Science.gov

Sample records for aircraft exhaust plume

  1. Stratospheric aircraft exhaust plume and wake chemistry

    NASA Technical Reports Server (NTRS)

    Miake-Lye, R. C.; Martinez-Sanchez, M.; Brown, R. C.; Kolb, C. E.; Worsnop, D. R.; Zahniser, M. S.; Robinson, G. N.; Rodriguez, J. M.; Ko, M. K. W.; Shia, R-L.

    1993-01-01

    Progress to date in an ongoing study to analyze and model emissions leaving a proposed High Speed Civil Transport (HSCT) from when the exhaust gases leave the engine until they are deposited at atmospheric scales in the stratosphere is documented. A kinetic condensation model was implemented to predict heterogeneous condensation in the plume regime behind an HSCT flying in the lower stratosphere. Simulations were performed to illustrate the parametric dependence of contrail droplet growth on the exhaust condensation nuclei number density and size distribution. Model results indicate that the condensation of water vapor is strongly dependent on the number density of activated CN. Incorporation of estimates for dilution factors into a Lagrangian box model of the far-wake regime with scale-dependent diffusion indicates negligible decrease in ozone and enhancement of water concentrations of 6-13 times background, which decrease rapidly over 1-3 days. Radiative calculations indicate a net differential cooling rate of the plume about 3K/day at the beginning of the wake regime, with a total subsidence ranging between 0.4 and 1 km. Results from the Lagrangian plume model were used to estimate the effect of repeated superposition of aircraft plumes on the concentrations of water and NO(y) along a flight corridor. Results of laboratory studies of heterogeneous chemistry are also described. Kinetics of HCl, N2O5 and ClONO2 uptake on liquid sulfuric acid were measured as a function of composition and temperature. Refined measurements of the thermodynamics of nitric acid hydrates indicate that metastable dihydrate may play a role in the nucleation of more stable trihydrates PSC's.

  2. Abatement of an aircraft exhaust plume using aerodynamic baffles.

    PubMed

    Bennett, Michael; Christie, Simon M; Graham, Angus; Garry, Kevin P; Velikov, Stefan; Poll, D Ian; Smith, Malcolm G; Mead, M Iqbal; Popoola, Olalekan A M; Stewart, Gregor B; Jones, Roderic L

    2013-03-01

    The exhaust jet from a departing commercial aircraft will eventually rise buoyantly away from the ground; given the high thrust/power (i.e., momentum/buoyancy) ratio of modern aero-engines, however, this is a slow process, perhaps requiring ∼ 1 min or more. Supported by theoretical and wind tunnel modeling, we have experimented with an array of aerodynamic baffles on the surface behind a set of turbofan engines of 124 kN thrust. Lidar and point sampler measurements show that, as long as the intervention takes place within the zone where the Coanda effect holds the jet to the surface (i.e., within about 70 m in this case), then quite modest surface-mounted baffles can rapidly lift the jet away from the ground. This is of potential benefit in abating both surface concentrations and jet blast downstream. There is also some modest acoustic benefit. By distributing the aerodynamic lift and drag across an array of baffles, each need only be a fraction of the height of a single blast fence.

  3. Abatement of an aircraft exhaust plume using aerodynamic baffles.

    PubMed

    Bennett, Michael; Christie, Simon M; Graham, Angus; Garry, Kevin P; Velikov, Stefan; Poll, D Ian; Smith, Malcolm G; Mead, M Iqbal; Popoola, Olalekan A M; Stewart, Gregor B; Jones, Roderic L

    2013-03-01

    The exhaust jet from a departing commercial aircraft will eventually rise buoyantly away from the ground; given the high thrust/power (i.e., momentum/buoyancy) ratio of modern aero-engines, however, this is a slow process, perhaps requiring ∼ 1 min or more. Supported by theoretical and wind tunnel modeling, we have experimented with an array of aerodynamic baffles on the surface behind a set of turbofan engines of 124 kN thrust. Lidar and point sampler measurements show that, as long as the intervention takes place within the zone where the Coanda effect holds the jet to the surface (i.e., within about 70 m in this case), then quite modest surface-mounted baffles can rapidly lift the jet away from the ground. This is of potential benefit in abating both surface concentrations and jet blast downstream. There is also some modest acoustic benefit. By distributing the aerodynamic lift and drag across an array of baffles, each need only be a fraction of the height of a single blast fence. PMID:23343109

  4. Computational models for the viscous/inviscid analysis of jet aircraft exhaust plumes. [predicting afterbody drag

    NASA Technical Reports Server (NTRS)

    Dash, S. M.; Pergament, H. S.; Thorpe, R. D.

    1980-01-01

    Computational models which analyze viscous/inviscid flow processes in jet aircraft exhaust plumes are discussed. These models are component parts of an NASA-LaRC method for the prediction of nozzle afterbody drag. Inviscid/shock processes are analyzed by the SCIPAC code which is a compact version of a generalized shock capturing, inviscid plume code (SCIPPY). The SCIPAC code analyzes underexpanded jet exhaust gas mixtures with a self-contained thermodynamic package for hydrocarbon exhaust products and air. A detailed and automated treatment of the embedded subsonic zones behind Mach discs is provided in this analysis. Mixing processes along the plume interface are analyzed by two upgraded versions of an overlaid, turbulent mixing code (BOAT) developed previously for calculating nearfield jet entrainment. The BOATAC program is a frozen chemistry version of BOAT containing the aircraft thermodynamic package as SCIPAC; BOATAB is an afterburning version with a self-contained aircraft (hydrocarbon/air) finite-rate chemistry package. The coupling of viscous and inviscid flow processes is achieved by an overlaid procedure with interactive effects accounted for by a displacement thickness type correction to the inviscid plume interface.

  5. First direct sulfuric acid detection in the exhaust plume of a jet aircraft in flight

    NASA Astrophysics Data System (ADS)

    Curtius, J.; Sierau, B.; Arnold, F.; Baumann, R.; Busen, R.; Schulte, P.; Schumann, U.

    Sulfuric acid (SA) was for the first time directly detected in the exhaust plume of a jet aircraft in flight. The measurements were made by a novel aircraft-based VACA (Volatile Aerosol Component Analyzer) instrument of MPI-K Heidelberg while the research aircraft Falcon was chasing another research aircraft ATTAS. The VACA measures the total SA in the gas and in volatile submicron aerosol particles. During the chase the engines of the ATTAS alternatively burned sulfur-poor and sulfur-rich fuel. In the sulfur-rich plume very marked enhancements of total SA were observed of up to 1300 pptv which were closely correlated with ΔCO2 and ΔT and were far above the local ambient atmospheric background-level of typically 15-50 pptv. Our observations indicate a lower limit for the efficiency ɛ for fuel-sulfur conversion to SA of 0.34 %.

  6. Remote measurement of the plume shape of aircraft exhausts at airports by passive FTIR spectrometry

    NASA Astrophysics Data System (ADS)

    Schafer, Klaus; Jahn, Carsten; Utzig, Selina; Flores-Jardines, Edgar; Harig, Roland; Rusch, Peter

    2004-11-01

    Information about the interaction between the exhaust plume of an aircraft jet engine and ambient air is required for the application of small-scale chemistry-transport models to investigate airport air quality. This interaction is not well understood. In order to study the interaction, spatial information about the plume is required. FTIR emission spectroscopy may be applied to analyze the aircraft exhausts. In order to characterize the plumes spatially, a scanning imaging FTIR system (SIGIS) has been improved. SIGIS is comprised of an interferometer (Bruker OPAG), an azimuth-elevation-scanning mirror, a data acquisition and control system with digital signal processors (DSP), an infrared camera and a personal computer. With this instrumentation it is possible to visualise the plume and to obtain information about the temperature distribution within the plume. Measurements are performed at low spectral resolution, because the dynamic environment of these measurements limits the measurement time to about 2 minutes. Measurements of the plume shapes of an APU and of main engines were performed.

  7. Stratospheric aircraft exhaust plume and wake chemistry studies

    NASA Technical Reports Server (NTRS)

    Miake-Lye, R. C.; Martinez-Sanchez, M.; Brown, R. C.; Kolb, C. E.; Worsnop, D. R.; Zahniser, M. S.; Robinson, G. N.; Rodriguez, J. M.; Ko, M. K. W.; Shia, R-L.

    1992-01-01

    This report documents progress to date in an ongoing study to analyze and model emissions leaving a proposed High Speed Civil Transport (HSCT) from when the exhaust gases leave the engine until they are deposited at atmospheric scales in the stratosphere. Estimates are given for the emissions, summarizing relevant earlier work (CIAP) and reviewing current propulsion research efforts. The chemical evolution and the mixing and vortical motion of the exhaust are analyzed to track the exhaust and its speciation as the emissions are mixed to atmospheric scales. The species tracked include those that could be heterogeneously reactive on the surfaces of the condensed solid water (ice) particles and on exhaust soot particle surfaces. Dispersion and reaction of chemical constituents in the far wake are studied with a Lagrangian air parcel model, in conjunction with a radiation code to calculate the net heating/cooling. Laboratory measurements of heterogeneous chemistry of aqueous sulfuric acid and nitric acid hydrates are also described. Results include the solubility of HCl in sulfuric acid which is a key parameter for modeling stratospheric processing. We also report initial results for condensation of nitric acid trihydrate from gas phase H2O and HNO3.

  8. In situ observations in aircraft exhaust plumes in the lower stratosphere at midlatitudes

    NASA Technical Reports Server (NTRS)

    Fahey, D. W.; Keim, E. R.; Woodbridge, E. L.; Gao, R. S.; Boering, K. A.; Daube, B. C.; Wofsy, S. C.; Lohmann, R. P.; Hintsa, E. J.; Dessler, A. E.

    1995-01-01

    Instrumentation on the NASA ER-2 high-altitude aircraft has been used to observe engine exhaust from the same aircraft while operating in the lower stratosphere. Encounters with the exhaust plume occurred approximately 10 min after emission with spatial scales near 2 km and durations of up to 10 s. Measurements include total reactive nitrogen, NO(y), the component species NO and NO2, CO2, H2O, CO, N2O, condensation nuclei, and meteorological parameters. The integrated amounts of CO2 and H2O during the encounters are consistent with the stoichiometry of fuel combustion (1:1 molar). Emission indices (EI) for NO(x) (= NO + NO2), CO, and N2O are calculated using simultaneous measurements of CO2. EI values for NO(x) near 4 g/(kg fuel) are in good agreement with values scaled from limited ground-based tests of the ER-2 engine. Non-NO(x) species comprise less than about 20% of emitted reactive nitrogen, consistent with model evaluations. In addition to demonstrating the feasibility of aircraft plume detection, these results increase confidence in the projection of emissions from current and proposed supersonic aircraft fleets and hence in the assessment of potential long-term changes in the atmosphere.

  9. Measurements of HONO, NO, NOy and SO2 in aircraft exhaust plumes at cruise

    NASA Astrophysics Data System (ADS)

    Jurkat, T.; Voigt, C.; Arnold, F.; Schlager, H.; Kleffmann, J.; Aufmhoff, H.; Schäuble, D.; Schaefer, M.; Schumann, U.

    2011-05-01

    Measurements of gaseous nitrogen and sulfur oxide emissions in young aircraft exhaust plumes give insight into chemical oxidation processes inside aircraft engines. Particularly, the OH-induced formation of nitrous acid (HONO) from nitrogen oxide (NO) and sulfuric acid (H2SO4) from sulfur dioxide (SO2) inside the turbine which is highly uncertain, need detailed analysis to address the climate impact of aviation. We report on airborne in situ measurements at cruise altitudes of HONO, NO, NOy, and SO2 in 9 wakes of 8 different types of modern jet airliners, including for the first time also an A380. Measurements of HONO and SO2 were made with an ITCIMS (Ion Trap Chemical Ionization Mass Spectrometer) using a new ion-reaction scheme involving SF5- reagent ions. The measured molar ratios HONO/NO and HONO/NOy with averages of 0.038 ± 0.010 and 0.027 ± 0.005 were found to decrease systematically with increasing NOx emission-index (EI NOx). We calculate an average EI HONO of 0.31 ± 0.12 g NO2 kg-1. Using reliable measurements of HONO and NOy, which are less adhesive than H2SO4 to the inlet walls, we derive the OH-induced conversion fraction of fuel sulfur to sulfuric acid $\\varepsilon$ with an average of 2.2 ± 0.5 %. $\\varepsilon$ also tends to decrease with increasing EI NOx, consistent with earlier model simulations. The lowest HONO/NO, HONO/NOy and $\\varepsilon$ was observed for the largest passenger aircraft A380.

  10. Sulfuric acid measurements in the exhaust plume of a jet aircraft in flight: Implications for the sulfuric acid formation efficiency

    NASA Astrophysics Data System (ADS)

    Curtius, J.; Arnold, F.; Schulte, P.

    2002-04-01

    Sulfuric acid concentrations were measured in the exhaust plume of a B737-300 aircraft in flight. The measurements were made onboard of the German research aircraft Falcon using the Volatile Aerosol Component Analyzer (VACA). The VACA measures total H2SO4, which is the sum of gaseous H2SO4 and aerosol H2SO4. Measurements took place at distances of 25-200 m behind the B737 corresponding to plume ages of about 0.1-1 seconds. The fuel sulfur content (FSC) of the fuel burned by the B737 engines was alternatively 2.6 and 56 mg sulfur per kilogram fuel (ppmm). H2SO4 concentrations measured in the plume for the 56 ppmm sulfur case were up to ~600 pptv. The average concentration of H2SO4 measured in the ambient atmosphere outside the aircraft plume was 88 pptv, the maximum ambient atmospheric H2SO4 was ~300 pptv. Average efficiencies ɛΔCO2 = 3.3 +/- 1.8% and ɛΔT = 2.9 +/- 1.6% for fuel sulfur conversion to sulfuric acid were inferred when relating the H2SO4 data to measurements of the plume tracers ΔCO2 and ΔT.

  11. Exhaust Nozzle Plume and Shock Wave Interaction

    NASA Technical Reports Server (NTRS)

    Castner, Raymond S.; Elmiligui, Alaa; Cliff, Susan

    2013-01-01

    Fundamental research for sonic boom reduction is needed to quantify the interaction of shock waves generated from the aircraft wing or tail surfaces with the exhaust plume. Both the nozzle exhaust plume shape and the tail shock shape may be affected by an interaction that may alter the vehicle sonic boom signature. The plume and shock interaction was studied using Computational Fluid Dynamics simulation on two types of convergent-divergent nozzles and a simple wedge shock generator. The nozzle plume effects on the lower wedge compression region are evaluated for two- and three-dimensional nozzle plumes. Results show that the compression from the wedge deflects the nozzle plume and shocks form on the deflected lower plume boundary. The sonic boom pressure signature of the wedge is modified by the presence of the plume, and the computational predictions show significant (8 to 15 percent) changes in shock amplitude.

  12. Multispectral imaging of aircraft exhaust

    NASA Astrophysics Data System (ADS)

    Berkson, Emily E.; Messinger, David W.

    2016-05-01

    Aircraft pollutants emitted during the landing-takeoff (LTO) cycle have significant effects on the local air quality surrounding airports. There are currently no inexpensive, portable, and unobtrusive sensors to quantify the amount of pollutants emitted from aircraft engines throughout the LTO cycle or to monitor the spatial-temporal extent of the exhaust plume. We seek to thoroughly characterize the unburned hydrocarbon (UHC) emissions from jet engine plumes and to design a portable imaging system to remotely quantify the emitted UHCs and temporally track the distribution of the plume. This paper shows results from the radiometric modeling of a jet engine exhaust plume and describes a prototype long-wave infrared imaging system capable of meeting the above requirements. The plume was modeled with vegetation and sky backgrounds, and filters were selected to maximize the detectivity of the plume. Initial calculations yield a look-up chart, which relates the minimum amount of emitted UHCs required to detect the presence of a plume to the noise-equivalent radiance of a system. Future work will aim to deploy the prototype imaging system at the Greater Rochester International Airport to assess the applicability of the system on a national scale. This project will help monitor the local pollution surrounding airports and allow better-informed decision-making regarding emission caps and pollution bylaws.

  13. The chemistry and diffusion of aircraft exhausts in the lower stratosphere during the first few hours after fly-by. [with attention to ozone depletion by SST exhaust plumes

    NASA Technical Reports Server (NTRS)

    Hilst, G. R.

    1974-01-01

    An analysis of the hydrogen-nitrogen-oxygen reaction systems in the lower stratosphere as they are initially perturbed by individual aircraft engine exhaust plumes was conducted in order to determine whether any significant chemical reactions occur, either among exhaust chemical species, or between these species and the environmental ozone, while the exhaust products are confined to intact plume segments at relatively high concentrations. The joint effects of diffusive mixing and chemical kinetics on the reactions were also studied, using the techniques of second-order closure diffusion/chemistry models. The focus of the study was on the larger problem of the potential depletion of ozone by supersonic transport aircraft exhaust materials emitted into the lower stratosphere.

  14. Ship exhaust gas plume cooling

    NASA Astrophysics Data System (ADS)

    Schleijpen, H. M. A.; Neele, Filip P.

    2004-08-01

    The exhaust gas plume is an important and sometimes dominating contributor to the infrared signature of ships. Suppression of the infrared ship signatures has been studied by TNO for the Royal Netherlands Navy over considerable time. This study deals with the suppression effects, which can be achieved using a spray of cold water in the inner parts of the exhaust system. The effects are compared with the effect of cooling with air. A typical frigate size diesel engine serves as an example for gas flow, composition and temperature of the plume. The infrared emission of the cooled an un-cooled exhaust gases is calculated. Both the spectral behaviour and the integrated values over typical bands are discussed. Apart from the signature also some advantages of water exhaust gas cooling for the ship design are discussed.

  15. Infrared Signature Modeling and Analysis of Aircraft Plume

    NASA Astrophysics Data System (ADS)

    Rao, Arvind G.

    2011-09-01

    In recent years, the survivability of an aircraft has been put to task more than ever before. One of the main reasons is the increase in the usage of Infrared (IR) guided Anti-Aircraft Missiles, especially due to the availability of Man Portable Air Defence System (MANPADS) with some terrorist groups. Thus, aircraft IR signatures are gaining more importance as compared to their radar, visual, acoustic, or any other signatures. The exhaust plume ejected from the aircraft is one of the important sources of IR signature in military aircraft that use low bypass turbofan engines for propulsion. The focus of the present work is modelling of spectral IR radiation emission from the exhaust jet of a typical military aircraft and to evaluate the aircraft susceptibility in terms of the aircraft lock-on range due to its plume emission, for a simple case against a typical Surface to Air Missile (SAM). The IR signature due to the aircraft plume is examined in a holistic manner. A comprehensive methodology of computing IR signatures and its affect on aircraft lock-on range is elaborated. Commercial CFD software has been used to predict the plume thermo-physical properties and subsequently an in-house developed code was used for evaluating the IR radiation emitted by the plume. The LOWTRAN code has been used for modeling the atmospheric IR characteristics. The results obtained from these models are in reasonable agreement with some available experimental data. The analysis carried out in this paper succinctly brings out the intricacy of the radiation emitted by various gaseous species in the plume and the role of atmospheric IR transmissivity in dictating the plume IR signature as perceived by an IR guided SAM.

  16. Infrared recordings for characterizing an aircraft plume

    NASA Astrophysics Data System (ADS)

    Retief, S. J. P.; Dreyer, M. M.; Brink, C.

    2014-06-01

    Some key electro-optical measurements required to characterize an aircraft plume for automated recognition are shown, as well as some aspects of the processing and use of these measurements. Plume measurements with Short Wavelength Infrared (1.1 - 2.5 um), Mid-Wavelength Infrared (2.5 - 7 um) and Long Wavelength Infrared (7 - 15 um) cameras are presented, as well as spectroradiometer measurements covering the whole Mid-Wavelength, Long Wavelength and upper part of the Short Wavelength Infrared bands. The two limiting factors for the detection of the plume, i.e. the atmospheric transmission bands and the plume emission bands, are discussed, and it is shown how a micro turbine engine can assist in aircraft plume studies. One such a study, regarding the differentiation between an aircraft plume and a blackbody emitter using subbands in the Mid-Wavelength Infrared, is presented. The factors influencing aircraft plume emission are discussed, and the measurements required to characterize an aircraft plume for the purpose of constructing a mathematical plume model are indicated. Since the required measurements are prescribed by the plume model requirements, a brief overview of the plume model, that can be used to simulate the results of the plume's emission under different conditions and observation configurations, is given. Such a model can be used to test the robustness of algorithms, like the mentioned subband method, for identifying aircraft plumes. Such a model furthermore enables the simulation of measurements that would be obtained by an electro-optical system, like an infrared seekerhead of a missile, of a plume for the purpose of algorithm training under various simulated environmental conditions.

  17. Wedge Shock and Nozzle Exhaust Plume Interaction in a Supersonic Jet Flow

    NASA Technical Reports Server (NTRS)

    Castner, Raymond; Zaman, Khairul; Fagan, Amy; Heath, Christopher

    2014-01-01

    Fundamental research for sonic boom reduction is needed to quantify the interaction of shock waves generated from the aircraft wing or tail surfaces with the nozzle exhaust plume. Aft body shock waves that interact with the exhaust plume contribute to the near-field pressure signature of a vehicle. The plume and shock interaction was studied using computational fluid dynamics and compared with experimental data from a coaxial convergent-divergent nozzle flow in an open jet facility. A simple diamond-shaped wedge was used to generate the shock in the outer flow to study its impact on the inner jet flow. Results show that the compression from the wedge deflects the nozzle plume and shocks form on the opposite plume boundary. The sonic boom pressure signature of the nozzle exhaust plume was modified by the presence of the wedge. Both the experimental results and computational predictions show changes in plume deflection.

  18. Impact of aircraft plume dynamics on airport local air quality

    NASA Astrophysics Data System (ADS)

    Barrett, Steven R. H.; Britter, Rex E.; Waitz, Ian A.

    2013-08-01

    Air quality degradation in the locality of airports poses a public health hazard. The ability to quantitatively predict the air quality impacts of airport operations is of importance for assessing the air quality and public health impacts of airports today, of future developments, and for evaluating approaches for mitigating these impacts. However, studies such as the Project for the Sustainable Development of Heathrow have highlighted shortcomings in understanding of aircraft plume dispersion. Further, if national or international aviation environmental policies are to be assessed, a computationally efficient method of modeling aircraft plume dispersion is needed. To address these needs, we describe the formulation and validation of a three-dimensional integral plume model appropriate for modeling aircraft exhaust plumes at airports. We also develop a simplified concentration correction factor approach to efficiently account for dispersion processes particular to aircraft plumes. The model is used to explain monitoring station results in the London Heathrow area showing that pollutant concentrations are approximately constant over wind speeds of 3-12 m s-1, and is applied to reproduce empirically derived relationships between engine types and peak NOx concentrations at Heathrow. We calculated that not accounting for aircraft plume dynamics would result in a factor of 1.36-2.3 over-prediction of the mean NOx concentration (depending on location), consistent with empirical evidence of a factor of 1.7 over-prediction. Concentration correction factors are also calculated for aircraft takeoff, landing and taxi emissions, providing an efficient way to account for aircraft plume effects in atmospheric dispersion models.

  19. Lidar measurements of launch vehicle exhaust plumes

    NASA Astrophysics Data System (ADS)

    Dao, Phan D.; Curtis, David; Farley, Robert; Soletsky, Philip; Davidson, Gilbert; Gelbwachs, Jerry A.

    1997-10-01

    The Mobile Lidar Trailer (MLT) was developed and operated to characterize launch vehicle exhaust plume and its effects on the environment. Two recent applications of this facility are discussed in this paper. In the first application, the MLT was used to characterize plumes in the stratosphere up to 45 km in support of the Air Force Space and Missile Center's Rocket Impact on Stratospheric Ozone program. Solid rocket motors used by Titan IV and other heavy launch vehicles release large quantities of gaseous hydrochloric acid in the exhaust and cause concerns about a possible depletion of the ozone layer. The MLT was deployed to Cape Canaveral Air Station since October 1995 to monitor ozone and to investigate plume dynamics and properties. Six campaigns have been conducted and more are planned to provide unique data with the objective of addressing the environmental issues. The plume was observed to disperse rapidly into horizontally extended yet surprisingly thin layer with thickness recorded in over 700 lidar profiles to be less than 250 meters. MLT operates with the laser wavelengths of 532, 355 and 308 nm and a scanning receiving telescope. Data on particle backscattering at the three wavelengths suggest a consistent growth of particle size in the 2-3 hour observation sessions following the launch. In the second type of application, the MLT was used as a remote sensor of nitrogen dioxide, a caustic gaseous by-product of common liquid propellant oxidizer. Two campaigns were conducted at the Sol Se Mete Canyon test site in New Mexico in December 1996 an January 1997 to study the dispersion of nitrogen dioxide and rocket plume.

  20. Assessment of analytical techniques for predicting solid propellant exhaust plumes and plume impingement environments

    NASA Technical Reports Server (NTRS)

    Tevepaugh, J. A.; Smith, S. D.; Penny, M. M.

    1977-01-01

    An analysis of experimental nozzle, exhaust plume, and exhaust plume impingement data is presented. The data were obtained for subscale solid propellant motors with propellant Al loadings of 2, 10 and 15% exhausting to simulated altitudes of 50,000, 100,000 and 112,000 ft. Analytical predictions were made using a fully coupled two-phase method of characteristics numerical solution and a technique for defining thermal and pressure environments experienced by bodies immersed in two-phase exhaust plumes.

  1. Implementation of microwave transmissions for rocket exhaust plume diagnostics

    NASA Astrophysics Data System (ADS)

    Coutu, Nicholas George

    Rocket-launched vehicles produce a trail of exhaust that contains ions, free electrons, and soot. The exhaust plume increases the effective conductor length of the rocket. A conductor in the presence of an electric field (e.g. near the electric charge stored within a cloud) can channel an electric discharge. The electrical conductivity of the exhaust plume is related to its concentration of free electrons. The risk of a lightning strike in-flight is a function of both the conductivity of the body and its effective length. This paper presents an approach that relates the electron number density of the exhaust plume to its propagation constant. Estimated values of the collision frequency and electron number density generated from a numerical simulation of a rocket plume are used to guide the design of the experimental apparatus. Test par meters are identified for the apparatus designed to transmit a signal sweep form 4 GHz to 7 GHz through the exhaust plume of a J-class solid rocket motor. Measurements of the scattering parameters imply that the transmission does not penetrate the plume, but instead diffracts around it. The electron density 20 cm downstream from the nozzle exit is estimated to be between 2.7x1014 m--3 and 5.6x10 15 m--3.

  2. Aircraft Piston Engine Exhaust Emission Symposium

    NASA Technical Reports Server (NTRS)

    1976-01-01

    A 2-day symposium on the reduction of exhaust emissions from aircraft piston engines was held on September 14 and 15, 1976, at the Lewis Research Center in Cleveland, Ohio. Papers were presented by both government organizations and the general aviation industry on the status of government contracts, emission measurement problems, data reduction procedures, flight testing, and emission reduction techniques.

  3. Predicting exhaust plume boundaries with supersonic external flows

    NASA Astrophysics Data System (ADS)

    Nash, Kyle L.; Whitaker, Kevin W.; Freeman, L. Michael

    1994-09-01

    Several methods for predicting exhaust plume boundaries with a surrounding external flow currently exist. Unfortunately, these methods are usually cumbersome and often expensive, since they may be computationally intensive. Also, these methods typically provide many flowfield details in addition to the plume boundary location. If only the latter is desired, then calculation of these other details is wasted effort. This concern resulted in the development of a simplified plume boundary prediction method capable of analyzing underexpanded nozzle flow exhausting into a supersonic external flow. This new method is based upon the well-established Latvala method and uses an iterative scheme that employs two-dimensional flowfield assumptions. However, the method is still applicable to axisymmetric plumes, and its simplicity permits efficient operation on personal computers. Predictions of boundaries for axisymmetric plumes surrounded by various high-speed external flows exhibit excellent agreement with empirical data, and parametric studies indicate that trends are correctly predicted.

  4. Prediction of subsonic aircraft flows with jet exhaust interactions

    NASA Technical Reports Server (NTRS)

    Roberts, D. W.

    1981-01-01

    A numerical procedure to calculate the flow fields resulting from the viscous inviscid interactions that occur when a strong jet exhaust and aircraft flow field coupling exists was developed. The approach divides the interaction region into zones which are either predominantly viscous or inviscid. The flow in the inviscid zone, which surrounds most of the aircraft, is calculated using an existing potential flow code. The viscous flow zone, which encompasses the jet plume, is modeled using a parabolized Navier-Stokes code. The procedure features the coupling of the zonal solutions such that sufficient information is transferred between the zones to preserve the effects of the interactions. The zonal boundaries overlap and the boundary conditions are the information link between zones. An iteration scheme iterates the coupled analysis until convergence has been obtained.

  5. NTS-spill test facility wind tunnel exhaust plume characterization

    SciTech Connect

    Kerr, R.; Goldwire, H.; Smith, D.; Rawlings, J.; Schaffer, T.; Robson, J.

    1994-07-01

    The exhaust plume of the NTS-STF wind tunnel has been characterized to demonstrate its suitability as a target for CALIOPE experiments. Smoke from grenades has been released in multiple quantities and at different positions inside the tunnel. The smoke plumes have been recorded on video tape. The wind velocity profile has also been determined with a moveable array of miniature vane anemometers. These measurements will be used to determine the vapor concentration pathlength as part of the ground truth.

  6. Inerting Aircraft Fuel Systems Using Exhaust Gases

    NASA Technical Reports Server (NTRS)

    Hehemann, David G.

    2002-01-01

    Our purpose in this proposal was to determine the feasibility of using carbon dioxide, possibly obtained from aircraft exhaust gases as a substance to inert the fuel contained in fuel tanks aboard aircraft. To do this, we decided to look at the effects carbon dioxide has upon commercial Jet-A aircraft fuel. In particular, we looked at the solubility of CO2 in Jet-A fuel, the pumpability of CO2-saturated Jet-A fuel, the flashpoint of Jet-A fuel under various mixtures of air and CO2, the static outgassing of CO2-Saturated Jet-A fuel and the dynamic outgassing of Jet-A fuel during pumping of Jet-A fuel.

  7. Aircraft emissions, plume chemistry, and alternative fuels: results from the APEX, AAFEX, and MDW-2009 campaigns

    NASA Astrophysics Data System (ADS)

    Wood, E. C.; Herndon, S. C.; Timko, M.; Yu, Z.; Miake-Lye, R. C.; Lee, B. H.; Santoni, G.; Munger, J. W.; Wofsy, S.; Anderson, B.; Knighton, W. B.

    2009-12-01

    We describe observations of aircraft emissions from the APEX, JETS-APEX2, APEX3, MDW-2009 and AAFEX campaigns. Direct emissions of HOx precursors are important for understanding exhaust plume chemistry due to their role in determining HOx concentrations. Nitrous acid (HONO) and formaldehyde are crucial HOx precursors and thus drivers of plume chemistry. At idle power, aircraft engine exhaust is unique among fossil fuel combustion sources due to the speciation of both NOx and VOCs. The impacts of emissions of HOx precursors on plume chemistry at low power are demonstrated with empirical observations of rapid NO to NO2 conversion, indicative of rapid HOx chemistry. The impacts of alternative fuels (derived from biomass, coal, and natural gas) on emissions of NOx, CO, and speciated VOCs are discussed.

  8. Impact of rocket exhaust plumes on atmospheric composition and climate ― an overview

    NASA Astrophysics Data System (ADS)

    Voigt, Ch.; Schumann, U.; Graf, K.; Gottschaldt, K.-D.

    2013-03-01

    Rockets are the only direct anthropogenic emission sources into the upper atmosphere. Gaseous rocket emissions include CO, N2, H2, H2O, and CO2, while solid rocket motors (SRM) additionally inject significant amounts of aluminum oxide (Al2O3) particles and gaseous chlorine species into the atmosphere. These emissions strongly perturb local atmospheric trace gas and aerosol distributions. Here, previous aircraft measurements in various rocket exhaust plumes including several large space shuttle launch vehicles are compiled. The observed changes of the lower stratospheric composition in the near field are summarized. The injection of chlorine species and particles into the stratosphere can lead to ozone loss in rocket exhaust plumes. Local observations are compared with global model simulations of the effects of rocket emissions on stratospheric ozone concentrations. Large uncertainties remain concerning individual ozone loss reaction rates and the impact of small-scale plume effects on global chemistry. Further, remote sensing data from satellite indicate that rocket exhaust plumes regionally increase iron and water vapor concentrations in the mesosphere potentially leading to the formation of mesospheric clouds at 80- to 90-kilometer altitude. These satellite observations are summarized and the rocket emission inventory is compared with other natural and anthropogenic sources to the stratosphere such as volcanism, meteoritic material, and aviation.

  9. Infrared Imagery of Solid Rocket Exhaust Plumes

    NASA Technical Reports Server (NTRS)

    Moran, Robert P.; Houston, Janice D.

    2011-01-01

    The Ares I Scale Model Acoustic Test program consisted of a series of 18 solid rocket motor static firings, simulating the liftoff conditions of the Ares I five-segment Reusable Solid Rocket Motor Vehicle. Primary test objectives included acquiring acoustic and pressure data which will be used to validate analytical models for the prediction of Ares 1 liftoff acoustics and ignition overpressure environments. The test article consisted of a 5% scale Ares I vehicle and launch tower mounted on the Mobile Launch Pad. The testing also incorporated several Water Sound Suppression Systems. Infrared imagery was employed during the solid rocket testing to support the validation or improvement of analytical models, and identify corollaries between rocket plume size or shape and the accompanying measured level of noise suppression obtained by water sound suppression systems.

  10. Bipropellant rocket exhaust plume analysis on the Galileo spacecraft

    NASA Technical Reports Server (NTRS)

    Guernsey, C. S.; Mcgregor, R. D.

    1986-01-01

    This paper describes efforts to quantify the contaminant flow field produced by 10 N thrust bipropellant rocket engines used on the Galileo spacecraft. The prediction of the composition of the rocket exhaust by conventional techniques is found to be inadequate to explain experimental observations of contaminant deposition on moderately cold (200 K) surfaces. It is hypothesized that low volatility contaminants are formed by chemical reactions which occur on the surfaces. The flow field calculations performed using the direct simulation Monte Carlo method give the expected result that the use of line-of-sight plume shields may have very little effect on the flux of vapor phase contaminant species to a surface, especially if the plume shields are located so close to the engine that the interaction of the plume with the shield is in the transition flow regime. It is shown that significant variations in the exhaust plume composition caused by nonequilibrium effects in the flow field lead to very low concentrations of species which have high molecular weights in the more rarefied regions of the flow field. Recommendations for the design of spacecraft plume shields and further work are made.

  11. Assessment of analytical techniques for predicting solid propellant exhaust plumes

    NASA Technical Reports Server (NTRS)

    Tevepaugh, J. A.; Smith, S. D.; Penny, M. M.

    1977-01-01

    The calculation of solid propellant exhaust plume flow fields is addressed. Two major areas covered are: (1) the applicability of empirical data currently available to define particle drag coefficients, heat transfer coefficients, mean particle size and particle size distributions, and (2) thermochemical modeling of the gaseous phase of the flow field. Comparisons of experimentally measured and analytically predicted data are made. The experimental data were obtained for subscale solid propellant motors with aluminum loadings of 2, 10 and 15%. Analytical predictions were made using a fully coupled two-phase numerical solution. Data comparisons will be presented for radial distributions at plume axial stations of 5, 12, 16 and 20 diameters.

  12. Modeling Macro- and Micro-Scale Turbulent Mixing and Chemistry in Engine Exhaust Plumes

    NASA Technical Reports Server (NTRS)

    Menon, Suresh

    1998-01-01

    Simulation of turbulent mixing and chemical processes in the near-field plume and plume-vortex regimes has been successfully carried out recently using a reduced gas phase kinetics mechanism which substantially decreased the computational cost. A detailed mechanism including gas phase HOx, NOx, and SOx chemistry between the aircraft exhaust and the ambient air in near-field aircraft plumes is compiled. A reduced mechanism capturing the major chemical pathways is developed. Predictions by the reduced mechanism are found to be in good agreement with those by the detailed mechanism. With the reduced chemistry, the computer CPU time is saved by a factor of more than 3.5 for the near-field plume modeling. Distributions of major chemical species are obtained and analyzed. The computed sensitivities of major species with respect to reaction step are deduced for identification of the dominant gas phase kinetic reaction pathways in the jet plume. Both the near field plume and the plume-vortex regimes were investigated using advanced mixing models. In the near field, a stand-alone mixing model was used to investigate the impact of turbulent mixing on the micro- and macro-scale mixing processes using a reduced reaction kinetics model. The plume-vortex regime was simulated using a large-eddy simulation model. Vortex plume behind Boeing 737 and 747 aircraft was simulated along with relevant kinetics. Many features of the computed flow field show reasonable agreement with data. The entrainment of the engine plumes into the wing tip vortices and also the partial detrainment of the plume were numerically captured. The impact of fluid mechanics on the chemical processes was also studied. Results show that there are significant differences between spatial and temporal simulations especially in the predicted SO3 concentrations. This has important implications for the prediction of sulfuric acid aerosols in the wake and may partly explain the discrepancy between past numerical studies

  13. On the prediction of concentration variations in a dispersing heavy-duty truck exhaust plume using k- ɛ turbulent closure

    NASA Astrophysics Data System (ADS)

    Kim, Dong-Hee; Gautam, Mridul; Gera, Dinesh

    This work presents the computational fluid dynamic modeling of an exhaust plume dispersed from the exhaust pipe of a class-8 tractor truck powered by 330 hp Cummins M11 electronically controlled diesel engine. This effort utilizes an advanced CFD technique to accurately predict the variation of carbon dioxide concentration inside a turbulent plume using a k- ɛ eddy dissipation model. The simulation includes the "real-world" operation of a truck and its exhaust plume in a NASA, Langley aircraft testing wind tunnel, that had an effective volume of 226, 535 m 3 (8,000,000 ft 3). The predicted results show an excellent agreement with the experimentally measured values of CO 2 concentrations, dilution ratios, and the temperature variations inside the plume. A specific goal of this effort was to study the effect of recirculation region near the truck walls on dispersion of the plume. For this purpose, growth of the plume from the center of the exhaust pipe is also presented and discussed. This work also shows the benefits of CFD modeling in applications where dispersion correlations are not required a priori, instead the dispersion coefficients are calculated precisely by solving the turbulent kinetic energy and dissipation equations.

  14. Species separation in rocket exhaust plumes and analytic plume flow models

    NASA Astrophysics Data System (ADS)

    Koppenwallner, G.

    2001-08-01

    Species separation in the exhaust plume of control thrusters of satellites is of main importance for the contamination analysis. Contamination concerns mainly scientific instruments or sensitive surfaces.. In continuum fluid dynamics a multi- component gas mixture can be treated as mixture with mean properties and with a flow field independent composition. This basic feature of continuum flow ceases to be valid in the rarefied flow regimes. In this regime there are two main mechanism which cause a separation of species in the flow field. a. Strong velocity gradients or streamline curvature. Strong stream line curvatures with large centrifugal forces exist close to the nozzle throat of sonic free jets [Sherman] or at the nozzle lip. Heavy gas constituents will not be able to follow these strong stream line curvatures. b. Different thermal velocity or thermal diffusivity of heavy and light gas constituents The transition from continuum to free molecular plume expansion can approximately be described by the sudden freeze model of Bird. At the freezing point molecular collisions suddenly cease and the further expansion is given by the velocity vector of the individual molecules at this freezing point. As light molecules have a larger thermal speed c than the heavy ones their spreading potential is also higher. This mechanism will also produce an enrichment of the plume boundary with light molecules. The approaches to model species separation in exhaust plumes as result of the above mechanism will be reviewed. To gain more insight into the separation the following cases are analyzed in detail: [B ]The free molecular supersonic expansion from a freezing plane. □ The various analytic plume flow models and their capability to predict the lateral spreading at the plume boundary (e.g. Simmons, Boynton, Brook, DLR) □ DSMC test case calculations of single and two-species plumes with mass separation. (M. Ivanov, ITAM) Based on this analysis a new 3 region model for species

  15. Small- and medium-scale effects of high-flying aircraft exhausts on the atmospheric composition

    NASA Astrophysics Data System (ADS)

    Karol, I. L.; Ozolin, Y. E.

    1994-10-01

    Following numerous model studies of the global impacts of sub- and supersonic aircraft on the atmosphere, this paper assesses the separate aircraft engine exhaust effects of the 45°N cruise flight and at the 10- and 18-km levels of the July atmosphere. A box diffusion photochemical model in the cross-section plane of the flight trajectory is used to compute the effects of gas-phase and heterogeneous reactions on the condensation trail particles in the troposphere, and on the sulphate aerosols in the stratosphere. The enhanced horizontal dispersion of the exhaust plume is considered in the model. A significant but short term depletion of ozone is predicted, which is 99% restored in about 1 h in the wide plume with enhanced horizontal dispersion, but requires more than 24 h in the narrow plume without it. The oxidation rate of NO and NO2 into the HNO3 depends on the OH content in the exhausts and varies in all the cases. The heterogeneous photochemistry has only a small influence on the initial evolution of N2O5 and HO2 in the plume.

  16. Environmental Effects of Space Shuttle Solid Rocket Motor Exhaust Plumes

    NASA Technical Reports Server (NTRS)

    Hwang, B.; Pergament, H. S.

    1976-01-01

    The deposition of NOx and HCl in the stratosphere from the space shuttle solid rocket motors (SRM) and exhaust plume is discussed. A detailed comparison between stratospheric deposition rates using the baseline SRM propellant and an alternate propellant, which replaces ammonium perchlorate by ammonium nitrate, shows the total NOx deposition rate to be approximately the same for each propellant. For both propellants the ratio of the deposition rates of NOx to total chlorine-containing species is negligibly small. Rocket exhaust ground cloud transport processes in the troposphere are also examined. A brief critique of the multilayer diffusion models (presently used for predicting pollutant deposition in the troposphere) is presented, and some detailed cloud rise calculations are compared with data for Titan 3C launches. The results show that, when launch time meteorological data are used as input, the model can reasonably predict measured cloud stabilization heights.

  17. Mass Spectra of Individual Aerosol Particles Acquired During Intercepts of a Space Shuttle Exhaust Plume

    NASA Astrophysics Data System (ADS)

    Cziczo, D. J.; Cziczo, D. J.; Murphy, D. M.; Thomson, D. S.; Thomson, D. S.

    2001-12-01

    The WB-57 aircraft accomplished fourteen distinct stratospheric intercepts of the exhaust plume from a space shuttle during ACCENT 2000. Liftoff of the shuttle Atlantis for STS-106 occurred at 8:46 am local (12:46 UTC) with intercepts occurring from 5 to 90 minutes afterward. The Particle Analysis by Laser Mass Spectrometry (PALMS) instrument, mounted in the nose of the aircraft, was used to acquire individual mass spectra of over 2500 particles during these intercepts. The majority of positive mass spectra indicate the presence of the metals Al, Fe, Zn, Ga, and V, all components found in the solid rocket fuel. Organic material, presumably from binding and curing agents, was also present. Negative mass spectra showed Cl from the oxidizer, ammonium perchlorate, as well as water. Rare exotic particles, for example those containing Ti and Ag and possibly formed during engine or seal ablation, were also detected. Particles originating from shuttle exhaust but also containing significant sulfuric acid were common toward the outer edge of the plume, especially during late encounters, suggesting that deposition or aerosol collision had occurred.

  18. Calibration and demonstration of a condensation nuclei counting system for airborne measurements of aircraft exhausted particles

    NASA Astrophysics Data System (ADS)

    Cofer, Wesley R.; Anderson, Bruce E.; Winstead, Edward L.; Bagwell, Donald R.

    A system of multiple continuous-flow condensation nuclei counters (CNC) was assembled, calibrated, and demonstrated on a NASA T-39 Sabreliner jet aircraft. The mission was to penetrate the exhaust plumes and/or contrails of other subsonic jet aircraft and determine the concentrations of submicrometer diameter aerosol particles. Mission criteria required rapid response measurements ( ˜ 1 s) at aircraft cruise altitudes (9-12 km). The CNC sampling system was optimized to operate at 160 Torr. Aerosol samples were acquired through an externally mounted probe. Installed downstream of the probe was a critical flow orifice that provided sample to the CNC system. The orifice not only controlled volumetric flow rate, but also dampened probe pressure/flow oscillations encountered in the turbulent aircraft-wake vortex environment. Laboratory calibrations with NaCl particles under representative conditions are reported that indicate small amounts of particle loss and a maximum measurement efficiency of ˜ 75% for particles with diameters ranging from ⩾ 0.01- ⩽ 0.18 μm Data from exhaust/contrail samplings of a NASA B757 and DC-8 at cruise altitude are discussed. Data include exhaust/contrail measurements made during periods in which the B757 port jet engine burned low-sulfur fuel while the starboard engine simultaneously burned specially prepared high-sulfur fuel. The data discussed highlight the CNC systems performance, and introduce new observations pertinent to the behavior of sulfur in aircraft exhaust aerosol chemistry.

  19. Measurements of Aged Aircraft Exhaust in the ACCENT Mission

    NASA Technical Reports Server (NTRS)

    Friedl, R.; Ross, A.

    2000-01-01

    The Atmospheric Chemistry of Combustion Emissions Near the Tropopause (ACCENT) mission is a multi-agency sponsored effort to evaluate the roles of aircraft and rocket exhaust in perturbing ozone chemistry and modifying aerosols and clouds.

  20. Exhaust Nozzle Plume Effects on Sonic Boom Test Results for Isolated Nozzles

    NASA Technical Reports Server (NTRS)

    Castner, Raymond S.

    2011-01-01

    Reducing or eliminating the operational restrictions of supersonic aircraft over populated areas has led to extensive research at NASA. Restrictions were due to the disturbance of the sonic boom, caused by the coalescence of shock waves formed off the aircraft. Recent work has been performed to reduce the magnitude of the sonic boom N-wave generated by airplane components with focus on shock waves caused by the exhaust nozzle plume. Previous Computational Fluid Dynamics (CFD) analysis showed how the shock wave formed at the nozzle lip interacts with the nozzle boat-tail expansion wave. An experiment was conducted in the 1- by 1-ft Supersonic Wind Tunnel at the NASA Glenn Research Center to validate the computational study. Results demonstrated how the nozzle lip shock moved with increasing nozzle pressure ratio (NPR) and reduced the nozzle boat-tail expansion, causing a favorable change in the observed pressure signature. Experimental results were presented for comparison to the CFD results. The strong nozzle lip shock at high values of NPR intersected the nozzle boat-tail expansion and suppressed the expansion wave. Based on these results, it may be feasible to reduce the boat-tail expansion for a future supersonic aircraft with under-expanded nozzle exhaust flow by modifying nozzle pressure or nozzle divergent section geometry.

  1. Aircraft Engine Exhaust Nozzle System for Jet Noise Reduction

    NASA Technical Reports Server (NTRS)

    Thomas, Russell H. (Inventor); Czech, Michael J. (Inventor); Elkoby, Ronen (Inventor)

    2014-01-01

    The aircraft exhaust engine nozzle system includes a fan nozzle to receive a fan flow from a fan disposed adjacent to an engine disposed above an airframe surface of the aircraft, a core nozzle disposed within the fan nozzle and receiving an engine core flow, and a pylon structure connected to the core nozzle and structurally attached with the airframe surface to secure the engine to the aircraft.

  2. Analysis of Exhaust Plume Effects on Sonic Boom for a 59-Degree Wing Body Model

    NASA Technical Reports Server (NTRS)

    Castner, Raymond S.

    2011-01-01

    Reducing or eliminating the operational restrictions of supersonic aircraft over populated areas has led to extensive research at NASA. Restrictions are due to the disturbance of the sonic boom, caused by the coalescence of shock waves formed off the aircraft. Recent work has been performed to reduce the magnitude of the sonic boom N-wave generated by airplane components with focus on shock waves caused by the exhaust nozzle plume. Previous Computational Fluid Dynamics (CFD) analyses showed how the shock wave formed at the nozzle lip interacted with the nozzle boat-tail expansion wave. The nozzle lip shock moved with increasing nozzle pressure ratio (NPR) and reduced the nozzle boat-tail expansion. Lip shock movement caused a favorable change in the observed pressure signature. These results were applied to a simplified supersonic vehicle geometry with no inlets and no tail, in which the goal was to demonstrate how under-expanded nozzle operation reduced the sonic boom signature by twelve percent. A secondary goal was to demonstrate the use of the Cart3D inviscid code for off-body pressure signatures including the nozzle plume effect.

  3. Hydrazine engine plume contamination mapping. [measuring instruments for rocket exhaust from liquid propellant rocket engines

    NASA Technical Reports Server (NTRS)

    Chirivella, J. E.

    1975-01-01

    Instrumentation for the measurement of plume exhaust specie deposition rates were developed and demonstrated. The instruments, two sets of quartz crystal microbalances, were designed for low temperature operation in the back flow and variable temperature operation in the core flow regions of an exhaust plume. These quartz crystal microbalances performed nominally, and measurements of exhaust specie deposition rates for 8400 number of pulses for a 0.1-lb monopropellant thruster are reported.

  4. Design of Experiments for Both Experimental and Analytical Study of Exhaust Plume Effects on Sonic Boom

    NASA Technical Reports Server (NTRS)

    Castner, Raymond S.

    2009-01-01

    Computational fluid dynamics (CFD) analysis has been performed to study the plume effects on sonic boom signature for isolated nozzle configurations. The objectives of these analyses were to provide comparison to past work using modern CFD analysis tools, to investigate the differences of high aspect ratio nozzles to circular (axisymmetric) nozzles, and to report the effects of under expanded nozzle operation on boom signature. CFD analysis was used to address the plume effects on sonic boom signature from a baseline exhaust nozzle. Nearfield pressure signatures were collected for nozzle pressure ratios (NPRs) between 6 and 10. A computer code was used to extrapolate these signatures to a ground-observed sonic boom N-wave. Trends show that there is a reduction in sonic boom N-wave signature as NPR is increased from 6 to 10. As low boom designs are developed and improved, there will be a need for understanding the interaction between the aircraft boat tail shocks and the exhaust nozzle plume. These CFD analyses will provide a baseline study for future analysis efforts. For further study, a design of experiments has been conducted to develop a hybrid method where both CFD and small scale wind tunnel testing will validate the observed trends. The CFD and testing will be used to screen a number of factors which are important to low boom propulsion integration, including boat tail angle, nozzle geometry, and the effect of spacing and stagger on nozzle pairs. To design the wind tunnel experiment, CFD was instrumental in developing a model which would provide adequate space to observe the nozzle and boat tail shock structure without interference from the wind tunnel walls.

  5. Exhaust emissions reduction for intermittent combustion aircraft engines

    NASA Technical Reports Server (NTRS)

    Rezy, B. J.; Stuckas, K. J.; Tucker, J. R.; Meyers, J. E.

    1982-01-01

    Three concepts which, to an aircraft piston engine, provide reductions in exhaust emissions of hydrocarbons and carbon monoxide while simultaneously improving fuel economy. The three chosen concepts, (1) an improved fuel injection system, (2) an improved cooling cylinder head, and (3) exhaust air injection, when combined, show a synergistic relationship in achieving these goals. In addition, the benefits of variable ignition timing were explored and both dynamometer and flight testing of the final engine configuration were accomplished.

  6. 78 FR 65554 - Exhaust Emission Standards for New Aircraft Turbine Engines and Identification Plate for Aircraft...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-01

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF TRANSPORTATION Federal Aviation Administration 14 CFR Parts 34 and 45 RIN 2120-AK15 Exhaust Emission Standards for New Aircraft Turbine Engines and Identification Plate for Aircraft Engines Correction In rule document 2013-24712, appearing on pages 63015-63017...

  7. Identification of lubrication oil in the particulate matter emissions from engine exhaust of in-service commercial aircraft.

    PubMed

    Yu, Zhenhong; Herndon, Scott C; Ziemba, Luke D; Timko, Michael T; Liscinsky, David S; Anderson, Bruce E; Miake-Lye, Richard C

    2012-09-01

    Lubrication oil was identified in the organic particulate matter (PM) emissions of engine exhaust plumes from in-service commercial aircraft at Chicago Midway Airport (MDW) and O'Hare International Airport (ORD). This is the first field study focused on aircraft lubrication oil emissions, and all of the observed plumes described in this work were due to near-idle engine operations. The identification was carried out with an Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-ToF AMS) via a collaborative laboratory and field investigation. A characteristic mass marker of lubrication oil, I(85)/I(71), the ratio of ion fragment intensity between m/z = 85 and 71, was used to distinguish lubrication oil from jet engine combustion products. This AMS marker was based on ion fragmentation patterns measured using electron impact ionization for two brands of widely used lubrication oil in a laboratory study. The AMS measurements of exhaust plumes from commercial aircraft in this airport field study reveal that lubrication oil is commonly present in organic PM emissions that are associated with emitted soot particles, unlike the purely oil droplets observed at the lubrication system vent. The characteristic oil marker, I(85)/I(71), was applied to quantitatively determine the contribution from lubrication oil in measured aircraft plumes, which ranges from 5% to 100%.

  8. Computation of wake/exhaust mixing downstream of advanced transport aircraft

    NASA Technical Reports Server (NTRS)

    Quackenbush, Todd R.; Teske, Milton E.; Bilanin, Alan J.

    1993-01-01

    The mixing of engine exhaust with the vortical wake of high speed aircraft operating in the stratosphere can play an important role in the formation of chemical products that deplete atmospheric ozone. An accurate analysis of this type of interaction is therefore necessary as a part of the assessment of the impact of proposed High Speed Civil Transport (HSCT) designs on atmospheric chemistry. This paper describes modifications to the parabolic Navier-Stokes flow field analysis in the UNIWAKE unified aircraft wake model to accommodate the computation of wake/exhaust mixing and the simulation of reacting flow. The present implementation uses a passive chemistry model in which the reacting species are convected and diffused by the fluid dynamic solution but in which the evolution of the species does not affect the flow field. The resulting analysis, UNIWAKE/PCHEM (Passive CHEMistry) has been applied to the analysis of wake/exhaust flows downstream of representative HSCT configurations. The major elements of the flow field model are described, as are the results of sample calculations illustrating the behavior of the thermal exhaust plume and the production of species important to the modeling of condensation in the wake. Appropriate steps for further development of the UNIWAKE/PCHEM model are also outlined.

  9. Range safety signal propagation through the SRM exhaust plume of the space shuttle

    NASA Technical Reports Server (NTRS)

    Boynton, F. P.; Davies, A. R.; Rajasekhar, P. S.; Thompson, J. A.

    1977-01-01

    Theoretical predictions of plume interference for the space shuttle range safety system by solid rocket booster exhaust plumes are reported. The signal propagation was calculated using a split operator technique based upon the Fresnel-Kirchoff integral, using fast Fourier transforms to evaluate the convolution and treating the plume as a series of absorbing and phase-changing screens. Talanov's lens transformation was applied to reduce aliasing problems caused by ray divergence.

  10. Exhaust Nozzle Plume Effects on Sonic Boom Test Results for Vectored Nozzles

    NASA Technical Reports Server (NTRS)

    Castner, Raymond

    2012-01-01

    Reducing or eliminating the operational restrictions of supersonic aircraft over populated areas has led to extensive research at NASA. Restrictions were due to the disturbance of the sonic boom, caused by the coalescence of shock waves formed off the aircraft. Recent work has been performed to reduce the magnitude of the sonic boom N-wave generated by airplane components with a focus on shock waves caused by the exhaust nozzle plume. Previous Computational Fluid Dynamics (CFD) analysis showed how the shock wave formed at the nozzle lip interacts with the nozzle boat-tail expansion wave. An experiment was conducted in the 1- by 1-foot Supersonic Wind Tunnel (SWT) at the NASA Glenn Research Center. Results show how the shock generated at the nozzle lip affects the near field pressure signature, and thereby the potential sonic boom contribution for a nozzle at vector angles from 3 to 8 . The experiment was based on the NASA F-15 nozzle used in the Lift and Nozzle Change Effects on Tail Shock experiment, which possessed a large external boat-tail angle. In this case, the large boat-tail angle caused a dramatic expansion, which dominated the near field pressure signature. The impact of nozzle vector angle and nozzle pressure ratio are summarized.

  11. Engine exhaust characteristics evaluation in support of aircraft acoustic testing

    NASA Astrophysics Data System (ADS)

    Ennix, Kimberly A.

    1994-02-01

    NASA Dryden Flight Research Facility and NASA Langley Research Center completed a joint acoustic flight test program. Test objectives were (1) to quantify and evaluate subsonic climb-to-cruise noise and (2) to obtain a quality noise database for use in validating the Aircraft Noise Prediction Program. These tests were conducted using aircraft with engines that represent the high nozzle pressure ratio of future transport designs. Test flights were completed at subsonic speeds that exceeded Mach 0.3 using F-18 and F-16XL aircraft. This paper describes the efforts of NASA Dryden Flight Research Facility in this flight test program. Topics discussed include the test aircraft, setup, and matrix. In addition, the engine modeling codes and nozzle exhaust characteristics are described.

  12. Engine exhaust characteristics evaluation in support of aircraft acoustic testing

    NASA Technical Reports Server (NTRS)

    Ennix, Kimberly A.

    1994-01-01

    NASA Dryden Flight Research Facility and NASA Langley Research Center completed a joint acoustic flight test program. Test objectives were (1) to quantify and evaluate subsonic climb-to-cruise noise and (2) to obtain a quality noise database for use in validating the Aircraft Noise Prediction Program. These tests were conducted using aircraft with engines that represent the high nozzle pressure ratio of future transport designs. Test flights were completed at subsonic speeds that exceeded Mach 0.3 using F-18 and F-16XL aircraft. This paper describes the efforts of NASA Dryden Flight Research Facility in this flight test program. Topics discussed include the test aircraft, setup, and matrix. In addition, the engine modeling codes and nozzle exhaust characteristics are described.

  13. Engine exhaust characteristics evaluation in support of aircraft acoustic testing

    NASA Technical Reports Server (NTRS)

    Ennix, Kimberly A.

    1993-01-01

    NASA Dryden Flight Research Facility and NASA Langley Research Center completed a joint acoustic flight test program. Test objectives were (1) to quantify and evaluate subsonic climb-to-cruise noise and (2) to obtain a quality noise database for use in validating the Aircraft Noise Prediction Program. These tests were conducted using aircraft with engines that represent the high nozzle pressure ratio of future transport designs. Test flights were completed at subsonic speeds that exceeded Mach 0.3 using F-18 and F-16XL aircraft. This paper describes the efforts of NASA Dryden Flight Research Facility in this flight test program. Topics discussed include the test aircraft, setup, and matrix. In addition, the engine modeling codes and nozzle exhaust characteristics are described.

  14. Parameterization of plume chemistry into large-scale atmospheric models: Application to aircraft NOx emissions

    NASA Astrophysics Data System (ADS)

    Cariolle, D.; Caro, D.; Paoli, R.; Hauglustaine, D. A.; CuéNot, B.; Cozic, A.; Paugam, R.

    2009-10-01

    A method is presented to parameterize the impact of the nonlinear chemical reactions occurring in the plume generated by concentrated NOx sources into large-scale models. The resulting plume parameterization is implemented into global models and used to evaluate the impact of aircraft emissions on the atmospheric chemistry. Compared to previous approaches that rely on corrected emissions or corrective factors to account for the nonlinear chemical effects, the present parameterization is based on the representation of the plume effects via a fuel tracer and a characteristic lifetime during which the nonlinear interactions between species are important and operate via rates of conversion for the NOx species and an effective reaction rates for O3. The implementation of this parameterization insures mass conservation and allows the transport of emissions at high concentrations in plume form by the model dynamics. Results from the model simulations of the impact on atmospheric ozone of aircraft NOx emissions are in rather good agreement with previous work. It is found that ozone production is decreased by 10 to 25% in the Northern Hemisphere with the largest effects in the north Atlantic flight corridor when the plume effects on the global-scale chemistry are taken into account. These figures are consistent with evaluations made with corrected emissions, but regional differences are noticeable owing to the possibility offered by this parameterization to transport emitted species in plume form prior to their dilution at large scale. This method could be further improved to make the parameters used by the parameterization function of the local temperature, humidity and turbulence properties diagnosed by the large-scale model. Further extensions of the method can also be considered to account for multistep dilution regimes during the plume dissipation. Furthermore, the present parameterization can be adapted to other types of point-source NOx emissions that have to be

  15. Measurements of nitrous acid in commercial aircraft exhaust at the Alternative Aviation Fuel Experiment.

    PubMed

    Lee, Ben H; Santoni, Gregory W; Wood, Ezra C; Herndon, Scott C; Miake-Lye, Richard C; Zahniser, Mark S; Wofsy, Steven C; Munger, J William

    2011-09-15

    The Alternative Aviation Fuel Experiment (AAFEX), conducted in January of 2009 in Palmdale, California, quantified aerosol and gaseous emissions from a DC-8 aircraft equipped with CFM56-2C1 engines using both traditional and synthetic fuels. This study examines the emissions of nitrous acid (HONO) and nitrogen oxides (NO(x) = NO + NO(2)) measured 145 m behind the grounded aircraft. The fuel-based emission index (EI) for HONO increases approximately 6-fold from idle to takeoff conditions but plateaus between 65 and 100% of maximum rated engine thrust, while the EI for NO(x) increases continuously. At high engine power, NO(x) EI is greater when combusting traditional (JP-8) rather than Fischer-Tropsch fuels, while HONO exhibits the opposite trend. Additionally, hydrogen peroxide (H(2)O(2)) was identified in exhaust plumes emitted only during engine idle. Chemical reactions responsible for emissions and comparison to previous measurement studies are discussed.

  16. Modeling the Effects of Aircraft Emissions on Atmospheric Photochemistry Using Layered Plume Dynamics

    NASA Astrophysics Data System (ADS)

    Cameron, M. A.; Jacobson, M. Z.; Naiman, A. D.; Lele, S. K.

    2012-12-01

    Aviation is an expanding industry, experiencing continued growth and playing an increasingly noticed role in upper tropospheric/lower stratospheric composition. Nitrogen oxides and other gas-phase emissions from aircraft react to affect ozone photochemistry. This research investigates the effects of treating aircraft gas-phase chemistry within an expanding layered plume versus at the grid scale. SMVGEAR II, a sparse-matrix, vectorized Gear-type solver for ordinary differential equations, is used to solve chemical equations at both the grid scale and subgrid scale. A Subgrid Plume Model (SPM) is used to advance the expanding plume, accounting for wind shear and diffusion. Simulations suggest that using a layered plume approach results in noticeably different final NOx concentrations, demonstrating the importance of these plume dynamics in predicting the effects of aircraft on ozone concentrations. Results showing the effects of a layered plume, single plume, and no plume on ozone after several hours will be presented.

  17. Speciation and chemical evolution of nitrogen oxides in aircraft exhaust near airports.

    PubMed

    Wood, Ezra C; Herndon, Scott C; Timko, Michael T; Yelvington, Paul E; Miake-Lye, Richard C

    2008-03-15

    Measurements of nitrogen oxides from a variety of commercial aircraft engines as part of the JETS-APEX2 and APEX3 campaigns show that NOx (NOx [triple bond] NO + NO2) is emitted primarily in the form of NO2 at idle thrust and NO at high thrust. A chemical kinetics combustion model reproduces the observed NO2 and NOx trends with engine power and sheds light on the relevant chemical mechanisms. Experimental evidence is presented of rapid conversion of NO to NO2 in the exhaust plume from engines at low thrust. The rapid conversion and the high NO2/NOx emission ratios observed are unrelated to ozone chemistry. NO2 emissions from a CFM56-3B1 engine account for approximately 25% of the NOx emitted below 3000 feet (916 m) and 50% of NOx emitted below 500 feet (153 m) during a standard ICAO (International Civil Aviation Organization) landing-takeoff cycle. Nitrous acid (HONO) accounts for 0.5% to 7% of NOy emissions from aircraft exhaust depending on thrust and engine type. Implications for photochemistry near airports resulting from aircraft emissions are discussed.

  18. Zone radiometer measurements on a model rocket exhaust plume

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Radiometer for analytical prediction of rocket plume-to-booster thermal radiation and convective heating is described. Applications for engine combustion analysis, incineration, and pollution control by high temperature processing are discussed. Illustrations of equipment are included.

  19. Towards Simulating Non-Axisymmetric Influences on Aircraft Plumes for Signature Prediction

    NASA Technical Reports Server (NTRS)

    Kenzakowski, D. C.; Shipman, J. D.; Dash, S. M.

    2000-01-01

    A methodology for efficiently including three-dimensional effects on aircraft plume signature is presented. First, exploratory work on the use of passive mixing enhancement devices, namely chevrons and tabs, in IR signature reduction for external turbofan plumes is demonstrated numerically and experimentally. Such small attachments, when properly designed, cause an otherwise axisymmetric plume to have significant 3D structures, affecting signature prediction. Second, an approach for including non-axisymmetric and installation effects in plume signature prediction is discussed using unstructured methodology. Unstructured flow solvers, using advanced turbulence modeling and plume thermochemistry, facilitate the modeling of aircraft effects on plume structure that previously have been neglected due to gridding complexities. The capabilities of the CRUNCH unstructured Navier-Stokes solver for plume modeling is demonstrated for a passively mixed turbofan nozzle, a generic fighter nozzle, and a complete aircraft.

  20. Applicability of empirical data currently used in predicting solid propellant exhaust plumes

    NASA Technical Reports Server (NTRS)

    Tevepaugh, J. A.; Smith, S. D.; Penny, M. M.; Greenwood, T.; Roberts, B. B.

    1977-01-01

    Theoretical and experimental approaches to exhaust plume analysis are compared. A two-phase model is extended to include treatment of reacting gas chemistry, and thermodynamical modeling of the gaseous phase of the flow field is considered. The applicability of empirical data currently available to define particle drag coefficients, heat transfer coefficients, mean particle size, and particle size distributions is investigated. Experimental and analytical comparisons are presented for subscale solid rocket motors operating at three altitudes with attention to pitot total pressure and stagnation point heating rate measurements. The mathematical treatment input requirements are explained. The two-phase flow field solution adequately predicts gasdynamic properties in the inviscid portion of two-phase exhaust plumes. It is found that prediction of exhaust plume gas pressures requires an adequate model of flow field dynamics.

  1. Measurements of Nucleation-Mode Particle Size Distributions in Aircraft Plumes during SULFUR 6

    NASA Technical Reports Server (NTRS)

    Brock, Charles A.; Bradford, Deborah G.

    1999-01-01

    This report summarizes the participation of the University of Denver in an airborne measurement program, SULFUR 6, which was undertaken in late September and early October of 1998 by the Deutsches Zentrum fur Luft und Raumfahrt (DLR). Scientific findings from two papers that have been published or accepted and from one manuscript that is in preparation are presented. The SULFUR 6 experiment was designed to investigate the emissions from subsonic aircraft to constrain calculations of possible atmospheric chemical and climatic effects. The University of Denver effort contributed toward the following SULFUR 6 goals: (1) To investigate the relationship between fuel sulfur content (FSC--mass of sulfur per mass of fuel) and particle number and mass emission index (El--quantity emitted per kg of fuel burned); (2) To provide upper and lower limits for the mass conversion efficiency (nu) of fuel sulfur to gaseous and particulate sulfuric acid; (3) To constrain models of volatile particle nucleation and growth by measuring the particle size distribution between 3 and 100 nm at aircraft plume ages ranging from 10(exp -1) to 10(exp 3) s; (4) To determine microphysical and optical properties and bulk chemical composition of soot particles in aircraft exhaust; and (5) To investigate the differences in particle properties between aircraft plumes in contrail and non-contrail situations. The experiment focused on emissions from the ATTAS research aircraft (a well characterized, but older technology turbojet) and from an in-service Boeing 737-300 aircraft provided by Lufthansa, with modem, high-bypass turbofan engines. Measurements were made from the DLR Dassault Falcon 900 aircraft, a modified business jet. The Atmospheric Effects of Aviation Program (AEAP) provided funding to operate an instrument, the nucleation-mode aerosol size spectrometer (N-MASS), during the SULFUR 6 campaign and to analyze the data. The N-MASS was developed at the University of Denver with the support of

  2. Sulfuric Acid and Soot Particle Formation in Aircraft Exhaust

    NASA Technical Reports Server (NTRS)

    Pueschel, Rudolf F.; Verma, S.; Ferry, G. V.; Howard, S. D.; Vay, S.; Kinne, S. A.; Baumgardner, D.; Dermott, P.; Kreidenweis, S.; Goodman, J.; Gore, Waren J. Y. (Technical Monitor)

    1997-01-01

    A combination of CN counts, Ames wire impactor size analyses and optical particle counter data in aircraft exhaust results in a continuous particle size distribution between 0.01 micrometer and 1 micrometer particle radius sampled in the exhaust of a Boeing 757 research aircraft. The two orders of magnitude size range covered by the measurements correspond to 6-7 orders of magnitude particle concentration. CN counts and small particle wire impactor data determine a nucleation mode, composed of aircraft-emitted sulfuric acid aerosol, that contributes between 62% and 85% to the total aerosol surface area and between 31% and 34% to its volume. Soot aerosol comprises 0.5% of the surface area of the sulfuric acid aerosol. Emission indices are: EIH2SO4 = 0.05 g/kgFUEL and (0.2-0.5) g/kgFUEL (for 75 ppmm and 675 ppmm fuel-S, respectively), 2.5E4

  3. Spectroscopic remote sensing of aircraft exhausts at airports

    NASA Astrophysics Data System (ADS)

    Schaefer, Klaus; Sedlmaier, Achim; Jahn, Christoph; Heland, Joerg

    2001-01-01

    Emission indices of aircraft engine exhausts must be known to calculate precisely the emissions of aircraft on airports during different operational scenarios. FTIR emission spectroscopy of exhausts was developed further as a remote sensing multi- component analysis method. Measurements at different aircraft engines were used to develop basically and optimize the measurement and analysis procedure during run up tests at ground level. The measured main engines are GE90-85B and RB211 as well as APUs of the B777 and B747. A temperature stabilized spectrometer in a van collected good quality spectra at 0.2 cm-1 resolution. The FTIR instrument was aligned to the engine nozzle exit with a two axis movable entrance mirror. Setting up the system needs about 10 to 20 minutes, if all systems are running on standby. Total measurement times at one thrust level should be around 5 minutes to obtain reliable results. The FTIR engine measurement results for CO2, CO, and NO have been proven to be in agreement with intrusive measurement data collected during engine runs in a test rig. The deviations were generally in the order of +/- 30 percent, i.e. comparable to the day-to-day variations of the engine emissions.

