Science.gov

Sample records for aircraft flyover noise

  1. Signal processing of aircraft flyover noise

    NASA Technical Reports Server (NTRS)

    Kelly, Jeffrey J.

    1991-01-01

    A detailed analysis of signal processing concerns for measuring aircraft flyover noise is presented. Development of a de-Dopplerization scheme for both corrected time history and spectral data is discussed along with an analysis of motion effects on measured spectra. A computer code was written to implement the de-Dopplerization scheme. Input to the code is the aircraft position data and the pressure time histories. To facilitate ensemble averaging, a uniform level flyover is considered but the code can accept more general flight profiles. The effects of spectral smearing and its removal is discussed. Using data acquired from XV-15 tilt rotor flyover test comparisons are made showing the measured and corrected spectra. Frequency shifts are accurately accounted for by the method. It is shown that correcting for spherical spreading, Doppler amplitude, and frequency can give some idea about source directivity. The analysis indicated that smearing increases with frequency and is more severe on approach than recession.

  2. Signal processing of aircraft flyover noise

    NASA Technical Reports Server (NTRS)

    Kelly, J. J.

    1993-01-01

    A detailed analysis of signal processing concerns for measuring aircraft flyover noise is presented. Development of a de-Dopplerization scheme for both corrected time history and spectral data is discussed along with an analysis of motion effects on measured spectra. A computer code was written to implement the de-Dopplerization scheme. Input to the code is the aircraft position data and the pressure time histories. To facilitate ensemble averaging, a level uniform flyover is considered in the study, but the code can accept more general flight profiles. The effects of spectral smearing and its removal are discussed. Using test data acquired from an XV-15 tilt-rotor flyover, comparisons are made between the measured and corrected spectra. Frequency shifts are accurately accounted for by the de-Dopplerization procedure. It is shown that by correcting for spherical spreading and Doppler amplitude, along with frequency, can give some idea about noise source directivity. The analysis indicated that smearing increases with frequency and is more severe on approach than recession.

  3. An Overview of Virtual Acoustic Simulation of Aircraft Flyover Noise

    NASA Technical Reports Server (NTRS)

    Rizzi, Stephen A.

    2013-01-01

    Methods for testing human subject response to aircraft flyover noise have greatly advanced in recent years as a result of advances in simulation technology. Capabilities have been developed which now allow subjects to be immersed both visually and aurally in a three-dimensional, virtual environment. While suitable for displaying recorded aircraft noise, the true potential is found when synthesizing aircraft flyover noise because it allows the flexibility and freedom to study sounds from aircraft not yet flown. A virtual acoustic simulation method is described which is built upon prediction-based source noise synthesis, engineering-based propagation modeling, and empirically-based receiver modeling. This source-path-receiver paradigm allows complete control over all aspects of flyover auralization. With this capability, it is now possible to assess human response to flyover noise by systematically evaluating source noise reductions within the context of a system level simulation. Examples of auralized flyover noise and movie clips representative of an immersive aircraft flyover environment are made in the presentation.

  4. Quantification of advanced turboprop aircraft flyover noise annoyance

    NASA Technical Reports Server (NTRS)

    Mccurdy, D. A.

    1984-01-01

    A laboratory experiment was conducted to quantify the annoyance to advanced turboprop (propfan) aircraft flyover noise. A computer synthesis system was used to generate 45 realistic, time varying simulations of propeller aircraft flyover noise in which the tonal content was systematically varied to represent the factorial combinations of five fundamental frequencies, three frequency envelope shapes, and three tone-to-broadband noise ratios. In the experiment, 64 subjects judged the annoyance of recordings of the 45 synthesized flyover noises presented at three sound levels in a test facility which simulates the outdoor acoustic environment. Analyses of the judgements showed that frequency envelope shape did not significantly affect annoyance. The interaction of fundamental frequency with tone-to-broadband noise ratio did have a large and complex effect on annoyance. Duration corrected A-weighted sound pressure level with a modified tone correction predicted annoyance better than any other measurement procedure.

  5. Advanced turboprop aircraft flyover noise annoyance - Comparison of different propeller configurations

    NASA Technical Reports Server (NTRS)

    Mccurdy, David A.

    1989-01-01

    A laboratory experiment was conducted to compare the annoyance of flyover noise from advanced turboprop aircraft having different propeller configurations with the annoyance of conventional turboprop and jet aircraft flyover noise. It was found that advanced turboprops with single-rotating propellers were, on average, slightly less annoying than the other aircraft. Fundamental frequency and tone-to-broadband noise ratio affected annoyance response to advanced turboprops but the effects varied with propeller configuration and noise metric. The addition of duration corrections and corrections for tones above 500 Hz to the noise measurement procedures improved prediction ability.

  6. Auralization of Hybrid Wing Body Aircraft Flyover Noise from System Noise Predictions

    NASA Technical Reports Server (NTRS)

    Rizzi, Stephen A.; Aumann, Aric R.; Lopes, Leonvard V.; Burley, Casey L.

    2013-01-01

    System noise assessments of a state-of-the-art reference aircraft (similar to a Boeing 777-200ER with GE90-like turbofan engines) and several hybrid wing body (HWB) aircraft configurations were recently performed using NASA engine and aircraft system analysis tools. The HWB aircraft were sized to an equivalent mission as the reference aircraft and assessments were performed using measurements of airframe shielding from a series of propulsion airframe aeroacoustic experiments. The focus of this work is to auralize flyover noise from the reference aircraft and the best HWB configuration using source noise predictions and shielding data based largely on the earlier assessments. For each aircraft, three flyover conditions are auralized. These correspond to approach, sideline, and cutback operating states, but flown in straight and level flight trajectories. The auralizations are performed using synthesis and simulation tools developed at NASA. Audio and visual presentations are provided to allow the reader to experience the flyover from the perspective of a listener in the simulated environment.

  7. Building vibrations induced by noise from rotorcraft and propeller aircraft flyovers

    NASA Technical Reports Server (NTRS)

    Shepherd, Kevin P.; Hubbard, Harvey H.

    1992-01-01

    Noise and building vibrations were measured for a series of helicopter and propeller-driven aircraft flyovers at WFF during May 1978. The building response data are compared with similar data acquired earlier at sites near Dulles and Kennedy Airports for operation of commercial jet transports, including the Concorde supersonic transport. Results show that noise-induced vibration levels in windows and walls are directly proportional to sound pressure level and that for a given noise level, the acceleration levels induced by a helicopter or a propeller-driven aircraft flyover cannot be distinguished from the acceleration levels induced by a commercial jet transport flyover. Noise-induced building acceleration levels were found to be lower than those levels which might be expected to cause structural damage and were also lower than some acceleration levels induced by such common domestic events as closing windows and doors.

  8. Annoyance caused by advanced turboprop aircraft flyover noise: Comparison of different propeller configurations

    NASA Technical Reports Server (NTRS)

    Mccurdy, David A.

    1991-01-01

    A laboratory experiment was conducted to compare the annoyance of flyover noise from advanced turboprop aircraft having different propeller configurations with the annoyance of conventional turboprop and turbofan aircraft flyover noise. A computer synthesis system was used to generate 40 realistic, time varying simulations of advanced turboprop takeoff noise. Of the 40 noises, single-rotating propeller configurations (8) and counter-rotating propeller configurations with an equal (12) and unequal (20) number of blades on each rotor were represented. Analyses found that advanced turboprops with single-rotating propellers were, on average, slightly less annoying than the other aircraft. Fundamental frequency and tone-to-broadband noise ratio affected annoyance response to advanced turboprops, but the effects varied with propeller configuration and noise metric. The addition of duration corrections and corrections for tones above 500 Hz to the noise measurement procedures improved annoyance prediction ability.

  9. Evaluating and minimizing noise impact due to aircraft flyover

    NASA Technical Reports Server (NTRS)

    Jacobson, I. D.

    1980-01-01

    The results of a study on the evaluation and reduction of noise impact to a community due to aircraft landing and takeoff operations are presented. The case of multiple aircrafts flying on several trajectories, for either approach/landings or takeoffs was examined. An extremely realistic model of the flight path was developed. The annoyance criterion used was the noise impact index (NII). The algorithm was applied to Patrick Henry International Airport.

  10. Recent Developments in Aircraft Flyover Noise Simulation at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Rizzi, Stephen A.; Sullivan, Brenda M.; Aumann, Aric R.

    2008-01-01

    The NASA Langley Research Center is involved in the development of a new generation of synthesis and simulation tools for creation of virtual environments used in the study of aircraft community noise. The original emphasis was on simulation of flyover noise associated with subsonic fixed wing aircraft. Recently, the focus has shifted to rotary wing aircraft. Many aspects of the simulation are applicable to both vehicle classes. Other aspects, particularly those associated with synthesis, are more vehicle specific. This paper discusses the capabilities of the current suite of tools, their application to fixed and rotary wing aircraft, and some directions for the future.

  11. Real time aircraft fly-over noise discrimination

    NASA Astrophysics Data System (ADS)

    Genescà, M.; Romeu, J.; Pàmies, T.; Sánchez, A.

    2009-06-01

    A method for measuring aircraft noise time history with automatic elimination of simultaneous urban noise is presented in this paper. A 3 m-long 12-microphone sparse array has been proven to give good performance in a wide range of urban placements. Nowadays, urban placements have to be avoided because their background noise has a great influence on the measurements made by sound level meters or single microphones. Because of the small device size and low number of microphones (that make it so easy to set up), the resolution of the device is not high enough to provide a clean aircraft noise time history by only applying frequency domain beamforming to the spatial cross-correlations of the microphones' signals. Therefore, a new step to the processing algorithm has been added to eliminate this handicap.

  12. Effects of three activities on annoyance responses to recorded flyovers. [human tolerance of jet aircraft noise

    NASA Technical Reports Server (NTRS)

    Gunn, W. J.; Shepherd, W. T.; Fletcher, J. L.

    1975-01-01

    Human subjects participated in an experiment in which they were engaged in TV viewing, telephone listening, or reverie (no activity) for a 1/2-hour session. During the session, they were exposed to a series of recorded aircraft sounds at the rate of one flight every 2 minutes. At each session, four levels of flyover noise, separated by 5 db increments were presented several times in a Latin Square balanced sequence. The peak levels of the noisiest flyover in any session was fixed at 95, 90, 85, 75, or 70 db. At the end of the test session, subjects recorded their responses to the aircraft sounds, using a bipolar scale which covered the range from very pleasant to extremely annoying. Responses to aircraft noises are found to be significantly affected by the particular activity in which the subjects are engaged.

  13. Effects of duration and other noise characteristics on the annoyance caused by aircraft-flyover noise

    NASA Technical Reports Server (NTRS)

    Mccurdy, D. A.; Powell, C. A.

    1979-01-01

    A laboratory experiment was conducted to determine the effects of duration and other noise characteristics on the annoyance caused by aircraft-flyover noise. Duration, doppler shift, and spectra were individually controlled by specifying aircraft operational factors, such as velocity, altitude, and spectrum, in a computer synthesis of the aircraft-noise stimuli. This control allowed the separation of the effects of duration from the other main factors in the experimental design: velocity, tonal content, and sound pressure level. The annoyance of a set of noise stimuli which were comprised of factorial combinations of a 3 durations, 3 velocities, 3 sound pressure levels, and 2 tone conditions were judged. The judgements were made by using a graphical scale procedure similar to numerical category scaling. Each of the main factors except velocity was found to affect the judged annoyance significantly. The interaction of tonal content with sound pressure level was also found to be significant. The duration correction used in the effective-perceived-noise-level procedure, 3 dB per doubling of effective duration, was found to account most accurately for the effect of duration. No significant effect doppler shift was found.

  14. A Framework for Simulation of Aircraft Flyover Noise Through a Non-Standard Atmosphere

    NASA Technical Reports Server (NTRS)

    Arntzen, Michael; Rizzi, Stephen A.; Visser, Hendrikus G.; Simons, Dick G.

    2012-01-01

    This paper describes a new framework for the simulation of aircraft flyover noise through a non-standard atmosphere. Central to the framework is a ray-tracing algorithm which defines multiple curved propagation paths, if the atmosphere allows, between the moving source and listener. Because each path has a different emission angle, synthesis of the sound at the source must be performed independently for each path. The time delay, spreading loss and absorption (ground and atmosphere) are integrated along each path, and applied to each synthesized aircraft noise source to simulate a flyover. A final step assigns each resulting signal to its corresponding receiver angle for the simulation of a flyover in a virtual reality environment. Spectrograms of the results from a straight path and a curved path modeling assumption are shown. When the aircraft is at close range, the straight path results are valid. Differences appear especially when the source is relatively far away at shallow elevation angles. These differences, however, are not significant in common sound metrics. While the framework used in this work performs off-line processing, it is conducive to real-time implementation.

  15. Effects of sound level fluctuations on annoyance caused by aircraft-flyover noise

    NASA Technical Reports Server (NTRS)

    Mccurdy, D. A.

    1979-01-01

    A laboratory experiment was conducted to determine the effects of variations in the rate and magnitude of sound level fluctuations on the annoyance caused by aircraft-flyover noise. The effects of tonal content, noise duration, and sound pressure level on annoyance were also studied. An aircraft-noise synthesis system was used to synthesize 32 aircraft-flyover noise stimuli representing the factorial combinations of 2 tone conditions, 2 noise durations, 2 sound pressure levels, 2 level fluctuation rates, and 2 level fluctuation magnitudes. Thirty-two test subjects made annoyance judgements on a total of 64 stimuli in a subjective listening test facility simulating an outdoor acoustic environment. Variations in the rate and magnitude of level fluctuations were found to have little, if any, effect on annoyance. Tonal content, noise duration, sound pressure level, and the interaction of tonal content with sound pressure level were found to affect the judged annoyance significantly. The addition of tone corrections and/or duration corrections significantly improved the annoyance prediction ability of noise rating scales.

  16. Comparison of advanced turboprop and conventional jet and propeller aircraft flyover noise annoyance: Preliminary results

    NASA Technical Reports Server (NTRS)

    Mccurdy, D. A.

    1985-01-01

    A laboratory experiment was conducted to compare the flyover noise annoyance of proposed advanced turboprop aircraft with that of conventional turboprop and jet aircraft. The effects of fundamental frequency and tone-to-broadband noise ratio on advanced turboprop annoyance were also examined. A computer synthesis system is used to generate 18 realistic, time varying simulations of propeller aircraft takeoff noise in which the harmonic content is systematically varied to represent the factorial combinations of six fundamental frequencies ranging from 67.5 Hz to 292.5 Hz and three tone-to-broadband noise ratios of 0, 15, and 30 dB. These advanced turboprop simulations along with recordings of five conventional turboprop takeoffs and five conventional jet takeoffs are presented at D-weighted sound pressure levels of 70, 80, and 90 dB to 32 subjects in an anechoic chamber. Analyses of the subjects' annoyance judgments compare the three categories of aircraft and examine the effects of the differences in harmonic content among the advanced turboprop noises. The annoyance prediction ability of various noise measurement procedures and corrections is also examined.

  17. Comparison of advanced turboprop and conventional jet and propeller aircraft flyover noise annoyance - Preliminary results

    NASA Technical Reports Server (NTRS)

    Mccurdy, D. A.

    1985-01-01

    A laboratory experiment was conducted to compare the flyover noise annoyance of proposed advanced turboprop aircraft with that of conventional turboprop and jet aircraft. The effects of fundamental frequency and tone-to-broadband noise ratio on advanced turboprop annoyance were also examined. A computer synthesis system was used to generate 18 realistic, time varyring simulations of propeller aircraft takeoff noise in which the harmonic content was systematically varied to represent the factorial combinations of six fundamental frequencies ranging from 67.5 Hz to 292.5 Hz and three tone-to-broadband noise ratios of 0, 15, and 30 dB. These advanced turboprop simulations along with recordings of five conventional turboprop takeoffs and five conventional jet takeoffs were presented at D-weighted sound pressure levels of 70, 80, and 90 dB to 32 subjects in an anechoic chamber. Analyses of the subjects' annoyance judgments compare the three categories of aircraft and examine the effects of the differences in harmonic content among the advanced turboprop noises. The annoyance prediction ability of various noise measurement procedures and corrections is also examined.

  18. Annoyance caused by advanced turboprop aircraft flyover noise: Counter-rotating-propeller configuration

    NASA Technical Reports Server (NTRS)

    Mccurdy, David A.

    1990-01-01

    Two experiments were conducted to quantify the annoyance of people to flyover noise of advanced turboprop aircraft with counter rotating propellers. The first experiment examined configurations having an equal number of blades on each rotor and the second experiment examined configurations having an unequal number of blades on each rotor. The objectives were to determine the effects on annoyance of various tonal characteristics, and to compare annoyance to advanced turboprops with annoyance to conventional turboprops and turbofans. A computer was used to synthesize realistic, time-varying simulations of advanced turboprop aircraft takeoff noise. The simulations represented different combinations fundamental frequency and tone-to-broadband noise ratio. Also included in each experiment were recordings of 10 conventional turboprop and turbofan takeoffs. Each noise was presented at three sound pressure levels in an anechoic chamber. In each experiment, 64 subjects judged the annoyance of each noise stimulus. Analyses indicated that annoyance was significantly affected by the interaction of fundamental frequency with tone-to-broadband noise ratio. No significant differences in annoyance between the advanced turboprop aircraft and the conventional turbofans were found. The use of a duration correction and a modified tone correction improved the annoyance prediction for the stimuli.

  19. Arousal from sleep - The physiological and subjective effects of a 15 dB/A/ reduction in aircraft flyover noise

    NASA Technical Reports Server (NTRS)

    Levere, T. E.; Davis, N.

    1977-01-01

    The present research was concerned with whether or not a 15 dB(A) reduction in overall noise level would lessen the sleep disturbing properties of jet aircraft flyover noise and, if less disturbing, whether this would be subjectively appreciated by the sleeping individual. The results indicate that a reduction of 15 dB (A) does result in less sleep disruption but only during sleep characterized by fast-wave electroencephalographic activity. During sleep characterized by slow-wave electroencephalographic activity, such a reduction in the sleep-disturbing properties of jet aircraft noise has little effect. Moreover, even when effective during fast-wave sleep, the decreased arousal produced by the lower noise levels is not subjectively appreciated by the individual in terms of his estimate of the quality of his night's sleep. Thus, reducing the overall noise level of jet aircraft flyovers by some 15 dB(A), is, at best, minimally beneficial to sleep.

  20. Annoyance caused by advanced turboprop aircraft flyover noise: Single-rotating propeller configuration

    NASA Technical Reports Server (NTRS)

    Mccurdy, David A.

    1988-01-01

    Two experiments were conducted to quantify the annoyance of people to advanced turboprop (propfan) aircraft flyover noise. The objectives were to: (1) determine the effects on annoyance of various tonal characteristics; and (2) compare annoyance to advanced turboprops with annoyance to conventional turboprops and jets. A computer was used to produce realistic, time-varying simulations of advanced turboprop aircraft takeoff noise. In the first experiment, subjects judged the annoyance of 45 advanced turboprop noises in which the tonal content was systematically varied to represent the factorial combinations of five fundamental frequencies, three frequency envelope shapes, and three tone-to-broadband noise ratios. Each noise was presented at three sound levels. In the second experiment, 18 advanced turboprop takeoffs, 5 conventional turboprop takeoffs, and 5 conventional jet takeoffs were presented at three sound pressure levels to subjects. Analysis indicated that frequency envelope shape did not significantly affect annoyance. The interaction of fundamental frequency with tone-to-broadband noise ratio did have a large and complex effect on annoyance. The advanced turboprop stimuli were slightly less annoying than the conventional stimuli.

  1. Program for narrow-band analysis of aircraft flyover noise using ensemble averaging techniques

    NASA Technical Reports Server (NTRS)

    Gridley, D.

    1982-01-01

    A package of computer programs was developed for analyzing acoustic data from an aircraft flyover. The package assumes the aircraft is flying at constant altitude and constant velocity in a fixed attitude over a linear array of ground microphones. Aircraft position is provided by radar and an option exists for including the effects of the aircraft's rigid-body attitude relative to the flight path. Time synchronization between radar and acoustic recording stations permits ensemble averaging techniques to be applied to the acoustic data thereby increasing the statistical accuracy of the acoustic results. Measured layered meteorological data obtained during the flyovers are used to compute propagation effects through the atmosphere. Final results are narrow-band spectra and directivities corrected for the flight environment to an equivalent static condition at a specified radius.

  2. A comparison of two independent measurements and analysis of jet aircraft flyover noise

    NASA Technical Reports Server (NTRS)

    Hosier, R. N.

    1977-01-01

    Flyover noise measurements were made simultaneously by two groups. The measurements were made close to one another for the same flyover conditions and with similar measurement procedures, but with different acoustic equipment and personnel. Each group also independently processed the data in accordance with FAR 36 procedures, indluding corrections to reference meteorological, performance, and flight-path conditions. Measured and corrected data, from 24 controlled flyovers processed by both groups, are compared and the differences in the results obtained by the two groups are discussed. It is observed that the average value of the difference between the groups' measured acoustic descriptors (PNL, PNLTM, and EPNL) was less than or = 0.8 db; the average difference for the corrected descriptors (PNL, PNLTM, and EPNL) was less than or = 1.5 db. Causes of the differences were found to be mainly related to different spectrum extrapolation and preemphasis techniques used by the two groups.

  3. A Three-Dimensional Virtual Simulator for Aircraft Flyover Presentation

    NASA Technical Reports Server (NTRS)

    Rizzi, Stephen A.; Sullivan, Brenda M.; Sandridge, Christopher A.

    2003-01-01

    This paper presents a system developed at NASA Langley Research Center to render aircraft flyovers in a virtual reality environment. The present system uses monaural recordings of actual aircraft flyover noise and presents these binaurally using head tracking information. The three-dimensional audio is simultaneously rendered with a visual presentation using a head-mounted display (HMD). The final system will use flyover noise synthesized using data from various analytical and empirical modeling systems. This will permit presentation of flyover noise from candidate low-noise flight operations to subjects for psychoacoustical evaluation.

  4. Flyover-noise measurement and prediction

    NASA Technical Reports Server (NTRS)

    Peart, Noel A.

    1991-01-01

    Details are presented for the measurement and prediction of aircraft flyover noise to be used for certification, research and development, community noise surveys, airport monitors, and pass fail criteria. Test details presented are applicable to all types of aircraft, both large and small, and the use of Federal Aviation Regulations (FAR) Part 36 (ref. 1) is emphasized. Accuracy of noise measurements is important. Thus, a pass-fail criterion should be used for all noise measurements. Finally, factors which influence the sound propagation and noise prediction procedures, such as atmospheric and ground effects, are also presented.

  5. Investigation of ground reflection and impedance from flyover noise measurements

    NASA Technical Reports Server (NTRS)

    Chapkis, R. L.; Marsh, A. H.

    1978-01-01

    An extensive series of flyover noise tests was conducted for the primary purpose of studying meteorological effects on propagation of aircraft noise. The test airplane, a DC 9-10, flew several level-flight passes at various heights over a taxiway. Two microphone stations were located under the flight path. A total of 37 runs was selected for analysis and processed to obtain a consistant set of 1/3 octave band sound pressure levels at half-second intervals. The goal of the present study was to use the flyover noise data to deduce acoustical reflection coefficients and hence, acoustical impedances.

  6. Some comparisons of the flyover noise characteristics of DC-9 aircraft having refanned and hardwalled JT8D engines, with special reference to measurement and analysis procedures

    NASA Technical Reports Server (NTRS)

    Hosier, R. N.

    1976-01-01

    Flyover noise measurements were made (using Federal Aviation Regulations, part 36 procedures) of two DC-9 aircraft, one equipped with refanned JT8D-109 engines and the other equipped with hardwalled JT8D-9 engines. NASA analyses show a refan centerline noise reduction of about 9.1 EPNdB and 10.0 EPNdB for takeoff with cutback and 50 deg. flap landing approach, respectively. A comparison of refan and hardwall PNLTM spectra shows that the refan noise reduction may be attributed to lower jet noise levels on takeoff and reduced high-frequency tonal content on landing approach. A general description of the test procedures and results are included along with detailed descriptions of the measurement and analysis systems.

  7. Suppressor nozzle and airframe noise measurements during flyover of a modified F106B aircraft with underwing nacelles

    NASA Technical Reports Server (NTRS)

    Burley, R. R.

    1974-01-01

    The effect of flight velocity on the jet noise and thrust of a 104-tube suppressor nozzle was investigated using an F-106B delta wing aircraft modified to carry two underwing nacelles each containing a turbojet engine. The nozzle was mounted behind one of the nacelles. Flight velocity had a large adverse effect on thrust and a small adverse effect on suppression when correlated with relative jet velocity. The clean airframe noise of the aircraft was measured at Mach 0.4 and was compared with that predicted from an empirical expression. The 83 db measured value was considerably below the predicted value.

  8. Signal processing of jet noise from flyover test data

    NASA Technical Reports Server (NTRS)

    Kelly, Jeffrey J.; Wilson, Mark R.

    1993-01-01

    Narrow-band spectra characterizing jet noise are constructed from flyover acoustic measurements. Radar and c-band tracking systems provided the aircraft position histories which enabled directivity and smear angles from the aircraft to each microphone to be computed. These angles are based on source emission time and thus give some idea about the directivity of the radiated sound field due to jet noise. Simulated spectra are included in the paper to demonstrate spectral broadening due to smear angle. The acoustic data described in the study has application to community noise analysis, noise source characterization and validation of prediction models. Both broadband-shock noise and turbulent mixing noise are observed in the spectra. A detailed description of the signal processing procedures is provided.

  9. A laboratory study of subjective annoyance response to sonic booms and aircraft flyovers

    NASA Technical Reports Server (NTRS)

    Leatherwood, Jack D.; Sullivan, Brenda M.

    1994-01-01

    Three experiments were conducted to determine subjective equivalence of aircraft subsonic flyover noise and sonic booms. Two of the experiments were conducted in a loudspeaker-driven sonic boom simulator, and the third in a large room containing conventional loudspeakers. The sound generation system of the boom simulator had a frequency response extending to very low frequencies (about 1 Hz) whereas the large room loudspeakers were limited to about 20 Hz. Subjective equivalence between booms and flyovers was quantified in terms of the difference between the noise level of a boom and that of a flyover when the two were judged equally annoying. Noise levels were quantified in terms of the following noise descriptors: Perceived Level (PL), Perceived Noise Level (PNL), C-weighted sound exposure level (SELC), and A-weighted sound exposure level (SELA). Results from the present study were compared, where possible, to similar results obtained in other studies. Results showed that noise level differences depended upon the descriptor used, specific boom and aircraft noise events being compared and, except for the PNL descriptor, varied between the simulator and large room. Comparison of noise level differences obtained in the present study with those of other studies indicated good agreement across studies only for the PNL and SELA descriptors. Comparison of the present results with assessments of community response to high-energy impulsive sounds made by Working Group 84 of the National Research Council's Committee on Hearing, Bioacoustics, and Biomechanics (CHABA) showed good agreement when boom/flyover noise level differences were based on SELA. However, noise level differences obtained by CHABA using SELA for aircraft flyovers and SELC for booms were not in agreement with results obtained in the present study.

  10. A laboratory study of subjective annoyance response to sonic booms and aircraft flyovers

    NASA Astrophysics Data System (ADS)

    Leatherwood, Jack D.; Sullivan, Brenda M.

    1994-05-01

    Three experiments were conducted to determine subjective equivalence of aircraft subsonic flyover noise and sonic booms. Two of the experiments were conducted in a loudspeaker-driven sonic boom simulator, and the third in a large room containing conventional loudspeakers. The sound generation system of the boom simulator had a frequency response extending to very low frequencies (about 1 Hz) whereas the large room loudspeakers were limited to about 20 Hz. Subjective equivalence between booms and flyovers was quantified in terms of the difference between the noise level of a boom and that of a flyover when the two were judged equally annoying. Noise levels were quantified in terms of the following noise descriptors: Perceived Level (PL), Perceived Noise Level (PNL), C-weighted sound exposure level (SELC), and A-weighted sound exposure level (SELA). Results from the present study were compared, where possible, to similar results obtained in other studies. Results showed that noise level differences depended upon the descriptor used, specific boom and aircraft noise events being compared and, except for the PNL descriptor, varied between the simulator and large room. Comparison of noise level differences obtained in the present study with those of other studies indicated good agreement across studies only for the PNL and SELA descriptors. Comparison of the present results with assessments of community response to high-energy impulsive sounds made by Working Group 84 of the National Research Council's Committee on Hearing, Bioacoustics, and Biomechanics (CHABA) showed good agreement when boom/flyover noise level differences were based on SELA. However, noise level differences obtained by CHABA using SELA for aircraft flyovers and SELC for booms were not in agreement with results obtained in the present study.

  11. Aircraft noise synthesis system

    NASA Technical Reports Server (NTRS)

    Mccurdy, David A.; Grandle, Robert E.

    1987-01-01

    A second-generation Aircraft Noise Synthesis System has been developed to provide test stimuli for studies of community annoyance to aircraft flyover noise. The computer-based system generates realistic, time-varying, audio simulations of aircraft flyover noise at a specified observer location on the ground. The synthesis takes into account the time-varying aircraft position relative to the observer; specified reference spectra consisting of broadband, narrowband, and pure-tone components; directivity patterns; Doppler shift; atmospheric effects; and ground effects. These parameters can be specified and controlled in such a way as to generate stimuli in which certain noise characteristics, such as duration or tonal content, are independently varied, while the remaining characteristics, such as broadband content, are held constant. The system can also generate simulations of the predicted noise characteristics of future aircraft. A description of the synthesis system and a discussion of the algorithms and methods used to generate the simulations are provided. An appendix describing the input data and providing user instructions is also included.

  12. Scaling aircraft noise perception.

    NASA Technical Reports Server (NTRS)

    Ollerhead, J. B.

    1973-01-01

    Following a brief review of the background to the study, an extensive experiment is described which was undertaken to assess the practical differences between numerous alternative methods for calculating the perceived levels of individual aircraft flyover wounds. One hundred and twenty recorded sounds, including jets, turboprops, piston aircraft and helicopters were rated by a panel of subjects in a pair comparison test. The results were analyzed to evaluate a number of noise rating procedures, in terms of their ability to accurately estimate both relative and absolute perceived noise levels over a wider dynamic range (84-115 dB SPL) than had generally been used in previous experiments. Performances of the different scales were examined in detail for different aircraft categories, and the merits of different band level summation procedures, frequency weighting functions, duration and tone corrections were investigated.

  13. Aircraft noise source and contour estimation

    NASA Technical Reports Server (NTRS)

    Dunn, D. G.; Peart, N. A.

    1973-01-01

    Calculation procedures are presented for predicting the noise-time histories and noise contours (footprints) of five basic types of aircraft; turbojet, turofan, turboprop, V/STOL, and helicopter. The procedures have been computerized to facilitate prediction of the noise characteristics during takeoffs, flyovers, and/or landing operations.

  14. Annoyance caused by propeller airplane flyover noise

    NASA Technical Reports Server (NTRS)

    Mccurdy, D. A.; Powell, C. A.

    1984-01-01

    Laboratory experiments were conducted to provide information on quantifying the annoyance response of people to propeller airplane noise. The items of interest were current noise metrics, tone corrections, duration corrections, critical band corrections, and the effects of engine type, operation type, maximum takeoff weight, blade passage frequency, and blade tip speed. In each experiment, 64 subjects judged the annoyance of recordings of propeller and jet airplane operations presented at d-weighted sound pressure levels of 70, 80, and 90 dB in a testing room which simulates the outdoor acoustic environment. The first experiment examined 11 propeller airplanes with maximum takeoff weights greater than or equal to 5700 kg. The second experiment examined 14 propeller airplanes weighting 5700 kg or less. Five jet airplanes were included in each experiment. For both the heavy and light propeller airplanes, perceived noise level and perceived level (Stevens Mark VII procedure) predicted annoyance better than other current noise metrics.

  15. Active Control of Fan Noise-Feasibility Study. Volume 1; Flyover System Noise Studies

    NASA Technical Reports Server (NTRS)

    Kraft, Robert E.; Janardan, B. A.; Kontos, G. C.; Gliebe, P. R.

    1994-01-01

    A study has been completed to examine the potential reduction of aircraft flyover noise by the method of active noise control (ANC). It is assumed that the ANC system will be designed such that it cancels discrete tones radiating from the engine fan inlet or fan exhaust duct. Thus, without considering the engineering details of the ANC system design, tone levels are arbitrarily removed from the engine component noise spectrum and the flyover noise EPNL levels are compared with and without the presence of tones. The study was conducted for a range of engine cycles, corresponding to fan pressure ratios from 1.3 to 1.75. The major conclusions that can be drawn are that, for a fan pressure ratio of 1.75, ANC of tones gives about the same suppression as acoustic treatment without ANC, and for a fan pressure ratio of 1.45, ANC appears to offer less effectiveness than passive treatment. Additionally, ANC appears to be more effective at sideline and cutback conditions than at approach. Overall EPNL suppressions due to tone removal range from about 1 to 3 dB at takeoff engine speeds and from 1 to 5 db at approach speeds. Studies of economic impact of the installation of an ANC system for the four engine cases indicate increases of DOC ranging from 1 to 2 percent, favoring the lower fan pressure ratio engines. Further study is needed to confirm the results by examining additional engine data, particularly at low fan pressure ratios, and studying the details of the current results to obtain a more complete understanding. Further studies should also include determining the effects of combining passive and active treatment.

  16. Active control of fan noise-feasibility study. Volume 1: Flyover system noise studies

    NASA Astrophysics Data System (ADS)

    Kraft, Robert E.; Janardan, B. A.; Kontos, G. C.; Gliebe, P. R.

    1994-10-01

    A study has been completed to examine the potential reduction of aircraft flyover noise by the method of active noise control (ANC). It is assumed that the ANC system will be designed such that it cancels discrete tones radiating from the engine fan inlet or fan exhaust duct. Thus, without considering the engineering details of the ANC system design, tone levels are arbitrarily removed from the engine component noise spectrum and the flyover noise EPNL levels are compared with and without the presence of tones. The study was conducted for a range of engine cycles, corresponding to fan pressure ratios from 1.3 to 1.75. The major conclusions that can be drawn are that, for a fan pressure ratio of 1.75, ANC of tones gives about the same suppression as acoustic treatment without ANC, and for a fan pressure ratio of 1.45, ANC appears to offer less effectiveness than passive treatment. Additionally, ANC appears to be more effective at sideline and cutback conditions than at approach. Overall EPNL suppressions due to tone removal range from about 1 to 3 dB at takeoff engine speeds and from 1 to 5 db at approach speeds. Studies of economic impact of the installation of an ANC system for the four engine cases indicate increases of DOC ranging from 1 to 2 percent, favoring the lower fan pressure ratio engines. Further study is needed to confirm the results by examining additional engine data, particularly at low fan pressure ratios, and studying the details of the current results to obtain a more complete understanding. Further studies should also include determining the effects of combining passive and active treatment.

  17. En route noise of two turboprop aircraft

    NASA Technical Reports Server (NTRS)

    Dobrzynski, Werner

    1990-01-01

    In order to weigh en route noise emissions originating from future propfan powered aircraft, a data base of emission levels from conventional turboprop aircraft is needed. For this reason flyover noise measurements on two twin-engine turboprop aircraft were conducted at flight heights between 17,000 and 21,000 ft. Acoustic data are presented together with propeller operational parameters and environmental meteorological data. Narrowband spectral analyses demonstrate the characteristic features of the measured propeller noise signatures: Noise spectra are dominated by the propeller rotational noise fundamental frequency and pronounced noise beats occur as a consequence of different rotational speeds of the propellers.

  18. Auralization of Tonal Rotor Noise Components of a Quadcopter Flyover

    NASA Technical Reports Server (NTRS)

    Christian, Andrew W.; Boyd, David D.; Zawodny, Nikolas S.; Rizzi, Stephen A.

    2015-01-01

    The capabilities offered by small unmanned vertical lift aerial vehicles, for example, quadcopters, continue to captivate entrepreneurs across the private, public, and civil sectors. As this industry rapidly expands, the public will be exposed to these devices (and to the noise these devices generate) with increasing frequency and proximity. Accordingly, an assessment of the human response to these machines will be needed shortly by decision makers in many facets of this burgeoning industry, from hardware manufacturers all the way to government regulators. One factor of this response is that of the annoyance to the noise that is generated by these devices. This paper presents work currently being pursued by NASA toward this goal. First, physics-based (CFD) predictions are performed on a single isolated rotor typical of these devices. The result of these predictions are time records of the discrete tonal components of the rotor noise. These time records are calculated for a number of points that appear on a lattice of locations spread over the lower hemisphere of the rotor. The source noise is then generated by interpolating between these time records. The sound from four rotors are combined and simulated-propagation techniques are used to produce complete flyover auralizations.

  19. Annoyance caused by aircraft en route noise

    NASA Technical Reports Server (NTRS)

    Mccurdy, David A.

    1992-01-01

    A laboratory experiment was conducted to quantify the annoyance response of people on the ground to enroute noise generated by aircraft at cruise conditions. The en route noises were ground level recordings of eight advanced turboprop aircraft flyovers and six conventional turbofan flyovers. The eight advanced turboprop enroute noises represented the NASA Propfan Test Assessment aircraft operating at different combinations of altitude, aircraft Mach number, and propeller tip speed. The conventional turbofan en route noises represented six different commercial airliners. The overall durations of the en route noises varied from approximately 40 to 160 sec. In the experiment, 32 subjects judged the annoyance of the en route noises as well as recordings of the takeoff and landing noises of each of 5 conventional turboprop and 5 conventional turbofan aircraft. Each of the noises was presented at three sound pressure levels to the subjects in an anechoic listening room. Analysis of the judgments found small differences in annoyance between three combinations of aircraft type and operation. Current tone and corrections did not significantly improve en route annoyance prediction. The optimum duration-correction magnitude for en route noise was approximately 1 dB per doubling of effective duration.

  20. Active Control of Fan Noise: Feasibility Study. Volume 4; Flyover System Noise Studies

    NASA Technical Reports Server (NTRS)

    Kraft, R. E.; Janardan, B. A.; Gliebe, P. R.; Kontos, G. C.

    1996-01-01

    An extension of a prior study has been completed to examine the potential reduction of aircraft flyover noise by the method of active noise control (ANC). It is assumed that the ANC system will be designed such that it cancels discrete tones radiating from the engine fan inlet or fan exhaust duct, at least to the extent that they no longer protrude above the surrounding broadband noise levels. Thus, without considering the engineering details of the ANC system design, tone levels am arbitrarily removed from the engine component noise spectrum and the flyover noise EPNL levels are compared with and without the presence of tones. The study was conducted for a range of engine cycles, corresponding to fan pressure ratios of 1.3, 1.45, 1.6, and 1.75. This report is an extension of an effort reported previously. The major conclusions drawn from the prior study, which was restricted to fan pressure ratios of 1.45 and 1.75, are that, for a fan pressure ratio of 1.75, ANC of tones gives about the same suppression as acoustic treatment without ANC. For a fan pressure ratio of 1.45, ANC appears to offer less effectiveness from passive treatment. In the present study, the other two fan pressure ratios are included in a more detailed examination of the benefits of the ANC suppression levels. The key results of this extended study are the following observations: (1) The maximum overall benefit obtained from suppression of BPF alone was 2.5 EPNdB at high fan speeds. The suppression benefit increases with increase in fan pressure ratio (FPR), (2) The maximum overall benefit obtained from suppression of the first three harmonics was 3 EPNdB at high speeds. Suppression benefit increases with increase in FPR, (3) At low FPR, only about 1.0 EPNdB maximum reduction was obtained. Suppression is primarily from reduction of BPF at high FPR values and from the combination of tones at low FPR, (4) The benefit from ANC is about the same as the benefit from passive treatment at fan pressure

  1. Measurements and predictions of flyover and static noise of a TF30 afterburning turbofan engine

    NASA Technical Reports Server (NTRS)

    Burcham, F. W., Jr.; Lasagna, P. L.; Oas, S. C.

    1978-01-01

    The noise of the TF30 afterburning turbofan engine in an F-111 airplane was determined from static (ground) and flyover tests. A survey was made to measure the exhaust temperature and velocity profiles for a range of power settings. Comparisons were made between predicted and measured jet mixing, internal, and shock noise. It was found that the noise produced at static conditions was dominated by jet mixing noise, and was adequately predicted by current methods. The noise produced during flyovers exhibited large contributions from internally generated noise in the forward arc. For flyovers with the engine at nonafterburning power, the internal noise, shock noise, and jet mixing noise were accurately predicted. During flyovers with afterburning power settings, however, additional internal noise believed to be due to the afterburning process was evident; its level was as much as 8 decibels above the nonafterburning internal noise. Power settings that produced exhausts with inverted velocity profiles appeared to be slightly less noisy than power settings of equal thrust that produced uniform exhaust velocity profiles both in flight and in static testing.

  2. Recommended procedures for measuring aircraft noise and associated parameters

    NASA Technical Reports Server (NTRS)

    Marsh, A. H.

    1977-01-01

    Procedures are recommended for obtaining experimental values of aircraft flyover noise levels (and associated parameters). Specific recommendations are made for test criteria, instrumentation performance requirements, data-acquisition procedures, and test operations. The recommendations are based on state-of-the-art measurement capabilities available in 1976 and are consistent with the measurement objectives of the NASA Aircraft Noise Prediction Program. The recommendations are applicable to measurements of the noise produced by an airplane flying subsonically over (or past) microphones located near the surface of the ground. Aircraft types covered by the recommendations are fixed-wing airplanes powered by turbojet or turbofan engines and using conventional aerodynamic means for takeoff and landing. Various assumptions with respect to subsequent data processing and analysis were made (and are described) and the recommended measurement procedures are compatible with the assumptions. Some areas where additional research is needed relative to aircraft flyover noise measurement techniques are also discussed.

