federal Register Online via the Government Publishing Office NATIONAL AERONAUTICS AND SPACE ADMINISTRATION NASA Advisory Council; Aeronautics Committee; Unmanned Aircraft Systems Subcommittee Meeting AGENCY: National Aeronautics and Space Administration. ACTION: Notice of meeting....

  9. 76 FR 75565 - NASA Advisory Council; Aeronautics Committee; Unmanned Aircraft Systems (UAS) Subcommittee Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-02

    ... From the Federal Register Online via the Government Publishing Office NATIONAL AERONAUTICS AND SPACE ADMINISTRATION NASA Advisory Council; Aeronautics Committee; Unmanned Aircraft Systems (UAS) Subcommittee Meeting AGENCY: National Aeronautics and Space Administration. ACTION: Notice of Meeting....

  10. 78 FR 25100 - NASA Advisory Council; Aeronautics Committee; Unmanned Aircraft Systems Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-29

    ... From the Federal Register Online via the Government Publishing Office NATIONAL AERONAUTICS AND SPACE ADMINISTRATION NASA Advisory Council; Aeronautics Committee; Unmanned Aircraft Systems Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION: Notice of meeting....

  11. 78 FR 38076 - NASA Advisory Council; Aeronautics Committee; Unmanned Aircraft Systems Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-25

    ... From the Federal Register Online via the Government Publishing Office NATIONAL AERONAUTICS AND SPACE ADMINISTRATION NASA Advisory Council; Aeronautics Committee; Unmanned Aircraft Systems Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION: Notice of Meeting....

  12. 77 FR 59020 - NASA Advisory Council; Aeronautics Committee; Unmanned Aircraft Systems Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-25

    ... From the Federal Register Online via the Government Publishing Office NATIONAL AERONAUTICS AND SPACE ADMINISTRATION NASA Advisory Council; Aeronautics Committee; Unmanned Aircraft Systems Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION: Notice of meeting....

  13. Design criteria for integrated flight/propulsion control systems for STOVL fighter aircraft

    NASA Technical Reports Server (NTRS)

    Franklin, James A.

    1993-01-01

    As part of NASA's program to develop technology for short takeoff and vertical landing (STOVL) fighter aircraft, control system designs have been developed for a conceptual STOVL aircraft. This aircraft is representative of the class of mixed-flow remote-lift concepts that was identified as the preferred design approach by the US/UK STOVL Joint Assessment and Ranking Team. The control system designs have been evaluated throughout the powered-lift flight envelope on Ames Research Center's Vertical Motion Simulator. Items assessed in the control system evaluation were: maximum control power used in transition and vertical flight, control system dynamic response associated with thrust transfer for attitude control, thrust margin in the presence of ground effect and hot gas ingestion, and dynamic thrust response for the engine core. Effects of wind, turbulence, and ship airwake disturbances are incorporated in the evaluation. Results provide the basis for a reassessment of existing flying qualities design criteria applied to STOVL aircraft.

  14. Sense-and-Avoid Equivalent Level of Safety Definition for Unmanned Aircraft Systems. Revision 9

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Since unmanned aircraft do not have a pilot on-board the aircraft, they cannot literally comply with the "see and avoid" requirement beyond a short distance from the location of the unmanned pilot. No performance standards are presently defined for unmanned Sense and Avoid systems, and the FAA has no published approval criteria for a collision avoidance system. Before the FAA can develop the necessary guidance (rules / regulations / policy) regarding the see-and-avoid requirements for Unmanned Aircraft Systems (UAS), a concise understanding of the term "equivalent level of safety" must be attained. Since this term is open to interpretation, the UAS industry and FAA need to come to an agreement on how this term can be defined and applied for a safe and acceptable collision avoidance capability for unmanned aircraft. Defining an equivalent level of safety (ELOS) for sense and avoid is one of the first steps in understanding the requirement and developing a collision avoidance capability. This document provides a functional level definition of see-and-avoid as it applies to unmanned aircraft. The sense and avoid ELOS definition is intended as a bridge between the see and avoid requirement and the system level requirements for unmanned aircraft sense and avoid systems. Sense and avoid ELOS is defined in a rather abstract way, meaning that it is not technology or system specific, and the definition provides key parameters (and a context for those parameters) to focus the development of cooperative and non-cooperative sense and avoid system requirements.

  15. Auralization of Hybrid Wing Body Aircraft Flyover Noise from System Noise Predictions

    NASA Technical Reports Server (NTRS)

    Rizzi, Stephen A.; Aumann, Aric R.; Lopes, Leonvard V.; Burley, Casey L.

    2013-01-01

    System noise assessments of a state-of-the-art reference aircraft (similar to a Boeing 777-200ER with GE90-like turbofan engines) and several hybrid wing body (HWB) aircraft configurations were recently performed using NASA engine and aircraft system analysis tools. The HWB aircraft were sized to an equivalent mission as the reference aircraft and assessments were performed using measurements of airframe shielding from a series of propulsion airframe aeroacoustic experiments. The focus of this work is to auralize flyover noise from the reference aircraft and the best HWB configuration using source noise predictions and shielding data based largely on the earlier assessments. For each aircraft, three flyover conditions are auralized. These correspond to approach, sideline, and cutback operating states, but flown in straight and level flight trajectories. The auralizations are performed using synthesis and simulation tools developed at NASA. Audio and visual presentations are provided to allow the reader to experience the flyover from the perspective of a listener in the simulated environment.

  16. Registration and Marking Requirements for UAS. Unmanned Aircraft System (UAS) Registration

    NASA Technical Reports Server (NTRS)

    2005-01-01

    The registration of an aircraft is a prerequisite for issuance of a U.S. certificate of airworthiness by the FAA. The procedures and requirements for aircraft registration, and the subsequent issuance of registration numbers, are contained in FAR Part 47. However, the process/method(s) for applying the requirements of Parts 45 & 47 to Unmanned Aircraft Systems (UAS) has not been defined. This task resolved the application of 14 CFR Parts 45 and 47 to UAS. Key Findings: UAS are aircraft systems and as such the recommended approach to registration is to follow the same process for registration as manned aircraft. This will require manufacturers to comply with the requirements for 14 CFR 47, Aircraft Registration and 14 CFR 45, Identification and Registration Marking. In addition, only the UA should be identified with the N number registration markings. There should also be a documentation link showing the applicability of the control station and communication link to the UA. The documentation link can be in the form of a Type Certificate Data Sheet (TCDS) entry or a UAS logbook entry. The recommended process for the registration of UAS is similar to the manned aircraft process and is outlined in a 6-step process in the paper.

  17. Airbag system and method for facilitating emergency egress from an aircraft

    NASA Technical Reports Server (NTRS)

    Rawdon, Blaine K. (Inventor); Hawley, Arthur V. (Inventor)

    2002-01-01

    An airbag system for elevating the fuselage of an aircraft off a landing surface a sufficient degree to allow for emergency egress of passengers and crew through ventral emergency exit doors. An airbag assembly made up of a plurality of independent airbags is disposed within the aircraft. When activated, the airbag system deploys the airbags external of the aircraft that elevate the fuselage of the aircraft a sufficient degree to allow for utilizing the ventral emergency exit doors on the fuselage to enable evacuating the passengers and crew. An activation mechanism is connected to the inflation.devices associated with each of the airbags. The activation mechanism generates an electrical signal which activates the inflation devices, which in turn fill the airbags with a compressed fluid, thus expanding the airbags and lifting the fuselage. A crew member initiates the activation of the airbag system through one or more switches.

  18. Study of fuel systems for LH2-fueled subsonic transport aircraft, volume 1

    NASA Technical Reports Server (NTRS)

    Brewer, G. D.; Morris, R. E.; Davis, G. W.; Versaw, E. F.; Cunnington, G. R., Jr.; Riple, J. C.; Baerst, C. F.; Garmong, G.

    1978-01-01

    Several engine concepts examined to determine a preferred design which most effectively exploits the characteristics of hydrogen fuel in aircraft tanks received major emphasis. Many candidate designs of tank structure and cryogenic insulation systems were evaluated. Designs of all major elements of the aircraft fuel system including pumps, lines, valves, regulators, and heat exchangers received attention. Selected designs of boost pumps to be mounted in the LH2 tanks, and of a high pressure pump to be mounted on the engine were defined. A final design of LH2-fueled transport aircraft was established which incorporates a preferred design of fuel system. That aircraft was then compared with a conventionally fueled counterpart designed to equivalent technology standards.

  19. A knowledge based application of the extended aircraft interrogation and display system

    NASA Technical Reports Server (NTRS)

    Glover, Richard D.; Larson, Richard R.

    1991-01-01

    A family of multiple-processor ground support test equipment was used to test digital flight-control systems on high-performance research aircraft. A unit recently built for the F-18 high alpha research vehicle project is the latest model in a series called the extended aircraft interrogation and display system. The primary feature emphasized monitors the aircraft MIL-STD-1553B data buses and provides real-time engineering units displays of flight-control parameters. A customized software package was developed to provide real-time data interpretation based on rules embodied in a highly structured knowledge database. The configuration of this extended aircraft interrogation and display system is briefly described, and the evolution of the rule based package and its application to failure modes and effects testing on the F-18 high alpha research vehicle is discussed.

  20. Effect of broadened-specification fuels on aircraft engines and fuel systems

    NASA Technical Reports Server (NTRS)

    Rudey, R. A.

    1979-01-01

    A wide variety of studies on the potential effects of broadened-specification fuels on future aircraft engines and fuel systems are summarized. The compositions and characteristics of aircraft fuels that may be derived from current and future crude-oil sources are described, and the most critical properties that may effect aircraft engines and fuel systems are identified and discussed. The problems that are most likely to be encountered because of changes in selected fuel properties are explored; and the related effects on engine performance, component durability and maintenance, and aircraft fuel-system performance are examined. The ability of current technology to accept possible future fuel specification changes is assessed and selected technological advances that can reduce the severity of the potential problems are illustrated.

  1. 41 CFR 102-33.195 - Do we need an automated system to account for aircraft costs?

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Management Federal Property Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION PERSONAL PROPERTY 33-MANAGEMENT OF GOVERNMENT AIRCRAFT Managing Government Aircraft and Aircraft Parts Accounting... 41 Public Contracts and Property Management 3 2011-01-01 2011-01-01 false Do we need an...

  2. Design and evaluation of aircraft heat source systems for use with high-freezing point fuels

    NASA Technical Reports Server (NTRS)

    Pasion, A. J.

    1979-01-01

    The objectives were the design, performance and economic analyses of practical aircraft fuel heating systems that would permit the use of high freezing-point fuels on long-range aircraft. Two hypothetical hydrocarbon fuels with freezing points of -29 C and -18 C were used to represent the variation from current day jet fuels. A Boeing 747-200 with JT9D-7/7A engines was used as the baseline aircraft. A 9300 Km mission was used as the mission length from which the heat requirements to maintain the fuel above its freezing point was based.

  3. Study of quiet turbofan STOL aircraft for short-haul transportation. Volume 6: Systems analysis

    NASA Technical Reports Server (NTRS)

    1973-01-01

    A systems analysis of the quiet turbofan aircraft for short-haul transportation was conducted. The purpose of the study was to integrate the representative data generated by aircraft, market, and economic analyses. Activities of the study were to develop the approach and to refine the methodologies for analytic tradeoff, and sensitivity studies of propulsive lift conceptual aircraft and their performance in simulated regional airlines. The operations of appropriate airlines in each of six geographic regions of the United States were simulated. The offshore domestic regions were evaluated to provide a complete domestic evaluation of the STOL concept applicability.

  4. Future of V/STOL aircraft systems: A survey of opinions

    NASA Technical Reports Server (NTRS)

    White, K. C.; Lampkin, B. A.; Andrews, H.

    1985-01-01

    The recent success of the British Harriers in the Falkland Islands conflict vividly underscored the potential of V/STOL aircraft in military operations in a difficult environment. Despite this apparent success of the Harrier, there has been a major decline of V/STOL funding in the research and development budgets of the U.S. government and industry. The recent funding history of V/STOL systems is examined. Responses to a questionnaire which asked the question, Should there be an operational V/STOL aircraft other than the AV-8A and AV-8B in the military aircraft fleet of the U.S.A.? are presented and discussed.

  5. Systems analysis of the installation, mounting, and activation of emergency locator transmitters in general aviation aircraft

    NASA Technical Reports Server (NTRS)

    Hall, D. S.

    1980-01-01

    A development program was developed to design and improve the Emergency Locator Transmitter (ELT) transmitter and to improve the installation in the aircraft and its activation subsystem. There were 1135 general aviation fixed wing aircraft accident files reviewed. A detailed description of the damage to the aircraft was produced. The search aspects of these accidents were studied. As much information as possible about the ELT units in these cases was collected. The data should assist in establishing installation and mounting criteria, better design standards for activation subsystems, and requirements for the new ELT system design in the area of crashworthiness.

  6. Control of propulsion systems for supersonic cruise aircraft

    NASA Technical Reports Server (NTRS)

    Hiller, K. W.; Drain, D. I.

    1976-01-01

    The propulsion control requirements of supersonic aircraft are presented. Integration of inlet, engine, and airframe controls is discussed. The application of recent control theory developments to propulsion control design is described. Control component designs for achieving reliable, responsive propulsion control are also discussed.

  7. Design Methodology for Multi-Element High-Lift Systems on Subsonic Civil Transport Aircraft

    NASA Technical Reports Server (NTRS)

    Pepper, R. S.; vanDam, C. P.

    1996-01-01

    The choice of a high-lift system is crucial in the preliminary design process of a subsonic civil transport aircraft. Its purpose is to increase the allowable aircraft weight or decrease the aircraft's wing area for a given takeoff and landing performance. However, the implementation of a high-lift system into a design must be done carefully, for it can improve the aerodynamic performance of an aircraft but may also drastically increase the aircraft empty weight. If designed properly, a high-lift system can improve the cost effectiveness of an aircraft by increasing the payload weight for a given takeoff and landing performance. This is why the design methodology for a high-lift system should incorporate aerodynamic performance, weight, and cost. The airframe industry has experienced rapid technological growth in recent years which has led to significant advances in high-lift systems. For this reason many existing design methodologies have become obsolete since they are based on outdated low Reynolds number wind-tunnel data and can no longer accurately predict the aerodynamic characteristics or weight of current multi-element wings. Therefore, a new design methodology has been created that reflects current aerodynamic, weight, and cost data and provides enough flexibility to allow incorporation of new data when it becomes available.

  8. Classification of Unmanned Aircraft Systems. UAS Classification/Categorization for Certification

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Category, class, and type designations are primary means to identify appropriate aircraft certification basis, operating rules/limitations, and pilot qualifications to operate in the National Airspace System (NAS). The question is whether UAS fit into existing aircraft categories or classes, or are unique enough to justify the creation of a new category/class. In addition, the characteristics or capabilities, which define when an UAS becomes a regulated aircraft, must also be decided. This issue focuses on UAS classification for certification purposes. Several approaches have been considered for classifying UAS. They basically group into either using a weight/mass basis, or a safety risk basis, factoring in the performance of the UAS, including where the UAS would operate. Under existing standards, aircraft must have a Type Certificate and Certificate of Airworthiness, in order to be used for "compensation or hire", a major difference from model aircraft. Newer technologies may make it possible for very small UAS to conduct commercial services, but that is left for a future discussion to extend the regulated aircraft to a lower level. The Access 5 position is that UAS are aircraft and should be regulated above the weight threshold differentiating them from model airplanes. The recommended classification grouping is summarized in a chart.

  9. Optimization of the vertical flight profile on the flight management system for green aircraft

    NASA Astrophysics Data System (ADS)

    Felix Patron, Roberto Salvador

    To reduce aircraft's fuel consumption, a new method to calculate flight trajectories to be implemented in commercial Flight Management Systems has been developed. The aircraft's model was obtained from a flight performance database, which included experimental flight data. The optimized trajectories for three different commercial aircraft have been analyzed and developed in this thesis. To obtain the optimal flight trajectory that reduces the global flight cost, the vertical and the LNAV profiles have been studied and analyzed to find the aircraft's available speeds, possible flight altitudes and alternative horizontal trajectories that could reduce the global fuel consumption. A dynamic weather model has been implemented to improve the precision of the algorithm. This weather model calculates the speed and direction of wind, and the outside air temperature from a public weather database. To reduce the calculation time, different time-optimization algorithms have been implemented, such as the Golden Section search method, and different types of genetic algorithms. The optimization algorithm calculates the aircraft trajectory considering the departure and arrival airport coordinates, the aircraft parameters, the in-flight restrictions such as speeds, altitudes and WPs. The final output is given in terms of the flight time, fuel consumption and global flight cost of the complete flight. To validate the optimization algorithm results, the software FlightSIM RTM has been used. This software considers a complete aircraft aerodynamic model for its simulations, giving results that are accurate and very close to reality.

  10. Study of aircraft in intraurban transportation systems, San Francisco Bay area

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The nine-county San Francisco Bay area is examined in two time periods (1975-1980 and 1985-1990) as a scenario for analyzing the characteristics of an intraurban, commuter-oriented aircraft transportation system. Aircraft have dominated the long-haul passenger market for some time, but efforts to penetrate the very-short-haul intraurban market have met with only token success. Yet, the characteristics of an aircraft transportation system-speed and flexibility-are very much needed to solve the transportation ills of our major urban areas. This study attempts to determine if the aircraft can contribute toward solving the transportation problems of major metropolitan areas and be economically viable in such an environment.

  11. A Sliding Mode Control with Optimized Sliding Surface for Aircraft Pitch Axis Control System

    NASA Astrophysics Data System (ADS)

    Lee, Sangchul; Kim, Kwangjin; Kim, Youdan

    A sliding mode controller with an optimized sliding surface is proposed for an aircraft control system. The quadratic type of performance index for minimizing the angle of attack and the angular rate of the aircraft in the longitudinal motion is used to design the sliding surface. For optimization of the sliding surface, a Hamilton-Jacobi-Bellman (HJB) equation is formulated and it is solved through a numerical algorithm using a Generalized HJB (GHJB) equation and the Galerkin spectral method. The solution of this equation denotes a nonlinear sliding surface, on which the trajectory of the system approximately satisfies the optimality condition. Numerical simulation is performed for a nonlinear aircraft model with an optimized sliding surface and a simple linear sliding surface. The simulation result demonstrates that the proposed controller can be effectively applied to the longitudinal maneuver of an aircraft.

  12. Flight parameters monitoring system for tracking structural integrity of rotary-wing aircraft

    NASA Technical Reports Server (NTRS)

    Mohammadi, Jamshid; Olkiewicz, Craig

    1994-01-01

    Recent developments in advanced monitoring systems used in conjunction with tracking structural integrity of rotary-wing aircraft are explained. The paper describes: (1) an overview of rotary-wing aircraft flight parameters that are critical to the aircraft loading conditions and each parameter's specific requirements in terms of data collection and processing; (2) description of the monitoring system and its functions used in a survey of rotary-wing aircraft; and (3) description of the method of analysis used for the data. The paper presents a newly-developed method in compiling flight data. The method utilizes the maneuver sequence of events in several pre-identified flight conditions to describe various flight parameters at three specific weight ranges.

  13. The Small Aircraft Transportation System Higher Volume Operations (SATS HVO) Flight Experiment

    NASA Technical Reports Server (NTRS)

    Williams, Daniel M.; Murdoch, Jennifer L.; Adams, Catherine H.