  4. Numerical study on the influence of aluminum on infrared radiation signature of exhaust plume

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Ye, Qing-qing; Li, Shi-peng; Wang, Ning-fei

    2013-09-01

    The infrared radiation signature of exhaust plume from solid propellant rockets has been widely mentioned for its important realistic meaning. The content of aluminum powder in the propellants is a key factor that affects the infrared radiation signature of the plume. The related studies are mostly on the conical nozzles. In this paper, the influence of aluminum on the flow field of plume, temperature distribution, and the infrared radiation characteristics were numerically studied with an object of 3D quadrate nozzle. Firstly, the gas phase flow field and gas-solid multi phase flow filed of the exhaust plume were calculated using CFD method. The result indicates that the Al203 particles have significant effect on the flow field of plume. Secondly, the radiation transfer equation was solved by using a discrete coordinate method. The spectral radiation intensity from 1000-2400 cm-1 was obtained. To study the infrared radiation characteristics of exhaust plume, an exceptional quadrate nozzle was employed and much attention was paid to the influences of Al203 particles in solid propellants. The results could dedicate the design of the divert control motor in such hypervelocity interceptors or missiles, or be of certain meaning to the improvement of ingredients of solid propellants.

  5. Exhaust emission reduction for intermittent combustion aircraft engines

    NASA Technical Reports Server (NTRS)

    Moffett, R. N.

    1979-01-01

    Three concepts for optimizing the performance, increasing the fuel economy, and reducing exhaust emission of the piston aircraft engine were investigated. High energy-multiple spark discharge and spark plug tip penetration, ultrasonic fuel vaporization, and variable valve timing were evaluated individually. Ultrasonic fuel vaporization did not demonstrate sufficient improvement in distribution to offset the performance loss caused by the additional manifold restriction. High energy ignition and revised spark plug tip location provided no change in performance or emissions. Variable valve timing provided some performance benefit; however, even greater performance improvement was obtained through induction system tuning which could be accomplished with far less complexity.

  6. Integration of Engine, Plume, and CFD Analyses in Conceptual Design of Low-Boom Supersonic Aircraft

    NASA Technical Reports Server (NTRS)

    Li, Wu; Campbell, Richard; Geiselhart, Karl; Shields, Elwood; Nayani, Sudheer; Shenoy, Rajiv

    2009-01-01

    This paper documents an integration of engine, plume, and computational fluid dynamics (CFD) analyses in the conceptual design of low-boom supersonic aircraft, using a variable fidelity approach. In particular, the Numerical Propulsion Simulation System (NPSS) is used for propulsion system cycle analysis and nacelle outer mold line definition, and a low-fidelity plume model is developed for plume shape prediction based on NPSS engine data and nacelle geometry. This model provides a capability for the conceptual design of low-boom supersonic aircraft that accounts for plume effects. Then a newly developed process for automated CFD analysis is presented for CFD-based plume and boom analyses of the conceptual geometry. Five test cases are used to demonstrate the integrated engine, plume, and CFD analysis process based on a variable fidelity approach, as well as the feasibility of the automated CFD plume and boom analysis capability.

  7. Computational models for the analysis of three-dimensional internal and exhaust plume flowfields

    NASA Technical Reports Server (NTRS)

    Dash, S. M.; Delguidice, P. D.

    1977-01-01

    This paper describes computational procedures developed for the analysis of three-dimensional supersonic ducted flows and multinozzle exhaust plume flowfields. The models/codes embodying these procedures cater to a broad spectrum of geometric situations via the use of multiple reference plane grid networks in several coordinate systems. Shock capturing techniques are employed to trace the propagation and interaction of multiple shock surfaces while the plume interface, separating the exhaust and external flows, and the plume external shock are discretely analyzed. The computational grid within the reference planes follows the trace of streamlines to facilitate the incorporation of finite-rate chemistry and viscous computational capabilities. Exhaust gas properties consist of combustion products in chemical equilibrium. The computational accuracy of the models/codes is assessed via comparisons with exact solutions, results of other codes and experimental data. Results are presented for the flows in two-dimensional convergent and divergent ducts, expansive and compressive corner flows, flow in a rectangular nozzle and the plume flowfields for exhausts issuing out of single and multiple rectangular nozzles.

  8. Pseudo Color Densitometer Analysis-the Apollo 17/Saturn V Exhaust Plume.

    PubMed

    Orville, R E; Helsdon, J H

    1974-10-01

    Spectra of the Apollo 17/Saturn V exhaust plume have been obtained in the uv (300ndash;400 nm), visible (400-650 nm), and ir (750-790 nm) regions. Analysis of these data with a pseudo color densitometer reveals (1) a standing wave pattern in the exhaust plume characterized by a wavelength of 9 m, (2) a region of intense continuum within 40 m of the exit plane which supports previous reports of a continuum blackbody source with a peak temperature near 2600 K, (3) a region of continuum emission beyond 40 m that is not blackbody, and (4) line emissions beyond 40 m attributed to the sodium D lines and potassium. It is suggested that an interference filter centered on the sodium D lines could be used on a high speed framing camera to study the turbulent structure of the plume in the nonblackbody region.

  9. The effects of the exhaust plume on the lightning triggering conditions for launch vehicles

    NASA Technical Reports Server (NTRS)

    Eriksen, Frederick J.; Rudolph, Terence H.; Perala, Rodney A.

    1991-01-01

    Apollo 12 and Atlas Centaur 67 are two launch vehicles that have experienced triggered lightning strikes. Serious consequences resulted from the events; in the case of Atlas Centaur 67, the vehicle and the payload were lost. These events indicate that it is necessary to develop launch rules which would prevent such occurrences. In order to develop valid lightning related rules, it is necessary to understand the effects of the plume. Some have assumed that the plume can be treated as a perfect conductor, and have computed electric field enhancement factors on that basis. The authors have looked at the plume, and believe that these models are not correct, because they ignore the fluid motion of the conducting plates. The authors developed a model which includes this flow character. In this model, the external field is excluded from the plume as it would be for any good conductor, but, in addition, the charge must distribute so that the charge density is zero at some location in the exhaust. When this condition is included in the calculation of triggering enhancement factors, they can be two to three times larger than calculated by other methods which include a conductive plume but don't include the correct boundary conditions. Here, the authors review the relevant features of rocket exhausts for the triggered lightning problem, present an approach for including flowing conductive gases, and present preliminary calculations to demonstrate the effect that the plume has on enhancement factors.

  10. Real-time measurements of jet aircraft engine exhaust.

    PubMed

    Rogers, Fred; Arnott, Pat; Zielinska, Barbara; Sagebiel, John; Kelly, Kerry E; Wagner, David; Lighty, JoAnn S; Sarofim, Adel F

    2005-05-01

    Particulate-phase exhaust properties from two different types of ground-based jet aircraft engines--high-thrust and turboshaft--were studied with real-time instruments on a portable pallet and additional time-integrated sampling devices. The real-time instruments successfully characterized rapidly changing particulate mass, light absorption, and polycyclic aromatic hydrocarbon (PAH) content. The integrated measurements included particulate-size distributions, PAH, and carbon concentrations for an entire test run (i.e., "run-integrated" measurements). In all cases, the particle-size distributions showed single modes peaking at 20-40nm diameter. Measurements of exhaust from high-thrust F404 engines showed relatively low-light absorption compared with exhaust from a turboshaft engine. Particulate-phase PAH measurements generally varied in phase with both net particulate mass and with light-absorbing particulate concentrations. Unexplained response behavior sometimes occurred with the real-time PAH analyzer, although on average the real-time and integrated PAH methods agreed within the same order of magnitude found in earlier investigations.

  11. Real-time measurements of jet aircraft engine exhaust.

    PubMed

    Rogers, Fred; Arnott, Pat; Zielinska, Barbara; Sagebiel, John; Kelly, Kerry E; Wagner, David; Lighty, JoAnn S; Sarofim, Adel F

    2005-05-01

    Particulate-phase exhaust properties from two different types of ground-based jet aircraft engines--high-thrust and turboshaft--were studied with real-time instruments on a portable pallet and additional time-integrated sampling devices. The real-time instruments successfully characterized rapidly changing particulate mass, light absorption, and polycyclic aromatic hydrocarbon (PAH) content. The integrated measurements included particulate-size distributions, PAH, and carbon concentrations for an entire test run (i.e., "run-integrated" measurements). In all cases, the particle-size distributions showed single modes peaking at 20-40nm diameter. Measurements of exhaust from high-thrust F404 engines showed relatively low-light absorption compared with exhaust from a turboshaft engine. Particulate-phase PAH measurements generally varied in phase with both net particulate mass and with light-absorbing particulate concentrations. Unexplained response behavior sometimes occurred with the real-time PAH analyzer, although on average the real-time and integrated PAH methods agreed within the same order of magnitude found in earlier investigations. PMID:15991667

  12. Range safety signal attenuation by the Space Shuttle main engine exhaust plumes

    NASA Technical Reports Server (NTRS)

    Pearce, B. E.

    1983-01-01

    An analysis of attenuation of the range safety signal at 416.5 MHz observed after SRB separation and ending at hand over to Bermuda, during which transmission must pass through the LOX/H2 propelled main engine exhaust plumes, is summarized. Absorption by free electrons in the exhaust plume can account for the nearly constant magnitude of the observed attenuation during this period; it does not explain the short term transient increases that occur at one or more times during this portion of the flight. It is necessary to assume that a trace amount (about 0.5 ppm) of easily ionizable impurity must be present in the exhaust flow. Other mechanisms of attenuation, such as scattering by turbulent fluctuations of both free and bound electrons and absorption by water vapor, were examined but found to be inadequate to explain the observations.

  13. Determination of Combustion Product Radicals in a Hydrocarbon Fueled Rocket Exhaust Plume

    NASA Technical Reports Server (NTRS)

    Langford, Lester A.; Allgood, Daniel C.; Junell, Justin C.

    2007-01-01

    The identification of metallic effluent materials in a rocket engine exhaust plume indicates the health of the engine. Since 1989, emission spectroscopy of the plume of the Space Shuttle Main Engine (SSME) has been used for ground testing at NASA's Stennis Space Center (SSC). This technique allows the identification and quantification of alloys from the metallic elements observed in the plume. With the prospect of hydrocarbon-fueled rocket engines, such as Rocket Propellant 1 (RP-1) or methane (CH4) fueled engines being considered for use in future space flight systems, the contributions of intermediate or final combustion products resulting from the hydrocarbon fuels are of great interest. The effect of several diatomic molecular radicals, such as Carbon Dioxide , Carbon Monoxide, Molecular Carbon, Methylene Radical, Cyanide or Cyano Radical, and Nitric Oxide, needs to be identified and the effects of their band systems on the spectral region from 300 nm to 850 nm determined. Hydrocarbon-fueled rocket engines will play a prominent role in future space exploration programs. Although hydrogen fuel provides for higher engine performance, hydrocarbon fuels are denser, safer to handle, and less costly. For hydrocarbon-fueled engines using RP-1 or CH4 , the plume is different from a hydrogen fueled engine due to the presence of several other species, such as CO2, C2, CO, CH, CN, and NO, in the exhaust plume, in addition to the standard H2O and OH. These species occur as intermediate or final combustion products or as a result of mixing of the hot plume with the atmosphere. Exhaust plume emission spectroscopy has emerged as a comprehensive non-intrusive sensing technology which can be applied to a wide variety of engine performance conditions with a high degree of sensitivity and specificity. Stennis Space Center researchers have been in the forefront of advancing experimental techniques and developing theoretical approaches in order to bring this technology to a more

  14. A plume capture technique for the remote characterization of aircraft engine emissions.

    PubMed

    Johnson, G R; Mazaheri, M; Ristovski, Z D; Morawska, L

    2008-07-01

    A technique for capturing and analyzing plumes from unmodified aircraft or other combustion sources under real world conditions is described and applied to the task of characterizing plumes from commercial aircraft during the taxiing phase of the Landing/Take-Off (LTO) cycle. The method utilizes a Plume Capture and Analysis System (PCAS) mounted in a four-wheel drive vehicle which is positioned in the airfield 60 to 180 m downwind of aircraft operations. The approach offers low test turnaround times with the ability to complete careful measurements of particle and gaseous emission factors and sequentially scanned particle size distributions without distortion due to plume concentration fluctuations. These measurements can be performed for individual aircraft movements at five minute intervals. A Plume Capture Device (PCD) collected samples of the naturally diluted plume in a 200 L conductive membrane conforming to a defined shape. Samples from over 60 aircraft movements were collected and analyzed in situ for particulate and gaseous concentrations and for particle size distribution using a Scanning Particle Mobility Sizer (SMPS). Emission factors are derived for particle number, NO(x), and PM2.5 for a widely used commercial aircraft type, Boeing 737 airframes with predominantly CFM56 class engines, during taxiing. The practical advantages of the PCAS include the capacity to perform well targeted and controlled emission factor and size distribution measurements using instrumentation with varying response times within an airport facility, in close proximity to aircraft during their normal operations.

  15. The effects of an ion-thruster exhaust plume on S-band carrier transmission

    NASA Technical Reports Server (NTRS)

    Ackerknecht, W. E.; Stanton, P. H.

    1976-01-01

    The study reported here was undertaken (1) to develop models of the effects of an ion-thruster exhaust plume on S-band signals, and (2) to measure the effects. The results show that an S-band signal passing through an ion-thruster plume is reduced in amplitude and advanced in phase. The mathematical models gave reasonable estimates of the average signal attenuation and phase shift. Negligible fluctuations in the signal amplitude and phase were measured during steady-state thruster operation. However, large jumps in phase occurred when changes were made in the thruster operating state. This study confirms that the thruster plume can have a significant effect on S-band communication link performance; hence the plume effects must be considered in S-band link calculations when electric thrusters are used for spacecraft propulsion.

  16. Exhausted Plume Flow Field Prediction Near the Afterbody of Hypersonic Flight Vehicles in High Altitudes

    NASA Technical Reports Server (NTRS)

    Chou, Lynn Chen; Mach, Kervyn D.; Deng, Zheng-Tao; Liaw, Goang-Shin

    1995-01-01

    A two-dimensional computer code to solve the Burnett equations has been developed which computes the flow interaction between an exhausted plume and hypersonic external flow near the afterbody of a flight vehicle. This Burnett-2D code extends the capability of Navier-Stokes solver (RPLUS2D code) to include high-order Burnett source terms and slip-wall conditions for velocity and temperature. Higher-order Burnett viscous stress and heat flux terms are discretized using central-differencing and treated as source terms. Blocking logic is adopted in order to overcome the difficulty of grid generation. The computation of exhaust plume flow field is divided into two steps. In the first step, the thruster nozzle exit conditions are computed which generates inflow conditions in the base area near the afterbody. Results demonstrated that at high altitudes, the computations of nozzle exit conditions must include the effects of base flow since significant expansion exists in the base region. In the second step, Burnett equations were solved for exhaust plume flow field near the afterbody. The free stream conditions are set at an altitude equal to 80km and the Mach number is equal to 5.0. The preliminary results show that the plume expansion, as altitude increases, will eventually cause upstream flow separation.

  17. Exhaust plumes and their interaction with missile airframes - A new viewpoint

    NASA Technical Reports Server (NTRS)

    Dash, S. M.; Sinha, N.

    1992-01-01

    The present, novel treatment of missile airframe-exhaust plume interactions emphasizes their simulation via a formal solution of the Reynolds-averaged Navier-Stokes (RNS) equation and is accordingly able to address the simulation requirements of novel missiles with nonconventional/integrated propulsion systems. The method is made possible by implicit RNS codes with improved artificial dissipation models, generalized geometric capabilities, and improved two-equation turbulence models, as well as by such codes' recent incorporation of plume thermochemistry and multiphase flow effects.

  18. Power-dependent speciation of volatile organic compounds in aircraft exhaust

    NASA Astrophysics Data System (ADS)

    Beyersdorf, Andreas J.; Thornhill, K. Lee; Winstead, Edward L.; Ziemba, Luke D.; Blake, Donald R.; Timko, Michael T.; Anderson, Bruce E.

    2012-12-01

    As part of the third NASA Aircraft Particle Emissions Experiment (APEX-3, November 2005), whole air samples were collected to determine the emission rates of volatile organic compounds (VOCs) from aircraft equipped with three different gas-turbine engines (an Allison Engine 3007-A1E, a Pratt-Whitney 4158, and a Rolls-Royce RB211-535E4B). Samples were collected 1 m behind the engine exhaust plane of the engines while they were operated at powers ranging from idle up to 30% of maximum rated thrust. Exhaust emission indices (mass emitted per kilogram of fuel used) for CO and non-methane hydrocarbons (NMHCs) were calculated based on enhancements over background relative to CO2. Emissions of all NMHCs were greatest at low power with values decreasing by an order of magnitude with increasing power. Previous studies have shown that scaling idle hydrocarbon emissions to formaldehyde or ethene (which are typically emitted at a ratio of 1-to-1 at idle) reduces variability amongst engine types. NMHC emissions were found to scale at low power, with alkenes contributing over 50% of measured NMHCs. However, as the power increases hydrocarbon emissions no longer scale to ethene, as the aromatics become the dominant species emitted. This may be due in part to a shift in combustion processes from thermal cracking (producing predominantly alkenes) to production of new molecules (producing proportionally more aromatics) as power increases. The formation of these aromatics is an intermediate step in the production of soot, which also increases with increasing power. The increase in aromatics relative to alkenes additionally results in a decrease in the hydroxyl radical reactivity and ozone formation potential of aircraft exhaust. Samples collected 30 m downwind of the engine were also analyzed for NMHCs and carbonyl compounds (acetone, 2-butanone and C1-C9 aldehydes). Formaldehyde was the predominant carbonyl emitted; however, the ratio of ethene-to-formaldehyde varied between the

  19. The effect of exhaust plume/afterbody interaction on installed Scramjet performance

    NASA Technical Reports Server (NTRS)

    Edwards, Thomas Alan

    1988-01-01

    Newly emerging aerospace technology points to the feasibility of sustained hypersonic flight. Designing a propulsion system capable of generating the necessary thrust is now the major obstacle. First-generation vehicles will be driven by air-breathing scramjet (supersonic combustion ramjet) engines. Because of engine size limitations, the exhaust gas leaving the nozzle will be highly underexpanded. Consequently, a significant amount of thrust and lift can be extracted by allowing the exhaust gases to expand along the underbody of the vehicle. Predicting how these forces influence overall vehicle thrust, lift, and moment is essential to a successful design. This work represents an important first step toward that objective. The UWIN code, an upwind, implicit Navier-Stokes computer program, has been applied to hypersonic exhaust plume/afterbody flow fields. The capability to solve entire vehicle geometries at hypersonic speeds, including an interacting exhaust plume, has been demonstrated for the first time. Comparison of the numerical results with available experimental data shows good agreement in all cases investigated. For moderately underexpanded jets, afterbody forces were found to vary linearly with the nozzle exit pressure, and increasing the exit pressure produced additional nose-down pitching moment. Coupling a species continuity equation to the UWIN code enabled calculations indicating that exhaust gases with low isentropic exponents (gamma) contribute larger afterbody forces than high-gamma exhaust gases. Moderately underexpanded jets, which remain attached to unswept afterbodies, underwent streamwise separation on upswept afterbodies. Highly underexpanded jets produced altogether different flow patterns, however. The highly underexpanded jet creates a strong plume shock, and the interaction of this shock with the afterbody was found to produce complicated patterns of crossflow separation. Finally, the effect of thrust vectoring on vehicle balance has

  20. Far-Field Turbulent Vortex-Wake/Exhaust Plume Interaction for Subsonic and HSCT Airplanes

    NASA Technical Reports Server (NTRS)

    Kandil, Osama A.; Adam, Ihab; Wong, Tin-Chee

    1996-01-01

    Computational study of the far-field turbulent vortex-wake/exhaust plume interaction for subsonic and high speed civil transport (HSCT) airplanes is carried out. The Reynolds-averaged Navier-Stokes (NS) equations are solved using the implicit, upwind, Roe-flux-differencing, finite-volume scheme. The two-equation shear stress transport model of Menter is implemented with the NS solver for turbulent-flow calculation. For the far-field study, the computations of vortex-wake interaction with the exhaust plume of a single engine of a Boeing 727 wing in a holding condition and two engines of an HSCT in a cruise condition are carried out using overlapping zonal method for several miles downstream. These results are obtained using the computer code FTNS3D. The results of the subsonic flow of this code are compared with those of a parabolized NS solver known as the UNIWAKE code.

  1. Temperature, Pressure, and Infrared Image Survey of an Axisymmetric Heated Exhaust Plume

    NASA Technical Reports Server (NTRS)

    Nelson, Edward L.; Mahan, J. Robert; Birckelbaw, Larry D.; Turk, Jeffrey A.; Wardwell, Douglas A.; Hange, Craig E.

    1996-01-01

    The focus of this research is to numerically predict an infrared image of a jet engine exhaust plume, given field variables such as temperature, pressure, and exhaust plume constituents as a function of spatial position within the plume, and to compare this predicted image directly with measured data. This work is motivated by the need to validate computational fluid dynamic (CFD) codes through infrared imaging. The technique of reducing the three-dimensional field variable domain to a two-dimensional infrared image invokes the use of an inverse Monte Carlo ray trace algorithm and an infrared band model for exhaust gases. This report describes an experiment in which the above-mentioned field variables were carefully measured. Results from this experiment, namely tables of measured temperature and pressure data, as well as measured infrared images, are given. The inverse Monte Carlo ray trace technique is described. Finally, experimentally obtained infrared images are directly compared to infrared images predicted from the measured field variables.

  2. Analysis of aircraft exhausts with Fourier-transform infrared emission spectroscopy.

    PubMed

    Heland, J; Schäfer, K

    1997-07-20

    Because of the worldwide growth in air traffic and its increasing effects on the atmospheric environment, it is necessary to quantify the direct aircraft emissions at all altitudes. In this study Fourier-transform infrared emission spectroscopy as a remote-sensing multi-component-analyzing technique for aircraft exhausts was investigated at ground level with a double pendulum interferometer and a line-by-line computer algorithm that was applied to a multilayer radiative transfer problem. Initial measurements were made to specify the spectral windows for traceable compounds, to test the sensitivity of the system, and to develop calibration and continuum handling procedures. To obtain information about the radial temperature and concentration profiles, we developed an algorithm for the analysis of an axial-symmetric multilayered plume by use of the CO(2) hot band at approximately 2400 cm(-1). Measurements were made with several in-service engines. Effects that were due to engine aging were detected but have to be analyzed systematically in the near future. Validation measurements were carried out with a conventional propane gas burner to compare the results with those obtained with standard measurement equipment. These measurements showed good agreement to within +/-20% for the CO and NO(x) results. The overall accuracy of the system was found to be +/-30%. The detection limits of the system for a typical engine plume (380 degrees C, ? = 50 cm) are below 0.1% for CO(2), ~0.7% for H(2)O, ~20 ppmv (parts per million by volume) for CO, and ~90 ppmv for NO.

  3. Analysis of aircraft exhausts with Fourier-transform infrared emission spectroscopy.

    PubMed

    Heland, J; Schäfer, K

    1997-07-20

    Because of the worldwide growth in air traffic and its increasing effects on the atmospheric environment, it is necessary to quantify the direct aircraft emissions at all altitudes. In this study Fourier-transform infrared emission spectroscopy as a remote-sensing multi-component-analyzing technique for aircraft exhausts was investigated at ground level with a double pendulum interferometer and a line-by-line computer algorithm that was applied to a multilayer radiative transfer problem. Initial measurements were made to specify the spectral windows for traceable compounds, to test the sensitivity of the system, and to develop calibration and continuum handling procedures. To obtain information about the radial temperature and concentration profiles, we developed an algorithm for the analysis of an axial-symmetric multilayered plume by use of the CO(2) hot band at approximately 2400 cm(-1). Measurements were made with several in-service engines. Effects that were due to engine aging were detected but have to be analyzed systematically in the near future. Validation measurements were carried out with a conventional propane gas burner to compare the results with those obtained with standard measurement equipment. These measurements showed good agreement to within +/-20% for the CO and NO(x) results. The overall accuracy of the system was found to be +/-30%. The detection limits of the system for a typical engine plume (380 degrees C, ? = 50 cm) are below 0.1% for CO(2), ~0.7% for H(2)O, ~20 ppmv (parts per million by volume) for CO, and ~90 ppmv for NO. PMID:18259296

  4. Issues related to aircraft take-off plumes in a mesoscale photochemical model.

    PubMed

    Bossioli, Elissavet; Tombrou, Maria; Helmis, Costas; Kurtenbach, Ralf; Wiesen, Peter; Schäfer, Klaus; Dandou, Aggeliki; Varotsos, Kostas V

    2013-07-01

    The physical and chemical characteristics of aircraft plumes at the take-off phase are simulated with the mesoscale CAMx model using the individual plume segment approach, in a highly resolved domain, covering the Athens International Airport. Emission indices during take-off measured at the Athens International Airport are incorporated. Model predictions are compared with in situ point and path-averaged observations (NO, NO₂) downwind of the runway at the ground. The influence of modeling process, dispersion properties and background air composition on the chemical evolution of the aircraft plumes is examined. It is proven that the mixing properties mainly determine the plume dispersion. The initial plume properties become significant for the selection of the appropriate vertical resolution. Besides these factors, the background NOx and O₃ concentration levels control NOx distribution and their conversion to nitrogen reservoir species.

  5. Exhaust Plume Effects on Sonic Boom for a Delta Wing and a Swept Wing-Body Model

    NASA Technical Reports Server (NTRS)

    Castner, Raymond; Lake, Troy

    2012-01-01

    Supersonic travel is not allowed over populated areas due to the disturbance caused by the sonic boom. Research has been performed on sonic boom reduction and has included the contribution of the exhaust nozzle plume. Plume effect on sonic boom has progressed from the study of isolated nozzles to a study with four exhaust plumes integrated with a wing-body vehicle. This report provides a baseline analysis of the generic wing-body vehicle to demonstrate the effect of the nozzle exhaust on the near-field pressure profile. Reductions occurred in the peak-to-peak magnitude of the pressure profile for a swept wing-body vehicle. The exhaust plumes also had a favorable effect as the nozzles were moved outward along the wing-span.

  6. Real Time Diagnostics of Jet Engine Exhaust Plumes Using a Chirped QC Laser Spectrometer

    NASA Astrophysics Data System (ADS)

    Hay, K. G.; Duxbury, G.; Langford, N.

    2010-06-01

    Quantitative measurements of real-time variations of the chemical composition of a jet engine exhaust plume is demonstrated using a 4.86 μmn intra-pulse quantum cascade laser spectrometer. The measurements of the gas turbine exhaust were carried out in collaboration with John Black and Mark Johnson at Rolls Royce. The recording of five sets of averaged spectra a second has allowed us to follow the build up of the combustion products within the exhaust, and to demonstrate the large variation of the integrated absorption of these absorption lines with temperature. The absorption cross sections of the lines of both carbon monoxide and water increase with temperature, whereas those of the three main absorption lines of carbon dioxide decrease. At the steady state limit the absorption lines of carbon dioxide are barely visible, and the spectrum is dominated by absorption lines of carbon monoxide and water.

  7. Wind Tunnel Model Design for the Study of Plume Effects on Sonic Boom for Isolated Exhaust Nozzles

    NASA Technical Reports Server (NTRS)

    Castner, Raynold S.

    2010-01-01

    A low cost test capability was developed at the NASA Glenn Research Center 1- by 1-Foot Supersonic Wind Tunnel (SWT), with a goal to reduce the disturbance caused by supersonic aircraft flight over populated areas. This work focused on the shock wave structure caused by the exhaust nozzle plume. Analysis and design was performed on a new rig to test exhaust nozzle plume effects on sonic boom signature. Test capability included a baseline nozzle test article and a wind tunnel model consisting of a strut, a nosecone and an upper plenum. Analysis was performed on the external and internal aerodynamic configuration, including the shock reflections from the wind tunnel walls caused by the presence of the model nosecone. This wind tunnel model was designed to operate from Mach 1.4 to Mach 3.0 with nozzle pressure ratios from 6 to 12 and altitudes from 30,000 ft (4.36 psia) to 50,000 ft (1.68 psia). The model design was based on a 1 in. outer diameter, was 9 in. in overall length, and was mounted in the wind tunnel on a 3/8 in. wide support strut. For test conditions at 50,000 ft the strut was built to supply 90 psia of pressure, and to achieve 20 psia at the nozzle inlet with a maximum nozzle pressure of 52 psia. Instrumentation was developed to measure nozzle pressure ratio, and an external static pressure probe was designed to survey near field static pressure profiles at one nozzle diameter above the rig centerline. Model layout placed test nozzles between two transparent sidewalls in the 1 1 SWT for Schlieren photography and comparison to CFD analysis.

  8. Wind Tunnel Model Design for the Study of Plume Effects on Sonic Boom for Isolated Exhaust Nozzles

    NASA Technical Reports Server (NTRS)

    Castner, Raymond S.

    2009-01-01

    A low cost test capability was developed at the NASA Glenn Research Center 1- by 1-Foot Supersonic Wind Tunnel (SWT), with a goal to reduce the disturbance caused by supersonic aircraft flight over populated areas. This work focused on the shock wave structure caused by the exhaust nozzle plume. Analysis and design was performed on a new rig to test exhaust nozzle plume effects on sonic boom signature. Test capability included a baseline nozzle test article and a wind tunnel model consisting of a strut, a nose cone and an upper plenum. Analysis was performed on the external and internal aerodynamic configuration, including the shock reflections from the wind tunnel walls caused by the presence of the model nosecone. This wind tunnel model was designed to operate from Mach 1.4 to Mach 3.0 with nozzle pressure ratios from 6 to 12 and altitudes from 30,000 ft (4.36 psia) to 50,000 ft (1.68 psia). The model design was based on a 1 in. outer diameter, was 9 in. in overall length, and was mounted in the wind tunnel on a 3/8 in. wide support strut. For test conditions at 50,000 ft the strut was built to supply 90 psia of pressure, and to achieve 20 psia at the nozzle inlet with a maximum nozzle pressure of 52 psia. Instrumentation was developed to measure nozzle pressure ratio, and an external static pressure probe was designed to survey near field static pressure profiles at one nozzle diameter above the rig centerline. Model layout placed test nozzles between two transparent sidewalls in the 1x1 SWT for Schlieren photography and comparison to CFD analysis.

  9. Stratospheric plume dispersion: Measurements from STS and Titan solid rocket motor exhaust. Technical report

    SciTech Connect

    Beiting, E.J.

    1999-04-20

    Plume expansion was measured from nine Space Shuttle and Titan IV vehicles at altitudes of 18, 24, and 30 km in the stratosphere. The plume diameters were inferred from electronic images of polarized, near-infrared solar radiation scattered from the exhaust particles, and these diameters were found to increase linearly with time. The expansion rate was measured for as long as 50 min after the vehicle reached altitude. Measurements made simultaneously at multiple altitudes showed that the expansion rate increased with increasing altitude for six measurements made at Cape Canaveral but decreased between 24 and 30 km for the one measurement made at Vandenberg AFB. The average expansion rates for all measurements are 4.3 {+-} 1.0 m/s at 18 km, 6.8 {+-} 1.9 m/s at 24 km, and 8.7 {+-} 2.5 m/s at 30 km. Expansion rates varied from launch to launch by as much as a factor of 1.6 at 18 km, 2.2 at 24 km, and 2.7 at 30 km. No correlation between the expansion rate and wind speed or shear was evident. These data are compared to several models for diffusivity and are used to update a comprehensive particle model of solid rocket motor exhaust in the stratosphere. The expansion rates are required by models to calculate the spatial extent and temporal persistence of the local stratospheric ozone depletion cause by solid rocket exhaust.

  10. Wavelength-Agile Optical Sensor for Exhaust Plume and Cryogenic Fluid Interrogation

    NASA Technical Reports Server (NTRS)

    Sanders, Scott T.; Chiaverini, Martin J.; Gramer, Daniel J.

    2004-01-01

    Two optical sensors developed in UW-Madison labs were evaluated for their potential to characterize rocket engine exhaust plumes and liquid oxygen (LOX) fluid properties. The plume sensor is based on wavelength-agile absorption spectroscopy A device called a chirped white pulse emitter (CWPE) is used to generate the wavelength agile light, scanning, for example, 1340 - 1560 nm every microsecond. Properties of the gases in the rocket plume (for example temperature and water mole fraction) can be monitored using these wavelength scans. We have performed preliminary tests in static gas cells, a laboratory GOX/GH2 thrust chamber, and a solid-fuel hybrid thrust chamber, and these initial tests demonstrate the potential of the CWPE for monitoring rocket plumes. The LOX sensor uses an alternative to wavelength agile sensing: two independent, fixed-wavelength lasers are combined into a single fiber. One laser is absorbed by LOX and the other not: by monitoring the differential transmission the LOX concentration in cryogenic feed lines can be inferred. The sensor was successful in interrogating static LOX pools in laboratory tests. Even in ice- and bubble-laden cryogenic fluids, LOX concentrations were measured to better than 1% with a 3 microsec time constant.

  11. On-board Optical Spectrometry for Detection of Mixture Ratio and Eroded Materials in Rocket Engine Exhaust Plume

    NASA Technical Reports Server (NTRS)

    Barkhoudarian, Sarkis; Kittinger, Scott

    2006-01-01

    Optical spectrometry can provide means to characterize rocket engine exhaust plume impurities due to eroded materials, as well as combustion mixture ratio without any interference with plume. Fiberoptic probes and cables were designed, fabricated and installed on Space Shuttle Main Engines (SSME), allowing monitoring of the plume spectra in real time with a Commercial of the Shelf (COTS) fiberoptic spectrometer, located in a test-stand control room. The probes and the cables survived the harsh engine environments for numerous hot-fire tests. When the plume was seeded with a nickel alloy powder, the spectrometer was able to successfully detect all the metallic and OH radical spectra from 300 to 800 nanometers.

  12. An experimental and computational study of moderately underexpanded rocket exhaust plumes in a co-flowing hypersonic free stream

    SciTech Connect

    Morris, N.; Buttsworth, D.; Jones, T.; Brescianini, C. |

    1995-09-01

    Rocket plume exhaust structures are aerodynamically and thermochemically very complex and the prediction of plume properties such as temperature, velocity, pressure, chemical species concentrations and turbulence properties is a formidable task as there are no definitive models for viscous and chemical effects. Contemporary computational techniques are still in their infancy and cannot yet reliably predict plume properties. Only through validation of computer codes using experimental data, can computational models be developed to the point where they can be confidently used as design and predictive tools. The motivation for this study was to acquire well defined data for rocket plumes at low altitude hypersonic flight conditions so that the above issues could be investigated.

  13. Ion-soot interaction: a possible mechanism of ion removal in aircraft plume.

    PubMed

    Popovicheva, O B; Persiantseva, N M; Starik, A M; Loukhovitskaya, E E

    2003-04-01

    The phenomenon of the ion-soot interaction in the aircraft plume at the ground conditions is investigated. The ion-soot attachment coefficients, taking into account the polarization of the soot particles in the ion electric field, are calculated. It is shown that the ion-soot attachment may play the important role in the evolution of the ion concentrations in the plume. Comparison of the model results with the ground-based measurements for the ion depletion along the plume demonstrates that the concentration of the positive and negative ions at the nozzle exit for these observations is close to 1.2 x 10(8) cm(-3).

  14. Lidar for remote measurement of ozone in the exhaust plumes of launch vehicles.

    PubMed

    Gelbwachs, J A

    1996-05-20

    Large quantities of chlorine and alumina particles are injected directly into the stratosphere by the current fleet of launch vehicles. Environmental concerns have been raised over the impact of the rocket exhaust on the ozone layer. Recently differential absorption lidar (DIAL) was selected for remote sensing of ozone density within the plumes of Titan IV launch vehicles. The application of DIAL to this very challenging problem is described, and an implementation of UV-ozone DIAL is discussed that holds promise for this application.

  15. Exhaust plume and contamination characteristics of a bipropellant (MMH/N2O4) RCS thruster

    NASA Technical Reports Server (NTRS)

    Spisz, E. W.; Bowman, R. L.; Jack, J. R.

    1973-01-01

    Results are presented for three recent tests in a series of thruster contamination experiments made in liquid helium-cooled environmental facility. The contaminating effects encountered on various materials, surfaces, and components, due to the exhaust products from a 5-pound thrust, bipropellant (MMH/N2O4) thruster are investigated. The angular distribution of plume effects around the periphery of the thruster established by transmittance changes of quartz samples over the wavelength range from 0.2 to 2.0 micrometer is studied, along with mass deposition rates at a specific location measured with a quartz crystal microbalance for three different experiments. Quadrupole mass spectrometer measurements of the exhaust products over the mass number range from 12 to 75; infrared transmittance measurements of contaminated samples for the wavelength range from 2.5 to 15 microns; and infrared transmittance measurements of residue from the thruster nozzle are also considered.

  16. Near-field commercial aircraft contribution to nitrogen oxides by engine, aircraft type, and airline by individual plume sampling.

    PubMed

    Carslaw, David C; Ropkins, Karl; Laxen, Duncan; Moorcroft, Stephen; Marner, Ben; Williams, Martin L

    2008-03-15

    Nitrogen oxides (NOx) concentrations were measured in individual plumes from aircraft departing on the northern runway at Heathrow Airport in west London. Over a period of four weeks 5618 individual plumes were sampled by a chemiluminescence monitor located 180 m from the runway. Results were processed and matched with detailed aircraft movement and aircraft engine data using chromatographic techniques. Peak concentrations associated with 29 commonly used engines were calculated and found to have a good relationship with N0x emissions taken from the International Civil Aviation Organization (ICAO) databank. However, it is found that engines with higher reported NOx emissions result in proportionately lower NOx concentrations than engines with lower emissions. We show that it is likely that aircraft operational factors such as takeoff weight and aircraftthrust setting have a measurable and important effect on concentrations of N0x. For example, NOx concentrations can differ by up to 41% for aircraft using the same airframe and engine type, while those due to the same engine type in different airframes can differ by 28%. These differences are as great as, if not greater than, the reported differences in NOx emissions between different engine manufacturers for engines used on the same airframe.

  17. Near-field commercial aircraft contribution to nitrogen oxides by engine, aircraft type, and airline by individual plume sampling.

    PubMed

    Carslaw, David C; Ropkins, Karl; Laxen, Duncan; Moorcroft, Stephen; Marner, Ben; Williams, Martin L

    2008-03-15

    Nitrogen oxides (NOx) concentrations were measured in individual plumes from aircraft departing on the northern runway at Heathrow Airport in west London. Over a period of four weeks 5618 individual plumes were sampled by a chemiluminescence monitor located 180 m from the runway. Results were processed and matched with detailed aircraft movement and aircraft engine data using chromatographic techniques. Peak concentrations associated with 29 commonly used engines were calculated and found to have a good relationship with N0x emissions taken from the International Civil Aviation Organization (ICAO) databank. However, it is found that engines with higher reported NOx emissions result in proportionately lower NOx concentrations than engines with lower emissions. We show that it is likely that aircraft operational factors such as takeoff weight and aircraftthrust setting have a measurable and important effect on concentrations of N0x. For example, NOx concentrations can differ by up to 41% for aircraft using the same airframe and engine type, while those due to the same engine type in different airframes can differ by 28%. These differences are as great as, if not greater than, the reported differences in NOx emissions between different engine manufacturers for engines used on the same airframe. PMID:18409606

  18. Effects of nozzle exit geometry and pressure ratio on plume shape for nozzles exhausting into quiescent air

    NASA Technical Reports Server (NTRS)

    Scallion, William I.

    1991-01-01

    The effects of varying the exit geometry on the plume shapes of supersonic nozzles exhausting into quiescent air at several exit-to-ambient pressure ratios are given. Four nozzles having circular throat sections and circular, elliptical and oval exit cross sections were tested and the exit plume shapes are compared at the same exit-to-ambient pressure ratios. The resulting mass flows were calculated and are also presented.

  19. Observation of the exhaust plume from the space shuttle main engine using the Microwave Limb Sounder

    NASA Astrophysics Data System (ADS)

    Pumphrey, H. C.; Lambert, A.; Livesey, N. J.

    2010-08-01

    A space shuttle launch deposits 700 t of water in the atmosphere. Some of this water is released into the upper mesosphere and lower thermosphere where it may be directly detected by a limb sounding satellite instrument. We report measurements of water vapour plumes from shuttle launches made by the Microwave Limb Sounder (MLS) on the Aura satellite. Approximately 50% of shuttle launches are detected by MLS. The signal appears at a similar level across the upper 10 km of the MLS limb scan, suggesting that the bulk of the observed water is above the top of the scan. Only a small fraction at best of smaller launches (Ariane, Proton) are detected. We conclude that the sensitivity of MLS is only just great enough to detect a shuttle sized launch, but that a suitably designed instrument of the same general type could detect the exhausts from a large proportion of heavy-lift launches.

  20. Observation of the exhaust plume from the space shuttle main engines using the microwave limb sounder

    NASA Astrophysics Data System (ADS)

    Pumphrey, H. C.; Lambert, A.; Livesey, N. J.

    2011-01-01

    A space shuttle launch deposits 700 tonnes of water in the atmosphere. Some of this water is released into the upper mesosphere and lower thermosphere where it may be directly detected by a limb sounding satellite instrument. We report measurements of water vapour plumes from shuttle launches made by the Microwave Limb Sounder (MLS) on the Aura satellite. Approximately 50%-65% of shuttle launches are detected by MLS. The signal appears at a similar level across the upper 10 km of the MLS limb scan, suggesting that the bulk of the observed water is above the top of the scan. Only a small fraction at best of smaller launches (Ariane 5, Proton) are detected. We conclude that the sensitivity of MLS is only just great enough to detect a shuttle sized launch, but that a suitably designed instrument of the same general type could detect the exhausts from a large proportion of heavy-lift launches.

  1. Concepts for reducing exhaust emissions and fuel consumption of the aircraft piston engine

    NASA Technical Reports Server (NTRS)

    Rezy, B. J.; Stuckas, K. J.; Tucker, J. R.; Meyers, J. E.

    1979-01-01

    A study was made to reduce exhaust emissions and fuel consumption of a general aviation aircraft piston engine by applying known technology. Fourteen promising concepts such as stratified charge combustion chambers, cooling cylinder head improvements, and ignition system changes were evaluated for emission reduction and cost effectiveness. A combination of three concepts, improved fuel injection system, improved cylinder head with exhaust port liners and exhaust air injection was projected as the most cost effective and safe means of meeting the EPA standards for CO, HC and NO. The fuel economy improvement of 4.6% over a typical single engine aircraft flight profile does not though justify the added cost of the three concepts, and significant reductions in fuel consumption must be applied to the cruise mode where most of the fuel is used. The use of exhaust air injection in combination with exhaust port liners reduces exhaust valve stem temperatures which can result in longer valve guide life. The use of exhaust port liners alone can reduce engine cooling air requirements by 11% which is the equivalent of a 1.5% increase in propulsive power. The EPA standards for CO, HC and NO can be met in the IO-520 engine using air injection alone or the Simmonds improved fuel injection system.

  2. Loss rate of NO y from a power plant plume based on aircraft measurements

    NASA Astrophysics Data System (ADS)

    Gillani, N. V.; Luria, M.; Valente, R. J.; Tanner, R. L.; Imhoff, R. E.; Meagher, J. F.

    1998-09-01

    This study was motivated by the recent work of Buhr et al. [1996] which reported losses of NOy from large power plant plumes as high as 0.25 hour-1, much higher than generally accepted values. If true, conclusions pertaining to the efficiency of ozone and nitrate production in the lower troposphere would need major revisions. The results of Buhr et al. were based on aircraft measurements in four TVA (Tennessee Valley Authority) power plant plumes on July 7, 1995, as part of the Nashville/Middle Tennessee Ozone Study, a measurement program of the Southern Oxidants Study (SOS), whereas the results reported in this paper are also based on measurements made in the same SOS study aboard another instrumented aircraft (the TVA helicopter), in plumes of one of these power plants (the Cumberland Steam Plant in northwestern Tennessee) during five different days in 1994 and 1995. Between the 1994 and 1995 sampling periods, emissions of SO2 at the Cumberland plant were reduced by nearly 95% by installation of scrubbers. Our data from the one 1994 day show that the ratio of excess SO2 to NOy, in the plume core increased significantly with plume age, indicating a potentially high differential loss rate of NOy (excess loss of NOy relative to SO2) of about 0.12 hour-1. However, results based on the larger 1995 data set indicate a low differential NOy loss rate of only 0.00±0.03 hour-1, consistent with accepted low loss rates. Because the SOS-Nashville/Middle Tennessee Ozone Study was not specifically designed to explore the NOy loss issue, the question of NOy loss rates in plumes is not currently resolved and additional focused field studies are needed.

  3. Space shuttle SRM plume expansion sensitivity analysis. [flow characteristics of exhaust gases from solid propellant rocket engines

    NASA Technical Reports Server (NTRS)

    Smith, S. D.; Tevepaugh, J. A.; Penny, M. M.

    1975-01-01

    The exhaust plumes of the space shuttle solid rocket motors can have a significant effect on the base pressure and base drag of the shuttle vehicle. A parametric analysis was conducted to assess the sensitivity of the initial plume expansion angle of analytical solid rocket motor flow fields to various analytical input parameters and operating conditions. The results of the analysis are presented and conclusions reached regarding the sensitivity of the initial plume expansion angle to each parameter investigated. Operating conditions parametrically varied were chamber pressure, nozzle inlet angle, nozzle throat radius of curvature ratio and propellant particle loading. Empirical particle parameters investigated were mean size, local drag coefficient and local heat transfer coefficient. Sensitivity of the initial plume expansion angle to gas thermochemistry model and local drag coefficient model assumptions were determined.

  4. 77 FR 76842 - Exhaust Emissions Standards for New Aircraft Gas Turbine Engines and Identification Plate for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-31

    ... action revises the standards for oxides of nitrogen and test procedures for exhaust emissions based on... Environmental Protection Agency (EPA) proposed new aircraft engine emission standards for oxides of nitrogen (NO... turbojet engines with rated thrusts greater than 26.7 kilonewtons (kN) (76 FR 45012, July 27, 2011)....

  5. Sulfuric Acid and Soot Particles in Aircraft Exhaust

    NASA Technical Reports Server (NTRS)

    Pueschel, Rudolf F.; Verma, S.; Ferry, G. V.; Goodman, J.; Strawa, A. W.; Gore, Warren J. Y. (Technical Monitor)

    1997-01-01

    Aircraft have become the fastest, fairly convenient and, in most cases of long-distance travel, most economical mode of travel. This is reflected in the increase of commercial air traffic at a rate of 6% per year since 1978. Future annual growth rates of passenger miles of 4% for domestic and 6% for international routes are projected. A still larger annual increase of 8.5% is expected for the Asia/Pacific region. To meet that growth, Boeing predicts the addition of 15,900 new aircraft to the world's fleets, valued at more than $1.1 trillion, within the next 20 years. The largest concern of environmental consequences of aircraft emissions deals with ozone (O3), because: (1) the O3 layer protects the blaspheme from short-ultraviolet radiation that can cause damage to human, animal and plant life, and possibly affect agricultural production and the marine food chain; (2) O3 is important for the production of the hydroxyl radical (OH) which, in turn, is responsible for the destruction of other greenhouse gases, e.g., methane (CH4) and for the removal of other pollutants, and (3) O3 is a greenhouse gas. Additional information is contained in the original extended abstract.

  6. Effects of motion on jet exhaust noise from aircraft

    NASA Technical Reports Server (NTRS)

    Chun, K. S.; Berman, C. H.; Cowan, S. J.

    1976-01-01

    The various problems involved in the evaluation of the jet noise field prevailing between an observer on the ground and an aircraft in flight in a typical takeoff or landing approach pattern were studied. Areas examined include: (1) literature survey and preliminary investigation, (2) propagation effects, (3) source alteration effects, and (4) investigation of verification techniques. Sixteen problem areas were identified and studied. Six follow-up programs were recommended for further work. The results and the proposed follow-on programs provide a practical general technique for predicting flyover jet noise for conventional jet nozzles.

  7. Modification of Roberts' Theory for Rocket Exhaust Plumes Eroding Lunar Soil

    NASA Technical Reports Server (NTRS)

    Metzger, Philip T.; Lane, John E.; Immer, Christopher D.

    2008-01-01

    In preparation for the Apollo program, Leonard Roberts developed a remarkable analytical theory that predicts the blowing of lunar soil and dust beneath a rocket exhaust plume. Roberts' assumed that the erosion rate is determined by the "excess shear stress" in the gas (the amount of shear stress greater than what causes grains to roll). The acceleration of particles to their final velocity in the gas consumed a portion of the shear stress. The erosion rate continues to increase until the excess shear stress is exactly consumed, thus determining the erosion rate. He calculated the largest and smallest particles that could be eroded based on forces at the particle scale, but the erosion rate equation assumes that only one particle size exists in the soil. He assumed that particle ejection angles are determined entirely by the shape of the terrain, which acts like a ballistic ramp, the particle aerodynamics being negligible. The predicted erosion rate and particle upper size limit appeared to be within an order of magnitude of small-scale terrestrial experiments, but could not be tested more quantitatively at the time. The lower particle size limit and ejection angle predictions were not tested.

  8. Spectroscopic studies of the exhaust plume of a quasi-steady MPD accelerator. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Bruckner, A. P.

    1972-01-01

    Spectroscopic and photographic investigations are reported that reveal a complex azimuthal species structure in the exhaust plume of a quasi-steady argon MPD accelerator. Over a wide range of operating conditions the injected argon remains collimated in discrete jets which are azimuthally in line with the six propellant injector orifices. The regions between these argon jets, including the central core of the exhaust flow, are occupied by impurities such as carbon, hydrogen and oxygen ablated from the Plexiglas back plate of the arc chamber. The features of this plume structure are found to be dependent on the arc current and mass flow rate. It is found that nearly half the observed velocity is attained in an acceleration region well downstream of the region of significant electromagnetic interaction. Recombination calculations show that the ionization energy is essentially frozen.

  9. Extrapolating Ground-Based Aircraft Engine Exhaust Emissions to Cruise Conditions: Lessons From the 2013 ACCESS Chase Plane Experiment

    NASA Astrophysics Data System (ADS)

    Moore, R.; Shook, M.; Thornhill, K. L.; Winstead, E.; Anderson, B. E.

    2011-12-01

    Aircraft engine emissions constitute a tiny fraction of the global black carbon mass, but can have a disproportionate climatic impact because they are emitted high in the troposphere and in remote regions with otherwise low aerosol concentrations. Consequently, these particles are likely to strongly influence cirrus and contrail formation by acting as ice nuclei (IN). However, the ice nucleating properties of aircraft exhaust at relevant atmospheric conditions are not well known, and thus, the overall impact of aviation on cloud formation remains very uncertain. While a number of aircraft engine emissions studies have previously been conducted at sea level temperature and pressure (e.g., APEX, AAFEX-1 and 2), it unclear the extent to which exhaust emissions on the ground translate to emissions at cruise conditions with much lower inlet gas temperatures and pressures. To address this need, the NASA Alternative Fuel Effects on Contrails and Cruise Emissions (ACCESS) was conducted in February-April, 2013 to examine the aerosol and gas emissions from the NASA DC-8 under a variety of different fuel types, engine power, and altitude/meteorological conditions. Two different fuel types were studied: a traditional JP-8 fuel and a 50:50 blend of JP-8 and a camelina-based hydro-treated renewable jet (HRJ) fuel. Emissions were sampled using a comprehensive suite of gas- and aerosol-phase instrumentation integrated on an HU-25 Falcon jet that was positioned in the DC-8 exhaust plume at approximately 100-500m distance behind the engines. In addition, a four-hour ground test was carried out with sample probes positioned at 30 m behind each of the inboard engines. Measurements of aerosol concentration, size distribution, soot mass, and hygroscopicity were carried out along with trace gas measurements of CO2, NO, NO2, O3, and water vapor. NOx emissions were reconciled by employing the well-established Boeing method for normalizing engine fuel flow rates to STP; however, comparison

  10. Extrapolating Ground-Based Aircraft Engine Exhaust Emissions to Cruise Conditions: Lessons From the 2013 ACCESS Chase Plane Experiment

    NASA Astrophysics Data System (ADS)

    Moore, R.; Shook, M.; Thornhill, K. L.; Winstead, E.; Anderson, B. E.

    2013-12-01

    Aircraft engine emissions constitute a tiny fraction of the global black carbon mass, but can have a disproportionate climatic impact because they are emitted high in the troposphere and in remote regions with otherwise low aerosol concentrations. Consequently, these particles are likely to strongly influence cirrus and contrail formation by acting as ice nuclei (IN). However, the ice nucleating properties of aircraft exhaust at relevant atmospheric conditions are not well known, and thus, the overall impact of aviation on cloud formation remains very uncertain. While a number of aircraft engine emissions studies have previously been conducted at sea level temperature and pressure (e.g., APEX, AAFEX-1 and 2), it unclear the extent to which exhaust emissions on the ground translate to emissions at cruise conditions with much lower inlet gas temperatures and pressures. To address this need, the NASA Alternative Fuel Effects on Contrails and Cruise Emissions (ACCESS) was conducted in February-April, 2013 to examine the aerosol and gas emissions from the NASA DC-8 under a variety of different fuel types, engine power, and altitude/meteorological conditions. Two different fuel types were studied: a traditional JP-8 fuel and a 50:50 blend of JP-8 and a camelina-based hydro-treated renewable jet (HRJ) fuel. Emissions were sampled using a comprehensive suite of gas- and aerosol-phase instrumentation integrated on an HU-25 Falcon jet that was positioned in the DC-8 exhaust plume at approximately 100-500m distance behind the engines. In addition, a four-hour ground test was carried out with sample probes positioned at 30 m behind each of the inboard engines. Measurements of aerosol concentration, size distribution, soot mass, and hygroscopicity were carried out along with trace gas measurements of CO2, NO, NO2, O3, and water vapor. NOx emissions were reconciled by employing the well-established Boeing method for normalizing engine fuel flow rates to STP; however, comparison

  11. Jet engine exhaust emissions of high altitude commercial aircraft projected to 1990

    NASA Technical Reports Server (NTRS)

    Grobman, J.; Ingebo, R. D.

    1974-01-01

    Projected minimum levels of engine exhaust emissions that may be practicably achievable for future commercial aircraft operating at high-altitude cruise conditions are presented. The forecasts are based on:(1) current knowledge of emission characteristics of combustors and augmentors; (2) the status of combustion research in emission reduction technology; and (3) predictable trends in combustion systems and operating conditions as required for projected engine designs that are candidates for advanced subsonic or supersonic commercial aircraft fueled by either JP fuel, liquefied natural gas, or hydrogen. Results are presented for cruise conditions in terms of both an emission index (g constituent/kg fuel) and an emission rate (g constituent/hr).

  12. Forecast of jet engine exhaust emissions for future high altitude commercial aircraft

    NASA Technical Reports Server (NTRS)

    Grobman, J.; Ingebo, R. D.

    1974-01-01

    Projected minimum levels of engine exhaust emissions that may be practicably achievable for future commercial aircraft operating at high altitude cruise conditions are presented. The forecasts are based on: (1) current knowledge of emission characteristics of combustors and augmentors; (2) the current status of combustion research in emission reduction technology; (3) predictable trends in combustion systems and operating conditions as required for projected engine designs that are candidates for advanced subsonic or supersonic commercial aircraft. Results are presented for cruise conditions in terms of an emission index, g pollutant/kg fuel. Two sets of engine exhaust emission predictions are presented: the first, based on an independent NASA study and the second, based on the consensus of an ad hoc committee composed of industry, university, and government representatives. The consensus forecasts are in general agreement with the NASA forecasts.

  13. Performance Characteristics of an Aircraft Engine with Exhaust Turbine Supercharger, Special Report

    NASA Technical Reports Server (NTRS)

    Lester, E. M.; Paulson, V. A.

    1941-01-01

    The Pratt and Whitney Aircraft company and the Naval Aircraft Factory of the United States Navy cooperated in a laboratory and flight program of tests on an exhaust turbine supercharger. Two series of dynamometer tests of the engine super-charger combination were completed under simulated altitude conditions. One series of hot gas-chamber tests was conducted by the manufacturer of the supercharger. Flight demonstrations of the supercharger installed in a twin-engine flying boat were terminated by failure of the turbine wheels. The analysis of the results indicated that a two-stage supercharger with the first-stage exhaust turbine driven will deliver rated power for a given indicated power to a higher altitude, will operate more efficiently, and will require simpler controls than a similar engine with the first stage of the supercharger driven from the crankshaft through multispeed gears.

  14. The 1979 Southeastern Virginia Urban Plume Study. Volume 1: Description of experiments and selected aircraft data

    NASA Technical Reports Server (NTRS)

    Gregory, G. L.; Lee, R. B., III; Mathis, J. J., Jr.

    1981-01-01

    The Southeastern Virginia Urban Plume Study (SEV-UPS) utilizes remote sensors and satellite platforms to monitor the Earth's environment and resources. SEV-UPS focuses on the application of specific remote sensors to the monitoring and study of specific air quality problems. The 1979 SEV-UPS field program was conducted with specific objectives: (1) to provide correlative data to evaluate the Laser Absorption spectrometer ozone remote sensors; (2) to demonstrate the utility of the sensor for the study of urban ozone problems; (3) to provide additional insights into air quality phenomena occuring in Southeastern Virginia; and (4) to compare measurement results of various in situ measurement platforms. The field program included monitoring from 12 surface stations, 4 aircraft, 2 tethered balloons, 2 radiosonde release sites, and numerous surface meteorological observation sites. The aircraft monitored 03, NO, NOX, Bscat, temperature, and dewpoint temperature.

  15. Using Lunar Module Shadows To Scale the Effects of Rocket Exhaust Plumes

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Excavating granular materials beneath a vertical jet of gas involves several physical mechanisms. These occur, for example, beneath the exhaust plume of a rocket landing on the soil of the Moon or Mars. We performed a series of experiments and simulations (Figure 1) to provide a detailed view of the complex gas-soil interactions. Measurements taken from the Apollo lunar landing videos (Figure 2) and from photographs of the resulting terrain helped demonstrate how the interactions extrapolate into the lunar environment. It is important to understand these processes at a fundamental level to support the ongoing design of higher fidelity numerical simulations and larger-scale experiments. These are needed to enable future lunar exploration wherein multiple hardware assets will be placed on the Moon within short distances of one another. The high-velocity spray of soil from the landing spacecraft must be accurately predicted and controlled or it could erode the surfaces of nearby hardware. This analysis indicated that the lunar dust is ejected at an angle of less than 3 degrees above the surface, the results of which can be mitigated by a modest berm of lunar soil. These results assume that future lunar landers will use a single engine. The analysis would need to be adjusted for a multiengine lander. Figure 3 is a detailed schematic of the Lunar Module camera calibration math model. In this chart, formulas relating the known quantities, such as sun angle and Lunar Module dimensions, to the unknown quantities are depicted. The camera angle PSI is determined by measurement of the imaged aspect ratio of a crater, where the crater is assumed to be circular. The final solution is the determination of the camera calibration factor, alpha. Figure 4 is a detailed schematic of the dust angle math model, which again relates known to unknown parameters. The known parameters now include the camera calibration factor and Lunar Module dimensions. The final computation is the ejected

  16. Workshop on Jet Exhaust Noise Reduction for Tactical Aircraft - NASA Perspective

    NASA Technical Reports Server (NTRS)

    Huff, Dennis L.; Henderson, Brenda S.

    2007-01-01

    Jet noise from supersonic, high performance aircraft is a significant problem for takeoff and landing operations near air bases and aircraft carriers. As newer aircraft with higher thrust and performance are introduced, the noise tends to increase due to higher jet exhaust velocities. Jet noise has been a subject of research for over 55 years. Commercial subsonic aircraft benefit from changes to the engine cycle that reduce the exhaust velocities and result in significant noise reduction. Most of the research programs over the past few decades have concentrated on commercial aircraft. Progress has been made by introducing new engines with design features that reduce the noise. NASA has recently started a new program called "Fundamental Aeronautics" where three projects (subsonic fixed wing, subsonic rotary wing, and supersonics) address aircraft noise. For the supersonics project, a primary goal is to understand the underlying physics associated with jet noise so that improved noise prediction tools and noise reduction methods can be developed for a wide range of applications. Highlights from the supersonics project are presented including prediction methods for broadband shock noise, flow measurement methods, and noise reduction methods. Realistic expectations are presented based on past history that indicates significant jet noise reduction cannot be achieved without major changes to the engine cycle. NASA s past experience shows a few EPNdB (effective perceived noise level in decibels) can be achieved using low noise design features such as chevron nozzles. Minimal thrust loss can be expected with these nozzles (< 0.5%) and they may be retrofitted on existing engines. In the long term, it is desirable to use variable cycle engines that can be optimized for lower jet noise during takeoff operations and higher thrust for operational performance. It is also suggested that noise experts be included early in the design process for engine nozzle systems to participate

  17. A simulation method of aircraft plumes for real-time imaging

    NASA Astrophysics Data System (ADS)

    Li, Ni; Lv, Zhenhua; Huai, Wenqin; Gong, Guanghong

    2016-07-01

    Real-time infrared simulation technology can provide a large number of infrared images under different conditions to support the design, test and evaluation of a system having infrared imaging equipment with very low costs. By synthesizing heat transfer, infrared physics, fluid mechanics and computer graphics, a real-time infrared simulation method is proposed based on the method of characteristics to predict the infrared feature of aircraft plumes, which tries to obtain a good balance between simulation precision and computation efficiency. The temperature and pressure distribution in the under-expansion status can be rapidly solved with dynamically changing flight statuses and engine working states. And a modified C-G (Curtis-Godson) spectral band model that combines the plume streamlines with the conventional C-G spectral band model was implemented to calculate the non-uniformly distributed radiation parameters inside a plume field. The simulation result was analyzed and compared with the CFD++, which validates the credibility and efficiency of the proposed simulation method.

  18. Plume mass flow and optical damage distributions for an MMH/N2O4 RCS thruster. [exhaust plume contamination of spacecraft components

    NASA Technical Reports Server (NTRS)

    Spisz, E. W.; Bowman, R. L.; Jack, J. R.

    1973-01-01

    The data obtained from two recent experiments conducted in a continuing series of experiments at the Lewis Research Center into the contamination characteristics of a 5-pound thrust MMH/N2O4 engine are presented. The primary objectives of these experiments were to establish the angular distribution of condensible exhaust products within the plume and the corresponding optical damage angular distribution of transmitting optical elements attributable to this contaminant. The plume mass flow distribution was measured by five quartz crystal microbalances (QCM's) located at the engine axis evaluation. The fifth QCM was located above the engine and 15 deg behind the nozzle exit plane. The optical damage was determined by ex-situ transmittance measurements for the wavelength range from 0.2 to 0.6 microns on 2.54 cm diameter fused silica discs also located at engine centerline elevation. Both the mass deposition and optical damage angular distributions followed the expected trend of decreasing deposition and damage as the angle between sensor or sample and the nozzle axis increased. A simple plume gas flow equation predicted the deposition distribution reasonably well for angles of up to 55 degrees. The optical damage measurements also indicated significant effects at large angles.

  19. Aircraft Observations of the Tampa Urban Plume during BRACE: Transport, Photochemical, and Depositional Processes

    NASA Astrophysics Data System (ADS)

    Luke, W.; Arnold, J.; Watson, T.; Gunter, L.; Wellman, D.; Dasgupta, P.; Li, J.; Riemer, D.

    2003-12-01

    Staff from NOAA's Air Resources Laboratory conducted airborne measurements of trace gases and aerosols in the Bay Region Atmospheric Chemistry Experiment (BRACE) using the NOAA Twin Otter. The Twin Otter flew more than 90 hours in 21 flights in and around the Tampa metropolitan region in May, 2002, at altitudes of 60-3000 m MSL. Flights were conducted over rural and suburban areas, over the centers of Tampa and St. Petersburg, and over Tampa Bay and the Gulf of Mexico. The overall objective of the aircraft measurements in BRACE was to study the emission, transport, and photochemical transformations of nitrogen and other ozone precursors in the Tampa area. Continuous instrumentation was used to measure NO, NOX, NOY, HNO3, CO, SO2, O3, CH2O, and H2O2. A semi-continuous GC technique with luminol detection was used to measure PAN. Filter packs were used to make integrated measurements of nitric acid and inorganic aerosols in both fine and bulk aerosol size fractions. Stainless steel grab cans were filled during flight for post-flight analysis of NMHCs by GC/FID/MS. The urban plume was sampled under a variety of meteorological regimes, as it was advected by the prevailing winds over the Florida peninsula (with continuing input of natural and anthropogenic precursors along the advection path) and, in other cases, over the Gulf of Mexico, where additional chemical inputs were negligible and the plume was relatively unaffected by turbulent deposition processes. Case studies will be used to compare and contrast the photochemical processes in the plume under these different regimes. The observed relationships and variations of trace gas concentrations will be used to determine the efficiency of ozone production, as well as instances of NOX or VOC limitation. Sampling the plume at varying downwind distances, over both land and water, allows the determination of overall rates of photochemical ozone production, NOX and SOX oxidation, and estimates of depositional losses of

  20. Numerically Modeling the Erosion of Lunar Soil by Rocket Exhaust Plumes

    NASA Technical Reports Server (NTRS)

    2008-01-01

    In preparation for the Apollo program, Leonard Roberts of the NASA Langley Research Center developed a remarkable analytical theory that predicts the blowing of lunar soil and dust beneath a rocket exhaust plume. Roberts assumed that the erosion rate was determined by the excess shear stress in the gas (the amount of shear stress greater than what causes grains to roll). The acceleration of particles to their final velocity in the gas consumes a portion of the shear stress. The erosion rate continues to increase until the excess shear stress is exactly consumed, thus determining the erosion rate. Roberts calculated the largest and smallest particles that could be eroded based on forces at the particle scale, but the erosion rate equation assumed that only one particle size existed in the soil. He assumed that particle ejection angles were determined entirely by the shape of the terrain, which acts like a ballistic ramp, with the particle aerodynamics being negligible. The predicted erosion rate and the upper limit of particle size appeared to be within an order of magnitude of small-scale terrestrial experiments but could not be tested more quantitatively at the time. The lower limit of particle size and the predictions of ejection angle were not tested. We observed in the Apollo landing videos that the ejection angles of particles streaming out from individual craters were time-varying and correlated to the Lunar Module thrust, thus implying that particle aerodynamics dominate. We modified Roberts theory in two ways. First, we used ad hoc the ejection angles measured in the Apollo landing videos, in lieu of developing a more sophisticated method. Second, we integrated Roberts equations over the lunar-particle size distribution and obtained a compact expression that could be implemented in a numerical code. We also added a material damage model that predicts the number and size of divots which the impinging particles will cause in hardware surrounding the landing

  1. Scramjet exhaust simulation technique for hypersonic aircraft nozzle design and aerodynamic tests

    NASA Technical Reports Server (NTRS)

    Hunt, J. L.; Talcott, N. A., Jr.; Cubbage, J. M.

    1977-01-01

    Current design philosophy for scramjet-powered hypersonic aircraft results in configurations with the entire lower fuselage surface utilized as part of the propulsion system. The lower aft-end of the vehicle acts as a high expansion ratio nozzle. Not only must the external nozzle be designed to extract the maximum possible thrust force from the high energy flow at the combustor exit, but the forces produced by the nozzle must be aligned such that they do not unduly affect aerodynamic balance. The strong coupling between the propulsion system and aerodynamics of the aircraft makes imperative at least a partial simulation of the inlet, exhaust, and external flows of the hydrogen-burning scramjet in conventional facilities for both nozzle formulation and aerodynamic-force data acquisition. Aerodynamic testing methods offer no contemporary approach for such vehicle design requirements. NASA-Langley has pursued an extensive scramjet/airframe integration R&D program for several years and has recently developed a promising technique for simulation of the scramjet exhaust flow for hypersonic aircraft. Current results of the research program to develop a scramjet flow simulation technique through the use of substitute gas blends are described in this paper.

  2. Assessment of analytical and experimental techniques utilized in conducting plume technology tests 575 and 593. [exhaust flow simulation (wind tunnel tests) of scale model Space Shuttle Orbiter

    NASA Technical Reports Server (NTRS)

    Baker, L. R.; Sulyma, P. R.; Tevepaugh, J. A.; Penny, M. M.

