Sample records for aircraft flyover noise

  1. An Overview of Virtual Acoustic Simulation of Aircraft Flyover Noise

    NASA Technical Reports Server (NTRS)

    Rizzi, Stephen A.

    2013-01-01

    Methods for testing human subject response to aircraft flyover noise have greatly advanced in recent years as a result of advances in simulation technology. Capabilities have been developed which now allow subjects to be immersed both visually and aurally in a three-dimensional, virtual environment. While suitable for displaying recorded aircraft noise, the true potential is found when synthesizing aircraft flyover noise because it allows the flexibility and freedom to study sounds from aircraft not yet flown. A virtual acoustic simulation method is described which is built upon prediction-based source noise synthesis, engineering-based propagation modeling, and empirically-based receiver modeling. This source-path-receiver paradigm allows complete control over all aspects of flyover auralization. With this capability, it is now possible to assess human response to flyover noise by systematically evaluating source noise reductions within the context of a system level simulation. Examples of auralized flyover noise and movie clips representative of an immersive aircraft flyover environment are made in the presentation.

  2. Auralization of Hybrid Wing Body Aircraft Flyover Noise from System Noise Predictions

    NASA Technical Reports Server (NTRS)

    Rizzi, Stephen A.; Aumann, Aric R.; Lopes, Leonvard V.; Burley, Casey L.

    2013-01-01

    System noise assessments of a state-of-the-art reference aircraft (similar to a Boeing 777-200ER with GE90-like turbofan engines) and several hybrid wing body (HWB) aircraft configurations were recently performed using NASA engine and aircraft system analysis tools. The HWB aircraft were sized to an equivalent mission as the reference aircraft and assessments were performed using measurements of airframe shielding from a series of propulsion airframe aeroacoustic experiments. The focus of this work is to auralize flyover noise from the reference aircraft and the best HWB configuration using source noise predictions and shielding data based largely on the earlier assessments. For each aircraft, three flyover conditions are auralized. These correspond to approach, sideline, and cutback operating states, but flown in straight and level flight trajectories. The auralizations are performed using synthesis and simulation tools developed at NASA. Audio and visual presentations are provided to allow the reader to experience the flyover from the perspective of a listener in the simulated environment.

  3. Advanced turboprop aircraft flyover noise annoyance - Comparison of different propeller configurations

    NASA Technical Reports Server (NTRS)

    Mccurdy, David A.

    1989-01-01

    A laboratory experiment was conducted to compare the annoyance of flyover noise from advanced turboprop aircraft having different propeller configurations with the annoyance of conventional turboprop and jet aircraft flyover noise. It was found that advanced turboprops with single-rotating propellers were, on average, slightly less annoying than the other aircraft. Fundamental frequency and tone-to-broadband noise ratio affected annoyance response to advanced turboprops but the effects varied with propeller configuration and noise metric. The addition of duration corrections and corrections for tones above 500 Hz to the noise measurement procedures improved prediction ability.

  4. Signal processing of aircraft flyover noise

    NASA Technical Reports Server (NTRS)

    Kelly, Jeffrey J.

    1991-01-01

    A detailed analysis of signal processing concerns for measuring aircraft flyover noise is presented. Development of a de-Dopplerization scheme for both corrected time history and spectral data is discussed along with an analysis of motion effects on measured spectra. A computer code was written to implement the de-Dopplerization scheme. Input to the code is the aircraft position data and the pressure time histories. To facilitate ensemble averaging, a uniform level flyover is considered but the code can accept more general flight profiles. The effects of spectral smearing and its removal is discussed. Using data acquired from XV-15 tilt rotor flyover test comparisons are made showing the measured and corrected spectra. Frequency shifts are accurately accounted for by the method. It is shown that correcting for spherical spreading, Doppler amplitude, and frequency can give some idea about source directivity. The analysis indicated that smearing increases with frequency and is more severe on approach than recession.

  5. Building vibrations induced by noise from rotorcraft and propeller aircraft flyovers

    NASA Technical Reports Server (NTRS)

    Shepherd, Kevin P.; Hubbard, Harvey H.

    1992-01-01

    Noise and building vibrations were measured for a series of helicopter and propeller-driven aircraft flyovers at WFF during May 1978. The building response data are compared with similar data acquired earlier at sites near Dulles and Kennedy Airports for operation of commercial jet transports, including the Concorde supersonic transport. Results show that noise-induced vibration levels in windows and walls are directly proportional to sound pressure level and that for a given noise level, the acceleration levels induced by a helicopter or a propeller-driven aircraft flyover cannot be distinguished from the acceleration levels induced by a commercial jet transport flyover. Noise-induced building acceleration levels were found to be lower than those levels which might be expected to cause structural damage and were also lower than some acceleration levels induced by such common domestic events as closing windows and doors.

  6. Annoyance caused by advanced turboprop aircraft flyover noise: Comparison of different propeller configurations

    NASA Technical Reports Server (NTRS)

    Mccurdy, David A.

    1991-01-01

    A laboratory experiment was conducted to compare the annoyance of flyover noise from advanced turboprop aircraft having different propeller configurations with the annoyance of conventional turboprop and turbofan aircraft flyover noise. A computer synthesis system was used to generate 40 realistic, time varying simulations of advanced turboprop takeoff noise. Of the 40 noises, single-rotating propeller configurations (8) and counter-rotating propeller configurations with an equal (12) and unequal (20) number of blades on each rotor were represented. Analyses found that advanced turboprops with single-rotating propellers were, on average, slightly less annoying than the other aircraft. Fundamental frequency and tone-to-broadband noise ratio affected annoyance response to advanced turboprops, but the effects varied with propeller configuration and noise metric. The addition of duration corrections and corrections for tones above 500 Hz to the noise measurement procedures improved annoyance prediction ability.

  7. Annoyance caused by advanced turboprop aircraft flyover noise: Comparison of different propeller configurations

    NASA Astrophysics Data System (ADS)

    McCurdy, David A.

    1991-10-01

    A laboratory experiment was conducted to compare the annoyance of flyover noise from advanced turboprop aircraft having different propeller configurations with the annoyance of conventional turboprop and turbofan aircraft flyover noise. A computer synthesis system was used to generate 40 realistic, time varying simulations of advanced turboprop takeoff noise. Of the 40 noises, single-rotating propeller configurations (8) and counter-rotating propeller configurations with an equal (12) and unequal (20) number of blades on each rotor were represented. Analyses found that advanced turboprops with single-rotating propellers were, on average, slightly less annoying than the other aircraft. Fundamental frequency and tone-to-broadband noise ratio affected annoyance response to advanced turboprops, but the effects varied with propeller configuration and noise metric. The addition of duration corrections and corrections for tones above 500 Hz to the noise measurement procedures improved annoyance prediction ability.

  8. Effects of sound level fluctuations on annoyance caused by aircraft-flyover noise

    NASA Technical Reports Server (NTRS)

    Mccurdy, D. A.

    1979-01-01

    A laboratory experiment was conducted to determine the effects of variations in the rate and magnitude of sound level fluctuations on the annoyance caused by aircraft-flyover noise. The effects of tonal content, noise duration, and sound pressure level on annoyance were also studied. An aircraft-noise synthesis system was used to synthesize 32 aircraft-flyover noise stimuli representing the factorial combinations of 2 tone conditions, 2 noise durations, 2 sound pressure levels, 2 level fluctuation rates, and 2 level fluctuation magnitudes. Thirty-two test subjects made annoyance judgements on a total of 64 stimuli in a subjective listening test facility simulating an outdoor acoustic environment. Variations in the rate and magnitude of level fluctuations were found to have little, if any, effect on annoyance. Tonal content, noise duration, sound pressure level, and the interaction of tonal content with sound pressure level were found to affect the judged annoyance significantly. The addition of tone corrections and/or duration corrections significantly improved the annoyance prediction ability of noise rating scales.

  9. A Three-Dimensional Virtual Simulator for Aircraft Flyover Presentation

    NASA Technical Reports Server (NTRS)

    Rizzi, Stephen A.; Sullivan, Brenda M.; Sandridge, Christopher A.

    2003-01-01

    This paper presents a system developed at NASA Langley Research Center to render aircraft flyovers in a virtual reality environment. The present system uses monaural recordings of actual aircraft flyover noise and presents these binaurally using head tracking information. The three-dimensional audio is simultaneously rendered with a visual presentation using a head-mounted display (HMD). The final system will use flyover noise synthesized using data from various analytical and empirical modeling systems. This will permit presentation of flyover noise from candidate low-noise flight operations to subjects for psychoacoustical evaluation.

  10. A Framework for Simulation of Aircraft Flyover Noise Through a Non-Standard Atmosphere

    NASA Technical Reports Server (NTRS)

    Arntzen, Michael; Rizzi, Stephen A.; Visser, Hendrikus G.; Simons, Dick G.

    2012-01-01

    This paper describes a new framework for the simulation of aircraft flyover noise through a non-standard atmosphere. Central to the framework is a ray-tracing algorithm which defines multiple curved propagation paths, if the atmosphere allows, between the moving source and listener. Because each path has a different emission angle, synthesis of the sound at the source must be performed independently for each path. The time delay, spreading loss and absorption (ground and atmosphere) are integrated along each path, and applied to each synthesized aircraft noise source to simulate a flyover. A final step assigns each resulting signal to its corresponding receiver angle for the simulation of a flyover in a virtual reality environment. Spectrograms of the results from a straight path and a curved path modeling assumption are shown. When the aircraft is at close range, the straight path results are valid. Differences appear especially when the source is relatively far away at shallow elevation angles. These differences, however, are not significant in common sound metrics. While the framework used in this work performs off-line processing, it is conducive to real-time implementation.

  11. Recent Developments in Aircraft Flyover Noise Simulation at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Rizzi, Stephen A.; Sullivan, Brenda M.; Aumann, Aric R.

    2008-01-01

    The NASA Langley Research Center is involved in the development of a new generation of synthesis and simulation tools for creation of virtual environments used in the study of aircraft community noise. The original emphasis was on simulation of flyover noise associated with subsonic fixed wing aircraft. Recently, the focus has shifted to rotary wing aircraft. Many aspects of the simulation are applicable to both vehicle classes. Other aspects, particularly those associated with synthesis, are more vehicle specific. This paper discusses the capabilities of the current suite of tools, their application to fixed and rotary wing aircraft, and some directions for the future.

  12. Flyover-noise measurement and prediction

    NASA Technical Reports Server (NTRS)

    Peart, Noel A.

    1991-01-01

    Details are presented for the measurement and prediction of aircraft flyover noise to be used for certification, research and development, community noise surveys, airport monitors, and pass fail criteria. Test details presented are applicable to all types of aircraft, both large and small, and the use of Federal Aviation Regulations (FAR) Part 36 (ref. 1) is emphasized. Accuracy of noise measurements is important. Thus, a pass-fail criterion should be used for all noise measurements. Finally, factors which influence the sound propagation and noise prediction procedures, such as atmospheric and ground effects, are also presented.

  13. Flyover noise characteristics of a tilt-wing V/STOL aircraft (XC-142A)

    NASA Technical Reports Server (NTRS)

    Pegg, R. J.; Henderson, H. R.; Hilton, D. A.

    1974-01-01

    A field noise measurement investigation was conducted during the flight testing of an XC-142A tilt-wing V/STOL aircraft to define its external noise characteristics. Measured time histories of overall sound pressure level show that noise levels are higher at lower airspeeds and decrease with increased speed up to approximately 160 knots. The primary noise sources were the four high-speed, main propellers. Flyover-noise time histories calculated by existing techniques for propeller noise prediction are in reasonable agreement with the experimental data.

  14. Effects of three activities on annoyance responses to recorded flyovers. [human tolerance of jet aircraft noise

    NASA Technical Reports Server (NTRS)

    Gunn, W. J.; Shepherd, W. T.; Fletcher, J. L.

    1975-01-01

    Human subjects participated in an experiment in which they were engaged in TV viewing, telephone listening, or reverie (no activity) for a 1/2-hour session. During the session, they were exposed to a series of recorded aircraft sounds at the rate of one flight every 2 minutes. At each session, four levels of flyover noise, separated by 5 db increments were presented several times in a Latin Square balanced sequence. The peak levels of the noisiest flyover in any session was fixed at 95, 90, 85, 75, or 70 db. At the end of the test session, subjects recorded their responses to the aircraft sounds, using a bipolar scale which covered the range from very pleasant to extremely annoying. Responses to aircraft noises are found to be significantly affected by the particular activity in which the subjects are engaged.

  15. Characterizing acoustic shocks in high-performance jet aircraft flyover noise.

    PubMed

    Reichman, Brent O; Gee, Kent L; Neilsen, Tracianne B; Downing, J Micah; James, Michael M; Wall, Alan T; McInerny, Sally Anne

    2018-03-01

    Acoustic shocks have been previously documented in high-amplitude jet noise, including both the near and far fields of military jet aircraft. However, previous investigations into the nature and formation of shocks have historically concentrated on stationary, ground run-up measurements, and previous attempts to connect full-scale ground run-up and flyover measurements have omitted the effect of nonlinear propagation. This paper shows evidence for nonlinear propagation and the presence of acoustic shocks in acoustical measurements of F-35 flyover operations. Pressure waveforms, derivatives, and statistics indicate nonlinear propagation, and the resulting shock formation is significant at high engine powers. Variations due to microphone size, microphone height, and sampling rate are considered, and recommendations for future measurements are made. Metrics indicating nonlinear propagation are shown to be influenced by changes in sampling rate and microphone size, and exhibit less variation due to microphone height.

  16. Arousal from sleep - The physiological and subjective effects of a 15 dB/A/ reduction in aircraft flyover noise

    NASA Technical Reports Server (NTRS)

    Levere, T. E.; Davis, N.

    1977-01-01

    The present research was concerned with whether or not a 15 dB(A) reduction in overall noise level would lessen the sleep disturbing properties of jet aircraft flyover noise and, if less disturbing, whether this would be subjectively appreciated by the sleeping individual. The results indicate that a reduction of 15 dB (A) does result in less sleep disruption but only during sleep characterized by fast-wave electroencephalographic activity. During sleep characterized by slow-wave electroencephalographic activity, such a reduction in the sleep-disturbing properties of jet aircraft noise has little effect. Moreover, even when effective during fast-wave sleep, the decreased arousal produced by the lower noise levels is not subjectively appreciated by the individual in terms of his estimate of the quality of his night's sleep. Thus, reducing the overall noise level of jet aircraft flyovers by some 15 dB(A), is, at best, minimally beneficial to sleep.

  17. Annoyance caused by advanced turboprop aircraft flyover noise: Counter-rotating-propeller configuration

    NASA Technical Reports Server (NTRS)

    Mccurdy, David A.

    1990-01-01

    Two experiments were conducted to quantify the annoyance of people to flyover noise of advanced turboprop aircraft with counter rotating propellers. The first experiment examined configurations having an equal number of blades on each rotor and the second experiment examined configurations having an unequal number of blades on each rotor. The objectives were to determine the effects on annoyance of various tonal characteristics, and to compare annoyance to advanced turboprops with annoyance to conventional turboprops and turbofans. A computer was used to synthesize realistic, time-varying simulations of advanced turboprop aircraft takeoff noise. The simulations represented different combinations fundamental frequency and tone-to-broadband noise ratio. Also included in each experiment were recordings of 10 conventional turboprop and turbofan takeoffs. Each noise was presented at three sound pressure levels in an anechoic chamber. In each experiment, 64 subjects judged the annoyance of each noise stimulus. Analyses indicated that annoyance was significantly affected by the interaction of fundamental frequency with tone-to-broadband noise ratio. No significant differences in annoyance between the advanced turboprop aircraft and the conventional turbofans were found. The use of a duration correction and a modified tone correction improved the annoyance prediction for the stimuli.

  18. Effects of duration and other noise characteristics on the annoyance caused by aircraft-flyover noise

    NASA Technical Reports Server (NTRS)

    Mccurdy, D. A.; Powell, C. A.

    1979-01-01

    A laboratory experiment was conducted to determine the effects of duration and other noise characteristics on the annoyance caused by aircraft-flyover noise. Duration, doppler shift, and spectra were individually controlled by specifying aircraft operational factors, such as velocity, altitude, and spectrum, in a computer synthesis of the aircraft-noise stimuli. This control allowed the separation of the effects of duration from the other main factors in the experimental design: velocity, tonal content, and sound pressure level. The annoyance of a set of noise stimuli which were comprised of factorial combinations of a 3 durations, 3 velocities, 3 sound pressure levels, and 2 tone conditions were judged. The judgements were made by using a graphical scale procedure similar to numerical category scaling. Each of the main factors except velocity was found to affect the judged annoyance significantly. The interaction of tonal content with sound pressure level was also found to be significant. The duration correction used in the effective-perceived-noise-level procedure, 3 dB per doubling of effective duration, was found to account most accurately for the effect of duration. No significant effect doppler shift was found.

  19. Annoyance caused by advanced turboprop aircraft flyover noise: Single-rotating propeller configuration

    NASA Technical Reports Server (NTRS)

    Mccurdy, David A.

    1988-01-01

    Two experiments were conducted to quantify the annoyance of people to advanced turboprop (propfan) aircraft flyover noise. The objectives were to: (1) determine the effects on annoyance of various tonal characteristics; and (2) compare annoyance to advanced turboprops with annoyance to conventional turboprops and jets. A computer was used to produce realistic, time-varying simulations of advanced turboprop aircraft takeoff noise. In the first experiment, subjects judged the annoyance of 45 advanced turboprop noises in which the tonal content was systematically varied to represent the factorial combinations of five fundamental frequencies, three frequency envelope shapes, and three tone-to-broadband noise ratios. Each noise was presented at three sound levels. In the second experiment, 18 advanced turboprop takeoffs, 5 conventional turboprop takeoffs, and 5 conventional jet takeoffs were presented at three sound pressure levels to subjects. Analysis indicated that frequency envelope shape did not significantly affect annoyance. The interaction of fundamental frequency with tone-to-broadband noise ratio did have a large and complex effect on annoyance. The advanced turboprop stimuli were slightly less annoying than the conventional stimuli.

  20. The effect of the duration of jet aircraft flyover sounds on judged annoyance. [noise predictions and noise measurements of jet aircrafts and human reactions to the noise intensity

    NASA Technical Reports Server (NTRS)

    Shepherd, K. P.

    1979-01-01

    The effect of the duration of jet aircraft flyover sounds on humans and the annoyance factor are examined. A nine point numerical category scaling technique is utilized for the study. Changes in the spectral characteristics of aircraft sounds caused by atmospheric attenuation are discussed. The effect of Doppler shifts using aircraft noises with minimal pure tone content is reported. The spectral content of sounds independent of duration and Doppler shift are examined by analysis of variance.

  1. Comparison of advanced turboprop and conventional jet and propeller aircraft flyover noise annoyance: Preliminary results

    NASA Technical Reports Server (NTRS)

    Mccurdy, D. A.

    1985-01-01

    A laboratory experiment was conducted to compare the flyover noise annoyance of proposed advanced turboprop aircraft with that of conventional turboprop and jet aircraft. The effects of fundamental frequency and tone-to-broadband noise ratio on advanced turboprop annoyance were also examined. A computer synthesis system is used to generate 18 realistic, time varying simulations of propeller aircraft takeoff noise in which the harmonic content is systematically varied to represent the factorial combinations of six fundamental frequencies ranging from 67.5 Hz to 292.5 Hz and three tone-to-broadband noise ratios of 0, 15, and 30 dB. These advanced turboprop simulations along with recordings of five conventional turboprop takeoffs and five conventional jet takeoffs are presented at D-weighted sound pressure levels of 70, 80, and 90 dB to 32 subjects in an anechoic chamber. Analyses of the subjects' annoyance judgments compare the three categories of aircraft and examine the effects of the differences in harmonic content among the advanced turboprop noises. The annoyance prediction ability of various noise measurement procedures and corrections is also examined.

  2. Comparison of advanced turboprop and conventional jet and propeller aircraft flyover noise annoyance - Preliminary results

    NASA Technical Reports Server (NTRS)

    Mccurdy, D. A.

    1985-01-01

    A laboratory experiment was conducted to compare the flyover noise annoyance of proposed advanced turboprop aircraft with that of conventional turboprop and jet aircraft. The effects of fundamental frequency and tone-to-broadband noise ratio on advanced turboprop annoyance were also examined. A computer synthesis system was used to generate 18 realistic, time varyring simulations of propeller aircraft takeoff noise in which the harmonic content was systematically varied to represent the factorial combinations of six fundamental frequencies ranging from 67.5 Hz to 292.5 Hz and three tone-to-broadband noise ratios of 0, 15, and 30 dB. These advanced turboprop simulations along with recordings of five conventional turboprop takeoffs and five conventional jet takeoffs were presented at D-weighted sound pressure levels of 70, 80, and 90 dB to 32 subjects in an anechoic chamber. Analyses of the subjects' annoyance judgments compare the three categories of aircraft and examine the effects of the differences in harmonic content among the advanced turboprop noises. The annoyance prediction ability of various noise measurement procedures and corrections is also examined.

  3. A laboratory study of subjective annoyance response to sonic booms and aircraft flyovers

    NASA Technical Reports Server (NTRS)

    Leatherwood, Jack D.; Sullivan, Brenda M.

    1994-01-01

    Three experiments were conducted to determine subjective equivalence of aircraft subsonic flyover noise and sonic booms. Two of the experiments were conducted in a loudspeaker-driven sonic boom simulator, and the third in a large room containing conventional loudspeakers. The sound generation system of the boom simulator had a frequency response extending to very low frequencies (about 1 Hz) whereas the large room loudspeakers were limited to about 20 Hz. Subjective equivalence between booms and flyovers was quantified in terms of the difference between the noise level of a boom and that of a flyover when the two were judged equally annoying. Noise levels were quantified in terms of the following noise descriptors: Perceived Level (PL), Perceived Noise Level (PNL), C-weighted sound exposure level (SELC), and A-weighted sound exposure level (SELA). Results from the present study were compared, where possible, to similar results obtained in other studies. Results showed that noise level differences depended upon the descriptor used, specific boom and aircraft noise events being compared and, except for the PNL descriptor, varied between the simulator and large room. Comparison of noise level differences obtained in the present study with those of other studies indicated good agreement across studies only for the PNL and SELA descriptors. Comparison of the present results with assessments of community response to high-energy impulsive sounds made by Working Group 84 of the National Research Council's Committee on Hearing, Bioacoustics, and Biomechanics (CHABA) showed good agreement when boom/flyover noise level differences were based on SELA. However, noise level differences obtained by CHABA using SELA for aircraft flyovers and SELC for booms were not in agreement with results obtained in the present study.

  4. Cumulative annoyance due to multiple aircraft flyover with differing peak noise levels

    NASA Technical Reports Server (NTRS)

    Shepherd, K. P.

    1981-01-01

    A laboratory study in which 160 subjects judged the annoyance of 30 minute sessions of aircraft noise is described. Each session contained nine flyovers consisting of various combinations of three takeoff recordings of Boeing 727. The subjects were asked to judge their annoyance in the simulated living room environment of the laboratory and also to assess how annoyed they would be if they heard the noise in their home during the day, evening, and night periods. The standard deviation of the sound level did not improve the predictive ability of L sub eq (equivalent continuous sound level) which performed as well or better than other noise measured. Differences were found between the projected home responses for the day, evening, and nighttime periods. Time of day penalties derived from these results showed reasonable agreement with those currently used in community noise indices.

  5. Aircraft noise prediction program validation

    NASA Technical Reports Server (NTRS)

    Shivashankara, B. N.

    1980-01-01

    A modular computer program (ANOPP) for predicting aircraft flyover and sideline noise was developed. A high quality flyover noise data base for aircraft that are representative of the U.S. commercial fleet was assembled. The accuracy of ANOPP with respect to the data base was determined. The data for source and propagation effects were analyzed and suggestions for improvements to the prediction methodology are given.

  6. Investigation of ground reflection and impedance from flyover noise measurements

    NASA Technical Reports Server (NTRS)

    Chapkis, R. L.; Marsh, A. H.

    1978-01-01

    An extensive series of flyover noise tests was conducted for the primary purpose of studying meteorological effects on propagation of aircraft noise. The test airplane, a DC 9-10, flew several level-flight passes at various heights over a taxiway. Two microphone stations were located under the flight path. A total of 37 runs was selected for analysis and processed to obtain a consistant set of 1/3 octave band sound pressure levels at half-second intervals. The goal of the present study was to use the flyover noise data to deduce acoustical reflection coefficients and hence, acoustical impedances.

  7. Aircraft noise synthesis system

    NASA Technical Reports Server (NTRS)

    Mccurdy, David A.; Grandle, Robert E.

    1987-01-01

    A second-generation Aircraft Noise Synthesis System has been developed to provide test stimuli for studies of community annoyance to aircraft flyover noise. The computer-based system generates realistic, time-varying, audio simulations of aircraft flyover noise at a specified observer location on the ground. The synthesis takes into account the time-varying aircraft position relative to the observer; specified reference spectra consisting of broadband, narrowband, and pure-tone components; directivity patterns; Doppler shift; atmospheric effects; and ground effects. These parameters can be specified and controlled in such a way as to generate stimuli in which certain noise characteristics, such as duration or tonal content, are independently varied, while the remaining characteristics, such as broadband content, are held constant. The system can also generate simulations of the predicted noise characteristics of future aircraft. A description of the synthesis system and a discussion of the algorithms and methods used to generate the simulations are provided. An appendix describing the input data and providing user instructions is also included.

  8. Preliminary measurement of the airframe noise from an F-106B delta wing aircraft at low flyover speeds. [establishment of lower limit for noise level of supersonic transport aircraft

    NASA Technical Reports Server (NTRS)

    Burley, R. R.

    1974-01-01

    To establish a realistic lower limit for the noise level of advanced supersonic transport aircraft will require knowledge concerning the amount of noise generated by the airframe itself as it moves through the air. The airframe noise level of an F-106B aircraft was determined and was compared to that predicted from an existing empirical relationship. The data were obtained from flyover and static tests conducted to determine the background noise level of the F-106B aircraft. Preliminary results indicate that the spectrum associated with airframe noise was broadband and peaked at a frequency of about 570 hertz. An existing empirical method successfully predicted the frequency where the spectrum peaked. However, the predicted OASPL value of 105 db was considerably greater than the measures value of 83 db.

  9. Program for narrow-band analysis of aircraft flyover noise using ensemble averaging techniques

    NASA Technical Reports Server (NTRS)

    Gridley, D.

    1982-01-01

    A package of computer programs was developed for analyzing acoustic data from an aircraft flyover. The package assumes the aircraft is flying at constant altitude and constant velocity in a fixed attitude over a linear array of ground microphones. Aircraft position is provided by radar and an option exists for including the effects of the aircraft's rigid-body attitude relative to the flight path. Time synchronization between radar and acoustic recording stations permits ensemble averaging techniques to be applied to the acoustic data thereby increasing the statistical accuracy of the acoustic results. Measured layered meteorological data obtained during the flyovers are used to compute propagation effects through the atmosphere. Final results are narrow-band spectra and directivities corrected for the flight environment to an equivalent static condition at a specified radius.

  10. Aircraft and background noise annoyance effects

    NASA Technical Reports Server (NTRS)

    Willshire, K. F.

    1984-01-01

    To investigate annoyance of multiple noise sources, two experiments were conducted. The first experiment, which used 48 subjects, was designed to establish annoyance-noise level functions for three community noise sources presented individually: jet aircraft flyovers, air conditioner, and traffic. The second experiment, which used 216 subjects, investigated the effects of background noise on aircraft annoyance as a function of noise level and spectrum shape; and the differences between overall, aircraft, and background noise annoyance. In both experiments, rated annoyance was the dependent measure. Results indicate that the slope of the linear relationship between annoyance and noise level for traffic is significantly different from that of flyover and air conditioner noise and that further research was justified to determine the influence of the two background noises on overall, aircraft, and background noise annoyance (e.g., experiment two). In experiment two, total noise exposure, signal-to-noise ratio, and background source type were found to have effects on all three types of annoyance. Thus, both signal-to-noise ratio, and the background source must be considered when trying to determine community response to combined noise sources.

  11. Annoyance caused by aircraft en route noise

    NASA Technical Reports Server (NTRS)

    Mccurdy, David A.

    1992-01-01

    A laboratory experiment was conducted to quantify the annoyance response of people on the ground to enroute noise generated by aircraft at cruise conditions. The en route noises were ground level recordings of eight advanced turboprop aircraft flyovers and six conventional turbofan flyovers. The eight advanced turboprop enroute noises represented the NASA Propfan Test Assessment aircraft operating at different combinations of altitude, aircraft Mach number, and propeller tip speed. The conventional turbofan en route noises represented six different commercial airliners. The overall durations of the en route noises varied from approximately 40 to 160 sec. In the experiment, 32 subjects judged the annoyance of the en route noises as well as recordings of the takeoff and landing noises of each of 5 conventional turboprop and 5 conventional turbofan aircraft. Each of the noises was presented at three sound pressure levels to the subjects in an anechoic listening room. Analysis of the judgments found small differences in annoyance between three combinations of aircraft type and operation. Current tone and corrections did not significantly improve en route annoyance prediction. The optimum duration-correction magnitude for en route noise was approximately 1 dB per doubling of effective duration.

  12. Annoyance caused by aircraft en route noise

    NASA Astrophysics Data System (ADS)

    McCurdy, David A.

    1992-03-01

    A laboratory experiment was conducted to quantify the annoyance response of people on the ground to enroute noise generated by aircraft at cruise conditions. The en route noises were ground level recordings of eight advanced turboprop aircraft flyovers and six conventional turbofan flyovers. The eight advanced turboprop enroute noises represented the NASA Propfan Test Assessment aircraft operating at different combinations of altitude, aircraft Mach number, and propeller tip speed. The conventional turbofan en route noises represented six different commercial airliners. The overall durations of the en route noises varied from approximately 40 to 160 sec. In the experiment, 32 subjects judged the annoyance of the en route noises as well as recordings of the takeoff and landing noises of each of 5 conventional turboprop and 5 conventional turbofan aircraft. Each of the noises was presented at three sound pressure levels to the subjects in an anechoic listening room. Analysis of the judgments found small differences in annoyance between three combinations of aircraft type and operation. Current tone and corrections did not significantly improve en route annoyance prediction. The optimum duration-correction magnitude for en route noise was approximately 1 dB per doubling of effective duration.

  13. Measurements and analysis of aircraft airframe noise

    NASA Technical Reports Server (NTRS)

    Putnam, T. W.; Lasagna, P. L.; White, K. C.

    1975-01-01

    Flyover measurements of the airframe noise of AeroCommander, JetStar, CV-990, and B-747 aircraft are presented. Data are shown for both cruise and landing configurations. Correlations between airframe noise and aircraft parameters are developed and presented. The landing approach airframe noise for the test aircraft was approximately 10 EPNdB below present FAA certification requirements.

  14. Auralization Architectures for NASA?s Next Generation Aircraft Noise Prediction Program

    NASA Technical Reports Server (NTRS)

    Rizzi, Stephen A.; Lopes, Leonard V.; Burley, Casey L.; Aumann, Aric R.

    2013-01-01

    Aircraft community noise is a significant concern due to continued growth in air traffic, increasingly stringent environmental goals, and operational limitations imposed by airport authorities. The assessment of human response to noise from future aircraft can only be afforded through laboratory testing using simulated flyover noise. Recent work by the authors demonstrated the ability to auralize predicted flyover noise for a state-of-the-art reference aircraft and a future hybrid wing body aircraft concept. This auralization used source noise predictions from NASA's Aircraft NOise Prediction Program (ANOPP) as input. The results from this process demonstrated that auralization based upon system noise predictions is consistent with, and complementary to, system noise predictions alone. To further develop and validate the auralization process, improvements to the interfaces between the synthesis capability and the system noise tools are required. This paper describes the key elements required for accurate noise synthesis and introduces auralization architectures for use with the next-generation ANOPP (ANOPP2). The architectures are built around a new auralization library and its associated Application Programming Interface (API) that utilize ANOPP2 APIs to access data required for auralization. The architectures are designed to make the process of auralizing flyover noise a common element of system noise prediction.

  15. Aircraft noise synthesis system: Version 4 user instructions

    NASA Technical Reports Server (NTRS)

    Mccurdy, David A.; Sullivan, Brenda M.; Grandle, Robert E.

    1987-01-01

    A modified version of the Aircraft Noise Synthesis System with improved directivity and tonal content modeling has been developed. The synthesis system is used to provide test stimuli for studies of community annoyance to aircraft flyover noise. The computer-based system generates realistic, time-varying audio simulations of aircraft flyover noise at a specified observer location on the ground. The synthesis takes into account the time-varying aircraft position relative to the observer; specified reference spectra consisting of broadband, narrowband, and pure tone components; directivity patterns; Doppler shift; atmospheric effects; and ground effects. These parameters can be specified and controlled in such a way as to generate stimuli in which certain noise characteristics such as duration or tonal content are independently varied while the remaining characteristics such as broadband content are held constant. The modified version of the system provides improved modeling of noise directivity patterns and an increased number of pure tone components. User instructions for the modified version of the synthesis system are provided.

  16. Advanced turboprop aircraft flyover noise: Annoyance to counter-rotating-propeller configurations with an equal number of blades on each rotor, preliminary results

    NASA Technical Reports Server (NTRS)

    Mccurdy, David A.

    1988-01-01

    A laboratory experiment was conducted to quantify the annoyance of people to the flyover noise of advanced turboprop aircraft with counter-rotating propellers (CRP) having an equal number of blades on each rotor. The objectives were: to determine the effects of total content on annoyance; and compare annoyance to n x n CRP advanced turboprop aircraft with annoyance to conventional turboprop and jet aircraft. A computer synthesis system was used to generate 27 realistic, time-varying simulations of advanced turboprop takeoff noise in which the tonal content was systematically varied to represent the factorial combinations of nine fundamental frequencies and three tone-to-broadband noise ratios. These advanced turboprop simulations along with recordings of five conventional turboprop takeoffs and five conventional jet takeoffs were presented at three D-weighted sound pressure levels to 64 subjects in an anechoic chamber. Analyses of the subjects' annoyance judgments compare the three aircraft types and examined the effects of the differences in tonal content among the advanced turboprop noises. The annoyance prediction ability of various noise metrics is also examined.

  17. Noise measurements for a twin-engine commercial jet aircraft during 3 deg approaches and level flyovers

    NASA Technical Reports Server (NTRS)

    Hastings, E. C., Jr.; Shanks, R. E.; Mueller, A. W.

    1976-01-01

    Noise measurements have been made with a twin-engine commercial jet aircraft making 3 deg approaches and level flyovers. The flight-test data showed that, in the standard 3 deg approach configuration with 40 deg flaps, effective perceived noise level (EPNL) had a value of 109.5 effective perceived noise decibels (EPNdB). This result was in agreement with unpublished data obtained with the same type of aircraft during noise certification tests; the 3 deg approaches made with 30 deg flaps and slightly reduced thrust reduced the EPNL value by 1 EPNdB. Extended center-line noise determined during the 3 deg approaches with 40 deg flaps showed that the maximum reference A-weighted sound pressure level (LA,max)ref varied from 100.0 A-weighted decibels 2.01 km (108 n. mi.) from the threshold to 87.4 db(A) at 6.12 km (3.30 n. mi.) from the threshold. These test values were about 3 db(A) higher than estimates used for comparison. The test data along the extended center line during approaches with 30 deg flaps were 1 db(A) lower than those for approaches with 40 deg flaps. Flight-test data correlating (LA,max)ref with thrust at altitudes of 122 m (400 ft) and 610 m (2000 ft) were in agreement with reference data used for comparison.

  18. Human Response to Aircraft-Noise-Induced Building Vibration

    NASA Technical Reports Server (NTRS)

    Cawthorn, J. M.; Dempsey, T. K.; DeLoach, R.

    1978-01-01

    The effects of noise induced building structure vibration and the rattle of objects on human response to aircraft flyover noise were investigated in a series of studies conducted in both the field and the laboratory. The subjective detection thresholds for vibration and rattle were determined as well as the effect of vibration and rattle upon aircraft noise annoyance.

  19. A comparison of two independent measurements and analysis of jet aircraft flyover noise

    NASA Technical Reports Server (NTRS)

    Hosier, R. N.

    1977-01-01

    Flyover noise measurements were made simultaneously by two groups. The measurements were made close to one another for the same flyover conditions and with similar measurement procedures, but with different acoustic equipment and personnel. Each group also independently processed the data in accordance with FAR 36 procedures, indluding corrections to reference meteorological, performance, and flight-path conditions. Measured and corrected data, from 24 controlled flyovers processed by both groups, are compared and the differences in the results obtained by the two groups are discussed. It is observed that the average value of the difference between the groups' measured acoustic descriptors (PNL, PNLTM, and EPNL) was less than or = 0.8 db; the average difference for the corrected descriptors (PNL, PNLTM, and EPNL) was less than or = 1.5 db. Causes of the differences were found to be mainly related to different spectrum extrapolation and preemphasis techniques used by the two groups.

  20. En route noise of two turboprop aircraft

    NASA Technical Reports Server (NTRS)

    Dobrzynski, Werner

    1990-01-01

    In order to weigh en route noise emissions originating from future propfan powered aircraft, a data base of emission levels from conventional turboprop aircraft is needed. For this reason flyover noise measurements on two twin-engine turboprop aircraft were conducted at flight heights between 17,000 and 21,000 ft. Acoustic data are presented together with propeller operational parameters and environmental meteorological data. Narrowband spectral analyses demonstrate the characteristic features of the measured propeller noise signatures: Noise spectra are dominated by the propeller rotational noise fundamental frequency and pronounced noise beats occur as a consequence of different rotational speeds of the propellers.

  1. Recommended procedures for measuring aircraft noise and associated parameters

    NASA Technical Reports Server (NTRS)

    Marsh, A. H.

    1977-01-01

    Procedures are recommended for obtaining experimental values of aircraft flyover noise levels (and associated parameters). Specific recommendations are made for test criteria, instrumentation performance requirements, data-acquisition procedures, and test operations. The recommendations are based on state-of-the-art measurement capabilities available in 1976 and are consistent with the measurement objectives of the NASA Aircraft Noise Prediction Program. The recommendations are applicable to measurements of the noise produced by an airplane flying subsonically over (or past) microphones located near the surface of the ground. Aircraft types covered by the recommendations are fixed-wing airplanes powered by turbojet or turbofan engines and using conventional aerodynamic means for takeoff and landing. Various assumptions with respect to subsequent data processing and analysis were made (and are described) and the recommended measurement procedures are compatible with the assumptions. Some areas where additional research is needed relative to aircraft flyover noise measurement techniques are also discussed.

  2. Real time aircraft fly-over noise discrimination

    NASA Astrophysics Data System (ADS)

    Genescà, M.; Romeu, J.; Pàmies, T.; Sánchez, A.

    2009-06-01

    A method for measuring aircraft noise time history with automatic elimination of simultaneous urban noise is presented in this paper. A 3 m-long 12-microphone sparse array has been proven to give good performance in a wide range of urban placements. Nowadays, urban placements have to be avoided because their background noise has a great influence on the measurements made by sound level meters or single microphones. Because of the small device size and low number of microphones (that make it so easy to set up), the resolution of the device is not high enough to provide a clean aircraft noise time history by only applying frequency domain beamforming to the spatial cross-correlations of the microphones' signals. Therefore, a new step to the processing algorithm has been added to eliminate this handicap.

  3. Effects of conversation interference on annoyance due to aircraft noise

    NASA Technical Reports Server (NTRS)

    Key, K. F.; Powell, C. A.

    1980-01-01

    The annoyance and interference effects of aircraft flyover noise on face to face conversation were investigated. Twenty 5 minute sessions, each composed of three flyovers, were presented to each of 20 pairs of female subjects in a simulated living room. Flyovers varied in peak noise level (55-79 dB, A-weighted) and spectrum (low or high frequency components). Subjects engaged in conversation for 10 sessions and in reverie for the other 10 sessions, and completed subjective ratings following every session. Annoyance was affected by noise level, but was not significantly different for the two activities of reverie and conversation. A noise level of 77 db was found unacceptable for conversation by 50 percent of the subjects. Conversation interference was assessed by incidence of increased vocal effort and/or interruption of conversation during flyovers. Although conversation interference increased with noise level, the conversation interference measures did not improve prediction of individual annoyance judgments.

  4. Advanced turboprop aircraft flyover noise: Annoyance to counter-rotating-propeller configurations with a different number of blades on each rotor: Preliminary results

    NASA Technical Reports Server (NTRS)

    Mccurdy, David A.

    1988-01-01

    A laboratory experiment was conducted to quantify the annoyance of people to the flyover noise of advanced turboprop aircraft with counter-rotating propellers (CRP) having a different number of blades on each rotor (nxm, e.g., 10 x 8, 12 x 11). The objectives were: (1) compare annoyance to nxm CRP advanced turboprop aircraft with annoyance to conventional turboprop and jet aircraft; (2) determine the effects of tonal content on annoyance; and (3) determine the ability of aircraft noise measurement procedures and corrections to predict annoyance for this new class of aircraft. A computer synthesis system was used to generate 35 realistic, time-varying simulations of advanced turboprop takeoff noise in which the tonal content was systematically varied to represent combinations of 15 fundamental frequency (blade passage frequency) combinations and three tone-to-broadband noise ratios. The fundamental frequencies, which represented blade number combinations from 6 x 5 to 13 x 12 and 7 x 5 to 13 x 11, ranged from 112.5 to 292.5 Hz. The three tone-to-broadband noise ratios were 0, 15, and 30 dB. These advanced turboprop simulations along with recordings of five conventional turboprop takeoffs and five conventional jet takeoffs were presented at D-weighted sound pressure levels of 70, 80, and 90 dB to 64 subjects in an anechoic chamber. Analyses of the subjects' annoyance judgments compare the three categories of aircraft and examine the effects of the differences in tonal content among the advanced turboprop noises. The annoyance prediction ability of various noise measurement procedures and corrections is also examined.

  5. Sources, control, and effects of noise from aircraft propellers and rotors. [noise prediction (aircraft

    NASA Technical Reports Server (NTRS)

    Mixson, J. S.; Greene, G. C.; Dempsey, T. K.

    1981-01-01

    Source noise predictions are compared with measurements for conventional low-speed propellers, for new high speed propellers (propfans), and for a helicopter. Results from a light aircraft demonstration program are described, indicating that about 5-dB reduction of flyover noise can be obtained without significant performance penalty. Sidewall design studies are described for interior noise control in light general aviation aircraft and in large transports using propfan propulsion. The weight of the added acoustic treatment is estimated and tradeoffs between weight and noise reduction are discussed. A laboratory study of passenger response to combined broadband and tonal propeller like noise is described. Subject discomfort ratings of combined tone broadband noises are compared with ratings of broadband (boundary layer) noise alone, and the relative importance of the propeller tones is examined.

  6. Auralization of NASA N+2 Aircraft Concepts from System Noise Predictions

    NASA Technical Reports Server (NTRS)

    Rizzi, Stephen A.; Burley, Casey L.; Thomas, Russel H.

    2016-01-01

    Auralization of aircraft flyover noise provides an auditory experience that complements integrated metrics obtained from system noise predictions. Recent efforts have focused on auralization methods development, specifically the process by which source noise information obtained from semi-empirical models, computational aeroacoustic analyses, and wind tunnel and flight test data, are used for simulated flyover noise at a receiver on the ground. The primary focus of this work, however, is to develop full vehicle auralizations in order to explore the distinguishing features of NASA's N+2 aircraft vis-à-vis current fleet reference vehicles for single-aisle and large twin-aisle classes. Some features can be seen in metric time histories associated with aircraft noise certification, e.g., tone-corrected perceived noise level used in the calculation of effective perceived noise level. Other features can be observed in sound quality metrics, e.g., loudness, sharpness, roughness, fluctuation strength and tone-to-noise ratio. A psychoacoustic annoyance model is employed to establish the relationship between sound quality metrics and noise certification metrics. Finally, the auralizations will serve as the basis for a separate psychoacoustic study aimed at assessing how well aircraft noise certification metrics predict human annoyance for these advanced vehicle concepts.

  7. A study of noise metric and tone correction accuracy

    NASA Technical Reports Server (NTRS)

    Sullivan, B. M.; Mabry, J. E.

    1982-01-01

    Methods currently used to measure human response to aircraft flyover noise were investigated. Response to high level aircraft noise usually experienced outdoors was obtained. Response to aircraft flyover noise typical of indoor exposure was also investigated. It was concluded that current methods for evaluating response to aircraft flyover are more accurate for outdoor noise.

  8. A Recording-Based Method for Auralization of Rotorcraft Flyover Noise

    NASA Technical Reports Server (NTRS)

    Pera, Nicholas M.; Rizzi, Stephen A.; Krishnamurthy, Siddhartha; Fuller, Christopher R.; Christian, Andrew

    2018-01-01

    Rotorcraft noise is an active field of study as the sound produced by these vehicles is often found to be annoying. A means to auralize rotorcraft flyover noise is sought to help understand the factors leading to annoyance. Previous work by the authors focused on auralization of rotorcraft fly-in noise, in which a simplification was made that enabled the source noise synthesis to be based on a single emission angle. Here, the goal is to auralize a complete flyover event, so the source noise synthesis must be capable of traversing a range of emission angles. The synthesis uses a source noise definition process that yields periodic and aperiodic (modulation) components at a set of discrete emission angles. In this work, only the periodic components are used for the source noise synthesis for the flyover; the inclusion of modulation components is the subject of ongoing research. Propagation of the synthesized source noise to a ground observer is performed using the NASA Auralization Framework. The method is demonstrated using ground recordings from a flight test of the AS350 helicopter for the source noise definition.

  9. Evaluating and minimizing noise impact due to aircraft flyover

    NASA Technical Reports Server (NTRS)

    Jacobson, I. D.

    1980-01-01

    The results of a study on the evaluation and reduction of noise impact to a community due to aircraft landing and takeoff operations are presented. The case of multiple aircrafts flying on several trajectories, for either approach/landings or takeoffs was examined. An extremely realistic model of the flight path was developed. The annoyance criterion used was the noise impact index (NII). The algorithm was applied to Patrick Henry International Airport.

  10. Active Control of Fan Noise-Feasibility Study. Volume 1; Flyover System Noise Studies

    NASA Technical Reports Server (NTRS)

    Kraft, Robert E.; Janardan, B. A.; Kontos, G. C.; Gliebe, P. R.

    1994-01-01

    A study has been completed to examine the potential reduction of aircraft flyover noise by the method of active noise control (ANC). It is assumed that the ANC system will be designed such that it cancels discrete tones radiating from the engine fan inlet or fan exhaust duct. Thus, without considering the engineering details of the ANC system design, tone levels are arbitrarily removed from the engine component noise spectrum and the flyover noise EPNL levels are compared with and without the presence of tones. The study was conducted for a range of engine cycles, corresponding to fan pressure ratios from 1.3 to 1.75. The major conclusions that can be drawn are that, for a fan pressure ratio of 1.75, ANC of tones gives about the same suppression as acoustic treatment without ANC, and for a fan pressure ratio of 1.45, ANC appears to offer less effectiveness than passive treatment. Additionally, ANC appears to be more effective at sideline and cutback conditions than at approach. Overall EPNL suppressions due to tone removal range from about 1 to 3 dB at takeoff engine speeds and from 1 to 5 db at approach speeds. Studies of economic impact of the installation of an ANC system for the four engine cases indicate increases of DOC ranging from 1 to 2 percent, favoring the lower fan pressure ratio engines. Further study is needed to confirm the results by examining additional engine data, particularly at low fan pressure ratios, and studying the details of the current results to obtain a more complete understanding. Further studies should also include determining the effects of combining passive and active treatment.

  11. Lateral Attenuation of Aircraft Flight Noise.

    DTIC Science & Technology

    1985-03-01

    levels with elevation angle. Comparisons of different Imodels are made in terms of the differences in A - levels for a flyover with the observer directly...attenuation adjustment to be applied to the basic noise data is the same when applied to maximum levels (maximum A - levels for example) or to integrated...attenuation values were applied to sets of one-third octave band spectra for different aircraft The resulting differences in A - levels for these noise spectra

  12. Evaluating and minimizing noise impact due to aircraft flyover

    NASA Technical Reports Server (NTRS)

    Jacobson, I. D.; Cook, G.

    1979-01-01

    Existing techniques were used to assess the noise impact on a community due to aircraft operation and to optimize the flight paths of an approaching aircraft with respect to the annoyance produced. Major achievements are: (1) the development of a population model suitable for determining the noise impact, (2) generation of a numerical computer code which uses this population model along with the steepest descent algorithm to optimize approach/landing trajectories, (3) implementation of this optimization code in several fictitious cases as well as for the community surrounding Patrick Henry International Airport, Virginia.

  13. The relation between time of presentation and the sleep disturbing effects of nocturnally occurring jet aircraft flyovers

    NASA Technical Reports Server (NTRS)

    Levere, T. E.; Bartus, R. T.; Hart, F. D.

    1972-01-01

    The research describes the sleep disturbing effects of jet aircraft flyover noise as it occurs at different times during the night. The results indicate that individuals respond statistically more, in terms of greater cortical desynchronization, during the first and last thirds of the night. During the middle third, while there is still a significant amount of cortical desynchronization in response to the jet aircraft noise, this is always less than that which occurs earlier or later in the night. The implications of this data are that it might be possible to reduce the disruptive effects of at least certain extrinsic sonic stimulation by appropriate scheduling.

  14. Prediction of flyover jet noise spectra from static tests

    NASA Technical Reports Server (NTRS)

    Michel, U.; Michalke, A.

    1981-01-01

    A scaling law is derived for predicting the flyover noise spectra of a single-stream shock-free circular jet from static experiments. The theory is based on the Lighthill approach to jet noise. Density terms are retained to include the effects of jet heating. The influence of flight on the turbulent flow field is considered by an experimentally supported similarity assumption. The resulting scaling laws for the difference between one-third-octave spectra and the overall sound pressure level compare very well with flyover experiments with a jet engine and with wind tunnel experiments with a heated model jet.

  15. Field and laboratory studies of moving and temporally variable noise sources (aircraft); perception of location, movement, and direction.

    PubMed

    Gunn, W J; Shigehisa, T; Shepherd, W T

    1979-10-01

    The conditions were examined under which more valid and reliable estimates could be made of the effects of aircraft noise on people. In Exper. 1, 12 Ss in 2 different houses directly under the flight path of a major airport (JFK) indicated 1 of 12 possible flight paths (4 directly overhead and 8 to one side) for each of 3 jet aircraft flyovers: 3% of cases in House A and 56% in House B (which had open windows) were correctly identified. Despite judgment inaccuracy, Ss were more than moderately certain of the correctness of their judgments. In Exper. II. Ss either inside or outside of 2 houses in Wallops Station, Virginia, indicated on diagrams the direction of flyovers. Each of 4 aircraft (Boeing 737, C-54, UE-1 helicopter, Queenaire) made 8 flyovers directly over the houses and 8 to one side. Windows were either open or closed. All flyovers and conditions were counterbalanced. All sound sources under all conditions were usually judged to be overhead and moving, but for Ss indoors with windows closed the to-the-side flyovers were judged to be off to the side in 24% of cases. Outdoor Ss reported correct direction in 75% of cases while indoor Ss were correct in only 25% (windows open) or 18% (windows closed). Judgments "to the side" were significantly better (p = less than .02) with windows open vs closed, while with windows closed judgments were significantly better (p = less than .05) for flyovers overhead vs to the side. In Exper. III, Ss localized in azimuth and in the vertical plane recorded noises (10 1-oct noise bands of CF = 28.12 c/s - 14.4kc/s, spoken voice, and jet aircraft takeoffs and landings), presented through 1, 2, or 4 floor-level loudspeakers at each corner of a simulated living room (4.2 x 5.4m)built inside an IAC soundproof room. Aircraft noises presented by 4 loudspeakers were localized as "directly" overhead 80% of the time and "generally overhead" about 90% of the time; other sounds were so localized about 50% and 75% of the time respectively

  16. Measurements and predictions of flyover and static noise of a TF30 afterburning turbofan engine

    NASA Technical Reports Server (NTRS)

    Burcham, F. W., Jr.; Lasagna, P. L.; Oas, S. C.

    1978-01-01

    The noise of the TF30 afterburning turbofan engine in an F-111 airplane was determined from static (ground) and flyover tests. A survey was made to measure the exhaust temperature and velocity profiles for a range of power settings. Comparisons were made between predicted and measured jet mixing, internal, and shock noise. It was found that the noise produced at static conditions was dominated by jet mixing noise, and was adequately predicted by current methods. The noise produced during flyovers exhibited large contributions from internally generated noise in the forward arc. For flyovers with the engine at nonafterburning power, the internal noise, shock noise, and jet mixing noise were accurately predicted. During flyovers with afterburning power settings, however, additional internal noise believed to be due to the afterburning process was evident; its level was as much as 8 decibels above the nonafterburning internal noise. Power settings that produced exhausts with inverted velocity profiles appeared to be slightly less noisy than power settings of equal thrust that produced uniform exhaust velocity profiles both in flight and in static testing.

  17. Analysis and Synthesis of Tonal Aircraft Noise Sources

    NASA Technical Reports Server (NTRS)

    Allen, Matthew P.; Rizzi, Stephen A.; Burdisso, Ricardo; Okcu, Selen

    2012-01-01

    Fixed and rotary wing aircraft operations can have a significant impact on communities in proximity to airports. Simulation of predicted aircraft flyover noise, paired with listening tests, is useful to noise reduction efforts since it allows direct annoyance evaluation of aircraft or operations currently in the design phase. This paper describes efforts to improve the realism of synthesized source noise by including short term fluctuations, specifically for inlet-radiated tones resulting from the fan stage of turbomachinery. It details analysis performed on an existing set of recorded turbofan data to isolate inlet-radiated tonal fan noise, then extract and model short term tonal fluctuations using the analytic signal. Methodologies for synthesizing time-variant tonal and broadband turbofan noise sources using measured fluctuations are also described. Finally, subjective listening test results are discussed which indicate that time-variant synthesized source noise is perceived to be very similar to recordings.

  18. Assessing the shielding of engine noise by the wings for current aircraft using model predictions and measurements.

    PubMed

    Vieira, Ana; Snellen, Mirjam; Simons, Dick G

    2018-01-01

    Reducing aircraft noise is a major issue to be dealt with by the aerospace industry. In addition to lowering noise emissions from the engine and airframe, also the shielding of engine noise by the aircraft is considered as a promising means for reducing the perceived noise on the ground. In literature, noise shielding predictions indicate significant reductions in received noise levels for blended wing body configurations, but also for conventional aircraft with the engines placed above the wings. Little work has been done in assessing these potential shielding effects for full aircraft under real operational conditions. Therefore, in this work, noise shielding for current aircraft is investigated using both measurements and model predictions. The predictions are based on the Kirchhoff integral theory and the Modified Theory of Physical Optics. For the comparison between the predictions and measurements, Twenty Fokker 70 flyovers are considered. The data analysis approach for the extraction of shielding levels for aircraft under these operational conditions is presented. Directly under the flight path, the simulations predict an engine noise shielding of 6 dB overall sound pressure level. This is confirmed by some of the flyover data. On average, the measurements show somewhat lower shielding levels.

  19. Airframe Noise from a Hybrid Wing Body Aircraft Configuration

    NASA Technical Reports Server (NTRS)

    Hutcheson, Florence V.; Spalt, Taylor B.; Brooks, Thomas F.; Plassman, Gerald E.

    2016-01-01

    A high fidelity aeroacoustic test was conducted in the NASA Langley 14- by 22-Foot Subsonic Tunnel to establish a detailed database of component noise for a 5.8% scale HWB aircraft configuration. The model has a modular design, which includes a drooped and a stowed wing leading edge, deflectable elevons, twin verticals, and a landing gear system with geometrically scaled wheel-wells. The model is mounted inverted in the test section and noise measurements are acquired at different streamwise stations from an overhead microphone phased array and from overhead and sideline microphones. Noise source distribution maps and component noise spectra are presented for airframe configurations representing two different approach flight conditions. Array measurements performed along the aircraft flyover line show the main landing gear to be the dominant contributor to the total airframe noise, followed by the nose gear, the inboard side-edges of the LE droop, the wing tip/LE droop outboard side-edges, and the side-edges of deployed elevons. Velocity dependence and flyover directivity are presented for the main noise components. Decorrelation effects from turbulence scattering on spectral levels measured with the microphone phased array are discussed. Finally, noise directivity maps obtained from the overhead and sideline microphone measurements for the landing gear system are provided for a broad range of observer locations.

  20. Measurements and predictions of flyover and static noise of an afterburning turbofan engine in an F-111 airplane

    NASA Technical Reports Server (NTRS)

    Burcham, F. W., Jr.

    1979-01-01

    The noise of the TF30 afterburning turbofan engine in an F-111 airplane was determined from static (ground) and flyover tests. Exhaust temperatures and velocity profiles were measured for a range of power settings. Comparisons were made between predicted and measured jet mixing, internal, and shock noise. It was found that the noise produced at static conditions was dominated by jet mixing noise, and was adequately predicted by current methods. The noise produced during flyovers exhibited large contributions from internally generated noise in the forward arc. For flyovers with the engine at nonafterburning power, the internal noise, shock noise, and jet mixing noise were accurately predicted. During flyovers with afterburning power settings, however, additional internal noise believed to be due to the afterburning process was evident; its level was as much as 8 decibels above the nonafterburning internal noise.

  1. Effects of activity interference on annoyance due to aircraft noise

    NASA Technical Reports Server (NTRS)

    Willshire, K. F.; Powell, C. A.

    1981-01-01

    The effects of aircraft flyover noise on annoyance were compared for face to face conversation, reverie, and television viewing. Eighteen 5 minute sessions, each composed of three flyovers, were presented on each of 2 days to subjects in a simulated living room. Twelve pairs of females and 12 pairs of males were tested, once before and once after work. Flyovers varied in peak noise level from 53 to 83 dB, A weighted. On each day, subjects engaged in 18 sessions, six of conversation, six of television viewing, and six of reverie. The subjects completed subjective ratings of annoyance and acceptability following every session. Annoyance and unacceptability rating scores were significantly higher for the activity of television viewing compared to conversation or reverie. There was no difference between judgments during the latter two activities. No differences were found in the judgments when compared on the basis of "fatigue" (before/after work) or sex of the subject.

  2. Prediction of aircraft sideline noise attenuation

    NASA Technical Reports Server (NTRS)

    Zorumski, W. E.

    1978-01-01

    A computational study is made using the recommended ground effect theory by Pao, Wenzel, and Oncley. It is shown that this theory adequately predicts the measured ground attenuation data by Parkin and Scholes, which is the only available large data set. It is also shown, however, that the ground effect theory does not predict the measured lateral attenuations from actual aircraft flyovers. There remain one or more important lateral effects on aircraft noise, such as sideline shielding of sources, which must be incorporated in the prediction methods. Experiments at low elevation angles (0 deg to 10 deg) and low-to-intermediate frequencies are recommended to further validate the ground effect theory.