  3. Two-Dimensional Fourier Transform Analysis of Helicopter Flyover Noise

    NASA Technical Reports Server (NTRS)

    SantaMaria, Odilyn L.; Farassat, F.; Morris, Philip J.

    1999-01-01

    A method to separate main rotor and tail rotor noise from a helicopter in flight is explored. Being the sum of two periodic signals of disproportionate, or incommensurate frequencies, helicopter noise is neither periodic nor stationary. The single Fourier transform divides signal energy into frequency bins of equal size. Incommensurate frequencies are therefore not adequately represented by any one chosen data block size. A two-dimensional Fourier analysis method is used to separate main rotor and tail rotor noise. The two-dimensional spectral analysis method is first applied to simulated signals. This initial analysis gives an idea of the characteristics of the two-dimensional autocorrelations and spectra. Data from a helicopter flight test is analyzed in two dimensions. The test aircraft are a Boeing MD902 Explorer (no tail rotor) and a Sikorsky S-76 (4-bladed tail rotor). The results show that the main rotor and tail rotor signals can indeed be separated in the two-dimensional Fourier transform spectrum. The separation occurs along the diagonals associated with the frequencies of interest. These diagonals are individual spectra containing only information related to one particular frequency.

  4. Two-Dimensional Fourier Transform Applied to Helicopter Flyover Noise

    NASA Technical Reports Server (NTRS)

    Santa Maria, Odilyn L.

    1999-01-01

    A method to separate main rotor and tail rotor noise from a helicopter in flight is explored. Being the sum of two periodic signals of disproportionate, or incommensurate frequencies, helicopter noise is neither periodic nor stationary, but possibly harmonizable. The single Fourier transform divides signal energy into frequency bins of equal size. Incommensurate frequencies are therefore not adequately represented by any one chosen data block size. A two-dimensional Fourier analysis method is used to show helicopter noise as harmonizable. The two-dimensional spectral analysis method is first applied to simulated signals. This initial analysis gives an idea of the characteristics of the two-dimensional autocorrelations and spectra. Data from a helicopter flight test is analyzed in two dimensions. The test aircraft are a Boeing MD902 Explorer (no tail rotor) and a Sikorsky S-76 (4-bladed tail rotor). The results show that the main rotor and tail rotor signals can indeed be separated in the two-dimensional Fourier transform spectrum. The separation occurs along the diagonals associated with the frequencies of interest. These diagonals are individual spectra containing only information related to one particular frequency.

  5. Residents' annoyance responses to aircraft noise events

    NASA Technical Reports Server (NTRS)

    Dempsey, T. K.; Stephens, D. G.; Fields, J. M.; Shepherd, K. P.

    1983-01-01

    In a study conducted in the vicinity of Salt Lake City International Airport, community residents reported their annoyance with individual aircraft flyovers during rating sessions conducted in their homes. Annoyance ratings were obtained at different times of the day. Aircraft noise levels were measured, and other characteristics of the aircraft were noted by trained observers. Metrics commonly used for assessing aircraft noise were compared, but none performed significantly better than A-weighted sound pressure level. A significant difference was found between the ratings of commercial jet aircraft and general aviation propeller aircraft, with the latter being judged less annoying. After the effects of noise level were accounted for, no significant differences were found between the ratings of landings and takeoffs. Aircraft noise annoyance reactions are stronger in lowered ambient noise conditions. This is consistent with the theory that reduced nighttime and evening ambient levels could create different reactions at different times of day. After controlling for ambient noise in a multiple regression analysis, no significant differences were found between the ratings of single events obtained during the three time periods: morning, afternoon, and evenings.

  6. Effects of activity interference on annoyance due to aircraft noise

    NASA Technical Reports Server (NTRS)

    Willshire, K. F.; Powell, C. A.

    1981-01-01

    The effects of aircraft flyover noise on annoyance were compared for face to face conversation, reverie, and television viewing. Eighteen 5 minute sessions, each composed of three flyovers, were presented on each of 2 days to subjects in a simulated living room. Twelve pairs of females and 12 pairs of males were tested, once before and once after work. Flyovers varied in peak noise level from 53 to 83 dB, A weighted. On each day, subjects engaged in 18 sessions, six of conversation, six of television viewing, and six of reverie. The subjects completed subjective ratings of annoyance and acceptability following every session. Annoyance and unacceptability rating scores were significantly higher for the activity of television viewing compared to conversation or reverie. There was no difference between judgments during the latter two activities. No differences were found in the judgments when compared on the basis of "fatigue" (before/after work) or sex of the subject.

  7. Development and Calibration of a Field-Deployable Microphone Phased Array for Propulsion and Airframe Noise Flyover Measurements

    NASA Technical Reports Server (NTRS)

    Humphreys, William M., Jr.; Lockard, David P.; Khorrami, Mehdi R.; Culliton, William G.; McSwain, Robert G.; Ravetta, Patricio A.; Johns, Zachary

    2016-01-01

    A new aeroacoustic measurement capability has been developed consisting of a large channelcount, field-deployable microphone phased array suitable for airframe noise flyover measurements for a range of aircraft types and scales. The array incorporates up to 185 hardened, weather-resistant sensors suitable for outdoor use. A custom 4-mA current loop receiver circuit with temperature compensation was developed to power the sensors over extended cable lengths with minimal degradation of the signal to noise ratio and frequency response. Extensive laboratory calibrations and environmental testing of the sensors were conducted to verify the design's performance specifications. A compact data system combining sensor power, signal conditioning, and digitization was assembled for use with the array. Complementing the data system is a robust analysis system capable of near real-time presentation of beamformed and deconvolved contour plots and integrated spectra obtained from array data acquired during flyover passes. Additional instrumentation systems needed to process the array data were also assembled. These include a commercial weather station and a video monitoring / recording system. A detailed mock-up of the instrumentation suite (phased array, weather station, and data processor) was performed in the NASA Langley Acoustic Development Laboratory to vet the system performance. The first deployment of the system occurred at Finnegan Airfield at Fort A.P. Hill where the array was utilized to measure the vehicle noise from a number of sUAS (small Unmanned Aerial System) aircraft. A unique in-situ calibration method for the array microphones using a hovering aerial sound source was attempted for the first time during the deployment.

  8. Effects of aircraft noise on flight and ground structures

    NASA Technical Reports Server (NTRS)

    Mixson, J. S.; Mayes, W. H.; Willis, C. M.

    1976-01-01

    Acoustic loads measured on jet-powered STOL configurations are presented for externally blown and upper surface blown flap models ranging in size from a small laboratory model up to a full-scale aircraft model. The implications of the measured loads for potential acoustic fatigue and cabin noise are discussed. Noise transmission characteristics of light aircraft structures are presented. The relative importance of noise transmission paths, such as fuselage sidewall and primary structure, is estimated. Acceleration responses of a historic building and a residential home are presented for flyover noise from subsonic and supersonic aircraft. Possible effects on occupant comfort are assessed. The results from these three examples show that aircraft noise can induce structural responses that are large enough to require consideration in the design or operation of the aircraft.

  9. 14 CFR Appendix F to Part 36 - Flyover Noise Requirements for Propeller-Driven Small Airplane and Propeller-Driven, Commuter...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Flyover Noise Requirements for Propeller-Driven Small Airplane and Propeller-Driven, Commuter Category Airplane Certification Tests Prior to.... F Appendix F to Part 36—Flyover Noise Requirements for Propeller-Driven Small Airplane and...

  10. 14 CFR Appendix F to Part 36 - Flyover Noise Requirements for Propeller-Driven Small Airplane and Propeller-Driven, Commuter...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Flyover Noise Requirements for Propeller-Driven Small Airplane and Propeller-Driven, Commuter Category Airplane Certification Tests Prior to.... F Appendix F to Part 36—Flyover Noise Requirements for Propeller-Driven Small Airplane and...

  11. 14 CFR Appendix F to Part 36 - Flyover Noise Requirements for Propeller-Driven Small Airplane and Propeller-Driven, Commuter...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Flyover Noise Requirements for Propeller-Driven Small Airplane and Propeller-Driven, Commuter Category Airplane Certification Tests Prior to.... F Appendix F to Part 36—Flyover Noise Requirements for Propeller-Driven Small Airplane and...

  12. 14 CFR Appendix F to Part 36 - Flyover Noise Requirements for Propeller-Driven Small Airplane and Propeller-Driven, Commuter...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Flyover Noise Requirements for Propeller-Driven Small Airplane and Propeller-Driven, Commuter Category Airplane Certification Tests Prior to.... F Appendix F to Part 36—Flyover Noise Requirements for Propeller-Driven Small Airplane and...

  13. 14 CFR Appendix F to Part 36 - Flyover Noise Requirements for Propeller-Driven Small Airplane and Propeller-Driven, Commuter...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Flyover Noise Requirements for Propeller-Driven Small Airplane and Propeller-Driven, Commuter Category Airplane Certification Tests Prior to.... F Appendix F to Part 36—Flyover Noise Requirements for Propeller-Driven Small Airplane and...

  14. Auralization Architectures for NASA?s Next Generation Aircraft Noise Prediction Program

    NASA Technical Reports Server (NTRS)

    Rizzi, Stephen A.; Lopes, Leonard V.; Burley, Casey L.; Aumann, Aric R.

    2013-01-01

    Aircraft community noise is a significant concern due to continued growth in air traffic, increasingly stringent environmental goals, and operational limitations imposed by airport authorities. The assessment of human response to noise from future aircraft can only be afforded through laboratory testing using simulated flyover noise. Recent work by the authors demonstrated the ability to auralize predicted flyover noise for a state-of-the-art reference aircraft and a future hybrid wing body aircraft concept. This auralization used source noise predictions from NASA's Aircraft NOise Prediction Program (ANOPP) as input. The results from this process demonstrated that auralization based upon system noise predictions is consistent with, and complementary to, system noise predictions alone. To further develop and validate the auralization process, improvements to the interfaces between the synthesis capability and the system noise tools are required. This paper describes the key elements required for accurate noise synthesis and introduces auralization architectures for use with the next-generation ANOPP (ANOPP2). The architectures are built around a new auralization library and its associated Application Programming Interface (API) that utilize ANOPP2 APIs to access data required for auralization. The architectures are designed to make the process of auralizing flyover noise a common element of system noise prediction.

  15. Analysis and Synthesis of Tonal Aircraft Noise Sources

    NASA Technical Reports Server (NTRS)

    Allen, Matthew P.; Rizzi, Stephen A.; Burdisso, Ricardo; Okcu, Selen

    2012-01-01

    Fixed and rotary wing aircraft operations can have a significant impact on communities in proximity to airports. Simulation of predicted aircraft flyover noise, paired with listening tests, is useful to noise reduction efforts since it allows direct annoyance evaluation of aircraft or operations currently in the design phase. This paper describes efforts to improve the realism of synthesized source noise by including short term fluctuations, specifically for inlet-radiated tones resulting from the fan stage of turbomachinery. It details analysis performed on an existing set of recorded turbofan data to isolate inlet-radiated tonal fan noise, then extract and model short term tonal fluctuations using the analytic signal. Methodologies for synthesizing time-variant tonal and broadband turbofan noise sources using measured fluctuations are also described. Finally, subjective listening test results are discussed which indicate that time-variant synthesized source noise is perceived to be very similar to recordings.

  16. Temporal Characterization of Aircraft Noise Sources

    NASA Technical Reports Server (NTRS)

    Grosveld, Ferdinand W.; Sullivan, Brenda M.; Rizzi, Stephen A.

    2004-01-01

    Current aircraft source noise prediction tools yield time-independent frequency spectra as functions of directivity angle. Realistic evaluation and human assessment of aircraft fly-over noise require the temporal characteristics of the noise signature. The purpose of the current study is to analyze empirical data from broadband jet and tonal fan noise sources and to provide the temporal information required for prediction-based synthesis. Noise sources included a one-tenth-scale engine exhaust nozzle and a one-fifth scale scale turbofan engine. A methodology was developed to characterize the low frequency fluctuations employing the Short Time Fourier Transform in a MATLAB computing environment. It was shown that a trade-off is necessary between frequency and time resolution in the acoustic spectrogram. The procedure requires careful evaluation and selection of the data analysis parameters, including the data sampling frequency, Fourier Transform window size, associated time period and frequency resolution, and time period window overlap. Low frequency fluctuations were applied to the synthesis of broadband noise with the resulting records sounding virtually indistinguishable from the measured data in initial subjective evaluations. Amplitude fluctuations of blade passage frequency (BPF) harmonics were successfully characterized for conditions equivalent to take-off and approach. Data demonstrated that the fifth harmonic of the BPF varied more in frequency than the BPF itself and exhibited larger amplitude fluctuations over the duration of the time record. Frequency fluctuations were found to be not perceptible in the current characterization of tonal components.

  17. Aircraft noise synthesis system: Version 4 user instructions

    NASA Technical Reports Server (NTRS)

    Mccurdy, David A.; Sullivan, Brenda M.; Grandle, Robert E.

    1987-01-01

    A modified version of the Aircraft Noise Synthesis System with improved directivity and tonal content modeling has been developed. The synthesis system is used to provide test stimuli for studies of community annoyance to aircraft flyover noise. The computer-based system generates realistic, time-varying audio simulations of aircraft flyover noise at a specified observer location on the ground. The synthesis takes into account the time-varying aircraft position relative to the observer; specified reference spectra consisting of broadband, narrowband, and pure tone components; directivity patterns; Doppler shift; atmospheric effects; and ground effects. These parameters can be specified and controlled in such a way as to generate stimuli in which certain noise characteristics such as duration or tonal content are independently varied while the remaining characteristics such as broadband content are held constant. The modified version of the system provides improved modeling of noise directivity patterns and an increased number of pure tone components. User instructions for the modified version of the synthesis system are provided.

  18. Measurement and analysis of aircraft far-field aerodynamic noise

    NASA Technical Reports Server (NTRS)

    Healy, G. J.

    1974-01-01

    A systematic investigation of aircraft far-field radiated, aerodynamically generated noise was conducted. The test phase of the original program involved the measurement of the noise produced by five gliding aircraft in an aerodynamically clean configuration during low altitude flyovers. These aircraft had gross weights that ranged from 5785 to 173 925N (1300 to 39,000 pounds), fly-by velocities from 30 to 98.5m/sec (58 to 191.5 knots or 98 to 323 ft/sec) and wing aspect ratios from 6.59 to 18.25. The results of these measurements were used to develop an equation relating aerodynamic noise to readily evaluated physical and operational parameters of the aircraft. A non-dimensional frequency spectrum, based on the mean wing thickness, was also developed.

  19. DC-9 flight demonstration program with refanned JT8D engines. Volume 4: Flyover noise

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Flyover noise tests were conducted to determine the noise reductions achievable by modifying the engines and nacelles of DC-9-30 airplanes. The two stage fan of the JT8D-9 engine was replaced with a larger diameter, single stage fan and sound absorbing materials were incorporated in the engines and nacelles. The noise levels were determined to be 95.3 EPNdB at the sideline, 96.2 EPNdB for a full thrust takeoff, 87.5 EPNdB for takeoff with thrust cutback, and 97.4 EPNdB for landing approach. The noise reductions relative to the hardwall JT8D-9 were 8.2 EPNdB for takeoff with cutback and 8.7 EPNdB for landing. The 90 EPNdB noise contour areas were reduced by 40% for missions requiring maximum design takeoff and landing weights. For typical mission weights, the reductions were 19% for full thrust takeoff and 34% for takeoff with cutback. The 95 EPNdB contour areas were reduced by 50% for takeoff and 30% for takeoff with cutback for both missions.

  20. Airframe Noise from a Hybrid Wing Body Aircraft Configuration

    NASA Technical Reports Server (NTRS)

    Hutcheson, Florence V.; Spalt, Taylor B.; Brooks, Thomas F.; Plassman, Gerald E.

    2016-01-01

    A high fidelity aeroacoustic test was conducted in the NASA Langley 14- by 22-Foot Subsonic Tunnel to establish a detailed database of component noise for a 5.8% scale HWB aircraft configuration. The model has a modular design, which includes a drooped and a stowed wing leading edge, deflectable elevons, twin verticals, and a landing gear system with geometrically scaled wheel-wells. The model is mounted inverted in the test section and noise measurements are acquired at different streamwise stations from an overhead microphone phased array and from overhead and sideline microphones. Noise source distribution maps and component noise spectra are presented for airframe configurations representing two different approach flight conditions. Array measurements performed along the aircraft flyover line show the main landing gear to be the dominant contributor to the total airframe noise, followed by the nose gear, the inboard side-edges of the LE droop, the wing tip/LE droop outboard side-edges, and the side-edges of deployed elevons. Velocity dependence and flyover directivity are presented for the main noise components. Decorrelation effects from turbulence scattering on spectral levels measured with the microphone phased array are discussed. Finally, noise directivity maps obtained from the overhead and sideline microphone measurements for the landing gear system are provided for a broad range of observer locations.

  1. Effects of motion on jet exhaust noise from aircraft

    NASA Technical Reports Server (NTRS)

    Chun, K. S.; Berman, C. H.; Cowan, S. J.

    1976-01-01

    The various problems involved in the evaluation of the jet noise field prevailing between an observer on the ground and an aircraft in flight in a typical takeoff or landing approach pattern were studied. Areas examined include: (1) literature survey and preliminary investigation, (2) propagation effects, (3) source alteration effects, and (4) investigation of verification techniques. Sixteen problem areas were identified and studied. Six follow-up programs were recommended for further work. The results and the proposed follow-on programs provide a practical general technique for predicting flyover jet noise for conventional jet nozzles.

  2. Aircraft turbofan noise

    NASA Technical Reports Server (NTRS)

    Groeneweg, J. F.; Rice, E. J.

    1983-01-01

    Turbofan noise generation and suppression in aircraft engines are reviewed. The chain of physical processes which connect unsteady flow interactions with fan blades to far field noise is addressed. Mechanism identification and description, duct propagation, radiation and acoustic suppression are discussed. The experimental technique of fan inflow static tests are discussed. Rotor blade surface pressure and wake velocity measurements aid in the determination of the types and strengths of the generation mechanisms. Approaches to predicting or measuring acoustic mode content, optimizing treatment impedance to maximize attenuation, translating impedance into porous wall structure and interpreting far field directivity patterns are illustrated by comparisons of analytical and experimental results. The interdependence of source and acoustic treatment design to minimize far field noise is emphasized. Area requiring further research are discussed and the relevance of aircraft turbofan results to quieting other turbomachinery installations is addressed.

  3. Aircraft turbofan noise

    NASA Astrophysics Data System (ADS)

    Groeneweg, J. F.; Rice, E. J.

    1987-01-01

    Turbofan noise generation and suppression in aircraft engines are reviewed. The chain of physical processes which connect unsteady flow interactions with fan blades to far field noise is addressed. Mechanism identification and description, duct propagation, radiation, and acoustic suppression are discussed. The experimental techniques of fan inflow static tests are discussed. Rotor blade surface pressure and wake velocity measurements aid in the determination of the types and strengths of the generation mechanisms. Approaches to predicting or measuring acoustic mode content, optimizing treatment impedance to maximize attenuation, translating impedance into porous wall structure, and interpreting far field directivity patterns are illustrated by comparisons of analytical and experimental results. The interdependence of source and acoustic treatment design to minimize far field noise is emphasized. Areas requiring further research are discussed, and the relevance of aircraft turbofan results to quieting other turbomachinery installation is addressed.

  4. Aircraft turbofan noise

    NASA Astrophysics Data System (ADS)

    Groeneweg, J. F.; Rice, E. J.

    1983-03-01

    Turbofan noise generation and suppression in aircraft engines are reviewed. The chain of physical processes which connect unsteady flow interactions with fan blades to far field noise is addressed. Mechanism identification and description, duct propagation, radiation and acoustic suppression are discussed. The experimental technique of fan inflow static tests are discussed. Rotor blade surface pressure and wake velocity measurements aid in the determination of the types and strengths of the generation mechanisms. Approaches to predicting or measuring acoustic mode content, optimizing treatment impedance to maximize attenuation, translating impedance into porous wall structure and interpreting far field directivity patterns are illustrated by comparisons of analytical and experimental results. The interdependence of source and acoustic treatment design to minimize far field noise is emphasized. Area requiring further research are discussed and the relevance of aircraft turbofan results to quieting other turbomachinery installations is addressed.

  5. Aircraft community noise impact studies

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The objectives of the study are to: (1) conduct a program to determine the community noise impact of advanced technology engines when installed in a supersonic aircraft, (2) determine the potential reduction of community noise by flight operational techniques for the study aircraft, (3) estimate the community noise impact of the study aircraft powered by suppressed turbojet engines and by advanced duct heating turbofan engines, and (4) compare the impact of the two supersonic designs with that of conventional commercial DC-8 aircraft.

  6. Annoyance and acceptability judgements of noise produced by three types of aircraft by residents living near JFK Airport

    NASA Technical Reports Server (NTRS)

    Borsky, P. N.

    1974-01-01

    A random sample of selected communities near JFK Airport were interviewed. Subsamples, with differing feelings of fear of aircraft crashes and different locations of residence were invited to participate in a laboratory experiment. The subjects were exposed to tape recordings of simulated flyovers of aircraft in approach and departure operations at nominal distances from the airport. The subjects judged the extent of noise annoyance and acceptability of the aircraft noises. Results indicate that level of noise is most significant in affecting annoyance judgements. Subjects with feelings of high fear report significantly more annoyance and less acceptability of aircraft noise than subjects with feelings of low fear.

  7. Disturbance caused by aircraft noise

    NASA Technical Reports Server (NTRS)

    Josse, R.

    1980-01-01

    Noise pollution caused by the presence of airfields adjacent to residential areas is studied. Noise effects on the sleep of residents near airports and the degree of the residents noise tolerance are evaluated. What aircraft noises are annoying and to what extent the annoyance varies with sound level are discussed.

  8. Fourth Aircraft Interior Noise Workshop

    NASA Technical Reports Server (NTRS)

    Stephens, David G. (Compiler)

    1992-01-01

    The fourth in a series of NASA/SAE Interior Noise Workshops was held on May 19 and 20, 1992. The theme of the workshop was new technology and applications for aircraft noise with emphasis on source noise prediction; cabin noise prediction; cabin noise control, including active and passive methods; and cabin interior noise procedures. This report is a compilation of the presentations made at the meeting which addressed the above issues.

  9. Auralization of NASA N+2 Aircraft Concepts from System Noise Predictions

    NASA Technical Reports Server (NTRS)

    Rizzi, Stephen A.; Burley, Casey L.; Thomas, Russel H.

    2016-01-01

    Auralization of aircraft flyover noise provides an auditory experience that complements integrated metrics obtained from system noise predictions. Recent efforts have focused on auralization methods development, specifically the process by which source noise information obtained from semi-empirical models, computational aeroacoustic analyses, and wind tunnel and flight test data, are used for simulated flyover noise at a receiver on the ground. The primary focus of this work, however, is to develop full vehicle auralizations in order to explore the distinguishing features of NASA's N+2 aircraft vis-à-vis current fleet reference vehicles for single-aisle and large twin-aisle classes. Some features can be seen in metric time histories associated with aircraft noise certification, e.g., tone-corrected perceived noise level used in the calculation of effective perceived noise level. Other features can be observed in sound quality metrics, e.g., loudness, sharpness, roughness, fluctuation strength and tone-to-noise ratio. A psychoacoustic annoyance model is employed to establish the relationship between sound quality metrics and noise certification metrics. Finally, the auralizations will serve as the basis for a separate psychoacoustic study aimed at assessing how well aircraft noise certification metrics predict human annoyance for these advanced vehicle concepts.

  10. Noise-Induced Building Vibrations Caused by Concorde and Conventional Aircraft Operations at Dulles and Kennedy International Airports

    NASA Technical Reports Server (NTRS)

    Mayes, W. H.; Stephens, D. G.; Holmes, H. K.; Lewis, R. B.; Holliday, B. G.; Ward, D. W.; Deloach, R.; Cawthorn, J. M.; Finley, T. D.; Lynch, J. W.

    1978-01-01

    Outdoor and indoor noise levels resulting from aircraft flyovers and certain nonaircraft events were recorded, as were the associated vibration levels in the walls, windows, and floors at building test sites. In addition, limited subjective tests were conducted to examine the human detection and annoyance thresholds for building vibration and rattle caused by aircraft noise. Representative peak levels of aircraft noise-induced building vibrations are reported and comparisons are made with structural damage criteria and with vibration levels induced by common domestic events. In addition, results of a pilot study are reported which indicate the human detection threshold for noise-induced floor vibrations.

  11. Technologies for Aircraft Noise Reduction

    NASA Technical Reports Server (NTRS)

    Huff, Dennis L.

    2006-01-01

    Technologies for aircraft noise reduction have been developed by NASA over the past 15 years through the Advanced Subsonic Technology (AST) Noise Reduction Program and the Quiet Aircraft Technology (QAT) project. This presentation summarizes highlights from these programs and anticipated noise reduction benefits for communities surrounding airports. Historical progress in noise reduction and technologies available for future aircraft/engine development are identified. Technologies address aircraft/engine components including fans, exhaust nozzles, landing gear, and flap systems. New "chevron" nozzles have been developed and implemented on several aircraft in production today that provide significant jet noise reduction. New engines using Ultra-High Bypass (UHB) ratios are projected to provide about 10 EPNdB (Effective Perceived Noise Level in decibels) engine noise reduction relative to the average fleet that was flying in 1997. Audio files are embedded in the presentation that estimate the sound levels for a 35,000 pound thrust engine for takeoff and approach power conditions. The predictions are based on actual model scale data that was obtained by NASA. Finally, conceptual pictures are shown that look toward future aircraft/propulsion systems that might be used to obtain further noise reduction.

  12. Trends in aircraft noise control

    NASA Technical Reports Server (NTRS)

    Hubbard, H. H.; Conrad, E. W.

    1975-01-01

    Flight vehicles are characterized according to their manner of operation and type of propulsion system; and their associated sources of noise are identified. Available noise reduction technology as it relates to engine cycle design and to powerplant component design is summarized. Such components as exhaust jets, fans, propellers, rotors, blown flaps, and reciprocating-engine exhausts are discussed, along with their noise reduction potentials. Significant aircraft noise reductions are noted to have been accomplished by the application of available technology in support of noise certification rules. Further noise reductions to meet more stringent future noise regulations will require substantial additional technology developments. Improved analytical prediction methods, and well-controlled validation experiments supported by advanced-design aeroacoustic facilities, are required as a basis for an effective integrated systems approach to aircraft noise control.

  13. Model of aircraft noise adaptation

    NASA Technical Reports Server (NTRS)

    Dempsey, T. K.; Coates, G. D.; Cawthorn, J. M.

    1977-01-01

    Development of an aircraft noise adaptation model, which would account for much of the variability in the responses of subjects participating in human response to noise experiments, was studied. A description of the model development is presented. The principal concept of the model, was the determination of an aircraft adaptation level which represents an annoyance calibration for each individual. Results showed a direct correlation between noise level of the stimuli and annoyance reactions. Attitude-personality variables were found to account for varying annoyance judgements.

  14. Judgments of aircraft noise in a traffic noise background

    NASA Technical Reports Server (NTRS)

    Powell, C. A.; Rice, C. G.

    1975-01-01

    An investigation was conducted to determine subjective response to aircraft noise in different road traffic backgrounds. In addition, two laboratory techniques for presenting the aircraft noise with the background noise were evaluated. For one technique, the background noise was continuous over an entire test session; for the other, the background noise level was changed with each aircraft noise during a session. Subjective response to aircraft noise was found to decrease with increasing background noise level, for a range of typical indoor noise levels. Subjective response was found to be highly correlated with the Noise Pollution Level (NPL) measurement scale.

  15. Subjective responses to aircraft noise in an outdoor recreational setting: a combined field and laboratory study

    NASA Astrophysics Data System (ADS)

    Aasvang, G. M.; Engdahl, B.

    2004-09-01

    The knowledge about human perception of noise in outdoor recreational areas is limited. The aim of the present study was to study the relationship between different noise indicators and subjective responses to aircraft noise, aiming at developing applicable noise indicators in areas for recreational purposes. The perception of aircraft noise was investigated in a combined field and laboratory approach. The partially controlled outdoor field study was conducted in a recreational area close to Fornebu airport, the main airport in Oslo (until August 1998). A group of subjects were asked to score their perceived annoyance and acceptability of actual flyovers during a 50 min session as well as the total annoyance for the whole session. The subjects were later presented to the same aircraft noises, as recorded during the field session, in a laboratory experiment simulating outdoor exposure. Subjects exposed both in field and laboratory responded similarly under both conditions. In both test situations a high correlation was found between different noise indices, as well as between all noise indices and responses to single events. A significant relation was found between the number of aircraft noise events judged as "not acceptable" and the total annoyance response. The present observations showed a correspondence between subjective responses to aircraft noise, both immediate and total judgements, and personal attitudes towards the noise source, but not with self reported noise sensitivity.

  16. Human response to aircraft noise

    NASA Technical Reports Server (NTRS)

    Powell, Clemans A.; Fields, James M.

    1991-01-01

    The human auditory system and the perception of sound are discussed. The major concentration is on the annnoyance response and methods for relating the physical characteristics of sound to those psychosociological attributes associated with human response. Results selected from the extensive laboratory and field research conducted on human response to aircraft noise over the past several decades are presented along with discussions of the methodology commonly used in conducting that research. Finally, some of the more common criteria, regulations, and recommended practices for the control or limitation of aircraft noise are examined in light of the research findings on human response.

  17. Handbook of aircraft noise metrics

    NASA Technical Reports Server (NTRS)

    Bennett, R. L.; Pearsons, K. S.

    1981-01-01

    Information is presented on 22 noise metrics that are associated with the measurement and prediction of the effects of aircraft noise. Some of the instantaneous frequency weighted sound level measures, such as A-weighted sound level, are used to provide multiple assessment of the aircraft noise level. Other multiple event metrics, such as day-night average sound level, were designed to relate sound levels measured over a period of time to subjective responses in an effort to determine compatible land uses and aid in community planning. The various measures are divided into: (1) instantaneous sound level metrics; (2) duration corrected single event metrics; (3) multiple event metrics; and (4) speech communication metrics. The scope of each measure is examined in terms of its: definition, purpose, background, relationship to other measures, calculation method, example, equipment, references, and standards.

  18. Handbook of aircraft noise metrics

    NASA Astrophysics Data System (ADS)

    Bennett, R. L.; Pearsons, K. S.

    1981-03-01

    Information is presented on 22 noise metrics that are associated with the measurement and prediction of the effects of aircraft noise. Some of the instantaneous frequency weighted sound level measures, such as A-weighted sound level, are used to provide multiple assessment of the aircraft noise level. Other multiple event metrics, such as day-night average sound level, were designed to relate sound levels measured over a period of time to subjective responses in an effort to determine compatible land uses and aid in community planning. The various measures are divided into: (1) instantaneous sound level metrics; (2) duration corrected single event metrics; (3) multiple event metrics; and (4) speech communication metrics. The scope of each measure is examined in terms of its: definition, purpose, background, relationship to other measures, calculation method, example, equipment, references, and standards.

  19. Noise reduction tests of large-scale-model externally blown flap using trailing-edge blowing and partial flap slot covering. [jet aircraft noise reduction

    NASA Technical Reports Server (NTRS)

    Mckinzie, D. J., Jr.; Burns, R. J.; Wagner, J. M.

    1976-01-01

    Noise data were obtained with a large-scale cold-flow model of a two-flap, under-the-wing, externally blown flap proposed for use on future STOL aircraft. The noise suppression effectiveness of locating a slot conical nozzle at the trailing edge of the second flap and of applying partial covers to the slots between the wing and flaps was evaluated. Overall-sound-pressure-level reductions of 5 db occurred below the wing in the flyover plane. Existing models of several noise sources were applied to the test results. The resulting analytical relation compares favorably with the test data. The noise source mechanisms were analyzed and are discussed.

  20. Minimum noise impact aircraft trajectories

    NASA Technical Reports Server (NTRS)

    Jacobson, I. D.; Melton, R. G.

    1981-01-01

    Numerical optimization is used to compute the optimum flight paths, based upon a parametric form that implicitly includes some of the problem restrictions. The other constraints are formulated as penalties in the cost function. Various aircraft on multiple trajectores (landing and takeoff) can be considered. The modular design employed allows for the substitution of alternate models of the population distribution, aircraft noise, flight paths, and annoyance, or for the addition of other features (e.g., fuel consumption) in the cost function. A reduction in the required amount of searching over local minima was achieved through use of the presence of statistical lateral dispersion in the flight paths.

  1. Upper surface blowing noise of the NASA-Ames quiet short-haul research aircraft

    NASA Technical Reports Server (NTRS)

    Bohn, A. J.; Shovlin, M. D.

    1980-01-01

    An experimental study of the propulsive-lift noise of the NASA-Ames quiet short-haul research aircraft (QSRA) is described. Comparisons are made of measured QSRA flyover noise and model propulsive-lift noise data available in references. Developmental tests of trailing-edge treatments were conducted using sawtooth-shaped and porous USB flap trailing-edge extensions. Small scale parametric tests were conducted to determine noise reduction/design relationships. Full-scale static tests were conducted with the QSRA preparatory to the selection of edge treatment designs for flight testing. QSRA flight and published model propulsive-lift noise data have similar characteristics. Noise reductions of 2 to 3 dB were achieved over a wide range of frequency and directivity angles in static tests of the QSRA. These noise reductions are expected to be achieved or surpassed in flight tests planned by NASA in 1980.

  2. A Remotely Operated Multiple Array Acoustic Range (ROMAAR) and its application for the measurement of airplane flyover noise footprints

    NASA Technical Reports Server (NTRS)

    Hilton, D. A.; Henderson, H. H.

    1976-01-01

    The ROMAAR now in operation at NASA will allow direct measurement and display of aircraft noise in several measurement units during takeoff, landing, and flyby operations. This information, in addition to its application in terms of ground noise footprints, will also permit determination of the statistical variation of footprints or contours due to the atmosphere or aircraft operational parameters, and a measure of the impact of various noise reduction techniques and hardware on ground noise footprints. The methods, techniques, and equipment developed for the ROMAAR concept are applicable to CTOL, STOL, General Aviation, and VTOL aircraft. ROMAAR represents a unique combination of state of the art digital and analog noise recording methods, computer-controlled digital communications methods, radar-tracking facilities, quick-look weather capabilities, and a large data handling facility complemented by a large capacity curve fitting and plotting routine. The ROMAAR is set apart from the standard airport noise monitoring system by having the unique features mentioned above plus the fact that at present as many as 38 separate (but simultaneous) noise measurements can be made for each aircraft overflight.

  3. Jet engine noise source and noise footprint computer programs

    NASA Technical Reports Server (NTRS)

    Dunn, D. G.; Peart, N. A.; Miller, D. L.; Crowley, K. C.

    1972-01-01

    Calculation procedures are presented for predicting maximum passby noise levels and contours (footprints) of conventional jet aircraft with or without noise suppression devices. The procedures have been computerized and a user's guide is presented for the computer programs to be used in predicting the noise characteristics during aircraft takeoffs, fly-over, and/or landing operations.

  4. An Assessment of Commuter Aircraft Noise Impact

    NASA Technical Reports Server (NTRS)

    Fidell, Sanford; Pearsons, Karl S.; Silvati, Laura; Sneddon, Matthew

    1996-01-01

    This report examines several approaches to understanding 'the commuter aircraft noise problem.' The commuter aircraft noise problem in the sense addressed in this report is the belief that some aspect(s) of community response to noise produced by commuter aircraft operations may not be fully assessed by conventional environmental noise metrics and methods. The report offers alternate perspectives and approaches for understanding this issue. The report also develops a set of diagnostic screening questions; describes commuter aircraft noise situations at several airports; and makes recommendations for increasing understanding of the practical consequences of greater heterogeneity in the air transport fleet serving larger airports.

  5. Noise control mechanisms of inside aircraft

    NASA Astrophysics Data System (ADS)

    Zverev, A. Ya.

    2016-07-01

    World trends in the development of methods and approaches to noise reduction in aircraft cabins are reviewed. The paper discusses the mechanisms of passive and active noise and vibration control, application of "smart" and innovative materials, new approaches to creating all fuselage-design elements, and other promising directions of noise control inside aircraft.

  6. Research needs in aircraft noise prediction

    NASA Technical Reports Server (NTRS)

    Raney, J. P.

    1975-01-01

    Progress needed in understanding the mechanisms of aircraft noise generation and propagation is outlined using the focus provided by the need to predict accurately the noise produced and received at the ground by an aircraft operating in the vicinity of an airport. The components of internal engine noise generation, jet exhaust, airframe noise and shielding and configuration effects, and the roles of atmospheric propagation and ground noise attenuation are presented and related to the prediction problem. The role of NASA in providing the focus and direction for needed advances is discussed, and possible contributions of the academic community in helping to fulfill the needs for accurate aircraft noise prediction methods are suggested.

  7. Sources, control, and effects of noise from aircraft propellers and rotors

    NASA Technical Reports Server (NTRS)

    Mixson, J. S.; Greene, G. C.; Dempsey, T. K.

    1981-01-01

    Recent NASA and NASA sponsored research on the prediction and control of propeller and rotor source noise, on the analysis and design of fuselage sidewall noise control treatments, and on the measurement and quantification of the response of passengers to aircraft noise is described. Source noise predictions are compared with measurements for conventional low speed propellers, for new high speed propellers (propfans), and for a helicopter. Results from a light aircraft demonstration program are considered which indicates that about 5 dB reduction of flyover noise can be obtained without significant performance penalty. Sidewall design studies are examined for interior noise control in light general aviation aircraft and in large transports using propfan propulsion. The weight of the added acoustic treatment is estimated and tradeoffs between weight and noise reduction are discussed. A laboratory study of passenger response to combined broadband and tonal propeller-like noise is described. Subject discomfort ratings of combined tone broadband noises are compared with ratings of broadband (boundary layer) noise alone and the relative importance of the propeller tones is examined.

  8. Propeller aircraft interior noise model

    NASA Technical Reports Server (NTRS)

    Pope, L. D.; Wilby, E. G.; Wilby, J. F.

    1984-01-01

    An analytical model was developed to predict the interior noise of propeller-driven aircraft. The fuselage model is that of a cylinder with a structurally-integral floor. The cabin sidewall is stiffened by stringers and ring frames, and the floor by longitudinal beams. The cabin interior is covered with a sidewall treatments consisting of layers of porous material and an impervious trim septum. Representation of the propeller pressure field is utilized as input data in the form of the propeller noise signature at a series of locations on a grid over the fuselage structure. Results obtained from the analytical model are compared with test data measured by NASA in a scale model cylindrical fuselage excited by a model propeller.

  9. Technical Seminar: "Progress in Aircraft Noise Research"""

    NASA Video Gallery

    Advances in aircraft noise research can be attributed to the development of new technologies and sustained collaboration with industry, universities and government organizations. Emphasis has been ...

  10. A comparison of a laboratory and field study of annoyance and acceptability of aircraft noise exposures. [human reactions and tolerance

    NASA Technical Reports Server (NTRS)

    Borsky, P. N.

    1977-01-01

    Residents living in close, middle and distant areas from JFK Airport were included in a field interview and laboratory study. Judgments were made of simulated aircraft noise exposures of comparable community indoor noise levels and mixes of aircraft. Each group of subjects judged the levels of noise typical for its distance area. Four different numbers of flyovers were tested: less than average for each area, the approximate average, the peak number, or worst day, and above peak number. The major findings are: (1) the reported integrated field annoyance is best related to the annoyance reported for the simulated approximate worst day exposure in the laboratory; (2) annoyance is generally less when there are fewer aircraft flyovers, and the subject has less fear of crashes and more favorable attitudes toward airplanes; (3) beliefs in harmful health effects and misfeasance by operators of aircraft are also highly correlated with fear and noise annoyance; (4) in direct retrospective comparisons of number of flights, noise levels and annoyance, subjects more often said the worst day laboratory exposured more like their usual home environments; and (5) subjects do not expect an annoyance-free environment. Half of the subjects can accept an annoyance level of 5 to 6 from a possible annoyance range of 0 to 9, 28% can live with an annoyance intensity of 7, and only 5% can accept the top scores of 8 to 9.

  11. Annoyance caused by light aircraft noise

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The correlation between objective and noise stresses and subjectively perceived disturbance from general aviation aircraft was studied at 6 Swiss airports. Noise levels calculated for these airports are given. Survey results are analyzed.

  12. Correction procedures for aircraft noise data. Volume 4: Tone perception

    NASA Astrophysics Data System (ADS)

    May, D. N.; Watson, E. E.

    1980-02-01

    The existing tone correction procedure in the Effective Perceived Noise Level (EPNL) calculation procedure required for aircraft certification under Part 36 of the Federal Aviation Regulations was compared with other tone correction procedures, including the SAE Aerospace Recommended Practice 1071 and a multitone procedure due to Kryter and Pearsons. Different amounts of tone correction (level-weightings) and varying degrees of tone correction at different times in the flyover (time-weightings) were also explored. Also studied was a measure of spectral fluctuation, developed by NASA and known as spectral change. The research was limited to considering revisions within the framework of one-third octave, 0.5 second interval analysis, since such revisions can be quite easily implemented. The various tone correction noise metrics were tested against subjective judgements furnished by NASA of the noise from a range of propjet, turbojet, low and high bypass ratio turbofan, and supersonic commercial aircraft. It was found that a revision based on spectral change could, after further development, be a means to improve the accuracy of the EPNL metric. However, the success of the various other potential revisions depended on the characteristics of the data base tested. It was shown that research into improved metrics should be based on experimental plans which account for the correlations among the noise variables and the presence of any interactions. A separate, psychoacoustical pilot experiment was also performed into the effects of pseudotones on judged noisiness. (Pseudotones are low frequency tones introduced into a measured spectrum by ground reflections near the microphone.