    1976-01-01

    Since exhaust plumes affect vehicle base environment (pressure and heat loads) and the orbiter vehicle aerodynamic control surface effectiveness, an intensive program involving detailed analytical and experimental investigations of the exhaust plume/vehicle interaction was undertaken as a pertinent part of the overall space shuttle development program. The program, called the Plume Technology program, has as its objective the determination of the criteria for simulating rocket engine (in particular, space shuttle propulsion system) plume-induced aerodynamic effects in a wind tunnel environment. The comprehensive experimental program was conducted using test facilities at NASA's Marshall Space Flight Center and Ames Research Center. A post-test examination of some of the experimental results obtained from NASA-MSFC's 14 x 14-inch trisonic wind tunnel is presented. A description is given of the test facility, simulant gas supply system, nozzle hardware, test procedure and test matrix. Analysis of exhaust plume flow fields and comparison of analytical and experimental exhaust plume data are presented.

  3. Flow field description of the Space Shuttle Vernier reaction control system exhaust plumes

    NASA Technical Reports Server (NTRS)

    Cerimele, Mary P.; Alred, John W.

    1987-01-01

    The flow field for the Vernier Reaction Control System (VRCS) jets of the Space Shuttle Orbiter has been calculated from the nozzle throat to the far-field region. The calculations involved the use of recently improved rocket engine nozzle/plume codes. The flow field is discussed, and a brief overview of the calculation techniques is presented. In addition, a proposed on-orbit plume measurement experiment, designed to improve future estimations of the Vernier flow field, is addressed.

  4. Chemical composition and photochemical reactivity of exhaust from aircraft turbine engines

    NASA Astrophysics Data System (ADS)

    Spicer, C. W.; Holdren, M. W.; Riggin, R. M.; Lyon, T. F.

    1994-10-01

    Assessment of the environmental impact of aircraft emissions is required by planners and policy makers. Seveal areas of concern are: 1. exposure of airport workers and urban residents to toxic chemicals emitted when the engines operate at low power (idle and taxi) on the ground; 2. contributions to urban photochemical air pollution of aircraft volatile organic and nitrogen oxides emissions from operations around airports; and 3. emissions of nitrogen oxides and particles during high-altitude operation. The environmental impact of chemicals emitted from jet aircraft turbine engines has not been firmly established due to lack of data regarding emission rates and identities of the compounds emitted. This paper describes an experimental study of two different aircraft turbine engines designed to determine detailed organic emissions, as well as emissions of inorganic gases. Emissions were measured at several engine power settings. Measurements were made of detailed organic composition from C1 through C17, CO, CO2, NO, NOx, and polycyclic aromatic hydrocarbons. Measurements were made using a multi-port sampling pro be positioned directly behind the engine in the exhaust exit plane. The emission measurements have been used to determine the organic distribution by carbon number and the distribution by compound class at each engine power level. The sum of the organic species was compared with an independent measurement of total organic carbon to assess the carbon mass balance. A portion of the exhaust was captured and irradiated in outdoor smog chambers to assess the photochemical reactivity of the emissions with respect to ozone formation. The reactivity of emissions from the two engines was apportioned by chemical compound class.

  5. Aircraft engine exhaust emissions and other airport-related contributions to ambient air pollution: A review

    NASA Astrophysics Data System (ADS)

    Masiol, Mauro; Harrison, Roy M.

    2014-10-01

    Civil aviation is fast-growing (about +5% every year), mainly driven by the developing economies and globalisation. Its impact on the environment is heavily debated, particularly in relation to climate forcing attributed to emissions at cruising altitudes and the noise and the deterioration of air quality at ground-level due to airport operations. This latter environmental issue is of particular interest to the scientific community and policymakers, especially in relation to the breach of limit and target values for many air pollutants, mainly nitrogen oxides and particulate matter, near the busiest airports and the resulting consequences for public health. Despite the increased attention given to aircraft emissions at ground-level and air pollution in the vicinity of airports, many research gaps remain. Sources relevant to air quality include not only engine exhaust and non-exhaust emissions from aircraft, but also emissions from the units providing power to the aircraft on the ground, the traffic due to the airport ground service, maintenance work, heating facilities, fugitive vapours from refuelling operations, kitchens and restaurants for passengers and operators, intermodal transportation systems, and road traffic for transporting people and goods in and out to the airport. Many of these sources have received inadequate attention, despite their high potential for impact on air quality. This review aims to summarise the state-of-the-art research on aircraft and airport emissions and attempts to synthesise the results of studies that have addressed this issue. It also aims to describe the key characteristics of pollution, the impacts upon global and local air quality and to address the future potential of research by highlighting research needs.

  6. Using unmanned aircraft to measure the impact of pollution plumes on atmospheric heating rates and cloud properties during the Cheju ABC Plume-Asian Monsoon Experiment (CAPMEX)

    NASA Astrophysics Data System (ADS)

    Venkata Ramana, M.; Ramanathan, V.; Nguyen, H.; Xu, Y.; Pistone, K.; Corrigan, C.; Feng, Y.; Zhu, A.; Kim, S.; Yoon, S.; Carmichael, G. R.; Schauer, J. J.

    2009-12-01

    The CAPMEX (Cheju ABC Plume-Asian Monsoon Experiment) campaign took place off the Coast of Cheju Island in South Korea to take advantage of the unique event associated with the shutdown of anthropogenic emissions surrounding Beijing during the Olympics in summer 2008. CAPMEX studied pollution plumes before, during, and after the Beijing reductions using ground-level and high-elevation measurements, i.e., from unmanned aircrafts. Additionally, the campaign documented the effect on solar heating and clouds due to aerosols carried by the long range transport of pollution plumes. The unmanned aerial vehicle (UAV) measurement component of this campaign took place during Aug 9 to Sept 30, 2008. The AUAV payload was mission-specific and was outfitted to perform a particular set of measurements. These measurements include aerosol concentration, aerosol size distribution, aerosol absorption, cloud drop size distribution, solar radiation fluxes (visible and broadband), and spectral radiative fluxes. Throughout the CAPMEX experiment, long-range transport of aerosols from Beijing, Shanghai and Marine plumes were sampled in aerosol layers up to 3-4 km above sea level. During this period, we captured both heavy and light pollution events and witnessed air masses from both pristine oceanic sources and from major cities including Beijing and Shanghai. Analysis of specific plumes allowed us to quantify the impact of anthropogenic pollution on heating rates and cloud properties.

  7. Chemical characterization of freshly emitted particulate matter from aircraft exhaust using single particle mass spectrometry

    NASA Astrophysics Data System (ADS)

    Abegglen, Manuel; Brem, B. T.; Ellenrieder, M.; Durdina, L.; Rindlisbacher, T.; Wang, J.; Lohmann, U.; Sierau, B.

    2016-06-01

    Non-volatile aircraft engine emissions are an important anthropogenic source of soot particles in the upper troposphere and in the vicinity of airports. They influence climate and contribute to global warming. In addition, they impact air quality and thus human health and the environment. The chemical composition of non-volatile particulate matter emission from aircraft engines was investigated using single particle time-of-flight mass spectrometry. The exhaust from three different aircraft engines was sampled and analyzed. The soot particulate matter was sampled directly behind the turbine in a test cell at Zurich Airport. Single particle analyses will focus on metallic compounds. The particles analyzed herein represent a subset of the emissions composed of the largest particles with a mobility diameter >100 nm due to instrumental restrictions. A vast majority of the analyzed particles was shown to contain elemental carbon, and depending on the engine and the applied thrust the elemental carbon to total carbon ratio ranged from 83% to 99%. The detected metallic compounds were all internally mixed with the soot particles. The most abundant metals in the exhaust were Cr, Fe, Mo, Na, Ca and Al; V, Ba, Co, Cu, Ni, Pb, Mg, Mn, Si, Ti and Zr were also detected. We further investigated potential sources of the ATOFMS-detected metallic compounds using Inductively Coupled Plasma Mass Spectrometry. The potential sources considered were kerosene, engine lubrication oil and abrasion from engine wearing components. An unambiguous source apportionment was not possible because most metallic compounds were detected in several of the analyzed sources.

  8. Chemical characterization of freshly emitted particulate matter from aircraft exhaust using single particle mass spectrometry

    NASA Astrophysics Data System (ADS)

    Abegglen, Manuel; Brem, B. T.; Ellenrieder, M.; Durdina, L.; Rindlisbacher, T.; Wang, J.; Lohmann, U.; Sierau, B.

    2016-06-01

    Non-volatile aircraft engine emissions are an important anthropogenic source of soot particles in the upper troposphere and in the vicinity of airports. They influence climate and contribute to global warming. In addition, they impact air quality and thus human health and the environment. The chemical composition of non-volatile particulate matter emission from aircraft engines was investigated using single particle time-of-flight mass spectrometry. The exhaust from three different aircraft engines was sampled and analyzed. The soot particulate matter was sampled directly behind the turbine in a test cell at Zurich Airport. Single particle analyses will focus on metallic compounds. The particles analyzed herein represent a subset of the emissions composed of the largest particles with a mobility diameter >100 nm due to instrumental restrictions. A vast majority of the analyzed particles was shown to contain elemental carbon, and depending on the engine and the applied thrust the elemental carbon to total carbon ratio ranged from 83% to 99%. The detected metallic compounds were all internally mixed with the soot particles. The most abundant metals in the exhaust were Cr, Fe, Mo, Na, Ca and Al; V, Ba, Co, Cu, Ni, Pb, Mg, Mn, Si, Ti and Zr were also detected. We further investigated potential sources of the ATOFMS-detected metallic compounds using Inductively Coupled Plasma Mass Spectrometry. The potential sources considered were kerosene, engine lubrication oil and abrasion from engine wearing components. An unambiguous source apportionment was not possible because most metallic compounds were detected in several of the analyzed sources.

  9. Unmanned Aircraft in the Measurement of Carbon Dioxide in Buoyant Plumes

    NASA Astrophysics Data System (ADS)

    Jacob, J.

    2015-12-01

    Carbon sequestration, the storage of carbon dioxide gas underground, has the potential to reduce global warming by removing a greenhouse gas from the atmosphere. These storage sites, however, must first be monitored to detect if carbon dioxide is leaking back out to the atmosphere. As an alternative to traditional large ground-based sensor networks to monitor CO2 levels for leaks, unmanned aircraft offer the potential to perform in-situ atmospheric leak detection over large areas for a fraction of the cost. This project developed a proof-of-concept sensor system to map relative carbon dioxide levels to detect potential leaks. Ground tests were performed to verify and calibrate the system including wind tunnel tests to determine the optimal configuration of the system to account for dynamic calibration models required to determine accurate location of gas concentration in (x,y,z,t). Field tests were then conducted over a controlled release of CO2 as well as over controlled rangeland fires which released carbon dioxide over a large area. 3D maps of carbon dioxide were developed from the system telemetry that clearly illustrated increased CO2 levels from the fires. Results are compared with dynamic atmospheric models of gas dispersion within plumes.

  10. Velocity and temperature characteristics of two-stream, coplanar jet exhaust plumes

    NASA Technical Reports Server (NTRS)

    Von Glahn, U.; Goodykoontz, J.; Wasserbauer, C.

    1984-01-01

    The subsonic jet exhaust velocity and temperature characteristics of model scale, two stream coplanar nozzles were obtained experimentally. The data obtained included the effects of fan to primary stream velocity and temperature ratios on the jet axial and radial flow characteristics. Empirical parameters were developed to correlate the measured data. The resultant equations were shown to be extensions of a previously published single stream jet velocity and temperature correlation.

  11. Exhaust Nozzles for Propulsion Systems with Emphasis on Supersonic Cruise Aircraft

    NASA Technical Reports Server (NTRS)

    Stitt, Leonard E.

    1990-01-01

    This compendium summarizes the contributions of the NASA-Lewis and its contractors to supersonic exhaust nozzle research from 1963 to 1985. Two major research and technology efforts sponsored this nozzle research work; the U.S. Supersonic Transport (SST) Program and the follow-on Supersonic Cruise Research (SCR) Program. They account for two generations of nozzle technology: the first from 1963 to 1971, and the second from 1971 to 1985. First, the equations used to calculate nozzle thrust are introduced. Then the general types of nozzles are presented, followed by a discussion of those types proposed for supersonic aircraft. Next, the first-generation nozzles designed specifically for the Boeing SST and the second-generation nozzles designed under the SCR program are separately reviewed and then compared. A chapter on throttle-dependent afterbody drag is included, since drag has a major effect on the off-design performance of supersonic nozzles. A chapter on the performance of supersonic dash nozzles follows, since these nozzles have similar design problems, Finally, the nozzle test facilities used at NASA-Lewis during this nozzle research effort are identified and discussed. These facilities include static test stands, a transonic wind tunnel, and a flying testbed aircraft. A concluding section points to the future: a third generation of nozzles designed for a new era of high speed civil transports to produce even greater advances in performance, to meet new noise rules, and to ensure the continuity of over two decades of NASA research.

  12. The 1979 Southeastern Virginia Urban Plume Study. Volume 2: Data listings for NASA Cessna aircraft

    NASA Technical Reports Server (NTRS)

    Gregory, G. L.; Lee, R. B., III; Mathis, J. J., Jr.

    1981-01-01

    The data reported are these measured onboard the NASA Langley chartered Cessna aircraft. Data include ozone, nitrogen oxides, light scattering coefficient, temperature, dewpoint, and aircraft altitude.

  13. Characteristics of aerosol particles and trace gases in ship exhaust plumes

    NASA Astrophysics Data System (ADS)

    Drewnick, F.; Diesch, J.; Borrmann, S.

    2011-12-01

    Gaseous and particulate matter from marine vessels gain increasing attention due to their significant contribution to the anthropogenic burden of the atmosphere, implying the change of the atmospheric composition and the impact on local and regional air quality and climate (Eyring et al., 2010). As ship emissions significantly affect air quality of onshore regions, this study deals with various aspects of gas and particulate plumes from marine traffic measured near the Elbe river mouth in northern Germany. In addition to a detailed investigation of the chemical and physical particle properties from different types of commercial marine vessels, we will focus on the chemistry of ship plumes and their changes while undergoing atmospheric processing. Measurements of the ambient aerosol, various trace gases and meteorological parameters using a mobile laboratory (MoLa) were performed on the banks of the Lower Elbe which is passed on average, daily by 30 ocean-going vessels reaching the port of Hamburg, the second largest freight port of Europe. During 5 days of sampling from April 25-30, 2011 170 commercial marine vessels were probed at a distance of about 1.5-2 km with high temporal resolution. Mass concentrations in PM1, PM2.5 and PM10 and number as well as PAH and black carbon (BC) concentrations in PM1 were measured; size distribution instruments covered the size range from 6 nm up to 32 μm. The chemical composition of the non-refractory aerosol in the submicron range was measured by means of an Aerosol Mass Spectrometer (Aerodyne HR-ToF-AMS). Gas phase species analyzers monitored various trace gas concentrations in the air and a weather station provided meteorological parameters. Additionally, a wide spectrum of ship information for each vessel including speed, size, vessel type, fuel type, gross tonnage and engine power was recorded via Automatic Identification System (AIS) broadcasts. Although commercial marine vessels powered by diesel engines consume high

  14. Analysis of the effects of meteorology on aircraft exhaust dispersion and deposition using a Lagrangian particle model.

    PubMed

    Pecorari, Eliana; Mantovani, Alice; Franceschini, Chiara; Bassano, Davide; Palmeri, Luca; Rampazzo, Giancarlo

    2016-01-15

    The risk of air quality degradation is of considerable concern particularly for those airports that are located near urban areas. The ability to quantitatively predict the effects of air pollutants originated by airport operations is important for assessing air quality and the related impacts on human health. Current emission regulations have focused on local air quality in the proximity of airports. However, an integrated study should consider the effects of meteorological events, at both regional and local level, that can affect the dispersion and the deposition of exhausts. Rigorous scientific studies and extensive experimental data could contribute to the analysis of the impacts of airports expansion plans. This paper is focused on the analysis of the effects of meteorology on aircraft emission for the Marco Polo Airport in Venice. This is the most important international airport in the eastern part of the Po' Valley, one of the most polluted area in Europe. Air pollution is exacerbated by meteorology that is a combination of large and local scale effects that do not allow significant dispersion. Moreover, the airport is located near Venice, a city of noteworthy cultural and architectural relevance, and nearby the lagoon that hosts several areas of outstanding ecological importance at European level (Natura 2000 sites). Dispersion and deposit of the main aircraft exhausts (NOx, HC and CO) have been evaluated by using a Lagrangian particle model. Spatial and temporal aircraft exhaust dispersion has been analyzed for LTO cycle. Aircraft taxiing resulted to be the most impacting aircraft operation especially for the airport working area and its surroundings, however occasionally peaks may be observed even at high altitudes when cruise mode starts. Mixing height can affect concentrations more significantly than the concentrations in the exhausts themselves. An increase of HC and CO concentrations (15-50%) has been observed during specific meteorological events.

  15. Analysis of the effects of meteorology on aircraft exhaust dispersion and deposition using a Lagrangian particle model.

    PubMed

    Pecorari, Eliana; Mantovani, Alice; Franceschini, Chiara; Bassano, Davide; Palmeri, Luca; Rampazzo, Giancarlo

    2016-01-15

    The risk of air quality degradation is of considerable concern particularly for those airports that are located near urban areas. The ability to quantitatively predict the effects of air pollutants originated by airport operations is important for assessing air quality and the related impacts on human health. Current emission regulations have focused on local air quality in the proximity of airports. However, an integrated study should consider the effects of meteorological events, at both regional and local level, that can affect the dispersion and the deposition of exhausts. Rigorous scientific studies and extensive experimental data could contribute to the analysis of the impacts of airports expansion plans. This paper is focused on the analysis of the effects of meteorology on aircraft emission for the Marco Polo Airport in Venice. This is the most important international airport in the eastern part of the Po' Valley, one of the most polluted area in Europe. Air pollution is exacerbated by meteorology that is a combination of large and local scale effects that do not allow significant dispersion. Moreover, the airport is located near Venice, a city of noteworthy cultural and architectural relevance, and nearby the lagoon that hosts several areas of outstanding ecological importance at European level (Natura 2000 sites). Dispersion and deposit of the main aircraft exhausts (NOx, HC and CO) have been evaluated by using a Lagrangian particle model. Spatial and temporal aircraft exhaust dispersion has been analyzed for LTO cycle. Aircraft taxiing resulted to be the most impacting aircraft operation especially for the airport working area and its surroundings, however occasionally peaks may be observed even at high altitudes when cruise mode starts. Mixing height can affect concentrations more significantly than the concentrations in the exhausts themselves. An increase of HC and CO concentrations (15-50%) has been observed during specific meteorological events

  16. Summary of 1978 Southeastern Virginia Urban Plume study: Aircraft results for carbon monoxide, methane, nonmethane hydrocarbons, and ozone

    NASA Technical Reports Server (NTRS)

    Hill, G. F.; Sachse, G. W.; Cofer, W. R., III

    1981-01-01

    The characteristics of the Southeastern Virginia urban plume were defined with emphasis on the photon-oxidant species. The measurement area was a rectangle, approximately 150 km by 100 km centered around Cape Charles, Virginia. Included in this area are the cities of Norfolk, Virginia Beach, Chesapeake, Newport News, and Hampton. The area is bounded on the north by Wallops Island, Virginia, and on the south by the Hampton Roads area of Tidewater Virginia. The major axis of the rectangle is oriented in the southwest-northeast direction. The data set includes aircraft measurements for carbon monoxide, methane, nonmethane hydrocarbons, and ozone. The experiment shows that CO can be successfully measured as a tracer gas and used as an index for determining localized and urban plumes. The 1978 data base provided sufficient data to assess an automated chromatograph with flame ionization detection used for measuring methane and nonmethane hydrocarbons in flight.

  17. Apollo 12 Lunar Module exhaust plume impingement on Lunar Surveyor III

    NASA Astrophysics Data System (ADS)

    Immer, Christopher; Metzger, Philip; Hintze, Paul E.; Nick, Andrew; Horan, Ryan

    2011-02-01

    Understanding plume impingement by retrorockets on the surface of the Moon is paramount for safe lunar outpost design in NASA's planned return to the Moon for the Constellation Program. Visual inspection, Scanning Electron Microscopy, and surface scanned topology have been used to investigate the damage to the Lunar Surveyor III spacecraft that was caused by the Apollo 12 Lunar Module's close proximity landing. Two parts of the Surveyor III craft returned by the Apollo 12 astronauts, Coupons 2050 and 2051, which faced the Apollo 12 landing site, show that a fine layer of lunar regolith coated the materials and was subsequently removed by the Apollo 12 Lunar Module landing rocket. The coupons were also pitted by the impact of larger soil particles with an average of 103 pits/cm 2. The average entry size of the pits was 83.7 μm (major diameter) × 74.5 μm (minor diameter) and the average estimated penetration depth was 88.4 μm. Pitting in the surface of the coupons correlates to removal of lunar fines and is likely a signature of lunar material imparting localized momentum/energy sufficient to cause cracking of the paint. Comparison with the lunar soil particle size distribution and the optical density of blowing soil during lunar landings indicates that the Surveyor III spacecraft was not exposed to the direct spray of the landing Lunar Module, but instead experienced only the fringes of the spray of soil. Had Surveyor III been exposed to the direct spray, the damage would have been orders of magnitude higher.

  18. Subsidence of aircraft engine exhaust in the stratosphere: Implications for calculated ozone depletions

    NASA Technical Reports Server (NTRS)

    Rodriguez, J. M.; Shia, R.-L.; Ko, M. K. W.; Heisey, C. W.; Weistenstein, D. K.; Miake-Lye, R. C.; Kolb, C. E.

    1994-01-01

    The deposition altitude of nitrogen oxides and other exhaust species emitted by stratospheric aircraft is a crucial parameter in determining the impact of these emissions on stratospheric ozone. We have utilized a model for the wake of a High-Speed Civil Transport (HSCT) to estimate the enhancements in water and reductions in ozone in these wakes as a function of time. Radiative calculations indicate differential cooling rates as large as -5K/day at the beginning of the far-wake regime, mostly due to the enhanced water abundance. These cooling rates would imply a net sinking of the wakes of about 1.2 km after three days in the limit of no mixing. Calculated mid-latitude column ozone reductions due to emissions from a Mach 2.4 HSCT would then change from about -1% to -06%. However, more realistic calculations adopting moderate mixing for the wake reduce the net sinking to less than 0.2 km, making the impact of radiative subsidence negligible.

  19. A Transonic and Surpersonic Investigation of Jet Exhaust Plume Effects on the Afterbody and Base Pressures of a Body of Revolution

    NASA Technical Reports Server (NTRS)

    Andrews, C. D.; Cooper, C. E., Jr.

    1974-01-01

    An experimental aerodynamic investigation was conducted to provide data for studies to determine the criteria for simulating rocket engine plume induced aerodynamic effects in the wind tunnel using a simulated gaseous plume. Model surface and base pressure data were obtained in the presence of both a simulated and a prototype gaseous plume for a matrix of plume properties to enable investigators to determine the parameters that correlate the simulated and prototype plume-induced data. The test program was conducted in the Marshall Space Flight Center's 14 x 14-inch trisonic wind tunnel using two models, the first being a strut mounted cone-ogive-cylinder model with a fineness ratio of 9. Model exterior pressures, model plenum chamber and nozzle performance data were obtained at Mach numbers of 0.9, 1.2, 1.46, and 3.48. The exhaust plume was generated by using air as the simulant gas, or Freon-14 (CF4) as the prototype gas, over a chamber pressure range from 0 to 2,000 psia and a total temperature range from 50 to 600 F.

  20. Hygroscopic Properties of Aircraft Engine Exhaust Aerosol Produced From Traditional and Alternative Fuels

    NASA Astrophysics Data System (ADS)

    Moore, R.; Ziemba, L. D.; Beyersdorf, A. J.; Thornhill, K. L.; Winstead, E. L.; Crumeyrolle, S.; Chen, G.; Anderson, B. E.

    2012-12-01

    Aircraft emissions of greenhouse gases and aerosols constitute an important component of anthropogenic climate forcing, of which aerosol-cloud interactions remain poorly understood. It is currently thought that the ability of these aerosols to alter upper tropospheric cirrus cloud properties may produce radiative forcings many times larger than the impact of linear contrails alone and which may partially offset the impact of greenhouse gas emissions from aviation (Burkhardt and Karcher, Nature, 2011). Consequently, it is important to characterize the ability of these engine-emitted aerosol to act as cloud condensation nuclei (CCN) and ice nuclei (IN) to form clouds. While a number of studies in the literature have examined aerosol-cloud interactions for laboratory-generated soot or from aircraft engines burning traditional fuels, limited attention has been given to how switching to alternative jet fuels impacts the ability of engine-emitted aerosols to form clouds. The key to understanding these changes is the aerosol hygroscopicity. To address this need, the second NASA Alternative Aviation Fuel Experiment (AAFEX-II) was conducted in 2011 to examine the aerosol emissions from the NASA DC-8 under a variety of different engine power and fuel type conditions. Five fuel types were considered including traditional JP-8 fuel, synthetic Fischer-Tropsh (FT) fuel , sulfur-doped FT fuel (FTS) , hydrotreated renewable jet (HRJ) fuel, and a 50:50 blend of JP-8 with HRJ. Emissions were sampled from the DC-8 on the airport jetway at a distance of 145 meters downwind of the engine by a comprehensive suite of aerosol instrumentation that provided information on the aerosol concentration, size distribution, soot mass, and CCN activity. Concurrent measurements of carbon dioxide were used to account for plume dilution so that characteristic emissions indices could be determined. It is found that both engine power and fuel type significantly influence the hygroscopic properties of

  1. Laser Transmission Measurements of Soot Extinction Coefficients in the Exhaust Plume of the X-34 60k-lb Thrust Fastrac Rocket Engine

    NASA Technical Reports Server (NTRS)

    Dobson, C. C.; Eskridge, R. H.; Lee, M. H.

    2000-01-01

    A four-channel laser transmissometer has been used to probe the soot content of the exhaust plume of the X-34 60k-lb thrust Fastrac rocket engine at NASA's Marshall Space Flight Center. The transmission measurements were made at an axial location about equal 1.65 nozzle diameters from the exit plane and are interpreted in terms of homogeneous radial zones to yield extinction coefficients from 0.5-8.4 per meter. The corresponding soot mass density, spatially averaged over the plume cross section, is, for Rayleigh particles, approximately equal to 0.7 micrograms/cubic cm and alternative particle distributions are briefly considered. Absolute plume radiance at the laser wavelength (515 nm) is estimated from the data at approximately equal to 2.200 K equivalent blackbody temperature, and temporal correlations in emission from several spatial locations are noted.

  2. Laser Transmission Measurements of Soot Extinction Coefficients in the Exhaust Plume of the X-34 60K-lb Thrust Fastrac Rocket Engine

    NASA Technical Reports Server (NTRS)

    Dobson, C. C.; Eskridge, R. H.; Lee, M. H.

    2000-01-01

    A four-channel laser transmissometer has been used to probe the soot content of the exhaust plume of the X-34 60k-lb thrust Fastrac rocket engine at NASA's Marshall Space Flight Center. The transmission measurements were made at an axial location approximately equal 1.65 nozzle diameters from the exit plane and are interpreted in terms of homogeneous radial zones to yield extinction coefficients from 0.5-8.4 per meter. The corresponding soot mass density, spatially averaged over the plume cross section, is, for Rayleigh particles, approximately equal 0.7 microgram/cc, and alternative particle distributions are briefly considered. Absolute plume radiance at the laser wavelength (515 nm) is estimated from the data at approximately equal 2,200 K equivalent blackbody temperature, and temporal correlations in emission from several spatial locations are noted.

  3. Comparison of the chemical evolution and characteristics of 495 biomass burning plumes intercepted by the NASA DC-8 aircraft during the ARCTAS/CARB-2008 field campaign

    NASA Astrophysics Data System (ADS)

    Hecobian, A.; Liu, Z.; Hennigan, C. J.; Huey, L. G.; Jimenez, J. L.; Cubison, M. J.; Vay, S.; Diskin, G. S.; Sachse, G. W.; Wisthaler, A.; Mikoviny, T.; Weinheimer, A. J.; Liao, J.; Knapp, D. J.; Wennberg, P. O.; Kürten, A.; Crounse, J. D.; St. Clair, J.; Wang, Y.; Weber, R. J.

    2011-06-01

    This paper compares measurements of gaseous and particulate emissions from a wide range of biomass-burning plumes intercepted by the NASA DC-8 research aircraft during the three phases of the ARCTAS-2008 experiment: ARCTAS-A, based out of Fairbanks, Alaska USA (3 April to 19 April 2008); ARCTAS-B based out of Cold Lake, Alberta, Canada (29 June to 13 July 2008); and ARCTAS-CARB, based out of Palmdale, California, USA (18 June to 24 June 2008). Extensive investigations of boreal fire plume evolution were undertaken during ARCTAS-B, where four distinct fire plumes that were intercepted by the aircraft over a range of down-wind distances (0.1 to 16 hr transport times) were studied in detail. Based on these analyses, there was no evidence for ozone production and a box model simulation of the data confirmed that net ozone production was slow (on average 1 ppbv h-1 in the first 3 h and much lower afterwards) due to limited NOx. Peroxyacetyl nitrate concentrations (PAN) increased with plume age and the box model estimated an average production rate of ~80 pptv h-1 in the first 3 h. Like ozone, there was also no evidence for net secondary inorganic or organic aerosol formation. There was no apparent increase in aerosol mass concentrations in the boreal fire plumes due to secondary organic aerosol (SOA) formation; however, there were indications of chemical processing of the organic aerosols. In addition to the detailed studies of boreal fire plume evolution, about 500 smoke plumes intercepted by the NASA DC-8 aircraft were segregated by fire source region. The normalized excess mixing ratios (i.e. ΔX/ΔCO) of gaseous (carbon dioxide, acetonitrile, hydrogen cyanide, toluene, benzene, methane, oxides of nitrogen (NOx), ozone, PAN) and fine aerosol particulate components (nitrate, sulfate, ammonium, chloride, organic aerosols and water soluble organic carbon) of these plumes were compared.

  4. Plume and wake dynamics, mixing, and chemistry behind an HSCT aircraft

    NASA Technical Reports Server (NTRS)

    Miake-Lye, R. C.; Martinez-Sanchez, M.; Brown, R. C.; Kolb, C. E.

    1991-01-01

    The chemical evolution and mixing and vortical motion of a High Speed Civil Transport's engine exhausts must be analyzed in order to track the gas and its speciation as emissions are mixed to atmospheric scales. Attention is presently given to an analytic model of the wake dynamical processes which accounts for the roll-up of the trailing vorticity, its breakup due to the Crow instability, and the subsequent evolution and motion of the reconnected vorticity. The concentrated vorticity is noted to wrap up the buoyant exhaust and suppress its continued mixing and dilution. The species tracked encompass those which could be heterogeneously reactive on the surfaces of the condensed ice particles, and those capable of reacting with exhaust soot particle surfaces to form active contrail and/or cloud condensation nuclei.

  5. Two-dimensional calculation of chemical species and electro-magnetic properties in rocket exhaust plume flow fields

    NASA Astrophysics Data System (ADS)

    Zhang, Ping; Cui, Jisong; Liu, Qingyun

    1993-08-01

    A computational modeling technique and prediction method were presented. Additionally, a comprehensive computer code was programmed. The chemical reactions and radar attenuation that occur in rocket plumes can be predicted precisely by using this code. It is suitable to calculating the parameters of rocket plumes under a near complete-expansion condition using a smokeless (or smoke reduced) propellant. The calculation results also indicate that serious errors will occur in the prediction of chemical and electrical properties in the plume flow field if the chemical reactions are not taken into account.

  6. Jet aircraft engine exhaust emissions database development: Year 1990 and 2015 scenarios

    NASA Technical Reports Server (NTRS)

    Landau, Z. Harry; Metwally, Munir; Vanalstyne, Richard; Ward, Clay A.

    1994-01-01

    Studies relating to environmental emissions associated with the High Speed Civil Transport (HSCT) military jet and charter jet aircraft were conducted by McDonnell Douglas Aerospace Transport Aircraft. The report includes engine emission results for baseline 1990 charter and military scenario and the projected jet engine emissions results for a 2015 scenario for a Mach 1.6 HSCT charter and military fleet. Discussions of the methodology used in formulating these databases are provided.

  7. Three dimensional model calculations of the global dispersion of high speed aircraft exhaust and implications for stratospheric ozone loss

    NASA Technical Reports Server (NTRS)

    Douglass, Anne R.; Rood, Richard B.; Jackman, Charles H.; Weaver, Clark J.

    1994-01-01

    Two-dimensional (zonally averaged) photochemical models are commonly used for calculations of ozone changes due to various perturbations. These include calculating the ozone change expected as a result of change in the lower stratospheric composition due to the exhaust of a fleet of supersonic aircraft flying in the lower stratosphere. However, zonal asymmetries are anticipated to be important to this sort of calculation. The aircraft are expected to be restricted from flying over land at supersonic speed due to sonic booms, thus the pollutant source will not be zonally symmetric. There is loss of pollutant through stratosphere/troposphere exchange, but these processes are spatially and temporally inhomogeneous. Asymmetry in the pollutant distribution contributes to the uncertainty in the ozone changes calculated with two dimensional models. Pollutant distributions for integrations of at least 1 year of continuous pollutant emissions along flight corridors are calculated using a three dimensional chemistry and transport model. These distributions indicate the importance of asymmetry in the pollutant distributions to evaluation of the impact of stratospheric aircraft on ozone. The implications of such pollutant asymmetries to assessment calculations are discussed, considering both homogeneous and heterogeneous reactions.

  8. Comparison of chemical characteristics of 495 biomass burning plumes intercepted by the NASA DC-8 aircraft during the ARCTAS/CARB-2008 field campaign

    NASA Astrophysics Data System (ADS)

    Hecobian, A.; Liu, Z.; Hennigan, C. J.; Huey, L. G.; Jimenez, J. L.; Cubison, M. J.; Vay, S.; Diskin, G. S.; Sachse, G. W.; Wisthaler, A.; Mikoviny, T.; Weinheimer, A. J.; Liao, J.; Knapp, D. J.; Wennberg, P. O.; Kürten, A.; Crounse, J. D.; St. Clair, J.; Wang, Y.; Weber, R. J.

    2011-12-01

    This paper compares measurements of gaseous and particulate emissions from a wide range of biomass-burning plumes intercepted by the NASA DC-8 research aircraft during the three phases of the ARCTAS-2008 experiment: ARCTAS-A, based out of Fairbanks, Alaska, USA (3 April to 19 April 2008); ARCTAS-B based out of Cold Lake, Alberta, Canada (29 June to 13 July 2008); and ARCTAS-CARB, based out of Palmdale, California, USA (18 June to 24 June 2008). Approximately 500 smoke plumes from biomass burning emissions that varied in age from minutes to days were segregated by fire source region and urban emission influences. The normalized excess mixing ratios (NEMR) of gaseous (carbon dioxide, acetonitrile, hydrogen cyanide, toluene, benzene, methane, oxides of nitrogen and ozone) and fine aerosol particulate components (nitrate, sulfate, ammonium, chloride, organic aerosols and water soluble organic carbon) of these plumes were compared. A detailed statistical analysis of the different plume categories for different gaseous and aerosol species is presented in this paper. The comparison of NEMR values showed that CH4 concentrations were higher in air-masses that were influenced by urban emissions. Fresh biomass burning plumes mixed with urban emissions showed a higher degree of oxidative processing in comparison with fresh biomass burning only plumes. This was evident in higher concentrations of inorganic aerosol components such as sulfate, nitrate and ammonium, but not reflected in the organic components. Lower NOx NEMRs combined with high sulfate, nitrate and ammonium NEMRs in aerosols of plumes subject to long-range transport, when comparing all plume categories, provided evidence of advanced processing of these plumes.

  9. Validation of scramjet exhaust simulation technique

    NASA Technical Reports Server (NTRS)

    Hopkins, H. B.; Konopka, W.; Leng, J.

    1976-01-01

    Scramjet/airframe integration design philosophy for hypersonic aircraft results in configurations having lower aft surfaces that serve as exhaust nozzles. There is a strong coupling between the exhaust plume and the aerodynamics of the vehicle, making accurate simulation of the engine exhaust mandatory. The experimental verification of the simulation procedure is described. The detonation tube simulator was used to produce an exact simulation of the scramjet exhaust for a Mach 8 flight condition. The pressure distributions produced by the exact exhaust flow were then duplicated by a cool mixture Argon and Freon 13B1. Such a substitute gas mixture validated by the detonation tube technique could be used in conventional wind tunnel tests. The results presented show the substitute gas simulation technique to be valid for shockless expansions.

  10. Falcon 20-E5 Aircraft Flies Close Behind NASA DC-8 to Sample Exhaust

    NASA Video Gallery

    This video was taken from a NASA HU-25C Guardian chase plane looking toward NASA's DC-8, with a Falcon 20-E5 from the German Aerospace Agency (DLR) soon to fly into the DC-8's exhaust. The Falcon i...

  11. A study of Asian dust plumes using satellite, surface, and aircraft measurements during the INTEX-B field experiment

    NASA Astrophysics Data System (ADS)

    Logan, Timothy; Xi, Baike; Dong, Xiquan; Obrecht, Rebecca; Li, Zhanqing; Cribb, Maureen

    2010-04-01

    Asian dust events occur frequently during the boreal spring season. Their optical properties have been analyzed by using a combination of source region (ground-based and satellite) and remote Pacific Ocean (aircraft) measurements during the Intercontinental Chemical Transport Experiment-Phase B (INTEX-B) field campaign which lasted from 7 April to 15 May 2006. A strong dust event originating from the Gobi Desert and passing over the Xianghe surface site on 17 April 2006 has been extensively analyzed. The surface averaged aerosol optical depth (AOD) values increased from 0.17 (clear sky) to 4.0 (strong dust), and the Angström exponent (α) dropped from 1.26 (clear sky) to below 0.1. Its total downwelling SW flux over the Xianghe site (thousands of kilometers away from the dust source region) is only 46% of the clear-sky value with almost no direct transmission and nearly double the diffuse SW clear-sky value. This event was also captured 6 days later by satellite observations as well as the UND/NASA DC-8 aircraft over the eastern Pacific Ocean. The DC-8 measurements in the remote Pacific region further classified the plumes into dust dominant, pollution dominant, and a mixture of dust and pollution events. HYSPLIT backward trajectories not only verified the origins of each case we selected but also showed (1) two possible origins for the dust: the Gobi and Taklimakan deserts; and (2) pollution: urban areas in eastern China, Japan, and other industrialized cities east of the two deserts. Based on the averaged satellite retrieved AOD data (0.5° × 0.5° grid box), declining AOD values with respect to longitude demonstrated the evolution of the transpacific transport pathway of Asian dust and pollution over the period of the field campaign.

  12. Integrated exhaust gas analysis system for aircraft turbine engine component testing

    NASA Technical Reports Server (NTRS)

    Summers, R. L.; Anderson, R. C.

    1985-01-01

    An integrated exhaust gas analysis system was designed and installed in the hot-section facility at the Lewis Research Center. The system is designed to operate either manually or automatically and also to be operated from a remote station. The system measures oxygen, water vapor, total hydrocarbons, carbon monoxide, carbon dioxide, and oxides of nitrogen. Two microprocessors control the system and the analyzers, collect data and process them into engineering units, and present the data to the facility computers and the system operator. Within the design of this system there are innovative concepts and procedures that are of general interest and application to other gas analysis tasks.

  13. Numerical simulation of helicopter engine plume in forward flight

    NASA Technical Reports Server (NTRS)

    Dimanlig, Arsenio C. B.; Vandam, Cornelis P.; Duque, Earl P. N.

    1994-01-01

    Flowfields around helicopters contain complex flow features such as large separated flow regions, vortices, shear layers, blown and suction surfaces and an inherently unsteady flow imposed by the rotor system. Another complicated feature of helicopters is their infrared signature. Typically, the aircraft's exhaust plume interacts with the rotor downwash, the fuselage's complicated flowfield, and the fuselage itself giving each aircraft a unique IR signature at given flight conditions. The goal of this project was to compute the flow about a realistic helicopter fuselage including the interaction of the engine air intakes and exhaust plume. The computations solve the Think-Layer Navier Stokes equations using overset type grids and in particular use the OVERFLOW code by Buning of NASA Ames. During this three month effort, an existing grid system of the Comanche Helicopter was to be modified to include the engine inlet and the hot engine exhaust. The engine exhaust was to be modeled as hot air exhaust. However, considerable changes in the fuselage geometry required a complete regriding of the surface and volume grids. The engine plume computations have been delayed to future efforts. The results of the current work consists of a complete regeneration of the surface and volume grids of the most recent Comanche fuselage along with a flowfield computation.

  14. Ship emissions measurement in the Arctic by plume intercepts of the Canadian Coast Guard icebreaker Amundsen from the Polar 6 aircraft platform

    NASA Astrophysics Data System (ADS)

    Aliabadi, Amir A.; Thomas, Jennie L.; Herber, Andreas B.; Staebler, Ralf M.; Leaitch, W. Richard; Schulz, Hannes; Law, Kathy S.; Marelle, Louis; Burkart, Julia; Willis, Megan D.; Bozem, Heiko; Hoor, Peter M.; Köllner, Franziska; Schneider, Johannes; Levasseur, Maurice; Abbatt, Jonathan P. D.

    2016-06-01

    Decreasing sea ice and increasing marine navigability in northern latitudes have changed Arctic ship traffic patterns in recent years and are predicted to increase annual ship traffic in the Arctic in the future. Development of effective regulations to manage environmental impacts of shipping requires an understanding of ship emissions and atmospheric processing in the Arctic environment. As part of the summer 2014 NETCARE (Network on Climate and Aerosols) campaign, the plume dispersion and gas and particle emission factors of effluents originating from the Canadian Coast Guard icebreaker Amundsen operating near Resolute Bay, NU, Canada, were investigated. The Amundsen burned distillate fuel with 1.5 wt % sulfur. Emissions were studied via plume intercepts using the Polar 6 aircraft measurements, an analytical plume dispersion model, and using the FLEXPART-WRF Lagrangian particle dispersion model. The first plume intercept by the research aircraft was carried out on 19 July 2014 during the operation of the Amundsen in the open water. The second and third plume intercepts were carried out on 20 and 21 July 2014 when the Amundsen had reached the ice edge and operated under ice-breaking conditions. Typical of Arctic marine navigation, the engine load was low compared to cruising conditions for all of the plume intercepts. The measured species included mixing ratios of CO2, NOx, CO, SO2, particle number concentration (CN), refractory black carbon (rBC), and cloud condensation nuclei (CCN). The results were compared to similar experimental studies in mid-latitudes. Plume expansion rates (γ) were calculated using the analytical model and found to be γ = 0.75 ± 0.81, 0.93 ± 0.37, and 1.19 ± 0.39 for plumes 1, 2, and 3, respectively. These rates were smaller than prior studies conducted at mid-latitudes, likely due to polar boundary layer dynamics, including reduced turbulent mixing compared to mid-latitudes. All emission factors were in agreement with prior

  15. Nonintrusive optical measurements of aircraft engine exhaust emissions and comparison with standard intrusive techniques.

    PubMed

    Schäfer, K; Heland, J; Lister, D H; Wilson, C W; Howes, R J; Falk, R S; Lindermeir, E; Birk, M; Wagner, G; Haschberger, P; Bernard, M; Legras, O; Wiesen, P; Kurtenbach, R; Brockmann, K J; Kriesche, V; Hilton, M; Bishop, G; Clarke, R; Workman, J; Caola, M; Geatches, R; Burrows, R; Black, J D; Hervé, P; Vally, J

    2000-01-20

    Nonintrusive systems for the measurement on test rigs of aeroengine exhaust emissions required for engine certification (CO, NO(x), total unburned hydrocarbon, and smoke), together with CO(2) and temperature have been developed. These results have been compared with current certified intrusive measurements on an engine test. A spectroscopic database and data-analysis software has been developed to enable Fourier-transform Infrared measurement of concentrations of molecular species. CO(2), CO, and NO data showed agreement with intrusive techniques of approximately ?30%. A narrow-band spectroscopic device was used to measure CO(2) (with deviations of less than ?10% from the intrusive measurement), whereas laser-induced incandescence was used to measure particles. Future improvements to allow for the commercial use of the nonintrusive systems have been identified and the methods are applicable to any measurement of combustion emissions.

  16. Aircraft measurements of the impacts of urban plume on cloud activation properties during GoAmazon - preliminary results

    NASA Astrophysics Data System (ADS)

    Mei, F.; Comstock, J. M.; Wang, J.; Tomlinson, J. M.; Hubbe, J. M.; Schmid, B.; Martin, S. T.; Longo, K.; Kuang, C.; Chand, D.; Pekour, M. S.; Shilling, J. E.

    2014-12-01

    Currently, the indirect effects of atmospheric aerosols remain the most uncertain components in forcing of climate change over the industrial period (IPCC, 2007). This large uncertainty is partially a result of our incomplete understanding of the ability of particles to form cloud droplets under atmospherically relevant supersaturations. One of the objectives of the US Department of Energy (DOE) Green Ocean Amazon Project (GoAmazon) is to understand the influence of the emission from Manaus, a tropical megacity, on aerosol size, concentration, and chemical composition, and their impact on aerosol cloud condensation nuclei (CCN) spectrum. During the GoAmazon study, size distributions, CCN spectra and chemical composition of aerosols both under pristine conditions and inside Manaus plume were measured in-situ from the DOE Gulfstream 1 (G-1) research aircraft during two Intensive Operations Periods, one conducted in the wet season (Feb 22- March 24, 2014) and the other in dry season (Sep 1 - Oct 10, 2014). Aerosol size distributions were measured by a Fast Integrated Mobility Spectrometer (FIMS) and compared with the merged size distribution from two other instruments, an Ultra High Sensitivity Aerosol Spectrometer - Airborne (UHSAS-A, DMT), and a Passive Cavity Aerosol Spectrometer Probe (PCASP-200, DMT). Optical measurements of light scattering by nephelometer and absorption by a particle soot absorption photometer (PSAP) were combined with number/size distributions data in a iterative method, which retrieves the effective imaginary refractive index of the particles at a wavelength of 545 nm. Aerosol chemical composition was characterized using a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS, Aerodyne Inc.). CCN number concentration was measured by a DMT dual column CCN counter at two supersaturations 0.25% and 0.5%. Based on the aerosol properties mentioned above, CCN closure is carried out. In addition, the sensitivity of calculated CCN

  17. Experimental clean combustor program, phase 1. [aircraft exhaust/gas analysis - gas turbine engines

    NASA Technical Reports Server (NTRS)

    Roberts, R.; Peduzzi, A.; Vitti, G. E.

    1975-01-01

    A program of screening three low emission combustors for conventional takeoff and landing, by testing and analyzing thirty-two configurations is presented. Configurations were tested that met the emission goals at idle operating conditions for carbon monoxide and for unburned hydrocarbons (emission index values of 20 and 4, respectively). Configurations were also tested that met a smoke number goal of 15 at sea-level take-off conditions. None of the configurations met the goal for oxides of nitrogen emissions at sea-level take-off conditions. The best configurations demonstrated oxide of nitrogen emission levels that were approximately 61 percent lower than those produced by the JT9D-7 engine, but these levels were still approximately 24 percent above the goal of an emission index level of 10. Additional combustor performance characteristics, including lean blowout, exit temperature pattern factor and radial profile, pressure loss, altitude stability, and altitude relight characteristics were documented. The results indicate the need for significant improvement in the altitude stability and relight characteristics. In addition to the basic program for current aircraft engine combustors, seventeen combustor configurations were evaluated for advanced supersonic technology applications. The configurations were tested at cruise conditions, and a conceptual design was evolved.

  18. A reexamination of the formation of exhaust condensation trails by jet aircraft

    SciTech Connect

    Hanson, H.M.; Hanson, D.M.

    1995-11-01

    With the end of World War II, it became apparent that a study should be undertaken to identify the factors controlling the production of aircraft condensation trails (contrails). This early work provided a theoretical prediction of T{sub c}, the critical temperature at which the values of the relative humidity and pressure are such that the formation of the contrail phenomenon will occur. As empirical data were obtained, the general agreement at increased altitude was not precise and several studies were made to obtain both theoretical and empirical fits that would provide a {open_quotes}yes/no{close_quotes} decision. These modifications did allow a better decision for the formation of contrails but were found to be increasingly inaccurate at greater altitudes. This study provides an improved algorithm that yields a theoretical prediction that is in general agreement with the available empirical data at all altitudes. It demonstrates that there is a need for additional effort in the identification and precision of relative humidity and pressure that are input to this computation. 7 refs., 3 figs.

  19. Extending acoustic data measured with small-scale supersonic model jets to practical aircraft exhaust jets

    NASA Astrophysics Data System (ADS)

    Kuo, Ching-Wen

    2010-06-01

    Modern military aircraft jet engines are designed with variable geometry nozzles to provide optimum thrust in different operating conditions within the flight envelope. However, the acoustic measurements for such nozzles are scarce, due to the cost involved in making full-scale measurements and the lack of details about the exact geometry of these nozzles. Thus the present effort at The Pennsylvania State University and the NASA Glenn Research Center, in partnership with GE Aviation, is aiming to study and characterize the acoustic field produced by supersonic jets issuing from converging-diverging military style nozzles. An equally important objective is to develop a scaling methodology for using data obtained from small- and moderate-scale experiments which exhibits the independence of the jet sizes to the measured noise levels. The experimental results presented in this thesis have shown reasonable agreement between small-scale and moderate-scale jet acoustic data, as well as between heated jets and heat-simulated ones. As the scaling methodology is validated, it will be extended to using acoustic data measured with small-scale supersonic model jets to the prediction of the most important components of full-scale engine noise. When comparing the measured acoustic spectra with a microphone array set at different radial locations, the characteristics of the jet noise source distribution may induce subtle inaccuracies, depending on the conditions of jet operation. A close look is taken at the details of the noise generation region in order to better understand the mismatch between spectra measured at various acoustic field radial locations. A processing methodology was developed to correct the effect of the noise source distribution and efficiently compare near-field and far-field spectra with unprecedented accuracy. This technique then demonstrates that the measured noise levels in the physically restricted space of an anechoic chamber can be appropriately

  20. Static test-stand performance of the YF-102 turbofan engine with several exhaust configurations for the Quiet Short-Haul Research Aircraft (QSRA)

    NASA Technical Reports Server (NTRS)

    Mcardle, J. G.; Homyak, L.; Moore, A. S.

    1979-01-01

    The performance of a YF-102 turbofan engine was measured in an outdoor test stand with a bellmouth inlet and seven exhaust-system configurations. The configurations consisted of three separate-flow systems of various fan and core nozzle sizes and four confluent-flow systems of various nozzle sizes and shapes. A computer program provided good estimates of the engine performance and of thrust at maximum rating for each exhaust configuration. The internal performance of two different-shaped core nozzles for confluent-flow configurations was determined to be satisfactory. Pressure and temperature surveys were made with a traversing probe in the exhaust-nozzle flow for some confluent-flow configurations. The survey data at the mixing plane, plus the measured flow rates, were used to calculate the static-pressure variation along the exhaust nozzle length. The computed pressures compared well with experimental wall static-pressure data. External-flow surveys were made, for some confluent-flow configurations, with a large fixed rake at various locations in the exhaust plume.

  1. Summary of aircraft results for 1978 southeastern Virginia urban plume measurement study of ozone, nitrogen oxides, and methane

    NASA Technical Reports Server (NTRS)

    Gregory, G. L.; Wornom, D. E.; Mathis, J. J., Jr.; Sebacher, D. I.

    1980-01-01

    Ozone production was determined from aircraft and surface in situ measurements, as well as from an airborne laser absorption spectrometer. Three aircraft and approximately 10 surface stations provided air-quality data. Extensive meteorological, mixing-layer-height, and ozone-precursor data were also measured. Approximately 50 hrs (9 flight days) of data from the aircraft equipped to monitor ozone, nitrogen oxides, dewpoint temperature, and temperature are presented. In addition, each experiment conducted is discussed.

  2. The effects of aircraft on climate and pollution. Part II: 20-year impacts of exhaust from all commercial aircraft worldwide treated individually at the subgrid scale.

    PubMed

    Jacobson, M Z; Wilkerson, J T; Naiman, A D; Lele, S K

    2013-01-01

    This study examines the 20-year impacts of emissions from all commercial aircraft flights worldwide on climate, cloudiness, and atmospheric composition. Aircraft emissions from each individual flight worldwide were modeled to evolve from the subgrid to grid scale with the global model described and evaluated in Part I of this study. Simulations with and without aircraft emissions were run for 20 years. Aircraft emissions were found to be responsible for -6% of Arctic surface global warming to date, -1.3% of total surface global warming, and -4% of global upper tropospheric warming. Arctic warming due to aircraft slightly decreased Arctic sea ice area. Longer simulations should result in more warming due to the further increase in CO2. Aircraft increased atmospheric stability below cruise altitude and decreased it above cruise altitude. The increase in stability decreased cumulus convection in favor of increased stratiform cloudiness. Aircraft increased total cloud fraction on average. Aircraft increased surface and upper tropospheric ozone by -0.4% and -2.5%, respectively and surface and upper-tropospheric peroxyacetyl nitrate (PAN) by -0.1% and -5%, respectively. Aircraft emissions increased tropospheric OH, decreasing column CO and CH4 by -1.7% and -0.9%, respectively. Aircraft emissions increased human mortality worldwide by -620 (-240 to 4770) deaths per year, with half due to ozone and the rest to particulate matter less than 2.5 micrometers in diameter (PM2.5).

  3. The effects of aircraft on climate and pollution. Part II: 20-year impacts of exhaust from all commercial aircraft worldwide treated individually at the subgrid scale.

    PubMed

    Jacobson, M Z; Wilkerson, J T; Naiman, A D; Lele, S K

    2013-01-01

    This study examines the 20-year impacts of emissions from all commercial aircraft flights worldwide on climate, cloudiness, and atmospheric composition. Aircraft emissions from each individual flight worldwide were modeled to evolve from the subgrid to grid scale with the global model described and evaluated in Part I of this study. Simulations with and without aircraft emissions were run for 20 years. Aircraft emissions were found to be responsible for -6% of Arctic surface global warming to date, -1.3% of total surface global warming, and -4% of global upper tropospheric warming. Arctic warming due to aircraft slightly decreased Arctic sea ice area. Longer simulations should result in more warming due to the further increase in CO2. Aircraft increased atmospheric stability below cruise altitude and decreased it above cruise altitude. The increase in stability decreased cumulus convection in favor of increased stratiform cloudiness. Aircraft increased total cloud fraction on average. Aircraft increased surface and upper tropospheric ozone by -0.4% and -2.5%, respectively and surface and upper-tropospheric peroxyacetyl nitrate (PAN) by -0.1% and -5%, respectively. Aircraft emissions increased tropospheric OH, decreasing column CO and CH4 by -1.7% and -0.9%, respectively. Aircraft emissions increased human mortality worldwide by -620 (-240 to 4770) deaths per year, with half due to ozone and the rest to particulate matter less than 2.5 micrometers in diameter (PM2.5). PMID:24601012

  4. Chemical characterization of the fine particle emissions from commercial aircraft engines during the Aircraft Particle Emissions eXperiment (APEX) 1 to 3

    EPA Science Inventory

    This paper addresses the need for detailed chemical information on the fine particulate matter (PM2.5) generated by commercial aviation engines. The exhaust plumes of nine engine models were sampled during the three test campaigns of the Aircraft Particle Emissions eXperiment (AP...

  5. Aircraft

    DOEpatents

    Hibbs, B.D.; Lissaman, P.B.S.; Morgan, W.R.; Radkey, R.L.

    1998-09-22

    This disclosure provides a solar rechargeable aircraft that is inexpensive to produce, is steerable, and can remain airborne almost indefinitely. The preferred aircraft is a span-loaded flying wing, having no fuselage or rudder. Travelling at relatively slow speeds, and having a two-hundred foot wingspan that mounts photovoltaic cells on most all of the wing`s top surface, the aircraft uses only differential thrust of its eight propellers to turn. Each of five sections of the wing has one or more engines and photovoltaic arrays, and produces its own lift independent of the other sections, to avoid loading them. Five two-sided photovoltaic arrays, in all, are mounted on the wing, and receive photovoltaic energy both incident on top of the wing, and which is incident also from below, through a bottom, transparent surface. The aircraft is capable of a top speed of about ninety miles per hour, which enables the aircraft to attain and can continuously maintain altitudes of up to sixty-five thousand feet. Regenerative fuel cells in the wing store excess electricity for use at night, such that the aircraft can sustain its elevation indefinitely. A main spar of the wing doubles as a pressure vessel that houses hydrogen and oxygen gases for use in the regenerative fuel cell. The aircraft has a wide variety of applications, which include weather monitoring and atmospheric testing, communications, surveillance, and other applications as well. 31 figs.

  6. Aircraft

    DOEpatents

    Hibbs, Bart D.; Lissaman, Peter B. S.; Morgan, Walter R.; Radkey, Robert L.

    1998-01-01

    This disclosure provides a solar rechargeable aircraft that is inexpensive to produce, is steerable, and can remain airborne almost indefinitely. The preferred aircraft is a span-loaded flying wing, having no fuselage or rudder. Travelling at relatively slow speeds, and having a two-hundred foot wingspan that mounts photovoltaic cells on most all of the wing's top surface, the aircraft uses only differential thrust of its eight propellers to turn. Each of five sections of the wing has one or more engines and photovoltaic arrays, and produces its own lift independent of the other sections, to avoid loading them. Five two-sided photovoltaic arrays, in all, are mounted on the wing, and receive photovoltaic energy both incident on top of the wing, and which is incident also from below, through a bottom, transparent surface. The aircraft is capable of a top speed of about ninety miles per hour, which enables the aircraft to attain and can continuously maintain altitudes of up to sixty-five thousand feet. Regenerative fuel cells in the wing store excess electricity for use at night, such that the aircraft can sustain its elevation indefinitely. A main spar of the wing doubles as a pressure vessel that houses hydrogen and oxygen gasses for use in the regenerative fuel cell. The aircraft has a wide variety of applications, which include weather monitoring and atmospheric testing, communications, surveillance, and other applications as well.

  7. Aircraft Contrails

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Captured in this scene is a series of aircraft contrails in a high traffic region over the northern Gulf of Mexico (27.0N, 85.5W). Contrails are caused by the hot engine exhaust of high flying aircraft interacting with moisture in the cold upper atmosphere and are common occurrances of high flying aircraft.

  8. Cart3D Analysis of Plume and Shock Interaction Effects on Sonic Boom

    NASA Technical Reports Server (NTRS)

    Castner, Raymond

    2015-01-01

    A plume and shock interaction study was developed to collect data and perform CFD on a configuration where a nozzle plume passed through the shock generated from the wing or tail of a supersonic vehicle. The wing or tail was simulated with a wedge-shaped shock generator. Three configurations were analyzed consisting of two strut mounted wedges and one propulsion pod with an aft deck from a low boom vehicle concept. Research efforts at NASA were intended to enable future supersonic flight over land in the United States. Two of these efforts provided data for regulatory change and enabled design of low boom aircraft. Research has determined that sonic boom is a function of aircraft lift and volume distribution. Through careful tailoring of these variables, the sonic boom of concept vehicles has been reduced. One aspect of vehicle tailoring involved how the aircraft engine exhaust interacted with aft surfaces on a supersonic aircraft, such as the tail and wing trailing edges. In this work, results from Euler CFD simulations are compared to experimental data collected on sub-scale components in a wind tunnel. Three configurations are studied to simulate the nozzle plume interaction with representative wing and tail surfaces. Results demonstrate how the plume and tail shock structure moves with increasing nozzle pressure ratio. The CFD captures the main features of the plume and shock interaction. Differences are observed in the plume and deck shock structure that warrant further research and investigation.

  9. Airborne in-situ investigations of the Eyjafjallajökull volcanic ash plume on Iceland and over north-western Germany with light aircrafts and optical particle counters

    NASA Astrophysics Data System (ADS)

    Weber, K.; Eliasson, J.; Vogel, A.; Fischer, C.; Pohl, T.; van Haren, G.; Meier, M.; Grobéty, B.; Dahmann, D.

    2012-03-01

    During the time period of the eruption of the Icelandic volcano Eyjafjallajökull in April/May 2010 the Duesseldorf University of Applied Sciences has performed 14 research flights in situations with and without the volcanic ash plume over Germany. In parallel to the research flights in Germany three measurement flights have been performed by the University of Iceland in May 2010 over the western part of Iceland. During two of these flights the outskirts of the eruption plume were entered directly, delivering most direct measurements within the eruption plume during this eruptive event. For all the measurement flights reported here, light durable piston-motor driven aircrafts were used, which were equipped with optical particle counters for in-situ measurements. Real-time monitoring of the particle concentrations was possible during the flights. As different types of optical particle counters have been used in Iceland and Germany, the optical particle counters have been re-calibrated after the flights to the same standard using gravimetric reference methods and original Eyjafjallajökull volcanic ash samples. In-situ measurement results with high spatial resolution, directly from the eruption plume in Iceland as well as from the dispersed and several days old plume over Germany, are therefore presented here for the first time. They are normalized to the same ash concentration calibration standard. Moreover, airborne particles could be sampled directly out of the eruption plume in Iceland as well as during the flights over Germany. During the research flights over Iceland from 9 May 2011 to 11 May 2011 the ash emitted from the vent of the volcano turned out to be concentrated in a narrow well-defined plume of about 10 km width at a distance of 45-60 km away from the vent. Outside this plume the airborne ash concentrations could be proved to be below 50 μg m -3 over western Iceland. However, by entering the outskirts of the plume directly the research aircraft could

  10. Validation of scramjet exhaust simulation technique at Mach 6

    NASA Technical Reports Server (NTRS)

    Hopkins, H. B.; Konopka, W.; Leng, J.

    1979-01-01

    Current design philosophy for hydrogen-fueled, scramjet-powered hypersonic aircraft results in configurations with strong couplings between the engine plume and vehicle aerodynamics. The experimental verification of the scramjet exhaust simulation is described. The scramjet exhaust was reproduced for the Mach 6 flight condition by the detonation tube simulator. The exhaust flow pressure profiles, and to a large extent the heat transfer rate profiles, were then duplicated by cool gas mixtures of Argon and Freon 13B1 or Freon 12. The results of these experiments indicate that a cool gas simulation of the hot scramjet exhaust is a viable simulation technique except for phenomena which are dependent on the wall temperature relative to flow temperature.

  11. Probe samples components of rocket engine exhaust

    NASA Technical Reports Server (NTRS)

    Schumacher, P. E.

    1965-01-01

    Water-cooled, cantilevered probe samples the exhaust plume of rocket engines to recover particles for examination. The probe withstands the stresses of a rocket exhaust plume environment for a sufficient period to obtain a useful sample of the exhaust components.

  12. Analysis of Nozzle Jet Plume Effects on Sonic Boom Signature

    NASA Technical Reports Server (NTRS)

    Bui, Trong

    2010-01-01

    An axisymmetric full Navier-Stokes computational fluid dynamics (CFD) study was conducted to examine nozzle exhaust jet plume effects on the sonic boom signature of a supersonic aircraft. A simplified axisymmetric nozzle geometry, representative of the nozzle on the NASA Dryden NF-15B Lift and Nozzle Change Effects on Tail Shock (LaNCETS) research airplane, was considered. The highly underexpanded nozzle flow is found to provide significantly more reduction in the tail shock strength in the sonic boom N-wave pressure signature than perfectly expanded and overexpanded nozzle flows. A tail shock train in the sonic boom signature, similar to what was observed in the LaNCETS flight data, is observed for the highly underexpanded nozzle flow. The CFD results provide a detailed description of the nozzle flow physics involved in the LaNCETS nozzle at different nozzle expansion conditions and help in interpreting LaNCETS flight data as well as in the eventual CFD analysis of a full LaNCETS aircraft. The current study also provided important information on proper modeling of the LaNCETS aircraft nozzle. The primary objective of the current CFD research effort was to support the LaNCETS flight research data analysis effort by studying the detailed nozzle exhaust jet plume s imperfect expansion effects on the sonic boom signature of a supersonic aircraft. Figure 1 illustrates the primary flow physics present in the interaction between the exhaust jet plume shock and the sonic boom coming off of an axisymmetric body in supersonic flight. The steeper tail shock from highly expanded jet plume reduces the dip of the sonic boom N-wave signature. A structured finite-volume compressible full Navier-Stokes CFD code was used in the current study. This approach is not limited by the simplifying assumptions inherent in previous sonic boom analysis efforts. Also, this study was the first known jet plume sonic boom CFD study in which the full viscous nozzle flow field was modeled, without

  13. Calculations of economy of 18-cylinder radial aircraft engine with exhaust-gas turbine geared to the crankshaft

    NASA Technical Reports Server (NTRS)

    Hannum, Richard W; Zimmerman, Richard H

    1945-01-01

    Calculations based on dynamometer test-stand data obtained on an 18-cylinder radial engine were made to determine the improvement in fuel consumption that can be obtained at various altitudes by gearing an exhaust-gas turbine to the engine crankshaft in order to increase the engine-shaft work.

  14. Aircraft Fuel, Fuel Metering, Induction and Exhaust Systems (Course Outline), Aviation Mechanics (Power Plant): 9057.02.

    ERIC Educational Resources Information Center

    Dade County Public Schools, Miami, FL.

    This document presents an outline for a 135-hour course designed to help the trainee gain the skills and knowledge necessary to become an aviation powerplant mechanic. The course outlines the theory of operation of various fuel systems, fuel metering, induction, and exhaust system components with an emphasis on troubleshooting, maintenance, and…

  15. Modeling the chemical effects of ship exhaust in the cloud-free marine boundary layer

    NASA Astrophysics Data System (ADS)

    von Glasow, R.; Lawrence, M. G.; Sander, R.; Crutzen, P. J.

    2003-02-01

    The chemical evolution of the exhaust plumes of ocean-going ships in the cloud-free marine boundary layer is examined with a box model. Dilution of the ship plume via entrainment of background air was treated as in studies of aircraft emissions and was found to be a very important process that significantly alters model results. We estimated the chemical lifetime (defined as the time when differences between plume and background air are reduced to 5% or less) of the exhaust plume of a single ship to be 2 days. Increased concentrations of NOx (= NO + NO2) in the plume air lead to higher catalytical photochemical production rates of O3 and also of OH. Due to increased OH concentrations in the plume, the lifetime of many species (especially NOx) is significantly reduced in plume air. The chemistry on background aerosols has a significant effect on gas phase chemistry in the ship plume, while partly soluble ship-produced aerosols are computed to only have a very small effect. Soot particles emitted by ships showed no effect on gas phase chemistry. Halogen species that are released from sea salt aerosols are slightly increased in plume air. In the early plume stages, however, the mixing ratio of BrO is decreased because it reacts rapidly with NO. To study the global effects of ship emissions we used a simple upscaling approach which suggested that the parameterization of ship emissions in global chemistry models as a constant source at the sea surface leads to an overestimation of the effects of ship emissions on O3 of about 50% and on OH of roughly a factor of 2. The differences are mainly caused by a strongly reduced lifetime (compared to background air) of NOxin the early stages of a ship plume.

  16. Modeling the chemical effects of ship exhaust in the cloud-free marine boundary layer

    NASA Astrophysics Data System (ADS)

    von Glasow, R.; Lawrence, M. G.; Sander, R.; Crutzen, P. J.

    2002-06-01

    The chemical evolution of the exhaust plumes of ocean-going ships in the cloud-free marine boundary layer is examined with a box model. Dilution of the ship plume via entrainment of background air was treated as in studies of aircraft emissions and was found to be a very important process that significantly alters model results. We estimated the chemical lifetime (defined as the time when differences between plume and background air are reduced to 5% or less) of the exhaust plume of a single ship to be 2 days. Increased concentrations of NOx in the plume air lead to higher catalytical photochemical production rates of O3 and also of OH. Due to increased OH concentrations in the plume, the lifetime of many species (especially NOx) is reduced in plume air. The chemistry on background aerosols has a significant effect on gas phase chemistry in the ship plume, while partly soluble ship-produced aerosols are computed to only have a very small effect. Soot particles emitted by ships showed no effect on gas phase chemistry. Halogen species that are released from sea salt aerosols are slightly increased in plume air. In the early plume stages, however, the mixing ratio of BrO is decreased because it reacts rapidly with NO. To study the global effects of ship emissions we used a simple upscaling approach which suggested that the parameterization of ship emissions in global chemistry models as a constant source at the sea surface leads to an overestimation of the effects of ship emissions of roughly a factor of 2. The differences are caused by a strongly reduced lifetime (compared to background air) of NOx in the early stages of a ship plume.