  3. Development and Calibration of a Field-Deployable Microphone Phased Array for Propulsion and Airframe Noise Flyover Measurements

    NASA Technical Reports Server (NTRS)

    Humphreys, William M., Jr.; Lockard, David P.; Khorrami, Mehdi R.; Culliton, William G.; McSwain, Robert G.; Ravetta, Patricio A.; Johns, Zachary

    2016-01-01

    A new aeroacoustic measurement capability has been developed consisting of a large channelcount, field-deployable microphone phased array suitable for airframe noise flyover measurements for a range of aircraft types and scales. The array incorporates up to 185 hardened, weather-resistant sensors suitable for outdoor use. A custom 4-mA current loop receiver circuit with temperature compensation was developed to power the sensors over extended cable lengths with minimal degradation of the signal to noise ratio and frequency response. Extensive laboratory calibrations and environmental testing of the sensors were conducted to verify the design's performance specifications. A compact data system combining sensor power, signal conditioning, and digitization was assembled for use with the array. Complementing the data system is a robust analysis system capable of near real-time presentation of beamformed and deconvolved contour plots and integrated spectra obtained from array data acquired during flyover passes. Additional instrumentation systems needed to process the array data were also assembled. These include a commercial weather station and a video monitoring / recording system. A detailed mock-up of the instrumentation suite (phased array, weather station, and data processor) was performed in the NASA Langley Acoustic Development Laboratory to vet the system performance. The first deployment of the system occurred at Finnegan Airfield at Fort A.P. Hill where the array was utilized to measure the vehicle noise from a number of sUAS (small Unmanned Aerial System) aircraft. A unique in-situ calibration method for the array microphones using a hovering aerial sound source was attempted for the first time during the deployment.

  4. Noise-Induced Building Vibrations Caused by Concorde and Conventional Aircraft Operations at Dulles and Kennedy International Airports

    NASA Technical Reports Server (NTRS)

    Mayes, W. H.; Stephens, D. G.; Holmes, H. K.; Lewis, R. B.; Holliday, B. G.; Ward, D. W.; Deloach, R.; Cawthorn, J. M.; Finley, T. D.; Lynch, J. W.

    1978-01-01

    Outdoor and indoor noise levels resulting from aircraft flyovers and certain nonaircraft events were recorded, as were the associated vibration levels in the walls, windows, and floors at building test sites. In addition, limited subjective tests were conducted to examine the human detection and annoyance thresholds for building vibration and rattle caused by aircraft noise. Representative peak levels of aircraft noise-induced building vibrations are reported and comparisons are made with structural damage criteria and with vibration levels induced by common domestic events. In addition, results of a pilot study are reported which indicate the human detection threshold for noise-induced floor vibrations.

  5. Sources, control, and effects of noise from aircraft propellers and rotors

    NASA Technical Reports Server (NTRS)

    Mixson, J. S.; Greene, G. C.; Dempsey, T. K.

    1981-01-01

    Recent NASA and NASA sponsored research on the prediction and control of propeller and rotor source noise, on the analysis and design of fuselage sidewall noise control treatments, and on the measurement and quantification of the response of passengers to aircraft noise is described. Source noise predictions are compared with measurements for conventional low speed propellers, for new high speed propellers (propfans), and for a helicopter. Results from a light aircraft demonstration program are considered which indicates that about 5 dB reduction of flyover noise can be obtained without significant performance penalty. Sidewall design studies are examined for interior noise control in light general aviation aircraft and in large transports using propfan propulsion. The weight of the added acoustic treatment is estimated and tradeoffs between weight and noise reduction are discussed. A laboratory study of passenger response to combined broadband and tonal propeller-like noise is described. Subject discomfort ratings of combined tone broadband noises are compared with ratings of broadband (boundary layer) noise alone and the relative importance of the propeller tones is examined.

  6. Effects of motion on jet exhaust noise from aircraft

    NASA Technical Reports Server (NTRS)

    Chun, K. S.; Berman, C. H.; Cowan, S. J.

    1976-01-01

    The various problems involved in the evaluation of the jet noise field prevailing between an observer on the ground and an aircraft in flight in a typical takeoff or landing approach pattern were studied. Areas examined include: (1) literature survey and preliminary investigation, (2) propagation effects, (3) source alteration effects, and (4) investigation of verification techniques. Sixteen problem areas were identified and studied. Six follow-up programs were recommended for further work. The results and the proposed follow-on programs provide a practical general technique for predicting flyover jet noise for conventional jet nozzles.

  7. Annoyance and acceptability judgements of noise produced by three types of aircraft by residents living near JFK Airport

    NASA Technical Reports Server (NTRS)

    Borsky, P. N.

    1974-01-01

    A random sample of selected communities near JFK Airport were interviewed. Subsamples, with differing feelings of fear of aircraft crashes and different locations of residence were invited to participate in a laboratory experiment. The subjects were exposed to tape recordings of simulated flyovers of aircraft in approach and departure operations at nominal distances from the airport. The subjects judged the extent of noise annoyance and acceptability of the aircraft noises. Results indicate that level of noise is most significant in affecting annoyance judgements. Subjects with feelings of high fear report significantly more annoyance and less acceptability of aircraft noise than subjects with feelings of low fear.

  8. 14 CFR Appendix F to Part 36 - Flyover Noise Requirements for Propeller-Driven Small Airplane and Propeller-Driven, Commuter...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Flyover Noise Requirements for Propeller-Driven Small Airplane and Propeller-Driven, Commuter Category Airplane Certification Tests Prior to.... F Appendix F to Part 36—Flyover Noise Requirements for Propeller-Driven Small Airplane and Propeller...

  9. 14 CFR Appendix F to Part 36 - Flyover Noise Requirements for Propeller-Driven Small Airplane and Propeller-Driven, Commuter...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Flyover Noise Requirements for Propeller-Driven Small Airplane and Propeller-Driven, Commuter Category Airplane Certification Tests Prior to.... F Appendix F to Part 36—Flyover Noise Requirements for Propeller-Driven Small Airplane and Propeller...

  10. 14 CFR Appendix F to Part 36 - Flyover Noise Requirements for Propeller-Driven Small Airplane and Propeller-Driven, Commuter...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Flyover Noise Requirements for Propeller-Driven Small Airplane and Propeller-Driven, Commuter Category Airplane Certification Tests Prior to.... F Appendix F to Part 36—Flyover Noise Requirements for Propeller-Driven Small Airplane and Propeller...

  11. 14 CFR Appendix F to Part 36 - Flyover Noise Requirements for Propeller-Driven Small Airplane and Propeller-Driven, Commuter...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Flyover Noise Requirements for Propeller-Driven Small Airplane and Propeller-Driven, Commuter Category Airplane Certification Tests Prior to.... F Appendix F to Part 36—Flyover Noise Requirements for Propeller-Driven Small Airplane and Propeller...

  12. 14 CFR Appendix F to Part 36 - Flyover Noise Requirements for Propeller-Driven Small Airplane and Propeller-Driven, Commuter...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Flyover Noise Requirements for Propeller-Driven Small Airplane and Propeller-Driven, Commuter Category Airplane Certification Tests Prior to.... F Appendix F to Part 36—Flyover Noise Requirements for Propeller-Driven Small Airplane and Propeller...

  13. Jet engine noise source and noise footprint computer programs

    NASA Technical Reports Server (NTRS)

    Dunn, D. G.; Peart, N. A.; Miller, D. L.; Crowley, K. C.

    1972-01-01

    Calculation procedures are presented for predicting maximum passby noise levels and contours (footprints) of conventional jet aircraft with or without noise suppression devices. The procedures have been computerized and a user's guide is presented for the computer programs to be used in predicting the noise characteristics during aircraft takeoffs, fly-over, and/or landing operations.

  14. Concorde noise-induced building vibrations: John F. Kennedy International Airport

    NASA Technical Reports Server (NTRS)

    Mayes, W. H.; Stephens, D. G.; Deloach, R.; Cawthorn, J. M.; Holmes, H. K.; Lewis, R. B.; Holliday, B. G.; Ward, D. W.; Miller, W. T.

    1978-01-01

    Outdoor and indoor noise levels resulting from aircraft flyovers and certain nonaircraft events were recorded at eight homesites and a school along with the associated vibration levels in the walls, windows, and floors at these test sites. Limited subjective tests were conducted to examine the human detection and annoyance thresholds for building vibration and rattle caused by aircraft noise. Both vibration and rattle were detected subjectively in several houses for some operations of both the Concorde and subsonic aircraft. Seated subjects more readily detected floor vibrations than wall or window vibrations. Aircraft noise generally caused more window vibrations than common nonaircraft events such as walking and closing doors. Nonaircraft events and aircraft flyovers resulted in comparable wall vibration levels, while floor vibrations were generally greater for nonaircraft events than for aircraft flyovers. The relationship between structural vibration and aircraft noise is linear, with vibration levels being accurately predicted from overall sound pressure levels (OASPL) measured near the structure. Relatively high levels of structural vibration measured during Concorde operations are due more to higher OASPL levels than to unique Concorde-source characteristics.

  15. Temporal Characterization of Aircraft Noise Sources

    NASA Technical Reports Server (NTRS)

    Grosveld, Ferdinand W.; Sullivan, Brenda M.; Rizzi, Stephen A.

    2004-01-01

    Current aircraft source noise prediction tools yield time-independent frequency spectra as functions of directivity angle. Realistic evaluation and human assessment of aircraft fly-over noise require the temporal characteristics of the noise signature. The purpose of the current study is to analyze empirical data from broadband jet and tonal fan noise sources and to provide the temporal information required for prediction-based synthesis. Noise sources included a one-tenth-scale engine exhaust nozzle and a one-fifth scale scale turbofan engine. A methodology was developed to characterize the low frequency fluctuations employing the Short Time Fourier Transform in a MATLAB computing environment. It was shown that a trade-off is necessary between frequency and time resolution in the acoustic spectrogram. The procedure requires careful evaluation and selection of the data analysis parameters, including the data sampling frequency, Fourier Transform window size, associated time period and frequency resolution, and time period window overlap. Low frequency fluctuations were applied to the synthesis of broadband noise with the resulting records sounding virtually indistinguishable from the measured data in initial subjective evaluations. Amplitude fluctuations of blade passage frequency (BPF) harmonics were successfully characterized for conditions equivalent to take-off and approach. Data demonstrated that the fifth harmonic of the BPF varied more in frequency than the BPF itself and exhibited larger amplitude fluctuations over the duration of the time record. Frequency fluctuations were found to be not perceptible in the current characterization of tonal components.

  16. Active Control of Fan Noise: Feasibility Study. Volume 4; Flyover System Noise Studies

    NASA Technical Reports Server (NTRS)

    Kraft, R. E.; Janardan, B. A.; Gliebe, P. R.; Kontos, G. C.

    1996-01-01

    An extension of a prior study has been completed to examine the potential reduction of aircraft flyover noise by the method of active noise control (ANC). It is assumed that the ANC system will be designed such that it cancels discrete tones radiating from the engine fan inlet or fan exhaust duct, at least to the extent that they no longer protrude above the surrounding broadband noise levels. Thus, without considering the engineering details of the ANC system design, tone levels am arbitrarily removed from the engine component noise spectrum and the flyover noise EPNL levels are compared with and without the presence of tones. The study was conducted for a range of engine cycles, corresponding to fan pressure ratios of 1.3, 1.45, 1.6, and 1.75. This report is an extension of an effort reported previously. The major conclusions drawn from the prior study, which was restricted to fan pressure ratios of 1.45 and 1.75, are that, for a fan pressure ratio of 1.75, ANC of tones gives about the same suppression as acoustic treatment without ANC. For a fan pressure ratio of 1.45, ANC appears to offer less effectiveness from passive treatment. In the present study, the other two fan pressure ratios are included in a more detailed examination of the benefits of the ANC suppression levels. The key results of this extended study are the following observations: (1) The maximum overall benefit obtained from suppression of BPF alone was 2.5 EPNdB at high fan speeds. The suppression benefit increases with increase in fan pressure ratio (FPR), (2) The maximum overall benefit obtained from suppression of the first three harmonics was 3 EPNdB at high speeds. Suppression benefit increases with increase in FPR, (3) At low FPR, only about 1.0 EPNdB maximum reduction was obtained. Suppression is primarily from reduction of BPF at high FPR values and from the combination of tones at low FPR, (4) The benefit from ANC is about the same as the benefit from passive treatment at fan pressure

  17. Effects of aircraft noises on the sleep of women

    NASA Technical Reports Server (NTRS)

    Lukas, J. S.; Dobbs, M. E.

    1972-01-01

    The electroencephalographic and behavioral responses during sleep of eight women subjects, aged 29 to 49 years, to subsonic jet flyover noise and simulated sonic booms were tested over 14 consecutive nights. Stimulus intensities were 101, 113, and 119 PNdB (as if measured out-of-doors) for the subsonic jet flyover and 0.67, 2.50, and 5.0 psf (as if measured out-of-doors) for the simulated sonic booms. It was found that the women were awakened, on the average, by approximately 42 percent of the flyover noises and by approximately 15 percent of the simulated sonic booms. Comparison of the results of this study with those of a similar study using men as subjects revealed that women were awakened more frequently by the subsonic jet flyover noise then were the men, while men were awakened more frequently by the simulated sonic boom.

  18. A laboratory study of the perceived benefit of additional noise attenuation by houses

    NASA Technical Reports Server (NTRS)

    Flindell, I. H.

    1983-01-01

    Two Experiments were conducted to investigate the perceived benefit of additional house attenuation against aircraft flyover noise. First, subjects made annoyance judgments in a simulated living room while an operative window with real and dummy storm windows was manipulated in full view of those subjects. Second, subjects made annoyance judgments in an anechoic audiometric test chamber of frequency shaped noise signals having spectra closely matched to those of the aircraft flyover noises reproduced in the first experiment. These stimuli represented the aircraft flyover noises in levels and spectra but without the situational and visual cues present in the simulated living room. Perceptual constancy theory implies that annoyance tends to remain constant despite reductions in noise level caused by additional attenuation of which the subjects are fully aware. This theory was supported when account was taken for a reported annoyance overestimation for certain spectra and for a simulated condition cue overreaction.

  19. A comparison of a laboratory and field study of annoyance and acceptability of aircraft noise exposures. [human reactions and tolerance

    NASA Technical Reports Server (NTRS)

    Borsky, P. N.

    1977-01-01

    Residents living in close, middle and distant areas from JFK Airport were included in a field interview and laboratory study. Judgments were made of simulated aircraft noise exposures of comparable community indoor noise levels and mixes of aircraft. Each group of subjects judged the levels of noise typical for its distance area. Four different numbers of flyovers were tested: less than average for each area, the approximate average, the peak number, or worst day, and above peak number. The major findings are: (1) the reported integrated field annoyance is best related to the annoyance reported for the simulated approximate worst day exposure in the laboratory; (2) annoyance is generally less when there are fewer aircraft flyovers, and the subject has less fear of crashes and more favorable attitudes toward airplanes; (3) beliefs in harmful health effects and misfeasance by operators of aircraft are also highly correlated with fear and noise annoyance; (4) in direct retrospective comparisons of number of flights, noise levels and annoyance, subjects more often said the worst day laboratory exposured more like their usual home environments; and (5) subjects do not expect an annoyance-free environment. Half of the subjects can accept an annoyance level of 5 to 6 from a possible annoyance range of 0 to 9, 28% can live with an annoyance intensity of 7, and only 5% can accept the top scores of 8 to 9.

  20. Concorde noise-induced building vibrations John F. Kennedy International Airport

    NASA Technical Reports Server (NTRS)

    Mayes, W. H.; Deloach, R.; Stephens, D. G.; Cawthorn, J. M.; Holmes, H. K.; Lewis, R. B.; Holliday, B. G.; Ward, D. W.

    1978-01-01

    The outdoor and indoor noise levels resulting from aircraft flyovers and certain nonaircraft events were recorded at six home sites along with the associated vibration levels in the walls, windows, and floors of these test homes. Limited subjective tests conducted to examine the human detection and annoyance thresholds for building vibration and rattle caused by aircraft noise showed that both vibration and rattle were detected subjectively in several houses for some operations of both the Concorde and subsonic aircraft. Preliminary results indicate that the relationship between window vibration and aircraft noise is: (1) linear, with vibration levels being accurately predicted from OASPL levels measured near the window; (2) consistent from flyover to flyover for a given aircraft type under approach conditions; (3) no different for Concorde than for other conventional jet transports (in the case of window vibrations induced under approach power conditions); and (4) relatively high levels of window vibration measured during Concorde operations are due more to higher OASPL levels than to unique Concorde source characteristics.

  1. Measurement of speech levels in the presence of time varying background noise

    NASA Technical Reports Server (NTRS)

    Pearsons, K. S.; Horonjeff, R.

    1982-01-01

    Short-term speech level measurements which could be used to note changes in vocal effort in a time varying noise environment were studied. Knowing the changes in speech level would in turn allow prediction of intelligibility in the presence of aircraft flyover noise. Tests indicated that it is possible to use two second samples of speech to estimate long term root mean square speech levels. Other tests were also performed in which people read out loud during aircraft flyover noise. Results of these tests indicate that people do indeed raise their voice during flyovers at a rate of about 3-1/2 dB for each 10 dB increase in background level. This finding is in agreement with other tests of speech levels in the presence of steady state background noise.

  2. Noise reduction tests of large-scale-model externally blown flap using trailing-edge blowing and partial flap slot covering. [jet aircraft noise reduction

    NASA Technical Reports Server (NTRS)

    Mckinzie, D. J., Jr.; Burns, R. J.; Wagner, J. M.

    1976-01-01

    Noise data were obtained with a large-scale cold-flow model of a two-flap, under-the-wing, externally blown flap proposed for use on future STOL aircraft. The noise suppression effectiveness of locating a slot conical nozzle at the trailing edge of the second flap and of applying partial covers to the slots between the wing and flaps was evaluated. Overall-sound-pressure-level reductions of 5 db occurred below the wing in the flyover plane. Existing models of several noise sources were applied to the test results. The resulting analytical relation compares favorably with the test data. The noise source mechanisms were analyzed and are discussed.

  3. Upper surface blowing noise of the NASA-Ames quiet short-haul research aircraft

    NASA Technical Reports Server (NTRS)

    Bohn, A. J.; Shovlin, M. D.

    1980-01-01

    An experimental study of the propulsive-lift noise of the NASA-Ames quiet short-haul research aircraft (QSRA) is described. Comparisons are made of measured QSRA flyover noise and model propulsive-lift noise data available in references. Developmental tests of trailing-edge treatments were conducted using sawtooth-shaped and porous USB flap trailing-edge extensions. Small scale parametric tests were conducted to determine noise reduction/design relationships. Full-scale static tests were conducted with the QSRA preparatory to the selection of edge treatment designs for flight testing. QSRA flight and published model propulsive-lift noise data have similar characteristics. Noise reductions of 2 to 3 dB were achieved over a wide range of frequency and directivity angles in static tests of the QSRA. These noise reductions are expected to be achieved or surpassed in flight tests planned by NASA in 1980.

  4. Semi-empirical airframe noise prediction model

    NASA Technical Reports Server (NTRS)

    Hersh, A. S.; Putnam, T. W.; Lasagna, P. L.; Burcham, F. W., Jr.

    1976-01-01

    A semi-empirical maximum overall sound pressure level (OASPL) airframe noise model was derived. The noise radiated from aircraft wings and flaps was modeled by using the trailing-edge diffracted quadrupole sound theory derived by Ffowcs Williams and Hall. The noise radiated from the landing gear was modeled by using the acoustic dipole sound theory derived by Curle. The model was successfully correlated with maximum OASPL flyover noise measurements obtained at the NASA Dryden Flight Research Center for three jet aircraft - the Lockheed JetStar, the Convair 990, and the Boeing 747 aircraft.

  5. Prediction of airframe noise

    NASA Technical Reports Server (NTRS)

    Hardin, J. C.; Fratello, D. J.; Hayden, R. E.; Kadman, Y.; Africk, S.

    1975-01-01

    Methods of predicting airframe noise generated by aircraft in flight under nonpowered conditions are discussed. Approaches to predictions relying on flyover data and component theoretical analyses are developed. A nondimensional airframe noise spectrum of various aircraft is presented. The spectrum was obtained by smoothing all the measured spectra to remove any peculiarities due to airframe protrusions, normalizing each spectra by its overall sound pressure level and a characteristics frequency, and averaging the spectra together. A chart of airframe noise sources is included.

  6. Aeroacoustics of Flight Vehicles: Theory and Practice. Volume 2: Noise Control

    NASA Technical Reports Server (NTRS)

    Hubbard, Harvey H. (Editor)

    1991-01-01

    Flight vehicles and the underlying concepts of noise generation, noise propagation, noise prediction, and noise control are studied. This volume includes those chapters that relate to flight vehicle noise control and operations: human response to aircraft noise; atmospheric propagation; theoretical models for duct acoustic propagation and radiation; design and performance of duct acoustic treatment; jet noise suppression; interior noise; flyover noise measurement and prediction; and quiet aircraft design and operational characteristics.

  7. Effects of background noise on total noise annoyance

    NASA Technical Reports Server (NTRS)

    Willshire, K. F.

    1987-01-01

    Two experiments were conducted to assess the effects of combined community noise sources on annoyance. The first experiment baseline relationships between annoyance and noise level for three community noise sources (jet aircraft flyovers, traffic and air conditioners) presented individually. Forty eight subjects evaluated the annoyance of each noise source presented at four different noise levels. Results indicated the slope of the linear relationship between annoyance and noise level for the traffic noise was significantly different from that of aircraft and of air conditioner noise, which had equal slopes. The second experiment investigated annoyance response to combined noise sources, with aircraft noise defined as the major noise source and traffic and air conditioner noise as background noise sources. Effects on annoyance of noise level differences between aircraft and background noise for three total noise levels and for both background noise sources were determined. A total of 216 subjects were required to make either total or source specific annoyance judgements, or a combination of the two, for a wide range of combined noise conditions.

  8. Annoyance resulting from intrusion of aircraft sounds upon various activities

    NASA Technical Reports Server (NTRS)

    Gunn, W. J.; Shepherd, W. T.; Fletcher, J. L.

    1975-01-01

    An experiment was conducted in which subjects were engaged in TV viewing, telephone listening, or reverie (no activity) for a 1/2-hour session. During the session, they were exposed to a series of recorded aircraft sounds at the rate of one flight every 2 minutes. Within each session, four levels of flyover noise, separated by dB increments, were presented several times in a Latin Square balanced sequence. The peak level of the noisiest flyover in any session was fixed at 95, 90, 85, 75, or 70 dBA. At the end of the test session, subjects recorded their responses to the aircraft sounds, using a bipolar scale which covered the range from very pleasant to extremely annoying. Responses to aircraft noises were found to be significantly affected by the particular activity in which the subjects were engaged. Not all subjects found the aircraft sounds to be annoying.

  9. Jet noise and performance comparison study of a Mach 2.55 supersonic cruise aircraft

    NASA Technical Reports Server (NTRS)

    Mascitti, V. R.; Maglieri, D. J.

    1979-01-01

    Data provided by the manufacturer relating to noise and performance of a Mach 2.55 supersonic cruise concept employing a post 1985 technology level, variable cycle engine was used to identify differences in noise levels and performance between the manfacturer and NASA associated with methodology and groundrules. In addition, economic and noise information is provided consistent with a previous study based on an advanced technology Mach 2.7 configuration. The results indicate that the difference between the NASA's and manfacturer's performance methodology is small. Resizing the aircraft to NASA groundrules also results in small changes in flyover, sideline and approach noise levels. For the power setting chosen, engine oversizing resulted in no reduction in traded noise. In terms of summated noise level, a 10 EPNdB reduction is realized for an 8 percent increase in total operating costs. This corresponds to an average noise reduction of 3.3 EPNdB at the three observer positions.

  10. Flight velocity effects on jet noise of several variations of a 48-tube suppressor installed on a plug nozzle

    NASA Technical Reports Server (NTRS)

    Burley, R. R.; Head, V. L.

    1974-01-01

    Because of the relatively high takeoff speeds of supersonic transport aircraft, it is important to know if the flight velocity affects the noise level of suppressor nozzles. To investigate this, a modified F-106B aircraft was used to conduct a series of flyover and static tests on a 48-tube suppressor installed on an uncooled plug nozzle. Comparison of flyover and static spectra indicated that flight velocity had little effect on the noise suppression of the 48-tube suppressor configuration. However, flight velocity adversely affected noise suppression of the 48-tube suppressor with an acoustic shroud and plug installed.

  11. Ground noise measurements during static and flyby operations of the Cessna 02-T turbine powered airplane

    NASA Technical Reports Server (NTRS)

    Hilton, D. A.; Henderson, H. R.; Lawton, B. W.

    1975-01-01

    The field noise measurements on the Cessna 02-T turbine powered propeller aircraft are presented. The objective of the study was to obtain the basic noise characteristics of the aircraft during static ground runs and flyover tests, to identify the sources of the noise, and to correlate the noises with the aircraft operating conditions. The results are presented in the form of a overall noise levels, radiation patterns, and frequency spectra. The noise characteristics of the turbine powered aircraft are compared with those of the reciprocating engine powered aircraft.

  12. Auralization of Tonal Rotor Noise Components of a Quadcopter Flyover

    NASA Technical Reports Server (NTRS)

    Christian, Andrew W.; Boyd, David D.; Zawodny, Nikolas S.; Rizzi, Stephen A.

    2015-01-01

    The capabilities offered by small unmanned vertical lift aerial vehicles, for example, quadcopters, continue to captivate entrepreneurs across the private, public, and civil sectors. As this industry rapidly expands, the public will be exposed to these devices (and to the noise these devices generate) with increasing frequency and proximity. Accordingly, an assessment of the human response to these machines will be needed shortly by decision makers in many facets of this burgeoning industry, from hardware manufacturers all the way to government regulators. One factor of this response is that of the annoyance to the noise that is generated by these devices. This paper presents work currently being pursued by NASA toward this goal. First, physics-based (CFD) predictions are performed on a single isolated rotor typical of these devices. The result of these predictions are time records of the discrete tonal components of the rotor noise. These time records are calculated for a number of points that appear on a lattice of locations spread over the lower hemisphere of the rotor. The source noise is then generated by interpolating between these time records. The sound from four rotors are combined and simulated-propagation techniques are used to produce complete flyover auralizations.

  13. Short-term annoyance from nocturnal aircraft noise exposure: results of the NORAH and STRAIN sleep studies.

    PubMed

    Quehl, Julia; Müller, Uwe; Mendolia, Franco

    2017-11-01

    The German Aerospace Center (DLR) investigated in the NORAH sleep study the association between a distinct change in nocturnal aircraft noise exposure due to the introduction of a night curfew (11:00 p.m.-5:00 a.m.) at Frankfurt Airport and short-term annoyance reactions of residents in the surrounding community. Exposure-response curves were calculated by random effects logistic regression to evaluate the aircraft noise-related parameters (1) number of overflights and (2) energy equivalent noise level L ASeq for the prediction of short-term annoyance. Data of the NORAH sleep study were compared with the STRAIN sleep study which was conducted by DLR near Cologne-Bonn Airport in 2001/2002 (N = 64), representing a steady-state/low-rate change. The NORAH sleep study was based on questionnaire surveys with 187 residents living in the vicinity of Frankfurt Airport. Noise-induced short-term annoyance and related non-acoustical variables were assessed. Nocturnal aircraft noise exposure was measured inside the residents' home. A statistically significant rise in the portion of annoyed residents with increasing number of overflights was found. Similarly, the portion of annoyed subjects increased with rising L ASeq . Importance of the frequency of fly-overs for the prediction of annoyance reactions was emphasized. The annoyance probability was significantly higher in the NORAH than in the STRAIN sleep study. Results confirm the importance of both acoustical parameters for the prediction of short-term annoyance due to nocturnal aircraft noise. Quantitative annoyance models that were derived at steady-state/low-rate change airports cannot be directly applied to airports that underwent a distinct change in operational and noise exposure patterns.

  14. Prediction of flyover jet noise spectra from static tests

    NASA Astrophysics Data System (ADS)

    Michel, U.; Michalke, A.

    A scaling law for predicting the overall flyover noise of a single stream shock-free circular jet from static experiments is outlined. It is valid for isothermal and hot jets. It assumes that the jet flow and turbulence field are axially stretched in flight. Effects of the boundary layer within the nozzle and along the engine nacelle are neglected. The scaling laws for the power spectral density and spectra with constant relative bandwidth can be derived. In order to compare static and inflight directivities, the far field point relative to the source position must be denoted by the emission angle and the wave normal distance. From the solution of the convective Lighthill equation in a coordinate system fixed to the jet nozzle (wind tunnel case), the power spectral density of sound pressure at a given frequency is found. Predictions for Aerotrain compare well with measured values.

  15. Noise suppression due to annulus shaping of an inverted-velocity-profile coaxial nozzle. [supersonic cruise aircraft

    NASA Technical Reports Server (NTRS)

    Goodykoontz, J.; Vonglahn, U.

    1980-01-01

    An inverted velocity profile coaxial nozzle for use with supersonic cruise aircraft produces less jet noise than an equivalent conical nozzle. Furthermore, decreasing the annulus height (increasing radius ratio with constant flow) results in further noise reduction benefits. The annulus shape (height) was varied by an eccentric mounting of the annular nozzle with respect to a conical core nozzle. Acoustic measurements were made in the flyover plane below the narrowest portion of the annulus and at 90 deg and 180 deg from this point. The model-scale spectra are scaled up to engine size (1.07 m diameter) and the perceived noise levels for the eccentric and baseline concentric inverted velocity profile coaxial nozzles are compared over a range of operating conditions. The implications of the acoustic benefits derived with the eccentric nozzle to practical applications are discussed.

  16. Shielding of Turbomachinery Broadband Noise from a Hybrid Wing Body Aircraft Configuration

    NASA Technical Reports Server (NTRS)

    Hutcheson, Florence V.; Brooks, Thomas F.; Burley, Casey L.; Bahr, Christopher J.; Stead, Daniel J.; Pope, D. Stuart

    2014-01-01

    The results of an experimental study on the effects of engine placement and vertical tail configuration on shielding of exhaust broadband noise radiation are presented. This study is part of the high fidelity aeroacoustic test of a 5.8% scale Hybrid Wing Body (HWB) aircraft configuration performed in the 14- by 22-Foot Subsonic Tunnel at NASA Langley Research Center. Broadband Engine Noise Simulators (BENS) were used to determine insertion loss due to shielding by the HWB airframe of the broadband component of turbomachinery noise for different airframe configurations and flight conditions. Acoustics data were obtained from flyover and sideline microphones traversed to predefined streamwise stations. Noise measurements performed for different engine locations clearly show the noise benefit associated with positioning the engine nacelles further upstream on the HWB centerbody. Positioning the engine exhaust 2.5 nozzle diameters upstream (compared to 0.5 nozzle diameters downstream) of the HWB trailing edge was found of particular benefit in this study. Analysis of the shielding performance obtained with and without tunnel flow show that the effectiveness of the fuselage shielding of the exhaust noise, although still significant, is greatly reduced by the presence of the free stream flow compared to static conditions. This loss of shielding is due to the turbulence in the model near-wake/boundary layer flow. A comparison of shielding obtained with alternate vertical tail configurations shows limited differences in level; nevertheless, overall trends regarding the effect of cant angle and vertical location are revealed. Finally, it is shown that the vertical tails provide a clear shielding benefit towards the sideline while causing a slight increase in noise below the aircraft.

  17. Measured Noise from Small Unmanned Aerial Vehicles

    NASA Technical Reports Server (NTRS)

    Cabell, Randolph; McSwain, Robert; Grosveld, Ferdinand

    2016-01-01

    Proposed uses of small unmanned aerial vehicles (UAVs), including home package delivery, have the potential to expose large portions of communities to a new noise source. This paper discusses results of flyover noise measurements of four small UAVs, including an internal combustion-powered model airplane and three battery-powered multicopters. Basic noise characteristics of these vehicles are discussed, including spectral properties and sound level metrics such as sound pressure level, effective perceived noise level, and sound exposure level. The size and aerodynamic characteristics of the multicopters in particular make their flight path susceptible to atmospheric disturbances such as wind gusts. These gusts, coupled with a flight control system that varies rotor speed to maintain vehicle stability, create an unsteady acoustic signature. The spectral variations resulting from this unsteadiness are explored, in both hover and flyover conditions for the multicopters. The time varying noise, which differs from the relatively steady noise generated by large transport aircraft, may complicate the prediction of human annoyance using conventional sound level metrics.

  18. Noise and Speech Interference: Proceedings of Minisymposium

    NASA Technical Reports Server (NTRS)

    Shepherd, W. T. (Editor)

    1975-01-01

    Several papers are presented which deal with the psychophysical effects of interference with speech and listening activities by different forms of noise masking and filtering. Special attention was given to the annoyance such interruptions cause, particularly that due to aircraft flyover noises. Activities such as telephone listening and television watching were studied. A number of experimental investigations are described and the results are analyzed.

  19. The influence of acoustical and non-acoustical factors on short-term annoyance due to aircraft noise in the field - The COSMA study.

    PubMed

    Bartels, Susanne; Márki, Ferenc; Müller, Uwe

    2015-12-15

    Air traffic has increased for the past decades and is forecasted to continue to grow. Noise due to current airport operations can impair the physical and psychological well-being of airport residents. The field study investigated aircraft noise-induced short-term (i.e., within hourly intervals) annoyance in local residents near a busy airport. We aimed at examining the contribution of acoustical and non-acoustical factors to the annoyance rating. Across four days from getting up till going to bed, 55 residents near Cologne/Bonn Airport (M=46years, SD=14years, 34 female) rated their annoyance due to aircraft noise at hourly intervals. For each participant and each hour, 26 noise metrics from outdoor measurements and further 6 individualized metrics that took into account the sound attenuation due to each person's whereabouts in and around their homes were obtained. Non-acoustical variables were differentiated into situational factors (time of day, performed activity during past hour, day of the week) and personal factors (e.g., sensitivity to noise, attitudes, domestic noise insulation). Generalized Estimation Equations were applied for the development of a prediction model for annoyance. Acoustical factors explained only a small proportion (13.7%) of the variance in the annoyance ratings. The number of fly-overs predicted annoyance better than did equivalent and maximum sound pressure levels. The proportion of explained variance in annoyance rose considerably (to 27.6%) when individualized noise metrics as well as situational and personal variables were included in the prediction model. Consideration of noise metrics related to the number of fly-overs and individual adjustment of noise metrics can improve the prediction of short-term annoyance compared to models using equivalent outdoor levels only. Non-acoustical factors have remarkable impact not only on long-term annoyance as shown before but also on short-term annoyance judged in the home environment. Copyright

  20. Judgments of aircraft noise in a traffic noise background

    NASA Technical Reports Server (NTRS)

    Powell, C. A.; Rice, C. G.

    1975-01-01

    An investigation was conducted to determine subjective response to aircraft noise in different road traffic backgrounds. In addition, two laboratory techniques for presenting the aircraft noise with the background noise were evaluated. For one technique, the background noise was continuous over an entire test session; for the other, the background noise level was changed with each aircraft noise during a session. Subjective response to aircraft noise was found to decrease with increasing background noise level, for a range of typical indoor noise levels. Subjective response was found to be highly correlated with the Noise Pollution Level (NPL) measurement scale.

  1. Combat aircraft noise

    NASA Astrophysics Data System (ADS)

    Sgarbozza, M.; Depitre, A.

    1992-04-01

    A discussion of the characteristics and the noise levels of combat aircraft and of a transport aircraft in taking off and landing are presented. Some methods of noise reduction are discussed, including the following: operational anti-noise procedures; and concepts of future engines (silent post-combustion and variable cycle). Some measurement results concerning the noise generated in flight at great speeds and low altitude will also be examined. Finally, the protection of the environment of French air bases against noise will be described and the possibilities of regulation examined.

  2. DC-9 flight demonstration program with refanned JT8D engines. Volume 4: Flyover noise

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Flyover noise tests were conducted to determine the noise reductions achievable by modifying the engines and nacelles of DC-9-30 airplanes. The two stage fan of the JT8D-9 engine was replaced with a larger diameter, single stage fan and sound absorbing materials were incorporated in the engines and nacelles. The noise levels were determined to be 95.3 EPNdB at the sideline, 96.2 EPNdB for a full thrust takeoff, 87.5 EPNdB for takeoff with thrust cutback, and 97.4 EPNdB for landing approach. The noise reductions relative to the hardwall JT8D-9 were 8.2 EPNdB for takeoff with cutback and 8.7 EPNdB for landing. The 90 EPNdB noise contour areas were reduced by 40% for missions requiring maximum design takeoff and landing weights. For typical mission weights, the reductions were 19% for full thrust takeoff and 34% for takeoff with cutback. The 95 EPNdB contour areas were reduced by 50% for takeoff and 30% for takeoff with cutback for both missions.

  3. 14 CFR Appendix H to Part 36 - Noise Requirements For Helicopters Under Subpart H

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...) Gross dimensions of aircraft and location of engines. (iii) Aircraft gross weight for each test run. (iv... arithmetic average of the corrected noise measurements for all valid test runs at the takeoff, level flyovers... limit for all valid test runs under section H36.111(d) of this appendix applies separately to the EPNdB...

  4. 14 CFR Appendix H to Part 36 - Noise Requirements For Helicopters Under Subpart H

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...) Gross dimensions of aircraft and location of engines. (iii) Aircraft gross weight for each test run. (iv... arithmetic average of the corrected noise measurements for all valid test runs at the takeoff, level flyovers... limit for all valid test runs under section H36.111(d) of this appendix applies separately to the EPNdB...

  5. 14 CFR Appendix H to Part 36 - Noise Requirements For Helicopters Under Subpart H

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...) Gross dimensions of aircraft and location of engines. (iii) Aircraft gross weight for each test run. (iv... arithmetic average of the corrected noise measurements for all valid test runs at the takeoff, level flyovers... limit for all valid test runs under section H36.111(d) of this appendix applies separately to the EPNdB...

  6. 14 CFR Appendix H to Part 36 - Noise Requirements For Helicopters Under Subpart H

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...) Gross dimensions of aircraft and location of engines. (iii) Aircraft gross weight for each test run. (iv... arithmetic average of the corrected noise measurements for all valid test runs at the takeoff, level flyovers... limit for all valid test runs under section H36.111(d) of this appendix applies separately to the EPNdB...

  7. Technologies for Aircraft Noise Reduction

    NASA Technical Reports Server (NTRS)

    Huff, Dennis L.

    2006-01-01

    Technologies for aircraft noise reduction have been developed by NASA over the past 15 years through the Advanced Subsonic Technology (AST) Noise Reduction Program and the Quiet Aircraft Technology (QAT) project. This presentation summarizes highlights from these programs and anticipated noise reduction benefits for communities surrounding airports. Historical progress in noise reduction and technologies available for future aircraft/engine development are identified. Technologies address aircraft/engine components including fans, exhaust nozzles, landing gear, and flap systems. New "chevron" nozzles have been developed and implemented on several aircraft in production today that provide significant jet noise reduction. New engines using Ultra-High Bypass (UHB) ratios are projected to provide about 10 EPNdB (Effective Perceived Noise Level in decibels) engine noise reduction relative to the average fleet that was flying in 1997. Audio files are embedded in the presentation that estimate the sound levels for a 35,000 pound thrust engine for takeoff and approach power conditions. The predictions are based on actual model scale data that was obtained by NASA. Finally, conceptual pictures are shown that look toward future aircraft/propulsion systems that might be used to obtain further noise reduction.

  8. Baseline measurement of the noise generated by a short-to-medium range jet transport flying standard ILS approaches and level flyovers

    NASA Technical Reports Server (NTRS)

    Hastings, E. C., Jr.; Shanks, R. E.; Mueller, A. W.

    1975-01-01

    The results of baseline noise flight tests are presented. Data are given for a point 1.85 kilometers (1.0 nautical mile) from the runway threshold, and experimental results of level flyover noise at altitudes of 122 meters (400 feet) and 610 meters (2,000 feet) are also shown for several different power levels. The experimental data are compared with data from other sources and reasonable agreement is noted. A description of the test technique, instrumentation, and data analysis methods is included.

  9. Noise characteristics of the O-1 airplane and some approaches to noise reduction

    NASA Technical Reports Server (NTRS)

    Connor, A. B.; Hilton, D. A.; Copeland, W. L.; Clark, L. R.

    1975-01-01

    A brief study of the O-1A airplane to determine possible means for reducing the aircraft aural detection distance was conducted. This effort involved measuring the noise signature of the basic airplane, devising methods to attenuate the noise, and then estimating the effect of several selected modifications on the aural detection distance of the aircraft. A relatively simple modification utilizing a 6.5 ft diameter, six-blade propeller and including a muffler having a volume of 0.725 cu ft is indicated to reduce the aural detection distance of the O-1 aircraft from about 6 miles at an altitude of 1,000 ft and 2 to 3 miles at an altitude of 300 ft to approximately half these values. The flyover noise data suggest that routing the exhaust stacks up and over the wing would provide immediate noise reduction of about 5 dB with an attendant reduction in detection distance. Furthermore, all these studies confirm the work of other investigators that the 1/3 octave band (center frequency=125 cps) is the most critical in reducing aural detection distance.

  10. A new field-laboratory methodology for assessing human response to noise

    NASA Technical Reports Server (NTRS)

    Borsky, P. N.

    1973-01-01

    Gross measures of community annoyance with intrusive noises have been made in a number of real environment surveys which indicate that aircraft noise may have to be reduced 30-40 EPNdb before it will generally be considered acceptable. Interview studies, however, cannot provide the precise information which is needed by noise abatement engineers of the variable human response to different types and degrees of noise exposure. A new methodological field-survey approach has been developed to provide such information. The integrated attitudes and experiences of a random sample of subjects in the real environment are obtained by a prior field survey. Then these subjects record their more precise responses to controlled noise exposures in a new realistic laboratory. The laboratory is a sound chamber furnished as a typical living room (18 ft x 14 ft) and subjects watch a color TV program while they judge simulated aircraft flyovers that occur at controlled levels and intervals. Methodological experiments indicate that subjects in the laboratory have the sensation that the airplanes are actually moving overhead across the ceiling of the chamber. It was also determined that annoyance judgments in the laboratory stabilize after three flyovers are heard prior to a judgment of annoyance.

  11. NASA progress in aircraft noise prediction

    NASA Technical Reports Server (NTRS)

    Raney, J. P.; Padula, S. L.; Zorumski, W. E.

    1981-01-01

    Langley Research Center efforts to develop a methodology for predicting the effective perceived noise level (EPNL) produced by jet-powered CTOL aircraft to an accuracy of + or - 1.5 dB are summarized with emphasis on the aircraft noise prediction program (ANOPP) which contains a complete set of prediction methods for CTOL aircraft including propulsion system noise sources, aerodynamic or airframe noise sources, forward speed effects, a layered atmospheric model with molecular absorption, ground impedance effects including excess ground attenuation, and a received noise contouring capability. The present state of ANOPP is described and its accuracy and applicability to the preliminary aircraft design process is assessed. Areas are indicated where further theoretical and experimental research on noise prediction are needed. Topics covered include the elements of the noise prediction problem which are incorporated in ANOPP, results of comparisons of ANOPP calculations with measured noise levels, and progress toward treating noise as a design constraint in aircraft system studies.

  12. Effects of road traffic background noise on judgments of individual airplane noises. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Powell, C. A.

    1979-01-01

    Two laboratory experiments were conducted to investigate the effects of road-traffic background noise on judgments of individual airplane flyover noises. In the first experiment, 27 subjects judged a set of 16 airplane flyover noises in the presence of traffic-noise sessions of 30-min duration consisting of the combinations of 3 traffic-noise types and 3 noise levels. In the second experiment, 24 subjects judged the same airplane flyover noises in the presence of traffic-noise sessions of 10-min duration consisting of the combinations of 2 traffic-noise types and 4 noise levels. In both experiments the airplane noises were judged less annoying in the presence of high traffic-noise levels than in the presence of low traffic-noise levels.

  13. Aircraft noise prediction

    NASA Astrophysics Data System (ADS)

    Filippone, Antonio

    2014-07-01

    This contribution addresses the state-of-the-art in the field of aircraft noise prediction, simulation and minimisation. The point of view taken in this context is that of comprehensive models that couple the various aircraft systems with the acoustic sources, the propagation and the flight trajectories. After an exhaustive review of the present predictive technologies in the relevant fields (airframe, propulsion, propagation, aircraft operations, trajectory optimisation), the paper addresses items for further research and development. Examples are shown for several airplanes, including the Airbus A319-100 (CFM engines), the Bombardier Dash8-Q400 (PW150 engines, Dowty R408 propellers) and the Boeing B737-800 (CFM engines). Predictions are done with the flight mechanics code FLIGHT. The transfer function between flight mechanics and the noise prediction is discussed in some details, along with the numerical procedures for validation and verification. Some code-to-code comparisons are shown. It is contended that the field of aircraft noise prediction has not yet reached a sufficient level of maturity. In particular, some parametric effects cannot be investigated, issues of accuracy are not currently addressed, and validation standards are still lacking.

  14. Health consequences of aircraft noise.

    PubMed

    Kaltenbach, Martin; Maschke, Christian; Klinke, Rainer

    2008-08-01

    The ever-increasing level of air traffic means that any medical evaluation of its effects must be based on recent data. Selective literature review of epidemiological studies from 2000 to 2007 regarding the illnesses, annoyance, and learning disorders resulting from aircraft noise. In residential areas, outdoor aircraft noise-induced equivalent noise levels of 60 dB(A) in the daytime and 45 dB(A) at night are associated with an increased incidence of hypertension. There is a dose-response relationship between aircraft noise and the occurrence of arterial hypertension. The prescription frequency of blood pressure-lowering medications is associated dose-dependently with aircraft noise from a level of about 45 dB(A). Around 25% of the population are greatly annoyed by exposure to noise of 55 dB(A) during the daytime. Exposure to 50 dB(A) in the daytime (outside) is associated with relevant learning difficulties in schoolchildren. Based on recent epidemiological studies, outdoor noise limits of 60 dB(A) in the daytime and 50 dB(A) at night can be recommended on grounds of health protection. Hence, maximum values of 55 dB(A) for the day and 45 dB(A) for the night should be aimed for in order to protect the more sensitive segments of the population such as children, the elderly, and the chronically ill. These values are 5 to 10 dB(A) lower than those specified by the German federal law on aircraft noise and in the report "synopsis" commissioned by the company that runs Frankfurt airport (Fraport).

  15. An Assessment of Commuter Aircraft Noise Impact

    NASA Technical Reports Server (NTRS)

    Fidell, Sanford; Pearsons, Karl S.; Silvati, Laura; Sneddon, Matthew

    1996-01-01

    This report examines several approaches to understanding 'the commuter aircraft noise problem.' The commuter aircraft noise problem in the sense addressed in this report is the belief that some aspect(s) of community response to noise produced by commuter aircraft operations may not be fully assessed by conventional environmental noise metrics and methods. The report offers alternate perspectives and approaches for understanding this issue. The report also develops a set of diagnostic screening questions; describes commuter aircraft noise situations at several airports; and makes recommendations for increasing understanding of the practical consequences of greater heterogeneity in the air transport fleet serving larger airports.

  16. Further studies of methods for reducing community noise around airports. [aircraft noise - aircraft engines

    NASA Technical Reports Server (NTRS)

    Petersen, R. H.; Barry, D. J.; Kline, D. M.

    1975-01-01

    A simplified method of analysis was used in which all flights at a 'simulated' airport were assumed to operate from one runway in a single direction. For this simulated airport, contours of noise exposure forecast were obtained and evaluated. A flight schedule of the simulated airport which is representative of the 23 major U. S. airports was used. The effect of banning night-time operations by four-engine, narrow-body aircraft in combination with other noise reduction options was studied. The reductions in noise which would occur of two- and three-engine, narrow-body aircraft equipped with a refanned engine was examined. A detailed comparison of the effects of engine cutback on takeoff versus the effects of retrofitting quiet nacelles for narrow-body aircraft was also examined. A method of presenting the effects of various noise reduction options was treated.

  17. Measurement of Model Noise in a Hard-Wall Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Soderman, Paul T.

    2006-01-01

    Identification, analysis, and control of fluid-mechanically-generated sound from models of aircraft and automobiles in special low-noise, semi-anechoic wind tunnels are an important research endeavor. Such studies can also be done in aerodynamic wind tunnels that have hard walls if phased microphone arrays are used to focus on the noise-source regions and reject unwanted reflections or background noise. Although it may be difficult to simulate the total flyover or drive-by noise in a closed wind tunnel, individual noise sources can be isolated and analyzed. An acoustic and aerodynamic study was made of a 7-percent-scale aircraft model in a NASA Ames 7-by-10-ft (about 2-by-3-m) wind tunnel for the purpose of identifying and attenuating airframe noise sources. Simulated landing, takeoff, and approach configurations were evaluated at Mach 0.26. Using a phased microphone array mounted in the ceiling over the inverted model, various noise sources in the high-lift system, landing gear, fins, and miscellaneous other components were located and compared for sound level and frequency at one flyover location. Numerous noise-alleviation devices and modifications of the model were evaluated. Simultaneously with acoustic measurements, aerodynamic forces were recorded to document aircraft conditions and any performance changes caused by geometric modifications. Most modern microphone-array systems function in the frequency domain in the sense that spectra of the microphone outputs are computed, then operations are performed on the matrices of microphone-signal cross-spectra. The entire acoustic field at one station in such a system is acquired quickly and interrogated during postprocessing. Beam-forming algorithms are employed to scan a plane near the model surface and locate noise sources while rejecting most background noise and spurious reflections. In the case of the system used in this study, previous studies in the wind tunnel have identified noise sources up to 19 d

  18. Aircraft Noise and Quality of Life around Frankfurt Airport

    PubMed Central

    Schreckenberg, Dirk; Meis, Markus; Kahl, Cara; Peschel, Christin; Eikmann, Thomas

    2010-01-01

    In a survey of 2,312 residents living near Frankfurt Airport aircraft noise annoyance and disturbances as well as environmental (EQoL) and health-related quality of life (HQoL) were assessed and compared with data on exposure due to aircraft, road traffic, and railway noise. Results indicate higher noise annoyance than predicted from general exposure-response curves. Beside aircraft sound levels source-related attitudes were associated with reactions to aircraft noise. Furthermore, aircraft noise affected EQoL in general, although to a much smaller extent. HQoL was associated with aircraft noise annoyance, noise sensitivity and partly with aircraft noise exposure, in particular in the subgroup of multimorbid residents. The results suggest a recursive relationship between noise and health, yet this cannot be tested in cross-sectional studies. Longitudinal studies would be recommendable to get more insight in the causal paths underlying the noise-health relationship. PMID:20948931

  19. Comparison of predicted engine core noise with current and proposed aircraft noise certification requirements

    NASA Technical Reports Server (NTRS)

    Vonglahn, U. H.; Groesbeck, D. E.

    1981-01-01

    Predicted engine core noise levels are compared with measured total aircraft noise levels and with current and proposed federal noise certification requirements. Comparisons are made at the FAR-36 measuring stations and include consideration of both full- and cutback-power operation at takeoff. In general, core noise provides a barrier to achieving proposed EPA stage 5 noise levels for all types of aircraft. More specifically, core noise levels will limit further reductions in aircraft noise levels for current widebody commercial aircraft.

  20. Aircraft turbofan noise

    NASA Astrophysics Data System (ADS)

    Groeneweg, J. F.; Rice, E. J.

    1987-01-01

    Turbofan noise generation and suppression in aircraft engines are reviewed. The chain of physical processes which connect unsteady flow interactions with fan blades to far field noise is addressed. Mechanism identification and description, duct propagation, radiation, and acoustic suppression are discussed. The experimental techniques of fan inflow static tests are discussed. Rotor blade surface pressure and wake velocity measurements aid in the determination of the types and strengths of the generation mechanisms. Approaches to predicting or measuring acoustic mode content, optimizing treatment impedance to maximize attenuation, translating impedance into porous wall structure, and interpreting far field directivity patterns are illustrated by comparisons of analytical and experimental results. The interdependence of source and acoustic treatment design to minimize far field noise is emphasized. Areas requiring further research are discussed, and the relevance of aircraft turbofan results to quieting other turbomachinery installation is addressed.

  1. Aircraft turbofan noise

    NASA Astrophysics Data System (ADS)

    Groeneweg, J. F.; Rice, E. J.

    1983-03-01

    Turbofan noise generation and suppression in aircraft engines are reviewed. The chain of physical processes which connect unsteady flow interactions with fan blades to far field noise is addressed. Mechanism identification and description, duct propagation, radiation and acoustic suppression are discussed. The experimental technique of fan inflow static tests are discussed. Rotor blade surface pressure and wake velocity measurements aid in the determination of the types and strengths of the generation mechanisms. Approaches to predicting or measuring acoustic mode content, optimizing treatment impedance to maximize attenuation, translating impedance into porous wall structure and interpreting far field directivity patterns are illustrated by comparisons of analytical and experimental results. The interdependence of source and acoustic treatment design to minimize far field noise is emphasized. Area requiring further research are discussed and the relevance of aircraft turbofan results to quieting other turbomachinery installations is addressed.

  2. Aircraft turbofan noise

    NASA Technical Reports Server (NTRS)

    Groeneweg, J. F.; Rice, E. J.

    1983-01-01

    Turbofan noise generation and suppression in aircraft engines are reviewed. The chain of physical processes which connect unsteady flow interactions with fan blades to far field noise is addressed. Mechanism identification and description, duct propagation, radiation and acoustic suppression are discussed. The experimental technique of fan inflow static tests are discussed. Rotor blade surface pressure and wake velocity measurements aid in the determination of the types and strengths of the generation mechanisms. Approaches to predicting or measuring acoustic mode content, optimizing treatment impedance to maximize attenuation, translating impedance into porous wall structure and interpreting far field directivity patterns are illustrated by comparisons of analytical and experimental results. The interdependence of source and acoustic treatment design to minimize far field noise is emphasized. Area requiring further research are discussed and the relevance of aircraft turbofan results to quieting other turbomachinery installations is addressed.

  3. Effects of aircraft cabin noise on passenger comfort.

    PubMed

    Pennig, Sibylle; Quehl, Julia; Rolny, Vinzent

    2012-01-01

    The effects of cabin noise on subjective comfort assessments were systematically investigated in order to reveal optimisation potentials for an improved passenger noise acceptance. Two aircraft simulation studies were conducted. An acoustic laboratory test facility provided with loudspeaker systems for realistic sound presentations and an aircraft cabin simulator (Dornier Do 728) with a high degree of ecological validity were used. Subjects were exposed to nine different noise patterns (three noise levels ranging from 66 to 78 dB(A) combined with three different frequency spectra). Regression analysis demonstrated a significant increase of passengers' acceptance with lower noise levels and significant effects of different frequency spectra determined by seat position in the aircraft cabin (front, middle, rear). Acoustic cabin design should therefore consider measures beyond noise level reduction altering noise characteristics to improve passengers' comfort and well-being in the aircraft cabin. To improve passenger comfort in the aircraft with respect to cabin noise, passengers' reactions to specific noise conditions were systematically investigated. Two laboratory studies showed significant dose-response relationships between sound pressure level and subjective comfort ratings which differed due to the noise at specific seat positions in the aircraft.

  4. Aircraft noise effects: An inter-disciplinary study of the effect of aircraft noise on man. Part 3: Supplementary analyses of the social-scientific portion of the study on aircraft noise conducted by the DFG

    NASA Technical Reports Server (NTRS)

    Schumer, R.

    1980-01-01

    Variables in a study of noise perception near the Munich-Reims airport are explained. The interactive effect of the stimulus (aircraft noise) and moderator (noise sensitivity) on the aircraft noise reaction (disturbance or annoyance) is considered. Methods employed to demonstrate that the moderator has a differencing effect on various stimulus levels are described. Results of the social-scientific portion of the aircraft noise project are compared with those of other survey studies on the problem of aircraft noise. Procedures for contrast group analysis and multiple classification analysis are examined with focus on some difficulties in their application.

  5. Model of aircraft noise adaptation

    NASA Technical Reports Server (NTRS)

    Dempsey, T. K.; Coates, G. D.; Cawthorn, J. M.

    1977-01-01

    Development of an aircraft noise adaptation model, which would account for much of the variability in the responses of subjects participating in human response to noise experiments, was studied. A description of the model development is presented. The principal concept of the model, was the determination of an aircraft adaptation level which represents an annoyance calibration for each individual. Results showed a direct correlation between noise level of the stimuli and annoyance reactions. Attitude-personality variables were found to account for varying annoyance judgements.

  6. Advanced simulation noise model for modern fighter aircraft

    NASA Astrophysics Data System (ADS)

    Ikelheimer, Bruce

    2005-09-01

    NoiseMap currently represents the state of the art for military airfield noise analysis. While this model is sufficient for the current fleet of aircraft, it has limits in its capability to model the new generation of fighter aircraft like the JSF and the F-22. These aircraft's high-powered engines produce noise with significant nonlinear content. Combining this with their ability to vector the thrust means they have noise characteristics that are outside of the basic modeling assumptions of the currently available noise models. Wyle Laboratories, Penn State University, and University of Alabama are in the process of developing a new noise propagation model for the Strategic Environmental Research and Development Program. Source characterization will be through complete spheres (or hemispheres if there is not sufficient data) for each aircraft state (including thrust vector angles). Fixed and rotor wing aircraft will be included. Broadband, narrowband, and pure tone propagation will be included. The model will account for complex terrain and weather effects, as well as the effects of nonlinear propagation. It will be a complete model capable of handling a range of noise sources from small subsonic general aviation aircraft to the latest fighter aircraft like the JSF.

  7. Prediction of ground effects on aircraft noise

    NASA Technical Reports Server (NTRS)

    Pao, S. P.; Wenzel, A. R.; Oncley, P. B.

    1978-01-01

    A unified method is recommended for predicting ground effects on noise. This method may be used in flyover noise predictions and in correcting static test-stand data to free-field conditions. The recommendation is based on a review of recent progress in the theory of ground effects and of the experimental evidence which supports this theory. It is shown that a surface wave must be included sometimes in the prediction method. Prediction equations are collected conveniently in a single section of the paper. Methods of measuring ground impedance and the resulting ground-impedance data are also reviewed because the recommended method is based on a locally reactive impedance boundary model. Current practice of estimating ground effects are reviewed and consideration is given to practical problems in applying the recommended method. These problems include finite frequency-band filters, finite source dimension, wind and temperature gradients, and signal incoherence.

  8. An aircraft noise pollution model for trajectory optimization

    NASA Technical Reports Server (NTRS)

    Barkana, A.; Cook, G.

    1976-01-01

    A mathematical model describing the generation of aircraft noise is developed with the ultimate purpose of reducing noise (noise-optimizing landing trajectories) in terminal areas. While the model is for a specific aircraft (Boeing 737), the methodology would be applicable to a wide variety of aircraft. The model is used to obtain a footprint on the ground inside of which the noise level is at or above 70 dB.

  9. Effects on sleep of noise from two proposed STOL aircraft

    NASA Technical Reports Server (NTRS)

    Lukas, J. S.; Peeler, D. J.; Davis, J. E.

    1975-01-01

    Responses, both overt behavior and those measured by electroencephalograph, to noise by eight male subjects were studied for sixteen consecutive nights. Test stimuli were: (1) The simulated sideline noise of a short takeoff and landing aircraft with blown flaps; (2) the simulated sideline noise of a STOL aircraft of turbofan design; (3) the simulated takeoff noise of the blown flap STOL aircraft; and (4) a four second burst of simulated pink noise. Responses to each noise were tested at three noise intensities selected to represent levels expected indoors from operational aircraft. The results indicate that the blown flap STOL aircraft noise resulted in 8 to 10 percent fewer sleep disturbance responses than did the turbofan STOL aircraft when noises of comparable intensities from similar maneuvers were used.