  13. Noise Reduction of Aircraft Flap

    NASA Technical Reports Server (NTRS)

    Hutcheson, Florence V. (Inventor); Brooks, Thomas F. (Inventor)

    2009-01-01

    A reduction in noise radiating from a side of a deployed aircraft flap is achieved by locating a slot adjacent the side of the flap, and then forcing air out through the slot with a suitable mechanism. One, two or even three or more slots are possible, where the slot is located at one;or more locations selected from a group of locations comprising a top surface of the flap, a bottom surface of the flap, an intersection of the top and side surface of the flap, an intersection of the bottom and side surfaces of the flap, and a side surface of the flap. In at least one embodiment the slot is substantially rectangular. A device for adjusting a rate of the air forced out through the slot can also be provided.

  14. Aircraft noise, hearing ability, and annoyance

    SciTech Connect

    Wu, Trong-Neng; Jim Shoung Lai; Chen-Yang Shen

    1995-11-01

    The relationship between aircraft noise, loss of hearing, and annoyance was explored in a study in two schools located near an international airport in Taiwan. Sixth-grade students (N = 242) were recruited from two schools and were classified into high-and low-noise-exposure groups, based on environmental noise measurements. Person-equivalent 24-h noise exposure was measured to determine noise exposure at the individual level, and it was compared with hearing threshold level and with aircraft noise measured at the environmental level. Individual hearing threshold levels did not differ between environmental high- and low-noise-exposure groups, as evidenced by the lack of difference between the two groups for noise exposure measured at the individual level. However, the proportion of students who were annoyed by aircraft noise was higher in the environmental high-noise-exposure group, although personal 24-h noise exposure was not a factor for annoyance. The results indicated that environmental noise measurement was not an appropriate criterion for assessment of auditory damage (or noise-induced hearing loss) in Taiwan. As well, aircraft-noise exposure in Taiwan did not appear to affect the hearing threshold but nonetheless annoyed school children near the airport. 21 refs., 3 tabs.

  15. Computer program to predict aircraft noise levels

    NASA Technical Reports Server (NTRS)

    Clark, B. J.

    1981-01-01

    Methods developed at the NASA Lewis Research Center for predicting the noise contributions from various aircraft noise sources were programmed to predict aircraft noise levels either in flight or in ground tests. The noise sources include fan inlet and exhaust, jet, flap (for powered lift), core (combustor), turbine, and airframe. Noise propagation corrections are available for atmospheric attenuation, ground reflections, extra ground attenuation, and shielding. Outputs can include spectra, overall sound pressure level, perceived noise level, tone-weighted perceived noise level, and effective perceived noise level at locations specified by the user. Footprint contour coordinates and approximate footprint areas can also be calculated. Inputs and outputs can be in either System International or U.S. customary units. The subroutines for each noise source and propagation correction are described. A complete listing is given.

  16. Directional monitoring terminal for aircraft noise

    NASA Astrophysics Data System (ADS)

    Genescà, M.

    2016-07-01

    This paper presents a concept of an aircraft noise monitoring terminal (NMT) that reduces background noise and the influence of ground reflection, in comparison with a single microphone. Also, it automatically identifies aircraft sound events based on the direction of arrival of the sound rather than on the sound pressure level (or radar data). And moreover, it provides an indicator of the quality of the sound pressure level measurement, i.e. if it is possibly disturbed by extraneous sources. The performance of this NMT is experimentally tested under real conditions in a measurement site close to Zurich airport. The results show that the NMT unambiguously identifies the noise events generated by the target aircraft, correctly detects those aircraft noise events that may be disturbed by the presence of other sources, and offers a substantial reduction in background and ground reflected sound.

  17. An aircraft noise study in Norway

    NASA Technical Reports Server (NTRS)

    Gjestland, Truls T.; Liasjo, Kare H.; Bohn, Hans Einar

    1990-01-01

    An extensive study of aircraft noise is currently being conducted in Oslo, Norway. The traffic at Oslo Airport Fornebu that includes both national and international flights, totals approximately 350 movements per day: 250 of these are regular scheduled flights with intermediate and large size aircraft, the bulk being DC9 and Boeing 737. The total traffic during the summer of 1989 was expected to resemble the maximum level to which the regular traffic will increase before the new airport can be put into operation. The situation therefore represented a possibility to study the noise impact on the communities around Fornebu. A comprehensive social survey was designed, including questions on both aircraft and road traffic noise. A random sample of 1650 respondents in 15 study areas were contacted for an interview. These areas represent different noise levels and different locations relative to the flight paths. The interviews were conducted in a 2 week period just prior to the transfer of charter traffic from Gardemoen to Fornebu. In the same period the aircraft noise was monitored in all 15 areas. In addition the airport is equipped with a permanent flight track and noise monitoring system. The noise situation both in the study period and on an average basis can therefore be accurately described. In August a group of 1800 new respondents were subjected to identical interviews in the same 15 areas, and the noise measurement program was repeated. Results of the study are discussed.

  18. Aircraft noise prediction program theoretical manual, part 2

    NASA Astrophysics Data System (ADS)

    Zorumski, W. E.

    1982-02-01

    Detailed prediction methods for specific aircraft noise sources are given. These sources are airframe noise, combustion noise, fan noise, single and dual stream jet noise, and turbine noise. Modifications to the NASA methods which comply with the International Civil Aviation Organization standard method for aircraft noise prediction are given.

  19. Aeroacoustics of Flight Vehicles: Theory and Practice. Volume 2: Noise Control

    NASA Technical Reports Server (NTRS)

    Hubbard, Harvey H. (Editor)

    1991-01-01

    Flight vehicles and the underlying concepts of noise generation, noise propagation, noise prediction, and noise control are studied. This volume includes those chapters that relate to flight vehicle noise control and operations: human response to aircraft noise; atmospheric propagation; theoretical models for duct acoustic propagation and radiation; design and performance of duct acoustic treatment; jet noise suppression; interior noise; flyover noise measurement and prediction; and quiet aircraft design and operational characteristics.

  20. A path model of aircraft noise annoyance

    NASA Astrophysics Data System (ADS)

    Taylor, S. M.

    1984-09-01

    This paper describes the development and testing of a path model of aircraft noise annoyance by using noise and social survey data collected in the vicinity of Toronto International Airport. Path analysis is used to estimate the direct and indirect effects of seventeen independent variables on individual annoyance. The results show that the strongest direct effects are for speech interference, attitudes toward aircraft operations, sleep interruption and personal sensitivity to noise. The strongest indirect effects are for aircraft Leq(24) and sensitivity. Overall the model explains 41 percent of the variation in the annoyance reported by the 673 survey respondents. The findings both support and extend existing statements in the literature on the antecedents of annoyance.

  1. Review of Aircraft Engine Fan Noise Reduction

    NASA Technical Reports Server (NTRS)

    VanZante, Dale

    2008-01-01

    Aircraft turbofan engines incorporate multiple technologies to enhance performance and durability while reducing noise emissions. Both careful aerodynamic design of the fan and proper installation of the fan into the system are requirements for achieving the performance and acoustic objectives. The design and installation characteristics of high performance aircraft engine fans will be discussed along with some lessons learned that may be applicable to spaceflight fan applications.

  2. Recent Progress in Aircraft Noise Research

    NASA Technical Reports Server (NTRS)

    Envia, Edmane; Thomas, Russell

    2007-01-01

    An overview of the acoustics research at NASA under the Subsonic Fixed Wing project is given. The presentation describes the rationale behind the noise reduction goals of the project in the context of the next generation air transportation system, and the emphasis placed on achieving these goals through a combination of the in-house and collaborative efforts with industry, universities and other government agencies. The presentation also describes the in-house research plan which is focused on the development of advanced noise and flow diagnostic techniques, next generation noise prediction tools, and novel noise reduction techniques that are applicable across a wide range of aircraft.

  3. Assessment of NASA's Aircraft Noise Prediction Capability

    NASA Technical Reports Server (NTRS)

    Dahl, Milo D. (Editor)

    2012-01-01

    A goal of NASA s Fundamental Aeronautics Program is the improvement of aircraft noise prediction. This document provides an assessment, conducted from 2006 to 2009, on the current state of the art for aircraft noise prediction by carefully analyzing the results from prediction tools and from the experimental databases to determine errors and uncertainties and compare results to validate the predictions. The error analysis is included for both the predictions and the experimental data and helps identify where improvements are required. This study is restricted to prediction methods and databases developed or sponsored by NASA, although in many cases they represent the current state of the art for industry. The present document begins with an introduction giving a general background for and a discussion on the process of this assessment followed by eight chapters covering topics at both the system and the component levels. The topic areas, each with multiple contributors, are aircraft system noise, engine system noise, airframe noise, fan noise, liner physics, duct acoustics, jet noise, and propulsion airframe aeroacoustics.

  4. Aircraft cabin noise prediction and optimization

    NASA Technical Reports Server (NTRS)

    Vaicaitis, R.

    1985-01-01

    Theoretical and experimental studies were conducted to determine the noise transmission into acoustic enclosures ranging from simple rectangular box models to full scale light aircraft in flight. The structural models include simple, stiffened, curved stiffened, and orthotropic panels and double wall windows. The theoretical solutions were obtained by model analysis. Transfer matrix and finite element procedures were utilized. Good agreement between theory and experiment has been achieved. An efficient acoustic add-on treatment was developed for interior noise control in a twin engine light aircraft.

  5. Aircraft noise prediction program user's manual

    NASA Technical Reports Server (NTRS)

    Gillian, R. E.

    1982-01-01

    The Aircraft Noise Prediction Program (ANOPP) predicts aircraft noise with the best methods available. This manual is designed to give the user an understanding of the capabilities of ANOPP and to show how to formulate problems and obtain solutions by using these capabilities. Sections within the manual document basic ANOPP concepts, ANOPP usage, ANOPP functional modules, ANOPP control statement procedure library, and ANOPP permanent data base. appendixes to the manual include information on preparing job decks for the operating systems in use, error diagnostics and recovery techniques, and a glossary of ANOPP terms.

  6. Comparison of predicted engine core noise with current and proposed aircraft noise certification requirements

    NASA Technical Reports Server (NTRS)

    Vonglahn, U. H.; Groesbeck, D. E.

    1981-01-01

    Predicted engine core noise levels are compared with measured total aircraft noise levels and with current and proposed federal noise certification requirements. Comparisons are made at the FAR-36 measuring stations and include consideration of both full- and cutback-power operation at takeoff. In general, core noise provides a barrier to achieving proposed EPA stage 5 noise levels for all types of aircraft. More specifically, core noise levels will limit further reductions in aircraft noise levels for current widebody commercial aircraft.

  7. Aircraft propeller induced structure-borne noise

    NASA Technical Reports Server (NTRS)

    Unruh, James F.

    1989-01-01

    A laboratory-based test apparatus employing components typical of aircraft construction was developed that would allow the study of structure-borne noise transmission due to propeller induced wake/vortex excitation of in-wake structural appendages. The test apparatus was employed to evaluate several aircraft installation effects (power plant placement, engine/nacelle mass loading, and wing/fuselage attachment methods) and several structural response modifications for structure-borne noise control (the use of wing blocking mass/fuel, wing damping treaments, and tuned mechanical dampers). Most important was the development of in-flight structure-borne noise transmission detection techniques using a combination of ground-based frequency response function testing and in-flight structural response measurement. Propeller wake/vortex excitation simulation techniques for improved ground-based testing were also developed to support the in-flight structure-borne noise transmission detection development.

  8. Aircraft noise propagation. [sound diffraction by wings

    NASA Technical Reports Server (NTRS)

    Hadden, W. J.; Pierce, A. D.

    1978-01-01

    Sound diffraction experiments conducted at NASA Langley Research Center to study the acoustical implications of the engine over wing configuration (noise-shielding by wing) and to provide a data base for assessing various theoretical approaches to the problem of aircraft noise reduction are described. Topics explored include the theory of sound diffraction around screens and wedges; the scattering of spherical waves by rectangular patches; plane wave diffraction by a wedge with finite impedence; and the effects of ambient flow and distribution sources.

  9. Aircraft noise and quality of life around Frankfurt Airport.

    PubMed

    Schreckenberg, Dirk; Meis, Markus; Kahl, Cara; Peschel, Christin; Eikmann, Thomas

    2010-09-01

    In a survey of 2,312 residents living near Frankfurt Airport aircraft noise annoyance and disturbances as well as environmental (EQoL) and health-related quality of life (HQoL) were assessed and compared with data on exposure due to aircraft, road traffic, and railway noise. Results indicate higher noise annoyance than predicted from general exposure-response curves. Beside aircraft sound levels source-related attitudes were associated with reactions to aircraft noise. Furthermore, aircraft noise affected EQoL in general, although to a much smaller extent. HQoL was associated with aircraft noise annoyance, noise sensitivity and partly with aircraft noise exposure, in particular in the subgroup of multimorbid residents. The results suggest a recursive relationship between noise and health, yet this cannot be tested in cross-sectional studies. Longitudinal studies would be recommendable to get more insight in the causal paths underlying the noise-health relationship.

  10. Empirical Prediction of Aircraft Landing Gear Noise

    NASA Technical Reports Server (NTRS)

    Golub, Robert A. (Technical Monitor); Guo, Yue-Ping

    2005-01-01

    This report documents a semi-empirical/semi-analytical method for landing gear noise prediction. The method is based on scaling laws of the theory of aerodynamic noise generation and correlation of these scaling laws with current available test data. The former gives the method a sound theoretical foundation and the latter quantitatively determines the relations between the parameters of the landing gear assembly and the far field noise, enabling practical predictions of aircraft landing gear noise, both for parametric trends and for absolute noise levels. The prediction model is validated by wind tunnel test data for an isolated Boeing 737 landing gear and by flight data for the Boeing 777 airplane. In both cases, the predictions agree well with data, both in parametric trends and in absolute noise levels.

  11. Effects of aircraft noise on human activities

    NASA Technical Reports Server (NTRS)

    Arnoult, M. D.; Gilfillan, L. G.

    1983-01-01

    The effects of aircrft noise on human activities was investigated by developing a battery of tasks (1) representative of a range of human activities and (2) sensitive to the disruptive effects of noise. The noise used were recordings of jet aircraft and helicopter sounds at three lvels of loudness--60, 70, and 80 dB(A). Experiment 1 investigated 12 different cognitive tasks, along with two intelligibility tasks included to validate that the noises were being effective. Interference with intelligibility was essentially the same as found in the research literature, but only inconsistent effects were found on either accuracy or latency of performance on the cognitive tasks. When the tasks were grouped into four categories (Intelligibility, Matching, Verbal, and Arithmetic), reliable differences in rated annoyingness of the noises were related to the task category and to the type of noise (jet or helicopter).

  12. Structureborne noise control in advanced turboprop aircraft

    NASA Astrophysics Data System (ADS)

    Loeffler, Irvin J.

    1987-01-01

    Structureborne noise is discussed as a contributor to propeller aircraft interior noise levels that are nonresponsive to the application of a generous amount of cabin sidewall acoustic treatment. High structureborne noise levels may jeopardize passenger acceptance of the fuel-efficient high-speed propeller transport aircraft designed for cruise at Mach 0.65 to 0.85. These single-rotation tractor and counter-rotation tractor and pusher propulsion systems will consume 15 to 30 percent less fuel than advanced turbofan systems. Structureborne noise detection methodologies and the importance of development of a structureborne noise sensor are discussed. A structureborne noise generation mechanism is described in which the periodic components or propeller swirl produce periodic torques and forces on downstream wings and airfoils that are propagated to the cabin interior as noise. Three concepts for controlling structureborne noise are presented: (1) a stator row swirl remover, (2) selection of a proper combination of blade numbers in the rotor/stator system of a single-rotation propeller, and the rotor/rotor system of a counter-rotation propeller, and (3) a tuned mechanical absorber.

  13. [Aircraft noise: changes in biochemical parameters].

    PubMed

    Marth, E; Gallasch, E; Fueger, G F; Möse, J R

    1988-01-01

    The effect of stress caused by aircraft noise was studied on 14 female and 11 male volunteers, who were of a age ranging from 21 to 42 years and of a mean age of 25 years. The volunteers were exposed to an aircraft simulator that stimulated the low level flight of an air force plane and produced a maximum noise level of 105 dB(A) for 3 sec. in a short time. Before and immediately after the exposure, the concentration of ACTH was measured by means of a radioimmunoassay. The ACTH is a hormone, responsible for initiating a chain reaction that is characteristic for a stress reaction. In 100% of the cases the concentration of this hormone increased. It reached a pathological level in 28% of the cases. The effect on the lipid metabolism was expressed by an increase of total cholesterol and a decrease of the triglycerides in the serum. A slight increase in blood sugar which, together with the free fatty acids, is relatively quickly reduced to energy, could be determined. The aircraft noise did not influence the activity of the liver transaminases in any way. A short-term exposure to aircraft noise is able to stimulate a stress reaction, whereby, the determination of the ACTH offers valuable informations.

  14. Advanced Study for Active Noise Control in Aircraft (ASANCA)

    NASA Technical Reports Server (NTRS)

    Borchers, Ingo U.; Emborg, Urban; Sollo, Antonio; Waterman, Elly H.; Paillard, Jacques; Larsen, Peter N.; Venet, Gerard; Goeransson, Peter; Martin, Vincent

    1992-01-01

    Aircraft interior noise and vibration measurements are included in this paper from ground and flight tests. In addition, related initial noise calculations with and without active noise control are conducted. The results obtained to date indicate that active noise control may be an effective means for reducing the critical low frequency aircraft noise.

  15. Prediction of light aircraft interior noise

    NASA Technical Reports Server (NTRS)

    Howlett, J. T.; Morales, D. A.

    1976-01-01

    At the present time, predictions of aircraft interior noise depend heavily on empirical correction factors derived from previous flight measurements. However, to design for acceptable interior noise levels and to optimize acoustic treatments, analytical techniques which do not depend on empirical data are needed. This paper describes a computerized interior noise prediction method for light aircraft. An existing analytical program (developed for commercial jets by Cockburn and Jolly in 1968) forms the basis of some modal analysis work which is described. The accuracy of this modal analysis technique for predicting low-frequency coupled acoustic-structural natural frequencies is discussed along with trends indicating the effects of varying parameters such as fuselage length and diameter, structural stiffness, and interior acoustic absorption.

  16. Aircraft and airport noise control prospective outlook

    SciTech Connect

    Shapiro, N.

    1982-01-01

    In a perspective look at aircraft and airport noise control over the past ten years or more - or more is added here because the Federal Aviation Regulation Part 36 of 1969 is a more significant milestone for the air transportation system than is the Noise Control Act of 1972 - we see an appreciable reduction in the noise emitted by newly designed and newly produced airplanes, particularly those powered by the new high bypass engines, but only, at best, a moderate alleviation of airport noise. The change in airport noise exposure was the consequence of the introduction of some new, quieter airplanes into the airlines fleets and some operational modifications or restrictions at the airports.

  17. Fan Noise Prediction with Applications to Aircraft System Noise Assessment

    NASA Technical Reports Server (NTRS)

    Nark, Douglas M.; Envia, Edmane; Burley, Casey L.

    2009-01-01

    This paper describes an assessment of current fan noise prediction tools by comparing measured and predicted sideline acoustic levels from a benchmark fan noise wind tunnel test. Specifically, an empirical method and newly developed coupled computational approach are utilized to predict aft fan noise for a benchmark test configuration. Comparisons with sideline noise measurements are performed to assess the relative merits of the two approaches. The study identifies issues entailed in coupling the source and propagation codes, as well as provides insight into the capabilities of the tools in predicting the fan noise source and subsequent propagation and radiation. In contrast to the empirical method, the new coupled computational approach provides the ability to investigate acoustic near-field effects. The potential benefits/costs of these new methods are also compared with the existing capabilities in a current aircraft noise system prediction tool. The knowledge gained in this work provides a basis for improved fan source specification in overall aircraft system noise studies.

  18. Overview of Aircraft Noise Prediction Tools Assessment

    NASA Technical Reports Server (NTRS)

    Dahl, Milo D.

    2007-01-01

    The acoustic assessment task for both the Subsonic Fixed Wing and the Supersonic projects under NASA s Fundamental Aeronautics Program was designed to assess the current state-of-the-art in noise prediction capability and to establish baselines for gauging future progress. The documentation of our current capabilities included quantifying the differences between predictions of noise from computer codes and measurements of noise from experimental tests. Quantifying the accuracy of both the computed and experimental results further enhanced the credibility of the assessment. This presentation gives sample results from codes representative of NASA s capabilities in aircraft noise prediction at the system level and at the component level. These include semi-empirical, statistical, analytical, and numerical codes. An example of system level results is shown for an aircraft. Component level results are shown for airframe flaps and landing gear, for jet noise from a variety of nozzles, and for broadband fan noise. Additional results are shown for modeling of the acoustic behavior of duct acoustic lining and the attenuation of sound in lined ducts with flow.

  19. Effects on sleep of noise from two proposed STOL aircraft

    NASA Technical Reports Server (NTRS)

    Lukas, J. S.; Peeler, D. J.; Davis, J. E.

    1975-01-01

    Responses, both overt behavior and those measured by electroencephalograph, to noise by eight male subjects were studied for sixteen consecutive nights. Test stimuli were: (1) The simulated sideline noise of a short takeoff and landing aircraft with blown flaps; (2) the simulated sideline noise of a STOL aircraft of turbofan design; (3) the simulated takeoff noise of the blown flap STOL aircraft; and (4) a four second burst of simulated pink noise. Responses to each noise were tested at three noise intensities selected to represent levels expected indoors from operational aircraft. The results indicate that the blown flap STOL aircraft noise resulted in 8 to 10 percent fewer sleep disturbance responses than did the turbofan STOL aircraft when noises of comparable intensities from similar maneuvers were used.

  20. Further studies of methods for reducing community noise around airports. [aircraft noise - aircraft engines

    NASA Technical Reports Server (NTRS)

    Petersen, R. H.; Barry, D. J.; Kline, D. M.

    1975-01-01

    A simplified method of analysis was used in which all flights at a 'simulated' airport were assumed to operate from one runway in a single direction. For this simulated airport, contours of noise exposure forecast were obtained and evaluated. A flight schedule of the simulated airport which is representative of the 23 major U. S. airports was used. The effect of banning night-time operations by four-engine, narrow-body aircraft in combination with other noise reduction options was studied. The reductions in noise which would occur of two- and three-engine, narrow-body aircraft equipped with a refanned engine was examined. A detailed comparison of the effects of engine cutback on takeoff versus the effects of retrofitting quiet nacelles for narrow-body aircraft was also examined. A method of presenting the effects of various noise reduction options was treated.

  1. Recommendations for field measurements of aircraft noise

    NASA Technical Reports Server (NTRS)

    Marsh, A. H.

    1982-01-01

    Specific recommendations for environmental test criteria, data acquisition procedures, and instrument performance requirements for measurement of noise levels produced by aircraft in flight are provided. Recommendations are also given for measurement of associated airplane and engine parameters and atmospheric conditions. Recommendations are based on capabilities which were available commercially in 1981; they are applicable to field tests of aircraft flying subsonically past microphones located near the surface of the ground either directly under or to the side of a flight path. Aircraft types covered by the recommendations include fixed-wing airplanes powered by turbojet or turbofan engines or by propellers. The recommended field-measurement procedures are consistent with assumed requirements for data processing and analysis.

  2. Recommendations for field measurements of aircraft noise

    NASA Astrophysics Data System (ADS)

    Marsh, A. H.

    1982-04-01

    Specific recommendations for environmental test criteria, data acquisition procedures, and instrument performance requirements for measurement of noise levels produced by aircraft in flight are provided. Recommendations are also given for measurement of associated airplane and engine parameters and atmospheric conditions. Recommendations are based on capabilities which were available commercially in 1981; they are applicable to field tests of aircraft flying subsonically past microphones located near the surface of the ground either directly under or to the side of a flight path. Aircraft types covered by the recommendations include fixed-wing airplanes powered by turbojet or turbofan engines or by propellers. The recommended field-measurement procedures are consistent with assumed requirements for data processing and analysis.

  3. Modeling aircraft noise induced sleep disturbance

    NASA Astrophysics Data System (ADS)

    McGuire, Sarah M.

    One of the primary impacts of aircraft noise on a community is its disruption of sleep. Aircraft noise increases the time to fall asleep, the number of awakenings, and decreases the amount of rapid eye movement and slow wave sleep. Understanding these changes in sleep may be important as they could increase the risk for developing next-day effects such as sleepiness and reduced performance and long-term health effects such as cardiovascular disease. There are models that have been developed to predict the effect of aircraft noise on sleep. However, most of these models only predict the percentage of the population that is awakened. Markov and nonlinear dynamic models have been developed to predict an individual's sleep structure during the night. However, both of these models have limitations. The Markov model only accounts for whether an aircraft event occurred not the noise level or other sound characteristics of the event that may affect the degree of disturbance. The nonlinear dynamic models were developed to describe normal sleep regulation and do not have a noise effects component. In addition, the nonlinear dynamic models have slow dynamics which make it difficult to predict short duration awakenings which occur both spontaneously and as a result of nighttime noise exposure. The purpose of this research was to examine these sleep structure models to determine how they could be altered to predict the effect of aircraft noise on sleep. Different approaches for adding a noise level dependence to the Markov Model was explored and the modified model was validated by comparing predictions to behavioral awakening data. In order to determine how to add faster dynamics to the nonlinear dynamic sleep models it was necessary to have a more detailed sleep stage classification than was available from visual scoring of sleep data. An automatic sleep stage classification algorithm was developed which extracts different features of polysomnography data including the

  4. Shielding of Turbomachinery Broadband Noise from a Hybrid Wing Body Aircraft Configuration

    NASA Technical Reports Server (NTRS)

    Hutcheson, Florence V.; Brooks, Thomas F.; Burley, Casey L.; Bahr, Christopher J.; Stead, Daniel J.; Pope, D. Stuart

    2014-01-01

    The results of an experimental study on the effects of engine placement and vertical tail configuration on shielding of exhaust broadband noise radiation are presented. This study is part of the high fidelity aeroacoustic test of a 5.8% scale Hybrid Wing Body (HWB) aircraft configuration performed in the 14- by 22-Foot Subsonic Tunnel at NASA Langley Research Center. Broadband Engine Noise Simulators (BENS) were used to determine insertion loss due to shielding by the HWB airframe of the broadband component of turbomachinery noise for different airframe configurations and flight conditions. Acoustics data were obtained from flyover and sideline microphones traversed to predefined streamwise stations. Noise measurements performed for different engine locations clearly show the noise benefit associated with positioning the engine nacelles further upstream on the HWB centerbody. Positioning the engine exhaust 2.5 nozzle diameters upstream (compared to 0.5 nozzle diameters downstream) of the HWB trailing edge was found of particular benefit in this study. Analysis of the shielding performance obtained with and without tunnel flow show that the effectiveness of the fuselage shielding of the exhaust noise, although still significant, is greatly reduced by the presence of the free stream flow compared to static conditions. This loss of shielding is due to the turbulence in the model near-wake/boundary layer flow. A comparison of shielding obtained with alternate vertical tail configurations shows limited differences in level; nevertheless, overall trends regarding the effect of cant angle and vertical location are revealed. Finally, it is shown that the vertical tails provide a clear shielding benefit towards the sideline while causing a slight increase in noise below the aircraft.

  5. Effects of aircraft noise on human sleep.

    NASA Technical Reports Server (NTRS)

    Lukas, J. S.

    1972-01-01

    Under controlled conditions in two test rooms, studies were made of the response of sleeping subjects to the stimuli of simulated sonic booms and subsonic jet aircraft noise. Children were relatively nonresponsive to the stimuli. In general, the older the subject, the more likely is behavioral awakening. The response rates to the two types of stimuli were essentially the same. The stimulus intensity had little, if any, effect on frequency of arousal, although other degrees of response did increase.

  6. Prediction of light aircraft interior noise

    NASA Technical Reports Server (NTRS)

    Howlett, J. T.; Morales, D. A.

    1976-01-01

    A computerized interior noise prediction method for light aircraft is described. An existing analytical program, development for commercial jets, forms the basis of some modal analysis work which is described. The accuracy of this modal analysis technique for predicting low-frequency coupled acoustic-structural natural frequencies is discussed along with trends indicating the effects of varying parameters such as fuselage length and diameter, structural stiffness, and interior acoustic absorption.

  7. Classroom auralizations using both speech and intruding noise

    NASA Astrophysics Data System (ADS)

    Coffeen, Robert C.

    2005-04-01

    Continuing work with computer auralizations for education spaces-Can realistic speech auralizations be obtained for classrooms and similar spaces with disturbing ambient noise as produced by HVAC systems, noise from adjacent spaces, aircraft flyovers, and other common noise sources? Several auralizations will be presented relating to these situations.

  8. Visualizing interior and exterior jet aircraft noise

    NASA Astrophysics Data System (ADS)

    Moondra, Manmohan S.

    In today's competitive aerospace industry, the quest for quiet has drawn significant attention to both the interior and exterior design of an airplane. Understanding the noise generation mechanisms of a jet aircraft is a crucial first step toward developing the most cost-effective noise and vibrations abatement methods. In this investigation, the Helmholtz Equation Least Squares (HELS) based nearfield acoustic holography will be used to understand noise transmission caused by jet engine and turbulence into the fuselage of a jet aircraft cruising at 30,000 ft. Modern propulsive jet engines produce exterior noise sources with a high amplitude noise field and complicated characteristics, which makes them very difficult to characterize. In particular, there are turbulent eddies that are moving through the jet at high speeds along the jet boundary. These turbulent eddies in the shear layer produce a directional and frequency dependent noise. The original HELS approach assumes a spherical source at the origin and computes the acoustic field based on spherical emission from this source. This assumption of one source at the origin is not sufficient to characterize a complex source like a jet. As such, a modified HELS approach is introduced that will help improve the source characterization as it is not dependent on a single source at the origin but a number of virtual sources throughout the space. Custom microphones are created to take acoustic pressure measurements around the jet engine. These measured acoustic pressures are then taken as input to the modified HELS algorithm to visualize the noise pattern of a subsonic jet engine.

  9. An aircraft noise pollution model for trajectory optimization

    NASA Technical Reports Server (NTRS)

    Barkana, A.; Cook, G.

    1976-01-01

    A mathematical model describing the generation of aircraft noise is developed with the ultimate purpose of reducing noise (noise-optimizing landing trajectories) in terminal areas. While the model is for a specific aircraft (Boeing 737), the methodology would be applicable to a wide variety of aircraft. The model is used to obtain a footprint on the ground inside of which the noise level is at or above 70 dB.

  10. Noise and Speech Interference: Proceedings of Minisymposium

    NASA Technical Reports Server (NTRS)

    Shepherd, W. T. (Editor)

    1975-01-01

    Several papers are presented which deal with the psychophysical effects of interference with speech and listening activities by different forms of noise masking and filtering. Special attention was given to the annoyance such interruptions cause, particularly that due to aircraft flyover noises. Activities such as telephone listening and television watching were studied. A number of experimental investigations are described and the results are analyzed.

  11. Aircraft Noise Prediction Program theoretical manual: Propeller aerodynamics and noise

    NASA Technical Reports Server (NTRS)

    Zorumski, W. E. (Editor); Weir, D. S. (Editor)

    1986-01-01

    The prediction sequence used in the aircraft noise prediction program (ANOPP) is described. The elements of the sequence are called program modules. The first group of modules analyzes the propeller geometry, the aerodynamics, including both potential and boundary-layer flow, the propeller performance, and the surface loading distribution. This group of modules is based entirely on aerodynamic strip theory. The next group of modules deals with the first group. Predictions of periodic thickness and loading noise are determined with time-domain methods. Broadband noise is predicted by a semiempirical method. Near-field predictions of fuselage surface pressrues include the effects of boundary layer refraction and scattering. Far-field predictions include atmospheric and ground effects.

  12. Lightweight sidewalls for aircraft interior noise control

    NASA Technical Reports Server (NTRS)

    May, D. N.; Plotkin, K. J.; Selden, R. G.; Sharp, B. H.

    1985-01-01

    A theoretical and experimental study was performed to devise lightweight sidewalls for turboprop aircraft. Seven concepts for new sidewalls were analyzed and tested for noise reduction using flat panels of 1.2 m x 1.8 m (4 ft x 6 ft), some of which were aircraft-type constructions and some of which were simpler, easier-to-construct panels to test the functioning of an acoustic principle. Aircraft-application sidewalls were then conceived for each of the seven concepts, and were subjectively evaluated for their ability to meet aircraft nonacoustic design requirements. As a result of the above, the following sidewall concepts were recommended for further investigation: a sidewall in which the interior cavity is vented to ceiling and underfloor areas; sidewalls with wall-mounted resonators, one having a conventional trim panel and one a limp one; and a sidewall with a stiff outer wall and a limp trim panel. These sidewalls appear to promise lower weights than conventional sidewalls adjusted to meet similar acoustic requirements, and further development may prove them to be practical.

  13. Aircraft noise source and computer programs - User's guide

    NASA Technical Reports Server (NTRS)

    Crowley, K. C.; Jaeger, M. A.; Meldrum, D. F.

    1973-01-01

    The application of computer programs for predicting the noise-time histories and noise contours for five types of aircraft is reported. The aircraft considered are: (1) turbojet, (2) turbofan, (3) turboprop, (4) V/STOL, and (5) helicopter. Three principle considerations incorporated in the design of the noise prediction program are core effectiveness, limited input, and variable output reporting.

  14. Active Aircraft Pylon Noise Control System

    NASA Technical Reports Server (NTRS)

    Thomas, Russell H. (Inventor); Czech, Michael J (Inventor); Elmiligui, Alaa A. (Inventor)

    2015-01-01

    An active pylon noise control system for an aircraft includes a pylon structure connecting an engine system with an airframe surface of the aircraft and having at least one aperture to supply a gas or fluid therethrough, an intake portion attached to the pylon structure to intake a gas or fluid, a regulator connected with the intake portion via a plurality of pipes, to regulate a pressure of the gas or fluid, a plenum chamber formed within the pylon structure and connected with the regulator, and configured to receive the gas or fluid as regulated by the regulator, and a plurality of injectors in communication with the plenum chamber to actively inject the gas or fluid through the plurality of apertures of the pylon structure.

  15. A laboratory study of the perceived benefit of additional noise attenuation by houses

    NASA Technical Reports Server (NTRS)

    Flindell, I. H.

    1983-01-01

    Two Experiments were conducted to investigate the perceived benefit of additional house attenuation against aircraft flyover noise. First, subjects made annoyance judgments in a simulated living room while an operative window with real and dummy storm windows was manipulated in full view of those subjects. Second, subjects made annoyance judgments in an anechoic audiometric test chamber of frequency shaped noise signals having spectra closely matched to those of the aircraft flyover noises reproduced in the first experiment. These stimuli represented the aircraft flyover noises in levels and spectra but without the situational and visual cues present in the simulated living room. Perceptual constancy theory implies that annoyance tends to remain constant despite reductions in noise level caused by additional attenuation of which the subjects are fully aware. This theory was supported when account was taken for a reported annoyance overestimation for certain spectra and for a simulated condition cue overreaction.

  16. A laboratory study of the perceived benefit of additional noise attenuation by houses

    NASA Astrophysics Data System (ADS)

    Flindell, I. H.

    1983-06-01

    Two Experiments were conducted to investigate the perceived benefit of additional house attenuation against aircraft flyover noise. First, subjects made annoyance judgments in a simulated living room while an operative window with real and dummy storm windows was manipulated in full view of those subjects. Second, subjects made annoyance judgments in an anechoic audiometric test chamber of frequency shaped noise signals having spectra closely matched to those of the aircraft flyover noises reproduced in the first experiment. These stimuli represented the aircraft flyover noises in levels and spectra but without the situational and visual cues present in the simulated living room. Perceptual constancy theory implies that annoyance tends to remain constant despite reductions in noise level caused by additional attenuation of which the subjects are fully aware. This theory was supported when account was taken for a reported annoyance overestimation for certain spectra and for a simulated condition cue overreaction.

  17. Airframe self-noise: Four years of research. [aircraft noise reduction for commercial aircraft

    NASA Technical Reports Server (NTRS)

    Hardin, J. C.

    1976-01-01

    A critical assessment of the state of the art in airframe self-noise is presented. Full-scale data on the intensity, spectra and directivity of this noise source are evaluated in the light of the comprehensive theory developed by Ffowcs-Williams and Hawkins. Vibration of panels on commercial aircraft is identified as a possible additional source of airframe noise. The present understanding and methods for prediction of other component sources - airfoils, struts, and cavities - are discussed, and areas for further research as well as potential methods for airframe noise reduction are identified. Finally, the various experimental methods which have been developed for airframe noise research are discussed and sample results are presented.

  18. The community response to aircraft noise around six Spanish airports

    NASA Astrophysics Data System (ADS)

    Garcia, A.; Faus, L. J.; Garcia, A. M.

    1993-06-01

    The community response to aircraft noise has been studied through a social survey. A total of 1800 persons living in the vicinity of six major Spanish airports have been interviewed at their homes concerning the environmental quality of the area, dissatisfaction with road traffic noise and aircraft noise, activities interfered with by noise, most disturbing aircraft types, and subjective evaluation of airport impact. All the responses obtained in this survey have been compared with aircraft noise levels corresponding to the residence locations of the people interviewed (values of NEF levels were calculated with the INM model). The results obtained in this work allow one to evaluate the impact of aircraft noise under a wide range of different situations.

  19. The psycho-social consequences of aircraft noise.

    PubMed

    Stockbridge, H C; Lee, M

    1973-03-01

    The paper describes and compares various methods of investigating the social disamentity caused by aircraft noise. These methods include social surveys,the analysis of complaints, and direct observation. Each has practical, political and statistical advantages and disadvantages. The effects of aircraft noise are also discussed and the conclusion is drawn that if social pressure continues to be applied, the technologists can and will quieten aircraft engines.

  20. Noise effects on passenger communication in light aircraft

    NASA Technical Reports Server (NTRS)

    Rupf, J. A.

    1977-01-01

    This paper considers the effect of noise on conversation between two persons seated in a close, side-by-side position such as in a small aircraft. Twelve pairs of subjects were required to converse while being exposed to noises of various levels and spectra similar to those currently found in general aviation aircraft. After a period of noise exposure, subjects rated the disruptive effect of the noise on conversation and judged the acceptability of the noise. Subjective estimates of the maximum times for pleasant conversation in the noises were also obtained.

  1. Community sensitivity to changes in aircraft noise exposure

    NASA Technical Reports Server (NTRS)

    Fidell, S.; Horonjeff, R.; Teffeteller, S.; Pearsons, K.

    1981-01-01

    Interviews were conducted in the vicinity of Burbank Airport during a four month period during which a counterbalanced series of changes in aircraft noise exposure occurred due to runway repairs. Another interview was undertaken approximately one year after completion of the initial runway repairs. Noise measurements were made in conjunction with administration of a brief questionnaire to a near exhaustive sample of residents in four airport neighborhoods. The magnitude and direction of change of annoyance with aircraft noise exposure corresponded closely to the actual changes in physical exposure. Estimates were made of time constants for the rate of change of attitudes toward aircraft noise.

  2. Propeller aircraft noise-certification and flight testing

    NASA Astrophysics Data System (ADS)

    Heller, H.

    Specifications for controlling aircraft noise emission and emission as developed by the ICAO and presently entitled International Standards and Recommended Practices - Environmental Protection, ANNEX 16 to the Convention on International Civil Aviation/ Volume 1, Aircraft Noise are elaborated. Those portions dealing with the noise certification of heavy (commuter and transport) and light (sports and recreational) propeller driven aircraft are discussed. Some information on the practice of noise certification data acquisition and evaluation, based on several hundred measurements, are provided. Current ideas towards changing, consolidating, and improving the present schemes and procedures are described. Specific acoustic problem areas in flight testing and analysis are also covered.

  3. Interior noise considerations for powered-lift STOL aircraft

    NASA Technical Reports Server (NTRS)

    Barton, C. K.

    1975-01-01

    Powered-lift configurations which are currently under development for future use on STOL aircraft involve impingement of the jet engine exhaust onto wing and flap surfaces. Previous studies have suggested that the impinging jet produces higher noise levels at lower frequencies than does the jet alone. These higher levels, together with the close proximity of the engine and flap noise sources to the fuselage sidewall, suggest that the noise levels in these aircraft may be high enough to interfere with passenger comfort. To investigate this possibility, interior noise levels were estimated for both an upper surface blown (USB) and an externally blown flap (EBF) configuration. This paper describes the procedure used to estimate the interior noise levels and compares these levels with levels on existing jet aircraft and on ground transportation vehicles. These estimates indicate high levels in the STOL aircraft; therefore, areas of possible improvements in technology for control of STOL interior noise are also discussed.

  4. Preliminary measurements of aircraft airframe noise with the NASA CV-990 aircraft

    NASA Technical Reports Server (NTRS)

    White, K. C.; Lasagna, P. L.; Putnam, T. W.