  17. Plume and Shock Interaction Effects on Sonic Boom in the 1-foot by 1-foot Supersonic Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Castner, Raymond; Elmiligui, Alaa; Cliff, Susan; Winski, Courtney

    2015-01-01

    The desire to reduce or eliminate the operational restrictions of supersonic aircraft over populated areas has led to extensive research at NASA. Restrictions are due to the disturbance of the sonic boom, caused by the coalescence of shock waves formed by the aircraft. A study has been performed focused on reducing the magnitude of the sonic boom N-wave generated by airplane components with a focus on shock waves caused by the exhaust nozzle plume. Testing was completed in the 1-foot by 1-foot supersonic wind tunnel to study the effects of an exhaust nozzle plume and shock wave interaction. The plume and shock interaction study was developed to collect data for computational fluid dynamics (CFD) validation of a nozzle plume passing through the shock generated from the wing or tail of a supersonic vehicle. The wing or tail was simulated with a wedgeshaped shock generator. This test entry was the first of two phases to collect schlieren images and off-body static pressure profiles. Three wedge configurations were tested consisting of strut-mounted wedges of 2.5- degrees and 5-degrees. Three propulsion configurations were tested simulating the propulsion pod and aft deck from a low boom vehicle concept, which also provided a trailing edge shock and plume interaction. Findings include how the interaction of the jet plume caused a thickening of the shock generated by the wedge (or aft deck) and demonstrate how the shock location moved with increasing nozzle pressure ratio.

  18. Particle Size Distributions Measured in the Stratospheric Plumes of Three Rockets During the ACCENT Missions

    NASA Astrophysics Data System (ADS)

    Wiedinmyer, C.; Brock, C. A.; Reeves, J. M.; Ross, M. N.; Schmid, O.; Toohey, D.; Wilson, J. C.

    2001-12-01

    The global impact of particles emitted by rocket engines on stratospheric ozone is not well understood, mainly due to the lack of comprehensive in situ measurements of the size distributions of these emitted particles. During the Atmospheric Chemistry of Combustion Emissions Near the Tropopause (ACCENT) missions in 1999, the NASA WB-57F aircraft carried the University of Denver N-MASS and FCAS instruments into the stratospheric plumes from three rockets. Size distributions of particles with diameters from 4 to approximately 2000 nm were calculated from the instrument measurements using numerical inversion techniques. The data have been averaged over 30-second intervals. The particle size distributions observed in all of the rocket plumes included a dominant mode near 60 nm diameter, probably composed of alumina particles. A smaller mode at approximately 25 nm, possibly composed of soot particles, was seen in only the plumes of rockets that used liquid oxygen and kerosene as a propellant. Aircraft exhaust emitted by the WB-57F was also sampled; the size distributions within these plumes are consistent with prior measurements in aircraft plumes. The size distributions for all rocket intercepts have been fitted to bimodal, lognormal distributions to provide input for global models of the stratosphere. Our data suggest that previous estimates of the solid rocket motor alumina size distributions may underestimate the alumina surface area emission index, and so underestimate the particle surface area available for heterogeneous chlorine activation reactions in the global stratosphere.

  19. Preliminary Analysis of the Effect of Flow Separation Due to Rocket Jet Pluming on Aircraft Dynamic Stability During Atmospheric Exit

    NASA Technical Reports Server (NTRS)

    Dryer, Murray; North, Warren J.

    1959-01-01

    A theoretical investigation was conducted to determine the effects of body boundary-layer separation resulting from a highly underexpanded jet on the dynamic stability of a typical rocket aircraft during an atmospheric exit trajectory. The particular flight condition studied on a digital computer for five degrees of freedom was at Mach 6.0 and 150,000 feet. In view of the unknown character of the separated flow field, two estimates of the pressures in the separated region were made to calculate the unbalanced forces and moments. These estimates, based on limited fundamental zero-angle-of-attack studies and observations, are believed to cover what may be the actual case. In addition to a fixed control case, two simulated pilot control inputs were studied: rate-limited and instantaneous responses. The resulting-motions with and without boundary-layer separation were compared for various initial conditions. The lower of the assumed misalinement forces and moments led to a situation whereby a slowly damped motion could be satisfactorily controlled with rate-limited control input. The higher assumption led to larger amplitude, divergent motions when the same control rates were used. These motions were damped only when the instantaneous control responses were assumed.

  20. Comparison of the Chemical and Physical Evolution and Characteristics of 495 Biomass Burning Plumes Intercepted by the NASA DC-8 Aircraft during the ARCTAS/CARB-2008 Field Campaign

    NASA Astrophysics Data System (ADS)

    Hecobian, A.; Weber, R.; Jimenez, J. L.; Vay, S. A.; Diskin, G. S.; Sachse, G. W.; Wisthaler, A.

    2009-12-01

    Biomass burning events include anthropogenic burning, such as bio-fuel or prescribed burning, and natural fires. Emissions from either type of burning are a significant source for a wide range of atmospheric trace gases and aerosol particles that can have important health and climate impacts.This study compares the different chemical and aerosol components of 495 biomass-burning plumes that were intercepted by the NASA DC-8 research aircraft during the three phases of the Arctic Research of the Composition of the Troposphere from Aircraft and Satellite (ARCTAS) experiment. The ARCTAS experiment was conducted in three phases: ARCTAS-A, based out of Fairbanks, Alaska, U.S.A. (3 to 19 April, 2008); ARCTAS-B based out of Cold Lake, Alberta, Canada (29 June to 13 July, 2008); and ARCTAS-CARB, based out of Palmdale, California, U.S.A. (18 to 24 June, 2008). Many different fire emissions were intercepted during this study. The plumes were classified into different categories: Plumes that were present due to long range transport from their source of emission were categorized into Asian, Siberian, European and a mix of Asian and Siberian plumes. Boreal fires from ARCTAS-B were divided into two groups: Fresh and Aged. This was based on the transport age of the plumes from the location of the plume intercept to the source of emission. During ARCTAS-CARB, biomass-burning emissions were segregated into two main categories: those that were influence by urban emissions versus the plumes that had smaller urban emission influences. Each of the ARCTAS-CARB plume categories noted above were further subdivided into fresh or more aged plumes. A statistical summary of the emission or enhancement ratios based on changes relative to CO, for various trace gas species and aerosol chemical components was produced for each smoke plume category. A high degree of variability in emission ratios was observed for all types of plumes; however, the following conclusions were formulated after a

  1. Liquid Booster Module (LBM) plume flowfield model

    NASA Technical Reports Server (NTRS)

    Smith, S. D.

    1981-01-01

    A complete definition of the LBM plume is important for many Shuttle design criteria. The exhaust plume shape has a significant effect on the vehicle base pressure. The LBM definition is also important to the Shuttle base heating, aerodynamics and the influence of the exhaust plume on the launch stand and environment. For these reasons a knowledge of the LBM plume characteristics is necessary. A definition of the sea level LBM plume as well as at several points along the Shuttle trajectory to LBM, burnout is presented.

  2. Volcanic Plume Measurements with UAV (Invited)

    NASA Astrophysics Data System (ADS)

    Shinohara, H.; Kaneko, T.; Ohminato, T.

    2013-12-01

    Volatiles in magmas are the driving force of volcanic eruptions and quantification of volcanic gas flux and composition is important for the volcano monitoring. Recently we developed a portable gas sensor system (Multi-GAS) to quantify the volcanic gas composition by measuring volcanic plumes and obtained volcanic gas compositions of actively degassing volcanoes. As the Multi-GAS measures variation of volcanic gas component concentrations in the pumped air (volcanic plume), we need to bring the apparatus into the volcanic plume. Commonly the observer brings the apparatus to the summit crater by himself but such measurements are not possible under conditions of high risk of volcanic eruption or difficulty to approach the summit due to topography etc. In order to overcome these difficulties, volcanic plume measurements were performed by using manned and unmanned aerial vehicles. The volcanic plume measurements by manned aerial vehicles, however, are also not possible under high risk of eruption. The strict regulation against the modification of the aircraft, such as installing sampling pipes, also causes difficulty due to the high cost. Application of the UAVs for the volcanic plume measurements has a big advantage to avoid these problems. The Multi-GAS consists of IR-CO2 and H2O gas analyzer, SO2-H2O chemical sensors and H2 semiconductor sensor and the total weight ranges 3-6 kg including batteries. The necessary conditions of the UAV for the volcanic plumes measurements with the Multi-GAS are the payloads larger than 3 kg, maximum altitude larger than the plume height and installation of the sampling pipe without contamination of the exhaust gases, as the exhaust gases contain high concentrations of H2, SO2 and CO2. Up to now, three different types of UAVs were applied for the measurements; Kite-plane (Sky Remote) at Miyakejima operated by JMA, Unmanned airplane (Air Photo Service) at Shinomoedake, Kirishima volcano, and Unmanned helicopter (Yamaha) at Sakurajima

  3. Direct measurements of HONO and NO2 by tunable infrared differential absorption spectroscopy; Results from two field campaigns sampling aircraft exhaust and ambient urban air

    NASA Astrophysics Data System (ADS)

    Lee, B. H.; Santoni, G.; Herndon, S. C.; Wood, E. C.; Miake-Lye, R. C.; Munger, J. W.; Wofsy, S. C.; Zahniser, M. S.; McManus, J. B.; Nelson, D. D.

    2009-12-01

    Nitrous acid (HONO) is an important source of hydroxyl radicals (OH), the main oxidizing agent in the atmosphere. However, gaseous HONO has historically proven difficult to measure accurately and to date there is no standard technique. We describe a new instrument capable of high-frequency measurements of HONO and nitrogen dioxide (NO2) mixing ratios by tunable infrared differential absorption spectrometry. Mid-infrared light from two continuous-wave mode quantum cascade lasers traverse a 210 m path through a multi-pass astigmatic cell at reduced pressures for the direct detection of HONO (1660 cm-1) and NO2 (1604 cm-1). We achieve an absorbance precision less than 3×10-6 Hz-1 in one second, which translates to detection limits (S/N=3) of 300 and 30 ppt for HONO and NO2, respectively, in one second. Both lasers and the detector are thermoelectrically cooled, facilitating long-term unattended measurements. We also report preliminary results from two field campaigns; the Alternative Aviation Fuels Experiment (AAFEX) and the Study of Houston Air Radical Precursors (SHARP). At AAFEX, HONO emission ratios relative to CO2 and NOy observed in commercial aircraft exhaust are larger than in most other combustion sources and likely to play a significant role in regional HOx chemistry. Preliminary analysis from the SHARP campaign shows good agreement in HONO and NO2 levels between various measurement techniques.

  4. 40 CFR 87.31 - Standards for exhaust emissions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) Definitions. Exhaust Emissions (In-Use Aircraft Gas Turbine Engines) § 87.31 Standards for exhaust emissions. (a) Exhaust emissions of smoke from each in-use aircraft gas turbine engine of Class T8... in-use aircraft gas turbine engine of class TF and of rated output of 129 kilonewtons thrust...

  5. 14 CFR 34.21 - Standards for exhaust emissions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... FUEL VENTING AND EXHAUST EMISSION REQUIREMENTS FOR TURBINE ENGINE POWERED AIRPLANES Exhaust Emissions (New Aircraft Gas Turbine Engines) § 34.21 Standards for exhaust emissions. (a) Exhaust emissions of smoke from each new aircraft gas turbine engine of class T8 manufactured on or after February 1,...

  6. 14 CFR 34.31 - Standards for exhaust emissions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... FUEL VENTING AND EXHAUST EMISSION REQUIREMENTS FOR TURBINE ENGINE POWERED AIRPLANES Exhaust Emissions (In-use Aircraft Gas Turbine Engines) § 34.31 Standards for exhaust emissions. (a) Exhaust emissions of smoke from each in-use aircraft gas turbine engine of Class T8, beginning February 1, 1974,...

  7. 14 CFR 34.31 - Standards for exhaust emissions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... FUEL VENTING AND EXHAUST EMISSION REQUIREMENTS FOR TURBINE ENGINE POWERED AIRPLANES Exhaust Emissions (In-use Aircraft Gas Turbine Engines) § 34.31 Standards for exhaust emissions. (a) Exhaust emissions of smoke from each in-use aircraft gas turbine engine of Class T8, beginning February 1, 1974,...

  8. 14 CFR 34.31 - Standards for exhaust emissions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... FUEL VENTING AND EXHAUST EMISSION REQUIREMENTS FOR TURBINE ENGINE POWERED AIRPLANES Exhaust Emissions (In-use Aircraft Gas Turbine Engines) § 34.31 Standards for exhaust emissions. (a) Exhaust emissions of smoke from each in-use aircraft gas turbine engine of Class T8, beginning February 1, 1974,...

  9. Validation of Inlet and Exhaust Boundary Conditions for a Cartesian Method

    NASA Technical Reports Server (NTRS)

    Pandya, Shishir A.; Murman, Scott M.; Aftosmis, Michael J.

    2004-01-01

    Inlets and exhaust nozzles are often omitted in aerodynamic simulations of aircraft due to the complexities involved in the modeling of engine details and flow physics. However, the omission is often improper since inlet or plume flows may have a substantial effect on vehicle aerodynamics. A method for modeling the effect of inlets and exhaust plumes using boundary conditions within an inviscid Cartesian flow solver is presented. This approach couples with both CAD systems and legacy geometry to provide an automated tool suitable for parameter studies. The method is validated using two and three-dimensional test problems which are compared with both theoretical and experimental results. The numerical results demonstrate excellent agreement with theory and available data, even for extremely strong jets and very sensitive inlets.

  10. Rocket plume burn hazard.

    PubMed

    Stoll, A M; Piergallini, J R; Chianta, M A

    1980-05-01

    By use of miniature rocket engines, the burn hazard posed by exposure to ejection seat rocket plume flames was determined in the anaesthetized rat. A reference chart is provided for predicting equivalent effects in human skin based on extrapolation of earlier direct measurements of heat input for rat and human burns. The chart is intended to be used in conjunction with thermocouple temperature measurements of the plume environment for design and modification of escape seat system to avoid thermal injury on ejection from multiplace aircraft. PMID:7387571

  11. Orbital Maneuvering Vehicle (OMV) plume and plume effects study

    NASA Technical Reports Server (NTRS)

    Smith, Sheldon D.

    1991-01-01

    The objective was to characterize the Orbital Maneuvering Vehicle (OMV) propulsion and attitude control system engine exhaust plumes and predict the resultant plume impingement pressure, heat loads, forces, and moments. Detailed description is provided of the OMV gaseous nitrogen (GN2) thruster exhaust plume flow field characteristics calculated with the RAMP2 snd SFPGEN computer codes. Brief descriptions are included of the two models, GN2 thruster characteristics and RAMP2 input data files. The RAMP2 flow field could be recalculated by other organizations using the information presented. The GN2 flow field can be readily used by other organizations who are interested in GN2 plume induced environments which require local flow field properties which can be supplied using the SFPGEN GN2 model.

  12. Results of an investigation of jet plume effects on an 0.010-scale model (75-OTS) of the space shuttle integrated vehicle in the 9 x 7-foot leg of the NASA/Ames unitary wind tunnel (IA82B), volume 1. [an exhaust flow simulation

    NASA Technical Reports Server (NTRS)

    Hawthorne, P. J.

    1976-01-01

    The base pressure environment was investigated for the first and second stage mated vehicle in a supersonic flow field from Mach 1.55 through 2.20 with simulated rocket engine exhaust plumes. The pressure environment was investigated for the orbiter at various vent port locations at these same freestream conditions. The Mach number environment around the base of the model with rocket plumes simulated was examined. Data were obtained at angles of attack from -4 deg through +4 deg at zero yaw, and at yaw angles from -4 deg through +4 deg at zero angle of attack, with rocket plume sizes varying from smaller than nominal to much greater than nominal. Failed orbiter engine data were also obtained. Elevon hinge moments and wing panel load data were obtained during all runs. Photographs of the tested configurations are shown.

  13. Hydrocarbon emissions from in-use commercial aircraft during airport operations.

    PubMed

    Herndon, Scott C; Rogers, Todd; Dunlea, Edward J; Jayne, John T; Miake-Lye, Richard; Knighton, Berk

    2006-07-15

    The emissions of selected hydrocarbons from in-use commercial aircraft at a major airport in the United States were characterized using proton-transfer reaction mass spectrometry (PTR-MS) and tunable infrared differential absorption spectroscopy (TILDAS) to probe the composition of diluted exhaust plumes downwind. The emission indices for formaldehyde, acetaldehyde, benzene, and toluene, as well as other hydrocarbon species, were determined through analysis of 45 intercepted plumes identified as being associated with specific aircraft. As would have been predicted for high bypass turbine engines, the hydrocarbon emission index was greater in idle and taxiway acceleration plumes relative to approach and takeoff plumes. The opposite was seen in total NOy emission index, which increased from idle to takeoff. Within the idle plumes sampled in this study, the median emission index for formaldehyde was 1.1 g of HCHO per kg of fuel. For the subset of hydrocarbons measured in this work, the idle emissions levels relative to formaldehyde agree well with those of previous studies. The projected total unburned hydrocarbons (UHC) deduced from the range of in-use idle plumes analyzed in this work is greater than a plausible range of engine types using the defined idle condition (7% of rated engine thrust) in the International Civil Aviation Organization (ICAO) databank reference.

  14. Transmittance and Radiance Computations for Rocket Engine Plume Environments

    NASA Technical Reports Server (NTRS)

    Tejwani, Gopal D.

    2003-01-01

    Emission and absorption characteristics of several atmospheric and combustion species have been studied and are presented with reference to rocket engine plume environments. The effects of clous, rain, and fog on plume radiance/transmittance has also been studied.Preliminary results for the radiance from the exhaust plume of the space shuttle main engine are shown and discussed.

  15. 40 CFR 87.31 - Standards for exhaust emissions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Gas Turbine Engines) § 87.31 Standards for exhaust emissions. (a) Exhaust emissions of smoke from each in-use aircraft gas turbine engine of Class T8, beginning February 1, 1974, shall not exceed: Smoke number of 30. (b) Exhaust emissions of smoke from each in-use aircraft gas turbine engine of class TF...

  16. 40 CFR 87.31 - Standards for exhaust emissions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Gas Turbine Engines) § 87.31 Standards for exhaust emissions. (a) Exhaust emissions of smoke from each in-use aircraft gas turbine engine of Class T8, beginning February 1, 1974, shall not exceed: Smoke number of 30. (b) Exhaust emissions of smoke from each in-use aircraft gas turbine engine of class TF...

  17. 40 CFR 87.31 - Standards for exhaust emissions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Gas Turbine Engines) § 87.31 Standards for exhaust emissions. (a) Exhaust emissions of smoke from each in-use aircraft gas turbine engine of Class T8, beginning February 1, 1974, shall not exceed: Smoke number of 30. (b) Exhaust emissions of smoke from each in-use aircraft gas turbine engine of class TF...

  18. Soot aerosol in the lower stratosphere: Pole-to-pole variability and contributions by aircraft

    NASA Astrophysics Data System (ADS)

    Pueschel, R. F.; Boering, K. A.; Verma, S.; Howard, S. D.; Ferry, G. V.; Goodman, J.; Allen, D. A.; Hamill, P.

    1997-06-01

    A NASA ER-2 high-altitude research aircraft intercepted the exhaust wake of a supersonic Concorde aircraft in the stratosphere near New Zealand on October 8, 1994. Black carbon (soot) aerosol (BCA) was sampled by wire impactors during the first five of 12 short-duration wake intercepts. BCA concentration in Concorde exhaust at 16.3 km altitude was 0.2 particles cm-3, the size distribution peaked at a geometric mean radius of 0.09 μm, and the mass loading was 2.0±1.4 ng m-3. With a plume dilution factor (DF) of 1.0×10-5, determined by the ratio of CO2 measured in the plume (above the ambient stratospheric background level) to CO2 in the engine exhaust plane, the Concorde BCA emission index was EI(BCA)=0.07±0.05 g BCA per kg fuel burned. Applying this EI to estimates of aircraft fuel burned by the current subsonic fleet in the stratosphere yields average stratospheric BCA loadings of 0.5 ng m-3, commensurate with observations in the northern stratosphere. Applying the Concorde EI to fuel consumption by a projected future fleet suggests a twofold-threefold increase of stratospheric BCA by the year 2015. A strong gradient in BCA concentration exists between the northern and the southern hemispheres, indicating interhemispheric mixing times longer than stratospheric residence times.

  19. The effects of aircraft on climate and pollution. Part I: Numerical methods for treating the subgrid evolution of discrete size- and composition-resolved contrails from all commercial flights worldwide

    NASA Astrophysics Data System (ADS)

    Jacobson, M. Z.; Wilkerson, J. T.; Naiman, A. D.; Lele, S. K.

    2011-06-01

    This paper provides and evaluates mass conservative, positive-definite, unconditionally-stable, and non-iterative numerical techniques for simulating the evolution of discrete, size- and composition-resolved aerosol and contrail particles in individual aircraft exhaust plumes in a global or regional 3-D atmospheric model and coupling the subgrid exhaust plume information to the grid scale. Such treatment represents a new method of simulating the effects of aircraft on climate, contrails, and atmospheric composition. Microphysical processes solved within each plume include size-resolved coagulation among and between aerosol and contrail particles and their inclusions, aerosol-to-hydrometeor particle ice and liquid nucleation, deposition/sublimation, and condensation/evaporation. Each plume has its own emission and supersaturation, and the spreading and shearing of each plume's cross-section are calculated as a function of time. Aerosol- and contrail-particle core compositions are tracked for each size and affect optical properties in each plume. When line contrails sublimate/evaporate, their size- and composition-resolved aerosol cores and water vapor are added to the grid scale where they affect large-scale clouds. Algorithm properties are analyzed, and the end-result model is evaluated against in situ and satellite data.

  20. PM emissions measurements of in-service commercial aircraft engines during the Delta-Atlanta Hartsfield Study

    NASA Astrophysics Data System (ADS)

    Lobo, Prem; Hagen, Donald E.; Whitefield, Philip D.; Raper, David

    2015-03-01

    This paper describes the results of the physical characterization of aircraft engine PM emission measurements conducted during the Delta-Atlanta Hartsfield Study at the Hartsfield-Jackson Atlanta International Airport. Engine exit plane PM emissions were sampled from on-wing engines on several in-service commercial transport aircraft from the fleet of Delta Airlines. The size distributions were lognormal in nature with a single mode. The geometric mean diameter was found to increase with increasing engine thrust, ranging from 15 nm at idle to 40 nm at takeoff. PM number- and mass-based emission indices were observed to be higher at the idle conditions (4% and 7%), lowest at 15%-30% thrust, and then increase with increasing thrust. Emissions measurements were also conducted during an advected plume study where over 300 exhaust plumes generated by a broad mix of commercial transports were sampled 100-350 m downwind from aircraft operational runways during normal airport operations. The range of values measured at take-off for the different engine types in terms of PM number-based emission index was between 7 × 1015-9 × 1017 particles/kg fuel burned, and that for PM mass-based emission index was 0.1-0.6 g/kg fuel burned. PM characteristics of aircraft engine specific exhaust were found to evolve over time as the exhaust plume expands, dilutes with ambient air, and cools. The data from these measurements will enhance the emissions inventory development for a subset of engines operating in the commercial fleet and improve/validate current environmental impact predictive tools with real world aircraft engine specific PM emissions inputs.

  1. 14 CFR 34.64 - Sampling and analytical procedures for measuring gaseous exhaust emissions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT FUEL VENTING AND EXHAUST EMISSION REQUIREMENTS FOR TURBINE ENGINE POWERED AIRPLANES Test Procedures for Engine Exhaust Gaseous Emissions (Aircraft and Aircraft Gas Turbine Engines) § 34.64 Sampling and analytical procedures for measuring gaseous exhaust emissions....

  2. Airborne Observations of Aerosol Emissions from F-16 Aircraft

    NASA Technical Reports Server (NTRS)

    Anderson, B. E.; Cofer, W. R.; McDougal, D. S.

    1999-01-01

    We presented results from the SASS Near-Field Interactions Flight (SNIF-III) Experiment which was conducted during May and June 1997 in collaboration with the Vermont and New Jersey Air National Guard Units. The project objectives were to quantify the fraction of fuel sulfur converted to S(VI) species by jet engines and to gain a better understanding of particle formation and growth processes within aircraft wakes. Size and volatility segregated aerosol measurements along with sulfur species measurements were recorded in the exhaust of F-16 aircraft equipped with F-100 engines burning fuels with a range of fuel S concentrations at different altitudes and engine power settings. A total of 10 missions were flown in which F-16 exhaust plumes were sampled by an instrumented T-39 Sabreliner aircraft. On six of the flights, measurements were obtained behind the same two aircraft, one burning standard JP-8 fuel and the other either approximately 28 ppm or 1100 ppm S fuel or an equal mixture of the two (approximately 560 ppm S). A pair of flights was conducted for each fuel mixture, one at 30,000 ft altitude and the other starting at 35,000 ft and climbing to higher altitudes if contrail conditions were not encountered at the initial flight level. In each flight, the F-16s were operated at two power settings, approx. 80% and full military power. Exhaust emissions were sampled behind both aircraft at each flight level, power setting, and fuel S concentration at an initial aircraft separation of 30 m, gradually widening to about 3 km. Analyses of the aerosol data in the cases where fuel S was varied suggest results were consistent with observations from project SUCCESS, i.e., a significant fraction of the fuel S was oxidized to form S(VI) species and volatile particle emission indices (EIs) in comparably aged plumes exhibited a nonlinear dependence upon the fuel S concentration. For the high sulfur fuel, volatile particle EIs in 10-second-old-plumes were 2 to 3 x 10 (exp 17

  3. Particle Size Distributions Measured in the B757 Engine Plume During EXCAVATE

    NASA Technical Reports Server (NTRS)

    Sanders, Terry; Penko, Paul; Rivera, Monica; Culler, Steve

    2005-01-01

    The Experiment to Characterize Aircraft Volatile Aerosols and Trace Species Emissions (EXCAVATE) took place at NASA Langley Research Center during January 2002. This ground based study was conducted to examine the role of fuel sulfur content on particulate emissions. Size distributions as a function of engine operating conditions were measured in the exhaust plume of a B-757 at four downstream axial locations (1 m, 10 m, 25 m and 35 m). The engine was run on JP-5 with three different sulfur concentrations, 810 ppm, 1050 ppm, 1820 ppm; and was operated over a range of power settings from idle to near-full power. Zalabsky differential-mobility analyzers DMAS), Met One condensation-nuclei counters (CNCs), and a TSI 3022 condensation-particle counter (CPC) were used to measure the size distributions. The total number-count (particle concentration), number-based Emissions Index (EInumber) and mass-based Emissions Index (E1-J increased with fuel sulfur-content and engine pressure ratio (EPR). Count Mean Diameter (Ch4D) also increased with EPR yet remained fairly constant with fuel sulfur-content for a fixed location in the exhaust plume. Also the mode and CMD both increased with distance in the plume.

  4. REAL-TIME AND INTEGRATED MEASUREMENT OF POTENTIAL HUMAN EXPOSURE TO PARTICLE-BOUND POLYCYCLIC AROMATIC HYDROCARBONS (PAHS) FROM AIRCRAFT EXHAUST

    EPA Science Inventory

    Real-time monitors and low-volume air samplers were used to measure the potential human exposure to airborne polycyclic aromatic hydrocarbon (PAH) concentrations during various flight-related and ground-support activities of C-130H aircraft at an Air National Guard base. Three...

  5. Effect of air temperature and relative humidity at various fuel-air ratios on exhaust emissions on a per-mode basis of an Avco Lycoming 0-320 DIAD light aircraft engine. Volume 2: Individual data points

    NASA Technical Reports Server (NTRS)

    Skorobatckyi, M.; Cosgrove, D. V.; Meng, P. R.; Kempke, E. R.

    1976-01-01

    A carbureted four cylinder air cooled 0-320 DIAD Lycoming aircraft engine was tested to establish the effects of air temperature and humidity at various fuel-air ratios on the exhaust emissions on a per-mode basis. The test conditions included carburetor lean-out at air temperatures of 50, 59, 80, and 100 F at relative humidities of 0, 30, 60, and 80 percent. Temperature-humidity effects at the higher values of air temperature and relative humidity tested indicated that the HC and CO emissions increased significantly, while the NOx emissions decreased. Even at a fixed fuel-air ratio, the HC emissions increase and the NOx emissions decrease at the higher values of air temperature and humidity. Volume II contains the data taken at each of the individual test points.

  6. Effect of Air Temperature and Relative Humidity at Various Fuel-Air Ratios on Exhaust Emissions on a Per-Mode Basis of an AVCO Lycoming 0-320 Diad Light Aircraft Engine: Volume 1: Results and Plotted Data

    NASA Technical Reports Server (NTRS)

    Skorobatckyi, M.; Cosgrove, D. V.; Meng, P. R.; Kempe, E. E., Jr.

    1978-01-01

    A carbureted four cylinder air cooled 0-320 DIAD Lycoming aircraft engine was tested to establish the effects of air temperature and humidity at various fuel-air ratios on the exhaust emissions on a per-mode basis. The test conditions include carburetor lean out at air temperatures of 50, 59, 80, and 100 F at relative humidities of 0, 30, 60, and 80 percent. Temperature humidity effects at the higher values of air temperature and relative humidity tested indicated that the HC and CO emissions increased significantly, while the NOx emissions decreased. Even at a fixed fuel air ratio, the HC emissions increase and the NOx emissions decrease at the higher values of air temperature and humidity.

  7. Ice Prevention on Aircraft by Means of Engine Exhaust Heat and a Technical Study of Heat Transmission from a Clark Y Airfoil

    NASA Technical Reports Server (NTRS)

    Theodorsen, Theodore; Clay, William C

    1933-01-01

    This investigation was conducted to study the practicability of employing heat as a means of preventing the formation of ice on airplane wings. The report relates essentially to technical problems regarding the extraction of heat from the exhaust gases and its proper distribution over the exposed surfaces. In this connection a separate study has been made to determine the variation of the coefficient of heat transmission along the chord of a Clark Y airfoil. Experiments on ice prevention both in the laboratory and in flight show conclusively that it is necessary to heat only the front portion of the wing surface to effect complete prevention. Experiments in flight show that a vapor-heating system which extracts heat from the exhaust and distributes it to the wings is an entirely practical and efficient method for preventing ice formation.

  8. Tvashtar's Plume

    NASA Technical Reports Server (NTRS)

    2007-01-01

    This dramatic image of Io was taken by the Long Range Reconnaissance Imager (LORRI) on New Horizons at 11:04 Universal Time on February 28, 2007, just about 5 hours after the spacecraft's closest approach to Jupiter. The distance to Io was 2.5 million kilometers (1.5 million miles) and the image is centered at 85 degrees west longitude. At this distance, one LORRI pixel subtends 12 kilometers (7.4 miles) on Io.

    This processed image provides the best view yet of the enormous 290-kilometer (180-mile) high plume from the volcano Tvashtar, in the 11 o'clock direction near Io's north pole. The plume was first seen by the Hubble Space Telescope two weeks ago and then by New Horizons on February 26; this image is clearer than the February 26 image because Io was closer to the spacecraft, the plume was more backlit by the Sun, and a longer exposure time (75 milliseconds versus 20 milliseconds) was used. Io's dayside was deliberately overexposed in this picture to image the faint plumes, and the long exposure also provided an excellent view of Io's night side, illuminated by Jupiter. The remarkable filamentary structure in the Tvashtar plume is similar to details glimpsed faintly in 1979 Voyager images of a similar plume produced by Io's volcano Pele. However, no previous image by any spacecraft has shown these mysterious structures so clearly.

    The image also shows the much smaller symmetrical fountain of the plume, about 60 kilometers (or 40 miles) high, from the Prometheus volcano in the 9 o'clock direction. The top of a third volcanic plume, from the volcano Masubi, erupts high enough to catch the setting Sun on the night side near the bottom of the image, appearing as an irregular bright patch against Io's Jupiter-lit surface. Several Everest-sized mountains are highlighted by the setting Sun along the terminator, the line between day and night.

    This is the last of a handful of LORRI images that New Horizons is sending 'home' during its busy close

  9. Light aircraft sound transmission study

    NASA Technical Reports Server (NTRS)

    Atwal, M.; David, J.; Heitman, K.; Crocker, M. J.

    1983-01-01

    The revived interest in the design of propeller driven aircraft is based on increasing fuel prices as well as on the need for bigger short haul and commuter aircraft. A major problem encountered with propeller driven aircraft is propeller and exhaust noise that is transmitted through the fuselage sidewall structure. Part of the work which was conducted during the period April 1 to August 31, 1983, on the studies of sound transmission through light aircraft walls is presented.

  10. The atmospheric effects of stratospheric aircraft: A third program report

    NASA Technical Reports Server (NTRS)

    Stolarski, Richard S. (Editor); Wesoky, Howard L. (Editor)

    1993-01-01

    A third report from the Atmospheric Effects of Stratospheric Aircraft (AESA) component of NASA's High-Speed Research Program (HSRP) is presented. Market and technology considerations continue to provide an impetus for high-speed civil transport research. A recent United Nations Environment Program scientific assessment showed that considerable uncertainty still exists about the possible impact of aircraft on the atmosphere. The AESA was designed to develop the body of scientific knowledge necessary for the evaluation of the impact of stratospheric aircraft on the atmosphere. The first Program report presented the basic objectives and plans for AESA. This third report marks the midpoint of the program and presents the status of the ongoing research on the impact of stratospheric aircraft on the atmosphere as reported at the third annual AESA Program meeting in June 1993. The focus of the program is on predicted atmospheric changes resulting from projected HSCT emissions. Topics reported on cover how high-speed civil transports (HSCT) might affect stratospheric ozone, emissions scenarios and databases to assess potential atmospheric effects from HSCT's, calculated results from 2-D zonal mean models using emissions data, engine trace constituent measurements, and exhaust plume/aircraft wake vortex interactions.

  11. A preliminary assessment of the impact of 2-D exhaust-nozzle geometry on the cruise range of a hypersonic aircraft with top-mounted ramjet propulsion

    NASA Technical Reports Server (NTRS)

    Vahl, W. A.; Weidner, J. P.

    1980-01-01

    A theoretical study of full length and shortened, two dimensional, isentropic, exhaust nozzles integrated with top mounted ramjet propulsion nacelles were conducted. Both symmetric and asymmetric contoured nozzles with a range of angular orientations were considered. Performance comparisons to determine optimum installations for a representative hypersonic vehicle at Mach 5 cruise conditions are presented on the basis of cruise range, propulsive specific impulse, inlet area requirements, and overall lift drag ratio. The effect of approximating the nozzle internal contours with planar surfaces and the determination of viscous and frozen flow effects are also presented.

  12. Ion-induced Aerosol-formation By Jet Aircraft: Implications For Contrail- and Cloud-formation

    NASA Astrophysics Data System (ADS)

    Eichkorn, S.; Wilhelm, S.; Arnold, F.

    Jet aircraft produced gaseous ions so called chemiions (CI) may promote the forma- tion of volatile aerosol particles (VAP). VAP are potentially important by acting as water vapor condensation nuclei in contrail- and perhaps even cloud-formation. This ion-induced VAP-formation proceeds via the formation of cluster ions which are suf- ficiently large to form stable VAP upon neutralisation by ion-ion recombination. Here we report the first measurements of large cluster ions in sulfur-poor and -rich exhaust plumes of jet aircraft in flight equipped with modern and old engines. Measurements were performed in the wake of an Airbus A340, a Boeing B707 and the German Re- search Aircraft ATTAS. Our measurements suggest that ion induced VAP-formation takes place and that gaseous sulphuric acid and gaseous low volatility organic com- pounds are involved. For modern engines burning fuel with a typical mean fuel sulfur content sulphuric acid seems to be the most abundant condensate in a contrail-free exhaust-plume.

  13. Direct Measurement of Mercury Reactions In Coal Power Plant Plumes

    SciTech Connect

    Leonard Levin

    2005-12-31

    west of Kenosha. Aircraft and ground measurements support the occurrence of a reduction in the fraction of reactive gaseous mercury (RGM) (with a corresponding increase in elemental mercury) as part of the Total Gaseous Mercury (TGM) emitted from the Pleasant Prairie stack. This occurrence is based on comparison of the RGM concentrations in the plume (at standard conditions) compared to the RGM in the stack. There was found to be a 44% drop in the fraction of RGM between the stack exit and the first sampling arc and a 66% reduction from the stack to the 5-mile sampling arc, with no additional drop between the 5- and 10-mile arcs. Smaller-scale experiments in both test chambers and pilot-scale coal combustor exhaust streams have indicated the presence of rapid and relatively complete reduction reactions converting divalent into elemental mercury within power plant plumes prior to full dispersion in the atmosphere. These measurements, however, have been unable to identify whether the reactions occur during plume rise from physical to virtual stack height (during positive thermal buoyancy). The presence, rate, completeness, ubiquity, and dependence on source characteristics of these reactions, however, must be demonstrated in plume environments associated with fully operational power plants. That requirement, to capture either the reactions or the reaction products of chemistry that may be occurring very close to stack exits in highly turbulent environments, constrains the precision and reproducibility with which such full-scale experiments can be carried out. The work described here is one of several initial steps required to test whether, and in what direction, such rapid mercury redox reactions might be occurring in such plumes.

  14. Digital filtering of plume emission spectra

    NASA Technical Reports Server (NTRS)

    Madzsar, George C.

    1990-01-01

    Fourier transformation and digital filtering techniques were used to separate the superpositioned spectral phenomena observed in the exhaust plumes of liquid propellant rocket engines. Space shuttle main engine (SSME) spectral data were used to show that extraction of spectral lines in the spatial frequency domain does not introduce error, and extraction of the background continuum introduces only minimal error. Error introduced during band extraction could not be quantified due to poor spectrometer resolution. Based on the atomic and molecular species found in the SSME plume, it was determined that spectrometer resolution must be 0.03 nm for SSME plume spectral monitoring.

  15. Monitoring radioactive plumes by airborne gamma-ray spectrometry

    SciTech Connect

    Grasty, R.L.; Hovgaard, J.; Multala, J.

    1996-06-01

    Airborne gamma-ray spectrometer surveys using large volume sodium-iodide detectors are routinely flown throughout the world for mineral exploration and geological mapping. Techniques have now been developed to detect and map man-made sources of radiation. In Canada, airborne gamma-rays surveys have been flown around nuclear reactors to map {sup 41}Ar plumes from nuclear reactors and to calculate the dose rate at ground level. In May 1986, the Finnish Geological survey aircraft flew through a radioactive plume from the Chernobyl nuclear accident. As the aircraft flew through the plume, the aircraft became increasingly contaminated. By measuring the final aircraft contamination, the activity of the plume could be separated from the contamination due to the aircraft. Within 1 h of encountering the plume, the aircraft activity was comparable to the maximum levels found in the plume. From an analysis of the gamma-ray spectra, the concentration of {sup 131}I and {sup 140}La within the plume were calculated as a function of time.

  16. 14 CFR 34.23 - Exhaust Emission Standards for Engines Manufactured on and after July 18, 2012.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT FUEL VENTING AND EXHAUST EMISSION REQUIREMENTS FOR TURBINE ENGINE POWERED AIRPLANES Exhaust Emissions (New Aircraft Gas Turbine Engines) § 34.23 Exhaust Emission... emissions from each new aircraft gas turbine engine shall not exceed: (1) For Classes TF, T3 and T8 of...

  17. 14 CFR 34.31 - Standards for exhaust emissions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... of smoke from each in-use aircraft gas turbine engine of Class T8, beginning February 1, 1974, shall not exceed a smoke number (SN) of 30. (b) Exhaust emissions of smoke from each in-use aircraft gas... paragraphs (a) and (b) of this section refer to exhaust smoke emission emitted during operation of the...

  18. 14 CFR 34.31 - Standards for exhaust emissions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... of smoke from each in-use aircraft gas turbine engine of Class T8, beginning February 1, 1974, shall not exceed a smoke number (SN) of 30. (b) Exhaust emissions of smoke from each in-use aircraft gas... paragraphs (a) and (b) of this section refer to exhaust smoke emission emitted during operation of the...

  19. 40 CFR Appendix Vi to Part 266 - Stack Plume Rise

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 28 2012-07-01 2012-07-01 false Stack Plume Rise VI Appendix VI to Part 266 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED... FACILITIES Pt. 266, App. VI Appendix VI to Part 266—Stack Plume Rise Flow rate (m3/s) Exhaust Temperature...

  20. 40 CFR Appendix Vi to Part 266 - Stack Plume Rise

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 28 2013-07-01 2013-07-01 false Stack Plume Rise VI Appendix VI to Part 266 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED... FACILITIES Pt. 266, App. VI Appendix VI to Part 266—Stack Plume Rise Flow rate (m3/s) Exhaust Temperature...

  1. 40 CFR Appendix Vi to Part 266 - Stack Plume Rise

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 27 2011-07-01 2011-07-01 false Stack Plume Rise VI Appendix VI to Part 266 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED... FACILITIES Pt. 266, App. VI Appendix VI to Part 266—Stack Plume Rise Flow rate (m3/s) Exhaust Temperature...

  2. 40 CFR Appendix Vi to Part 266 - Stack Plume Rise

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 27 2014-07-01 2014-07-01 false Stack Plume Rise VI Appendix VI to Part 266 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED... FACILITIES Pt. 266, App. VI Appendix VI to Part 266—Stack Plume Rise Flow rate (m3/s) Exhaust Temperature...

  3. 40 CFR Appendix Vi to Part 266 - Stack Plume Rise

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 26 2010-07-01 2010-07-01 false Stack Plume Rise VI Appendix VI to Part 266 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED... FACILITIES Pt. 266, App. VI Appendix VI to Part 266—Stack Plume Rise Flow rate (m3/s) Exhaust Temperature...

  4. Crater Formation Due to Lunar Plume Impingement

    NASA Technical Reports Server (NTRS)

    Marsell, Brandon

    2011-01-01

    Thruster plume impingement on a surface comprised of small, loose particles may cause blast ejecta to be spread over a large area and possibly cause damage to the vehicle. For this reason it is important to study the effects of plume impingement and crater formation on surfaces like those found on the moon. Lunar soil, also known as regolith, is made up of fine granular particles on the order of 100 microns.i Whenever a vehicle lifts-off from such a surface, the exhaust plume from the main engine will cause the formation of a crater. This crater formation may cause laterally ejected mass to be deflected and possibly damage the vehicle. This study is a first attempt at analyzing the dynamics of crater formation due to thruster exhaust plume impingement during liftoff from the moon. Though soil erosion on the lunar surface is not considered, this study aims at examining the evolution of the shear stress along the lunar surface as the engine fires. The location of the regions of high shear stress will determine where the crater begins to form and will lend insight into how big the crater will be. This information will help determine the probability that something will strike the vehicle. The final sections of this report discuss a novel method for studying this problem that uses a volume of fluid (VOF)ii method to track the movement of both the exhaust plume and the eroding surface.

  5. ICOARE: Impacts on Climate and Ozone from Aircraft and Rocket Emissions

    NASA Astrophysics Data System (ADS)

    Toohey, D. W.; Ross, M.

    2009-12-01

    This presentation will provide an overview of an Earth Venture proposal for a series of in situ measurements in the exhaust plumes of aircraft and rockets with the following objectives: to obtain information that is critical for reducing the uncertainties in assessments (e.g., WMO and IPCC) of the impacts of aviation and aerospace activities on regional and global climate; to assess the viability of a climate engineering scheme that employs injection of reflective particles into the lower stratosphere; and to initiate the development of an operational modeling tool that can be used by the aviation and aerospace industries to guide design of new transporation systems that minimize the impact on Earth’s climate. The ICOARE mission will deploy instruments to measure water vapor, ice water content, tracers, reactive species, particles, and radiation fields on a high-altitude aircraft to characterize the variability of water vapor in aircraft and rocket contrails, determine accurate emission indices for initialization of plume-wake and regional scale models, investigate the microphysical properties of cirrus particles in and out of aircraft corridors, and examine the light scattering properties of contrail ice crystals and small alumina particles. Focused campaigns will be timed to occur around the launch schedules of a variety of rocket types in order to characterize the range of emissions from the current launch suite. There will be special emphasis on characterizing the emissions from rockets employing new propellants, in particular those that may produce soot and nitrogen oxides. Observations in aircraft exhaust, and examinations of cirrus cloud properties and persistent contrails, will occur on flights that are not dedicated to studies of rockets (e.g., test, transit, and rocket-scrub flights). ICOARE will offer a unique opportunities for training students and postdoctorates, especially those from underrepresented groups, in areas of project management, logistics

  6. Magnetic Detachment and Plume Control in Escaping Magnetized Plasma

    SciTech Connect

    P. F. Schmit and N. J. Fisch

    2008-11-05

    The model of two-fluid, axisymmetric, ambipolar magnetized plasma detachment from thruster guide fields is extended to include plasmas with non-zero injection angular velocity profiles. Certain plasma injection angular velocity profiles are shown to narrow the plasma plume, thereby increasing exhaust efficiency. As an example, we consider a magnetic guide field arising from a simple current ring and demonstrate plasma injection schemes that more than double the fraction of useful exhaust aperture area, more than halve the exhaust plume angle, and enhance magnetized plasma detachment.

  7. Effect of Soot Particles on Supersonic Rocket Plume Properties

    NASA Astrophysics Data System (ADS)

    Gaissinski, Igor; Levy, Yeshayahou; Lev, Mikhael; Sherbaum, Valery

    2012-06-01

    Plumes from hydrocarbon-fueled rockets usually contain some amount of soot. In spite of the small amount, such soot particles can play a critical role in the characteristics of the infrared radiation emission since soot radiates a continuous, near-blackbody spectrum. The contribution of the soot to the plume radiation depends on the amount of soot, the physical properties of the particles, their concentration, and their temperature distribution in the flow field. The trajectories of solid particles and their temperatures can differ from those of the gas due to the particle mechanical and thermal inertia. CFD FLUENT code for solving two-phase Navier-Stokes equations coupled with chemical reactions and soot particle combustion was applied for exhaust plume simulations. Exhaust plumes with soot mass loading of 2% were simulated for three altitudes of 2 km, 8 km and 16 km. Radial distributions of the cloud particle density were obtained for different distances downstream the exhaust nozzle. As a result of the particle deceleration at the boundary layer inside the nozzle the particle concentration increased at the plume periphery. The particle temperature was higher than the gaseous temperature of the plume. The temperature difference between the soot particle and gas along corresponding trajectories was about 5-10%. The infrared radiation from the plumes with carbon soot was calculated. Its intensity was found to be dependent on the particle distribution in the plume.

  8. A Comprehensive Program for Measurement of Military Aircraft Emissions

    SciTech Connect

    Cheng, Mengdawn

    2009-11-01

    Emissions of gases and particulate matter by military aircraft were characterized inplume by 'extractive' and 'optical remote-sensing (ORS)' technologies. Non-volatile particle size distribution, number and mass concentrations were measured with good precision and reproducibly. Time-integrated particulate filter samples were collected and analyzed for smoke number, elemental composition, carbon contents, and sulfate. Observed at EEP the geometric mean diameter (as measured by the mobility diameter) generally increased as the engine power setting increased, which is consistent with downstream observations. The modal diameters at the downstream locations are larger than that at EEP at the same engine power level. The results indicate that engine particles were processed by condensation, for example, leading to particle growth in-plume. Elemental analysis indicated little metals were present in the exhaust, while most of the exhaust materials in the particulate phase were carbon and sulfate (in the JP-8 fuel). CO, CO{sub 2}, NO, NO{sub 2}, SO{sub 2}, HCHO, ethylene, acetylene, propylene, and alkanes were measured. The last five species were most noticeable under engine idle condition. The levels of hydrocarbons emitted at high engine power level were generally below the detection limits. ORS techniques yielded real-time gaseous measurement, but the same techniques could not be extended directly to ultrafine particles found in all engine exhausts. The results validated sampling methodology and measurement techniques used for non-volatile particulate aircraft emissions, which also highlighted the needs for further research on sampling and measurement for volatile particulate matter and semi-volatile species in the engine exhaust especially at the low engine power setting.

  9. Langmuir probe surveys of an arcjet exhaust

    NASA Technical Reports Server (NTRS)

    Zana, Lynnette M.

    1987-01-01

    Electrostatic (Langmuir) probes of both spherical and cylindrical geometry have been used to obtain electron number density and temperature in the exhaust of a laboratory arcjet. The arcjet thruster operated on nitrogen and hydrogen mixtures to simulate fully decomposed hydrazine in a vacuum environment with background pressures less than 0.05 Pa. The exhaust appears to be only slightly ionized (less than 1 percent) with local plasma potentials near facility ground. The current-voltage characteristics of the probes indicate a Maxwellian temperature distribution. Plume data are presented as a function of arcjet operating conditions and also position in the exhaust.

  10. PHYSICAL AND NUMERICAL MODELING OF ASD EXHAUST DISPERSION AROUND HOUSES

    EPA Science Inventory

    The report discusses the use of a wind tunnel to physically model the dispersion of exhaust plumes from active soil depressurization (ASD) radon mitigation systems in houses. he testing studied the effects of exhaust location (grade level vs. above the eave), as house height, roo...

  11. Compact high-speed MWIR spectrometer applied to monitor CO2 exhaust dynamics from a turbojet engine

    NASA Astrophysics Data System (ADS)

    Linares-Herrero, R.; Vergara, G.; Gutiérrez Álvarez, R.; Fernández Montojo, C.; Gómez, L. J.; Villamayor, V.; Baldasano Ramírez, A.; Montojo, M. T.; Archilla, V.; Jiménez, A.; Mercader, D.; González, A.; Entero, A.

    2013-05-01

    Dfgfdg Due to international environmental regulations, aircraft turbojet manufacturers are required to analyze the gases exhausted during engine operation (CO, CO2, NOx, particles, unburned hydrocarbons (aka UHC), among others).Standard procedures, which involve sampling the gases from the exhaust plume and the analysis of the emissions, are usually complex and expensive, making a real need for techniques that allow a more frequent and reliable emissions measurements, and a desire to move from the traditional gas sampling-based methods to real time and non-intrusive gas exhaust analysis, usually spectroscopic. It is expected that the development of more precise and faster optical methods will provide better solutions in terms of performance/cost ratio. In this work the analysis of high-speed infrared emission spectroscopy measurements of plume exhaust are presented. The data was collected during the test trials of commercial engines carried out at Turbojet Testing Center-INTA. The results demonstrate the reliability of the technique for studying and monitoring the dynamics of the exhausted CO2 by the observation of the infrared emission of hot gases. A compact (no moving parts), high-speed, uncooled MWIR spectrometer was used for the data collection. This device is capable to register more than 5000 spectra per second in the infrared band ranging between 3.0 and 4.6 microns. Each spectrum is comprised by 128 spectral subbands with aband width of 60 nm. The spectrometer operated in a passive stand-off mode and the results from the measurements provided information of both the dynamics and the concentration of the CO2 during engine operation.

  12. ASSESSMENT OF PLUME DIVING

    EPA Science Inventory

    This presentation presents an assessment of plume diving. Observations included: vertical plume delineation at East Patchogue, NY showed BTEX and MTBE plumes sinking on either side of a gravel pit; Lake Druid TCE plume sank beneath unlined drainage ditch; and aquifer recharge/dis...

  13. Analysis of Plume Effects on Sonic Boom Signature for Isolated Nozzle Configurations

    NASA Technical Reports Server (NTRS)

    Castner, Raymond S.

    2008-01-01

    Computational fluid dynamics (CFD) analysis has been performed to study the plume effects on sonic boom signature for isolated nozzle configurations. The objectives of these analyses were to provide comparison to past work using modern CFD analysis tools, to investigate the differences of high aspect ratio nozzles to circular (axisymmetric) nozzles, and to report the effects of underexpanded nozzle operation on boom signature. CFD analysis was used to address the plume effects on sonic boom signature from a baseline exhaust nozzle. Near-field pressure signatures were collected for nozzle pressure ratios (NPRs) between 6 and 10. A computer code was used to extrapolate these signatures to a ground-observed sonic boom N-wave. Trends show that there is a reduction in sonic boom N-wave signature as NPR is increased from 6 to 10. The performance curve for this supersonic nozzle is flat, so there is not a significant loss in thrust coefficient as the NPR is increased. As a result, this benefit could be realized without significant loss of performance. Analyses were also collected for a high aspect ratio nozzle based on the baseline design for comparison. Pressure signatures were collected for nozzle pressure ratios from 8 to 12. Signatures were nearly twice as strong for the two-dimensional case, and trends also show a reduction in sonic boom signature as NPR is increased from 8 to 12. As low boom designs are developed and improved, there will be a need for understanding the interaction between the aircraft boat tail shocks and the exhaust nozzle plume. These CFD analyses will provide a baseline study for future analysis efforts.

  14. Volcanic Plume Chemistry: Models, Observations and Impacts

    NASA Astrophysics Data System (ADS)

    Roberts, Tjarda; Martin, Robert; Oppenheimer, Clive; Griffiths, Paul; Braban, Christine; Cox, Tony; Jones, Rod; Durant, Adam; Kelly, Peter

    2010-05-01

    mercury. Excitingly, we can now begin to compare the model simulations to very recently reported in-situ aircraft and balloon measurements in downwind volcanic plumes, which found e.g. ozone depletion at Redoubt, ozone depletion and elevated HNO3 at Erebus and sulfate-H2O interactions at Kilauea. Satellite observations of volcanic BrO, and DOAS observations of BrO under varying plume conditions have also recently been reported. Such comparisons may highlight additional chemistry (e.g. HO2NO2 at Erebus), identify further underlying processes (e.g. the role of plume dispersion and gas fluxes in controlling plume chemistry), guide future field-observation strategies, and support and improve the model simulations that aim to understand volcanic emissions, plume chemistry, and predict the environmental impacts of volcanic plumes.

  15. D-558-2 Aircraft on lakebed

    NASA Technical Reports Server (NTRS)

    1955-01-01

    longitudinal (pitch) motions; wing and tail loads, lift, drag, and buffeting characteristics of swept-wing aircraft at transonic and supersonic speeds; and the effects of the rocket exhaust plume on lateral dynamic stability throughout the speed range. (Plume effects were a new experience for aircraft.) The number three aircraft also gathered information about the effects of external stores (bomb shapes, drop tanks) upon the aircraft's behavior in the transonic region (roughly 0.7 to 1.3 times the speed of sound). In correlation with data from other early transonic research aircraft such as the XF-92A, this information contributed to solutions to the pitch-up problem in swept-wing aircraft. The three airplanes flew a total of 313 times--123 by the number one aircraft (Bureau No. 37973--NACA 143), 103 by the second Skyrocket (Bureau No. 37974--NACA 144), and 87 by airplane number three (Bureau No. 37975--NACA 145). Skyrocket 143 flew all but one of its missions as part of the Douglas contractor program to test the airplane's performance. NACA aircraft 143 was initially powered by a Westinghouse J-34-40 turbojet engine configured only for ground take-offs, but in 1954-55 the contractor modified it to an all-rocket air-launch capability featuring an LR8-RM-6, 4-chamber Reaction Motors engine rated at 6,000 pounds of thrust at sea level (the Navy designation for the Air Force's LR-11 used in the X-1). In this configuration, NACA research pilot John McKay flew the airplane only once for familiarization on September 17, 1956. The 123 flights of NACA 143 served to validate wind-tunnel predictions of the airplane's performance, except for the fact that the airplane experienced less drag above Mach 0.85 than the wind tunnels had indicated. NACA 144 also began its flight program with a turbojet powerplant. NACA pilots Robert A. Champine and John H. Griffith flew 21 times in this configuration to test airspeed calibrations and to research longitudinal and lateral stability and control

  16. Particle and gaseous emissions from commercial aircraft at each stage of the landing and takeoff cycle.

    PubMed

    Mazaheri, M; Johnson, G R; Morawska, L

    2009-01-15

    A novel technique was used to measure emission factors for commonly used commercial aircraft including a range of Boeing and Airbus airframes under real world conditions. Engine exhaust emission factors for particles in terms of particle number and mass (PM2.5), along with those for CO2 and NOx, were measured for over 280 individual aircraft during the various modes of landing/takeoff (LTO) cycle. Results from this study show that particle number, and NOx emission factors are dependent on aircraft engine thrust level. Minimum and maximum emissions factors for particle number, PM2.5, and NOx emissions were found to be in the range of 4.16 x 10(15)-5.42 x 10(16) kg(-1), 0.03-0.72 g.kg(-1), and 3.25-37.94 g.kg(-1), respectively, for all measured airframes and LTO cycle modes. Number size distributions of emitted particles for the naturally diluted aircraft plumes in each mode of LTO cycle showed that particles were predominantly in the range of 4-100 nm in diameter in all cases. In general, size distributions exhibit similar modality during all phases of the LTO cycle. A very distinct nucleation mode was observed in all particle size distributions, except for taxiing and landing of A320 aircraft. Accumulation modes were also observed in all particle size distributions. Analysis of aircraft engine emissions during LTO cycle showed that aircraft thrust level is considerably higher during taxiing than idling suggesting that International Civil Aviation Organization (ICAO) standards need to be modified as the thrust levels for taxi and idle are considered to be the same (7% of total thrust) (Environmental Protection, Annex 16, Vol. II, Aircraft Engine Emissions, 2nd ed.; ICAO--International Civil Aviation Organization: Montreal, 1993).

  17. Composition and morphology of particle emissions from in-use aircraft during takeoff and landing.

    PubMed

    Mazaheri, Mandana; Bostrom, Thor E; Johnson, Graham R; Morawska, Lidia

    2013-05-21

    In order to provide realistic data for air pollution inventories and source apportionment at airports, the morphology and composition of ultrafine particles (UFP) in aircraft engine exhaust were measured and characterized. For this purpose, two independent measurement techniques were employed to collect emissions during normal takeoff and landing operations at Brisbane Airport, Australia. PM1 emissions in the airfield were collected on filters and analyzed using the particle-induced X-ray emission (PIXE) technique. Morphological and compositional analyses of individual ultrafine particles in aircraft plumes were performed on silicon nitride membrane grids using transmission electron microscopy (TEM) combined with energy-dispersive X-ray microanalysis (EDX). TEM results showed that the deposited particles were in the range of 5-100 nm in diameter, had semisolid spherical shapes and were dominant in the nucleation mode (18-20 nm). The EDX analysis showed the main elements in the nucleation particles were C, O, S, and Cl. The PIXE analysis of the airfield samples was generally in agreement with the EDX in detecting S, Cl, K, Fe, and Si in the particles. The results of this study provide important scientific information on the toxicity of aircraft exhaust and their impact on local air quality.

  18. D-558-2 Aircraft on lakebed

    NASA Technical Reports Server (NTRS)

    1954-01-01

    gathered a great deal of data about pitch-up and the coupling of lateral (yaw) and longitudinal (pitch) motions; wing and tail loads, lift, drag, and buffeting characteristics of swept-wing aircraft at transonic and supersonic speeds; and the effects of the rocket exhaust plume on lateral dynamic stability throughout the speed range. (Plume effects were a new experience for aircraft.) The number three aircraft also gathered information about the effects of external stores (bomb shapes, drop tanks) upon the aircraft's behavior in the transonic region (roughly 0.7 to 1.3 times the speed of sound). In correlation with data from other early transonic research aircraft such as the XF-92A, this information contributed to solutions to the pitch-up problem in swept-wing aircraft. The three airplanes flew a total of 313 times--123 by the number one aircraft (Bureau No. 37973--NACA 143), 103 by the second Skyrocket (Bureau No. 37974--NACA 144), and 87 by airplane number three (Bureau No. 37975--NACA 145). Skyrocket 143 flew all but one of its missions as part of the Douglas contractor program to test the airplane's performance. NACA aircraft 143 was initially powered by a Westinghouse J-34-40 turbojet engine configured only for ground take-offs, but in 1954-55 the contractor modified it to an all-rocket air-launch capability featuring an LR8-RM-6, 4-chamber Reaction Motors engine rated at 6,000 pounds of thrust at sea level (the Navy designation for the Air Force's LR-11 used in the X-1). In this configuration, NACA research pilot John McKay flew the airplane only once for familiarization on September 17, 1956. The 123 flights of NACA 143 served to validate wind-tunnel predictions of the airplane's performance, except for the fact that the airplane experienced less drag above Mach 0.85 than the wind tunnels had indicated. NACA 144 also began its flight program with a turbojet powerplant. NACA pilots Robert A. Champine and John H. Griffith flew 21 times in this configuration to test

  19. Studies of aircraft wake chemistry and dispersion

    NASA Technical Reports Server (NTRS)

    Poppoff, I. G.; Farlow, N. H.; Anderson, L. B.

    1974-01-01

    Use of aerospace technology to study aircraft wakes is reviewed. It is shown how aerospace vehicles can be used to provide data for increased understanding of the atmosphere and of aircraft exhaust trails where knowledge is inadequate to evaluate fully the potential impact of the engine emissions. Models of aircraft near-field exhaust wakes are characterized by jet, vortex, and dispersion regimes. Wake growth in the jet regime is self-determined and rapid, whereas further spreading is inhibited in the vortex regime because of circulating vortex motion. Wake diffusion in the dispersion regime is initially influenced by aircraft induced turbulence but is dominated later by small-scale atmospheric turbulence. Computed fluid mechanical results show the importance of effects such as wake buoyancy, wind shear, turbulence, and traffic corridor exhaust buildup on dispersion of the wake. In the jet regime the exhaust characteristics and thermochemistry serve to illustrate initial chemical changes involving potential pollutant species.

  20. Imaging Fourier transform spectrometry of chemical plumes

    NASA Astrophysics Data System (ADS)

    Bradley, Kenneth C.; Gross, Kevin C.; Perram, Glen P.

    2009-05-01

    A midwave infrared (MWIR) imaging Fourier transform spectrometer (FTS), the Telops FIRST-MWE (Field-portable Imaging Radiometric Spectrometer Technology - Midwave Extended) has been utilized for the standoff detection and characterization of chemical plumes. Successful collection and analysis of MWIR hyperspectral imagery of jet engine exhaust has allowed us to produce spatial profiles of both temperature and chemical constituent concentrations of exhaust plumes. Successful characterization of this high temperature combustion event has led to the collection and analysis of hyperspectral imagery of lower temperature emissions from industrial smokestacks. This paper presents MWIR data from remote collection of hyperspectral imagery of methyl salicilate (MeS), a chemical warfare agent simulant, during the Chemical Biological Distributed Early Warning System (CBDEWS) test at Dugway Proving Grounds, UT in 2008. The data did not contain spectral lines associated with emission of MeS. However, a few broad spectral features were present in the background-subtracted plume spectra. Further analysis will be required to assign these features, and determine the utility of MWIR hyperspectral imagery for analysis of chemical warfare agent plumes.

  1. Plume Mitigation: Soil Erosion and Lunar Prospecting Sensor Project

    NASA Technical Reports Server (NTRS)

    Metzger, Philip T.

    2014-01-01

    Demonstrate feasibility of the simplest, lowest-mass method of measuring density of a cloud of lunar soil ejected by rocket exhaust, using new math techniques with a small baseline laser/camera system. Focus is on exploring the erosion process that occurs when the exhaust plume of a lunar rocket impacts the regolith. Also, predicting the behavior of the lunar soil that would be blasted from a lunar landing/launch site shall assist in better design and protection of any future lunar settlement from scouring of structures and equipment. NASA is gathering experimental data to improve soil erosion models and understand how lunar particles enter the plume flow.

  2. Space shuttle exhaust cloud properties

    NASA Technical Reports Server (NTRS)

    Anderson, B. J.; Keller, V. W.

    1983-01-01

    A data base describing the properties of the exhaust cloud produced by the launch of the Space Transportation System and the acidic fallout observed after each of the first four launches was assembled from a series of ground and aircraft based measurements made during the launches of STS 2, 3, and 4. Additional data were obtained from ground-based measurements during firings of the 6.4 percent model of the Solid Rocket Booster at the Marshall Center. Analysis indicates that the acidic fallout is produced by atomization of the deluge water spray by the rocket exhaust on the pad followed by rapid scavening of hydrogen chloride gas aluminum oxide particles from the Solid Rocket Boosters. The atomized spray is carried aloft by updrafts created by the hot exhaust and deposited down wind. Aircraft measurements in the STS-3 ground cloud showed an insignificant number of ice nuclei. Although no measurements were made in the column cloud, the possibility of inadvertent weather modification caused by the interaction of ice nuclei with natural clouds appears remote.

  3. Turbulent Plumes in Nature

    NASA Astrophysics Data System (ADS)

    Woods, Andrew W.

    2010-01-01

    This review describes a range of natural processes leading to the formation of turbulent buoyant plumes, largely relating to volcanic processes, in which there are localized, intense releases of energy. Phenomena include volcanic eruption columns, bubble plumes in lakes, hydrothermal plumes, and plumes beneath the ice in polar oceans. We assess how the dynamics is affected by heat transfer, particle fallout and recycling, and Earth's rotation, as well as explore some of the mixing of the ambient fluid produced by plumes in a confined geometry.

  4. Two-dimensional calculation of chemical species and electrical properties in rocket plume flowfields

    NASA Astrophysics Data System (ADS)

    Zhang, Ping; Cui, Jisong; Liu, Qingyun

    1993-08-01

    A computational modeling technique and prediction method are presented for calculating two-dimensional profiles of chemical species mole fraction and electrical properties of rocket exhaust plumes. A comprehensive computer code has been programmed. The chemical reactions and radar attenuation which occur in a rocket plume can be predicted more truly by using this code. It is suitable to calculating parameters of rocket plumes under a near complete-expansion condition and for smokeless (or reduced smoke) propellant application. The calculation results indicate that evident errors will occur for prediction of chemical and electrical parameters in the plume flowfield if the chemical reactions in the plume are ignored.

  5. Composite hardbody and missile plume (CHAMP 98) IR scene generation program

    NASA Astrophysics Data System (ADS)

    Crow, Dennis R.; Coker, Charles F.

    1998-07-01

    The Composite Hardbody and Missile Plume (CHAMP) program is a computer simulation used to provide time dependent high- fidelity infrared (IR) simulations of airborne vehicles. CHAMP computational algorithms are based on first principle physics that compute hardbody and exhaust plume radiation (absorption, emission, and reflection) for arbitrary vehicle operational state, position, orientation and atmospheric condition. All computations are performed as a function of time to allow complex vehicle dynamics to be simulated. Image processing functions are included to generate anti-aliased focal plane imagery. CHAMP can be utilized to simulate post-boost vehicle, re-entry vehicle, boost missile, theater missile, cruise missile, aircraft, and helicopter applications. CHAMP development is sponsored by the Kinetic Kill Vehicle Hardware- In-the-Loop Simulator (KHILS) facility at Eglin AFB, Florida. CHAMP is routinely utilized by KHILS to support on-going hardware-in-the-loop testing of IR seekers. Many of these tests are complex and diversified. CHAMP has been structured to support these tests by employing current generation object oriented design methodologies that facilitate adaptation to specific test requirements.

  6. CFD Analysis of Nozzle Jet Plume Effects on Sonic Boom Signature

    NASA Technical Reports Server (NTRS)

    Bui, Trong T.

    2009-01-01

    An axisymmetric full Navier-Stokes computational fluid dynamics study is conducted to examine nozzle exhaust jet plume effects on the sonic boom signature of a supersonic aircraft. A simplified axisymmetric nozzle geometry, representative of the nozzle on the NASA Dryden NF-15B Lift and Nozzle Change Effects on Tail Shock research airplane, is considered. The computational fluid dynamics code is validated using available wind-tunnel sonic boom experimental data. The effects of grid size, spatial order of accuracy, grid type, and flow viscosity on the accuracy of the predicted sonic boom pressure signature are quantified. Grid lines parallel to the Mach wave direction are found to give the best results. Second-order accurate upwind methods are required as a minimum for accurate sonic boom simulations. The highly underexpanded nozzle flow is found to provide significantly more reduction in the tail shock strength in the sonic boom N-wave pressure signature than perfectly expanded and overexpanded nozzle flows. A tail shock train in the sonic boom signature is observed for the highly underexpanded nozzle flow. Axisymmetric computational fluid dynamics simulations show the flow physics inside the F-15 nozzle to be nonisentropic and complex. Although the one-dimensional isentropic nozzle plume results look reasonable, they fail to capture the sonic boom shock train in the highly underexpanded nozzle flow.

  7. Modeling Europa's dust plumes

    NASA Astrophysics Data System (ADS)

    Southworth, B. S.; Kempf, S.; Schmidt, J.

    2015-12-01

    The discovery of Jupiter's moon Europa maintaining a probably sporadic water vapor plume constitutes a huge scientific opportunity for NASA's upcoming mission to this Galilean moon. Measuring properties of material emerging from interior sources offers a unique chance to understand conditions at Europa's subsurface ocean. Exploiting results obtained for the Enceladus plume, we simulate possible Europa plume configurations, analyze particle number density and surface deposition results, and estimate the expected flux of ice grains on a spacecraft. Due to Europa's high escape speed, observing an active plume will require low-altitude flybys, preferably at altitudes of 5-100 km. At higher altitudes a plume may escape detection. Our simulations provide an extensive library documenting the possible structure of Europa dust plumes, which can be quickly refined as more data on Europa dust plumes are collected.

  8. Impacts of alternative fuels in aviation on microphysical aerosol properties and predicted ice nuclei concentration at aircraft cruise altitude

    NASA Astrophysics Data System (ADS)

    Weinzierl, B.; D'Ascoli, E.; Sauer, D. N.; Kim, J.; Scheibe, M.; Schlager, H.; Moore, R.; Anderson, B. E.; Ullrich, R.; Mohler, O.; Hoose, C.