    2005-01-01

    This paper provides a summary of conclusions from the Small Aircraft Transportation System (SATS) Higher Volume Operations (HVO) Flight Experiment which NASA conducted to determine pilot acceptability of the HVO concept for normal conditions. The SATS HVO concept improves efficiency at non-towered, non-radar airports in Instrument Meteorological Conditions (IMC) while achieving a level of safety equal to today s system. Reported are results from flight experiment data that indicate that the SATS HVO concept is viable. The success of the SATS HVO concept is based on acceptable pilot workload, performance, and subjective criteria when compared to the procedural control operations in use today at non-towered, non-radar controlled airfields in IMC. The HVO Flight Experiment, flown on NASA's Cirrus SR22, used a subset of the HVO Simulation Experiment scenarios and evaluation pilots in order to validate the simulation experiment results. HVO and Baseline (today s system) scenarios flown included: single aircraft arriving for a GPS non-precision approach; aircraft arriving for the approach with multiple traffic aircraft; and aircraft arriving for the approach with multiple traffic aircraft and then conducting a missed approach. Results reveal that all twelve low-time instrument-rated pilots preferred SATS HVO when compared to current procedural separation operations. These pilots also flew the HVO procedures safely and proficiently without additional workload in comparison to today s system (Baseline). Detailed results of pilot flight technical error, and their subjective assessments of workload and situation awareness are presented in this paper.

  14. ENVIRONMENTAL SYSTEMS MANAGEMENT AND SUSTAINABLE SYSTEMS THEORY

    EPA Science Inventory

    Environmental Systems Management is the management of environmental problems at the systems level fully accounting for the multi-dimensional nature of the environment. This includes socio-economic dimensions as well as the usual physical and life science aspects. This is importa...

  15. A knowledge-based system design/information tool for aircraft flight control systems

    NASA Technical Reports Server (NTRS)

    Mackall, Dale A.; Allen, James G.

    1989-01-01

    Flight test experiences of the X-29 forward-swept wing, the advanced fighter technology integration (AFTI) F-16, and the highly maneuverable aircraft technology (HiMAT) programs are reviewed. Significant operating anomalies in these programs and the design errors which caused them are examined. The functions which a system design/information tool should provide to assist designers in avoiding errors are identified.

  16. Transonic propulsion system integration analysis at McDonnell Aircraft Company

    NASA Technical Reports Server (NTRS)

    Cosner, Raymond R.

    1989-01-01

    The technology of Computational Fluid Dynamics (CFD) is becoming an important tool in the development of aircraft propulsion systems. Two of the most valuable features of CFD are: (1) quick acquisition of flow field data; and (2) complete description of flow fields, allowing detailed investigation of interactions. Current analysis methods complement wind tunnel testing in several ways. Herein, the discussion is focused on CFD methods. However, aircraft design studies need data from both CFD and wind tunnel testing. Each approach complements the other.

  17. A survey on electromagnetic interferences on aircraft avionics systems and a GSM on board system overview

    NASA Astrophysics Data System (ADS)

    Vinto, Natale; Tropea, Mauro; Fazio, Peppino; Voznak, Miroslav

    2014-05-01

    Recent years have been characterized by an increase in the air traffic. More attention over micro-economic and macroeconomic indexes would be strategic to gather and enhance the safety of a flight and customer needing, for communicating by wireless handhelds on-board aircrafts. Thus, European Telecommunications Standards Institute (ETSI) proposed a GSM On Board (GSMOBA) system as a possible solution, allowing mobile terminals to communicate through GSM system on aircraft, avoiding electromagnetic interferences with radio components aboard. The main issues are directly related with interferences that could spring-out when mobile terminals attempt to connect to ground BTS, from the airplane. This kind of system is able to resolve the problem in terms of conformance of Effective Isotropic Radiated Power (EIRP) limits, defined outside the aircraft, by using an On board BTS (OBTS) and modeling the relevant key RF parameters on the air. The main purpose of this work is to illustrate the state-of-the-art of literature and previous studies about the problem, giving also a good detail of technical and normative references.

  18. Synthesis from Design Requirements of a Hybrid System for Transport Aircraft Longitudinal Control. Volume 2

    NASA Technical Reports Server (NTRS)

    Hynes, Charles S.; Hardy, Gordon H.; Sherry, Lance

    2007-01-01

    Volume I of this report presents a new method for synthesizing hybrid systems directly from desi gn requirements, and applies the method to design of a hybrid system for longitudinal control of transport aircraft. The resulting system satisfies general requirement for safety and effectiveness specified a priori, enabling formal validation to be achieved. Volume II contains seven appendices intended to make the report accessible to readers with backgrounds in human factors, flight dynamics and control, and formal logic. Major design goals are (1) system design integrity based on proof of correctness at the design level, (2) significant simplification and cost reduction in system development and certification, and (3) improved operational efficiency, with significant alleviation of human-factors problems encountered by pilots in current transport aircraft. This report provides for the first time a firm technical basis for criteria governing design and certification of avionic systems for transport aircraft. It should be of primary interest to designers of next-generation avionic systems.

  19. Application of a cost/performance measurement system on a research aircraft project

    NASA Technical Reports Server (NTRS)

    Diehl, J. J.

    1978-01-01

    The fundamentals of the cost/performance management system used in the procurement of two tilt rotor aircraft for a joint NASA/Army research project are discussed. The contractor's reporting system and the GPO's analyses are examined. The use of this type of reporting system is assessed. Recommendations concerning the use of like systems on future projects are included.

  20. Aircraft Electric Secondary Power

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Technologies resulted to aircraft power systems and aircraft in which all secondary power is supplied electrically are discussed. A high-voltage dc power generating system for fighter aircraft, permanent magnet motors and generators for aircraft, lightweight transformers, and the installation of electric generators on turbine engines are among the topics discussed.

  1. A system safety model for developmental aircraft programs

    NASA Technical Reports Server (NTRS)

    Amberboy, E. J.; Stokeld, R. L.

    1982-01-01

    Basic tenets of safety as applied to developmental aircraft programs are presented. The integration of safety into the project management aspects of planning, organizing, directing and controlling is illustrated by examples. The basis for project management use of safety and the relationship of these management functions to 'real-world' situations is presented. The rationale which led to the safety-related project decision and the lessons learned as they may apply to future projects are presented.

  2. The Symbolics SCOPE System As A Platform For Environmental Analysis

    NASA Astrophysics Data System (ADS)

    Bauer, Brian P.; Stanzione, Thomas

    1988-01-01

    In the 1990s, significantly powerful new instruments will be available for the observation, processing and analysis of environmental and meteorological events. The Next Generation Radar (NEXRAD), Atmospheric Profiler (PROFILER), and Vertical Atmospheric Sounder (VAS) will provide timely data to the environmental observer, analyst and forecaster. This data, after processing, will provide the opportunity to: * forecast for time and place at accuracies of less than an hour and locations less than one mile * provide timely tornado warnings before as opposed to during and after an event * continuously annd thoroughly meet the needs of the aircraft meteorlogist for severe weather prediction around airports * provide reliability beyond the capabilities of today's systems.1

  3. Influence of Implementation of Composite Materials in Civil Aircraft Industry on reduction of Environmental Pollution and Greenhouse Effect

    NASA Astrophysics Data System (ADS)

    Beck, A. J.; Hodzic, A.; Soutis, C.; Wilson, C. W.

    2011-12-01

    Computer-based Life Cycle Analysis (LCA) models were carried out to compare lightweight composites with the traditional aluminium over their useful lifetime. The analysis included raw materials, production, useful life in operation and disposal at the end of the material's useful life. The carbon fibre epoxy resin composite could in some cases reduce the weight of a component by up to 40 % compared to aluminium. As the fuel consumption of an aircraft is strongly influenced by its total weight, the emissions can be significantly reduced by increasing the proportion of composites used in the aircraft structure. Higher emissions, compared to aluminium, produced during composites production meet their 'break even' point after certain number of time units when used in aircraft structures, and continue to save emissions over their long-term operation. The study highlighted the environmental benefits of using lightweight structures in aircraft design, and also showed that utilisation of composites in products without energy saving may lead to increased emissions in the environment.

  4. Aircraft Wake Vortex Spacing System (AVOSS) Performance Update and Validation Study

    NASA Technical Reports Server (NTRS)

    Rutishauser, David K.; OConnor, Cornelius J.

    2001-01-01

    An analysis has been performed on data generated from the two most recent field deployments of the Aircraft Wake VOrtex Spacing System (AVOSS). The AVOSS provides reduced aircraft spacing criteria for wake vortex avoidance as compared to the FAA spacing applied under Instrument Flight Rules (IFR). Several field deployments culminating in a system demonstration at Dallas Fort Worth (DFW) International Airport in the summer of 2000 were successful in showing a sound operational concept and the system's potential to provide a significant benefit to airport operations. For DFW, a predicted average throughput increase of 6% was observed. This increase implies 6 or 7 more aircraft on the ground in a one-hour period for DFW operations. Several studies of performance correlations to system configuration options, design options, and system inputs are also reported. The studies focus on the validation performance of the system.

  5. Nonlinear vibration phenomenon of an aircraft rub-impact rotor system due to hovering flight

    NASA Astrophysics Data System (ADS)

    Hou, Lei; Chen, Yushu; Cao, Qingjie

    2014-01-01

    This paper focuses on the nonlinear vibration phenomenon caused by aircraft hovering flight in a rub-impact rotor system supported by two general supports with cubic stiffness. The effect of aircraft hovering flight on the rotor system is considered as a maneuver load to formulate the equations of motion, which might result in periodic response instability to the rotor system even the eccentricity is small. The dynamic responses of the system under maneuver load are presented by bifurcation diagrams and the corresponding Lyapunov exponent spectrums. Numerical analyses are carried out to detect the periodic, sub-harmonic and quasi-periodic motions of the system, which are presented by orbit diagrams, phase trajectories, Poincare maps and amplitude power spectrums. The results obtained in this paper will contribute an understanding of the nonlinear dynamic behaviors of aircraft rotor systems in maneuvering flight.

  6. Rotor systems research aircraft of predesign study. Volume 1: Summary and conclusions

    NASA Technical Reports Server (NTRS)

    Linden, A. W.

    1972-01-01

    The results are summarized of a study to develop a versatile research aircraft for flight testing a wide variety of advanced helicopter and compound rotor systems. The aircraft is required to accept these rotors with minimal changes in the basic vehicle. Rotors envisioned for testing include conventional rotors plus variable geometry, variable twist, variable diameter, coaxial, jet flap, circulation control, and slowed rotors. Various disc loadings would be accommodated. The aircraft must be configured to measure performance more accurately than past test vehicles. In addition, the aircraft would have a wing to off load the rotor while measuring performance during lightly loaded conditions. It would have variable drag and propulsive force so that the rotor can be tested while producing different values of horizontal force.

  7. Conflict Prevention and Separation Assurance Method in the Small Aircraft Transportation System

    NASA Technical Reports Server (NTRS)

    Consiglio, Maria C.; Carreno, Victor A.; Williams, Daniel M.; Munoz, Cesar

    2005-01-01

    A multilayer approach to the prevention of conflicts due to the loss of aircraft-to-aircraft separation which relies on procedures and on-board automation was implemented as part of the SATS HVO Concept of Operations. The multilayer system gives pilots support and guidance during the execution of normal operations and advance warning for procedure deviations or off-nominal operations. This paper describes the major concept elements of this multilayer approach to separation assurance and conflict prevention and provides the rationale for its design. All the algorithms and functionality described in this paper have been implemented in an aircraft simulation in the NASA Langley Research Center s Air Traffic Operation Lab and on the NASA Cirrus SR22 research aircraft.

  8. Small Aircraft Transportation System, Higher Volume Operations Concept: Off-Nominal Operations

    NASA Technical Reports Server (NTRS)

    Abbott, Terence S.; Consiglio, Maria C.; Baxley, Brian T.; Williams, Daniel M.; Conway, Sheila R.

    2005-01-01

    This document expands the Small Aircraft Transportation System, (SATS) Higher Volume Operations (HVO) concept to include off-nominal conditions. The general philosophy underlying the HVO concept is the establishment of a newly defined area of flight operations called a Self-Controlled Area (SCA). During periods of poor weather, a block of airspace would be established around designated non-towered, non-radar airports. Aircraft flying enroute to a SATS airport would be on a standard instrument flight rules flight clearance with Air Traffic Control providing separation services. Within the SCA, pilots would take responsibility for separation assurance between their aircraft and other similarly equipped aircraft. Previous work developed the procedures for normal HVO operations. This document provides details for off-nominal and emergency procedures for situations that could be expected to occur in a future SCA.

  9. Assessing Regional Scale Fluxes of Mass, Momentum, and Energy with Small Environmental Research Aircraft

    NASA Astrophysics Data System (ADS)

    Zulueta, Rommel Callejo

    Natural ecosystems are rarely structurally or functionally homogeneous. This is true for the complex coastal regions of Magdalena Bay, Baja California Sur, Mexico, and the Barrow Peninsula on the Arctic Coastal Plain of Alaska. The coastal region of Magdalena Bay is comprised of the Pacific coastal ocean, eutrophic lagoon, mangroves, and desert ecosystems all adjacent and within a few kilometers, while the Barrow Peninsula is a mosaic of small ponds, thaw lakes, different aged vegetated thaw-lake basins ( VDTLBs ) and interstitial tundra which have been dynamically formed by both short- and long-term processes. We used a combination of tower- and small environmental research aircraft (SERA)-based eddy covariance measurements to characterize the spatial and temporal patterns of CO2, latent, and sensible heat fluxes along with MODIS NDVI, and land surface information, to scale the SERA-based CO2 fluxes up to the regional scale. In the first part of this research, the spatial variability in ecosystem fluxes from the Pacific coastal ocean, eutrophic lagoon, mangroves, and desert areas of northern Magdalena Bay were studied. SERA-derived average midday CO2 fluxes from the desert showed a slight uptake of -1.32 mumol CO2 m-2 s-1, the coastal ocean also showed uptake of -3.48 mumol CO2 m-2 s -1, and the lagoon mangroves showed the highest uptake of -8.11 mumol CO2 m-2 s-1. Additional simultaneous measurements of NDVI allowed simple linear modeling of CO2 flux as a function of NDVI for the mangroves of the Magdalena Bay region. In the second part of this research, the spatial variability of ecosystem fluxes across the 1802 km2 Barrow Peninsula region was studied. During typical 2006 summer conditions, the midday hourly CO2 flux over the region was -2.04 x 105 kgCO2 hr-1. The CO2 fluxes among the interstitial tundra, Ancient and Old VDTLBs, as well as between the Medium and Young VDTLBs were not significantly different. Combined, the interstitial tundra and Old and Ancient

  10. A review and update of the NASA aircraft noise prediction program propeller analysis system

    NASA Technical Reports Server (NTRS)

    Golub, Robert A.; Nguyen, L. Cathy

    1989-01-01

    The National Aeronautics and Space Administration (NASA) Aircraft Noise Prediction Program (ANOPP) Propeller Analysis System (PAS) is a set of computational modules for predicting the aerodynamics, performance, and noise of propellers. The ANOPP PAS has the capability to predict noise levels for propeller aircraft certification and produce parametric scaling laws for the adjustment of measured data to reference conditions. A technical overview of the prediction techniques incorporated into the system is presented. The prediction system has been applied to predict the noise signature of a variety of propeller configurations including the effects of propeller angle of attack. A summary of these validation studies is discussed with emphasis being placed on the wind tunnel and flight test programs sponsored by the Federal Aviation Administration (FAA) for the Piper Cherokee Lance aircraft. A number of modifications and improvements have been made to the system and both DEC VAX and IBM-PC versions of the system have been added to the original CDC NOS version.

  11. A review and update of the NASA aircraft noise prediction program propeller analysis system

    NASA Astrophysics Data System (ADS)

    Golub, Robert A.; Nguyen, L. Cathy

    1989-04-01

    The National Aeronautics and Space Administration (NASA) Aircraft Noise Prediction Program (ANOPP) Propeller Analysis System (PAS) is a set of computational modules for predicting the aerodynamics, performance, and noise of propellers. The ANOPP PAS has the capability to predict noise levels for propeller aircraft certification and produce parametric scaling laws for the adjustment of measured data to reference conditions. A technical overview of the prediction techniques incorporated into the system is presented. The prediction system has been applied to predict the noise signature of a variety of propeller configurations including the effects of propeller angle of attack. A summary of these validation studies is discussed with emphasis being placed on the wind tunnel and flight test programs sponsored by the Federal Aviation Administration (FAA) for the Piper Cherokee Lance aircraft. A number of modifications and improvements have been made to the system and both DEC VAX and IBM-PC versions of the system have been added to the original CDC NOS version.

  12. The 400-Hz aircraft power-generation systems: Advancing the baseline

    NASA Technical Reports Server (NTRS)

    Glennon, T.

    1983-01-01

    Today's benchmark system for the Boeing 757/767/A310 airplanes and future trends in hydromechanical aircraft power generating systems are discussed. The 757/767/A310 system represents the commercial state of the art and the direction in which Sundstrand Corp. is headed, particularly in regard to weight reduction. Sundstrand introduced microprocessor control in an in service system in the Boeing 767 and was the first to use databus communications between the controls. Plans to develop this technology are briefly discussed. Alternative ways to produce and use power in aircraft are discussed. The integrated starter drive is discussed.

  13. ANOPP programmer's reference manual for the executive System. [aircraft noise prediction program

    NASA Technical Reports Server (NTRS)

    Gillian, R. E.; Brown, C. G.; Bartlett, R. W.; Baucom, P. H.

    1977-01-01

    Documentation for the Aircraft Noise Prediction Program as of release level 01/00/00 is presented in a manual designed for programmers having a need for understanding the internal design and logical concepts of the executive system software. Emphasis is placed on providing sufficient information to modify the system for enhancements or error correction. The ANOPP executive system includes software related to operating system interface, executive control, and data base management for the Aircraft Noise Prediction Program. It is written in Fortran IV for use on CDC Cyber series of computers.

  14. Control-system techniques for improved departure/spin resistance for fighter aircraft

    NASA Technical Reports Server (NTRS)

    Nguyen, L. T.; Gilbert, W. P.; Ogburn, M. E.

    1980-01-01

    Some fundamental information on control system effects on controllability of highly maneuverable aircraft at high angles of attack are summarized as well as techniques for enhancing fighter aircraft departure/spin resistance using control system design. The discussion includes: (1) a brief review of pertinent high angle of attack phenomena including aerodynamics, inertia coupling, and kinematic coupling; (2) effects of conventional stability augmentation systems at high angles of attack; (3) high angle of attack control system concepts designed to enhance departure/spin resistance; and (4) the outlook for applications of these concepts to future fighters, particularly those designs which incorporate relaxed static stability.

  15. Unmanned Aircraft Systems in the National Airspace System: A Formal Methods Perspective

    NASA Technical Reports Server (NTRS)

    Munoz, Cesar A.; Dutle, Aaron; Narkawicz, Anthony; Upchurch, Jason

    2016-01-01

    As the technological and operational capabilities of unmanned aircraft systems (UAS) have grown, so too have international efforts to integrate UAS into civil airspace. However, one of the major concerns that must be addressed in realizing this integration is that of safety. For example, UAS lack an on-board pilot to comply with the legal requirement that pilots see and avoid other aircraft. This requirement has motivated the development of a detect and avoid (DAA) capability for UAS that provides situational awareness and maneuver guidance to UAS operators to aid them in avoiding and remaining well clear of other aircraft in the airspace. The NASA Langley Research Center Formal Methods group has played a fundamental role in the development of this capability. This article gives a selected survey of the formal methods work conducted in support of the development of a DAA concept for UAS. This work includes specification of low-level and high-level functional requirements, formal verification of algorithms, and rigorous validation of software implementations.