  10. Noise Scaling and Community Noise Metrics for the Hybrid Wing Body Aircraft

    NASA Technical Reports Server (NTRS)

    Burley, Casey L.; Brooks, Thomas F.; Hutcheson, Florence V.; Doty, Michael J.; Lopes, Leonard V.; Nickol, Craig L.; Vicroy, Dan D.; Pope, D. Stuart

    2014-01-01

    An aircraft system noise assessment was performed for the hybrid wing body aircraft concept, known as the N2A-EXTE. This assessment is a result of an effort by NASA to explore a realistic HWB design that has the potential to substantially reduce noise and fuel burn. Under contract to NASA, Boeing designed the aircraft using practical aircraft design princip0les with incorporation of noise technologies projected to be available in the 2020 timeframe. NASA tested 5.8% scale-mode of the design in the NASA Langley 14- by 22-Foot Subsonic Tunnel to provide source noise directivity and installation effects for aircraft engine and airframe configurations. Analysis permitted direct scaling of the model-scale jet, airframe, and engine shielding effect measurements to full-scale. Use of these in combination with ANOPP predictions enabled computations of the cumulative (CUM) noise margins relative to FAA Stage 4 limits. The CUM margins were computed for a baseline N2A-EXTE configuration and for configurations with added noise reduction strategies. The strategies include reduced approach speed, over-the-rotor line and soft-vane fan technologies, vertical tail placement and orientation, and modified landing gear designs with fairings. Combining the inherent HWB engine shielding by the airframe with added noise technologies, the cumulative noise was assessed at 38.7 dB below FAA Stage 4 certification level, just 3.3 dB short of the NASA N+2 goal of 42 dB. This new result shows that the NASA N+2 goal is approachable and that significant reduction in overall aircraft noise is possible through configurations with noise reduction technologies and operational changes.

  11. An aircraft noise study in Norway

    NASA Technical Reports Server (NTRS)

    Gjestland, Truls T.; Liasjo, Kare H.; Bohn, Hans Einar

    1990-01-01

    An extensive study of aircraft noise is currently being conducted in Oslo, Norway. The traffic at Oslo Airport Fornebu that includes both national and international flights, totals approximately 350 movements per day: 250 of these are regular scheduled flights with intermediate and large size aircraft, the bulk being DC9 and Boeing 737. The total traffic during the summer of 1989 was expected to resemble the maximum level to which the regular traffic will increase before the new airport can be put into operation. The situation therefore represented a possibility to study the noise impact on the communities around Fornebu. A comprehensive social survey was designed, including questions on both aircraft and road traffic noise. A random sample of 1650 respondents in 15 study areas were contacted for an interview. These areas represent different noise levels and different locations relative to the flight paths. The interviews were conducted in a 2 week period just prior to the transfer of charter traffic from Gardemoen to Fornebu. In the same period the aircraft noise was monitored in all 15 areas. In addition the airport is equipped with a permanent flight track and noise monitoring system. The noise situation both in the study period and on an average basis can therefore be accurately described. In August a group of 1800 new respondents were subjected to identical interviews in the same 15 areas, and the noise measurement program was repeated. Results of the study are discussed.

  12. Disturbance caused by aircraft noise

    NASA Technical Reports Server (NTRS)

    Josse, R.

    1980-01-01

    Noise pollution caused by the presence of airfields adjacent to residential areas is studied. Noise effects on the sleep of residents near airports and the degree of the residents noise tolerance are evaluated. What aircraft noises are annoying and to what extent the annoyance varies with sound level are discussed.

  13. Analysis of aerobatic aircraft noise using the FAA's Integrated Noise Model

    DOT National Transportation Integrated Search

    2012-09-30

    This project has three main objectives. The first objective is to model noise from complete aerobatic routines for a range of aircraft. The second is to compare modeled and previously measured aircraft noise from complete aerobatic routines for a ran...

  14. Aircraft noise prediction program theoretical manual, part 1

    NASA Technical Reports Server (NTRS)

    Zorumski, W. E.

    1982-01-01

    Aircraft noise prediction theoretical methods are given. The prediction of data which affect noise generation and propagation is addressed. These data include the aircraft flight dynamics, the source noise parameters, and the propagation effects.

  15. Improved NASA-ANOPP Noise Prediction Computer Code for Advanced Subsonic Propulsion Systems. Volume 2; Fan Suppression Model Development

    NASA Technical Reports Server (NTRS)

    Kontos, Karen B.; Kraft, Robert E.; Gliebe, Philip R.

    1996-01-01

    The Aircraft Noise Predication Program (ANOPP) is an industry-wide tool used to predict turbofan engine flyover noise in system noise optimization studies. Its goal is to provide the best currently available methods for source noise prediction. As part of a program to improve the Heidmann fan noise model, models for fan inlet and fan exhaust noise suppression estimation that are based on simple engine and acoustic geometry inputs have been developed. The models can be used to predict sound power level suppression and sound pressure level suppression at a position specified relative to the engine inlet.

  16. Noise of High-Performance Aircraft at Afterburner

    DTIC Science & Technology

    2015-10-07

    Naval Research Project Title : Noise of High-Performance Aircraft at Afterburner Principal Investigator Dr. Christopher Tam Department...to 08/14/2015 Noise of High-Performance Aircraft at Afterburner Tam, Christopher Sponsored Research Administratiion Florida State University

  17. Aircraft Noise Reduction Subproject Overview

    NASA Technical Reports Server (NTRS)

    Fernandez, Hamilton; Nark, Douglas M.; Van Zante, Dale E.

    2016-01-01

    The material presents highlights of propulsion and airframe noise research being completed for the Advanced Air Transport Technology Project. The basis of noise reduction plans along with representative work for the airframe, propulsion, and propulsion-airframe integration is discussed for the Aircraft Noise reduction Subproject.

  18. En Route Jet Aircraft Noise Analysis

    DOT National Transportation Integrated Search

    2012-12-15

    Most research into commercial noise is primarily focused on reducing the community noise, noise that the local population near an airport experiences as aircraft takeoff and land. While this type of noise may be a main driver for the noise that commu...

  19. Fourth Aircraft Interior Noise Workshop

    NASA Technical Reports Server (NTRS)

    Stephens, David G. (Compiler)

    1992-01-01

    The fourth in a series of NASA/SAE Interior Noise Workshops was held on May 19 and 20, 1992. The theme of the workshop was new technology and applications for aircraft noise with emphasis on source noise prediction; cabin noise prediction; cabin noise control, including active and passive methods; and cabin interior noise procedures. This report is a compilation of the presentations made at the meeting which addressed the above issues.

  20. Noise of High-Performance Aircraft at Afterburner

    DTIC Science & Technology

    2015-03-30

    Quarterly progress report 3. DATES COVERED (From - To) 12-15-2014 to 04-03-2015 4. TITLE AND SUBTITLE Noise of High-Performance Aircraft at Afterburner ...generation of a high- performance aircraft operating at afterburner condition. The new noise components are indirect combustion noise produced by the...spectrum is reported 15. SUBJECT TERMS Jet noise at afterburner 16. SECURITY CLASSIFICATION OF: a. REPORT u b. ABSTRACT u c. THIS PAGE u 17

  1. Engine-over-the-wing noise research

    NASA Technical Reports Server (NTRS)

    Reshotko, M.; Goodykoontz, J. H.; Dorsch, R. G.

    1973-01-01

    Acoustic measurements for large model eingine-over-the-wing (EOW) research configurations having both conventional and powered lift applications were taken for flap positions typical of takeoff and approach and at locations simulating flyover and sideline. The results indicate that the noise is shielded by the wing and redirected above it, making the EOW concept a prime contender for quiet aircraft. The large-scale noise data are in agreement with earlier small-model results. Below the wing, the EOW configuration is about 10 PNdb quieter than the engine-under-the-wing externally-blown-flap for powered lift, and up to 10 db quieter than the nozzle alone at high frequencies for conventional lift applications.

  2. Noise of deflectors used for flow attachment with STOL-OTW configurations

    NASA Technical Reports Server (NTRS)

    Vonglahn, U. H.; Groesbeck, D.

    1977-01-01

    Future STOL aircraft may utilize engine-over-the-wing installations in which the exhaust nozzles are located above and separated from the upper surface of the wing. An external jet flow deflector can be used with such installations to provide flow attachment to the wing/flap surfaces for lift augmentation. Deflector noise in the flyover plane measured with several model-scale nozzle/deflector/wing configurations is examined. The deflector-associated noise is correlated in terms of velocity and geometry parameters. The data also indicate that the effective overall sound pressure level of the deflector-associated noise peaks in the forward quadrant near 40 deg from the inlet axis.

  3. Assessment of noise metrics for application to rotorcraft

    NASA Astrophysics Data System (ADS)

    McMullen, Andrew L.

    It is anticipated that the use of rotorcraft passenger vehicles for shorter journeys will increase because their use can reduce the time between boarding and take-off. The characteristics of rotorcraft noise are very different to that of fixed wing aircraft. There can be strong tonal components, fluctuations that can also make the noise sound impulsive, and future rotorcraft may produce proportionally more low frequency noise content. Most metrics that are used today to predict noise impact on communities around airports (e.g., Ldn) are just functions of A-weighted sound pressure level. To build a better noise annoyance model that can be applied to assess impact of future and current rotorcraft, it is important to understand the perceived sound attributes and how they influence annoyance. A series of psychoacoustic tests were designed and performed to further our understanding of how rotorcraft sound characteristics affect annoyance as well as evaluate the applicability of existing noise metrics as predictors of annoyance due to rotorcraft noise. The effect of the method used to reproduce sounds in the psychoacoustics tests was also investigated, and so tests were conducted in the NASA Langley Exterior Effects Room using loudspeaker arrays to simulate flyovers and in a double walled sound booth using earphones for playback. A semantic differential test was performed, and analysis of subject responses showed the presence of several independent perceptual factors relating to: loudness, sharpness, roughness, tonality, and impulsiveness. A simulation method was developed to alter tonal components in existing rotorcraft flyover recordings to change the impulsiveness and tonality of the sounds. Flyover recordings and simulations with varied attributes were used as stimuli in an annoyance test. Results showed that EPNL and SELA performed well as predictors of annoyance, but outliers to generate trends have tonal related characteristics that could be contributing to

  4. A Remotely Operated Multiple Array Acoustic Range (ROMAAR) and its application for the measurement of airplane flyover noise footprints

    NASA Technical Reports Server (NTRS)

    Hilton, D. A.; Henderson, H. H.

    1976-01-01

    The ROMAAR now in operation at NASA will allow direct measurement and display of aircraft noise in several measurement units during takeoff, landing, and flyby operations. This information, in addition to its application in terms of ground noise footprints, will also permit determination of the statistical variation of footprints or contours due to the atmosphere or aircraft operational parameters, and a measure of the impact of various noise reduction techniques and hardware on ground noise footprints. The methods, techniques, and equipment developed for the ROMAAR concept are applicable to CTOL, STOL, General Aviation, and VTOL aircraft. ROMAAR represents a unique combination of state of the art digital and analog noise recording methods, computer-controlled digital communications methods, radar-tracking facilities, quick-look weather capabilities, and a large data handling facility complemented by a large capacity curve fitting and plotting routine. The ROMAAR is set apart from the standard airport noise monitoring system by having the unique features mentioned above plus the fact that at present as many as 38 separate (but simultaneous) noise measurements can be made for each aircraft overflight.

  5. NASA progress in aircraft noise prediction

    NASA Technical Reports Server (NTRS)

    Raney, J. P.; Padula, S. L.; Zorumski, W. E.

    1981-01-01

    Some of the essential features of aircraft noise prediction are described and the basis for evaluating its capability and future potential is discussed. A takeoff noise optimizing procedure is described which calculates a minimum noise takeoff procedure subject to multiple site noise constraints.

  6. Two-Dimensional Fourier Transform Applied to Helicopter Flyover Noise

    NASA Technical Reports Server (NTRS)

    Santa Maria, Odilyn L.

    1999-01-01

    A method to separate main rotor and tail rotor noise from a helicopter in flight is explored. Being the sum of two periodic signals of disproportionate, or incommensurate frequencies, helicopter noise is neither periodic nor stationary, but possibly harmonizable. The single Fourier transform divides signal energy into frequency bins of equal size. Incommensurate frequencies are therefore not adequately represented by any one chosen data block size. A two-dimensional Fourier analysis method is used to show helicopter noise as harmonizable. The two-dimensional spectral analysis method is first applied to simulated signals. This initial analysis gives an idea of the characteristics of the two-dimensional autocorrelations and spectra. Data from a helicopter flight test is analyzed in two dimensions. The test aircraft are a Boeing MD902 Explorer (no tail rotor) and a Sikorsky S-76 (4-bladed tail rotor). The results show that the main rotor and tail rotor signals can indeed be separated in the two-dimensional Fourier transform spectrum. The separation occurs along the diagonals associated with the frequencies of interest. These diagonals are individual spectra containing only information related to one particular frequency.

  7. Two-Dimensional Fourier Transform Analysis of Helicopter Flyover Noise

    NASA Technical Reports Server (NTRS)

    SantaMaria, Odilyn L.; Farassat, F.; Morris, Philip J.

    1999-01-01

    A method to separate main rotor and tail rotor noise from a helicopter in flight is explored. Being the sum of two periodic signals of disproportionate, or incommensurate frequencies, helicopter noise is neither periodic nor stationary. The single Fourier transform divides signal energy into frequency bins of equal size. Incommensurate frequencies are therefore not adequately represented by any one chosen data block size. A two-dimensional Fourier analysis method is used to separate main rotor and tail rotor noise. The two-dimensional spectral analysis method is first applied to simulated signals. This initial analysis gives an idea of the characteristics of the two-dimensional autocorrelations and spectra. Data from a helicopter flight test is analyzed in two dimensions. The test aircraft are a Boeing MD902 Explorer (no tail rotor) and a Sikorsky S-76 (4-bladed tail rotor). The results show that the main rotor and tail rotor signals can indeed be separated in the two-dimensional Fourier transform spectrum. The separation occurs along the diagonals associated with the frequencies of interest. These diagonals are individual spectra containing only information related to one particular frequency.

  8. Assessment of NASA's Aircraft Noise Prediction Capability

    NASA Technical Reports Server (NTRS)

    Dahl, Milo D. (Editor)

    2012-01-01

    A goal of NASA s Fundamental Aeronautics Program is the improvement of aircraft noise prediction. This document provides an assessment, conducted from 2006 to 2009, on the current state of the art for aircraft noise prediction by carefully analyzing the results from prediction tools and from the experimental databases to determine errors and uncertainties and compare results to validate the predictions. The error analysis is included for both the predictions and the experimental data and helps identify where improvements are required. This study is restricted to prediction methods and databases developed or sponsored by NASA, although in many cases they represent the current state of the art for industry. The present document begins with an introduction giving a general background for and a discussion on the process of this assessment followed by eight chapters covering topics at both the system and the component levels. The topic areas, each with multiple contributors, are aircraft system noise, engine system noise, airframe noise, fan noise, liner physics, duct acoustics, jet noise, and propulsion airframe aeroacoustics.

  9. Advanced Study for Active Noise Control in Aircraft (ASANCA)

    NASA Technical Reports Server (NTRS)

    Borchers, Ingo U.; Emborg, Urban; Sollo, Antonio; Waterman, Elly H.; Paillard, Jacques; Larsen, Peter N.; Venet, Gerard; Goeransson, Peter; Martin, Vincent

    1992-01-01

    Aircraft interior noise and vibration measurements are included in this paper from ground and flight tests. In addition, related initial noise calculations with and without active noise control are conducted. The results obtained to date indicate that active noise control may be an effective means for reducing the critical low frequency aircraft noise.

  10. An improved source model for aircraft interior noise studies

    NASA Technical Reports Server (NTRS)

    Mahan, J. R.; Fuller, C. R.

    1985-01-01

    There is concern that advanced turboprop engines currently being developed may produce excessive aircraft cabin noise levels. This concern has stimulated renewed interest in developing aircraft interior noise reduction methods that do not significantly increase take off weight. An existing analytical model for noise transmission into aircraft cabins was utilized to investigate the behavior of an improved propeller source model for use in aircraft interior noise studies. The new source model, a virtually rotating dipole, is shown to adequately match measured fuselage sound pressure distributions, including the correct phase relationships, for published data. The virtually rotating dipole is used to study the sensitivity of synchrophasing effectiveness to the fuselage sound pressure trace velocity distribution. Results of calculations are presented which reveal the importance of correctly modeling the surface pressure phase relations in synchrophasing and other aircraft interior noise studies.

  11. An improved source model for aircraft interior noise studies

    NASA Technical Reports Server (NTRS)

    Mahan, J. R.; Fuller, C. R.

    1985-01-01

    There is concern that advanced turboprop engines currently being developed may produce excessive aircraft cabin noise level. This concern has stimulated renewed interest in developing aircraft interior noise reduction methods that do not significnatly increase take off weight. An existing analytical model for noise transmission into aircraft cabins was utilized to investigate the behavior of an improved propeller source model for use in aircraft interior noise studies. The new source model, a virtually rotating dipole, is shown to adequately match measured fuselage sound pressure distributions, including the correct phase relationships, for published data. The virtually rotating dipole is used to study the sensitivity of synchrophasing effectiveness to the fuselage sound pressure trace velocity distribution. Results of calculations are presented which reveal the importance of correctly modeling the surface pressure phase relations in synchrophasing and other aircraft interior noise studies.

  12. Computer program to predict aircraft noise levels

    NASA Technical Reports Server (NTRS)

    Clark, B. J.

    1981-01-01

    Methods developed at the NASA Lewis Research Center for predicting the noise contributions from various aircraft noise sources were programmed to predict aircraft noise levels either in flight or in ground tests. The noise sources include fan inlet and exhaust, jet, flap (for powered lift), core (combustor), turbine, and airframe. Noise propagation corrections are available for atmospheric attenuation, ground reflections, extra ground attenuation, and shielding. Outputs can include spectra, overall sound pressure level, perceived noise level, tone-weighted perceived noise level, and effective perceived noise level at locations specified by the user. Footprint contour coordinates and approximate footprint areas can also be calculated. Inputs and outputs can be in either System International or U.S. customary units. The subroutines for each noise source and propagation correction are described. A complete listing is given.

  13. Review of field studies of aircraft noise-induced sleep disturbance.

    PubMed

    Michaud, David S; Fidell, Sanford; Pearsons, Karl; Campbell, Kenneth C; Keith, Stephen E

    2007-01-01

    Aircraft noise-induced sleep disturbance (AN-ISD) is potentially among the more serious effects of aircraft noise on people. This literature review of recent field studies of AN-ISD finds that reliable generalization of findings to population-level effects is complicated by individual differences among subjects, methodological and analytic differences among studies, and predictive relationships that account for only a small fraction of the variance in the relationship between noise exposure and sleep disturbance. It is nonetheless apparent in the studied circumstances of residential exposure that sleep disturbance effects of nighttime aircraft noise intrusions are not dramatic on a per-event basis, and that linkages between outdoor aircraft noise exposure and sleep disturbance are tenuous. It is also apparent that AN-ISD occurs more often during later than earlier parts of the night; that indoor sound levels are more closely associated with sleep disturbance than outdoor measures; and that spontaneous awakenings, or awakenings attributable to nonaircraft indoor noises, occur more often than awakenings attributed to aircraft noise. Predictions of sleep disturbance due to aircraft noise should not be based on over-simplifications of the findings of the reviewed studies, and these reports should be treated with caution in developing regulatory policy for aircraft noise.

  14. Fan Noise Prediction with Applications to Aircraft System Noise Assessment

    NASA Technical Reports Server (NTRS)

    Nark, Douglas M.; Envia, Edmane; Burley, Casey L.

    2009-01-01

    This paper describes an assessment of current fan noise prediction tools by comparing measured and predicted sideline acoustic levels from a benchmark fan noise wind tunnel test. Specifically, an empirical method and newly developed coupled computational approach are utilized to predict aft fan noise for a benchmark test configuration. Comparisons with sideline noise measurements are performed to assess the relative merits of the two approaches. The study identifies issues entailed in coupling the source and propagation codes, as well as provides insight into the capabilities of the tools in predicting the fan noise source and subsequent propagation and radiation. In contrast to the empirical method, the new coupled computational approach provides the ability to investigate acoustic near-field effects. The potential benefits/costs of these new methods are also compared with the existing capabilities in a current aircraft noise system prediction tool. The knowledge gained in this work provides a basis for improved fan source specification in overall aircraft system noise studies.

  15. Examining nocturnal railway noise and aircraft noise in the field: sleep, psychomotor performance, and annoyance.

    PubMed

    Elmenhorst, Eva-Maria; Pennig, Sibylle; Rolny, Vinzent; Quehl, Julia; Mueller, Uwe; Maaß, Hartmut; Basner, Mathias

    2012-05-01

    Traffic noise is interfering during day- and nighttime causing distress and adverse physiological reactions in large parts of the population. Railway noise proved less annoying than aircraft noise in surveys which were the bases for a so called 5 dB railway bonus regarding noise protection in many European countries. The present field study investigated railway noise-induced awakenings during sleep, nighttime annoyance and the impact on performance the following day. Comparing these results with those from a field study on aircraft noise allowed for a ranking of traffic modes concerning physiological and psychological reactions. 33 participants (mean age 36.2 years ± 10.3 (SD); 22 females) living alongside railway tracks around Cologne/Bonn (Germany) were polysomnographically investigated. These data were pooled with data from a field study on aircraft noise (61 subjects) directly comparing the effects of railway and aircraft noise in one random subject effects logistic regression model. Annoyance was rated in the morning evaluating the previous night. Probability of sleep stage changes to wake/S1 from railway noise increased significantly from 6.5% at 35 dB(A) to 20.5% at 80 dB(A) LAFmax. Rise time of noise events had a significant impact on awakening probability. Nocturnal railway noise led to significantly higher awakening probabilities than aircraft noise, partly explained by the different rise times, whereas the order was inversed for annoyance. Freight train noise compared to passenger train noise proved to have the most impact on awakening probability. Nocturnal railway noise had no effect on psychomotor vigilance. Nocturnal freight train noise exposure in Germany was associated with increased awakening probabilities exceeding those for aircraft noise and contrasting the findings of many annoyance surveys and annoyance ratings of our study. During nighttime a bonus for railway noise seems not appropriate. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. A measurement model for general noise reaction in response to aircraft noise.

    PubMed

    Kroesen, Maarten; Schreckenberg, Dirk

    2011-01-01

    In this paper a measurement model for general noise reaction (GNR) in response to aircraft noise is developed to assess the performance of aircraft noise annoyance and a direct measure of general reaction as indicators of this concept. For this purpose GNR is conceptualized as a superordinate latent construct underlying particular manifestations. This conceptualization is empirically tested through estimation of a second-order factor model. Data from a community survey at Frankfurt Airport are used for this purpose (N=2206). The data fit the hypothesized factor structure well and support the conceptualization of GNR as a superordinate construct. It is concluded that noise annoyance and a direct measure of general reaction to noise capture a large part of the negative feelings and emotions in response to aircraft noise but are unable to capture all relevant variance. The paper concludes with recommendations for the valid measurement of community reaction and several directions for further research.

  17. Judgements of relative noisiness of a supersonic transport and several commercial-service aircraft

    NASA Technical Reports Server (NTRS)

    Powell, C. A.

    1977-01-01

    Two laboratory experiments were conducted on the relative noisiness of takeoff and landing operations of a supersonic transport and several other aircraft in current commercial service. A total of 96 subjects made noisiness judgments on 120 tape-recorded flyover noises in the outdoor-acoustic-simulation experiment; 32 different subjects made judgments on the noises in the indoor-acoustic-simulation experiment. The judgments were made by using the method of numerical category scaling. The effective perceived noise level underestimated the noisiness of the supersonic transport by 3.5 db. For takeoff operations, no difference was found between the noisiness of the supersonic transport and the group of other aircraft for the A-weighted rating scale; however, for landing operations, the noisiness of the supersonic transport was overestimated by 3.7 db. Very high correlation was found between the outdoor-simulation experiment and the indoor-simulation experiment.

  18. Community sensitivity to changes in aircraft noise exposure

    NASA Technical Reports Server (NTRS)

    Fidell, S.; Horonjeff, R.; Teffeteller, S.; Pearsons, K.

    1981-01-01

    Interviews were conducted in the vicinity of Burbank Airport during a four month period during which a counterbalanced series of changes in aircraft noise exposure occurred due to runway repairs. Another interview was undertaken approximately one year after completion of the initial runway repairs. Noise measurements were made in conjunction with administration of a brief questionnaire to a near exhaustive sample of residents in four airport neighborhoods. The magnitude and direction of change of annoyance with aircraft noise exposure corresponded closely to the actual changes in physical exposure. Estimates were made of time constants for the rate of change of attitudes toward aircraft noise.

  19. Aircraft noise source and computer programs - User's guide

    NASA Technical Reports Server (NTRS)

    Crowley, K. C.; Jaeger, M. A.; Meldrum, D. F.

    1973-01-01

    The application of computer programs for predicting the noise-time histories and noise contours for five types of aircraft is reported. The aircraft considered are: (1) turbojet, (2) turbofan, (3) turboprop, (4) V/STOL, and (5) helicopter. Three principle considerations incorporated in the design of the noise prediction program are core effectiveness, limited input, and variable output reporting.

  20. Results of the noise measurement program on a standard and modified OH-6A helicopter

    NASA Technical Reports Server (NTRS)

    Henderson, H. R.; Peegg, R. J.; Hilton, D. A.

    1973-01-01

    A field noise measurement program has been conducted on a standard OH-6A helicopter and one that had been modified by reducing the rotor speed, altering rotor tip shape, and treating the engine exhaust and inlet to reduce the external noise levels. The modifications consisted of extensive aircraft design changes resulting in substantial noise reductions following state-of-art noise reduction techniques. The purpose of this study was to document the ground noise characteristics of each helicopter during flyover, hover, landing, and take-off operations. Based on an analysis of the measured results, the average of the overall on-track noise levels of the final modified helicopter was approximately 14 db lower than that for the standard helicopter. Narrow-band-spectra data of the hovering helicopter show a reduction in the overall noise due to the reductions achieved for the lifting main and antitorque tail rotor, engine exhaust, and gear box noise for the modified helicopter. The noise results of the test program are found to correlate generally with noise measurements made previously on this type of aircraft.

  1. 75 FR 9327 - Aircraft Noise Certification Documents for International Operations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-02

    ... in 14 CFR part 91 Aircraft, Noise control, Reporting and recordkeeping requirements. The Amendment 0...; Amendment No. 91-312] RIN 2120-AJ31 Aircraft Noise Certification Documents for International Operations... operating rules to require U.S. operators flying outside the United States to carry aircraft noise...

  2. Human response to aircraft noise

    NASA Technical Reports Server (NTRS)

    Powell, Clemans A.; Fields, James M.

    1991-01-01

    The human auditory system and the perception of sound are discussed. The major concentration is on the annnoyance response and methods for relating the physical characteristics of sound to those psychosociological attributes associated with human response. Results selected from the extensive laboratory and field research conducted on human response to aircraft noise over the past several decades are presented along with discussions of the methodology commonly used in conducting that research. Finally, some of the more common criteria, regulations, and recommended practices for the control or limitation of aircraft noise are examined in light of the research findings on human response.

  3. A path model of aircraft noise annoyance

    NASA Astrophysics Data System (ADS)

    Taylor, S. M.

    1984-09-01

    This paper describes the development and testing of a path model of aircraft noise annoyance by using noise and social survey data collected in the vicinity of Toronto International Airport. Path analysis is used to estimate the direct and indirect effects of seventeen independent variables on individual annoyance. The results show that the strongest direct effects are for speech interference, attitudes toward aircraft operations, sleep interruption and personal sensitivity to noise. The strongest indirect effects are for aircraft Leq(24) and sensitivity. Overall the model explains 41 percent of the variation in the annoyance reported by the 673 survey respondents. The findings both support and extend existing statements in the literature on the antecedents of annoyance.

  4. A pilot study of human response to general aviation aircraft noise

    NASA Technical Reports Server (NTRS)

    Stearns, J.; Brown, R.; Neiswander, P.

    1983-01-01

    A pilot study, conducted to evaluate procedures for measuring the noise impact and community response to general aviation aircraft around Torrance Municipal Airport, a typical large GA airport, employed Torrance Airport's computer-based aircraft noise monitoring system, which includes nine permanent monitor stations surrounding the airport. Some 18 residences near these monitor stations were equipped with digital noise level recorders to measure indoor noise levels. Residents were instructed to fill out annoyance diaries for periods of 5-6 days, logging the time of each annoying aircraft overflight noise event and judging its degree of annoyance on a seven-point scale. Among the noise metrics studied, the differential between outdoor maximum A-weighted noise level of the aircraft and the outdoor background level showed the best correlation with annoyance; this correlation was clearly seen at only high noise levels, And was only slightly better than that using outdoor aircraft noise level alone. The results indicate that, on a national basis, a telephone survey coupled with outdoor noise measurements would provide an efficient and practical means of assessing the noise impact of general aviation aircraft.

  5. NASA Glenn's Contributions to Aircraft Engine Noise Research

    NASA Technical Reports Server (NTRS)

    Huff, Dennis L.

    2014-01-01

    This presentation reviews engine noise research conducted at the NASA Glenn Research Center over the past 70 years. This report includes a historical perspective of the Center and the facilities used to conduct the research. Major noise research programs are highlighted to show their impact on industry and on the development of aircraft noise reduction technology. Noise reduction trends are discussed, and future aircraft concepts are presented. Since the 1960s, research results show that the average perceived noise level has been reduced by about 20 decibels (dB). Studies also show that, depending on the size of the airport, the aircraft fleet mix, and the actual growth in air travel, another 15 to 17 dB reduction will be required to achieve NASAs long-term goal of providing technologies to limit objectionable noise to the boundaries of an average airport.

  6. NASA Glenn's Contributions to Aircraft Engine Noise Research

    NASA Technical Reports Server (NTRS)

    Huff, Dennis L.

    2013-01-01

    This report reviews all engine noise research conducted at the NASA Glenn Research Center over the past 70 years. This report includes a historical perspective of the Center and the facilities used to conduct the research. Major noise research programs are highlighted to show their impact on industry and on the development of aircraft noise reduction technology. Noise reduction trends are discussed, and future aircraft concepts are presented. Since the 1960s, research results show that the average perceived noise level has been reduced by about 20 decibels (dB). Studies also show that, depending on the size of the airport, the aircraft fleet mix, and the actual growth in air travel, another 15 to 17 dB reduction will be required to achieve NASA's long-term goal of providing technologies to limit objectionable noise to the boundaries of an average airport.

  7. NASA's Aeroacoustic Tools and Methods for Analysis of Aircraft Noise

    NASA Technical Reports Server (NTRS)

    Rizzi, Stephen A.; Lopes, Leonard V.; Burley, Casey L.

    2015-01-01

    Aircraft community noise is a significant concern due to continued growth in air traffic, increasingly stringent environmental goals, and operational limitations imposed by airport authorities. The ability to quantify aircraft noise at the source and ultimately at observers is required to develop low noise aircraft designs and flight procedures. Predicting noise at the source, accounting for scattering and propagation through the atmosphere to the observer, and assessing the perception and impact on a community requires physics-based aeroacoustics tools. Along with the analyses for aero-performance, weights and fuel burn, these tools can provide the acoustic component for aircraft MDAO (Multidisciplinary Design Analysis and Optimization). Over the last decade significant progress has been made in advancing the aeroacoustic tools such that acoustic analyses can now be performed during the design process. One major and enabling advance has been the development of the system noise framework known as Aircraft NOise Prediction Program2 (ANOPP2). ANOPP2 is NASA's aeroacoustic toolset and is designed to facilitate the combination of acoustic approaches of varying fidelity for the analysis of noise from conventional and unconventional aircraft. The toolset includes a framework that integrates noise prediction and propagation methods into a unified system for use within general aircraft analysis software. This includes acoustic analyses, signal processing and interfaces that allow for the assessment of perception of noise on a community. ANOPP2's capability to incorporate medium fidelity shielding predictions and wind tunnel experiments into a design environment is presented. An assessment of noise from a conventional and Hybrid Wing Body (HWB) aircraft using medium fidelity scattering methods combined with noise measurements from a model-scale HWB recently placed in NASA's 14x22 wind tunnel are presented. The results are in the form of community noise metrics and

  8. Noise of High Performance Aircraft at Afterburner

    DTIC Science & Technology

    2016-02-10

    Navy F18E and the Air Force F22 aircraft became available to the principal investigator. The present project is to analyze these data to identify...the end of the first year of this project (2015), we were able to clearly identify two new dominant noise components from the F22 at afterburner...F18E and F22 aircraft. Compare the noise spectra with those of laboratory hot supersonic jets. ii. Identify any new dominant noise components emitted

  9. Near-field noise prediction for aircraft in cruising flight: Methods manual. [laminar flow control noise effects analysis

    NASA Technical Reports Server (NTRS)

    Tibbetts, J. G.

    1979-01-01

    Methods for predicting noise at any point on an aircraft while the aircraft is in a cruise flight regime are presented. Developed for use in laminar flow control (LFC) noise effects analyses, they can be used in any case where aircraft generated noise needs to be evaluated at a location on an aircraft while under high altitude, high speed conditions. For each noise source applicable to the LFC problem, a noise computational procedure is given in algorithm format, suitable for computerization. Three categories of noise sources are covered: (1) propulsion system, (2) airframe, and (3) LFC suction system. In addition, procedures are given for noise modifications due to source soundproofing and the shielding effects of the aircraft structure wherever needed. Sample cases, for each of the individual noise source procedures, are provided to familiarize the user with typical input and computed data.

  10. Annoyance by transportation noise: The effects of source identity and tonal components.

    PubMed

    White, Kim; Bronkhorst, Adelbert W; Meeter, Martijn

    2017-05-01

    Aircraft noise is consistently rated as more annoying than noise from other sources with similar intensity. In three experiments, it was investigated whether this penalty is due to the source identity of the noise. In the first experiment, four samples were played to participants engaged in a working memory task: road traffic noise, an Airbus 320 flyover, and unidentifiable, transformed versions of these samples containing the same spectral content and envelope. Original, identifiable samples were rated as more annoying than the transformed samples. A second experiment tested whether these results were due to the absence of tonal components in the transformed samples. This was partly the case: an additional sample, created from the A320 flyover by filtering out major tonal components, was rated as less annoying than the original A320 sample, but as more annoying than the transformed sample. In a third experiment, participants either received full disclosure of the generation of the samples or no information to identify the transformed samples. The transformed sample was rated as most annoying when the A320 identity was disclosed, but as least annoying when it was not. Therefore, it was concluded that annoyance is influenced by both identifiability and the presence of tonal components.

  11. Modeling aircraft noise induced sleep disturbance

    NASA Astrophysics Data System (ADS)

    McGuire, Sarah M.

    One of the primary impacts of aircraft noise on a community is its disruption of sleep. Aircraft noise increases the time to fall asleep, the number of awakenings, and decreases the amount of rapid eye movement and slow wave sleep. Understanding these changes in sleep may be important as they could increase the risk for developing next-day effects such as sleepiness and reduced performance and long-term health effects such as cardiovascular disease. There are models that have been developed to predict the effect of aircraft noise on sleep. However, most of these models only predict the percentage of the population that is awakened. Markov and nonlinear dynamic models have been developed to predict an individual's sleep structure during the night. However, both of these models have limitations. The Markov model only accounts for whether an aircraft event occurred not the noise level or other sound characteristics of the event that may affect the degree of disturbance. The nonlinear dynamic models were developed to describe normal sleep regulation and do not have a noise effects component. In addition, the nonlinear dynamic models have slow dynamics which make it difficult to predict short duration awakenings which occur both spontaneously and as a result of nighttime noise exposure. The purpose of this research was to examine these sleep structure models to determine how they could be altered to predict the effect of aircraft noise on sleep. Different approaches for adding a noise level dependence to the Markov Model was explored and the modified model was validated by comparing predictions to behavioral awakening data. In order to determine how to add faster dynamics to the nonlinear dynamic sleep models it was necessary to have a more detailed sleep stage classification than was available from visual scoring of sleep data. An automatic sleep stage classification algorithm was developed which extracts different features of polysomnography data including the

  12. Annoyance caused by light aircraft noise

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The correlation between objective and noise stresses and subjectively perceived disturbance from general aviation aircraft was studied at 6 Swiss airports. Noise levels calculated for these airports are given. Survey results are analyzed.

  13. Airframe self-noise: Four years of research. [aircraft noise reduction for commercial aircraft

    NASA Technical Reports Server (NTRS)

    Hardin, J. C.

    1976-01-01

    A critical assessment of the state of the art in airframe self-noise is presented. Full-scale data on the intensity, spectra and directivity of this noise source are evaluated in the light of the comprehensive theory developed by Ffowcs-Williams and Hawkins. Vibration of panels on commercial aircraft is identified as a possible additional source of airframe noise. The present understanding and methods for prediction of other component sources - airfoils, struts, and cavities - are discussed, and areas for further research as well as potential methods for airframe noise reduction are identified. Finally, the various experimental methods which have been developed for airframe noise research are discussed and sample results are presented.

  14. Variability of annoyance response due to aircraft noise

    NASA Technical Reports Server (NTRS)

    Dempsey, T. K.; Cawthorn, J. M.

    1979-01-01

    An investigation was conducted to study the variability in the response of subjects participating in noise experiments. This paper presents a description of a model developed to include this variability which incorporates an aircraft-noise adaptation level or an annoyance calibration for each individual. The results indicate that the use of an aircraft-noise adaption level improved prediction accuracy of annoyance responses (and simultaneously reduced response variation).

  15. Assessment at full scale of nozzle/wing geometry effects on OTW aero-acoustic characteristics. [short takeoff aircraft noise

    NASA Technical Reports Server (NTRS)

    Groesbeck, D.; Vonglahn, U.

    1979-01-01

    The effects on acoustic characteristics of nozzle type and location on a wing for STOL engine over-the-wing configurations are assessed at full scale on the basis of model-scale data. Three types of nozzle configurations are evaluated: a circular nozzle with external deflector mounted above the wing, a slot nozzle with external deflector mounted on the wing and a slot nozzle mounted on the wing. Nozzle exhaust plane locations with respect to the wing leading edge are varied from 10 to 46 percent chord (flaps retracted) with flap angles of 20 (takeoff altitude) and 60 (approach attitude). Perceived noise levels (PNL) are calculated as a function of flyover distance at 152 m altitude. From these plots, static EPNL values, defined as flyover relative noise levels, are calculated and plotted as a function of lift and thrust ratios. From such plots the acoustic benefits attributable to variations in nozzle/deflector/wing geometry at full scale are assessed for equal aerodynamic performance.

  16. Handbook of aircraft noise metrics

    NASA Technical Reports Server (NTRS)

    Bennett, R. L.; Pearsons, K. S.

    1981-01-01

    Information is presented on 22 noise metrics that are associated with the measurement and prediction of the effects of aircraft noise. Some of the instantaneous frequency weighted sound level measures, such as A-weighted sound level, are used to provide multiple assessment of the aircraft noise level. Other multiple event metrics, such as day-night average sound level, were designed to relate sound levels measured over a period of time to subjective responses in an effort to determine compatible land uses and aid in community planning. The various measures are divided into: (1) instantaneous sound level metrics; (2) duration corrected single event metrics; (3) multiple event metrics; and (4) speech communication metrics. The scope of each measure is examined in terms of its: definition, purpose, background, relationship to other measures, calculation method, example, equipment, references, and standards.

  17. Handbook of aircraft noise metrics

    NASA Astrophysics Data System (ADS)

    Bennett, R. L.; Pearsons, K. S.

    1981-03-01

    Information is presented on 22 noise metrics that are associated with the measurement and prediction of the effects of aircraft noise. Some of the instantaneous frequency weighted sound level measures, such as A-weighted sound level, are used to provide multiple assessment of the aircraft noise level. Other multiple event metrics, such as day-night average sound level, were designed to relate sound levels measured over a period of time to subjective responses in an effort to determine compatible land uses and aid in community planning. The various measures are divided into: (1) instantaneous sound level metrics; (2) duration corrected single event metrics; (3) multiple event metrics; and (4) speech communication metrics. The scope of each measure is examined in terms of its: definition, purpose, background, relationship to other measures, calculation method, example, equipment, references, and standards.

  18. The effect of operations on the ground noise footprints associated with a large multibladed, nonbanging helicopter

    NASA Technical Reports Server (NTRS)

    Hilton, D. A.; Henderson, H. R.; Maglieri, D. J.; Bigler, W. B., II

    1978-01-01

    In order to expand the data base of helicopter external noise characteristics, a flyover noise measurement program was conducted utilizing the NASA Civil Helicopter Research Aircraft. The remotely operated multiple array acoustics range (ROMAAR) and a 2560-m linear microphone array were utilized for the purpose of documenting the noise characteristics of the test helicopter during flyby and landing operations. By utilizing both ROMAAR concept and the linear array, the data necessary to plot the ground noise footprints and noise radiation patterns were obtained. Examples of the measured noise signature of the test helicopter, the ground noise footprint or contours, and the directivity patterns measured during level flyby and landing operations of a large, multibladed, nonbanging helicopter, the CH-53, are presented.

  19. Aircraft interior noise reduction by alternate resonance tuning

    NASA Technical Reports Server (NTRS)

    Bliss, Donald B.; Gottwald, James A.; Srinivasan, Ramakrishna; Gustaveson, Mark B.

    1990-01-01

    Existing interior noise reduction techniques for aircraft fuselages perform reasonably well at higher frequencies, but are inadequate at lower frequencies, particularly with respect to the low blade passage harmonics with high forcing levels found in propeller aircraft. A method is being studied which considers aircraft fuselage lined with panels alternately tuned to frequencies above and below the frequency that must be attenuated. Adjacent panels would oscillate at equal amplitude, to give equal source strength, but with opposite phase. Provided these adjacent panels are acoustically compact, the resulting cancellation causes the interior acoustic modes to become cutoff, and therefore be non-propagating and evanescent. This interior noise reduction method, called Alternate Resonance Tuning (ART), is currently being investigated both theoretically and experimentally. This new concept has potential application to reducing interior noise due to the propellers in advanced turboprop aircraft as well as for existing aircraft configurations.

  20. Investigation of the relationship between aircraft noise and community annoyance in China.

    PubMed

    Guoqing, Di; Xiaoyi, Liu; Xiang, Shi; Zhengguang, Li; Qili, Lin

    2012-01-01

    A survey of community annoyance induced by aircraft noise exposure was carried out around Hangzhou Xiaoshan International Airport. To investigate the relationship curves between aircraft noise and the percentage of "highly annoyed" persons in China and also to get annoyance threshold of aircraft noise in China. Noise annoyance induced by aircraft noise exposure was assessed by 764 local residents around the airport using the International Commission on Biological Effect of Noise (ICBEN) scale. The status quo of aircraft noise pollution was measured by setting up 39 monitoring points. The interpolation was used to estimate the weighted effective continuous perceived noise levels (LWECPN) in different areas around the airport, and the graph of equal noise level contour was drawn. The membership function was used to calculate the annoyance threshold of aircraft noise. Data were analyzed using SPSS 16.0 and Origin 8.0. The results showed that if LWECPN was 64.3 dB (Ldn was 51.4 dB), then 15% respondents were highly annoyed. If LWECPN was 68.1 dB (Ldn was 55.0 dB), then 25% respondents were highly annoyed. The annoyance threshold of aircraft noise (LWECPN) was 73.7 dB, while the annoyance threshold of a single flight incident instantaneous noise level (LAmax) was 72.9 dB. People around the airport had felt annoyed before the aircraft noise LWECPN reached the standard limit.

  1. Interior noise levels of two propeller-driven light aircraft

    NASA Technical Reports Server (NTRS)

    Catherines, J. J.; Mayes, W. H.

    1975-01-01

    The relationships between aircraft operating conditions and interior noise and the degree to which ground testing can be used in lieu of flight testing for performing interior noise research were studied. The results show that the noise inside light aircraft is strongly influenced by the rotational speed of the engine and propeller. Both the overall noise and low frequency spectra levels were observed to decrease with increasing high speed rpm operations during flight. This phenomenon and its significance is not presently understood. Comparison of spectra obtained in flight with spectra obtained on the ground suggests that identification of frequency components and relative amplitude of propeller and engine noise sources may be evaluated on stationary aircraft.

  2. The Combined Effects of Aircraft and Road Traffic Noise and Aircraft and Railway Noise on Noise Annoyance-An Analysis in the Context of the Joint Research Initiative NORAH.

    PubMed

    Wothge, Jördis; Belke, Christin; Möhler, Ulrich; Guski, Rainer; Schreckenberg, Dirk

    2017-08-02

    The Noise Related Annoyance Cognition and Health (NORAH) research initiative is one of the most extensive studies on the physiological and psychological long-term effects of transportation noise in Europe. It includes research on the quality of life and annoyance as well as cardiovascular effects, sleep disturbance, breast cancer, blood pressure, depression and the cognitive development of children. Within the realm of the annoyance module of the study approximately 10,000 residents of the Rhine-Main district were surveyed on the combined effects of transportation noise. This included combined noise from aircraft and road traffic noise ( N = 4905), or aircraft and railway noise ( N = 4777). Results show that judgment of the total noise annoyance of participants was strongly determined by the sound source which was judged as more annoying (in this case aircraft noise). To a lesser extent, the average sound pressure level of the two present sources was also of relevance.

  3. The Combined Effects of Aircraft and Road Traffic Noise and Aircraft and Railway Noise on Noise Annoyance—An Analysis in the Context of the Joint Research Initiative NORAH

    PubMed Central

    Wothge, Jördis; Belke, Christin; Möhler, Ulrich; Guski, Rainer; Schreckenberg, Dirk

    2017-01-01

    The Noise Related Annoyance Cognition and Health (NORAH) research initiative is one of the most extensive studies on the physiological and psychological long-term effects of transportation noise in Europe. It includes research on the quality of life and annoyance as well as cardiovascular effects, sleep disturbance, breast cancer, blood pressure, depression and the cognitive development of children. Within the realm of the annoyance module of the study approximately 10,000 residents of the Rhine-Main district were surveyed on the combined effects of transportation noise. This included combined noise from aircraft and road traffic noise (N = 4905), or aircraft and railway noise (N = 4777). Results show that judgment of the total noise annoyance of participants was strongly determined by the sound source which was judged as more annoying (in this case aircraft noise). To a lesser extent, the average sound pressure level of the two present sources was also of relevance. PMID:28767095

  4. Aircraft noise reduction technology. [to show impact on individuals and communities, component noise sources, and operational procedures to reduce impact

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Aircraft and airport noise reduction technology programs conducted by NASA are presented. The subjects discussed are: (1) effects of aircraft noise on individuals and communities, (2) status of aircraft source noise technology, (3) operational procedures to reduce the impact of aircraft noise, and (4) NASA relations with military services in aircraft noise problems. References to more detailed technical literature on the subjects discussed are included.

  5. Aircraft propeller induced structure-borne noise

    NASA Technical Reports Server (NTRS)

    Unruh, James F.

    1989-01-01

    A laboratory-based test apparatus employing components typical of aircraft construction was developed that would allow the study of structure-borne noise transmission due to propeller induced wake/vortex excitation of in-wake structural appendages. The test apparatus was employed to evaluate several aircraft installation effects (power plant placement, engine/nacelle mass loading, and wing/fuselage attachment methods) and several structural response modifications for structure-borne noise control (the use of wing blocking mass/fuel, wing damping treaments, and tuned mechanical dampers). Most important was the development of in-flight structure-borne noise transmission detection techniques using a combination of ground-based frequency response function testing and in-flight structural response measurement. Propeller wake/vortex excitation simulation techniques for improved ground-based testing were also developed to support the in-flight structure-borne noise transmission detection development.

  6. Aircraft noise in the region of the Bucharest-Otopeni Airport. [noise pollution in airport environment

    NASA Technical Reports Server (NTRS)

    Costescu, M.; Gherghel, C.; Curtoglu, A.

    1974-01-01

    Aircraft noise, especially in the region adjoining airports, constitutes a problem that will be aggravated in the near future because of increasing aircraft traffic and the appearance of new types of large tonnage aircraft with continuously increasing powers and speeds. Criteria for the evaluation of aircraft noise are reported and some results of studies carried out in the region of Bucharest-Otopeni Airport are detailed.

  7. On Noise Assessment for Blended Wing Body Aircraft

    NASA Technical Reports Server (NTRS)

    Guo, Yueping; Burley, Casey L; Thomas, Russell H.

    2014-01-01

    A system noise study is presented for the blended-wing-body (BWB) aircraft configured with advanced technologies that are projected to be available in the 2025 timeframe of the NASA N+2 definition. This system noise assessment shows that the noise levels of the baseline configuration, measured by the cumulative Effective Perceived Noise Level (EPNL), have a large margin of 34 dB to the aircraft noise regulation of Stage 4. This confirms the acoustic benefits of the BWB shielding of engine noise, as well as other projected noise reduction technologies, but the noise margins are less than previously published assessments and are short of meeting the NASA N+2 noise goal. In establishing the relevance of the acoustic assessment framework, the design of the BWB configuration, the technical approach of the noise analysis, the databases and prediction tools used in the assessment are first described and discussed. The predicted noise levels and the component decomposition are then analyzed to identify the ranking order of importance of various noise components, revealing the prominence of airframe noise, which holds up the levels at all three noise certification locations and renders engine noise reduction technologies less effective. When projected airframe component noise reduction is added to the HWB configuration, it is shown that the cumulative noise margin to Stage 4 can reach 41.6 dB, nearly at the NASA goal. These results are compared with a previous NASA assessment with a different study framework. The approaches that yield projections of such low noise levels are discussed including aggressive assumptions on future technologies, assumptions on flight profile management, engine installation, and component noise reduction technologies. It is shown that reliable predictions of component noise also play an important role in the system noise assessment. The comparisons and discussions illustrate the importance of practical feasibilities and constraints in aircraft

  8. Aircraft noise prediction program user's manual

    NASA Technical Reports Server (NTRS)

    Gillian, R. E.

    1982-01-01

    The Aircraft Noise Prediction Program (ANOPP) predicts aircraft noise with the best methods available. This manual is designed to give the user an understanding of the capabilities of ANOPP and to show how to formulate problems and obtain solutions by using these capabilities. Sections within the manual document basic ANOPP concepts, ANOPP usage, ANOPP functional modules, ANOPP control statement procedure library, and ANOPP permanent data base. appendixes to the manual include information on preparing job decks for the operating systems in use, error diagnostics and recovery techniques, and a glossary of ANOPP terms.

  9. Airport take-off noise assessment aimed at identify responsible aircraft classes.

    PubMed

    Sanchez-Perez, Luis A; Sanchez-Fernandez, Luis P; Shaout, Adnan; Suarez-Guerra, Sergio

    2016-01-15

    Assessment of aircraft noise is an important task of nowadays airports in order to fight environmental noise pollution given the recent discoveries on the exposure negative effects on human health. Noise monitoring and estimation around airports mostly use aircraft noise signals only for computing statistical indicators and depends on additional data sources so as to determine required inputs such as the aircraft class responsible for noise pollution. In this sense, the noise monitoring and estimation systems have been tried to improve by creating methods for obtaining more information from aircraft noise signals, especially real-time aircraft class recognition. Consequently, this paper proposes a multilayer neural-fuzzy model for aircraft class recognition based on take-off noise signal segmentation. It uses a fuzzy inference system to build a final response for each class p based on the aggregation of K parallel neural networks outputs Op(k) with respect to Linear Predictive Coding (LPC) features extracted from K adjacent signal segments. Based on extensive experiments over two databases with real-time take-off noise measurements, the proposed model performs better than other methods in literature, particularly when aircraft classes are strongly correlated to each other. A new strictly cross-checked database is introduced including more complex classes and real-time take-off noise measurements from modern aircrafts. The new model is at least 5% more accurate with respect to previous database and successfully classifies 87% of measurements in the new database. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Relationship between Aircraft Noise Contour Area and Noise Levels at Certification Points

    NASA Technical Reports Server (NTRS)

    Powell, Clemans A.

    2003-01-01

    The use of sound exposure level contour area reduction has been proposed as an alternative or supplemental metric of progress and success for the NASA Quiet Aircraft Technology program, which currently uses the average of predicted noise reductions at three community locations. As the program has expanded to include reductions in airframe noise as well as reduction due to optimization of operating procedures for lower noise, there is concern that the three-point methodology may not represent a fair measure of benefit to airport communities. This paper addresses several topics related to this proposal: (1) an analytical basis for a relationship between certification noise levels and noise contour areas for departure operations is developed, (2) the relationship between predicted noise contour area and the noise levels measured or predicted at the certification measurement points is examined for a wide range of commercial and business aircraft, and (3) reductions in contour area for low-noise approach scenarios are predicted and equivalent reductions in source noise are determined.

  11. Measuring subjective response to aircraft noise: the effects of survey context.

    PubMed

    Kroesen, Maarten; Molin, Eric J E; van Wee, Bert

    2013-01-01

    In applied research, noise annoyance is often used as indicator of subjective reaction to aircraft noise in residential areas. The present study aims to show that the meaning which respondents attach to the concept of aircraft noise annoyance is partly a function of survey context. To this purpose a survey is conducted among residents living near Schiphol Airport, the largest airport in the Netherlands. In line with the formulated hypotheses it is shown that different sets of preceding questionnaire items influence the response distribution of aircraft noise annoyance as well as the correlational patterns between aircraft noise annoyance and other relevant scales.

  12. Spatial patterns in community response to aircraft noise associated with non-noise factors

    NASA Astrophysics Data System (ADS)

    Hall, F. L.; Taylor, S. M.; Birnie, S. E.

    1980-08-01

    Non-noise aspects of airport operations may affect individuals' responses to aircraft noise. Fear of crashes, other forms of pollution, and proximity to the flight path are three such non-noise aspects which have spatial patterns that are closely related to the pattern of noise contours around an airport. If these variables affect response to aircraft noise, they may therefore confound attempts to understand relationships between noise level and community response. Analyses based on data from 673 individuals around Toronto International Airport suggest that these factors do affect annoyance responses, but do not affect reported activity interference. Hence it may prove fruitful, in aggregate analyses of community response data, to control for these variables in order to better understand the noise-annoyance relationships.

  13. Noise Problems Associated with Ground Operations of Jet Aircraft

    NASA Technical Reports Server (NTRS)

    Hubbard, Harvey H.

    1959-01-01

    The nature of the noise-exposure problem for humans and the aircraft-structural-damage problem is each discussed briefly. Some discussion is directed toward available methods of minimizing the effects of noise on ground crews, on the aircraft structure, and on the surrounding community. A bibliography of available papers relating to noise-reduction devices is also included.

  14. Prediction of light aircraft interior noise

    NASA Technical Reports Server (NTRS)

    Howlett, J. T.; Morales, D. A.

    1976-01-01

    At the present time, predictions of aircraft interior noise depend heavily on empirical correction factors derived from previous flight measurements. However, to design for acceptable interior noise levels and to optimize acoustic treatments, analytical techniques which do not depend on empirical data are needed. This paper describes a computerized interior noise prediction method for light aircraft. An existing analytical program (developed for commercial jets by Cockburn and Jolly in 1968) forms the basis of some modal analysis work which is described. The accuracy of this modal analysis technique for predicting low-frequency coupled acoustic-structural natural frequencies is discussed along with trends indicating the effects of varying parameters such as fuselage length and diameter, structural stiffness, and interior acoustic absorption.

  15. Noise Levels for U.S. Certificated and Foreign Aircraft

    DOT National Transportation Integrated Search

    2001-11-11

    This circular provides noise level data for aircraft certificated under 14 CFR : part 36. Noise level data for foreign aircraft certificated to ICAO Annex 16 : standards are also provided in a separate appendix for informational purposes. : Other app...

  16. Aircraft noise and speech intelligibility in an outdoor living space.

    PubMed

    Alvarsson, Jesper J; Nordström, Henrik; Lundén, Peter; Nilsson, Mats E

    2014-06-01

    Studies of effects on speech intelligibility from aircraft noise in outdoor places are currently lacking. To explore these effects, first-order ambisonic recordings of aircraft noise were reproduced outdoors in a pergola. The average background level was 47 dB LA eq. Lists of phonetically balanced words (LAS max,word = 54 dB) were reproduced simultaneously with aircraft passage noise (LAS max,noise = 72-84 dB). Twenty individually tested listeners wrote down each presented word while seated in the pergola. The main results were (i) aircraft noise negatively affects speech intelligibility at sound pressure levels that exceed those of the speech sound (signal-to-noise ratio, S/N < 0), and (ii) the simple A-weighted S/N ratio was nearly as good an indicator of speech intelligibility as were two more advanced models, the Speech Intelligibility Index and Glasberg and Moore's [J. Audio Eng. Soc. 53, 906-918 (2005)] partial loudness model. This suggests that any of these indicators is applicable for predicting effects of aircraft noise on speech intelligibility outdoors.

  17. Supporting statement for community study of human response to aircraft noise

    NASA Technical Reports Server (NTRS)

    Dempsey, T. K.; Deloach, R.; Stephens, D. G.

    1980-01-01

    A study plan for quantifying the relationship between human annoyance and the noise level of individual aircraft events is studied. The validity of various noise descriptors or noise metrics for quantifying aircraft noise levels are assessed.

  18. Annoyance by aircraft noise and fear of overflying aircraft in relation to attitudes toward the environment and community

    NASA Technical Reports Server (NTRS)

    Loeb, M.; Moran, S. V.

    1977-01-01

    It has been suggested that expressions of annoyance attributable to aircraft noise may reflect in part fear of aircraft overflights and possible crashes. If this is true, then residents of areas where crashes have occurred should express more annoyance. To test this hypothesis, 50 residents of an Albany, New York area where an aircraft crash producing fatalities recently occurred and 50 residents of a comparable nearby area without such a history, were asked to respond to a 'Quality of Life Questionnaire.' Among the items were some designed to test annoyance by noise and fear of aircraft overflights. It was predicted that those in the crash area would express more fear and would more often identify aircraft as a noise source. These hypotheses were sustained. A near-replication was carried out in Louisville, Kentucky; results were much the same. Analyses indicated that for the crash-area groups, there was associating of aircraft fear and noise annoyance responses; this was true to an apparently lesser extent for non-crash groups. The greater annoyance of crash groups by aircraft community noise apparently does not carry over to situations in which aircraft noise is assessed in the laboratory.

  19. Determining the direction of causality between psychological factors and aircraft noise annoyance.

    PubMed

    Kroesen, Maarten; Molin, Eric J E; van Wee, Bert

    2010-01-01

    In this paper, an attempt is made to establish the direction of causality between a range of psychological factors and aircraft noise annoyance. For this purpose, a panel model was estimated within a structural equation modeling approach. Data were gathered from two surveys conducted in April 2006 and April 2008, respectively, among the same residents living within the 45 Level day-evening-night contour of Amsterdam Airport Schiphol, the largest airport in the Netherlands (n=250). A surprising result is that none of the paths from the psychological factors to aircraft noise annoyance were found to be significant. Yet 2 effects were significant the other way around: (1) from 'aircraft noise annoyance' to 'concern about the negative health effects of noise' and (2) from 'aircraft noise annoyance' to 'belief that noise can be prevented.' Hence aircraft noise annoyance measured at time 1 contained information that can effectively explain changes in these 2 variables at time 2, while controlling for their previous values. Secondary results show that (1) aircraft noise annoyance is very stable through time and (2) that changes in aircraft noise annoyance and the identified psychological factors are correlated.

  20. Engine-induced structural-borne noise in a general aviation aircraft

    NASA Technical Reports Server (NTRS)

    Unruh, J. F.; Scheidt, D. C.; Pomerening, D. J.

    1979-01-01

    Structural borne interior noise in a single engine general aviation aircraft was studied to determine the importance of engine induced structural borne noise and to determine the necessary modeling requirements for the prediction of structural borne interior noise. Engine attached/detached ground test data show that engine induced structural borne noise is a primary interior noise source for the single engine test aircraft, cabin noise is highly influenced by responses at the propeller tone, and cabin acoustic resonances can influence overall noise levels. Results from structural and acoustic finite element coupled models of the test aircraft show that wall flexibility has a strong influence on fundamental cabin acoustic resonances, the lightweight fuselage structure has a high modal density, and finite element analysis procedures are appropriate for the prediction of structural borne noise.

  1. Computer program to predict noise of general aviation aircraft: User's guide

    NASA Technical Reports Server (NTRS)

    Mitchell, J. A.; Barton, C. K.; Kisner, L. S.; Lyon, C. A.