    2015-12-01

    In the past decades air traffic has been substantially growing affecting air quality and climate. According to the International Civil Aviation Authority (ICAO), in the next few years world passenger and freight traffic is expected to increase annually by 6-7% and 4-5%, respectively. One possibility to reduce aviation impacts on the atmosphere and climate might be the replacement of fossil fuels by alternative fuels. However, so far the effects of alternative fuels on particle emissions from aircraft engines and their ability to form contrails remain uncertain. To study the effects of alternative fuels on particle emissions and the formation of contrails, the Alternative Fuel Effects on Contrails and Cruise Emissions (ACCESS) field experiment was conducted in California. In May 2014, the DLR Falcon 20 and the NASA HU-25 jet aircraft were instrumented with an extended aerosol and trace gas payload probing different types of fuels including JP-8 and JP-8 blended with HEFA (Hydroprocessed Esters and Fatty Acids) while the NASA DC8 aircraft acted as the source aircraft for ACCESS-2. Emission measurements were taken in the DC8 exhaust plumes at aircraft cruise level between 9-12 km altitude and at distances between 50 m and 20 km behind the DC8 engines. Here, we will present results from the ACCESS-2 aerosol measurements which show a 30-60% reduction of the non-volatile (mainly black carbon) particle number concentration in the aircraft exhaust for the HEFA-blend compared to conventional JP-8 fuel. Size-resolved particle emission indices show the largest reductions for larger particle sizes suggesting that the HEFA blend contains fewer and smaller black carbon particles. We will combine the airborne measurements with a parameterization of deposition nucleation developed during a number of ice nucleation experiments at the AIDA chamber in Karlsruhe and discuss the impact of alternative fuels on the abundance of potential ice nuclei at cruise conditions.

  9. Investigation of solid plume simulation criteria to produce flight plume effects on multibody configuration in wind tunnel tests

    NASA Technical Reports Server (NTRS)

    Frost, A. L.; Dill, C. C.

    1986-01-01

    An investigation to determine the sensitivity of the space shuttle base and forebody aerodynamics to the size and shape of various solid plume simulators was conducted. Families of cones of varying angle and base diameter, at various axial positions behind a Space Shuttle launch vehicle model, were wind tunnel tested. This parametric evaluation yielded base pressure and force coefficient data which indicated that solid plume simulators are an inexpensive, quick method of approximating the effect of engine exhaust plumes on the base and forebody aerodynamics of future, complex multibody launch vehicles.

  10. Space Shuttle Plume Simulation Effect on Aerodynamics

    NASA Technical Reports Server (NTRS)

    Hair, L. M.

    1978-01-01

    Technology for simulating plumes in wind tunnel tests was not adequate to provide the required confidence in test data where plume induced aerodynamic effects might be significant. A broad research program was undertaken to correct the deficiency. Four tasks within the program are reported. Three of these tasks involve conducting experiments, related to three different aspects of the plume simulation problem: (1) base pressures; (2) lateral jet pressures; and (3) plume parameters. The fourth task involves collecting all of the base pressure test data generated during the program. Base pressures were measured on a classic cone ogive cylinder body as affected by the coaxial, high temperature exhaust plumes of a variety of solid propellant rockets. Valid data were obtained at supersonic freestream conditions but not at transonic. Pressure data related to lateral (separation) jets at M infinity = 4.5, for multiple clustered nozzles canted to the freestream and operating at high dynamic pressure ratios. All program goals were met although the model hardware was found to be large relative to the wind tunnel size so that operation was limited for some nozzle configurations.

  11. Sampling and analysis of aircraft engine cold start particles and demonstration of an electrostatic personal particle sampler.

    PubMed

    Armendariz, Alfredo; Leith, David; Boundy, Maryanne; Goodman, Randall; Smith, Les; Carlton, Gary

    2003-01-01

    Aircraft engines emit an aerosol plume during startup in extremely cold weather that can drift into areas occupied by flightline ground crews. This study tested a personal sampler used to assess exposure to particles in the plume under challenging field conditions. Area and personal samples were taken at two U.S. Air Force (USAF) flightlines during the winter months. Small tube-and-wire electrostatic precipitators (ESPs) were mounted on a stationary stand positioned behind the engines to sample the exhaust. Other ESPs were worn by ground crews to sample breathing zone concentrations. In addition, an aerodynamic particle sizer 3320 (APS) was used to determine the size distribution of the particles. Samples collected with the ESP were solvent extracted and analyzed with gas chromatography-mass spectrometry. Results indicated that the plume consisted of up to 75 mg/m(3) of unburned jet fuel particles. The APS showed that nearly the entire particle mass was respirable, because the plumes had mass median diameters less than 2 micro m. These tests demonstrated that the ESP could be used at cold USAF flightlines to perform exposure assessments to the cold start particles.

  12. Sampling and analysis of aircraft engine cold start particles and demonstration of an electrostatic personal particle sampler.

    PubMed

    Armendariz, Alfredo; Leith, David; Boundy, Maryanne; Goodman, Randall; Smith, Les; Carlton, Gary

    2003-01-01

    Aircraft engines emit an aerosol plume during startup in extremely cold weather that can drift into areas occupied by flightline ground crews. This study tested a personal sampler used to assess exposure to particles in the plume under challenging field conditions. Area and personal samples were taken at two U.S. Air Force (USAF) flightlines during the winter months. Small tube-and-wire electrostatic precipitators (ESPs) were mounted on a stationary stand positioned behind the engines to sample the exhaust. Other ESPs were worn by ground crews to sample breathing zone concentrations. In addition, an aerodynamic particle sizer 3320 (APS) was used to determine the size distribution of the particles. Samples collected with the ESP were solvent extracted and analyzed with gas chromatography-mass spectrometry. Results indicated that the plume consisted of up to 75 mg/m(3) of unburned jet fuel particles. The APS showed that nearly the entire particle mass was respirable, because the plumes had mass median diameters less than 2 micro m. These tests demonstrated that the ESP could be used at cold USAF flightlines to perform exposure assessments to the cold start particles. PMID:14674797

  13. Photochemical Formaldehyde Production in Anthropogenic Plumes during SENEX 2013

    NASA Astrophysics Data System (ADS)

    Kaiser, J.; Wolfe, G. M.; Hanisco, T. F.; Keutsch, F. N.; Aikin, K.; Brown, S. S.; De Gouw, J. A.; Gilman, J.; Graus, M.; Hatch, C. D.; Holloway, J.; Lee, B.; Lerner, B. M.; Liao, J.; Lopez-Hilfiker, F.; Middlebrook, A. M.; Min, K.; Peischl, J.; Pollack, I. B.; Roberts, J. M.; Ryerson, T. B.; Thornton, J. A.; Veres, P. R.; Warneke, C.

    2013-12-01

    In the Southeast United States, high emissions of biogenic volatile organic compounds (VOCs) coupled with hotspots of anthropogenic activity create ideal conditions for the formation of climate forcing agents and air pollutants. Formaldehyde (HCHO) is a ubiquitous photochemical product of VOC oxidation and thus a valuable tracer of integrated photochemical evolution within a plume. Using HCHO measurements acquired by laser-induced fluorescence aboard the NOAA WP-3D aircraft during the SENEX 2013 field campaign, we explore the magnitude and timescale of VOC oxidation in urban outflow and coal-fired power plant plumes. Comparison of photochemical HCHO production in and outside of a plume, as well as comparison between plumes of various origins, highlights the influence of anthropogenic emissions on the oxidation of VOCs, particularly isoprene. Preliminary results are used to track the linkage between VOC oxidation and production of secondary pollutants, particularly ozone and organic aerosol, throughout the lifetime of various plumes.

  14. Representative Atmospheric Plume Development for Elevated Releases

    SciTech Connect

    Eslinger, Paul W.; Lowrey, Justin D.; McIntyre, Justin I.; Miley, Harry S.; Prichard, Andrew W.

    2014-02-01

    An atmospheric explosion of a low-yield nuclear device will produce a large number of radioactive isotopes, some of which can be measured with airborne detection systems. However, properly equipped aircraft may not arrive in the region where an explosion occurred for a number of hours after the event. Atmospheric conditions will have caused the radioactive plume to move and diffuse before the aircraft arrives. The science behind predicting atmospheric plume movement has advanced enough that the location of the maximum concentrations in the plume can be determined reasonably accurately in real time, or near real time. Given the assumption that an aircraft can follow a plume, this study addresses the amount of atmospheric dilution expected to occur in a representative plume as a function of time past the release event. The approach models atmospheric transport of hypothetical releases from a single location for every day in a year using the publically available HYSPLIT code. The effective dilution factors for the point of maximum concentration in an elevated plume based on a release of a non-decaying, non-depositing tracer can vary by orders of magnitude depending on the day of the release, even for the same number of hours after the release event. However, the median of the dilution factors based on releases for 365 consecutive days at one site follows a power law relationship in time, as shown in Figure S-1. The relationship is good enough to provide a general rule of thumb for estimating typical future dilution factors in a plume starting at the same point. However, the coefficients of the power law function may vary for different release point locations. Radioactive decay causes the effective dilution factors to decrease more quickly with the time past the release event than the dilution factors based on a non-decaying tracer. An analytical expression for the dilution factors of isotopes with different half-lives can be developed given the power law expression

  15. Simulation of wake vortex radiometric detection via jet exhaust proxy

    NASA Astrophysics Data System (ADS)

    Daniels, Taumi S.

    2015-06-01

    This paper describes an analysis of the potential of an airborne hyperspectral imaging IR instrument to infer wake vortices via turbine jet exhaust as a proxy. The goal was to determine the requirements for an imaging spectrometer or radiometer to effectively detect the exhaust plume, and by inference, the location of the wake vortices. The effort examines the gas spectroscopy of the various major constituents of turbine jet exhaust and their contributions to the modeled detectable radiance. Initially, a theoretical analysis of wake vortex proxy detection by thermal radiation was realized in a series of simulations. The first stage used the SLAB plume model to simulate turbine jet exhaust plume characteristics, including exhaust gas transport dynamics and concentrations. The second stage used these plume characteristics as input to the Line By Line Radiative Transfer Model (LBLRTM) to simulate responses from both an imaging IR hyperspectral spectrometer or radiometer. These numerical simulations generated thermal imagery that was compared with previously reported wake vortex temperature data. This research is a continuation of an effort to specify the requirements for an imaging IR spectrometer or radiometer to make wake vortex measurements. Results of the two-stage simulation will be reported, including instrument specifications for wake vortex thermal detection. These results will be compared with previously reported results for IR imaging spectrometer performance.

  16. Simulation of Wake Vortex Radiometric Detection via Jet Exhaust Proxy

    NASA Technical Reports Server (NTRS)

    Daniels, Taumi S.

    2015-01-01

    This paper describes an analysis of the potential of an airborne hyperspectral imaging IR instrument to infer wake vortices via turbine jet exhaust as a proxy. The goal was to determine the requirements for an imaging spectrometer or radiometer to effectively detect the exhaust plume, and by inference, the location of the wake vortices. The effort examines the gas spectroscopy of the various major constituents of turbine jet exhaust and their contributions to the modeled detectable radiance. Initially, a theoretical analysis of wake vortex proxy detection by thermal radiation was realized in a series of simulations. The first stage used the SLAB plume model to simulate turbine jet exhaust plume characteristics, including exhaust gas transport dynamics and concentrations. The second stage used these plume characteristics as input to the Line By Line Radiative Transfer Model (LBLRTM) to simulate responses from both an imaging IR hyperspectral spectrometer or radiometer. These numerical simulations generated thermal imagery that was compared with previously reported wake vortex temperature data. This research is a continuation of an effort to specify the requirements for an imaging IR spectrometer or radiometer to make wake vortex measurements. Results of the two-stage simulation will be reported, including instrument specifications for wake vortex thermal detection. These results will be compared with previously reported results for IR imaging spectrometer performance.

  17. Experiment to Characterize Aircraft Volatile Aerosol and Trace-Species Emissions (EXCAVATE)

    NASA Technical Reports Server (NTRS)

    Anderson, B. E.; Branham, H.-S.; Hudgins, C. H.; Plant, J. V.; Ballenthin, J. O.; Miller, T. M.; Viggiano, A. A.; Blake, D. R.; Boudries, H.; Canagaratna, M.

    2005-01-01

    The Experiment to Characterize Aircraft Volatile and Trace Species Emissions (EXCAVATE) was conducted at Langley Research Center (LaRC) in January 2002 and focused upon assaying the production of aerosols and aerosol precursors by a modern commercial aircraft, the Langley B757, during ground-based operation. Remaining uncertainty in the postcombustion fate of jet fuel sulfur contaminants, the need for data to test new theories of particle formation and growth within engine exhaust plumes, and the need for observations to develop air quality models for predicting pollution levels in airport terminal areas were the primary factors motivating the experiment. NASA's Atmospheric Effects of Aviation Project (AEAP) and the Ultra Effect Engine Technology (UEET) Program sponsored the experiment which had the specific objectives of determining ion densities; the fraction of fuel S converted from S(IV) to S(VI); the concentration and speciation of volatile aerosols and black carbon; and gas-phase concentrations of long-chain hydrocarbon and PAH species, all as functions of engine power, fuel composition, and plume age.

  18. Modeling Europa's Dust Plumes

    NASA Astrophysics Data System (ADS)

    Southworth, B.; Kempf, S.; Schmidt, J.

    2015-12-01

    The discovery of Europa maintaining a probably sporadic water vapor plume constitutes a huge scientific opportunity for NASA's upcoming mission to this Galilean moon. Measuring the properties of material emerging from interior sources offers a unique chance to understand conditions at Europa's subsurface ocean. Exploiting results obtained for the Enceladus plume, we adjust the ejection model by Schmidt et al. [2008] to the conditions at Europa. In this way, we estimate properties of a possible, yet unobserved dust component of the Europa plume. For a size-dependent speed distribution of emerging ice particles we use the model from Kempf et al. [2010] for grain dynamics, modified to run simulations of plumes on Europa. Specifically, we model emission from the two plume locations determined from observations by Roth et al. [2014] and also from other locations chosen at the closest approach of low-altitude flybys investigated in the Europa Clipper study. This allows us to estimate expected fluxes of ice grains on the spacecraft. We then explore the parameter space of Europa dust plumes with regard to particle speed distribution parameters, plume location, and spacecraft flyby elevation. Each parameter set results in a 3-dimensional particle density structure through which we simulate flybys, and a map of particle fallback ('snowfall') on the surface of Europa. Due to the moon's high escape speed, a Europa plume will eject few to no particles that can escape its gravity, which has several further consequences: (i) For given ejection velocity a Europa plume will have a smaller scale height, with a higher particle number densities than the plume on Enceladus, (ii) plume particles will not feed the diffuse Galilean dust ring, (iii) the snowfall pattern on the surface will be more localized about the plume location, and will not induce a global m = 2 pattern as seen on Enceladus, and (iv) safely observing an active plume will require low altitude flybys, preferably at 50

  19. Effluent sampling of Scout D and Delta launch vehicle exhausts

    NASA Technical Reports Server (NTRS)

    Hulten, W. C.; Storey, R. W.; Gregory, G. L.; Woods, D. C.; Harris, F. S., Jr.

    1974-01-01

    Characterization of engine-exhaust effluents (hydrogen chloride, aluminum oxide, carbon dioxide, and carbon monoxide) has been attempted by conducting field experiments monitoring the exhaust cloud from a Scout-Algol III vehicle launch and a Delta-Thor vehicle launch. The exhaust cloud particulate size number distribution (total number of particles as a function of particle diameter), mass loading, morphology, and elemental composition have been determined within limitations. The gaseous species in the exhaust cloud have been identified. In addition to the ground-based measurements, instrumented aircraft flights through the low-altitude, stabilized-exhaust cloud provided measurements which identified CO and HCI gases and Al2O3 particles. Measurements of the initial exhaust cloud during formation and downwind at several distances have established sampling techniques which will be used for experimental verification of model predictions of effluent dispersion and fallout from exhaust clouds.

  20. Solid propellant exhausted aluminum oxide and hydrogen chloride - Environmental considerations

    NASA Technical Reports Server (NTRS)

    Cofer, W. R., III; Winstead, E. L.; Purgold, G. C.; Edahl, R. A.

    1993-01-01

    Measurements of gaseous hydrogen chloride (HCl) and particulate aluminum oxide (Al2O3) were made during penetrations of five Space Shuttle exhaust clouds and one static ground test firing of a shuttle booster. Instrumented aircraft were used to penetrate exhaust clouds and to measure and/or collect samples of exhaust for subsequent analyses. The focus was on the primary solid rocket motor exhaust products, HCl and Al2O3, from the Space Shuttle's solid boosters. Time-dependent behavior of HCl was determined for the exhaust clouds. Composition, morphology, surface chemistry, and particle size distributions were determined for the exhausted Al2O3. Results determined for the exhaust cloud from the static test firing were complicated by having large amounts of entrained alkaline ground debris (soil) in the lofted cloud. The entrained debris may have contributed to neutralization of in-cloud HCl.

  1. Flow prediction for propfan engine installation effects on transport aircraft at transonic speeds

    NASA Technical Reports Server (NTRS)

    Samant, S. S.; Yu, N. J.

    1986-01-01

    An Euler-based method for aerodynamic analysis of turboprop transport aircraft at transonic speeds has been developed. In this method, inviscid Euler equations are solved over surface-fitted grids constructed about aircraft configurations. Propeller effects are simulated by specifying sources of momentum and energy on an actuator disc located in place of the propeller. A stripwise boundary layer procedure is included to account for the viscous effects. A preliminary version of an approach to embed the exhaust plume within the global Euler solution has also been developed for more accurate treatment of the exhaust flow. The resulting system of programs is capable of handling wing-body-nacelle-propeller configurations. The propeller disks may be tractors or pushers and may represent single or counterrotation propellers. Results from analyses of three test cases of interest (a wing alone, a wing-body-nacelle model, and a wing-nacelle-endplate model) are presented. A user's manual for executing the system of computer programs with formats of various input files, sample job decks, and sample input files is provided in appendices.

  2. 14 CFR 34.82 - Sampling and analytical procedures for measuring smoke exhaust emissions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ..., DEPARTMENT OF TRANSPORTATION AIRCRAFT FUEL VENTING AND EXHAUST EMISSION REQUIREMENTS FOR TURBINE ENGINE POWERED AIRPLANES Test Procedures for Engine Smoke Emissions (Aircraft Gas Turbine Engines) § 34.82..., Environmental Protection, Volume II, Aircraft Engine Emissions, Second Edition, July 1993, effective July...

  3. Monitoring Engine Vibrations And Spectrum Of Exhaust

    NASA Technical Reports Server (NTRS)

    Martinez, Carol L.; Randall, Michael R.; Reinert, John W.

    1991-01-01

    Real-time computation of intensities of peaks in visible-light emission spectrum of exhaust combined with real-time spectrum analysis of vibrations into developmental monitoring technique providing up-to-the-second information on conditions of critical bearings in engine. Conceived to monitor conditions of bearings in turbopump suppling oxygen to Space Shuttle main engine, based on observations that both vibrations in bearings and intensities of visible light emitted at specific wavelengths by exhaust plume of engine indicate wear and incipient failure of bearings. Applicable to monitoring "health" of other machinery via spectra of vibrations and electromagnetic emissions from exhausts. Concept related to one described in "Monitoring Bearing Vibrations For Signs Of Damage", (MFS-29734).

  4. Reductions in aircraft particulate emissions due to the use of Fischer-Tropsch fuels

    NASA Astrophysics Data System (ADS)

    Beyersdorf, A. J.; Timko, M. T.; Ziemba, L. D.; Bulzan, D.; Corporan, E.; Herndon, S. C.; Howard, R.; Miake-Lye, R.; Thornhill, K. L.; Winstead, E.; Wey, C.; Yu, Z.; Anderson, B. E.

    2013-06-01

    The use of alternative fuels for aviation is likely to increase due to concerns over fuel security, price stability and the sustainability of fuel sources. Concurrent reductions in particulate emissions from these alternative fuels are expected because of changes in fuel composition including reduced sulfur and aromatic content. The NASA Alternative Aviation Fuel Experiment (AAFEX) was conducted in January-February 2009 to investigate the effects of synthetic fuels on gas-phase and particulate emissions. Standard petroleum JP-8 fuel, pure synthetic fuels produced from natural gas and coal feedstocks using the Fischer-Tropsch (FT) process, and 50% blends of both fuels were tested in the CFM-56 engines on a DC-8 aircraft. To examine plume chemistry and particle evolution with time, samples were drawn from inlet probes positioned 1, 30, and 145 m downstream of the aircraft engines. No significant alteration to engine performance was measured when burning the alternative fuels. However, leaks in the aircraft fuel system were detected when operated with the pure FT fuels as a result of the absence of aromatic compounds in the fuel. Dramatic reductions in soot emissions were measured for both the pure FT fuels (reductions of 84% averaged over all powers) and blended fuels (64%) relative to the JP-8 baseline with the largest reductions at idle conditions. The alternative fuels also produced smaller soot (e.g. at 85% power, volume mean diameters were reduced from 78 nm for JP-8 to 51 nm for the FT fuel), which may reduce their ability to act as cloud condensation nuclei (CCN). The reductions in particulate emissions are expected for all alternative fuels with similar reductions in fuel sulfur and aromatic content regardless of the feedstock. As the plume cools downwind of the engine, nucleation-mode aerosols form. For the pure FT fuels, reductions (94% averaged over all powers) in downwind particle number emissions were similar to those measured at the exhaust plane (84

  5. Stealth Plumes on Io

    NASA Technical Reports Server (NTRS)

    Johnson, T. V.; Matson, Dennis L.; Blaney, Diana L.; Veeder, Glenn J.; Davies, Ashley

    1995-01-01

    We suggest that Io's eruptive activity may include a class of previously undetected SO2 geysers. The thermodynamic models for the eruptive plumes discovered by Voyager 'involve low to moderate entropy SO2 eruptions. The resulting plumes are a mixture of solid and gas which emerge from the vent and follow essentially ballistic trajectories. We show that intrusion of silicate magma into buried SO2 deposits can create the required conditions for high entropy eruptions which proceed entirely in the vapor phase. These purely gaseous plumes would have been invisible to Voyager's instruments. Hence, we call them "stealth" plumes. Such eruptions could explain the "patchy" SO2 atmosphere inferred from recent UV and micro-wave spectral observations. The magma intrusion rate required to support the required gas production for these plumes is a negligible fraction of estimated global magma intrusion rates.

  6. Plume interference with space shuttle range safety signals

    NASA Technical Reports Server (NTRS)

    Boynton, F. P.; Rajaseknar, P. S.

    1979-01-01

    The computational procedure for signal propagation in the presence of an exhaust plume is presented. Comparisons with well-known analytic diffraction solutions indicate that accuracy suffers when mesh spacing is inadequate to resolve the first unobstructed Fresnel zone at the plume edge. Revisions to the procedure to improve its accuracy without requiring very large arrays are discussed. Comparisons to field measurements during a shuttle solid rocket motor (SRM) test firing suggest that the plume is sharper edged than one would expect on the basis of time averaged electron density calculations. The effects, both of revisions to the computational procedure and of allowing for a sharper plume edge, are to raise the signal level near tail aspect. The attenuation levels then predicted are still high enough to be of concern near SRM burnout for northerly launches of the space shuttle.

  7. Apollo video photogrammetry estimation of plume impingement effects

    NASA Astrophysics Data System (ADS)

    Immer, Christopher; Lane, John; Metzger, Philip; Clements, Sandra

    2011-07-01

    Future missions to the Moon may require numerous landings at the same site. Since the top few centimeters are loosely packed regolith, plume impingement from the Lander ejects the granular material at high velocities. Much work is needed to understand the physics of plume impingement during landing to protect hardware surrounding the landing sites. While mostly qualitative in nature, the Apollo Lunar Module landing videos can provide a wealth of quantitative information using modern photogrammetry techniques. The authors have used the digitized videos to quantify plume impingement effects of the landing exhaust on the lunar surface. The dust ejection angle from the plume is estimated at 1°-3°. The lofted particle density is estimated at 10 8-10 13 particles/m 3. Additionally, evidence for ejection of large 10-15 cm sized objects and a dependence of ejection angle on thrust are presented. Further work is ongoing to continue quantitative analysis of the landing videos.

  8. The 1995 scientific assessment of the atmospheric effects of stratospheric aircraft

    NASA Technical Reports Server (NTRS)

    Stolarski, Richard S.; Baughcum, Steven L.; Brune, William H.; Douglass, Anne R.; Fahey, David W.; Friedl, Randall R.; Liu, Shaw C.; Plumb, R. Alan; Poole, Lamont R.; Wesoky, Howard L.

    1995-01-01

    This report provides a scientific assessment of our knowledge concerning the impact of proposed high-speed civil transport (HSCT) aircraft on the atmosphere. It comes at the end of Phase 1 of the Atmospheric Effects of Stratospheric Aircraft element of the NASA High-Speed Research Program. The fundamental problem with stratospheric flight is that pollutant residence times are long because the stratosphere is a region of permanent temperature inversion with stable stratification. Using improved two-dimensional assessment models and detailed fleet emissions scenarios, the assessment examines the possible impact of the range of effluents from aircraft. Emphasis is placed on the effects of NO(x) and H2O on the atmospheric ozone content. Measurements in the plume of an in-flight Concorde supersonic transport indicated a large number of small particles. These measurements, coupled with model sensitivity studies, point out the importance of obtaining a more detailed understanding of the fate of sulfur in the HSCT exhaust. Uncertainties in the current understanding of the processes important for determining the overall effects of HSCT's on the atmosphere are discussed and partially quantified. Research directions are identified to improve the quantification of uncertainties and to reduce their magnitude.

  9. Prometheus: Io's wandering plume.

    PubMed

    Kieffer, S W; Lopes-Gautier, R; McEwen, A; Smythe, W; Keszthelyi, L; Carlson, R

    2000-05-19

    Unlike any volcanic behavior ever observed on Earth, the plume from Prometheus on Io has wandered 75 to 95 kilometers west over the last 20 years since it was first discovered by Voyager and more recently observed by Galileo. Despite the source motion, the geometric and optical properties of the plume have remained constant. We propose that this can be explained by vaporization of a sulfur dioxide and/or sulfur "snowfield" over which a lava flow is moving. Eruption of a boundary-layer slurry through a rootless conduit with sonic conditions at the intake of the melted snow can account for the constancy of plume properties. PMID:10817989

  10. Volcanic ash plume identification using polarization lidar: Augustine eruption, Alaska

    USGS Publications Warehouse

    Sassen, Kenneth; Zhu, Jiang; Webley, Peter W.; Dean, K.; Cobb, Patrick

    2007-01-01

    During mid January to early February 2006, a series of explosive eruptions occurred at the Augustine volcanic island off the southern coast of Alaska. By early February a plume of volcanic ash was transported northward into the interior of Alaska. Satellite imagery and Puff volcanic ash transport model predictions confirm that the aerosol plume passed over a polarization lidar (0.694 mm wavelength) site at the Arctic Facility for Atmospheric Remote Sensing at the University of Alaska Fairbanks. For the first time, lidar linear depolarization ratios of 0.10 – 0.15 were measured in a fresh tropospheric volcanic plume, demonstrating that the nonspherical glass and mineral particles typical of volcanic eruptions generate strong laser depolarization. Thus, polarization lidars can identify the volcanic ash plumes that pose a threat to jet air traffic from the ground, aircraft, or potentially from Earth orbit.

  11. El Chichon - Composition of plume gases and particles

    NASA Technical Reports Server (NTRS)

    Kotra, J. P.; Finnegan, D. L.; Zoller, W. H.; Hart, M. A.; Moyers, J. L.

    1983-01-01

    Aircraft measurements were made of trace gases, atmospheric particles, and condensed acid volatiles in the plume of El Chichon volcano, Chiapas, Mexico, in November 1982. Hydrogen sulfide was the primary gaseous sulfur species in the plume at the time of collection. Concentrations of 28 elements were determined by neutron activation analysis of particulate material from the plume. The volatile elements sulfur, chlorine, arsenic, selenium, bromine, antimony, iodine, tungsten, and mercury were enriched relative to bulk pyroclastic material by factors of 60 to 20,000. Arsenic, antimony, and selenium were associated predominantly with small (not greater than 3 micrometer) particles. Calcium and sodium were present almost exclusively on larger particles and aluminum and manganese were bimodally distributed. Ashladen particulate material injected into the stratosphere during the early violent eruptions was enriched by factors of 10 to 30 relative to ash in some of the same elements observed in the quiescent plume.

  12. Heat Exhaustion, First Aid

    MedlinePlus

    ... rashes clinical tools newsletter | contact Share | Heat Exhaustion, First Aid A A A Heat exhaustion signs and symptoms ... specific to the other stages of heat illness. First Aid Guide Use a combination of the following measures ...

  13. Aircraft engine pollution reduction.

    NASA Technical Reports Server (NTRS)

    Rudey, R. A.

    1972-01-01

    The effect of engine operation on the types and levels of the major aircraft engine pollutants is described and the major factors governing the formation of these pollutants during the burning of hydrocarbon fuel are discussed. Methods which are being explored to reduce these pollutants are discussed and their application to several experimental research programs are pointed out. Results showing significant reductions in the levels of carbon monoxide, unburned hydrocarbons, and oxides of nitrogen obtained from experimental combustion research programs are presented and discussed to point out potential application to aircraft engines. An experimental program designed to develop and demonstrate these and other advanced, low pollution combustor design methods is described. Results that have been obtained to date indicate considerable promise for reducing advanced engine exhaust pollutants to levels significantly below current engines.

  14. CHLORINATED SOLVENT PLUME CONTROL

    EPA Science Inventory

    This lecture will cover recent success in controlling and assessing the treatment of shallow ground water plumes of chlorinated solvents, other halogenated organic compounds, and methyl tert-butyl ether (MTBE).

  15. Mars Methane Plume Tracer

    NASA Astrophysics Data System (ADS)

    Mischna, M. A.; Banfield, D.; Sykes, I.

    2014-07-01

    Putative releases of methane from the martian surface may be challenging to detect from orbit. Successful detections depend on the character of the plume itself (duration, magnitude, expanse), but also on the observing platform.

  16. Methane Plumes on Mars

    NASA Video Gallery

    Spectrometer instruments attached to several telescopes detect plumes of methane emitted from Mars during its summer and spring seasons. High levels of methane are indicated by warmer colors. The m...

  17. Sulfur plumes off Namibia

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Sulfur plumes rising up from the bottom of the ocean floor produce colorful swirls in the waters off the coast of Namibia in southern Africa. The plumes come from the breakdown of marine plant matter by anaerobic bacteria that do not need oxygen to live. This image was acquired by the Moderate Resolution Imaging Spectroradiometer (MODIS) on the Terra satellite on April 24, 2002 Credit: Jacques Descloitres, MODIS Land Rapid Response Team, NASA/GSFC

  18. A STUDY OF EXTRACTIVE AND REMOTE-SENSING SAMPLING AND MEASUREMENT OF EMISSIONS FROM MILITARY AIRCRAFT ENGINES

    SciTech Connect

    Cheng, Mengdawn; Corporan, E.

    2010-01-01

    90%) from (typically lower than) those based on the extractive techniques. However, the ORS techniques were useful in providing non-intrusive real-time measurements of gaseous species in the exhaust plume, which warrants further development. The results obtained in this program validate sampling methodology and measurement techniques used for non-volatile PM aircraft emissions as described in the SAE AIR-6037.

  19. 3D-CFD Investigation of Contrails and Volatile Aerosols Produced in the Near-Field of an Aircraft Wake

    NASA Astrophysics Data System (ADS)

    Garnier, F.; Ghedhaifi, W.; Vancassel, X.; Khou, J. C.; Montreuil, E.

    2015-12-01

    Civil aviation contributes to degradation of air quality around airport (SOx, NOx, speciated hydrocarbons,…) and climate change through its emissions of greenhouse gases (CO2, water vapor), as well as particulate matters. These particles include soot particles formed in the combustor, volatile aerosols and contrails generated in the aircraft wake. Although the aircraft emissions represent today only about 3% of all those produced on the surface of the earth by other anthropogenic sources, they are mostly released in the very sensitive region of the upper troposphere/lower stratosphere. These emissions have a radiative effect reinforced by specific physical and chemical processes at high altitudes, such as cloud formation and ozone production. In this context, most of the work to-date assessed that the actual effect of aviation on the climate are affected by very large uncertainties, partly due to lack of knowledge on the mechanisms of new particles formation and growth processes in the exhaust plume of the aircraft. The engine exhaust gases are mixed in the ambient air under the influence of the interaction between the jet engine and the wing tip vortices. The characteristics of vortices as well as their interaction with the jet depend on the aircraft airframe especially on the wing geometry and the engine position (distance from the wing tip). The aim of this study is to examine the influence of aircraft parameters on contrail formation using a 3D CFD calculation based on a RANS (Reynolds Average Navier-Stokes) approach. Numerical simulations have been performed using CEDRE, the multiphysics ONERA code for energetics. CEDRE is a CFD code using finite volume methods and unstructured meshes. These meshes are especially appropriate when complex geometries are used. A transport model has been used for condensation of water vapor onto ice particles. Growth is evaluated using a modified Fick's law to mass transfer on particles. In this study, different aircraft

  20. Controlling plume deflection by acoustic excitation - An experimental demonstration

    NASA Astrophysics Data System (ADS)

    Ahuja, K. K.

    1990-10-01

    Effect of imposing an external sound field on a Coanda jet was investigated experimentally. It was found that the exhaust angle of a Coanda plume can be varied by changing the level of excitation. Limited experiments were also performed in a wind tunnel to study the effects of flight simulation on plume deflection controllability by sound using a hollow airfoil fitted with a Coanda jet. Pressure coefficients are measured over this airfoil with and without acoustic excitation of the Coanda Jet. This exploratory study provided a number of new ideas for future work for controlling flow over curved surfaces.

  1. Plume Mitigation for Mars Terminal Landing: Soil Stabilization Project

    NASA Technical Reports Server (NTRS)

    Hintze, Paul E.

    2014-01-01

    Kennedy Space Center (KSC) has led the efforts for lunar and Martian landing site preparation, including excavation, soil stabilization, and plume damage prediction. There has been much discussion of sintering but until our team recently demonstrated it for the lunar case there was little understanding of the serious challenges. Simplistic sintering creates a crumbly, brittle, weak surface unsuitable for a rocket exhaust plume. The goal of this project is to solve those problems and make it possible to land a human class lander on Mars, making terminal landing of humans on Mars possible for the first time.

  2. An Experimental Investigation of an Exhaust-gas-to-air Heat Exchanger for Use on Jet-stack-equipped Engines

    NASA Technical Reports Server (NTRS)

    Stalder, Jackson R; Spies, Ray J , Jr

    1948-01-01

    Tests were made to determine the loss in exhaust-jet thrust and engine power resulting from the insertion of an exhaust-gas-to-air heat exchanger in a jet-type exhaust stack of an aircraft engine. The thermal performance of the heat exchanger was also determined.

  3. Trends in aircraft noise control

    NASA Technical Reports Server (NTRS)

    Hubbard, H. H.; Conrad, E. W.

    1975-01-01

    Flight vehicles are characterized according to their manner of operation and type of propulsion system; and their associated sources of noise are identified. Available noise reduction technology as it relates to engine cycle design and to powerplant component design is summarized. Such components as exhaust jets, fans, propellers, rotors, blown flaps, and reciprocating-engine exhausts are discussed, along with their noise reduction potentials. Significant aircraft noise reductions are noted to have been accomplished by the application of available technology in support of noise certification rules. Further noise reductions to meet more stringent future noise regulations will require substantial additional technology developments. Improved analytical prediction methods, and well-controlled validation experiments supported by advanced-design aeroacoustic facilities, are required as a basis for an effective integrated systems approach to aircraft noise control.

  4. RAXJET- TRANSONIC, AXISYMMETRIC FLOW OVER NOZZLE AFTERBODIES WITH SUPERSONIC JET EXHAUSTS

    NASA Technical Reports Server (NTRS)

    Wilmoth, R. G.

    1994-01-01

    The nozzle afterbody is one of the main drag-producing components of an aircraft propulsion system. Thus, considerable effort has been devoted to developing techniques for predicting the afterbody flow field and drag. The RAXJET computer program was developed to predict the transonic, axisymmetric flow over nozzle afterbodies with supersonic jet exhausts and includes the effects of boundary-layer displacement, separation, jet entrainment, and inviscid jet plume blockage. RAXJET iteratively combines the South-Jameson relaxation procedure, the Reshotko-Tucker boundary-layer solution, the Presz separation model, the Dash-Pergament mixing model, and the Dash-Thorpe inviscid plume model into a single, comprehensive model. The approach taken in the RAXJET program requires considerably less computational time than the Navier-Stokes solutions and generally yields results of comparable accuracy. In RAXJET, the viscous-inviscid interaction model is constructed by dividing the afterbody flow field into six separate computational regions: (1) The inviscid external flow solution is based on the relaxation procedure of South and Jameson for solving the exact nonlinear potential flow equation in nonconservative form. (2) The flow field in the inviscid jet exhaust is solved by explicit spatial marching of the conservative finite-difference form of the inviscid flow equations for a uniform composition gas mixture. (3) The properties in the attached boundary-layer region are solved by a modified version of the Reshotko-Tucker integral method for turbulent flows. (4) The analysis of the separated flow region consists of predicting the separation location and calculating the discriminating streamline shape. (5) The jet wake region is determined by either a simple extrapolation model or by an integral method that accounts for entrainment effects. (6) The displacement-thickness distribution arising from entrainment into the jet mixing layer is calculated by the overlaid mixing model

  5. Collapse in Thermal Plumes

    NASA Astrophysics Data System (ADS)

    Pears, M. I.; Lithgow-Bertelloni, C. R.; Dobson, D. P.; Davies, R.

    2013-12-01

    Collapsing thermal plumes have been investigated through experimental and numerical simulations. Collapsing plumes are an uncommon fluid dynamical phenomenon, usually seen when the buoyancy source is turned off. A series of fluid dynamical experiments were conducted on thermal plumes at a variety of temperature and viscosity contrasts, in a 26.5 cm^3 cubic tank heated by a constant temperature heater 2 cm in diameter and no-slip bottom and top surfaces. Working fluids included Lyle's Golden Syrup and ADM's Liquidose 436 syrup, which have strongly-temperature dependent viscosity and high Pr number (10^3-10^7 at experimental conditions). Visualisation included white light shadowgraphs and PIV of the central plane. Temperature contrasts ranged from 3-60°C, and two differing forms of collapse were identified. At very low temperature differences 'no rise' collapse was discovered, where the plumes stagnate in the lower third of the tank before collapsing. At temperature differences between 10-23°C normal evolution occurred until 'lens shape' collapse developed between midway and two-thirds of the distance from the base. The lens shape originated in the top of the conduit and was present throughout collapse. At temperatures above ΔT=23°C the plumes follow the expected growth and shape and flatten out at the top of the tank. Thermal collapse remains difficult to explain given experimental conditions (continuous heating). Instead it is possible that small density differences arising from crystallization at ambient temperatures changes plume buoyancy-inducing collapse. We show results on the evolution of the refractive index of the syrup through time to ascertain this possibility. Preliminary numerical results using Fluidity will be presented to explore a greater parameter range of viscosity contrasts and tank aspect ratios.

  6. Plumes Do Not Exist

    NASA Astrophysics Data System (ADS)

    Hamilton, W. B.; Anderson, D. L.; Foulger, G. R.; Winterer, E. L.

    Hypothetical plumes from the deep mantle are widely assumed to provide an abso- lute hotspot reference frame, inaugurate rifting, drive plates, and profoundly influence magmatic and tectonic evolution of oceans and continents. Many papers on local to global tectonics, magmatism, and geochemistry invoke plumes, and assign to the man- tle whatever properties, dynamics, and composition are needed to enable them. The fixed-plume concept arose from the Emperor-Hawaii seamount-and-island province, the 45 Ma inflection in which was assumed to record a 60-degree change in direction by the Pacific plate. Paleomagnetic latitudes and smooth Pacific spreading patterns show that such a change did not occur. Other Pacific chains once assumed to be syn- chronous with, and Euler-parallel to, Hawaii have proved to be neither. Thermal and physical properties of Hawaiian lithosphere falsify plume predictions. Rationales for fixed hotspots elsewhere also have become untenable as databases enlarged. Astheno- sphere is everywhere near solidus temperature, so buoyant melt does not require a local heat source but, rather, needs a thin roof or crack or tensional setting for egress. MORB and ocean-island basalt (OIB) broadly intergrade in composition, but MORB typically is richer in refractory elements and their radiogenic daughters, whereas OIB commonly is richer in fusible elements and their daughters. MORB and OIB contrasts are required by melt behavior and do not indicate unlike source reservoirs. MORB melts rise, with minimal reaction, through hot asthenosphere, whereas OIB melts re- act, and thereby lose substance, by crystallizing refractories and retaining and assim- ilating subordinate fusibles, with thick, cool lithosphere and crust. There is no need for hypotheses involving chaotic plume behavior or thousands of km of lateral flow of plume material, nor for postulates of SprimitiveT lower mantle contrary to cos- & cedil;mological and thermodynamic considerations. Plume

  7. Effects of entrained water and strong turbulence on afterburning within solid rocket motor plumes

    NASA Technical Reports Server (NTRS)

    Gomberg, R. I.; Wilmoth, R. G.

    1978-01-01

    During the first few seconds of the space shuttle trajectory, the solid rocket boosters will be in the proximity of the launch pad. Because of the launch pad structures and the surface of the earth, the turbulent mixing experienced by the exhaust gases will be greatly increased over that for the free flight situation. In addition, a system will be present, designed to protect the lifting vehicle from launch structure vibrations, which will inject quantities of liquid water into the hot plume. The effects of these two phenomena on the temperatures, chemical composition, and flow field present in the afterburning solid rocket motor exhaust plumes of the space shuttle were studied. Results are included from both a computational model of the afterburning and supporting measurements from Titan 3 exhaust plumes taken at Kennedy Space Center with infrared scanned radiometers.

  8. 77 FR 57534 - Airworthiness Directives; Piper Aircraft, Inc. Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-18

    ... occurred due to exhaust system failures upstream of aircraft turbochargers and between recurring detailed... the possibility of an inflight powerplant fire due to an exhaust system failure. DATES: We must... system failures downstream from turbochargers. We issued that AD to prevent the possibility of...

  9. Aircraft Design

    NASA Technical Reports Server (NTRS)

    Bowers, Albion H. (Inventor); Uden, Edward (Inventor)

    2016-01-01

    The present invention is an aircraft wing design that creates a bell shaped span load, which results in a negative induced drag (induced thrust) on the outer portion of the wing; such a design obviates the need for rudder control of an aircraft.

  10. Energy saving exhaust siphon

    SciTech Connect

    Baldwin, N.B.

    1982-04-06

    A device is disclosed for attachment to the tailpipe of an exhaust system comprising a body portion placed around the tailpipe, but spaced apart from the tailpipe, in a manner that air may easily flow between the body portion and the tailpipe when the vehicle is moving in a forward direction, a narrowing portion operative to compress the air flow, and an exhaust discharge portion operative for the exhaust from the tailpipe and the air to be discharged therethrough.

  11. Exhaust gas purification device

    SciTech Connect

    Fujiwara, H.; Hibi, T.; Sayo, S.; Sugiura, Y.; Ueda, K.

    1980-02-19

    The exhaust gas purification device includes an exhaust manifold , a purification cylinder connected with the exhaust manifold through a first honey-comb shaped catalyst, and a second honeycomb shaped catalyst positioned at the rear portion of the purification cylinder. Each catalyst is supported by steel wool rings including coarse and dense portions of steel wool. The purification device further includes a secondary air supplying arrangement.

  12. Test data from small solid propellant rocket motor plume measurements (FA-21)

    NASA Technical Reports Server (NTRS)

    Hair, L. M.; Somers, R. E.

    1976-01-01

    A program is described for obtaining a reliable, parametric set of measurements in the exhaust plumes of solid propellant rocket motors. Plume measurements included pressures, temperatures, forces, heat transfer rates, particle sampling, and high-speed movies. Approximately 210,000 digital data points and 15,000 movie frames were acquired. Measurements were made at points in the plumes via rake-mounted probes, and on the surface of a large plate impinged by the exhaust plume. Parametric variations were made in pressure altitude, propellant aluminum loading, impinged plate incidence angle and distance from nozzle exit to plate or rake. Reliability was incorporated by continual use of repeat runs. The test setup of the various hardware items is described along with an account of test procedures. Test results and data accuracy are discussed. Format of the data presentation is detailed. Complete data are included in the appendix.

  13. CFD Analysis of Nozzle Jet Plume Effects on Sonic Boom Signature

    NASA Technical Reports Server (NTRS)

    Bui, Trong T.

    2009-01-01

    A computational fluid dynamics study is conducted to examine nozzle exhaust jet plume effects on the Sonic boom signature of a supersonic aircraft. A simplified axisymmetric nozzle geometry, representative of the nozzle on the NASA Dryden NF-15B Lift and Nozzle Change Effects on Tail Shock research airplane, is considered. The computational fluid dynamics code is validated using available wind-tunnel sonic boom experimental data. The effects of grid size, spatial order of accuracy. grid type, and flow viscosity on the accuracy of the predicted sonic boom pressure signature are quantified. Grid lines parallel to the Mach wave direction are found to give the best results. Second-order accurate upwind methods are required as a minimum for accurate sonic boom simulations. The highly underexpanded nozzle flow is found to provide significantly more reduction in the tail shock strength in the sonic boom N-wave pressure signature than perfectly expanded and overexpanded nozzle flows. A tail shock train in the sonic boom signature is observed for the highly underexpanded nozzle flow. Axisymmetric computational fluid dynamics simulations show the flow physics inside the F-15 nozzle to be nonisentropic and complex.

  14. Exhaust gas purifying device

    SciTech Connect

    Sakurai, S.; Hamada, S.

    1985-04-23

    An exhaust gas purifying device for use with a diesel engine comprising a filter block disposed in an engine exhaust passage for collecting exhaust gas particulates, and a heater for incinerating the collected exhaust gas particulates. The filter block has parallel channels defined therein and separated from one another by porous partition walls, some of the channels being closed at their inlet ends with blind plugs while the other channels are closed at their outlet ends with blind plugs. The heater is supported by the blind plugs.

  15. LAMP Observes the LCROSS Plume

    NASA Video Gallery

    This video shows LAMP’s view of the LCROSS plume. The first half of the animation shows the LAMP viewport scanning across the horizon, passing through the plume, and moving on. The second half of...

  16. Hydrostatic Modeling of Buoyant Plumes

    NASA Astrophysics Data System (ADS)

    Stroman, A.; Dewar, W. K.; Wienders, N.; Deremble, B.

    2014-12-01

    The Deepwater Horizon oil spill in the Gulf of Mexico has led to increased interest in understanding point source convection dynamics. Most of the existing oil plume models use a Lagrangian based approach, which computes integral measures such as plume centerline trajectory and plume radius. However, this approach doesn't account for feedbacks of the buoyant plume on the ambient environment. Instead, we employ an Eulerian based approach to acquire a better understanding of the dynamics of buoyant plumes. We have performed a series of hydrostatic modeling simulations using the MITgcm. Our results show that there is a dynamical response caused by the presence of the buoyant plume, in that there is a modification of the background flow. We find that the buoyant plume becomes baroclinically unstable and sheds eddies at the neutral buoyancy layer. We also explore different scenarios to determine the effect of the buoyancy source and the temperature stratification on the evolution of buoyant plumes.

  17. The Fluid Dynamics of Plumes

    NASA Astrophysics Data System (ADS)

    Hansen, U.

    Plumes form as instabilities from thermal boundary layers of convecting systems.The shape, the size and the temporal evolution of plumes is strongly influenced by the vis- cosity of the material. Employing a numerical scheme the evolution of plumes in fluids with strong temperature and temperature-pressure dependent viscosity has been stud- ied. The strong dependence of viscosity on temperature leads to a pulse-like evolution of the plumes.Pulses of hot material rise episodically through the pre-established low viscosity channels. In a later stage the plumes generate extended network-like struc- tures in the thermal boundary layers. Pressure dependence of the viscosity leads to a significant cooling of the plumes.Furthe a fragmentation of one plume into several smaller ones is commonly observed. While internal convection takes place within the plume head, only little entrainment of material is observed.

  18. Contamination control and plume assessment of low-energy thrusters

    NASA Technical Reports Server (NTRS)

    Scialdone, John J.

    1993-01-01

    Potential contamination of a spacecraft cryogenic surface by a xenon (Xe) ion generator was evaluated. The analysis involves the description of the plume exhausted from the generator with its relative component fluxes on the spacecraft surfaces, and verification of the conditions for condensation, adsorption, and sputtering at those locations. The data describing the plume fluxes and their effects on surfaces were obtained from two sources: the tests carried out with the Xe generator in a small vacuum chamber to indicate deposits and sputter on monitor slides; and the extensive tests with a mercury (Hg) ion thruster in a large vacuum chamber. The Hg thruster tests provided data on the neutrals, on low-energy ion fluxes, on high-energy ion fluxes, and on sputtered materials at several locations within the plume.

  19. An analytical and experimental investigation of resistojet plumes

    NASA Technical Reports Server (NTRS)

    Zana, Lynnette M.; Hoffman, David J.; Breyley, Loranell R.; Serafini, John S.

    1987-01-01

    As a part of the electrothermal propulsion plume research program at the NASA Lewis Research Center, efforts have been initiated to analytically and experimentally investigate the plumes of resistojet thrusters. The method of Simons for the prediction of rocket exhaust plumes is developed for the resistojet. Modifications are made to the source flow equations to account for the increased effects of the relatively large nozzle boundary layer. Additionally, preliminary mass flux measurements of a laboratory resistojet using CO2 propellant at 298 K have been obtained with a cryogenically cooled quartz crystal microbalance (QCM). There is qualitative agreement between analysis and experiment, at least in terms of the overall number density shape functions in the forward flux region.

  20. An analytical and experimental investigation of resistojet plumes

    NASA Technical Reports Server (NTRS)

    Zana, L. M.; Hoffman, D. J.; Breyley, L. R.; Serafini, J. S.

    1987-01-01

    As a part of the electrothermal propulsion plume research program at the NASA Lewis Research Center, efforts have been initiated to analytically and experimentally investigate the plumes of resistojet thrusters. The method of G.A. Simons for the prediction of rocket exhaust plumes is developed for the resistojet. Modifications are made to the source flow equations to account for the increased effects of the relatively large nozzle boundary layer. Additionally, preliminary mass flux measurements of a laboratory resistojet using CO2 propellant at 298 K have been obtained with a cryogenically cooled quartz crystal microbalance (QCM). There is qualitative agreement between analysis and experiment, at least in terms of the overall number density shape functions in the forward flux region.

  1. Technologies for Aircraft Noise Reduction

    NASA Technical Reports Server (NTRS)

    Huff, Dennis L.

    2006-01-01

    Technologies for aircraft noise reduction have been developed by NASA over the past 15 years through the Advanced Subsonic Technology (AST) Noise Reduction Program and the Quiet Aircraft Technology (QAT) project. This presentation summarizes highlights from these programs and anticipated noise reduction benefits for communities surrounding airports. Historical progress in noise reduction and technologies available for future aircraft/engine development are identified. Technologies address aircraft/engine components including fans, exhaust nozzles, landing gear, and flap systems. New "chevron" nozzles have been developed and implemented on several aircraft in production today that provide significant jet noise reduction. New engines using Ultra-High Bypass (UHB) ratios are projected to provide about 10 EPNdB (Effective Perceived Noise Level in decibels) engine noise reduction relative to the average fleet that was flying in 1997. Audio files are embedded in the presentation that estimate the sound levels for a 35,000 pound thrust engine for takeoff and approach power conditions. The predictions are based on actual model scale data that was obtained by NASA. Finally, conceptual pictures are shown that look toward future aircraft/propulsion systems that might be used to obtain further noise reduction.

  2. Simulation of Low-density Nozzle Plumes in Non-zero Ambient Pressures

    NASA Technical Reports Server (NTRS)

    Chung, Chan-Hong; Dewitt, Kenneth J.; Stubbs, Robert M.; Penko, Paul F.

    1994-01-01

    The direct simulation Monte-Carlo (DSMC) method was applied to the analysis of low-density nitrogen plumes exhausting from a small converging-diverging nozzle into finite ambient pressures. Two cases were considered that simulated actual test conditions in a vacuum facility. The numerical simulations readily captured the complicated flow structure of the overexpanded plumes adjusting to the finite ambient pressures, including Mach disks and barrel shaped shocks. The numerical simulations compared well to experimental data of Rothe.

  3. Enceladus' Water Vapour Plumes

    NASA Technical Reports Server (NTRS)

    Hansen, Candice J.; Esposito, L.; Colwell, J.; Hendrix, A.; Matson, Dennis; Parkinson, C.; Pryor, W.; Shemansky, D.; Stewart, I.; Tew, J.; Yung, Y.

    2006-01-01

    A viewgraph presentation on the discovery of Enceladus water vapor plumes is shown. Conservative modeling of this water vapor is also presented and also shows that Enceladus is the source of most of the water required to supply the neutrals in Saturn's system and resupply the E-ring against losses.

  4. Evaluation of Visible Plumes.

    ERIC Educational Resources Information Center

    Brennan, Thomas

    Developed for presentation at the 12th Conference on Methods in Air Pollution and Industrial Hygiene Studies, University of Southern California, April, 1971, this outline discusses plumes with contaminants that are visible to the naked eye. Information covers: (1) history of air pollution control regulations, (2) need for methods of evaluating…

  5. Buoyant plume calculations

    SciTech Connect

    Penner, J.E.; Haselman, L.C.; Edwards, L.L.

    1985-01-01

    Smoke from raging fires produced in the aftermath of a major nuclear exchange has been predicted to cause large decreases in surface temperatures. However, the extent of the decrease and even the sign of the temperature change, depend on how the smoke is distributed with altitude. We present a model capable of evaluating the initial distribution of lofted smoke above a massive fire. Calculations are shown for a two-dimensional slab version of the model and a full three-dimensional version. The model has been evaluated by simulating smoke heights for the Hamburg firestorm of 1943 and a smaller scale oil fire which occurred in Long Beach in 1958. Our plume heights for these fires are compared to those predicted by the classical Morton-Taylor-Turner theory for weakly buoyant plumes. We consider the effect of the added buoyancy caused by condensation of water-laden ground level air being carried to high altitude with the convection column as well as the effects of background wind on the calculated smoke plume heights for several fire intensities. We find that the rise height of the plume depends on the assumed background atmospheric conditions as well as the fire intensity. Little smoke is injected into the stratosphere unless the fire is unusually intense, or atmospheric conditions are more unstable than we have assumed. For intense fires significant amounts of water vapor are condensed raising the possibility of early scavenging of smoke particles by precipitation. 26 references, 11 figures.

  6. PLUME and research sotware

    NASA Astrophysics Data System (ADS)

    Baudin, Veronique; Gomez-Diaz, Teresa

    2013-04-01

    The PLUME open platform (https://www.projet-plume.org) has as first goal to share competences and to value the knowledge of software experts within the French higher education and research communities. The project proposes in its platform the access to more than 380 index cards describing useful and economic software for this community, with open access to everybody. The second goal of PLUME focuses on to improve the visibility of software produced by research laboratories within the higher education and research communities. The "development-ESR" index cards briefly describe the main features of the software, including references to research publications associated to it. The platform counts more than 300 cards describing research software, where 89 cards have an English version. In this talk we describe the theme classification and the taxonomy of the index cards and the evolution with new themes added to the project. We will also focus on the organisation of PLUME as an open project and its interests in the promotion of free/open source software from and for research, contributing to the creation of a community of shared knowledge.

  7. Modeling the Complex Photochemistry of Biomass Burning Plumes in Plume-Scale, Regional, and Global Air Quality Models

    NASA Astrophysics Data System (ADS)

    Alvarado, M. J.; Lonsdale, C. R.; Yokelson, R. J.; Travis, K.; Fischer, E. V.; Lin, J. C.

    2014-12-01

    Forecasting the impacts of biomass burning (BB) plumes on air quality is difficult due to the complex photochemistry that takes place in the concentrated young BB plumes. The spatial grid of global and regional scale Eulerian models is generally too large to resolve BB photochemistry, which can lead to errors in predicting the formation of secondary organic aerosol (SOA) and O3, as well as the partitioning of NOyspecies. AER's Aerosol Simulation Program (ASP v2.1) can be used within plume-scale Lagrangian models to simulate this complex photochemistry. We will present results of validation studies of the ASP model against aircraft observations of young BB smoke plumes. We will also present initial results from the coupling of ASP v2.1 into the Lagrangian particle dispersion model STILT-Chem in order to better examine the interactions between BB plume chemistry and dispersion. In addition, we have used ASP to develop a sub-grid scale parameterization of the near-source chemistry of BB plumes for use in regional and global air quality models. The parameterization takes inputs from the host model, such as solar zenith angle, temperature, and fire fuel type, and calculates enhancement ratios of O3, NOx, PAN, aerosol nitrate, and other NOy species, as well as organic aerosol (OA). We will present results from the ASP-based BB parameterization as well as its implementation into the global atmospheric composition model GEOS-Chem for the SEAC4RS campaign.

  8. Research needs in aircraft noise prediction

    NASA Technical Reports Server (NTRS)

    Raney, J. P.

    1975-01-01

    Progress needed in understanding the mechanisms of aircraft noise generation and propagation is outlined using the focus provided by the need to predict accurately the noise produced and received at the ground by an aircraft operating in the vicinity of an airport. The components of internal engine noise generation, jet exhaust, airframe noise and shielding and configuration effects, and the roles of atmospheric propagation and ground noise attenuation are presented and related to the prediction problem. The role of NASA in providing the focus and direction for needed advances is discussed, and possible contributions of the academic community in helping to fulfill the needs for accurate aircraft noise prediction methods are suggested.

  9. 40 CFR 87.82 - Sampling and analytical procedures for measuring smoke exhaust emissions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... measuring smoke exhaust emissions. 87.82 Section 87.82 Protection of Environment ENVIRONMENTAL PROTECTION... Test Procedures for Engine Smoke Emissions (Aircraft Gas Turbine Engines) § 87.82 Sampling and analytical procedures for measuring smoke exhaust emissions. The system and procedures for sampling...

  10. 40 CFR 87.82 - Sampling and analytical procedures for measuring smoke exhaust emissions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... measuring smoke exhaust emissions. 87.82 Section 87.82 Protection of Environment ENVIRONMENTAL PROTECTION... Test Procedures for Engine Smoke Emissions (Aircraft Gas Turbine Engines) § 87.82 Sampling and analytical procedures for measuring smoke exhaust emissions. The system and procedures for sampling...

  11. 14 CFR 34.64 - Sampling and analytical procedures for measuring gaseous exhaust emissions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Register in accordance with 5 U.S.C. 552(a) and 1 CFR part 51. This document can be obtained from the... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT FUEL VENTING AND EXHAUST EMISSION REQUIREMENTS FOR TURBINE... Turbine Engines) § 34.64 Sampling and analytical procedures for measuring gaseous exhaust emissions....

  12. 14 CFR 34.64 - Sampling and analytical procedures for measuring gaseous exhaust emissions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Register in accordance with 5 U.S.C. 552(a) and 1 CFR part 51. This document can be obtained from the... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT FUEL VENTING AND EXHAUST EMISSION REQUIREMENTS FOR TURBINE... Turbine Engines) § 34.64 Sampling and analytical procedures for measuring gaseous exhaust emissions....

  13. 40 CFR 87.23 - Exhaust emission standards for Tier 6 and Tier 8 engines.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Exhaust emission standards for Tier 6 and Tier 8 engines. 87.23 Section 87.23 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) Definitions. Exhaust Emissions (New Aircraft Gas Turbine Engines) §...

  14. Duplex tab exhaust nozzle

    NASA Technical Reports Server (NTRS)

    Gutmark, Ephraim Jeff (Inventor); Martens, Steven (nmn) (Inventor)

    2012-01-01

    An exhaust nozzle includes a conical duct terminating in an annular outlet. A row of vortex generating duplex tabs are mounted in the outlet. The tabs have compound radial and circumferential aft inclination inside the outlet for generating streamwise vortices for attenuating exhaust noise while reducing performance loss.

  15. Jet aircraft emissions during cruise: Present and future

    NASA Technical Reports Server (NTRS)

    Grobman, J. S.

    1975-01-01

    Forecasts of engine exhaust emissions that may be practicably achievable for future commercial aircraft operating at high altitude cruise conditions are compared to cruise emission for present day aircraft. The forecasts are based on: (1) knowledge of emission characteristics of combustors and augmentors; (2) combustion research in emission reduction technology, and (3) trends in projected engine designs for advanced subsonic or supersonic commercial aircraft. Recent progress that was made in the evolution of emissions reduction technology is discussed.

  16. In situ observations and model calculations of black carbon emission by aircraft at cruise altitude

    NASA Astrophysics Data System (ADS)

    Petzold, A.; DöPelheuer, A.; Brock, C. A.; Schröder, F.

    1999-09-01

    The exhaust aerosol of two aircraft at cruise was extensively characterized in the size range from 0.003 to 2 μm for plume ages ≤2 s. The black carbon (BC) exhaust aerosol of an older technology engine (Rolls-Royce/Snecma M45H Mk501) consisted of a primary BC mode with a modal diameter of 0.035 μm and a mode of coagulated BC particles with a peak near 0.15-0.16 μm in diameter. The total number density at the nozzle exit plane was 3×107 cm-3. In contrast, a modern technology engine (CFM International CFM56-3B1) emitted far smaller BC particles with a primary mode at 0.025 μm and a coagulated mode at 0.15 μm, as well as fewer particles by number with a concentration of 9×106 cm-3. The single-scattering albedo of the jet exhaust aerosol was 0.035 ± 0.02 inside the plume, indicating a dominant contribution of ultrafine (D<0.1 μm) BC particles to light extinction. Black carbon number emission indices EI(N) varied from 3.5×1014 (CFM56-3B1) to 1.7×1015 kg-1 (M45H Mk501) with corresponding mass emission indices EI(BC) of 0.011 and 0.1 g kg-1. Previously reported corresponding values for a CF6-80C2A2 engine were 6×1014 kg-1 and 0.023 g kg-1, respectively. A comparison between EI(BC) values calculated by a new correlation method and measured data shows an excellent agreement, with deviations <10% at cruise conditions. By extending the EI(BC) calculation method to a globally operating aircraft fleet, a fleet-averaged emission index EI(BC) = 0.038 g kg-1 is calculated.

  17. Exhaust gas recirculation system

    SciTech Connect

    Minoura, M.; Yorioka, K.

    1980-11-18

    An exhaust gas recirculation system for cleaning exhaust gas from an internal combustion engine is provided in which a variable constriction is provided between an intake pipe and a pressure control valve in operative connection to a throttle valve in the carburetor and the pressure differential across said variable constriction is maintained constant to keep off any influence of the exhaust gas pressure while the ratio of the exhaust gas flow rate to the air intake into the engine is varied in correspondence to the intake pipe negative pressure. This exhaust gas recirculation system can be adapted to a fuel injection type intake system as well as other intake systems provided with an air valve for regulating air intake or having no venturi constriction such as employed in an su type carburetor.

  18. Supersonic jet plume interaction with a flat plate

    NASA Technical Reports Server (NTRS)

    Seiner, John M.; Manning, James C.; Jansen, Bernard

    1988-01-01

    Supersonic jet plume interaction with a flat plate was studied using a model scaled test apparatus designed to simulate plume/aircraft structure interaction for the cruise configuration. The generic configuration consisted of a rectangular supersonic nozzle of aspect ratio 7, and a large flat plate located beneath the nozzle at various nozzle plate distances; the plate was instrumented to measure surface dynamic pressure and mean wall temperature, with provisions for measurements of acceleration and strain on coupon size panels that could be inserted in the plate. Phase-averaged schlieren measurements revealed the presence of high-intensity acoustic emission from the supersonic plume above the plate, directed upstream; this radiation could be associated with the shock noise generation. Narrow band spectra of surface dynamic pressure show spectral peaks with amplitude levels reaching 1 psi, related to the screech tones. Temperature measurements indicated elevated surface temperatures in regions of high turbulence intensity.

  19. Using the GPS SNR Technique to Detect Volcanic Plumes

    NASA Astrophysics Data System (ADS)

    Naik, S. R.; Mattia, M.; Larson, K. M.; Rossi, M.; Bruno, V.; Coltelli, M.; Ohta, Y.; Schneider, D. J.

    2015-12-01

    Detection of volcanic plumes, especially ash-laden ones, is important both for public health and aircraft safety. A variety of geophysical tools and satellite data are used to monitor volcanic eruptions and to predict the movement of ash. However, satellite-based methods are restricted by time of day and weather, while radars are often unavailable because of cost/ portability. GPS instruments are frequently deployed near volcanos, but typically they have only been used to measure deformation. Here a method is proposed to detect volcanic plumes using GPS signal to noise ratio (SNR) data. The strengths and limitations of the method are assessed using GPS data collected during eruptions at Mt. Redoubt (2009) and Mt. Etna (2013). Plume detections are compared with independently collected seismic and radar data.

  20. Particulate exhaust emissions from an experimental combustor. [gas turbine engine

    NASA Technical Reports Server (NTRS)

    Norgren, C. T.; Ingebo, R. D.

    1975-01-01

    The concentration of dry particulates (carbon) in the exhaust of an experimental gas turbine combustor was measured at simulated takeoff operating conditions and correlated with the standard smoke-number measurement. Carbon was determined quantitatively from a sample collected on a fiberglass filter by converting the carbon in the smoke sample to carbon dioxide and then measuring the volume of carbon dioxide formed by gas chromatography. At a smoke of 25 (threshold of visibility of the smoke plume for large turbojets) the carbon concentration was 2.8 mg carbon/cu m exhaust gas, which is equivalent to an emission index of 0.17 g carbon/kg fuel.

  1. Turbulence modeling of free shear layers for high-performance aircraft

    NASA Technical Reports Server (NTRS)

    Sondak, Douglas L.

    1993-01-01

    The High Performance Aircraft (HPA) Grand Challenge of the High Performance Computing and Communications (HPCC) program involves the computation of the flow over a high performance aircraft. A variety of free shear layers, including mixing layers over cavities, impinging jets, blown flaps, and exhaust plumes, may be encountered in such flowfields. Since these free shear layers are usually turbulent, appropriate turbulence models must be utilized in computations in order to accurately simulate these flow features. The HPCC program is relying heavily on parallel computers. A Navier-Stokes solver (POVERFLOW) utilizing the Baldwin-Lomax algebraic turbulence model was developed and tested on a 128-node Intel iPSC/860. Algebraic turbulence models run very fast, and give good results for many flowfields. For complex flowfields such as those mentioned above, however, they are often inadequate. It was therefore deemed that a two-equation turbulence model will be required for the HPA computations. The k-epsilon two-equation turbulence model was implemented on the Intel iPSC/860. Both the Chien low-Reynolds-number model and a generalized wall-function formulation were included.

  2. Aircraft Particle Emissions eXperiment (APEX)

    NASA Technical Reports Server (NTRS)

    Wey, C. C.; Anderson, B. E.; Hudgins, C.; Wey, C.; Li-Jones, X.; Winstead, E.; Thornhill, L. K.; Lobo, P.; Hagen, D.; Whitefield, P.

    2006-01-01

    APEX systematically investigated the gas-phase and particle emissions from a CFM56-2C1 engine on NASA's DC-8 aircraft as functions of engine power, fuel composition, and exhaust plumage. Emissions parameters were measured at 11 engine power, settings, ranging from idle to maximum thrust, in samples collected at 1, 10, and 30 m downstream of the exhaust plane as the aircraft burned three fuels to stress relevant chemistry. Gas-phase emission indices measured at 1 m were in good agreement with the ICAO data and predictions provided by GEAE empirical modeling tools. Soot particles emitted by the engine exhibited a log-normal size distribution peaked between 15 and 40 nm, depending on engine power. Samples collected 30 m downstream of the engine exhaust plane exhibited a prominent nucleation mode.

  3. Ozone production efficiency of a ship-plume: ITCT 2K2 case study.

    PubMed

    Kim, Hyun S; Kim, Yong H; Han, Kyung M; Kim, Jhoon; Song, Chul H

    2016-01-01

    Ozone production efficiency (OPE) of ship plume was first evaluated in this study, based on ship-plume photochemical/dynamic model simulations and the ship-plume composition data measured during the ITCT 2K2 (Intercontinental Transport and Chemical Transformation 2002) aircraft campaign. The averaged instantaneous OPEs (OPE(i)‾) estimated via the ship-plume photochemical/dynamic modeling for the ITCT 2K2 ship-plume ranged between 4.61 and 18.92, showing that the values vary with the extent of chemical evolution (or chemical stage) of the ship plume and the stability classes of the marine boundary layer (MBL). Together with OPE(i)‾, the equivalent OPEs (OPE(e)‾) for the entire ITCT 2K2 ship-plume were also estimated. The OPE(e)‾ values varied between 9.73 (for the stable MBL) and 12.73 (for the moderately stable MBL), which agreed well with the OPE(e)‾ of 12.85 estimated based on the ITCT 2K2 ship-plume observations. It was also found that both the model-simulated and observation-based OPE(e)‾ inside the ship-plume were 0.29-0.38 times smaller than the OPE(e)‾ calculated/measured outside the ITCT 2K2 ship-plume. Such low OPEs insides the ship plume were due to the high levels of NO and non-liner ship-plume photochemistry. Possible implications of this ship-plume OPE study in the global chemistry-transport modeling are also discussed. PMID:26009472

  4. Ozone production efficiency of a ship-plume: ITCT 2K2 case study.

    PubMed

    Kim, Hyun S; Kim, Yong H; Han, Kyung M; Kim, Jhoon; Song, Chul H

    2016-01-01

    Ozone production efficiency (OPE) of ship plume was first evaluated in this study, based on ship-plume photochemical/dynamic model simulations and the ship-plume composition data measured during the ITCT 2K2 (Intercontinental Transport and Chemical Transformation 2002) aircraft campaign. The averaged instantaneous OPEs (OPE(i)‾) estimated via the ship-plume photochemical/dynamic modeling for the ITCT 2K2 ship-plume ranged between 4.61 and 18.92, showing that the values vary with the extent of chemical evolution (or chemical stage) of the ship plume and the stability classes of the marine boundary layer (MBL). Together with OPE(i)‾, the equivalent OPEs (OPE(e)‾) for the entire ITCT 2K2 ship-plume were also estimated. The OPE(e)‾ values varied between 9.73 (for the stable MBL) and 12.73 (for the moderately stable MBL), which agreed well with the OPE(e)‾ of 12.85 estimated based on the ITCT 2K2 ship-plume observations. It was also found that both the model-simulated and observation-based OPE(e)‾ inside the ship-plume were 0.29-0.38 times smaller than the OPE(e)‾ calculated/measured outside the ITCT 2K2 ship-plume. Such low OPEs insides the ship plume were due to the high levels of NO and non-liner ship-plume photochemistry. Possible implications of this ship-plume OPE study in the global chemistry-transport modeling are also discussed.