  16. Status report of a new recovery parachute system for the F111 aircraft crew escape module

    SciTech Connect

    Johnson, D.W.

    1986-01-01

    A new recovery parachute system for the F111 aircraft crew escape module has been designed. Six proof-of-design tests were conducted to determine if it is feasible to meet the requirements for a replacement recovery parachute system. The design of the proposed system is presented and the results of the tests discussed.

  17. NASA/Army Rotorcraft Technology. Volume 3: Systems Integration, Research Aircraft, and Industry

    NASA Technical Reports Server (NTRS)

    1988-01-01

    This is part 3 of the conference proceedings on rotorcraft technology. This volume is divided into areas on systems integration, research aircraft, and industry. Representative titles from each area are: system analysis in rotorcraft design, the past decade; rotorcraft flight research with emphasis on rotor systems; and an overview of key technology thrusts at Bell Helicopter Textron.

  18. Flight demonstration of a self repairing flight control system in a NASA F-15 fighter aircraft

    NASA Technical Reports Server (NTRS)

    Urnes, James M.; Stewart, James; Eslinger, Robert

    1990-01-01

    Battle damage causing loss of control capability can compromise mission objectives and even result in aircraft loss. The Self Repairing Flight Control System (SRFCS) flight development program directly addresses this issue with a flight control system design that measures the damage and immediately refines the control system commands to preserve mission potential. The system diagnostics process detects in flight the type of faults that are difficult to isolate post flight, and thus cause excessive ground maintenance time and cost. The control systems of fighter aircraft have the control power and surface displacement to maneuver the aircraft in a very large flight envelope with a wide variation in airspeed and g maneuvering conditions, with surplus force capacity available from each control surface. Digital flight control processors are designed to include built-in status of the control system components, as well as sensor information on aircraft control maneuver commands and response. In the event of failure or loss of a control surface, the SRFCS utilizes this capability to reconfigure control commands to the remaining control surfaces, thus preserving maneuvering response. Correct post-flight repair is the key to low maintainability support costs and high aircraft mission readiness. The SRFCS utilizes the large data base available with digital flight control systems to diagnose faults. Built-in-test data and sensor data are used as inputs to an Onboard Expert System process to accurately identify failed components for post-flight maintenance action. This diagnostic technique has the advantage of functioning during flight, and so is especially useful in identifying intermittent faults that are present only during maneuver g loads or high hydraulic flow requirements. A flight system was developed to test the reconfiguration and onboard maintenance diagnostics concepts on a NASA F-15 fighter aircraft.

  19. Human Systems Integration: Unmanned Aircraft Control Station Certification Plan Guidance

    NASA Technical Reports Server (NTRS)

    2005-01-01

    This document provides guidance to the FAA on important human factors considerations that can be used to support the certification of a UAS Aircraft Control Station (ACS). This document provides a synopsis of the human factors analysis, design and test activities to be performed to provide a basis for FAA certification. The data from these analyses, design activities, and tests, along with data from certification/qualification tests of other key components should be used to establish the ACS certification basis. It is expected that this information will be useful to manufacturers in developing the ACS Certification Plan,, and in supporting the design of their ACS.

  20. Predesign report for the rotor systems research aircraft

    NASA Technical Reports Server (NTRS)

    1972-01-01

    A conceptual predesign of a compound helicopter for conducting rotor research is presented. The aircraft was selected by the Government as the better of two concepts submitted. The helicopter is a three place vehicle in the 24,000 pound gross weight class. It has been determined that the helicopter satisfies the requirements for the rotor research mission. The model has been predesigned sufficiently to allow an assessment of its performance and stability and control characteristics. A brief treatment of these subjects is included.

  1. Unmanned Aircraft Systems for Studying Spatial Abundance of Ungulates: Relevance to Spatial Epidemiology

    PubMed Central

    Barasona, José A.; Mulero-Pázmány, Margarita; Acevedo, Pelayo; Negro, Juan J.; Torres, María J.; Gortázar, Christian; Vicente, Joaquín

    2014-01-01

    Complex ecological and epidemiological systems require multidisciplinary and innovative research. Low cost unmanned aircraft systems (UAS) can provide information on the spatial pattern of hosts’ distribution and abundance, which is crucial as regards modelling the determinants of disease transmission and persistence on a fine spatial scale. In this context we have studied the spatial epidemiology of tuberculosis (TB) in the ungulate community of Doñana National Park (South-western Spain) by modelling species host (red deer, fallow deer and cattle) abundance at fine spatial scale. The use of UAS high-resolution images has allowed us to collect data to model the environmental determinants of host abundance, and in a further step to evaluate their relationships with the spatial risk of TB throughout the ungulate community. We discuss the ecological, epidemiological and logistic conditions under which UAS may contribute to study the wildlife/livestock sanitary interface, where the spatial aggregation of hosts becomes crucial. These findings are relevant for planning and implementing research, fundamentally when managing disease in multi-host systems, and focusing on risky areas. Therefore, managers should prioritize the implementation of control strategies to reduce disease of conservation, economic and social relevance. PMID:25551673

  2. Calibration and demonstration of a condensation nuclei counting system for airborne measurements of aircraft exhausted particles

    NASA Astrophysics Data System (ADS)

    Cofer, Wesley R.; Anderson, Bruce E.; Winstead, Edward L.; Bagwell, Donald R.

    A system of multiple continuous-flow condensation nuclei counters (CNC) was assembled, calibrated, and demonstrated on a NASA T-39 Sabreliner jet aircraft. The mission was to penetrate the exhaust plumes and/or contrails of other subsonic jet aircraft and determine the concentrations of submicrometer diameter aerosol particles. Mission criteria required rapid response measurements ( ˜ 1 s) at aircraft cruise altitudes (9-12 km). The CNC sampling system was optimized to operate at 160 Torr. Aerosol samples were acquired through an externally mounted probe. Installed downstream of the probe was a critical flow orifice that provided sample to the CNC system. The orifice not only controlled volumetric flow rate, but also dampened probe pressure/flow oscillations encountered in the turbulent aircraft-wake vortex environment. Laboratory calibrations with NaCl particles under representative conditions are reported that indicate small amounts of particle loss and a maximum measurement efficiency of ˜ 75% for particles with diameters ranging from ⩾ 0.01- ⩽ 0.18 μm Data from exhaust/contrail samplings of a NASA B757 and DC-8 at cruise altitude are discussed. Data include exhaust/contrail measurements made during periods in which the B757 port jet engine burned low-sulfur fuel while the starboard engine simultaneously burned specially prepared high-sulfur fuel. The data discussed highlight the CNC systems performance, and introduce new observations pertinent to the behavior of sulfur in aircraft exhaust aerosol chemistry.

  3. Development of a Corrosion Sensor for AN Aircraft Vehicle Health Monitoring System

    NASA Astrophysics Data System (ADS)

    Scott, D. A.; Price, D. C.; Edwards, G. C.; Batten, A. B.; Kolmeder, J.; Muster, T. H.; Corrigan, P.; Cole, I. S.

    2010-02-01

    A Rayleigh-wave-based sensor has been developed to measure corrosion damage in aircraft. This sensor forms an important part of a corrosion monitoring system being developed for a major aircraft manufacturer. This system measures the corrosion rate at the location of its sensors, and through a model predicts the corrosion rates in nearby places on an aircraft into which no sensors can be placed. In order to calibrate this model, which yields corrosion rates rather than the accumulated effect, an absolute measure of the damage is required. In this paper the development of a surface wave sensor capable of measuring accumulated damage will be described in detail. This sensor allows the system to measure material loss due to corrosion regardless of the possible loss of historical corrosion rate data, and can provide, at any stage, a benchmark for the predictive model that would allow a good estimate of the accumulated corrosion damage in similar locations on an aircraft. This system may obviate the need for costly inspection of difficult-to-access places in aircraft, where presently the only way to check for corrosion is by periodic dismantling and reassembly.

  4. Systems Approach to Environmental Pollution.

    ERIC Educational Resources Information Center

    Chacko, George K., Ed.

    The objective of a two-day Symposium on Systems Approach to Environmental Pollution of the Operations Research Society of America at the 137th Annual Meeting of the American Association for the Advancement of Science, December 27-28, 1970 in Chicago, Illinois, was not to raise the litany of a systems approach as the answer to all environmental…

  5. Crash response data system for the controlled impact demonstration (CID) of a full scale transport aircraft

    NASA Technical Reports Server (NTRS)

    Calloway, Raymond S.; Knight, Vernie H., Jr.

    1986-01-01

    NASA Langley's Crash Response Data System (CRDS) which is designed to acquire aircraft structural and anthropomorphic dummy responses during the full-scale transport CID test is described. Included in the discussion are the system design approach, details on key instrumentation subsystems and operations, overall instrumentation crash performance, and data recovery results. Two autonomous high-environment digital flight instrumentation systems, DAS 1 and DAS 2, were employed to obtain research data from various strain gage, accelerometer, and tensiometric sensors installed in the B-720 test aircraft. The CRDS successfully acquired 343 out of 352 measurements of dynamic crash data.

  6. The NASA Langley Research Center's Unmanned Aerial System Surrogate Research Aircraft

    NASA Technical Reports Server (NTRS)

    Howell, Charles T., III; Jessup, Artie; Jones, Frank; Joyce, Claude; Sugden, Paul; Verstynen, Harry; Mielnik, John

    2010-01-01

    Research is needed to determine what procedures, aircraft sensors and other systems will be required to allow Unmanned Aerial Systems (UAS) to safely operate with manned aircraft in the National Airspace System (NAS). The NASA Langley Research Center has transformed a Cirrus Design SR22 general aviation (GA) aircraft into a UAS Surrogate research aircraft to serve as a platform for UAS systems research, development, flight testing and evaluation. The aircraft is manned with a Safety Pilot and systems operator that allows for flight operations almost anywhere in the NAS without the need for a Federal Aviation Administration (FAA) Certificate of Authorization (COA). The UAS Surrogate can be controlled from a modular, transportable ground station like a true UAS. The UAS Surrogate is able to file and fly in the NAS with normal traffic and is a better platform for real world UAS research and development than existing vehicles flying in restricted ranges or other sterilized airspace. The Cirrus Design SR22 aircraft is a small, singleengine, four-place, composite-construction aircraft that NASA Langley acquired to support NASA flight-research programs like the Small Aircraft Transportation System (SATS) Project. Systems were installed to support flight test research and data gathering. These systems include: separate research power; multi-function flat-panel displays; research computers; research air data and inertial state sensors; video recording; data acquisition; data-link; S-band video and data telemetry; Common Airborne Instrumentation System (CAIS); Automatic Dependent Surveillance-Broadcast (ADS-B); instrumented surfaces and controls; and a systems operator work station. The transformation of the SR22 to a UAS Surrogate was accomplished in phases. The first phase was to modify the existing autopilot to accept external commands from a research computer that was connected by redundant data-link radios to a ground control station. An electro-mechanical auto

  7. Onboard Inert Gas Generation System/Onboard Oxygen Gas Generation System (OBIGGS/OBOGS) Study. Part 1; Aircraft System Requirements

    NASA Technical Reports Server (NTRS)

    Reynolds, Thomas L.; Bailey, Delbert B.; Lewinski, Daniel F.; Roseburg, Conrad M.; Palaszewski, Bryan (Technical Monitor)

    2001-01-01

    The purpose of this technology assessment is to define a multiphase research study program investigating Onboard Inert Gas Generation Systems (OBIGGS) and Onboard Oxygen Generation Systems (OBOGS) that would identify current airplane systems design and certification requirements (Subtask 1); explore state-of-the-art technology (Subtask 2); develop systems specifications (Subtask 3); and develop an initial system design (Subtask 4). If feasible, consideration may be given to the development of a prototype laboratory test system that could potentially be used in commercial transport aircraft (Subtask 5). These systems should be capable of providing inert nitrogen gas for improved fire cargo compartment fire suppression and fuel tank inerting and emergency oxygen for crew and passenger use. Subtask I of this research study, presented herein, defines current production aircraft certification requirements and design objectives necessary to meet mandatory FAA certification requirements and Boeing design and performance specifications. These requirements will be utilized for baseline comparisons for subsequent OBIGGS/OBOGS application evaluations and assessments.

  8. Insect vision based collision avoidance system for Remotely Piloted Aircraft

    NASA Astrophysics Data System (ADS)

    Jaenisch, Holger; Handley, James; Bevilacqua, Andrew

    2012-06-01

    Remotely Piloted Aircraft (RPA) are designed to operate in many of the same areas as manned aircraft; however, the limited instantaneous field of regard (FOR) that RPA pilots have limits their ability to react quickly to nearby objects. This increases the danger of mid-air collisions and limits the ability of RPA's to operate in environments such as terminals or other high-traffic environments. We present an approach based on insect vision that increases awareness while keeping size, weight, and power consumption at a minimum. Insect eyes are not designed to gather the same level of information that human eyes do. We present a novel Data Model and dynamically updated look-up-table approach to interpret non-imaging direction sensing only detectors observing a higher resolution video image of the aerial field of regard. Our technique is a composite hybrid method combining a small cluster of low resolution cameras multiplexed into a single composite air picture which is re-imaged by an insect eye to provide real-time scene understanding and collision avoidance cues. We provide smart camera application examples from parachute deployment testing and micro unmanned aerial vehicle (UAV) full motion video (FMV).

  9. Overview of the Small Aircraft Transportation System Project Four Enabling Operating Capabilities

    NASA Technical Reports Server (NTRS)

    Viken, Sally A.; Brooks, Frederick M.; Johnson, Sally C.

    2005-01-01

    It has become evident that our commercial air transportation system is reaching its peak in terms of capacity, with numerous delays in the system and the demand still steadily increasing. NASA, FAA, and the National Consortium for Aviation Mobility (NCAM) have partnered to aid in increasing the mobility throughout the United States through the Small Aircraft Transportation System (SATS) project. The SATS project has been a five-year effort to provide the technical and economic basis for further national investment and policy decisions to support a small aircraft transportation system. The SATS vision is to enable people and goods to have the convenience of on-demand point-to-point travel, anywhere, anytime for both personal and business travel. This vision can be obtained by expanding near all-weather access to more than 3,400 small community airports that are currently under-utilized throughout the United States. SATS has focused its efforts on four key operating capabilities that have addressed new emerging technologies, procedures, and concepts to pave the way for small aircraft to operate in nearly all weather conditions at virtually any runway in the United States. These four key operating capabilities are: Higher Volume Operations at Non-Towered/Non-Radar Airports, En Route Procedures and Systems for Integrated Fleet Operations, Lower Landing Minimums at Minimally Equipped Landing Facilities, and Increased Single Pilot Performance. The SATS project culminated with the 2005 SATS Public Demonstration in Danville, Virginia on June 5th-7th, by showcasing the accomplishments achieved throughout the project and demonstrating that a small aircraft transportation system could be viable. The technologies, procedures, and concepts were successfully demonstrated to show that they were safe, effective, and affordable for small aircraft in near all weather conditions. The focus of this paper is to provide an overview of the technical and operational feasibility of the

  10. Power management and distribution system for a More-Electric Aircraft (MADMEL) -- Program status

    SciTech Connect

    Maldonado, M.A.; Shah, N.M.; Cleek, K.J.; Walia, P.S.

    1995-12-31

    A number of technology breakthroughs in recent years have rekindled the concept of a more-electric aircraft. High-power solid-state switching devices, electrohydrostatic actuators (EHAs), electromechanical actuators (EMAs), and high-power generators are just a few examples of component developments that have made dramatic improvements in properties such as weight, size, power, and cost. However, these components cannot be applied piecemeal. A complete, and somewhat revolutionary, system design approach is needed to exploit the benefits that a more-electric aircraft can provide. A five-phase Power Management and Distribution System for a More-Electric Aircraft (MADMEL) program was awarded by the Air Force to the Northrop/Grumman, Military Aircraft Division team in September 1991. The objective of the program is to design, develop, and demonstrate an advanced electrical power generation and distribution system for a more-electric aircraft (MEA). The MEA emphasizes the use of electrical power in place of hydraulics, pneumatic, and mechanical power to optimize the performance and life cycle cost of the aircraft. This paper presents an overview of the MADMEL program and a top-level summary of the program results, development and testing of major components to date. In Phase 1 and Phase 2 studies, the electrical load requirements were established and the electrical power system architecture was defined for both near-term (NT-year 1996) and far-term (FT-year 2003) MEA application. The detailed design and specification for the electrical power system (EPS), its interface with the Vehicle Management System, and the test set-up were developed under the recently completed Phase 3. The subsystem level hardware fabrication and testing will be performed under the on-going Phase 4 activities. The overall system level integration and testing will be performed in Phase 5.

  11. A comparison of low-pressure and supercharged operation of polymer electrolyte membrane fuel cell systems for aircraft applications

    NASA Astrophysics Data System (ADS)

    Werner, C.; Preiß, G.; Gores, F.; Griebenow, M.; Heitmann, S.

    2016-08-01

    Multifunctional fuel cell systems are competitive solutions aboard future generations of civil aircraft concerning energy consumption, environmental issues, and safety reasons. The present study compares low-pressure and supercharged operation of polymer electrolyte membrane fuel cells with respect to performance and efficiency criteria. This is motivated by the challenge of pressure-dependent fuel cell operation aboard aircraft with cabin pressure varying with operating altitude. Experimental investigations of low-pressure fuel cell operation use model-based design of experiments and are complemented by numerical investigations concerning supercharged fuel cell operation. It is demonstrated that a low-pressure operation is feasible with the fuel cell device under test, but that its range of stable operation changes between both operating modes. Including an external compressor, it can be shown that the power demand for supercharging the fuel cell is about the same as the loss in power output of the fuel cell due to low-pressure operation. Furthermore, the supercharged fuel cell operation appears to be more sensitive with respect to variations in the considered independent operating parameters load requirement, cathode stoichiometric ratio, and cooling temperature. The results indicate that a pressure-dependent self-humidification control might be able to exploit the potential of low-pressure fuel cell operation for aircraft applications to the best advantage.

  12. In-flight Fault Detection and Isolation in Aircraft Flight Control Systems

    NASA Technical Reports Server (NTRS)

    Azam, Mohammad; Pattipati, Krishna; Allanach, Jeffrey; Poll, Scott; Patterson-Hine, Ann

    2005-01-01

    In this paper we consider the problem of test design for real-time fault detection and isolation (FDI) in the flight control system of fixed-wing aircraft. We focus on the faults that are manifested in the control surface elements (e.g., aileron, elevator, rudder and stabilizer) of an aircraft. For demonstration purposes, we restrict our focus on the faults belonging to nine basic fault classes. The diagnostic tests are performed on the features extracted from fifty monitored system parameters. The proposed tests are able to uniquely isolate each of the faults at almost all severity levels. A neural network-based flight control simulator, FLTZ(Registered TradeMark), is used for the simulation of various faults in fixed-wing aircraft flight control systems for the purpose of FDI.

  13. Evaluation of Laminar Flow Control System Concepts for Subsonic Commercial Transport Aircraft

    NASA Technical Reports Server (NTRS)

    Sturgeon, R. F.

    1980-01-01

    Alternatives in the design of laminar flow control (LFC) subsonic commerical transport aircraft for opeation in the 1980's period were studied. Analyses were conducted to select mission parameters and define optimum aircraft configurational parameters for the selected mission, defined by a passenger payload of 400 and a design range of 12, 038 km (6500 n mi). The baseline aircraft developed for this mission was used as a vehicle for the evaluation and development of alternative LFC system concepts. Alternatices in the areas of aerodynamics, structures and materials, LFC systems, leading-edge region cleaning, and integration of auxiliary systems were studied. Relative to a similarly-optimized advanced technology turbulent transport, the final LFC configuration is approximately equal in DOC but provides descreases of 8.2% in gross weight and 21.7% in fuel consumption.