    1976-01-01

    Flight tests were conducted in a CV-990 jet transport with engines at idle power to investigate aircraft airframe noise. Test results showed that airframe noise was measured for the aircraft in the landing configuration. The results agreed well with the expected variation with the fifth power of velocity. For the aircraft in the clean configuraton, it was concluded that airframe noise was measured only at higher airspeeds with engine idle noise present at lower speeds. The data show that landing gear and flaps make a significant contribution to airframe noise.

  5. Aircraft noise in the region of the Bucharest-Otopeni Airport. [noise pollution in airport environment

    NASA Technical Reports Server (NTRS)

    Costescu, M.; Gherghel, C.; Curtoglu, A.

    1974-01-01

    Aircraft noise, especially in the region adjoining airports, constitutes a problem that will be aggravated in the near future because of increasing aircraft traffic and the appearance of new types of large tonnage aircraft with continuously increasing powers and speeds. Criteria for the evaluation of aircraft noise are reported and some results of studies carried out in the region of Bucharest-Otopeni Airport are detailed.

  6. Variability of annoyance response due to aircraft noise

    NASA Technical Reports Server (NTRS)

    Dempsey, T. K.; Cawthorn, J. M.

    1979-01-01

    An investigation was conducted to study the variability in the response of subjects participating in noise experiments. This paper presents a description of a model developed to include this variability which incorporates an aircraft-noise adaptation level or an annoyance calibration for each individual. The results indicate that the use of an aircraft-noise adaption level improved prediction accuracy of annoyance responses (and simultaneously reduced response variation).

  7. NASA's Aeroacoustic Tools and Methods for Analysis of Aircraft Noise

    NASA Technical Reports Server (NTRS)

    Rizzi, Stephen A.; Lopes, Leonard V.; Burley, Casey L.

    2015-01-01

    Aircraft community noise is a significant concern due to continued growth in air traffic, increasingly stringent environmental goals, and operational limitations imposed by airport authorities. The ability to quantify aircraft noise at the source and ultimately at observers is required to develop low noise aircraft designs and flight procedures. Predicting noise at the source, accounting for scattering and propagation through the atmosphere to the observer, and assessing the perception and impact on a community requires physics-based aeroacoustics tools. Along with the analyses for aero-performance, weights and fuel burn, these tools can provide the acoustic component for aircraft MDAO (Multidisciplinary Design Analysis and Optimization). Over the last decade significant progress has been made in advancing the aeroacoustic tools such that acoustic analyses can now be performed during the design process. One major and enabling advance has been the development of the system noise framework known as Aircraft NOise Prediction Program2 (ANOPP2). ANOPP2 is NASA's aeroacoustic toolset and is designed to facilitate the combination of acoustic approaches of varying fidelity for the analysis of noise from conventional and unconventional aircraft. The toolset includes a framework that integrates noise prediction and propagation methods into a unified system for use within general aircraft analysis software. This includes acoustic analyses, signal processing and interfaces that allow for the assessment of perception of noise on a community. ANOPP2's capability to incorporate medium fidelity shielding predictions and wind tunnel experiments into a design environment is presented. An assessment of noise from a conventional and Hybrid Wing Body (HWB) aircraft using medium fidelity scattering methods combined with noise measurements from a model-scale HWB recently placed in NASA's 14x22 wind tunnel are presented. The results are in the form of community noise metrics and

  8. Night time aircraft noise exposure and children's cognitive performance.

    PubMed

    Stansfeld, Stephen; Hygge, Staffan; Clark, Charlotte; Alfred, Tamuno

    2010-01-01

    Chronic aircraft noise exposure in children is associated with impairment of reading and long-term memory. Most studies have not differentiated between day or nighttime noise exposure. It has been hypothesized that sleep disturbance might mediate the association of aircraft noise exposure and cognitive impairment in children. This study involves secondary analysis of data from the Munich Study and the UK Road Traffic and Aircraft Noise Exposure and Children's Cognition and Health (RANCH) Study sample to test this. In the Munich study, 330 children were assessed on cognitive measures in three measurement waves a year apart, before and after the switchover of airports. Self-reports of sleep quality were analyzed across airports, aircraft noise exposure and measurement wave to test whether changes in nighttime noise exposure had any effect on reported sleep quality, and whether this showed the same pattern as for changes in cognitive performance. For the UK sample of the RANCH study, night noise contour information was linked to the children's home and related to sleep disturbance and cognitive performance. In the Munich study, analysis of sleep quality questions showed no consistent interactions between airport, noise, and measurement wave, suggesting that poor sleep quality does not mediate the association between noise exposure and cognition. Daytime and nighttime aircraft noise exposure was highly correlated in the RANCH study. Although night noise exposure was significantly associated with impaired reading and recognition memory, once home night noise exposure was centered on daytime school noise exposure, night noise had no additional effect to daytime noise exposure. These analyses took advantage of secondary data available from two studies of aircraft noise and cognition. They were not initially designed to examine sleep disturbance and cognition, and thus, there are methodological limitations which make it less than ideal in giving definitive answers to these

  9. Aircraft noise reduction technology. [to show impact on individuals and communities, component noise sources, and operational procedures to reduce impact

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Aircraft and airport noise reduction technology programs conducted by NASA are presented. The subjects discussed are: (1) effects of aircraft noise on individuals and communities, (2) status of aircraft source noise technology, (3) operational procedures to reduce the impact of aircraft noise, and (4) NASA relations with military services in aircraft noise problems. References to more detailed technical literature on the subjects discussed are included.

  10. Recent Progress in Engine Noise Reduction for Commercial Aircraft Applications

    NASA Technical Reports Server (NTRS)

    Huff, Dennis L.

    2003-01-01

    Considerable progress has been made over the past ten years developing technologies for reducing aircraft noise. Engine noise continues to be a dominate source, particularly for aircraft departing from airports. Research efforts have concentrated on developing noise prediction methods, experimental validation, and developing noise reduction concepts that have been verified through model scale and static engine tests. Most of the work has concentrated on fan and jet components for commercial turbofan engines. In this seminar, an overview of the engine noise reduction work that was sponsored by NASA s Advanced Subsonic Technology Noise Reduction Program will be given, along with background information on turbofan noise sources and certification procedures. Concepts like "chevron" nozzles for jet noise reduction and swept stators for fan noise reduction will be highlighted. A preliminary assessment on how the new technologies will impact future engines will be given.

  11. Supporting statement for community study of human response to aircraft noise

    NASA Technical Reports Server (NTRS)

    Dempsey, T. K.; Deloach, R.; Stephens, D. G.

    1980-01-01

    A study plan for quantifying the relationship between human annoyance and the noise level of individual aircraft events is studied. The validity of various noise descriptors or noise metrics for quantifying aircraft noise levels are assessed.

  12. NASA Glenn's Contributions to Aircraft Engine Noise Research

    NASA Technical Reports Server (NTRS)

    Huff, Dennis L.

    2013-01-01

    This report reviews all engine noise research conducted at the NASA Glenn Research Center over the past 70 years. This report includes a historical perspective of the Center and the facilities used to conduct the research. Major noise research programs are highlighted to show their impact on industry and on the development of aircraft noise reduction technology. Noise reduction trends are discussed, and future aircraft concepts are presented. Since the 1960s, research results show that the average perceived noise level has been reduced by about 20 decibels (dB). Studies also show that, depending on the size of the airport, the aircraft fleet mix, and the actual growth in air travel, another 15 to 17 dB reduction will be required to achieve NASA's long-term goal of providing technologies to limit objectionable noise to the boundaries of an average airport.

  13. NASA Glenn's Contributions to Aircraft Engine Noise Research

    NASA Technical Reports Server (NTRS)

    Huff, Dennis L.

    2014-01-01

    This presentation reviews engine noise research conducted at the NASA Glenn Research Center over the past 70 years. This report includes a historical perspective of the Center and the facilities used to conduct the research. Major noise research programs are highlighted to show their impact on industry and on the development of aircraft noise reduction technology. Noise reduction trends are discussed, and future aircraft concepts are presented. Since the 1960s, research results show that the average perceived noise level has been reduced by about 20 decibels (dB). Studies also show that, depending on the size of the airport, the aircraft fleet mix, and the actual growth in air travel, another 15 to 17 dB reduction will be required to achieve NASAs long-term goal of providing technologies to limit objectionable noise to the boundaries of an average airport.

  14. Damped Windows for Aircraft Interior Noise Control

    NASA Technical Reports Server (NTRS)

    Buehrle, Ralph D.; Klos, Jacob; Gibbs, Gary P.

    2004-01-01

    Windows are a significant path for structure-borne and air-borne noise transmission into aircraft. To improve the acoustical performance, damped windows were fabricated using two or three layers of plexiglas with transparent viscoelastic damping material sandwiched between the layers. In this paper, numerical and experimental results are used to evaluate the acoustic benefits of damped windows. Tests were performed in the Structural Acoustic Loads and Transmission Facility at NASA Langley Research Center to measure the transmission loss for diffuse acoustic excitation and radiated sound power for point force excitation. Comparisons between uniform and damped plexiglas windows showed increased transmission loss of 6 dB at the first natural frequency, 6 dB at coincidence, and 4.5 dB over a 50 to 4k Hz range. Radiated sound power was reduced up to 7 dB at the lower natural frequencies and 3.7 dB over a 1000 Hz bandwidth. Numerical models are presented for the prediction of radiated sound power for point force excitation and transmission loss for diffuse acoustic excitation. Radiated sound power and transmission loss predictions are in good agreement with experimental data. A parametric study is presented that evaluates the optimum configuration of the damped plexiglas windows for reducing the radiated sound power.

  15. Method and System for Active Noise Control of Tiltrotor Aircraft

    NASA Technical Reports Server (NTRS)

    Betzina, Mark D. (Inventor); Nguyen, Khanh Q. (Inventor)

    2003-01-01

    Methods and systems for reducing noise generated by rotating blades of a tiltrotor aircraft. A rotor-blade pitch angle associated with the tiltrotor aircraft can be controlled utilizing a swashplate connected to rotating blades of the tiltrotor aircraft. One or more Higher Harmonic Control (HHC) signals can be transmitted and input to a swashplate control actuator associated with the swashplate. A particular blade pitch oscillation (e.g., four cycles per revolution) is there-after produced in a rotating frame of reference associated with the rotating blades in response to input of an HHC signal to the swashplate control actuator associated with the swashplate to thereby reduce noise associated with the rotating blades of the tiltrotor aircraft. The HHC signal can be transmitted and input to the swashplate control actuator to reduce noise of the tiltrotor aircraft in response to a user input utilizing an open-loop configuration.

  16. Measurement of speech levels in the presence of time varying background noise

    NASA Technical Reports Server (NTRS)

    Pearsons, K. S.; Horonjeff, R.

    1982-01-01

    Short-term speech level measurements which could be used to note changes in vocal effort in a time varying noise environment were studied. Knowing the changes in speech level would in turn allow prediction of intelligibility in the presence of aircraft flyover noise. Tests indicated that it is possible to use two second samples of speech to estimate long term root mean square speech levels. Other tests were also performed in which people read out loud during aircraft flyover noise. Results of these tests indicate that people do indeed raise their voice during flyovers at a rate of about 3-1/2 dB for each 10 dB increase in background level. This finding is in agreement with other tests of speech levels in the presence of steady state background noise.

  17. General aviation aircraft interior noise problem: Some suggested solutions

    NASA Technical Reports Server (NTRS)

    Roskam, J.; Navaneethan, R.

    1984-01-01

    Laboratory investigation of sound transmission through panels and the use of modern data analysis techniques applied to actual aircraft is used to determine methods to reduce general aviation interior noise. The experimental noise reduction characteristics of stiffened flat and curved panels with damping treatment are discussed. The experimental results of double-wall panels used in the general aviation industry are given. The effects of skin panel material, fiberglass insulation and trim panel material on the noise reduction characteristics of double-wall panels are investigated. With few modifications, the classical sound transmission theory can be used to design the interior noise control treatment of aircraft. Acoustic intensity and analysis procedures are included.

  18. Cabin Noise Control for Twin Engine General Aviation Aircraft

    NASA Technical Reports Server (NTRS)

    Vaicaitis, R.; Slazak, M.

    1982-01-01

    An analytical model based on modal analysis was developed to predict the noise transmission into a twin-engine light aircraft. The model was applied to optimize the interior noise to an A-weighted level of 85 dBA. To achieve the required noise attenuation, add-on treatments in the form of honeycomb panels, damping tapes, acoustic blankets, septum barriers and limp trim panels were added to the existing structure. The added weight of the noise control treatment is about 1.1 percent of the total gross take-off weight of the aircraft.

  19. Aircraft noise effects on sleep: mechanisms, mitigation and research needs.

    PubMed

    Basner, Mathias; Griefahn, Barbara; Berg, Martin van den

    2010-01-01

    There is an ample number of laboratory and field studies which provide sufficient evidence that aircraft noise disturbs sleep and, depending on traffic volume and noise levels, may impair behavior and well-being during the day. Although clinical sleep disorders have been shown to be associated with increased risk of cardiovascular diseases, only little is known about the long-term effects of aircraft noise disturbed sleep on health. National and international laws and guidelines try to limit aircraft noise exposure facilitating active and passive noise control to prevent relevant sleep disturbances and its consequences. Adopting the harmonized indicator of the European Union Directive 2002/49/EC, the WHO Night Noise Guideline for Europe (NNG) defines four Lnight , outside ranges associated with different risk levels of sleep disturbance and other health effects ( < 30, 30-40, 40-55, and> 55 dBA). Although traffic patterns differing in number and noise levels of events that lead to varying degrees of sleep disturbance may result in the same Lnight , simulations of nights with up to 200 aircraft noise events per night nicely corroborate expert opinion guidelines formulated in WHO's NNG. In the future, large scale field studies on the effects of nocturnal (aircraft) noise on sleep are needed. They should involve representative samples of the population including vulnerable groups like children and chronically ill subjects. Optimally, these studies are prospective in nature and examine the long-term consequences of noise-induced sleep disturbances. Furthermore, epidemiological case-control studies on the association of nocturnal (aircraft) noise exposure and cardiovascular disease are needed. Despite the existing gaps in knowledge on long-term health effects, sufficient data are available for defining limit values, guidelines and protection concepts, which should be updated with the availability of new data.

  20. Interior noise levels of two propeller-driven light aircraft

    NASA Technical Reports Server (NTRS)

    Catherines, J. J.; Mayes, W. H.

    1975-01-01

    The relationships between aircraft operating conditions and interior noise and the degree to which ground testing can be used in lieu of flight testing for performing interior noise research were studied. The results show that the noise inside light aircraft is strongly influenced by the rotational speed of the engine and propeller. Both the overall noise and low frequency spectra levels were observed to decrease with increasing high speed rpm operations during flight. This phenomenon and its significance is not presently understood. Comparison of spectra obtained in flight with spectra obtained on the ground suggests that identification of frequency components and relative amplitude of propeller and engine noise sources may be evaluated on stationary aircraft.

  1. On Noise Assessment for Blended Wing Body Aircraft

    NASA Technical Reports Server (NTRS)

    Guo, Yueping; Burley, Casey L; Thomas, Russell H.

    2014-01-01

    A system noise study is presented for the blended-wing-body (BWB) aircraft configured with advanced technologies that are projected to be available in the 2025 timeframe of the NASA N+2 definition. This system noise assessment shows that the noise levels of the baseline configuration, measured by the cumulative Effective Perceived Noise Level (EPNL), have a large margin of 34 dB to the aircraft noise regulation of Stage 4. This confirms the acoustic benefits of the BWB shielding of engine noise, as well as other projected noise reduction technologies, but the noise margins are less than previously published assessments and are short of meeting the NASA N+2 noise goal. In establishing the relevance of the acoustic assessment framework, the design of the BWB configuration, the technical approach of the noise analysis, the databases and prediction tools used in the assessment are first described and discussed. The predicted noise levels and the component decomposition are then analyzed to identify the ranking order of importance of various noise components, revealing the prominence of airframe noise, which holds up the levels at all three noise certification locations and renders engine noise reduction technologies less effective. When projected airframe component noise reduction is added to the HWB configuration, it is shown that the cumulative noise margin to Stage 4 can reach 41.6 dB, nearly at the NASA goal. These results are compared with a previous NASA assessment with a different study framework. The approaches that yield projections of such low noise levels are discussed including aggressive assumptions on future technologies, assumptions on flight profile management, engine installation, and component noise reduction technologies. It is shown that reliable predictions of component noise also play an important role in the system noise assessment. The comparisons and discussions illustrate the importance of practical feasibilities and constraints in aircraft

  2. Measurement, analysis, and prediction of aircraft interior noise

    NASA Technical Reports Server (NTRS)

    Howlett, J. T.; Williams, L. H.; Catherines, J. J.; Jha, S. K.

    1976-01-01

    Considerations of comfort of passengers and crew in light aircraft and helicopters indicate substantial benefits may be obtained by the reduction of interior noise levels. This paper discusses an ongoing research effort to reduce interior noise in such vehicles. Data from both field and laboratory studies for a light aircraft are presented. The laboratory data indicate that structural vibration is an efficient source of interior noise and should be considered in the reduction of interior noise. Flight data taken on a helicopter before and after installation of acoustic treatment demonstrate that over 30 dB of noise reduction can be obtained in certain portions of the spectra. However, subjective evaluations of the treated vehicle indicate that further reductions in interior noise are desirable. An existing interior noise prediction method which was developed for large jet transports was applied to study low-frequency noise in a light aircraft fuselage. The results indicate that improvements in the analytical model may be necessary for the prediction of interior noise of light aircraft.

  3. Multidisciplinary design optimization of low-noise transport aircraft

    NASA Astrophysics Data System (ADS)

    Leifsson, Leifur Thor

    The objective of this research is to examine how to design low-noise transport aircraft using Multidisciplinary Design Optimization (MDO). The subject is approached by designing for low-noise both implicitly and explicitly. The explicit design approach involves optimizing an aircraft while explicitly constraining the noise level. An MDO framework capable of optimizing both a cantilever wing and a Strut-Braced-Wing (SBW) aircraft was developed. The objective is to design aircraft for low-airframe-noise at the approach conditions and quantify the change in weight and performance with respect to a traditionally designed aircraft. The results show that reducing airframe noise by reducing approach speed alone, will not provide significant noise reduction without a large performance and weight penalty. Therefore, more dramatic changes to the aircraft design are needed to achieve a significant airframe noise reduction. Another study showed that the trailing-edge flap can be eliminated, as well as all the noise associated with that device, without incurring a significant weight and performance penalty. Lastly, an airframe noise analysis showed that a SBW aircraft with short fuselage-mounted landing gear could have a similar or potentially a lower airframe noise level than a comparable cantilever wing aircraft. The implicit design approach involves selecting a configuration that supports a low-noise operation, and optimizing for performance. In this study a Blended-Wing-Body (BWB) transport aircraft, with a conventional and a distributed propulsion system, was optimized for minimum take-off gross weight. The effects of distributed propulsion were studied using an MDO framework previously developed at Virginia Tech. The results show that more than two thirds of the theoretical savings of distributed propulsion are required for the BWB designs with a distributed propulsion system to have comparable gross weight as those with a conventional propulsion system. Therefore

  4. Propeller aircraft interior noise model utilization study and validation

    NASA Astrophysics Data System (ADS)

    Pope, L. D.

    1984-09-01

    Utilization and validation of a computer program designed for aircraft interior noise prediction is considered. The program, entitled PAIN (an acronym for Propeller Aircraft Interior Noise), permits (in theory) predictions of sound levels inside propeller driven aircraft arising from sidewall transmission. The objective of the work reported was to determine the practicality of making predictions for various airplanes and the extent of the program's capabilities. The ultimate purpose was to discern the quality of predictions for tonal levels inside an aircraft occurring at the propeller blade passage frequency and its harmonics. The effort involved three tasks: (1) program validation through comparisons of predictions with scale-model test results; (2) development of utilization schemes for large (full scale) fuselages; and (3) validation through comparisons of predictions with measurements taken in flight tests on a turboprop aircraft. Findings should enable future users of the program to efficiently undertake and correctly interpret predictions.

  5. Propeller aircraft interior noise model utilization study and validation

    NASA Technical Reports Server (NTRS)

    Pope, L. D.

    1984-01-01

    Utilization and validation of a computer program designed for aircraft interior noise prediction is considered. The program, entitled PAIN (an acronym for Propeller Aircraft Interior Noise), permits (in theory) predictions of sound levels inside propeller driven aircraft arising from sidewall transmission. The objective of the work reported was to determine the practicality of making predictions for various airplanes and the extent of the program's capabilities. The ultimate purpose was to discern the quality of predictions for tonal levels inside an aircraft occurring at the propeller blade passage frequency and its harmonics. The effort involved three tasks: (1) program validation through comparisons of predictions with scale-model test results; (2) development of utilization schemes for large (full scale) fuselages; and (3) validation through comparisons of predictions with measurements taken in flight tests on a turboprop aircraft. Findings should enable future users of the program to efficiently undertake and correctly interpret predictions.

  6. The Insulation of Houses against Noise from Aircraft in Flight.

    ERIC Educational Resources Information Center

    Scholes, W. E.; Parkin, P. H.

    Three groups of traditional houses were insulated against aircraft noise by double glazing and installing sound attenuating ventilator units. For upper floor rooms of two story houses, overall insulations of 35-40 dB were obtainable, providing transmission through the roofs and down flues were also reduced. The noise levels caused by ventilator…

  7. Potential for Landing Gear Noise Reduction on Advanced Aircraft Configurations

    NASA Technical Reports Server (NTRS)

    Thomas, Russell H.; Nickol, Craig L.; Burley, Casey L.; Guo, Yueping

    2016-01-01

    The potential of significantly reducing aircraft landing gear noise is explored for aircraft configurations with engines installed above the wings or the fuselage. An innovative concept is studied that does not alter the main gear assembly itself but does shorten the main strut and integrates the gear in pods whose interior surfaces are treated with acoustic liner. The concept is meant to achieve maximum noise reduction so that main landing gears can be eliminated as a major source of airframe noise. By applying this concept to an aircraft configuration with 2025 entry-into-service technology levels, it is shown that compared to noise levels of current technology, the main gear noise can be reduced by 10 EPNL dB, bringing the main gear noise close to a floor established by other components such as the nose gear. The assessment of the noise reduction potential accounts for design features for the advanced aircraft configuration and includes the effects of local flow velocity in and around the pods, gear noise reflection from the airframe, and reflection and attenuation from acoustic liner treatment on pod surfaces and doors. A technical roadmap for maturing this concept is discussed, and the possible drag increase at cruise due to the addition of the pods is identified as a challenge, which needs to be quantified and minimized possibly with the combination of detailed design and application of drag reduction technologies.

  8. Aircraft noise and speech intelligibility in an outdoor living space.

    PubMed

    Alvarsson, Jesper J; Nordström, Henrik; Lundén, Peter; Nilsson, Mats E

    2014-06-01

    Studies of effects on speech intelligibility from aircraft noise in outdoor places are currently lacking. To explore these effects, first-order ambisonic recordings of aircraft noise were reproduced outdoors in a pergola. The average background level was 47 dB LA eq. Lists of phonetically balanced words (LAS max,word = 54 dB) were reproduced simultaneously with aircraft passage noise (LAS max,noise = 72-84 dB). Twenty individually tested listeners wrote down each presented word while seated in the pergola. The main results were (i) aircraft noise negatively affects speech intelligibility at sound pressure levels that exceed those of the speech sound (signal-to-noise ratio, S/N < 0), and (ii) the simple A-weighted S/N ratio was nearly as good an indicator of speech intelligibility as were two more advanced models, the Speech Intelligibility Index and Glasberg and Moore's [J. Audio Eng. Soc. 53, 906-918 (2005)] partial loudness model. This suggests that any of these indicators is applicable for predicting effects of aircraft noise on speech intelligibility outdoors.

  9. Selected methods for quantification of community exposure to aircraft noise

    NASA Technical Reports Server (NTRS)

    Edge, P. M., Jr.; Cawthorn, J. M.

    1976-01-01

    A review of the state-of-the-art for the quantification of community exposure to aircraft noise is presented. Physical aspects, people response considerations, and practicalities of useful application of scales of measure are included. Historical background up through the current technology is briefly presented. The developments of both single-event and multiple-event scales are covered. Selective choice is made of scales currently in the forefront of interest and recommended methodology is presented for use in computer programing to translate aircraft noise data into predictions of community noise exposure. Brief consideration is given to future programing developments and to supportive research needs.

  10. Re-engining - The sound case for aircraft noise reduction

    NASA Astrophysics Data System (ADS)

    Goddard, K.

    1991-06-01

    The paper reviews the history of legislation to reduce jet-powered aircraft noise, particularly in the U.S.A. Recently introduced legislation is discussed and the paper goes on to explain the fundamental advantage of re-engining as a means of reducing aircraft noise. Th Rolls-Royce Tay engine is introduced and the two re-engine programs already launched are described. The expected large reductions in noise level which result from re-engining are illustrated. The paper concludes with a discussion on new programs, on the current airline business scene and on some aspects of the economics of re-engining.

  11. Community reaction to aircraft noise around smaller city airports

    NASA Technical Reports Server (NTRS)

    Connor, W. K.; Patterson, H. P.

    1972-01-01

    The results are presented of a study of community reaction to jet aircraft noise in the vicinity of airports in Chattanooga, Tennessee, and Reno, Nevada. These cities were surveyed in order to obtain data for comparison with that obtained in larger cities during a previous study. (The cities studied earlier were Boston, Chicago, Dallas, Denver, Los Angeles, Miami, and New York.) The purpose of the present effort was to observe the relative reaction under conditions of lower noise exposure and in less highly urbanized areas, and to test the previously developed predictive equation for annoyance under such circumstances. In Chattanooga and Reno a total of 1960 personal interviews based upon questionnaires were obtained. Aircraft noise measurements were made concurrently and aircraft operations logs were maintained for several weeks in each city to permit computation of noise exposures. The survey respondents were chosen randomly from various exposure zones.

  12. The cost of noise reduction in commercial tilt rotor aircraft

    NASA Technical Reports Server (NTRS)

    Faulkner, H. B.

    1974-01-01

    The relationship between direct operating cost (DOC) and departure noise annoyance was developed for commercial tilt rotor aircraft. This was accomplished by generating a series of tilt rotor aircraft designs to meet various noise goals at minimum DOC. These vehicles were spaced across the spectrum of possible noise levels from completely unconstrained to the quietest vehicle that could be designed within the study ground rules. A group of optimization parameters were varied to find the minimum DOC while other inputs were held constant and some external constraints were met. This basic variation was then extended to different aircraft sizes and technology time frames. It was concluded that reducing noise annoyance by designing for lower rotor tip speeds is a very promising avenue for future research and development. It appears that the cost of halving the annoyance compared to an unconstrained design is insignificant and the cost of halving the annoyance again is small.

  13. The psychological cost of aircraft noise for children.

    PubMed

    Bullinger, M; Hygge, S; Evans, G W; Meis, M; von Mackensen, S

    1999-08-01

    Psychological effects of aircraft noise exposure on children have only recently been addressed in the References. The current study took advantage of a natural experiment caused by the opening of a major new airport, exposing children in a formerly quiet area to aircraft noise. In this prospective longitudinal investigation, which employed non-exposed control groups, effects of aircraft noise prior to and subsequent to inauguration of the new airport as well as effects of chronic noise and its reduction at the old airport (6 and 18 month post relocation), were studied in 326 children aged 9 to 13 years. The psychological health of children was investigated with a standardized quality of life scale as well as with a motivational measure derived from the Glass and Singer stress aftereffects paradigm. In addition a self report noise annoyance scale was used. In the children studied at the two airports over three time points, results showed a significant decrease of total quality of life 18 month after aircraft noise exposure as well as a motivational deficits operationalized by fewer attempts to solve insoluble puzzles in the new airport area. Parallel shifts in children's attributions for failure were also noted. At the old airport parallel impairments were present before the airport relocation but subsided there after. These findings are in accord with reports of impaired psychological health after noise exposure and indicate the relevance of monitoring psychological parameters as a function of environmental stressors among children. PMID:10507123

  14. Practical Ranges of Loudness Levels of Various Types of Environmental Noise, Including Traffic Noise, Aircraft Noise, and Industrial Noise

    PubMed Central

    Salomons, Erik M.; Janssen, Sabine A.

    2011-01-01

    In environmental noise control one commonly employs the A-weighted sound level as an approximate measure of the effect of noise on people. A measure that is more closely related to direct human perception of noise is the loudness level. At constant A-weighted sound level, the loudness level of a noise signal varies considerably with the shape of the frequency spectrum of the noise signal. In particular the bandwidth of the spectrum has a large effect on the loudness level, due to the effect of critical bands in the human hearing system. The low-frequency content of the spectrum also has an effect on the loudness level. In this note the relation between loudness level and A-weighted sound level is analyzed for various environmental noise spectra, including spectra of traffic noise, aircraft noise, and industrial noise. From loudness levels calculated for these environmental noise spectra, diagrams are constructed that show the relation between loudness level, A-weighted sound level, and shape of the spectrum. The diagrams show that the upper limits of the loudness level for broadband environmental noise spectra are about 20 to 40 phon higher than the lower limits for narrowband spectra, which correspond to the loudness levels of pure tones. The diagrams are useful for assessing limitations and potential improvements of environmental noise control methods and policy based on A-weighted sound levels. PMID:21776205

  15. NASA Auralization Tool Reveals Aircraft Noise Differences

    NASA Video Gallery

    How can we *know* that a future aircraft will be less noisy than the ones we fly in today? NASA builds computer-based tools to predict those things, with certainty. This video is an "auralization" ...

  16. Aircraft noise effects: An inter-disciplinary study of the effect of aircraft noise on man. Part 3: Supplementary analyses of the social-scientific portion of the study on aircraft noise conducted by the DFG

    NASA Technical Reports Server (NTRS)

    Schumer, R.

    1980-01-01

    Variables in a study of noise perception near the Munich-Reims airport are explained. The interactive effect of the stimulus (aircraft noise) and moderator (noise sensitivity) on the aircraft noise reaction (disturbance or annoyance) is considered. Methods employed to demonstrate that the moderator has a differencing effect on various stimulus levels are described. Results of the social-scientific portion of the aircraft noise project are compared with those of other survey studies on the problem of aircraft noise. Procedures for contrast group analysis and multiple classification analysis are examined with focus on some difficulties in their application.

  17. Annoyance resulting from intrusion of aircraft sounds upon various activities

    NASA Technical Reports Server (NTRS)

    Gunn, W. J.; Shepherd, W. T.; Fletcher, J. L.

    1975-01-01

    An experiment was conducted in which subjects were engaged in TV viewing, telephone listening, or reverie (no activity) for a 1/2-hour session. During the session, they were exposed to a series of recorded aircraft sounds at the rate of one flight every 2 minutes. Within each session, four levels of flyover noise, separated by dB increments, were presented several times in a Latin Square balanced sequence. The peak level of the noisiest flyover in any session was fixed at 95, 90, 85, 75, or 70 dBA. At the end of the test session, subjects recorded their responses to the aircraft sounds, using a bipolar scale which covered the range from very pleasant to extremely annoying. Responses to aircraft noises were found to be significantly affected by the particular activity in which the subjects were engaged. Not all subjects found the aircraft sounds to be annoying.

  18. Annoyance with aircraft noise in local recreational areas and the recreationists' noise situation at home

    NASA Astrophysics Data System (ADS)

    Krog, Norun Hjertager; Engdahl, Bo

    2005-01-01

    Few socioacoustic studies have examined the effect of noise on outdoor recreationists. Most studies concentrate on one setting of the everyday life of a noise-exposed population, which mainly has been the residential setting. This article relates annoyance with aircraft noise in outdoor recreational areas to the recreationists' noise situation at home. In conjunction with the relocation of the main airport of Norway in 1998, field studies were conducted before and after the change in one area near the old airport (1930 survey respondents), and one area near the new airport (1001 survey respondents). Multivariate linear regression analyses of the relationship between annoyance and aircraft noise exposure (LAeq for the aircraft events) in the recreational areas were conducted, controlled for noise annoyance at home, or aircraft noise exposure at home, the situation (before/after the change), context- and demographic variables. People more highly annoyed at home tended to be more annoyed than others while in the recreational areas. A significant effect of aircraft noise exposure at home on annoyance in the recreational setting was not found. More research is warranted regarding the relationship between noise exposure at home and outdoor recreational demands. .

  19. Aircraft noise prediction program theoretical manual: Rotorcraft System Noise Prediction System (ROTONET), part 4

    NASA Technical Reports Server (NTRS)

    Weir, Donald S.; Jumper, Stephen J.; Burley, Casey L.; Golub, Robert A.

    1995-01-01

    This document describes the theoretical methods used in the rotorcraft noise prediction system (ROTONET), which is a part of the NASA Aircraft Noise Prediction Program (ANOPP). The ANOPP code consists of an executive, database manager, and prediction modules for jet engine, propeller, and rotor noise. The ROTONET subsystem contains modules for the prediction of rotor airloads and performance with momentum theory and prescribed wake aerodynamics, rotor tone noise with compact chordwise and full-surface solutions to the Ffowcs-Williams-Hawkings equations, semiempirical airfoil broadband noise, and turbulence ingestion broadband noise. Flight dynamics, atmosphere propagation, and noise metric calculations are covered in NASA TM-83199, Parts 1, 2, and 3.

  20. A measurement model for general noise reaction in response to aircraft noise.

    PubMed

    Kroesen, Maarten; Schreckenberg, Dirk

    2011-01-01

    In this paper a measurement model for general noise reaction (GNR) in response to aircraft noise is developed to assess the performance of aircraft noise annoyance and a direct measure of general reaction as indicators of this concept. For this purpose GNR is conceptualized as a superordinate latent construct underlying particular manifestations. This conceptualization is empirically tested through estimation of a second-order factor model. Data from a community survey at Frankfurt Airport are used for this purpose (N=2206). The data fit the hypothesized factor structure well and support the conceptualization of GNR as a superordinate construct. It is concluded that noise annoyance and a direct measure of general reaction to noise capture a large part of the negative feelings and emotions in response to aircraft noise but are unable to capture all relevant variance. The paper concludes with recommendations for the valid measurement of community reaction and several directions for further research.

  1. Aircraft noise and incidence of hypertension--gender specific effects.

    PubMed

    Eriksson, Charlotta; Bluhm, Gösta; Hilding, Agneta; Ostenson, Claes-Göran; Pershagen, Göran

    2010-11-01

    Recent studies show associations between aircraft noise and cardiovascular outcomes such as hypertension. However, these studies were mostly cross-sectional and there are uncertainties regarding potential gender differences as well as sensitive subgroups. In this study, we investigated the cumulative incidence of hypertension in relation to aircraft noise exposure among Swedish men and women living in Stockholm County. A total of 4721 subjects, aged 35-56 at baseline, were followed for 8-10 years. The population was selected according to family history of diabetes, which was present for half of the subjects. The exposure assessment was performed by geographical information systems and based on residential history during the period of follow-up. Blood pressure was measured at baseline and at the end of follow-up. Additional information regarding diagnosis and treatment of hypertension as well as various lifestyle factors was provided by questionnaires. In the overall population, no increased risk for hypertension was found among subjects exposed to aircraft noise ≥ 50 dB(A) L(den); relative risk (RR) 1.02 (95% CI 0.90-1.15). When restricting the cohort to those not using tobacco at the blood pressure measurements, a significant risk increase per 5 dB(A) of aircraft noise exposure was found in men; RR 1.21 (1.05-1.39), but not in women; RR 0.97 (0.83-1.13). In both sexes combined, an increased risk of hypertension related to aircraft noise exposure was indicated primarily among those reporting annoyance to aircraft noise; RR 1.42 (1.11-1.82). No consistent effect modification was detected for any of the cardiovascular risk factors under investigation although a family history of diabetes appeared to modify the risk in women. In conclusion, the results suggest an increased risk of hypertension following long-term aircraft noise exposure in men, and that subjects annoyed by aircraft noise may be particularly sensitive to noise related hypertension.

  2. Use of Airport Noise Complaint Files to Improve Understanding of Community Response to Aircraft Noise

    NASA Technical Reports Server (NTRS)

    Fidell, Sanford; Howe, Richard

    1998-01-01

    This study assessed the feasibility of using complaint information archived by modem airport monitoring systems to conduct quantitative analyses of the causes of aircraft noise complaints and their relationship to noise- induced annoyance. It was found that all computer-based airport monitoring systems provide at least rudimentary tools for performing data base searches by complainant name, address, date, time of day, and types of aircraft and complaints. Analyses of such information can provide useful information about longstanding concerns, such as the extent to which complaint rates are driven by objectively measurable aspects of aircraft operations; the degree to which changes in complaint rates can be predicted prior to implementation of noise mitigation measures; and the degree to which aircraft complaint information can be used to simplify and otherwise improve prediction of the prevalence of noise-induced annoyance in communities.

  3. Risk to hearing from overflight noise of military aircraft

    NASA Astrophysics Data System (ADS)

    Lawton, B. W.; Robinson, D. W.

    1991-05-01

    The maximum level of aircraft noise to which the ear can be exposed without significant permanent noise induced hearing loss was investigated. A systematic database search is described. This search failed to reveal any published reports of permanent hearing threshold shift due to aircraft noise. However, some evidence exists that a small amount of temporary threshold shift may be induced by noise at levels in the region of 125 dB(A), which would nevertheless be without permanent effect. By characterizing overflight noise by its total exposure value (taking into account overflight duration), comparisons are made with existing damage risk criteria. Predictions of permanent threshold shift, using established relationships, suggest that there is no credible risk to hearing even for long term repeated exposures on the basis of several events per day at 125 dB(A). The nature of the relationship between noise exposure and permanent threshold shift, as it relates to the most susceptible fraction of an exposed population, inhibits the specification of a unique level which would guarantee total freedom from noise induced hearing loss in every individual. However, there appears to be a practical margin of safety in the case of aircraft noise producing a maximum level of 125 dB(A) during the overflight. The conclusion rests upon experimental evidence of the course of noise level versus time, typical of military aircraft overflights. Taking the margin of safety into account, recommendations are made which, while suggesting that the existing criterion value be maintained, offer guidance on its interpretation and practical implementation.

  4. The effect of interior aircraft noise on pilot performance.

    PubMed

    Lindvall, Johan; Västfjall, Daniel

    2013-04-01

    This study examined the effect of the interior sounds of an aircraft cockpit on ratings of affect and expected performance decrement. While exposed to 12 interior aircraft sounds, of which half were modified to correspond to what is experienced with an active noise reduction (ANR) headset, 23 participants rated their affective reactions and how they believed their performance on various tasks would be affected. The results suggest that implementation of ANR-technique has a positive effect on ratings of expected performance. In addition, affective reactions to the noise are related to ratings of expected performance. The implications of these findings for both research and pilot performance are discussed. PMID:24032324

  5. Combat aircraft jet engine noise studies

    NASA Astrophysics Data System (ADS)

    Lewy, S.; Fournier, G.; Pianko, M.

    Methods of noise prediction and attenuation, based on results obtained in civil applications are presented. Input data for directivity and radiation forecasts are given by measurements of vane and blade pressure fluctuations, and by modal analysis of the spinning waves propagating in the inlet duct. Attention is given to sound generation mechanisms for subsonic and supersonic single jets and bypass jets. Prediction methods, based on Lighthill's equation (tensor due to the turbulence), are discussed, and the various means of jet noise reduction are reviewed. The CEPRA 19 anechoic wind tunnel, which is primarily designed for studying the jet noise radiated in the far field with flight effects is described.

  6. Monitoring noise from aircraft operations in the vicinity of airports

    NASA Astrophysics Data System (ADS)

    Eldred, Kenneth Mck.

    This paper presents an overview of a proposed Society of Automotive Engineers Aerospace Recommended Practice (ARP4721) with this title. The ARP is intended to provide engineering methods for measuring the noise from aircraft operations in the vicinity of airports for a variety of potential users and purposes. It uses the A-weighted Sound Level (Slow) and quantities derived from its time history as the principal descriptor of aircraft noise. It represents an evolutionary growth from the airport noise monitoring experience over the past three decades. It is intended to cover both unattended multi-channel noise measurement systems used for routine monitoring and attended systems used for special monitoring or for other measurement purposes. It contains recommended methods for the acquisition of non-acoustical data and requirements for systems that acquire acoustical data and their processing. It provides information on temporal and spatial sampling with respect to sampling design and errors, and discusses several applications for its use in monitoring.

  7. Synthesis of Virtual Environments for Aircraft Community Noise Impact Studies

    NASA Technical Reports Server (NTRS)

    Rizzi, Stephen A.; Sullivan, Brenda M.

    2005-01-01

    A new capability has been developed for the creation of virtual environments for the study of aircraft community noise. It is applicable for use with both recorded and synthesized aircraft noise. When using synthesized noise, a three-stage process is adopted involving non-real-time prediction and synthesis stages followed by a real-time rendering stage. Included in the prediction-based source noise synthesis are temporal variations associated with changes in operational state, and low frequency fluctuations that are present under all operating conditions. Included in the rendering stage are the effects of spreading loss, absolute delay, atmospheric absorption, ground reflections, and binaural filtering. Results of prediction, synthesis and rendering stages are presented.

  8. Flight velocity effects on the jet noise of several variations of a 104-tube suppressor nozzle

    NASA Technical Reports Server (NTRS)

    Burley, R. R.

    1974-01-01

    At the relatively high takeoff speeds of supersonic transport aircraft, an important question concerns whether the flight speed affects the noise of suppressor nozzles. To answer this question, flyover and static tests using a modified F-106B aircraft were conducted on a 104-tube suppressor nozzle. Comparison of adjusted flyover and static spectra indicated that flight velocity had a small adverse effect on the suppression of the 104-tube suppressor. The adverse effect was larger with the acoustic shroud installed than without it.