  5. Chemical plume source localization.

    PubMed

    Pang, Shuo; Farrell, Jay A

    2006-10-01

    This paper addresses the problem of estimating a likelihood map for the location of the source of a chemical plume using an autonomous vehicle as a sensor probe in a fluid flow. The fluid flow is assumed to have a high Reynolds number. Therefore, the dispersion of the chemical is dominated by turbulence, resulting in an intermittent chemical signal. The vehicle is capable of detecting above-threshold chemical concentration and sensing the fluid flow velocity at the vehicle location. This paper reviews instances of biological plume tracing and reviews previous strategies for a vehicle-based plume tracing. The main contribution is a new source-likelihood mapping approach based on Bayesian inference methods. Using this Bayesian methodology, the source-likelihood map is propagated through time and updated in response to both detection and nondetection events. Examples are included that use data from in-water testing to compare the mapping approach derived herein with the map derived using a previously existing technique. PMID:17036813

  6. Behavior of Mercury Emissions from a Commercial Coal-Fired Utility Boiler: TheRelationship Between Stack Speciation and Near-Field Plume Measurements

    EPA Science Inventory

    The reduction of divalent gaseous mercury (HgII) to elemental gaseous mercury (Hg0) in a commercial coal-fired power plant (CFPP)exhaust plume was investigated by simultaneous measurement in-stack and in-plume as part of a collaborative study among the U.S....

  7. Physical characterization of the fine particle emissions from commercial aircraft engines during the Aircraft Particle Emissions Experiment (APEX) 1 to 3

    EPA Science Inventory

    The f1me particulate matter (PM) emissions from nine commercial aircraft engine models were determined by plume sampling during the three field campaigns of the Aircraft Particle Emissions Experiment (APEX). Ground-based measurements were made primarily at 30 m behind the engine ...

  8. Atmospheric scavenging exhaust

    NASA Technical Reports Server (NTRS)

    Fenton, D. L.; Purcell, R. Y.

    1977-01-01

    Solid propellant rocket exhaust was directly utilized to ascertain raindrop scavenging rates for hydrogen chloride. The airborne HCl concentration varied from 0.2 to 10.0 ppm and the raindrop sizes tested included 0.55 mm, 1.1 mm, and 3.0 mm. Two chambers were used to conduct the experiments. A large, rigid walled, spherical chamber stored the exhaust constituents while the smaller chamber housing all the experiments was charged as required with rocket exhaust HCl. Surface uptake experiments demonstrated an HCl concentration dependence for distilled water. Sea water and brackish water HCl uptake was below the detection limit of the chlorine-ion analysis technique employed. Plant life HCl uptake experiments were limited to corn and soybeans. Plant age effectively correlated the HCl uptake data. Metallic corrosion was not significant for single 20 minute exposures to the exhaust HCl under varying relative humidity.

  9. The 1979 Southeastern Virginia Urban Plume Study (SEV-UPS): Surface and airborne studies

    NASA Technical Reports Server (NTRS)

    White, J. H.; Eaton, W. C.; Saeger, M. L.; Strong, R. B.; Tommerdahl, J. B.

    1980-01-01

    The operation of two surface monitoring stations (one in downtown Norfolk, Virginia, one south of the city near the Great Dismal Swamp) and the collection of 40 hours of airborne measurements is described. Surface site measurements of ozone, oxides of nitrogen, sulfur dioxide, temperature, dew point, b sub seat, and condensation nuclei were made. Instrument calibrations, quality assurance audits, and preliminary data analysis in support of the Urban Plume Study were also made. The air pollution problems that were addressed are discussed. Data handling procedures followed for the surface stations are presented. The operation of the aircraft sampling platform is described. Aircraft sampling procedures are discussed. A preliminary descriptive analysis of the aircraft data is given along with data or plots for surface sites, airborne studies, hydrocarbon species, and instrument performance audits. Several of the aircraft flights clearly show the presence of an urban ozone plume downwind of Norfolk in the direction of the mean wind flow.

  10. Delta 2 Explosion Plume Analysis Report

    NASA Technical Reports Server (NTRS)

    Evans, Randolph J.

    2000-01-01

    A Delta II rocket exploded seconds after liftoff from Cape Canaveral Air Force Station (CCAFS) on 17 January 1997. The cloud produced by the explosion provided an opportunity to evaluate the models which are used to track potentially toxic dispersing plumes and clouds at CCAFS. The primary goal of this project was to conduct a case study of the dispersing cloud and the models used to predict the dispersion resulting from the explosion. The case study was conducted by comparing mesoscale and dispersion model results with available meteorological and plume observations. This study was funded by KSC under Applied Meteorology Unit (AMU) option hours. The models used in the study are part of the Eastern Range Dispersion Assessment System (ERDAS) and include the Regional Atmospheric Modeling System (RAMS), HYbrid Particle And Concentration Transport (HYPACT), and Rocket Exhaust Effluent Dispersion Model (REEDM). The primary observations used for explosion cloud verification of the study were from the National Weather Service's Weather Surveillance Radar 1988-Doppler (WSR-88D). Radar reflectivity measurements of the resulting cloud provided good estimates of the location and dimensions of the cloud over a four-hour period after the explosion. The results indicated that RAMS and HYPACT models performed reasonably well. Future upgrades to ERDAS are recommended.

  11. Nighttime NOx Chemistry in Coal-Fired Power Plant Plumes

    NASA Astrophysics Data System (ADS)

    Fibiger, D. L.; McDuffie, E. E.; Dube, W. P.; Veres, P. R.; Lopez-Hilfiker, F.; Lee, B. H.; Green, J. R.; Fiddler, M. N.; Ebben, C. J.; Sparks, T.; Weinheimer, A. J.; Montzka, D.; Campos, T. L.; Cohen, R. C.; Bililign, S.; Holloway, J. S.; Thornton, J. A.; Brown, S. S.

    2015-12-01

    Nitrogen oxides (NOx = NO + NO2) play a key role in atmospheric chemistry. During the day, they catalyze ozone (O3) production, while at night they can react to form nitric acid (HNO3) and nitryl chloride (ClNO2) and remove O3 from the atmosphere. These processes are well studied in the summer, but winter measurements are more limited. Coal-fired power plants are a major source of NOx to the atmosphere, making up approximately 30% of emissions in the US (epa.gov). NOx emissions can vary seasonally, as well as plant-to-plant, with important impacts on the details of the plume chemistry. In particular, due to inefficient plume dispersion, nighttime NOx emissions from power plants are held in concentrated plumes, where rates of mixing with ambient O3 have a strong influence on plume evolution. We will show results from the aircraft-based WINTER campaign over the northeastern United States, where several nighttime intercepts of power plant plumes were made. Several of these intercepts show complete O3 titration, which can have a large influence on NOx lifetime, and thus O3 production, in the plume. When power plant NO emissions exceed background O3 levels, O3 is completely consumed converting NO to NO2. In the presence of O3, NO2 will be oxidized to NO3, which will then react with NO2 to form N2O5, which can then form HNO3 and/or ClNO2 and, ultimately, remove NOx from the atmosphere or provide next-day oxidant sources. If there is no O3 present, however, no further chemistry can occur and NO and NO2 will be transported until mixing with sufficient O3 for higher oxidation products. Modeling results of plume development and mixing, which can tell us more about this transport, will also be presented.

  12. Measuring Wildfires From Aircraft And Satellites

    NASA Technical Reports Server (NTRS)

    Brass, J. A.; Arvesen, J. C.; Ambrosia, V. G.; Riggan, P. J.; Meyers, J. S.

    1991-01-01

    Aircraft and satellite systems yield wide-area views, providing total coverage of affected areas. System developed for use aboard aircraft includes digital scanner that records data in 12 channels. Transmits data to ground station for immediate use in fighting fires. Enables researchers to estimate gaseous and particulate emissions from fires. Provides information on temperatures of flame fronts and soils, intensities and rate of spread of fires, characteristics of fuels and smoke plumes, energy-release rates, and concentrations and movements of trace gases. Data relates to heating and cooling of soils, loss of nutrients, and effects on atmospheric, terrestrial, and aquatic systems.

  13. Model and full scale study of twin supersonic plume resonance

    NASA Technical Reports Server (NTRS)

    Seiner, John M.; Manning, James C.; Ponton, Michael K.

    1987-01-01

    This paper examines the effect of both nozzle geometry and scale on the twin supersonic plume resonance phenomenon associated with aircraft having engine nozzle center-to-center spacings less than two diameters. Exit plane near field dynamic pressures were measured for both single and dual nozzle operation in 4.7 percent model and full scale under static conditions. The frequencies associated with this phenomenon were predicted to within 5 percent for a full scale F-15 aircraft. Amplitude levels associated with this phenomenon were found to dominate the dynamic pressure fluctuations in the inter-nozzle region, and reach a level near the structural design limit for this aircraft. The model scale studies, which involved both axisymmetric and rectangular geometry, indicated that amplitude levels could be expected to be much higher in flight. High amplitude levels would likely occur in the overexpanded region for axisymmetric geometry, and in the underexpanded region for rectangular geometry.

  14. Patos Lagoon outflow within the Río de la Plata plume using an airborne salinity mapper: Observing an embedded plume

    NASA Astrophysics Data System (ADS)

    Burrage, Derek; Wesson, Joel; Martinez, Carlos; Pérez, Tabare; Möller, Osmar, Jr.; Piola, Alberto

    2008-07-01

    Major river systems discharging into continental shelf waters frequently form buoyant coastal currents that propagate along the continental shelf in the direction of coastal trapped wave propagation (with the coast on the right/left, in the northern/southern hemisphere). The combined flow of the Uruguay and Paraná Rivers, which discharges freshwater into the Río de la Plata estuary (Lat. ˜36°S), often gives rise to a buoyant coastal current (the 'Plata plume') that extends northward along the continental shelf off Uruguay and Southern Brazil. Depending upon the prevailing rainfall, wind and tidal conditions, the Patos/Mirim Lagoon complex (Lat. ˜32°S) may also produce a freshwater outflow plume that expands across the inner continental shelf. Under these circumstances the Patos outflow plume can be embedded in temperature, salinity and current fields that are strongly influenced by the larger Plata plume. The purpose of this paper is to present observations of such an embedded plume structure and to determine the dynamical characteristics of the ambient and embedded plumes. We describe selected results of coincident airborne remote sensing and shipboard in-situ surveys of the salinity distribution and extent of the Plata and Patos/Mirim Lagoon plumes conducted under contrasting winter (2003) and summer (2004) conditions. The surveys were carried out in the context of a comprehensive multi-disciplinary study of the Plata plume and its response to prevailing seasonal weather conditions. The objective was to map the surface salinity distribution of the Plata plume at synoptic scales under representative winter and summer conditions. Additionally, the airborne survey included finer-scale mapping of specific features including the Río de Plata estuarine front and the Patos Lagoon plume, with the objective of determining the distribution and behavior of the plumes in the estuaries and on the continental shelf. The airborne survey was conducted with an aircraft

  15. DIRECT MEASUREMENT OF MERCURY REACTIONS IN COAL POWER PLANT PLUMES

    SciTech Connect

    Leonard Levin

    2006-06-01

    -September 5, 2003. The experimental site was the Pleasant Prairie Power Plant in Pleasant Prairie, Wisconsin, just west of Kenosha. The experiment involved using an aircraft to capture emissions and document chemistry changes in the plume. While using the airplane for sampling, supplemental fast-response sensors for NOx, connected to data loggers, were used to gauge entry and exit times and transect intervals through plume emissions material. The Frontier Geosciences Static Plume Dilution Chamber (SPDC) was employed simultaneously adjacent to the stack to correlate its findings with the aircraft sampling, as well as providing evaluation of the SPDC as a rapid, less costly sampler for mercury chemistry. A complementary stack plume method, the Dynamic Plume Dilution (DPD) was used in the latter portion of the experiment to measure mercury speciation to observe any mercury reduction reaction with respect to both the reaction time (5 to 30 seconds) and dilution ratio. In addition, stack sampling using the ''Ontario Hydro'' wet chemistry method and continuous mercury monitors (CMM) were used to establish the baseline chemistry in the stack. Comparisons among stack, SPDC, DPD and aircraft measurements allow establishment of whether significant chemical changes to mercury occur in the plume, and of the verisimilitude of the SPDC and DPD methods. This progress report summarizes activities during a period of results review from the stack/aircraft subcontractor, data analysis and synthesis, and preparation and presentation of preliminary results to technical and oversight meetings.

  16. Emissions of Black Carbon Particles in Anthropogenic and Biomass Plumes over California during CARB 2008

    NASA Astrophysics Data System (ADS)

    Sahu, L. K.; Kondo, Y.; Moteki, N.; Takegawa, N.; Zhao, Y.; Vay, S. A.; Diskin, G. S.; Wisthaler, A.; Huey, L. G.

    2009-12-01

    Measurements of black carbon (BC) and other chemical species were made from the NASA DC-8 aircraft during the CARB campaign conducted over California in June 2008. We operated an SP2 system that measured BC and scattering particles. The vertical profiles of BC and scattering particles show enhancements in the lower troposphere. We have used relations of CO-CH3CN-SO2 to identify the sources of major plumes. The plumes originating from anthropogenic activities, mainly due to the use of fossil fuels (FF), were observed near the surface. However, the influence of smoke plumes from wild fire or biomass-burning (BB) sources was observed up to 3 km. Overall, the 1-minute average BC mass concentrations were in the ranges of about 90-500 ng/m3 and 300-700 ng/m3 in FF and BB plumes, respectively. The shell/core diameter ratios were much lagerer in BB plumes than those in FF plumes. Namely, the median shell/core ratios were 1.2-1.4 for FF plumes, while they were 1.4-1.7 for BB plumes. In both FF and BB plumes, the mass-size distributions of BC were single mode lognormal. However, the mass median diameters FF plumes were considerably smaller. The BC-CO2 regression slopes were 19±9 ng m-3/ppmv and 270±90 ng m-3/ppmv for FF and BB plumes, respectively. On the other hand the regression slopes of BC-CO were about 3.3 ng m-3/ppbv in both the plumes. Conversely, the regression slopes of BC with other co-emitted combustions products can be used to estimate the contributions of emissions from different sources.

  17. Upwelling relaxation and estuarine plumes

    NASA Astrophysics Data System (ADS)

    Rao, Shivanesh; Pringle, James; Austin, Jay

    2011-09-01

    After coastal upwelling, the water properties in the nearshore coastal region close to estuaries is determined by the race between the new estuarine plume traveling along the coast and the upwelled front (a marker for the old upwelled plume and the coastal pycnocline) returning to the coast under downwelling winds. Away from an estuary, downwelling winds can return the upwelled front to the coast bringing less dense water nearshore. Near the estuary, the estuarine plume can arrive along the coast and return less dense water to the nearshore region before the upwelled front returns to the coast. Where the plume brings less dense water to the coast first, the plume keeps the upwelled front from returning to the coast. In this region, only the plume and the anthropogenic input and larvae associated with the plume waters influence the nearshore after upwelling. We quantify the extent of the region where the plume is responsible for bringing less dense water to the nearshore and keeping the upwelled front from returning to the coast after upwelling. We successfully tested our predictions against numerical experiments and field observations of the Chesapeake plume near Duck, North Carolina. We argue that this alongshore region exists for other estuaries where the time-integrated upwelling and downwelling wind stresses are comparable.

  18. Structure of axisymmetric mantle plumes

    NASA Technical Reports Server (NTRS)

    Olson, Peter; Schubert, Gerald; Anderson, Charles

    1993-01-01

    The structure of axisymmetric subsolidus thermal plumes in the earth's lower mantle is inferred from calculations of axisymmetric thermal plumes in an infinite Prandtl number fluid with thermally activated viscosity. The velocity and temperature distribution is determined for axisymmetric convection above a heated disk in an incompressible fluid cylinder 2,400 km in height and 1,200 km in diameter. Several calculations of plumes with heat transport in the range 100-400 GW, similar to the advective heat transport at the Hawaiian hotspot, are presented. Hotspot formation by plumes originating at the base of the mantle requires both large viscosity variations and a minimum heat transport.

  19. Aircraft observations of extreme ozone concentrations near thunderstorms

    SciTech Connect

    Clarke, J.F.; Griffing, G.W.

    1985-01-01

    Anomalously large short-term ozone concentrations were observed on several occasions by aircraft during an experiment on August 5, 1980, to characterize the physical and chemical properties of the Baltimore urban plume. The ozone spikes of about 500 ppb were traversed by aircraft in less than 30 s (travel distance of less than 2 km). Analysis of these and ancillary data suggest that the ozone spikes may have resulted from ozone production by chemical reactions activated by lightning associated with thunderstorms.

  20. Aircraft cybernetics

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The use of computers for aircraft control, flight simulation, and inertial navigation is explored. The man-machine relation problem in aviation is addressed. Simple and self-adapting autopilots are described and the assets and liabilities of digital navigation techniques are assessed.

  1. Patos Lagoon Outflow Within the Rio de la Plata Plume Using an Airborne Salinity Mapper

    NASA Astrophysics Data System (ADS)

    Burrage, D.; Wesson, J.; Martinez, C.; Perez, T.; Moller, O., Jr.; Piola, A.

    2005-05-01

    Major river systems discharging into continental shelf waters frequently form buoyant coastal currents that propagate along the continental shelf in a direction corresponding to that of coastal trapped wave propagation (with the coast on the right/left, in the northern/southern hemisphere). The combined flow of the Uruguay and Parana Rivers, which discharges freshwater into the Rio de La Plata estuary (Latitude ~36 S), frequently gives rise to a buoyant coastal current (the 'La Plata plume') that extends northward along the continental shelf off Uruguay and Southern Brazil. Depending upon the prevailing rainfall, wind and tidal conditions, the Patos/Mirim Lagoon complex (Latitude ~ 32 S) also produces a freshwater outflow plume that expands across the inner continental shelf. Under these circumstances the Patos outflow plume may be embedded in temperature, salinity and current fields that are strongly influenced by the larger Plata plume. The purpose of this paper is to present observations of such an embedded plume structure and to determine the implications for the dynamics of the smaller Patos plume. We describe the results of an airborne remote sensing and shipboard in situ study of the salinity distribution and extent of the La Plata and Patos/Mirim Lagoon plumes conducted under contrasting winter (2003) and summer (2004) conditions. The survey was conducted using an aircraft carrying NRL's Salinity, Temperature and Roughness Remote Scanner (STARRS). A series of broad-scale flights was conducted over the continental shelf off Argentina, Uruguay and Brazil, and a detailed mapping flight was undertaken over the Patos/Mirim outflow region. Their purpose was to determine the distribution and behavior of the Plata and Patos Lagoon plumes on the continental shelf under representative winter and summer conditions. The resulting airborne and shipboard hydrographic data are compared with dynamical model parameter estimates to address the following questions: What is

  2. Axisymmetric computational fluid dynamics analysis of a film/dump-cooled rocket nozzle plume

    NASA Technical Reports Server (NTRS)

    Tucker, P. K.; Warsi, S. A.

    1993-01-01

    Prediction of convective base heating rates for a new launch vehicle presents significant challenges to analysts concerned with base environments. The present effort seeks to augment classical base heating scaling techniques via a detailed investigation of the exhaust plume shear layer of a single H2/O2 Space Transportation Main Engine (STME). Use of fuel-rich turbine exhaust to cool the STME nozzle presented concerns regarding potential recirculation of these gases to the base region with attendant increase in the base heating rate. A pressure-based full Navier-Stokes computational fluid dynamics (CFD) code with finite rate chemistry is used to predict plumes for vehicle altitudes of 10 kft and 50 kft. Levels of combustible species within the plume shear layers are calculated in order to assess assumptions made in the base heating analysis.

  3. A Method for Reducing the Temperature of Exhaust Manifolds

    NASA Technical Reports Server (NTRS)

    Schey, Oscar W; Young, Alfred W

    1931-01-01

    This report describes tests conducted at the Langley Memorial Aeronautical Laboratory on an "air-inducting" exhaust manifold for aircraft engines. The exhaust gases from each cylinder port are discharged into the throat of an exhaust pipe which has a frontal bellmouth. Cooling air is drawn into the pipe, where it surrounds and mixes with the exhaust gases. Temperatures of the manifold shell and of the exhaust gases were obtained in flight for both a conventional manifold and the air-inducting manifold. The air-inducting manifold was installed on an engine which was placed on a test stand. Different fuels were sprayed on and into the manifold to determine whether the use of this manifold reduced the fire hazard. The flight tests showed reductions in manifold temperatures of several hundred degrees, to values below the ignition point of aviation gasoline. On the test stand when the engine was run at idling speeds fuels sprayed into the manifold ignited. It is believed that at low engine speeds the fuel remained in the manifold long enough to become thoroughly heated, and was then ignited by the exhaust gas which had not mixed with cooling air. The use of the air-inducting exhaust manifold must reduce the fire hazard by virtue of its lower operating temperature, but it is not a completely satisfactory solution of the problem.

  4. Exhaust gas recirculator

    SciTech Connect

    Suda, K.

    1983-01-04

    An exhaust gas recirculator for an internal combustion engine having an exhaust pipe, an intake manifold and a carburetor throttle valve. The exhaust gas recirculator comprises an egr passage which makes the exhaust pipe communicate with the intake manifold, an egr controlling valve and an egr valve respectively arranged in the upper and lower portions of the egr passage. The egr valve operates in association with the carburetor throttle valve for metering the flow of egr gas. The egr controlling valve is separated by a diaphragm into an egr gas chamber communicating with the egr passage between the egr controlling valve and the egr valve and a negative pressure chamber communicating with the intake manifold. The negative pressure chamber contains a compression spring, and the diaphragm is connected with a valve member through a rod upon which is disposed a stopper to serve as a different seal in place of the valve member to close off the exhaust gas passage, which valve member and stopper are constructed to be opened and closed by pressure difference between the egr gas chamber and the negative pressure chamber and by elastic force of the compression spring. The egr controlling valve functions to control the pressure difference around the egr valve to be constant.

  5. High-speed Civil Transport Aircraft Emissions

    NASA Technical Reports Server (NTRS)

    Miake-Lye, Richard C.; Matulaitis, J. A.; Krause, F. H.; Dodds, Willard J.; Albers, Martin; Hourmouziadis, J.; Hasel, K. L.; Lohmann, R. P.; Stander, C.; Gerstle, John H.

    1992-01-01

    Estimates are given for the emissions from a proposed high speed civil transport (HSCT). This advanced technology supersonic aircraft would fly in the lower stratosphere at a speed of roughly Mach 1.6 to 3.2 (470 to 950 m/sec or 920 to 1850 knots). Because it would fly in the stratosphere at an altitude in the range of 15 to 23 km commensurate with its design speed, its exhaust effluents could perturb the chemical balance in the upper atmosphere. The first step in determining the nature and magnitude of any chemical changes in the atmosphere resulting from these proposed aircraft is to identify and quantify the chemically important species they emit. Relevant earlier work is summarized, dating back to the Climatic Impact Assessment Program of the early 1970s and current propulsion research efforts. Estimates are provided of the chemical composition of an HSCT's exhaust, and these emission indices are presented. Other aircraft emissions that are not due to combustion processes are also summarized; these emissions are found to be much smaller than the exhaust emissions. Future advances in propulsion technology, in experimental measurement techniques, and in understanding upper atmospheric chemistry may affect these estimates of the amounts of trace exhaust species or their relative importance.

  6. A wide field-of-view imaging DOAS instrument for two-dimensional trace gas mapping from aircraft

    NASA Astrophysics Data System (ADS)

    Schönhardt, A.; Altube, P.; Gerilowski, K.; Krautwurst, S.; Hartmann, J.; Meier, A. C.; Richter, A.; Burrows, J. P.

    2015-12-01

    -west Germany, AirMAP clearly detected the emission plume downwind from the exhaust stack, with NO2 vertical columns around 2 × 1016 molecules cm-2 in the plume centre. NOx emissions estimated from the AirMAP observations are consistent with reports in the European Pollutant Release and Transfer Register. Strong spatial gradients and variability in NO2 amounts across and along flight direction are observed, and small-scale enhancements of NO2 above a motorway are detected.

  7. Gas and hydrogen isotopic analyses of volcanic eruption clouds in Guatemala sampled by aircraft

    USGS Publications Warehouse

    Rose, W.I.; Cadle, R.D.; Heidt, L.E.; Friedman, I.; Lazrus, A.L.; Huebert, B.J.

    1980-01-01

    Gas samples were collected by aircraft entering volcanic eruption clouds of three Guatemalan volcanoes. Gas chromatographic analyses show higher H2 and S gas contents in ash eruption clouds and lower H2 and S gases in vaporous gas plumes. H isotopic data demonstrate lighter isotopic distribution of water vapor in ash eruption clouds than in vaporous gas plumes. Most of the H2O in the vaporous plumes is probably meteoric. The data are the first direct gas analyses of explosive eruptive clouds, and demonstrate that, in spite of atmospheric admixture, useful compositional information on eruptive gases can be obtained using aircraft. ?? 1980.

  8. D-558-2 being mounted to P2B-1S launch aircraft in hangar

    NASA Technical Reports Server (NTRS)

    1954-01-01

    during take-off and landing and in tight turns. The three aircraft gathered a great deal of data about pitch-up and the coupling of lateral (yaw) and longitudinal (pitch) motions; wing and tail loads, lift, drag, and buffeting characteristics of swept-wing aircraft at transonic and supersonic speeds; and the effects of the rocket exhaust plume on lateral dynamic stability throughout the speed range. (Plume effects were a new experience for aircraft.) The number three aircraft also gathered information about the effects of external stores (bomb shapes, drop tanks) upon the aircraft's behavior in the transonic region (roughly 0.7 to 1.3 times the speed of sound). In correlation with data from other early transonic research aircraft such as the XF-92A, this information contributed to solutions to the pitch-up problem in swept-wing aircraft. The three airplanes flew a total of 313 times--123 by the number one aircraft (Bureau No. 37973--NACA 143), 103 by the second Skyrocket (Bureau No. 37974--NACA 144), and 87 by airplane number three (Bureau No. 37975--NACA 145). Skyrocket 143 flew all but one of its missions as part of the Douglas contractor program to test the airplane's performance. NACA aircraft 143 was initially powered by a Westinghouse J-34-40 turbojet engine configured only for ground take-offs, but in 1954-55 the contractor modified it to an all-rocket air-launch capability featuring an LR8-RM-6, 4-chamber Reaction Motors engine rated at 6,000 pounds of thrust at sea level (the Navy designation for the Air Force's LR-11 used in the X-1). In this configuration, NACA research pilot John McKay flew the airplane only once for familiarization on September 17, 1956. The 123 flights of NACA 143 served to validate wind-tunnel predictions of the airplane's performance, except for the fact that the airplane experienced less drag above Mach 0.85 than the wind tunnels had indicated. NACA 144 also began its flight program with a turbojet powerplant. NACA pilots Robert A

  9. The shipboard exposure testing of aircraft materials

    NASA Astrophysics Data System (ADS)

    Tankins, E.; Kozol, J.; Lee, E. W.

    1995-09-01

    The aircraft carrier environment provides the most severe conditions to which naval aircraft materials are exposed. The combination of humidity, temperature, salt content from the water vapor, and sulfur dioxide from aircraft exhausts creates an extremely corrosive environment. Under these conditions, unprotected high-strength aluminum alloys exhibit extensive exfoliation during relatively short periods of exposure. Although various ASTM standards have been established to characterize corrosion (ranging from exfoliation to general corrosion and pitting), there is no laboratory test that compares with real-time aircraft exposure. Still, accelerated laboratory tests have been devised that well simulate the exposure of aluminum alloys in the natural environment, although there is no real correlation for aluminum-lithium alloys. Considering these factors, this paper compares the results of shipboard exposure testing with those obtained from laboratory accelerated tests.

  10. Overview of NASA GRCs Green Propellant Infusion Mission Thruster Testing and Plume Diagnostics

    NASA Technical Reports Server (NTRS)

    Deans, Matthew C.; Reed, Brian D.; Yim, John T.; Arrington, Lynn A.; Williams, George J.; Kojima, Jun J.; McLean, Christopher H.

    2014-01-01

    The Green Propellant Infusion Mission (GPIM) is sponsored by NASA's Space Technology Mission Directorate (STMD) Technology Demonstration Mission (TDM) office. The goal of GPIM is to advance the technology readiness level of a green propulsion system, specifically, one using the monopropellant, AF-M315E, by demonstrating ground handling, spacecraft processing, and on-orbit operations. One of the risks identified for GPIM is potential contamination of sensitive spacecraft surfaces from the effluents in the plumes of AF-M315E thrusters. NASA Glenn Research Center (GRC) is conducting activities to characterize the effects of AF-M315E plume impingement and deposition. GRC has established individual plume models of the 22-N and 1-N thrusters that will be used on the GPIM spacecraft. The models describe the pressure, temperature, density, Mach number, and species concentration of the AF-M315E thruster exhaust plumes. The models are being used to assess the impingement effects of the AF-M315E thrusters on the GPIM spacecraft. The model simulations will be correlated with plume measurement data from Laboratory and Engineering Model 22-N, AF-M315E thrusters. The thrusters will be tested in a small rocket, altitude facility at NASA GRC. The GRC thruster testing will be conducted at duty cycles representatives of the planned GPIM maneuvers. A suite of laser-based diagnostics, including Raman spectroscopy, Rayleigh spectroscopy, Schlieren imaging, and physical probes will be used to acquire plume measurements of AFM315E thrusters. Plume data will include temperature, velocity, relative density, and species concentration. The plume measurement data will be compared to the corresponding simulations of the plume model. The GRC effort will establish a data set of AF-M315E plume measurements and a plume model that can be used for future AF-M315E applications.

  11. Anthropogenic point and area source CO2 plume measurements: Implications for spaceborne CO2 sensor design

    NASA Astrophysics Data System (ADS)

    Andrews, A. E.; Ryerson, T. B.; Peischl, J.; Parrish, D. D.; Trainer, M.; Tans, P. P.

    2011-12-01

    Anthropogenic point and area source CO2 plume measurements: Implications for spaceborne CO2 sensor design A. Andrews, T. Ryerson, J. Peischl, D. Parrish, M. Trainer, P. Tans An extensive dataset of CO2 concentrations including enhancements in point and area source plumes is available from in situ measurements collected using the NOAA P-3 and NCAR Electra research aircraft during seven major field projects from 1999 through 2010. Research flights sampled emission plumes from coal-, oil-, and natural gas-fired electric utility power plants, industrial facilities, and urban areas. Plume sampling often included horizontal transects at several altitudes and multiple distances downwind. CO2 data from crosswind transects upwind and downwind, coupled with ancillary measurements of co-emitted nitric oxide, nitrogen dioxide and sulfur dioxide, along with plume location, and wind speed and direction permit unambiguous attribution and quantification of atmospheric plumes from individual sources. Certain point sources were revisited on multiple flights over the course of 1-2 month long field projects and on successive field projects spanning several years. Sampling occurred primarily in the summertime, daytime continental boundary layer, with some plume studies performed after dark and in the spring, fall, and winter seasons. The data provide rigorously calibrated, measurement-based constraints on the expected range of atmospheric CO2 plume enhancements that can be used to assess satellite sensor concepts. Crosswind near-field (~5 km) transects in the summer daytime mixed-layer downwind of the strongest point sources were characterized by peak plume CO2 mixing ratio enhancements >100 ppm above background for the 100-m spatial averages reported from the moving aircraft. On many flights, the aircraft tracked such emissions plumes beyond 150 km downwind, or up to 10 hours of transport time, until plume enhancements were indistinguishable from background variability in CO2

  12. Atmospheric chemistry in volcanic plumes

    PubMed Central

    von Glasow, Roland

    2010-01-01

    Recent field observations have shown that the atmospheric plumes of quiescently degassing volcanoes are chemically very active, pointing to the role of chemical cycles involving halogen species and heterogeneous reactions on aerosol particles that have previously been unexplored for this type of volcanic plumes. Key features of these measurements can be reproduced by numerical models such as the one employed in this study. The model shows sustained high levels of reactive bromine in the plume, leading to extensive ozone destruction, that, depending on plume dispersal, can be maintained for several days. The very high concentrations of sulfur dioxide in the volcanic plume reduces the lifetime of the OH radical drastically, so that it is virtually absent in the volcanic plume. This would imply an increased lifetime of methane in volcanic plumes, unless reactive chlorine chemistry in the plume is strong enough to offset the lack of OH chemistry. A further effect of bromine chemistry in addition to ozone destruction shown by the model studies presented here, is the oxidation of mercury. This relates to mercury that has been coemitted with bromine from the volcano but also to background atmospheric mercury. The rapid oxidation of mercury implies a drastically reduced atmospheric lifetime of mercury so that the contribution of volcanic mercury to the atmospheric background might be less than previously thought. However, the implications, especially health and environmental effects due to deposition, might be substantial and warrant further studies, especially field measurements to test this hypothesis. PMID:20368458

  13. Atmospheric chemistry in volcanic plumes.

    PubMed

    von Glasow, Roland

    2010-04-13

    Recent field observations have shown that the atmospheric plumes of quiescently degassing volcanoes are chemically very active, pointing to the role of chemical cycles involving halogen species and heterogeneous reactions on aerosol particles that have previously been unexplored for this type of volcanic plumes. Key features of these measurements can be reproduced by numerical models such as the one employed in this study. The model shows sustained high levels of reactive bromine in the plume, leading to extensive ozone destruction, that, depending on plume dispersal, can be maintained for several days. The very high concentrations of sulfur dioxide in the volcanic plume reduces the lifetime of the OH radical drastically, so that it is virtually absent in the volcanic plume. This would imply an increased lifetime of methane in volcanic plumes, unless reactive chlorine chemistry in the plume is strong enough to offset the lack of OH chemistry. A further effect of bromine chemistry in addition to ozone destruction shown by the model studies presented here, is the oxidation of mercury. This relates to mercury that has been coemitted with bromine from the volcano but also to background atmospheric mercury. The rapid oxidation of mercury implies a drastically reduced atmospheric lifetime of mercury so that the contribution of volcanic mercury to the atmospheric background might be less than previously thought. However, the implications, especially health and environmental effects due to deposition, might be substantial and warrant further studies, especially field measurements to test this hypothesis.

  14. Midwave infrared imaging Fourier transform spectrometry of combustion plumes

    NASA Astrophysics Data System (ADS)

    Bradley, Kenneth C.

    A midwave infrared (MWIR) imaging Fourier transform spectrometer (IFTS) was used to successfully capture and analyze hyperspectral imagery of combustion plumes. Jet engine exhaust data from a small turbojet engine burning diesel fuel at a low rate of 300 cm3/min was collected at 1 cm -1 resolution from a side-plume vantage point on a 200x64 pixel window at a range of 11.2 meters. Spectral features of H2O, CO, and CO2 were present, and showed spatial variability within the plume structure. An array of thermocouple probes was positioned within the plume to aid in temperature analysis. A single-temperature plume model was implemented to obtain spatially-varying temperatures and plume concentrations. Model-fitted temperatures of 811 +/- 1.5 K and 543 +/- 1.6 K were obtained from plume regions in close proximity to thermocouple probes measuring temperatures of 719 K and 522 K, respectively. Industrial smokestack plume data from a coal-burning stack collected at 0.25 cm-1 resolution at a range of 600 meters featured strong emission from NO, CO, CO2, SO 2, and HCl in the spectral region 1800-3000 cm-1. A simplified radiative transfer model was employed to derive temperature and concentrations for clustered regions of the 128x64 pixel scene, with corresponding statistical error bounds. The hottest region (closest to stack centerline) was 401 +/- 0.36 K, compared to an in-stack measurement of 406 K, and model-derived concentration values of NO, CO2, and SO2 were 140 +/- 1 ppmV, 110,400 +/- 950 ppmV, and 382 +/- 4 ppmV compared to in-stack measurements of 120 ppmV (NOx), 94,000 ppmV, and 382 ppmV, respectively. In-stack measurements of CO and HCl were not provided by the stack operator, but model-derived values of 19 +/- 0.2 ppmV and 111 +/- 1 ppmV are reported near stack centerline. A deployment to Dugway Proving Grounds, UT to collect hyperspectral imagery of chemical and biological threat agent simulants resulted in weak spectral signatures from several species. Plume

  15. Lagrangian analysis of low altitude anthropogenic plume processing across the North Atlantic

    NASA Astrophysics Data System (ADS)

    Real, E.; Law, K. S.; Schlager, H.; Roiger, A.; Huntrieser, H.; Methven, J.; Cain, M.; Holloway, J.; Neuman, J. A.; Ryerson, T.; Flocke, F.; de Gouw, J.; Atlas, E.; Donnelly, S.; Parrish, D.

    2008-12-01

    The photochemical evolution of an anthropogenic plume from the New-York/Boston region during its transport at low altitudes over the North Atlantic to the European west coast has been studied using a Lagrangian framework. This plume, originally strongly polluted, was sampled by research aircraft just off the North American east coast on 3 successive days, and then 3 days downwind off the west coast of Ireland where another aircraft re-sampled a weakly polluted plume. Changes in trace gas concentrations during transport are reproduced using a photochemical trajectory model including deposition and mixing effects. Chemical and wet deposition processing dominated the evolution of all pollutants in the plume. The mean net photochemical O3 production is estimated to be -5 ppbv/day leading to low O3 by the time the plume reached Europe. Model runs with no wet deposition of HNO3 predicted much lower average net destruction of -1 ppbv/day O3, arising from increased levels of NOx via photolysis of HNO3. This indicates that wet deposition of HNO3 is indirectly responsible for 80% of the net destruction of ozone during plume transport. If the plume had not encountered precipitation, it would have reached Europe with O3 concentrations of up to 80 to 90 ppbv and CO between 120 and 140 ppbv. Photochemical destruction also played a more important role than mixing in the evolution of plume CO due to high levels of O3 and water vapour showing that CO cannot always be used as a tracer for polluted air masses, especially in plumes transported at low altitudes. The results also show that, in this case, an increase in O3/CO slopes can be attributed to photochemical destruction of CO and not to photochemical O3 production as is often assumed.

  16. Observation and Modeling of the Evolution of Texas Power Plant Plumes

    EPA Science Inventory

    During the second Texas Air Quality Study 2006 (TexAQS II), a full range of pollutants was measured by aircraft in eastern Texas during successive transects of power plant plumes (PPPs). A regional photochemical model is applied to simulate the physical and chemical evolution of ...

  17. Empirical Scaling Laws of Rocket Exhaust Cratering

    NASA Technical Reports Server (NTRS)

    Donahue, Carly M.; Metzger, Philip T.; Immer, Christopher D.

    2005-01-01

    When launching or landing a space craft on the regolith of a terrestrial surface, special attention needs to be paid to the rocket exhaust cratering effects. If the effects are not controlled, the rocket cratering could damage the spacecraft or other surrounding hardware. The cratering effects of a rocket landing on a planet's surface are not understood well, especially for the lunar case with the plume expanding in vacuum. As a result, the blast effects cannot be estimated sufficiently using analytical theories. It is necessary to develop physics-based simulation tools in order to calculate mission-essential parameters. In this work we test out the scaling laws of the physics in regard to growth rate of the crater depth. This will provide the physical insight necessary to begin the physics-based modeling.

  18. An experimental investigation of an arcjet thruster exhaust using Langmuir probes. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Carney, Lynnette M.

    1988-01-01

    Electrostatic (Langmuir) probes of both spherical and cylindrical geometry have been used to obtain electron number density and temperature in the exhaust of a laboratory arcjet. The arcjet thruster operated on nitrogen and hydrogen mixtures to simulate fully decomposed hydrazine in a vacuum environment with background pressures less than 5 x 10 to the -2 Pa. The exhaust appears to be only slightly ionized (less than 1 percent) with local plasma potentials near facility ground. The current-voltage characteristics of the probes indicate a Maxwellian temperature distribution. Plume data are presented as a function of arcjet operating condition and also position in the exhaust.

  19. Apollo Video Photogrammetry Estimation Of Plume Impingement Effects

    NASA Technical Reports Server (NTRS)

    Immer, Christopher; Lane, John; Metzger, Philip T.; Clements, Sandra

    2008-01-01

    The Constellation Project's planned return to the moon requires numerous landings at the same site. Since the top few centimeters are loosely packed regolith, plume impingement from the Lander ejects the granular material at high velocities. Much work is needed to understand the physics of plume impingement during landing in order to protect hardware surrounding the landing sites. While mostly qualitative in nature, the Apollo Lunar Module landing videos can provide a wealth of quantitative information using modem photogrammetry techniques. The authors have used the digitized videos to quantify plume impingement effects of the landing exhaust on the lunar surface. The dust ejection angle from the plume is estimated at 1-3 degrees. The lofted particle density is estimated at 10(exp 8)- 10(exp 13) particles per cubic meter. Additionally, evidence for ejection of large 10-15 cm sized objects and a dependence of ejection angle on thrust are presented. Further work is ongoing to continue quantitative analysis of the landing videos.

  20. Measurement and analysis of a small nozzle plume in vacuum

    NASA Technical Reports Server (NTRS)

    Penko, P. F.; Boyd, I. D.; Meissner, D. L.; Dewitt, K. J.

    1993-01-01

    Pitot pressures and flow angles are measured in the plume of a nozzle flowing nitrogen and exhausting to a vacuum. Total pressures are measured with Pitot tubes sized for specific regions of the plume and flow angles measured with a conical probe. The measurement area for total pressure extends 480 mm (16 exit diameters) downstream of the nozzle exit plane and radially to 60 mm (1.9 exit diameters) off the plume axis. The measurement area for flow angle extends to 160 mm (5 exit diameters) downstream and radially to 60 mm. The measurements are compared to results from a numerical simulation of the flow that is based on kinetic theory and uses the direct-simulation Monte Carlo (DSMC) method. Comparisons of computed results from the DSMC method with measurements of flow angle display good agreement in the far-field of the plume and improve with increasing distance from the exit plane. Pitot pressures computed from the DSMC method are in reasonably good agreement with experimental results over the entire measurement area.

  1. Numerical investigations in the backflow region of a vacuum plume

    NASA Technical Reports Server (NTRS)

    Liaw, Goang-Shin

    1995-01-01

    Four tasks were completed in this period and results were published in AIAA papers. First, a Boltzmann-2D code, was developed and applied to compute MSFC-A2 nozzle/plume flow field. It solved the two-dimensional Boltzmann-BGK equation using the Finite Difference Discrete Ordinate (FDDO) numerical technique. The code was validated by experimental data for one-dimensional shock structure predictions, paper 95-2056. Successful results for nozzle/plume flow simulation using the developed Boltzmann-2D code were presented at the 1995 AIAA Aerospace Science Conference, paper 95-0627. Second, a computer code solving two-dimensional Burnett equations was developed and applied to low-density nozzle flow field calculation. Results were also published at the 1994 AIAA Thermophysics Conference, paper 94-2055. Third, the developed two-dimensional Burnett code was extended to compute axisymmetric flow field inside MSFC-A2 nozzle, paper 95-2008. The computed nozzle exit conditions are used as input data for Direct Simulation Monte Carlo (DSMC) plume calculation. Fourth, a DSMC code was modified to compute the exhausted plume near the nozzle exit and in the backflow region.

  2. Numerical investigations in the backflow region of a vacuum plume

    NASA Astrophysics Data System (ADS)

    Liaw, Goang-Shin

    1995-08-01

    Four tasks were completed in this period and results were published in AIAA papers. First, a Boltzmann-2D code, was developed and applied to compute MSFC-A2 nozzle/plume flow field. It solved the two-dimensional Boltzmann-BGK equation using the Finite Difference Discrete Ordinate (FDDO) numerical technique. The code was validated by experimental data for one-dimensional shock structure predictions, paper 95-2056. Successful results for nozzle/plume flow simulation using the developed Boltzmann-2D code were presented at the 1995 AIAA Aerospace Science Conference, paper 95-0627. Second, a computer code solving two-dimensional Burnett equations was developed and applied to low-density nozzle flow field calculation. Results were also published at the 1994 AIAA Thermophysics Conference, paper 94-2055. Third, the developed two-dimensional Burnett code was extended to compute axisymmetric flow field inside MSFC-A2 nozzle, paper 95-2008. The computed nozzle exit conditions are used as input data for Direct Simulation Monte Carlo (DSMC) plume calculation. Fourth, a DSMC code was modified to compute the exhausted plume near the nozzle exit and in the backflow region.

  3. Scanning thermal plumes

    NASA Technical Reports Server (NTRS)

    Scarpace, F. L.; Madding, R. P.; Green, T., III

    1975-01-01

    Over a three-year period 800 thermal line scans of power plant plumes were made by an airborne scanner, with ground truth measured concurrently at the plants. Computations using centered finite differences in the thermal scanning imagery show a lower bound in the horizontal temperature gradient in excess of 1.6 C/m. Gradients persist to 3 m below the surface. Vector plots of the velocity of thermal fronts are constructed by tracing the front motion in successive thermal images. A procedure is outlined for the two-point ground calibration of a thermal scanner from an equation describing the scanner signal and the voltage for two known temperatures. The modulation transfer function is then calculated by input of a thermal step function and application of digital time analysis techniques using Fast Fourier Transforms to the voltage output. Field calibration tests are discussed. Data accuracy is limited by the level of ground truth effort chosen.

  4. Emission characteristics of black carbon in anthropogenic and biomass burning plumes over California during ARCTAS-CARB 2008

    NASA Astrophysics Data System (ADS)

    Sahu, L. K.; Kondo, Y.; Moteki, N.; Takegawa, N.; Zhao, Y.; Cubison, M. J.; Jimenez, J. L.; Vay, S.; Diskin, G. S.; Wisthaler, A.; Mikoviny, T.; Huey, L. G.; Weinheimer, A. J.; Knapp, D. J.

    2012-08-01

    The impact of aerosols on regional air quality and climate necessitates improved understanding of their emission and microphysical properties. The size distributions of black carbon (BC) and light scattering particles (LSP) were measured with a single particle soot photometer on board the NASA DC-8 aircraft during the ARCTAS mission 2008. Air sampling was made in the air plumes of both urban and forest fire emissions over California during the CARB (California Air Resources Board) phase of the mission. A total of eleven plumes were identified using SO2 and CH3CN tracers for fossil fuel (FF) combustion and biomass burning (BB), respectively. The enhancements of BC and LSP in BB plumes were significantly higher compared to those in FF plumes. The average mass concentration of BC in BB plumes was more than twice that in FF plumes. Except for the BC/CO ratio, distinct emission ratios of BC/CO2, BC/CH3CN, CH3CN/CO, and CO/CO2 were observed in the plumes from the two sources. Similarly, the microphysical properties of BC and LSP also showed distinct behaviors. The BC count median diameter (CMD) of 115 ± 5 nm in FF plumes was smaller compared to 141 ± 9 nm in the BB plumes. BC aerosols were thickly coated in BB plumes, the average shell/core ratios were 1.47 and 1.24 in BB and FF plumes, respectively. In the total mass of submicron aerosols, organic aerosols constituted about 67% in the FF plumes and 84% in BB plumes. The contribution of sulfate was also significant in the FF plumes.

  5. Photochemistry in biomass burning plumes and implications for tropospheric ozone over the tropical South Atlantic

    NASA Astrophysics Data System (ADS)

    Mauzerall, Denise L.; Logan, Jennifer A.; Jacob, Daniel J.; Anderson, Bruce E.; Blake, Donald R.; Bradshaw, John D.; Heikes, Brian; Sachse, Glenn W.; Singh, Hanwant; Talbot, Bob

    1998-04-01

    Photochemistry occuring in biomass burning plumes over the tropical south Atlantic is analyzed using data collected during the Transport and Atmospheric Chemistry Near the Equator-Atlantic aircraft expedition conducted during the tropical dry season in September 1992 and a photochemical point model. Enhancement ratios (ΔY/ΔX, where Δ indicates the enhancement of a compound in the plume above the local background mixing ratio, Y are individual hydrocarbons, CO, O3, N2O, HNO3, peroxyacetyl nitrate (PAN), CH2O, acetone, H2O2, CH3OOH, HCOOH, CH3COOH or aerosols and X is CO or CO2) are reported as a function of plume age inferred from the progression of Δnon-methane hydrocarbons/ΔCO enhancement ratios. Emission, formation, and loss of species in plumes can be diagnosed from progression of enhancement ratios from fresh to old plumes. O3 is produced in plumes over at least a 1 week period with mean ΔO3/ΔCO = 0.7 in old plumes. However, enhancement ratios in plumes can be influenced by changing background mixing ratios and by photochemical loss of CO. We estimate a downward correction of ˜20% in enhancement ratios in old plumes relative to ΔCO to correct for CO loss. In a case study of a large persistent biomass burning plume at 4-km we found elevated concentrations of PAN in the fresh plume. The degradation of PAN helped maintain NOx mixing ratios in the plume where, over the course of a week, PAN was converted to HNO3. Ozone production in the plume was limited by the availability of NOx, and because of the short lifetime of O3 at 4-km, net ozone production in the plume was negligible. Within the region, the majority of O3 production takes place in air above median CO concentration, indicating that most O3 production occurs in plumes. Scaling up from the mean observed ΔO3/ΔCO in old plumes, we estimate a minimum regional O3 production of 17×1010molecules O3 cm-2 s-1. This O3 production rate is sufficient to fully explain the observed enhancement in

  6. DIRECT MEASUREMENT OF MERCURY REACTIONS IN COAL POWER PLANT PLUMES

    SciTech Connect

    Leonard Levin

    2004-01-01

    -September 5, 2003. The experimental site was the Pleasant Prairie Power Plant in Pleasant Prairie, Wisconsin, just west of Kenosha. The experiment involved using an aircraft to capture emissions and document chemistry changes in the plume. While using the airplane for sampling, supplemental fast-response sensors for NOx, connected to data loggers, were used to gauge entry and exit times and transect intervals through plume emissions material. The Frontier Geosciences Static Plume Dilution Chamber (SPDC) was employed simultaneously adjacent to the stack to correlate its findings with the aircraft sampling, as well as providing evaluation of the SPDC as a rapid, less costly sampler for mercury chemistry. A complementary stack plume method, the Dynamic Plume Dilution (DPD) was used in the latter portion of the experiment to measure mercury speciation to observe any mercury reduction reaction with respect to both the reaction time (5 to 30 seconds) and dilution ratio. In addition, stack sampling using the ''Ontario Hydro'' wet chemistry method and continuous mercury monitors (CMM) were used to establish the baseline chemistry in the stack. Comparisons among stack, SPDC, DPD and aircraft measurements following data analysis will allow establishment of whether significant chemical changes to mercury occur in the plume, and of the verisimilitude of the SPDC and DPD methods.

  7. D-558-2 being mounted to P2B-1S launch aircraft

    NASA Technical Reports Server (NTRS)

    1953-01-01

    aircraft gathered a great deal of data about pitch-up and the coupling of lateral (yaw) and longitudinal (pitch) motions; wing and tail loads, lift, drag, and buffeting characteristics of swept-wing aircraft at transonic and supersonic speeds; and the effects of the rocket exhaust plume on lateral dynamic stability throughout the speed range. (Plume effects were a new experience for aircraft.) The number three aircraft also gathered information about the effects of external stores (bomb shapes, drop tanks) upon the aircraft's behavior in the transonic region (roughly 0.7 to 1.3 times the speed of sound). In correlation with data from other early transonic research aircraft such as the XF-92A, this information contributed to solutions to the pitch-up problem in swept-wing aircraft. The three airplanes flew a total of 313 times--123 by the number one aircraft (Bureau No. 37973--NACA 143), 103 by the second Skyrocket (Bureau No. 37974--NACA 144), and 87 by airplane number three (Bureau No. 37975--NACA 145). Skyrocket 143 flew all but one of its missions as part of the Douglas contractor program to test the airplane's performance. NACA aircraft 143 was initially powered by a Westinghouse J-34-40 turbojet engine configured only for ground take-offs, but in 1954-55 the contractor modified it to an all-rocket air-launch capability featuring an LR8-RM-6, 4-chamber Reaction Motors engine rated at 6,000 pounds of thrust at sea level (the Navy designation for the Air Force's LR-11 used in the X-1). In this configuration, NACA research pilot John McKay flew the airplane only once for familiarization on September 17, 1956. The 123 flights of NACA 143 served to validate wind-tunnel predictions of the airplane's performance, except for the fact that the airplane experienced less drag above Mach 0.85 than the wind tunnels had indicated. NACA 144 also began its flight program with a turbojet powerplant. NACA pilots Robert A. Champine and John H. Griffith flew 21 times in this configuration

  8. D-558-2 being mounted to P2B-1S launch aircraft

    NASA Technical Reports Server (NTRS)

    1953-01-01

    aircraft of that era, particularly at low speeds during take-off and landing and in tight turns. The three aircraft gathered a great deal of data about pitch-up and the coupling of lateral (yaw) and longitudinal (pitch) motions; wing and tail loads, lift, drag, and buffeting characteristics of swept-wing aircraft at transonic and supersonic speeds; and the effects of the rocket exhaust plume on lateral dynamic stability throughout the speed range. (Plume effects were a new experience for aircraft.) The number three aircraft also gathered information about the effects of external stores (bomb shapes, drop tanks) upon the aircraft's behavior in the transonic region (roughly 0.7 to 1.3 times the speed of sound). In correlation with data from other early transonic research aircraft such as the XF-92A, this information contributed to solutions to the pitch-up problem in swept-wing aircraft. The three airplanes flew a total of 313 times--123 by the number one aircraft (Bureau No. 37973--NACA 143), 103 by the second Skyrocket (Bureau No. 37974--NACA 144), and 87 by airplane number three (Bureau No. 37975--NACA 145). Skyrocket 143 flew all but one of its missions as part of the Douglas contractor program to test the airplane's performance. NACA aircraft 143 was initially powered by a Westinghouse J-34-40 turbojet engine configured only for ground take-offs, but in 1954-55 the contractor modified it to an all-rocket air-launch capability featuring an LR8-RM-6, 4-chamber Reaction Motors engine rated at 6,000 pounds of thrust at sea level (the Navy designation for the Air Force's LR-11 used in the X-1). In this configuration, NACA research pilot John McKay flew the airplane only once for familiarization on September 17, 1956. The 123 flights of NACA 143 served to validate wind-tunnel predictions of the airplane's performance, except for the fact that the airplane experienced less drag above Mach 0.85 than the wind tunnels had indicated. NACA 144 also began its flight program with a

  9. Exhaust bypass flow control for exhaust heat recovery

    SciTech Connect

    Reynolds, Michael G.

    2015-09-22

    An exhaust system for an engine comprises an exhaust heat recovery apparatus configured to receive exhaust gas from the engine and comprises a first flow passage in fluid communication with the exhaust gas and a second flow passage in fluid communication with the exhaust gas. A heat exchanger/energy recovery unit is disposed in the second flow passage and has a working fluid circulating therethrough for exchange of heat from the exhaust gas to the working fluid. A control valve is disposed downstream of the first and the second flow passages in a low temperature region of the exhaust heat recovery apparatus to direct exhaust gas through the first flow passage or the second flow passage.

  10. Diesel engine exhaust

    Integrated Risk Information System (IRIS)

    Diesel engine exhaust ; CASRN N.A . Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Ef

  11. Hybrid Exhaust Component

    NASA Technical Reports Server (NTRS)

    Pelletier, Gerard D. (Inventor); Logan, Charles P. (Inventor); McEnerney, Bryan William (Inventor); Haynes, Jeffrey D. (Inventor)

    2015-01-01

    An exhaust includes a wall that has a first composite material having a first coefficient of thermal expansion and a second composite material having a second coefficient of the thermal expansion that is less than the first coefficient of thermal expansion.

  12. Flow fields of low pressure vent exhausts

    NASA Technical Reports Server (NTRS)

    Scialdone, John J.

    1989-01-01

    The flow field produced by low pressure gas vents are described based on experimental data obtained from tests in a large vacuum chamber. The gas density, pressure, and flux at any location in the flow field are calculated based on the vent plume description and the knowledge of the flow rate and velocity of the venting gas. The same parameters and the column densities along a specified line of sight traversing the plume are also obtained and shown by a computer-generated graphical representation. The fields obtained with a radially scanning Pitot probe within the exhausting gas are described by a power of the cosine function, the mass rate and the distance from the exit port. The field measurements were made for gas at pressures ranging from 2 to 50 torr venting from pipe fittings with diameters of 3/16 inch to 1-1/2 inches I.D. (4.76 mm to 38.1 mm). The N(2) mass flow rates ranged from 2E-4 to 3.7E-1 g/s.

  13. CHEMICAL EVOLUTION OF A POWER-PLANT PLUME.

    SciTech Connect

    SPRINGSTON,S.R.; KLEINMAN,L.I.; BRECHTEL,F.; DAUM,P.H.; LEE,Y.N.; NUNNERMACKER,L.J.; WEINSTEIN-LLOYD,J.

    2001-10-01

    Measurements made from the DOE G-1 aircraft were used to calculate the rate and efficiency of O{sub 3} production downwind of an isolated, coal-fired power plant. The plume was transected 12 times at distances ranging to 65 km from its source (corresponding to an age of {approx}4 h assuming constant wind velocity). For NO{sub x}, a loss rate of 0.5 h{sup -1} was calculated. If reaction with OH was the sole loss mechanism, then an [OH] = 1.6 x 10{sup 7}molec/cm{sup 3} is inferred, which is {approx}2-3X values calculated using a box model constrained by observations. Possible explanations for this discrepancy are discussed. O{sub 3} production per molecule of NO{sub x} approached 6-8 after the plume had aged >3h. Peak O{sub 3} concentrations were 15 ppbv above background. Dilution appears to limit the peak O{sub 3} concentration despite the high production efficiency. Hydrocarbon samples indicate high levels of VOC reactivity ({approx}8 s{sup -1}) in the plume. The number concentration of accumulation mode particles increases significantly with plume age indicating a rapid formation of aerosol mass.

  14. Chemical characterization of the fine particle emissions from commercial aircraft engines during the Aircraft Particle Emissions eXperiment (APEX) 1 to 3.

    PubMed

    Kinsey, J S; Hays, M D; Dong, Y; Williams, D C; Logan, R

    2011-04-15

    This paper addresses the need for detailed chemical information on the fine particulate matter (PM) generated by commercial aviation engines. The exhaust plumes of seven turbofan engine models were sampled as part of the three test campaigns of the Aircraft Particle Emissions eXperiment (APEX). In these experiments, continuous measurements of black carbon (BC) and particle surface-bound polycyclic aromatic compounds (PAHs) were conducted. In addition, time-integrated sampling was performed for bulk elemental composition, water-soluble ions, organic and elemental carbon (OC and EC), and trace semivolatile organic compounds (SVOCs). The continuous BC and PAH monitoring showed a characteristic U-shaped curve of the emission index (EI or mass of pollutant/mass of fuel burned) vs fuel flow for the turbofan engines tested. The time-integrated EIs for both elemental composition and water-soluble ions were heavily dominated by sulfur and SO(4)(2-), respectively, with a ∼2.4% median conversion of fuel S(IV) to particle S(VI). The corrected OC and EC emission indices obtained in this study ranged from 37 to 83 mg/kg and 21 to 275 mg/kg, respectively, with the EC/OC ratio ranging from ∼0.3 to 7 depending on engine type and test conditions. Finally, the particle SVOC EIs varied by as much as 2 orders of magnitude with distinct variations in chemical composition observed for different engine types and operating conditions.

  15. Chemical characterization of the fine particle emissions from commercial aircraft engines during the Aircraft Particle Emissions eXperiment (APEX) 1 to 3.

    PubMed

    Kinsey, J S; Hays, M D; Dong, Y; Williams, D C; Logan, R

    2011-04-15

    This paper addresses the need for detailed chemical information on the fine particulate matter (PM) generated by commercial aviation engines. The exhaust plumes of seven turbofan engine models were sampled as part of the three test campaigns of the Aircraft Particle Emissions eXperiment (APEX). In these experiments, continuous measurements of black carbon (BC) and particle surface-bound polycyclic aromatic compounds (PAHs) were conducted. In addition, time-integrated sampling was performed for bulk elemental composition, water-soluble ions, organic and elemental carbon (OC and EC), and trace semivolatile organic compounds (SVOCs). The continuous BC and PAH monitoring showed a characteristic U-shaped curve of the emission index (EI or mass of pollutant/mass of fuel burned) vs fuel flow for the turbofan engines tested. The time-integrated EIs for both elemental composition and water-soluble ions were heavily dominated by sulfur and SO(4)(2-), respectively, with a ∼2.4% median conversion of fuel S(IV) to particle S(VI). The corrected OC and EC emission indices obtained in this study ranged from 37 to 83 mg/kg and 21 to 275 mg/kg, respectively, with the EC/OC ratio ranging from ∼0.3 to 7 depending on engine type and test conditions. Finally, the particle SVOC EIs varied by as much as 2 orders of magnitude with distinct variations in chemical composition observed for different engine types and operating conditions. PMID:21428391

  16. Considerations of high altitude emissions. [from supersonic cruise aircraft

    NASA Technical Reports Server (NTRS)

    Broderick, A. J.; Krull, N. P.

    1976-01-01

    The status of the Federal Aviation Administration's High Altitude Pollution Program is described which was instituted to develop the detailed quantitative information needed to judge whether or not regulatory action to limit such exhaust emissions would be necessary. The complexities of this question and the nature and magnitude of uncertainties still present in our scientific understanding of the potential interactions between aircraft exhaust emissions and stratospheric ozone and climate are reviewed. The direction and scope of future Federal and international activities are described.

  17. Remote monitoring of the Gravelly Run thermal plume at Hopewell and the thermal plume at the Surry Nuclear Power Plant on the James River

    NASA Technical Reports Server (NTRS)

    Talay, T. A.; Sykes, K. W.; Kuo, C. Y.

    1979-01-01

    On May 17, 1977, a remote sensing experiment was conducted on the James River, Virginia, whereby thermal spectrometer and near-infrared photography data of thermal discharges at Hopewell and the Surry nuclear power plant were obtained by an aircraft for one tidal cycle. These data were used in subsequent investigations into the near field discharge trajectories. For the Gravelly Run thermal plume at Hopewell, several empirical expressions for the plume centerline were evaluated by comparisons of the computed trajectories and those observed in the remote sensing images.

  18. The ARCTAS aircraft mission: design and execution

    NASA Astrophysics Data System (ADS)

    Jacob, D. J.; Crawford, J. H.; Maring, H. B.; Clarke, A. D.; Dibb, J. E.; Ferrare, R. A.; Hostetler, C. A.; Russell, P. B.; Singh, H. B.; Thompson, A. M.; Shaw, G. E.; McCauley, E.; Pederson, J. R.; Fisher, J. A.

    2009-12-01

    We present an overview of the NASA Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) mission, conducted in two 3-week deployments based in Alaska (April 2008) and western Canada (June-July 2008). The goal of ARCTAS was to better understand the factors driving current changes in Arctic atmospheric composition and climate, including (1) transport of mid-latitude pollution, (2) boreal forest fires, (3) aerosol radiative forcing, and (4) chemical processes. ARCTAS involved three aircraft: a DC-8 with detailed chemical payload, a P-3 with extensive aerosol payload, and a B-200 with aerosol remote sensing instrumentation. The aircraft augmented satellite observations of Arctic atmospheric composition, in particular from the NASA A-Train, by (1) validating the data, (2) improving constraints on retrievals, (3) making correlated observations, and (4) characterizing chemical and aerosol processes. The April flights (ARCTAS-A) sampled pollution plumes from all three mid-latitude continents, fire plumes from Siberia and Southeast Asia, and halogen radical events. The June-July flights (ARCTAS-B) focused on boreal forest fire influences and sampled fresh fire plumes from northern Saskatchewan as well as older fire plumes from Canada, Siberia, and California. The June-July deployment was preceded by one week of flights over California sponsored by the California Air Resources Board (ARCTAS-CARB). The ARCTAS-CARB goals were to (1) improve state emission inventories for greenhouse gases and aerosols, (2) provide observations to test and improve models of ozone and aerosol pollution. Extensive sampling across southern California and the Central Valley characterized emissions from urban centers, offshore shipping lanes, agricultural crops, feedlots, industrial sources, and wildfires.

  19. Characterization of particulate matter and gaseous emissions of a C-130H aircraft.

    PubMed

    Corporan, Edwin; Quick, Adam; DeWitt, Matthew J

    2008-04-01

    The gaseous and nonvolatile particulate matter (PM) emissions of two T56-A-15 turboprop engines of a C-130H aircraft stationed at the 123rd Airlift Wing in the Kentucky Air National Guard were characterized. The emissions campaign supports the Strategic Environmental Research and Development Program (SERDP) project WP-1401 to determine emissions factors from military aircraft. The purpose of the project is to develop a comprehensive emissions measurement program using both conventional and advanced techniques to determine emissions factors of pollutants, and to investigate the spatial and temporal evolutions of the exhaust plumes from fixed and rotating wing military aircraft. Standard practices for the measurement of gaseous emissions from aircraft have been well established; however, there is no certified methodology for the measurement of aircraft PM emissions. In this study, several conventional instruments were used to physically characterize and quantify the PM emissions from the two turboprop engines. Emissions samples were extracted from the engine exit plane and transported to the analytical instrumentation via heated lines. Multiple sampling probes were used to assess the spatial variation and obtain a representative average of the engine emissions. Particle concentrations, size distributions, and mass emissions were measured using commercially available aerosol instruments. Engine smoke numbers were determined using established Society of Automotive Engineers (SAE) practices, and gaseous species were quantified via a Fourier-transform infrared-based gas analyzer. The engines were tested at five power settings, from idle to take-off power, to cover a wide range of operating conditions. Average corrected particle numbers (PNs) of (6.4-14.3) x 10(7) particles per cm3 and PN emission indices (EI) from 3.5 x 10(15) to 10.0 x 10(15) particles per kg-fuel were observed. The highest PN EI were observed for the idle power conditions. The mean particle diameter

  20. A new method for GPS-based wind speed determinations during airborne volcanic plume measurements

    USGS Publications Warehouse

    Doukas, Michael P.

    2002-01-01

    Begun nearly thirty years ago, the measurement of gases in volcanic plumes is today an accepted technique in volcano research. Volcanic plume measurements, whether baseline gas emissions from quiescent volcanoes or more substantial emissions from volcanoes undergoing unrest, provide important information on the amount of gaseous output of a volcano to the atmosphere. Measuring changes in gas emission rates also allows insight into eruptive behavior. Some of the earliest volcanic plume measurements of sulfur dioxide were made using a correlation spectrometer (COSPEC). The COSPEC, developed originally for industrial pollution studies, is an upward-looking optical spectrometer tuned to the ultraviolet absorption wavelength of sulfur dioxide (Millán and Hoff, 1978). In airborne mode, the COSPEC is mounted in a fixed-wing aircraft and flown back and forth just underneath a volcanic plume, perpendicular to the direction of plume travel (Casadevall and others, 1981; Stoiber and others, 1983). Similarly, for plumes close to the ground, the COSPEC can be mounted in an automobile and driven underneath a plume if a suitable road system is available (Elias and others, 1998). The COSPEC can also be mounted on a tripod and used to scan a volcanic plume from a fixed location on the ground, although the effectiveness of this configuration declines with distance from the plume (Kyle and others, 1990). In the 1990’s, newer airborne techniques involving direct sampling of volcanic plumes with infrared spectrometers and electrochemical sensors were developed in order to measure additional gases such as CO2 and H2S (Gerlach and others, 1997; Gerlach and others, 1999; McGee and others, 2001). These methods involve constructing a plume cross-section from several measurement traverses through the plume in a vertical plane. Newer instruments such as open-path Fourier transform infrared (FTIR) spectrometers are now being used to measure the gases in volcanic plumes mostly from fixed

  1. COMPARING AND LINKING PLUMES ACROSS MODELING APPROACHES

    EPA Science Inventory

    River plumes carry many pollutants, including microorganisms, into lakes and the coastal ocean. The physical scales of many stream and river plumes often lie between the scales for mixing zone plume models, such as the EPA Visual Plumes model, and larger-sized grid scales for re...