  14. A Radio System for Avoiding Illuminating Aircraft with a Laser Beam

    NASA Astrophysics Data System (ADS)

    Coles, W. A.; Murphy, T. W.; Melser, J. F.; Tu, J. K.; White, G. A.; Kassabian, K. H.; Bales, K.; Baumgartner, B. B.

    2012-01-01

    When scientific experiments require transmission of powerful laser or radio beams through the atmosphere, the Federal Aviation Administration (FAA) requires that precautions be taken to avoid inadvertent illumination of aircraft. At present, the FAA requires that laser operators use human spotters to protect against accidental illumination. Here, we describe a simple, inexpensive, and highly reliable electronic system for detecting aircraft entering the vicinity of a laser beam that makes use of the air traffic control (ATC) radio transponders required on most aircraft. The radio system uses two antennas, both aligned with the laser beam. One antenna has a broad beam and the other has a narrow beam. The ratio of the transponder power received in the narrow beam to that received in the broad beam gives a measure of the angular distance of the aircraft from the axis that is independent of the range or the transmitter power. This ratio is easily measured and can be used to shutter the laser when the aircraft is too close to the beam. Comparisons of prototype systems operating at both the Apache Point and W. M. Keck Observatory with an FAA database indicate successful identification of commercial airplanes passing near the telescope boresight.

  15. Electrically driven environmental control system

    SciTech Connect

    Mcnamara, J.E.

    1984-05-01

    An environmental control system (ECS) being developed under the title of energy efficient environmental control system is described. The ECS is a closed-loop, electrically driven, vapor cycle system. The vapor cycle will have a compressor driven by a variable speed, high-voltage dc motor. The reasons for selecting this type of system are discussed here. Breadboard testing of a variable speed compressor to demonstrate the feasibility of such an approach has been completed. The testing results were used to develop a preliminary design of a prototype compressor. In future phases of the program, the prototype compressor will be developed a prototype system will be constructed and laboratory tested and finally the prototype system will be flight demonstrated.

  16. Analysis of Complexity Evolution Management and Human Performance Issues in Commercial Aircraft Automation Systems

    NASA Technical Reports Server (NTRS)

    Vakil, Sanjay S.; Hansman, R. John

    2000-01-01

    Autoflight systems in the current generation of aircraft have been implicated in several recent incidents and accidents. A contributory aspect to these incidents may be the manner in which aircraft transition between differing behaviours or 'modes.' The current state of aircraft automation was investigated and the incremental development of the autoflight system was tracked through a set of aircraft to gain insight into how these systems developed. This process appears to have resulted in a system without a consistent global representation. In order to evaluate and examine autoflight systems, a 'Hybrid Automation Representation' (HAR) was developed. This representation was used to examine several specific problems known to exist in aircraft systems. Cyclomatic complexity is an analysis tool from computer science which counts the number of linearly independent paths through a program graph. This approach was extended to examine autoflight mode transitions modelled with the HAR. A survey was conducted of pilots to identify those autoflight mode transitions which airline pilots find difficult. The transitions identified in this survey were analyzed using cyclomatic complexity to gain insight into the apparent complexity of the autoflight system from the perspective of the pilot. Mode transitions which had been identified as complex by pilots were found to have a high cyclomatic complexity. Further examination was made into a set of specific problems identified in aircraft: the lack of a consistent representation of automation, concern regarding appropriate feedback from the automation, and the implications of physical limitations on the autoflight systems. Mode transitions involved in changing to and leveling at a new altitude were identified across multiple aircraft by numerous pilots. Where possible, evaluation and verification of the behaviour of these autoflight mode transitions was investigated via aircraft-specific high fidelity simulators. Three solution

  17. U.S. Geological Survey Emerging Applications of Unmanned Aircraft Systems

    NASA Astrophysics Data System (ADS)

    Hutt, M. E.

    2012-12-01

    In anticipation of transforming the research methods and resource management techniques employed across the Department of the Interior, the U.S. Geological Survey (USGS) Unmanned Aircraft Systems (UAS) Project Office is conducting missions using small UAS- sUAS platforms (<20 lbs.). The USGS is dedicated to expanding the use of sUAS technology in support of scientific, resource and land management missions. UAS technology is currently being used by USGS and our partners to monitor environmental conditions, analyze the impacts of climate change, respond to natural hazards, understand landscape change rates and consequences, conduct wildlife inventories and support related land management and law enforcement missions. Our ultimate goal is to support informed decision making by creating the opportunity, via UAS technology, to gain access to an increased level of persistent monitoring of earth surface processes (forest health conditions, wildfires, earthquake zones, invasive species, etc.) in areas that have been logistically difficult, cost prohibitive or technically impossible to obtain consistent, reliable, timely information. USGS is teaming with the Department of the Interior Aviation Management Directorate to ensure the safe and cost effective adoption of UAS technology. While the USGS is concentrating on operating sUAS, the immense value of increased flight time and more robust sensor capabilities available on larger platforms cannot be ignored. We are partnering with several groups including the Department of Homeland Security, National Aeronautics and Space Administration, Department of Defense, and National Oceanic and Atmospheric Administration for access to data collected from their fleet of high altitude, long endurance (HALE) UAS. The HALE systems include state of the art sensors including Electro-Optical, Thermal Infrared and Synthetic Aperture Radar (SAR). The data being collected by High Altitude, Long Endurance (HALE) systems is can be routinely

  18. Survey of piloting factors in V/STOL aircraft with implications for flight control system design

    NASA Technical Reports Server (NTRS)

    Ringland, R. F.; Craig, S. J.

    1977-01-01

    Flight control system design factors involved for pilot workload relief are identified. Major contributors to pilot workload include configuration management and control and aircraft stability and response qualities. A digital fly by wire stability augmentation, configuration management, and configuration control system is suggested for reduction of pilot workload during takeoff, hovering, and approach.

  19. Advanced Fiber Optic-Based Sensing Technology for Unmanned Aircraft Systems

    NASA Technical Reports Server (NTRS)

    Richards, Lance; Parker, Allen R.; Piazza, Anthony; Ko, William L.; Chan, Patrick; Bakalyar, John

    2011-01-01

    This presentation provides an overview of fiber optic sensing technology development activities performed at NASA Dryden in support of Unmanned Aircraft Systems. Examples of current and previous work are presented in the following categories: algorithm development, system development, instrumentation installation, ground R&D, and flight testing. Examples of current research and development activities are provided.

  20. Models and techniques for evaluating the effectiveness of aircraft computing systems

    NASA Technical Reports Server (NTRS)

    Meyer, J. F.

    1978-01-01

    Progress in the development of system models and techniques for the formulation and evaluation of aircraft computer system effectiveness is reported. Topics covered include: analysis of functional dependence: a prototype software package, METAPHOR, developed to aid the evaluation of performability; and a comprehensive performability modeling and evaluation exercise involving the SIFT computer.

  1. Generation of a multi-component aircraft grid system using NGP and Begger

    SciTech Connect

    Lijewski, L.E.; Belk, D.M.

    1996-12-31

    Generation of a multiple component aircraft grid system is presented. A hybrid system of blocked and overset grids axe generated using NGP and overlap communications established with the Beggar code. Techniques for gridding wing-flap and fuselage-flap gap regions axe discussed. Steady-state subsonic flow solutions are presented.

  2. Study of fail-safe abort system for an actively cooled hypersonic aircraft, volume 2

    NASA Technical Reports Server (NTRS)

    Peeples, M. E.; Herring, R. L.

    1976-01-01

    Conceptual designs of a fail-safe abort system for hydrogen fueled actively cooled high speed aircraft are examined. The fail-safe concept depends on basically three factors: (1) a reliable method of detecting a failure or malfunction in the active cooling system, (2) the optimization of abort trajectories which minimize the descent heat load to the aircraft, and (3) fail-safe thermostructural concepts to minimize both the weight and the maximum temperature the structure will reach during descent. These factors are examined and promising approaches are evaluated based on weight, reliability, ease of manufacture and cost.

  3. Flight evaluation of advanced flight control systems and cockpit displays for powered-lift STOL Aircraft

    NASA Technical Reports Server (NTRS)

    Franklin, J. A.; Smith, D. W.; Watson, D. M.; Warner, D. N., Jr.; Innis, R. C.; Hardy, G. H.

    1976-01-01

    A flight research program was conducted to assess the improvements, in longitudinal path control during a STOL approach and landing, that can be achieved with manual and automatic control system concepts and cockpit displays with various degrees of complexity. NASA-Ames powered-lift Augmentor Wing Research Aircraft was used in the research program. Satisfactory flying qualities were demonstrated for selected stabilization and command augmentation systems and flight director combinations. The ability of the pilot to perform precise landings at low touchdown sink rates with a gentle flare maneuver was also achieved. The path-control improvement is considered to be applicable to other powered-lift aircraft configurations.

  4. An artificial intelligence-based structural health monitoring system for aging aircraft

    NASA Technical Reports Server (NTRS)

    Grady, Joseph E.; Tang, Stanley S.; Chen, K. L.

    1993-01-01

    To reduce operating expenses, airlines are now using the existing fleets of commercial aircraft well beyond their originally anticipated service lives. The repair and maintenance of these 'aging aircraft' has therefore become a critical safety issue, both to the airlines and the Federal Aviation Administration. This paper presents the results of an innovative research program to develop a structural monitoring system that will be used to evaluate the integrity of in-service aerospace structural components. Currently in the final phase of its development, this monitoring system will indicate when repair or maintenance of a damaged structural component is necessary.

  5. The all-electric aircraft - A systems view and proposed NASA research Programs

    NASA Technical Reports Server (NTRS)

    Spitzer, C. R.

    1984-01-01

    It is expected that all-electric aircraft, whether military or commercial, will exhibit reduced weight, acquisition cost and fuel consumption, an expanded flight envelope and improved survivability and reliability, simpler maintenance, and reduced support equipment. Also noteworthy are dramatic improvements in mission adaptability, based on the degree to which control system performance relies on easily exchanged software. Flight-critical secondary power and control systems whose malfunction would mean loss of an aircraft pose failure detection and design methodology problems, however, that have only begun to be addressed. NASA-sponsored research activities concerned with these problems and prospective benefits are presently discussed.

  6. Aircraft noise prediction program theoretical manual: Rotorcraft System Noise Prediction System (ROTONET), part 4

    NASA Technical Reports Server (NTRS)

    Weir, Donald S.; Jumper, Stephen J.; Burley, Casey L.; Golub, Robert A.

    1995-01-01

    This document describes the theoretical methods used in the rotorcraft noise prediction system (ROTONET), which is a part of the NASA Aircraft Noise Prediction Program (ANOPP). The ANOPP code consists of an executive, database manager, and prediction modules for jet engine, propeller, and rotor noise. The ROTONET subsystem contains modules for the prediction of rotor airloads and performance with momentum theory and prescribed wake aerodynamics, rotor tone noise with compact chordwise and full-surface solutions to the Ffowcs-Williams-Hawkings equations, semiempirical airfoil broadband noise, and turbulence ingestion broadband noise. Flight dynamics, atmosphere propagation, and noise metric calculations are covered in NASA TM-83199, Parts 1, 2, and 3.

  7. A composite system approach to aircraft cabin fire safety

    NASA Technical Reports Server (NTRS)

    Kourtides, D. A.; Parker, J. A.; Gilwee, W. J., Jr.; Lerner, N. R.; Hilado, C. J.; Labossiere, L. A.; Hsu, M. T. S.

    1976-01-01

    The thermochemical and flammability characteristics of two polymeric composites currently in use and seven others being considered for use as aircraft interior panels are described. The properties studied included: (1) limiting oxygen index of the composite constituents; (2) fire containment capability of the composite; (3) smoke evolution from the composite; (4) thermogravimetric analysis; (5) composition of the volatile products of thermal degradation; and (6) relative toxicity of the volatile products of pyrolysis. The performance of high temperature laminating resins such as bismaleimides is compared with the performance of phenolics and epoxies. The relationship of increased fire safety with the use of polymers with high anaerobic char yield is shown. Processing parameters of one of the baremaleimide composites are detailed.

  8. A methodology for the probabilistic assessment of system effectiveness as applied to aircraft survivability and susceptibility

    NASA Astrophysics Data System (ADS)

    Soban, Danielle Suzanne

    2001-07-01

    Significant advances have been made recently in applying probabilistic methods to aerospace vehicle concepts. Given the explosive changes in today's political, social, and technological climate, it makes practical sense to try and extrapolate these methods to the campaign analysis level. This would allow the assessment of rapidly changing threat environments as well as technological advancements, aiding today's decision makers. These decision makers use this information in three primary ways: resource allocation, requirements definition, and trade studies between system components. In effect, these decision makers are looking for a way to quantify system effectiveness. Using traditional definitions, one can categorize an aerospace concept, such as an aircraft, as the system. Design and analysis conducted on the aircraft will result in system level Measures of Effectiveness. System effectiveness, therefore, becomes a function of only that aircraft's design variables and parameters. While this method of analysis can result in the design of a vehicle that is optimized to its own mission and performance requirements, the vehicle remains independent of its role for which it was created: the warfighting environment. It is therefore proposed that the system be redefined as the warfighting environment (campaign analysis) and the problem be considered to have a system of systems formulation. A methodology for the assessment of military system effectiveness is proposed. Called POSSEM (PrObabilisitic System of System Effectiveness Methodology), the methodology describes the creation of an analysis pathway that links engineering level changes to campaign level measures of effectiveness. The methodology includes probabilistic analysis techniques in order to manage the inherent uncertainties in the problem, which are functions of human decision making, rapidly changing threats, and the incorporation of new technologies. An example problem is presented, in which aircraft

  9. Meteorological and Environmental Inputs to Aviation Systems

    NASA Technical Reports Server (NTRS)

    Camp, Dennis W. (Editor); Frost, Walter (Editor)

    1988-01-01

    Reports on aviation meteorology, most of them informal, are presented by representatives of the National Weather Service, the Bracknell (England) Meteorological Office, the NOAA Wave Propagation Lab., the Fleet Numerical Oceanography Center, and the Aircraft Owners and Pilots Association. Additional presentations are included on aircraft/lidar turbulence comparison, lightning detection and locating systems, objective detection and forecasting of clear air turbulence, comparative verification between the Generalized Exponential Markov (GEM) Model and official aviation terminal forecasts, the evaluation of the Prototype Regional Observation and Forecast System (PROFS) mesoscale weather products, and the FAA/MIT Lincoln Lab. Doppler Weather Radar Program.

  10. Maintenance-free lead acid battery for inertial navigation systems aircraft

    NASA Astrophysics Data System (ADS)

    Johnson, William R.; Vutetakis, David G.

    1995-05-01

    Historically, Aircraft Inertial Navigation System (INS) Batteries have utilized vented nickel-cadmium batteries for emergency DC power. The United States Navy and Air Force developed separate systems during their respective INS developments. The Navy contracted with Litton Industries to produce the LTN-72 and Air Force contracted with Delco to produce the Carousel IV INS for the large cargo and specialty aircraft applications. Over the years, a total of eight different battery national stock numbers (NSNs) have entered the stock system along with 75 battery spare part NSNs. The Standard Hardware Acquisition and Reliability Program is working with the Aircraft Battery Group at Naval Surface Warfare Center Crane Division, Naval Air Systems Command (AIR 536), Wright Laboratory, Battelle Memorial Institute, and Concorde Battery Corporation to produce a standard INS battery. This paper discusses the approach taken to determine whether the battery should be replaced and to select the replacement chemistry. The paper also discusses the battery requirements, aircraft that the battery is compatible with, and status of Navy flight evaluation. Projected savings in avoided maintenance in Navy and Air Force INS Systems is projected to be $14.7 million per year with a manpower reduction of 153 maintenance personnel. The new INS battery is compatible with commercially sold INS systems which represents 66 percent of the systems sold.

  11. Verification of the CFD simulation system SAUNA for complex aircraft configurations

    NASA Astrophysics Data System (ADS)

    Shaw, Jonathon A.; Peace, Andrew J.; May, Nicholas E.; Pocock, Mark F.

    1994-04-01

    This paper is concerned with the verification for complex aircraft configurations of an advanced CFD simulation system known by the acronym SAUNA. A brief description of the complete system is given, including its unique use of differing grid generation strategies (structured, unstructured or both) depending on the geometric complexity of the addressed configuration. The majority of the paper focuses on the application of SAUNA to a variety of configurations from the military aircraft, civil aircraft and missile areas. Mesh generation issues are discussed for each geometry and experimental data are used to assess the accuracy of the inviscid (Euler) model used. It is shown that flexibility and accuracy are combined in an efficient manner, thus demonstrating the value of SAUNA in aerodynamic design.

  12. Analysis of technology requirements and potential demand for general aviation avionics systems in the 1980's. [technology assessment and technological forecasting of the aircraft industry

    NASA Technical Reports Server (NTRS)

    Cohn, D. M.; Kayser, J. H.; Senko, G. M.; Glenn, D. R.

    1974-01-01

    The trend for the increasing need for aircraft-in-general as a major source of transportation in the United States is presented (military and commercial aircraft are excluded). Social, political, and economic factors that affect the aircraft industry are considered, and cost estimates are given. Aircraft equipment and navigation systems are discussed.

  13. Fiber Grating Environmental Sensing System

    DOEpatents

    Schulz, Whitten L.; Udd, Eric

    2003-07-29

    Fiber grating environmental measurement systems are comprised of sensors that are configured to respond to changes in moisture or chemical content of the surrounding medium through the action of coatings and plates inducing strain that is measured. These sensors can also be used to monitor the interior of bonds for degradation due to aging, cracking, or chemical attack. Means to multiplex these sensors at high speed and with high sensitivity can be accomplished by using spectral filters placed to correspond to each fiber grating environmental sensor. By forming networks of spectral elements and using wavelength division multiplexing arrays of fiber grating sensors may be processed in a single fiber line allowing distributed high sensitivity, high bandwidth fiber optic grating environmental sensor systems to be realized.

  14. WIND TUNNEL EVALUATION OF AN AIRCRAFT-BORNE SAMPLING SYSTEM

    EPA Science Inventory

    The US Environmental Protection Agency (EPA), the Florida Department of Environmental Protection (FLDEP), and Texas A&M University collaborated in the design, construction, and testing of a unique highly cross-linked Teflon coated inlet and manifold gas and aerosol sampling syste...

  15. Video-based cargo fire verification system with fuzzy inference engine for commercial aircraft

    NASA Astrophysics Data System (ADS)

    Sadok, Mokhtar; Zakrzewski, Radek; Zeliff, Bob

    2005-02-01

    Conventional smoke detection systems currently installed onboard aircraft are often subject to high rates of false alarms. Under current procedures, whenever an alarm is issued the pilot is obliged to release fire extinguishers and to divert to the nearest airport. Aircraft diversions are costly and dangerous in some situations. A reliable detection system that minimizes false-alarm rate and allows continuous monitoring of cargo compartments is highly desirable. A video-based system has been recently developed by Goodrich Corporation to address this problem. The Cargo Fire Verification System (CFVS) is a multi camera system designed to provide live stream video to the cockpit crew and to perform hotspot, fire, and smoke detection in aircraft cargo bays. In addition to video frames, the CFVS uses other sensor readings to discriminate between genuine events such as fire or smoke and nuisance alarms such as fog or dust. A Mamdani-type fuzzy inference engine is developed to provide approximate reasoning for decision making. In one implementation, Gaussian membership functions for frame intensity-based features, relative humidity, and temperature are constructed using experimental data to form the system inference engine. The CFVS performed better than conventional aircraft smoke detectors in all standardized tests.