  9. Noise Scaling and Community Noise Metrics for the Hybrid Wing Body Aircraft

    NASA Technical Reports Server (NTRS)

    Burley, Casey L.; Brooks, Thomas F.; Hutcheson, Florence V.; Doty, Michael J.; Lopes, Leonard V.; Nickol, Craig L.; Vicroy, Dan D.; Pope, D. Stuart

    2014-01-01

    An aircraft system noise assessment was performed for the hybrid wing body aircraft concept, known as the N2A-EXTE. This assessment is a result of an effort by NASA to explore a realistic HWB design that has the potential to substantially reduce noise and fuel burn. Under contract to NASA, Boeing designed the aircraft using practical aircraft design princip0les with incorporation of noise technologies projected to be available in the 2020 timeframe. NASA tested 5.8% scale-mode of the design in the NASA Langley 14- by 22-Foot Subsonic Tunnel to provide source noise directivity and installation effects for aircraft engine and airframe configurations. Analysis permitted direct scaling of the model-scale jet, airframe, and engine shielding effect measurements to full-scale. Use of these in combination with ANOPP predictions enabled computations of the cumulative (CUM) noise margins relative to FAA Stage 4 limits. The CUM margins were computed for a baseline N2A-EXTE configuration and for configurations with added noise reduction strategies. The strategies include reduced approach speed, over-the-rotor line and soft-vane fan technologies, vertical tail placement and orientation, and modified landing gear designs with fairings. Combining the inherent HWB engine shielding by the airframe with added noise technologies, the cumulative noise was assessed at 38.7 dB below FAA Stage 4 certification level, just 3.3 dB short of the NASA N+2 goal of 42 dB. This new result shows that the NASA N+2 goal is approachable and that significant reduction in overall aircraft noise is possible through configurations with noise reduction technologies and operational changes.

  10. Future developments in transport aircraft noise reduction technology

    SciTech Connect

    Pendley, R.E.

    1982-01-01

    During the past 13 years, important advances in the technology of aircraft noise control have resulted from industry and government research programs. Quieter commercial transport airplanes have entered the fleet and additional new designs now committed to production will begin service in a few years. This paper indicates the noise reductions that will be achieved by the quieter transports that will replace the older designs and remarks on the outlook for still quieter designs.

  11. Aircraft noise and mental health: I. Prevalence of individual symptoms.

    PubMed

    Tarnopolsky, A; Watkins, G; Hand, D J

    1980-11-01

    A domiciliary survey (sample size circa 6000) was conducted in areas of different aircraft noise exposure affected by London (Heathrow) Airport. Respondents were urban dwellers age 16+. Since no differences were found in the prevalence of manifest psychiatric disorders, the frequency of 27 individual acute and chronic symptoms was investigated. Many acute symptoms showed an increase with noise, and this was particularly evident for waking at night, irritability, depression, difficulty in getting to sleep, swollen ankles, burns/cuts/minor accidents, and skin troubles. Two chronic symptoms, tinnitus and ear problems, showed evidence of an increase with noise, while most other chronic symptoms were more common in low noise conditions. Results are controlled for the effects of age, sex and other standard epidemiological variables. Irrespective of their association with noise, most symptoms, chronic and acute, were more frequent among those respondents who also reported high annoyance. Suggestions for the analysis of surveys of health effects by noise are put forward.

  12. Quelling Cabin Noise in Turboprop Aircraft via Active Control

    NASA Technical Reports Server (NTRS)

    Kincaid, Rex K.; Laba, Keith E.; Padula, Sharon L.

    1997-01-01

    Cabin noise in turboprop aircraft causes passenger discomfort, airframe fatigue, and employee scheduling constraints due to OSHA standards for exposure to high levels of noise. The noise levels in the cabins of turboprop aircraft are typically 10 to 30 decibels louder than commercial jet noise levels. However. unlike jet noise the turboprop noise spectrum is dominated by a few low frequency tones. Active structural acoustic control is a method in which the control inputs (used to reduce interior noise) are applied directly to a vibrating structural acoustic system. The control concept modeled in this work is the application of in-plane force inputs to piezoceramic patches bonded to the wall of a vibrating cylinder. The goal is to determine the force inputs and locations for the piezoceramic actuators so that: (1) the interior noise is effectively damped; (2) the level of vibration of the cylinder shell is not increased; and (3) the power requirements needed to drive the actuators are not excessive. Computational experiments for data taken from a computer generated model and from a laboratory test article at NASA Langley Research Center are provided.

  13. 75 FR 9327 - Aircraft Noise Certification Documents for International Operations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-02

    ... of the national standards laboratories of the United States, Canada, the United Kingdom, Australia... carriage of noise certification documents on board aircraft that leave the United States (73 FR 63098). A... standard since other countries may not recognize the underlying U.S. system. For U.S. air...

  14. NASTRAN application for the prediction of aircraft interior noise

    NASA Astrophysics Data System (ADS)

    Marulo, Francesco; Beyer, Todd B.

    1987-08-01

    The application of a structural-acoustic analogy within the NASTRAN finite element program for the prediction of aircraft interior noise is presented. Some refinements of the method, which reduce the amount of computation required for large, complex structures, are discussed. Also, further improvements are proposed and preliminary comparisons with structural and acoustic modal data obtained for a large, composite cylinder are presented.

  15. NASTRAN application for the prediction of aircraft interior noise

    NASA Technical Reports Server (NTRS)

    Marulo, Francesco; Beyer, Todd B.

    1987-01-01

    The application of a structural-acoustic analogy within the NASTRAN finite element program for the prediction of aircraft interior noise is presented. Some refinements of the method, which reduce the amount of computation required for large, complex structures, are discussed. Also, further improvements are proposed and preliminary comparisons with structural and acoustic modal data obtained for a large, composite cylinder are presented.

  16. A trade-off analysis design tool. Aircraft interior noise-motion/passenger satisfaction model

    NASA Technical Reports Server (NTRS)

    Jacobson, I. D.

    1977-01-01

    A design tool was developed to enhance aircraft passenger satisfaction. The effect of aircraft interior motion and noise on passenger comfort and satisfaction was modelled. Effects of individual aircraft noise sources were accounted for, and the impact of noise on passenger activities and noise levels to safeguard passenger hearing were investigated. The motion noise effect models provide a means for tradeoff analyses between noise and motion variables, and also provide a framework for optimizing noise reduction among noise sources. Data for the models were collected onboard commercial aircraft flights and specially scheduled tests.

  17. Should helicopter noise be measured differently from other aircraft noise? A review of the psychoacoustic literature

    NASA Technical Reports Server (NTRS)

    Molino, J. A.

    1982-01-01

    A review of 34 studies indicates that several factors or variables might be important in providing a psychoacoustic foundation for measurements of the noise from helicopters. These factors are phase relations, tail rotor noise, repetition rate, crest level, and generic differences between conventional aircraft and helicopters. Particular attention was given to the impulsive noise known as blade slap. Analysis of the evidence for and against each factor reveals that, for the present state of scientific knowledge, none of these factors should be regarded as the basis for a significant noise measurement correction due to impulsive blade slap. The current method of measuring effective perceived noise level for conventional aircraft appears to be adequate for measuring helicopter noise as well.

  18. A study of interior noise levels, noise sources and transmission paths in light aircraft

    NASA Technical Reports Server (NTRS)

    Hayden, R. E.; Murray, B. S.; Theobald, M. A.

    1983-01-01

    The interior noise levels and spectral characteristics of 18 single-and twin-engine propeller-driven light aircraft, and source-path diagnosis of a single-engine aircraft which was considered representative of a large part of the fleet were studied. The purpose of the flight surveys was to measure internal noise levels and identify principal noise sources and paths under a carefully controlled and standardized set of flight procedures. The diagnostic tests consisted of flights and ground tests in which various parts of the aircraft, such as engine mounts, the engine compartment, exhaust pipe, individual panels, and the wing strut were instrumented to determine source levels and transmission path strengths using the transfer function technique. Predominant source and path combinations are identified. Experimental techniques are described. Data, transfer function calculations to derive source-path contributions to the cabin acoustic environment, and implications of the findings for noise control design are analyzed.

  19. Mount St. Helens Flyover

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) image of Mt. St. Helens volcano in Washington State was acquired on August 8, 2000 and covers an area of 37 by 51 km. Mount Saint Helens, a volcano in the Cascade Range of southwestern Washington that had been dormant since 1857, began to show signs of renewed activity in early 1980. On 18 May 1980, it erupted with such violence that the top of the mountain was blown off, spewing a cloud of ash and gases that rose to an altitude of 19 kilometers. The blast killed about 60 people and destroyed all life in an area of some 180 square kilometers (some 70 square miles), while a much larger area was covered with ash and debris. It continues to spit forth ash and steam intermittently. As a result of the eruption, the mountain's elevation decreased from 2,950 meters to 2,549 meters. The simulated fly-over was produced by draping ASTER visible and near infrared image data over a digital topography model, created from ASTER's 3-D stereo bands. The color was computer enhanced to create a 'natural' color image, where the vegetation appears green. The topography has been exaggerated 2 times to enhance the appearance of the relief. Landsat7 aquired an image of Mt. St. Helens on August 22, 1999. Image and animation courtesy NASA/GSFC/MITI/ERSDAC/JAROS, and U.S./Japan ASTER Science Team.

  20. An assessment of propeller aircraft noise reduction technology

    NASA Technical Reports Server (NTRS)

    Metzger, F. Bruce

    1995-01-01

    This report is a review of the literature regarding propeller airplane far-field noise reduction. Near-field and cabin noise reduction are not specifically addressed. However, some of the approaches used to reduce far-field noise produce beneficial effects in the near-field and in the cabin. The emphasis is on propeller noise reduction but engine exhaust noise reduction by muffling is also addressed since the engine noise becomes a significant part of the aircraft noise signature when propeller noise is reduced. It is concluded that there is a substantial body of information available that can be used as the basis to reduce propeller airplane noise. The reason that this information is not often used in airplane design is the associated weight, cost, and performance penalties. It is recommended that the highest priority be given to research for reducing the penalties associated with lower operating RPM and propeller diameter while increasing the number of blades. Research to reduce engine noise and explore innovative propeller concepts is also recommended.

  1. Aircraft noise effects: An interdisciplinary study of the effect of aircraft noise on man. Part 2: Appendix

    NASA Technical Reports Server (NTRS)

    1980-01-01

    A survey used to obtain data of a sociological nature regarding subjects used in a study of aircraft noise perception and tolerance near the Munich-Reims airport is presented. Statistics compiled on occupational, physiological, and medical aspects of the subjects are tabulated.

  2. Twin jet shielding. [for aircraft noise reduction

    NASA Technical Reports Server (NTRS)

    Parthasarathy, S. P.; Cuffel, R. F.; Massier, P. F.

    1979-01-01

    For an over-the-wing/under-the-wing engine configuration on an airplane, the noise produced by the upper jet flow is partially reflected by the lower jet. An analysis has been performed which can be used to predict the distribution of perceived noise levels along the ground plane at take-off for an airplane which is designed to take advantage of the over/under shielding concept. Typical contours of PNL, the shielding benefit in the shadow zone, and the EPNL values at 3.5 nautical miles from brake release as well as EPNL values at sideline at 0.35 nautical miles have been calculated. This has been done for a range of flow parameters characteristic of engines producing inverted velocity profile jets suitable for use in a supersonic cruise vehicle. Reductions up to 6.0 EPNdB in community noise levels can be realized when the over engines are operated at higher thrust and the lower engines simultaneously operated with reduced thrust keeping the total thrust constant.

  3. Status of noise technology for advanced supersonic cruise aircraft

    NASA Technical Reports Server (NTRS)

    Stone, J. R.; Gutierrez, O. A.

    1980-01-01

    Developments in acoustic technology applicable to advanced supersonic cruise aircraft, particularly those which relate to jet noise and its suppression are reviewed. The noise reducing potential of high radius ratio, inverted velocity profile coannular jets is demonstrated by model scale results from a wide range of nozzle geometries, including some simulated flight cases. These results were verified statistically at large scale on a variable cycle engine (VCE) testbed. A preliminary assessment of potential VCE noise sources such as fan and core noise is made, based on the testbed data. Recent advances in the understanding of flight effects are reviewed. The status of component noise prediction methods is assessed on the basis of recent test data, and the remaining problem areas are outlined.

  4. Structure-borne noise estimates for the PTA aircraft

    NASA Technical Reports Server (NTRS)

    Unruh, James F.

    1990-01-01

    Estimates of the level of in-flight structure-borne noise transmission in the Propfan Test Assessment Aircraft were carried out for the first three blade passage frequencies. The procedure used combined the frequency response functions of wing strain to cabin sound pressure level (SPL) response obtained during ground test with in-flight measured wing strain response data. The estimated cabin average in-flight structure-borne noise levels varied from 64 to 84 dB, with an average level of 74 dB. The estimates showed little dependence on engine/propeller power, flight altitude, or flight Mach number. In general, the bare cabin noise levels decreased with increasing propeller tone, giving rise to a plausible structure-borne noise transmission problem at the higher blade passage tones. Without knowledge of the effects of a high insertion loss side wall treatment on structure-borne noise transmission, no quantitative conclusions could be made.

  5. Effects of background noise on total noise annoyance

    NASA Technical Reports Server (NTRS)

    Willshire, K. F.

    1987-01-01

    Two experiments were conducted to assess the effects of combined community noise sources on annoyance. The first experiment baseline relationships between annoyance and noise level for three community noise sources (jet aircraft flyovers, traffic and air conditioners) presented individually. Forty eight subjects evaluated the annoyance of each noise source presented at four different noise levels. Results indicated the slope of the linear relationship between annoyance and noise level for the traffic noise was significantly different from that of aircraft and of air conditioner noise, which had equal slopes. The second experiment investigated annoyance response to combined noise sources, with aircraft noise defined as the major noise source and traffic and air conditioner noise as background noise sources. Effects on annoyance of noise level differences between aircraft and background noise for three total noise levels and for both background noise sources were determined. A total of 216 subjects were required to make either total or source specific annoyance judgements, or a combination of the two, for a wide range of combined noise conditions.

  6. Noise of high-performance aircraft at afterburner

    NASA Astrophysics Data System (ADS)

    Tam, Christopher K. W.; Parrish, Sarah A.

    2015-09-01

    The noise from a high-performance aircraft at afterburner is investigated. The main objective is to determine whether the dominant noise components are the same or similar to those of a hot supersonic laboratory jet. For this purpose, measured noise data from F-22A Raptors are analyzed. It is found, based on both spectral and directivity data, that there is a new dominant noise component in addition to the usual turbulent mixing noise. The characteristic features of the new noise component are identified. Measured data indicates that the new noise component is observed only when the rate of fuel burn of the engine is increased significantly above that of the intermediate power setting. This suggests that the new noise component is combustion related. The possibility that it is indirect combustion noise generated by the passage of hot spots from the afterburner through the nozzle of the jet is investigated. Because flow and temperature data were not measured in the F-22A engine tests, to provide support to the proposition, numerical simulations of indirect combustion noise generation due to the passing of an entropy wave pulse (a hot spot) through a military-style nozzle are carried out. Sound generation is observed at the front and at the back of the pulse. This creates a fast and a slow acoustic wave as the sound radiates out from the nozzle exit. Quantitative estimates of the principal directions of acoustic radiation due to the emitted fast and slow acoustic waves are made. It is found that there are reasonably good agreements with measured data. To estimate the intensity level (IL) of the radiated indirect combustion noise, a time-periodic entropy wave train of 15 percent temperature fluctuation is used as a model of the hot spots coming out of the afterburner. This yields an IL of 175.5 dB. This is a fairly intense noise source, well capable of causing the radiation of the new jet noise component.

  7. Aircraft wing trailing-edge noise

    NASA Technical Reports Server (NTRS)

    Underwood, R. L.; Hodgson, T. H.

    1981-01-01

    The mechanism and sound pressure level of the trailing-edge noise for two-dimensional turbulent boundary layer flow was examined. Experiment is compared with current theory. A NACA 0012 airfoil of 0.61 m chord and 0.46 m span was immersed in the laminar flow of a low turbulence open jet. A 2.54 cm width roughness strip was placed at 15 percent chord from the leading edge on both sides of the airfoil as a boundary layer trip so that two separate but statistically equivalent turbulent boundary layers were formed. Tests were performed with several trailing-edge geometries with the upstream velocity U sub infinity ranging from a value of 30.9 m/s up to 73.4 m/s. Properties of the boundary layer for the airfoil and pressure fluctuations in the vicinity of the trailing-edge were examined. A scattered pressure field due to the presence of the trailing-edge was observed and is suggested as a possible sound producing mechanism for the trailing-edge noise.

  8. Annoyance responses to stable and changing aircraft noise exposure.

    PubMed

    Brink, Mark; Wirth, Katja E; Schierz, Christoph; Thomann, Georg; Bauer, Georg

    2008-11-01

    This article reports the two extensive aircraft noise annoyance surveys subsequently carried out among residents in the vicinity of Zurich Airport in 2001 and 2003 in order to update and validate existing exposure-effect relationships for aircraft noise and annoyance in Switzerland. Logistic and polynomial approximations of the exposure-annoyance relationships for both the years 2001 and 2003 are presented for the L(dn), L(den), and L(A,eq24) noise metrics. The results confirm other recently published international research and provide further evidence that community annoyance due to aircraft noise has increased over the past decades. Between the two survey years, a considerable amount of early morning and late evening flight operations have been relocated to use an other runway than before; thus both the effects of a recent step decrease and recent step increase on the exposure-annoyance relationship could be investigated. Residents that experienced a step increase elicited a quite pronounced over-reaction of annoyance which correlated with the magnitude of the change. Two logistic regression models are provided to forecast the effects of changes in exposure during shoulder hours in the early morning and the late evening.

  9. Validation of Aircraft Noise Models at Lower Levels of Exposure

    NASA Technical Reports Server (NTRS)

    Page, Juliet A.; Plotkin, Kenneth J.; Carey, Jeffrey N.; Bradley, Kevin A.

    1996-01-01

    Noise levels around airports and airbases in the United States arc computed via the FAA's Integrated Noise Model (INM) or the Air Force's NOISEMAP (NMAP) program. These models were originally developed for use in the vicinity of airports, at distances which encompass a day night average sound level in decibels (Ldn) of 65 dB or higher. There is increasing interest in aircraft noise at larger distances from the airport. including en-route noise. To evaluate the applicability of INM and NMAP at larger distances, a measurement program was conducted at a major air carrier airport with monitoring sites located in areas exposed to an Ldn of 55 dB and higher. Automated Radar Terminal System (ARTS) radar tracking data were obtained to provide actual flight parameters and positive identification of aircraft. Flight operations were grouped according to aircraft type. stage length, straight versus curved flight tracks, and arrival versus departure. Sound exposure levels (SEL) were computed at monitoring locations, using the INM, and compared with measured values. While individual overflight SEL data was characterized by a high variance, analysis performed on an energy-averaging basis indicates that INM and similar models can be applied to regions exposed to an Ldn of 55 dB with no loss of reliability.

  10. Near-field noise prediction for aircraft in cruising flight: Methods manual. [laminar flow control noise effects analysis

    NASA Technical Reports Server (NTRS)

    Tibbetts, J. G.

    1979-01-01

    Methods for predicting noise at any point on an aircraft while the aircraft is in a cruise flight regime are presented. Developed for use in laminar flow control (LFC) noise effects analyses, they can be used in any case where aircraft generated noise needs to be evaluated at a location on an aircraft while under high altitude, high speed conditions. For each noise source applicable to the LFC problem, a noise computational procedure is given in algorithm format, suitable for computerization. Three categories of noise sources are covered: (1) propulsion system, (2) airframe, and (3) LFC suction system. In addition, procedures are given for noise modifications due to source soundproofing and the shielding effects of the aircraft structure wherever needed. Sample cases, for each of the individual noise source procedures, are provided to familiarize the user with typical input and computed data.

  11. Concorde noise-induced building vibrations: John F. Kennedy International Airport

    NASA Technical Reports Server (NTRS)

    Mayes, W. H.; Stephens, D. G.; Deloach, R.; Cawthorn, J. M.; Holmes, H. K.; Lewis, R. B.; Holliday, B. G.; Ward, D. W.; Miller, W. T.

    1978-01-01

    Outdoor and indoor noise levels resulting from aircraft flyovers and certain nonaircraft events were recorded at eight homesites and a school along with the associated vibration levels in the walls, windows, and floors at these test sites. Limited subjective tests were conducted to examine the human detection and annoyance thresholds for building vibration and rattle caused by aircraft noise. Both vibration and rattle were detected subjectively in several houses for some operations of both the Concorde and subsonic aircraft. Seated subjects more readily detected floor vibrations than wall or window vibrations. Aircraft noise generally caused more window vibrations than common nonaircraft events such as walking and closing doors. Nonaircraft events and aircraft flyovers resulted in comparable wall vibration levels, while floor vibrations were generally greater for nonaircraft events than for aircraft flyovers. The relationship between structural vibration and aircraft noise is linear, with vibration levels being accurately predicted from overall sound pressure levels (OASPL) measured near the structure. Relatively high levels of structural vibration measured during Concorde operations are due more to higher OASPL levels than to unique Concorde-source characteristics.

  12. On INM's Use of Corrected Net Thrust for the Prediction of Jet Aircraft Noise

    NASA Technical Reports Server (NTRS)

    McAninch, Gerry L.; Shepherd, Kevin P.

    2011-01-01

    The Federal Aviation Administration s (FAA) Integrated Noise Model (INM) employs a prediction methodology that relies on corrected net thrust as the sole correlating parameter between aircraft and engine operating states and aircraft noise. Thus aircraft noise measured for one set of atmospheric and aircraft operating conditions is assumed to be applicable to all other conditions as long as the corrected net thrust remains constant. This hypothesis is investigated under two primary assumptions: (1) the sound field generated by the aircraft is dominated by jet noise, and (2) the sound field generated by the jet flow is adequately described by Lighthill s theory of noise generated by turbulence.

  13. Computer program to predict noise of general aviation aircraft: User's guide

    NASA Technical Reports Server (NTRS)

    Mitchell, J. A.; Barton, C. K.; Kisner, L. S.; Lyon, C. A.

    1982-01-01

    Program NOISE predicts General Aviation Aircraft far-field noise levels at FAA FAR Part 36 certification conditions. It will also predict near-field and cabin noise levels for turboprop aircraft and static engine component far-field noise levels.

  14. Structureborne noise measurements on a small twin-engine aircraft

    NASA Technical Reports Server (NTRS)

    Cole, J. E., III; Martini, K. F.

    1988-01-01

    Structureborne noise measurements performed on a twin-engine aircraft (Beechcraft Baron) are reported. There are two overall objectives of the test program. The first is to obtain data to support the development of analytical models of the wing and fuselage, while the second is to evaluate effects of structural parameters on cabin noise. Measurements performed include structural and acoustic responses to impact excitation, structural and acoustic loss factors, and modal parameters of the wing. Path alterations include added mass to simulate fuel, variations in torque of bolts joining wing and fuselage, and increased acoustic absorption. Conclusions drawn regarding these measurements are presented.

  15. Computation of Engine Noise Propagation and Scattering Off an Aircraft

    NASA Technical Reports Server (NTRS)

    Xu, J.; Stanescu, D.; Hussaini, M. Y.; Farassat, F.

    2003-01-01

    The paper presents a comparison of experimental noise data measured in flight on a two-engine business jet aircraft with Kulite microphones placed on the suction surface of the wing with computational results. Both a time-domain discontinuous Galerkin spectral method and a frequency-domain spectral element method are used to simulate the radiation of the dominant spinning mode from the engine and its reflection and scattering by the fuselage and the wing. Both methods are implemented in computer codes that use the distributed memory model to make use of large parallel architectures. The results show that trends of the noise field are well predicted by both methods.

  16. Examination of the Lateral Attenuation of Aircraft Noise

    NASA Technical Reports Server (NTRS)

    Plotkin, Kenneth J.; Hobbs, Christopher M.; Bradley, Kevin A.; Shepherd, Kevin P. (Technical Monitor)

    2000-01-01

    Measurements of the lateral attenuation of noise from aircraft operations at Denver International Airport were made at distances up to 2000 feet and elevation angles up to 27 degrees. Attenuation Calculated from modem ground impedance theory agrees well with average measured attenuation. The large variability between measured and predicted levels observed at small elevation angles is demonstrated to be due to refraction by wind and temperature gradients.

  17. Relationship between Aircraft Noise Contour Area and Noise Levels at Certification Points

    NASA Technical Reports Server (NTRS)

    Powell, Clemans A.

    2003-01-01

    The use of sound exposure level contour area reduction has been proposed as an alternative or supplemental metric of progress and success for the NASA Quiet Aircraft Technology program, which currently uses the average of predicted noise reductions at three community locations. As the program has expanded to include reductions in airframe noise as well as reduction due to optimization of operating procedures for lower noise, there is concern that the three-point methodology may not represent a fair measure of benefit to airport communities. This paper addresses several topics related to this proposal: (1) an analytical basis for a relationship between certification noise levels and noise contour areas for departure operations is developed, (2) the relationship between predicted noise contour area and the noise levels measured or predicted at the certification measurement points is examined for a wide range of commercial and business aircraft, and (3) reductions in contour area for low-noise approach scenarios are predicted and equivalent reductions in source noise are determined.

  18. Experimental study of noise transmission into a general aviation aircraft

    NASA Astrophysics Data System (ADS)

    Vaicaitis, R.; Bofilios, D. A.; Eisler, R.

    1984-06-01

    The effect of add-on treatments on noise transmission into a cabin of a light aircraft was studied under laboratory conditions for diffuse and localized noise inputs. Results indicate that stiffening skin panels with honeycomb would provide on the average 3dB to 7 dB insertion loss over the most of selected frequency range H1 to 1000 Hz. Addition of damping tape on top of the honeycomb treatment increases insertion loss by 2dB to 3dB. Porous acoustic blankets show no attenuation of transmitted noise for frequencies below 300 Hz. Insertion of impervious vinyl septa between the layers of porous acoustic blankets do not provide additional noise reduction for frequencies up to about 500 Hz. Similar behavior was observed for noise barriers composed of urethane elastomer, decoupler foam and acoustic foam. A treatment composed from several layers of acoustic foams does not increase noise attenuation for the entire frequency range studied. An acoustic treatment composed of honeycomb panels, constrained layer damping tape, 2 to 3 inches of porous acoustic blankets, and limptrim which is isolated from the vibrations of the main fuselage structure seems to provide the best option for noise control.

  19. The relationship between civil aircraft noise and community annoyance in Korea

    NASA Astrophysics Data System (ADS)

    Lim, Changwoo; Kim, Jaehwan; Hong, Jiyoung; Lee, Soogab; Lee, Soojoo

    2007-01-01

    Studies of community annoyance caused by civil aircraft noise exposure were carried out in 18 areas around Gimpo and Gimhae international airports in order to accumulate social survey data and assess the relationship between aircraft noise levels and annoyance responses in Korea. WECPNL, adopted as the aircraft noise index in Korea, and the percentage of respondents who felt highly annoyed (%HA) have been used to assess the dose-response of aircraft noise. Aircraft noise levels were measured automatically by airport noise monitoring system, B&K type 3597. Social surveys were carried out to people living within 100 m of noise measurement points. The Questionnaire used in the survey contained demographic factors, noise annoyance, interference with daily activities and health-related symptoms. The question relating to the aircraft noise annoyance was answered on an 11-point numerical scale. The randomly selected respondents who were aged between 18 and 70 years completed the questionnaire by themselves. In total, 705 respondents participated in the questionnaire. The results show that WECPNL, noise metric considering characteristics of event and intrusive noise, is more reasonable than L dn, noise metric considering total sound, to assess the effects of aircraft noise on health. It is also shown that the annoyance responses caused by aircraft noise in Korea seems higher than those reported in other countries.

  20. Open Rotor Noise Shielding by Blended-Wing-Body Aircraft

    NASA Technical Reports Server (NTRS)

    Guo, Yueping; Czech, Michael J.; Thomas, Russell H.

    2015-01-01

    This paper presents an analysis of open rotor noise shielding by Blended Wing Body (BWB) aircraft by using model scale test data acquired in the Boeing Low Speed Aeroacoustic Facility (LSAF) with a legacy F7/A7 rotor model and a simplified BWB platform. The objective of the analysis is the understanding of the shielding features of the BWB and the method of application of the shielding data for noise studies of BWB aircraft with open rotor propulsion. By studying the directivity patterns of individual tones, it is shown that though the tonal energy distribution and the spectral content of the wind tunnel test model, and thus its total noise, may differ from those of more advanced rotor designs, the individual tones follow directivity patterns that characterize far field radiations of modern open rotors, ensuring the validity of the use of this shielding data. Thus, open rotor tonal noise shielding should be categorized into front rotor tones, aft rotor tones and interaction tones, not only because of the different directivities of the three groups of tones, but also due to the differences in their source locations and coherence features, which make the respective shielding characteristics of the three groups of tones distinctly different from each other. To reveal the parametric trends of the BWB shielding effects, results are presented with variations in frequency, far field emission angle, rotor operational condition, engine installation geometry, and local airframe features. These results prepare the way for the development of parametric models for the shielding effects in prediction tools.

  1. An evaluation of methods for scaling aircraft noise perception

    NASA Technical Reports Server (NTRS)

    Ollerhead, J. B.

    1971-01-01

    One hundred and twenty recorded sounds, including jets, turboprops, piston engined aircraft and helicopters were rated by a panel of subjects in a paired comparison test. The results were analyzed to evaluate a number of noise rating procedures in terms of their ability to accurately estimate both relative and absolute perceived noise levels. It was found that the complex procedures developed by Stevens, Zwicker and Kryter are superior to other scales. The main advantage of these methods over the more convenient weighted sound pressure level scales lies in their ability to cope with signals over a wide range of bandwidth. However, Stevens' loudness level scale and the perceived noise level scale both overestimate the growth of perceived level with intensity because of an apparent deficiency in the band level summation rule. A simple correction is proposed which will enable these scales to properly account for the experimental observations.

  2. Aircraft Interior Noise Control Using Distributed Piezoelectric Actuators

    NASA Technical Reports Server (NTRS)

    Sun, Jian Q.

    1996-01-01

    Developing a control system that can reduce the noise and structural vibration at the same time is an important task. This talk presents one possible technical approach for accomplishing this task. The target application of the research is for aircraft interior noise control. The emphasis of the present approach is not on control strategies, but rather on the design of actuators for the control system. In the talk, a theory of distributed piezoelectric actuators is introduced. A uniform cylindrical shell is taken as a simplified model of fuselage structures to illustrate the effectiveness of the design theory. The actuators developed are such that they can reduce the tonal structural vibration and interior noise in a wide range of frequencies. Extensive computer simulations have been done to study various aspects of the design theory. Experiments have also been conducted and the test results strongly support the theoretical development.

  3. SR-71 flyover

    NASA Technical Reports Server (NTRS)

    1990-01-01

    This clip, running about 14 seconds in length, shows the NASA SR-71 (No. 844) lighting off the afterburners on a low pass over the Dryden Flight Research Center. Two SR-71A aircraft on loan from the U.S. Air Force have been used for high-speed, high-altitude research at the NASA Dryden Flight Research Center, Edwards, California, since 1991. One of them was later returned to the Air Force. A third SR-71 on loan from the Air Force is an SR-71B used for training but not for flight research. Developed for the U.S. Air Force as reconnaissance aircraft more than 30 years ago, SR-71 aircraft are still the world's fastest and highest-flying production aircraft. These aircraft can fly more than 2200 miles per hour (Mach 3+ or more than three times the speed of sound) and at altitudes of over 85,000 feet. This operating environment makes the aircraft excellent platforms to carry out research and experiments in a variety of areas--aerodynamics, propulsion, structures, thermal protection materials, high-speed and high-temperature instrumentation, atmospheric studies, and sonic-boom characterization. Data from the SR-71 high-speed research program may be used to aid designers of future supersonic or hypersonic aircraft and propulsion systems, including a possible high-speed civil transport. The SR-71 program at Dryden has been part of the NASA overall high-speed aeronautical research program, and projects have involved other NASA research centers, other government agencies, universities, and commercial firms. One of the first major experiments to be flown in the NASA SR-71 program was a laser air-data collection system. This system used laser light instead of air pressure to produce airspeed and attitude reference data such as angle of attack and angle of sideslip. These data are normally obtained with small tubes and vanes extending into the air stream, or from tubes with flush openings on the aircraft outer skin. The flights provided information on the presence of

  4. SR-71 flyover

    NASA Technical Reports Server (NTRS)

    1990-01-01

    This clip, running about 14 seconds in length, shows the NASA SR-71 (No. 844) lighting off the afterburners on a low pass over the Dryden Flight Research Center. Two SR-71A aircraft on loan from the U.S. Air Force have been used for high-speed, high-altitude research at the NASA Dryden Flight Research Center, Edwards, California, since 1991. One of them was later returned to the Air Force. A third SR-71 on loan from the Air Force is an SR-71B used for training but not for flight research. Developed for the U.S. Air Force as reconnaissance aircraft more than 30 years ago, SR-71 aircraft are still the world's fastest and highest-flying production aircraft. These aircraft can fly more than 2200 miles per hour (Mach 3+ or more than three times the speed of sound) and at altitudes of over 85,000 feet. This operating environment makes the aircraft excellent platforms to carry out research and experiments in a variety of areas--aerodynamics, propulsion, structures, thermal protection materials, high-speed and high-temperature instrumentation, atmospheric studies, and sonic-boom characterization. Data from the SR-71 high-speed research program may be used to aid designers of future supersonic or hypersonic aircraft and propulsion systems, including a possible high-speed civil transport. The SR-71 program at Dryden has been part of the NASA overall high-speed aeronautical research program, and projects have involved other NASA research centers, other government agencies, universities, and commercial firms. One of the first major experiments to be flown in the NASA SR-71 program was a laser air-data collection system. This system used laser light instead of air pressure to produce airspeed and attitude reference data such as angle of attack and angle of sideslip. These data are normally obtained with small tubes and vanes extending into the air stream, or from tubes with flush openings on the aircraft outer skin. The flights provided information on the presence of

  5. Predicting Noise From Aircraft Turbine-Engine Combustors

    NASA Technical Reports Server (NTRS)

    Gliebe, P.; Mani, R.; Salamah, S.; Coffin, R.; Mehta, Jayesh

    2005-01-01

    COMBUSTOR and CNOISE are computer codes that predict far-field noise that originates in the combustors of modern aircraft turbine engines -- especially modern, low-gaseous-emission engines, the combustors of which sometimes generate several decibels more noise than do the combustors of older turbine engines. COMBUSTOR implements an empirical model of combustor noise derived from correlations between engine-noise data and operational and geometric parameters, and was developed from databases of measurements of acoustic emissions of engines. CNOISE implements an analytical and computational model of the propagation of combustor temperature fluctuations (hot spots) through downstream turbine stages. Such hot spots are known to give rise to far-field noise. CNOISE is expected to be helpful in determining why low-emission combustors are sometimes noisier than older ones, to provide guidance for refining the empirical correlation model embodied in the COMBUSTOR code, and to provide insight on how to vary downstream turbinestage geometry to reduce the contribution of hot spots to far-field noise.

  6. Investigation of the relationship between aircraft noise and community annoyance in China.

    PubMed

    Guoqing, Di; Xiaoyi, Liu; Xiang, Shi; Zhengguang, Li; Qili, Lin

    2012-01-01

    A survey of community annoyance induced by aircraft noise exposure was carried out around Hangzhou Xiaoshan International Airport. To investigate the relationship curves between aircraft noise and the percentage of "highly annoyed" persons in China and also to get annoyance threshold of aircraft noise in China. Noise annoyance induced by aircraft noise exposure was assessed by 764 local residents around the airport using the International Commission on Biological Effect of Noise (ICBEN) scale. The status quo of aircraft noise pollution was measured by setting up 39 monitoring points. The interpolation was used to estimate the weighted effective continuous perceived noise levels (LWECPN) in different areas around the airport, and the graph of equal noise level contour was drawn. The membership function was used to calculate the annoyance threshold of aircraft noise. Data were analyzed using SPSS 16.0 and Origin 8.0. The results showed that if LWECPN was 64.3 dB (Ldn was 51.4 dB), then 15% respondents were highly annoyed. If LWECPN was 68.1 dB (Ldn was 55.0 dB), then 25% respondents were highly annoyed. The annoyance threshold of aircraft noise (LWECPN) was 73.7 dB, while the annoyance threshold of a single flight incident instantaneous noise level (LAmax) was 72.9 dB. People around the airport had felt annoyed before the aircraft noise LWECPN reached the standard limit.

  7. Measuring subjective response to aircraft noise: the effects of survey context.

    PubMed

    Kroesen, Maarten; Molin, Eric J E; van Wee, Bert

    2013-01-01

    In applied research, noise annoyance is often used as indicator of subjective reaction to aircraft noise in residential areas. The present study aims to show that the meaning which respondents attach to the concept of aircraft noise annoyance is partly a function of survey context. To this purpose a survey is conducted among residents living near Schiphol Airport, the largest airport in the Netherlands. In line with the formulated hypotheses it is shown that different sets of preceding questionnaire items influence the response distribution of aircraft noise annoyance as well as the correlational patterns between aircraft noise annoyance and other relevant scales.

  8. Federal Interagency Committee on Aviation Noise (FICAN) Position on Research into Effects of Aircraft Noise on Classroom Learning.

    ERIC Educational Resources Information Center

    2000

    This symposium report presents a summary of research on the affect of aircraft noise on the classroom environment revealing that aircraft noise can interfere with learning in the following areas: reading, motivation, language and speech acquisition, and memory. The strongest findings are in the area of reading, where more than 20 studies have…

  9. Flight Test of ASAC Aircraft Interior Noise Control System

    NASA Technical Reports Server (NTRS)

    Palumbo, Dan; Cabell, Ran; Cline, John; Sullivan, Brenda

    1999-01-01

    A flight test is described in which an active structural/acoustic control system reduces turboprop induced interior noise on a Raytheon Aircraft Company 1900D airliner. Control inputs to 21 inertial force actuators were computed adaptively using a transform domain version of the multichannel filtered-X LMS algorithm to minimize the mean square response of 32 microphones. A combinatorial search algorithm was employed to optimize placement of the force actuators on the aircraft frame. Both single frequency and multi-frequency results are presented. Reductions of up to 15 dB were obtained at the blade passage frequency (BPF) during single frequency control tests. Simultaneous reductions of the BPF and next 2 harmonics of 10 dB, 2.5 dB and 3.0 dB, were obtained in a multi-frequency test.

  10. The NASA aircraft noise prediction program improved propeller analysis system

    NASA Technical Reports Server (NTRS)

    Nguyen, L. Cathy

    1991-01-01

    The improvements and the modifications of the NASA Aircraft Noise Prediction Program (ANOPP) and the Propeller Analysis System (PAS) are described. Comparisons of the predictions and the test data are included in the case studies for the flat plate model in the Boundary Layer Module, for the effects of applying compressibility corrections to the lift and pressure coefficients, for the use of different weight factors in the Propeller Performance Module, for the use of the improved retarded time equation solution, and for the effect of the number grids in the Transonic Propeller Noise Module. The DNW tunnel test data of a propeller at different angles of attack and the Dowty Rotol data are compared with ANOPP predictions. The effect of the number of grids on the Transonic Propeller Noise Module predictions and the comparison of ANOPP TPN and DFP-ATP codes are studied. In addition to the above impact studies, the transonic propeller noise predictions for the SR-7, the UDF front rotor, and the support of the enroute noise test program are included.

  11. A Lightweight Loudspeaker for Aircraft Communications and Active Noise Control

    NASA Technical Reports Server (NTRS)

    Warnaka, Glenn E.; Kleinle, Mark; Tsangaris, Parry; Oslac, Michael J.; Moskow, Harry J.

    1992-01-01

    A series of new, lightweight loudspeakers for use on commercial aircraft has been developed. The loudspeakers use NdFeB magnets and aluminum alloy frames to reduce the weight. The NdFeB magnet is virtually encapsulated by steel in the new speaker designs. Active noise reduction using internal loudspeakers was demonstrated to be effective in 1983. A weight, space, and cost efficient method for creating the active sound attenuating fields is to use the existing cabin loudspeakers for both communication and sound attenuation. This will require some additional loudspeaker design considerations.

  12. Identifying the principal noise sources of fixed-wing combat aircraft in high-speed flight

    NASA Astrophysics Data System (ADS)

    Bryce, W. D.; Pinker, R. A.; Strange, P. J. R.

    1992-04-01

    Before considering means for alleviating the noise from modern military combat aircraft operating in high-speed low-level flight, it is important to identify the principal noise sources. To this end, a carefully-controlled flight test program has been carried out using a Tornado aircraft (in standard training configuration) operating at flight speeds from 0.5M to 0.8M. The major sources of the aircraft noise, airframe noise, installed jet mixing noise and jet shock noise, have been successfully identified, quantified and correlated. Although the jet mixing noise tends to be the major source at low flight speeds, and the shock noise at high flight speeds, all three sources are comparable in magnitude during the rapid rise-time of the noise signal and at its peak. Indeed, were it possible to reduce greatly both the jet mixing and shock noise, the peak noise levels would only reduce by about 5 dBA.