  2. Partially integrated exhaust manifold

    SciTech Connect

    Hayman, Alan W; Baker, Rodney E

    2015-01-20

    A partially integrated manifold assembly is disclosed which improves performance, reduces cost and provides efficient packaging of engine components. The partially integrated manifold assembly includes a first leg extending from a first port and terminating at a mounting flange for an exhaust gas control valve. Multiple additional legs (depending on the total number of cylinders) are integrally formed with the cylinder head assembly and extend from the ports of the associated cylinder and terminate at an exit port flange. These additional legs are longer than the first leg such that the exit port flange is spaced apart from the mounting flange. This configuration provides increased packaging space adjacent the first leg for any valving that may be required to control the direction and destination of exhaust flow in recirculation to an EGR valve or downstream to a catalytic converter.

  3. Lagrangian analysis of low level anthropogenic plume processing across the North Atlantic

    NASA Astrophysics Data System (ADS)

    Real, E.; Law, K.; Schlager, H.; Roiger, A.; Huntrieser, H.; Methven, J.; Cain, M.; Holloway, J.; Neuman, J. A.; Ryerson, T.; Flocke, F.; de Gouw, J.; Atlas, E.; Donnelly, S.; Parrish, D.

    2008-04-01

    The photochemical evolution of an anthropogenic plume from the New-York/Boston region during its transport at low altitudes over the North Atlantic to the European west coast has been studied using a Lagrangian framework. This plume, originally strongly polluted, was sampled by research aircraft just off the North American east coast on 3 successive days, and 3 days downwind off the west coast of Ireland where another aircraft re-sampled a weakly polluted plume. Changes in trace gas concentrations during transport were reproduced using a photochemical trajectory model including deposition and mixing effects. Chemical and wet deposition processing dominated the evolution of all pollutants in the plume. The mean net O3 production was evaluated to be -5 ppbv/day leading to low values of O3 by the time the plume reached Europe. Wet deposition of nitric acid was responsible for an 80% reduction in this O3 production. If the plume had not encountered precipitation, it would have reached the Europe with O3 levels up to 80-90 ppbv, and CO levels between 120 and 140 ppbv. Photochemical destruction also played a more important role than mixing in the evolution of plume CO due to high levels of both O3 and water vapour showing that CO cannot always be used as a tracer for polluted air masses, especially for plumes transported at low altitudes. The results also show that, in this case, an important increase in the O3/CO slope can be attributed to chemical destruction of CO and not to photochemical O3 production as is often assumed.

  4. Educating with Aircraft Models

    ERIC Educational Resources Information Center

    Steele, Hobie

    1976-01-01

    Described is utilization of aircraft models, model aircraft clubs, and model aircraft magazines to promote student interest in aerospace education. The addresses for clubs and magazines are included. (SL)

  5. Detection of gaseous plumes in airborne hyperspectral imagery

    NASA Astrophysics Data System (ADS)

    Agassi, Eyal; Hirsch, Eitan; Chamberland, Martin; Gagnon, Marc-André; Eichstaedt, Holger

    2016-05-01

    The thermal hyperspectral sensor Hyper-Cam was mounted on a light aircraft and measured continuous releases of several atmospheric tracers from a height of 2 km. A unique detection algorithm that eliminates the need for clear background estimation was operated over the acquired data with excellent detection results. The data-cubes were acquired in a "target mode", which is a unique method of operation of the Hyper-Cam sensor. This method provides multiple views of the plume which can be exploited to enhance the detection performance. These encouraging results demonstrate the utility of airborne LWIR hyperspectral imaging for efficient detection and mapping of effluent gases for environmental monitoring.

  6. Precursor gases of aerosols in the Mount St. Helens eruption plumes at stratospheric altitudes

    NASA Technical Reports Server (NTRS)

    Inn, E. C. Y.; Vedder, J. F.; Condon, E. P.; Ohara, D.

    1982-01-01

    Nineteen stratospheric samples from the eruption plumes of Mount St. Helens were collected in five flight experiments. The plume samples were collected at various altitudes from 13.1 to 20.7 km by using the Ames cryogenic sampling system on board the NASA U-2 aircraft. The enriched, cryogenically collected samples were analyzed by chromatography. The concentrations of aerosols precursor gases (OCS, SO2, and CS2), CH3Cl, N2O, CF2Cl2, and CFCl3 were measured by gas chromatography. Large enhancement of the mixing ratio of SO2 and moderate enhancement of CS2 and OCS were found in the plume samples compared with similar measurement under pre-volcanic conditions. A fast decay rate of the SO2 mixing ratio in the plume was observed. Measurement of Cl(-), SO2(2-), and NO3(-) by ion chromatography was also carried out on water solutions prepared from the plume samples. The results obtained with this technique imply large mixing ratios of HCl, (NO + NO2 + HNO3), and SO2, in which these constituents are the respective sources of the anions. Measurement of the Rn222 concentration in the plume was made. Other stratospheric constituents in the plume samples, such as H2O, CO2, CH4, and CO, were also observed.

  7. Ozone Tendency in Biomass Burning Plumes: Influence of Biogenic and Anthropogenic Emissions Downwind of Forest Fires

    NASA Astrophysics Data System (ADS)

    Finch, D.; Palmer, P. I.

    2014-12-01

    Forest fires emit pollutants that can influence downwind surface concentrations of ozone, with potential implications for exceeding air quality regulations. The influence of emissions from biogenic and anthropogenic sources that are mixed into a biomass burning plume as it travels downwind is not well understood. Using the GEOS-Chem atmospheric chemistry transport model and a novel method to track the centre of biomass burning plumes, we identify the chemical reactions that determine ozone production and loss along the plume trajectory. Using a series of sensitivity runs, we quantify the role of biogenic and anthropogenic emissions on the importance of individual chemical reactions. We illustrate the method using data collected during the BORTAS aircraft campaign over eastern Canada during summer 2011. We focus on two contrasting plume trajectories originating from the same multi-day fire in Ontario. The first plume trajectory on 16th July 2011 travels eastward from the fire and eventually mixes with anthropogenic emissions travelling up the east coast of the United States before outflow over the North Atlantic. The second plume trajectory we follow is three days later and travels eastward with a strong northeast component away from large anthropogenic sources. Both trajectories are influenced by downwind biogenic emissions. We generate a chemical reaction narrative for each plume trajectory, allowing is to quantify how mixing pyrogenic, biogenic and anthropogenic emissions influences downwind ozone photochemistry.

  8. Ozone Tendency in Biomass Burning Plumes: Influence of Biogenic and Anthropogenic Emissions Downwind of Forest Fires

    NASA Astrophysics Data System (ADS)

    Finch, D.; Palmer, P. I.

    2015-12-01

    Forest fires emit pollutants that can influence downwind surface concentrations of ozone, with potential implications for exceeding air quality regulations. The influence of emissions from biogenic and anthropogenic sources that are mixed into a biomass burning plume as it travels downwind is not well understood. Using the GEOS-Chem atmospheric chemistry transport model and a novel method to track the centre of biomass burning plumes, we identify the chemical reactions that determine ozone production and loss along the plume trajectory. Using a series of sensitivity runs, we quantify the role of biogenic and anthropogenic emissions on the importance of individual chemical reactions. We illustrate the method using data collected during the BORTAS aircraft campaign over eastern Canada during summer 2011. We focus on two contrasting plume trajectories originating from the same multi-day fire in Ontario. The first plume trajectory on 16th July 2011 travels eastward from the fire and eventually mixes with anthropogenic emissions travelling up the east coast of the United States before outflow over the North Atlantic. The second plume trajectory we follow is three days later and travels eastward with a strong northeast component away from large anthropogenic sources. Both trajectories are influenced by downwind biogenic emissions. We generate a chemical reaction narrative for each plume trajectory, allowing is to quantify how mixing pyrogenic, biogenic and anthropogenic emissions influences downwind ozone photochemistry.

  9. Space shuttle vehicle rocket plume impingement study for separation analysis. Tasks 2 and 3: Definition and preliminary plume impingement analysis for the MSC booster

    NASA Technical Reports Server (NTRS)

    Wojciechowski, C. J.; Penny, M. M.; Prozan, R. J.

    1970-01-01

    The results are presented of a space shuttle plume impingement study for the Manned Spacecraft Center configuration. This study was conducted as two tasks which were to (1) define the orbiter main stage engine exhaust plume flow field, and (2) define the plume impingement heating, force and resulting moment environments on the booster during the staging maneuver. To adequately define these environments during the staging maneuver and allow for deviation from the nominal separation trajectory, a multitude of relative orbiter/booster positions are analyzed which map the region that contains the separation trajectories. The data presented can be used to determine a separation trajectory which will result in acceptable impingement heating rates, forces, and the resulting moments. The data, presented in graphical form, include the effect of roll, pitch and yaw maneuvers for the booster. Quasi-steady state analysis methods were used with the orbiter engine operating at full thrust. To obtain partial thrust results, simple ratio equations are presented.

  10. Active Volcanic Plumes on Io

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This color image, acquired during Galileo's ninth orbit around Jupiter, shows two volcanic plumes on Io. One plume was captured on the bright limb or edge of the moon (see inset at upper right), erupting over a caldera (volcanic depression) named Pillan Patera after a South American god of thunder, fire and volcanoes. The plume seen by Galileo is 140 kilometers (86 miles) high and was also detected by the Hubble Space Telescope. The Galileo spacecraft will pass almost directly over Pillan Patera in 1999 at a range of only 600 kilometers (373 miles).

    The second plume, seen near the terminator (boundary between day and night), is called Prometheus after the Greek fire god (see inset at lower right). The shadow of the 75-kilometer (45- mile) high airborne plume can be seen extending to the right of the eruption vent. The vent is near the center of the bright and dark rings. Plumes on Io have a blue color, so the plume shadow is reddish. The Prometheus plume can be seen in every Galileo image with the appropriate geometry, as well as every such Voyager image acquired in 1979. It is possible that this plume has been continuously active for more than 18 years. In contrast, a plume has never been seen at Pillan Patera prior to the recent Galileo and Hubble Space Telescope images.

    North is toward the top of the picture. The resolution is about 6 kilometers (3.7 miles) per picture element. This composite uses images taken with the green, violet and near infrared filters of the solid state imaging (CCD) system on NASA's Galileo spacecraft. The images were obtained on June 28, 1997, at a range of more than 600,000 kilometers (372,000 miles).

    The Jet Propulsion Laboratory, Pasadena, CA manages the Galileo mission for NASA's Office of Space Science, Washington, DC. JPL is an operating division of California Institute of Technology (Caltech).

    This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page

  11. The Structure and Origin of Solar Plumes: Network Plumes

    NASA Astrophysics Data System (ADS)

    Gabriel, A.; Bely-Dubau, F.; Tison, E.; Wilhelm, K.

    2009-07-01

    This study is based upon plumes seen close to the solar limb within coronal holes in the emission from ions formed in the temperature region of 1 MK, in particular, the band of Fe IX 171 Å from EIT on the Solar and Heliospheric Observatory. It is shown, using geometric arguments, that two distinct classes of structure contribute to apparently similar plume observations. Quasi-cylindrical structures are anchored in discrete regions of the solar surface (beam plumes), and faint extended structures require integration along the line of sight (LOS) in order to reproduce the observed brightness. This second category, sometimes called "curtains," are ubiquitous within the polar holes and are usually more abundant than the beam plumes, which depend more on the enhanced magnetic structures detected at their footpoints. It is here proposed that both phenomena are based on plasma structures in which emerging magnetic loops interact with ambient monopolar fields, involving reconnection. The important difference is in terms of physical scale. It is proposed that curtains are composed of a large number of microplumes, distributed along the LOS. The supergranule network provides the required spatial structure. It is shown by modeling that the observations can be reproduced if microplumes are concentrated within some 5 Mm of the cell boundaries. For this reason, we propose to call this second population "network plumes." The processes involved could represent a major contribution to the heating mechanism of the solar corona.

  12. Reductions in aircraft particulate emissions due to the use of Fischer-Tropsch fuels

    NASA Astrophysics Data System (ADS)

    Beyersdorf, A. J.; Timko, M. T.; Ziemba, L. D.; Bulzan, D.; Corporan, E.; Herndon, S. C.; Howard, R.; Miake-Lye, R.; Thornhill, K. L.; Winstead, E.; Wey, C.; Yu, Z.; Anderson, B. E.

    2014-01-01

    feedstock. As the plume cools downwind of the engine, nucleation-mode aerosols form. For the pure FT fuels, reductions (94% averaged over all powers) in downwind particle number emissions were similar to those measured at the exhaust plane (84%). However, the blended fuels had less of a reduction (reductions of 30-44%) than initially measured (64%). The likely explanation is that the reduced soot emissions in the blended fuel exhaust plume results in promotion of new particle formation microphysics, rather than coating on pre-existing soot particles, which is dominant in the JP-8 exhaust plume. Downwind particle volume emissions were reduced for both the pure (79 and 86% reductions) and blended FT fuels (36 and 46%) due to the large reductions in soot emissions. In addition, the alternative fuels had reduced particulate sulfate production (near zero for FT fuels) due to decreased fuel sulfur content. To study the formation of volatile aerosols (defined as any aerosol formed as the plume ages) in more detail, tests were performed at varying ambient temperatures (-4 to 20 °C). At idle, particle number and volume emissions were reduced linearly with increasing ambient temperature, with best fit slopes corresponding to -8 × 1014 particles (kg fuel)-1 °C-1 for particle number emissions and -10 mm3 (kg fuel)-1 °C-1 for particle volume emissions. The temperature dependency of aerosol formation can have large effects on local air quality surrounding airports in cold regions. Aircraft-produced aerosols in these regions will be much larger than levels expected based solely on measurements made directly at the engine exit plane. The majority (90% at idle) of the volatile aerosol mass formed as nucleation-mode aerosols, with a smaller fraction as a soot coating. Conversion efficiencies of up to 2.8% were measured for the partitioning of gas-phase precursors (unburned hydrocarbons and SO2) to form volatile aerosols. Highest conversion efficiencies were measured at 45% power.

  13. Particle Rotation Effects in Rarefied Two-Phase Plume Flows

    NASA Astrophysics Data System (ADS)

    Burt, Jonathan M.; Boyd, Iain D.

    2005-05-01

    We evaluate the effects of solid particle rotation in high-altitude solid rocket exhaust plume flows, through the development and application of methods for the simulation of two phase flows involving small rotating particles and a nonequilibrium gas. Green's functions are derived for the force, moment, and heat transfer rate to a rotating solid sphere within a locally free-molecular gas, and integration over a Maxwellian gas velocity distribution is used to determine the influence of particle rotation on the heat transfer rate at the equilibrium limit. The use of these Green's functions for the determination of particle phase properties through the Direct Simulation Monte Carlo method is discussed, and a procedure is outlined for the stochastic modeling of interphase collisions. As a test case, we consider the nearfield plume flow for a Star-27 solid rocket motor exhausting into a vacuum, and vary particle angular velocities at the nozzle exit plane in order to evaluate the influence of particle rotation on various flow properties. Simulation results show that rotation may lead to slightly higher particle temperatures near the central axis, but for the case considered the effects of particle rotation are generally found to be negligible.

  14. Space Shuttle exhausted aluminum oxide - A measured particle size distribution

    NASA Technical Reports Server (NTRS)

    Cofer, W. R., III; Purgold, G. C.; Edahl, R. A.; Winstead, E. L.

    1991-01-01

    Aluminum oxide (A2O3) particles were collected from the Space Shuttle exhaust plume immediately following the launch of STS-34 on October 18, 1989. A2O3 samples were obtained at 2.4, 3.0, 3.2, and 7.4 km in altitude. The samples were analyzed using SEM to develope particle size distributions. There were no indications that the particle size distribution changed as a function of altitude. The particle number concentrations per cubic meter of air sampled for the four collections was found to fit an exponential expression.

  15. Community sensitivity to changes in aircraft noise exposure

    NASA Technical Reports Server (NTRS)

    Fidell, S.; Horonjeff, R.; Teffeteller, S.; Pearsons, K.

    1981-01-01

    Interviews were conducted in the vicinity of Burbank Airport during a four month period during which a counterbalanced series of changes in aircraft noise exposure occurred due to runway repairs. Another interview was undertaken approximately one year after completion of the initial runway repairs. Noise measurements were made in conjunction with administration of a brief questionnaire to a near exhaustive sample of residents in four airport neighborhoods. The magnitude and direction of change of annoyance with aircraft noise exposure corresponded closely to the actual changes in physical exposure. Estimates were made of time constants for the rate of change of attitudes toward aircraft noise.

  16. Experimental evaluation of resistojet thruster plume shields

    NASA Technical Reports Server (NTRS)

    Carney, Lynnette M.; Bailey, Allan B.

    1988-01-01

    The exhaust of an engineering model resistojet has been investigated using rotary pitot probes and a rotary quartz crystal microbalance. The resistojet operated on CO2 propellant at a mass flow rate of 0.29 g/sec in both heated and unheated flows. Measurements of local flow angles in the near field of a conical plume shield indicated that the shield was not wholly effective in confining the flow to the region upstream of its exit plane. However, the absolute levels of the measured mass flux into the backflow region were very low, on the order of 7 x 10 to the -7 power g/sqcm/sec or less. The use of a circualr disk at the exit plane of the existing conical shield showed some benefit in decreasing the amount of backflow by a factor of two. Lastly, a detached shield placed upstream of the resistojet exit plane demonstrated a small degree of local shielding for the region directly behind it.

  17. Assessing and controlling the effect of aircraft on the environment: Pollution

    NASA Technical Reports Server (NTRS)

    Poppoff, I. G.; Grobman, J. S.

    1975-01-01

    The air pollution created by aircraft engines around airports and the global atmospheric problem of supersonic aircraft operating in the stratosphere are discussed. Methods for assessing the air pollution impact are proposed. The use of atmospheric models to determine the air pollution extent is described. Methods for controlling the emissions of aircraft engines are examined. Diagrams of the atmospheric composition resulting from exhaust gas emissions are developed.

  18. Stationary Plasma Thruster Plume Characteristics

    NASA Technical Reports Server (NTRS)

    Myers, Roger M.; Manzella, David H.

    1994-01-01

    Stationary Plasma Thrusters (SPT's) are being investigated for application to a variety of near-term missions. This paper presents the results of a preliminary study of the thruster plume characteristics which are needed to assess spacecraft integration requirements. Langmuir probes, planar probes, Faraday cups, and a retarding potential analyzer were used to measure plume properties. For the design operating voltage of 300 V the centerline electron density was found to decrease from approximately 1.8 x 10 exp 17 cubic meters at a distance of 0.3 m to 1.8 X 10 exp 14 cubic meters at a distance of 4 m from the thruster. The electron temperature over the same region was between 1.7 and 3.5 eV. Ion current density measurements showed that the plume was sharply peaked, dropping by a factor of 2.6 within 22 degrees of centerline. The ion energy 4 m from the thruster and 15 degrees off-centerline was approximately 270 V. The thruster cathode flow rate and facility pressure were found to strongly affect the plume properties. In addition to the plume measurements, the data from the various probe types were used to assess the impact of probe design criteria

  19. Aircraft Electric Secondary Power

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Technologies resulted to aircraft power systems and aircraft in which all secondary power is supplied electrically are discussed. A high-voltage dc power generating system for fighter aircraft, permanent magnet motors and generators for aircraft, lightweight transformers, and the installation of electric generators on turbine engines are among the topics discussed.

  20. World commercial aircraft accidents

    SciTech Connect

    Kimura, C.Y.

    1993-01-01

    This report is a compilation of all accidents world-wide involving aircraft in commercial service which resulted in the loss of the airframe or one or more fatality, or both. This information has been gathered in order to present a complete inventory of commercial aircraft accidents. Events involving military action, sabotage, terrorist bombings, hijackings, suicides, and industrial ground accidents are included within this list. Included are: accidents involving world commercial jet aircraft, world commercial turboprop aircraft, world commercial pistonprop aircraft with four or more engines and world commercial pistonprop aircraft with two or three engines from 1946 to 1992. Each accident is presented with information in the following categories: date of the accident, airline and its flight numbers, type of flight, type of aircraft, aircraft registration number, construction number/manufacturers serial number, aircraft damage, accident flight phase, accident location, number of fatalities, number of occupants, cause, remarks, or description (brief) of the accident, and finally references used. The sixth chapter presents a summary of the world commercial aircraft accidents by major aircraft class (e.g. jet, turboprop, and pistonprop) and by flight phase. The seventh chapter presents several special studies including a list of world commercial aircraft accidents for all aircraft types with 100 or more fatalities in order of decreasing number of fatalities, a list of collision accidents involving commercial aircrafts, and a list of world commercial aircraft accidents for all aircraft types involving military action, sabotage, terrorist bombings, and hijackings.

  1. Volatile nanoparticle formation and growth within a diluting diesel car exhaust.

    PubMed

    Uhrner, Ulrich; Zallinger, Michael; von Löwis, Sibylle; Vehkamäki, Hanna; Wehner, Birgit; Stratmann, Frank; Wiedensohler, Alfred

    2011-04-01

    A major source of particle number emissions is road traffic. However, scientific knowledge concerning secondary particle formation and growth of ultrafine particles within vehicle exhaust plumes is still very limited. Volatile nanoparticle formation and subsequent growth conditions were analyzed here to gain a better understanding of "real-world" dilution conditions. Coupled computational fluid dynamics and aerosol microphysics models together with measured size distributions within the exhaust plume of a diesel car were used. The impact of soot particles on nucleation, acting as a condensational sink, and the possible role of low-volatile organic components in growth were assessed. A prescribed reduction of soot particle emissions by 2 orders of magnitude (to capture the effect of a diesel particle filter) resulted in concentrations of nucleation-mode particles within the exhaust plume that were approximately 1 order of magnitude larger. Simulations for simplified sulfuric acid-water vapor gas-oil containing nucleation-mode particles show that the largest particle growth is located in a recirculation zone in the wake of the car. Growth of particles within the vehicle exhaust plume up to detectable size depends crucially on the relationship between the mass rate of gaseous precursor emissions and rapid dilution. Chassis dynamometer measurements indicate that emissions of possible hydrocarbon precursors are significantly enhanced under high engine load conditions and high engine speed. On the basis of results obtained for a diesel passenger car, the contributions from light diesel vehicles to the observed abundance of measured nucleation-mode particles near busy roads might be attributable to the impact of two different time scales: (1) a short one within the plume, marked by sufficient precursor emissions and rapid dilution; and (2) a second and comparatively long time scale resulting from the mix of different precursor sources and the impact of atmospheric

  2. Volatile nanoparticle formation and growth within a diluting diesel car exhaust.

    PubMed

    Uhrner, Ulrich; Zallinger, Michael; von Löwis, Sibylle; Vehkamäki, Hanna; Wehner, Birgit; Stratmann, Frank; Wiedensohler, Alfred

    2011-04-01

    A major source of particle number emissions is road traffic. However, scientific knowledge concerning secondary particle formation and growth of ultrafine particles within vehicle exhaust plumes is still very limited. Volatile nanoparticle formation and subsequent growth conditions were analyzed here to gain a better understanding of "real-world" dilution conditions. Coupled computational fluid dynamics and aerosol microphysics models together with measured size distributions within the exhaust plume of a diesel car were used. The impact of soot particles on nucleation, acting as a condensational sink, and the possible role of low-volatile organic components in growth were assessed. A prescribed reduction of soot particle emissions by 2 orders of magnitude (to capture the effect of a diesel particle filter) resulted in concentrations of nucleation-mode particles within the exhaust plume that were approximately 1 order of magnitude larger. Simulations for simplified sulfuric acid-water vapor gas-oil containing nucleation-mode particles show that the largest particle growth is located in a recirculation zone in the wake of the car. Growth of particles within the vehicle exhaust plume up to detectable size depends crucially on the relationship between the mass rate of gaseous precursor emissions and rapid dilution. Chassis dynamometer measurements indicate that emissions of possible hydrocarbon precursors are significantly enhanced under high engine load conditions and high engine speed. On the basis of results obtained for a diesel passenger car, the contributions from light diesel vehicles to the observed abundance of measured nucleation-mode particles near busy roads might be attributable to the impact of two different time scales: (1) a short one within the plume, marked by sufficient precursor emissions and rapid dilution; and (2) a second and comparatively long time scale resulting from the mix of different precursor sources and the impact of atmospheric

  3. Biofuel Blending Impacts on Aircraft Engine Particle Emissions at Cruise Conditions

    NASA Astrophysics Data System (ADS)

    Moore, R.

    2015-12-01

    We present measurements of aerosol emissions indices and microphysical properties measured in-situ behind the CFM56-2-C1 engines of the NASA DC-8 aircraft during the 2014 Alternative Fuel Effects on Contrails and Cruise Emissions (ACCESS) project. Aircraft engine emissions can have a disproportionately large climatic impact since they are emitted high in the troposphere and in remote regions with otherwise low aerosol concentrations. This has motivated numerous past ground-based studies focused on quantifying the emissions indices of non-volatile and semi-volatile aerosol species, however, it is unclear the extent to which emissions on the ground translate to emissions at cruise conditions. In addition, the ability of engine-emitted aerosols to nucleate ice crystals and form linear contrails or contrail cirrus clouds remains poorly understood. To better understand these effects, two chase plane experiments were carried out in 2013 and 2014. Three different fuel types are discussed: a low-sulfur JP-8 fuel, a 50:50 blend of JP-8 and a camelina-based HEFA fuel, and the JP-8 fuel doped with sulfur. Emissions were sampled using a large number of aerosol and gas instruments integrated on HU-25 and Falcon 20 jets that were positioned in the DC-8 exhaust plume at approximately 50-500 m distance behind the engines. It was found that the biojet fuel blend substantially decreases the aerosol number and mass emissions indices, while the gas phase emission indices were similar across fuels. The magnitude of the effects of these fuel-induced changes of aerosol emissions and implications for future aviation biofuel blending impacts will be discussed.

  4. Lidar sounding of volcanic plumes

    NASA Astrophysics Data System (ADS)

    Fiorani, Luca; Aiuppa, Alessandro; Angelini, Federico; Borelli, Rodolfo; Del Franco, Mario; Murra, Daniele; Pistilli, Marco; Puiu, Adriana; Santoro, Simone

    2013-10-01

    Accurate knowledge of gas composition in volcanic plumes has high scientific and societal value. On the one hand, it gives information on the geophysical processes taking place inside volcanos; on the other hand, it provides alert on possible eruptions. For this reasons, it has been suggested to monitor volcanic plumes by lidar. In particular, one of the aims of the FP7 ERC project BRIDGE is the measurement of CO2 concentration in volcanic gases by differential absorption lidar. This is a very challenging task due to the harsh environment, the narrowness and weakness of the CO2 absorption lines and the difficulty to procure a suitable laser source. This paper, after a review on remote sensing of volcanic plumes, reports on the current progress of the lidar system.

  5. Observations of volatile organic compounds during ARCTAS - Part 1: Biomass burning emissions and plume enhancements

    NASA Astrophysics Data System (ADS)

    Hornbrook, R. S.; Blake, D. R.; Diskin, G. S.; Fuelberg, H. E.; Meinardi, S.; Mikoviny, T.; Sachse, G. W.; Vay, S. A.; Weinheimer, A. J.; Wiedinmyer, C.; Wisthaler, A.; Hills, A.; Riemer, D. D.; Apel, E. C.

    2011-05-01

    Mixing ratios of a large number of volatile organic compounds (VOCs) were observed by the Trace Organic Gas Analyzer (TOGA) on board the NASA DC-8 as part of the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) field campaign. Many of these VOCs were observed concurrently by one or both of two other VOC measurement techniques on board the DC-8: proton-transfer-reaction mass spectrometry (PTR-MS) and whole air canister sampling (WAS). A comparison of these measurements to the data from TOGA indicates good agreement for the majority of co-measured VOCs. The ARCTAS study, which included both spring and summer deployments, provided opportunities to sample a large number of biomass burning (BB) plumes with origins in Asia, California and Central Canada, ranging from very recent emissions to plumes aged one week or more. For this analysis, identified BB plumes were grouped by flight, source region and, in some cases, time of day, generating 40 individual plume groups, each consisting of one or more BB plume interceptions. Normalized excess mixing ratios (EMRs) to CO were determined for each of the 40 plume groups for up to 19 different VOCs or VOC groups, many of which show significant variability, even within relatively fresh plumes. This variability demonstrates the importance of assessing BB plumes both regionally and temporally, as emissions can vary from region to region, and even within a fire over time. Comparisons with literature confirm that variability of EMRs to CO over an order of magnitude for many VOCs is consistent with previous observations. However, this variability is often diluted in the literature when individual observations are averaged to generate an overall regional EMR from a particular study. Previous studies give the impression that emission ratios are generally consistent within a given region, and this is not necessarily the case, as our results show. For some VOCs, earlier assumptions may lead to

  6. Modeling Leaking Gas Plume Migration

    SciTech Connect

    Silin, Dmitriy; Patzek, Tad; Benson, Sally M.

    2007-08-20

    In this study, we obtain simple estimates of 1-D plume propagation velocity taking into account the density and viscosity contrast between CO{sub 2} and brine. Application of the Buckley-Leverett model to describe buoyancy-driven countercurrent flow of two immiscible phases leads to a transparent theory predicting the evolution of the plume. We obtain that the plume does not migrate upward like a gas bubble in bulk water. Rather, it stretches upward until it reaches a seal or until the fluids become immobile. A simple formula requiring no complex numerical calculations describes the velocity of plume propagation. This solution is a simplification of a more comprehensive theory of countercurrent plume migration that does not lend itself to a simple analytical solution (Silin et al., 2006). The range of applicability of the simplified solution is assessed and provided. This work is motivated by the growing interest in injecting carbon dioxide into deep geological formations as a means of avoiding its atmospheric emissions and consequent global warming. One of the potential problems associated with the geologic method of sequestration is leakage of CO{sub 2} from the underground storage reservoir into sources of drinking water. Ideally, the injected green-house gases will stay in the injection zone for a geologically long time and eventually will dissolve in the formation brine and remain trapped by mineralization. However, naturally present or inadvertently created conduits in the cap rock may result in a gas leak from primary storage. Even in supercritical state, the carbon dioxide viscosity and density are lower than those of the indigenous formation brine. Therefore, buoyancy will tend to drive the CO{sub 2} upward unless it is trapped beneath a low permeability seal. Theoretical and experimental studies of buoyancy-driven supercritical CO{sub 2} flow, including estimation of time scales associated with plume evolution, are critical for developing technology

  7. Commercial aircraft engine emissions characterization of in-use aircraft at Hartsfield-Jackson Atlanta International Airport.

    PubMed

    Herndon, Scott C; Jayne, John T; Lobo, Prem; Onasch, Timothy B; Fleming, Gregg; Hagen, Donald E; Whitefield, Philip D; Miake-Lye, Richard C

    2008-03-15

    The emissions from in-use commercial aircraft engines have been analyzed for selected gas-phase species and particulate characteristics using continuous extractive sampling 1-2 min downwind from operational taxi- and runways at Hartsfield-Jackson Atlanta International Airport. Using the aircraft tail numbers, 376 plumes were associated with specific engine models. In general, for takeoff plumes, the measured NOx emission index is lower (approximately 18%) than that predicted by engine certification data corrected for ambient conditions. These results are an in-service observation of the practice of "reduced thrust takeoff". The CO emission index observed in ground idle plumes was greater (up to 100%) than predicted by engine certification data for the 7% thrust condition. Significant differences are observed in the emissions of black carbon and particle number among different engine models/technologies. The presence of a mode at approximately 65 nm (mobility diameter) associated with takeoff plumes and a smaller mode at approximately 25 nm associated with idle plumes has been observed. An anticorrelation between particle mass loading and particle number concentration is observed.

  8. Mobile Bay turbidity plume study

    NASA Technical Reports Server (NTRS)

    Crozier, G. F.

    1976-01-01

    Laboratory and field transmissometer studies on the effect of suspended particulate material upon the appearance of water are reported. Quantitative correlations were developed between remotely sensed image density, optical sea truth data, and actual sediment load. Evaluation of satellite image sea truth data for an offshore plume projects contours of transmissivity for two different tidal phases. Data clearly demonstrate the speed of change and movement of the optical plume for water patterns associated with the mouth of Mobile bay in which relatively clear Gulf of Mexico water enters the bay on the eastern side. Data show that wind stress in excess of 15 knots has a marked impact in producing suspended sediment loads.

  9. Aerodynamics of powered missile separation from F/A-18 aircraft

    NASA Technical Reports Server (NTRS)

    Ahmad, J. U.; Shanks, S. P.; Buning, P. G.

    1993-01-01

    A 3D dynamic 'chimera' algorithm that solves the thin-layer Navier-Stokes equations over multiple moving bodies was modified to numerically simulate the aerodynamics, missile dynamics, and missile plume interactions of a missile separating from a generic wing and from an F/A-18 aircraft in transonic flow. The missile is mounted below the wing for missile separation from the wing and on the F/A-18 fuselage at the engine inlet side for missile separation from aircraft. Static and powered missile separation cases are considered to examine the influence of the missile and plume on the wing and F/A-18 fuselage and engine inlet. The aircraft and missile are at two degrees angle of attack, Reynolds number of 10 million, freestream Mach number of 1.05 and plume Mach number of 3.0. The computational results show the details of the flow field.

  10. Variable area exhaust nozzle

    NASA Technical Reports Server (NTRS)

    Johnston, E. A. (Inventor)

    1979-01-01

    An exhaust nozzle for a gas turbine engine comprises a number of arcuate flaps pivotally connected to the trailing edge of a cylindrical casing which houses the engine. Seals disposed within the flaps are spring biased and extensible beyond the side edges of the flaps. The seals of adjacent flaps are maintained in sealing engagement with each other when the flaps are adjusted between positions defining minimum nozzle flow area and the cruise position. Extensible, spring biased seals are also disposed within the flaps adjacent to a supporting pylon to thereby engage the pylon in a sealing arrangement. The flaps are hinged to the casing at the central portion of the flaps' leading edges and are connected to actuators at opposed outer portions of the leading edges to thereby maximize the mechanical advantage in the actuation of the flaps.

  11. [MAX-DOAS Tomography Reconstruction for Gas Plume].

    PubMed

    Wei, Min-hong; Tong, Min-ming; Li, Su-wen; Xiao, Jian-yu

    2015-08-01

    In order to achieve precisely two-dimensional spatial distribution reconstruction of smoke plume, passive MAX-DOAS tomography is established, the measurement of the spatial distribution of the exhaust plume is implemented by more passive multi-axis differential absorption spectrum system. First, the multi-axis differential absorption spectrum system and its mechanism of inverse gas concentration are introduced in the paper. Then, algebra iterative algorithm is adopted to extract the information of the trace gas concentration in reconstruction simulation with different models and different scanning optical path, and the reconstruction program is designed. Then, the numerical simulation results are compared. Finally, a platform of multi-axis differential absorption optical tomography system is set up, a field campaign was carried out. The numerical simulation results show that the MAX-DOAS tomography can accurately reconstruct two-dimensional spatial distribution of plume model, the re- construction error of MAX-DOAS tomography with four light sources is about a third of the reconstruction error with double light sources, moreover, the reconstruction time is about a quarter of the reconstruction time of double light sources, and the reconstruction error of the twin peaks model is greater than that of the one peak model. Field test results show that the integral data of reconstruction image is consistent with the measured projection data of multi-axis differential absorption spectrum, the spatial distribution reconstruction of plume is in line with the actual situation. Studies have shown that the result of numerical simulation and field test results have consistency. PMID:26672304

  12. [MAX-DOAS Tomography Reconstruction for Gas Plume].

    PubMed

    Wei, Min-hong; Tong, Min-ming; Li, Su-wen; Xiao, Jian-yu

    2015-08-01

    In order to achieve precisely two-dimensional spatial distribution reconstruction of smoke plume, passive MAX-DOAS tomography is established, the measurement of the spatial distribution of the exhaust plume is implemented by more passive multi-axis differential absorption spectrum system. First, the multi-axis differential absorption spectrum system and its mechanism of inverse gas concentration are introduced in the paper. Then, algebra iterative algorithm is adopted to extract the information of the trace gas concentration in reconstruction simulation with different models and different scanning optical path, and the reconstruction program is designed. Then, the numerical simulation results are compared. Finally, a platform of multi-axis differential absorption optical tomography system is set up, a field campaign was carried out. The numerical simulation results show that the MAX-DOAS tomography can accurately reconstruct two-dimensional spatial distribution of plume model, the re- construction error of MAX-DOAS tomography with four light sources is about a third of the reconstruction error with double light sources, moreover, the reconstruction time is about a quarter of the reconstruction time of double light sources, and the reconstruction error of the twin peaks model is greater than that of the one peak model. Field test results show that the integral data of reconstruction image is consistent with the measured projection data of multi-axis differential absorption spectrum, the spatial distribution reconstruction of plume is in line with the actual situation. Studies have shown that the result of numerical simulation and field test results have consistency.

  13. POD Analysis of Jet-Plume/Afterbody-Wake Interaction

    NASA Astrophysics Data System (ADS)

    Murray, Nathan E.; Seiner, John M.; Jansen, Bernard J.; Gui, Lichuan; Sockwell, Shuan; Joachim, Matthew

    2009-11-01

    The understanding of the flow physics in the base region of a powered rocket is one of the keys to designing the next generation of reusable launchers. The base flow features affect the aerodynamics and the heat loading at the base of the vehicle. Recent efforts at the National Center for Physical Acoustics at the University of Mississippi have refurbished two models for studying jet-plume/afterbody-wake interactions in the NCPA's 1-foot Tri-Sonic Wind Tunnel Facility. Both models have a 2.5 inch outer diameter with a nominally 0.5 inch diameter centered exhaust nozzle. One of the models is capable of being powered with gaseous H2 and O2 to study the base flow in a fully combusting senario. The second model uses hi-pressure air to drive the exhaust providing an unheated representative flow field. This unheated model was used to acquire PIV data of the base flow. Subsequently, a POD analysis was performed to provide a first look at the large-scale structures present for the interaction between an axisymmetric jet and an axisymmetric afterbody wake. PIV and Schlieren data are presented for a single jet-exhaust to free-stream flow velocity along with the POD analysis of the base flow field.

  14. Space Shuttle and Launch Pad Lift-Off Debris Transport Analysis: SRB Plume-Driven

    NASA Technical Reports Server (NTRS)

    West, Jeff; Strutzenberg, Louis; Dougherty, Sam; Radke, Jerry; Liever, Peter

    2007-01-01

    This paper discusses the Space Shuttle Lift-Off model developed for potential Lift-Off Debris transport. A critical Lift-Off portion of the flight is defined from approximately 1.5 sec after SRB Ignition up to 'Tower Clear', where exhaust plume interactions with the Launch Pad occur. A CFD model containing the Space Shuttle and Launch Pad geometry has been constructed and executed. The CFD model works in conjunction with a debris particle transport model and a debris particle impact damage tolerance model. These models have been used to assess the effects of the Space Shuttle plumes, the wind environment, their interactions with the Launch Pad, and their ultimate effect on potential debris during Lift-Off. Emphasis in this paper is on potential debris that might be caught by the SRB plumes.

  15. Underexpanded Supersonic Plume Surface Interactions: Applications for Spacecraft Landings on Planetary Bodies

    NASA Technical Reports Server (NTRS)

    Mehta, M.; Sengupta, A.; Renno, N. O.; Norman, J. W.; Gulick, D. S.

    2011-01-01

    Numerical and experimental investigations of both far-field and near-field supersonic steady jet interactions with a flat surface at various atmospheric pressures are presented in this paper. These studies were done in assessing the landing hazards of both the NASA Mars Science Laboratory and Phoenix Mars spacecrafts. Temporal and spatial ground pressure measurements in conjunction with numerical solutions at altitudes of approx.35 nozzle exit diameters and jet expansion ratios (e) between 0.02 and 100 are used. Data from steady nitrogen jets are compared to both pulsed jets and rocket exhaust plumes at Mach approx.5. Due to engine cycling, overpressures and the plate shock dynamics are different between pulsed and steady supersonic impinging jets. In contrast to highly over-expanded (e <1) and underexpanded exhaust plumes, results show that there is a relative ground pressure load maximum for moderately underexpanded (e approx.2-5) jets which demonstrate a long collimated plume shock structure. For plumes with e much >5 (lunar atmospheric regime), the ground pressure is minimal due to the development of a highly expansive shock structure. We show this is dependent on the stability of the plate shock, the length of the supersonic core and plume decay due to shear layer instability which are all a function of the jet expansion ratio. Asymmetry and large gradients in the spatial ground pressure profile and large transient overpressures are predominantly linked to the dynamics of the plate shock. More importantly, this study shows that thruster plumes exhausting into martian environments possess the largest surface pressure loads and can occur at high spacecraft altitudes in contrast to the jet interactions at terrestrial and lunar atmospheres. Theoretical and analytical results also show that subscale supersonic cold gas jets adequately simulate the flow field and loads due to rocket plume impingement provided important scaling parameters are in agreement. These

  16. Thermal Analysis for Orbiter and ISS Plume Impingement on International Space Station

    NASA Technical Reports Server (NTRS)

    Rochelle, William C.; Reid, Ethan A.; Carl, Terry L.; Smith, Ries N.; Lumpkin, Forrest E.

    2001-01-01

    The NASA Reaction Control System (RCS) Plume Model (RPM) is an exhaust plume flow field and impingement heating code that has been updated and applied to components of the International Space Station (ISS). The objective of this study was to use this code to determine if plume environments from either Orbiter PRCS jets or ISS reboost and Attitude Control System (ACS) jets cause thermal issues on ISS component surfaces. This impingement analysis becomes increasingly important as the ISS is being assembled with its first permanent crew scheduled to arrive by the end of fall 2000. By early summer 2001 , the ISS will have a number of major components installed such as the Unity (Node 1), Destiny (Lab Module), Zarya (Functional Cargo Block), and Zvezda (Service Module) along with the P6 solar arrays and radiators and the Z-1 truss. Plume heating to these components has been analyzed with the RPM code as well as additional components for missions beyond Flight 6A such as the Propulsion Module (PM), Mobile Servicing System, Space Station Remote Manipulator System, Node 2, and the Cupola. For the past several years NASA/JSC has been developing the methodology to predict plume heating on ISS components. The RPM code is a modified source flow code with capabilities for scarfed nozzles and intersecting plumes that was developed for the 44 Orbiter RCS jets. This code has been validated by comparison with Shuttle Plume Impingement Flight Experiment (SPIFEX) heat flux and pressure data and with CFD and Method of Characteristics solutions. Previous analyses of plume heating predictions to the ISS using RPM have been reported, but did not consider thermal analysis for the components nor jet-firing histories as the Orbiter approaches the ISS docking ports. The RPM code has since been modified to analyze surface temperatures with a lumped mass approach and also uses jet-firing histories to produce pulsed heating rates. In addition, RPM was modified to include plume heating from ISS

  17. Distributed Exhaust Nozzles for Jet Noise Reduction

    NASA Technical Reports Server (NTRS)

    Ahuja, K. K.; Gaeta, R. J.; Hellman, B.; Schein, D. B.; Solomon, W. D., Jr.; Huff, Dennis (Technical Monitor)

    2001-01-01

    The main objective of this study is to validate the jet noise reduction potential of a concept associated with distributed exhaust nozzles. Under this concept the propulsive thrust is generated by a larger number of discrete plumes issuing from an array of small or mini-nozzles. The potential of noise reduction of this concept stems from the fact that a large number of small jets will produce very high frequency noise and also, if spaced suitably, they will coalesce at a smaller velocity to produce low amplitude, low frequency noise. This is accomplished through detailed acoustic and fluid measurements along with a Computational Fluidic Dynamic (CFD) solution of the mean (DE) Distributed Exhaust nozzle flowfield performed by Northrop-Grumman. The acoustic performance is quantified in an anechoic chamber. Farfield acoustic data is acquired for a DE nozzle as well as a round nozzle of the same area. Both these types of nozzles are assessed numerically using Computational Fluid Dynamic (CFD) techniques. The CFD analysis ensures that both nozzles issued the same amount of airflow for a given nozzle pressure ratio. Data at a variety of nozzle pressure ratios are acquired at a range of polar and azimuthal angles. Flow visualization of the DE nozzle is used to assess the fluid dynamics of the small jet interactions. Results show that at high subsonic jet velocities, the DE nozzle shifts its frequency of peak amplitude to a higher frequency relative to a round nozzle of equivalent area (from a S(sub tD) = 0.24 to 1. 3). Furthermore, the DE nozzle shows reduced sound pressure levels (as much as 4 - 8 dB) in the low frequency part of the spectrum (less than S(sub tD) = 0.24 ) compared to the round nozzle. At supersonic jet velocities, the DE nozzle does not exhibit the jet screech and the shock-associated broadband noise is reduced by as much as 12 dB.

  18. Subsonic Jet Noise Reduced With Improved Internal Exhaust Gas Mixers

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Aircraft noise pollution is becoming a major environmental concern for the world community. The Federal Aviation Administration (FAA) is responding to this concern by imposing more stringent noise restrictions for aircraft certification then ever before to keep the U.S. industry competitive with the rest of the world. At the NASA Lewis Research Center, attempts are underway to develop noise-reduction technology for newer engines and for retrofitting existing engines so that they are as quiet as (or quieter than) required. Lewis conducted acoustic and Laser Doppler Velocimetry (LDV) tests using Pratt & Whitney's Internal Exhaust Gas Mixers (IEGM). The IEGM's mix the core flow with the fan flow prior to their common exhaust. All tests were conducted in Lewis' Aero-Acoustic Propulsion Laboratory--a semihemispheric dome open to the ambient atmosphere. This was the first time Laser Doppler Velocimetry was used in such a facility at Lewis. Jet exhaust velocity and turbulence and the internal velocity fields were detailed. Far-field acoustics were also measured. Pratt & Whitney provided 1/7th scale model test hardware (a 12-lobe mixer, a 20-lobe mixer, and a splitter) for 1.7 bypass ratio engines, and NASA provided the research engineers, test facility, and test time. The Pratt & Whitney JT8D-200 engine power conditions were used for all tests.

  19. Exhaust Nozzle Materials Development for the High Speed Civil Transport

    NASA Technical Reports Server (NTRS)

    Grady, J. E.

    1999-01-01

    The United States has embarked on a national effort to develop the technology necessary to produce a Mach 2.4 High Speed Civil Transport (HSCT) for entry into service by the year 2005. The viability of this aircraft is contingent upon its meeting both economic and environmental requirements. Two engine components have been identified as critical to the environmental acceptability of the HSCT. These include a combustor with significantly lower emissions than are feasible with current technology, and a lightweight exhaust nozzle that meets community noise standards. The Enabling Propulsion Materials (EPM) program will develop the advanced structural materials, materials fabrication processes, structural analysis and life prediction tools for the HSCT combustor and low noise exhaust nozzle. This is being accomplished through the coordinated efforts of the NASA Lewis Research Center, General Electric Aircraft Engines and Pratt & Whitney. The mission of the EPM Exhaust Nozzle Team is to develop and demonstrate this technology by the year 1999 to enable its timely incorporation into HSCT propulsion systems.

  20. 40 CFR 87.82 - Sampling and analytical procedures for measuring smoke exhaust emissions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... measuring smoke exhaust emissions. 87.82 Section 87.82 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) Definitions. Test Procedures for Engine Smoke Emissions (Aircraft Gas Turbine Engines) § 87.82 Sampling and analytical procedures for measuring smoke...

  1. 14 CFR 34.82 - Sampling and analytical procedures for measuring smoke exhaust emissions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Director of the Federal Register in accordance with 5 U.S.C. 552(a) and 1 CFR part 51. This document can be... measuring smoke exhaust emissions. 34.82 Section 34.82 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... POWERED AIRPLANES Test Procedures for Engine Smoke Emissions (Aircraft Gas Turbine Engines) §...

  2. 14 CFR 34.82 - Sampling and analytical procedures for measuring smoke exhaust emissions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Director of the Federal Register in accordance with 5 U.S.C. 552(a) and 1 CFR part 51. This document can be... measuring smoke exhaust emissions. 34.82 Section 34.82 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... POWERED AIRPLANES Test Procedures for Engine Smoke Emissions (Aircraft Gas Turbine Engines) §...

  3. Plume rise measurements at turbigo

    NASA Astrophysics Data System (ADS)

    Anfossi, D.

    The fourth C.E.C. campaign on remote sensing of air pollution, organized jointly by ENEL and the Commission of European Communities, was held at Turbigo (northern Italy) during September 1979. This paper presents analyses of plume measurements obtained during that campaign by the ENEL groundbased Lidar. The five stacks of Turbigo Power Plant have different heights and emission parameters and their plumes usually combine, so a model for multiple sources developed by D. Anfossi et al. (1978, Atmospheric Environment12, 1821-1826) was used to predict the plume rises. These predictions are compared with the observations. Measurements of σy and σz over the first 1000 m are compared with the curves derived from other observations in the Po Valley, using the no-lift balloon technique over the same range of downwind distance. Skewness and kurtosis distributions are shown, both along the vertical and the horizontal directions. In order to show the plume structure in more detail, we present two examples of Lidar-derived cross sections and the corresponding vertically and horizontally integrated concentration profiles.

  4. Automotive Fuel and Exhaust Systems.

    ERIC Educational Resources Information Center

    Irby, James F.; And Others

    Materials are provided for a 14-hour course designed to introduce the automotive mechanic to the basic operations of automotive fuel and exhaust systems incorporated on military vehicles. The four study units cover characteristics of fuels, gasoline fuel system, diesel fuel systems, and exhaust system. Each study unit begins with a general…

  5. Treatment of power utilities exhaust

    SciTech Connect

    Koermer, Gerald

    2012-05-15

    Provided is a process for treating nitrogen oxide-containing exhaust produced by a stationary combustion source by the catalytic reduction of nitrogen oxide in the presence of a reductant comprising hydrogen, followed by ammonia selective catalytic reduction to further reduce the nitrogen oxide level in the exhaust.

  6. The atmospheric effects of stratospheric aircraft

    NASA Technical Reports Server (NTRS)

    Stolarski, Richard S. (Editor); Wesoky, Howard L. (Editor)

    1993-01-01

    This document presents a second report from the Atmospheric Effects of Stratospheric Aircraft (AESA) component of NASA's High-Speed Research Program (HSRP). This document presents a second report from the Atmospheric Effects of Stratospheric Aircraft (AESA) component of NASA's High Speed Research Program (HSRP). Market and technology considerations continue to provide an impetus for high-speed civil transport research. A recent United Nations Environment Program scientific assessment has shown that considerable uncertainty still exists about the possible impact of aircraft on the atmosphere. The AESA was designed to develop the body of scientific knowledge necessary for the evaluation of the impact of stratospheric aircraft on the atmosphere. The first Program report presented the basic objectives and plans for AESA. This second report presents the status of the ongoing research as reported by the principal investigators at the second annual AESA Program meeting in May 1992: Laboratory studies are probing the mechanism responsible for many of the heterogeneous reactions that occur on stratospheric particles. Understanding how the atmosphere redistributes aircraft exhaust is critical to our knowing where the perturbed air will go and for how long it will remain in the stratosphere. The assessment of fleet effects is dependent on the ability to develop scenarios which correctly simulate fleet operations.

  7. Computational fluid dynamics and frequency-dependent finite-difference time-domain method coupling for the interaction between microwaves and plasma in rocket plumes

    SciTech Connect

    Kinefuchi, K.; Funaki, I.; Shimada, T.; Abe, T.

    2012-10-15

    Under certain conditions during rocket flights, ionized exhaust plumes from solid rocket motors may interfere with radio frequency transmissions. To understand the relevant physical processes involved in this phenomenon and establish a prediction process for in-flight attenuation levels, we attempted to measure microwave attenuation caused by rocket exhaust plumes in a sea-level static firing test for a full-scale solid propellant rocket motor. The microwave attenuation level was calculated by a coupling simulation of the inviscid-frozen-flow computational fluid dynamics of an exhaust plume and detailed analysis of microwave transmissions by applying a frequency-dependent finite-difference time-domain method with the Drude dispersion model. The calculated microwave attenuation level agreed well with the experimental results, except in the case of interference downstream the Mach disk in the exhaust plume. It was concluded that the coupling estimation method based on the physics of the frozen plasma flow with Drude dispersion would be suitable for actual flight conditions, although the mixing and afterburning in the plume should be considered depending on the flow condition.

  8. Numerical modeling of exhaust smoke dispersion for a generic frigate and comparisons with experiments

    NASA Astrophysics Data System (ADS)

    Ergin, Selma; Dobrucalı, Erinç

    2014-06-01

    The exhaust smoke dispersion for a generic frigate is investigated numerically through the numerical solution of the governing fluid flow, energy, species and turbulence equations. The main objective of this work is to obtain the effects of the yaw angle, velocity ratio and buoyancy on the dispersion of the exhaust smoke. The numerical method is based on the fully conserved control-volume representation of the fully elliptic Navier-Stokes equations. Turbulence is modeled using a two-equation ( k- ɛ) model. The flow visualization tests using a 1/100 scale model of the frigate in the wind tunnel were also carried out to determine the exhaust plume path and to validate the computational results. The results show that down wash phenomena occurs for the yaw angles between ψ =10° and 20°. The results with different exhaust gas temperatures show that the buoyancy effect increases with the increasing of the exhaust gas temperature. However, its effect on the plume rise is less significant in comparison with its momentum. A good agreement between the predictions and experiment results is obtained.

  9. Downwelling wind, tides, and estuarine plume dynamics

    NASA Astrophysics Data System (ADS)

    Lai, Zhigang; Ma, Ronghua; Huang, Mingfen; Chen, Changsheng; Chen, Yong; Xie, Congbin; Beardsley, Robert C.

    2016-06-01

    The estuarine plume dynamics under a downwelling-favorable wind condition were examined in the windy dry season of the Pearl River Estuary (PRE) using the PRE primitive-equation Finite-Volume Community Ocean Model (FVCOM). The wind and tide-driven estuarine circulation had a significant influence on the plume dynamics on both local and remote scales. Specifically, the local effect of downwelling-favorable winds on the plume was similar to the theoretical descriptions of coastal plumes, narrowing the plume width, and setting up a vertically uniform downstream current at the plume edge. Tides tended to reduce these plume responses through local turbulent mixing and advection from upstream regions, resulting in an adjustment of the isohalines in the plume and a weakening of the vertically uniform downstream current. The remote effect of downwelling-favorable winds on the plume was due to the wind-induced estuarine sea surface height (SSH), which strengthened the estuarine circulation and enhanced the plume transport accordingly. Associated with these processes, tide-induced mixing tended to weaken the SSH gradient and thus the estuarine circulation over a remote influence scale. Overall, the typical features of downwelling-favorable wind-driven estuarine plumes revealed in this study enhanced our understanding of the estuarine plume dynamics under downwelling-favorable wind conditions.

  10. Propulsion controlled aircraft computer

    NASA Technical Reports Server (NTRS)

    Cogan, Bruce R. (Inventor)

    2010-01-01

    A low-cost, easily retrofit Propulsion Controlled Aircraft (PCA) system for use on a wide range of commercial and military aircraft consists of an propulsion controlled aircraft computer that reads in aircraft data including aircraft state, pilot commands and other related data, calculates aircraft throttle position for a given maneuver commanded by the pilot, and then displays both current and calculated throttle position on a cockpit display to show the pilot where to move throttles to achieve the commanded maneuver, or is automatically sent digitally to command the engines directly.

  11. Behavior of mercury emissions from a commercial coal-fired power plant: the relationship between stack speciation and near-field plume measurements.

    PubMed

    Landis, Matthew S; Ryan, Jeffrey V; ter Schure, Arnout F H; Laudal, Dennis

    2014-11-18

    The reduction of divalent gaseous mercury (Hg(II)) to elemental gaseous mercury (Hg(0)) in a commercial coal-fired power plant (CFPP) exhaust plume was investigated by simultaneous measurement in-stack and in-plume as part of a collaborative study among the U.S. EPA, EPRI, EERC, and Southern Company. In-stack continuous emission monitoring data were used to establish the CFPP's real-time mercury speciation and plume dilution tracer species (SO2, NOX) emission rates, and an airship was utilized as an airborne sampling platform to maintain static position with respect to the exhaust plume centerline for semicontinuous measurement of target species. Varying levels of Hg(II) concentration (2.39-3.90 μg m(-3)) and percent abundance (∼ 87-99%) in flue gas and in-plume reduction were observed. The existence and magnitude of Hg(II) reduction to Hg(0) (0-55%) observed varied with respect to the types and relative amounts of coals combusted, suggesting that exhaust plume reduction occurring downwind of the CFPP is influenced by coal chemical composition and characteristics. PMID:25325168

  12. Air-sampling inlet contamination by aircraft emissions on the NASA CV-990 aircraft

    NASA Technical Reports Server (NTRS)

    Condon, E. P.; Vedder, J. F.

    1984-01-01

    Results of an experimental investigation of the contamination of air sampling inlets by aircraft emissions from the NASA CV-990 research aircraft are presented. This four-engine jet aircraft is a NASA facility used for many different atmospheric and meteorological experiments, as well as for developing spacecraft instrumentation for remote measurements. Our investigations were performed to provide information on which to base the selection of sampling locations for a series of multi-instrument missions for measuring tropospheric trace gases. The major source of contamination is the exhaust from the jet engines, which generate many of the same gases that are of interest in atmospheric chemistry, as well as other gases that may interfere with sampling measurements. The engine exhaust contains these gases in mixing ratios many orders of magnitude greater than those that occur in the clean atmosphere which the missions seek to quantify. Pressurized samples of air were collected simultaneously from a scoop located forward of the engines to represent clean air and from other multiport scoops at various aft positions on the aircraft. The air samples were analyzed in the laboratory by gas chromatography for carbon monoxide, an abundant combustion by-product. Data are presented for various scoop locations under various flight conditions.

  13. Effect of contamination on the optical properties of transmitting and reflecting materials exposed to a MMH/N2O4 rocket exhaust

    NASA Technical Reports Server (NTRS)

    Bowman, R. L.; Spisz, E. W.; Jack, J. R.

    1973-01-01

    The changes are presented in spectral transmittance, and reflectance due to exposure of various optical materials to the exhaust plume of a 5-pound thrust bipropellant rocket. The engine was fired in a pulsed mode for a total exposure of 223.7 second. Spectral optical properties were measured in air before and after exposure to the exhaust plume in vacuum. The contaminating layer resulted in both absorption and scattering effects which caused changes as large as 30-50% for transmitting elements and 15% for mirrors in the near ultraviolet wavelengths. The changes in spectral properties of materials exposed to the exhaust plume for 44 and 223.7 seconds are compared and found to be similar.

  14. The Further Development of Heat-Resistant Materials for Aircraft Engines

    NASA Technical Reports Server (NTRS)

    Bollenrath, Franz

    1946-01-01

    The present report deals with the problems involved in the greater utilization and development of aircraft engine materials, and specifically; piston materials, cylinder heads, exhaust valves, and exhaust gas turbine blading. The blades of the exhaust gas turbine are likely to be the highest stressed components of modern power plants from a thermal-mechanical and chemical standpoint, even though the requirements on exhaust valves of engines with gasoline injection are in general no less stringent. For the fire plate in Diesel engines the specifications for mechanical strength and design are not so stringent, and the question of heat resistance, which under these circumstances is easier obtainable, predominates.

  15. A Survey of Challenges in Aerodynamic Exhaust Nozzle Technology for Aerospace Propulsion Applications

    NASA Technical Reports Server (NTRS)

    Shyne, Rickey J.

    2002-01-01

    The current paper discusses aerodynamic exhaust nozzle technology challenges for aircraft and space propulsion systems. Technology advances in computational and experimental methods have led to more accurate design and analysis tools, but many major challenges continue to exist in nozzle performance, jet noise and weight reduction. New generations of aircraft and space vehicle concepts dictate that exhaust nozzles have optimum performance, low weight and acceptable noise signatures. Numerous innovative nozzle concepts have been proposed for advanced subsonic, supersonic and hypersonic vehicle configurations such as ejector, mixer-ejector, plug, single expansion ramp, altitude compensating, lobed and chevron nozzles. This paper will discuss the technology barriers that exist for exhaust nozzles as well as current research efforts in place to address the barriers.

  16. time Dependence of Aerosols in Biomass Burn Plumes from Bbop

    NASA Astrophysics Data System (ADS)

    Kleinman, L. I.; Sedlacek, A. J., III; Yokelson, R. J.; Onasch, T. B.; Adachi, K.; Buseck, P. R.; Chand, D.; Collier, S.; Dubey, M. K.; Mei, F.; Shilling, J. E.; Springston, S. R.; Wang, J.; Wigder, N. L.; Zhang, Q.

    2014-12-01

    The Biomass Burn Observation Project (BBOP) was conducted between the beginning of July, 2013 and the end of October, 2013. This period overlapped the wildland fire season in the Pacific Northwest from July to mid September, and in October, prescribed agricultural burns in the lower Mississippi River Valley. Urban plumes from 7 cities in the NW and SE U.S. provided a contrasting set of observations. An extended aircraft deployment using the DOE G-1 was made possible by the fortuitous citing of the planes home base within 2 hours flight time of regions with a high incidence of wildland fires. In this presentation we concentrate on wildland fires and the time development of aerosol concentration, size distributions, and optical and physical properties as a function of plume age. Our focus is on physical properties of organic aerosols, a category that often exceeded 95% of total aerosol mass. Other BBOP presentations will highlight carbonaceous particle chemical composition and morphology as revealed by an SP-AMS, an SP2, and electron microscopy. Flight patterns were designed so as to sample plumes as close to a fire as allowed by aviation rules, followed by one or two sets of three to six transects covering a transport time of two to four hours. Average values of aerosol parameters are calculated for each plume transect with CO used as an inert tracer to account for dilution. It is found that OA increases by ~ 50% to 100%, with much of the increase occurring within the first hour. There is a corresponding increase in scattering which causes single scattering albedo to increase. At 2 to 4 hours downwind, plumes have evolved to yield net cooling, an effect that is much more pronounced if one takes into account known artifacts in PSAP measurements or uses the photothermal interferometer (PTI) to measure light absorption. The fires sampled have a relatively narrow range of modified combustion efficiencies, but it is centered on 0.9, at which point there are emission

  17. Development and Evaluation of a Reactive-Dispersive Plume Model: TexAQS II 2006 Case Study

    NASA Astrophysics Data System (ADS)

    Kim, Yong Hoon; Kim, Hyun Soo; Song, Chul Han

    2015-04-01

    We describe the development and evaluation of a reactive-dispersive plume model (RDPM) that combines a photo-chemistry model with a plume dilution driven by turbulent dispersion of a power-plant plume. The plume transport and turbulent dispersion are derived from a Gaussian plume model and the plume chemistry model uses 71 HxOy-NxOy-CH4 chemistry-related reactions and 184 NMHC-related reactions. Emissions from large-scale point sources have continuously increased due to the rapid industrial growth. To extensively understand and assess atmospheric impacts of the power-plant emissions, a general RDPM was applied to simultaneously simulate the dynamics and photo-chemistry of the Texas power-plant plumes. During the second Texas Air Quality Study 2006 (TexAQS II 2006) on 16 September 2006, pollutant concentrations were measured by NOAA WP-3D aircraft with successive transects across power-plant plumes in Texas, USA. The simulation performances of the RDPM were evaluated by a comparison study, using the observation data obtained from the measurements of a NOAA WP-3D flight during TexAQS II 2006 airborne field campaign. On 16 September, the WP-3D aircraft observed mainly meteorological parameters and particulate species concentrations, traversing the Monticello and Welsh power-plant plumes four times from transects A to D. In addition, some meteorological variables in an initial condition for model simulation were obtained from the Weather Research and Forecasting (WRF) model output for the specific objects. These power-plant plume cases were selected in this study, because a large number of nitrogen oxides and sulfur dioxide concentrations inside the power-plant plumes were measured without any interruption of other emission sources. For the Monticello and Welsh power-plant plumes, the model-predicted concentrations showed good agreements with the observed concentrations of ambient species (e.g., nitrogen oxides, ozone, sulfur dioxide, etc.) at the four transects. Based

  18. SUCCESS Studies of the Impact of Aircraft on Cirrus Clouds

    NASA Technical Reports Server (NTRS)

    Toon, Owen B.; Condon, Estelle P. (Technical Monitor)

    1996-01-01

    During April of 1996 NASA will sponsor the SUCCESS project to better understand the impact of subsonic aircraft on the Earth's radiation budget. We plan to better determine the radiative properties of cirrus clouds and of contrails so that satellite observations can better determine their impact on Earth's radiation budget. We hope to determine how cirrus clouds form, whether the exhaust from subsonic aircraft presently affects the formation of cirrus clouds, and if the exhaust does affect the clouds whether the changes induced are of climatological significance. We seek to pave the way for future studies by developing and testing several new instruments. We also plan to better determine the characteristics of gaseous and particulate exhaust products from subsonic aircraft and their evolution in the region near the aircraft. In order to achieve our experimental objectives we plan to use the DC-8 aircraft as an in situ sampling platform. It will carry a wide variety of gaseous, particulate, radiative, and meteorological instruments. We will also use a T-39 aircraft primarily to sample the exhaust from other aircraft. It will carry a suite of instruments to measure particles and gases. We will employ an ER-2 aircraft as a remote sensing platform. The ER-2 will act as a surrogate satellite so that remote sensing observations can be related to the in situ parameters measured by the DC-8 and T-39. The mission strategy calls for a 5 week deployment beginning on April 8, 1996, and ending on May 10, 1996. During this time all three aircraft will be based in Salina, Kansas. A series of flights, averaging one every other day during this period, will be made mainly near the Department of Energy's Climate and Radiation Testbed site (CART) located in Northern Oklahoma, and Southern Kansas. During this same time period an extensive set of ground based measurements will be made by the DOE, which will also be operating several aircraft in the area to better understand the

  19. Air pollution from aircraft. [jet exhaust - aircraft fuels/combustion efficiency

    NASA Technical Reports Server (NTRS)

    Heywood, J. B.; Chigier, N. A.

    1975-01-01

    A model which predicts nitric oxide and carbon monoxide emissions from a swirl can modular combustor is discussed. A detailed analysis of the turbulent fuel-air mixing process in the swirl can module wake region is reviewed. Hot wire anemometry was employed, and gas sampling analysis of fuel combustion emissions were performed.

  20. A multi-sensor plume height analysis of the 2009 Redoubt eruption

    NASA Astrophysics Data System (ADS)

    Ekstrand, Angela L.; Webley, Peter W.; Garay, Michael J.; Dehn, Jonathan; Prakash, Anupma; Nelson, David L.; Dean, Kenneson G.; Steensen, Torge

    2013-06-01

    During an explosive volcanic eruption, accurately determining the height of a volcanic plume or cloud is essential to accurately forecast its motion because volcanic ash transport and dispersion models require the initial plume height as an input parameter. The direct use of satellite infrared temperatures for height determination, one of the most commonly employed methods at the Alaska Volcano Observatory, often does not yield unique solutions for height. This result is documented here for the 2009 eruption of Redoubt Volcano. Satellite temperature heights consistently underestimated the height of ash plumes in comparison to other methods such as ground-based radar and Multi-angle Imaging SpectroRadiometer (MISR) stereo heights. For ash plumes below the tropopause, increasing transparency of a plume begins to affect the accuracy of simple temperature height retrievals soon after eruption. With decreasing opacity, plume temperature heights become increasingly inaccurate. Comparison with dispersion models and aircraft gas flight data confirms that radar and MISR stereo heights are more accurate than basic satellite temperature heights. Even in the cases in which satellite temperature results appeared to be relatively accurate (e.g., for plumes below the tropopause), a mixed signal of plume and ground radiation still presented an issue for almost every event studied. This was true regardless of the fact that a band differencing method was used to remove presumably translucent pixels. The data presented here make a strong case for the use of data fusion in volcano monitoring, as there is a need to confirm satellite temperature heights with other height data. If only basic satellite temperature heights are available for a given eruption, then these heights must be considered with a significant margin of error.

  1. Satellite, aircraft, and drogue studies of coastal currents and pollutants

    NASA Technical Reports Server (NTRS)

    Klemas, V.; Davis, G.; Lackie, J.; Whelan, W.; Tornatore, G.

    1977-01-01

    The mounting interest in extracting oil and other resources from the continental shelf and continuing use of shelf and estuarine waters for waste disposal is creating a need for synoptic means of determining currents and monitoring pollutants in this area. A satellite-aircraft-drogue approach is described which employs remotely tracked expendable drogues together with satellite and aircraft observations of waste plumes and current tracers such as dyes or suspended sediment. Tests conducted on the continental shelf and in Delaware Bay indicate that the approach provides a cost-effective means of studying current circulation, oil-slick movement, and ocean waste dispersion under a wide range of environmental conditions.

  2. ACE 1992 summary data report: Aircraft measurements of meteorological parameters and SF6. Technical memo

    SciTech Connect

    Watkins, B.A.; Boatman, J.F.; Wellman, D.L.; Wilkison, S.W.

    1993-02-01

    Meteorological parameters and sulfur hexafluoride (SF6) were measured with the NOAA King Air C-90 aircraft during October 1992 in central Florida as part of the Air Force Technical Applications Command (AFTAC) Airborne Collection Equipment (ACE 1992) experiment. Airborne sampling was used to locate a plume containing SF6 as a tracer. Before take off, a trajectory model was used to provide the expected plume path. An onboard tracking program gave current predictions of the location of the plume, based on the location of tetroons expected to travel with the plume. Once the plume was located, samples were collected of triethyl phosphate oxide and methyl salicylate, which had been released with the SF6. This report discusses the objectives of ACE 1992, the instrumentation used and the data obtained by the NOAA King Air ground and airborne operation.