  16. Development of an adaptive failure detection and identification system for detecting aircraft control element failures

    NASA Technical Reports Server (NTRS)

    Bundick, W. Thomas

    1990-01-01

    A methodology for designing a failure detection and identification (FDI) system to detect and isolate control element failures in aircraft control systems is reviewed. An FDI system design for a modified B-737 aircraft resulting from this methodology is also reviewed, and the results of evaluating this system via simulation are presented. The FDI system performed well in a no-turbulence environment, but it experienced an unacceptable number of false alarms in atmospheric turbulence. An adaptive FDI system, which adjusts thresholds and other system parameters based on the estimated turbulence level, was developed and evaluated. The adaptive system performed well over all turbulence levels simulated, reliably detecting all but the smallest magnitude partially-missing-surface failures.

  17. Description and flight performance of two systems for two-segment approach. [for aircraft noise abatement

    NASA Technical Reports Server (NTRS)

    Wehrend, W. R.; Shigemoto, F. H.; Bourquin, K. R.

    1974-01-01

    This paper describes two different avionic systems which were designed and developed to provide guidance and control for two-segment noise abatement approaches. The concept of a low-cost retrofit avionic system evolved into a special-purpose two-segment computer which required a DME collocated with the ILS glide-slope transmitter. This system was evaluated in a Boeing 727-200 aircraft. The second system is an area navigation (RNAV) system modified to include the two-segment approach. This system is more sophisticated than the first system and does not restrict usage to any specific navigation ground aid. The modified RNAV system is a Collins ANS-70A and is currently being evaluated in a DC-8-61 aircraft.

  18. Aircraft health and usage monitoring system for in-flight strain measurement of a wing structure

    NASA Astrophysics Data System (ADS)

    Kim, Jin-Hyuk; Park, Yurim; Kim, Yoon-Young; Shrestha, Pratik; Kim, Chun-Gon

    2015-10-01

    This paper presents an aircraft health and usage monitoring system (HUMS) using fiber Bragg grating (FBG) sensors. This study aims to implement and evaluate the HUMS for in-flight strain monitoring of aircraft structures. An optical-fiber-based HUMS was developed and applied to an ultralight aircraft that has a rectangular wing shape with a strut-braced configuration. FBG sensor arrays were embedded into the wing structure during the manufacturing process for effective sensor implementation. Ground and flight tests were conducted to verify the integrity and availability of the installed FBG sensors and HUMS devices. A total of 74 flight tests were conducted using the HUMS implemented testbed aircraft, considering various maneuvers and abnormal conditions. The flight test results revealed that the FBG-based HUMS was successfully implemented on the testbed aircraft and operated normally under the actual flight test environments as well as providing reliable in-flight strain data from the FBG sensors over a long period of time.

  19. System Noise Assessment of Blended-Wing-Body Aircraft With Open Rotor Propulsion

    NASA Technical Reports Server (NTRS)

    Guo, Yueping; Thomas, Russell H.

    2015-01-01

    An aircraft system noise study is presented for the Blended-Wing-Body (BWB) aircraft concept with three open rotor engines mounted on the upper surface of the airframe. It is shown that for such an aircraft, the cumulative Effective Perceived Noise Level (EPNL) is about 24 dB below the current aircraft noise regulations of Stage 4. While this makes the design acoustically viable in meeting the regulatory requirements, even with the consideration of more stringent noise regulations of a possible Stage 5 in the next decade or so, the design will likely meet stiff competitions from aircraft with turbofan engines. It is shown that the noise levels of the BWB design are held up by the inherently high noise levels of the open rotor engines and the limitation on the shielding benefit due to the practical design constraint on the engine location. Furthermore, it is shown that the BWB design has high levels of noise from the main landing gear, due to their exposure to high speed flow at the junction between the center body and outer wing. These are also the reasons why this baseline BWB design does not meet the NASA N+2 noise goal of 42 dB below Stage 4. To identify approaches that may further reduce noise, parametric studies are also presented, including variations in engine location, vertical tail and elevon variations, and airframe surface acoustic liner treatment effect. These have the potential to further reduce noise but they are only at the conceptual stage.

  20. Emergency Multiengine Aircraft System for Lateral Control Using Differential Thrust Control of Wing Engines

    NASA Technical Reports Server (NTRS)

    Burken, John J. (Inventor); Burcham, Frank W., Jr. (Inventor); Bull, John (Inventor)

    2000-01-01

    Development of an emergency flight control system is disclosed for lateral control using only differential engine thrust modulation of multiengine aircraft is currently underway. The multiengine has at least two engines laterally displaced to the left and right from the axis of the aircraft. In response to a heading angle command psi(sub c) is to be tracked. By continually sensing the heading angle psi of the aircraft and computing a heading error signal psi(sub e) as a function of the difference between the heading angle command psi(sub c) and the sensed heading angle psi, a track control signal is developed with compensation as a function of sensed bank angle phi. Bank angle rate phi, or roll rate p, yaw rate tau, and true velocity produce an aircraft thrust control signal ATC(sub psi(L,R)). The thrust control signal is differentially applied to the left and right engines, with equal amplitude and opposite sign, such that a negative sign is applied to the control signal on the side of the aircraft. A turn is required to reduce the error signal until the heading feedback reduces the error to zero.

  1. The Small Aircraft Transportation System (SATS), Higher Volume Operations (HVO) Off-Nominal Operations

    NASA Technical Reports Server (NTRS)

    Baxley, B.; Williams, D.; Consiglio, M.; Conway, S.; Adams, C.; Abbott, T.

    2005-01-01

    The ability to conduct concurrent, multiple aircraft operations in poor weather, at virtually any airport, offers an important opportunity for a significant increase in the rate of flight operations, a major improvement in passenger convenience, and the potential to foster growth of charter operations at small airports. The Small Aircraft Transportation System, (SATS) Higher Volume Operations (HVO) concept is designed to increase traffic flow at any of the 3400 nonradar, non-towered airports in the United States where operations are currently restricted to one-in/one-out procedural separation during Instrument Meteorological Conditions (IMC). The concept's key feature is pilots maintain their own separation from other aircraft using procedures, aircraft flight data sent via air-to-air datalink, cockpit displays, and on-board software. This is done within the Self-Controlled Area (SCA), an area of flight operations established during poor visibility or low ceilings around an airport without Air Traffic Control (ATC) services. The research described in this paper expands the HVO concept to include most off-nominal situations that could be expected to occur in a future SATS environment. The situations were categorized into routine off-nominal operations, procedural deviations, equipment malfunctions, and aircraft emergencies. The combination of normal and off-nominal HVO procedures provides evidence for an operational concept that is safe, requires little ground infrastructure, and enables concurrent flight operations in poor weather.

  2. Formal Methods in Air Traffic Management: The Case of Unmanned Aircraft Systems

    NASA Technical Reports Server (NTRS)

    Munoz, Cesar A.

    2015-01-01

    As the technological and operational capabilities of unmanned aircraft systems (UAS) continue to grow, so too does the need to introduce these systems into civil airspace. Unmanned Aircraft Systems Integration in the National Airspace System is a NASA research project that addresses the integration of civil UAS into non-segregated airspace operations. One of the major challenges of this integration is the lack of an onboard pilot to comply with the legal requirement that pilots see and avoid other aircraft. The need to provide an equivalent to this requirement for UAS has motivated the development of a detect and avoid (DAA) capability to provide the appropriate situational awareness and maneuver guidance in avoiding and remaining well clear of traffic aircraft. Formal methods has played a fundamental role in the development of this capability. This talk reports on the formal methods work conducted under NASA's Safe Autonomous System Operations project in support of the development of DAA for UAS. This work includes specification of low-level and high-level functional requirements, formal verification of algorithms, and rigorous validation of software implementations. The talk also discusses technical challenges in formal methods research in the context of the development and safety analysis of advanced air traffic management concepts.

  3. On the use of a compact optical fiber sensor system in aircraft structural health monitoring

    NASA Astrophysics Data System (ADS)

    Mrad, Nezih; Guo, Honglei; Xiao, Gaozhi; Rocha, Bruno; Sun, Zhigang

    2012-06-01

    Structural Health Monitoring (SHM) has been identified as an area of significant potential for advanced aircraft maintenance programs that ensure continued airworthiness, enhanced operational safety and reduced life cycle cost. Several sensors and sensory systems have been developed for the implementation of such health monitoring capability. Among a wide range of developed technologies, fiber optic sensor technology, in particular fiber Bragg grating based emerged as one of the most promising for aircraft structural applications. This paper is set to explore the suitability of using a new Fiber Bragg Grating sensor (FBG) system developed for operation in two modes, low and high speed sensing modes, respectively. The suitability of the system for potential use in aircraft load monitoring and damage detection applications has been demonstrated. Results from FBG sensor system were in good agreement with results from conventional resistive strain gauges, validating this capability for load monitoring. For damage detection, the FBG sensor system was able to detect acoustic waves generated 52 inches (1.32 m) away. The initial results, obtained in a full stale experimentation, demonstrate the potential of using FBG sensors for both load monitoring and damage detection in aircraft environment.

  4. 41 CFR 102-33.195 - Do we need an automated system to account for aircraft costs?

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 41 Public Contracts and Property Management 3 2014-01-01 2014-01-01 false Do we need an automated... for the Cost of Government Aircraft § 102-33.195 Do we need an automated system to account for... automated system to account for aircraft costs by collecting the cost data elements required by the...

  5. 41 CFR 102-33.195 - Do we need an automated system to account for aircraft costs?

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 41 Public Contracts and Property Management 3 2012-01-01 2012-01-01 false Do we need an automated... for the Cost of Government Aircraft § 102-33.195 Do we need an automated system to account for... automated system to account for aircraft costs by collecting the cost data elements required by the...

  6. 41 CFR 102-33.195 - Do we need an automated system to account for aircraft costs?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 41 Public Contracts and Property Management 3 2013-07-01 2013-07-01 false Do we need an automated... for the Cost of Government Aircraft § 102-33.195 Do we need an automated system to account for... automated system to account for aircraft costs by collecting the cost data elements required by the...

  7. A study of the TCAS 2 collision avoidance system mounted on a Boeing 737 aircraft

    NASA Technical Reports Server (NTRS)

    Grandchamp, B.; Burnside, W. D.; Rojas, R. G.

    1987-01-01

    The purpose of this report is to determine the effects of scattering from major aircraft structures on the TCAS 2 collision avoidance system mounted on a Boeing 737. It is found that the major source of scattering for angles of observation above the horizon is the vertical stabilizer and that its effect may be greatly reduced by mounting the TCAS 2 array close to the nose of the aircraft. In addition, by mounting the array close to the nose, the effects of fuselage blockage on the array patterns at elevation angles below the horizon may be greatly reduced in the forward direction.

  8. Airborne antenna coverage requirements for the TCV B-737 aircraft. [for operation with microwave landing systems

    NASA Technical Reports Server (NTRS)

    Southall, W. A., Jr.; White, W. F.

    1978-01-01

    The airborne antenna line of sight look angle requirement for operation with a Microwave Landing System (MLS) was studied. The required azimuth and elevation line of sight look angles from an antenna located on an aircraft to three ground based antenna sites at the Wallops Flight Center (FPS-16 radar, MLS aximuth, and MLS elevation) as the aircraft follows specific approach paths selected as representative of MLS operations at the Denver, Colorado, terminal area are presented. These required azimuth and elevation look angles may be interpreted as basic design requirements for antenna of the TCV B-737 airplane for MLS operations along these selected approach paths.

  9. A Study on Aircraft Engine Control Systems for Integrated Flight and Propulsion Control

    NASA Astrophysics Data System (ADS)

    Yamane, Hideaki; Matsunaga, Yasushi; Kusakawa, Takeshi; Yasui, Hisako

    The Integrated Flight and Propulsion Control (IFPC) for a highly maneuverable aircraft and a fighter-class engine with pitch/yaw thrust vectoring is described. Of the two IFPC functions the aircraft maneuver control utilizes the thrust vectoring based on aerodynamic control surfaces/thrust vectoring control allocation specified by the Integrated Control Unit (ICU) of a FADEC (Full Authority Digital Electronic Control) system. On the other hand in the Performance Seeking Control (PSC) the ICU identifies engine's various characteristic changes, optimizes manipulated variables and finally adjusts engine control parameters in cooperation with the Engine Control Unit (ECU). It is shown by hardware-in-the-loop simulation that the thrust vectoring can enhance aircraft maneuverability/agility and that the PSC can improve engine performance parameters such as SFC (specific fuel consumption), thrust and gas temperature.

  10. The Attributes of a Variable-Diameter Rotor System Applied to Civil Tiltrotor Aircraft

    NASA Technical Reports Server (NTRS)

    Brender, Scott; Mark, Hans; Aguilera, Frank

    1996-01-01

    The attributes of a variable diameter rotor concept applied to civil tiltrotor aircraft are investigated using the V/STOL aircraft sizing and performance computer program (VASCOMP). To begin, civil tiltrotor viability issues that motivate advanced rotor designs are discussed. Current work on the variable diameter rotor and a theoretical basis for the advantages of the rotor system are presented. The size and performance of variable diameter and conventional tiltrotor designs for the same baseline mission are then calculated using a modified NASA Ames version of VASCOMP. The aircraft are compared based on gross weight, fuel required, engine size, and autorotative performance for various hover disk loading values. Conclusions about the viability of the resulting designs are presented and a program for further variable diameter rotor research is recommended.

  11. Application of precomputed control laws in a reconfigurable aircraft flight control system

    NASA Technical Reports Server (NTRS)

    Moerder, Daniel D.; Halyo, Nesim; Broussard, John R.; Caglayan, Alper K.

    1989-01-01

    A self-repairing flight control system concept in which the control law is reconfigured after actuator and/or control surface damage to preserve stability and pilot command tracking is described. A key feature of the controller is reconfigurable multivariable feedback. The feedback gains are designed off-line and scheduled as a function of the aircraft control impairment status so that reconfiguration is performed simply by updating the gain schedule after detection of an impairment. A novel aspect of the gain schedule design procedure is that the schedule is calculated using a linear quadratic optimization-based simultaneous stabilization algorithm in which the scheduled gain is constrained to stabilize a collection of plant models representing the aircraft in various control failure modes. A description and numerical evaluation of a controller design for a model of a statically unstable high-performance aircraft are given.

  12. A 94/183 GHz aircraft radiometer system for Project Storm Fury

    NASA Technical Reports Server (NTRS)

    Gagliano, J. A.; Stratigos, J. A.; Forsythe, R. E.; Schuchardt, J. M.; Welch, J. M.; Gallentine, D. O.

    1980-01-01

    A radiometer design suitable for use in NASA's WB-57F aircraft to collect data from severe storm regions was developed. The design recommended was a 94/183 GHz scanning radiometer with 3 IF channels on either side of the 183.3 GHz water vapor line and a single IF channel for a low loss atmospheric window channel at 94 GHz. The development and construction of the 94/183 GHz scanning radiometer known as the Advanced Microwave Moisture Sounder (AMMS) is presented. The radiometer scans the scene below the aircraft over an angle of + or - 45 degrees with the beamwidth of the scene viewed of approximately 2 degrees at 94 GHz and 1 degree at 183 GHz. The AMMS data collection system consists of a microcomputer used to store the radiometer data on the flight cartridge recorder, operate the stepper motor driven scanner, and collect housekeeping data such as thermistor temperature readings and aircraft time code.

  13. A fuselage/tank structure study for actively cooled hypersonic cruise vehicles, summary. [aircraft design of aircraft fuel systems

    NASA Technical Reports Server (NTRS)

    Pirrello, C. J.; Baker, A. H.; Stone, J. E.

    1976-01-01

    A detailed analytical study was made to investigate the effects of fuselage cross section (circular and elliptical) and the structural arrangement (integral and nonintegral tanks) on aircraft performance. The vehicle was a 200 passenger, liquid hydrogen fueled Mach 6 transport designed to meet a range goal of 9.26 Mn (5000 NM). A variety of trade studies were conducted in the area of configuration arrangement, structural design, and active cooling design in order to maximize the performance of each of three point design aircraft: (1) circular wing-body with nonintegral tanks, (2) circular wing-body with integral tanks and (3) elliptical blended wing-body with integral tanks. Aircraft range and weight were used as the basis for comparison. The resulting design and performance characteristics show that the blended body integral tank aircraft weights the least and has the greatest range capability, however, producibility and maintainability factors favor nonintegral tank concepts.

  14. Precision Environmental Radiation Monitoring System

    SciTech Connect

    Vladimir Popov, Pavel Degtiarenko

    2010-07-01

    A new precision low-level environmental radiation monitoring system has been developed and tested at Jefferson Lab. This system provides environmental radiation measurements with accuracy and stability of the order of 1 nGy/h in an hour, roughly corresponding to approximately 1% of the natural cosmic background at the sea level. Advanced electronic front-end has been designed and produced for use with the industry-standard High Pressure Ionization Chamber detector hardware. A new highly sensitive readout electronic circuit was designed to measure charge from the virtually suspended ionization chamber ion collecting electrode. New signal processing technique and dedicated data acquisition were tested together with the new readout. The designed system enabled data collection in a remote Linux-operated computer workstation, which was connected to the detectors using a standard telephone cable line. The data acquisition system algorithm is built around the continuously running 24-bit resolution 192 kHz data sampling analog to digital convertor. The major features of the design include: extremely low leakage current in the input circuit, true charge integrating mode operation, and relatively fast response to the intermediate radiation change. These features allow operating of the device as an environmental radiation monitor, at the perimeters of the radiation-generating installations in densely populated areas, like in other monitoring and security applications requiring high precision and long-term stability. Initial system evaluation results are presented.

  15. Voting systems for environmental decisions.

    PubMed

    Burgman, Mark A; Regan, Helen M; Maguire, Lynn A; Colyvan, Mark; Justus, James; Martin, Tara G; Rothley, Kris

    2014-04-01

    Voting systems aggregate preferences efficiently and are often used for deciding conservation priorities. Desirable characteristics of voting systems include transitivity, completeness, and Pareto optimality, among others. Voting systems that are common and potentially useful for environmental decision making include simple majority, approval, and preferential voting. Unfortunately, no voting system can guarantee an outcome, while also satisfying a range of very reasonable performance criteria. Furthermore, voting methods may be manipulated by decision makers and strategic voters if they have knowledge of the voting patterns and alliances of others in the voting populations. The difficult properties of voting systems arise in routine decision making when there are multiple criteria and management alternatives. Because each method has flaws, we do not endorse one method. Instead, we urge organizers to be transparent about the properties of proposed voting systems and to offer participants the opportunity to approve the voting system as part of the ground rules for operation of a group.