    1982-01-01

    Program NOISE predicts General Aviation Aircraft far-field noise levels at FAA FAR Part 36 certification conditions. It will also predict near-field and cabin noise levels for turboprop aircraft and static engine component far-field noise levels.

  2. Diagnostics and Active Control of Aircraft Interior Noise

    NASA Technical Reports Server (NTRS)

    Fuller, C. R.

    1998-01-01

    This project deals with developing advanced methods for investigating and controlling interior noise in aircraft. The work concentrates on developing and applying the techniques of Near Field Acoustic Holography (NAH) and Principal Component Analysis (PCA) to the aircraft interior noise dynamic problem. This involves investigating the current state of the art, developing new techniques and then applying them to the particular problem being studied. The knowledge gained under the first part of the project was then used to develop and apply new, advanced noise control techniques for reducing interior noise. A new fully active control approach based on the PCA was developed and implemented on a test cylinder. Finally an active-passive approach based on tunable vibration absorbers was to be developed and analytically applied to a range of test structures from simple plates to aircraft fuselages.

  3. Structureborne noise control in advanced turboprop aircraft

    NASA Technical Reports Server (NTRS)

    Loeffler, Irvin J.

    1987-01-01

    Structureborne noise is discussed as a contributor to propeller aircraft interior noise levels that are nonresponsive to the application of a generous amount of cabin sidewall acoustic treatment. High structureborne noise levels may jeopardize passenger acceptance of the fuel-efficient high-speed propeller transport aircraft designed for cruise at Mach 0.65 to 0.85. These single-rotation tractor and counter-rotation tractor and pusher propulsion systems will consume 15 to 30 percent less fuel than advanced turbofan systems. Structureborne noise detection methodologies and the importance of development of a structureborne noise sensor are discussed. A structureborne noise generation mechanism is described in which the periodic components or propeller swirl produce periodic torques and forces on downstream wings and airfoils that are propagated to the cabin interior as noise. Three concepts for controlling structureborne noise are presented: (1) a stator row swirl remover, (2) selection of a proper combination of blade numbers in the rotor/stator system of a single-rotation propeller, and the rotor/rotor system of a counter-rotation propeller, and (3) a tuned mechanical absorber.

  4. Aircraft interior noise reduction by alternate resonance tuning

    NASA Technical Reports Server (NTRS)

    Bliss, Donald B.; Gottwald, James A.; Gustaveson, Mark B.; Burton, James R., III; Castellino, Craig

    1989-01-01

    Existing interior noise reduction techniques for aircraft fuselages perform reasonably well at higher frequencies, but are inadequate at lower, particularly with respect to the low blade passage harmonics with high forcing levels found in propeller aircraft. A method is being studied which considers aircraft fuselages lines with panels alternately tuned to frequencies above and below the frequency to be attenuated. Adjacent panels would oscillate at equal amplitude, to give equal source strength, but with opposite phase. Provided these adjacent panels are acoustically compact, the resulting cancellation causes the interior acoustic modes to become cut off and therefore be non-propagating and evanescent. This interior noise reduction method, called Alternate Resonance Tuning (ART), is currently being investigated both theoretically and experimentally. This new concept has potential application to reducing interior noise due to the propellers in advanced turboprop aircraft as well as for existing aircraft configurations. This program summarizes the work carried out at Duke University during the third semester of a contract supported by the Structural Acoustics Branch at NASA Langley Research Center.

  5. Noise characteristics of eight helicopters

    DOT National Transportation Integrated Search

    1977-07-01

    This report describes the noise characteristics of Eight Helicopters during level flyovers, simulated approaches, and hover. The data was obtained during an FAA/DOT Helicopter Noise Program to acquire a data base for possible helicopter noise regulat...

  6. Interior noise considerations for advanced high-speed turboprop aircraft

    NASA Technical Reports Server (NTRS)

    Mixson, J. S.; Farassat, F.; Leatherwood, J. D.; Prydz, R.; Revell, J. D.

    1982-01-01

    This paper describes recent research on noise generated by high-speed propellers, on noise transmission through acoustically treated aircraft sidewalls and on subjective response to simulated turboprop noise. Propeller noise discussion focuses on theoretical prediction methods for complex blade shapes designed for low noise at Mach = 0.8 flight and on comparisons with experimental test results. Noise transmission experiments using a 168 cm. diameter aircraft fuselage model and scaled heavy-double-wall treatments indicate that the treatments perform well and that the predictions are usually conservative. Studies of subjective comfort response in an anechoic environment are described for noise signatures having combinations of broadband and propeller-type tone components.

  7. A trade-off analysis design tool. Aircraft interior noise-motion/passenger satisfaction model

    NASA Technical Reports Server (NTRS)

    Jacobson, I. D.

    1977-01-01

    A design tool was developed to enhance aircraft passenger satisfaction. The effect of aircraft interior motion and noise on passenger comfort and satisfaction was modelled. Effects of individual aircraft noise sources were accounted for, and the impact of noise on passenger activities and noise levels to safeguard passenger hearing were investigated. The motion noise effect models provide a means for tradeoff analyses between noise and motion variables, and also provide a framework for optimizing noise reduction among noise sources. Data for the models were collected onboard commercial aircraft flights and specially scheduled tests.

  8. Revision of civil aircraft noise data for the Integrated Noise Model (INM)

    DOT National Transportation Integrated Search

    1986-09-30

    This report provides noise data for the Integrated Noise Model (INM) and is referred to as data base number nine. Air-to-ground sound level versus distance data for civil (and some military) aircraft in a form useful for airport noise contour computa...

  9. Use of Airport Noise Complaint Files to Improve Understanding of Community Response to Aircraft Noise

    NASA Technical Reports Server (NTRS)

    Fidell, Sanford; Howe, Richard

    1998-01-01

    This study assessed the feasibility of using complaint information archived by modem airport monitoring systems to conduct quantitative analyses of the causes of aircraft noise complaints and their relationship to noise- induced annoyance. It was found that all computer-based airport monitoring systems provide at least rudimentary tools for performing data base searches by complainant name, address, date, time of day, and types of aircraft and complaints. Analyses of such information can provide useful information about longstanding concerns, such as the extent to which complaint rates are driven by objectively measurable aspects of aircraft operations; the degree to which changes in complaint rates can be predicted prior to implementation of noise mitigation measures; and the degree to which aircraft complaint information can be used to simplify and otherwise improve prediction of the prevalence of noise-induced annoyance in communities.

  10. The prediction of en route noise levels for a DC-9 aircraft

    NASA Technical Reports Server (NTRS)

    Weir, Donald S.

    1988-01-01

    En route noise for advanced propfan powered aircraft has become an issue of concern for the Federal Aviation Administration. The NASA Aircraft Noise Prediction Program (ANOPP) is used to demonstrate the source noise and propagation effects for an aircraft in level flight up to 35,000 feet altitude. One-third octave band spectra of the source noise, atmospheric absorption loss, and received noise are presented. The predicted maximum A-weighted sound pressure level is compared to measured data from the Aeronautical Research Institute of Sweden. ANOPP is shown to be an effective tool in evaluating the en route noise characteristics of a DC-9 aircraft.

  11. The Low-Noise Potential of Distributed Propulsion on a Catamaran Aircraft

    NASA Technical Reports Server (NTRS)

    Posey, Joe W.; Tinetti, A. F.; Dunn, M. H.

    2006-01-01

    The noise shielding potential of an inboard-wing catamaran aircraft when coupled with distributed propulsion is examined. Here, only low-frequency jet noise from mid-wing-mounted engines is considered. Because low frequencies are the most difficult to shield, these calculations put a lower bound on the potential shielding benefit. In this proof-of-concept study, simple physical models are used to describe the 3-D scattering of jet noise by conceptualized catamaran aircraft. The Fast Scattering Code is used to predict noise levels on and about the aircraft. Shielding results are presented for several catamaran type geometries and simple noise source configurations representative of distributed propulsion radiation. Computational analyses are presented that demonstrate the shielding benefits of distributed propulsion and of increasing the width of the inboard wing. Also, sample calculations using the FSC are presented that demonstrate additional noise reduction on the aircraft fuselage by the use of acoustic liners on the inboard wing trailing edge. A full conceptual aircraft design would have to be analyzed over a complete mission to more accurately quantify community noise levels and aircraft performance, but the present shielding calculations show that a large acoustic benefit could be achieved by combining distributed propulsion and liner technology with a twin-fuselage planform.

  12. Increased prevalence of hypertension in a population exposed to aircraft noise

    PubMed Central

    Rosenlund, M; Berglind, N; Pershagen, G; Jarup, L; Bluhm, G

    2001-01-01

    OBJECTIVES—To investigate whether there is a relation between residential exposure to aircraft noise and hypertension.
METHODS—The study population comprised two random samples of subjects aged 19-80 years, one including 266 residents in the vicinity of Stockholm Arlanda airport, and another comprising 2693 inhabitants in other parts of Stockholm county. The subjects were classified according to the time weighted equal energy and maximum aircraft noise levels at their residence. A questionnaire provided information on individual characteristics including history of hypertension.
RESULTS—The prevalence odds ratio for hypertension adjusted for age, sex, smoking, and education was 1.6 (95% confidence interval (95% CI) 1.0 to 2.5) among those with energy averaged aircraft noise levels exceeding 55 dBA, and 1.8 (95% CI 1.1 to 2.8) among those with maximum aircraft noise levels exceeding 72 dBA. An exposure-response relation was suggested for both exposure measures. The exposure to aircraft noise seemed particularly important for older subjects and for those not reporting impaired hearing ability.
CONCLUSIONS—Community exposure to aircraft noise may be associated with hypertension. PMID:11706142

  13. Characteristics of propeller noise on an aircraft fuselage related to interior noise transmission

    NASA Technical Reports Server (NTRS)

    Mixson, J. S.; Barton, C. K.; Piersol, A. G.; Wilby, J. F.

    1979-01-01

    Exterior noise was measured on the fuselage of a twin-engine, light aircraft at four values of engine rpm in ground static tests and at forward speeds up to 36 m/s in taxi tests. Propeller noise levels, spectra, and correlations were determined using a horizontal array of seven flush-mounted microphones and a vertical array of four flush-mounted microphones in the propeller plane. The measured levels and spectra are compared with predictions based on empirical and analytical methods for static and taxi conditions. Trace wavelengths of the propeller noise field, obtained from point-to-point correlations, are compared with the aircraft sidewall structural dimensions, and some analytical results are presented that suggest the sensitivity of interior noise transmission to variations of the propeller noise characteristics.

  14. Saliva Cortisol and Exposure to Aircraft Noise in Six European Countries

    PubMed Central

    Selander, Jenny; Bluhm, Gösta; Theorell, Töres; Pershagen, Göran; Babisch, Wolfgang; Seiffert, Ingeburg; Houthuijs, Danny; Breugelmans, Oscar; Vigna-Taglianti, Federica; Antoniotti, Maria Chiara; Velonakis, Emmanuel; Davou, Elli; Dudley, Marie-Louise; Järup, Lars

    2009-01-01

    Background Several studies show an association between exposure to aircraft or road traffic noise and cardiovascular effects, which may be mediated by a noise-induced release of stress hormones. Objective Our objective was to assess saliva cortisol concentration in relation to exposure to aircraft noise. Method A multicenter cross-sectional study, HYENA (Hypertension and Exposure to Noise near Airports), comprising 4,861 persons was carried out in six European countries. In a subgroup of 439 study participants, selected to enhance the contrast in exposure to aircraft noise, saliva cortisol was assessed three times (morning, lunch, and evening) during 1 day. Results We observed an elevation of 6.07 nmol/L [95% confidence interval (CI), 2.32–9.81 nmol/L] in morning saliva cortisol level in women exposed to aircraft noise at an average 24-hr sound level (LAeq,24h) > 60 dB, compared with women exposed to LAeq,24h ≤ 50 dB, corresponding to an increase of 34%. Employment status appeared to modify the response. We found no association between noise exposure and saliva cortisol levels in men. Conclusions Our results suggest that exposure to aircraft noise increases morning saliva cortisol levels in women, which could be of relevance for noise-related cardiovascular effects. PMID:20049122

  15. Children's annoyance reactions to aircraft and road traffic noise.

    PubMed

    van Kempen, Elise E M M; van Kamp, Irene; Stellato, Rebecca K; Lopez-Barrio, Isabel; Haines, Mary M; Nilsson, Mats E; Clark, Charlotte; Houthuijs, Danny; Brunekreef, Bert; Berglund, Birgitta; Stansfeld, Stephen A

    2009-02-01

    Since annoyance reactions of children to environmental noise have rarely been investigated, no source specific exposure-response relations are available. The aim of this paper is to investigate children's reactions to aircraft and road traffic noise and to derive exposure-response relations. To this end, children's annoyance reactions to aircraft and road traffic noise in both the home and the school setting were investigated using the data gathered in a cross-sectional multicenter study, carried out among 2844 children (age 9-11 years) attending 89 primary schools around three European airports. An exposure-response relation was demonstrated between exposure to aircraft noise at school (L(Aeq,7-23 h)) and severe annoyance in children: after adjustment for confounders, the percentage severely annoyed children was predicted to increase from about 5.1% at 50 dB to about 12.1% at 60 dB. The findings were consistent across the three samples. Aircraft noise at home (L(Aeq,7-23 h)) demonstrated a similar relation with severe annoyance. Children attending schools with higher road traffic noise (L(Aeq,7-23 h)) were more annoyed. Although children were less annoyed at levels above 55 dB, the shapes of the exposure-response relations found among children were comparable to those found in their parents.

  16. System Noise Assessment and the Potential for a Low Noise Hybrid Wing Body Aircraft with Open Rotor Propulsion

    NASA Technical Reports Server (NTRS)

    Thomas, Russell H.; Burley, Casey L.; Lopes, Leonard V.; Bahr, Christopher J.; Gern, Frank H.; VanZante, Dale E.

    2014-01-01

    An aircraft system noise assessment was conducted for a hybrid wing body freighter aircraft concept configured with three open rotor engines. The primary objective of the study was to determine the aircraft system level noise given the significant impact of installation effects including shielding the open rotor noise by the airframe. The aircraft was designed to carry a payload of 100,000 lbs on a 6,500 nautical mile mission. An experimental database was used to establish the propulsion airframe aeroacoustic installation effects including those from shielding by the airframe planform, interactions with the control surfaces, and additional noise reduction technologies. A second objective of the study applied the impacts of projected low noise airframe technology and a projection of advanced low noise rotors appropriate for the NASA N+2 2025 timeframe. With the projection of low noise rotors and installation effects, the aircraft system level was 26.0 EPNLdB below Stage 4 level with the engine installed at 1.0 rotor diameters upstream of the trailing edge. Moving the engine to 1.5 rotor diameters brought the system level noise to 30.8 EPNLdB below Stage 4. At these locations on the airframe, the integrated level of installation effects including shielding can be as much as 20 EPNLdB cumulative in addition to lower engine source noise from advanced low noise rotors. And finally, an additional set of technology effects were identified and the potential impact at the system level was estimated for noise only without assessing the impact on aircraft performance. If these additional effects were to be included it is estimated that the potential aircraft system noise could reach as low as 38.0 EPNLdB cumulative below Stage 4.

  17. Workshop on Jet Exhaust Noise Reduction for Tactical Aircraft - NASA Perspective

    NASA Technical Reports Server (NTRS)

    Huff, Dennis L.; Henderson, Brenda S.

    2007-01-01

    Jet noise from supersonic, high performance aircraft is a significant problem for takeoff and landing operations near air bases and aircraft carriers. As newer aircraft with higher thrust and performance are introduced, the noise tends to increase due to higher jet exhaust velocities. Jet noise has been a subject of research for over 55 years. Commercial subsonic aircraft benefit from changes to the engine cycle that reduce the exhaust velocities and result in significant noise reduction. Most of the research programs over the past few decades have concentrated on commercial aircraft. Progress has been made by introducing new engines with design features that reduce the noise. NASA has recently started a new program called "Fundamental Aeronautics" where three projects (subsonic fixed wing, subsonic rotary wing, and supersonics) address aircraft noise. For the supersonics project, a primary goal is to understand the underlying physics associated with jet noise so that improved noise prediction tools and noise reduction methods can be developed for a wide range of applications. Highlights from the supersonics project are presented including prediction methods for broadband shock noise, flow measurement methods, and noise reduction methods. Realistic expectations are presented based on past history that indicates significant jet noise reduction cannot be achieved without major changes to the engine cycle. NASA s past experience shows a few EPNdB (effective perceived noise level in decibels) can be achieved using low noise design features such as chevron nozzles. Minimal thrust loss can be expected with these nozzles (< 0.5%) and they may be retrofitted on existing engines. In the long term, it is desirable to use variable cycle engines that can be optimized for lower jet noise during takeoff operations and higher thrust for operational performance. It is also suggested that noise experts be included early in the design process for engine nozzle systems to participate

  18. Cabin Noise Control for Twin Engine General Aviation Aircraft

    NASA Technical Reports Server (NTRS)

    Vaicaitis, R.; Slazak, M.

    1982-01-01

    An analytical model based on modal analysis was developed to predict the noise transmission into a twin-engine light aircraft. The model was applied to optimize the interior noise to an A-weighted level of 85 dBA. To achieve the required noise attenuation, add-on treatments in the form of honeycomb panels, damping tapes, acoustic blankets, septum barriers and limp trim panels were added to the existing structure. The added weight of the noise control treatment is about 1.1 percent of the total gross take-off weight of the aircraft.

  19. Aircraft noise, air pollution, and mortality from myocardial infarction.

    PubMed

    Huss, Anke; Spoerri, Adrian; Egger, Matthias; Röösli, Martin

    2010-11-01

    Myocardial infarction has been associated with both transportation noise and air pollution. We examined residential exposure to aircraft noise and mortality from myocardial infarction, taking air pollution into account. We analyzed the Swiss National Cohort, which includes geocoded information on residence. Exposure to aircraft noise and air pollution was determined based on geospatial noise and air-pollution (PM10) models and distance to major roads. We used Cox proportional hazard models, with age as the timescale. We compared the risk of death across categories of A-weighted sound pressure levels (dB(A)) and by duration of living in exposed corridors, adjusting for PM10 levels, distance to major roads, sex, education, and socioeconomic position of the municipality. We analyzed 4.6 million persons older than 30 years who were followed from near the end of 2000 through December 2005, including 15,532 deaths from myocardial infarction (ICD-10 codes I 21, I 22). Mortality increased with increasing level and duration of aircraft noise. The adjusted hazard ratio comparing ≥60 dB(A) with <45 dB(A) was 1.3 (95% confidence interval = 0.96-1.7) overall, and 1.5 (1.0-2.2) in persons who had lived at the same place for at least 15 years. None of the other endpoints (mortality from all causes, all circulatory disease, cerebrovascular disease, stroke, and lung cancer) was associated with aircraft noise. Aircraft noise was associated with mortality from myocardial infarction, with a dose-response relationship for level and duration of exposure. The association does not appear to be explained by exposure to particulate matter air pollution, education, or socioeconomic status of the municipality.

  20. Community Noise Exposure Resulting from Aircraft Operations: Acquisition and Analysis of Aircraft Noise and Performance Data

    DTIC Science & Technology

    1975-08-01

    defined for a noise event as: SELT - 10 log ALT i^dt L For purposes of aircraft noise evaluation, SELT is computed from tone-corrected A - levels sampled...In calculating values of PNLr PNLT, A - levels , EPNL, etc. T’ased on the Investigation summarized in Appendix C, we recommend that noise spectra be...handled In the following manner: a. Do not calculate or report PNL, PNLT, A - levels or other measures for spectra where less than 10 one- third

  1. Noise levels in a neonatal transport incubator in medically configured aircraft.

    PubMed

    Sittig, Steven E; Nesbitt, Jeffrey C; Krageschmidt, Dale A; Sobczak, Steven C; Johnson, Robert V

    2011-01-01

    The purpose of this study was to evaluate exposure of neonates to noise during air medical transport as few commercially available hearing protective devices exist for premature newborns during air medical transport. Sound pressure levels in an infant incubator during actual flight conditions in four common medically configured aircraft were measured. Three noise dosimeters measured time-weighted average noise exposure during flight in each aircraft. One dosimeter was placed in the infant incubator, and the remaining dosimeters recorded noise levels in various parts of the aircraft cabin. The incubator provided a 6-dBA decrease in noise exposure from that in the crew cabin. The average noise level in the incubator in all aircraft was close to 80 dB, much higher than the proposed limits of 45 dB for neonatal intensive care unit noise exposure or 60 dB during transport. Exposure of neonates to elevated noise levels during transport may be harmful, and steps should be taken to protect the hearing of this patient population. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  2. A study of interior noise levels, noise sources and transmission paths in light aircraft

    NASA Technical Reports Server (NTRS)

    Hayden, R. E.; Murray, B. S.; Theobald, M. A.

    1983-01-01

    The interior noise levels and spectral characteristics of 18 single-and twin-engine propeller-driven light aircraft, and source-path diagnosis of a single-engine aircraft which was considered representative of a large part of the fleet were studied. The purpose of the flight surveys was to measure internal noise levels and identify principal noise sources and paths under a carefully controlled and standardized set of flight procedures. The diagnostic tests consisted of flights and ground tests in which various parts of the aircraft, such as engine mounts, the engine compartment, exhaust pipe, individual panels, and the wing strut were instrumented to determine source levels and transmission path strengths using the transfer function technique. Predominant source and path combinations are identified. Experimental techniques are described. Data, transfer function calculations to derive source-path contributions to the cabin acoustic environment, and implications of the findings for noise control design are analyzed.

  3. Sources and characteristics of interior noise in general aviation aircraft

    NASA Technical Reports Server (NTRS)

    Catherines, J. J.; Jha, S. K.

    1976-01-01

    A field study has been conducted to examine the interior noise characteristics of a general aviation aircraft. The purposes of the study were to identify the major noise sources and their relative contribution and to establish the noise transmission paths and their relative importance. Tests were performed on an aircraft operating under stationary conditions on the ground. The results show that the interior noise level of light aircraft is dominated by broadband, low frequencies (below 1,000 Hz). Both the propeller and the engine are dominant sources; however, the contribution from the propeller is significantly more than the engine at its fundamental blade passage frequency. The data suggests that the airborne path is more dominant than the structure-borne path in the transmission of broadband, low-frequency noise which apparently results from the exhaust.

  4. Sources and characteristics of interior noise in general aviation aircraft

    NASA Technical Reports Server (NTRS)

    Catherines, J. J.; Jha, S. K.

    1976-01-01

    A field study was conducted to examine the interior noise characteristics of a general aviation aircraft. The goals were to identify the major noise sources and their relative contribution and to establish the noise transmission paths and their relative importance. Tests were performed on an aircraft operating under stationary conditions on the ground. Results show that the interior noise level of light aircraft is dominated by broadband, low frequencies (below 1,000 Hz). Both the propeller and the engine are dominant sources, however, the contribution from the propeller is significantly more than the engine at its fundamental blade passage frequency. The data suggest that the airborne path is more dominant than the structure-borne path in the transmission of broadband, low frequency noise which apparently results from the exhaust.

  5. Engine-propeller power plant aircraft community noise reduction key methods

    NASA Astrophysics Data System (ADS)

    Moshkov P., A.; Samokhin V., F.; Yakovlev A., A.

    2018-04-01

    Basic methods of aircraft-type flying vehicle engine-propeller power plant noise reduction were considered including single different-structure-and-arrangement propellers and piston engines. On the basis of a semiempirical model the expressions for blade diameter and number effect evaluation upon propeller noise tone components under thrust constancy condition were proposed. Acoustic tests performed at Moscow Aviation institute airfield on the whole qualitatively proved the obtained ratios. As an example of noise and detectability reduction provision a design-and-experimental estimation of propeller diameter effect upon unmanned aircraft audibility boundaries was performed. Future investigation ways were stated to solve a low-noise power plant design problem for light aircraft and unmanned aerial vehicles.

  6. Helicopter noise analysis : round-robin test

    DOT National Transportation Integrated Search

    1981-08-01

    This report documents the results of an international round robin test on the analysis of helicopter noise. Digital spectral noise data of a 3.5-second simulated helicopter flyover and identical analog test tapes containing helicopter noise data, ref...

  7. Noise Certification Predictions for FJX-2-Powered Aircraft Using Analytic Methods

    NASA Technical Reports Server (NTRS)

    Berton, Jeffrey J.

    1999-01-01

    Williams International Co. is currently developing the 700-pound thrust class FJX-2 turbofan engine for the general Aviation Propulsion Program's Turbine Engine Element. As part of the 1996 NASA-Williams cooperative working agreement, NASA agreed to analytically calculate the noise certification levels of the FJX-2-powered V-Jet II test bed aircraft. Although the V-Jet II is a demonstration aircraft that is unlikely to be produced and certified, the noise results presented here may be considered to be representative of the noise levels of small, general aviation jet aircraft that the FJX-2 would power. A single engine variant of the V-Jet II, the V-Jet I concept airplane, is also considered. Reported in this paper are the analytically predicted FJX-2/V-Jet noise levels appropriate for Federal Aviation Regulation certification. Also reported are FJX-2/V-Jet noise levels using noise metrics appropriate for the propeller-driven aircraft that will be its major market competition, as well as a sensitivity analysis of the certification noise levels to major system uncertainties.

  8. Noise of High-Performance Aircraft at Afterburner

    DTIC Science & Technology

    2016-09-22

    Investigation of the importance of indirect combustion noise as a dominant component of military aircraft noise at afterburner. This quarterly...the combustion process is highly unsteady. This creates large temperature fluctuations resulting in the generation of numerous high and low...flow with significant axial velocity gradients, indirect combustion noise is generated (see figure 1). The present research is to investigate this

  9. Review of subjective measures of human response to aircraft noise

    NASA Technical Reports Server (NTRS)

    Cawthorn, J. M.; Mayes, W. H.

    1976-01-01

    The development of aircraft noise rating scales and indexes is reviewed up to the present time. Single event scales, multiple event indexes, and their interrelation with each other, are considered. Research requirements for further refinement and development of aircraft noise rating quantification factors are discussed.

  10. Prop-fan noise propagation

    DOT National Transportation Integrated Search

    1989-02-07

    This report summarizes studies of enroute propfan noise propagation involving noise data obtained by DOT/TSC at ground stations during fly-over tests on October 30-31, 1987. These data have been analsyzed by DOT/TSC for comparison with in flight data...

  11. Community reaction to aircraft noise around smaller city airports

    NASA Technical Reports Server (NTRS)

    Connor, W. K.; Patterson, H. P.

    1972-01-01

    The results are presented of a study of community reaction to jet aircraft noise in the vicinity of airports in Chattanooga, Tennessee, and Reno, Nevada. These cities were surveyed in order to obtain data for comparison with that obtained in larger cities during a previous study. (The cities studied earlier were Boston, Chicago, Dallas, Denver, Los Angeles, Miami, and New York.) The purpose of the present effort was to observe the relative reaction under conditions of lower noise exposure and in less highly urbanized areas, and to test the previously developed predictive equation for annoyance under such circumstances. In Chattanooga and Reno a total of 1960 personal interviews based upon questionnaires were obtained. Aircraft noise measurements were made concurrently and aircraft operations logs were maintained for several weeks in each city to permit computation of noise exposures. The survey respondents were chosen randomly from various exposure zones.

  12. General aviation aircraft interior noise problem: Some suggested solutions

    NASA Technical Reports Server (NTRS)

    Roskam, J.; Navaneethan, R.

    1984-01-01

    Laboratory investigation of sound transmission through panels and the use of modern data analysis techniques applied to actual aircraft is used to determine methods to reduce general aviation interior noise. The experimental noise reduction characteristics of stiffened flat and curved panels with damping treatment are discussed. The experimental results of double-wall panels used in the general aviation industry are given. The effects of skin panel material, fiberglass insulation and trim panel material on the noise reduction characteristics of double-wall panels are investigated. With few modifications, the classical sound transmission theory can be used to design the interior noise control treatment of aircraft. Acoustic intensity and analysis procedures are included.

  13. Preliminary noise tests of the engine-over-the-wing concept. 2: 10 deg - 20 deg flap position

    NASA Technical Reports Server (NTRS)

    Reshotko, M.; Olsen, W. A.; Dorsch, R. G.

    1972-01-01

    Preliminary acoustic tests of the engine-over-the-wing concept as a method for reducing the aerodynamic noise created by conventional and short takeoff aircraft are discussed. Tests were conducted with a small wing section model having two flaps which can be set for either the landing or takeoff positions. Data was acquired with the flaps set at 10 degrees and 20 degrees for takeoff and 30 and 60 degrees for landing. The engine exhaust was simulated by an air jet from a convergent nozzle. Far field noise data are presented for nominal pressure ratios of 1.25, 1.4 and 1.7 for both the flyover and sideline modes.

  14. Preliminary noise tradeoff study of a Mach 2.7 cruise aircraft

    NASA Technical Reports Server (NTRS)

    Mascitti, V. R.; Maglieri, D. J. (Editor); Raney, J. P. (Editor)

    1979-01-01

    NASA computer codes in the areas of preliminary sizing and enroute performance, takeoff and landing performance, aircraft noise prediction, and economics were used in a preliminary noise tradeoff study for a Mach 2.7 design supersonic cruise concept. Aerodynamic configuration data were based on wind-tunnel model tests and related analyses. Aircraft structural characteristics and weight were based on advanced structural design methodologies, assuming conventional titanium technology. The most advanced noise prediction techniques available were used, and aircraft operating costs were estimated using accepted industry methods. The 4-engines cycles included in the study were based on assumed 1985 technology levels. Propulsion data was provided by aircraft manufacturers. Additional empirical data is needed to define both noise reduction features and other operating characteristics of all engine cycles under study. Data on VCE design parameters, coannular nozzle inverted flow noise reduction and advanced mechanical suppressors are urgently needed to reduce the present uncertainties in studies of this type.

  15. Interior noise control ground test studies for advanced turboprop aircraft applications

    NASA Technical Reports Server (NTRS)

    Simpson, Myles A.; Cannon, Mark R.; Burge, Paul L.; Boyd, Robert P.

    1989-01-01

    The measurement and analysis procedures are documented, and the results of interior noise control ground tests conducted on a DC-9 aircraft test section are summarized. The objectives of these tests were to study the fuselage response characteristics of treated and untreated aircraft with aft-mount advanced turboprop engines and to analyze the effectiveness of selected noise control treatments in reducing passenger cabin noise on these aircraft. The results of fuselage structural mode surveys, cabin cavity surveys and sound intensity surveys are presented. The performance of various structural and cabin sidewall treatments is assessed, based on measurements of the resulting interior noise levels under simulated advanced turboprop excitation.

  16. Potential for Landing Gear Noise Reduction on Advanced Aircraft Configurations

    NASA Technical Reports Server (NTRS)

    Thomas, Russell H.; Nickol, Craig L.; Burley, Casey L.; Guo, Yueping

    2016-01-01

    The potential of significantly reducing aircraft landing gear noise is explored for aircraft configurations with engines installed above the wings or the fuselage. An innovative concept is studied that does not alter the main gear assembly itself but does shorten the main strut and integrates the gear in pods whose interior surfaces are treated with acoustic liner. The concept is meant to achieve maximum noise reduction so that main landing gears can be eliminated as a major source of airframe noise. By applying this concept to an aircraft configuration with 2025 entry-into-service technology levels, it is shown that compared to noise levels of current technology, the main gear noise can be reduced by 10 EPNL dB, bringing the main gear noise close to a floor established by other components such as the nose gear. The assessment of the noise reduction potential accounts for design features for the advanced aircraft configuration and includes the effects of local flow velocity in and around the pods, gear noise reflection from the airframe, and reflection and attenuation from acoustic liner treatment on pod surfaces and doors. A technical roadmap for maturing this concept is discussed, and the possible drag increase at cruise due to the addition of the pods is identified as a challenge, which needs to be quantified and minimized possibly with the combination of detailed design and application of drag reduction technologies.

  17. Sound propagation elements in evaluation of en route noise of advanced turbofan aircraft

    NASA Technical Reports Server (NTRS)

    Sutherland, Louis C.; Wesler, John

    1990-01-01

    Cruise noise from an advanced turboprop aircraft is reviewed on the basis of available wind tunnel data to estimate the aircraft noise signature at the source. Available analytical models are used to evaluate the sound levels at the ground. The analysis allows reasonable estimates to be made of the community noise levels that might be generated during cruise by such aircraft, provides the basis for preliminary comparisons with available data on noise of existing aircraft during climb and helps to identify the dominant elements of the sound propagation models applicable to this situation.

  18. Risk assessment of aircraft noise on sleep in Montreal.

    PubMed

    Tétreault, Louis-Francois; Plante, Céline; Perron, Stéphane; Goudreau, Sophie; King, Norman; Smargiassi, Audrey

    2012-05-24

    Estimate the number of awakenings additional to spontaneous awakenings, induced by the nighttime aircraft movements at an international airport in Montreal, in the population residing nearby in 2009. Maximum sound levels (LAS,max) were derived from aircraft movements using the Integrated Noise Model 7.0b, on a 28 x 28 km grid centred on the airport and with a 0.1 x 0.1 km resolution. Outdoor LAS,max were converted to indoor LAS,max by reducing noise levels by 15 dB(A) or 21 dB(A). For all grid points, LAS,max were transformed into probabilities of additional awakening using a function developed by Basner et al. (2006). The probabilities of additional awakening were linked to estimated numbers of exposed residents for each grid location to assess the number of aircraft-noise-induced awakenings in Montreal. Using a 15 dB(A) sound attenuation, 590 persons would, on average, have one or more additional awakenings per night for the year 2009. In the scenario using a 21 dB(A) sound attenuation, on average, no one would be subjected to one or more additional awakenings per night due to aircraft noise. Using the 2009 flight patterns, our data suggest that a small number of Montreal residents are exposed to noise levels that could induce one or more awakenings additional to spontaneous awakenings per night.

  19. Agenda toward the development of a rational noise descriptor system relevant to human annoyance by en route aircraft noise

    NASA Technical Reports Server (NTRS)

    Garbell, Maurice A.

    1990-01-01

    A rational, internationally consistent, noise descriptor system is needed to express existing and predicted en route aircraft noise levels in terms closely correlated to the annoyance perceived by people and physiologically identifiable in people, to provide guidance for aircraft and powerplant design, flight management, land-use planning, and building codes. Expanding on previous discussions, a new comprehensive statement of the specific questions that must be resolved by needed research, and the nature and quality of proof that must be adduced to justify further steps toward the drafting and adoption of new international en route aircraft-noise standards is sought. The single noise-descriptor system envisioned must be valid for widely varying aircraft-noise frequency spectra, including time-variant components and agreeable and disagreeable discrete tones and combinations of tones. The measures and criteria established by the system must be valid at high and low immission levels, at high and low ambient noise levels, for great and small number of noise events, and outdoors and indoors.

  20. Active local control of propeller-aircraft run-up noise.

    PubMed

    Hodgson, Murray; Guo, Jingnan; Germain, Pierre

    2003-12-01

    Engine run-ups are part of the regular maintenance schedule at Vancouver International Airport. The noise generated by the run-ups propagates into neighboring communities, disturbing the residents. Active noise control is a potentially cost-effective alternative to passive methods, such as enclosures. Propeller aircraft generate low-frequency tonal noise that is highly compatible with active control. This paper presents a preliminary investigation of the feasibility and effectiveness of controlling run-up noise from propeller aircraft using local active control. Computer simulations for different configurations of multi-channel active-noise-control systems, aimed at reducing run-up noise in adjacent residential areas using a local-control strategy, were performed. These were based on an optimal configuration of a single-channel control system studied previously. The variations of the attenuation and amplification zones with the number of control channels, and with source/control-system geometry, were studied. Here, the aircraft was modeled using one or two sources, with monopole or multipole radiation patterns. Both free-field and half-space conditions were considered: for the configurations studied, results were similar in the two cases. In both cases, large triangular quiet zones, with local attenuations of 10 dB or more, were obtained when nine or more control channels were used. Increases of noise were predicted outside of these areas, but these were minimized as more control channels were employed. By combining predicted attenuations with measured noise spectra, noise levels after implementation of an active control system were estimated.

  1. Perceived Noise Analysis for Offset Jets Applied to Commercial Supersonic Aircraft

    NASA Technical Reports Server (NTRS)

    Huff, Dennis L.; Henderson, Brenda S.; Berton, Jeffrey J.; Seidel, Jonathan A.

    2016-01-01

    A systems analysis was performed with experimental jet noise data, engine/aircraft performance codes and aircraft noise prediction codes to assess takeoff noise levels and mission range for conceptual supersonic commercial aircraft. A parametric study was done to identify viable engine cycles that meet NASA's N+2 goals for noise and performance. Model scale data from offset jets were used as input to the aircraft noise prediction code to determine the expected sound levels for the lateral certification point where jet noise dominates over all other noise sources. The noise predictions were used to determine the optimal orientation of the offset nozzles to minimize the noise at the lateral microphone location. An alternative takeoff procedure called "programmed lapse rate" was evaluated for noise reduction benefits. Results show there are two types of engines that provide acceptable mission range performance; one is a conventional mixed-flow turbofan and the other is a three-stream variable-cycle engine. Separate flow offset nozzles reduce the noise directed toward the thicker side of the outer flow stream, but have less benefit as the core nozzle pressure ratio is reduced. At the systems level for a three-engine N+2 aircraft with full throttle takeoff, there is a 1.4 EPNdB margin to Chapter 3 noise regulations predicted for the lateral certification point (assuming jet noise dominates). With a 10% reduction in thrust just after clearing the runway, the margin increases to 5.5 EPNdB. Margins to Chapter 4 and Chapter 14 levels will depend on the cumulative split between the three certification points, but it appears that low specific thrust engines with a 10% reduction in thrust (programmed lapse rate) can come close to meeting Chapter 14 noise levels. Further noise reduction is possible with engine oversizing and derated takeoff, but more detailed mission studies are needed to investigate the range impacts as well as the practical limits for safety and takeoff

  2. On INM's Use of Corrected Net Thrust for the Prediction of Jet Aircraft Noise

    NASA Technical Reports Server (NTRS)

    McAninch, Gerry L.; Shepherd, Kevin P.

    2011-01-01

    The Federal Aviation Administration s (FAA) Integrated Noise Model (INM) employs a prediction methodology that relies on corrected net thrust as the sole correlating parameter between aircraft and engine operating states and aircraft noise. Thus aircraft noise measured for one set of atmospheric and aircraft operating conditions is assumed to be applicable to all other conditions as long as the corrected net thrust remains constant. This hypothesis is investigated under two primary assumptions: (1) the sound field generated by the aircraft is dominated by jet noise, and (2) the sound field generated by the jet flow is adequately described by Lighthill s theory of noise generated by turbulence.

  3. Interior noise control prediction study for high-speed propeller-driven aircraft

    NASA Technical Reports Server (NTRS)

    Rennison, D. C.; Wilby, J. F.; Marsh, A. H.; Wilby, E. G.

    1979-01-01

    An analytical model was developed to predict the noise levels inside propeller-driven aircraft during cruise at M = 0.8. The model was applied to three study aircraft with fuselages of different size (wide body, narrow body and small diameter) in order to determine the noise reductions required to achieve the goal of an A-weighted sound level which does not exceed 80 dB. The model was then used to determine noise control methods which could achieve the required noise reductions. Two classes of noise control treatments were investigated: add-on treatments which can be added to existing structures, and advanced concepts which would require changes to the fuselage primary structure. Only one treatment, a double wall with limp panel, provided the required noise reductions. Weight penalties associated with the treatment were estimated for the three study aircraft.

  4. Effects of aircraft noise exposure on saliva cortisol near airports in France.

    PubMed

    Lefèvre, Marie; Carlier, Marie-Christine; Champelovier, Patricia; Lambert, Jacques; Laumon, Bernard; Evrard, Anne-Sophie

    2017-08-01

    Saliva cortisol is a possible marker of noise-induced stress and could then mediate the relation observed between exposure to aircraft or road traffic noise and cardiovascular diseases. However, the association between transportation noise and cortisol levels is still unclear. The objective of the study was to investigate the variability of saliva cortisol concentration as an indicator of disturbed hypothalamus-pituitary-adrenal (HPA) axis regulation in relation to long-term aircraft noise exposure. Saliva samples were taken when awakening and before going to bed for 1244 participants older than 18 years of age. Information about health, socioeconomic and lifestyle factors was also collected by means of a face-to-face questionnaire performed at home by an interviewer. Aircraft noise exposure was assessed for each participant's home address using noise maps. Linear regression models were used to evaluate the effects of aircraft noise exposure on the morning and evening cortisol levels and on the daily variation of cortisol per hour. This study suggests a modification of the cortisol circadian rhythm in relation to aircraft noise exposure. This exposure was associated with a smaller variation of cortisol levels over the day, with unchanged morning cortisol levels, but higher cortisol levels in the evening. These findings provide some support for a psychological stress induced by aircraft noise exposure, resulting in HPA dysregulation and a flattened cortisol rhythm, thus contributing to cardiovascular diseases. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  5. Towards a better understanding of helicopter external noise

    NASA Astrophysics Data System (ADS)

    Damongeot, A.; Dambra, F.; Masure, B.

    The problem of helicopter external noise generation is studied taking into consideration simultaneously the multiple noise sources: rotor rotational-, rotor broadband -, and engine noise. The main data are obtained during flight tests of the rather quiet AS 332 Super Puma. The flight procedures settled by ICAO for noise regulations are used: horizontal flyover at 90 percent of the maximum speed, approach at minimum power velocity, take-off at best rate of climb. Noise source levels are assessed through narrow band analysis of ground microphone recordings, ground measurements of engine noise and theoretical means. With the perceived noise level unit used throughout the study, relative magnitude of noise sources is shown to be different from that obtained with linear noise unit. A parametric study of the influence of some helicopter parameters on external noise has shown that thickness-tapered, chord-tapered, and swept-back blade tips are good means to reduce the overall noise level in flyover and approach.

  6. Should helicopter noise be measured differently from other aircraft noise? A review of the psychoacoustic literature

    NASA Technical Reports Server (NTRS)

    Molino, J. A.

    1982-01-01

    A review of 34 studies indicates that several factors or variables might be important in providing a psychoacoustic foundation for measurements of the noise from helicopters. These factors are phase relations, tail rotor noise, repetition rate, crest level, and generic differences between conventional aircraft and helicopters. Particular attention was given to the impulsive noise known as blade slap. Analysis of the evidence for and against each factor reveals that, for the present state of scientific knowledge, none of these factors should be regarded as the basis for a significant noise measurement correction due to impulsive blade slap. The current method of measuring effective perceived noise level for conventional aircraft appears to be adequate for measuring helicopter noise as well.

  7. Design and test of aircraft engine isolators for reduced interior noise

    NASA Technical Reports Server (NTRS)

    Unruh, J. F.; Scheidt, D. C.

    1982-01-01

    Improved engine vibration isolation was proposed to be the most weight and cost efficient retrofit structure-borne noise control measure for single engine general aviation aircraft. A study was carried out the objectives: (1) to develop an engine isolator design specification for reduced interior noise transmission, (2) select/design candidate isolators to meet a 15 dB noise reduction design goal, and (3) carry out a proof of concept evaluation test. Analytical model of the engine, vibration isolators and engine mount structure were coupled to an empirical model of the fuselage for noise transmission evaluation. The model was used to develop engine isolator dynamic properties design specification for reduced noise transmission. Candidate isolators ere chosen from available product literature and retrofit to a test aircraft. A laboratory based test procedure was then developed to simulate engine induced noise transmission in the aircraft for a proof of concept evaluation test. Three candidate isolator configurations were evaluated for reduced structure-borne noise transmission relative to the original equipment isolators.

  8. In-flight acoustic testing techniques using the YO-3A Acoustic Research Aircraft

    NASA Technical Reports Server (NTRS)

    Cross, J. L.; Watts, M. E.

    1984-01-01

    This report discusses the flight testing techniques and equipment employed during air-to-air acoustic testing of helicopters at Ames Research Center. The in flight measurement technique used enables acoustic data to be obtained without the limitations of anechoic chambers or the multitude of variables encountered in ground based flyover testing. The air-to-air testing is made possible by the NASA YO-3A Acoustic Research Aircraft. This "Quiet Aircraft' is an acoustically instrumented version of a quiet observation aircraft manufactured for the military. To date, tests with the following aircraft have been conducted: YO-3A background noise; Hughes 500D; Hughes AH-64; Bell AH-1S; Bell AH-1G. Several system upgrades are being designed and implemented to improve the quality of data. This report will discuss not only the equipment involved and aircraft tested, but also the techniques used in these tests. In particular, formation flying position locations, and the test matrices will be discussed. Examples of data taken will also be presented.

  9. In-flight acoustic testing techniques using the YO-3A acoustic research aircraft

    NASA Technical Reports Server (NTRS)

    Cross, J. L.; Watts, M. E.

    1983-01-01

    This report discusses the flight testing techniques and equipment employed during air-to-air acoustic testing of helicopters at Ames Research Center. The in-flight measurement technique used enables acoustic data to be obtained without the limitations of anechoic chambers or the multitude of variables encountered in ground based flyover testing. The air-to-air testing is made possible by the NASA YO-3A Acoustic Research Aircraft. This 'Quiet Aircraft' is an acoustically instrumented version of a quiet observation aircraft manufactured for the military. To date, tests with the following aircraft have been conducted: YO-3A background noise; Hughes 500D; Hughes AH-64; Bell AH-1S; Bell AH-1G. Several system upgrades are being designed and implemented to improve the quality of data. This report will discuss not only the equipment involved and aircraft tested, but also the techniques used in these tests. In particular, formation flying, position locations, and the test matrices will be discussed. Examples of data taken will also be presented.

  10. On the dominant noise components of tactical aircraft: Laboratory to full scale

    NASA Astrophysics Data System (ADS)

    Tam, Christopher K. W.; Aubert, Allan C.; Spyropoulos, John T.; Powers, Russell W.

    2018-05-01

    This paper investigates the dominant noise components of a full-scale high performance tactical aircraft. The present study uses acoustic measurements of the exhaust jet from a single General Electric F414-400 turbofan engine installed in a Boeing F/A-18E Super Hornet aircraft operating from flight idle to maximum afterburner. The full-scale measurements are to the ANSI S12.75-2012 standard employing about 200 microphones. By comparing measured noise spectra with those from hot supersonic jets observed in the laboratory, the dominant noise components specific to the F/A-18E aircraft at different operating power levels are identified. At intermediate power, it is found that the dominant noise components of an F/A-18E aircraft are essentially the same as those of high temperature supersonic laboratory jets. However, at military and afterburner powers, there are new dominant noise components. Their characteristics are then documented and analyzed. This is followed by an investigation of their origin and noise generation mechanisms.

  11. Aircraft noise measurement instrumentation and techniques

    DOT National Transportation Integrated Search

    1996-08-01

    This letter report describes aircraft noise measurement instrumentation to : be used in the field. It includes guidance on good field-measurement : practice, general rules-of-thumb, as well as references to appropriate : national and international st...

  12. Study of noise transmission through double wall aircraft windows

    NASA Technical Reports Server (NTRS)

    Vaicaitis, R.

    1983-01-01

    Analytical and experimental procedures were used to predict the noise transmitted through double wall windows into the cabin of a twin-engine G/A aircraft. The analytical model was applied to optimize cabin noise through parametric variation of the structural and acoustic parameters. The parametric study includes mass addition, increase in plexiglass thickness, decrease in window size, increase in window cavity depth, depressurization of the space between the two window plates, replacement of the air cavity with a transparent viscoelastic material, change in stiffness of the plexiglass material, and different absorptive materials for the interior walls of the cabin. It was found that increasing the exterior plexiglass thickness and/or decreasing the total window size could achieve the proper amount of noise reduction for this aircraft. The total added weight to the aircraft is then about 25 lbs.

  13. Partial and Total Annoyance Due to Road Traffic Noise Combined with Aircraft or Railway Noise: Structural Equation Analysis.

    PubMed

    Gille, Laure-Anne; Marquis-Favre, Catherine; Lam, Kin-Che

    2017-11-30

    Structural equation modeling was used to analyze partial and total in situ annoyance in combined transportation noise situations. A psychophysical total annoyance model and a perceptual total annoyance model were proposed. Results show a high contribution of Noise exposure and Noise sensitivity to Noise annoyance , as well as a causal relationship between noise annoyance and lower Dwelling satisfaction. Moreover, the Visibility of noise source may increase noise annoyance, even when the visible noise source is different from the annoying source under study. With regards to total annoyance due to road traffic noise combined with railway or aircraft noise, even though in both situations road traffic noise may be considered background noise and the other noise source event noise, the contribution of road traffic noise to the models is greater than railway noise and smaller than aircraft noise. This finding may be explained by the difference in sound pressure levels between these two types of combined exposures or by the aircraft noise level, which may also indicate the city in which the respondents live. Finally, the results highlight the importance of sample size and variable distribution in the database, as different results can be observed depending on the sample or variables considered.

  14. Partial and Total Annoyance Due to Road Traffic Noise Combined with Aircraft or Railway Noise: Structural Equation Analysis

    PubMed Central

    Gille, Laure-Anne; Marquis-Favre, Catherine; Lam, Kin-Che

    2017-01-01

    Structural equation modeling was used to analyze partial and total in situ annoyance in combined transportation noise situations. A psychophysical total annoyance model and a perceptual total annoyance model were proposed. Results show a high contribution of Noise exposure and Noise sensitivity to Noise annoyance, as well as a causal relationship between noise annoyance and lower Dwelling satisfaction. Moreover, the Visibility of noise source may increase noise annoyance, even when the visible noise source is different from the annoying source under study. With regards to total annoyance due to road traffic noise combined with railway or aircraft noise, even though in both situations road traffic noise may be considered background noise and the other noise source event noise, the contribution of road traffic noise to the models is greater than railway noise and smaller than aircraft noise. This finding may be explained by the difference in sound pressure levels between these two types of combined exposures or by the aircraft noise level, which may also indicate the city in which the respondents live. Finally, the results highlight the importance of sample size and variable distribution in the database, as different results can be observed depending on the sample or variables considered. PMID:29189751

  15. Design of the Next Generation Aircraft Noise Prediction Program: ANOPP2

    NASA Technical Reports Server (NTRS)

    Lopes, Leonard V., Dr.; Burley, Casey L.

    2011-01-01

    The requirements, constraints, and design of NASA's next generation Aircraft NOise Prediction Program (ANOPP2) are introduced. Similar to its predecessor (ANOPP), ANOPP2 provides the U.S. Government with an independent aircraft system noise prediction capability that can be used as a stand-alone program or within larger trade studies that include performance, emissions, and fuel burn. The ANOPP2 framework is designed to facilitate the combination of acoustic approaches of varying fidelity for the analysis of noise from conventional and unconventional aircraft. ANOPP2 integrates noise prediction and propagation methods, including those found in ANOPP, into a unified system that is compatible for use within general aircraft analysis software. The design of the system is described in terms of its functionality and capability to perform predictions accounting for distributed sources, installation effects, and propagation through a non-uniform atmosphere including refraction and the influence of terrain. The philosophy of mixed fidelity noise prediction through the use of nested Ffowcs Williams and Hawkings surfaces is presented and specific issues associated with its implementation are identified. Demonstrations for a conventional twin-aisle and an unconventional hybrid wing body aircraft configuration are presented to show the feasibility and capabilities of the system. Isolated model-scale jet noise predictions are also presented using high-fidelity and reduced order models, further demonstrating ANOPP2's ability to provide predictions for model-scale test configurations.

  16. Response measurements for two building structures excited by noise from a large horizontal axis wind turbine generator

    NASA Technical Reports Server (NTRS)

    Hubbard, H. H.; Shepherd, K. P.

    1984-01-01

    Window and wall acceleration measurements and interior noise measurements ere made for two different building structures during excitation by noise from the WTS-4 horizontal axis wind turbine generator operating in a normal power generation mode. With turbine noise input pulses resulted in acceleration pulses for the wall and window elements of the two tests buildings. Response spectra suggest that natural vibration modes of the structures are excited. Responses of a house trailer were substantially greater than those for a building of sturdier construction. Peak acceleration values correlate well with similar data for houses excited by flyover noise from commercial and military airplanes and helicopters, and sonic booms from supersonic aircraft. Interior noise spectra have peaks at frequencies corresponding to structural vibration modes and room standing waves; and the levels for particular frequencies and locations can be higher than the outside levels.

  17. Propeller aircraft interior noise model utilization study and validation

    NASA Technical Reports Server (NTRS)

    Pope, L. D.

    1984-01-01

    Utilization and validation of a computer program designed for aircraft interior noise prediction is considered. The program, entitled PAIN (an acronym for Propeller Aircraft Interior Noise), permits (in theory) predictions of sound levels inside propeller driven aircraft arising from sidewall transmission. The objective of the work reported was to determine the practicality of making predictions for various airplanes and the extent of the program's capabilities. The ultimate purpose was to discern the quality of predictions for tonal levels inside an aircraft occurring at the propeller blade passage frequency and its harmonics. The effort involved three tasks: (1) program validation through comparisons of predictions with scale-model test results; (2) development of utilization schemes for large (full scale) fuselages; and (3) validation through comparisons of predictions with measurements taken in flight tests on a turboprop aircraft. Findings should enable future users of the program to efficiently undertake and correctly interpret predictions.

  18. Hybrid Wing Body Aircraft System Noise Assessment with Propulsion Airframe Aeroacoustic Experiments

    NASA Technical Reports Server (NTRS)

    Thomas, Russell H.; Burley, Casey L.; Olson, Erik D.

    2010-01-01

    A system noise assessment of a hybrid wing body configuration was performed using NASA s best available aircraft models, engine model, and system noise assessment method. A propulsion airframe aeroacoustic effects experimental database for key noise sources and interaction effects was used to provide data directly in the noise assessment where prediction methods are inadequate. NASA engine and aircraft system models were created to define the hybrid wing body aircraft concept as a twin engine aircraft with a 7500 nautical mile mission. The engines were modeled as existing technology high bypass ratio turbofans. The baseline hybrid wing body aircraft was assessed at 22 dB cumulative below the FAA Stage 4 certification level. To determine the potential for noise reduction with relatively near term technologies, seven other configurations were assessed beginning with moving the engines two fan nozzle diameters upstream of the trailing edge and then adding technologies for reduction of the highest noise sources. Aft radiated noise was expected to be the most challenging to reduce and, therefore, the experimental database focused on jet nozzle and pylon configurations that could reduce jet noise through a combination of source reduction and shielding effectiveness. The best configuration for reduction of jet noise used state-of-the-art technology chevrons with a pylon above the engine in the crown position. This configuration resulted in jet source noise reduction, favorable azimuthal directivity, and noise source relocation upstream where it is more effectively shielded by the limited airframe surface, and additional fan noise attenuation from acoustic liner on the crown pylon internal surfaces. Vertical and elevon surfaces were also assessed to add shielding area. The elevon deflection above the trailing edge showed some small additional noise reduction whereas vertical surfaces resulted in a slight noise increase. With the effects of the configurations from the

  19. The noise environment of a school classroom due to the operation of utility helicopters. [acoustic measurements of helicopter noise during flight over building

    NASA Technical Reports Server (NTRS)

    Hilton, D. A.; Pegg, R. J.

    1974-01-01

    Noise measurements under controlled conditions have been made inside and outside of a school building during flyover operations of four different helicopters. The helicopters were operated at a condition considered typical for a police patrol mission. Flyovers were made at an altitude of 500 ft and an airspeed of 45 miles per hour. During these operations acoustic measurements were made inside and outside of the school building with the windows closed and then open. The outside noise measurements during helicopter flyovers indicate that the outside db(A) levels were approximately the same for all test helicopters. For the windows closed case, significant reductions for the inside measured db(A) values were noted for all overflights. These reductions were approximately 20 db(A); similar reductions were noted in other subjective measuring units. The measured internal db(A) levels with the windows open exceeded published classroom noise criteria values; however, for the windows-closed case they are in general agreement with the criteria values.

  20. Assessing effects of military aircraft noise on residential property values near airbases

    NASA Astrophysics Data System (ADS)

    Fidell, Sanford; Tabachnick, Barbara; Silvati, Laura; Cook, Brenda

    The question, 'Does military aircraft noise exposure affect residential property values in the vicinity of Air Force bases?', can be asked and answered with varying degrees of generality and tolerable errors of inference. Definitive answers are difficult to develop because the question itself may not be meaningful in some circumstances: property values are affected by many factors other than aircraft noise which can fluctuate greatly in different areas and during different time periods; credible attribution of causality for changes in property values uniquely to aircraft noise requires many costly study design measures; and prior findings suggest that if a relationship exists, it is not a large or especially strong one. Thus, evidence of a simple geographic association between aircraft noise exposure and residential property values does not provide a conclusive answer to the question. In an effort to develop more compelling evidence, the US Air Force is planning to compare historical records of sale prices of properties in areas of differential aircraft noise exposure during specific time periods with predictions of sale prices derived from a validated statistical model of residential property values.

  1. Policy discourse, people's internal frames, and declared aircraft noise annoyance: an application of Q-methodology.

    PubMed

    Kroesen, Maarten; Bröer, Christian

    2009-07-01

    Aircraft noise annoyance is studied extensively, but often without an explicit theoretical framework. In this article, a social approach for noise annoyance is proposed. The idea that aircraft noise is meaningful to people within a socially produced discourse is assumed and tested. More particularly, it is expected that the noise policy discourse influences people's assessment of aircraft noise. To this end, Q-methodology is used, which, to the best of the authors' knowledge, has not been used for aircraft noise annoyance so far. Through factor analysis five distinct frames are revealed: "Long live aviation!," "aviation: an ecological threat," "aviation and the environment: a solvable problem," "aircraft noise: not a problem," and "aviation: a local problem." It is shown that the former three frames are clearly related to the policy discourse. Based on this observation it is argued that policy making is a possible mechanism through which the sound of aircraft is turned into annoyance. In addition, it is concluded that the experience of aircraft noise and, in particular, noise annoyance is part of coherent frames of mind, which consist of mutually reinforcing positions and include non-acoustical factors.

  2. System Noise Assessment of Blended-Wing-Body Aircraft With Open Rotor Propulsion

    NASA Technical Reports Server (NTRS)

    Guo, Yueping; Thomas, Russell H.

    2015-01-01

    An aircraft system noise study is presented for the Blended-Wing-Body (BWB) aircraft concept with three open rotor engines mounted on the upper surface of the airframe. It is shown that for such an aircraft, the cumulative Effective Perceived Noise Level (EPNL) is about 24 dB below the current aircraft noise regulations of Stage 4. While this makes the design acoustically viable in meeting the regulatory requirements, even with the consideration of more stringent noise regulations of a possible Stage 5 in the next decade or so, the design will likely meet stiff competitions from aircraft with turbofan engines. It is shown that the noise levels of the BWB design are held up by the inherently high noise levels of the open rotor engines and the limitation on the shielding benefit due to the practical design constraint on the engine location. Furthermore, it is shown that the BWB design has high levels of noise from the main landing gear, due to their exposure to high speed flow at the junction between the center body and outer wing. These are also the reasons why this baseline BWB design does not meet the NASA N+2 noise goal of 42 dB below Stage 4. To identify approaches that may further reduce noise, parametric studies are also presented, including variations in engine location, vertical tail and elevon variations, and airframe surface acoustic liner treatment effect. These have the potential to further reduce noise but they are only at the conceptual stage.

  3. Aeroacoustic Evaluation of Flap and Landing Gear Noise Reduction Concepts

    NASA Technical Reports Server (NTRS)

    Khorrami, Mehdi R.; Humphreys, William M., Jr.; Lockard, David P.; Ravetta, Patricio A.