  13. Towards Full Aircraft Airframe Noise Prediction: Lattice Boltzmann Simulations

    NASA Technical Reports Server (NTRS)

    Khorrami, Mehdi R.; Fares, Ehab; Casalino, Damiano

    2014-01-01

    Computational results for an 18%-scale, semi-span Gulfstream aircraft model are presented. Exa Corporation's lattice Boltzmann PowerFLOW(trademark) solver was used to perform time-dependent simulations of the flow field associated with this high-fidelity aircraft model. The simulations were obtained for free-air at a Mach number of 0.2 with the flap deflected at 39 deg (landing configuration). We focused on accurately predicting the prominent noise sources at the flap tips and main landing gear for the two baseline configurations, namely, landing flap setting without and with gear deployed. Capitalizing on the inherently transient nature of the lattice Boltzmann formulation, the complex time-dependent flow features associated with the flap were resolved very accurately and efficiently. To properly simulate the noise sources over a broad frequency range, the tailored grid was very dense near the flap inboard and outboard tips. Extensive comparison of the computed time-averaged and unsteady surface pressures with wind tunnel measurements showed excellent agreement for the global aerodynamic characteristics and the local flow field at the flap inboard and outboard tips and the main landing gear. In particular, the computed fluctuating surface pressure field for the flap agreed well with the measurements in both amplitude and frequency content, indicating that the prominent airframe noise sources at the tips were captured successfully. Gear-flap interaction effects were remarkably well predicted and were shown to affect only the inboard flap tip, altering the steady and unsteady pressure fields in that region. The simulated farfield noise spectra for both baseline configurations, obtained using a Ffowcs-Williams and Hawkings acoustic analogy approach, were shown to be in close agreement with measured values.

  14. Sound propagation elements in evaluation of en route noise of advanced turbofan aircraft

    NASA Technical Reports Server (NTRS)

    Sutherland, Louis C.; Wesler, John

    1990-01-01

    Cruise noise from an advanced turboprop aircraft is reviewed on the basis of available wind tunnel data to estimate the aircraft noise signature at the source. Available analytical models are used to evaluate the sound levels at the ground. The analysis allows reasonable estimates to be made of the community noise levels that might be generated during cruise by such aircraft, provides the basis for preliminary comparisons with available data on noise of existing aircraft during climb and helps to identify the dominant elements of the sound propagation models applicable to this situation.

  15. Method for determinating the ISO-noise levels by simulated aircraft flight operations

    NASA Astrophysics Data System (ADS)

    Sobor, A.

    Models are presented for the evaluation of perceived aircraft noise level as a function of aircraft position and time. The O-point in the engine noise emission coordinates was assumed to be permanently fixed at the aircraft's center of gravity. Changes in the noise characteristics were calculated as a function of the engine energy level, the Doppler effect, and the momentary distance between the aircraft and observer. Results of the adaptation of these models to noise in the vicinity of the Budapest-Ferihegy International Airport are indicated schematically.

  16. Sound propagation elements in evaluation of en route noise of advanced turbofan aircraft

    NASA Astrophysics Data System (ADS)

    Sutherland, Louis C.; Wesler, John

    1990-04-01

    Cruise noise from an advanced turboprop aircraft is reviewed on the basis of available wind tunnel data to estimate the aircraft noise signature at the source. Available analytical models are used to evaluate the sound levels at the ground. The analysis allows reasonable estimates to be made of the community noise levels that might be generated during cruise by such aircraft, provides the basis for preliminary comparisons with available data on noise of existing aircraft during climb and helps to identify the dominant elements of the sound propagation models applicable to this situation.

  17. Propeller aircraft interior noise model: User's manual for computer program

    NASA Technical Reports Server (NTRS)

    Wilby, E. G.; Pope, L. D.

    1985-01-01

    A computer program entitled PAIN (Propeller Aircraft Interior Noise) has been developed to permit calculation of the sound levels in the cabin of a propeller-driven airplane. The fuselage is modeled as a cylinder with a structurally integral floor, the cabin sidewall and floor being stiffened by ring frames, stringers and floor beams of arbitrary configurations. The cabin interior is covered with acoustic treatment and trim. The propeller noise consists of a series of tones at harmonics of the blade passage frequency. Input data required by the program include the mechanical and acoustical properties of the fuselage structure and sidewall trim. Also, the precise propeller noise signature must be defined on a grid that lies in the fuselage skin. The propeller data are generated with a propeller noise prediction program such as the NASA Langley ANOPP program. The program PAIN permits the calculation of the space-average interior sound levels for the first ten harmonics of a propeller rotating alongside the fuselage. User instructions for PAIN are given in the report. Development of the analytical model is presented in NASA CR 3813.

  18. Airport take-off noise assessment aimed at identify responsible aircraft classes.

    PubMed

    Sanchez-Perez, Luis A; Sanchez-Fernandez, Luis P; Shaout, Adnan; Suarez-Guerra, Sergio

    2016-01-15

    Assessment of aircraft noise is an important task of nowadays airports in order to fight environmental noise pollution given the recent discoveries on the exposure negative effects on human health. Noise monitoring and estimation around airports mostly use aircraft noise signals only for computing statistical indicators and depends on additional data sources so as to determine required inputs such as the aircraft class responsible for noise pollution. In this sense, the noise monitoring and estimation systems have been tried to improve by creating methods for obtaining more information from aircraft noise signals, especially real-time aircraft class recognition. Consequently, this paper proposes a multilayer neural-fuzzy model for aircraft class recognition based on take-off noise signal segmentation. It uses a fuzzy inference system to build a final response for each class p based on the aggregation of K parallel neural networks outputs Op(k) with respect to Linear Predictive Coding (LPC) features extracted from K adjacent signal segments. Based on extensive experiments over two databases with real-time take-off noise measurements, the proposed model performs better than other methods in literature, particularly when aircraft classes are strongly correlated to each other. A new strictly cross-checked database is introduced including more complex classes and real-time take-off noise measurements from modern aircrafts. The new model is at least 5% more accurate with respect to previous database and successfully classifies 87% of measurements in the new database.

  19. Airport take-off noise assessment aimed at identify responsible aircraft classes.

    PubMed

    Sanchez-Perez, Luis A; Sanchez-Fernandez, Luis P; Shaout, Adnan; Suarez-Guerra, Sergio

    2016-01-15

    Assessment of aircraft noise is an important task of nowadays airports in order to fight environmental noise pollution given the recent discoveries on the exposure negative effects on human health. Noise monitoring and estimation around airports mostly use aircraft noise signals only for computing statistical indicators and depends on additional data sources so as to determine required inputs such as the aircraft class responsible for noise pollution. In this sense, the noise monitoring and estimation systems have been tried to improve by creating methods for obtaining more information from aircraft noise signals, especially real-time aircraft class recognition. Consequently, this paper proposes a multilayer neural-fuzzy model for aircraft class recognition based on take-off noise signal segmentation. It uses a fuzzy inference system to build a final response for each class p based on the aggregation of K parallel neural networks outputs Op(k) with respect to Linear Predictive Coding (LPC) features extracted from K adjacent signal segments. Based on extensive experiments over two databases with real-time take-off noise measurements, the proposed model performs better than other methods in literature, particularly when aircraft classes are strongly correlated to each other. A new strictly cross-checked database is introduced including more complex classes and real-time take-off noise measurements from modern aircrafts. The new model is at least 5% more accurate with respect to previous database and successfully classifies 87% of measurements in the new database. PMID:26540603

  20. Updating working memory in aircraft noise and speech noise causes different fMRI activations

    PubMed Central

    Sætrevik, Bjørn; Sörqvist, Patrik

    2015-01-01

    The present study used fMRI/BOLD neuroimaging to investigate how visual-verbal working memory is updated when exposed to three different background-noise conditions: speech noise, aircraft noise and silence. The number-updating task that was used can distinguish between “substitution processes,” which involve adding new items to the working memory representation and suppressing old items, and “exclusion processes,” which involve rejecting new items and maintaining an intact memory set. The current findings supported the findings of a previous study by showing that substitution activated the dorsolateral prefrontal cortex, the posterior medial frontal cortex and the parietal lobes, whereas exclusion activated the anterior medial frontal cortex. Moreover, the prefrontal cortex was activated more by substitution processes when exposed to background speech than when exposed to aircraft noise. These results indicate that (a) the prefrontal cortex plays a special role when task-irrelevant materials should be denied access to working memory and (b) that, when compensating for different types of noise, either different cognitive mechanisms are involved or those cognitive mechanisms that are involved are involved to different degrees. PMID:25352319

  1. System Noise Assessment and the Potential for a Low Noise Hybrid Wing Body Aircraft with Open Rotor Propulsion

    NASA Technical Reports Server (NTRS)

    Thomas, Russell H.; Burley, Casey L.; Lopes, Leonard V.; Bahr, Christopher J.; Gern, Frank H.; VanZante, Dale E.

    2014-01-01

    An aircraft system noise assessment was conducted for a hybrid wing body freighter aircraft concept configured with three open rotor engines. The primary objective of the study was to determine the aircraft system level noise given the significant impact of installation effects including shielding the open rotor noise by the airframe. The aircraft was designed to carry a payload of 100,000 lbs on a 6,500 nautical mile mission. An experimental database was used to establish the propulsion airframe aeroacoustic installation effects including those from shielding by the airframe planform, interactions with the control surfaces, and additional noise reduction technologies. A second objective of the study applied the impacts of projected low noise airframe technology and a projection of advanced low noise rotors appropriate for the NASA N+2 2025 timeframe. With the projection of low noise rotors and installation effects, the aircraft system level was 26.0 EPNLdB below Stage 4 level with the engine installed at 1.0 rotor diameters upstream of the trailing edge. Moving the engine to 1.5 rotor diameters brought the system level noise to 30.8 EPNLdB below Stage 4. At these locations on the airframe, the integrated level of installation effects including shielding can be as much as 20 EPNLdB cumulative in addition to lower engine source noise from advanced low noise rotors. And finally, an additional set of technology effects were identified and the potential impact at the system level was estimated for noise only without assessing the impact on aircraft performance. If these additional effects were to be included it is estimated that the potential aircraft system noise could reach as low as 38.0 EPNLdB cumulative below Stage 4.

  2. Aircraft interior noise reduction by alternate resonance tuning

    NASA Technical Reports Server (NTRS)

    Gottwald, James A.; Bliss, Donald B.

    1990-01-01

    The focus is on a noise control method which considers aircraft fuselages lined with panels alternately tuned to frequencies above and below the frequency that must be attenuated. An interior noise reduction called alternate resonance tuning (ART) is described both theoretically and experimentally. Problems dealing with tuning single paneled wall structures for optimum noise reduction using the ART methodology are presented, and three theoretical problems are analyzed. The first analysis is a three dimensional, full acoustic solution for tuning a panel wall composed of repeating sections with four different panel tunings within that section, where the panels are modeled as idealized spring-mass-damper systems. The second analysis is a two dimensional, full acoustic solution for a panel geometry influenced by the effect of a propagating external pressure field such as that which might be associated with propeller passage by a fuselage. To reduce the analysis complexity, idealized spring-mass-damper panels are again employed. The final theoretical analysis presents the general four panel problem with real panel sections, where the effect of higher structural modes is discussed. Results from an experimental program highlight real applications of the ART concept and show the effectiveness of the tuning on real structures.

  3. Concorde noise-induced building vibrations John F. Kennedy International Airport

    NASA Technical Reports Server (NTRS)

    Mayes, W. H.; Deloach, R.; Stephens, D. G.; Cawthorn, J. M.; Holmes, H. K.; Lewis, R. B.; Holliday, B. G.; Ward, D. W.

    1978-01-01

    The outdoor and indoor noise levels resulting from aircraft flyovers and certain nonaircraft events were recorded at six home sites along with the associated vibration levels in the walls, windows, and floors of these test homes. Limited subjective tests conducted to examine the human detection and annoyance thresholds for building vibration and rattle caused by aircraft noise showed that both vibration and rattle were detected subjectively in several houses for some operations of both the Concorde and subsonic aircraft. Preliminary results indicate that the relationship between window vibration and aircraft noise is: (1) linear, with vibration levels being accurately predicted from OASPL levels measured near the window; (2) consistent from flyover to flyover for a given aircraft type under approach conditions; (3) no different for Concorde than for other conventional jet transports (in the case of window vibrations induced under approach power conditions); and (4) relatively high levels of window vibration measured during Concorde operations are due more to higher OASPL levels than to unique Concorde source characteristics.

  4. Flyover Animation of Phoenix Workspace

    NASA Technical Reports Server (NTRS)

    2008-01-01

    [figure removed for brevity, see original site] Click on image for animation

    This animated 'flyover' of the workspace of NASA's Phoenix Mars Lander's was created from images taken by the Surface Stereo Imager on Sol 14 (June 8, 2008), or the 14th Martian day after landing.

    The visualization uses both of the camera's 'eyes' to provide depth perception and ranging. The camera is looking north over the workspace.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  5. A pilot study of human response to general aviation aircraft noise

    NASA Technical Reports Server (NTRS)

    Stearns, J.; Brown, R.; Neiswander, P.

    1983-01-01

    A pilot study, conducted to evaluate procedures for measuring the noise impact and community response to general aviation aircraft around Torrance Municipal Airport, a typical large GA airport, employed Torrance Airport's computer-based aircraft noise monitoring system, which includes nine permanent monitor stations surrounding the airport. Some 18 residences near these monitor stations were equipped with digital noise level recorders to measure indoor noise levels. Residents were instructed to fill out annoyance diaries for periods of 5-6 days, logging the time of each annoying aircraft overflight noise event and judging its degree of annoyance on a seven-point scale. Among the noise metrics studied, the differential between outdoor maximum A-weighted noise level of the aircraft and the outdoor background level showed the best correlation with annoyance; this correlation was clearly seen at only high noise levels, And was only slightly better than that using outdoor aircraft noise level alone. The results indicate that, on a national basis, a telephone survey coupled with outdoor noise measurements would provide an efficient and practical means of assessing the noise impact of general aviation aircraft.

  6. Determining the direction of causality between psychological factors and aircraft noise annoyance.

    PubMed

    Kroesen, Maarten; Molin, Eric J E; van Wee, Bert

    2010-01-01

    In this paper, an attempt is made to establish the direction of causality between a range of psychological factors and aircraft noise annoyance. For this purpose, a panel model was estimated within a structural equation modeling approach. Data were gathered from two surveys conducted in April 2006 and April 2008, respectively, among the same residents living within the 45 Level day-evening-night contour of Amsterdam Airport Schiphol, the largest airport in the Netherlands (n=250). A surprising result is that none of the paths from the psychological factors to aircraft noise annoyance were found to be significant. Yet 2 effects were significant the other way around: (1) from 'aircraft noise annoyance' to 'concern about the negative health effects of noise' and (2) from 'aircraft noise annoyance' to 'belief that noise can be prevented.' Hence aircraft noise annoyance measured at time 1 contained information that can effectively explain changes in these 2 variables at time 2, while controlling for their previous values. Secondary results show that (1) aircraft noise annoyance is very stable through time and (2) that changes in aircraft noise annoyance and the identified psychological factors are correlated.

  7. Policy discourse, people's internal frames, and declared aircraft noise annoyance: an application of Q-methodology.

    PubMed

    Kroesen, Maarten; Bröer, Christian

    2009-07-01

    Aircraft noise annoyance is studied extensively, but often without an explicit theoretical framework. In this article, a social approach for noise annoyance is proposed. The idea that aircraft noise is meaningful to people within a socially produced discourse is assumed and tested. More particularly, it is expected that the noise policy discourse influences people's assessment of aircraft noise. To this end, Q-methodology is used, which, to the best of the authors' knowledge, has not been used for aircraft noise annoyance so far. Through factor analysis five distinct frames are revealed: "Long live aviation!," "aviation: an ecological threat," "aviation and the environment: a solvable problem," "aircraft noise: not a problem," and "aviation: a local problem." It is shown that the former three frames are clearly related to the policy discourse. Based on this observation it is argued that policy making is a possible mechanism through which the sound of aircraft is turned into annoyance. In addition, it is concluded that the experience of aircraft noise and, in particular, noise annoyance is part of coherent frames of mind, which consist of mutually reinforcing positions and include non-acoustical factors.

  8. Towards Full Aircraft Airframe Noise Prediction: Detached Eddy Simulations

    NASA Technical Reports Server (NTRS)

    Khorrami, Mehdi R.; Mineck, Raymond E.

    2014-01-01

    Results from a computational study on the aeroacoustic characteristics of an 18%-scale, semi-span Gulf-stream aircraft model are presented in this paper. NASA's FUN3D unstructured compressible Navier-Stokes solver was used to perform steady and unsteady simulations of the flow field associated with this high-fidelity aircraft model. Solutions were obtained for free-air at a Mach number of 0.2 with the flap deflected at 39 deg, with the main gear off and on (the two baseline configurations). Initially, the study focused on accurately predicting the prominent noise sources at both flap tips for the baseline configuration with deployed flap only. Building upon the experience gained from this initial effort, subsequent work involved the full landing configuration with both flap and main landing gear deployed. For the unsteady computations, we capitalized on the Detached Eddy Simulation capability of FUN3D to capture the complex time-dependent flow features associated with the flap and main gear. To resolve the noise sources over a broad frequency range, the tailored grid was very dense near the flap inboard and outboard tips and the region surrounding the gear. Extensive comparison of the computed steady and unsteady surface pressures with wind tunnel measurements showed good agreement for the global aerodynamic characteristics and the local flow field at the flap inboard tip. However, the computed pressure coefficients indicated that a zone of separated flow that forms in the vicinity of the outboard tip is larger in extent along the flap span and chord than measurements suggest. Computed farfield acoustic characteristics from a FW-H integral approach that used the simulated pressures on the model solid surface were in excellent agreement with corresponding measurements.

  9. Workshop on Jet Exhaust Noise Reduction for Tactical Aircraft - NASA Perspective

    NASA Technical Reports Server (NTRS)

    Huff, Dennis L.; Henderson, Brenda S.

    2007-01-01

    Jet noise from supersonic, high performance aircraft is a significant problem for takeoff and landing operations near air bases and aircraft carriers. As newer aircraft with higher thrust and performance are introduced, the noise tends to increase due to higher jet exhaust velocities. Jet noise has been a subject of research for over 55 years. Commercial subsonic aircraft benefit from changes to the engine cycle that reduce the exhaust velocities and result in significant noise reduction. Most of the research programs over the past few decades have concentrated on commercial aircraft. Progress has been made by introducing new engines with design features that reduce the noise. NASA has recently started a new program called "Fundamental Aeronautics" where three projects (subsonic fixed wing, subsonic rotary wing, and supersonics) address aircraft noise. For the supersonics project, a primary goal is to understand the underlying physics associated with jet noise so that improved noise prediction tools and noise reduction methods can be developed for a wide range of applications. Highlights from the supersonics project are presented including prediction methods for broadband shock noise, flow measurement methods, and noise reduction methods. Realistic expectations are presented based on past history that indicates significant jet noise reduction cannot be achieved without major changes to the engine cycle. NASA s past experience shows a few EPNdB (effective perceived noise level in decibels) can be achieved using low noise design features such as chevron nozzles. Minimal thrust loss can be expected with these nozzles (< 0.5%) and they may be retrofitted on existing engines. In the long term, it is desirable to use variable cycle engines that can be optimized for lower jet noise during takeoff operations and higher thrust for operational performance. It is also suggested that noise experts be included early in the design process for engine nozzle systems to participate

  10. Combustion noise from gas turbine aircraft engines measurement of far-field levels

    NASA Technical Reports Server (NTRS)

    Krejsa, Eugene A.

    1987-01-01

    Combustion noise can be a significant contributor to total aircraft noise. Measurement of combustion noise is made difficult by the fact that both jet noise and combustion noise exhibit broadband spectra and peak in the same frequency range. Since in-flight reduction of jet noise is greater than that of combustion noise, the latter can be a major contributor to the in-flight noise of an aircraft but will be less evident, and more difficult to measure, under static conditions. Several methods for measuring the far-field combustion noise of aircraft engines are discussed in this paper. These methods make it possible to measure combustion noise levels even in situations where other noise sources, such as jet noise, dominate. Measured far-field combustion noise levels for several turbofan engines are presented. These levels were obtained using a method referred to as three-signal coherence, requiring that fluctuating pressures be measured at two locations within the engine core in addition to the far-field noise measurement. Cross-spectra are used to separate the far-field combustion noise from far-field noise due to other sources. Spectra and directivities are presented. Comparisons with existing combustion noise predictions are made.

  11. Engine-induced structural-borne noise in a general aviation aircraft

    NASA Technical Reports Server (NTRS)

    Unruh, J. F.; Scheidt, D. C.; Pomerening, D. J.

    1979-01-01

    Structural borne interior noise in a single engine general aviation aircraft was studied to determine the importance of engine induced structural borne noise and to determine the necessary modeling requirements for the prediction of structural borne interior noise. Engine attached/detached ground test data show that engine induced structural borne noise is a primary interior noise source for the single engine test aircraft, cabin noise is highly influenced by responses at the propeller tone, and cabin acoustic resonances can influence overall noise levels. Results from structural and acoustic finite element coupled models of the test aircraft show that wall flexibility has a strong influence on fundamental cabin acoustic resonances, the lightweight fuselage structure has a high modal density, and finite element analysis procedures are appropriate for the prediction of structural borne noise.

  12. Analytical Studies of Boundary Layer Generated Aircraft Interior Noise

    NASA Technical Reports Server (NTRS)

    Howe, M. S.; Shah, P. L.

    1997-01-01

    An analysis is made of the "interior noise" produced by high, subsonic turbulent flow over a thin elastic plate partitioned into "panels" by straight edges transverse to the mean flow direction. This configuration models a section of an aircraft fuselage that may be regarded as locally flat. The analytical problem can be solved in closed form to represent the acoustic radiation in terms of prescribed turbulent boundary layer pressure fluctuations. Two cases are considered: (i) the production of sound at an isolated panel edge (i.e., in the approximation in which the correlation between sound and vibrations generated at neighboring edges is neglected), and (ii) the sound generated by a periodic arrangement of identical panels. The latter problem is amenable to exact analytical treatment provided the panel edge conditions are the same for all panels. Detailed predictions of the interior noise depend on a knowledge of the turbulent boundary layer wall pressure spectrum, and are given here in terms of an empirical spectrum proposed by Laganelli and Wolfe. It is expected that these analytical representations of the sound generated by simplified models of fluid-structure interactions can used to validate more general numerical schemes.

  13. Prediction and reduction of aircraft noise in outdoor environments

    NASA Astrophysics Data System (ADS)

    Tong, Bao N.

    This dissertation investigates the noise due to an en-route aircraft cruising at high altitudes. It offers an improved understanding into the combined effects of atmospheric propagation, ground reflection, and source motion on the impact of en-route aircraft noise. A numerical model has been developed to compute pressure time-histories due to a uniformly moving source above a flat ground surface in the presence of a horizontally stratified atmosphere. For a moving source at high elevations, contributions from a direct and specularly reflected wave are sufficient in predicting the sound field close to the ground. In the absence of wind effects, the predicted sound field from a single overhead flight trajectory can be used to interpolate pressure time histories at all other receiver locations via a simplified ray model for the incoherent sound field. This approach provides an efficient method for generating pressure time histories in a three-dimensional space for noise impact studies. A variety of different noise propagation methods are adapted to a uniformly moving source to evaluate the accuracy and efficiency of their predictions. The techniques include: analytical methods, the Fast Field Program (FFP), and asymptotic analysis methods (e.g., ray tracing and more advanced formulations). Source motion effects are introduced via either a retarded time analysis or a Lorentz transform approach depending on the complexity of the problem. The noise spectrum from a single emission frequency, moving source has broadband characteristics. This is a consequence of the Doppler shift which continuously modifies the perceived frequency of the source as it moves relative to a stationary observer on the ground. Thus, the instantaneous wavefronts must be considered in both the frequency dependent ground impedance model and the atmospheric absorption model. It can be shown that the Doppler factor is invariant along each ray path. This gives rise to a path dependent atmospheric

  14. Modal analysis of an aircraft engine fan noise

    NASA Astrophysics Data System (ADS)

    Gorodkova, Natalia; Chursin, Valeriy; Bersenev, Yuliy; Burdakov, Ruslan; Siner, Aleksandr; Viskova, Tatiana

    2016-10-01

    The fan is one of the main noise sources of an aircraft engine. To reduce fan noise and provide liner optimization in the inlet it is necessary to research modal structure of the fan noise. The present paper contains results of acoustic tests on installation for mode generation that consists of 34-channel generator and the inlet updated for mounting of 100 microphones, the experiments were provided in new anechoic chamber of Perm National Research Polytechnic University, the engine with the same inlet was also tested in the open test bench conditions, and results of the fan noise modal structure are presented. For modal structure educting, all 100 channels were synchronously registered in a given frequency range. The measured data were analyzed with PULSE analyzer using fast Fourier transform with a frequency resolution 8..16 Hz. Single modes with numbers from 0 to 35 at frequencies 500; 630; 800; 1000; 1250; 1600 Hz and different combinations of modes at frequencies 1000, 1600, 2000, 2500 Hz were set during tests. Modes with small enough numbers are generated well on the laboratory installation, high-number modes generate additional modes caused by a complicated interference pattern of sound field in the inlet. Open test bench results showed that there are also a lot of harmonic components at frequencies lower than fan BPF. Under 0.65 of cut off there is only one distinct mode, other modes with close and less numbers appear from 0.7 of cut off and above. At power regimes 0.76 and 0.94 of cut off the highest mode also changes from positive to negative mode number area. Numbers of the highest modes change smoothly enough with the growth of power regime. At power regimes with Mach>1 (0.7 of cut off and above) on circumference of blade wheel there is a well-defined noise of shock waves at rotor frequency harmonics that appears at the range between the first rotor frequency and fan blade passing frequency (BPF). It is planned to continue researching of sound field

  15. Improved NASA-ANOPP Noise Prediction Computer Code for Advanced Subsonic Propulsion Systems. Volume 2; Fan Suppression Model Development

    NASA Technical Reports Server (NTRS)

    Kontos, Karen B.; Kraft, Robert E.; Gliebe, Philip R.

    1996-01-01

    The Aircraft Noise Predication Program (ANOPP) is an industry-wide tool used to predict turbofan engine flyover noise in system noise optimization studies. Its goal is to provide the best currently available methods for source noise prediction. As part of a program to improve the Heidmann fan noise model, models for fan inlet and fan exhaust noise suppression estimation that are based on simple engine and acoustic geometry inputs have been developed. The models can be used to predict sound power level suppression and sound pressure level suppression at a position specified relative to the engine inlet.

  16. System Noise Assessment of Blended-Wing-Body Aircraft With Open Rotor Propulsion

    NASA Technical Reports Server (NTRS)

    Guo, Yueping; Thomas, Russell H.

    2015-01-01

    An aircraft system noise study is presented for the Blended-Wing-Body (BWB) aircraft concept with three open rotor engines mounted on the upper surface of the airframe. It is shown that for such an aircraft, the cumulative Effective Perceived Noise Level (EPNL) is about 24 dB below the current aircraft noise regulations of Stage 4. While this makes the design acoustically viable in meeting the regulatory requirements, even with the consideration of more stringent noise regulations of a possible Stage 5 in the next decade or so, the design will likely meet stiff competitions from aircraft with turbofan engines. It is shown that the noise levels of the BWB design are held up by the inherently high noise levels of the open rotor engines and the limitation on the shielding benefit due to the practical design constraint on the engine location. Furthermore, it is shown that the BWB design has high levels of noise from the main landing gear, due to their exposure to high speed flow at the junction between the center body and outer wing. These are also the reasons why this baseline BWB design does not meet the NASA N+2 noise goal of 42 dB below Stage 4. To identify approaches that may further reduce noise, parametric studies are also presented, including variations in engine location, vertical tail and elevon variations, and airframe surface acoustic liner treatment effect. These have the potential to further reduce noise but they are only at the conceptual stage.

  17. Transport jet aircraft noise abatement in foreign countries: Growth, structure, impact. Volume 1: Europe, July 1980

    NASA Technical Reports Server (NTRS)

    Spencer, F. A.

    1980-01-01

    The development and implementation of aircraft noise control regulations in various European states are described. The countries include the United Kingdom, France, Switzerland, Federal Republic of Germany, Sweden, Denmark, and the Netherlands. Topics discussed include noise monitoring, airport curfews, land use planning, and the government structure for noise regulation.

  18. Preliminary noise tradeoff study of a Mach 2.7 cruise aircraft

    NASA Technical Reports Server (NTRS)

    Mascitti, V. R.; Maglieri, D. J. (Editor); Raney, J. P. (Editor)

    1979-01-01

    NASA computer codes in the areas of preliminary sizing and enroute performance, takeoff and landing performance, aircraft noise prediction, and economics were used in a preliminary noise tradeoff study for a Mach 2.7 design supersonic cruise concept. Aerodynamic configuration data were based on wind-tunnel model tests and related analyses. Aircraft structural characteristics and weight were based on advanced structural design methodologies, assuming conventional titanium technology. The most advanced noise prediction techniques available were used, and aircraft operating costs were estimated using accepted industry methods. The 4-engines cycles included in the study were based on assumed 1985 technology levels. Propulsion data was provided by aircraft manufacturers. Additional empirical data is needed to define both noise reduction features and other operating characteristics of all engine cycles under study. Data on VCE design parameters, coannular nozzle inverted flow noise reduction and advanced mechanical suppressors are urgently needed to reduce the present uncertainties in studies of this type.

  19. Reduction of JT8D powered aircraft noise by engine refanning

    NASA Technical Reports Server (NTRS)

    Stitt, L. E.; Medeiros, A. A.

    1974-01-01

    The technical feasibility is described of substantially reducing the noise levels of existing JT8D powered aircraft by retrofitting the existing fleet with quieter refan engines and new acoustically treated nacelles. No major technical problems exist that preclude the development and installation of refanned engines on aircraft currently powered by the JT8D engine. The refan concept is technically feasible and provides calculated noise reductions of from 7 to 8 EPNdb for the B727-200 aircraft and from 10 to 12 EPNdb for the DC-9-32 aircraft at the FAR Part 36 measuring stations. These noise levels are lower than both the FAR Part 36 noise standards and the noise levels of the wide-body DC-10-10. Corresponding reductions in the 90 EPNdb footprint area are estimated to vary from about 70 percent for the DC-9 to about 80 percent for the B727.

  20. MPT Prediction of Aircraft-Engine Fan Noise

    NASA Technical Reports Server (NTRS)

    Connell, Stuart D.

    2004-01-01

    A collection of computer programs has been developed that implements a procedure for predicting multiple-pure-tone (MPT) noise generated by fan blades of an aircraft engine (e.g., a turbofan engine). MPT noise arises when the fan is operating with supersonic relative tip Mach No. Under this flow condition, there is a strong upstream running shock. The strength and position of this shock are very sensitive to blade geometry variations. For a fan where all the blades are identical, the primary tone observed upstream of the fan will be the blade passing frequency. If there are small variations in geometry between blades, then tones below the blade passing frequency arise MPTs. Stagger angle differences as small as 0.1 can give rise to significant MPT. It is also noted that MPT noise is more pronounced when the fan is operating in an unstarted mode. Computational results using a three-dimensional flow solver to compute the complete annulus flow with non-uniform fans indicate that MPT noise can be estimated in a relatively simple way. Hence, once the effect of a typical geometry variation of one blade in an otherwise uniform blade row is known, the effect of all the blades being different can be quickly computed via superposition. Two computer programs that were developed as part of this work are used in conjunction with a user s computational fluid dynamics (CFD) code to predict MPT spectra for a fan with a specified set of geometric variations: (1) The first program ROTBLD reads the users CFD solution files for a single blade passage via an API (Application Program Interface). There are options to replicate and perturb the geometry with typical variations stagger, camber, thickness, and pitch. The multi-passage CFD solution files are then written in the user s file format using the API. (2) The second program SUPERPOSE requires two input files: the first is the circumferential upstream pressure distribution extracted from the CFD solution on the multi-passage mesh

  1. The cost of noise reduction for departure and arrival operations of commercial tilt rotor aircraft

    NASA Technical Reports Server (NTRS)

    Faulkner, H. B.; Swan, W. M.

    1976-01-01

    The relationship between direct operating cost (DOC) and noise annoyance due to a departure and an arrival operation was developed for commercial tilt rotor aircraft. This was accomplished by generating a series of tilt rotor aircraft designs to meet various noise goals at minimum DOC. These vehicles ranged across the spectrum of possible noise levels from completely unconstrained to the quietest vehicles that could be designed within the study ground rules. Optimization parameters were varied to find the minimum DOC. This basic variation was then extended to different aircraft sizes and technology time frames.

  2. Perceived Noise Analysis for Offset Jets Applied to Commercial Supersonic Aircraft

    NASA Technical Reports Server (NTRS)

    Huff, Dennis L.; Henderson, Brenda S.; Berton, Jeffrey J.; Seidel, Jonathan A.

    2016-01-01

    A systems analysis was performed with experimental jet noise data, engine/aircraft performance codes and aircraft noise prediction codes to assess takeoff noise levels and mission range for conceptual supersonic commercial aircraft. A parametric study was done to identify viable engine cycles that meet NASA's N+2 goals for noise and performance. Model scale data from offset jets were used as input to the aircraft noise prediction code to determine the expected sound levels for the lateral certification point where jet noise dominates over all other noise sources. The noise predictions were used to determine the optimal orientation of the offset nozzles to minimize the noise at the lateral microphone location. An alternative takeoff procedure called "programmed lapse rate" was evaluated for noise reduction benefits. Results show there are two types of engines that provide acceptable mission range performance; one is a conventional mixed-flow turbofan and the other is a three-stream variable-cycle engine. Separate flow offset nozzles reduce the noise directed toward the thicker side of the outer flow stream, but have less benefit as the core nozzle pressure ratio is reduced. At the systems level for a three-engine N+2 aircraft with full throttle takeoff, there is a 1.4 EPNdB margin to Chapter 3 noise regulations predicted for the lateral certification point (assuming jet noise dominates). With a 10% reduction in thrust just after clearing the runway, the margin increases to 5.5 EPNdB. Margins to Chapter 4 and Chapter 14 levels will depend on the cumulative split between the three certification points, but it appears that low specific thrust engines with a 10% reduction in thrust (programmed lapse rate) can come close to meeting Chapter 14 noise levels. Further noise reduction is possible with engine oversizing and derated takeoff, but more detailed mission studies are needed to investigate the range impacts as well as the practical limits for safety and takeoff

  3. Agenda toward the development of a rational noise descriptor system relevant to human annoyance by en route aircraft noise

    NASA Technical Reports Server (NTRS)

    Garbell, Maurice A.

    1990-01-01

    A rational, internationally consistent, noise descriptor system is needed to express existing and predicted en route aircraft noise levels in terms closely correlated to the annoyance perceived by people and physiologically identifiable in people, to provide guidance for aircraft and powerplant design, flight management, land-use planning, and building codes. Expanding on previous discussions, a new comprehensive statement of the specific questions that must be resolved by needed research, and the nature and quality of proof that must be adduced to justify further steps toward the drafting and adoption of new international en route aircraft-noise standards is sought. The single noise-descriptor system envisioned must be valid for widely varying aircraft-noise frequency spectra, including time-variant components and agreeable and disagreeable discrete tones and combinations of tones. The measures and criteria established by the system must be valid at high and low immission levels, at high and low ambient noise levels, for great and small number of noise events, and outdoors and indoors.

  4. Interior noise control prediction study for high-speed propeller-driven aircraft

    NASA Technical Reports Server (NTRS)

    Rennison, D. C.; Wilby, J. F.; Marsh, A. H.; Wilby, E. G.

    1979-01-01

    An analytical model was developed to predict the noise levels inside propeller-driven aircraft during cruise at M = 0.8. The model was applied to three study aircraft with fuselages of different size (wide body, narrow body and small diameter) in order to determine the noise reductions required to achieve the goal of an A-weighted sound level which does not exceed 80 dB. The model was then used to determine noise control methods which could achieve the required noise reductions. Two classes of noise control treatments were investigated: add-on treatments which can be added to existing structures, and advanced concepts which would require changes to the fuselage primary structure. Only one treatment, a double wall with limp panel, provided the required noise reductions. Weight penalties associated with the treatment were estimated for the three study aircraft.

  5. An introduction to high speed aircraft noise prediction

    NASA Technical Reports Server (NTRS)

    Wilson, Mark R.

    1992-01-01

    The Aircraft Noise Prediction Program's High Speed Research prediction system (ANOPP-HSR) is introduced. This mini-manual is an introduction which gives a brief overview of the ANOPP system and the components of the HSR prediction method. ANOPP information resources are given. Twelve of the most common ANOPP-HSR control statements are described. Each control statement's purpose and format are stated and relevant examples are provided. More detailed examples of the use of the control statements are presented in the manual along with ten ANOPP-HSR templates. The purpose of the templates is to provide the user with working ANOPP-HSR programs which can be modified to serve particular prediction requirements. Also included in this manual is a brief discussion of common errors and how to solve these problems. The appendices include the following useful information: a summary of all ANOPP-HSR functional research modules, a data unit directory, a discussion of one of the more complex control statements, and input data unit and table examples.

  6. Progress of Aircraft System Noise Assessment with Uncertainty Quantification for the Environmentally Responsible Aviation Project

    NASA Technical Reports Server (NTRS)

    Thomas, Russell H.; Burley, Casey L.; Guo, Yueping

    2016-01-01

    Aircraft system noise predictions have been performed for NASA modeled hybrid wing body aircraft advanced concepts with 2025 entry-into-service technology assumptions. The system noise predictions developed over a period from 2009 to 2016 as a result of improved modeling of the aircraft concepts, design changes, technology development, flight path modeling, and the use of extensive integrated system level experimental data. In addition, the system noise prediction models and process have been improved in many ways. An additional process is developed here for quantifying the uncertainty with a 95% confidence level. This uncertainty applies only to the aircraft system noise prediction process. For three points in time during this period, the vehicle designs, technologies, and noise prediction process are documented. For each of the three predictions, and with the information available at each of those points in time, the uncertainty is quantified using the direct Monte Carlo method with 10,000 simulations. For the prediction of cumulative noise of an advanced aircraft at the conceptual level of design, the total uncertainty band has been reduced from 12.2 to 9.6 EPNL dB. A value of 3.6 EPNL dB is proposed as the lower limit of uncertainty possible for the cumulative system noise prediction of an advanced aircraft concept.

  7. The Low-Noise Potential of Distributed Propulsion on a Catamaran Aircraft

    NASA Technical Reports Server (NTRS)

    Posey, Joe W.; Tinetti, A. F.; Dunn, M. H.

    2006-01-01

    The noise shielding potential of an inboard-wing catamaran aircraft when coupled with distributed propulsion is examined. Here, only low-frequency jet noise from mid-wing-mounted engines is considered. Because low frequencies are the most difficult to shield, these calculations put a lower bound on the potential shielding benefit. In this proof-of-concept study, simple physical models are used to describe the 3-D scattering of jet noise by conceptualized catamaran aircraft. The Fast Scattering Code is used to predict noise levels on and about the aircraft. Shielding results are presented for several catamaran type geometries and simple noise source configurations representative of distributed propulsion radiation. Computational analyses are presented that demonstrate the shielding benefits of distributed propulsion and of increasing the width of the inboard wing. Also, sample calculations using the FSC are presented that demonstrate additional noise reduction on the aircraft fuselage by the use of acoustic liners on the inboard wing trailing edge. A full conceptual aircraft design would have to be analyzed over a complete mission to more accurately quantify community noise levels and aircraft performance, but the present shielding calculations show that a large acoustic benefit could be achieved by combining distributed propulsion and liner technology with a twin-fuselage planform.

  8. Effects of changed aircraft noise exposure on experiential qualities of outdoor recreational areas.

    PubMed

    Krog, Norun Hjertager; Engdahl, Bo; Tambs, Kristian

    2010-10-01

    The literature indicates that sound and visual stimuli interact in the impression of landscapes. This paper examines the relationship between annoyance with sound from aircraft and annoyance with other area problems (e.g., careless bicycle riding, crowding, etc.), and how changes in noise exposure influence the perceived overall recreational quality of outdoor recreational areas. A panel study (telephone interviews) conducted before and after the relocation of Norway's main airport in 1998 examined effects of decreased or increased noise exposure in nearby recreational areas (n = 591/455). Sound from aircraft annoyed the largest proportion of recreationists, except near the old airport after the change. The decrease in annoyance with sound from aircraft was accompanied by significant decreases in annoyance with most of the other area problems. Near the new airport annoyance with most factors beside sound from aircraft increased slightly, but not significantly. A relationship between aircraft noise annoyance and perceived overall recreational quality of the areas was found.

  9. Evaluation of the disturbance caused by aircraft noise by opinion surveys

    NASA Technical Reports Server (NTRS)

    Bremond, J.

    1981-01-01

    A survey on the disturbance caused by aircraft noise was evaluated. The use of a questionnaire as a scale rather than considering isolated question responses is seen as more objective. A standardized structure for questionnaires of the opinion surveys on aircraft noise, which includes a set of questions permitting the analysis of the disturbance caused by different daily activities is recommended. The statistical processing of the answers, to achieve the most reliable evaluation of disturbance felt are discussed.

  10. Determination and Applications of Environmental Costs at Different Sized Airports: Aircraft Noise and Engine Emissions

    NASA Technical Reports Server (NTRS)

    Lu, Cherie; Lierens, Abigail

    2003-01-01

    With the increasing trend of charging for externalities and the aim of encouraging the sustainable development of the air transport industry, there is a need to evaluate the social costs of these undesirable side effects, mainly aircraft noise and engine emissions, for different airports. The aircraft noise and engine emissions social costs are calculated in monetary terms for five different airports, ranging from hub airports to small regional airports. The number of residences within different levels of airport noise contours and the aircraft noise classifications are the main determinants for accessing aircraft noise social costs. Whist, based on the damages of different engine pollutants on the human health, vegetation, materials, aquatic ecosystem and climate, the aircraft engine emissions social costs vary from engine types to aircraft categories. The results indicate that the relationship appears to be curvilinear between environmental costs and the traffic volume of an airport. The results and methodology of environmental cost calculation could input for to the proposed European wide harmonized noise charges as well as the social cost benefit analysis of airports.