  3. GASOLINE VEHICLE EXHAUST PARTICLE SAMPLING STUDY

    SciTech Connect

    Kittelson, D; Watts, W; Johnson, J; Zarling, D Schauer,J Kasper, K; Baltensperger, U; Burtscher, H

    2003-08-24

    The University of Minnesota collaborated with the Paul Scherrer Institute, the University of Wisconsin (UWI) and Ricardo, Inc to physically and chemically characterize the exhaust plume from recruited gasoline spark ignition (SI) vehicles. The project objectives were: (1) Measure representative particle size distributions from a set of on-road SI vehicles and compare these data to similar data collected on a small subset of light-duty gasoline vehicles tested on a chassis dynamometer with a dilution tunnel using the Unified Drive Cycle, at both room temperature (cold start) and 0 C (cold-cold start). (2) Compare data collected from SI vehicles to similar data collected from Diesel engines during the Coordinating Research Council E-43 project. (3) Characterize on-road aerosol during mixed midweek traffic and Sunday midday periods and determine fleet-specific emission rates. (4) Characterize bulk- and size-segregated chemical composition of the particulate matter (PM) emitted in the exhaust from the gasoline vehicles. Particle number concentrations and size distributions are strongly influenced by dilution and sampling conditions. Laboratory methods were evaluated to dilute SI exhaust in a way that would produce size distributions that were similar to those measured during laboratory experiments. Size fractionated samples were collected for chemical analysis using a nano-microorifice uniform deposit impactor (nano-MOUDI). In addition, bulk samples were collected and analyzed. A mixture of low, mid and high mileage vehicles were recruited for testing during the study. Under steady highway cruise conditions a significant particle signature above background was not measured, but during hard accelerations number size distributions for the test fleet were similar to modern heavy-duty Diesel vehicles. Number emissions were much higher at high speed and during cold-cold starts. Fuel specific number emissions range from 1012 to 3 x 1016 particles/kg fuel. A simple

  4. Conceptual design, evaluation and research identification for Remote Augmented Propulsive Lift Systems (RALS) with ejectors for VTOL aircraft

    NASA Technical Reports Server (NTRS)

    Willis, W. S.; Konarski, M.; Sutherland, M. V.

    1982-01-01

    Ejector concepts for use with a remote augmented lift system (RALS) exhaust nozzle were studied. A number of concepts were considered and three were selected as having the greatest promise of providing the desired aircraft and exhaust gas cooling and lift enhancement. A scale model test program is recommended to explore the effects of the more important parameters on ejector performance.

  5. Evolution of vehicle exhaust particles in the atmosphere.

    PubMed

    Canagaratna, Manjula R; Onasch, Timothy B; Wood, Ezra C; Herndon, Scott C; Jayne, John T; Cross, Eben S; Miake-Lye, Richard C; Kolb, Charles E; Worsnop, Douglas R

    2010-10-01

    Aerosol mass spectrometer (AMS) measurements are used to characterize the evolution of exhaust particulate matter (PM) properties near and downwind of vehicle sources. The AMS provides time-resolved chemically speciated mass loadings and mass-weighted size distributions of nonrefractory PM smaller than 1 microm (NRPM1). Source measurements of aircraft PM show that black carbon particles inhibit nucleation by serving as condensation sinks for the volatile and semi-volatile exhaust gases. Real-world source measurements of ground vehicle PM are obtained by deploying an AMS aboard a mobile laboratory. Characteristic features of the exhaust PM chemical composition and size distribution are discussed. PM mass and number concentrations are used with above-background gas-phase carbon dioxide (CO2) concentrations to calculate on-road emission factors for individual vehicles. Highly variable ratios between particle number and mass concentrations are observed for individual vehicles. NRPM1 mass emission factors measured for on-road diesel vehicles are approximately 50% lower than those from dynamometer studies. Factor analysis of AMS data (FA-AMS) is applied for the first time to map variations in exhaust PM mass downwind of a highway. In this study, above-background vehicle PM concentrations are highest close to the highway and decrease by a factor of 2 by 200 m away from the highway. Comparison with the gas-phase CO2 concentrations indicates that these vehicle PM mass gradients are largely driven by dilution. Secondary aerosol species do not show a similar gradient in absolute mass concentrations; thus, their relative contribution to total ambient PM mass concentrations increases as a function of distance from the highway. FA-AMS of single particle and ensemble data at an urban receptor site shows that condensation of these secondary aerosol species onto vehicle exhaust particles results in spatial and temporal evolution of the size and composition of vehicle exhaust PM on

  6. EXHAUST MAIN PERSONNEL EXPOSURE CALCULATION

    SciTech Connect

    S. Su

    1999-09-29

    The purpose of this activity is to identify and determine potential radiation hazards in the service exhaust main due to a waste package leakage from an emplacement drift. This work supports the subsurface ventilation system design for the EDA II, which consists of an accessible service exhaust main for personnel, and an exhaust main for hot air flow. The objective is to provide the necessary radiation exposure calculations to determine if the service exhaust main is accessible following a waste package leak. This work includes the following items responsive to the stated purpose and objective: Calculate the limiting transient radiation exposure of personnel in the service exhaust main due to the passage of airborne radioactive material through the ventilation raise and connecting horizontal raise to the exhaust main in the event of a leaking waste package Calculate the potential exposures to maintenance workers in the service exhaust main from residual radioactive material deposited inside of the ventilation raise and connecting horizontal raise This calculation is limited to external radiation only, since the airborne and contamination sources will be contained in the ventilation raise and connecting horizontal raise.

  7. Compositional differentiation of Enceladus' plume

    NASA Astrophysics Data System (ADS)

    Khawaja, N.; Postberg, F.; Schmidt, J.

    2014-04-01

    The Cosmic Dust Analyser (CDA) on board the Cassini spacecraft sampled Enceladus' plume ice particles emanated directly from Enceladus' fractured south polar terrain (SPT), the so-called "Tiger Stripes", during two consecutive flybys (E17 and E18) in 2012. The spacecraft passed through the dense plume with a moderate velocity of ~7.5km/s, horizontally to the SPT with a closest approach (CA) at an altitude of ~75km almost directly over the south pole. In both flybys, spectra were recorded during a time interval of ~ ±3 minutes with respect to the closest approach achieving an average sampling rate of about 0.6 sec-1. We assume that the spacecraft passed through the plume during an interval of about ±60(sec) from the CA. Particles encountered before and after this period are predominately from the E-ring background in which Enceladus is embedded. Most CDA TOF-mass spectra are identified as one of three compositional types: (i) almost pure water (ii) organic rich and (iii) salt rich [2]. A Boxcar Analysis (BCA) is performed from a count database for compositional mapping of the plume along the space-craft trajectory. In BCA, counts of each spectrum type are integrated for a certain interval of time (box size). The integral of counts represents frequencies of compositional types in absolute abundances, which are converted later into proportions. This technique has been proven to be a suitable for inferring the compositional profiles from an earlier flyby (E5) [1]. The inferred compositional profiles show similar trends on E17 and E18. The abundances of different compositional types in the plume clearly differ from the Ering background and imply a compositional differentiation inside the plume. Following up the work of Schmidt et al, 2008 and Postberg et al, 2011 we can link different compositional types to different origins. The E17/E18 results are compared with the E5 flyby in 2008, which yielded the currently best compositional profile [2] but was executed at much

  8. Efficient Transport of Nitric Acid in Urban Plumes Observed Over the North Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Neuman, J.; Parrish, D.; Trainer, M.; Brown, S.; Fehsenfeld, F.; Flocke, F.; Holloway, J.; Nowak, J.; Ryerson, T.; Stark, H.; Swanson, A.

    2005-12-01

    The processing of anthropogenic NOx emissions from urban and industrial sources was studied using data collected from an instrumented aircraft flying over the east coast of the United States and over the North Atlantic Ocean. Pollutants were sampled from the National Oceanic and Atmospheric Administration WP-3 aircraft during the International Consortium for Atmospheric Research on Transport and Transformation study in July and August, 2004. Fast response measurements of reactive nitrogen compounds and carbon monoxide (CO) were obtained in crosswind transects of urban plumes in the New York City and Boston source regions and up to 1600 km downwind. The magnitude and geographical extent of the effects of NOx and its oxidation products depend on the NOx oxidation rates and pathways and on the atmospheric lifetime and loss mechanisms of the resulting secondary products. In urban plumes that were sampled further than 200 km from New York City and Boston, nitric acid was always the most abundant reactive nitrogen species and usually accounted for over 80% of the sum of NOx and its oxidation products. During this study, frequently plumes were transported above the marine boundary layer at a few hundred meters altitude and were decoupled from the surface, which allowed efficient transport of nitric acid that is not commonly observed at the surface, in the continental boundary layer, or in the free troposphere. In plumes observed over the remote North Atlantic Ocean, nitric acid mixing ratios were high (up to 50 ppbv) and the ratio of CO to reactive nitrogen changed little with plume age, reflecting the small depositional loss of nitric acid. Many of the photochemically aged urban plumes were characterized by the presence of tens of ppbv of nitric acid for several days. As a consequence of the slow removal of nitric acid from these air masses, NOx can be reformed from nitric acid photolysis and OH oxidation. The efficient transport of nitric acid may also allow for

  9. Plasma plume MHD power generator and method

    DOEpatents

    Hammer, James H.

    1993-01-01

    Highly-conducting plasma plumes are ejected across the interplanetary magnetic field from a situs that is moving relative to the solar wind, such as a spacecraft or an astral body, such as the moon, having no magnetosphere that excludes the solar wind. Discrete plasma plumes are generated by plasma guns at the situs extending in opposite directions to one another and at an angle, preferably orthogonal, to the magnetic field direction of the solar wind plasma. The opposed plumes are separately electrically connected to their source by a low impedance connection. The relative movement between the plasma plumes and the solar wind plasma creates a voltage drop across the plumes which is tapped by placing the desired electrical load between the electrical connections of the plumes to their sources. A portion of the energy produced may be used in generating the plasma plumes for sustained operation.

  10. Eye and respiratory irritants in jet engine exhaust.

    PubMed

    Miyamoto, Y

    1986-11-01

    It has been noted that eye and respiratory irritation frequently occurred in the ground crews and pilots working on the field behind an aircraft with a low smoke combustor (LSC) engine. This study was attempted to analyze the exhaust sampled at about 50 m behind the LSC J79 engines at idle power setting by means of a high performance liquid chromatography (HPLC) technique. Nine kinds of lower aliphatic carbonyl compound (seven aldehydes and two ketones) were identified. The concentration of formaldehyde was the highest among them, showing the value above the threshold reported by previous investigators. Concentration of NOx was simultaneously measured by a gas detector tube in the same sample. The exhaust of a conventional J79 engine, which has rarely caused irritation, was also analyzed by the same technique and the results were compared. It was concluded that formaldehyde plays a major role in causing irritation. PMID:3790031

  11. Spectral measurements of exhaust gases using a Fourier transform spectrometer

    NASA Astrophysics Data System (ADS)

    Schruefer, Elmar; Lindermeir, Erwin; Palme, Frank; Wuelbern, K.

    1993-09-01

    In recent years environmental issues have become increasingly important. Especially the impact of gaseous emissions on the atmosphere is of great interest. As a consequence a group of several coworkers was established at the Institute for Electrical Measurement of the Technical University of Munich, Germany) with the task to develop and investigate spectroscopic methods and instruments for the analysis of the chemical compsition of exhaust gases. This article describes the advantages of the application of Fourier transform spectroscopy against conventional gas analysis devices. Moreover results of measurements of the exhaust of a smokestack of a coal fired power plant and of an aircraft engine are presented. The last section deals with the development of a Fourier transform spectrometer which is not equipped with any moving parts. This design was made especially for applications in harsh environments.

  12. Development and Validation of a Computational Model for Predicting the Behavior of Plumes from Large Solid Rocket Motors

    NASA Technical Reports Server (NTRS)

    Wells, Jason E.; Black, David L.; Taylor, Casey L.

    2013-01-01

    Exhaust plumes from large solid rocket motors fired at ATK's Promontory test site carry particulates to high altitudes and typically produce deposits that fall on regions downwind of the test area. As populations and communities near the test facility grow, ATK has become increasingly concerned about the impact of motor testing on those surrounding communities. To assess the potential impact of motor testing on the community and to identify feasible mitigation strategies, it is essential to have a tool capable of predicting plume behavior downrange of the test stand. A software package, called PlumeTracker, has been developed and validated at ATK for this purpose. The code is a point model that offers a time-dependent, physics-based description of plume transport and precipitation. The code can utilize either measured or forecasted weather data to generate plume predictions. Next-Generation Radar (NEXRAD) data and field observations from twenty-three historical motor test fires at Promontory were collected to test the predictive capability of PlumeTracker. Model predictions for plume trajectories and deposition fields were found to correlate well with the collected dataset.

  13. Axisymmetric computational fluid dynamics analysis of Saturn V/S1-C/F1 nozzle and plume

    NASA Technical Reports Server (NTRS)

    Ruf, Joseph H.

    1993-01-01

    An axisymmetric single engine Computational Fluid Dynamics calculation of the Saturn V/S 1-C vehicle base region and F1 engine plume is described. There were two objectives of this work, the first was to calculate an axisymmetric approximation of the nozzle, plume and base region flow fields of S1-C/F1, relate/scale this to flight data and apply this scaling factor to a NLS/STME axisymmetric calculations from a parallel effort. The second was to assess the differences in F1 and STME plume shear layer development and concentration of combustible gases. This second piece of information was to be input/supporting data for assumptions made in NLS2 base temperature scaling methodology from which the vehicle base thermal environments were being generated. The F1 calculations started at the main combustion chamber faceplate and incorporated the turbine exhaust dump/nozzle film coolant. The plume and base region calculations were made for ten thousand feet and 57 thousand feet altitude at vehicle flight velocity and in stagnant freestream. FDNS was implemented with a 14 species, 28 reaction finite rate chemistry model plus a soot burning model for the RP-1/LOX chemistry. Nozzle and plume flow fields are shown, the plume shear layer constituents are compared to a STME plume. Conclusions are made about the validity and status of the analysis and NLS2 vehicle base thermal environment definition methodology.

  14. Helicopter engine exhaust rotor downwash effects on laser beams

    NASA Astrophysics Data System (ADS)

    Henriksson, Markus; Sjöqvist, Lars; Seiffer, Dirk

    2015-10-01

    The hot exhaust gases from engines on helicopters are pushed down by the rotor in a turbulent flow. When the optical path of a laser beam or optical sensor passes through this region severe aberrations of the optical field may result. These perturbations will lead to beam wander and beam distortions that can limit the performance of optical countermeasure systems. To quantify these effects the Italian Air Force Flight Test Centre hosted a trial for the "Airborne platform effects on lasers and warning sensors" (ALWS) EDA-project. Laser beams were propagated from the airport control tower to a target screen in a slant path with the helicopter hovering over this path. Collimated laser beams at 1.55-, 2- and 4.6-μm wavelength were imaged with high speed cameras. Large increases in beam wander and beam divergence were found, with beam wander up to 200 μrad root-mean-square and increases in beam divergence up to 1 mrad. To allow scaling to other laser beam parameters and geometries formulas for propagation in atmospheric turbulence were used even though the turbulence may not follow Kolmogorov statistics. By assuming that the plume is short compared to the total propagation distance the integrated structure parameter through the plume could be calculated. Values in the range 10-10 to 10-8 m1/3 were found when the laser beams passed through the exhaust gases below the helicopter tail. The integrated structure parameter values calculated from beam wander were consistently lower than those calculated from long term spot size, indicating that the method is not perfect but provides information about order of magnitudes. The measured results show that the engine exhaust for worst case beam directions will dominate over atmospheric turbulence even for kilometer path lengths from a helicopter at low altitude. How severe the effect is on system performance will depend on beam and target parameters.

  15. Unmanned aircraft systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Unmanned platforms have become increasingly more common in recent years for acquiring remotely sensed data. These aircraft are referred to as Unmanned Airborne Vehicles (UAV), Remotely Piloted Aircraft (RPA), Remotely Piloted Vehicles (RPV), or Unmanned Aircraft Systems (UAS), the official term used...

  16. Irritants in cigarette smoke plumes

    SciTech Connect

    Ayer, H.E.; Yeager, D.W.

    1982-11-01

    Concentrations of the irritants formaldehyde and acrolein in side stream cigarette smoke plumes are up to three orders of magnitude above occupational limits, readily accounting for eye and nasal irritation. ''Low-tar'' cigarettes appear at least as irritating as other cigarettes. More than half the irritant is associated with the particulate phase of the smoke, permitting deposition throughout the entire respiratory tract and raising the issue of whether formaldehyde in smoke is associated with bronchial cancer.

  17. Gaseous composition measured by a chemical ionization mass spectrometer in fresh and aged ship plumes

    NASA Astrophysics Data System (ADS)

    Faxon, Cameron; Psichoudaki, Magda; Kuuluvainen, Heino; Hallquist, Åsa; Thomson, Erik; Pettersson, Jan; Hallquist, Mattias

    2015-04-01

    The port of Gothenburg is the largest port of the Nordic countries with numerous ships calling the port daily. The ship exhausts contain numerous pollutants including gases such as SO2 and NOx as well as particulate matter and soot. The exhaust also contains numerous organic compounds, a large fraction of which are unidentified. These organics are oxidized in the atmosphere producing more oxygenated and potentially less volatile compounds that may contribute to the secondary organic aerosol (SOA). This work focuses on the characterization of fresh gaseous species present in the exhaust plumes of the passing ships and also on their photochemical aging. Between 26 September and 12 November 2014 measurements were conducted at a sampling site located on a small peninsula at the entrance of Gothenburg's port. The campaign was divided in two periods. During the first period, the fresh plumes of the passing ships were measured through a main inlet. During the second period, the sample passed through the same inlet and was then introduced into a Potential Aerosol Mass (PAM) reactor. The PAM reactor uses UV lamps and high concentrations of oxidants (OH radicals and O3) to oxidize the organic species present in the plumes. The oxidation that takes place within the reactor can be equivalent to up to one week of atmospheric oxidation. Preliminary tests showed that the oxidation employed in the current camping corresponded to 3.4 days in the atmosphere. A Time-of-Flight Chemical Ionization Mass Spectrometer (ToF-CIMS) was employed to monitor the concentration of different organic species present in the fresh and aged plumes. Water (positive) and iodide (negative) ionization methods were employed were water was primarily used for fresh plumes (large fraction of non-polar compounds) while iodide was used for the aged plumes (primarily oxidised products). The H2O, O3 and SO2 concentrations inside the PAM chamber were monitored, and an organic tracer for OH exposure determination

  18. Infant leukemia and paternal exposure to motor vehicle exhaust fumes

    SciTech Connect

    Vianna, N.J.; Kovasznay, B.; Polan, A.; Ju, C.

    1984-09-01

    The children of fathers who work in gas stations, automobile or truck repair, and aircraft maintenance appear to be at increased risk for acute leukemia during their first year of life. The odds ratio was found to be about 2.5 overall, but risk appears to be greater for female offspring. A decline in sex ratio was observed for the three decades of the study, with the lowest ratio observed from 1969 through 1978. These preliminary findings suggest that exposure to one or more of the components of exhaust fumes might be of etiologic importance for this malignancy. The limitations of this investigation are discussed.

  19. Microbial populations in contaminant plumes

    USGS Publications Warehouse

    Haack, S.K.; Bekins, B.A.

    2000-01-01

    Efficient biodegradation of subsurface contaminants requires two elements: (1) microbial populations with the necessary degradative capabilities, and (2) favorable subsurface geochemical and hydrological conditions. Practical constraints on experimental design and interpretation in both the hydrogeological and microbiological sciences have resulted in limited knowledge of the interaction between hydrogeological and microbiological features of subsurface environments. These practical constraints include: (1) inconsistencies between the scales of investigation in the hydrogeological and microbiological sciences, and (2) practical limitations on the ability to accurately define microbial populations in environmental samples. However, advances in application of small-scale sampling methods and interdisciplinary approaches to site investigations are beginning to significantly improve understanding of hydrogeological and microbiological interactions. Likewise, culture-based and molecular analyses of microbial populations in subsurface contaminant plumes have revealed significant adaptation of microbial populations to plume environmental conditions. Results of recent studies suggest that variability in subsurface geochemical and hydrological conditions significantly influences subsurface microbial-community structure. Combined investigations of site conditions and microbial-community structure provide the knowledge needed to understand interactions between subsurface microbial populations, plume geochemistry, and contaminant biodegradation.

  20. Opacity meter for monitoring exhaust emissions from non-stationary sources

    DOEpatents

    Dec, John Edward

    2000-01-01

    Method and apparatus for determining the opacity of exhaust plumes from moving emissions sources. In operation, a light source is activated at a time prior to the arrival of a diesel locomotive at a measurement point, by means of a track trigger switch or the Automatic Equipment Identification system, such that the opacity measurement is synchronized with the passage of an exhaust plume past the measurement point. A beam of light from the light source passes through the exhaust plume of the locomotive and is detected by a suitable detector, preferably a high-rate photodiode. The light beam is well-collimated and is preferably monochromatic, permitting the use of a narrowband pass filter to discriminate against background light. In order to span a double railroad track and provide a beam which is substantially stronger than background, the light source, preferably a diode laser, must provide a locally intense beam. A high intensity light source is also desirable in order to increase accuracy at the high sampling rates required. Also included is a computer control system useful for data acquisition, manipulation, storage and transmission of opacity data and the identification of the associated diesel engine to a central data collection center.

  1. Cold Flow Plume Entrainment Test Final Report NTF Test Number 2456

    NASA Technical Reports Server (NTRS)

    Ruf, Joseph H.; McDaniels, David; Mishtawy, Jason; Ramachandran, Narayanan; Hammad, Khaled J.

    2005-01-01

    As part of the Space Shuttle Return to Flight (RTF) program, Marshall Space Flight Center (MSFC) performed computational fluid dynamics (CFD) analysis to define the velocity flowfields around the Shuttle stack at liftoff. These CFD predicted velocity flowfields were used in debris transport analysis (DTA). High speed flows such as plumes induce or 'entrain' mass from the surrounding environment. Previous work had shown that CFD analysis over-predicts plume induced flows. Therefore, the DTA would tend to 1) predict more debris impacts, and 2) the debris velocity (and kinetic energy) of those impacts would be too high. At a November, 2004 peer-review it was recommended that the Liftoff DTA team quantify the uncertainty in the DTA caused by the CFD's over prediction of plume induced flow. To do so, the Liftoff DTA team needed benchmark quality data for plume induced flow to quantify the CFD accuracy and its effect on the DTA. MSFC's Nozzle Test Facility (NTF) conducted the "Nozzle Induced Flows test, P#2456" to obtain experimental data for plume induced flows for nozzle flow exhausting into q quiescent freestream. Planning for the test began in December, 2004 and the experimental data was obtained in February and March of 2005. The funding for this test was provided by MSFC's Space Shuttle Propulsion Systems Integration and Engineering office.

  2. Linear Spectral Analysis of Plume Emissions Using an Optical Matrix Processor

    NASA Technical Reports Server (NTRS)

    Gary, C. K.

    1992-01-01

    Plume spectrometry provides a means to monitor the health of a burning rocket engine, and optical matrix processors provide a means to analyze the plume spectra in real time. By observing the spectrum of the exhaust plume of a rocket engine, researchers have detected anomalous behavior of the engine and have even determined the failure of some equipment before it would normally have been noticed. The spectrum of the plume is analyzed by isolating information in the spectrum about the various materials present to estimate what materials are being burned in the engine. Scientists at the Marshall Space Flight Center (MSFC) have implemented a high resolution spectrometer to discriminate the spectral peaks of the many species present in the plume. Researchers at the Stennis Space Center Demonstration Testbed Facility (DTF) have implemented a high resolution spectrometer observing a 1200-lb. thrust engine. At this facility, known concentrations of contaminants can be introduced into the burn, allowing for the confirmation of diagnostic algorithms. While the high resolution of the measured spectra has allowed greatly increased insight into the functioning of the engine, the large data flows generated limit the ability to perform real-time processing. The use of an optical matrix processor and the linear analysis technique described below may allow for the detailed real-time analysis of the engine's health. A small optical matrix processor can perform the required mathematical analysis both quicker and with less energy than a large electronic computer dedicated to the same spectral analysis routine.

  3. D-558-2 being mounted to P2B-1S launch aircraft in hangar

    NASA Technical Reports Server (NTRS)

    1954-01-01

    during take-off and landing and in tight turns. The three aircraft gathered a great deal of data about pitch-up and the coupling of lateral (yaw) and longitudinal (pitch) motions; wing and tail loads, lift, drag, and buffeting characteristics of swept-wing aircraft at transonic and supersonic speeds; and the effects of the rocket exhaust plume on lateral dynamic stability throughout the speed range. (Plume effects were a new experience for aircraft.) The number three aircraft also gathered information about the effects of external stores (bomb shapes, drop tanks) upon the aircraft's behavior in the transonic region (roughly 0.7 to 1.3 times the speed of sound). In correlation with data from other early transonic research aircraft such as the XF-92A, this information contributed to solutions to the pitch-up problem in swept-wing aircraft. The three airplanes flew a total of 313 times--123 by the number one aircraft (Bureau No. 37973--NACA 143), 103 by the second Skyrocket (Bureau No. 37974--NACA 144), and 87 by airplane number three (Bureau No. 37975--NACA 145). Skyrocket 143 flew all but one of its missions as part of the Douglas contractor program to test the airplane's performance. NACA aircraft 143 was initially powered by a Westinghouse J-34-40 turbojet engine configured only for ground take-offs, but in 1954-55 the contractor modified it to an all-rocket air-launch capability featuring an LR8-RM-6, 4-chamber Reaction Motors engine rated at 6,000 pounds of thrust at sea level (the Navy designation for the Air Force's LR-11 used in the X-1). In this configuration, NACA research pilot John McKay flew the airplane only once for familiarization on September 17, 1956. The 123 flights of NACA 143 served to validate wind-tunnel predictions of the airplane's performance, except for the fact that the airplane experienced less drag above Mach 0.85 than the wind tunnels had indicated. NACA 144 also began its flight program with a turbojet powerplant. NACA pilots Robert A

  4. Critical Propulsion Components. Volume 3; Exhaust Nozzle

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Several studies have concluded that a supersonic aircraft, if environmentally acceptable and economically viable, could successfully compete in the 21st century marketplace. However, before industry can commit to what is estimated as a 15 to 20 billion dollar investment, several barrier issues must be resolved. In an effort to address these barrier issues, NASA and Industry teamed to form the High-Speed Research (HSR) program. As part of this program, the Critical Propulsion Components (CPC) element was created and assigned the task of developing those propulsion component technologies necessary to: (1) reduce cruise emissions by a factor of 10 and (2) meet the ever-increasing airport noise restrictions with an economically viable propulsion system. The CPC-identified critical components were ultra-low emission combustors, low-noise/high-performance exhaust nozzles, low-noise fans, and stable/high-performance inlets. Propulsion cycle studies (coordinated with NASA Langley Research Center sponsored airplane studies) were conducted throughout this CPC program to help evaluate candidate components and select the best concepts for the more complex and larger scale research efforts. The propulsion cycle and components ultimately selected were a mixed-flow turbofan (MFTF) engine employing a lean, premixed, prevaporized (LPP) combustor coupled to a two-dimensional mixed compression inlet and a two-dimensional mixer/ejector nozzle. Due to the large amount of material presented in this report, it was prepared in four volumes; Volume 1: Summary, Introduction, and Propulsion System Studies, Volume 2: Combustor, Volume 3: Exhaust Nozzle, and Volume 4: Inlet and Fan/Inlet Acoustic Team.

  5. Use of wind tunnel modeling to evaluate stable plume impact

    SciTech Connect

    Petersen, R.L.; Parce, D.K.; Spellman, D.L.

    1994-12-31

    In complex terrain situations, where the stack exhaust is at or below the height of nearby terrain features, EPA (1990) recommends various screening techniques to evaluate plume impact during stable conditions. The preferred screening techniques are: (1) Valley; (2) CTSCREEN; (3) COMPLEX I; (4) SHORTZ/LONGZ; and (5) Rough Terrain Dispersion Model (RTDM). If these screening techniques demonstrate a possible exceedance of the NAAQS, EPA suggests that a more refined analysis may need to be conducted. The Complex Terrain Dispersion Model Plus Algorithms for Unstable Situations (CTDMPLUS) is the EPA preferred air quality model for this situation. This paper discusses the dispersion models, the wind tunnel modeling methodology, and the comparison between the screening model and wind tunnel concentration predictions.

  6. Aircraft landing gear systems

    NASA Technical Reports Server (NTRS)

    Tanner, John A. (Editor)

    1990-01-01

    Topics presented include the laboratory simulation of landing gear pitch-plane dynamics, a summary of recent aircraft/ground vehicle friction measurement tests, some recent aircraft tire thermal studies, and an evaluation of critical speeds in high-speed aircraft. Also presented are a review of NASA antiskid braking research, titanium matrix composite landing gear development, the current methods and perspective of aircraft flotation analysis, the flow rate and trajectory of water spray produced by an aircraft tire, and spin-up studies of the Space Shuttle Orbiter main gear tire.

  7. The atmospheric effects of stratospheric aircraft: A current consensus

    NASA Technical Reports Server (NTRS)

    Douglass, A. R.; Carroll, M. A.; Demore, W. B.; Holton, J. R.; Isaksen, I. S. A.; Johnston, H. S.; Ko, M. K. W.

    1991-01-01

    In the early 1970's, a fleet of supersonic aircraft flying in the lower stratosphere was proposed. A large fleet was never built for economic, political, and environmental reasons. Technological improvements may make it economically feasible to develop supersonic aircraft for current markets. Some key results of earlier scientific programs designed to assess the impact of aircraft emissions on stratospheric ozone are reviewed, and factors that must be considered to assess the environmental impact of aircraft exhaust are discussed. These include the amount of nitrogen oxides injected in the stratosphere, horizontal transport, and stratosphere/troposphere assessment models are presented. Areas in which improvements in scientific understanding and model representation must be made to reduce the uncertainty in model calculations are identified.

  8. Interior noise considerations for powered-lift STOL aircraft

    NASA Technical Reports Server (NTRS)

    Barton, C. K.

    1975-01-01

    Powered-lift configurations which are currently under development for future use on STOL aircraft involve impingement of the jet engine exhaust onto wing and flap surfaces. Previous studies have suggested that the impinging jet produces higher noise levels at lower frequencies than does the jet alone. These higher levels, together with the close proximity of the engine and flap noise sources to the fuselage sidewall, suggest that the noise levels in these aircraft may be high enough to interfere with passenger comfort. To investigate this possibility, interior noise levels were estimated for both an upper surface blown (USB) and an externally blown flap (EBF) configuration. This paper describes the procedure used to estimate the interior noise levels and compares these levels with levels on existing jet aircraft and on ground transportation vehicles. These estimates indicate high levels in the STOL aircraft; therefore, areas of possible improvements in technology for control of STOL interior noise are also discussed.

  9. Variable Geometry Aircraft Pylon Structure and Related Operation Techniques

    NASA Technical Reports Server (NTRS)

    Shah, Parthiv N. (Inventor)

    2014-01-01

    An aircraft control structure can be utilized for purposes of drag management, noise control, or aircraft flight maneuvering. The control structure includes a high pressure engine nozzle, such as a bypass nozzle or a core nozzle of a turbofan engine. The nozzle exhausts a high pressure fluid stream, which can be swirled using a deployable swirl vane architecture. The control structure also includes a variable geometry pylon configured to be coupled between the nozzle and the aircraft. The variable geometry pylon has a moveable pylon section that can be deployed into a deflected state to maintain or alter a swirling fluid stream (when the swirl vane architecture is deployed) for drag management purposes, or to assist in the performance of aircraft flight maneuvers.

  10. Mantle plumes on Venus revisited

    NASA Technical Reports Server (NTRS)

    Kiefer, Walter S.

    1992-01-01

    The Equatorial Highlands of Venus consist of a series of quasicircular regions of high topography, rising up to about 5 km above the mean planetary radius. These highlands are strongly correlated with positive geoid anomalies, with a peak amplitude of 120 m at Atla Regio. Shield volcanism is observed at Beta, Eistla, Bell, and Atla Regiones and in the Hathor Mons-Innini Mons-Ushas Mons region of the southern hemisphere. Volcanos have also been mapped in Phoebe Regio and flood volcanism is observed in Ovda and Thetis Regiones. Extensional tectonism is also observed in Ovda and Thetis Regiones. Extensional tectonism is also observed in many of these regions. It is now widely accepted that at least Beta, Atla, Eistla, and Bell Regiones are the surface expressions of hot, rising mantel plumes. Upwelling plumes are consistent with both the volcanism and the extensional tectonism observed in these regions. The geoid anomalies and topography of these four regions show considerable variation. Peak geoid anomalies exceed 90 m at Beta and Atla, but are only 40 m at Eistla and 24 m at Bell. Similarly, the peak topography is greater at Beta and Atla than at Eistla and Bell. Such a range of values is not surprising because terrestrial hotspot swells also have a side range of geoid anomalies and topographic uplifts. Kiefer and Hager used cylindrical axisymmetric, steady-state convection calculations to show that mantle plumes can quantitatively account for both the amplitude and the shape of the long-wavelength geoid and topography at Beta and Atla. In these models, most of the topography of these highlands is due to uplift by the vertical normal stress associated with the rising plume. Additional topography may also be present due to crustal thickening by volcanism and crustal thinning by rifting. Smrekar and Phillips have also considered the geoid and topography of plumes on Venus, but they restricted themselves to considering only the geoid-topography ratio and did not

  11. Seismically imaging the Afar plume

    NASA Astrophysics Data System (ADS)

    Hammond, J. O.; Kendall, J. M.; Bastow, I. D.; Stuart, G. W.; Keir, D.; Ayele, A.; Ogubazghi, G.; Ebinger, C. J.; Belachew, M.

    2011-12-01

    Plume related flood basalt volcanism in Ethiopia has long been cited to have instigated continental breakup in northeast Africa. However, to date seismic images of the mantle beneath the region have not produced conclusive evidence of a plume-like structure. As a result the nature and even existence of a plume in the region and its role in rift initiation and continental rupture are debated. Previous seismic studies using regional deployments of sensors in East-Africa show that low seismic velocities underlie northeast Africa, but their resolution is limited to the top 200-300km of the Earth. Thus, the connection between the low velocities in the uppermost mantle and those imaged in global studies in the lower mantle is unclear. We have combined new data from Afar, Ethiopia with 6 other regional experiments and global network stations across Ethiopia, Eritrea, Djibouti and Yemen, to produce high-resolution models of upper mantle P- and S- wave velocities to the base of the transition zone. Relative travel time tomographic inversions show that the top 100km is dominated by focussed low velocity zones, likely associated with melt in the lithosphere/uppermost asthenosphere. Below these depths a broad SW-NE oriented sheet like upwelling extends down to the top of the transition zone. Within the transition zone two focussed sharp-sided low velocity regions exist: one beneath the Western Ethiopian plateau outside the rift valley, and the other beneath the Afar depression. The nature of the transition zone anomalies suggests that small upwellings may rise from a broader low velocity plume-like feature in the lower mantle. This interpretation is supported by numerical and analogue experiments that suggest the 660km phase change and viscosity jump may impede flow from the lower to upper mantle creating a thermal boundary layer at the base of the transition zone. This allows smaller, secondary upwellings to initiate and rise to the surface. Our images of secondary upwellings

  12. Computer program to predict aircraft noise levels

    NASA Technical Reports Server (NTRS)

    Clark, B. J.

    1981-01-01

    Methods developed at the NASA Lewis Research Center for predicting the noise contributions from various aircraft noise sources were programmed to predict aircraft noise levels either in flight or in ground tests. The noise sources include fan inlet and exhaust, jet, flap (for powered lift), core (combustor), turbine, and airframe. Noise propagation corrections are available for atmospheric attenuation, ground reflections, extra ground attenuation, and shielding. Outputs can include spectra, overall sound pressure level, perceived noise level, tone-weighted perceived noise level, and effective perceived noise level at locations specified by the user. Footprint contour coordinates and approximate footprint areas can also be calculated. Inputs and outputs can be in either System International or U.S. customary units. The subroutines for each noise source and propagation correction are described. A complete listing is given.

  13. Transport of exhaust products in the near trail of a jet engine under atmospheric conditions

    SciTech Connect

    Karcher, B.

    1994-07-01

    The transport of exhaust effluents and the possibility of water ice contrail formation are investigated under the specific fluid dynamical conditions in the near exhaust trail of a subsonic jet aircraft at cruise altitude. By means of a computational model describing the two-dimensional turbulent mixing of a single jet of hot exhaust gas with the atmosphere, representative results are discussed on the temperature and saturation ratio evolutions of air parcels in the jet flow field as well as on radial distributions of exhaust effluents undergoing chemical reactions behind the nozzle exit with prescribed, typical net reaction rates. The results underline the importance of a simultaneous treatment of spatially resolved jet expansion together with microphysical and chemical processes, because this coupling leads to distinct concentration patterns for various classes of chemical reactants and is essential for the detailed prediction of contrails.

  14. Small transport aircraft technology

    NASA Technical Reports Server (NTRS)

    Williams, L. J.

    1983-01-01

    Information on commuter airline trends and aircraft developments is provided to upgrade the preliminary findings of a NASA-formed small transport aircraft technology (STAT) team, established to determine whether the agency's research and development programs could help commuter aircraft manufacturers solve technical problems related to passenger acceptance and use of 19- to 50-passenger aircraft. The results and conclusions of the full set of completed STAT studies are presented. These studies were performed by five airplane manufacturers, five engine manufacturers, and two propeller manufacturers. Those portions of NASA's overall aeronautics research and development programs which are applicable to commuter aircraft design are summarized. Areas of technology that might beneficially be expanded or initiated to aid the US commuter aircraft manufacturers in the evolution of improved aircraft for the market are suggested.

  15. The structure, dynamics, and chemical composition of noneruptive plumes from Mount St. Helens, 1980-1988

    USGS Publications Warehouse

    McGee, K.A.

    1992-01-01

    From May 1980 to September 1988, more than 1000 fixed-wing aircraft flights were made with a correlation spectrometer to measure the sulfur dioxide flux from Mount St. Helens volcano. These flights also provided valuable data on the structure and dynamics of noneruptive plumes emanating from Mount St. Helens. During 1980 and part of 1981, an infrared spectrometer was also used to measure carbon dioxide emission rates. At distances up to 25 km from Mount St. Helens, plume widths can range up to 20 km or more, with width/thickness ratios from 3 to about 30. Maximum sulfur dioxide concentrations in these plumes depend on wind speed and are typically under 5 ppm and usually 1 ppm or less. Close examination of the plume data reveals that the characteristics of quiescent plumes from Mount St. Helens are strongly affected by certain meteorological conditions such as thermal and wind stratification in the troposphere, as well as by the topography of the volcano. ?? 1992.

  16. Stratospheric aircraft: Impact on the stratosphere?

    SciTech Connect

    Johnston, H.

    1992-02-01

    The steady-state distribution of natural stratospheric ozone is primarily maintained through production by ultraviolet photolysis of molecular oxygen, destruction by a catalytic cycle involving nitrogen oxides (NO{sub x}), and relocation by air motions within the stratosphere. Nitrogen oxides from the exhausts of a commercially viable fleet of supersonic transports would exceed the natural source of stratospheric nitrogen oxides if the t should be equipped with 1990 technology jet engines. This model-free comparison between a vital natural global ingredient and a proposed new industrial product shows that building a large fleet of passenger stratospheric aircraft poses a significant global problem. NASA and aircraft industries have recognized this problem and are studying the redesign of jet aircraft engines in order to reduce the nitrogen oxides emissions. In 1989 atmospheric models identified two other paths by which the ozone destroying effects of stratospheric aircraft might be reduced or eliminated: (1) Use relatively low supersonic Mach numbers and flight altitudes. For a given rate of nitrogen oxides injection into the stratosphere, the calculated reduction of total ozone is a strong function of altitude, and flight altitudes well below 20 kilometers give relatively low calculated ozone reductions. (2) Include heterogeneous chemistry in the two-dimensional model calculations. Necessary conditions for answering the question on the title above are to improve the quality of our understanding of the lower stratosphere and to broaden our knowledge of hetergeneous stratospheric chemistry. This article reviews recently proposed new mechanisms for heterogeneous reactions on the global stratospheric sulfate aerosols.

  17. Stratospheric aircraft: Impact on the stratosphere

    SciTech Connect

    Johnston, H.

    1992-02-01

    The steady-state distribution of natural stratospheric ozone is primarily maintained through production by ultraviolet photolysis of molecular oxygen, destruction by a catalytic cycle involving nitrogen oxides (NO{sub x}), and relocation by air motions within the stratosphere. Nitrogen oxides from the exhausts of a commercially viable fleet of supersonic transports would exceed the natural source of stratospheric nitrogen oxides if the t should be equipped with 1990 technology jet engines. This model-free comparison between a vital natural global ingredient and a proposed new industrial product shows that building a large fleet of passenger stratospheric aircraft poses a significant global problem. NASA and aircraft industries have recognized this problem and are studying the redesign of jet aircraft engines in order to reduce the nitrogen oxides emissions. In 1989 atmospheric models identified two other paths by which the ozone destroying effects of stratospheric aircraft might be reduced or eliminated: (1) Use relatively low supersonic Mach numbers and flight altitudes. For a given rate of nitrogen oxides injection into the stratosphere, the calculated reduction of total ozone is a strong function of altitude, and flight altitudes well below 20 kilometers give relatively low calculated ozone reductions. (2) Include heterogeneous chemistry in the two-dimensional model calculations. Necessary conditions for answering the question on the title above are to improve the quality of our understanding of the lower stratosphere and to broaden our knowledge of hetergeneous stratospheric chemistry. This article reviews recently proposed new mechanisms for heterogeneous reactions on the global stratospheric sulfate aerosols.

  18. Thruster Plume Plasma Diagnostics: A Ground Chamber Experiment for a 2-Kilowatt Arcjet

    NASA Technical Reports Server (NTRS)

    Galofaro, Joel T.; Vayner, Boris V.; Hillard, G. Barry; Chornak, Michael T.

    2005-01-01

    Although detailed near field (0 to 3 cm) information regarding the exhaust plume of a two kilowatt arc jet is available (refs. 1 to 6), there is virtually little or no information (outside of theoretical extrapolations) available concerning the far field (2.6 to 6.1 m). Furthermore real information about the plasma at distances between (3 to 6 m) is of critical importance to high technology satellite companies in understanding the effect of arc jet plume exhausts on space based power systems. It is therefore of utmost importance that one understands the exact nature of the interaction between the arc jet plume, the spacecraft power system and the surrounding electrical plasma environment. A good first step in understanding the nature of the interactions lies in making the needed plume parameter measurements in the far field. All diagnostic measurements are performed inside a large vacuum system (12 m diameter by 18 m high) with a full scale arc jet and solar array panel in the required flight configuration geometry. Thus, necessary information regarding the plume plasma parameters in the far field is obtained. Measurements of the floating potential, the plasma potential, the electron temperature, number density, density distribution, debye length, and plasma frequency are obtained at various locations about the array (at vertical distances from the arc jet nozzle: 2.6, 2.7, 2.8, 3.2, 3.6, 4.0, 4.9, 5.0, 5.4, 5.75, and 6.14 m). Plasma diagnostic parameters are measured for both the floating and grounded configurations of the arc jet anode and array. Spectroscopic optical measurements are then acquired in close proximity to the nozzle, and contamination measurements are made in the vicinity of the array utilizing a mass spectrometer and two Quartz Crystal Microbalances (QCM's).

  19. Measurements of Infrared and Acoustic Source Distributions in Jet Plumes

    NASA Technical Reports Server (NTRS)

    Agboola, Femi A.; Bridges, James; Saiyed, Naseem

    2004-01-01

    The aim of this investigation was to use the linear phased array (LPA) microphones and infrared (IR) imaging to study the effects of advanced nozzle-mixing techniques on jet noise reduction. Several full-scale engine nozzles were tested at varying power cycles with the linear phased array setup parallel to the jet axis. The array consisted of 16 sparsely distributed microphones. The phased array microphone measurements were taken at a distance of 51.0 ft (15.5 m) from the jet axis, and the results were used to obtain relative overall sound pressure levels from one nozzle design to the other. The IR imaging system was used to acquire real-time dynamic thermal patterns of the exhaust jet from the nozzles tested. The IR camera measured the IR radiation from the nozzle exit to a distance of six fan diameters (X/D(sub FAN) = 6), along the jet plume axis. The images confirmed the expected jet plume mixing intensity, and the phased array results showed the differences in sound pressure level with respect to nozzle configurations. The results show the effects of changes in configurations to the exit nozzles on both the flows mixing patterns and radiant energy dissipation patterns. By comparing the results from these two measurements, a relationship between noise reduction and core/bypass flow mixing is demonstrated.

  20. X-ray spectroscopy of the SSME plume

    NASA Technical Reports Server (NTRS)

    Olive, Dan F.

    1988-01-01

    In order to examine the potential of using SSME exhaust plume radiation in the soft X-ray spectrum as an early warning system of imminent engine failure, a low cost, low risk experiment was devised. An approach was established, equipment was leased, the system was installed and checked out, and data were successfully acquired demonstrating the proof-of-concept. One spectrum measurement of the SSME plume was acquired during a 300 second burn on the A-1 Test Stand. This spectrum showed a prominent, line emission feature at about 34.5 KeV, a result which was not expected, nor can it be explained at this time. If X-ray spectra are to be useful as a means of monitoring nominal engine operation, it will be necessary to explore this region of the EM spectrum in greater detail. The presence of structure in the spectrum indicates that this technology may prove to be useful as an engine health monitoring system.

  1. A tandem mirror hybrid plume plasma propulsion facility

    NASA Technical Reports Server (NTRS)

    Chang-Diaz, F. R.; Yang, T. F.; Krueger, W. A.; Peng, S.; Urbahn, J.; Yao, X.; Griffin, D.

    1988-01-01

    A concept in electrodeless plasma propulsion, which is also capable of delivering a variable Isp, is presented. The concept involves a three-stage system of plasma injection, heating, and subsequent ejection through a magnetic nozzle. The nozzle produces the hybrid plume by the coaxial injection of hypersonic neutral gas. The gas layer, thus formed, protects the material walls from the hot plasma and, through increased collisions, helps detach it from the diverging magnetic field. The physics of this concept is evaluated numerically through full spatial and temporal simulations; these explore the operating characteristics of such a device over a wide region of parameter space. An experimental facility to study the plasma dynamics in the hybrid plume was built. The device consists of a tandem mirror operating in an asymmetric mode. A later upgrade of this system will incorporate a cold plasma injector at one end of the machine. Initial experiments involve the full characterization of the operating envelope, as well as extensive measurements of plasma properties at the exhaust. The results of the numerical simulations are described.

  2. Transport and evolution of a pollution plume from northern China: A satellite-based case study

    NASA Astrophysics Data System (ADS)

    Li, Can; Krotkov, Nickolay A.; Dickerson, Russell R.; Li, Zhanqing; Yang, Kai; Chin, Mian

    2010-04-01

    On 5 April 2005, during the East Asian Study of Tropospheric Aerosols: An International Regional Experiment (EAST-AIRE) aircraft campaign, heavy loadings of SO2 (20 ppb near ground, 1-3 ppb at ˜2 km altitude) and dust with aerosol optical depth of ˜1 were measured over Shenyang, an industrialized city ˜600 km NE of Beijing. In this study, Ozone Monitoring Instrument (OMI) and MODIS satellite sensors are employed to look into this air pollution episode at a regional scale and to track the transport and evolution of the plume from China to the NW Pacific on the following days. A method is proposed to combine in situ measurements and trajectory tracer modeling with satellite observations to quantify the change in the SO2 mass during plume transport. We demonstrate that an air mass factor correction is needed for quantitative use of the OMI SO2 data, to account for the effects of the viewing geometry, the SO2 profile shape, and the aerosol/cloud interference on retrievals. The total SO2 loading of the plume decreased from ˜1.1 × 1011 g on 5 April to ˜5.0 × 1010 g on 7 April. The overall, e-folding lifetime of SO2 in this plume, empirically derived from the rate of SO2 decay, was ˜2 days (range of 1-4 days). SO2 to sulfate conversion increased the aerosol optical depth by ˜0.1-0.4 near the center of the plume on 6 and 7 April, while the loss of primary dust particles reduced the aerosol loading of the plume by a similar amount. Simulations with a chemical transport model suggest similar loss of dust and formation of sulfate within the plume during transport. The method established in this study can be further developed and applied to study other episodes of pollution transport and their impact on weather and climate.

  3. Stable plume rise in a shear layer.

    PubMed

    Overcamp, Thomas J

    2007-03-01

    Solutions are given for plume rise assuming a power-law wind speed profile in a stably stratified layer for point and finite sources with initial vertical momentum and buoyancy. For a constant wind speed, these solutions simplify to the conventional plume rise equations in a stable atmosphere. In a shear layer, the point of maximum rise occurs further downwind and is slightly lower compared with the plume rise with a constant wind speed equal to the wind speed at the top of the stack. If the predictions with shear are compared with predictions for an equivalent average wind speed over the depth of the plume, the plume rise with shear is higher than plume rise with an equivalent average wind speed.

  4. Constraining the source of mantle plumes

    NASA Astrophysics Data System (ADS)

    Cagney, N.; Crameri, F.; Newsome, W. H.; Lithgow-Bertelloni, C.; Cotel, A.; Hart, S. R.; Whitehead, J. A.

    2016-02-01

    In order to link the geochemical signature of hot spot basalts to Earth's deep interior, it is first necessary to understand how plumes sample different regions of the mantle. Here, we investigate the relative amounts of deep and shallow mantle material that are entrained by an ascending plume and constrain its source region. The plumes are generated in a viscous syrup using an isolated heater for a range of Rayleigh numbers. The velocity fields are measured using stereoscopic Particle-Image Velocimetry, and the concept of the 'vortex ring bubble' is used to provide an objective definition of the plume geometry. Using this plume geometry, the plume composition can be analysed in terms of the proportion of material that has been entrained from different depths. We show that the plume composition can be well described using a simple empirical relationship, which depends only on a single parameter, the sampling coefficient, sc. High-sc plumes are composed of material which originated from very deep in the fluid domain, while low-sc plumes contain material entrained from a range of depths. The analysis is also used to show that the geometry of the plume can be described using a similarity solution, in agreement with previous studies. Finally, numerical simulations are used to vary both the Rayleigh number and viscosity contrast independently. The simulations allow us to predict the value of the sampling coefficient for mantle plumes; we find that as a plume reaches the lithosphere, 90% of its composition has been derived from the lowermost 260-750 km in the mantle, and negligible amounts are derived from the shallow half of the lower mantle. This result implies that isotope geochemistry cannot provide direct information about this unsampled region, and that the various known geochemical reservoirs must lie in the deepest few hundred kilometres of the mantle.

  5. Space shuttle main engine plume radiation model

    NASA Technical Reports Server (NTRS)

    Reardon, J. E.; Lee, Y. C.

    1978-01-01

    The methods are described which are used in predicting the thermal radiation received by space shuttles, from the plumes of the main engines. Radiation to representative surface locations were predicted using the NASA gaseous plume radiation GASRAD program. The plume model is used with the radiative view factor (RAVFAC) program to predict sea level radiation at specified body points. The GASRAD program is described along with the predictions. The RAVFAC model is also discussed.

  6. Aggregate particles in the plumes of Enceladus

    NASA Astrophysics Data System (ADS)

    Gao, Peter; Kopparla, Pushkar; Zhang, Xi; Ingersoll, Andrew P.

    2016-01-01

    Estimates of the total particulate mass of the plumes of Enceladus are important to constrain theories of particle formation and transport at the surface and interior of the satellite. We revisit the calculations of Ingersoll and Ewald (Ingersoll, A.P., Ewald, S.P. [2011]. Icarus 216(2), 492-506), who estimated the particulate mass of the Enceladus plumes from strongly forward scattered light in Cassini ISS images. We model the plume as a combination of spherical particles and irregular aggregates resulting from the coagulation of spherical monomers, the latter of which allows for plumes of lower particulate mass. Though a continuum of solutions are permitted by the model, the best fits to the ISS data consist either of low mass plumes composed entirely of small aggregates or high mass plumes composed of mostly spheres. The high particulate mass plumes have total particulate masses of (166 ± 42) × 103 kg, consistent with the results of Ingersoll and Ewald (Ingersoll, A.P., Ewald, S.P. [2011]. Icarus 216(2), 492-506). The low particulate mass plumes have masses of (25 ± 4) × 103 kg, leading to a solid to vapor mass ratio of 0.07 ± 0.01 for the plume. If indeed the plumes are made of such aggregates, then a vapor-based origin for the plume particles cannot be ruled out. Finally, we show that the residence time of the monomers inside the plume vents is sufficiently long for Brownian coagulation to form the aggregates before they are ejected to space.

  7. Analysis of the measured effects of the principal exhaust effluents from solid rocket motors

    NASA Technical Reports Server (NTRS)

    Dawbarn, R.; Kinslow, M.; Watson, D. J.

    1980-01-01

    The feasibility of conducting environmental chamber tests using a small rocket motor to study the physical processes which occur when the exhaust products from solid motors mix with the ambient atmosphere was investigated. Of particular interest was the interaction between hydrogen chloride, aluminum oxide, and water vapor. Several types of instruments for measuring HCl concentrations were evaluated. Under some conditions it was noted that acid aerosols were formed in the ground cloud. These droplets condensed on Al2O3 nuclei and were associated with the rocket exhaust cooling during the period of plume rise to stabilization. Outdoor firings of the solid rocket motors of a 6.4 percent scaled model of the space shuttle were monitored to study the interaction of the exhaust effluents with vegetation downwind of the test site. Data concerning aluminum oxide particles produced by solid rocket motors were evaluated.

  8. Exhaust Gas Modeling Effects on Hypersonic Powered Simulation at Mach 10

    NASA Technical Reports Server (NTRS)

    Tatum, Kenneth E.; Huebner, Lawrence D.

    1995-01-01

    A numerical study was performed to investigate the accuracy and validity of cold-gas simulation of actual hot scramjet exhaust within a Mach 10 free stream over a representative single-stage-to-orbit airbreathing configuration. In particular, exhausts of various noncombusting chemistry models were studied to characterize their effects on the vehicle aftbody performance and the plume flow field definition. Two approximations of the hot scramjet combustion products were utilized to determine the requirement for expensive, multi-species numerical modeling, and to establish a baseline for the validation of cold-gas simulation. Cold-gas simulation at Mach 10 is shown to be a viable technique using an appropriate thermally perfect gas mixture for reproducing hot scramjet exhaust effects.

  9. Redox conditions for mantle plumes

    NASA Astrophysics Data System (ADS)

    Heister, L. E.; Lesher, C. E.

    2005-12-01

    The vanadium to scandium ratio (V/Sc) for basalts from mid-ocean ridge (MOR) and arc environments has been proposed as a proxy for fO2 conditions during partial melting (e.g. [1] and [2]). Contrary to barometric measurements of the fO2 of primitive lavas, the V/Sc ratio of the upper mantle at mid-ocean ridges and arcs is similar, leading previous authors to propose that the upper mantle has uniform redox potential and is well-buffered. We have attempted to broaden the applicability of the V/Sc parameter to plume-influenced localities (both oceanic and continental), where mantle heterogeneities associated with recycled sediments, mafic crust, and metasomatized mantle, whether of shallow or deep origin, exist. We find that primitive basalts from the North Atlantic Igneous Province (NAIP), Hawaii (both the Loa and Kea trends), Deccan, Columbia River, and Siberian Traps show a range of V/Sc ratios that are generally higher (average ~9) than those for MOR (average ~ 6.7) or arc (average ~7) lavas. Based on forward polybaric decompression modeling, we attribute these differences to polybaric melting and melt segregation within the garnet stability field rather than the presence of a more oxidized mantle in plume-influenced settings. Like MORB, the V/Sc ratios for plume-influenced basalts can be accounted for by an oxidation state approximately one log unit below the Ni-NiO buffer (NNO-1). Our analysis suggests that source heterogeneities have little, if any, resolvable influence on mantle redox conditions, although they have significant influence on the trace element and isotopic composition of mantle-derived melts. We suggest that variations in the redox of erupted lavas is largely a function of shallow lithospheric processes rather than intrinsic to the mantle source, regardless of tectonic setting. [1] Li and Lee (2004) EPSL, [2] Lee et al. (2005) J. of Petrology

  10. Evaluation of Methods for the Determination of Black Carbon Emissions from an Aircraft Gas Turbine Engine

    EPA Science Inventory

    The emissions from aircraft gas turbine engines consist of nanometer size black carbon (BC) particles plus gas-phase sulfur and organic compounds which undergo gas-to-particle conversion downstream of the engine as the plume cools and dilutes. In this study, four BC measurement ...

  11. Relationship between plume and plate tectonics

    NASA Astrophysics Data System (ADS)

    Puchkov, V. N.

    2016-07-01

    The relationship between plate- and plume-tectonics is considered in view of the growth and breakdown of supercontinents, active rifting, the formation of passive volcanic-type continental margins, and the origin of time-progressive volcanic chains on oceanic and continental plates. The mantle wind phenomenon is described, as well as its effect on plume morphology and anisotropy of the ambient mantle. The interaction of plumes and mid-ocean ridges is discussed. The principles and problems of plume activity analysis in subduction- and collision-related foldbelts are considered and illustrated with examples.

  12. Remote Sensing of Volcanic Clouds: Sulfur Gases and Plume Top Topography

    NASA Technical Reports Server (NTRS)

    Crisp, Joy A.

    1999-01-01

    New absorption line parameters for H2S were published and submitted to the Gestion et Etude des Informations Spectroscopiques Atmospheriques (GEISA) and high resolution transmission molecular absorption (HITRAN) databases. These new absorption line parameters will make it possible to use observations from the future Tropospheric Emission Spectrometer (TES) instrument [Earth Observing System (EOS) Chemistry Mission (CHEM) platform] to make more accurate H2S measurements if it observes an H2S-rich volcanic cloud. H2S is the second most abundant volcanic sulfur gas, and like SO2, it also converts to H2SO4 aerosols and can have a climate impact. A paper on the Moderate-resolution Imaging-Spectroradiometer (MODIS) SO2 alert is being revised. New aspects in the revision include verification of the SO2 alert during the EOS mission; factors affecting SO2 detection at thermal infrared, ultraviolet, and microwave wavelengths; radiative transfer tests; more description of satellite instruments; and thermal surface alert installed for MODIS. Her research involves the use of remote sensing to generate maps of plume top altitude. This parameter is important for models of volcanic eruption, aircraft hazards, and climate impact. The topographic shape of the top surface of a volcanic plume can provide information necessary to understand the physics controlling the injection and dispersal of a volcanic plume in the atmosphere. Glaze et al. describe the application of a photoclinometric technique to volcanic plumes. The software algorithm has been improved to account for more general plume and illumination geometries and for easily extracting position information directly from Advanced Very High-Resolution Radiometer (AVHRR) level 1B data. Testing of the algorithm has focused on acquiring AVHRR data for a variety of volcanic plumes in an effort to identify problems with the software as well as model sensitivities. The plumes chosen were erupted from volcanoes at a variety of

  13. Chemical and optical aging of forest fire plumes

    NASA Astrophysics Data System (ADS)

    Howell, S. G.; Clarke, A. D.; Freitag, S.; Kapustin, V. N.; McNaughton, C. S.; Shank, L.

    2010-12-01

    During recent aircraft-based projects, we have penetrated fresh fire plumes, followed them for tens of kilometers, and sampled them thousands of kms from their sources. Chemical analysis with an Aerosol Mass Spectrometer (AMS) for non-refractory composition and a Single Particle Soot Photometer (SP2) alongside nephelometers and a Particle Soot Absorption Spectrometer (PSAP) for optical properties of the aerosol show consistent changes in particle properties as they age. We use BC to normalize for dilution and scavenging, as it is unlikely to be created outside of the fire. Chemical changes are rapid within the first 50 minutes as the organic matter becomes more oxygenated. Single Scatter Albedo rises concurrently which reflects increasing non-absorbing aerosol mass. Somewhat unexpectedly, the absorption Ăngstrom exponent (between 470 and 660 nm) also rises, indicating that the complex aromatic organic material, sometimes referred to as Brown Carbon, either takes some time to condense or has its absorption amplified as other material condenses upon it. At long range from the source, biomass burning plumes can be significant sources of CCN to remote areas even when diluted and scavenged to such an extent that direct optical effects are inconsequential.

  14. Characteristics and Chemistry of Power Plant Plumes: Conesville Case Study

    NASA Astrophysics Data System (ADS)

    Fortin, T. J.; Ryerson, T. B.; Holloway, J. S.; Neuman, A.; Flocke, F.; Swanson, A.; de Gouw, J. A.; Warneke, C.; Huey, G.; Tanner, D. J.; Stark, H.; Brock, C. A.; Wollny, A. G.; Weber, R. J.; Peltier, R.; Sorooshian, A.; Brechtel, F. J.; Seinfeld, J. H.; Fehsenfeld, F. C.

    2005-12-01

    In the U.S., electric power generation accounts for 67% of SO2 and 25% of NOx emissions, which ultimately contribute to photochemical ozone production, acid rain, and particulate formation. Effective air quality management strategies require that the models used to inform decisions can accurately depict the composition, quantity, and atmospheric fate of these point source emissions. Measurements made aboard the NOAA WP-3D aircraft during the 2004 New England Air Quality Study - International Transport and Chemical Transformation (NEAQS-ITCT) project provide an opportunity to garner such information. This case study focuses on the Conesville power plant located in Coshocton County, Ohio for which multiple downwind plume intercepts were made on August 6th. Results will be presented which indicate that NOx oxidation on this day was relatively slow, producing primarily HNO3 and minimal O3 after more than 3 hours of transport. Low ambient temperatures, low VOC concentrations, and scattered cloud cover all appear to have contributed to the observed behavior. Additional analysis will make use of a suite of complementary gas and particle measurements made aboard both the NOAA WP-3D and the CIRPAS Twin Otter in an effort determine the relative importance of gas-phase and aqueous-phase processes for SO2 oxidation in the Conesville plume.

  15. Pacific Northwest Laboratory Gulfstream I measurements of the Kuwait oil-fire plume, July--August 1991

    SciTech Connect

    Busness, K M; Hales, J M; Hannigan, R V; Thorp, J M; Tomich, S D; Warren, M J; Al-Sunaid, A A; Daum, P H; Mazurek, M

    1992-11-01

    In 1991, the Pacific Northwest Laboratory conducted a series of aircraft measurements to determine pollutant and radiative properties of the smoke plume from oil fires in Kuwait. This work was sponsored by the US Department emanating of Energy, in cooperation with several other agencies as part of an extensive effort coordinated by the World Meteorological Organization, to obtain a comprehensive data set to assess the characteristics of the plume and its environmental impact. This report describes field measurement activities and introduces the various data collected, but provides only limited analyses of these data. Results of further data analyses will be presented in subsequent open-literature publications.

  16. Raptors and aircraft

    USGS Publications Warehouse

    Smith, D.G.; Ellis, D.H.; Johnson, T.H.; Glinski, Richard L.; Pendleton, Beth Giron; Moss, Mary Beth; LeFranc, Maurice N.=; Millsap, Brian A.; Hoffman, Stephen W.

    1988-01-01

    Less than 5% of all bird strikes of aircraft are by raptor species, but damage to airframe structure or jet engine dysfunction are likely consequences. Beneficial aircraft-raptor interactions include the use of raptor species to frighten unwanted birds from airport areas and the use of aircraft to census raptor species. Many interactions, however, modify the raptor?s immediate behavior and some may decrease reproduction of sensitive species. Raptors may respond to aircraft stimuli by exhibiting alarm, increased heart rate, flushing or fleeing and occasionally by directly attacking intruding aircraft. To date, most studies reveal that raptor responses to aircraft are brief and do not limit reproduction; however, additional study is needed.

  17. A case study of aerosol depletion in a biomass burning plume over Eastern Canada during the 2011 BORTAS field experiment

    NASA Astrophysics Data System (ADS)

    Franklin, J. E.; Drummond, J. R.; Griffin, D.; Pierce, J. R.; Waugh, D. L.; Palmer, P. I.; Parrington, M.; Lee, J. D.; Lewis, A. C.; Rickard, A. R.; Taylor, J. W.; Allan, J. D.; Coe, H.; Walker, K. A.; Chisholm, L.; Duck, T. J.; Hopper, J. T.; Blanchard, Y.; Gibson, M. D.; Curry, K. R.; Sakamoto, K. M.; Lesins, G.; Dan, L.; Kliever, J.; Saha, A.

    2014-02-01

    We present measurements of a long range smoke transport event recorded on 20-21 July 2011 over Halifax, Nova Scotia, Canada, during the Quantifying the impact of BOReal forest fires on Tropospheric oxidants over the Atlantic using Aircraft and Satellites (BORTAS-B) campaign. Ground-based Fourier transform spectrometers and photometers detected air masses associated with large wildland fires burning in eastern Manitoba and western Ontario. We investigate a plume with high trace gas amounts but low amounts of particles that preceded and overlapped at the Halifax site with a second plume with high trace gas loadings and significant amounts of particulate material. We show that the first plume experienced a meteorological scavenging event but the second plume had not been similarly scavenged. This points to the necessity to account carefully for the plume history when considering long range transport since simultaneous or near-simultaneous times of arrival are not necessarily indicative of either similar trajectories or meteorological history. We investigate the origin of the scavenged plume, and the possibility of an aerosol wet deposition event occurring in the plume ~24 h prior to the measurements over Halifax. The region of lofting and scavenging is only monitored on an intermittent basis by the present observing network, and thus we must consider many different pieces of evidence in an effort to understand the early dynamics of the plume. Through this discussion we also demonstrate the value of having many simultaneous remote-sensing measurements in order to understand the physical and chemical behaviour of biomass burning plumes.

  18. A case study of aerosol scavenging in a biomass burning plume over eastern Canada during the 2011 BORTAS field experiment

    NASA Astrophysics Data System (ADS)

    Franklin, J. E.; Drummond, J. R.; Griffin, D.; Pierce, J. R.; Waugh, D. L.; Palmer, P. I.; Parrington, M.; Lee, J. D.; Lewis, A. C.; Rickard, A. R.; Taylor, J. W.; Allan, J. D.; Coe, H.; Walker, K. A.; Chisholm, L.; Duck, T. J.; Hopper, J. T.; Blanchard, Y.; Gibson, M. D.; Curry, K. R.; Sakamoto, K. M.; Lesins, G.; Dan, L.; Kliever, J.; Saha, A.

    2014-08-01

    We present measurements of a long-range smoke transport event recorded on 20-21 July 2011 over Halifax, Nova Scotia, Canada, during the Quantifying the impact of BOReal forest fires on Tropospheric oxidants over the Atlantic using Aircraft and Satellites (BORTAS-B) campaign. Ground-based Fourier transform spectrometers and photometers detected air masses associated with large wildland fires burning in eastern Manitoba and western Ontario. We investigate a plume with high trace gas amounts but low amounts of particles that preceded and overlapped at the Halifax site with a second plume with high trace gas loadings and significant amounts of particulate material. We show that the first plume experienced a meteorological scavenging event, but the second plume had not been similarly scavenged. This points to the necessity to account carefully for the plume history when considering long-range transport since simultaneous or near-simultaneous times of arrival are not necessarily indicative of either similar trajectories or meteorological history. We investigate the origin of the scavenged plume, and the possibility of an aerosol wet deposition event occurring in the plume ~ 24 h prior to the measurements over Halifax. The region of lofting and scavenging is only monitored on an intermittent basis by the present observing network, and thus we must consider many different pieces of evidence in an effort to understand the early dynamics of the plume. Through this discussion we also demonstrate the value of having many simultaneous remote-sensing measurements in order to understand the physical and chemical behaviour of biomass burning plumes.

  19. Lightning effects on aircraft

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Direct and indirect effects of lightning on aircraft were examined in relation to aircraft design. Specific trends in design leading to more frequent lightning strikes were individually investigated. These trends included the increasing use of miniaturized, solid state components in aircraft electronics and electric power systems. A second trend studied was the increasing use of reinforced plastics and other nonconducting materials in place of aluminum skins, a practice that reduces the electromagnetic shielding furnished by a conductive skin.

  20. A six degree of freedom, plume-fuel optimal trajectory planner for spacecraft proximity operations using an A* node search. M.S. Thesis - MIT

    NASA Technical Reports Server (NTRS)

    Jackson, Mark Charles

    1994-01-01

    Spacecraft proximity operations are complicated by the fact that exhaust plume impingement from the reaction control jets of space vehicles can cause structural damage, contamination of sensitive arrays and instruments, or attitude misalignment during docking. The occurrence and effect of jet plume impingement can be reduced by planning approach trajectories with plume effects considered. An A* node search is used to find plume-fuel optimal trajectories through a discretized six dimensional attitude-translation space. A plume cost function which approximates jet plume isopressure envelopes is presented. The function is then applied to find relative costs for predictable 'trajectory altering' firings and unpredictable 'deadbanding' firings. Trajectory altering firings are calculated by running the spacecraft jet selection algorithm and summing the cost contribution from each jet fired. A 'deadbanding effects' function is defined and integrated to determine the potential for deadbanding impingement along candidate trajectories. Plume costs are weighed against fuel costs in finding the optimal solution. A* convergence speed is improved by solving approach trajectory problems in reverse time. Results are obtained on a high fidelity space shuttle/space station simulation. Trajectory following is accomplished by a six degree of freedom autopilot. Trajectories planned with, and without, plume costs are compared in terms of force applied to the target structure.