    2014-01-01

    Aeroacoustic measurements for a semi-span, 18% scale, high-fidelity Gulfstream aircraft model are presented. The model was used as a test bed to conduct detailed studies of flap and main landing gear noise sources and to determine the effectiveness of numerous noise mitigation concepts. Using a traversing microphone array in the flyover direction, an extensive set of acoustic data was obtained in the NASA Langley Research Center 14- by 22-Foot Subsonic Tunnel with the facility in the acoustically treated open-wall (jet) mode. Most of the information was acquired with the model in a landing configuration with the flap deflected 39 deg and the main landing gear alternately installed and removed. Data were obtained at Mach numbers of 0.16, 0.20, and 0.24 over directivity angles between 56 deg and 116 deg, with 90 deg representing the overhead direction. Measured acoustic spectra showed that several of the tested flap noise reduction concepts decrease the sound pressure levels by 2 - 4 dB over the entire frequency range at all directivity angles. Slightly lower levels of noise reduction from the main landing gear were obtained through the simultaneous application of various gear devices. Measured aerodynamic forces indicated that the tested gear/flap noise abatement technologies have a negligible impact on the aerodynamic performance of the aircraft model.

  4. Perceived Noise Analysis for Offset Jets Applied to Commercial Supersonic Aircraft

    NASA Technical Reports Server (NTRS)

    Huff, Dennis L.; Henderson, Brenda S.; Berton, Jeffrey J.; Seidel, Jonathan A.

    2016-01-01

    A systems analysis was performed with experimental jet noise data, engine/aircraft performance codes and aircraft noise prediction codes to assess takeoff noise levels and mission range for conceptual supersonic commercial aircraft. A parametric study was done to identify viable engine cycles that meet NASAs N+2 goals for noise and performance. Model scale data from offset jets was used as input to the aircraft noise prediction code to determine the expected sound levels for the lateral certification point where jet noise dominates over all other noise sources. The noise predictions were used to determine the optimal orientation of the offset nozzles to minimize the noise at the lateral microphone location. An alternative takeoff procedure called programmed lapse rate was evaluated for noise reduction benefits. Results show there are two types of engines that provide acceptable range performance; one is a standard mixed-flow turbofan with a single-stage fan, and the other is a three-stream variable-cycle engine with a multi-stage fan. The engine with a single-stage fan has a lower specific thrust and is 8 to 10 EPNdB quieter for takeoff. Offset nozzles reduce the noise directed toward the thicker side of the outer flow stream, but have less benefit as the core nozzle pressure ratio is reduced and the bypass-to-core area ratio increases. At the systems level for a three-engine N+2 aircraft with full throttle takeoff, there is a 1.4 EPNdB margin to Chapter 3 noise regulations predicted for the lateral certification point (assuming jet noise dominates). With a 10 reduction in thrust just after takeoff rotation, the margin increases to 5.5 EPNdB. Margins to Chapter 4 and Chapter 14 levels will depend on the cumulative split between the three certification points, but it appears that low specific thrust engines with a 10 reduction in thrust (programmed lapse rate) can come close to meeting Chapter 14 noise levels. Further noise reduction is possible with additional

  5. Review of Aircraft Engine Fan Noise Reduction

    NASA Technical Reports Server (NTRS)

    VanZante, Dale

    2008-01-01

    Aircraft turbofan engines incorporate multiple technologies to enhance performance and durability while reducing noise emissions. Both careful aerodynamic design of the fan and proper installation of the fan into the system are requirements for achieving the performance and acoustic objectives. The design and installation characteristics of high performance aircraft engine fans will be discussed along with some lessons learned that may be applicable to spaceflight fan applications.

  6. Noise control prediction for high-speed, propeller-driven aircraft

    NASA Technical Reports Server (NTRS)

    Wilby, J. F.; Rennison, D. C.; Wilby, E. G.; Marsh, A. H.

    1980-01-01

    An analytical study is described which explores add-on treatments and advanced concepts for the reduction of noise levels in three high-speed aircraft driven by propellers. Noise reductions of 25 to 28 dB are required to achieve a goal of an A-weighted sound level not greater than 80 dB. It is found that only a double-wall system, with a limp inner wall or trim panel, can achieve the required noise reductions. Weight penalties are estimated for the double-wall treatments. These penalties are 0.75% to 1.51% of the aircraft takeoff weight for the particular baseline designs selected.

  7. Minimum noise impact aircraft trajectories

    NASA Technical Reports Server (NTRS)

    Jacobson, I. D.; Melton, R. G.

    1981-01-01

    Numerical optimization is used to compute the optimum flight paths, based upon a parametric form that implicitly includes some of the problem restrictions. The other constraints are formulated as penalties in the cost function. Various aircraft on multiple trajectores (landing and takeoff) can be considered. The modular design employed allows for the substitution of alternate models of the population distribution, aircraft noise, flight paths, and annoyance, or for the addition of other features (e.g., fuel consumption) in the cost function. A reduction in the required amount of searching over local minima was achieved through use of the presence of statistical lateral dispersion in the flight paths.

  8. Association of aircraft noise stress to periodontal disease in aircrew members.

    PubMed

    Haskell, B S

    1975-08-01

    A review of the literature reveals a multitude of effects that noise may contribute to periodontal disease, including cardiovascular disease, angiospasm of peripheral vessels, hypertension, and an increase in inflammatory cells with concurrent inhibition of healing. Three groups of 25 men were selected from the Pennsylvania Air National Guard for study. Group 1 consisted of F-102 jet fighter pilots; Group 2, pilots and crew of a four-engine, propeller-driven C-121 aircraft; and Group 3, enlisted men not exposed to aircraft noise, as a control. The degree of alveolar, intraceptal bone loss for each subject was measured from full-mouth radiographs of all groups. The greatest amount of bone loss occurred in crew members of propeller-driven aircraft. Jet pilots had considerably less bone loss while the average number of millimeters of bone lost per tooth revealed a difference between the three groups to the 0.01 significance level (F=24.7). The data suggests there is a degree of alveolar bone loss over a period of years associated with exposure to propeller aircraft noise and vibration, and negligible loss for jet aircraft noise.

  9. A new approach to complete aircraft landing gear noise prediction

    NASA Astrophysics Data System (ADS)

    Lopes, Leonard V.

    . The final prediction technique implemented includes local flow calculations of a landing gear with various truck angles using the immersed boundary scheme. Using the mean flow calculation, LGMAP is able to predict noise changes caused by gross changes in landing gear design. Calculations of the mean flow around the landing gear show that the rear wheels of a six-wheel bogie experience significantly reduced mean flow velocity when the truck is placed in a toe-down configuration. This reduction in the mean flow results is a lower noise signature from the rear wheel. Since the noise from a six-wheel bogie at flyover observer positions is primarily composed of wheel noise, the reduced local flow velocity results in a reduced noise signature from the entire landing gear geometry. Comparisons with measurements show the accuracy of the predictions of landing gear noise levels and directivity. Airframe noise predictions for the landing gear of a complete aircraft are described including all of the above mentioned developments and prediction techniques. These show that the nose gear noise and the landing gear wake/flap interaction noise, while not significantly changing the overall shape of the radiated noise, do contribute to the overall noise from the installed landing gear.

  10. The cost of noise reduction in commercial tilt rotor aircraft

    NASA Technical Reports Server (NTRS)

    Faulkner, H. B.

    1974-01-01

    The relationship between direct operating cost (DOC) and departure noise annoyance was developed for commercial tilt rotor aircraft. This was accomplished by generating a series of tilt rotor aircraft designs to meet various noise goals at minimum DOC. These vehicles were spaced across the spectrum of possible noise levels from completely unconstrained to the quietest vehicle that could be designed within the study ground rules. A group of optimization parameters were varied to find the minimum DOC while other inputs were held constant and some external constraints were met. This basic variation was then extended to different aircraft sizes and technology time frames. It was concluded that reducing noise annoyance by designing for lower rotor tip speeds is a very promising avenue for future research and development. It appears that the cost of halving the annoyance compared to an unconstrained design is insignificant and the cost of halving the annoyance again is small.

  11. Study of cabin noise control for twin engine general aviation aircraft

    NASA Astrophysics Data System (ADS)

    Vaicaitis, R.; Slazak, M.

    1982-02-01

    An analytical model based on modal analysis was developed to predict the noise transmission into a twin-engine light aircraft. The model was applied to optimize the interior noise to an A-weighted level of 85 dBA. To achieve the required noise attenuation, add-on treatments in the form of honeycomb panels, damping tapes, acoustic blankets, septum barriers and limp trim panels were added to the existing structure. The added weight of the noise control treatment is about 1.1 percent of the total gross take-off weight of the aircraft.

  12. Physical and subjective studies of aircraft interior noise and vibration

    NASA Technical Reports Server (NTRS)

    Stephens, D. G.; Leatherwood, J. D.

    1979-01-01

    Measurements to define and quantify the interior noise and vibration stimuli of aircraft are reviewed as well as field and simulation studies to determine the subjective response to such stimuli, and theoretical and experimental studies to predict and control the interior environment. In addition, ride quality criteria/standards for noise, vibration, and combinations of these stimuli are discussed in relation to the helicopter cabin environment. Data on passenger response are presented to illustrate the effects of interior noise and vibration on speech intelligibility and comfort of crew and passengers. The interactive effects of noise with multifrequency and multiaxis vibration are illustrated by data from LaRC ride quality simulator. Constant comfort contours for various combinations of noise and vibration are presented and the incorporation of these results into a user-oriented model are discussed. With respect to aircraft interior noise and vibration control, ongoing studies to define the near-field noise, the transmission of noise through the structure, and the effectiveness of control treatments are described.

  13. Aircraft noise effects: An interdisciplinary study of the effect of aircraft noise on man. Part 2: Appendix

    NASA Technical Reports Server (NTRS)

    1980-01-01

    A survey used to obtain data of a sociological nature regarding subjects used in a study of aircraft noise perception and tolerance near the Munich-Reims airport is presented. Statistics compiled on occupational, physiological, and medical aspects of the subjects are tabulated.

  14. Quelling Cabin Noise in Turboprop Aircraft via Active Control

    NASA Technical Reports Server (NTRS)

    Kincaid, Rex K.; Laba, Keith E.; Padula, Sharon L.

    1997-01-01

    Cabin noise in turboprop aircraft causes passenger discomfort, airframe fatigue, and employee scheduling constraints due to OSHA standards for exposure to high levels of noise. The noise levels in the cabins of turboprop aircraft are typically 10 to 30 decibels louder than commercial jet noise levels. However. unlike jet noise the turboprop noise spectrum is dominated by a few low frequency tones. Active structural acoustic control is a method in which the control inputs (used to reduce interior noise) are applied directly to a vibrating structural acoustic system. The control concept modeled in this work is the application of in-plane force inputs to piezoceramic patches bonded to the wall of a vibrating cylinder. The goal is to determine the force inputs and locations for the piezoceramic actuators so that: (1) the interior noise is effectively damped; (2) the level of vibration of the cylinder shell is not increased; and (3) the power requirements needed to drive the actuators are not excessive. Computational experiments for data taken from a computer generated model and from a laboratory test article at NASA Langley Research Center are provided.

  15. Electroencephalographic and behavioral effects of nocturnally occurring jet aircraft sounds.

    NASA Technical Reports Server (NTRS)

    Levere, T. E.; Bartus, R. T.; Hart, F. D.

    1972-01-01

    The present research presents data relative to the objective evaluation of the effects of a specific complex auditory stimulus presented during sleep. The auditory stimulus was a jet aircraft flyover of approximately 20-sec duration and a peak intensity level of approximately 80 dB (A). Our specific interests were in terms of how this stimulus would interact with the frequency pattern of the sleeping EEG and whether there would be any carry-over effects of the nocturnally presented stimuli to the waking state. The results indicated that the physiological effects (changes in electroencephalographic activity) produced by the jet aircraft stimuli outlasted the physical presence of the auditory stimuli by a considerable degree. Further, it was possible to note both behavioral and electroencephalographic changes during waking performances subsequent to nights disturbed by the jet aircraft flyovers which were not apparent during performances subsequent to undisturbed nights.

  16. A prediction method for broadband shock associated noise from supersonic rectangualr jets

    NASA Technical Reports Server (NTRS)

    Tam, Christopher K. W.; Reddy, N. N.

    1993-01-01

    Braodband shock associated noise is an important aircraft noise component of the proposed high-speed civil transport (HSCT) at take-offs and landings. For noise certification purpose one would, therefore, like to be able to predict as accurately as possible the intensity, directivity and spectral content of this noise component. The purpose of this work is to develop a semi-empirical prediction method for the broadband shock associated noise from supersonic rectangular jets. The complexity and quality of the noise prediction method are to be similar to those for circular jets. In this paper only the broadband shock associated noise of jets issued from rectangular nozzles with straight side walls is considered. Since many current aircraft propulsion systems have nozzle aspect ratios (at nozzle exit) in the range of 1 to 4, the present study has been confined to nozzles with aspect ratio less than 6. In developing the prediction method the essential physics of the problem are taken into consideration. Since the braodband shock associated noise generation mechanism is the same whether the jet is circular or round the present prediction method in a number of ways is quite similar to that for axisymmetric jets. Comparisons between predictions and measurements for jets with aspect ratio up to 6 will be reported. Efforts will be concentrated on the fly-over plane. However, side line angles and other directions will also be included.

  17. Tiltrotor noise reduction through flight trajectory management and aircraft configuration control

    NASA Astrophysics Data System (ADS)

    Gervais, Marc

    A tiltrotor can hover, takeoff and land vertically as well as cruise at high speeds and fly long distances. Because of these unique capabilities, tiltrotors are envisioned as an aircraft that could provide a solution to the issue of airport gridlock by operating on stub runways, helipads, or from smaller regional airports. However, during an approach-to-land a tiltrotor is susceptible to radiating strong impulsive noise, in particular, Blade-Vortex Interaction noise (BVI), a phenomenon highly dependent on the vehicle's performance-state. A mathematical model was developed to predict the quasi-static performance characteristics of a tiltrotor during a converting approach in the longitudinal plane. Additionally, a neural network was designed to model the acoustic results from a flight test of the XV-15 tiltrotor as a function of the aircraft's performance parameters. The performance model was linked to the neural network to yield a combined performance/acoustic model that is capable of predicting tiltrotor noise emitted during a decelerating approach. The model was then used to study noise trends associated with different combinations of airspeed, nacelle tilt, and flight path angle. It showed that BVI noise is the dominant noise source during a descent and that its strength increases with steeper descent angles. Strong BVI noise was observed at very steep flight path angles, suggesting that the tiltrotor's high downwash prevents the wake from being pushed above the rotor, even at such steep descent angles. The model was used to study the effects of various aircraft configuration and flight trajectory parameters on the rotor inflow, which adequately captured the measured BVI noise trends. Flight path management effectively constrained the rotor inflow during a converting approach and thus limited the strength of BVI noise. The maximum deceleration was also constrained by controlling the nacelle tilt-rate during conversion. By applying these constraints, low BVI noise

  18. Synthesis of Virtual Environments for Aircraft Community Noise Impact Studies

    NASA Technical Reports Server (NTRS)

    Rizzi, Stephen A.; Sullivan, Brenda M.

    2005-01-01

    A new capability has been developed for the creation of virtual environments for the study of aircraft community noise. It is applicable for use with both recorded and synthesized aircraft noise. When using synthesized noise, a three-stage process is adopted involving non-real-time prediction and synthesis stages followed by a real-time rendering stage. Included in the prediction-based source noise synthesis are temporal variations associated with changes in operational state, and low frequency fluctuations that are present under all operating conditions. Included in the rendering stage are the effects of spreading loss, absolute delay, atmospheric absorption, ground reflections, and binaural filtering. Results of prediction, synthesis and rendering stages are presented.

  19. Using mindfulness to reduce the health effects of community reaction to aircraft noise.

    PubMed

    Hede, Andrew J

    2017-01-01

    This paper investigates whether mindfulness-based interventions might ameliorate the detrimental health effects of aircraft noise on residential communities. Numerous empirical studies over the past 50 years have demonstrated the increasing negative impact of aircraft noise on residents worldwide. However, extensive database searches have revealed no published studies on psychological interventions that reduce residents' reactivity to environmental noise. By contrast, there has been extensive research over several decades confirming the effectiveness of mindfulness-based stress reduction training in lowering people's stress from work and life. Considering that stress is a major component of aircraft noise reaction, it would seem worth assessing whether mindfulness-based interventions might be effective in reducing the health effects of aircraft noise. It appears that no existing conceptualization of mindfulness specifically accounts for noise as a stressor. Conceptual Analysis: A new conceptual model is presented here which explains how mindfulness can reduce noise reactivity. Two types of mindfulness are distinguished: an active form (meta-mindfulness) and a passive form (supra-mindfulness). It is posited that meta-mindfulness can facilitate "cognitive defusion" which research has confirmed as enabling people to disconnect from their own dysfunctional thoughts. In the case of aircraft noise, negative thinking associated with residents' reactive experiences can exacerbate the health effects they suffer. The present model further proposes that supra-mindfulness can enable an individual to disengage their own sense of identity from the often overwhelming negative thoughts which can define their existence when they are consumed by extreme noise annoyance. The mindfulness processes of defusion and disidentification are postulated to be the key efficacy mechanisms potentially responsible for reducing reactivity to aircraft noise. This approach can be evaluated by

  20. Using Mindfulness to Reduce the Health Effects of Community Reaction to Aircraft Noise

    PubMed Central

    Hede, Andrew J.

    2017-01-01

    Aim: This paper investigates whether mindfulness-based interventions might ameliorate the detrimental health effects of aircraft noise on residential communities. Review: Numerous empirical studies over the past 50 years have demonstrated the increasing negative impact of aircraft noise on residents worldwide. However, extensive database searches have revealed no published studies on psychological interventions that reduce residents’ reactivity to environmental noise. By contrast, there has been extensive research over several decades confirming the effectiveness of mindfulness-based stress reduction training in lowering people’s stress from work and life. Considering that stress is a major component of aircraft noise reaction, it would seem worth assessing whether mindfulness-based interventions might be effective in reducing the health effects of aircraft noise. It appears that no existing conceptualization of mindfulness specifically accounts for noise as a stressor. Conceptual Analysis: A new conceptual model is presented here which explains how mindfulness can reduce noise reactivity. Two types of mindfulness are distinguished: an active form (meta-mindfulness) and a passive form (supra-mindfulness). It is posited that meta-mindfulness can facilitate “cognitive defusion” which research has confirmed as enabling people to disconnect from their own dysfunctional thoughts. In the case of aircraft noise, negative thinking associated with residents’ reactive experiences can exacerbate the health effects they suffer. The present model further proposes that supra-mindfulness can enable an individual to disengage their own sense of identity from the often overwhelming negative thoughts which can define their existence when they are consumed by extreme noise annoyance. Conclusion: The mindfulness processes of defusion and disidentification are postulated to be the key efficacy mechanisms potentially responsible for reducing reactivity to aircraft noise. This

  1. Simulation-Based Airframe Noise Prediction of a Full-Scale, Full Aircraft

    NASA Technical Reports Server (NTRS)

    Khorrami, Mehdi R.; Fares, Ehab

    2016-01-01

    A previously validated computational approach applied to an 18%-scale, semi-span Gulfstream aircraft model was extended to the full-scale, full-span aircraft in the present investigation. The full-scale flap and main landing gear geometries used in the simulations are nearly identical to those flown on the actual aircraft. The lattice Boltzmann solver PowerFLOW® was used to perform time-accurate predictions of the flow field associated with this aircraft. The simulations were performed at a Mach number of 0.2 with the flap deflected 39 deg. and main landing gear deployed (landing configuration). Special attention was paid to the accurate prediction of major sources of flap tip and main landing gear noise. Computed farfield noise spectra for three selected baseline configurations (flap deflected 39 deg. with and without main gear extended, and flap deflected 0 deg. with gear deployed) are presented. The flap brackets are shown to be important contributors to the farfield noise spectra in the mid- to high-frequency range. Simulated farfield noise spectra for the baseline configurations, obtained using a Ffowcs Williams and Hawkings acoustic analogy approach, were found to be in close agreement with acoustic measurements acquired during the 2006 NASA-Gulfstream joint flight test of the same aircraft.

  2. Selected methods for quantification of community exposure to aircraft noise

    NASA Technical Reports Server (NTRS)

    Edge, P. M., Jr.; Cawthorn, J. M.

    1976-01-01

    A review of the state-of-the-art for the quantification of community exposure to aircraft noise is presented. Physical aspects, people response considerations, and practicalities of useful application of scales of measure are included. Historical background up through the current technology is briefly presented. The developments of both single-event and multiple-event scales are covered. Selective choice is made of scales currently in the forefront of interest and recommended methodology is presented for use in computer programing to translate aircraft noise data into predictions of community noise exposure. Brief consideration is given to future programing developments and to supportive research needs.

  3. Aircraft Noise Prediction Program theoretical manual: Propeller aerodynamics and noise

    NASA Technical Reports Server (NTRS)

    Zorumski, W. E. (Editor); Weir, D. S. (Editor)

    1986-01-01

    The prediction sequence used in the aircraft noise prediction program (ANOPP) is described. The elements of the sequence are called program modules. The first group of modules analyzes the propeller geometry, the aerodynamics, including both potential and boundary-layer flow, the propeller performance, and the surface loading distribution. This group of modules is based entirely on aerodynamic strip theory. The next group of modules deals with the first group. Predictions of periodic thickness and loading noise are determined with time-domain methods. Broadband noise is predicted by a semiempirical method. Near-field predictions of fuselage surface pressrues include the effects of boundary layer refraction and scattering. Far-field predictions include atmospheric and ground effects.

  4. Behavioral and Physiological Responses of Horses to Simulated Aircraft Noise

    DTIC Science & Technology

    1991-01-01

    AL-TR-1991-0123 A R M BEHAVIORAL AND PHYSIOLOGICAL S RESPONSES OF HORSES TO SIMULATED T AIRCRAFT NOISE R 0 N G Michelle M. LeBlanc Christoph Lombard...COVERED • 10 January 1991 IFinal Report Dec 89 to Jan 91 4. TITLE AND SUBTITLE 5. FUNDING NUMBERS Behavioral and Physiological Responses of Horses to...NUMBER OF PAGES Aircraft, Noise, Domestic Animals, Horses , 70 Disturbance, Physiological Effects 16. PRICE CODE 17. SECURITY CLASSIFICATION 18. SECURITY

  5. A Process for Assessing NASA's Capability in Aircraft Noise Prediction Technology

    NASA Technical Reports Server (NTRS)

    Dahl, Milo D.

    2008-01-01

    An acoustic assessment is being conducted by NASA that has been designed to assess the current state of the art in NASA s capability to predict aircraft related noise and to establish baselines for gauging future progress in the field. The process for determining NASA s current capabilities includes quantifying the differences between noise predictions and measurements of noise from experimental tests. The computed noise predictions are being obtained from semi-empirical, analytical, statistical, and numerical codes. In addition, errors and uncertainties are being identified and quantified both in the predictions and in the measured data to further enhance the credibility of the assessment. The content of this paper contains preliminary results, since the assessment project has not been fully completed, based on the contributions of many researchers and shows a select sample of the types of results obtained regarding the prediction of aircraft noise at both the system and component levels. The system level results are for engines and aircraft. The component level results are for fan broadband noise, for jet noise from a variety of nozzles, and for airframe noise from flaps and landing gear parts. There are also sample results for sound attenuation in lined ducts with flow and the behavior of acoustic lining in ducts.

  6. Empirical Prediction of Aircraft Landing Gear Noise

    NASA Technical Reports Server (NTRS)

    Golub, Robert A. (Technical Monitor); Guo, Yue-Ping

    2005-01-01

    This report documents a semi-empirical/semi-analytical method for landing gear noise prediction. The method is based on scaling laws of the theory of aerodynamic noise generation and correlation of these scaling laws with current available test data. The former gives the method a sound theoretical foundation and the latter quantitatively determines the relations between the parameters of the landing gear assembly and the far field noise, enabling practical predictions of aircraft landing gear noise, both for parametric trends and for absolute noise levels. The prediction model is validated by wind tunnel test data for an isolated Boeing 737 landing gear and by flight data for the Boeing 777 airplane. In both cases, the predictions agree well with data, both in parametric trends and in absolute noise levels.

  7. Noise transmission and reduction in turboprop aircraft

    NASA Astrophysics Data System (ADS)

    MacMartin, Douglas G.; Basso, Gordon L.; Leigh, Barry

    1994-09-01

    There is considerable interest in reducing the cabin noise environment in turboprop aircraft. Various approaches have been considered at deHaviland Inc., including passive tuned-vibration absorbers, speaker-based noise cancellation, and structural vibration control of the fuselage. These approaches will be discussed briefly. In addition to controlling the noise, a method of predicting the internal noise is required both to evaluate potential noise reduction approaches, and to validate analytical design models. Instead of costly flight tests, or carrying out a ground simulation of the propeller pressure field, a much simpler reciprocal technique can be used. A capacitive scanner is used to measure the fuselage vibration response on a deHaviland Dash-8 fuselage, due to an internal noise source. The approach is validated by comparing this reciprocal noise transmission measurement with the direct measurement. The fuselage noise transmission information is then combined with computer predictions of the propeller pressure field data to predict the internal noise at two points.

  8. Validation of Aircraft Noise Prediction Models at Low Levels of Exposure

    NASA Technical Reports Server (NTRS)

    Page, Juliet A.; Hobbs, Christopher M.; Plotkin, Kenneth J.; Stusnick, Eric; Shepherd, Kevin P. (Technical Monitor)

    2000-01-01

    Aircraft noise measurements were made at Denver International Airport for a period of four weeks. Detailed operational information was provided by airline operators which enabled noise levels to be predicted using the FAA's Integrated Noise Model. Several thrust prediction techniques were evaluated. Measured sound exposure levels for departure operations were found to be 4 to 10 dB higher than predicted, depending on the thrust prediction technique employed. Differences between measured and predicted levels are shown to be related to atmospheric conditions present at the aircraft altitude.

  9. Aircraft Engine Noise Research and Testing at the NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Elliott, Dave

    2015-01-01

    The presentation will begin with a brief introduction to the NASA Glenn Research Center as well as an overview of how aircraft engine noise research fits within the organization. Some of the NASA programs and projects with noise content will be covered along with the associated goals of aircraft noise reduction. Topics covered within the noise research being presented will include noise prediction versus experimental results, along with engine fan, jet, and core noise. Details of the acoustic research conducted at NASA Glenn will include the test facilities available, recent test hardware, and data acquisition and analysis methods. Lastly some of the actual noise reduction methods investigated along with their results will be shown.

  10. Aircraft noise: effects on macro- and microstructure of sleep.

    PubMed

    Basner, Mathias; Glatz, Christian; Griefahn, Barbara; Penzel, Thomas; Samel, Alexander

    2008-05-01

    The effects of aircraft noise on sleep macrostructure (Rechtschaffen and Kales) and microstructure (American Sleep Disorders Association [ASDA] arousal criteria) were investigated. For each of 10 subjects (mean age 35.3 years, 5 males), a baseline night without aircraft noise (control), and two nights with exposure to 64 noise events with a maximum sound pressure level (SPL) of either 45 or 65 dBA were chosen. Spontaneous and noise-induced alterations during sleep classified as arousals (ARS), changes to lighter sleep stages (CSS), awakenings including changes to sleep stage 1 (AS1), and awakenings (AWR) were analyzed. The number of events per night increased in the order AWR, AS1, CSS, and ARS under control conditions as well as under the two noise conditions. Furthermore, probabilities for sleep disruptions increased with increasing noise level. ARS were observed about fourfold compared to AWR, irrespective of control or noise condition. Under the conditions investigated, different sleep parameters show different sensitivities, but also different specificities for noise-induced sleep disturbances. We conclude that most information on sleep disturbances can be achieved by investigating robust classic parameters like AWR or AS1, although ASDA electroencephalographic (EEG) arousals might add relevant information in situations with low maximum SPLs, chronic sleep deprivation or chronic exposure.

  11. Determination and Applications of Environmental Costs at Different Sized Airports: Aircraft Noise and Engine Emissions

    NASA Technical Reports Server (NTRS)

    Lu, Cherie; Lierens, Abigail

    2003-01-01

    With the increasing trend of charging for externalities and the aim of encouraging the sustainable development of the air transport industry, there is a need to evaluate the social costs of these undesirable side effects, mainly aircraft noise and engine emissions, for different airports. The aircraft noise and engine emissions social costs are calculated in monetary terms for five different airports, ranging from hub airports to small regional airports. The number of residences within different levels of airport noise contours and the aircraft noise classifications are the main determinants for accessing aircraft noise social costs. Whist, based on the damages of different engine pollutants on the human health, vegetation, materials, aquatic ecosystem and climate, the aircraft engine emissions social costs vary from engine types to aircraft categories. The results indicate that the relationship appears to be curvilinear between environmental costs and the traffic volume of an airport. The results and methodology of environmental cost calculation could input for to the proposed European wide harmonized noise charges as well as the social cost benefit analysis of airports.

  12. QCGAT aircraft/engine design for reduced noise and emissions

    NASA Technical Reports Server (NTRS)

    Lanson, L.; Terrill, K. M.

    1980-01-01

    The high bypass ratio QCGAT engine played an important role in shaping the aircraft design. The aircraft which evolved is a sleek, advanced design, six-place aircraft with 3538 kg (7,800 lb) maximum gross weight. It offers a 2778 kilometer (1500 nautical mile) range with cruise speed of 0.5 Mach number and will take-off and land on the vast majority of general aviation airfields. Advanced features include broad application of composite materials and a supercritical wing design with winglets. Full-span fowler flaps were introduced to improve landing capability. Engines are fuselage-mounted with inlets over the wing to provide shielding of fan noise by the wing surfaces. The design objectives, noise, and emission considerations, engine cycle and engine description are discussed as well as specific design features.

  13. External Acoustic Liners for Multi-Functional Aircraft Noise Reduction

    NASA Technical Reports Server (NTRS)

    Jones, Michael G. (Inventor); Czech, Michael J. (Inventor); Howerton, Brian M. (Inventor); Thomas, Russell H. (Inventor); Nark, Douglas M. (Inventor)

    2017-01-01

    Acoustic liners for aircraft noise reduction include one or more chambers that are configured to provide a pressure-release surface such that the engine noise generation process is inhibited and/or absorb sound by converting the sound into heat energy. The size and shape of the chambers can be selected to inhibit the noise generation process and/or absorb sound at selected frequencies.

  14. Potential reduction of en route noise from an advanced turboprop aircraft

    NASA Technical Reports Server (NTRS)

    Dittmar, James H.

    1990-01-01

    When the en route noise of a representative aircraft powered by an eight-blade SR-7 propeller was previously calculated, the noise level was cited as a possible concern associated with the acceptance of advanced turboprop aircraft. Some potential methods for reducing the en route noise were then investigated and are reported. Source noise reductions from increasing the blade number and from operating at higher rotative speed to reach a local minimum noise point were investigated. Greater atmospheric attenuations for higher blade passing frequencies were also indicated. Potential en route noise reductions from these methods were calculated as 9.5 dB (6.5 dB(A)) for a 10-blade redesigned propeller and 15.5 dB (11 dB(A)) for a 12-blade redesigned propeller.

  15. Update of aircraft profile data for the Integrated Noise Model computer program, vol. 3 : appendix B aircraft performance coefficients

    DOT National Transportation Integrated Search

    1992-03-01

    This report provides aircraft takeoff and landing profiles, : aircraft aerodynamic performance coefficients and engine : performance coefficients for the aircraft data base : (Database 9) in the Integrated Noise Model (INM) computer : program. Flight...

  16. Effect of advanced aircraft noise reduction technology on the 1990 projected noise environment around Patrick Henry Airport. [development of noise exposure forecast contours for projected traffic volume and aircraft types

    NASA Technical Reports Server (NTRS)

    Cawthorn, J. M.; Brown, C. G.

    1974-01-01

    A study has been conducted of the future noise environment of Patric Henry Airport and its neighboring communities projected for the year 1990. An assessment was made of the impact of advanced noise reduction technologies which are currently being considered. These advanced technologies include a two-segment landing approach procedure and aircraft hardware modifications or retrofits which would add sound absorbent material in the nacelles of the engines or which would replace the present two- and three-stage fans with a single-stage fan of larger diameter. Noise Exposure Forecast (NEF) contours were computed for the baseline (nonretrofitted) aircraft for the projected traffic volume and fleet mix for the year 1990. These NEF contours are presented along with contours for a variety of retrofit options. Comparisons of the baseline with the noise reduction options are given in terms of total land area exposed to 30 and 40 NEF levels. Results are also presented of the effects on noise exposure area of the total number of daily operations.

  17. Children's cognition and aircraft noise exposure at home--the West London Schools Study.

    PubMed

    Matsui, T; Stansfeld, S; Haines, M; Head, J

    2004-01-01

    The association of aircraft noise exposure with cognitive performance was examined by means of a cross-sectional field survey. Two hundred thirty six children attending 10 primary schools around Heathrow Airport in west London were tested on reading comprehension, immediate/delayed recall and sustained attention. In order to obtain the information about their background, a questionnaire was delivered to the parents and 163 answers were collected. Logistic regression models were used to assess performance on the cognitive tests in relation to aircraft noise exposure at home and possible individual and school level confounding factors. A significant dose-response relationship was found between aircraft noise exposure at home and performance on memory tests of immediate/delayed recall. However there was no strong association with the other cognitive outcomes. These results suggest that aircraft noise exposure at home may affect children's memory.

  18. Propeller aircraft interior noise model

    NASA Technical Reports Server (NTRS)

    Pope, L. D.; Wilby, E. G.; Wilby, J. F.

    1984-01-01

    An analytical model was developed to predict the interior noise of propeller-driven aircraft. The fuselage model is that of a cylinder with a structurally-integral floor. The cabin sidewall is stiffened by stringers and ring frames, and the floor by longitudinal beams. The cabin interior is covered with a sidewall treatments consisting of layers of porous material and an impervious trim septum. Representation of the propeller pressure field is utilized as input data in the form of the propeller noise signature at a series of locations on a grid over the fuselage structure. Results obtained from the analytical model are compared with test data measured by NASA in a scale model cylindrical fuselage excited by a model propeller.

  19. Effects of aircraft noise on human activities

    NASA Technical Reports Server (NTRS)

    Arnoult, M. D.; Gilfillan, L. G.

    1983-01-01

    The effects of aircrft noise on human activities was investigated by developing a battery of tasks (1) representative of a range of human activities and (2) sensitive to the disruptive effects of noise. The noise used were recordings of jet aircraft and helicopter sounds at three lvels of loudness--60, 70, and 80 dB(A). Experiment 1 investigated 12 different cognitive tasks, along with two intelligibility tasks included to validate that the noises were being effective. Interference with intelligibility was essentially the same as found in the research literature, but only inconsistent effects were found on either accuracy or latency of performance on the cognitive tasks. When the tasks were grouped into four categories (Intelligibility, Matching, Verbal, and Arithmetic), reliable differences in rated annoyingness of the noises were related to the task category and to the type of noise (jet or helicopter).

  20. Aircraft and road traffic noise and children's cognition and health: a cross-national study.

    PubMed

    Stansfeld, S A; Berglund, B; Clark, C; Lopez-Barrio, I; Fischer, P; Ohrström, E; Haines, M M; Head, J; Hygge, S; van Kamp, I; Berry, B F

    Exposure to environmental stressors can impair children's health and their cognitive development. The effects of air pollution, lead, and chemicals have been studied, but there has been less emphasis on the effects of noise. Our aim, therefore, was to assess the effect of exposure to aircraft and road traffic noise on cognitive performance and health in children. We did a cross-national, cross-sectional study in which we assessed 2844 of 3207 children aged 9-10 years who were attending 89 schools of 77 approached in the Netherlands, 27 in Spain, and 30 in the UK located in local authority areas around three major airports. We selected children by extent of exposure to external aircraft and road traffic noise at school as predicted from noise contour maps, modelling, and on-site measurements, and matched schools within countries for socioeconomic status. We measured cognitive and health outcomes with standardised tests and questionnaires administered in the classroom. We also used a questionnaire to obtain information from parents about socioeconomic status, their education, and ethnic origin. We identified linear exposure-effect associations between exposure to chronic aircraft noise and impairment of reading comprehension (p=0.0097) and recognition memory (p=0.0141), and a non-linear association with annoyance (p<0.0001) maintained after adjustment for mother's education, socioeconomic status, longstanding illness, and extent of classroom insulation against noise. Exposure to road traffic noise was linearly associated with increases in episodic memory (conceptual recall: p=0.0066; information recall: p=0.0489), but also with annoyance (p=0.0047). Neither aircraft noise nor traffic noise affected sustained attention, self-reported health, or overall mental health. Our findings indicate that a chronic environmental stressor-aircraft noise-could impair cognitive development in children, specifically reading comprehension. Schools exposed to high levels of aircraft

  1. Aircraft noise prediction program theoretical manual: Rotorcraft System Noise Prediction System (ROTONET), part 4

    NASA Technical Reports Server (NTRS)

    Weir, Donald S.; Jumper, Stephen J.; Burley, Casey L.; Golub, Robert A.

    1995-01-01

    This document describes the theoretical methods used in the rotorcraft noise prediction system (ROTONET), which is a part of the NASA Aircraft Noise Prediction Program (ANOPP). The ANOPP code consists of an executive, database manager, and prediction modules for jet engine, propeller, and rotor noise. The ROTONET subsystem contains modules for the prediction of rotor airloads and performance with momentum theory and prescribed wake aerodynamics, rotor tone noise with compact chordwise and full-surface solutions to the Ffowcs-Williams-Hawkings equations, semiempirical airfoil broadband noise, and turbulence ingestion broadband noise. Flight dynamics, atmosphere propagation, and noise metric calculations are covered in NASA TM-83199, Parts 1, 2, and 3.

  2. Flyover of Sotra Facula, Titan

    NASA Image and Video Library

    2010-12-14

    This frame from a movie is based on data from NASA Cassini spacecraft and shows a flyover of an area of Saturn moon Titan known as Sotra Facula. Scientists believe Sotra is the best case for an ice volcano, or cryovolcano, region on Titan.

  3. Recommendations for field measurements of aircraft noise

    NASA Technical Reports Server (NTRS)

    Marsh, A. H.

    1982-01-01

    Specific recommendations for environmental test criteria, data acquisition procedures, and instrument performance requirements for measurement of noise levels produced by aircraft in flight are provided. Recommendations are also given for measurement of associated airplane and engine parameters and atmospheric conditions. Recommendations are based on capabilities which were available commercially in 1981; they are applicable to field tests of aircraft flying subsonically past microphones located near the surface of the ground either directly under or to the side of a flight path. Aircraft types covered by the recommendations include fixed-wing airplanes powered by turbojet or turbofan engines or by propellers. The recommended field-measurement procedures are consistent with assumed requirements for data processing and analysis.

  4. Noise of High-Performance Aircraft at Afterburner

    DTIC Science & Technology

    2015-07-11

    Title : Noise of High-Performance Aircraft at Afterburner Principal Investigator Dr. Christopher Tarn Department of Mathematics Florida State...jet. We found that at intermediate power, the dominant noise components are essentially the same as those of a laboratory jet. However, at afterburner ...useful. The power settings are 80N2 (low power), Mil (military power) and MaxAB ( afterburner ). BII8 BI16 2__Q_il_Q_£l Bill l« C0O3 12 ^ COOS

  5. Progress of Aircraft System Noise Assessment with Uncertainty Quantification for the Environmentally Responsible Aviation Project

    NASA Technical Reports Server (NTRS)

    Thomas, Russell H.; Burley, Casey L.; Guo, Yueping

    2016-01-01

    Aircraft system noise predictions have been performed for NASA modeled hybrid wing body aircraft advanced concepts with 2025 entry-into-service technology assumptions. The system noise predictions developed over a period from 2009 to 2016 as a result of improved modeling of the aircraft concepts, design changes, technology development, flight path modeling, and the use of extensive integrated system level experimental data. In addition, the system noise prediction models and process have been improved in many ways. An additional process is developed here for quantifying the uncertainty with a 95% confidence level. This uncertainty applies only to the aircraft system noise prediction process. For three points in time during this period, the vehicle designs, technologies, and noise prediction process are documented. For each of the three predictions, and with the information available at each of those points in time, the uncertainty is quantified using the direct Monte Carlo method with 10,000 simulations. For the prediction of cumulative noise of an advanced aircraft at the conceptual level of design, the total uncertainty band has been reduced from 12.2 to 9.6 EPNL dB. A value of 3.6 EPNL dB is proposed as the lower limit of uncertainty possible for the cumulative system noise prediction of an advanced aircraft concept.

  6. Propfan Test Assessment (PTA)

    NASA Technical Reports Server (NTRS)

    Little, B. H.; Poland, D. T.; Bartel, H. W.; Withers, C. C.; Brown, P. C.

    1989-01-01

    The objectives of the Propfan Test Assessment (PTA) Program were to validate in flight the structural integrity of large-scale propfan blades and to measure noise characteristics of the propfan in both near and far fields. All program objectives were met or exceeded, on schedule and under budget. A Gulfstream Aerospace Corporation GII aircraft was modified to provide a testbed for the 2.74m (9 ft) diameter Hamilton Standard SR-7 propfan which was driven by a 4475 kw (600 shp) turboshaft engine mounted on the left-hand wing of the aircraft. Flight research tests were performed for 20 combinations of speed and altitude within a flight envelope that extended to Mach numbers of 0.85 and altitudes of 12,192m (40,000 ft). Propfan blade stress, near-field noise on aircraft surfaces, and cabin noise were recorded. Primary variables were propfan power and tip speed, and the nacelle tilt angle. Extensive low altitude far-field noise tests were made to measure flyover and sideline noise and the lateral attenuation of noise. In coopertion with the FAA, tests were also made of flyover noise for the aircraft at 6100m (20,000 ft) and 10,668m (35,000 ft). A final series of tests were flown to evaluate an advanced cabin wall noise treatment that was produced under a separate program by NASA-Langley Research Center.

  7. Updating working memory in aircraft noise and speech noise causes different fMRI activations.

    PubMed

    Saetrevik, Bjørn; Sörqvist, Patrik

    2015-02-01

    The present study used fMRI/BOLD neuroimaging to investigate how visual-verbal working memory is updated when exposed to three different background-noise conditions: speech noise, aircraft noise and silence. The number-updating task that was used can distinguish between "substitution processes," which involve adding new items to the working memory representation and suppressing old items, and "exclusion processes," which involve rejecting new items and maintaining an intact memory set. The current findings supported the findings of a previous study by showing that substitution activated the dorsolateral prefrontal cortex, the posterior medial frontal cortex and the parietal lobes, whereas exclusion activated the anterior medial frontal cortex. Moreover, the prefrontal cortex was activated more by substitution processes when exposed to background speech than when exposed to aircraft noise. These results indicate that (a) the prefrontal cortex plays a special role when task-irrelevant materials should be denied access to working memory and (b) that, when compensating for different types of noise, either different cognitive mechanisms are involved or those cognitive mechanisms that are involved are involved to different degrees. © 2014 The Authors. Scandinavian Journal of Psychology published by Scandinavian Psychological Associations and John Wiley & Sons Ltd.

  8. Updating working memory in aircraft noise and speech noise causes different fMRI activations

    PubMed Central

    Sætrevik, Bjørn; Sörqvist, Patrik

    2015-01-01

    The present study used fMRI/BOLD neuroimaging to investigate how visual-verbal working memory is updated when exposed to three different background-noise conditions: speech noise, aircraft noise and silence. The number-updating task that was used can distinguish between “substitution processes,” which involve adding new items to the working memory representation and suppressing old items, and “exclusion processes,” which involve rejecting new items and maintaining an intact memory set. The current findings supported the findings of a previous study by showing that substitution activated the dorsolateral prefrontal cortex, the posterior medial frontal cortex and the parietal lobes, whereas exclusion activated the anterior medial frontal cortex. Moreover, the prefrontal cortex was activated more by substitution processes when exposed to background speech than when exposed to aircraft noise. These results indicate that (a) the prefrontal cortex plays a special role when task-irrelevant materials should be denied access to working memory and (b) that, when compensating for different types of noise, either different cognitive mechanisms are involved or those cognitive mechanisms that are involved are involved to different degrees. PMID:25352319

  9. Female voice communications in high levels of aircraft cockpit noises--Part I: spectra, levels, and microphones.

    PubMed

    Nixon, C W; Morris, L J; McCavitt, A R; McKinley, R L; Anderson, T R; McDaniel, M P; Yeager, D G

    1998-07-01

    Female produced speech, although more intelligible than male speech in some noise spectra, may be more vulnerable to degradation by high levels of some military aircraft cockpit noises. The acoustic features of female speech are higher in frequency, lower in power, and appear more susceptible than male speech to masking by some of these military noises. Current military aircraft voice communication systems were optimized for the male voice and may not adequately accommodate the female voice in these high level noises. This applied study investigated the intelligibility of female and male speech produced in the noise spectra of four military aircraft cockpits at levels ranging from 95 dB to 115 dB. The experimental subjects used standard flight helmets and headsets, noise-canceling microphones, and military aircraft voice communications systems during the measurements. The intelligibility of female speech was lower than that of male speech for all experimental conditions; however, differences were small and insignificant except at the highest levels of the cockpit noises. Intelligibility for both genders varied with aircraft noise spectrum and level. Speech intelligibility of both genders was acceptable during normal cruise noises of all four aircraft, but improvements are required in the higher levels of noise created during aircraft maximum operating conditions. The intelligibility of female speech was unacceptable at the highest measured noise level of 115 dB and may constitute a problem for other military aviators. The intelligibility degradation due to the noise can be neutralized by use of an available, improved noise-canceling microphone, by the application of current active noise reduction technology to the personal communication equipment, and by the development of a voice communications system to accommodate the speech produced by both female and male aviators.

  10. Noise reduction of a tilt-rotor aircraft including effects on weight and performance

    NASA Technical Reports Server (NTRS)

    Gibs, J.; Stepniewski, W. Z.; Spencer, R.; Kohler, G.

    1973-01-01

    Various methods for far-field noise reduction of a tilt-rotor acoustic signature and the performance and weight tradeoffs which result from modification of the noise sources are considered in this report. In order to provide a realistic approach for the investigation, the Boeing tilt-rotor flight research aircraft (Model 222), was selected as the baseline. This aircraft has undergone considerable engineering development. Its rotor has been manufactured and tested in the Ames full-scale wind tunnel. The study reflects the current state-of-the-art of aircraft design for far-field acoustic signature reduction and is not based solely on an engineering feasibility aircraft. This report supplements a previous study investigating reduction of noise signature through the management of the terminal flight trajectory.

  11. Annoyance caused by propeller airplane flyover noise

    NASA Technical Reports Server (NTRS)

    Mccurdy, D. A.; Powell, C. A.

    1984-01-01

    Laboratory experiments were conducted to provide information on quantifying the annoyance response of people to propeller airplane noise. The items of interest were current noise metrics, tone corrections, duration corrections, critical band corrections, and the effects of engine type, operation type, maximum takeoff weight, blade passage frequency, and blade tip speed. In each experiment, 64 subjects judged the annoyance of recordings of propeller and jet airplane operations presented at d-weighted sound pressure levels of 70, 80, and 90 dB in a testing room which simulates the outdoor acoustic environment. The first experiment examined 11 propeller airplanes with maximum takeoff weights greater than or equal to 5700 kg. The second experiment examined 14 propeller airplanes weighting 5700 kg or less. Five jet airplanes were included in each experiment. For both the heavy and light propeller airplanes, perceived noise level and perceived level (Stevens Mark VII procedure) predicted annoyance better than other current noise metrics.

  12. Toward Reduced Aircraft Community Noise Impact Via a Perception-Influenced Design Approach

    NASA Technical Reports Server (NTRS)

    Rizzi, Stephen A.

    2016-01-01

    This is an exciting time for aircraft design. New configurations, including small multi-rotor uncrewed aerial systems, fixed- and tilt-wing distributed electric propulsion aircraft, high-speed rotorcraft, hybrid-electric commercial transports, and low-boom supersonic transports, are being made possible through a host of propulsion and airframe technology developments. The resulting noise signatures may be radically different, both spectrally and temporally, than those of the current fleet. Noise certification metrics currently used in aircraft design do not necessarily reflect these characteristics and therefore may not correlate well with human response. Further, as operations and missions become less airport-centric, e.g., those associated with on-demand mobility or package delivery, vehicles may operate in closer proximity to the population than ever before. Fortunately, a new set of tools are available for assessing human perception during the design process in order to affect the final design in a positive manner. The tool chain utilizes system noise prediction methods coupled with auralization and psychoacoustic testing, making possible the inclusion of human response to noise, along with performance criteria and certification requirements, into the aircraft design process. Several case studies are considered to illustrate how this approach could be used to influence the design of future aircraft.

  13. Aircraft noise propagation. [sound diffraction by wings

    NASA Technical Reports Server (NTRS)

    Hadden, W. J.; Pierce, A. D.

    1978-01-01

    Sound diffraction experiments conducted at NASA Langley Research Center to study the acoustical implications of the engine over wing configuration (noise-shielding by wing) and to provide a data base for assessing various theoretical approaches to the problem of aircraft noise reduction are described. Topics explored include the theory of sound diffraction around screens and wedges; the scattering of spherical waves by rectangular patches; plane wave diffraction by a wedge with finite impedence; and the effects of ambient flow and distribution sources.

  14. Active control of interior noise in model aircraft fuselages using piezoceramic actuators

    NASA Technical Reports Server (NTRS)

    Fuller, C. R.; Hansen, C. H.; Silcox, R. J.; Snyder, S. D.

    1990-01-01

    Active control of interior noise in model aircraft fuselages using piezoceramic actuators is experimentally studied. The actuators are bonded directly to the structure and error information is taken from up to two microphones located in the interior acoustic field. The results demonstrate that global attenuation of the order of 10 to 15 dB of interior noise can be achieved with piezoceramic actuators, irrespective of whether the shell system is vibrating at an acoustic or structural resonant frequency. The work also proves that active control using vibration (moment) inputs works well when a floor simulating that of an aircraft is installed in the model. This result suggests that the technique will be successful in controlling interior noise in realistic aircraft structures.

  15. Aircraft noise annoyance in recreational areas after changes in noise exposure: comments on Krog and Engdahl (2004).

    PubMed

    Klaeboe, Ronny

    2005-09-01

    When Gardermoen replaced Fornebu as the main airport for Oslo, aircraft noise levels increased in recreational areas near Gardermoen and decreased in areas near Fornebu. Krog and Engdahl [J. Acoust. Soc. Am. 116, 323-333 (2004)] estimate that recreationists' annoyance from aircraft noise in these areas changed more than would be anticipated from the actual noise changes. However, the sizes of their estimated "situation" effects are not credible. One possible reason for the anomalous results is that standard regression assumptions become violated when motivational factors are inserted into the regression model. Standardized regression coefficients (beta values) should also not be utilized for comparisons across equations.

  16. Aircraft noise, health, and residential sorting: evidence from two quasi-experiments.

    PubMed

    Boes, Stefan; Nüesch, Stephan; Stillman, Steven

    2013-09-01

    We explore two unexpected changes in flight regulations to estimate the causal effect of aircraft noise on health. Detailed measures of noise are linked with longitudinal data on individual health outcomes based on the exact address information. Controlling for individual heterogeneity and spatial sorting into different neighborhoods, we find that aircraft noise significantly increases sleeping problems and headaches. Models that do not control for such heterogeneity and sorting substantially underestimate the negative health effects, which suggests that individuals self-select into residence based on their unobserved sensitivity to noise. Our study demonstrates that the combination of quasi-experimental variation and panel data is very powerful for identifying causal effects in epidemiological field studies. Copyright © 2013 John Wiley & Sons, Ltd.

  17. Effects of changed aircraft noise exposure on experiential qualities of outdoor recreational areas.

    PubMed

    Krog, Norun Hjertager; Engdahl, Bo; Tambs, Kristian

    2010-10-01

    The literature indicates that sound and visual stimuli interact in the impression of landscapes. This paper examines the relationship between annoyance with sound from aircraft and annoyance with other area problems (e.g., careless bicycle riding, crowding, etc.), and how changes in noise exposure influence the perceived overall recreational quality of outdoor recreational areas. A panel study (telephone interviews) conducted before and after the relocation of Norway's main airport in 1998 examined effects of decreased or increased noise exposure in nearby recreational areas (n = 591/455). Sound from aircraft annoyed the largest proportion of recreationists, except near the old airport after the change. The decrease in annoyance with sound from aircraft was accompanied by significant decreases in annoyance with most of the other area problems. Near the new airport annoyance with most factors beside sound from aircraft increased slightly, but not significantly. A relationship between aircraft noise annoyance and perceived overall recreational quality of the areas was found.

  18. Effects of Changed Aircraft Noise Exposure on Experiential Qualities of Outdoor Recreational Areas

    PubMed Central

    Krog, Norun Hjertager; Engdahl, Bo; Tambs, Kristian

    2010-01-01

    The literature indicates that sound and visual stimuli interact in the impression of landscapes. This paper examines the relationship between annoyance with sound from aircraft and annoyance with other area problems (e.g., careless bicycle riding, crowding, etc.), and how changes in noise exposure influence the perceived overall recreational quality of outdoor recreational areas. A panel study (telephone interviews) conducted before and after the relocation of Norway’s main airport in 1998 examined effects of decreased or increased noise exposure in nearby recreational areas (n = 591/455). Sound from aircraft annoyed the largest proportion of recreationists, except near the old airport after the change. The decrease in annoyance with sound from aircraft was accompanied by significant decreases in annoyance with most of the other area problems. Near the new airport annoyance with most factors beside sound from aircraft increased slightly, but not significantly. A relationship between aircraft noise annoyance and perceived overall recreational quality of the areas was found. PMID:21139858

  19. Validation of Aircraft Noise Models at Lower Levels of Exposure

    NASA Technical Reports Server (NTRS)

    Page, Juliet A.; Plotkin, Kenneth J.; Carey, Jeffrey N.; Bradley, Kevin A.

    1996-01-01

    Noise levels around airports and airbases in the United States arc computed via the FAA's Integrated Noise Model (INM) or the Air Force's NOISEMAP (NMAP) program. These models were originally developed for use in the vicinity of airports, at distances which encompass a day night average sound level in decibels (Ldn) of 65 dB or higher. There is increasing interest in aircraft noise at larger distances from the airport. including en-route noise. To evaluate the applicability of INM and NMAP at larger distances, a measurement program was conducted at a major air carrier airport with monitoring sites located in areas exposed to an Ldn of 55 dB and higher. Automated Radar Terminal System (ARTS) radar tracking data were obtained to provide actual flight parameters and positive identification of aircraft. Flight operations were grouped according to aircraft type. stage length, straight versus curved flight tracks, and arrival versus departure. Sound exposure levels (SEL) were computed at monitoring locations, using the INM, and compared with measured values. While individual overflight SEL data was characterized by a high variance, analysis performed on an energy-averaging basis indicates that INM and similar models can be applied to regions exposed to an Ldn of 55 dB with no loss of reliability.

  20. Structureborne noise investigations of a twin engine aircraft

    NASA Technical Reports Server (NTRS)

    Garrelick, J. M.; Cole, J. E., III; Martini, K.

    1986-01-01

    The interior noise of aircraft powered by advanced turbo-prop concepts is likely to have nonnegligible contributions from structureborne paths, these paths being those involving propeller loads transmitted to the structures of the lifting surfaces. As a means of examining these paths, structural measurements have been performed on a small twin-engine aircraft, and in addition analytical models of the structure have been developed. In this paper results from both portions of this study are presented.

  1. Comparison of two transonic noise prediction formulations using the aircraft noise prediction program

    NASA Technical Reports Server (NTRS)

    Spence, Peter L.

    1987-01-01

    This paper addresses recently completed work on using Farassat's Formulation 3 noise prediction code with the Aircraft Noise Prediction Program (ANOPP). Software was written to link aerodynamic loading generated by the Propeller Loading (PLD) module within ANOPP with formulation 3. Included are results of comparisons between Formulation 3 with ANOPP's existing noise prediction modules, Subsonic Propeller Noise (SPN) and Transonic Propeller Noise (TPN). Four case studies are investigated. Results of the comparison studies show excellent agreement for the subsonic cases. Differences found in the comparisons made under transonic conditions are strictly numerical and can be explained by the way in which the time derivative is calculated in Formulation 3. Also included is a section on how to execute Formulation 3 with ANOPP.

  2. A differential GPS for determining time-space-position information in support of aircraft noise certification

    DOT National Transportation Integrated Search

    2001-01-22

    Federal Aviation Regulation (FAR) Part 36, Noise : Standards: Aircraft Type and Airworthiness : Certification, requires that measured aircraft noise : certification data be corrected to a nominal reference-day : condition. This correction process...

  3. Analysis of interior noise ground and flight test data for advanced turboprop aircraft applications

    NASA Technical Reports Server (NTRS)

    Simpson, M. A.; Tran, B. N.

    1991-01-01

    Interior noise ground tests conducted on a DC-9 aircraft test section are described. The objectives were to study ground test and analysis techniques for evaluating the effectiveness of interior noise control treatments for advanced turboprop aircraft, and to study the sensitivity of the ground test results to changes in various test conditions. Noise and vibration measurements were conducted under simulated advanced turboprop excitation, for two interior noise control treatment configurations. These ground measurement results were compared with results of earlier UHB (Ultra High Bypass) Demonstrator flight tests with comparable interior treatment configurations. The Demonstrator is an MD-80 test aircraft with the left JT8D engine replaced with a prototype UHB advanced turboprop engine.

  4. Analysis of interior noise ground and flight test data for advanced turboprop aircraft applications

    NASA Astrophysics Data System (ADS)

    Simpson, M. A.; Tran, B. N.

    1991-08-01

    Interior noise ground tests conducted on a DC-9 aircraft test section are described. The objectives were to study ground test and analysis techniques for evaluating the effectiveness of interior noise control treatments for advanced turboprop aircraft, and to study the sensitivity of the ground test results to changes in various test conditions. Noise and vibration measurements were conducted under simulated advanced turboprop excitation, for two interior noise control treatment configurations. These ground measurement results were compared with results of earlier UHB (Ultra High Bypass) Demonstrator flight tests with comparable interior treatment configurations. The Demonstrator is an MD-80 test aircraft with the left JT8D engine replaced with a prototype UHB advanced turboprop engine.

  5. Update of aircraft profile data for the Integrated Noise Model computer program, vol. 2 : appendix A aircraft takeoff and landing profiles

    DOT National Transportation Integrated Search

    1992-03-01

    This report provides aircraft takeoff and landing profiles, aircraft aerodynamic performance coefficients and engine performance coefficients for the aircraft data base (Database 9) in the Integrated Noise Model (INM) computer program. Flight profile...

  6. Exposure-effect relations between aircraft and road traffic noise exposure at school and reading comprehension: the RANCH project.

    PubMed

    Clark, Charlotte; Martin, Rocio; van Kempen, Elise; Alfred, Tamuno; Head, Jenny; Davies, Hugh W; Haines, Mary M; Lopez Barrio, Isabel; Matheson, Mark; Stansfeld, Stephen A

    2006-01-01

    Transport noise is an increasingly prominent feature of the urban environment, making noise pollution an important environmental public health issue. This paper reports on the 2001-2003 RANCH project, the first cross-national epidemiologic study known to examine exposure-effect relations between aircraft and road traffic noise exposure and reading comprehension. Participants were 2,010 children aged 9-10 years from 89 schools around Amsterdam Schiphol, Madrid Barajas, and London Heathrow airports. Data from The Netherlands, Spain, and the United Kingdom were pooled and analyzed using multilevel modeling. Aircraft noise exposure at school was linearly associated with impaired reading comprehension; the association was maintained after adjustment for socioeconomic variables (beta = -0.008, p = 0.012), aircraft noise annoyance, and other cognitive abilities (episodic memory, working memory, and sustained attention). Aircraft noise exposure at home was highly correlated with aircraft noise exposure at school and demonstrated a similar linear association with impaired reading comprehension. Road traffic noise exposure at school was not associated with reading comprehension in either the absence or the presence of aircraft noise (beta = 0.003, p = 0.509; beta = 0.002, p = 0.540, respectively). Findings were consistent across the three countries, which varied with respect to a range of socioeconomic and environmental variables, thus offering robust evidence of a direct exposure-effect relation between aircraft noise and reading comprehension.