  16. Aircraft Abnormal Conditions Detection, Identification, and Evaluation Using Innate and Adaptive Immune Systems Interaction

    NASA Astrophysics Data System (ADS)

    Al Azzawi, Dia

    Abnormal flight conditions play a major role in aircraft accidents frequently causing loss of control. To ensure aircraft operation safety in all situations, intelligent system monitoring and adaptation must rely on accurately detecting the presence of abnormal conditions as soon as they take place, identifying their root cause(s), estimating their nature and severity, and predicting their impact on the flight envelope. Due to the complexity and multidimensionality of the aircraft system under abnormal conditions, these requirements are extremely difficult to satisfy using existing analytical and/or statistical approaches. Moreover, current methodologies have addressed only isolated classes of abnormal conditions and a reduced number of aircraft dynamic parameters within a limited region of the flight envelope. This research effort aims at developing an integrated and comprehensive framework for the aircraft abnormal conditions detection, identification, and evaluation based on the artificial immune systems paradigm, which has the capability to address the complexity and multidimensionality issues related to aircraft systems. Within the proposed framework, a novel algorithm was developed for the abnormal conditions detection problem and extended to the abnormal conditions identification and evaluation. The algorithm and its extensions were inspired from the functionality of the biological dendritic cells (an important part of the innate immune system) and their interaction with the different components of the adaptive immune system. Immunity-based methodologies for re-assessing the flight envelope at post-failure and predicting the impact of the abnormal conditions on the performance and handling qualities are also proposed and investigated in this study. The generality of the approach makes it applicable to any system. Data for artificial immune system development were collected from flight tests of a supersonic research aircraft within a motion-based flight

  17. Rotor systems research aircraft predesign study. Volume 4: Preliminary draft detail specification

    NASA Technical Reports Server (NTRS)

    Miller, A. N.; Linden, A. W.

    1972-01-01

    The RSRA requirements are presented in a detail specification format. Coverage of the requirements includes the following headings: (1) aircraft characteristics, (2) general features of design and construction, (3) aerodynamics, (4) structural design criteria, (5) flight control system, (6) propulsion subsystem, and (7) secondary power and distribution subsystem.

  18. Aerodynamic design and analysis system for supersonic aircraft. Part 3: Computer program description

    NASA Technical Reports Server (NTRS)

    Middleton, W. D.; Lundry, J. L.; Coleman, R. G.

    1975-01-01

    The computer program for the design and analysis of supersonic aircraft configurations is presented. The schematics of the program structure are provided. The individual overlays and subroutines are described. The system is useful in determining surface pressures and supersonic area rule concepts.

  19. The Effect of Functional Flow Diagrams on Apprentice Aircraft Mechanics' Technical System Understanding.

    ERIC Educational Resources Information Center

    Johnson, Scott D.; Satchwell, Richard E.

    1993-01-01

    Describes an experimental study that tested the impact of a conceptual illustration on college students' understanding of the structure, function, and behavior of complex technical systems. The use of functional flow diagrams in aircraft mechanics' training is explained, a concept map analysis is discussed, and implications for technical training…

  20. 78 FR 18932 - Public Meeting: Unmanned Aircraft Systems Test Site Program; Privacy Approach

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-28

    ... the Federal Register on February 22, 2013 (78 FR 12259), Docket No. FAA-2013-0061. In that document... operation of unmanned aircraft systems within the test site program (78 FR 12259). The proposed privacy... at http://www.faa.gov/about/initiatives/uas/ when all details are finalized. This Web site will...

  1. Aircraft Fuel, Hydraulic and Pneumatic Systems (Course Outlines), Aviation Mechanics 3 (Air Frame): 9067.01.

    ERIC Educational Resources Information Center

    Dade County Public Schools, Miami, FL.

    This document presents an outline for a 135-hour course designed to familiarize the student with the operation, inspection, and repair of aircraft fuel, hydraulic, and pneumatic systems. It is designed to help the trainee master the knowledge and skills necessary to become an aviation airframe mechanic. The aviation airframe maintenance technician…

  2. National General Aviation Roadmap Definition for a Small Aircraft Transportation System Concept

    NASA Technical Reports Server (NTRS)

    Holmes, Bruce J.

    2000-01-01

    This paper presents trends and forces that shape 21 st century demand for higher-speed personal air transportation and outlines guidance developed by NASA in partnership with other federal and state government and industry partners, for Small Aircraft Transportation System (SATS) investment and partnership planning.

  3. Pivoting output unit control systems activated by jacks. [for controlling aircraft flaps

    NASA Technical Reports Server (NTRS)

    Belliere, P.

    1978-01-01

    An invention to be used for controlling aircraft flaps is described. It is applicable to control systems with two coaxial output units which pivot simultaneously with respect to two fixed units and which are activated by two opposed, straight coaxial jacks.

  4. Development and Evaluation of an Airborne Separation Assurance System for Autonomous Aircraft Operations

    NASA Technical Reports Server (NTRS)

    Barhydt, Richard; Palmer, Michael T.; Eischeid, Todd M.

    2004-01-01

    NASA Langley Research Center is developing an Autonomous Operations Planner (AOP) that functions as an Airborne Separation Assurance System for autonomous flight operations. This development effort supports NASA s Distributed Air-Ground Traffic Management (DAG-TM) operational concept, designed to significantly increase capacity of the national airspace system, while maintaining safety. Autonomous aircraft pilots use the AOP to maintain traffic separation from other autonomous aircraft and managed aircraft flying under today's Instrument Flight Rules, while maintaining traffic flow management constraints assigned by Air Traffic Service Providers. AOP is designed to facilitate eventual implementation through careful modeling of its operational environment, interfaces with other aircraft systems and data links, and conformance with established flight deck conventions and human factors guidelines. AOP uses currently available or anticipated data exchanged over modeled Arinc 429 data buses and an Automatic Dependent Surveillance Broadcast 1090 MHz link. It provides pilots with conflict detection, prevention, and resolution functions and works with the Flight Management System to maintain assigned traffic flow management constraints. The AOP design has been enhanced over the course of several experiments conducted at NASA Langley and is being prepared for an upcoming Joint Air/Ground Simulation with NASA Ames Research Center.

  5. The NASA Aircraft VOrtex Spacing System (AVOSS): Concept Demonstration Results and Future Direction

    NASA Technical Reports Server (NTRS)

    Rutishauser, David K.; OConnor, Cornelius J.

    2004-01-01

    Since the late 1990s the national airspace system has been recognized as approaching a capacity crisis. In the light of this condition, industry, government, user organizations, and educational institutions have been working on procedural and technological solutions to the problem. One aspect of system operations that holds potential for improvement is the separation criteria applied to aircraft for wake vortex avoidance. These criteria, applied when operations are conducted under instrument flight rules (IFR), were designed to represent safe spacing under weather conditions conducive to the longest wake hazards. It is well understood that wake behavior is dependent on meteorological conditions as well as the physical parameters of the generating aircraft. Under many ambient conditions, such as moderate crosswinds or turbulence, wake hazard durations are substantially reduced. To realize this reduction NASA has developed a proof-of-concept Aircraft VOrtex Spacing System (AVOSS). Successfully demonstrated in a realtime field demonstration during July 2000 at the Dallas Ft. Worth International Airport (DFW), AVOSS is a novel integration of weather sensors, wake sensors, and analytical wake prediction algorithms. AVOSS provides dynamic wake separation criteria that are a function of the ambient weather conditions for a particular airport, and the predicted wake behavior under those conditions. Wake sensing subsystems provide safety checks and validation for the predictions. The AVOSS was demonstrated in shadow mode; no actual spacing changes were applied to aircraft. This paper briefly reviews the system architecture and operation, reports the latest performance results from the DFW deployment, and describes the future direction of the project.

  6. 76 FR 78328 - Access to Aircraft Situation Display to Industry (ASDI) and National Airspace System Status...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-16

    ... Airspace System Status Information (NASSI) Data AGENCY: Federal Aviation Administration (FAA). ACTION... operator of the aircraft, and whether the requestor desires ASDI blocking at the FAA data source or at the... for blocking at the FAA data source or at the ASDI Subscriber level as a request to block...

  7. Insect detection and nitrogen management for irrigated potatoes using remote sensing from small unmanned aircraft systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Remote sensing with small unmanned aircraft systems (sUAS) has potential applications in agriculture because low flight altitudes allow image acquisition at very high spatial resolution. We set up experiments at the Oregon State University Hermiston Agricultural Research and Extension Center with d...

  8. 14 CFR Special Federal Aviation... - Rules for use of portable oxygen concentrator systems on board aircraft

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... concentrator systems on board aircraft Federal Special Federal Aviation Regulation No. 106 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR CARRIERS AND... SUPPLEMENTAL OPERATIONS Pt. 121, SFAR No. 106 Special Federal Aviation Regulation No. 106—Rules for use...

  9. 14 CFR Special Federal Aviation... - Rules for use of portable oxygen concentrator systems on board aircraft

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... concentrator systems on board aircraft Federal Special Federal Aviation Regulation 106 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR CARRIERS AND OPERATORS FOR... OPERATIONS Pt. 121, SFAR No. 106 Special Federal Aviation Regulation 106—Rules for use of portable...

  10. 14 CFR Special Federal Aviation... - Rules for use of portable oxygen concentrator systems on board aircraft

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... concentrator systems on board aircraft Federal Special Federal Aviation Regulation 106 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR CARRIERS AND OPERATORS FOR... OPERATIONS Pt. 121, SFAR No. 106 Special Federal Aviation Regulation 106—Rules for use of portable...

  11. 14 CFR Special Federal Aviation... - Rules for use of portable oxygen concentrator systems on board aircraft

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... concentrator systems on board aircraft Federal Special Federal Aviation Regulation No. 106 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR CARRIERS AND... SUPPLEMENTAL OPERATIONS Pt. 121, SFAR No. 106 Special Federal Aviation Regulation No. 106—Rules for use...

  12. 14 CFR Special Federal Aviation... - Rules for use of portable oxygen concentrator systems on board aircraft

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... concentrator systems on board aircraft Federal Special Federal Aviation Regulation 106 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR CARRIERS AND OPERATORS FOR... OPERATIONS Pt. 121, SFAR No. 106 Special Federal Aviation Regulation 106—Rules for use of portable...

  13. Criteria for design of integrated flight/propulsion control systems for STOVL fighter aircraft

    NASA Technical Reports Server (NTRS)

    Franklin, James A.

    1993-01-01

    As part of NASA's program to develop technology for short takeoff and vertical landing (STOVL) fighter aircraft, control system designs have been developed for a conceptual STOVL aircraft. This aircraft is representative of the class of mixed-flow remote-lift concepts that was identified as the preferred design approach by the U.S./U.K. STOVL Joint Assessment and Ranking Team. The control system designs have been evaluated throughout the powered-lift flight envelope on the Vertical Motion Simulator (VMS) at Ames Research Center. Items assessed in the control system evaluation were: maximum control power used in transition and vertical flight, control system dynamic response associated with thrust transfer for attitude control, thrust margin in the presence of ground effect and hot-gas ingestion, and dynamic thrust response for the engine core. Effects of wind, turbulence, and ship airwake disturbances are incorporated in the evaluation. Results provide the basis for a reassessment of existing flying-qualities design criteria applied to STOVL aircraft.

  14. Remote sensing with simulated unmanned aircraft systems for precision agriculture applications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An important application of unmanned aircraft systems (UAS) may be remote-sensing for precision agriculture, because of its ability to acquire images with very small pixel sizes from low altitude flights. The objective of this study was to compare pixel sampling with plot-scale metrics for the remo...

  15. Detection of nitrogen deficiency in potatoes using small unmanned aircraft systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Small Unmanned Aircraft Systems (sUAS) are recognized as potentially important remote-sensing platforms for precision agriculture. However, research is required to determine which sensors and data processing methods are required to use sUAS in an efficient and cost-effective manner. We set up a ni...

  16. General Aviation Aircraft Reliability Study

    NASA Technical Reports Server (NTRS)

    Pettit, Duane; Turnbull, Andrew; Roelant, Henk A. (Technical Monitor)

    2001-01-01

    This reliability study was performed in order to provide the aviation community with an estimate of Complex General Aviation (GA) Aircraft System reliability. To successfully improve the safety and reliability for the next generation of GA aircraft, a study of current GA aircraft attributes was prudent. This was accomplished by benchmarking the reliability of operational Complex GA Aircraft Systems. Specifically, Complex GA Aircraft System reliability was estimated using data obtained from the logbooks of a random sample of the Complex GA Aircraft population.

  17. Fault tolerant architectures for integrated aircraft electronics systems

    NASA Technical Reports Server (NTRS)

    Levitt, K. N.; Melliar-Smith, P. M.; Schwartz, R. L.

    1983-01-01

    Work into possible architectures for future flight control computer systems is described. Ada for Fault-Tolerant Systems, the NETS Network Error-Tolerant System architecture, and voting in asynchronous systems are covered.

  18. Piezomechatronic-based systems in aircraft, space, and defense applications

    NASA Astrophysics Data System (ADS)

    Maillard, T.; Claeyssen, F.; LeLetty, R.; Sosnicki, O.; Pages, A.; Vazquez Carazo, A.

    2009-05-01

    In Space & Defense fields, there is a trend for miniaturisation in active optics, fine instruments, robotic missions, microsatellites, UAVs, MAVs which directly impact on the design of actuators. A new generation of small and smart actuators such like piezoelectric (piezo) actuators, are responding to this trend, thanks to their capacity to offer high energy density and to support both extreme and various requirements. In Space vehicles, UAVs, missiles, military vehicles, etc., onboard place and available electric power can be very limited. For instance, a micro satellite often must operate all its instruments with less than 100W of power. As a result, allocated electric power per actuator is typically between 0.1 to 10W. This is also the case in small UAVs and in MAVs. Because of the high cost of embedded mass, space & military actuators need also to offer high output energy to mass ratio. One of the main difficulties is often the ability to withstand launching vibrations and shocks. Space environments add other constrains. A clear example is the vacuum conditions, which can induce difficulties to release the heat out off the actuator or for out gassing near optics. Other critical spacerelated environmental conditions include the thermal operation range required as well as the radiation-resistant requirements. In other situations, actuator strength to humidity is often an issue, especially for piezoelectric ceramics. Thus, the success of the application relies not only on design issues but also on material reliability. Specific actions at this level are needed to be undertaken to secure space projects. To cope with these issues and to illustrate the trend, the piezo actuators and mechanisms from Cedrat are presented. They have been initially developed and qualified to meet space requirements but logically found also applications in defense and micro aerial vehicle fields, for various micromechatronic functions. The paper presents typical applications and piezo

  19. Remote environmental sensor array system

    NASA Astrophysics Data System (ADS)

    Hall, Geoffrey G.

    This thesis examines the creation of an environmental monitoring system for inhospitable environments. It has been named The Remote Environmental Sensor Array System or RESA System for short. This thesis covers the development of RESA from its inception, to the design and modeling of the hardware and software required to make it functional. Finally, the actual manufacture, and laboratory testing of the finished RESA product is discussed and documented. The RESA System is designed as a cost-effective way to bring sensors and video systems to the underwater environment. It contains as water quality probe with sensors such as dissolved oxygen, pH, temperature, specific conductivity, oxidation-reduction potential and chlorophyll a. In addition, an omni-directional hydrophone is included to detect underwater acoustic signals. It has a colour, high-definition and a low-light, black and white camera system, which it turn are coupled to a laser scaling system. Both high-intensity discharge and halogen lighting system are included to illuminate the video images. The video and laser scaling systems are manoeuvred using pan and tilt units controlled from an underwater computer box. Finally, a sediment profile imager is included to enable profile images of sediment layers to be acquired. A control and manipulation system to control the instruments and move the data across networks is integrated into the underwater system while a power distribution node provides the correct voltages to power the instruments. Laboratory testing was completed to ensure that the different instruments associated with the RESA performed as designed. This included physical testing of the motorized instruments, calibration of the instruments, benchmark performance testing and system failure exercises.

  20. Ikhana: Unmanned Aircraft System Western States Fire Missions. Monographs in Aerospace History, Number 44

    NASA Technical Reports Server (NTRS)

    Merlin, Peter W.

    2009-01-01

    In 2006, NASA Dryden Flight Research Center, Edwards, Calif., obtained a civil version of the General Atomics MQ-9 unmanned aircraft system and modified it for research purposes. Proposed missions included support of Earth science research, development of advanced aeronautical technology, and improving the utility of unmanned aerial systems in general. The project team named the aircraft Ikhana a Native American Choctaw word meaning intelligent, conscious, or aware in order to best represent NASA research goals. Building on experience with these and other unmanned aircraft, NASA scientists developed plans to use the Ikhana for a series of missions to map wildfires in the western United States and supply the resulting data to firefighters in near-real time. A team at NASA Ames Research Center, Mountain View, Calif., developed a multispectral scanner that was key to the success of what became known as the Western States Fire Missions. Carried out by team members from NASA, the U.S. Department of Agriculture Forest Service, National Interagency Fire Center, National Oceanic and Atmospheric Administration, Federal Aviation Administration, and General Atomics Aeronautical Systems Inc., these flights represented an historic achievement in the field of unmanned aircraft technology.

  1. ACSYNT - A standards-based system for parametric, computer aided conceptual design of aircraft

    NASA Technical Reports Server (NTRS)

    Jayaram, S.; Myklebust, A.; Gelhausen, P.

    1992-01-01

    A group of eight US aerospace companies together with several NASA and NAVY centers, led by NASA Ames Systems Analysis Branch, and Virginia Tech's CAD Laboratory agreed, through the assistance of Americal Technology Initiative, in 1990 to form the ACSYNT (Aircraft Synthesis) Institute. The Institute is supported by a Joint Sponsored Research Agreement to continue the research and development in computer aided conceptual design of aircraft initiated by NASA Ames Research Center and Virginia Tech's CAD Laboratory. The result of this collaboration, a feature-based, parametric computer aided aircraft conceptual design code called ACSYNT, is described. The code is based on analysis routines begun at NASA Ames in the early 1970's. ACSYNT's CAD system is based entirely on the ISO standard Programmer's Hierarchical Interactive Graphics System and is graphics-device independent. The code includes a highly interactive graphical user interface, automatically generated Hermite and B-Spline surface models, and shaded image displays. Numerous features to enhance aircraft conceptual design are described.

  2. Evaluation of laminar flow control system concepts for subsonic commercial transport aircraft

    NASA Technical Reports Server (NTRS)

    1980-01-01

    A study was conducted to evaluate alternatives in the design of laminar flow control (LFC) subsonic commercial transport aircraft for operation in the 1980's period. Analyses were conducted to select mission parameters and define optimum aircraft configurational parameters for the selected mission, defined by a passenger payload of 400 and a design range of 12,038 km (6500 n mi). The baseline aircraft developed for this mission was used as a vehicle for the evaluation and development of alternative LFC system concepts. Alternatives were evaluated in the areas of aerodynamics structures, materials, LFC systems, leading-edge region cleaning and integration of auxiliary systems. Based on these evaluations, concept in each area were selected for further development and testing and ultimate incorporation in the final study aircraft. Relative to a similarly-optimized advanced technology turbulent transport, the final LFC configuration is approximately equal in direct operating cost but provides decreases of 8.2% in gross weight and 21.7% in fuel consumption.

  3. Economic and environmental assessment of liquefied natural gas as a supplemental aircraft fuel

    NASA Astrophysics Data System (ADS)

    Withers, Mitch R.; Malina, Robert; Gilmore, Christopher K.; Gibbs, Jonathan M.; Trigg, Chris; Wolfe, Philip J.; Trivedi, Parthsarathi; Barrett, Steven R. H.