  11. Aircraft Engine Noise Research and Testing at the NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Elliott, Dave

    2015-01-01

    The presentation will begin with a brief introduction to the NASA Glenn Research Center as well as an overview of how aircraft engine noise research fits within the organization. Some of the NASA programs and projects with noise content will be covered along with the associated goals of aircraft noise reduction. Topics covered within the noise research being presented will include noise prediction versus experimental results, along with engine fan, jet, and core noise. Details of the acoustic research conducted at NASA Glenn will include the test facilities available, recent test hardware, and data acquisition and analysis methods. Lastly some of the actual noise reduction methods investigated along with their results will be shown.

  12. The subjective evaluation of noise from light aircraft

    NASA Technical Reports Server (NTRS)

    Shepherd, K. P.

    1976-01-01

    A study was conducted in which subjects evaluated the sounds of a light aircraft and a motorcycle. Particular emphasis was placed on examining the duration of the sounds. Thirty subjects gave annoyance ratings to a total of 50 sounds, with peak levels between 65 and 85dB(A). It was found that aircraft and motorcycles have differing optimum duration corrections. The conventional duration correction used in the calculation of EPNL is far from being the optimum for light aircraft.

  13. Aircraft Engine Exhaust Nozzle System for Jet Noise Reduction

    NASA Technical Reports Server (NTRS)

    Thomas, Russell H. (Inventor); Czech, Michael J. (Inventor); Elkoby, Ronen (Inventor)

    2014-01-01

    The aircraft exhaust engine nozzle system includes a fan nozzle to receive a fan flow from a fan disposed adjacent to an engine disposed above an airframe surface of the aircraft, a core nozzle disposed within the fan nozzle and receiving an engine core flow, and a pylon structure connected to the core nozzle and structurally attached with the airframe surface to secure the engine to the aircraft.

  14. Status report on NASA two-segment approach program. [for aircraft noise reduction

    NASA Technical Reports Server (NTRS)

    Denery, D. G.; Bourquin, K. R.; Drinkwater, F. J., III; Shigemoto, F. H.; White, K. C.

    1975-01-01

    NASA, in cooperation with the FAA, is evaluating the two-segment approach as a routine procedure for reducing aircraft noise. The program calls for separate flight evaluations using a 727 and a DC-8, and an extrapolation of these results to determine the adaptability of the technique to the rest of the fleet. After a review of the total program, this paper presents (1) the profile and procedures developed and the noise reduction achievable, (2) the vortex characteristics behind an aircraft on a two-segment path, and (3) cost estimates for retrofitting aircraft with two-segment avionics.

  15. Hybrid Wing Body Aircraft System Noise Assessment with Propulsion Airframe Aeroacoustic Experiments

    NASA Technical Reports Server (NTRS)

    Thomas, Russell H.; Burley, Casey L.; Olson, Erik D.

    2010-01-01

    A system noise assessment of a hybrid wing body configuration was performed using NASA s best available aircraft models, engine model, and system noise assessment method. A propulsion airframe aeroacoustic effects experimental database for key noise sources and interaction effects was used to provide data directly in the noise assessment where prediction methods are inadequate. NASA engine and aircraft system models were created to define the hybrid wing body aircraft concept as a twin engine aircraft with a 7500 nautical mile mission. The engines were modeled as existing technology high bypass ratio turbofans. The baseline hybrid wing body aircraft was assessed at 22 dB cumulative below the FAA Stage 4 certification level. To determine the potential for noise reduction with relatively near term technologies, seven other configurations were assessed beginning with moving the engines two fan nozzle diameters upstream of the trailing edge and then adding technologies for reduction of the highest noise sources. Aft radiated noise was expected to be the most challenging to reduce and, therefore, the experimental database focused on jet nozzle and pylon configurations that could reduce jet noise through a combination of source reduction and shielding effectiveness. The best configuration for reduction of jet noise used state-of-the-art technology chevrons with a pylon above the engine in the crown position. This configuration resulted in jet source noise reduction, favorable azimuthal directivity, and noise source relocation upstream where it is more effectively shielded by the limited airframe surface, and additional fan noise attenuation from acoustic liner on the crown pylon internal surfaces. Vertical and elevon surfaces were also assessed to add shielding area. The elevon deflection above the trailing edge showed some small additional noise reduction whereas vertical surfaces resulted in a slight noise increase. With the effects of the configurations from the

  16. Auxiliary power unit noise of Boeing B737 and B747 aircraft

    NASA Astrophysics Data System (ADS)

    Kwan, Jimmy S. W.; Yang, S. J. Eric

    Most modern civil aircraft have an Auxiliary Power Unit (APU) which provides compressed air for engine starting and the air-conditioning system on ground and electrical power for aircraft use both on-ground and in-fligth. It is basically a gas turbine engine and it consists of a compressor section, a turbine section, and an accessory drive section. For Boeing B737 and B747 aircraft, the APU is located inside a compartment in the tail section of the aircraft and is completely enclosed by a sound-reduction fire-proof titanium shroud. APU noise is one of the major noise sources at many airports and is extremely important for a densely populated city such as Hong Kong. The noise from APU can affect many people, including ground crew aircraft maintenance staff, and people living in the vicinity of the airport. However, there is very little information available in the literature about APU noise. This paper describes the noise measurement method and presents the measurement results for APUs of one B747 and two B737 aircraft under both 'loaded' and 'no-load' conditions.

  17. Noise reduction of a tilt-rotor aircraft including effects on weight and performance

    NASA Technical Reports Server (NTRS)

    Gibs, J.; Stepniewski, W. Z.; Spencer, R.; Kohler, G.

    1973-01-01

    Various methods for far-field noise reduction of a tilt-rotor acoustic signature and the performance and weight tradeoffs which result from modification of the noise sources are considered in this report. In order to provide a realistic approach for the investigation, the Boeing tilt-rotor flight research aircraft (Model 222), was selected as the baseline. This aircraft has undergone considerable engineering development. Its rotor has been manufactured and tested in the Ames full-scale wind tunnel. The study reflects the current state-of-the-art of aircraft design for far-field acoustic signature reduction and is not based solely on an engineering feasibility aircraft. This report supplements a previous study investigating reduction of noise signature through the management of the terminal flight trajectory.

  18. Aircraft noise exposure affects rat behavior, plasma norepinephrine levels, and cell morphology of the temporal lobe.

    PubMed

    Di, Guo-Qing; Zhou, Bing; Li, Zheng-Guang; Lin, Qi-Li

    2011-12-01

    In order to investigate the physiological effects of airport noise exposure on organisms, in this study, we exposed Sprague-Dawley rats in soundproof chambers to previously recorded aircraft-related noise for 65 d. For comparison, we also used unexposed control rats. Noise was arranged according to aircraft flight schedules and was adjusted to its weighted equivalent continuous perceived noise levels (L(WECPN)) of 75 and 80 dB for the two experimental groups. We examined rat behaviors through an open field test and measured the concentrations of plasma norepinephrine (NE) by high performance liquid chromatography-fluorimetric detection (HPLC-FLD). We also examined the morphologies of neurons and synapses in the temporal lobe by transmission electron microscopy (TEM). Our results showed that rats exposed to airport noise of 80 dB had significantly lower line crossing number (P<0.05) and significantly longer center area duration (P<0.05) than control animals. After 29 d of airport noise exposure, the concentration of plasma NE of exposed rats was significantly higher than that of the control group (P<0.05). We also determined that the neuron and synapsis of the temporal lobe of rats showed signs of damage after aircraft noise of 80 dB exposure for 65 d. In conclusion, exposing rats to long-term aircraft noise affects their behaviors, plasma NE levels, and cell morphology of the temporal lobe.

  19. Theoretical design of acoustic treatment for cabin noise control of a light aircraft

    NASA Technical Reports Server (NTRS)

    Vaicaitis, R.; Mixson, J. S.

    1984-01-01

    An analytical procedure has been used to design an acoustic treatment for cabin noise control of a light aircraft. Using this approach acoustic add-on treatments capable of reducing the average noise levels in the cabin by about 17 dB from the untreated condition are developed. The added weight of the noise control package is about 2 percent of the total gross take-off weight of the aircraft. The analytical model uses modal solutions wherein the structural modes of the sidewall and the acoustic modes of the receiving space are accounted for. The additional noise losses due to add-on treatments are calculated by the impedance transfer method. The input noise spectral levels are selected utilizing experimental flight data. The add-on treatments considered for cabin noise control include aluminum honeycomb panels, constrained layer damping tape, porous acoustic materials, noise barriers and limp trim panels. To reduce the noise transmitted through the double wall aircraft windows to acceptable levels, changes in the design of the aircraft window are recommended.

  20. Aircraft noise effects on sleep: application of the results of a large polysomnographic field study.

    PubMed

    Basner, Mathias; Samel, Alexander; Isermann, Ullrich

    2006-05-01

    The Institute of Aerospace Medicine at the German Aerospace Center (DLR) investigated the influence of nocturnal aircraft noise on sleep in polysomnographic laboratory and field studies between 1999 and 2004. The results of the field studies were used by the Regional Council of Leipzig (Germany) for the establishment of a noise protection plan in the official approval process for the expansion of Leipzig/Halle airport. Methods and results of the DLR field study are described in detail. Special attention is given to the dose-response relationship between the maximum sound pressure level of an aircraft noise event and the probability to wake up, which was used to establish noise protection zones directly related to the effects of noise on sleep. These protection zones differ qualitatively and quantitatively from zones that are solely based on acoustical criteria. The noise protection plan for Leipzig/Halle airport is presented and substantiated: (1) on average, there should be less than one additional awakening induced by aircraft noise, (2) awakenings recalled in the morning should be avoided as much as possible, and (3) aircraft noise should interfere as little as possible with the process of falling asleep again. Issues concerned with the representativeness of the study sample are discussed.

  1. Optimum Noise Reduction Methods for the Interior of Vehicles and Aircraft Cabins

    NASA Astrophysics Data System (ADS)

    Tavossi, Ph. D., Hasson M.

    The most effective methods of noise reduction in vehicles and Aircraft cabins are investigated. The first goal is to determine the optimal means of noise mitigation without change in external shape of the vehicle, or aircraft cabin exterior such as jet engine or fuselage design, with no significant added weight. The second goal is to arrive at interior designs that can be retrofitted to the existing interiors, to reduce overall noise level for the passengers. The physical phenomena considered are; relaxation oscillations, forced vibrations with non-linear damping and sub-harmonic resonances. The negative and positive damping coefficients and active noise cancelations methods are discussed. From noise power-spectrum for a prototype experimental setup, the most energetic vibration modes are determined, that require the highest damping. The proposed technique will utilize the arrangement of uniformly distributed open Helmholtz resonators, with sound absorbing surface. They are tuned to the frequencies that correspond to the most energetic noise levels. The resonators dissipate noise energy inside the vehicle, or aircraft cabin, at the peak frequencies of the noise spectrum, determined for different vehicle or aircraft cabin, interior design models.

  2. Design of the Next Generation Aircraft Noise Prediction Program: ANOPP2

    NASA Technical Reports Server (NTRS)

    Lopes, Leonard V., Dr.; Burley, Casey L.

    2011-01-01

    The requirements, constraints, and design of NASA's next generation Aircraft NOise Prediction Program (ANOPP2) are introduced. Similar to its predecessor (ANOPP), ANOPP2 provides the U.S. Government with an independent aircraft system noise prediction capability that can be used as a stand-alone program or within larger trade studies that include performance, emissions, and fuel burn. The ANOPP2 framework is designed to facilitate the combination of acoustic approaches of varying fidelity for the analysis of noise from conventional and unconventional aircraft. ANOPP2 integrates noise prediction and propagation methods, including those found in ANOPP, into a unified system that is compatible for use within general aircraft analysis software. The design of the system is described in terms of its functionality and capability to perform predictions accounting for distributed sources, installation effects, and propagation through a non-uniform atmosphere including refraction and the influence of terrain. The philosophy of mixed fidelity noise prediction through the use of nested Ffowcs Williams and Hawkings surfaces is presented and specific issues associated with its implementation are identified. Demonstrations for a conventional twin-aisle and an unconventional hybrid wing body aircraft configuration are presented to show the feasibility and capabilities of the system. Isolated model-scale jet noise predictions are also presented using high-fidelity and reduced order models, further demonstrating ANOPP2's ability to provide predictions for model-scale test configurations.

  3. Effects of aircraft noise and sonic booms on domestic animals and wildlife: a literature synthesis

    SciTech Connect

    Manci, K.M.; Gladwin, D.N.; Villella, R.; Cavendish, M.G.

    1988-06-01

    An information base on the effects of aircraft noise and sonic booms on various animal species is necessary to assess potential impacts to wildlife populations from proposed military flight operations. Thus, in a joint U.S. Air Force/U.S. Fish and Wildlife Service effort, the National Ecology Research Center conducted a literature search of information pertaining to animal hearing and the effects of aircraft noise and sonic booms on domestic animals and wildlife. Information concerning other types of noise was also gathered to supplement the lack of knowledge on the effects of aircraft noise. The literature is summarized in the report to provide an overview of current knowledge. No attempt was made to evaluate the appropriateness or adequacy or the scientific approach of each study. A brief overview of the physics of sound and aircraft noise and sonic-boom characteristics also is included to familiarize the reader with the terminology and concepts of aircraft noise and sonic-boom impact analysis.

  4. Effects of aircraft noise and sonic booms on domestic animals and wildlife: bibliographic abstracts

    USGS Publications Warehouse

    Gladwin, Douglas N.; Manci, Karen M.; Villella, Rita

    1988-01-01

    The purpose of this document is to provide an information base on the effects of aircraft noise and sonic booms on various animal species. Such information is necessary to assess potential impacts to wildlife populations from proposed military and other flight operations. To develop this document the National Ecology Center conducted a literature search of information pertaining to animals and wildlife. Information concerning other types of noise was also gathered to supplement the lack of knowledge on the effects of aircraft noise. The bibliographic abstracts in this report provide a compilation of current knowledge. No attempt was made to evaluate the appropriateness or adequacy of the scientific approach of each study.

  5. Validation of Aircraft Noise Prediction Models at Low Levels of Exposure

    NASA Technical Reports Server (NTRS)

    Page, Juliet A.; Hobbs, Christopher M.; Plotkin, Kenneth J.; Stusnick, Eric; Shepherd, Kevin P. (Technical Monitor)

    2000-01-01

    Aircraft noise measurements were made at Denver International Airport for a period of four weeks. Detailed operational information was provided by airline operators which enabled noise levels to be predicted using the FAA's Integrated Noise Model. Several thrust prediction techniques were evaluated. Measured sound exposure levels for departure operations were found to be 4 to 10 dB higher than predicted, depending on the thrust prediction technique employed. Differences between measured and predicted levels are shown to be related to atmospheric conditions present at the aircraft altitude.

  6. Effects of aircraft noise and sonic booms on domestic animals and wildlife: bibliographic abstracts

    SciTech Connect

    Gladwin, D.N.; Manci, K.M.; Villella, R.

    1988-06-01

    The purpose of the document is to provide an information base on the effects of aircraft noise and sonic booms on various animal species. Such information is necessary to assess potential impacts to wildlife populations from proposed military and other flight operations. To develop the document the National Ecology Research Center conducted a literature search of information pertaining to animal hearing and the effects of aircraft noise and sonic booms on domestic animals and wildlife. Information concerning other types of noise was also gathered to supplement the lack of knowledge on the effects of aircraft noise. The bibliographic abstracts in the report provide a compilation of current knowledge. No attempt was made to evaluate the appropriateness or adequacy of the scientific approach of each study. (A literature synthesis is available in a separate document.)

  7. Supersonic and subsonic aircraft noise effects on animals: A literature survey

    NASA Astrophysics Data System (ADS)

    Kull, Robert C., Jr.; Fisher, Alan D.

    1986-12-01

    We searched the literature concerning the effects of supersonic and subsonic aircraft noise on animals. Our search revealed many review papers of prior research accomplished, but few actual research papers. Out of all the reviews, Dufour's work is the most comprehensive. Many of the papers are anecdotal in nature and add little to our scientific knowledge - strictly circumstantial evidence. The literature reveals few effects on animals due to sonic booms. The effects of subsonic noise, however, needs much more investigation. One of the biggest problems with the research in this area is the lack of controls, lack of standardized ways of recording data and evaluating behaviors, and the number of variables involved. Specific recommendations to fill some of the technological gaps include a sonic boom study on a ground-nesting shorebird, effects of subsonic aircraft noise on endangered species, long term physiological effects causing immunosuppression, and noise versus visual aircraft stimuli effects.

  8. A review and update of the NASA aircraft noise prediction program propeller analysis system

    NASA Technical Reports Server (NTRS)

    Golub, Robert A.; Nguyen, L. Cathy

    1989-01-01

    The National Aeronautics and Space Administration (NASA) Aircraft Noise Prediction Program (ANOPP) Propeller Analysis System (PAS) is a set of computational modules for predicting the aerodynamics, performance, and noise of propellers. The ANOPP PAS has the capability to predict noise levels for propeller aircraft certification and produce parametric scaling laws for the adjustment of measured data to reference conditions. A technical overview of the prediction techniques incorporated into the system is presented. The prediction system has been applied to predict the noise signature of a variety of propeller configurations including the effects of propeller angle of attack. A summary of these validation studies is discussed with emphasis being placed on the wind tunnel and flight test programs sponsored by the Federal Aviation Administration (FAA) for the Piper Cherokee Lance aircraft. A number of modifications and improvements have been made to the system and both DEC VAX and IBM-PC versions of the system have been added to the original CDC NOS version.

  9. A review and update of the NASA aircraft noise prediction program propeller analysis system

    NASA Astrophysics Data System (ADS)

    Golub, Robert A.; Nguyen, L. Cathy

    1989-04-01

    The National Aeronautics and Space Administration (NASA) Aircraft Noise Prediction Program (ANOPP) Propeller Analysis System (PAS) is a set of computational modules for predicting the aerodynamics, performance, and noise of propellers. The ANOPP PAS has the capability to predict noise levels for propeller aircraft certification and produce parametric scaling laws for the adjustment of measured data to reference conditions. A technical overview of the prediction techniques incorporated into the system is presented. The prediction system has been applied to predict the noise signature of a variety of propeller configurations including the effects of propeller angle of attack. A summary of these validation studies is discussed with emphasis being placed on the wind tunnel and flight test programs sponsored by the Federal Aviation Administration (FAA) for the Piper Cherokee Lance aircraft. A number of modifications and improvements have been made to the system and both DEC VAX and IBM-PC versions of the system have been added to the original CDC NOS version.

  10. Analysis of interior noise ground and flight test data for advanced turboprop aircraft applications

    NASA Technical Reports Server (NTRS)

    Simpson, M. A.; Tran, B. N.

    1991-01-01

    Interior noise ground tests conducted on a DC-9 aircraft test section are described. The objectives were to study ground test and analysis techniques for evaluating the effectiveness of interior noise control treatments for advanced turboprop aircraft, and to study the sensitivity of the ground test results to changes in various test conditions. Noise and vibration measurements were conducted under simulated advanced turboprop excitation, for two interior noise control treatment configurations. These ground measurement results were compared with results of earlier UHB (Ultra High Bypass) Demonstrator flight tests with comparable interior treatment configurations. The Demonstrator is an MD-80 test aircraft with the left JT8D engine replaced with a prototype UHB advanced turboprop engine.

  11. Assessment at full scale of nozzle/wing geometry effects on OTW aero-acoustic characteristics. [short takeoff aircraft noise

    NASA Technical Reports Server (NTRS)

    Groesbeck, D.; Vonglahn, U.

    1979-01-01

    The effects on acoustic characteristics of nozzle type and location on a wing for STOL engine over-the-wing configurations are assessed at full scale on the basis of model-scale data. Three types of nozzle configurations are evaluated: a circular nozzle with external deflector mounted above the wing, a slot nozzle with external deflector mounted on the wing and a slot nozzle mounted on the wing. Nozzle exhaust plane locations with respect to the wing leading edge are varied from 10 to 46 percent chord (flaps retracted) with flap angles of 20 (takeoff altitude) and 60 (approach attitude). Perceived noise levels (PNL) are calculated as a function of flyover distance at 152 m altitude. From these plots, static EPNL values, defined as flyover relative noise levels, are calculated and plotted as a function of lift and thrust ratios. From such plots the acoustic benefits attributable to variations in nozzle/deflector/wing geometry at full scale are assessed for equal aerodynamic performance.

  12. Landing approach airframe noise measurements and analysis

    NASA Technical Reports Server (NTRS)

    Lasagna, P. L.; Mackall, K. G.; Burcham, F. W., Jr.; Putnam, T. W.

    1980-01-01

    Flyover measurements of the airframe noise produced by the AeroCommander, JetStar, CV-990, and B-747 airplanes are presented for various landing approach configurations. Empirical and semiempirical techniques are presented to correlate the measured airframe noise with airplane design and aerodynamic parameters. Airframe noise for the jet-powered airplanes in the clean configuration (flaps and gear retracted) was found to be adequately represented by a function of airplane weight and the fifth power of airspeed. Results show the airframe noise for all four aircraft in the landing configuration (flaps extended and gear down) also varied with the fifth power of airspeed, but this noise level could not be represented by the addition of a constant to the equation for clean-configuration airframe noise.

  13. The effects of ear protectors and hearing losses on sentence intelligibility in aircraft noise

    NASA Astrophysics Data System (ADS)

    Froehlich, G. R.

    1981-06-01

    Flight line personnel with hearing defects often complain that face-to-face speech communication in noise is considerably reduced when ear protectors are worn. Whether this could be confirmed or not was determined. An effective noise protecting flight helmet changes the flat aircraft cabin noise spectrum into a spectrum with predominance of lower frequencies. Whether the additional wearing of earplugs under the ear cups might improve speech perception was investigated.

  14. New technique for the direct measurement of core noise from aircraft engines. [YF 102 turbofan engine

    NASA Technical Reports Server (NTRS)

    Krejsa, E. A.

    1981-01-01

    The core noise levels from gas turbine aircraft engines were measured using a technique which requires that fluctuating pressures be measured in the far field and at two locations within the engine core. The cross spectra of these measurements are used to determine the levels of the far-field noise that propagated from the engine vore. The technique makes it possible to measure core noise levels even when other noise sources dominate. The technique was applied to signals measured from an Avco Lycoming YF102 turbofan engine. Core noise levels as a function of frequency and radiation angle were measured and are presented over a range of power settings.

  15. The fallacy of using NII in analyzing aircraft operations. [Noise Impact Index

    NASA Technical Reports Server (NTRS)

    Melton, R. G.; Jacobson, I. D.

    1984-01-01

    Three measures of noise annoyance (Noise Impact Index, Level-Weighted Population, and Annoyed Population Number) are compared, regarding their utility in assessing noise reduction schemes for aircraft operations. While NII is intended to measure the average annoyance per person in a community, it is found that the method of averaging can lead to erroneous conclusions, particularly if the population does not have uniform spatial distribution. Level-Weighted Population and Annoyed Population Number are shown to be better indicators of noise annoyance when rating different strategies for noise reduction in a given community.

  16. Effects of interior aircraft noise on speech intelligibility and annoyance

    NASA Technical Reports Server (NTRS)

    Pearsons, K. S.; Bennett, R. L.

    1977-01-01

    Recordings of the aircraft ambiance from ten different types of aircraft were used in conjunction with four distinct speech interference tests as stimuli to determine the effects of interior aircraft background levels and speech intelligibility on perceived annoyance in 36 subjects. Both speech intelligibility and background level significantly affected judged annoyance. However, the interaction between the two variables showed that above an 85 db background level the speech intelligibility results had a minimal effect on annoyance ratings. Below this level, people rated the background as less annoying if there was adequate speech intelligibility.

  17. The effects of chronic exposure to aircraft noise on the prevalence of hypertension.

    PubMed

    Rhee, Moo-Yong; Kim, Hae-Young; Roh, Sang-Chul; Kim, Hyun-Joo; Kwon, Ho-Jang

    2008-04-01

    Exposure to environmental noise has been suggested to increase the prevalence of hypertension. The present study investigated whether or not chronic exposure to military aircraft noise is related to an increased prevalence of hypertension. The study population consisted of 137 subjects (mean age 60+/-14 years) who lived within 5 km of a helicopter airbase and 486 subjects (58+/-16 years) living within 5 km of a fighter-jet airbase. A control group consisted of 252 subjects (58+/-16 years) not exposed to aircraft noise. Overall, the subjects exposed to military aircraft noise had a higher prevalence of hypertension than those in the control group (p=0.037). However, whereas those exposed to helicopter noise had a higher prevalence than the control group (p=0.020), those exposed to fighter-jet noise did not (p=0.094). The prevalence of known hypertension in the helicopter group was higher than in the control group (p=0.024). The prevalence odds ratio for hypertension adjusted for age, gender, body mass index, current smoking, alcohol intake, diabetes, and regular exercise was 1.62 (95% confidence interval [95% CI], 1.02-2.59) for the subjects exposed to helicopter noise, and 1.23 (95% CI, 0.87-1.74) for those exposed to fighter-jet noise. In conclusion, the results of the present study suggest that chronic exposure to military aircraft noise may be associated with hypertension. The difference in the effects between helicopter and fighter-jet noise implies that different kinds of noise will have different influences on the prevalence of hypertension.

  18. Multilevel modelling of aircraft noise on performance tests in schools around Heathrow Airport London

    PubMed Central

    Haines, M; Stansfeld, S; Head, J; Job, R

    2002-01-01

    Design: This is a cross sectional study using the National Standardised Scores (SATs) in mathematics, science, and English (11 000 scores from children aged 11 years). The analyses used multilevel modelling to determine the effects of chronic aircraft noise exposure on childrens' school performance adjusting for demographic, socioeconomic and school factors in 123 primary schools around Heathrow Airport. Schools were assigned aircraft noise exposure level from the 1994 Civil Aviation Authority aircraft noise contour maps. Setting: Primary schools. Participants: The sample were approximately 11 000 children in year 6 (approximately 11 years old) from 123 schools in the three boroughs surrounding Heathrow Airport. Main results: Chronic exposure to aircraft noise was significantly related to poorer reading and mathematics performance. After adjustment for the average socioeconomic status of the school intake (measured by percentage of pupils eligible for free school meals) these associations were no longer statistically significant. Conclusions: Chronic exposure to aircraft noise is associated with school performance in reading and mathematics in a dose-response function but this association is confounded by socioeconomic factors. PMID:11812814

  19. Perceived Noise Analysis for Offset Jets Applied to Commercial Supersonic Aircraft

    NASA Technical Reports Server (NTRS)

    Huff, Dennis L.; Henderson, Brenda S.; Berton, Jeffrey J.; Seidel, Jonathan A.

    2016-01-01

    A systems analysis was performed with experimental jet noise data, engine/aircraft performance codes and aircraft noise prediction codes to assess takeoff noise levels and mission range for conceptual supersonic commercial aircraft. A parametric study was done to identify viable engine cycles that meet NASAs N+2 goals for noise and performance. Model scale data from offset jets was used as input to the aircraft noise prediction code to determine the expected sound levels for the lateral certification point where jet noise dominates over all other noise sources. The noise predictions were used to determine the optimal orientation of the offset nozzles to minimize the noise at the lateral microphone location. An alternative takeoff procedure called programmed lapse rate was evaluated for noise reduction benefits. Results show there are two types of engines that provide acceptable range performance; one is a standard mixed-flow turbofan with a single-stage fan, and the other is a three-stream variable-cycle engine with a multi-stage fan. The engine with a single-stage fan has a lower specific thrust and is 8 to 10 EPNdB quieter for takeoff. Offset nozzles reduce the noise directed toward the thicker side of the outer flow stream, but have less benefit as the core nozzle pressure ratio is reduced and the bypass-to-core area ratio increases. At the systems level for a three-engine N+2 aircraft with full throttle takeoff, there is a 1.4 EPNdB margin to Chapter 3 noise regulations predicted for the lateral certification point (assuming jet noise dominates). With a 10 reduction in thrust just after takeoff rotation, the margin increases to 5.5 EPNdB. Margins to Chapter 4 and Chapter 14 levels will depend on the cumulative split between the three certification points, but it appears that low specific thrust engines with a 10 reduction in thrust (programmed lapse rate) can come close to meeting Chapter 14 noise levels. Further noise reduction is possible with additional

  20. A Process for Assessing NASA's Capability in Aircraft Noise Prediction Technology

    NASA Technical Reports Server (NTRS)

    Dahl, Milo D.

    2008-01-01

    An acoustic assessment is being conducted by NASA that has been designed to assess the current state of the art in NASA s capability to predict aircraft related noise and to establish baselines for gauging future progress in the field. The process for determining NASA s current capabilities includes quantifying the differences between noise predictions and measurements of noise from experimental tests. The computed noise predictions are being obtained from semi-empirical, analytical, statistical, and numerical codes. In addition, errors and uncertainties are being identified and quantified both in the predictions and in the measured data to further enhance the credibility of the assessment. The content of this paper contains preliminary results, since the assessment project has not been fully completed, based on the contributions of many researchers and shows a select sample of the types of results obtained regarding the prediction of aircraft noise at both the system and component levels. The system level results are for engines and aircraft. The component level results are for fan broadband noise, for jet noise from a variety of nozzles, and for airframe noise from flaps and landing gear parts. There are also sample results for sound attenuation in lined ducts with flow and the behavior of acoustic lining in ducts.

  1. Review of the effect of aircraft noise on sleep disturbance in adults.

    PubMed

    Perron, Stéphane; Tétreault, Louis-François; King, Norman; Plante, Céline; Smargiassi, Audrey

    2012-01-01

    Noise exposure generated by air traffic has been linked with sleep disturbances. The purpose of this systematic review is to clarify whether there is a causal link between aircraft noise exposure and sleep disturbances. Only complete, peer-reviewed articles published in scientific journals were examined. Papers published until December 2010 were considered. To be included, articles had to focus on subjects aged 18 or over and include an objective evaluation of noise levels. Studies were classified according to quality. Given the paucity of studies with comparable outcome measures, we performed a narrative synthesis using a best-evidence synthesis approach. The primary study findings were tabulated. Similarities and differences between studies were investigated. Of the 12 studies surveyed that dealt with sleep disturbances, four were considered to be of high quality, five were considered to be of moderate quality and three were considered to be of low quality. All moderate- to high-quality studies showed a link between aircraft noise events and sleep disturbances such as awakenings, decreased slow wave sleep time or the use of sleep medication. This review suggests that there is a causal relation between exposure to aircraft noise and sleep disturbances. However, the evidence comes mostly from experimental studies focusing on healthy adults. Further studies are necessary to determine the impact of aircraft noise on sleep disturbance for individuals more than 65 years old and for those with chronic diseases.

  2. Reduction of JT8D powered aircraft noise by engine refanning

    NASA Technical Reports Server (NTRS)

    Stitt, L. E.; Medeiros, A. A.

    1974-01-01

    The purpose of the Refan Program is to establish the technical feasibility of substantially reducing the noise levels of existing JT8D powered aircraft. This would be accomplished by retrofitting the existing fleet with quieter refan engines and new acoustically treated nacelles. No major technical problems exist that preclude the development and installation of refanned engines on aircraft currently powered by the JT8D engine. The refan concept is technically feasible and provides calculated noise reductions of from 7 to 8 EPNdB for the B727-200 aircraft and from 10 to 12 EPNdB for the DC-9-32 aircraft at the FAR Part 36 measuring stations. Corresponding reductions in the 90 EPNdB footprint area are estimated to vary from about 70 percent for the DC-9 to about 80 percent for the B727.

  3. Role of structural noise in aircraft pressure cockpit from vibration action of new-generation engines

    NASA Astrophysics Data System (ADS)

    Baklanov, V. S.

    2016-07-01

    The evolution of new-generation aircraft engines is transitioning from a bypass ratio of 4-6 to an increased ratio of 8-12. This is leading to substantial broadening of the vibration spectrum of engines with a shift to the low-frequency range due to decreased rotation speed of the fan rotor, in turn requiring new solutions to decrease structural noise from engine vibrations to ensure comfort in the cockpits and cabins of aircraft.

  4. En route noise of turboprop aircraft and their acceptability: Report of tests

    NASA Technical Reports Server (NTRS)

    Held, Wolf

    1990-01-01

    The development of propfan-powered aircraft has been observed with great interest. It is obvious that during cruising flight, the aircraft powerplant (propellers) cause a noise clearly perceivable on the ground. It is the audible frequency spectrum of the propfan powerplants relative to the high tip speeds that presents the problem. A flight test was conducted on 30 April, 1989 at the Frankfurt Airport. Results of the test flight are present.

  5. Assessment System for Aircraft Noise (ASAN): Development of alpha-test prototype system software

    NASA Astrophysics Data System (ADS)

    Reddingius, Nicholaas H.; Smyth, John S.

    1990-02-01

    The Alpha-Test version of the Assessment System for Aircraft Noise (ASAN) is described. ASAN was developed for the United States Air Force's Noise and Sonic Boom Impact Technology Advanced Development Program Office (NSBIT ADPO). The Purpose of ASAN is to provide Air Force route and environmental planners with a set of tools for preparing the noise portion of environmental impact statements (EIS), environmental assessments (EA), and findings of no significant impact (FONSI). ASAN provides a consistent set of procedures and models which represent the current state-of-the-art in noise engineering practice. A brief overview is given of the technical issues of developing the ASAN system.

  6. Simulation-Based Airframe Noise Prediction of a Full-Scale, Full Aircraft

    NASA Technical Reports Server (NTRS)

    Khorrami, Mehdi R.; Fares, Ehab

    2016-01-01

    A previously validated computational approach applied to an 18%-scale, semi-span Gulfstream aircraft model was extended to the full-scale, full-span aircraft in the present investigation. The full-scale flap and main landing gear geometries used in the simulations are nearly identical to those flown on the actual aircraft. The lattice Boltzmann solver PowerFLOW® was used to perform time-accurate predictions of the flow field associated with this aircraft. The simulations were performed at a Mach number of 0.2 with the flap deflected 39 deg. and main landing gear deployed (landing configuration). Special attention was paid to the accurate prediction of major sources of flap tip and main landing gear noise. Computed farfield noise spectra for three selected baseline configurations (flap deflected 39 deg. with and without main gear extended, and flap deflected 0 deg. with gear deployed) are presented. The flap brackets are shown to be important contributors to the farfield noise spectra in the mid- to high-frequency range. Simulated farfield noise spectra for the baseline configurations, obtained using a Ffowcs Williams and Hawkings acoustic analogy approach, were found to be in close agreement with acoustic measurements acquired during the 2006 NASA-Gulfstream joint flight test of the same aircraft.

  7. Toward Reduced Aircraft Community Noise Impact Via a Perception-Influenced Design Approach

    NASA Technical Reports Server (NTRS)

    Rizzi, Stephen A.

    2016-01-01

    This is an exciting time for aircraft design. New configurations, including small multi-rotor uncrewed aerial systems, fixed- and tilt-wing distributed electric propulsion aircraft, high-speed rotorcraft, hybrid-electric commercial transports, and low-boom supersonic transports, are being made possible through a host of propulsion and airframe technology developments. The resulting noise signatures may be radically different, both spectrally and temporally, than those of the current fleet. Noise certification metrics currently used in aircraft design do not necessarily reflect these characteristics and therefore may not correlate well with human response. Further, as operations and missions become less airport-centric, e.g., those associated with on-demand mobility or package delivery, vehicles may operate in closer proximity to the population than ever before. Fortunately, a new set of tools are available for assessing human perception during the design process in order to affect the final design in a positive manner. The tool chain utilizes system noise prediction methods coupled with auralization and psychoacoustic testing, making possible the inclusion of human response to noise, along with performance criteria and certification requirements, into the aircraft design process. Several case studies are considered to illustrate how this approach could be used to influence the design of future aircraft.

  8. Measured Noise from Small Unmanned Aerial Vehicles

    NASA Technical Reports Server (NTRS)

    Cabell, Randolph; McSwain, Robert; Grosveld, Ferdinand

    2016-01-01

    Proposed uses of small unmanned aerial vehicles (UAVs), including home package delivery, have the potential to expose large portions of communities to a new noise source. This paper discusses results of flyover noise measurements of four small UAVs, including an internal combustion-powered model airplane and three battery-powered multicopters. Basic noise characteristics of these vehicles are discussed, including spectral properties and sound level metrics such as sound pressure level, effective perceived noise level, and sound exposure level. The size and aerodynamic characteristics of the multicopters in particular make their flight path susceptible to atmospheric disturbances such as wind gusts. These gusts, coupled with a flight control system that varies rotor speed to maintain vehicle stability, create an unsteady acoustic signature. The spectral variations resulting from this unsteadiness are explored, in both hover and flyover conditions for the multicopters. The time varying noise, which differs from the relatively steady noise generated by large transport aircraft, may complicate the prediction of human annoyance using conventional sound level metrics.

  9. Design and test of aircraft engine isolators for reduced interior noise

    NASA Technical Reports Server (NTRS)

    Unruh, J. F.; Scheidt, D. C.

    1982-01-01

    Improved engine vibration isolation was proposed to be the most weight and cost efficient retrofit structure-borne noise control measure for single engine general aviation aircraft. A study was carried out the objectives: (1) to develop an engine isolator design specification for reduced interior noise transmission, (2) select/design candidate isolators to meet a 15 dB noise reduction design goal, and (3) carry out a proof of concept evaluation test. Analytical model of the engine, vibration isolators and engine mount structure were coupled to an empirical model of the fuselage for noise transmission evaluation. The model was used to develop engine isolator dynamic properties design specification for reduced noise transmission. Candidate isolators ere chosen from available product literature and retrofit to a test aircraft. A laboratory based test procedure was then developed to simulate engine induced noise transmission in the aircraft for a proof of concept evaluation test. Three candidate isolator configurations were evaluated for reduced structure-borne noise transmission relative to the original equipment isolators.

  10. An Integrated Low-Speed Performance and Noise Prediction Methodology for Subsonic Aircraft

    NASA Technical Reports Server (NTRS)

    Olson, E. D.; Mavris, D. N.

    2000-01-01

    An integrated methodology has been assembled to compute the engine performance, takeoff and landing trajectories, and community noise levels for a subsonic commercial aircraft. Where feasible, physics-based noise analysis methods have been used to make the results more applicable to newer, revolutionary designs and to allow for a more direct evaluation of new technologies. The methodology is intended to be used with approximation methods and risk analysis techniques to allow for the analysis of a greater number of variable combinations while retaining the advantages of physics-based analysis. Details of the methodology are described and limited results are presented for a representative subsonic commercial aircraft.

  11. ANOPP programmer's reference manual for the executive System. [aircraft noise prediction program

    NASA Technical Reports Server (NTRS)

    Gillian, R. E.; Brown, C. G.; Bartlett, R. W.; Baucom, P. H.

    1977-01-01

    Documentation for the Aircraft Noise Prediction Program as of release level 01/00/00 is presented in a manual designed for programmers having a need for understanding the internal design and logical concepts of the executive system software. Emphasis is placed on providing sufficient information to modify the system for enhancements or error correction. The ANOPP executive system includes software related to operating system interface, executive control, and data base management for the Aircraft Noise Prediction Program. It is written in Fortran IV for use on CDC Cyber series of computers.

  12. Aircraft noise effects on cultural resources: Annotated bibliography

    NASA Astrophysics Data System (ADS)

    Hanson, C. E.; Peterson, N.

    1993-05-01

    The scope of work required a review, critique, and analysis of the scientific literature to assess the nature and probable magnitude of the potential effects of aircraft overflights on historical and cultural resources in the National Park System. Excluded under this work order are such items as historical or cultural context or setting.

  13. Jet Noise Shielding Provided by a Hybrid Wing Body Aircraft

    NASA Technical Reports Server (NTRS)

    Doty, Michael J.; Brooks, Thomas F.; Burley, Casey L.; Bahr, Christopher J.; Pope, Dennis S.

    2014-01-01

    One approach toward achieving NASA's aggressive N+2 noise goal of 42 EPNdB cumulative margin below Stage 4 is through the use of novel vehicle configurations like the Hybrid Wing Body (HWB). Jet noise measurements from an HWB acoustic test in NASA Langley's 14- by 22-Foot Subsonic Tunnel are described. Two dual-stream, heated Compact Jet Engine Simulator (CJES) units are mounted underneath the inverted HWB model on a traversable support to permit measurement of varying levels of shielding provided by the fuselage. Both an axisymmetric and low noise chevron nozzle set are investigated in the context of shielding. The unshielded chevron nozzle set shows 1 to 2 dB of source noise reduction (relative to the unshielded axisymmetric nozzle set) with some penalties at higher frequencies. Shielding of the axisymmetric nozzles shows up to 6.5 dB of reduction at high frequency. The combination of shielding and low noise chevrons shows benefits beyond the expected additive benefits of the two, up to 10 dB, due to the effective migration of the jet source peak noise location upstream for increased shielding effectiveness. Jet noise source maps from phased array results processed with the Deconvolution Approach for the Mapping of Acoustic Sources (DAMAS) algorithm reinforce these observations.