  7. Noise levels and data correction analysis for seven general aviation propeller aircraft

    DOT National Transportation Integrated Search

    1980-09-30

    This document reports noise levels of a general aviation propeller aircraft noise test at the FAA National Aviation Facility Experimental Center located in Atlantic City, New Jersey. The test was performed to acquire noise data on general aviation ty...

  8. Cockpit noise intensity : eleven twin-engine light aircraft.

    DOT National Transportation Integrated Search

    1968-10-01

    Eleven of the most popular twin-engine general-aviation light aircraft were tested for the noise intensity present during normal cruising operations at 2000, 6000, and 10000 feet MSL (mean sea level). Although generally quieter than single-engine pla...

  9. Near-field acoustical holography of military jet aircraft noise

    NASA Astrophysics Data System (ADS)

    Wall, Alan T.; Gee, Kent L.; Neilsen, Tracianne; Krueger, David W.; Sommerfeldt, Scott D.; James, Michael M.

    2010-10-01

    Noise radiated from high-performance military jet aircraft poses a hearing-loss risk to personnel. Accurate characterization of jet noise can assist in noise prediction and noise reduction techniques. In this work, sound pressure measurements were made in the near field of an F-22 Raptor. With more than 6000 measurement points, this is the most extensive near-field measurement of a high-performance jet to date. A technique called near-field acoustical holography has been used to propagate the complex pressure from a two- dimensional plane to a three-dimensional region in the jet vicinity. Results will be shown and what they reveal about jet noise characteristics will be discussed.

  10. Relative effectiveness of several simulated jet engine noise spectral treatments in reducing annoyance in a TV-viewing situation

    NASA Technical Reports Server (NTRS)

    Gunn, W. J.; Shigehisa, T.; Shepherd, W. T.

    1976-01-01

    An experiment was conducted in order to determine the relative effectiveness of several hypothetical jet engine noise treatments and to test hypothesis that speech interference, at least in part, mediates annoyance in a TV-viewing situation. Twenty-four subjects watched television in a simulated living room. Recorded jet flyover noises were presented in such a way as to create the illusion that aircraft were actually flying overhead. There were 27 stimuli (nine spectra at three overall levels) presented at an average rate of approximately one flight every 2 minutes. Subjects judged the annoyance value of individual stimuli using either a category rating method or magnitude estimation method in each of two 1-hour sessions. The spectral treatments most effective in reducing annoyance were at 1.6 Khz and 800 Hz, in that order. The degree of annoyance reduction resulting from all treatments was affected by the overall sound level of the stimuli, with the greatest reduction at the intermediate overall sound level, about 88 to 89 db(A), peak value. The results are interpreted as supporting the hypothesis that speech interference, at least in part, mediates annoyance with aircraft noise in a TV-viewing situation.

  11. Effects of low intensity noise from aircraft or from neighbourhood on cognitive learning and electrophysiological stress responses.

    PubMed

    Trimmel, Michael; Atzlsdorfer, Jürgen; Tupy, Nina; Trimmel, Karin

    2012-11-01

    The effects of low intensity noise on cognitive learning and autonomous physiological processes are of high practical relevance but are rarely addressed in empirical investigations. This study investigated the impact of neighbourhood noise (of 45 dB[A], n=20) and of noise coming from passing aircraft (of 48 dB[A] peak amplitude presented once per minute; n=19) during computer based learning of different texts (with three types of text structure, i.e. linear text, hierarchic hypertext, and network hypertext) in relation to a control group (35 dB[A], n=20). Using a between subjects design, reproduction scores, heart rate, and spontaneous skin conductance fluctuations were compared. Results showed impairments of reproduction in both noise conditions. Additionally, whereas in the control group and the neighbourhood noise group scores were better for network hypertext structure than for hierarchic hypertext, no effect of text structure on reproduction appeared in the aircraft noise group. Compared to the control group, for most of the learning period the number of spontaneous skin conductance fluctuations was higher for the aircraft noise group. For the neighbourhood noise group, fluctuations were higher during pre- and post task periods when noise stimulation was still present. Additionally, during the last 5 min of the 15 min learning period, an increased heart rate was found in the aircraft noise group. Data indicate remarkable cognitive and physiological effects of low intensity background noise. Some aspects of reproduction were impaired in the two noise groups. Cognitive learning, as indicated by reproduction scores, was changed structurally in the aircraft noise group and was accompanied by higher sympathetic activity. An additional cardiovascular load appeared for aircraft noise when combined with time pressure as indicated by heart rate for the announced last 5 min of the learning period during aircraft noise with a peak SPL of even 48 dB(A). Attentional

  12. Active Aircraft Pylon Noise Control System

    NASA Technical Reports Server (NTRS)

    Thomas, Russell H. (Inventor); Czech, Michael J (Inventor); Elmiligui, Alaa A. (Inventor)

    2015-01-01

    An active pylon noise control system for an aircraft includes a pylon structure connecting an engine system with an airframe surface of the aircraft and having at least one aperture to supply a gas or fluid therethrough, an intake portion attached to the pylon structure to intake a gas or fluid, a regulator connected with the intake portion via a plurality of pipes, to regulate a pressure of the gas or fluid, a plenum chamber formed within the pylon structure and connected with the regulator, and configured to receive the gas or fluid as regulated by the regulator, and a plurality of injectors in communication with the plenum chamber to actively inject the gas or fluid through the plurality of apertures of the pylon structure.

  13. Active Aircraft Pylon Noise Control System

    NASA Technical Reports Server (NTRS)

    Thomas, Russell H. (Inventor); Czech, Michael J. (Inventor); Elmiligui, Alaa A. (Inventor)

    2017-01-01

    An active pylon noise control system for an aircraft includes a pylon structure connecting an engine system with an airframe surface of the aircraft and having at least one aperture to supply a gas or fluid therethrough, an intake portion attached to the pylon structure to intake a gas or fluid, a regulator connected with the intake portion via a plurality of pipes, to regulate a pressure of the gas or fluid, a plenum chamber formed within the pylon structure and connected with the regulator, and configured to receive the gas or fluid as regulated by the regulator, and a plurality of injectors in communication with the plenum chamber to actively inject the gas or fluid through the plurality of apertures of the pylon structure.

  14. Cockpit noise intensity : fifteen single-engine light aircraft.

    DOT National Transportation Integrated Search

    1968-09-01

    Fifteen of the most popular single-engine general-aviation light aircraft were tested for the noise intensity present during normal cruising operations at 2000, and 10,000 feet MSL (mean sea level). In comparison with currently accepted DRC (damage-r...

  15. An assessment of propeller aircraft noise reduction technology

    NASA Technical Reports Server (NTRS)

    Metzger, F. Bruce

    1995-01-01

    This report is a review of the literature regarding propeller airplane far-field noise reduction. Near-field and cabin noise reduction are not specifically addressed. However, some of the approaches used to reduce far-field noise produce beneficial effects in the near-field and in the cabin. The emphasis is on propeller noise reduction but engine exhaust noise reduction by muffling is also addressed since the engine noise becomes a significant part of the aircraft noise signature when propeller noise is reduced. It is concluded that there is a substantial body of information available that can be used as the basis to reduce propeller airplane noise. The reason that this information is not often used in airplane design is the associated weight, cost, and performance penalties. It is recommended that the highest priority be given to research for reducing the penalties associated with lower operating RPM and propeller diameter while increasing the number of blades. Research to reduce engine noise and explore innovative propeller concepts is also recommended.

  16. Flight velocity influence on jet noise of conical ejector, annular plug and segmented suppressor nozzles

    NASA Technical Reports Server (NTRS)

    Brausch, J. F.

    1972-01-01

    An F106 aircraft with a J85-13 engine was used for static and flight acoustic and aerodynamic tests of a conical ejector, an unsuppressed annular plug, and three segmented suppressor nozzles. Static 100 ft. arc data, corrected for influences other than jet noise, were extrapolated to a 300 ft. sideline for comparison to 300 ft. altitude flyover data at M = 0.4. Data at engine speeds of 80 to 100% (max dry) static and 88 to 100% flight are presented. Flight velocity influence on noise is shown on peak OASPL and PNL, PNL directivity, EPNL and chosen spectra. Peak OASPL and PNL plus EPNL suppression levels are included showing slightly lower flight than static peak PNL suppression but greater EPNL than peak PNL suppression. Aerodynamic performance was as anticipated and closely matched model work for the 32-spoke nozzle.

  17. Static and wind tunnel model tests for the development of externally blown flap noise reduction techniques

    NASA Technical Reports Server (NTRS)

    Pennock, A. P.; Swift, G.; Marbert, J. A.

    1975-01-01

    Externally blown flap models were tested for noise and performance at one-fifth scale in a static facility and at one-tenth scale in a large acoustically-treated wind tunnel. The static tests covered two flap designs, conical and ejector nozzles, third-flap noise-reduction treatments, internal blowing, and flap/nozzle geometry variations. The wind tunnel variables were triple-slotted or single-slotted flaps, sweep angle, and solid or perforated third flap. The static test program showed the following noise reductions at takeoff: 1.5 PNdB due to treating the third flap; 0.5 PNdB due to blowing from the third flap; 6 PNdB at flyover and 4.5 PNdB in the critical sideline plane (30 deg elevation) due to installation of the ejector nozzle. The wind tunnel program showed a reduction of 2 PNdB in the sideline plane due to a forward speed of 43.8 m/s (85 kn). The best combination of noise reduction concepts reduced the sideline noise of the reference aircraft at constant field length by 4 PNdB.

  18. Some health effects of aircraft noise with special reference to shift work.

    PubMed

    Rizk, Sanaa A M; Sharaf, Nevin E; Mahdy-Abdallah, Heba; ElGelil, Khalid S Abd

    2016-06-01

    Aircraft noise is an environmental stressor. A positive relationship exists between noise and high blood pressure. Shift work is an additional hazardous working condition with negative effect on the behavior attitude of workers. This study aimed at investigating some health hazards for shift work on workers at Cairo International Airport (CIA), Egypt, as a strategic work place, with more than one stressor. Assessment of noise effects were carried out in four working sites at the airport besides control sites. The average noise level in the exposure sites was 106.5 dB compared with 54 dB at the control sites. The study comprised a group of 200 male workers exposed to aircraft noise and 110 male workers not exposed to noise as control group. All workers had full general medical examination after filling specially formulated questionnaire. Hearing impairment, raised blood pressure, headaches, disturbed sleep, and symptoms of anxiety were more prominent among the exposed workers than the control. Symptoms of upper respiratory tract were reported among night shifters of both groups with high tendency for smoking. Thus, night-shift workers at CIA work under more than one stressor. Hypertension and smoking might act as intermediate factors on the causal pathway of complaints, making aircraft noise and night shift acting as two synergistic stressors. Airport workers are in need for aggressive hearing conservation programs. Organization of the working hours schedule is mandatory to avoid excessive noise exposure. © The Author(s) 2014.

  19. Aircraft noise around a large international airport and its impact on general health and medication use

    PubMed Central

    Franssen, E; van Wiechen, C M A G; Nagelkerke, N; Lebret, E

    2004-01-01

    Aims: To assess the prevalence of general health status, use of sleep medication, and use of medication for cardiovascular diseases, and to study their relation to aircraft noise exposure. Methods: These health indicators were measured by a cross-sectional survey among 11 812 respondents living within a radius of 25 km around Schiphol airport (Amsterdam). Results: Adjusted odds ratios ranged from 1.02 to 2.34 per 10 dB(A) increase in Lden. The associations were statistically significant for all indicators, except for use of prescribed sleep medication or sedatives and frequent use of this medication. None of the health indicators were associated with aircraft noise exposure during the night, but use of non-prescribed sleep medication or sedatives was associated with aircraft noise exposure during the late evening (OR = 1.72). Vitality related health complaints such as tiredness and headache were associated with aircraft noise, whereas most other physical complaints were not. Odds ratios for the vitality related complaints ranged from 1.16 to 1.47 per 10 dB(A) increase in Lden. A small fraction of the prevalence of poor self rated health (0.13), medication for cardiovascular diseases or increased blood pressure (0.08), and sleep medication or sedatives (0.22) could be attributed to aircraft noise. Although the attributable fraction was highest in the governmentally noise regulated area, aircraft noise had more impact in the non-regulated area, due to the larger population. Conclusions: Results suggest associations between community exposure to aircraft noise and the health indicators poor general health status, use of sleep medication, and use of medication for cardiovascular diseases. PMID:15090660

  20. A Psychoacoustic Evaluation of Noise Signatures from Advanced Civil Transport Aircraft

    NASA Technical Reports Server (NTRS)

    Rizzi, Stephen A.; Christian, Andrew

    2016-01-01

    The NASA Environmentally Responsible Aviation project has been successful in developing and demonstrating technologies for integrated aircraft systems that can simultaneously meet aggressive goals for fuel burn, noise and emissions. Some of the resulting systems substantially differ from the familiar tube and wing designs constituting the current civil transport fleet. This study attempts to explore whether or not the effective perceived noise level metric used in the NASA noise goal accurately reflects human subject response across the range of vehicles considered. Further, it seeks to determine, in a quantitative manner, if the sounds associated with the advanced aircraft are more or less preferable to the reference vehicles beyond any differences revealed by the metric. These explorations are made through psychoacoustic tests in a controlled laboratory environment using simulated stimuli developed from auralizations of selected vehicles based on systems noise assessments.

  1. Evaluation of the impact of noise metrics on tiltrotor aircraft design

    NASA Technical Reports Server (NTRS)

    Sternfeld, H.; Spencer, R.; Ziegenbein, P.

    1995-01-01

    A subjective noise evaluation was conducted in which the test participants evaluated the annoyance of simulated sounds representative of future civil tiltrotor aircraft. The subjective responses were correlated with the noise metrics of A-weighted sound pressure level, overall sound pressure level, and perceived level. The results indicated that correlation between subjective response and A-weighted sound pressure level is considerably enhanced by combining it in a multiple regression with overall sound pressure level. As a single metric, perceived level correlated better than A-weighted sound pressure level due to greater emphasis on low frequency noise components. This latter finding was especially true for indoor noise where the mid and high frequency noise components are attenuated by typical building structure. Using the results of the subjective noise evaluation, the impact on tiltrotor aircraft design was also evaluated. While A-weighted sound pressure level can be reduced by reduction in tip speed, an increase in number of rotor blades is required to achieve significant reduction of low frequency noise as measured by overall sound pressure level. Additional research, however, is required to achieve comparable reductions in impulsive noise due to blade-vortex interaction, and also to achieve reduction in broad band noise.

  2. Analytical model for investigation of interior noise characteristics in aircraft with multiple propellers including synchrophasing

    NASA Technical Reports Server (NTRS)

    Fuller, C. R.

    1986-01-01

    A simplified analytical model of transmission of noise into the interior of propeller-driven aircraft has been developed. The analysis includes directivity and relative phase effects of the propeller noise sources, and leads to a closed form solution for the coupled motion between the interior and exterior fields via the shell (fuselage) vibrational response. Various situations commonly encountered in considering sound transmission into aircraft fuselages are investigated analytically and the results obtained are compared to measurements in real aircraft. In general the model has proved successful in identifying basic mechanisms behind noise transmission phenomena.

  3. The cost of noise reduction for departure and arrival operations of commercial tilt rotor aircraft

    NASA Technical Reports Server (NTRS)

    Faulkner, H. B.; Swan, W. M.

    1976-01-01

    The relationship between direct operating cost (DOC) and noise annoyance due to a departure and an arrival operation was developed for commercial tilt rotor aircraft. This was accomplished by generating a series of tilt rotor aircraft designs to meet various noise goals at minimum DOC. These vehicles ranged across the spectrum of possible noise levels from completely unconstrained to the quietest vehicles that could be designed within the study ground rules. Optimization parameters were varied to find the minimum DOC. This basic variation was then extended to different aircraft sizes and technology time frames.

  4. Laboratory studies of scales for measuring helicopter noise

    NASA Technical Reports Server (NTRS)

    Ollerhead, J. B.

    1982-01-01

    The adequacy of the effective perceived noise level (EPNL) procedure for rating helicopter noise annoyance was investigated. Recordings of 89 helicopters and 30 fixed wing aircraft (CTOL) flyover sounds were rated with respect to annoyance by groups of approximately 40 subjects. The average annoyance scores were transformed to annoyance levels defined as the equally annoying sound levels of a fixed reference sound. The sound levels of the test sounds were measured on various scales, with and without corrections for duration, tones, and impulsiveness. On average, the helicopter sounds were judged equally annoying to CTOL sounds when their duration corrected levels are approximately 2 dB higher. Multiple regression analysis indicated that, provided the helicopter/CTOL difference of about 2 dB is taken into account, the particular linear combination of level, duration, and tone corrections inherent in EPNL is close to optimum. The results reveal no general requirement for special EPNL correction terms to penalize helicopter sounds which are particularly impulsive; impulsiveness causes spectral and temporal changes which themselves adequately amplify conventionally measured sound levels.

  5. Model-based synthesis of aircraft noise to quantify human perception of sound quality and annoyance

    NASA Astrophysics Data System (ADS)

    Berckmans, D.; Janssens, K.; Van der Auweraer, H.; Sas, P.; Desmet, W.

    2008-04-01

    This paper presents a method to synthesize aircraft noise as perceived on the ground. The developed method gives designers the opportunity to make a quick and economic evaluation concerning sound quality of different design alternatives or improvements on existing aircraft. By presenting several synthesized sounds to a jury, it is possible to evaluate the quality of different aircraft sounds and to construct a sound that can serve as a target for future aircraft designs. The combination of using a sound synthesis method that can perform changes to a recorded aircraft sound together with executing jury tests allows to quantify the human perception of aircraft noise.

  6. The Insulation of Houses against Noise from Aircraft in Flight.

    ERIC Educational Resources Information Center

    Scholes, W. E.; Parkin, P. H.

    Three groups of traditional houses were insulated against aircraft noise by double glazing and installing sound attenuating ventilator units. For upper floor rooms of two story houses, overall insulations of 35-40 dB were obtainable, providing transmission through the roofs and down flues were also reduced. The noise levels caused by ventilator…

  7. Development and validation of a numerical acoustic analysis program for aircraft interior noise prediction

    NASA Astrophysics Data System (ADS)

    Garcea, Ralph; Leigh, Barry; Wong, R. L. M.

    Reduction of interior noise in propeller-driven aircraft, to levels comparable with those obtained in jet transports, has become a leading factor in the early design stages of the new generation turboprops- and may be essential if these new designs are to succeed. The need for an analytical capability to predict interior noise is accepted throughout the turboprop aircraft industry. To this end, an analytical noise prediction program, which incorporates the SYSNOISE numerical acoustic analysis software, is under development at de Havilland. The discussion contained herein looks at the development program and how it was used in a design sensitivity analysis to optimize the structural design of the aircraft cabin for the purpose of reducing interior noise levels. This report also summarizes the validation of the SYSNOISE package using numerous classical cases from the literature.

  8. Lightweight sidewalls for aircraft interior noise control

    NASA Technical Reports Server (NTRS)

    May, D. N.; Plotkin, K. J.; Selden, R. G.; Sharp, B. H.

    1985-01-01

    A theoretical and experimental study was performed to devise lightweight sidewalls for turboprop aircraft. Seven concepts for new sidewalls were analyzed and tested for noise reduction using flat panels of 1.2 m x 1.8 m (4 ft x 6 ft), some of which were aircraft-type constructions and some of which were simpler, easier-to-construct panels to test the functioning of an acoustic principle. Aircraft-application sidewalls were then conceived for each of the seven concepts, and were subjectively evaluated for their ability to meet aircraft nonacoustic design requirements. As a result of the above, the following sidewall concepts were recommended for further investigation: a sidewall in which the interior cavity is vented to ceiling and underfloor areas; sidewalls with wall-mounted resonators, one having a conventional trim panel and one a limp one; and a sidewall with a stiff outer wall and a limp trim panel. These sidewalls appear to promise lower weights than conventional sidewalls adjusted to meet similar acoustic requirements, and further development may prove them to be practical.

  9. The effects of road traffic and aircraft noise exposure on children's episodic memory: the RANCH project.

    PubMed

    Matheson, Mark; Clark, Charlotte; Martin, Rocio; van Kempen, Elise; Haines, Mary; Barrio, Isabel Lopez; Hygge, Staffan; Stansfeld, Stephen

    2010-01-01

    Previous studies have found that chronic exposure to aircraft noise has a negative effect on children's performance on tests of episodic memory. The present study extended the design of earlier studies in three ways: firstly, by examining the effects of two noise sources, aircraft and road traffic, secondly, by examining exposure-effect relationships, and thirdly, by carrying out parallel field studies in three European countries, allowing cross-country comparisons to be made. A total of 2844 children aged between 8 years 10 months and 12 years 10 months (mean age 10 years 6 months) completed classroom-based tests of cued recall, recognition memory and prospective memory. Questionnaires were also completed by the children and their parents in order to provide information about socioeconomic context. Multilevel modeling analysis revealed aircraft noise to be associated with an impairment of recognition memory in a linear exposure-effect relationship. The analysis also found road traffic noise to be associated with improved performance on cued recall in a linear exposure-effect relationship. No significant association was found between exposure to aircraft noise and cued recall or prospective memory. Likewise, no significant association was found between road traffic noise and recognition or prospective memory. Taken together, these findings indicate that exposure to aircraft noise and road traffic noise can impact on certain aspects of children's episodic memory.

  10. Arousal from sleep by noises from aircraft with and without acoustically treated nacelles

    NASA Technical Reports Server (NTRS)

    Lukas, J. S.; Peeler, D. J.; Dobbs, M. E.

    1973-01-01

    The electroencephalographic and behavioral responses during sleep of four subjects, aged 46 to 58 years, to three types of noises were tested over 14 consecutive nights. The stimuli were two DC-8 jet landing noises (each 30 seconds in duration and coming from DC-8 aircraft with and without acoustical treatment on the engine nacelles) and a 4-second burst of pink noise. Each of the noises was tested at nominal intensities of 61 and 79 dBA. Other physical descriptors of the noises were measured or computed. The results indicate that for an equivalent degree of sleep disruption, noise form the jet aircraft with untreated nacelles must be about 6 dBA less intense than the jet with acoustically treated nacelles. Predictions of the effects of noise on sleep appear, tentatively, to attain the highest accuracy when the physical descriptor of noise intensity includes information about the impulsive characteristics of that noise as well as its long-term spectral content.

  11. Does aircraft noise exposure increase the risk of hypertension in the population living near airports in France?

    PubMed

    Evrard, Anne-Sophie; Lefèvre, Marie; Champelovier, Patricia; Lambert, Jacques; Laumon, Bernard

    2017-02-01

    The largest study until now around 6 major European airports, the HYENA (HYpertension and Exposure to Noise near Airports) study, reported an excess risk of hypertension related to long-term aircraft noise exposure. The DEBATS (Discussion on the health effects of aircraft noise) study investigated the relationship between this exposure and the risk of hypertension in men and in women near French airports. Blood pressure of 1244 participants older than 18 years of age was measured. Information about health, socioeconomic and lifestyle factors was collected by means of a face-to-face questionnaire performed at home by an interviewer. Aircraft noise exposure was assessed for each participant's home address using noise maps. They were calculated with the Integrated Noise Model with a 1 dB(A)-resolution. The major potential confounders being risk factors for hypertension were included in the logistic regression models: age, occupational activity, body mass index, physical activity and alcohol consumption. After adjustment for the main potential confounders, an exposure-response relationship was evidenced between the risk of hypertension and aircraft noise exposure at night for men only. A 10-dB(A) increase in L night was associated with an OR of 1.34 (95% CI 1.00 to 1.97). These findings contribute to the overall evidence suggesting that aircraft noise exposure at night-time may increase the risk of hypertension in men. Hypertension is a well-known and established risk factor for cardiovascular disease. The association reported in the present study between aircraft noise and hypertension implies that aircraft noise might be a risk factor also for cardiovascular disease. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  12. Canada's first fixed-site aircraft noise monitoring system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Standen, N.M.

    1982-01-01

    The nature of aircraft noise management in Canada as it is presently evolving is discussed. The population of aircraft operating in Canada is similar to most western nations with regard to aircraft type. Canada's airport system includes major airports owned and operated by the federal Department of Transport (Transport Canada), airports owned and operated by provinces, municipalities or local commissions, and privately owned and operated airports, largely catering to general aviation. In addition, there are airports which are owned by Transport Canada, but operated by another agency. The consequence of this arrangement is that the major jet transport traffic ismore » handled by airports which are owned and operated by either Transport Canada or another government agency.« less

  13. Minimum Climb to Cruise Noise Trajectories Modeled for the High Speed Civil Transport

    NASA Technical Reports Server (NTRS)

    Berton, Jeffrey J.

    1998-01-01

    The proposed U.S. High Speed Civil Transport (HSCT) will revolutionize commercial air travel by providing economical supersonic passenger service to destinations worldwide. Unlike the high-bypass turbofan engines that propel today's subsonic airliners, HSCT engines will have much higher jet exhaust speeds. Jet noise, caused by the turbulent mixing of high-speed exhaust with the surrounding air, poses a significant challenge for HSCT engine designers. To resolve this challenge, engineers have designed advanced mixer rejector nozzles that reduce HSCT jet noise to airport noise certification levels by entraining and mixing large quantities of ambient air with the engines' jet streams. Although this works well during the first several minutes of flight, far away from the airport, as the HSCT gains speed and climbs, poor ejector inlet recovery and ejector ram drag contribute to poor thrust, making it advantageous to turn off the ejector. Doing so prematurely, however, can cause unacceptable noise levels to propagate to the ground, even when the aircraft is many miles from the airport. This situation lends itself ideally to optimization, where the aircraft trajectory, throttle setting, and ejector setting can be varied (subject to practical aircraft constraints) to minimize the noise propagated to the ground. A method was developed at the NASA Lewis Research Center that employs a variation of the classic energy state approximation: a trajectory analysis technique historically used to minimize climb time or fuel burned in many aircraft problems. To minimize the noise on the ground at any given throttle setting, high aircraft altitudes are desirable; but the HSCT may either climb quickly to high altitudes using a high, noisy throttle setting or climb more slowly at a lower, quieter throttle setting. An optimizer has been programmed into NASA's existing aircraft and noise analysis codes to balance these options by dynamically choosing the best altitude-velocity path and

  14. Two-stage, low noise advanced technology fan. 5: Acoustic final report

    NASA Technical Reports Server (NTRS)

    Sofrin, T. G.; Riloff, N., Jr.

    1975-01-01

    The NASA Q2S(quiet two-stage) fan is a 0.836m (32.9 in.) diameter model of the STF 433 engine fan, selected in a 1972 study for an Advanced Technology Transport (ATT) airplane. Noise-control features include: low tip speed, moderate stage pressure rise, large blade-vane spacings, no inlet guide vanes, and optimum blade and vane numbers. Tests were run on the baseline Q2S fan with standard inlet and discharge ducts. Further tests were made of a translating centerbody sonic inlet device and treated discharge ducts. Results were scaled to JT8D and JT3D engine fan size for comparison with current two-stage fans, and were also scaled to STF 433 fan size to compare calculated ATT flyover noise with FAR 36 limits. Baseline Q2S results scaled to JT8D and JT3D engine fan sizes showed substantial noise reductions. Calculated unsuppressed baseline ATT flyovers averaged about 2.5 EPNdB below FAR 36 limits. Using measured sonic inlet results, scaled baseline Q2S fan results, and calculated attenuations for a 1975 technology duct liner, projected flyover noise calculations for the ATT averaged about FAR 36 limits minus 10 EPNdB. Advances in suppression technology required to meet the 1985 goal of FAR 36 limits minus 20 EPNdB are discussed.

  15. Airframe noise of a small model transport aircraft and scaling effects

    NASA Astrophysics Data System (ADS)

    Shearin, J. G.

    1981-05-01

    Airframe noise of a 0.01 scale model Boeing 747 wide-body transport was measured in the Langley Anechoic Noise Facility. The model geometry simulated the landing and cruise configurations. The model noise was found to be similar in noise characteristics to that possessed by a 0.03 scale model 747. The 0.01 scale model noise data scaled to within 3 dB of full scale data using the same scaling relationships as that used to scale the 0.03 scale model noise data. The model noise data are compared with full scale noise data, where the full scale data are calculated using the NASA aircraft noise prediction program.

  16. A review of the effects of aircraft noise on wildlife and humans, current control mechanisms, and the need for further study.

    PubMed

    Pepper, Christopher B; Nascarella, Marc A; Kendall, Ronald J

    2003-10-01

    Military and civilian aircraft overflights are an issue that may impact the quality of life for millions of United States residents. Aircraft noise annoys many people worldwide and is generally thought to adversely affect some wildlife species. In light of increasing demands being placed on airspace, and because of technological improvements in acoustical testing, there is a need to reexamine the effects of aircraft noise exposure on humans and wildlife. This paper reviews past research, current laws and legislation, and presents an argument for the need to revisit the effects of aircraft noise on humans and wildlife. Some evidence suggests that noise may adversely impact wildlife and humans, however, many of the past studies were inconclusive and based on relatively small sample sizes. Given that aircraft noise abatement legislation has been enacted and because of the recent promulgation of community-based noise awareness programs, future studies should be conducted to resolve public policy problems and debates associated with aircraft noise. The need to further study the effects of aircraft noise on humans and wildlife is critical for creating sustainable land use policies near aircraft installations. Data derived from these studies will be used to create sound public policies that enhance the operational capacity of military and civilian aircraft while reducing the opportunity for human and wildlife exposure to aircraft noise.

  17. Simulated Flyover of Mars Canyon Map Animation

    NASA Image and Video Library

    2014-12-12

    This frame from an animation simulates a flyover of a portion of a Martian canyon detailed in a geological map produced by the U.S. Geological Survey and based on observations by the HiRISE camera on NASA Mars Reconnaissance Orbiter.

  18. A process for the quantification of aircraft noise and emissions interdependencies

    NASA Astrophysics Data System (ADS)

    de Luis, Jorge

    The main purpose of this dissertation is to develop a process to improve actual policy-making procedures in terms of aviation environmental effects. This research work expands current practices with physics based publicly available models. The current method uses solely information provided by industry members, and this information is usually proprietary, and not physically intuitive. The process herein proposed provides information regarding the interdependencies between the environmental effects of aircraft. These interdependencies are also tied to the actual physical parameters of the aircraft and the engine, making it more intuitive for decision-makers to understand the impacts to the vehicle due to different policy scenarios. These scenarios involve the use of fleet analysis tools in which the existing aircraft are used to predict the environmental effects of imposing new stringency levels. The aircraft used are reduced to a series of coefficients that represent their performance, in terms of flight characteristics, fuel burn, noise, and emissions. These coefficients are then utilized to model flight operations and calculate what the environmental impacts of those aircraft are. If a particular aircraft does not meet the stringency to be analyzed, a technology response is applied to it, in order to meet that stringency. Depending on the level of reduction needed, this technology response can have an effect on the fuel burn characteristic of the aircraft. Another important point of the current stringency analysis process is that it does not take into account both noise and emissions concurrently, but instead, it considers them separately, one at a time. This assumes that the interdependencies between the two do not exists, which is not realistic. The latest stringency process delineated in 2004 imposed a 2% fuel burn penalty for any required improvements on NOx, no matter the type of aircraft or engine, assuming that no company had the ability to produce a

  19. Practical ranges of loudness levels of various types of environmental noise, including traffic noise, aircraft noise, and industrial noise.

    PubMed

    Salomons, Erik M; Janssen, Sabine A

    2011-06-01

    In environmental noise control one commonly employs the A-weighted sound level as an approximate measure of the effect of noise on people. A measure that is more closely related to direct human perception of noise is the loudness level. At constant A-weighted sound level, the loudness level of a noise signal varies considerably with the shape of the frequency spectrum of the noise signal. In particular the bandwidth of the spectrum has a large effect on the loudness level, due to the effect of critical bands in the human hearing system. The low-frequency content of the spectrum also has an effect on the loudness level. In this note the relation between loudness level and A-weighted sound level is analyzed for various environmental noise spectra, including spectra of traffic noise, aircraft noise, and industrial noise. From loudness levels calculated for these environmental noise spectra, diagrams are constructed that show the relation between loudness level, A-weighted sound level, and shape of the spectrum. The diagrams show that the upper limits of the loudness level for broadband environmental noise spectra are about 20 to 40 phon higher than the lower limits for narrowband spectra, which correspond to the loudness levels of pure tones. The diagrams are useful for assessing limitations and potential improvements of environmental noise control methods and policy based on A-weighted sound levels.

  20. Piloted Simulation Study of the Effects of High-Lift Aerodynamics on the Takeoff Noise of a Representative High-Speed Civil Transport

    NASA Technical Reports Server (NTRS)

    Glaab, Louis J.; Riley, Donald R.; Brandon, Jay M.; Person, Lee H., Jr.; Glaab, Patricia C.

    1999-01-01

    As part of an effort between NASA and private industry to reduce airport-community noise for high-speed civil transport (HSCT) concepts, a piloted simulation study was initiated for the purpose of predicting the noise reduction benefits that could result from improved low-speed high-lift aerodynamic performance for a typical HSCT configuration during takeoff and initial climb. Flight profile and engine information from the piloted simulation were coupled with the NASA Langley Aircraft Noise Prediction Program (ANOPP) to estimate jet engine noise and to propagate the resulting source noise to ground observer stations. A baseline aircraft configuration, which also incorporated different levels of projected improvements in low-speed high-lift aerodynamic performance, was simulated to investigate effects of increased lift and lift-to-drag ratio on takeoff noise levels. Simulated takeoff flights were performed with the pilots following a specified procedure in which either a single thrust cutback was performed at selected altitudes ranging from 400 to 2000 ft, or a multiple-cutback procedure was performed where thrust was reduced by a two-step process. Results show that improved low-speed high-lift aerodynamic performance provides at least a 4 to 6 dB reduction in effective perceived noise level at the FAA downrange flyover measurement station for either cutback procedure. However, improved low-speed high-lift aerodynamic performance reduced maximum sideline noise levels only when using the multiple-cutback procedures.

  1. Airframe Noise Results from the QTD II Flight Test Program

    NASA Technical Reports Server (NTRS)

    Elkoby, Ronen; Brusniak, Leon; Stoker, Robert W.; Khorrami, Mehdi R.; Abeysinghe, Amal; Moe, Jefferey W.

    2007-01-01

    With continued growth in air travel, sensitivity to community noise intensifies and materializes in the form of increased monitoring, regulations, and restrictions. Accordingly, realization of quieter aircraft is imperative, albeit only achievable with reduction of both engine and airframe components of total aircraft noise. Model-scale airframe noise testing has aided in this pursuit; however, the results are somewhat limited due to lack of fidelity of model hardware, particularly in simulating full-scale landing gear. Moreover, simulation of true in-flight conditions is non-trivial if not infeasible. This paper reports on an investigation of full-scale landing gear noise measured as part of the 2005 Quiet Technology Demonstrator 2 (QTD2) flight test program. Conventional Boeing 777-300ER main landing gear were tested, along with two noise reduction concepts, namely a toboggan fairing and gear alignment with the local flow, both of which were down-selected from various other noise reduction devices evaluated in model-scale testing at Virginia Tech. The full-scale toboggan fairings were designed by Goodrich Aerostructures as add-on devices allowing for complete retraction of the main gear. The baseline-conventional gear, faired gear, and aligned gear were all evaluated with the high-lift system in the retracted position and deployed at various flap settings, all at engine idle power setting. Measurements were taken with flyover community noise microphones and a large aperture acoustic phased array, yielding far-field spectra, and localized sources (beamform maps). The results were utilized to evaluate qualitatively and quantitatively the merit of each noise reduction concept. Complete similarity between model-scale and full-scale noise reduction levels was not found and requires further investigation. Far-field spectra exhibited no noise reduction for both concepts across all angles and frequencies. Phased array beamform maps show inconclusive evidence of noise

  2. Analytical study of interior noise control by fuselage design techniques on high-speed, propeller-driven aircraft

    NASA Technical Reports Server (NTRS)

    Revell, J. D.; Balena, F. J.; Koval, L. R.

    1980-01-01

    The acoustical treatment mass penalties required to achieve an interior noise level of 80 dBA for high speed, fuel efficient propfan-powered aircraft are determined. The prediction method used is based on theory developed for the outer shell dynamics, and a modified approach for add-on noise control element performance. The present synthesis of these methods is supported by experimental data. Three different sized aircraft are studied, including a widebody, a narrowbody and a business sized aircraft. Noise control penalties are calculated for each aircraft for two kinds of noise control designs: add-on designs, where the outer wall structure cannot be changed, and advanced designs where the outer wall stiffness level and the materials usage can be altered. For the add-on designs, the mass penalties range from 1.7 to 2.4 percent of the takeoff gross weight (TOGW) of the various aircraft, similar to preliminary estimates. Results for advanced designs show significant reductions of the mass penalties. For the advanced aluminum designs the penalties are 1.5% of TOGW, and for an all composite aircraft the penalties range from 0.74 to 1.4% of TOGW.

  3. ANOPP programmer's reference manual for the executive System. [aircraft noise prediction program

    NASA Technical Reports Server (NTRS)

    Gillian, R. E.; Brown, C. G.; Bartlett, R. W.; Baucom, P. H.

    1977-01-01

    Documentation for the Aircraft Noise Prediction Program as of release level 01/00/00 is presented in a manual designed for programmers having a need for understanding the internal design and logical concepts of the executive system software. Emphasis is placed on providing sufficient information to modify the system for enhancements or error correction. The ANOPP executive system includes software related to operating system interface, executive control, and data base management for the Aircraft Noise Prediction Program. It is written in Fortran IV for use on CDC Cyber series of computers.

  4. Evaluation of an Aircraft Concept With Over-Wing, Hydrogen-Fueled Engines for Reduced Noise and Emissions

    NASA Technical Reports Server (NTRS)

    Guynn, Mark D.; Olson, Erik D.

    2002-01-01

    This report describes the analytical modeling and evaluation of an unconventional commercial transport aircraft concept designed to address aircraft noise and emission issues. A strut-braced wing configuration with overwing, ultra-high bypass ratio, hydrogen fueled turbofan engines is considered. Estimated noise and emission characteristics are compared to a conventional configuration designed for the same mission and significant benefits are identified. The design challenges and technology issues which would have to be addressed to make the concept a viable alternative to current aircraft designs are discussed. This concept is one of the "Quiet Green Transport" aircraft concepts studied as part of NASA's Revolutionary Aerospace Systems Concepts (RASC) Program. The RASC Program seeks to develop revolutionary concepts that address strategic objectives of the NASA Enterprises, such as reducing aircraft noise and emissions, and to identify enabling advanced technology requirements for the concepts.

  5. Flyover Sputnik Planum

    NASA Image and Video Library

    2015-09-21

    Images downloaded from NASA's New Horizons spacecraft (through Sept. 11, 2015) were stitched together and rendered on a sphere to make a flyover "movie." The animation, made with images from New Horizons' Long Range Reconnaissance Imager (LORRI), begins with a low-altitude look at the informally named Norgay Montes, flies northward over the boundary between informally named Sputnik Planum and Cthulhu Regio, turns, and drifts slowly east. During the animation, the altitude of the observer rises until it is about 10 times higher to show about 80% of the hemisphere New Horizons flew closest to on July 14, 2015. http://photojournal.jpl.nasa.gov/catalog/PIA19951

  6. HSCT noise reduction technology development at GE Aircraft Engines

    NASA Technical Reports Server (NTRS)

    Majjigi, Rudramuni K.

    1992-01-01

    The topics covered include the following: High Speed Civil Transport (HSCT) exhaust nozzle design approaches; GE aircraft engine (GEAE) HSCT acoustics research; 2DCD non-IVP suppressor ejector; key sensitivities from reference aircraft; acoustic experiments; aero-mixing experimental set-up; fluid shield nozzle; HSCT Mach 2.4 flade nozzle; noise prediction; nozzle concept for GE/Boeing joint test; scale model hot core flow path modified to prevent hub-choking CFL3-D solution; HSCT exhaust nozzle status; and key acoustic technology issues for HSCT's.

  7. HSCT noise reduction technology development at GE Aircraft Engines

    NASA Astrophysics Data System (ADS)

    Majjigi, Rudramuni K.

    1992-04-01

    The topics covered include the following: High Speed Civil Transport (HSCT) exhaust nozzle design approaches; GE aircraft engine (GEAE) HSCT acoustics research; 2DCD non-IVP suppressor ejector; key sensitivities from reference aircraft; acoustic experiments; aero-mixing experimental set-up; fluid shield nozzle; HSCT Mach 2.4 flade nozzle; noise prediction; nozzle concept for GE/Boeing joint test; scale model hot core flow path modified to prevent hub-choking CFL3-D solution; HSCT exhaust nozzle status; and key acoustic technology issues for HSCT's.

  8. Helicopter rotor trailing edge noise. [noise prediction

    NASA Technical Reports Server (NTRS)

    Schlinker, R. H.; Amier, R. K.

    1981-01-01

    A two dimensional section of a helicopter main rotor blade was tested in an acoustic wind tunnel at close to full-scale Reynolds numbers to obtain boundary layer data and acoustic data for use in developing an acoustic scaling law and testing a first principles trailing edge noise theory. Results were extended to the rotating frame coordinate system to develop a helicopter rotor trailing edge noise prediction. Comparisons of the calculated noise levels with helicopter flyover spectra demonstrate that trailing edge noise contributes significantly to the total helicopter noise spectrum at high frequencies. This noise mechanism is expected to control the minimum rotor noise. In the case of noise radiation from a local blade segment, the acoustic directivity pattern is predicted by the first principles trailing edge noise theory. Acoustic spectra are predicted by a scaling law which includes Mach number, boundary layer thickness and observer position. Spectrum shape and sound pressure level are also predicted by the first principles theory but the analysis does not predict the Strouhal value identifying the spectrum peak.

  9. A review and update of the NASA aircraft noise prediction program propeller analysis system

    NASA Technical Reports Server (NTRS)

    Golub, Robert A.; Nguyen, L. Cathy

    1989-01-01

    The National Aeronautics and Space Administration (NASA) Aircraft Noise Prediction Program (ANOPP) Propeller Analysis System (PAS) is a set of computational modules for predicting the aerodynamics, performance, and noise of propellers. The ANOPP PAS has the capability to predict noise levels for propeller aircraft certification and produce parametric scaling laws for the adjustment of measured data to reference conditions. A technical overview of the prediction techniques incorporated into the system is presented. The prediction system has been applied to predict the noise signature of a variety of propeller configurations including the effects of propeller angle of attack. A summary of these validation studies is discussed with emphasis being placed on the wind tunnel and flight test programs sponsored by the Federal Aviation Administration (FAA) for the Piper Cherokee Lance aircraft. A number of modifications and improvements have been made to the system and both DEC VAX and IBM-PC versions of the system have been added to the original CDC NOS version.

  10. Effects on sleep disturbance of changes in aircraft noise near three airports.

    PubMed

    Fidell, S; Pearsons, K; Tabachnick, B G; Howe, R

    2000-05-01

    Field measurements were conducted of potential sleep disturbance associated with changes in nighttime aircraft noise exposure near three airports. One study was conducted near Stapleton International Airport (DEN) and Denver International Airport (DIA) in anticipation of the closure of the former and opening of the latter. Sleep behavior was monitored in 57 homes located near runway ends at the two airports. A second study was conducted in the vicinity of DeKalb-Peachtree Airport (PDK), a large general aviation airport that expected increased nighttime flight operations due to the Olympic Games in July and August of 1996. Similar methods of measuring nighttime noise levels and sleep disturbance in the two studies were maintained over the course of 2717 and 686 subject-nights of observations, respectively. No major differences in noise-induced sleep disturbance were observed as a function of changes in nighttime aircraft noise exposure.

  11. Evaluation of a Hydrogen Fuel Cell Powered Blended-Wing-Body Aircraft Concept for Reduced Noise and Emissions

    NASA Technical Reports Server (NTRS)

    Guynn, Mark D.; Freh, Joshua E.; Olson, Erik D.

    2004-01-01

    This report describes the analytical modeling and evaluation of an unconventional commercial transport aircraft concept designed to address aircraft noise and emission issues. A blended-wing-body configuration with advanced technology hydrogen fuel cell electric propulsion is considered. Predicted noise and emission characteristics are compared to a current technology conventional configuration designed for the same mission. The significant technology issues which have to be addressed to make this concept a viable alternative to current aircraft designs are discussed. This concept is one of the "Quiet Green Transport" aircraft concepts studied as part of NASA's Revolutionary Aerospace Systems Concepts (RASC) Program. The RASC Program was initiated to develop revolutionary concepts that address strategic objectives of the NASA Enterprises, such as reducing aircraft noise and emissions, and to identify advanced technology requirements for the concepts.

  12. Landing Gear Noise Prediction and Analysis for Tube-and-Wing and Hybrid-Wing-Body Aircraft

    NASA Technical Reports Server (NTRS)

    Guo, Yueping; Burley, Casey L.; Thomas, Russell H.

    2016-01-01

    Improvements and extensions to landing gear noise prediction methods are developed. New features include installation effects such as reflection from the aircraft, gear truck angle effect, local flow calculation at the landing gear locations, gear size effect, and directivity for various gear designs. These new features have not only significantly improved the accuracy and robustness of the prediction tools, but also have enabled applications to unconventional aircraft designs and installations. Systematic validations of the improved prediction capability are then presented, including parametric validations in functional trends as well as validations in absolute amplitudes, covering a wide variety of landing gear designs, sizes, and testing conditions. The new method is then applied to selected concept aircraft configurations in the portfolio of the NASA Environmentally Responsible Aviation Project envisioned for the timeframe of 2025. The landing gear noise levels are on the order of 2 to 4 dB higher than previously reported predictions due to increased fidelity in accounting for installation effects and gear design details. With the new method, it is now possible to reveal and assess the unique noise characteristics of landing gear systems for each type of aircraft. To address the inevitable uncertainties in predictions of landing gear noise models for future aircraft, an uncertainty analysis is given, using the method of Monte Carlo simulation. The standard deviation of the uncertainty in predicting the absolute level of landing gear noise is quantified and determined to be 1.4 EPNL dB.

  13. Some far-field acoustics characteristics of the XV-15 tilt-rotor aircraft

    NASA Technical Reports Server (NTRS)

    Golub, Robert A.; Conner, David A.; Becker, Lawrence E.; Rutledge, C. Kendall; Smith, Rita A.

    1990-01-01

    Far-field acoustics tests have been conducted on an instrumented XV-15 tilt-rotor aircraft. The purpose of these acoustic measurements was to create an encompassing, high confidence (90 percent), and accurate (-1.4/ +1/8 dB theoretical confidence interval) far-field acoustics data base to validate ROTONET and other current rotorcraft noise prediction computer codes. This paper describes the flight techniques used, with emphasis on the care taken to obtain high-quality far-field acoustic data. The quality and extensiveness of the data base collected are shown by presentation of ground acoustic contours for level flyovers for the airplane flight mode and for several forward velocities and nacelle tilts for the transition mode and helicopter flight mode. Acoustic pressure time-histories and fully analyzed ensemble averaged far-field data results (spectra) are shown for each of the ground contour cases.

  14. Aircraft noise and cardiovascular disease near Heathrow airport in London: small area study.

    PubMed

    Hansell, Anna L; Blangiardo, Marta; Fortunato, Lea; Floud, Sarah; de Hoogh, Kees; Fecht, Daniela; Ghosh, Rebecca E; Laszlo, Helga E; Pearson, Clare; Beale, Linda; Beevers, Sean; Gulliver, John; Best, Nicky; Richardson, Sylvia; Elliott, Paul

    2013-10-08

    To investigate the association of aircraft noise with risk of stroke, coronary heart disease, and cardiovascular disease in the general population. Small area study. 12 London boroughs and nine districts west of London exposed to aircraft noise related to Heathrow airport in London. About 3.6 million residents living near Heathrow airport. Risks for hospital admissions were assessed in 12 110 census output areas (average population about 300 inhabitants) and risks for mortality in 2378 super output areas (about 1500 inhabitants). Risk of hospital admissions for, and mortality from, stroke, coronary heart disease, and cardiovascular disease, 2001-05. Hospital admissions showed statistically significant linear trends (P<0.001 to P<0.05) of increasing risk with higher levels of both daytime (average A weighted equivalent noise 7 am to 11 pm, L(Aeq),16 h) and night time (11 pm to 7 am, Lnight) aircraft noise. When areas experiencing the highest levels of daytime aircraft noise were compared with those experiencing the lowest levels (>63 dB v ≤ 51 dB), the relative risk of hospital admissions for stroke was 1.24 (95% confidence interval 1.08 to 1.43), for coronary heart disease was 1.21 (1.12 to 1.31), and for cardiovascular disease was 1.14 (1.08 to 1.20) adjusted for age, sex, ethnicity, deprivation, and a smoking proxy (lung cancer mortality) using a Poisson regression model including a random effect term to account for residual heterogeneity. Corresponding relative risks for mortality were of similar magnitude, although with wider confidence limits. Admissions for coronary heart disease and cardiovascular disease were particularly affected by adjustment for South Asian ethnicity, which needs to be considered in interpretation. All results were robust to adjustment for particulate matter (PM10) air pollution, and road traffic noise, possible for London boroughs (population about 2.6 million). We could not distinguish between the effects of daytime or night time

  15. Is aircraft noise exposure associated with cardiovascular disease and hypertension? Results from a cohort study in Athens, Greece.

    PubMed

    Dimakopoulou, Konstantina; Koutentakis, Konstantinos; Papageorgiou, Ifigeneia; Kasdagli, Maria-Iosifina; Haralabidis, Alexandros S; Sourtzi, Panayota; Samoli, Evangelia; Houthuijs, Danny; Swart, Wim; Hansell, Anna L; Katsouyanni, Klea

    2017-11-01

    We followed up, in 2013, the subjects who lived near the Athens International Airport and had participated in the cross-sectional multicountry HYENA study in 2004-2006. To evaluate the association of exposure to aircraft and road traffic noise with the incidence of hypertension and other cardiovascular outcomes. From the 780 individuals who participated in the cross-sectional study, 537 were still living in the same area and 420 accepted to participate in the follow-up. Aircraft and road traffic noise exposure was based on the estimations conducted in 2004-2006, linking geocoded residential addresses of the participants to noise levels. We applied multiple logistic regression and Cox proportional hazards models, adjusting for potential confounders. The incidence of hypertension was significantly associated with higher aircraft noise exposure during the night. Specifically, the OR for hypertension per 10 dB increase in Lnight aircraft noise exposure was 2.63 (95% CI 1.21 to 5.71). Doctor-diagnosed cardiac arrhythmia was significantly associated with Lnight aircraft noise exposure, when prevalent and incident cases were considered with an OR of 2.09 (95% CI 1.07 to 4.08). Stroke risk was also increased with increasing noise exposure but the association was not significant. Twenty-four-hour road traffic noise associations with the outcomes considered were weaker and less consistent. In conclusion, our cohort study suggests that long-term exposure to aircraft noise, particularly during the night, is associated with incident hypertension and possibly, also, cardiovascular effects. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  16. Medication use in relation to noise from aircraft and road traffic in six European countries: results of the HYENA study.

    PubMed

    Floud, Sarah; Vigna-Taglianti, Federica; Hansell, Anna; Blangiardo, Marta; Houthuijs, Danny; Breugelmans, Oscar; Cadum, Ennio; Babisch, Wolfgang; Selander, Jenny; Pershagen, Göran; Antoniotti, Maria Chiara; Pisani, Salvatore; Dimakopoulou, Konstantina; Haralabidis, Alexandros S; Velonakis, Venetia; Jarup, Lars

    2011-07-01

    Studies on the health effects of aircraft and road traffic noise exposure suggest excess risks of hypertension, cardiovascular disease and the use of sedatives and hypnotics. Our aim was to assess the use of medication in relation to noise from aircraft and road traffic. This cross-sectional study measured the use of prescribed antihypertensives, antacids, anxiolytics, hypnotics, antidepressants and antasthmatics in 4,861 persons living near seven airports in six European countries (UK, Germany, the Netherlands, Sweden, Italy, and Greece). Exposure was assessed using models with 1 dB resolution (5 dB for UK road traffic noise) and spatial resolution of 250×250 m for aircraft and 10×10 m for road traffic noise. Data were analysed using multilevel logistic regression, adjusting for potential confounders. We found marked differences between countries in the effect of aircraft noise on antihypertensive use; for night-time aircraft noise, a 10 dB increase in exposure was associated with ORs of 1.34 (95% CI 1.14 to 1.57) for the UK and 1.19 (1.02 to 1.38) for the Netherlands but no significant associations were found for other countries. For day-time aircraft noise, excess risks were found for the UK (OR 1.35; CI: 1.13 to 1.60) but a risk deficit for Italy (OR 0.82; CI: 0.71 to 0.96). There was an excess risk of taking anxiolytic medication in relation to aircraft noise (OR 1.28; CI: 1.04 to 1.57 for daytime and OR 1.27; CI: 1.01 to 1.59 for night-time) which held across countries. We also found an association between exposure to 24hr road traffic noise and the use of antacids by men (OR 1.39; CI 1.11 to 1.74). Our results suggest an effect of aircraft noise on the use of antihypertensive medication, but this effect did not hold for all countries. Results were more consistent across countries for the increased use of anxiolytics in relation to aircraft noise.

  17. Prevalence and an analysis of noise--induced hearing loss in army helicopter pilots and aircraft mechanics.

    PubMed

    Jaruchinda, Pariyanan; Thongdeetae, Taninsak; Panichkul, Suthee; Hanchumpol, Pongtep

    2005-11-01

    Hearing impairment from noise exposure has been reported in fix-wing pilots, especially in civilized countries. However, there are few studies on rotary wing aviators and aircraft mechanics, especially in developing countries whose hearing conservative program is not well established. The present study, therefore, was done to evaluate the prevalence of noise induced hearing loss and the contributing factors that may effect both groups of noise-exposed population. Report questionnaires were reviewed and physical examination combined with audiometric records of 34 pilots and 42 mechanics in the Royal Thai Army Aviation Center, Lobburi, were examined. Hearing loss was studied using four categories of significant threshold shift (STS). Amplitude of noise radiated by aircraft was also measured at different distances. No significant difference was found in prevalence of hearing loss in aviators (32.4%) and aircraft mechanics (47.6%), but in the aircraft mechanics group there were more damage of frequency involvement including speech frequency and high frequency and more decibels loss than aviators. The type of hearing protection and smoking index were strongly correlated with hearing loss. Age, flight time and alcohol habit had no significant effect and ninety percent of the subjects had no self awareness of hearing loss. Aircraft mechanics had more severity on hearing loss than aviators. Types of noise protector and cigarette smoking had significant association with hearing loss.

  18. Acoustic guide for noise-transmission testing of aircraft

    NASA Technical Reports Server (NTRS)

    Vaicaitis, Rimas (Inventor)

    1987-01-01

    Selective testing of aircraft or other vehicular components without requiring disassembly of the vehicle or components was accomplished by using a portable guide apparatus. The device consists of a broadband noise source, a guide to direct the acoustic energy, soft sealing insulation to seal the guide to the noise source and to the vehicle component, and noise measurement microphones, both outside the vehicle at the acoustic guide output and inside the vehicle to receive attenuated sound. By directing acoustic energy only to selected components of a vehicle via the acoustic guide, it is possible to test a specific component, such as a door or window, without picking up extraneous noise which may be transmitted to the vehicle interior through other components or structure. This effect is achieved because no acoustic energy strikes the vehicle exterior except at the selected component. Also, since the test component remains attached to the vehicle, component dynamics with vehicle frame are not altered.

  19. Exposure to Road, Railway, and Aircraft Noise and Arterial Stiffness in the SAPALDIA Study: Annual Average Noise Levels and Temporal Noise Characteristics

    PubMed Central

    Eze, Ikenna C.; Schaffner, Emmanuel; Vienneau, Danielle; Héritier, Harris; Endes, Simon; Rudzik, Franziska; Thiesse, Laurie; Pieren, Reto; Schindler, Christian; Schmidt-Trucksäss, Arno; Brink, Mark; Cajochen, Christian; Marc Wunderli, Jean; Röösli, Martin; Probst-Hensch, Nicole

    2017-01-01

    Background: The impact of different transportation noise sources and noise environments on arterial stiffness remains unknown. Objectives: We evaluated the association between residential outdoor exposure to annual average road, railway, and aircraft noise levels, total noise intermittency (IR), and total number of noise events (NE) and brachial-ankle pulse wave velocity (baPWV) following a cross-sectional design. Methods: We measured baPWV (meters/second) in 2,775 participants (49–81 y old) at the second follow-up (2010–2011) of the Swiss Cohort Study on Air Pollution and Lung and Heart Diseases in Adults (SAPALDIA). We assigned annual average road, railway, and aircraft noise levels (Ldensource), total day- and nighttime NEtime and IRtime (percent fluctuation=0%, none or constant noise; percent fluctuation=100%, high fluctuation) at the most exposed façade using 2011 Swiss noise models. We applied multivariable linear mixed regression models to analyze associations. Results: Medians [interquartile ranges (IQRs)] were baPWV=13.4 (3.1) m/s; Ldenair (57.6% exposed)=32.8 (8.0) dB; Ldenrail (44.6% exposed)=30.0 (8.1) dB; Ldenroad (99.7% exposed): 54.2 (10.6) dB; NEnight=123 (179); NEday=433 (870); IRnight=73% (27); and IRday=63.8% (40.3). We observed a 0.87% (95% CI: 0.31, 1.43%) increase in baPWV per IQR of Ldenrail, which was greater with IRnight>80% or with daytime sleepiness. We observed a nonsignificant positive association between Ldenroad and baPWV in urban areas and a negative tendency in rural areas. NEnight, but not NEday, was associated with baPWV. Associations were independent of the other noise sources and air pollution. Conclusions: Long-term exposure to railway noise, particularly in an intermittent nighttime noise environment, and to nighttime noise events, mainly related to road noise, may affect arterial stiffness, a major determinant of cardiovascular disease. Ascertaining noise exposure characteristics beyond average noise levels may

  20. Residential exposure to aircraft noise and hospital admissions for cardiovascular diseases: multi-airport retrospective study.

    PubMed

    Correia, Andrew W; Peters, Junenette L; Levy, Jonathan I; Melly, Steven; Dominici, Francesca

    2013-10-08

    To investigate whether exposure to aircraft noise increases the risk of hospitalization for cardiovascular diseases in older people (≥ 65 years) residing near airports. Multi-airport retrospective study of approximately 6 million older people residing near airports in the United States. We superimposed contours of aircraft noise levels (in decibels, dB) for 89 airports for 2009 provided by the US Federal Aviation Administration on census block resolution population data to construct two exposure metrics applicable to zip code resolution health insurance data: population weighted noise within each zip code, and 90th centile of noise among populated census blocks within each zip code. 2218 zip codes surrounding 89 airports in the contiguous states. 6 027 363 people eligible to participate in the national medical insurance (Medicare) program (aged ≥ 65 years) residing near airports in 2009. Percentage increase in the hospitalization admission rate for cardiovascular disease associated with a 10 dB increase in aircraft noise, for each airport and on average across airports adjusted by individual level characteristics (age, sex, race), zip code level socioeconomic status and demographics, zip code level air pollution (fine particulate matter and ozone), and roadway density. Averaged across all airports and using the 90th centile noise exposure metric, a zip code with 10 dB higher noise exposure had a 3.5% higher (95% confidence interval 0.2% to 7.0%) cardiovascular hospital admission rate, after controlling for covariates. Despite limitations related to potential misclassification of exposure, we found a statistically significant association between exposure to aircraft noise and risk of hospitalization for cardiovascular diseases among older people living near airports.