    2014-04-01

    In 2013, natural gas is 70-80% cheaper than jet fuel on an energy basis. As an alternative aviation fuel, natural gas may reduce operating costs. In this paper, we assess the use of liquefied natural gas (LNG) as a supplemental aircraft fuel in a military context, with detailed assessments of the Lockheed Martin C-130H and C-130J transport aircraft. We estimate the cost of retrofitting these aircraft to use LNG and the savings from reduced fuel expenses. We evaluate the societal impacts of LNG within a cost-benefit framework, taking into account resource consumption, human health impacts related to air quality, and climate damage. In order to compare alternative uses of natural gas in aviation, we include in our analysis Fischer-Tropsch (FT) jet fuel from natural gas as a drop-in alternative. Uncertainty analysis is performed with Monte Carlo simulations. We find that aircraft operators can save up to 14% on fuel expenses (retrofit costs included) by employing LNG retrofits, with a 95% confidence interval of 2-23%. Society can also benefit by 12% (3-20%) from LNG use as a result of improved surface air quality, lower resource consumption, and net climate neutrality. These results are highly dependent on fuel prices, the quantity and cost of the LNG retrofits, and the frequency and length of missions. FT jet fuel is not cost-competitive with conventional fuel and results in increased fuel expenses by 17%. FT fuel provides marginal societal benefits relative to jet fuel.

  4. Predesign study for a modern 4-bladed rotor for the NASA rotor systems research aircraft

    NASA Technical Reports Server (NTRS)

    Bishop, H. E.; Burkam, J. E.; Heminway, R. C.; Keys, C. N.; Smith, K. E.; Smith, J. H.; Staley, J. A.

    1981-01-01

    Trade-off study results and the rationale for the final selection of an existing modern four-bladed rotor system that can be adapted for installation on the Rotor Systems Research Aircraft (RSRA) are reported. The results of the detailed integration studies, parameter change studies, and instrumentation studies and the recommended plan for development and qualification of the rotor system is also given. Its parameter variants, integration on the RSRA, and support of ground and flight test programs are also discussed.

  5. Cascade Optimization Strategy for Aircraft and Air-Breathing Propulsion System Concepts

    NASA Technical Reports Server (NTRS)

    Patnaik, Surya N.; Lavelle, Thomas M.; Hopkins, Dale A.; Coroneos, Rula M.

    1996-01-01

    Design optimization for subsonic and supersonic aircraft and for air-breathing propulsion engine concepts has been accomplished by soft-coupling the Flight Optimization System (FLOPS) and the NASA Engine Performance Program analyzer (NEPP), to the NASA Lewis multidisciplinary optimization tool COMETBOARDS. Aircraft and engine design problems, with their associated constraints and design variables, were cast as nonlinear optimization problems with aircraft weight and engine thrust as the respective merit functions. Because of the diversity of constraint types and the overall distortion of the design space, the most reliable single optimization algorithm available in COMETBOARDS could not produce a satisfactory feasible optimum solution. Some of COMETBOARDS' unique features, which include a cascade strategy, variable and constraint formulations, and scaling devised especially for difficult multidisciplinary applications, successfully optimized the performance of both aircraft and engines. The cascade method has two principal steps: In the first, the solution initiates from a user-specified design and optimizer, in the second, the optimum design obtained in the first step with some random perturbation is used to begin the next specified optimizer. The second step is repeated for a specified sequence of optimizers or until a successful solution of the problem is achieved. A successful solution should satisfy the specified convergence criteria and have several active constraints but no violated constraints. The cascade strategy available in the combined COMETBOARDS, FLOPS, and NEPP design tool converges to the same global optimum solution even when it starts from different design points. This reliable and robust design tool eliminates manual intervention in the design of aircraft and of air-breathing propulsion engines where it eases the cycle analysis procedures. The combined code is also much easier to use, which is an added benefit. This paper describes COMETBOARDS

  6. Advanced turboprop testbed systems study. Volume 1: Testbed program objectives and priorities, drive system and aircraft design studies, evaluation and recommendations and wind tunnel test plans

    NASA Technical Reports Server (NTRS)

    Bradley, E. S.; Little, B. H.; Warnock, W.; Jenness, C. M.; Wilson, J. M.; Powell, C. W.; Shoaf, L.

    1982-01-01

    The establishment of propfan technology readiness was determined and candidate drive systems for propfan application were identified. Candidate testbed aircraft were investigated for testbed aircraft suitability and four aircraft selected as possible propfan testbed vehicles. An evaluation of the four candidates was performed and the Boeing KC-135A and the Gulfstream American Gulfstream II recommended as the most suitable aircraft for test application. Conceptual designs of the two recommended aircraft were performed and cost and schedule data for the entire testbed program were generated. The program total cost was estimated and a wind tunnel program cost and schedule is generated in support of the testbed program.

  7. Integrated propulsion/energy transfer control systems for lift-fan V/STOL aircraft. [reduction of total propulsion system and control system installation requirements

    NASA Technical Reports Server (NTRS)

    Deckert, W. H.; Rolls, L. S.

    1974-01-01

    An integrated propulsion/control system for lift-fan transport aircraft is described. System behavior from full-scale experimental and piloted simulator investigations are reported. The lift-fan transport is a promising concept for short-to-medium haul civil transportation and for other missions. The lift-fan transport concept features high cruise airspeed, favorable ride qualities, small perceived noise footprints, high utilization, transportation system flexibility, and adaptability to VTOL, V/STOL, or STOL configurations. The lift-fan transport has high direct operating costs in comparison to conventional aircraft, primarily because of propulsion system and aircraft low-speed control system installation requirements. An integrated lift-fan propulsion system/aircraft low-speed control system that reduces total propulsion system and control system installation requirements is discussed.

  8. Preliminary Validation of the Small Aircraft Transportation System Higher Volume Operations (SATS HVO) Concept

    NASA Technical Reports Server (NTRS)

    Williams, Daniel; Consiglio, Maria; Murdoch, Jennifer; Adams, Catherine

    2004-01-01

    This document provides a preliminary validation of the Small Aircraft Transportation System (SATS) Higher Volume Operations (HVO) concept for normal conditions. Initial results reveal that the concept provides reduced air traffic delays when compared to current operations without increasing pilot workload. Characteristic to the SATS HVO concept is the establishment of a newly defined area of flight operations called a Self-Controlled Area (SCA) which would be activated by air traffic control (ATC) around designated non-towered, non-radar airports. During periods of poor visibility, SATS pilots would take responsibility for separation assurance between their aircraft and other similarly equipped aircraft in the SCA. Using onboard equipment and simple instrument flight procedures, they would then be better able to approach and land at the airport or depart from it. This concept would also require a new, ground-based automation system, typically located at the airport that would provide appropriate sequencing information to the arriving aircraft. Further validation of the SATS HVO concept is required and is the subject of ongoing research and subsequent publications.

  9. Evaluating the compliance of Keck's LGSAO automated aircraft protection system with FAA adopted criteria

    NASA Astrophysics Data System (ADS)

    Stomski, Paul J.; Campbell, Randy; Murphy, Thomas W.

    2014-07-01

    The W. M. Keck Observatory (WMKO) applied for and received a determination of no-objection from the Federal Aviation Administration (FAA) for laser guide star adaptive optics (LGS-AO) operations using an automated aircraft protection system (APS) in late 2013. WMKO's APS, named AIRSAFE, uses transponder based aircraft detection (TBAD) to replace human aircraft spotters. The FAA required WMKO to self-certify AIRSAFE compliance with SAE Aerospace Standard 6029A: "Performance Criteria for Laser Control Measures Used for Aviation Safety"[1] (AS- 6029A). AS-6029A prescribes performance and administrative criteria for an APS; essentially, requiring AIRSAFE to adequately protect all types of aircraft, traveling at any speed, altitude, distance and direction reasonably expected in the operating environment. A description of the analysis that comprises this compliance evaluation is the main focus of this paper. Also discussed is the AIRSAFE compliance with AS-6029A administrative criteria that includes characterization of site specific air traffic, failure modes, limitations, operating procedures, preventative maintenance procedures, and periodic system test procedures.

  10. Development and Flight Testing of a Neural Network Based Flight Control System on the NF-15B Aircraft

    NASA Technical Reports Server (NTRS)

    Bomben, Craig R.; Smolka, James W.; Bosworth, John T.; Silliams-Hayes, Peggy S.; Burken, John J.; Larson, Richard R.; Buschbacher, Mark J.; Maliska, Heather A.

    2006-01-01

    The Intelligent Flight Control System (IFCS) project at the NASA Dryden Flight Research Center, Edwards AFB, CA, has been investigating the use of neural network based adaptive control on a unique NF-15B test aircraft. The IFCS neural network is a software processor that stores measured aircraft response information to dynamically alter flight control gains. In 2006, the neural network was engaged and allowed to learn in real time to dynamically alter the aircraft handling qualities characteristics in the presence of actual aerodynamic failure conditions injected into the aircraft through the flight control system. The use of neural network and similar adaptive technologies in the design of highly fault and damage tolerant flight control systems shows promise in making future aircraft far more survivable than current technology allows. This paper will present the results of the IFCS flight test program conducted at the NASA Dryden Flight Research Center in 2006, with emphasis on challenges encountered and lessons learned.

  11. Alaskan flight trials of a synthetic vision system for instrument landings of a piston twin aircraft

    NASA Astrophysics Data System (ADS)

    Barrows, Andrew K.; Alter, Keith W.; Jennings, Chad W.; Powell, J. D.

    1999-07-01

    Stanford University has developed a low-cost prototype synthetic vision system and flight tested it onboard general aviation aircraft. The display aids pilots by providing an 'out the window' view, making visualization of the desired flight path a simple task. Predictor symbology provides guidance on straight and curved paths presented in a 'tunnel- in-the-sky' format. Based on commodity PC hardware to achieve low cost, the Tunnel Display system uses differential GPS (typically from Stanford prototype Wide Area Augmentation System hardware) for positioning and GPS-aided inertial sensors for attitude determination. The display has been flown onboard Piper Dakota and Beechcraft Queen Air aircraft at several different locations. This paper describes the system, its development, and flight trials culminating with tests in Alaska during the summer of 1998. Operational experience demonstrated the Tunnel Display's ability to increase flight- path following accuracy and situational awareness while easing the task instrument flying.

  12. Definition and analytical evaluation of a power management system for tilt-rotor aircraft

    NASA Technical Reports Server (NTRS)

    Morris, J. J.; Alexander, H. R.

    1978-01-01

    The paper reviews the special design criteria which apply to power management in a tilt-rotor aircraft. These include the need for accurate and fast control of rpm and thrust, while accounting for the dynamic interactions between rotor systems caused by cross-shafting and aircraft lateral/directional response. The power management system is also required to provide acceptable high speed sensitivity to longitudinal turbulence. It is shown that the criteria can best be met using a single governor adjusting the collective pitch by an amount proportional to a combination of the average rpm and the integral of the average rpm of the two rotors. This system is evaluated and compared with other candidate systems in hover and cruise flight.

  13. Multiplexing electro-optic architectures for advanced aircraft integrated flight control systems

    NASA Technical Reports Server (NTRS)

    Seal, D. W.

    1989-01-01

    This report describes the results of a 10 month program sponsored by NASA. The objective of this program was to evaluate various optical sensor modulation technologies and to design an optimal Electro-Optic Architecture (EOA) for servicing remote clusters of sensors and actuators in advanced aircraft flight control systems. The EOA's supply optical power to remote sensors and actuators, process the modulated optical signals returned from the sensors, and produce conditioned electrical signals acceptable for use by a digital flight control computer or Vehicle Management System (VMS) computer. This study was part of a multi-year initiative under the Fiber Optic Control System Integration (FOCSI) program to design, develop, and test a totally integrated fiber optic flight/propulsion control system for application to advanced aircraft. Unlike earlier FOCSI studies, this program concentrated on the design of the EOA interface rather than the optical transducer technology itself.

  14. The Small Aircraft Transportation System (SATS): Research Collaborations with the NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Tarry, Scott E.; Bowen, Brent D.; Nickerson, Jocelyn S.

    2002-01-01

    The aviation industry is an integral part of the world s economy. Travelers have consistently chosen aviation as their mode of transportation as it is reliable, time efficient and safe. The out- dated Hub and Spoke system, coupled with high demand, has led to delays, cancellations and gridlock. NASA is developing innovative solutions to these and other air transportation problems. This research is being conducted through partnerships with federal agencies, industry stakeholders, and academia, specifically the University of Nebraska at Omaha. Each collaborator is pursuing the NASA General Aviation Roadmap through their involvement in the expansion of the Small Aircraft Transportation System (SATS). SATS will utilize technologically advanced small aircraft to transport travelers to and from rural and isolated communities. Additionally, this system will provide a safe alternative to the hub and spoke system, giving more time to more people through high-speed mobility and increased accessibility.

  15. Design considerations for application of laminar flow control systems to transport aircraft

    NASA Technical Reports Server (NTRS)

    Braslow, A. L.; Fischer, M. C.

    1985-01-01

    The current status of the laminar-flow control LFC technology is summarized. Factors that have previously inhibited the application of LFC are first reviewed. Involved are the effects of atmospheric ice crystals, surface irregularities, acoustical environment, and off-design operating conditions. Aircraft design trends that are different from turbulent aircraft are discussed as are various design requirements unique to the LFC systems. Current design approaches for the principal LFC systems are reviewed. These include the system for protection of the leading-edge region from surface contamination and icing and the system for removal of a portion of the boundary-layer air. The latter includes consideration of both multiple spanwise suction slots and distributed perforations and required differences between the wing-box and leading-edge box regions.

  16. The NASA Dryden Flight Research Center Unmanned Aircraft System Service Capabilities

    NASA Technical Reports Server (NTRS)

    Bauer, Jeff

    2007-01-01

    Over 60 years of Unmanned Aircraft System (UAS) expertise at the National Aeronautics and Space Administration (NASA) Dryden Flight Research Center are being leveraged to provide capability and expertise to the international UAS community. The DFRC brings together technical experts, UAS, and an operational environment to provide government and industry a broad capability to conduct research, perform operations, and mature systems, sensors, and regulation. The cornerstone of this effort is the acquisition of both a Global Hawk (Northrop Grumman Corporation, Los Angeles, California) and Predator B (General Atomics Aeronautical Systems, Inc., San Diego, California) unmanned aircraft system (UAS). In addition, a test range for small UAS will allow developers to conduct research and development flights without the need to obtain approval from civil authorities. Finally, experts are available to government and industry to provide safety assessments in support of operations in civil airspace. These services will allow developers to utilize limited resources to their maximum capability in a highly competitive environment.

  17. The NASA Dryden Flight Research Center Unmanned Aircraft System Service Capabilities

    NASA Technical Reports Server (NTRS)

    Bauer, Jeff

    2007-01-01

    Over 60 years of Unmanned Aircraft System (UAS) expertise at the NASA Dryden Flight Research Center are being leveraged to provide capability and expertise to the international UAS community. The DFRC brings together technical experts, UAS, and an operational environment to provide government and industry a broad capability to conduct research, perform operations, and mature systems, sensors, and regulation. The cornerstone of this effort is the acquisition of both a Global Hawk (Northrop Grumman Corporation, Los Angeles, California) and Predator B (General Atomics Aeronautical Systems, Inc., San Diego, California) unmanned aircraft system (UAS). In addition, a test range for small UAS will allow developers to conduct research and development flights without the need to obtain approval from civil authorities. Finally, experts are available to government and industry to provide safety assessments in support of operations in civil airspace. These services will allow developers to utilize limited resources to their maximum capability in a highly competitive environment.

  18. Abnormal/Emergency Situations. Impact of Unmanned Aircraft Systems Emergency and Abnormal Events on the National Airspace System

    NASA Technical Reports Server (NTRS)

    2006-01-01

    Access 5 analyzed the differences between UAS and manned aircraft operations under five categories of abnormal or emergency situations: Link Failure, Lost Communications, Onboard System Failures, Control Station Failures and Abnormal Weather. These analyses were made from the vantage point of the impact that these operations have on the US air traffic control system, with recommendations for new policies and procedures included where appropriate.

  19. Synthesis from Design Requirements of a Hybrid System for Transport Aircraft Longitudinal Control. Volume 1

    NASA Technical Reports Server (NTRS)

    Hynes, Charles S.; Hardy, Gordon H.; Sherry, Lance

    2007-01-01

    Volume I of this report presents a new method for synthesizing hybrid systems directly from design requirements, and applies the method to design of a hybrid system for longitudinal control of transport aircraft. The resulting system satisfies general requirement for safety and effectiveness specified a priori, enabling formal validation to be achieved. Volume II contains seven appendices intended to make the report accessible to readers with backgrounds in human factors, fli ght dynamics and control. and formal logic. Major design goals are (1) system desi g n integrity based on proof of correctness at the design level, (2), significant simplification and cost reduction in system development and certification, and (3) improved operational efficiency, with significant alleviation of human-factors problems encountered by pilots in current transport aircraft. This report provides for the first time a firm technical basis for criteria governing design and certification of avionic systems for transport aircraft. It should be of primary interest to designers of next-generation avionic systems.

  20. Simulator Evaluation of Simplified Propulsion-Only Emergency Flight Control Systems on Transport Aircraft

    NASA Technical Reports Server (NTRS)

    Burcham, Frank W., Jr.; Kaneshige, John; Bull, John; Maine, Trindel A.

    1999-01-01

    With the advent of digital engine control systems, considering the use of engine thrust for emergency flight control has become feasible. Many incidents have occurred in which engine thrust supplemented or replaced normal aircraft flight controls. In most of these cases, a crash has resulted, and more than 1100 lives have been lost. The NASA Dryden Flight Research Center has developed a propulsion-controlled aircraft (PCA) system in which computer-controlled engine thrust provides emergency flight control capability. Using this PCA system, an F-15 and an MD-11 airplane have been landed without using any flight controls. In simulations, C-17, B-757, and B-747 PCA systems have also been evaluated successfully. These tests used full-authority digital electronic control systems on the engines. Developing simpler PCA systems that can operate without full-authority engine control, thus allowing PCA technology to be installed on less capable airplanes or at lower cost, is also a desire. Studies have examined simplified ?PCA Ultralite? concepts in which thrust control is provided using an autothrottle system supplemented by manual differential throttle control. Some of these concepts have worked well. The PCA Ultralite study results are presented for simulation tests of MD-11, B-757, C-17, and B-747 aircraft.

  1. Demonstration of Four Operating Capabilities to Enable a Small Aircraft Transportation System

    NASA Technical Reports Server (NTRS)

    Viken, Sally A.; Brooks, Frederick M.

    2005-01-01

    The Small Aircraft Transportation System (SATS) project has been a five-year effort fostering research and development that could lead to the transformation of our country s air transportation system. It has become evident that our commercial air transportation system is reaching its peak in terms of capacity, with numerous delays in the system and the demand keeps steadily increasing. The SATS vision is to increase mobility in our nation s transportation system by expanding access to more than 3400 small community airports that are currently under-utilized. The SATS project has focused its efforts on four key operating capabilities that have addressed new emerging technologies and procedures to pave the way for a new way of air travel. The four key operating capabilities are: Higher Volume Operations at Non-Towered/Non-Radar Airports, En Route Procedures and Systems for Integrated Fleet Operations, Lower Landing Minimums at Minimally Equipped Landing Facilities, and Increased Single Pilot Performance. These four capabilities are key to enabling low-cost, on-demand, point-to-point transportation of goods and passengers utilizing small aircraft operating from small airports. The focus of this paper is to discuss the technical and operational feasibility of the four operating capabilities and demonstrate how they can enable a small aircraft transportation system.

  2. New Tools for New Missions - Unmanned Aircraft Systems Offer Exciting Capabilities

    NASA Astrophysics Data System (ADS)

    Bland, G.; Miles, T.; Pieri, D. C.; Coronado, P. L.; Fladeland, M. M.; Diaz, J. A.; Cione, J.; Maslanik, J. A.; Roman, M. O.; de Boer, G.; Argrow, B. M.; Novara, J.; Stachura, M.; Neal, D.; Moisan, J. R.