  1. Female voice communications in high level aircraft cockpit noises--part II: vocoder and automatic speech recognition systems.

    PubMed

    Nixon, C; Anderson, T; Morris, L; McCavitt, A; McKinley, R; Yeager, D; McDaniel, M

    1998-11-01

    The intelligibility of female and male speech is equivalent under most ordinary living conditions. However, due to small differences between their acoustic speech signals, called speech spectra, one can be more or less intelligible than the other in certain situations such as high levels of noise. Anecdotal information, supported by some empirical observations, suggests that some of the high intensity noise spectra of military aircraft cockpits may degrade the intelligibility of female speech more than that of male speech. In an applied research study, the intelligibility of female and male speech was measured in several high level aircraft cockpit noise conditions experienced in military aviation. In Part I, (Nixon CW, et al. Aviat Space Environ Med 1998; 69:675-83) female speech intelligibility measured in the spectra and levels of aircraft cockpit noises and with noise-canceling microphones was lower than that of the male speech in all conditions. However, the differences were small and only those at some of the highest noise levels were significant. Although speech intelligibility of both genders was acceptable during normal cruise noises, improvements are required in most of the highest levels of noise created during maximum aircraft operating conditions. These results are discussed in a Part I technical report. This Part II report examines the intelligibility in the same aircraft cockpit noises of vocoded female and male speech and the accuracy with which female and male speech in some of the cockpit noises were understood by automatic speech recognition systems. The intelligibility of vocoded female speech was generally the same as that of vocoded male speech. No significant differences were measured between the recognition accuracy of male and female speech by the automatic speech recognition systems. The intelligibility of female and male speech was equivalent for these conditions.

  2. Update of aircraft profile data for the Integrated Noise Model computer program, vol 1: final report

    DOT National Transportation Integrated Search

    1992-03-01

    This report provides aircraft takeoff and landing profiles, aircraft aerodynamic performance coefficients and engine performance coefficients for the aircraft data base (Database 9) in the Integrated Noise Model (INM) computer program. Flight profile...

  3. The fallacy of using NII in analyzing aircraft operations. [Noise Impact Index

    NASA Technical Reports Server (NTRS)

    Melton, R. G.; Jacobson, I. D.

    1984-01-01

    Three measures of noise annoyance (Noise Impact Index, Level-Weighted Population, and Annoyed Population Number) are compared, regarding their utility in assessing noise reduction schemes for aircraft operations. While NII is intended to measure the average annoyance per person in a community, it is found that the method of averaging can lead to erroneous conclusions, particularly if the population does not have uniform spatial distribution. Level-Weighted Population and Annoyed Population Number are shown to be better indicators of noise annoyance when rating different strategies for noise reduction in a given community.

  4. Design of sidewall treatment of cabin noise control of a twin engine turboprop aircraft

    NASA Technical Reports Server (NTRS)

    Vaicaitis, R.; Slazak, M.

    1983-01-01

    An analytical procedure was used to predict the noise transmission into the cabin of a twin engine general aviation aircraft. This model was then used to optimize the interior A weighted noise levels to an average value of about 85 dBA. The surface pressure noise spectral levels were selected utilizing experimental flight data and empirical predictions. The add on treatments considered in this optimization study include aluminum honeycomb panels, constrained layer damping tape, porous acoustic blankets, acoustic foams, septum barriers and limp trim panels which are isolated from the vibration of the main sidewall structure. To reduce the average noise level in the cabin from about 102 kBA (baseline) to 85 dBA (optimized), the added weight of the noise control treatment is about 2% of the total gross takeoff weight of the aircraft.

  5. Design of sidewall treatment of cabin noise control of a twin engine turboprop aircraft

    NASA Astrophysics Data System (ADS)

    Vaicaitis, R.; Slazak, M.

    1983-12-01

    An analytical procedure was used to predict the noise transmission into the cabin of a twin engine general aviation aircraft. This model was then used to optimize the interior A weighted noise levels to an average value of about 85 dBA. The surface pressure noise spectral levels were selected utilizing experimental flight data and empirical predictions. The add on treatments considered in this optimization study include aluminum honeycomb panels, constrained layer damping tape, porous acoustic blankets, acoustic foams, septum barriers and limp trim panels which are isolated from the vibration of the main sidewall structure. To reduce the average noise level in the cabin from about 102 kBA (baseline) to 85 dBA (optimized), the added weight of the noise control treatment is about 2% of the total gross takeoff weight of the aircraft.

  6. An integrated strategy for aircraft/airport noise abatement: A legal-institutional control act section 7 to the noise control act of 1972 and proposals based thereon

    NASA Technical Reports Server (NTRS)

    Mayo, L. H.

    1975-01-01

    The development of the aircraft noise control structure since the Griggs case of 1962 was examined. The Noise Control Act of 1972 is described which undertook to establish the legal-institutional framework within which an adequate aircraft/airport noise abatement program might be initiated with concern for full recognition of all the beneficial and detrimental consequences of air transportation and appropriate distribution of benefits and costs.

  7. MOLA: Seasonal Snow Variations on Mars: Slow Flyover of the Martian North Pole

    NASA Technical Reports Server (NTRS)

    2001-01-01

    MOLA: Seasonal Snow Variations on Mars: Slow Flyover of the Martian North Pole: False Color. This is a visualization of the topography near the Martian north pole as measured with the MOLA instrument. This particular animation shows a slow zoom to the surface of the pole, a flyover of the polar cap and a slow zoom out. The surface color is based on the elevation of the topography.

  8. An Integrated Low-Speed Performance and Noise Prediction Methodology for Subsonic Aircraft

    NASA Technical Reports Server (NTRS)

    Olson, E. D.; Mavris, D. N.

    2000-01-01

    An integrated methodology has been assembled to compute the engine performance, takeoff and landing trajectories, and community noise levels for a subsonic commercial aircraft. Where feasible, physics-based noise analysis methods have been used to make the results more applicable to newer, revolutionary designs and to allow for a more direct evaluation of new technologies. The methodology is intended to be used with approximation methods and risk analysis techniques to allow for the analysis of a greater number of variable combinations while retaining the advantages of physics-based analysis. Details of the methodology are described and limited results are presented for a representative subsonic commercial aircraft.

  9. Effects of aircraft noise on human sleep.

    NASA Technical Reports Server (NTRS)

    Lukas, J. S.

    1972-01-01

    Under controlled conditions in two test rooms, studies were made of the response of sleeping subjects to the stimuli of simulated sonic booms and subsonic jet aircraft noise. Children were relatively nonresponsive to the stimuli. In general, the older the subject, the more likely is behavioral awakening. The response rates to the two types of stimuli were essentially the same. The stimulus intensity had little, if any, effect on frequency of arousal, although other degrees of response did increase.

  10. Effects of aircraft noise and sonic booms on domestic animals and wildlife: bibliographic abstracts

    USGS Publications Warehouse

    Gladwin, Douglas N.; Manci, Karen M.; Villella, Rita

    1988-01-01

    The purpose of this document is to provide an information base on the effects of aircraft noise and sonic booms on various animal species. Such information is necessary to assess potential impacts to wildlife populations from proposed military and other flight operations. To develop this document the National Ecology Center conducted a literature search of information pertaining to animals and wildlife. Information concerning other types of noise was also gathered to supplement the lack of knowledge on the effects of aircraft noise. The bibliographic abstracts in this report provide a compilation of current knowledge. No attempt was made to evaluate the appropriateness or adequacy of the scientific approach of each study.

  11. USAF Bioenvironmental Noise Data Handbook. Volume 160: KC-10A aircraft, near and far-field noise

    NASA Astrophysics Data System (ADS)

    Powell, R. G.

    1982-09-01

    The USAF KC-10A aircraft is an advanced tanker/cargo aircraft powered by three CF6-50C2 turbofan engines. This report provides measured and extrapolated data defining the bioacoustic environments produced by this aircraft operating on a concrete runup pad for eight engine/power configurations. Near-field data are reported for one location in a wide variety of physical and psychoacoustic measures: overall and band sound pressure levels, C-weighted and A-weighted sound levels, preferred speech interference levels, perceived noise levels, and limiting times for total daily exposure of personnel with and without standard Air Force ear protectors. Far-field data measured at 15 locations are normalized to standard meteorological conditions and extrapolated from 75-8000 meters to derive sets of equal-value contours for these same seven acoustic measures as functions of angle and distance from the source. Refer to Volume 1 of this handbook, USAF Bioenvironmental Noise Data Handbook, Vol 1: Organization, Content and Application, AMRL-TR-75-50(1) 1975, for discussion of the objective and design of the handbook, the types of data presented, measurement procedures, instrumentation, data processing, definitions of quantities, symbols, equations, applications, limitations, etc.

  12. Noise of high-performance aircraft at afterburner

    NASA Astrophysics Data System (ADS)

    Tam, Christopher K. W.; Parrish, Sarah A.

    2015-09-01

    The noise from a high-performance aircraft at afterburner is investigated. The main objective is to determine whether the dominant noise components are the same or similar to those of a hot supersonic laboratory jet. For this purpose, measured noise data from F-22A Raptors are analyzed. It is found, based on both spectral and directivity data, that there is a new dominant noise component in addition to the usual turbulent mixing noise. The characteristic features of the new noise component are identified. Measured data indicates that the new noise component is observed only when the rate of fuel burn of the engine is increased significantly above that of the intermediate power setting. This suggests that the new noise component is combustion related. The possibility that it is indirect combustion noise generated by the passage of hot spots from the afterburner through the nozzle of the jet is investigated. Because flow and temperature data were not measured in the F-22A engine tests, to provide support to the proposition, numerical simulations of indirect combustion noise generation due to the passing of an entropy wave pulse (a hot spot) through a military-style nozzle are carried out. Sound generation is observed at the front and at the back of the pulse. This creates a fast and a slow acoustic wave as the sound radiates out from the nozzle exit. Quantitative estimates of the principal directions of acoustic radiation due to the emitted fast and slow acoustic waves are made. It is found that there are reasonably good agreements with measured data. To estimate the intensity level (IL) of the radiated indirect combustion noise, a time-periodic entropy wave train of 15 percent temperature fluctuation is used as a model of the hot spots coming out of the afterburner. This yields an IL of 175.5 dB. This is a fairly intense noise source, well capable of causing the radiation of the new jet noise component.

  13. Residential exposure to aircraft noise and hospital admissions for cardiovascular diseases: multi-airport retrospective study

    PubMed Central

    Correia, Andrew W; Peters, Junenette L; Levy, Jonathan I; Melly, Steven

    2013-01-01

    Objective To investigate whether exposure to aircraft noise increases the risk of hospitalization for cardiovascular diseases in older people (≥65 years) residing near airports. Design Multi-airport retrospective study of approximately 6 million older people residing near airports in the United States. We superimposed contours of aircraft noise levels (in decibels, dB) for 89 airports for 2009 provided by the US Federal Aviation Administration on census block resolution population data to construct two exposure metrics applicable to zip code resolution health insurance data: population weighted noise within each zip code, and 90th centile of noise among populated census blocks within each zip code. Setting 2218 zip codes surrounding 89 airports in the contiguous states. Participants 6 027 363 people eligible to participate in the national medical insurance (Medicare) program (aged ≥65 years) residing near airports in 2009. Main outcome measures Percentage increase in the hospitalization admission rate for cardiovascular disease associated with a 10 dB increase in aircraft noise, for each airport and on average across airports adjusted by individual level characteristics (age, sex, race), zip code level socioeconomic status and demographics, zip code level air pollution (fine particulate matter and ozone), and roadway density. Results Averaged across all airports and using the 90th centile noise exposure metric, a zip code with 10 dB higher noise exposure had a 3.5% higher (95% confidence interval 0.2% to 7.0%) cardiovascular hospital admission rate, after controlling for covariates. Conclusions Despite limitations related to potential misclassification of exposure, we found a statistically significant association between exposure to aircraft noise and risk of hospitalization for cardiovascular diseases among older people living near airports. PMID:24103538

  14. Examination of the Lateral Attenuation of Aircraft Noise

    NASA Technical Reports Server (NTRS)

    Plotkin, Kenneth J.; Hobbs, Christopher M.; Bradley, Kevin A.; Shepherd, Kevin P. (Technical Monitor)

    2000-01-01

    Measurements of the lateral attenuation of noise from aircraft operations at Denver International Airport were made at distances up to 2000 feet and elevation angles up to 27 degrees. Attenuation Calculated from modem ground impedance theory agrees well with average measured attenuation. The large variability between measured and predicted levels observed at small elevation angles is demonstrated to be due to refraction by wind and temperature gradients.

  15. Acoustic facilities for human factors research at NASA Langley Research Center: Description and operational capabilities

    NASA Astrophysics Data System (ADS)

    Hubbard, H. H.; Powell, C. A.

    1981-06-01

    A number of facilities were developed which provide a unique test capability for psychoacoustics and related human factors research. The design philosophy, physical layouts, dimensions, construction features, operating capabilities, and example applications for these facilities are described. In the exterior effects room, human subjects are exposed to the types of noises that are experienced outdoors, and in the interior effects room, subjects are exposed to the types of noises and noise-induced vibrations that are experience indoors. Subjects are also exposed to noises in an echo-free environment in the anechoic listening room. An aircraft noise synthesis system, which simulates aircraft flyover noise at an observer position on the ground, is used in conjunction with these three rooms. The passenger ride quality apparatus, a device for studying passenger response to noise and vibration in aircraft, or in other vehicles, is described.

  16. Acoustic facilities for human factors research at NASA Langley Research Center: Description and operational capabilities

    NASA Technical Reports Server (NTRS)

    Hubbard, H. H.; Powell, C. A.

    1981-01-01

    A number of facilities were developed which provide a unique test capability for psychoacoustics and related human factors research. The design philosophy, physical layouts, dimensions, construction features, operating capabilities, and example applications for these facilities are described. In the exterior effects room, human subjects are exposed to the types of noises that are experienced outdoors, and in the interior effects room, subjects are exposed to the types of noises and noise-induced vibrations that are experience indoors. Subjects are also exposed to noises in an echo-free environment in the anechoic listening room. An aircraft noise synthesis system, which simulates aircraft flyover noise at an observer position on the ground, is used in conjunction with these three rooms. The passenger ride quality apparatus, a device for studying passenger response to noise and vibration in aircraft, or in other vehicles, is described.

  17. Aircraft Conceptual Design and Risk Analysis Using Physics-Based Noise Prediction

    NASA Technical Reports Server (NTRS)

    Olson, Erik D.; Mavris, Dimitri N.

    2006-01-01

    An approach was developed which allows for design studies of commercial aircraft using physics-based noise analysis methods while retaining the ability to perform the rapid trade-off and risk analysis studies needed at the conceptual design stage. A prototype integrated analysis process was created for computing the total aircraft EPNL at the Federal Aviation Regulations Part 36 certification measurement locations using physics-based methods for fan rotor-stator interaction tones and jet mixing noise. The methodology was then used in combination with design of experiments to create response surface equations (RSEs) for the engine and aircraft performance metrics, geometric constraints and take-off and landing noise levels. In addition, Monte Carlo analysis was used to assess the expected variability of the metrics under the influence of uncertainty, and to determine how the variability is affected by the choice of engine cycle. Finally, the RSEs were used to conduct a series of proof-of-concept conceptual-level design studies demonstrating the utility of the approach. The study found that a key advantage to using physics-based analysis during conceptual design lies in the ability to assess the benefits of new technologies as a function of the design to which they are applied. The greatest difficulty in implementing physics-based analysis proved to be the generation of design geometry at a sufficient level of detail for high-fidelity analysis.

  18. Myocardial Infarction Risk Due to Aircraft, Road, and Rail Traffic Noise.

    PubMed

    Seidler, Andreas; Wagner, Mandy; Schubert, Melanie; Dröge, Patrik; Pons-Kühnemann, Jörn; Swart, Enno; Zeeb, Hajo; Hegewald, Janice

    2016-06-17

    Traffic noise can induce stress reactions that have effects on the cardiovascular system. The exposure-risk relationship between aircraft, road, and rail traffic noise and myocardial infarction is currently unknown. 19 632 patients from the Rhine-Main region of Germany who were diagnosed with myocardial infarction in the years 2006-2010 were compared with 834 734 control subjects. The assignment of persons to groups was performed on the basis of billing and prescription data from three statutory health insurance carriers. The exposure of all insurees to aircraft, road, and rail traffic noise in 2005 was determined from their residence addresses. As estimators of risk, odds ratios (OR) were calculated by logistic regression analysis, with adjustment for age, sex, regional social status variables, and individual social status (if available). The evaluation was performed on the basis of the continuous 24-hour noise level and the categorized noise level (in 5 decibel classes). The linear model revealed a statistically significant risk increase due to road noise (2.8% per 10 dB rise, 95% confidence interval [1.2; 4.5]) and railroad noise (2.3% per 10 dB rise [0.5; 4.2]), but not airplane noise. Airplane noise levels of 60 dB and above were associated with a higher risk of myocardial infarction (OR 1.42 [0.62; 3.25]). This higher risk is statistically significant if the analysis is restricted to patients who had died of myocardial infarction by 2014/2015 (OR 2.70 [1.08; 6.74]. In this subgroup, the risk estimators for all three types of traffic noise were of comparable magnitude (3.2% to 3.9% per 10 dB rise in noise level). In this study, a substantial proportion of the population was exposed to traffic noise levels that were associated with an albeit small increase in the risk of myocardial infarction. These findings underscore the importance of effective traffic noise prevention.

  19. Airframe noise of a small model transport aircraft and scaling effects. [Boeing 747

    NASA Technical Reports Server (NTRS)

    Shearin, J. G.

    1981-01-01

    Airframe noise of a 0.01 scale model Boeing 747 wide-body transport was measured in the Langley Anechoic Noise Facility. The model geometry simulated the landing and cruise configurations. The model noise was found to be similar in noise characteristics to that possessed by a 0.03 scale model 747. The 0.01 scale model noise data scaled to within 3 dB of full scale data using the same scaling relationships as that used to scale the 0.03 scale model noise data. The model noise data are compared with full scale noise data, where the full scale data are calculated using the NASA aircraft noise prediction program.

  20. Computer programs for producing single-event aircraft noise data for specific engine power and meteorological conditions for use with USAF (United States Air Force) community noise model (NOISEMAP)

    NASA Astrophysics Data System (ADS)

    Mohlman, H. T.

    1983-04-01

    The Air Force community noise prediction model (NOISEMAP) is used to describe the aircraft noise exposure around airbases and thereby aid airbase planners to minimize exposure and prevent community encroachment which could limit mission effectiveness of the installation. This report documents two computer programs (OMEGA 10 and OMEGA 11) which were developed to prepare aircraft flight and ground runup noise data for input to NOISEMAP. OMEGA 10 is for flight operations and OMEGA 11 is for aircraft ground runups. All routines in each program are documented at a level useful to a programmer working with the code or a reader interested in a general overview of what happens within a specific subroutine. Both programs input normalized, reference aircraft noise data; i.e., data at a standard reference distance from the aircraft, for several fixed engine power settings, a reference airspeed and standard day meteorological conditions. Both programs operate on these normalized, reference data in accordance with user-defined, non-reference conditions to derive single-event noise data for 22 distances (200 to 25,000 feet) in a variety of physical and psycho-acoustic metrics. These outputs are in formats ready for input to NOISEMAP.

  1. A solid state converter for measurement of aircraft noise and sonic boom

    NASA Technical Reports Server (NTRS)

    Zuckerwar, A. J.

    1972-01-01

    The problems inherent in present systems of instrumentation for measuring aircraft noise and sonic boom include limited frequency response, expensive connecting cables, sensitivity to cable length and type, high sensitivity to environmental conditions, and additional limitations of individual system components. Furthermore, differing requirements have resulted in the use of two different systems for aircraft noise and sonic boom measurements respectively. To alleviate these difficulties a unified system of instrumentation suitable for both types of measurements was developed. The system features a new solid state converter connected to a zero drive amplifier. The system was found insensitive to cable length and type up to at least 1000 ft and requires no impedance matching networks. The converter itself has flat frequency response from dc to 28 kHz (- 3 db), dynamic range of 72 db, and noise floor of 50 db in the band 22.4 Hz to 22.4 kHz.

  2. Open Rotor Noise Shielding by Blended-Wing-Body Aircraft

    NASA Technical Reports Server (NTRS)

    Guo, Yueping; Czech, Michael J.; Thomas, Russell H.

    2015-01-01

    This paper presents an analysis of open rotor noise shielding by Blended Wing Body (BWB) aircraft by using model scale test data acquired in the Boeing Low Speed Aeroacoustic Facility (LSAF) with a legacy F7/A7 rotor model and a simplified BWB platform. The objective of the analysis is the understanding of the shielding features of the BWB and the method of application of the shielding data for noise studies of BWB aircraft with open rotor propulsion. By studying the directivity patterns of individual tones, it is shown that though the tonal energy distribution and the spectral content of the wind tunnel test model, and thus its total noise, may differ from those of more advanced rotor designs, the individual tones follow directivity patterns that characterize far field radiations of modern open rotors, ensuring the validity of the use of this shielding data. Thus, open rotor tonal noise shielding should be categorized into front rotor tones, aft rotor tones and interaction tones, not only because of the different directivities of the three groups of tones, but also due to the differences in their source locations and coherence features, which make the respective shielding characteristics of the three groups of tones distinctly different from each other. To reveal the parametric trends of the BWB shielding effects, results are presented with variations in frequency, far field emission angle, rotor operational condition, engine installation geometry, and local airframe features. These results prepare the way for the development of parametric models for the shielding effects in prediction tools.

  3. Interior and exterior fuselage noise measured on NASA's C-8a augmentor wing jet-STOL research aircraft

    NASA Technical Reports Server (NTRS)

    Shovlin, M. D.

    1977-01-01

    Interior and exterior fuselage noise levels were measured on NASA's C-8A Augmentor Wing Jet-STOL Research Aircraft in order to provide design information for the Quiet Short-Haul Research Aircraft (QSRA), which will use a modified C-8A fuselage. The noise field was mapped by 11 microphones located internally and externally in three areas: mid-fuselage, aft fuselage, and on the flight deck. Noise levels were recorded at four power settings varying from takeoff to flight idle and were plotted in one-third octave band spectra. The overall sound pressure levels of the external noise field were compared to previous tests and found to correlate well with engine primary thrust levels. Fuselage values were 145 + or - 3 dB over the aircraft's normal STOL operating range.

  4. Aircraft Interior Noise Control Using Distributed Piezoelectric Actuators

    NASA Technical Reports Server (NTRS)

    Sun, Jian Q.

    1996-01-01

    Developing a control system that can reduce the noise and structural vibration at the same time is an important task. This talk presents one possible technical approach for accomplishing this task. The target application of the research is for aircraft interior noise control. The emphasis of the present approach is not on control strategies, but rather on the design of actuators for the control system. In the talk, a theory of distributed piezoelectric actuators is introduced. A uniform cylindrical shell is taken as a simplified model of fuselage structures to illustrate the effectiveness of the design theory. The actuators developed are such that they can reduce the tonal structural vibration and interior noise in a wide range of frequencies. Extensive computer simulations have been done to study various aspects of the design theory. Experiments have also been conducted and the test results strongly support the theoretical development.

  5. Numerical and flight measured interior noise characteristics of a twin-engine turboprop general aviation aircraft

    NASA Astrophysics Data System (ADS)

    Marulo, F.; Lecce, L.; de Rosa, S.; D'Amato, C. A.; Verde, G.

    The paper presents the flight test results of an interior noise measurement campaign on a twin-engine turboprop general aviation aircraft conducted for assessing the real values inside such aircraft and for approaching the problem of its noise reduction. Simultaneously a numerical study has been performed in order to correlate the experimental and the theoretical values, trying to come out with some guidelines for possible improvements without increasing excessively the costs of such study.

  6. Structureborne noise measurements on a small twin-engine aircraft

    NASA Technical Reports Server (NTRS)

    Cole, J. E., III; Martini, K. F.

    1988-01-01

    Structureborne noise measurements performed on a twin-engine aircraft (Beechcraft Baron) are reported. There are two overall objectives of the test program. The first is to obtain data to support the development of analytical models of the wing and fuselage, while the second is to evaluate effects of structural parameters on cabin noise. Measurements performed include structural and acoustic responses to impact excitation, structural and acoustic loss factors, and modal parameters of the wing. Path alterations include added mass to simulate fuel, variations in torque of bolts joining wing and fuselage, and increased acoustic absorption. Conclusions drawn regarding these measurements are presented.

  7. Structureborne noise measurements on a small twin-engine aircraft

    NASA Astrophysics Data System (ADS)

    Cole, J. E., III; Martini, K. F.

    1988-06-01

    Structureborne noise measurements performed on a twin-engine aircraft (Beechcraft Baron) are reported. There are two overall objectives of the test program. The first is to obtain data to support the development of analytical models of the wing and fuselage, while the second is to evaluate effects of structural parameters on cabin noise. Measurements performed include structural and acoustic responses to impact excitation, structural and acoustic loss factors, and modal parameters of the wing. Path alterations include added mass to simulate fuel, variations in torque of bolts joining wing and fuselage, and increased acoustic absorption. Conclusions drawn regarding these measurements are presented.

  8. Effects of changed aircraft noise exposure on the use of outdoor recreational areas.

    PubMed

    Krog, Norun Hjertager; Engdahl, Bo; Tambs, Kristian

    2010-11-01

    This paper examines behavioural responses to changes in aircraft noise exposure in local outdoor recreational areas near airports. Results from a panel study conducted in conjunction with the relocation of Norway's main airport in 1998 are presented. One recreational area was studied at each airport site. The samples (n = 1,264/1,370) were telephone interviewed about their use of the area before and after the change. Results indicate that changed aircraft noise exposure may influence individual choices to use local outdoor recreational areas, suggesting that careful considerations are needed in the planning of air routes over local outdoor recreational areas. However, considerable stability in use, and also fluctuations in use unrelated to the changes in noise conditions were found. Future studies of noise impacts should examine a broader set of coping mechanisms, like intra- and temporal displacement. Also, the role of place attachment, and the substitutability of local areas should be studied.

  9. Effects of Changed Aircraft Noise Exposure on the Use of Outdoor Recreational Areas

    PubMed Central

    Krog, Norun Hjertager; Engdahl, Bo; Tambs, Kristian

    2010-01-01

    This paper examines behavioural responses to changes in aircraft noise exposure in local outdoor recreational areas near airports. Results from a panel study conducted in conjunction with the relocation of Norway’s main airport in 1998 are presented. One recreational area was studied at each airport site. The samples (n = 1,264/1,370) were telephone interviewed about their use of the area before and after the change. Results indicate that changed aircraft noise exposure may influence individual choices to use local outdoor recreational areas, suggesting that careful considerations are needed in the planning of air routes over local outdoor recreational areas. However, considerable stability in use, and also fluctuations in use unrelated to the changes in noise conditions were found. Future studies of noise impacts should examine a broader set of coping mechanisms, like intra- and temporal displacement. Also, the role of place attachment, and the substitutability of local areas should be studied. PMID:21139867

  10. Community reaction to aircraft noise: time-of-day penalty and tradeoff between levels of overflights.

    PubMed

    Miedema, H M; Vos, H; de Jong, R G

    2000-06-01

    A decrease in the level of sound events can compensate for an increase in the level of other events, but noise metrics assume different tradeoffs. Noise metrics also differ in the penalty applied to noise in the evening and to noise in the night, and in the definition of these periods. These two aspects of noise metrics, i.e., the tradeoff and the penalty for the nighttime (23-7h), are investigated. A general model of the relation between SELs of sound events (aircraft overflights) and noise annoyance is presented which allows for a wide range of tradeoffs and time-of-day penalties. The (tradeoff and time-of-day penalty) parameters of the model are fitted to the data from an aircraft noise study conducted around Amsterdam Airport Schiphol, which is especially suited for investigating the tradeoff and time-of-day penalties. It was found that in this study the tradeoff between the levels of events in metrics based on L(Aeq)'s, such as L(Aeq)(24 h), DNL, and DENL, is approximately correct for the prediction of noise annoyance. Furthermore, it was found that the strongest correlation with annoyance is obtained with a nighttime penalty of circa 10 dB. No suitable data were available for further tests of the tradeoff. The result with respect to the nighttime penalty was weakly further supported by the outcome of analyses of the original data from four other aircraft noise surveys (one survey conducted around British airports, and three coordinated surveys carried out around Paris Orly, Amsterdam Schiphol, and Glasgow Abbotsinch).

  11. The Influences of Lamination Angles on the Interior Noise Levels of an Aircraft

    NASA Technical Reports Server (NTRS)

    Fernholz, Christian M.; Robinson, Jay H.

    1996-01-01

    The feasibility of reducing the interior noise levels of an aircraft passenger cabin through optimization of the composite lay up of the fuselage is investigated. MSC/NASTRAN, a commercially available finite element code, is used to perform the dynamic analysis and subsequent optimization of the fuselage. The numerical calculation of sensitivity of acoustic pressure to lamination angle is verified using a simple thin, cylindrical shell with point force excitations as noise sources. The thin shell used represents a geometry similar to the fuselage and analytic solutions are available for the cylindrical thin shell equations of motion. Optimization of lamination angle for the reduction of interior noise is performed using a finite element model of an actual aircraft fuselage. The aircraft modeled for this study is the Beech Starship. Point forces simulate the structure borne noise produced by the engines and are applied to the fuselage at the wing mounting locations. These forces are the noise source for the optimization problem. The acoustic pressure response is reduced at a number of points in the fuselage and over a number of frequencies. The objective function is minimized with the constraint that it be larger than the maximum sound pressure level at the response points in the passenger cabin for all excitation frequencies in the range of interest. Results from the study of the fuselage model indicate that a reduction in interior noise levels is possible over a finite frequency range through optimal configuration of the lamination angles in the fuselage. Noise reductions of roughly 4 dB were attained. For frequencies outside the optimization range, the acoustic pressure response may increase after optimization. The effects of changing lamination angle on the overall structural integrity of the airframe are not considered in this study.

  12. The relationship between aircraft noise exposure and day-use visitor survey responses in backcountry areas of national parks.

    PubMed

    Rapoza, Amanda; Sudderth, Erika; Lewis, Kristin

    2015-10-01

    To evaluate the relationship between aircraft noise exposure and the quality of national park visitor experience, more than 4600 visitor surveys were collected at seven backcountry sites in four U.S. national parks simultaneously with calibrated sound level measurements. Multilevel logistic regression was used to estimate parameters describing the relationship among visitor responses, aircraft noise dose metrics, and mediator variables. For the regression models, survey responses were converted to three dichotomous variables, representing visitors who did or did not experience slightly or more, moderately or more, or very or more annoyance or interference with natural quiet from aircraft noise. Models with the most predictive power included noise dose metrics of sound exposure level, percent time aircraft were audible, and percentage energy due to helicopters and fixed-wing propeller aircraft. These models also included mediator variables: visitor ratings of the "importance of calmness, peace and tranquility," visitor group composition (adults or both adults and children), first visit to the site, previously taken an air tour, and participation in bird-watching or interpretive talks. The results complement and extend previous research conducted in frontcountry areas and will inform evaluations of air tour noise effects on visitors to national parks and remote wilderness sites.

  13. Noise emissions and building structural vibration levels from the Supersonic Concorde and subsconic turbojet aircraft

    DOT National Transportation Integrated Search

    1975-03-01

    Noise emissions and building structural vibration levels were measured during landing and take off operations of the Anglo/French supersonic aircraft (Concorde) and from some conventional subsonic turbojet aircraft. Measurements were made at both the...

  14. Long-term aircraft noise exposure and body mass index, waist circumference, and type 2 diabetes: a prospective study.

    PubMed

    Eriksson, Charlotta; Hilding, Agneta; Pyko, Andrei; Bluhm, Gösta; Pershagen, Göran; Östenson, Claes-Göran

    2014-07-01

    Long-term aircraft noise exposure may increase the risk of cardiovascular disease, but no study has investigated chronic effects on the metabolic system. The aim of this study was to investigate effects of long-term aircraft noise exposure on body mass index (BMI), waist circumference, and type 2 diabetes. Furthermore, we explored the modifying effects of sleep disturbance. This prospective cohort study of residents of Stockholm County, Sweden, followed 5,156 participants with normal baseline oral glucose tolerance tests (OGTT) for up to 10 years. Exposure to aircraft noise was estimated based on residential history. Information on outcomes and confounders was obtained from baseline and follow-up surveys and examinations, and participants who developed prediabetes or type 2 diabetes were identified by self-reported physician diagnosis or OGTT at follow-up. Adjusted associations were assessed by linear, logistic, and random-effects models. The mean (± SD) increases in BMI and waist circumference during follow-up were 1.09 ± 1.97 kg/m2 and 4.39 ± 6.39 cm, respectively. The cumulative incidence of prediabetes and type 2 diabetes was 8% and 3%, respectively. Based on an ordinal noise variable, a 5-dB(A) increase in aircraft noise was associated with a greater increase in waist circumference of 1.51 cm (95% CI: 1.13, 1.89), fully adjusted. This association appeared particularly strong among those who did not change their home address during the study period, which may be a result of lower exposure misclassification. However, no clear associations were found for BMI or type 2 diabetes. Furthermore, sleep disturbances did not appear to modify the associations with aircraft noise. Long-term aircraft noise exposure may be linked to metabolic outcomes, in particular increased waist circumference.

  15. Proposed definition of the term en route in en route aircraft noise

    NASA Technical Reports Server (NTRS)

    Garbell, Maurice A.

    1990-01-01

    The problem of en route aircraft noise was examined in a formal, dedicated, setting. Whereas the general meaning of the term en route might be intuitively understood, it is suggested that a precise formal definition of the term en route would be opportune from the outset, especially since the scientific and technical investigation of the problem of noise immissions on the ground from aircraft in flight away from the airspace of an airport may conceivably lead to administrative, regulatory, and legal consequences that would mandatorily require a precise definition of the term en route. Five flight segments, with their differing airframe configurations, engine thrusts, and airspeed management, should form the basis for the differential consideration of the noise immissions perceived on the ground underneath or near the defined segments of the flightpath in en route flight, from the end of the initial climb from an airport after takeoff until the final approach to an airport.

  16. Structural Acoustic Characteristics of Aircraft and Active Control of Interior Noise

    NASA Technical Reports Server (NTRS)

    Fuller, C. R.

    1998-01-01

    The reduction of aircraft cabin sound levels to acceptable values still remains a topic of much research. The use of conventional passive approaches has been extensively studied and implemented. However performance limits of these techniques have been reached. In this project, new techniques for understanding the structural acoustic behavior of aircraft fuselages and the use of this knowledge in developing advanced new control approaches are investigated. A central feature of the project is the Aircraft Fuselage Test Facility at Va Tech which is based around a full scale Cessna Citation III fuselage. The work is divided into two main parts; the first part investigates the use of an inverse technique for identifying dominant fuselage vibrations. The second part studies the development and implementation of active and active-passive techniques for controlling aircraft interior noise.

  17. Aircraft Noise Perception Study in Brazil: A Perspective on Airport Sustainable Growth and Environmental Awareness

    NASA Technical Reports Server (NTRS)

    deArantesGomesEller, Rogerio; Urbina, Ligia Maria Soto; Porto, Protogenes Pires

    2003-01-01

    Aircraft noise perception is related to several variables that are tangible and objective, such as the number of operations, flight schedules. Other variables, instead, are more subjective, such as preferences. However, although their elusiveness, they contribute to determine the individuals' perception of this type of externality. Despite the fact that the complaints related to aeronautical noise have been registered since the decade of 50, it has been observed that the perception of noise seems to have grown, especially since the 80's. It has been argued that this change in noise perception has its roots on the accelerated expansion of air traffic. But, it is necessary to point out the important role played on modeling preferences, by the growing environmental conscience and the higher welfare and quality of life standards and expectations. In that context, the main objective of this paper is to study the aeronautical noise perception in the neighborhoods of the Aeroporto Internacional de Sao Paulo - AISP (the biggest airport of South America). Specifically, it analyzes the relationship between aircraft noise perception and social class, which is expected to be positive. Since noise perception is an intangible variable, this study chose as a proxy the value losses of residential properties, caused by aeronautical noise. The variable social class has been measured utilizing average per capita income of the population who live nearby the airport. The comparison of both, the lowest and the highest social class suggests that the relationship between social class and noise perception is positive in the AISP region. Moreover, it was observed that all social classes are very susceptible to aircraft noise annoyance. In fact, the magnitude of the noise perception proxy for both social classes -the residential value losses- was found to be comparable to levels encountered in developed countries.

  18. A model and plan for a longitudinal study of community response to aircraft noise

    NASA Technical Reports Server (NTRS)

    Gunn, W. J.; Patterson, H. P.; Cornog, J.; Klaus, P.; Connor, W. K.

    1975-01-01

    A new approach is discussed for the study of the effects of aircraft noise on people who live near large airports. The approach was an outgrowth of a planned study of the reactions of individuals exposed to changing aircraft noise conditions around the Dallas-Ft. Worth (DFW) regional airport. The rationale, concepts, and methods employed in the study are discussed. A critical review of major past studies traces the history of community response research in an effort to identify strengths and limitations of the various approaches and methodologies. A stress-reduction model is presented to provide a framework for studying the dynamics of human response to a changing noise environment. The development of the survey instrument is detailed, and preliminary results of pretest data are discussed.

  19. Towards Full Aircraft Airframe Noise Prediction: Lattice Boltzmann Simulations

    NASA Technical Reports Server (NTRS)

    Khorrami, Mehdi R.; Fares, Ehab; Casalino, Damiano

    2014-01-01

    Computational results for an 18%-scale, semi-span Gulfstream aircraft model are presented. Exa Corporation's lattice Boltzmann PowerFLOW(trademark) solver was used to perform time-dependent simulations of the flow field associated with this high-fidelity aircraft model. The simulations were obtained for free-air at a Mach number of 0.2 with the flap deflected at 39 deg (landing configuration). We focused on accurately predicting the prominent noise sources at the flap tips and main landing gear for the two baseline configurations, namely, landing flap setting without and with gear deployed. Capitalizing on the inherently transient nature of the lattice Boltzmann formulation, the complex time-dependent flow features associated with the flap were resolved very accurately and efficiently. To properly simulate the noise sources over a broad frequency range, the tailored grid was very dense near the flap inboard and outboard tips. Extensive comparison of the computed time-averaged and unsteady surface pressures with wind tunnel measurements showed excellent agreement for the global aerodynamic characteristics and the local flow field at the flap inboard and outboard tips and the main landing gear. In particular, the computed fluctuating surface pressure field for the flap agreed well with the measurements in both amplitude and frequency content, indicating that the prominent airframe noise sources at the tips were captured successfully. Gear-flap interaction effects were remarkably well predicted and were shown to affect only the inboard flap tip, altering the steady and unsteady pressure fields in that region. The simulated farfield noise spectra for both baseline configurations, obtained using a Ffowcs-Williams and Hawkings acoustic analogy approach, were shown to be in close agreement with measured values.

  20. En route noise of turboprop aircraft and their acceptability: Report of tests

    NASA Technical Reports Server (NTRS)

    Held, Wolf

    1990-01-01

    The development of propfan-powered aircraft has been observed with great interest. It is obvious that during cruising flight, the aircraft powerplant (propellers) cause a noise clearly perceivable on the ground. It is the audible frequency spectrum of the propfan powerplants relative to the high tip speeds that presents the problem. A flight test was conducted on 30 April, 1989 at the Frankfurt Airport. Results of the test flight are present.

  1. Cruise noise of an advanced counterrotation turboprop measured from an adjacent aircraft

    NASA Technical Reports Server (NTRS)

    Woodward, Richard P.; Loeffler, Irvin J.; Dittmar, James H.

    1988-01-01

    Acoustic test results are presented for a full-scale counterrotation demonstrator engine installed on a Boeing 727 aircraft in place of the right-side turbofan engine. Sideline acoustic data were acquired from a Learjet chase aircraft instrumented with noise and wing-tip flush mount microphones. Data are presented for a 47.2-m sideline at several engine operating conditions and flight Mach numbers of 0.50 and 0.72.

  2. NASTRAN application for the prediction of aircraft interior noise

    NASA Technical Reports Server (NTRS)

    Marulo, Francesco; Beyer, Todd B.

    1987-01-01

    The application of a structural-acoustic analogy within the NASTRAN finite element program for the prediction of aircraft interior noise is presented. Some refinements of the method, which reduce the amount of computation required for large, complex structures, are discussed. Also, further improvements are proposed and preliminary comparisons with structural and acoustic modal data obtained for a large, composite cylinder are presented.

  3. Long-Term Aircraft Noise Exposure and Body Mass Index, Waist Circumference, and Type 2 Diabetes: A Prospective Study

    PubMed Central

    Hilding, Agneta; Pyko, Andrei; Bluhm, Gösta; Pershagen, Göran; Östenson, Claes-Göran

    2014-01-01

    Background: Long-term aircraft noise exposure may increase the risk of cardiovascular disease, but no study has investigated chronic effects on the metabolic system. Objectives: The aim of this study was to investigate effects of long-term aircraft noise exposure on body mass index (BMI), waist circumference, and type 2 diabetes. Furthermore, we explored the modifying effects of sleep disturbance. Methods: This prospective cohort study of residents of Stockholm County, Sweden, followed 5,156 participants with normal baseline oral glucose tolerance tests (OGTT) for up to 10 years. Exposure to aircraft noise was estimated based on residential history. Information on outcomes and confounders was obtained from baseline and follow-up surveys and examinations, and participants who developed prediabetes or type 2 diabetes were identified by self-reported physician diagnosis or OGTT at follow-up. Adjusted associations were assessed by linear, logistic, and random-effects models. Results: The mean (± SD) increases in BMI and waist circumference during follow-up were 1.09 ± 1.97 kg/m2 and 4.39 ± 6.39 cm, respectively. The cumulative incidence of prediabetes and type 2 diabetes was 8% and 3%, respectively. Based on an ordinal noise variable, a 5-dB(A) increase in aircraft noise was associated with a greater increase in waist circumference of 1.51 cm (95% CI: 1.13, 1.89), fully adjusted. This association appeared particularly strong among those who did not change their home address during the study period, which may be a result of lower exposure misclassification. However, no clear associations were found for BMI or type 2 diabetes. Furthermore, sleep disturbances did not appear to modify the associations with aircraft noise. Conclusions: Long-term aircraft noise exposure may be linked to metabolic outcomes, in particular increased waist circumference. Citation: Eriksson C, Hilding A, Pyko A, Bluhm G, Pershagen G, Östenson CG. 2014. Long-term aircraft noise exposure and

  4. The Characterization of Military Aircraft Jet Noise Using Near-Field Acoustical Holography Methods

    NASA Astrophysics Data System (ADS)

    Wall, Alan Thomas

    The noise emissions of jets from full-scale engines installed on military aircraft pose a significant hearing loss risk to military personnel. Noise reduction technologies and the development of operational procedures that minimize noise exposure to personnel are enhanced by the accurate characterization of noise sources within a jet. Hence, more than six decades of research have gone into jet noise measurement and prediction. In the past decade, the noise-source visualization tool near-field acoustical holography (NAH) has been applied to jets. NAH fits a weighted set of expansion wave functions, typically planar, cylindrical, or spherical, to measured sound pressures in the field. NAH measurements were made of a jet from an installed engine on a military aircraft. In the present study, the algorithm of statistically optimized NAH (SONAH) is modified to account for the presence of acoustic reflections from the concrete surface over which the jet was measured. The three dimensional field in the jet vicinity is reconstructed, and information about sources is inferred from reconstructions at the boundary of the turbulent jet flow. Then, a partial field decomposition (PFD) is performed, which represents the total field as the superposition of multiple, independent partial fields. This is the most direct attempt to equate partial fields with independent sources in a jet to date.

  5. Noise Reduction of Aircraft Flap

    NASA Technical Reports Server (NTRS)

    Hutcheson, Florence V. (Inventor); Brooks, Thomas F. (Inventor)

    2009-01-01

    A reduction in noise radiating from a side of a deployed aircraft flap is achieved by locating a slot adjacent the side of the flap, and then forcing air out through the slot with a suitable mechanism. One, two or even three or more slots are possible, where the slot is located at one;or more locations selected from a group of locations comprising a top surface of the flap, a bottom surface of the flap, an intersection of the top and side surface of the flap, an intersection of the bottom and side surfaces of the flap, and a side surface of the flap. In at least one embodiment the slot is substantially rectangular. A device for adjusting a rate of the air forced out through the slot can also be provided.

  6. Robust active noise control in the loadmaster area of a military transport aircraft.

    PubMed

    Kochan, Kay; Sachau, Delf; Breitbach, Harald

    2011-05-01

    The active noise control (ANC) method is based on the superposition of a disturbance noise field with a second anti-noise field using loudspeakers and error microphones. This method can be used to reduce the noise level inside the cabin of a propeller aircraft. However, during the design process of the ANC system, extensive measurements of transfer functions are necessary to optimize the loudspeaker and microphone positions. Sometimes, the transducer positions have to be tailored according to the optimization results to achieve a sufficient noise reduction. The purpose of this paper is to introduce a controller design method for such narrow band ANC systems. The method can be seen as an extension of common transducer placement optimization procedures. In the presented method, individual weighting parameters for the loudspeakers and microphones are used. With this procedure, the tailoring of the transducer positions is replaced by adjustment of controller parameters. Moreover, the ANC system will be robust because of the fact that the uncertainties are considered during the optimization of the controller parameters. The paper describes the necessary theoretic background for the method and demonstrates the efficiency in an acoustical mock-up of a military transport aircraft.

  7. Comparing the relationships between noise level and annoyance in different surveys - A railway noise vs. aircraft and road traffic comparison

    NASA Technical Reports Server (NTRS)

    Fields, J. M.; Walker, J. G.

    1982-01-01

    Annoyance expressed in a railway noise survey is compared with that from two road traffic and three aircraft surveys in order to determine whether responses to various types of environmental noise are source-specific. Railway noise is found to be less annoying than other noises at any given high noise level. Railway noise annoyance rises less rapidly with increasing noise level. At high levels, this gap in reactions averages about 10 dB; it ranges from 4 dB to more than 20 dB. The methods used for comparing the surveys are examined. It is found that methodological uncertainties lead to imprecise comparisons and that different annoyance scales yield different estimates of intersurvey differences.

  8. Validation protocol for digital audio recorders used in aircraft-noise-certification testing

    DOT National Transportation Integrated Search

    2010-11-01

    The U.S. Department of Transportation, Research and Innovative Technology Administra-tion, John A. Volpe National Transportation Systems Center, Environmental Measurement and Modeling Division (Volpe), is supporting the aircraft noise certification i...

  9. Passive interior noise reduction analysis of King Air 350 turboprop aircraft using boundary element method/finite element method (BEM/FEM)

    NASA Astrophysics Data System (ADS)

    Dandaroy, Indranil; Vondracek, Joseph; Hund, Ron; Hartley, Dayton

    2005-09-01

    The objective of this study was to develop a vibro-acoustic computational model of the Raytheon King Air 350 turboprop aircraft with an intent to reduce propfan noise in the cabin. To develop the baseline analysis, an acoustic cavity model of the aircraft interior and a structural dynamics model of the aircraft fuselage were created. The acoustic model was an indirect boundary element method representation using SYSNOISE, while the structural model was a finite-element method normal modes representation in NASTRAN and subsequently imported to SYSNOISE. In the acoustic model, the fan excitation sources were represented employing the Ffowcs Williams-Hawkings equation. The acoustic and the structural models were fully coupled in SYSNOISE and solved to yield the baseline response of acoustic pressure in the aircraft interior and vibration on the aircraft structure due to fan noise. Various vibration absorbers, tuned to fundamental blade passage tone (100 Hz) and its first harmonic (200 Hz), were applied to the structural model to study their effect on cabin noise reduction. Parametric studies were performed to optimize the number and location of these passive devices. Effects of synchrophasing and absorptive noise treatments applied to the aircraft interior were also investigated for noise reduction.

  10. Prediction of Landing Gear Noise Reduction and Comparison to Measurements

    NASA Technical Reports Server (NTRS)

    Lopes, Leonard V.

    2010-01-01

    Noise continues to be an ongoing problem for existing aircraft in flight and is projected to be a concern for next generation designs. During landing, when the engines are operating at reduced power, the noise from the airframe, of which landing gear noise is an important part, is equal to the engine noise. There are several methods of predicting landing gear noise, but none have been applied to predict the change in noise due to a change in landing gear design. The current effort uses the Landing Gear Model and Acoustic Prediction (LGMAP) code, developed at The Pennsylvania State University to predict the noise from landing gear. These predictions include the influence of noise reduction concepts on the landing gear noise. LGMAP is compared to wind tunnel experiments of a 6.3%-scale Boeing 777 main gear performed in the Quiet Flow Facility (QFF) at NASA Langley. The geometries tested in the QFF include the landing gear with and without a toboggan fairing and the door. It is shown that LGMAP is able to predict the noise directives and spectra from the model-scale test for the baseline configuration as accurately as current gear prediction methods. However, LGMAP is also able to predict the difference in noise caused by the toboggan fairing and by removing the landing gear door. LGMAP is also compared to far-field ground-based flush-mounted microphone measurements from the 2005 Quiet Technology Demonstrator 2 (QTD 2) flight test. These comparisons include a Boeing 777-300ER with and without a toboggan fairing that demonstrate that LGMAP can be applied to full-scale flyover measurements. LGMAP predictions of the noise generated by the nose gear on the main gear measurements are also shown.

  11. Strategic planning for aircraft noise route impact analysis: A three dimensional approach

    NASA Technical Reports Server (NTRS)

    Bragdon, C. R.; Rowan, M. J.; Ahuja, K. K.

    1993-01-01

    The strategic routing of aircraft through navigable and controlled airspace to minimize adverse noise impact over sensitive areas is critical in the proper management and planning of the U.S. based airport system. A major objective of this phase of research is to identify, inventory, characterize, and analyze the various environmental, land planning, and regulatory data bases, along with potential three dimensional software and hardware systems that can be potentially applied for an impact assessment of any existing or planned air route. There are eight data bases that have to be assembled and developed in order to develop three dimensional aircraft route impact methodology. These data bases which cover geographical information systems, sound metrics, land use, airspace operational control measures, federal regulations and advisories, census data, and environmental attributes have been examined and aggregated. A three dimensional format is necessary for planning, analyzing space and possible noise impact, and formulating potential resolutions. The need to develop this three dimensional approach is essential due to the finite capacity of airspace for managing and planning a route system, including airport facilities. It appears that these data bases can be integrated effectively into a strategic aircraft noise routing system which should be developed as soon as possible, as part of a proactive plan applied to our FAA controlled navigable airspace for the United States.

  12. New technique for the direct measurement of core noise from aircraft engines

    NASA Technical Reports Server (NTRS)

    Krejsa, E. A.

    1981-01-01

    A new technique is presented for directly measuring the core noise levels from gas turbine aircraft engines. The technique requires that fluctuating pressures be measured in the far-field and at two locations within the engine core. The cross-spectra of these measurements are used to determine the levels of the far-field noise that propagated from the engine core. The technique makes it possible to measure core noise levels even when other noise sources dominate. The technique was applied to signals measured from an AVCO Lycoming YF102 turbofan engine. Core noise levels as a function of frequency and radiation angle were measured and are presented over a range of power settings.

  13. A Comparative Study of a 1/4-Scale Gulfstream G550 Aircraft Nose Gear Model

    NASA Technical Reports Server (NTRS)

    Khorrami, Mehdi R.; Neuhart, Dan H.; Zawodny, Nikolas S.; Liu, Fei; Yardibi, Tarik; Cattafesta, Louis; Van de Ven, Thomas

    2009-01-01

    A series of fluid dynamic and aeroacoustic wind tunnel experiments are performed at the University of Florida Aeroacoustic Flow Facility and the NASA-Langley Basic Aerodynamic Research Tunnel Facility on a high-fidelity -scale model of Gulfstream G550 aircraft nose gear. The primary objectives of this study are to obtain a comprehensive aeroacoustic dataset for a nose landing gear and to provide a clearer understanding of landing gear contributions to overall airframe noise of commercial aircraft during landing configurations. Data measurement and analysis consist of mean and fluctuating model surface pressure, noise source localization maps using a large-aperture microphone directional array, and the determination of far field noise level spectra using a linear array of free field microphones. A total of 24 test runs are performed, consisting of four model assembly configurations, each of which is subjected to three test section speeds, in two different test section orientations. The different model assembly configurations vary in complexity from a fully-dressed to a partially-dressed geometry. The two model orientations provide flyover and sideline views from the perspective of a phased acoustic array for noise source localization via beamforming. Results show that the torque arm section of the model exhibits the highest rms pressures for all model configurations, which is also evidenced in the sideline view noise source maps for the partially-dressed model geometries. Analysis of acoustic spectra data from the linear array microphones shows a slight decrease in sound pressure levels at mid to high frequencies for the partially-dressed cavity open model configuration. In addition, far field sound pressure level spectra scale approximately with the 6th power of velocity and do not exhibit traditional Strouhal number scaling behavior.

  14. Effect of nighttime aircraft noise exposure on endothelial function and stress hormone release in healthy adults.

    PubMed

    Schmidt, Frank P; Basner, Mathias; Kröger, Gunnar; Weck, Stefanie; Schnorbus, Boris; Muttray, Axel; Sariyar, Murat; Binder, Harald; Gori, Tommaso; Warnholtz, Ascan; Münzel, Thomas

    2013-12-01

    Aircraft noise disturbs sleep, and long-term exposure has been shown to be associated with increases in the prevalence of hypertension and an overall increased risk for myocardial infarction. The exact mechanisms responsible for these cardiovascular effects remain unclear. We performed a blinded field study in 75 healthy volunteers (mean age 26 years), who were exposed at home, in random order, to one control pattern (no noise) and two different noise scenarios [30 or 60 aircraft noise events per night with an average maximum sound pressure level (SPL) of 60 dB(A)] for one night each. We performed polygraphy during each study night. Noise caused a worsening in sleep quality (P < 0.0001). Noise60, corresponding to equivalent continuous SPLs of 46.3 dB (Leq) and representing environmental noise levels associated with increased cardiovascular events, caused a blunting in FMD (P = 0.016). As well, although a direct comparison among the FMD values in the noise groups (control: 10.4 ± 3.8%; Noise30: 9.7 ± 4.1%; Noise60: 9.5 ± 4.3%, P = 0.052) did not reach significance, a monotone dose-dependent effect of noise level on FMD was shown (P = 0.020). Finally, there was a priming effect of noise, i.e. the blunting in FMD was particularly evident when subjects were exposed first to 30 and then to 60 noise events (P = 0.006). Noise-induced endothelial dysfunction (ED) was reversed by the administration of Vitamin C (P = 0.0171). Morning adrenaline concentration increased from 28.3 ± 10.9 to 33.2 ± 16.6 and 34.1 ± 19.3 ng/L (P = 0.0099). Pulse transit time, reflecting arterial stiffness, was also shorter after exposure to noise (P = 0.003). In healthy adults, acute nighttime aircraft noise exposure dose-dependently impairs endothelial function and stimulates adrenaline release. Noise-induced ED may be in part due to increased production in reactive oxygen species and may thus be one mechanism contributing to the observed association of chronic noise exposure with

  15. Implications of the road traffic and aircraft noise exposure and children's cognition and health (RANCH) study results for classroom acoustics

    NASA Astrophysics Data System (ADS)

    Stansfeld, Stephen A.; Clark, Charlotte

    2005-04-01

    Studies in West London have found associations between aircraft noise exposure and childrens' cognitive performance. This has culminated in the RANCH Study examining exposure-effect associations between aircraft and road traffic noise exposure and cognitive performance and health. The RANCH project, the largest cross-sectional study of noise and childrens health, examined 2844 children, 9-10 years old, from 89 schools around three major airports: in the Netherlands, Spain and the United Kingdom. Children were selected by external aircraft and road traffic noise exposure at school predicted from noise contour maps, modeling and on-site measurements. A substudy indicated high internal levels of noise within classrooms. Schools were matched for socioeconomic position within countries. Cognitive and health outcomes were measured by standardized tests and questionnaires administered in the classroom. A parental questionnaire collected information on socioeconomic position, parental education and ethnicity. Linear exposure-effect associations were found between chronic aircraft noise exposure and impairment of reading comprehension and recognition memory, maintained after adjustment for mothers education, socioeconomic factors, longstanding illness and classroom insulation. Road traffic noise exposure was linearly associated with episodic memory. The implications of these results for childrens' learning environments will be discussed. [Work supported by European Community (QLRT-2000-00197) Vth framework program.

  16. Exposure–Response Relationship Between Aircraft Noise and Sleep Quality: A Community-based Cross-sectional Study

    PubMed Central

    Kim, Soo Jeong; Chai, Sang Kug; Lee, Keou Won; Park, Jae-Beom; Min, Kyoung-Bok; Kil, Hyun Gwon; Lee, Chan; Lee, Kyung Jong

    2014-01-01

    Objectives Exposure to aircraft noise has been shown to have adverse health effects, causing annoyance and affecting the health-related quality of life, sleep, and mental states of those exposed to it. This study aimed to determine sleep quality in participants residing near an airfield and to evaluate the relationship between the levels of aircraft noise and sleep quality. Methods Neighboring regions of a military airfield were divided into three groups: a high exposure group, a low exposure group, and a control group. A total of 1082 participants (aged 30–79 years) completed a comprehensive self-administered questionnaire requesting information about demographics, medical history, lifestyle, and the Pittsburgh Sleep Quality Index. Results Of the 1082 participants, 1005 qualified for this study. The prevalence of sleep disturbance was 45.5% in the control group, 71.8% in the low exposure group, and 77.1% in the high exposure group (p for trend < 0.001). After adjusting for potential confounding factors, we determined the exposure–response relationship between the degree of aircraft noise and sleep quality. Of the participants with a normal mental status, the prevalence of sleep disturbance was 2.61-fold higher in the low exposure group and 3.52-fold higher in the high exposure group than in the control group. Conclusion The relationship between aircraft noise and health should be further evaluated through a large-scale follow-up study. PMID:24955321

  17. Directional acoustic measurements by laser Doppler velocimeters. [for jet aircraft noise

    NASA Technical Reports Server (NTRS)

    Mazumder, M. K.; Overbey, R. L.; Testerman, M. K.

    1976-01-01

    Laser Doppler velocimeters (LDVs) were used as velocity microphones to measure sound pressure level in the range of 90-130 db, spectral components, and two-point cross correlation functions for acoustic noise source identification. Close agreement between LDV and microphone data is observed. It was concluded that directional sensitivity and the ability to measure remotely make LDVs useful tools for acoustic measurement where placement of any physical probe is difficult or undesirable, as in the diagnosis of jet aircraft noise.

  18. Optimization of actuator arrays for aircraft interior noise control

    NASA Technical Reports Server (NTRS)

    Cabell, R. H.; Lester, H. C.; Mathur, G. P.; Tran, B. N.

    1993-01-01

    A numerical procedure for grouping actuators in order to reduce the number of degrees of freedom in an active noise control system is evaluated using experimental data. Piezoceramic actuators for reducing aircraft interior noise are arranged into groups using a nonlinear optimization routine and clustering algorithm. An actuator group is created when two or more actuators are driven with the same control input. This procedure is suitable for active control applications where actuators are already mounted on a structure. The feasibility of this technique is demonstrated using measured data from the aft cabin of a Douglas DC-9 fuselage. The measured data include transfer functions between 34 piezoceramic actuators and 29 interior microphones and microphone responses due to the primary noise produced by external speakers. Control inputs for the grouped actuators were calculated so that a cost function, defined as a quadratic pressure term and a penalty term, was a minimum. The measured transfer functions and microphone responses are checked by comparing calculated noise reductions with measured noise reductions for four frequencies. The grouping procedure is then used to determine actuator groups that improve overall interior noise reductions by 5.3 to 15 dB, compared to the baseline experimental configuration.