    2015-12-01

    There are numerous emerging possibilities for utilizing unmanned aircraft systems (UAS) to investigate a variety of natural hazards, both for prediction and analysis of specific events. Additionally, quick response capabilities will provide affordable, low risk support for emergency management teams. NASA's partnerships with commercial, university and other government agency teams are bringing new capabilities to research and emergency management communities. New technology platforms and instrument systems are gaining momentum for stand-off remote sensing observations, as well as penetration and detailed in-situ examination of natural and anthropogenic phenomena. Several pioneering investigations have provided the foundation for this development, including NASA projects with Aerosonde, Dragon Eye, and SIERRA platforms. With miniaturized instrument and platform technologies, these experiments demonstrated that previously unobtainable observations may significantly aid in the understanding, prediction, and assessment of natural hazards such as storms, volcanic eruptions, floods, and the potential impact of environmental changes. Remote sensing observations of storms and fires have also been successfully demonstrated through NASA's efforts with larger UAS such as the Global Hawk and Ikhana platforms. The future may unfold with new high altitude and/or long endurance capabilities, in some cases with less size and costs as payload capacity requirements are reduced through further miniaturization, and alternatively with expanded instrumentation and mission profiles. Several new platforms and instrument development projects are underway that will enable affordable, quick response observations. Additionally, distributed measurements that will provide near-simultaneous coverage at multiple locations will be possible - an exciting new mission concept that will greatly aid many observation scenarios. Partnerships with industry, academia, and other government agencies are all

  3. Cooperative Autonomous Observation of Coherent Atmospheric Structures using Small Unmanned Aircraft Systems

    NASA Astrophysics Data System (ADS)

    Ravela, S.

    2014-12-01

    Mapping the structure of localized atmospheric phenomena, from sea breeze and shallow cumuli to thunderstorms and hurricanes, is of scientific interest. Low-cost small unmanned aircraft systems (sUAS) open the possibility for autonomous "instruments" to map important small-scale phenomena (kilometers, hours) and serve as a testbed for for much larger scales. Localized phenomena viewed as coherent structures interacting with their large-scale environment are difficult to map. As simple simulations show, naive Eulerian or Lagrangian strategies can fail in mapping localized phenomena. Model-based techniques are needed. Meteorological targeting, where supplementary UAS measurements additionally constrain numerical models is promising, but may require many primary measurements to be successful. We propose a new, data-driven, field-operable, cooperative autonomous observing system (CAOS) framework. A remote observer (on a UAS) tracks tracers to identify an apparent motion model over short timescales. Motion-based predictions seed MCMC flight plans for other UAS to gather in-situ data, which is fused with the remote measurements to produce maps. The tracking and mapping cycles repeat, and maps can be assimilated into numerical models for longer term forecasting. CAOS has been applied to study small scale emissions. At Popocatepetl, in collaboration with CENAPRED and IPN, it is being applied map the plume using remote IR/UV UAS and in-situ SO2 sensing, with additional plans for water vapor, the electric field and ash. The combination of sUAS with autonomy appears to be highly promising methodology for environmental mapping. For more information, please visit http://caos.mit.edu

  4. Studies for determining the optimum propulsion system characteristics for use in a long range transport aircraft

    NASA Technical Reports Server (NTRS)

    Brines, G. L.

    1972-01-01

    A comprehensive evaluation of propulsion systems for the next generation of near-sonic long range transport aircraft indicates that socially responsive noise and emission goals can be achieved within the probable limits of acceptable airplane performance and economics. Technology advances needed in the 1975-1985 time period to support the development of these propulsion systems are identified and discussed. The single most significant result is the low noise, high performance potential of a low tip speed, spaced, two-stage fan.

  5. High-voltage (270 V) dc power-generating system for fighter aircraft

    NASA Technical Reports Server (NTRS)

    Mcginley, K. M.

    1983-01-01

    The advantages of using high voltage, direct current advanced power generating systems in fighter aircraft are discussed. Weight reduction is achieved. Efficiency is increased 85 to 90 percent by eliminating the constant speed drive. Power interruptions are eliminated. There are no speed restrictions and no powerline constraints. Personal safety is increased by eliminating the hold on frequency, present in ac systems, which causes muscle contractions.

  6. High-voltage (270 V) dc power-generating system for fighter aircraft

    NASA Astrophysics Data System (ADS)

    McGinley, K. M.

    1983-06-01

    The advantages of using high voltage, direct current advanced power generating systems in fighter aircraft are discussed. Weight reduction is achieved. Efficiency is increased 85 to 90 percent by eliminating the constant speed drive. Power interruptions are eliminated. There are no speed restrictions and no powerline constraints. Personal safety is increased by eliminating the hold on frequency, present in ac systems, which causes muscle contractions.

  7. Navigation systems for approach and landing of VTOL aircraft

    NASA Technical Reports Server (NTRS)

    Schmidt, S. F.; Mohr, R. L.

    1979-01-01

    The formulation and implementation of navigation systems used for research investigations in the V/STOLAND avionics system are described. The navigation systems prove position and velocity in a cartestian reference frame aligned with the runway. They use filtering techniques to combine the raw position data from navaids (e.g., TACAN, MLS) with data from onboard inertial sensors. The filtering techniques which use both complementary and Kalman filters, are described. The software for the navigation systems is also described.

  8. Solar Powered Aircraft, Photovoltaic Array/Battery System Tabletop Demonstration: Design and Operation Manual

    NASA Technical Reports Server (NTRS)

    Colozza, Anthony J.; Scheiman, David A.; Bailey, Sheila (Technical Monitor)

    2000-01-01

    A system was constructed to demonstrate the power system operation of a solar powered aircraft. The system consists of a photovoltaic (PV) array, a charge controller, a battery, an electric motor and propeller. The system collects energy from the PV array and either utilizes this energy to operate an electric motor or stores it in a rechargeable battery for future use. The system has a control panel which displays the output of the array and battery as well as the total current going to the electric motor. The control panel also has a means for adjusting the output to the motor to control its speed. The entire system is regulated around 12 VDC.

  9. Design and evaluation of a wireless sensor network based aircraft strength testing system.

    PubMed

    Wu, Jian; Yuan, Shenfang; Zhou, Genyuan; Ji, Sai; Wang, Zilong; Wang, Yang

    2009-01-01

    The verification of aerospace structures, including full-scale fatigue and static test programs, is essential for structure strength design and evaluation. However, the current overall ground strength testing systems employ a large number of wires for communication among sensors and data acquisition facilities. The centralized data processing makes test programs lack efficiency and intelligence. Wireless sensor network (WSN) technology might be expected to address the limitations of cable-based aeronautical ground testing systems. This paper presents a wireless sensor network based aircraft strength testing (AST) system design and its evaluation on a real aircraft specimen. In this paper, a miniature, high-precision, and shock-proof wireless sensor node is designed for multi-channel strain gauge signal conditioning and monitoring. A cluster-star network topology protocol and application layer interface are designed in detail. To verify the functionality of the designed wireless sensor network for strength testing capability, a multi-point WSN based AST system is developed for static testing of a real aircraft undercarriage. Based on the designed wireless sensor nodes, the wireless sensor network is deployed to gather, process, and transmit strain gauge signals and monitor results under different static test loads. This paper shows the efficiency of the wireless sensor network based AST system, compared to a conventional AST system. PMID:22408521

  10. A Candidate Wake Vortex Strength Definition for Application to the NASA Aircraft Vortex Spacing System (AVOSS)

    NASA Technical Reports Server (NTRS)

    Hinton, David A.; Tatnall, Chris R.

    1997-01-01

    A significant effort is underway at NASA Langley to develop a system to provide dynamical aircraft wake vortex spacing criteria to Air Traffic Control (ATC). The system under development, the Aircraft Vortex Spacing System (AVOSS), combines the inputs of multiple subsystems to provide separation matrices with sufficient stability for use by ATC and sufficient monitoring to ensure safety. The subsystems include a meteorological subsystem, a wake behavior prediction subsystem, a wake sensor subsystem, and system integration and ATC interfaces. The proposed AVOSS is capable of using two factors, singly or in combination, for reducing in-trail spacing. These factors are wake vortex motion out of a predefined approach corridor and wake decay below a strength that is acceptable for encounter. Although basic research into the wake phenomena has historically used wake total circulation as a strength parameter, there is a requirement for a more specific strength definition that may be applied across multiple disciplines and teams to produce a real-time, automated system. This paper presents some of the limitations of previous applications of circulation to aircraft wake observations and describes the results of a preliminary effort to bound a spacing system strength definition.

  11. Unmanned aircraft systems (UAS) activities at the Department of the Interior

    USGS Publications Warehouse

    Quirk, Bruce K.; Hutt, Michael E.

    2014-01-01

    The U.S. Department of the Interior (DOI) is responsible for protecting and managing the natural resources and heritage on almost 20% of the land in the United States. The DOI’s mission requires access to remotely sensed data over vast lands, including areas that are remote and potentially dangerous to access. Unmanned Aircraft Systems (UAS) technology has the potential to enable the DOI to be a better steward of the land by: (1) Improving natural hazard forecasting and the analysis of the impacts. (2) Improving the understanding of climate change to better plan for likely impacts. (3) Developing precipitation and evaporation forecasting to better manage water resources. (4) Monitoring Arctic ice change and its impacts on ecosystems, coasts, and transportation. (5) Increasing safety and effectiveness of wildland fire management. (6) Enhancing search and rescue capabilities. (7) Broadening the abilities to monitor environmental or landscape conditions and changes. (8) Better understanding and protecting the Nation’s ecosystems. The initial operational testing and evaluations performed by the DOI have proven that UAS technology can be used to support many of the Department’s activities. UAS technology provides scientists a way to look longer, closer and more frequently at some of Earth’s most remote areas—places that were previously too dangerous or expensive to monitor in detail. The flexibility of operations and relative low cost to purchase and operate Small Unmanned Aerial System (sUAS) enhances the ability to track long-term landscape and environmental change. The initial testing indicates the operational costs are approximately 10% of traditional manned aircraft. In addition, users can quickly assess landscape-altering events such as wildland fires, floods and volcanoes. UAS technology will allow the DOI to do more with less and in the process enhance the Department’s ability to provide unbiased scientific information to help stakeholders make

  12. Top-mounted inlet system feasibility for transonic-subsonic fighter aircraft applications

    NASA Technical Reports Server (NTRS)

    Williams, T. L.; Hunt, B. L.; Smeltzer, D. B.; Nelms, W. P.

    1981-01-01

    To inlet flow field and engine inlet performance data for an advanced fighter aircraft configuration were obtained over the Mach 0.6 to 2.0 range. The studies not only provided extensive data for the baseline arrangement, but also evaluated the effects of key aircraft configuration variables (inlet location, canopy-dorsal integration, wing leading-edge extension planform area, and variable incidence canards) on top inlet performance. In order to set these data in the context of practical aircraft systems top inlet performance is compared with that of more conventional inlet/airframe integrations. The results of these evaluations show that, for the top inlet configuration tested, relatively good inlet performance and compatibility characteristics are maintained during subsonic and transonic maneuver. However, at supersonic speeds, flow expansion over the forebody and wings causes an increase in local inlet Mach number subsequently reduces inlet performance levels. These characteristics infer that although top inlets many not pose a viable design option for aircraft requiring a high degree of supersonic maneuverability, they have distinct promise for vehicles with subsonic and transonic maneuver capabilities.

  13. Automatic carrier landing system for V/STOL aircraft using L1 adaptive and optimal control

    NASA Astrophysics Data System (ADS)

    Hariharapura Ramesh, Shashank

    This thesis presents a framework for developing automatic carrier landing systems for aircraft with vertical or short take-off and landing capability using two different control strategies---gain-scheduled linear optimal control, and L1 adaptive control. The carrier landing sequence of V/STOL aircraft involves large variations in dynamic pressure and aerodynamic coefficients arising because of the transition from aerodynamic-supported to jet-borne flight, descent to the touchdown altitude, and turns performed to align with the runway. Consequently, the dynamics of the aircraft exhibit a highly non-linear dynamical behavior with variations in flight conditions prior to touchdown. Therefore, the implication is the need for non-linear control techniques to achieve automatic landing. Gain-scheduling has been one of the most widely employed techniques for control of aircraft, which involves designing linear controllers for numerous trimmed flight conditions, and interpolating them to achieve a global non-linear control. Adaptive control technique, on the other hand, eliminates the need to schedule the controller parameters as they adapt to changing flight conditions.

  14. The Development of an Uninhabited Aircraft System for Remote Sensing in the Cryosphere

    NASA Astrophysics Data System (ADS)

    Donovan, W. R.; Hale, R. D.

    2006-12-01

    The use of autonomous aircraft in Cryospheric research is expected to lead to increases in the rate of data collection as well as decreases in both acquisition and operational costs associated with the implementation of aircraft in remote sensing. The University of Kansas is developing a robust, high-performance, autonomous platform capable of carrying up to eight wing-mounted antennas and 75 kg of payload over a distance of 1,700 km at speeds ranging from 150 300 km/hr. This aircraft, named the Meridian, is designed to carry a ground- penetrating radar system, currently under development at the University of Kansas, to measure ice thickness, snow accumulation, and basal conditions in support of the NSF funded Center for Remote Sensing of Ice Sheets (CReSIS). In addition, this vehicle is also designed to be a robust science test bed that can be used for a wide variety of missions related to Cryospheric research. This will offer the geophysical science community opportunities to utilize an uninhabited aircraft that has been designed specifically for remote sensing in extreme conditions. The key design parameters of the Meridian include a turbopropeller engine, which offers logistical benefits as it operates on heavy fuels that are commonly available in the Cryosphere; retractable landing gear with skis for operation from snow runways; anti-icing; and over-the-horizon operational capability

  15. LFC leading edge glove flight: Aircraft modification design, test article development and systems integration

    NASA Technical Reports Server (NTRS)

    Etchberger, F. R.

    1983-01-01

    Reduction of skin friction drag by suction of boundary layer air to maintain laminar flow has been known since Prandtl's published work in 1904. The dramatic increases in fuel costs and the potential for periods of limited fuel availability provided the impetus to explore technologies to reduce transport aircraft fuel consumption. NASA sponsored the Aircraft Energy Efficiency (ACEE) program in 1976 to develop technologies to improve fuel efficiency. This report documents the Lockheed-Georgia Company accomplishments in designing and fabricating a leading-edge flight test article incorporating boundary layer suction slots to be flown by NASA on their modified JetStar aircraft. Lockheed-Georgia Company performed as the integration contractor to design the JetStar aircraft modification to accept both a Lockheed and a McDonnell Douglas flight test article. McDonnell Douglas uses a porous skin concept. The report describes aerodynamic analyses, fabrication techniques, JetStar modifications, instrumentation requirements, and structural analyses and testing for the Lockheed test article. NASA will flight test the two LFC leading-edge test articles in a simulated commercial environment over a 6 to 8 month period in 1984. The objective of the flight test program is to evaluate the effectiveness of LFC leading-edge systems in reducing skin friction drag and consequently improving fuel efficiency.

  16. Auralization of NASA N+2 Aircraft Concepts from System Noise Predictions

    NASA Technical Reports Server (NTRS)

    Rizzi, Stephen A.; Burley, Casey L.; Thomas, Russel H.

    2016-01-01

    Auralization of aircraft flyover noise provides an auditory experience that complements integrated metrics obtained from system noise predictions. Recent efforts have focused on auralization methods development, specifically the process by which source noise information obtained from semi-empirical models, computational aeroacoustic analyses, and wind tunnel and flight test data, are used for simulated flyover noise at a receiver on the ground. The primary focus of this work, however, is to develop full vehicle auralizations in order to explore the distinguishing features of NASA's N+2 aircraft vis-à-vis current fleet reference vehicles for single-aisle and large twin-aisle classes. Some features can be seen in metric time histories associated with aircraft noise certification, e.g., tone-corrected perceived noise level used in the calculation of effective perceived noise level. Other features can be observed in sound quality metrics, e.g., loudness, sharpness, roughness, fluctuation strength and tone-to-noise ratio. A psychoacoustic annoyance model is employed to establish the relationship between sound quality metrics and noise certification metrics. Finally, the auralizations will serve as the basis for a separate psychoacoustic study aimed at assessing how well aircraft noise certification metrics predict human annoyance for these advanced vehicle concepts.

  17. Propulsion controlled aircraft computer

    NASA Technical Reports Server (NTRS)

    Cogan, Bruce R. (Inventor)

    2010-01-01

    A low-cost, easily retrofit Propulsion Controlled Aircraft (PCA) system for use on a wide range of commercial and military aircraft consists of an propulsion controlled aircraft computer that reads in aircraft data including aircraft state, pilot commands and other related data, calculates aircraft throttle position for a given maneuver commanded by the pilot, and then displays both current and calculated throttle position on a cockpit display to show the pilot where to move throttles to achieve the commanded maneuver, or is automatically sent digitally to command the engines directly.

  18. Study of advanced fuel system concepts for commercial aircraft and engines

    NASA Technical Reports Server (NTRS)

    Versaw, E. F.; Brewer, G. D.; Byers, W. D.; Fogg, H. W.; Hanks, D. E.; Chirivella, J.

    1983-01-01

    The impact on a commercial transport aircraft of using fuels which have relaxed property limits relative to current commercial jet fuel was assessed. The methodology of the study is outlined, fuel properties are discussed, and the effect of the relaxation of fuel properties analyzed. Advanced fuel system component designs that permit the satisfactory use of fuel with the candidate relaxed properties in the subject aircraft are described. The two fuel properties considered in detail are freezing point and thermal stability. Three candidate fuel system concepts were selected and evaluated in terms of performance, cost, weight, safety, and maintainability. A fuel system that incorporates insulation and electrical heating elements on fuel tank lower surfaces was found to be most cost effective for the long term.

  19. Modeling of the Mode S tracking system in support of aircraft safety research

    NASA Technical Reports Server (NTRS)

    Sorensen, J. A.; Goka, T.

    1982-01-01

    This report collects, documents, and models data relating the expected accuracies of tracking variables to be obtained from the FAA's Mode S Secondary Surveillance Radar system. The data include measured range and azimuth to the tracked aircraft plus the encoded altitude transmitted via the Mode S data link. A brief summary is made of the Mode S system status and its potential applications for aircraft safety improvement including accident analysis. FAA flight test results are presented demonstrating Mode S range and azimuth accuracy and error characteristics and comparing Mode S to the current ATCRBS radar tracking system. Data are also presented that describe the expected accuracy and error characteristics of encoded altitude. These data are used to formulate mathematical error models of the Mode S variables and encoded altitude. A brief analytical assessment is made of the real-time tracking accuracy available from using Mode S and how it could be improved with down-linked velocity.

  20. Flight study of on-board enhanced vision system for all-weather aircraft landing

    NASA Astrophysics Data System (ADS)

    Akopdjanan, Yuri A.; Machikhin, Alexander S.; Bilanchuk, Vyacheslav V.; Drynkin, Vladimir N.; Falkov, Eduard Y.; Tsareva, Tatiana I.; Fomenko, Anatoly I.

    2014-11-01

    On-board enhanced vision system for all-weather aircraft navigation and landing which is currently under development in State research institute of aviation systems is described. The system is based on combination of three imagers sensitive in visible, short wave infrared (SWIR) and long wave infrared (LWIR) spectral ranges and demonstrating to the pilot only the most informative images from the time-aligned multi-sensor data. The results of flight tests at glissade trajectories of the light aircraft OR-5 MO obtained at various weather conditions are presented. It is shown that each spectral range may be informative under certain conditions of observation. In adverse and poor-visibility conditions, such as fog, high humidity and low clouds, SWIR range has the biggest information content.