  19. Experimental study of noise transmission into a general aviation aircraft

    NASA Technical Reports Server (NTRS)

    Vaicaitis, R.; Bofilios, D. A.; Eisler, R.

    1984-01-01

    The effect of add-on treatments on noise transmission into a cabin of a light aircraft was studied under laboratory conditions for diffuse and localized noise inputs. Results indicate that stiffening skin panels with honeycomb would provide on the average 3dB to 7 dB insertion loss over the most of selected frequency range H1 to 1000 Hz. Addition of damping tape on top of the honeycomb treatment increases insertion loss by 2dB to 3dB. Porous acoustic blankets show no attenuation of transmitted noise for frequencies below 300 Hz. Insertion of impervious vinyl septa between the layers of porous acoustic blankets do not provide additional noise reduction for frequencies up to about 500 Hz. Similar behavior was observed for noise barriers composed of urethane elastomer, decoupler foam and acoustic foam. A treatment composed from several layers of acoustic foams does not increase noise attenuation for the entire frequency range studied. An acoustic treatment composed of honeycomb panels, constrained layer damping tape, 2 to 3 inches of porous acoustic blankets, and limptrim which is isolated from the vibrations of the main fuselage structure seems to provide the best option for noise control.

  20. Instrumentation for measuring aircraft noise and sonic boom

    NASA Technical Reports Server (NTRS)

    Zuckerwar, A. J. (Inventor)

    1976-01-01

    Improved instrumentation suitable for measuring aircraft noise and sonic booms is described. An electric current proportional to the sound pressure level at a condenser microphone is produced and transmitted over a cable and amplified by a zero drive amplifier. The converter consists of a local oscillator, a dual-gate field-effect transistor mixer, and a voltage regulator/impedance translator. The improvements include automatic tuning compensation against changes in static microphone capacitance and means for providing a remote electrical calibration capability.

  1. An evaluation of methods for scaling aircraft noise perception

    NASA Technical Reports Server (NTRS)

    Ollerhead, J. B.

    1971-01-01

    One hundred and twenty recorded sounds, including jets, turboprops, piston engined aircraft and helicopters were rated by a panel of subjects in a paired comparison test. The results were analyzed to evaluate a number of noise rating procedures in terms of their ability to accurately estimate both relative and absolute perceived noise levels. It was found that the complex procedures developed by Stevens, Zwicker and Kryter are superior to other scales. The main advantage of these methods over the more convenient weighted sound pressure level scales lies in their ability to cope with signals over a wide range of bandwidth. However, Stevens' loudness level scale and the perceived noise level scale both overestimate the growth of perceived level with intensity because of an apparent deficiency in the band level summation rule. A simple correction is proposed which will enable these scales to properly account for the experimental observations.

  2. Comparison of aircraft noise measured in flight test and in the NASA Ames 40- by 80-foot wind tunnel.

    NASA Technical Reports Server (NTRS)

    Atencio, A., Jr.; Soderman, P. T.

    1973-01-01

    A method to determine free-field aircraft noise spectra from wind-tunnel measurements has been developed. The crux of the method is the correction for reverberations. Calibrated loud speakers are used to simulate model sound sources in the wind tunnel. Corrections based on the difference between the direct and reverberant field levels are applied to wind-tunnel data for a wide range of aircraft noise sources. To establish the validity of the correction method, two research aircraft - one propeller-driven (YOV-10A) and one turbojet-powered (XV-5B) - were flown in free field and then tested in the wind tunnel. Corrected noise spectra from the two environments agree closely.

  3. Nighttime aircraft noise impairs endothelial function and increases blood pressure in patients with or at high risk for coronary artery disease.

    PubMed

    Schmidt, Frank; Kolle, Kristoffer; Kreuder, Katharina; Schnorbus, Boris; Wild, Philip; Hechtner, Marlene; Binder, Harald; Gori, Tommaso; Münzel, Thomas

    2015-01-01

    Epidemiological studies suggest the existence of a relationship between aircraft noise exposure and increased risk for myocardial infarction and stroke. Patients with established coronary artery disease and endothelial dysfunction are known to have more future cardiovascular events. We therefore tested the effects of nocturnal aircraft noise on endothelial function in patients with or at high risk for coronary artery disease. 60 Patients (50p 1-3 vessels disease; 10p with a high Framingham Score of 23%) were exposed in random and blinded order to aircraft noise and no noise conditions. Noise was simulated in the patients' bedroom and consisted of 60 events during one night. Polygraphy was recorded during study nights, endothelial function (flow-mediated dilation of the brachial artery), questionnaires and blood sampling were performed on the morning after each study night. The mean sound pressure levels L eq(3) measured were 46.9 ± 2.0 dB(A) in the Noise 60 nights and 39.2 ± 3.1 dB(A) in the control nights. Subjective sleep quality was markedly reduced by noise from 5.8 ± 2.0 to 3.7 ± 2.2 (p < 0.001). FMD was significantly reduced (from 9.6 ± 4.3 to 7.9 ± 3.7%; p < 0.001) and systolic blood pressure was increased (from 129.5 ± 16.5 to 133.6 ± 17.9 mmHg; p = 0.030) by noise. The adverse vascular effects of noise were independent from sleep quality and self-reported noise sensitivity. Nighttime aircraft noise markedly impairs endothelial function in patients with or at risk for cardiovascular disease. These vascular effects appear to be independent from annoyance and attitude towards noise and may explain in part the cardiovascular side effects of nighttime aircraft noise.

  4. 14 CFR Appendix H to Part 36 - Noise Requirements For Helicopters Under Subpart H

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... for each test run. (iv) Aircraft configuration, including landing gear positions. (v) Airspeed in... runs at the takeoff, level flyovers, and approach conditions. The 90 percent confidence limit applies... limit for all valid test runs under section H36.111(d) of this appendix applies separately to the EPNdB...

  5. Transport jet aircraft noise abatement in foreign countries: Growth, structure, impact. Volume 1: Europe, July 1980

    NASA Technical Reports Server (NTRS)

    Spencer, F. A.

    1980-01-01

    The development and implementation of aircraft noise control regulations in various European states are described. The countries include the United Kingdom, France, Switzerland, Federal Republic of Germany, Sweden, Denmark, and the Netherlands. Topics discussed include noise monitoring, airport curfews, land use planning, and the government structure for noise regulation.

  6. Interior noise in the untreated Gulfstream II Propfan Test Assessment (PTA) aircraft

    NASA Technical Reports Server (NTRS)

    Kuntz, H. L.; Prydz, R. A.

    1989-01-01

    Interior noise on the Gulfstream II Propfan Test Assessment (PTA) aircraft was measured using 19 wing, 22 fuselage, and 32 cabin-interior microphones to determine the sources of the cabin noise. Results from ground and flight test acoustic and vibration measurements and analyses show that the major source of cabin noise was the airborne propfan blade passage frequency tones. The radiated sound pressure levels and the richness of the harmonic content of the propfan increased with increasing altitude. The acoustic output of the propfan also depended on the shaft power, helical Mach number, and blade passage frequency.

  7. The NASA aircraft noise prediction program improved propeller analysis system

    NASA Technical Reports Server (NTRS)

    Nguyen, L. Cathy

    1991-01-01

    The improvements and the modifications of the NASA Aircraft Noise Prediction Program (ANOPP) and the Propeller Analysis System (PAS) are described. Comparisons of the predictions and the test data are included in the case studies for the flat plate model in the Boundary Layer Module, for the effects of applying compressibility corrections to the lift and pressure coefficients, for the use of different weight factors in the Propeller Performance Module, for the use of the improved retarded time equation solution, and for the effect of the number grids in the Transonic Propeller Noise Module. The DNW tunnel test data of a propeller at different angles of attack and the Dowty Rotol data are compared with ANOPP predictions. The effect of the number of grids on the Transonic Propeller Noise Module predictions and the comparison of ANOPP TPN and DFP-ATP codes are studied. In addition to the above impact studies, the transonic propeller noise predictions for the SR-7, the UDF front rotor, and the support of the enroute noise test program are included.

  8. Effect of nighttime aircraft noise exposure on endothelial function and stress hormone release in healthy adults

    PubMed Central

    Schmidt, Frank P.; Basner, Mathias; Kröger, Gunnar; Weck, Stefanie; Schnorbus, Boris; Muttray, Axel; Sariyar, Murat; Binder, Harald; Gori, Tommaso; Warnholtz, Ascan; Münzel, Thomas

    2013-01-01

    Aims Aircraft noise disturbs sleep, and long-term exposure has been shown to be associated with increases in the prevalence of hypertension and an overall increased risk for myocardial infarction. The exact mechanisms responsible for these cardiovascular effects remain unclear. Methods and results We performed a blinded field study in 75 healthy volunteers (mean age 26 years), who were exposed at home, in random order, to one control pattern (no noise) and two different noise scenarios [30 or 60 aircraft noise events per night with an average maximum sound pressure level (SPL) of 60 dB(A)] for one night each. We performed polygraphy during each study night. Noise caused a worsening in sleep quality (P < 0.0001). Noise60, corresponding to equivalent continuous SPLs of 46.3 dB (Leq) and representing environmental noise levels associated with increased cardiovascular events, caused a blunting in FMD (P = 0.016). As well, although a direct comparison among the FMD values in the noise groups (control: 10.4 ± 3.8%; Noise30: 9.7 ± 4.1%; Noise60: 9.5 ± 4.3%, P = 0.052) did not reach significance, a monotone dose-dependent effect of noise level on FMD was shown (P = 0.020). Finally, there was a priming effect of noise, i.e. the blunting in FMD was particularly evident when subjects were exposed first to 30 and then to 60 noise events (P = 0.006). Noise-induced endothelial dysfunction (ED) was reversed by the administration of Vitamin C (P = 0.0171). Morning adrenaline concentration increased from 28.3 ± 10.9 to 33.2 ± 16.6 and 34.1 ± 19.3 ng/L (P = 0.0099). Pulse transit time, reflecting arterial stiffness, was also shorter after exposure to noise (P = 0.003). Conclusion In healthy adults, acute nighttime aircraft noise exposure dose-dependently impairs endothelial function and stimulates adrenaline release. Noise-induced ED may be in part due to increased production in reactive oxygen species and may thus be one mechanism contributing to the observed association of

  9. An Epidemiological Prospective Study of Children’s Health and Annoyance Reactions to Aircraft Noise Exposure in South Africa

    PubMed Central

    Seabi, Joseph

    2013-01-01

    The purpose of this study was to investigate health and annoyance reactions to change in chronic exposure to aircraft noise on a sample of South African children. It was the intention of this study to examine if effects of noise on health and annoyance can be demonstrated. If so, whether such effects persist over time, or whether such effects are reversible after the cessation of exposure to noise. A cohort of 732 children with a mean age of 11.1 (range = 8–14) participated at baseline measurements in Wave 1 (2009), and 649 (mean age = 12.3; range = 9–15) and 174 (mean age = 13.3; range = 10–16) children were reassessed in Wave 2 (2010) and Wave 3 (2011) after the relocation of the airport, respectively. The findings revealed that the children who were exposed to chronic aircraft noise continued to experience significantly higher annoyance than their counterparts in all the waves at school, and only in Wave 1 and Wave 2 at home. Aircraft noise exposure did not have adverse effects on the children’s self-reported health outcomes. Taken together, these findings suggest that chronic exposure to aircraft noise may have a lasting impact on children’s annoyance, but not on their subjective health rating. This is one of the first longitudinal studies of this nature in the African continent to make use of an opportunity resulting from the relocation of airport. PMID:23823713

  10. Is there an association between aircraft noise exposure and the incidence of hypertension? A meta-analysis of 16784 participants.

    PubMed

    Huang, Di; Song, XuPing; Cui, Qi; Tian, Jinhui; Wang, Quan; Yang, Kehu

    2015-01-01

    To determine if aircraft noise exposure causes an increased incidence of hypertension among residents near airports. We conducted a meta-analysis of observational studies to evaluate the association between aircraft noise exposure and the incidence of hypertension. PubMed, Embase, Web of Science, the Cochrane Library, and the Chinese Biomedical Literature Database were searched without any restrictions. Odds ratios (ORs) with 95% confidence intervals (CIs) were extracted. The pooled ORs were calculated using both the fixed effects model and random effects model. All analyses were performed using STATA version 12.0 software (Stata Corporation, College Station, TX, USA). We examined five studies, comprising a total of 16,784 residents. The overall OR for hypertension in residents with aircraft noise exposure was 1.63 (95% CI, 1.14-2.33), and one of our included studies showed that there was no evidence that aircraft noise is a risk factor for hypertension in women. According to our subgroup analysis, the summary OR for the incidence was 1.31 (95% CI, 0.85-2.02) with I2 of 80.7% in women and 1.36 (95% CI, 1.15-1.60) with moderate heterogeneity in men. The pooled OR for the incidence of hypertension in residents aged over 55 years and under 55 years was 1.66 (95% CI, 1.21-2.27) with no heterogeneity and 1.78 (95% CI, 1.33-2.39) with I2 of 29.4%, respectively. The present meta-analysis suggests that aircraft noise could contribute to the prevalence of hypertension, but the evidence for a relationship between aircraft noise exposure and hypertension is still inconclusive because of limitations in study populations, exposure characterization, and adjustment for important confounders.

  11. Is there an association between aircraft noise exposure and the incidence of hypertension? A meta-analysis of 16784 participants

    PubMed Central

    Huang, Di; Song, XuPing; Cui, Qi; Tian, Jinhui; Wang, Quan; Yang, Kehu

    2015-01-01

    To determine if aircraft noise exposure causes an increased incidence of hypertension among residents near airports. We conducted a meta-analysis of observational studies to evaluate the association between aircraft noise exposure and the incidence of hypertension. PubMed, Embase, Web of Science, the Cochrane Library, and the Chinese Biomedical Literature Database were searched without any restrictions. Odds ratios (ORs) with 95% confidence intervals (CIs) were extracted. The pooled ORs were calculated using both the fixed effects model and random effects model. All analyses were performed using STATA version 12.0 software (Stata Corporation, College Station, TX, USA). We examined five studies, comprising a total of 16,784 residents. The overall OR for hypertension in residents with aircraft noise exposure was 1.63 (95% CI, 1.14-2.33), and one of our included studies showed that there was no evidence that aircraft noise is a risk factor for hypertension in women. According to our subgroup analysis, the summary OR for the incidence was 1.31 (95% CI, 0.85-2.02) with I2 of 80.7% in women and 1.36 (95% CI, 1.15-1.60) with moderate heterogeneity in men. The pooled OR for the incidence of hypertension in residents aged over 55 years and under 55 years was 1.66 (95% CI, 1.21-2.27) with no heterogeneity and 1.78 (95% CI, 1.33-2.39) with I2 of 29.4%, respectively. The present meta-analysis suggests that aircraft noise could contribute to the prevalence of hypertension, but the evidence for a relationship between aircraft noise exposure and hypertension is still inconclusive because of limitations in study populations, exposure characterization, and adjustment for important confounders. PMID:25774612

  12. Space Shuttle Discovery Fly-Over

    NASA Image and Video Library

    2012-04-17

    Jarod Ondas (left), of Virginia, and his brother Austin, watch as space shuttle Discovery approaches the National Air and Space Museum’s Steven F. Udvar-Hazy Center for its fly-over, Tuesday, April 17, 2012, in Chantilly, Va. Discovery, the first orbiter retired from NASA’s shuttle fleet, completed 39 missions, spent 365 days in space, orbited the Earth 5,830 times, and traveled 148,221,675 miles. NASA will transfer Discovery to the National Air and Space Museum to begin its new mission to commemorate past achievements in space and to educate and inspire future generations of explorers. Photo Credit: (NASA/Carla Cioffi)

  13. Flight Test of ASAC Aircraft Interior Noise Control System

    NASA Technical Reports Server (NTRS)

    Palumbo, Dan; Cabell, Ran; Cline, John; Sullivan, Brenda

    1999-01-01

    A flight test is described in which an active structural/acoustic control system reduces turboprop induced interior noise on a Raytheon Aircraft Company 1900D airliner. Control inputs to 21 inertial force actuators were computed adaptively using a transform domain version of the multichannel filtered-X LMS algorithm to minimize the mean square response of 32 microphones. A combinatorial search algorithm was employed to optimize placement of the force actuators on the aircraft frame. Both single frequency and multi-frequency results are presented. Reductions of up to 15 dB were obtained at the blade passage frequency (BPF) during single frequency control tests. Simultaneous reductions of the BPF and next 2 harmonics of 10 dB, 2.5 dB and 3.0 dB, were obtained in a multi-frequency test.

  14. Nonlinear acoustic propagation of launch vehicle and military jet aircraft noise

    NASA Astrophysics Data System (ADS)

    Gee, Kent L.

    2010-10-01

    The noise from launch vehicles and high-performance military jet aircraft has been shown to travel nonlinearly as a result of an amplitude-dependent speed of sound. Because acoustic pressure compressions travel faster than rarefactions, the waveform steepens and shocks form. This process results in a very different (and readily audible) noise signature and spectrum than predicted by linear models. On-going efforts to characterize the nonlinearity using statistical and spectral measures are described with examples from recent static tests of solid rocket boosters and the F-22 Raptor.

  15. A simple-source model of military jet aircraft noise

    NASA Astrophysics Data System (ADS)

    Morgan, Jessica; Gee, Kent L.; Neilsen, Tracianne; Wall, Alan T.

    2010-10-01

    The jet plumes produced by military jet aircraft radiate significant amounts of noise. A need to better understand the characteristics of the turbulence-induced aeroacoustic sources has motivated the present study. The purpose of the study is to develop a simple-source model of jet noise that can be compared to the measured data. The study is based off of acoustic data collected near a tied-down F-22 Raptor. The simplest model consisted of adjusting the origin of a monopole above a rigid planar reflector until the locations of the predicted and measured interference nulls matched. The model has developed into an extended Rayleigh distribution of partially correlated monopoles which fits the measured data from the F-22 significantly better. The results and basis for the model match the current prevailing theory that jet noise consists of both correlated and uncorrelated sources. In addition, this simple-source model conforms to the theory that the peak source location moves upstream with increasing frequency and lower engine conditions.

  16. Effects of acoustic treatment on the interior noise levels of a twin-engine propeller aircraft - Experimental flight results and theoretical predictions

    NASA Technical Reports Server (NTRS)

    Beyer, T. B.; Powell, C. A.; Daniels, E. F.; Pope, L. D.

    1984-01-01

    In-flight noise level measurements were made within two cabin configurations of a general aviation business aircraft. The Fairchild Merlin IVC twin-engine aircraft was tested with bare walls and fiberglass insulation and in an executive trim configuration. Narrow-band and octave format data were subjected to analyses which permitted identification of the blade passage harmonics (BPH). Cabin noise level reductions (insertion losses) due to added insulation varied with position in the cabin, the BPH number, cabin pressure, and engine torque. The measurements were closely predicted using the propeller aircraft interior noise (PAIN) mode.

  17. Aviation and the environment : transition to quieter aircraft occurred as planned, but concerns about noise persist

    DOT National Transportation Integrated Search

    2001-09-01

    Aircraft noise is a major concern in communities around airports despite considerable reductions in such noise and a corresponding decrease in the population exposed to it. Recently, the United states participated with other countries in the Internat...

  18. Computation of Engine Noise Propagation and Scattering Off an Aircraft

    NASA Technical Reports Server (NTRS)

    Xu, J.; Stanescu, D.; Hussaini, M. Y.; Farassat, F.

    2003-01-01

    The paper presents a comparison of experimental noise data measured in flight on a two-engine business jet aircraft with Kulite microphones placed on the suction surface of the wing with computational results. Both a time-domain discontinuous Galerkin spectral method and a frequency-domain spectral element method are used to simulate the radiation of the dominant spinning mode from the engine and its reflection and scattering by the fuselage and the wing. Both methods are implemented in computer codes that use the distributed memory model to make use of large parallel architectures. The results show that trends of the noise field are well predicted by both methods.

  19. Noise-induced annoyance from transportation noise: short-term responses to a single noise source in a laboratory.

    PubMed

    Kim, Jaehwan; Lim, Changwoo; Hong, Jiyoung; Lee, Soogab

    2010-02-01

    An experimental study was performed to compare the annoyances from civil-aircraft noise, military-aircraft noise, railway noise, and road-traffic noise. Two-way within-subjects designs were applied in this research. Fifty-two subjects, who were naive listeners, were given various stimuli with varying levels through a headphone in an anechoic chamber. Regardless of the frequency weighting network, even under the same average energy level, civil-aircraft noise was the most annoying, followed by military-aircraft noise, railway noise, and road-traffic noise. In particular, penalties in the time-averaged, A-weighted sound level (TAL) of about 8, 5, and 5 dB, respectively, were found in the civil-aircraft, military-aircraft, and railway noises. The reason could be clarified through the high-frequency component and the variability in the level. When people were exposed to sounds with the same maximum A-weighted level, a railway bonus of about 3 dB was found. However, transportation noise has been evaluated by the time-averaged A-weighted level in most countries. Therefore, in the present situation, the railway bonus is not acceptable for railway vehicles with diesel-electric engines.

  20. Testing a theory of aircraft noise annoyance: a structural equation analysis.

    PubMed

    Kroesen, Maarten; Molin, Eric J E; van Wee, Bert

    2008-06-01

    Previous research has stressed the relevance of nonacoustical factors in the perception of aircraft noise. However, it is largely empirically driven and lacks a sound theoretical basis. In this paper, a theoretical model which explains noise annoyance based on the psychological stress theory is empirically tested. The model is estimated by applying structural equation modeling based on data from residents living in the vicinity of Amsterdam Airport Schiphol in The Netherlands. The model provides a good model fit and indicates that concern about the negative health effects of noise and pollution, perceived disturbance, and perceived control and coping capacity are the most important variables that explain noise annoyance. Furthermore, the model provides evidence for the existence of two reciprocal relationships between (1) perceived disturbance and noise annoyance and (2) perceived control and coping capacity and noise annoyance. Lastly, the model yielded two unexpected results. Firstly, the variables noise sensitivity and fear related to the noise source were unable to explain additional variance in the endogenous variables of the model and were therefore excluded from the model. And secondly, the size of the total effect of noise exposure on noise annoyance was relatively small. The paper concludes with some recommended directions for further research.

  1. Separation of airborne and structureborne noise radiated by plates constructed of conventional and composite materials with applications for prediction of interior noise paths in propeller driven aircraft. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Mcgary, M. C.

    1986-01-01

    The anticipated application of advanced turboprop propulsion systems and use of composite materials in primary structure is expected to increase the interior noise of future aircraft to unacceptability high levels. The absence of technically and economically feasible noise source-path diagnostic tools has been a primer obstacle in the development of efficient noise control treatments for propeller driven aircraft. A new diagnostic method which permits the separation and prediction of the fully coherent airborne and structureborne components of the sound radiated by plates or thin shells has been developed. Analytical and experimental studies of the proposed method were performed on plates constructed of both conventional and composite materials. The results of the study indicate that the proposed method can be applied to a variety of aircraft materials, could be used in flight, and has fewer encumbrances than the other diagnostic tools currently available. The study has also revealed that the noise radiation of vibrating plates in the low frequency regime due to combined airborne and structureborne inputs possesses a strong synergistic nature. The large influence of the interaction between the airborne and structureborne terms has been hitherto ignored by researchers of aircraft interior noise problems.

  2. Noise transmission through sidewall treatments applicable to twin-engine turboprop aircraft

    NASA Technical Reports Server (NTRS)

    Grosveld, F. W.

    1983-01-01

    The noise transmission loss characteristics of the sidewall treatment in the propeller plane of a twin-engine turboprop aircraft are experimentally investigated in the NASA Langley Research Center Transmission Loss Facility. The sound attenuation properties of the individual elements of this treatment are evaluated showing least noise transmission loss in the low frequencies (below 500 Hz) where the excitation levels at the propeller blade passage frequency and the first few harmonics are highest. It is shown that single and double wall resonances play an important role in the noise transmission loss values of the treatment at these low frequencies suggesting that a limp mass with a very low resonance frequency serves better as a trim panel than a trim panel having a high structural stiffness. It is indicated that the window structures might be a potential noise control problem.

  3. Noise transmission through sidewall treatments applicable to twin-engine turboprop aircraft

    NASA Astrophysics Data System (ADS)

    Grosveld, F. W.

    1983-04-01

    The noise transmission loss characteristics of the sidewall treatment in the propeller plane of a twin-engine turboprop aircraft are experimentally investigated in the NASA Langley Research Center Transmission Loss Facility. The sound attenuation properties of the individual elements of this treatment are evaluated showing least noise transmission loss in the low frequencies (below 500 Hz) where the excitation levels at the propeller blade passage frequency and the first few harmonics are highest. It is shown that single and double wall resonances play an important role in the noise transmission loss values of the treatment at these low frequencies suggesting that a limp mass with a very low resonance frequency serves better as a trim panel than a trim panel having a high structural stiffness. It is indicated that the window structures might be a potential noise control problem.

  4. Aircraft Noise Definition. Phase II. Analysis of Flyover-Noise Data for the DC-8-61 Aircraft

    DTIC Science & Technology

    1974-08-01

    cocnfidence limfits. 41 TAOLS 4 ALTIYTM TO mu1HCH Wsosoin 1~1n 110A M.IITVIM DATA Sd NOM 1U3. 0O. OF DATA OUAIS 410m m 3 it 0M441405 US 0 .0? 1147.166 IsoS ...100 611 CU)%?I󈧬# )M301110 so IM I’ll 00001 WAO It CALL. C0660 tI LTINIUSTof Pt.L vVPlA.RPIWE’~.tCdt~iVkl )00011iU0 ?OV&Lm IPO. 00001 1410 AP9VCLG ISO ...1 J0001210 $22 CYRUE a £50. 11 tT1NUST-264)0I I.%I3E0.b-*4o0. 144 140.10. - ISO ) lflA22 I~u?*M.1 0001230 sai ~r 504T1 100 3 1240 14 CAL sl’ot

  5. Measured and predicted impingement noise for a model-scale under the wing externally blown flap configuration with a QCSEE type nozzle

    NASA Technical Reports Server (NTRS)

    Mckinzie, D. J., Jr.

    1980-01-01

    Jet/flap interaction noise was measured and predicted for a small-scale model two-flap, under-the-wing, externally blown flap configuration equipped with and without noise suppression devices. The devices consisted of short spanwise fairings centered in relationship to the jet axis and positioned in the slots between the wing and flaps. The nozzle approximated that of the Quiet Clean Short-haul Experimental Engine (QCSEE). Takeoff noise reductions of 6 dB in the flyover and 5 dB in the sideline plane were obtained over a wide range of radiation angles. Approach noise reductions of about 5 dB were obtained only in the forward quadrant of the flyover plane; no reductions were obtained in the sideline plane. Models of several noise sources were combined analytically to form an overall noise prediction, the results from which compared favorably with the measured data. The aerodynamic performance characteristics for these configurations were substantially the same in the takeoff attitude. However, in the approach attitude, the suppressed configuration produced a 6 percent reduction in the flow turning efficiency.

  6. On the role of the radiation directivity in noise reduction for STOL aircraft.

    NASA Technical Reports Server (NTRS)

    Gruschka, H. D.

    1972-01-01

    The radiation characteristics of distributed randomly fluctuating acoustic sources when shielded by finite surfaces are discussed briefly. A number of model tests using loudspeakers as artificial noise sources with a given broadband power density spectrum are used to demonstrate the effectiveness of reducing the radiated noise intensity in certain directions due to shielding. In the lateral direction of the source array noise reductions of 12 dB are observed with relatively small shields. The same shields reduce the backward radiation by approximately 20 dB. With the results obtained in these acoustic model tests the potentials of jet noise reduction of jet flap propulsion systems applicable in future STOL aircraft are discussed. The jet flap configuration as a complex aerodynamic noise source is described briefly.

  7. Noise measurements taken at LAX during operational evaluation of two-segment approaches in a 727-200 aircraft

    NASA Technical Reports Server (NTRS)

    Tanner, C. S.; Glass, R. E.

    1973-01-01

    A series of seven noise measurements were made each day over a period of fifteen days. The first and last flights each day were made by a specially instrumented 727-200 aircraft being used to evaluate the operational effectiveness of two-segment noise abatement approaches in scheduled service. Noise measurements were made to determine the noise reduction benefits of the two-segment approaches.

  8. Lobed Mixer Design for Noise Suppression Acoustic and Aerodynamic Test Data Analysis

    NASA Technical Reports Server (NTRS)

    Mengle, Vinod G.; Dalton, William N.; Boyd, Kathleen (Technical Monitor); Bridges, James (Technical Monitor)

    2002-01-01

    A comprehensive database for the acoustic and aerodynamic characteristics of several model-scale lobe mixers of bypass ratio 5 to 6 has been created for mixed jet speeds up to 1080 ft/s at typical take-off (TO) conditions of small-to-medium turbofan engines. The flight effect was simulated for Mach numbers up to 0.3. The static thrust performance and plume data were also obtained at typical TO and cruise conditions. The tests were done at NASA Lewis anechoic dome and ASK's FluiDyne Laboratories. The effect of several lobe mixer and nozzle parameters, such as, lobe scalloping, lobe count, lobe penetration and nozzle length was examined in terms of flyover noise at constant altitude. Sound in the nozzle reference frame was analyzed to understand the source characteristics. Several new concepts, mechanisms and methods are reported for such lobed mixers, such as, "boomerang" scallops, "tongue" mixer, detection of "excess" internal noise sources, and extrapolation of flyover noise data from one flight speed to different flight speeds. Noise reduction of as much as 3 EPNdB was found with a deeply scalloped mixer compared to annular nozzle at net thrust levels of 9500 lb for a 29 in. diameter nozzle after optimizing the nozzle length.

  9. Breast cancer and exposure to aircraft, road, and railway-noise: a case-control study based on health insurance records.

    PubMed

    Hegewald, Janice; Schubert, Melanie; Wagner, Mandy; Dröge, Patrik; Prote, Ursel; Swart, Enno; Möhler, Ulrich; Zeeb, Hajo; Seidler, Andreas

    2017-11-01

    Objectives Aircraft, road, and rail traffic noise can cause sleep disturbances. Since night work and shorter sleep durations have been linked to increased risks of breast cancer, we examined if 24-hour, or day- or night-time traffic noise exposure may also increase the risk of breast cancer. Methods To investigate the noise-related risks of breast cancer, the pseudonymized insurance records of three large statutory health companies (2005-2010) for women aged ≥40 years living in the region surrounding the Frankfurt international airport were analyzed with address-specific acoustic data representing aircraft, road, and rail-traffic noise. Noise exposure among women with incident breast cancer (N=6643) were compared with that of control subjects (N=471 596) using logistic regression and adjusting for age, hormone replacement therapy, education and occupation (only available for 27.9%), and a regional proportion of persons receiving long-term unemployment benefits as an ecological indicator of socioeconomic level. Analyses were also stratified according to estrogen receptor (ER) status. Results An increased odds ratio (OR) was observed for ER negative (ER-) tumors at 24-hour aircraft noise levels 55-59 dB [OR 55-59 dB 1.41, 95% confidence interval (CI) 1.04-1.90] but not for ER positive (ER+) breast cancers (OR 55-59 dB 0.95, 95% CI 0.75-1.20). Clear associations between road and rail traffic noise were not observed. Conclusions The results indicate increased aircraft noise may be an etiologic factor for ER- breast cancers. However, information regarding potential confounding factors was largely unattainable. Further research is required to understand how environmental noise may be involved in the pathogenesis of ER- breast cancers.

  10. Community reactions to aircraft noise in the vicinity of airport: A comparative study of the social surveys using interview method

    NASA Technical Reports Server (NTRS)

    Osada, Y.

    1980-01-01

    A comparative study was performed on the reports of community reactions to aircraft noise. The direct and immediate reactions to aircraft noise such as perceived noisiness, interference with conversations, etc. and various emotional influences were most remarkable; indirect and long term influences such as disturbance of mental work and physical symptoms were less remarkable.

  11. The role of nonlinear effects in the propagation of noise from high-power jet aircraft.

    PubMed

    Gee, Kent L; Sparrow, Victor W; James, Michael M; Downing, J Micah; Hobbs, Christopher M; Gabrielson, Thomas B; Atchley, Anthony A

    2008-06-01

    To address the question of the role of nonlinear effects in the propagation of noise radiated by high-power jet aircraft, extensive measurements were made of the F-22A Raptor during static engine run-ups. Data were acquired at low-, intermediate-, and high-thrust engine settings with microphones located 23-305 m from the aircraft along several angles. Comparisons between the results of a generalized-Burgers-equation-based nonlinear propagation model and the measurements yield favorable agreement, whereas application of a linear propagation model results in spectral predictions that are much too low at high frequencies. The results and analysis show that significant nonlinear propagation effects occur for even intermediate-thrust engine conditions and at angles well away from the peak radiation angle. This suggests that these effects are likely to be common in the propagation of noise radiated by high-power aircraft.

  12. JPL-20180411-JUNOf-0002-Flyover of Jupiters North Pole in Infrared

    NASA Image and Video Library

    2018-04-11

    This flyover of Jupiter's North Pole utilizes data collected by the Jovian Infrared Auroral Mapper (JIRAM) instrument on NASA's Juno spacecraft. It illustrates the 3-D aspects of the region's central cyclone and the eight cyclones that encircle it.

  13. Emotionality in response to aircraft noise: A report of development work

    NASA Technical Reports Server (NTRS)

    Klaus, P. A.

    1975-01-01

    A literature search and pilot study conducted to investigate the topic of emotional response to aircraft noise are described. A Tell-A-Story Technique was developed for use in the pilot study which required respondents to make up stories for a series of aircraft-related and non-aircraft-related pictures. A content analysis of these stories was made. The major finding was that response patterns varied among three groups of respondents - those currently living near airports, those who had lived near airports in the past, and those who had never lived near airports. Negative emotional feelings toward aircraft were greatest among respondents who had lived near airports in the past but no longer did. A possible explanation offered for this finding was that people currently living near airports might adapt to the situation by denying some of their negative feelings, which they might feel more free to express after they had moved away from the situation. Other techniques used in the pilot study are also described, including group interviews and a word association task.

  14. Overview of en route noise prediction using a integrated noise model

    DOT National Transportation Integrated Search

    2010-04-20

    En route aircraft noise is often ignored in aircraft noise modeling because large amounts of noise attenuation due to long propagation distances between the aircraft and the receivers on the ground, reduced power in cruise flight compared to takeoff ...

  15. Propeller aircraft interior noise model: User's manual for computer program

    NASA Technical Reports Server (NTRS)

    Wilby, E. G.; Pope, L. D.

    1985-01-01

    A computer program entitled PAIN (Propeller Aircraft Interior Noise) has been developed to permit calculation of the sound levels in the cabin of a propeller-driven airplane. The fuselage is modeled as a cylinder with a structurally integral floor, the cabin sidewall and floor being stiffened by ring frames, stringers and floor beams of arbitrary configurations. The cabin interior is covered with acoustic treatment and trim. The propeller noise consists of a series of tones at harmonics of the blade passage frequency. Input data required by the program include the mechanical and acoustical properties of the fuselage structure and sidewall trim. Also, the precise propeller noise signature must be defined on a grid that lies in the fuselage skin. The propeller data are generated with a propeller noise prediction program such as the NASA Langley ANOPP program. The program PAIN permits the calculation of the space-average interior sound levels for the first ten harmonics of a propeller rotating alongside the fuselage. User instructions for PAIN are given in the report. Development of the analytical model is presented in NASA CR 3813.

  16. Lateral noise attenuation of the advanced propeller of the propfan test assessment aircraft

    NASA Technical Reports Server (NTRS)

    Chambers, F. W.; Reddy, N. N.; Bartel, H. W.

    1989-01-01

    Lateral noise attenuation characteristics of the advanced propeller are determined using the flight test results of the testbed aircraft, Propfan Test Assessment (PTA), with a single, large-scale propfan. The acoustic data were obtained with an array of ground-mounted microphones positioned at distances up to 2.47 km (8100 feet) to the side of the flight path. The aircraft was flown at a Mach number of 0.31 for a variety of operating conditions. The lateral noise attenuation in a frequency range containing the blade passage frequency of the propeller was found to have positive magnitudes on the propfan side and negative magnitudes on the opposite side. The measured attenuation exhibits a strong dependence upon the elevation angle. The results also display a clear dependence upon the angle at which the propeller and nacelle are mounted on the wing (inflow angle).

  17. The impact of aircraft noise exposure on South African children's reading comprehension: the moderating effect of home language.

    PubMed

    Seabi, Joseph; Cockcroft, Kate; Goldschagg, Paul; Greyling, Mike

    2012-01-01

    Given the limited studies conducted within the African continent, the purpose of this study was to investigate the impact of chronic aircraft noise exposure and the moderating effect of home language on the learners' reading comprehension. The sample comprised 437 (52%) senior primary learners exposed to high levels of aircraft noise (Experimental group) and 337 (48%) learners residing in a quieter area (Control group). Of these, 151 learners in the Experimental group spoke English as a first language (EFL) and 162 spoke English as a second language (ESL). In the Control group, the numbers were similarly divided (EFL n = 191; ESL n = 156). A univariate General Linear Model was used to investigate the effects of aircraft noise exposure and language on reading comprehension, while observing for the possible impact of intellectual ability, gender, and socioeconomic status on the results. A significant difference was observed between ESL and EFL learners in favor of the latter (F 1,419 = 21.95, P =.000). In addition a substantial and significant interaction effect was found between the experimental and control groups for the two language groups. For the EFL speakers there was a strong reduction in reading comprehension in the aircraft noise group. By contrast this difference was not significant for the ESL speakers. Implications of the findings and suggestions for further research are made in the article.

  18. Aircraft interior noise reduction by alternate resonance tuning

    NASA Technical Reports Server (NTRS)

    Gottwald, James A.; Bliss, Donald B.

    1990-01-01

    The focus is on a noise control method which considers aircraft fuselages lined with panels alternately tuned to frequencies above and below the frequency that must be attenuated. An interior noise reduction called alternate resonance tuning (ART) is described both theoretically and experimentally. Problems dealing with tuning single paneled wall structures for optimum noise reduction using the ART methodology are presented, and three theoretical problems are analyzed. The first analysis is a three dimensional, full acoustic solution for tuning a panel wall composed of repeating sections with four different panel tunings within that section, where the panels are modeled as idealized spring-mass-damper systems. The second analysis is a two dimensional, full acoustic solution for a panel geometry influenced by the effect of a propagating external pressure field such as that which might be associated with propeller passage by a fuselage. To reduce the analysis complexity, idealized spring-mass-damper panels are again employed. The final theoretical analysis presents the general four panel problem with real panel sections, where the effect of higher structural modes is discussed. Results from an experimental program highlight real applications of the ART concept and show the effectiveness of the tuning on real structures.

  19. Noise and performance calibration study of a Mach 2.2 supersonic cruise aircraft

    NASA Technical Reports Server (NTRS)

    Mascitti, V. R.; Maglieri, D. J.

    1979-01-01

    The baseline configuration of a Mach 2.2 supersonic cruise concept employing a 1980 - 1985 technology level, dry turbojet, mechanically suppressed engine, was calibrated to identify differences in noise levels and performance as determined by the methodology and ground rules used. In addition, economic and noise information is provided consistent with a previous study based on an advanced technology Mach 2.7 configuration, reported separately. Results indicate that the difference between NASA and manufacturer performance methodology is small. Resizing the aircraft to NASA groundrules results in negligible changes in takeoff noise levels (less than 1 EPNdB) but approach noise is reduced by 5.3 EPNdB as a result of increasing approach speed. For the power setting chosen, engine oversizing resulted in no reduction in traded noise. In terms of summated noise level, a 6 EPNdB reduction is realized for a 5% increase in total operating costs.

  20. Transport jet aircraft noise abatement in foreign countries: Growth, structure, impact. Volume 2: Pacific basin, August 1980

    NASA Technical Reports Server (NTRS)

    Spencer, F. A.

    1980-01-01

    Noise control measures at the international airports of Hawaii, New Zealand, Australia, Hong Kong, Japan, and Singapore were studied. Factors in noise control, such as government structure are examined. The increasing power of environmental agencies vis-a-vis aviation departments is noted. The following methods of dealing with aircraft noise are examined by type of control: noise at the source control; noise emmission controls, zoning, building codes, subsidies for relocation, insulation, loss in property values, and for TV, radio and telephone interference; and noise-related landing charges.

  1. Aircraft gas-turbine engines: Noise reduction and vibration control. (Latest citations from Information Services in Mechanical Engineering data base). Published Search

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-06-01

    The bibliography contains citations concerning the design and analysis of aircraft gas turbine engines with respect to noise and vibration control. Included are studies regarding the measurement and reduction of noise at its source, within the aircraft, and on the ground. Inlet, nozzle and core aerodynamic studies are cited. Propfan, turbofan, turboprop engines, and applications in short take-off and landing (STOL) aircraft are included. (Contains a minimum of 202 citations and includes a subject term index and title list.)

  2. Aerodynamic Measurements of a Gulfstream Aircraft Model With and Without Noise Reduction Concepts

    NASA Technical Reports Server (NTRS)

    Neuhart, Dan H.; Hannon, Judith A.; Khorrami, Mehdi R.

    2014-01-01

    Steady and unsteady aerodynamic measurements of a high-fidelity, semi-span 18% scale Gulfstream aircraft model are presented. The aerodynamic data were collected concurrently with acoustic measurements as part of a larger aeroacoustic study targeting airframe noise associated with main landing gear/flap components, gear-flap interaction noise, and the viability of related noise mitigation technologies. The aeroacoustic tests were conducted in the NASA Langley Research Center 14- by 22-Foot Subsonic Wind Tunnel with the facility in the acoustically treated open-wall (jet) mode. Most of the measurements were obtained with the model in landing configuration with the flap deflected at 39º and the main landing gear on and off. Data were acquired at Mach numbers of 0.16, 0.20, and 0.24. Global forces (lift and drag) and extensive steady and unsteady surface pressure measurements were obtained. Comparison of the present results with those acquired during a previous test shows a significant reduction in the lift experienced by the model. The underlying cause was traced to the likely presence of a much thicker boundary layer on the tunnel floor, which was acoustically treated for the present test. The steady and unsteady pressure fields on the flap, particularly in the regions of predominant noise sources such as the inboard and outboard tips, remained unaffected. It is shown that the changes in lift and drag coefficients for model configurations fitted with gear/flap noise abatement technologies fall within the repeatability of the baseline configuration. Therefore, the noise abatement technologies evaluated in this experiment have no detrimental impact on the aerodynamic performance of the aircraft model.

  3. Evaluation of analysis techniques for low frequency interior noise and vibration of commercial aircraft

    NASA Technical Reports Server (NTRS)

    Landmann, A. E.; Tillema, H. F.; Marshall, S. E.

    1989-01-01

    The application of selected analysis techniques to low frequency cabin noise associated with advanced propeller engine installations is evaluated. Three design analysis techniques were chosen for evaluation including finite element analysis, statistical energy analysis (SEA), and a power flow method using element of SEA (computer program Propeller Aircraft Interior Noise). An overview of the three procedures is provided. Data from tests of a 727 airplane (modified to accept a propeller engine) were used to compare with predictions. Comparisons of predicted and measured levels at the end of the first year's effort showed reasonable agreement leading to the conclusion that each technique had value for propeller engine noise predictions on large commercial transports. However, variations in agreement were large enough to remain cautious and to lead to recommendations for further work with each technique. Assessment of the second year's results leads to the conclusion that the selected techniques can accurately predict trends and can be useful to a designer, but that absolute level predictions remain unreliable due to complexity of the aircraft structure and low modal densities.

  4. Jet Noise Modeling for Suppressed and Unsuppressed Aircraft in Simulated Flight

    NASA Technical Reports Server (NTRS)

    Stone, James R.; Krejsa, Eugene A.; Clark, Bruce J; Berton, Jeffrey J.

    2009-01-01

    This document describes the development of further extensions and improvements to the jet noise model developed by Modern Technologies Corporation (MTC) for the National Aeronautics and Space Administration (NASA). The noise component extraction and correlation approach, first used successfully by MTC in developing a noise prediction model for two-dimensional mixer ejector (2DME) nozzles under the High Speed Research (HSR) Program, has been applied to dual-stream nozzles, then extended and improved in earlier tasks under this contract. Under Task 6, the coannular jet noise model was formulated and calibrated with limited scale model data, mainly at high bypass ratio, including a limited-range prediction of the effects of mixing-enhancement nozzle-exit chevrons on jet noise. Under Task 9 this model was extended to a wider range of conditions, particularly those appropriate for a Supersonic Business Jet, with an improvement in simulated flight effects modeling and generalization of the suppressor model. In the present task further comparisons are made over a still wider range of conditions from more test facilities. The model is also further generalized to cover single-stream nozzles of otherwise similar configuration. So the evolution of this prediction/analysis/correlation approach has been in a sense backward, from the complex to the simple; but from this approach a very robust capability is emerging. Also from these studies, some observations emerge relative to theoretical considerations. The purpose of this task is to develop an analytical, semi-empirical jet noise prediction method applicable to takeoff, sideline and approach noise of subsonic and supersonic cruise aircraft over a wide size range. The product of this task is an even more consistent and robust model for the Footprint/Radius (FOOTPR) code than even the Task 9 model. The model is validated for a wider range of cases and statistically quantified for the various reference facilities. The possible

  5. Auditory effects of aircraft noise on people living near an airport.

    PubMed

    Chen, T J; Chen, S S; Hsieh, P Y; Chiang, H C

    1997-01-01

    Two groups of randomly chosen individuals who lived in two communities located different distances from the airport were studied. We monitored audiometry and brainstem auditory-evoked potentials to evaluate cochlear and retrocochlear functions in the individuals studied. The results of audiometry measurements indicated that hearing ability was reduced significantly in individuals who lived near the airport and who were exposed frequently to aircraft noise. Values of pure-tone average, high pure-tone average, and threshold at 4 kHz were all higher in individuals who lived near the airport, compared with those who lived farther away. With respect to brainstem auditory-evoked potentials, latencies between the two groups were not consistently different; however, the abnormality rate of such potentials was significantly higher in volunteers who lived near the airport, compared with less-exposed counterparts. In addition, a positive correlation was found between brainstem auditory-evoked potential latency and behavioral hearing threshold of high-frequency tone in exposed volunteers. We not only confirmed that damage to the peripheral cochlear organs occurred in individuals exposed frequently to aircraft noise, but we demonstrated involvement of the central auditory pathway.

  6. High Velocity Jet Noise Source Location and Reduction. Task 4. Development/Evaluation of Techniques for ’Inflight’ Investigation.

    DTIC Science & Technology

    1977-02-22

    included. Acoustic results from the Learjet and NASA-Lewis F-106 Aircraft Flyovers and the French Aerotrain Tests, taken with a baseline, 8-lobe, and 104...between aerotrain data and transformed free jet data are presented for three primary jet velocities and two flight velocities for the three nozzle types.

  7. Study of visitor response to air tour and other aircraft noise in national parks

    DOT National Transportation Integrated Search

    2005-01-31

    This document summarizes the findings of a study that considers all known aircraft noise dose and visitor response data previously collected in the National Parks. These data consist of almost 2500 visitor interviews and simultaneous acoustical measu...

  8. Comparison of the Performance of Noise Metrics as Predictions of the Annoyance of Stage 2 and Stage 3 Aircraft Overflights

    NASA Technical Reports Server (NTRS)

    Pearsons, Karl S.; Howe, Richard R.; Sneddon, Matthew D.; Fidell, Sanford

    1996-01-01

    Thirty audiometrically screened test participants judged the relative annoyance of two comparison (variable level) and thirty-four standard (fixed level) signals in an adaptive paired comparison psychoacoustic study. The signal ensemble included both FAR Part 36 Stage 2 and 3 aircraft overflights, as well as synthesized aircraft noise signatures and other non-aircraft signals. All test signals were presented for judgment as heard indoors, in the presence of continuous background noise, under free-field listening conditions in an anechoic chamber. Analyses of the performance of 30 noise metrics as predictors of these annoyance judgments confirmed that the more complex metrics were generally more accurate and precise predictors than the simpler methods. EPNL was somewhat less accurate and precise as a predictor of the annoyance judgments than a duration-adjusted variant of Zwicker's Loudness Level.

  9. [Characteristics of a negative effect of aviation noise on hearing organ of aircraft maintenance personnel].

    PubMed

    Zinkin, V N; Soldatov, S K; Sheshegov, P M

    2007-01-01

    Otolaryngological examination was carried out of 80 engineers and technicians engaged in maintenance of aircrafts in the airports. They are continuously exposed to occupational aviation noise and therefore are at risk for chronic neurosensory hypoacusis. Pure tone audiogram registers in them a rise in hearing thresholds throughout the whole band of frequencies studied. This means that aviation maintenance staff is exposed to noise containing highly intensive infrasound and high-frequency components. The detected pathology directly correlated with duration of exposure to noise. Development of neurosensory hypoacusis in aviation maintenance specialists starts earlier than in other specialists exposed to noise.

  10. FAA/NASA En Route Noise Symposium

    NASA Technical Reports Server (NTRS)

    Powell, Clemans A. (Compiler)

    1990-01-01

    Aircraft community noise annoyance is traditionally a concern only in localities near airports. The proposed introduction of large commercial airplanes with advanced turboprop propulsion systems with supersonic propellers has given rise to concerns of noise annoyance in areas previously considered not to be impacted by aircraft noise. A symposium was held to assess the current knowledge of factors important to the impact of en route noise and to aid in the formulation of FAA and NASA programs in the area. Papers were invited on human response to aircraft noise in areas with low ambient noise levels, aircraft noise heard indoors and outdoors, aircraft noise in recreational areas, detection of propeller and jet aircraft noise, and methodological issues relevant to the design of future studies.

  11. Transmission loss characteristics of aircraft sidewall systems to control cabin interior noise

    NASA Astrophysics Data System (ADS)

    Yesil, Oktay; Serati, Paul M.; Hofbeck, Eric V.; Glover, Billy M.

    We have explored the possibility of using new, light weight, and acoustically effective materials on aircraft interiors to control noise. The sidewall system elements were evaluated for increased TL in the laboratory. Measured TL for a given configuration, relative to a baseline, was used as an indication of the TL change to be expected for modifications. Test data were in good agreement with the predicted levels. The TL contributions due to all sidewall components were important for interior cabin noise control. Polyimide foam insulation was inferior to fiberglass in the mid-frequency range; however, foam was a better performer at high frequencies. Fiberglass/polyimide foam composite blankets, with less weight, provided noise reductions similar to fiberglass. 'Premium' fiberglass was slightly better performer than the standard fiberglass. Solid fiberglass interior trim panel provided adequate noise performance. Production-type trim attachment design could be improved to control flanking path for sound transmission.

  12. ASTRYD: A new numerical tool for aircraft cabin and environmental noise prediction

    NASA Astrophysics Data System (ADS)

    Berhault, J.-P.; Venet, G.; Clerc, C.

    ASTRYD is an analytical tool, developed originally for underwater applications, that computes acoustic pressure distribution around three-dimensional bodies in closed spaces like aircraft cabins. The program accepts data from measurements or other simulations, processes them in the time domain, and delivers temporal evolutions of the acoustic pressures and accelerations, as well as the radiated/diffracted pressure at arbitrary points located in the external/internal space. A typical aerospace application is prediction of acoustic load on satellites during the launching phase. An aeronautic application is engine noise distribution on a business jet body for prediction of environmental and cabin noise.

  13. The Okinawa study: an estimation of noise-induced hearing loss on the basis of the records of aircraft noise exposure around Kadena Air Base

    NASA Astrophysics Data System (ADS)

    Hiramatsu, K.; Matsui, T.; Ito, A.; Miyakita, T.; Osada, Y.; Yamamoto, T.

    2004-10-01

    Aircraft noise measurements were recorded at the residential areas in the vicinity of Kadena Air Base, Okinawa in 1968 and 1972 at the time of the Vietnam war. The estimated equivalent continuous A-weighted sound pressure level LAeq for 24 h was 85 dB.The time history of sound level during 24 h was estimated from the measurement conducted in 1968, and the sound level was converted into the spectrum level at the centre frequency of the critical band of temporary threshold shift (TTS) using the results of spectrum analysis of aircraft noise operated at the airfield. With the information of spectrum level and its time history, TTS was calculated as a function of time and level change. The permanent threshold shift was also calculated by means of Robinson's method and ISO's method. The results indicate the noise exposure around Kadena Air Base was hazardous to hearing and is likely to have caused hearing loss to people living in its vicinity.

  14. [Social and economic consequences of night-time aircraft noise in the vicinity of Frankfurt/Main airport].

    PubMed

    Greiser, E; Glaeske, G

    2013-03-01

    A prospective calculation of disease-related social and economic costs due to night-time aircraft noise in the vicinity of Frankfurt/Main airport was performed for the calendar years 2012-2021. It was based on risk estimates for a variety of diagnostic entities (cardiovascular disease, depression, psychosis, diabetes mellitus, dementia and Alzheimer's disease, all cancers except malignancies of the respiratory system) from a previous case-control study on more than 1 million persons enrolled in compulsory sickness funds in the vicinity of the Cologne-Bonn airport, on disease-related cost estimates performed by the German Federal Statistical Office for the calender years 2002-2008, and calculations of the population exposed to night-time aircraft noise in the vicinity of Frankfurt/Main airport (2005 aircraft routes and flight frequencies). Total estimated costs came to more than 1.5 billion € with an excess of 23 400 cases of diseases treated in hospitals and of 3 400 subsequent deaths. © Georg Thieme Verlag KG Stuttgart · New York.

  15. Role of structural noise in aircraft pressure cockpit from vibration action of new-generation engines

    NASA Astrophysics Data System (ADS)

    Baklanov, V. S.

    2016-07-01

    The evolution of new-generation aircraft engines is transitioning from a bypass ratio of 4-6 to an increased ratio of 8-12. This is leading to substantial broadening of the vibration spectrum of engines with a shift to the low-frequency range due to decreased rotation speed of the fan rotor, in turn requiring new solutions to decrease structural noise from engine vibrations to ensure comfort in the cockpits and cabins of aircraft.

  16. Quiet aircraft design and operational characteristics

    NASA Technical Reports Server (NTRS)

    Hodge, Charles G.

    1991-01-01

    The application of aircraft noise technology to the design and operation of aircraft is discussed. Areas of discussion include the setting of target airplane noise levels, operational considerations and their effect on noise, and the sequencing and timing of the design and development process. Primary emphasis is placed on commercial transport aircraft of the type operated by major airlines. Additionally, noise control engineering of other types of aircraft is briefly discussed.

  17. A review of methodological factors in performance assessments of time-varying aircraft noise effects. [with annotated bibliography

    NASA Technical Reports Server (NTRS)

    Coates, G. D.; Alluisi, E. A.; Adkins, C. J., Jr.

    1977-01-01

    Literature on the effects of general noise on human performance is reviewed in an attempt to identify (1) those characteristics of noise that have been found to affect human performance; (2) those characteristics of performance most likely to be affected by the presence of noise, and (3) those characteristics of the performance situation typically associated with noise effects. Based on the characteristics identified, a theoretical framework is proposed that will permit predictions of possible effects of time-varying aircraft-type noise on complex human performance. An annotated bibliography of 50 articles is included.

  18. Markov processes for the prediction of aircraft noise effects on sleep.

    PubMed

    Basner, Mathias; Siebert, Uwe

    2010-01-01

    Aircraft noise disturbs sleep and impairs recuperation. Authorities plan to expand Frankfurt airport. To quantitatively assess the effects of a traffic curfew (11 PM to 5 AM) at Frankfurt Airport on sleep structure. Experimental sleep study; polysomnography for 13 consecutive nights. Sleep laboratory. Subjects. 128 healthy subjects, mean age (SD) 38 (13) years, range 19 to 65, 59% female. Intervention. Exposure to aircraft noise via loudspeakers. A 6-state Markov state transition sleep model was used to simulate 3 noise scenarios with first-order Monte Carlo simulations: 1) 2005 traffic at Frankfurt Airport, 2) as simulation 1 but flights between 11 PM and 5 AM cancelled, and 3) as simulation 2, with flights between 11 PM and 5 AM from simulation 1 rescheduled to periods before 11 PM and after 5 AM. Probabilities for transitions between sleep stages were estimated with autoregressive multinomial logistic regression. Compared to a night without curfew, models indicate small improvements in sleep structure in nights with curfew, even if all traffic is rescheduled to periods before and after the curfew period. For those who go to bed before 10:30 PM or after 1 AM, this benefit is likely to be offset by the expected increase of air traffic during late evening and early morning hours. Limitations. Limited ecologic validity due to laboratory setting and subject sample. According to the decision analysis, it is unlikely that the proposed curfew at Frankfurt Airport substantially benefits sleep structure. Extensions of the model could be used to evaluate or propose alternative air traffic regulation strategies for Frankfurt Airport.

  19. Aircraft, road and railway traffic noise as risk factors for heart failure and hypertensive heart disease-A case-control study based on secondary data.

    PubMed

    Seidler, Andreas; Wagner, Mandy; Schubert, Melanie; Dröge, Patrik; Römer, Karin; Pons-Kühnemann, Jörn; Swart, Enno; Zeeb, Hajo; Hegewald, Janice

    2016-11-01

    Several studies point to an elevated risk for cardiovascular diseases induced by traffic noise. We examined the association between aircraft, road traffic and railway noise and heart failure or hypertensive heart disease (HHD) in a large case-control study. The study population consisted of individuals that were insured by three large statutory health insurance funds in the Rhine-Main area of Germany. Based on insurance claims and prescription data, 104,145 cases of heart failure or HHD diagnosed 2006-10 were identified and compared with 654,172 control subjects. Address-specific exposure to aircraft, road and railway traffic noise in 2005 was estimated. Odds Ratios were calculated using logistic regression analysis, adjusted for age, sex, local proportion of persons receiving unemployment benefits, and individual socioeconomic status (available for 39% of the individuals). A statistically significant linear exposure-risk relationship with heart failure or hypertensive heart disease was found for aircraft traffic noise (1.6% risk increase per 10dB increase in the 24-h continuous noise level; 95% CI 0.3-3.0%), road traffic noise (2.4% per 10dB; 95% CI 1.6-3.2%), and railway noise (3.1% per 10dB; 95% CI 2.2-4.1%). For individuals with 24-h continuous aircraft noise levels <40dB and nightly maximum aircraft noise levels exceeding 50dB six or more times, a significantly increased risk was observed. In general, risks of HHD were considerably higher than the risks of heart failure. Regarding the high prevalence of traffic noise from various sources, even low risk increases for frequent diseases are relevant for the population as a whole. Copyright © 2016 Elsevier GmbH. All rights reserved.

  20. Light aircraft sound transmission studies - Noise reduction model

    NASA Technical Reports Server (NTRS)

    Atwal, Mahabir S.; Heitman, Karen E.; Crocker, Malcolm J.

    1987-01-01

    Experimental tests conducted on the fuselage of a single-engine Piper Cherokee light aircraft suggest that the cabin interior noise can be reduced by increasing the transmission loss of the dominant sound transmission paths and/or by increasing the cabin interior sound absorption. The validity of using a simple room equation model to predict the cabin interior sound-pressure level for different fuselage and exterior sound field conditions is also presented. The room equation model is based on the sound power flow balance for the cabin space and utilizes the measured transmitted sound intensity data. The room equation model predictions were considered good enough to be used for preliminary acoustical design studies.