  14. Aircraft Noise Perception Study in Brazil: A Perspective on Airport Sustainable Growth and Environmental Awareness

    NASA Technical Reports Server (NTRS)

    deArantesGomesEller, Rogerio; Urbina, Ligia Maria Soto; Porto, Protogenes Pires

    2003-01-01

    Aircraft noise perception is related to several variables that are tangible and objective, such as the number of operations, flight schedules. Other variables, instead, are more subjective, such as preferences. However, although their elusiveness, they contribute to determine the individuals' perception of this type of externality. Despite the fact that the complaints related to aeronautical noise have been registered since the decade of 50, it has been observed that the perception of noise seems to have grown, especially since the 80's. It has been argued that this change in noise perception has its roots on the accelerated expansion of air traffic. But, it is necessary to point out the important role played on modeling preferences, by the growing environmental conscience and the higher welfare and quality of life standards and expectations. In that context, the main objective of this paper is to study the aeronautical noise perception in the neighborhoods of the Aeroporto Internacional de Sao Paulo - AISP (the biggest airport of South America). Specifically, it analyzes the relationship between aircraft noise perception and social class, which is expected to be positive. Since noise perception is an intangible variable, this study chose as a proxy the value losses of residential properties, caused by aeronautical noise. The variable social class has been measured utilizing average per capita income of the population who live nearby the airport. The comparison of both, the lowest and the highest social class suggests that the relationship between social class and noise perception is positive in the AISP region. Moreover, it was observed that all social classes are very susceptible to aircraft noise annoyance. In fact, the magnitude of the noise perception proxy for both social classes -the residential value losses- was found to be comparable to levels encountered in developed countries.

  15. Trends in aircraft noise annoyance: the role of study and sample characteristics.

    PubMed

    Janssen, Sabine A; Vos, Henk; van Kempen, Elise E M M; Breugelmans, Oscar R P; Miedema, Henk M E

    2011-04-01

    Recently, it has been suggested that the annoyance of residents at a given aircraft noise exposure level increases over the years. The objective of the present study was to verify the hypothesized trend and to identify its possible causes. To this end, the large database used to establish earlier exposure-response relationships on aircraft noise was updated with original data from several recent surveys, yielding a database with data from 34 separate airports. Multilevel grouped regression was used to determine the annoyance response per airport, after which meta-regression was used to investigate whether study characteristics could explain the heterogeneity in annoyance response between airports. A significant increase over the years was observed in annoyance at a given level of aircraft noise exposure. Furthermore, the type of annoyance scale, the type of contact, and the response percentage were found to be sources of heterogeneity. Of these, only the scale factor could statistically account for the trend, although other findings rule it out as a satisfactory explanation. No evidence was found for increased self-reported noise sensitivity. The results are of importance to the applicability of current exposure-annoyance relationships for aircraft noise and provide a basis for decisions on whether these need to be updated.

  16. Exposure-effect relations between aircraft and road traffic noise exposure at school and reading comprehension: the RANCH project.

    PubMed

    Clark, Charlotte; Martin, Rocio; van Kempen, Elise; Alfred, Tamuno; Head, Jenny; Davies, Hugh W; Haines, Mary M; Lopez Barrio, Isabel; Matheson, Mark; Stansfeld, Stephen A

    2006-01-01

    Transport noise is an increasingly prominent feature of the urban environment, making noise pollution an important environmental public health issue. This paper reports on the 2001-2003 RANCH project, the first cross-national epidemiologic study known to examine exposure-effect relations between aircraft and road traffic noise exposure and reading comprehension. Participants were 2,010 children aged 9-10 years from 89 schools around Amsterdam Schiphol, Madrid Barajas, and London Heathrow airports. Data from The Netherlands, Spain, and the United Kingdom were pooled and analyzed using multilevel modeling. Aircraft noise exposure at school was linearly associated with impaired reading comprehension; the association was maintained after adjustment for socioeconomic variables (beta = -0.008, p = 0.012), aircraft noise annoyance, and other cognitive abilities (episodic memory, working memory, and sustained attention). Aircraft noise exposure at home was highly correlated with aircraft noise exposure at school and demonstrated a similar linear association with impaired reading comprehension. Road traffic noise exposure at school was not associated with reading comprehension in either the absence or the presence of aircraft noise (beta = 0.003, p = 0.509; beta = 0.002, p = 0.540, respectively). Findings were consistent across the three countries, which varied with respect to a range of socioeconomic and environmental variables, thus offering robust evidence of a direct exposure-effect relation between aircraft noise and reading comprehension.

  17. Arousal from sleep by noises from aircraft with and without acoustically treated nacelles

    NASA Technical Reports Server (NTRS)

    Lukas, J. S.; Peeler, D. J.; Dobbs, M. E.

    1973-01-01

    The electroencephalographic and behavioral responses during sleep of four subjects, aged 46 to 58 years, to three types of noises were tested over 14 consecutive nights. The stimuli were two DC-8 jet landing noises (each 30 seconds in duration and coming from DC-8 aircraft with and without acoustical treatment on the engine nacelles) and a 4-second burst of pink noise. Each of the noises was tested at nominal intensities of 61 and 79 dBA. Other physical descriptors of the noises were measured or computed. The results indicate that for an equivalent degree of sleep disruption, noise form the jet aircraft with untreated nacelles must be about 6 dBA less intense than the jet with acoustically treated nacelles. Predictions of the effects of noise on sleep appear, tentatively, to attain the highest accuracy when the physical descriptor of noise intensity includes information about the impulsive characteristics of that noise as well as its long-term spectral content.

  18. Effects of changed aircraft noise exposure on the use of outdoor recreational areas.

    PubMed

    Krog, Norun Hjertager; Engdahl, Bo; Tambs, Kristian

    2010-11-01

    This paper examines behavioural responses to changes in aircraft noise exposure in local outdoor recreational areas near airports. Results from a panel study conducted in conjunction with the relocation of Norway's main airport in 1998 are presented. One recreational area was studied at each airport site. The samples (n = 1,264/1,370) were telephone interviewed about their use of the area before and after the change. Results indicate that changed aircraft noise exposure may influence individual choices to use local outdoor recreational areas, suggesting that careful considerations are needed in the planning of air routes over local outdoor recreational areas. However, considerable stability in use, and also fluctuations in use unrelated to the changes in noise conditions were found. Future studies of noise impacts should examine a broader set of coping mechanisms, like intra- and temporal displacement. Also, the role of place attachment, and the substitutability of local areas should be studied.

  19. Effects of Changed Aircraft Noise Exposure on the Use of Outdoor Recreational Areas

    PubMed Central

    Krog, Norun Hjertager; Engdahl, Bo; Tambs, Kristian

    2010-01-01

    This paper examines behavioural responses to changes in aircraft noise exposure in local outdoor recreational areas near airports. Results from a panel study conducted in conjunction with the relocation of Norway’s main airport in 1998 are presented. One recreational area was studied at each airport site. The samples (n = 1,264/1,370) were telephone interviewed about their use of the area before and after the change. Results indicate that changed aircraft noise exposure may influence individual choices to use local outdoor recreational areas, suggesting that careful considerations are needed in the planning of air routes over local outdoor recreational areas. However, considerable stability in use, and also fluctuations in use unrelated to the changes in noise conditions were found. Future studies of noise impacts should examine a broader set of coping mechanisms, like intra- and temporal displacement. Also, the role of place attachment, and the substitutability of local areas should be studied. PMID:21139867

  20. A Psychoacoustic Evaluation of Noise Signatures from Advanced Civil Transport Aircraft

    NASA Technical Reports Server (NTRS)

    Rizzi, Stephen A.; Christian, Andrew

    2016-01-01

    The NASA Environmentally Responsible Aviation project has been successful in developing and demonstrating technologies for integrated aircraft systems that can simultaneously meet aggressive goals for fuel burn, noise and emissions. Some of the resulting systems substantially differ from the familiar tube and wing designs constituting the current civil transport fleet. This study attempts to explore whether or not the effective perceived noise level metric used in the NASA noise goal accurately reflects human subject response across the range of vehicles considered. Further, it seeks to determine, in a quantitative manner, if the sounds associated with the advanced aircraft are more or less preferable to the reference vehicles beyond any differences revealed by the metric. These explorations are made through psychoacoustic tests in a controlled laboratory environment using simulated stimuli developed from auralizations of selected vehicles based on systems noise assessments.

  1. Aircraft noise, health, and residential sorting: evidence from two quasi-experiments.

    PubMed

    Boes, Stefan; Nüesch, Stephan; Stillman, Steven

    2013-09-01

    We explore two unexpected changes in flight regulations to estimate the causal effect of aircraft noise on health. Detailed measures of noise are linked with longitudinal data on individual health outcomes based on the exact address information. Controlling for individual heterogeneity and spatial sorting into different neighborhoods, we find that aircraft noise significantly increases sleeping problems and headaches. Models that do not control for such heterogeneity and sorting substantially underestimate the negative health effects, which suggests that individuals self-select into residence based on their unobserved sensitivity to noise. Our study demonstrates that the combination of quasi-experimental variation and panel data is very powerful for identifying causal effects in epidemiological field studies.

  2. Tiltrotor noise reduction through flight trajectory management and aircraft configuration control

    NASA Astrophysics Data System (ADS)

    Gervais, Marc

    A tiltrotor can hover, takeoff and land vertically as well as cruise at high speeds and fly long distances. Because of these unique capabilities, tiltrotors are envisioned as an aircraft that could provide a solution to the issue of airport gridlock by operating on stub runways, helipads, or from smaller regional airports. However, during an approach-to-land a tiltrotor is susceptible to radiating strong impulsive noise, in particular, Blade-Vortex Interaction noise (BVI), a phenomenon highly dependent on the vehicle's performance-state. A mathematical model was developed to predict the quasi-static performance characteristics of a tiltrotor during a converting approach in the longitudinal plane. Additionally, a neural network was designed to model the acoustic results from a flight test of the XV-15 tiltrotor as a function of the aircraft's performance parameters. The performance model was linked to the neural network to yield a combined performance/acoustic model that is capable of predicting tiltrotor noise emitted during a decelerating approach. The model was then used to study noise trends associated with different combinations of airspeed, nacelle tilt, and flight path angle. It showed that BVI noise is the dominant noise source during a descent and that its strength increases with steeper descent angles. Strong BVI noise was observed at very steep flight path angles, suggesting that the tiltrotor's high downwash prevents the wake from being pushed above the rotor, even at such steep descent angles. The model was used to study the effects of various aircraft configuration and flight trajectory parameters on the rotor inflow, which adequately captured the measured BVI noise trends. Flight path management effectively constrained the rotor inflow during a converting approach and thus limited the strength of BVI noise. The maximum deceleration was also constrained by controlling the nacelle tilt-rate during conversion. By applying these constraints, low BVI noise

  3. Assessment System for Aircraft Noise (ASAN) citation database. Volume 3: New citation review procedures

    NASA Astrophysics Data System (ADS)

    Reddingius, Nicolaas; Kugler, Andrew B.

    1989-12-01

    The Assessment System for Aircraft Noise (ASAN) includes a database of several thousand references to the literature on the impact of noise and sonic booms on humans, animals and structures. Bibliographic data, abstracts and critical reviews of key documents can be retrieved. A systematic methodology for the selection and evaluation of new citations to be added to the database consistent with the procedures used in CITASAN is described.

  4. Assessment System for Aircraft Noise (ASAN) citation database. Volume 1: User's manual

    NASA Astrophysics Data System (ADS)

    Reddingius, Nicolaas

    1989-12-01

    The Assessment System for Aircraft Noise (ASAN) includes a database of several thousand references to the literature on the impact of noise and sonic booms on humans, animals and structures. Bibliographic data, abstracts and critical reviews of key documents can be retrieved. A user's manual for the retrievable module is presented. It describes the types of searches that can be conducted, the options for each and explains all user screens. Installation instructions for the stand-along MS-DOS version are included.

  5. Residential exposure to aircraft noise and hospital admissions for cardiovascular diseases: multi-airport retrospective study

    PubMed Central

    Correia, Andrew W; Peters, Junenette L; Levy, Jonathan I; Melly, Steven

    2013-01-01

    Objective To investigate whether exposure to aircraft noise increases the risk of hospitalization for cardiovascular diseases in older people (≥65 years) residing near airports. Design Multi-airport retrospective study of approximately 6 million older people residing near airports in the United States. We superimposed contours of aircraft noise levels (in decibels, dB) for 89 airports for 2009 provided by the US Federal Aviation Administration on census block resolution population data to construct two exposure metrics applicable to zip code resolution health insurance data: population weighted noise within each zip code, and 90th centile of noise among populated census blocks within each zip code. Setting 2218 zip codes surrounding 89 airports in the contiguous states. Participants 6 027 363 people eligible to participate in the national medical insurance (Medicare) program (aged ≥65 years) residing near airports in 2009. Main outcome measures Percentage increase in the hospitalization admission rate for cardiovascular disease associated with a 10 dB increase in aircraft noise, for each airport and on average across airports adjusted by individual level characteristics (age, sex, race), zip code level socioeconomic status and demographics, zip code level air pollution (fine particulate matter and ozone), and roadway density. Results Averaged across all airports and using the 90th centile noise exposure metric, a zip code with 10 dB higher noise exposure had a 3.5% higher (95% confidence interval 0.2% to 7.0%) cardiovascular hospital admission rate, after controlling for covariates. Conclusions Despite limitations related to potential misclassification of exposure, we found a statistically significant association between exposure to aircraft noise and risk of hospitalization for cardiovascular diseases among older people living near airports. PMID:24103538

  6. Community reactions to aircraft noise in the vicinity of airport: A comparative study of the social surveys using interview method

    NASA Technical Reports Server (NTRS)

    Osada, Y.

    1980-01-01

    A comparative study was performed on the reports of community reactions to aircraft noise. The direct and immediate reactions to aircraft noise such as perceived noisiness, interference with conversations, etc. and various emotional influences were most remarkable; indirect and long term influences such as disturbance of mental work and physical symptoms were less remarkable.

  7. Aircraft Engine Noise Scattering - A Discontinuous Spectral Element Approach

    NASA Technical Reports Server (NTRS)

    Stanescu, D.; Hussaini, M. Y.; Farassat, F.

    2002-01-01

    The paper presents a time-domain method for computation of sound radiation from aircraft engine sources to the far-field. The effects of nonuniform flow around the aircraft and scattering of sound by fuselage and wings are accounted for in the formulation. Our approach is based on the discretization of the inviscid flow equations through a collocation form of the Discontinuous Galerkin spectral element method. An isoparametric representation of the underlying geometry is used in order to take full advantage of the spectral accuracy of the method. Largescale computations are made possible by a parallel implementation based on message passing. Results obtained for radiation from an axisymmetric nacelle alone are compared with those obtained when the same nacelle is installed in a generic con.guration, with and without a wing.

  8. A systematic rationale for defining the significance of aircraft noise impacts.

    PubMed

    Fidell, Sanford; Mestre, Vincent; Schomer, Paul; Horonjeff, Richard; Reid, Tim

    2014-09-01

    Regulatory agencies often define strict, decibel-denominated thresholds of significance of noise impacts to protect some fraction of the residential population from exposure to highly annoying noise. Definitions of the "significance" of aircraft noise impacts and recommendations of land use "compatibility," however, typically lack detailed, systematic rationales. Instead, the definitions are justified by reference to decades-old policies that were adopted without benefit of modern understandings of noise-induced annoyance, by appeals to authority, and by generic citations of non-peer reviewed documents. Although regulatory policy decisions may properly take into consideration political and economic consequences, aspects of them are amenable to logical formalization. In particular, advances in understanding of community reaction to transportation noise now permit a systematic rationale for aircraft noise regulation. The current analyses show how regulatory policy positions can be derived from two parameters: (1) the minimal percentage of the population of a nominally average community to be protected from exposure to highly annoying noise; and (2) the percentage of all communities to which this degree of protection is intended to apply. Together with a reliable dosage-response relationship, these two parameters permit quantitatively justifiable definitions of significant noise impact.

  9. A research program to reduce the interior noise in general aviation aircraft, index and summary

    NASA Technical Reports Server (NTRS)

    Morgan, L.; Jackson, K.; Roskam, J.

    1985-01-01

    This report is an index of the published works from NASA Grant NSG 1301, entitled A Research Program to Reduce the Interior Noise in General Aviation Aircraft. Included are a list of all published reports and papers, a compilation of test specimen characteristics, and summaries of each published work.

  10. The role of nonlinear effects in the propagation of noise from high-power jet aircraft.

    PubMed

    Gee, Kent L; Sparrow, Victor W; James, Michael M; Downing, J Micah; Hobbs, Christopher M; Gabrielson, Thomas B; Atchley, Anthony A

    2008-06-01

    To address the question of the role of nonlinear effects in the propagation of noise radiated by high-power jet aircraft, extensive measurements were made of the F-22A Raptor during static engine run-ups. Data were acquired at low-, intermediate-, and high-thrust engine settings with microphones located 23-305 m from the aircraft along several angles. Comparisons between the results of a generalized-Burgers-equation-based nonlinear propagation model and the measurements yield favorable agreement, whereas application of a linear propagation model results in spectral predictions that are much too low at high frequencies. The results and analysis show that significant nonlinear propagation effects occur for even intermediate-thrust engine conditions and at angles well away from the peak radiation angle. This suggests that these effects are likely to be common in the propagation of noise radiated by high-power aircraft.

  11. Application of an acoustic noise removal method to aircraft-based atmospheric temperature measurements

    NASA Astrophysics Data System (ADS)

    Hugo, Ronald J.; Nowlin, Scott R.; Hahn, Ila L.; Eaton, Frank D.; McCrae, Kim A.

    2003-01-01

    An acoustic noise removal method is used to reject engine acoustical disturbances from aircraft-based atmospheric temperature measurements. Removal of engine noise from atmospheric temperature measurements allows a larger wave number range to be fit while quantifying the magnitude of atmospheric temperature turbulence. The larger wave number range was found to result in a more statistically certain spectral slope estimate, with up to a 50% reduction in the standard deviation of measured spectral slopes. The noise removal technique was found to break down under conditions of weak atmospheric temperature turbulence where the engine acoustical disturbance can be several orders of magnitude larger than atmospheric temperature turbulence.

  12. Detailed design specification for a prototype Assessment System for Aircraft Noise (ASAN)

    NASA Astrophysics Data System (ADS)

    Sanford, Fidell; Harris, Michael; Reddinguis, Nicholaas

    1988-07-01

    The U.S. Air Force Noise and Sonic Boom Impact Technology (NSBIT) Program is sponsoring a multi-stage effort to create a computer system containing tools needed by the environmental planning community to perform a variety of tasks related to assessing the environmental impacts of aircraft noise on people, animals, and structures. This interim report provides a detailed design specification for a prototype version of the NSBIT Assessment System for Aircraft Noise (ASAN) that is the major project of the first stage of this effort. The purposes and expected uses of ASAN are presented in Fidell and Harris (1987). The general functional capabilities of this system are described by Harris and Fidell (1987). The current report describes the organization of ASAN, its functional capabilities, and its major software modules.

  13. A solid state converter for measurement of aircraft noise and sonic boom

    NASA Technical Reports Server (NTRS)

    Zuckerwar, A. J.

    1972-01-01

    The problems inherent in present systems of instrumentation for measuring aircraft noise and sonic boom include limited frequency response, expensive connecting cables, sensitivity to cable length and type, high sensitivity to environmental conditions, and additional limitations of individual system components. Furthermore, differing requirements have resulted in the use of two different systems for aircraft noise and sonic boom measurements respectively. To alleviate these difficulties a unified system of instrumentation suitable for both types of measurements was developed. The system features a new solid state converter connected to a zero drive amplifier. The system was found insensitive to cable length and type up to at least 1000 ft and requires no impedance matching networks. The converter itself has flat frequency response from dc to 28 kHz (- 3 db), dynamic range of 72 db, and noise floor of 50 db in the band 22.4 Hz to 22.4 kHz.

  14. A model and plan for a longitudinal study of community response to aircraft noise

    NASA Technical Reports Server (NTRS)

    Gunn, W. J.; Patterson, H. P.; Cornog, J.; Klaus, P.; Connor, W. K.

    1975-01-01

    A new approach is discussed for the study of the effects of aircraft noise on people who live near large airports. The approach was an outgrowth of a planned study of the reactions of individuals exposed to changing aircraft noise conditions around the Dallas-Ft. Worth (DFW) regional airport. The rationale, concepts, and methods employed in the study are discussed. A critical review of major past studies traces the history of community response research in an effort to identify strengths and limitations of the various approaches and methodologies. A stress-reduction model is presented to provide a framework for studying the dynamics of human response to a changing noise environment. The development of the survey instrument is detailed, and preliminary results of pretest data are discussed.

  15. Evaluation of piezoceramic actuators for control of aircraft interior noise

    NASA Technical Reports Server (NTRS)

    Silcox, Richard J.; Lefebvre, Sylvie; Metcalf, Vern L.; Beyer, Todd B.; Fuller, Chris R.

    1992-01-01

    Results of an experiment to evaluate piezoceramic actuators as the control actuator for active control of interior noise in a large-scale fuselage model are presented. Control was demonstrated for tonal excitation using a time domain least mean squares algorithm. A maximum of four actuator channels and six error signals were used. The actuators were employed for control of noise at frequencies where interior cavity modes were the dominant response and for driven acoustic responses where a structure resonance was dominant. Global reductions of 9 to 12 dB were obtained for the cases examined. The most effective configuration of skin-mounted actuators was found to be a pure in-plane forcing function as opposed to a bending excitation. The frame-mounted actuators were found to be equally effective as the skin-mounted actuators. However, both configurations resulted in local regions of unacceptably high vibration response in the structure.

  16. Testing a theory of aircraft noise annoyance: a structural equation analysis.

    PubMed

    Kroesen, Maarten; Molin, Eric J E; van Wee, Bert

    2008-06-01

    Previous research has stressed the relevance of nonacoustical factors in the perception of aircraft noise. However, it is largely empirically driven and lacks a sound theoretical basis. In this paper, a theoretical model which explains noise annoyance based on the psychological stress theory is empirically tested. The model is estimated by applying structural equation modeling based on data from residents living in the vicinity of Amsterdam Airport Schiphol in The Netherlands. The model provides a good model fit and indicates that concern about the negative health effects of noise and pollution, perceived disturbance, and perceived control and coping capacity are the most important variables that explain noise annoyance. Furthermore, the model provides evidence for the existence of two reciprocal relationships between (1) perceived disturbance and noise annoyance and (2) perceived control and coping capacity and noise annoyance. Lastly, the model yielded two unexpected results. Firstly, the variables noise sensitivity and fear related to the noise source were unable to explain additional variance in the endogenous variables of the model and were therefore excluded from the model. And secondly, the size of the total effect of noise exposure on noise annoyance was relatively small. The paper concludes with some recommended directions for further research.

  17. Aircraft Geared Architecture Reduces Fuel Cost and Noise

    NASA Technical Reports Server (NTRS)

    2015-01-01

    In an effort to increase fuel efficiency and reduce noise in commercial airplanes, NASA aeronautics teamed up with East Hartford, Connecticut-based Pratt & Whitney through a Space Act Agreement to help the company increase the efficiency of its turbofan engine. The company's new PurePower line of engines is 15 percent more fuel-efficient and up to 75 percent quieter than its competitors.

  18. On the role of the radiation directivity in noise reduction for STOL aircraft.

    NASA Technical Reports Server (NTRS)

    Gruschka, H. D.

    1972-01-01

    The radiation characteristics of distributed randomly fluctuating acoustic sources when shielded by finite surfaces are discussed briefly. A number of model tests using loudspeakers as artificial noise sources with a given broadband power density spectrum are used to demonstrate the effectiveness of reducing the radiated noise intensity in certain directions due to shielding. In the lateral direction of the source array noise reductions of 12 dB are observed with relatively small shields. The same shields reduce the backward radiation by approximately 20 dB. With the results obtained in these acoustic model tests the potentials of jet noise reduction of jet flap propulsion systems applicable in future STOL aircraft are discussed. The jet flap configuration as a complex aerodynamic noise source is described briefly.

  19. New technique for the direct measurement of core noise from aircraft engines

    NASA Technical Reports Server (NTRS)

    Krejsa, E. A.

    1981-01-01

    A new technique is presented for directly measuring the core noise levels from gas turbine aircraft engines. The technique requires that fluctuating pressures be measured in the far-field and at two locations within the engine core. The cross-spectra of these measurements are used to determine the levels of the far-field noise that propagated from the engine core. The technique makes it possible to measure core noise levels even when other noise sources dominate. The technique was applied to signals measured from an AVCO Lycoming YF102 turbofan engine. Core noise levels as a function of frequency and radiation angle were measured and are presented over a range of power settings.

  20. Aircraft Noise Prediction Program (ANOPP) Fan Noise Prediction for Small Engines

    NASA Technical Reports Server (NTRS)

    Hough, Joe W.; Weir, Donald S.

    1996-01-01

    The Fan Noise Module of ANOPP is used to predict the broadband noise and pure tones for axial flow compressors or fans. The module, based on the method developed by M. F. Heidmann, uses empirical functions to predict fan noise spectra as a function of frequency and polar directivity. Previous studies have determined the need to modify the module to better correlate measurements of fan noise from engines in the 3000- to 6000-pound thrust class. Additional measurements made by AlliedSignal have confirmed the need to revise the ANOPP fan noise method for smaller engines. This report describes the revisions to the fan noise method which have been verified with measured data from three separate AlliedSignal fan engines. Comparisons of the revised prediction show a significant improvement in overall and spectral noise predictions.

  1. Aircraft noise effects: An interdisciplinary study of the effects of aircraft noise on man. Part 1: Basic report

    NASA Technical Reports Server (NTRS)

    1980-01-01

    An area around the Munich-Riem airport was divided into 32 clusters of different noise exposure and subjects were drawn from each cluster for a social survey and for psychological, medical, and physiological testing. Extensive acoustical measurements were also carried out in each cluster. The results were then subjected to detailed statistical analysis.

  2. The Influences of Lamination Angles on the Interior Noise Levels of an Aircraft

    NASA Technical Reports Server (NTRS)

    Fernholz, Christian M.; Robinson, Jay H.

    1996-01-01

    The feasibility of reducing the interior noise levels of an aircraft passenger cabin through optimization of the composite lay up of the fuselage is investigated. MSC/NASTRAN, a commercially available finite element code, is used to perform the dynamic analysis and subsequent optimization of the fuselage. The numerical calculation of sensitivity of acoustic pressure to lamination angle is verified using a simple thin, cylindrical shell with point force excitations as noise sources. The thin shell used represents a geometry similar to the fuselage and analytic solutions are available for the cylindrical thin shell equations of motion. Optimization of lamination angle for the reduction of interior noise is performed using a finite element model of an actual aircraft fuselage. The aircraft modeled for this study is the Beech Starship. Point forces simulate the structure borne noise produced by the engines and are applied to the fuselage at the wing mounting locations. These forces are the noise source for the optimization problem. The acoustic pressure response is reduced at a number of points in the fuselage and over a number of frequencies. The objective function is minimized with the constraint that it be larger than the maximum sound pressure level at the response points in the passenger cabin for all excitation frequencies in the range of interest. Results from the study of the fuselage model indicate that a reduction in interior noise levels is possible over a finite frequency range through optimal configuration of the lamination angles in the fuselage. Noise reductions of roughly 4 dB were attained. For frequencies outside the optimization range, the acoustic pressure response may increase after optimization. The effects of changing lamination angle on the overall structural integrity of the airframe are not considered in this study.

  3. Similarity spectra analysis of high-performance jet aircraft noise.

    PubMed

    Neilsen, Tracianne B; Gee, Kent L; Wall, Alan T; James, Michael M

    2013-04-01

    Noise measured in the vicinity of an F-22A Raptor has been compared to similarity spectra found previously to represent mixing noise from large-scale and fine-scale turbulent structures in laboratory-scale jet plumes. Comparisons have been made for three engine conditions using ground-based sideline microphones, which covered a large angular aperture. Even though the nozzle geometry is complex and the jet is nonideally expanded, the similarity spectra do agree with large portions of the measured spectra. Toward the sideline, the fine-scale similarity spectrum is used, while the large-scale similarity spectrum provides a good fit to the area of maximum radiation. Combinations of the two similarity spectra are shown to match the data in between those regions. Surprisingly, a combination of the two is also shown to match the data at the farthest aft angle. However, at high frequencies the degree of congruity between the similarity and the measured spectra changes with engine condition and angle. At the higher engine conditions, there is a systematically shallower measured high-frequency slope, with the largest discrepancy occurring in the regions of maximum radiation.

  4. Assessing the environmental impacts of aircraft noise and emissions

    NASA Astrophysics Data System (ADS)

    Mahashabde, Anuja; Wolfe, Philip; Ashok, Akshay; Dorbian, Christopher; He, Qinxian; Fan, Alice; Lukachko, Stephen; Mozdzanowska, Aleksandra; Wollersheim, Christoph; Barrett, Steven R. H.; Locke, Maryalice; Waitz, Ian A.

    2011-01-01

    With the projected growth in demand for commercial aviation, many anticipate increased environmental impacts associated with noise, air quality, and climate change. Therefore, decision-makers and stakeholders are seeking policies, technologies, and operational procedures that balance environmental and economic interests. The main objective of this paper is to address shortcomings in current decision-making practices for aviation environmental policies. We review knowledge of the noise, air quality, and climate impacts of aviation, and demonstrate how including environmental impact assessment and quantifying uncertainties can enable a more comprehensive evaluation of aviation environmental policies. A comparison is presented between the cost-effectiveness analysis currently used for aviation environmental policy decision-making and an illustrative cost-benefit analysis. We focus on assessing a subset of the engine NO X emissions certification stringency options considered at the eighth meeting of the International Civil Aviation Organization’s Committee on Aviation Environmental Protection. The FAA Aviation environmental Portfolio Management Tool (APMT) is employed to conduct the policy assessments. We show that different conclusions may be drawn about the same policy options depending on whether benefits and interdependencies are estimated in terms of health and welfare impacts versus changes in NO X emissions inventories as is the typical practice. We also show that these conclusions are sensitive to a variety of modeling uncertainties. While our more comprehensive analysis makes the best policy option less clear, it represents a more accurate characterization of the scientific and economic uncertainties underlying impacts and the policy choices.

  5. Similarity spectra analysis of high-performance jet aircraft noise.

    PubMed

    Neilsen, Tracianne B; Gee, Kent L; Wall, Alan T; James, Michael M

    2013-04-01

    Noise measured in the vicinity of an F-22A Raptor has been compared to similarity spectra found previously to represent mixing noise from large-scale and fine-scale turbulent structures in laboratory-scale jet plumes. Comparisons have been made for three engine conditions using ground-based sideline microphones, which covered a large angular aperture. Even though the nozzle geometry is complex and the jet is nonideally expanded, the similarity spectra do agree with large portions of the measured spectra. Toward the sideline, the fine-scale similarity spectrum is used, while the large-scale similarity spectrum provides a good fit to the area of maximum radiation. Combinations of the two similarity spectra are shown to match the data in between those regions. Surprisingly, a combination of the two is also shown to match the data at the farthest aft angle. However, at high frequencies the degree of congruity between the similarity and the measured spectra changes with engine condition and angle. At the higher engine conditions, there is a systematically shallower measured high-frequency slope, with the largest discrepancy occurring in the regions of maximum radiation. PMID:23556581

  6. Assessment of noise metrics for application to rotorcraft

    NASA Astrophysics Data System (ADS)

    McMullen, Andrew L.

    It is anticipated that the use of rotorcraft passenger vehicles for shorter journeys will increase because their use can reduce the time between boarding and take-off. The characteristics of rotorcraft noise are very different to that of fixed wing aircraft. There can be strong tonal components, fluctuations that can also make the noise sound impulsive, and future rotorcraft may produce proportionally more low frequency noise content. Most metrics that are used today to predict noise impact on communities around airports (e.g., Ldn) are just functions of A-weighted sound pressure level. To build a better noise annoyance model that can be applied to assess impact of future and current rotorcraft, it is important to understand the perceived sound attributes and how they influence annoyance. A series of psychoacoustic tests were designed and performed to further our understanding of how rotorcraft sound characteristics affect annoyance as well as evaluate the applicability of existing noise metrics as predictors of annoyance due to rotorcraft noise. The effect of the method used to reproduce sounds in the psychoacoustics tests was also investigated, and so tests were conducted in the NASA Langley Exterior Effects Room using loudspeaker arrays to simulate flyovers and in a double walled sound booth using earphones for playback. A semantic differential test was performed, and analysis of subject responses showed the presence of several independent perceptual factors relating to: loudness, sharpness, roughness, tonality, and impulsiveness. A simulation method was developed to alter tonal components in existing rotorcraft flyover recordings to change the impulsiveness and tonality of the sounds. Flyover recordings and simulations with varied attributes were used as stimuli in an annoyance test. Results showed that EPNL and SELA performed well as predictors of annoyance, but outliers to generate trends have tonal related characteristics that could be contributing to

  7. Ground effects on aircraft noise. [near grazing incidence

    NASA Technical Reports Server (NTRS)

    Willshire, W. L., Jr.; Hilton, D. A.

    1979-01-01

    A flight experiment was conducted to investigate air-to-ground propagation of sound near grazing incidence. A turbojet-powered aircraft was flown at low altitudes over the ends of two microphone arrays. An eight-microphone array was positioned along a 1850 m concrete runway. The second array consisted of 12 microphones positioned parallel to the runway over grass. Twenty-eight flights were flown at altitudes ranging from 10 m to 160 m. The acoustic data recorded in the field reduced to one-third-octave band spectra and time correlated with the flight and weather information. A small portion of the data was further reduced to values of ground attenuation as a function of frequency and incidence angle by two different methods. In both methods, the acoustic signals compared originated from identical sources. Attenuation results obtained by using the two methods were in general agreement. The measured ground attenuation was largest in the frequency range of 200 to 400 Hz. A strong dependence was found between ground attenuation and incidence angle with little attenuation measured for angles of incidence greater than 10 to 15 degrees.

  8. Experimental investigation of outdoor propagation of finite-amplitude noise. [aircraft noise

    NASA Technical Reports Server (NTRS)

    Webster, D. A.; Blackstock, D. T.

    1978-01-01

    The outdoor propagation of finite amplitude acoustic waves was investigated using a conventional electroacoustic transmitter which was mounted on the ground and pointed upward in order to avoid ground reflection effects. The propagation path was parallel to a radio tower 85 m tall, whose elevator carried the receiving microphone. The observations and conclusions are as follows: (1) At the higher source levels nonlinear propagation distortion caused a strong generation of high frequency noise over the propagation path. For example, at 70 m for a frequency 2-3 octaves above the source noise band, the measured noise was up to 30 dB higher than the linear theory prediction. (2) The generation occurred in both the nearfield and the farfield of the transmitter. (3) At no measurement point was small-signal behavior established for the high requency noise. Calculations support the contention that the nonlinearity generated high frequency noise never becomes small-signal in its behavior, regardless of distance. (4) When measured spectra are scaled in frequency and level to make them comparable with spectra of actual jet noise, they are found to be well within the jet noise range. It is therefore entirely possible that nonlinear distortion affects jet noise.

  9. Relative rates of growth of annoyance of impulsive and non-impulsive noises.

    PubMed

    Fidell, Sanford; Silvati, Laura; Pearsons, Karl

    2002-01-01

    Twenty-nine people judged the relative annoyance of five variable level signals and 29 impulsive and non-impulsive fixed-level signals in an adaptive paired comparison study. Signals were presented for judgment as heard indoors in a facility capable of accurately reproducing the very low-frequency content of sonic booms. When the annoyance of sonic booms unaccompanied by rattle was compared with that of sounds containing more higher-frequency energy (an aircraft flyover and an octave band of noise centered at 1 kHz), the relative rate of growth of annoyance, as expressed in C-weighted SEL units, was nearly 2:1. In other words, to maintain subjective equality of annoyance, each increase in level of sonic booms had to be matched by nearly twice the increase in level of an aircraft flyover or an octave band of noise centered at 1 kHz. Relative rates of growth of annoyance of sonic booms accompanied by rattle and of non-impulsive sounds, including both low- (63-Hz octave band of noise) and high-frequency energy (1-kHz octave band of noise and an aircraft flyover), were closer to 1:1. Relative rates of growth of annoyance for sonic booms unaccompanied by rattle and low-frequency sounds (63 Hz) were also about 1:1. These differences in relative rates of growth of annoyance of impulsive and non-impulsive sounds are as plausibly attributed to their relative low-frequency content as to impulsiveness per se. It may therefore be more useful for some purposes to express the annoyance of impulsive signals and other environmental noises containing substantial low-frequency energy in terms of effective (duration-corrected) loudness level rather than commonplace ASEL or CSEL. PMID:11837963

  10. Transmission loss characteristics of aircraft sidewall systems to control cabin interior noise

    NASA Astrophysics Data System (ADS)

    Yesil, Oktay; Serati, Paul M.; Hofbeck, Eric V.; Glover, Billy M.

    We have explored the possibility of using new, light weight, and acoustically effective materials on aircraft interiors to control noise. The sidewall system elements were evaluated for increased TL in the laboratory. Measured TL for a given configuration, relative to a baseline, was used as an indication of the TL change to be expected for modifications. Test data were in good agreement with the predicted levels. The TL contributions due to all sidewall components were important for interior cabin noise control. Polyimide foam insulation was inferior to fiberglass in the mid-frequency range; however, foam was a better performer at high frequencies. Fiberglass/polyimide foam composite blankets, with less weight, provided noise reductions similar to fiberglass. 'Premium' fiberglass was slightly better performer than the standard fiberglass. Solid fiberglass interior trim panel provided adequate noise performance. Production-type trim attachment design could be improved to control flanking path for sound transmission.

  11. Macroscopic study of time unsteady noise of an aircraft engine during static tests

    NASA Technical Reports Server (NTRS)

    Clark, B. J.; Heidmann, M. F.; Kreim, W. J.

    1976-01-01

    Static tests of aircraft engines can exhibit greater than 10 db random unsteadiness of tone noise levels because flow disturbances that prevail near test site facilities are ingested. Presumably such changes are related to installation and test site features. Some properties of unsteady noise observed during tests of a Lycoming YF-102 turbofan engine are presented. Time and spatial variations in tone noise obtained from closely spaced far field and inlet duct microphones are displayed. Long to extremely short intermittent tone bursts are observed. Unsteadiness of the tone, its harmonics, and the broadband noise show little similarity. In the far field, identity of tone bursts is retained over a directivity angle of less than 10 deg. In the inlet duct, tone bursts appear to propagate axially but exhibit little circumferential similarity. They show only slight relationship to tone bursts observed in the far field. The results imply an intermittent generation of random mixtures of propagating duct modes.

  12. Effects of road traffic and aircraft noise upon children's academic attainments

    NASA Astrophysics Data System (ADS)

    Shield, Bridget; Dockrell, Julie; Vilatarsana, Gael

    2005-04-01

    The effects of environmental noise upon the academic performance of children aged 7 and 11 years in primary schools in London (UK) have been investigated. Noise surveys were carried out to measure levels of environmental noise during the school day outside 175 schools across London. The majority of the schools were in densely populated areas within 5 miles of central London, where road traffic was the dominant noise source. Thirty three of the schools were in a less densely populated area to the west of London near Heathrow Airport, and were subject to predominantly aircraft noise. The noise levels measured outside each school have been correlated with the results of standard tests in Reading, Writing, Mathematics, English, and Science, which are taken by all children aged 7 and 11 in England and Wales. Significant negative correlations were found between noise levels and many of the test scores, the correlations being stronger in the central London areas than in the schools around Heathrow. These results show that environmental noise has a detrimental effect upon childrens' academic performance, the effect remaining apparent when data were corrected for socio-economic factors such as social deprivation.

  13. Investigation of acoustic properties of a rigid foam with application to noise reduction in light aircraft

    NASA Technical Reports Server (NTRS)

    Holmer, C. I.

    1972-01-01

    A analytic model of sound transmission into an aircraft cabin was developed as well as test procedures which appropriately rank order properties which affect sound transmission. The proposed model agrees well with available data, and reveals that the pertinent properties of an aircraft cabin for sound transmission include: stiffness of cabin walls at low frequencies (as this reflects on impedance of the walls) and cabin wall transmission loss and interior absorption at mid and high frequencies. Below 315 Hz the foam contributes substantially to wall stiffness and sound transmission loss of typical light aircraft cabin construction, and could potentially reduce cabin noise levels by 3-5 db in this frequency range at a cost of about 0:2 lb/sq. ft. of treated cabin area. The foam was found not to have significant sound absorbing properties.

  14. Lateral noise attenuation of the advanced propeller of the propfan test assessment aircraft

    NASA Technical Reports Server (NTRS)

    Chambers, F. W.; Reddy, N. N.; Bartel, H. W.

    1989-01-01

    Lateral noise attenuation characteristics of the advanced propeller are determined using the flight test results of the testbed aircraft, Propfan Test Assessment (PTA), with a single, large-scale propfan. The acoustic data were obtained with an array of ground-mounted microphones positioned at distances up to 2.47 km (8100 feet) to the side of the flight path. The aircraft was flown at a Mach number of 0.31 for a variety of operating conditions. The lateral noise attenuation in a frequency range containing the blade passage frequency of the propeller was found to have positive magnitudes on the propfan side and negative magnitudes on the opposite side. The measured attenuation exhibits a strong dependence upon the elevation angle. The results also display a clear dependence upon the angle at which the propeller and nacelle are mounted on the wing (inflow angle).

  15. Analysis of Acoustic Modeling and Sound Propagation in Aircraft Noise Prediction

    NASA Technical Reports Server (NTRS)

    Plotkin, Kenneth J.; Shepherd, Kevin P. (Technical Monitor)

    2006-01-01

    An analysis has been performed of measured and predicted aircraft noise levels around Denver International Airport. A detailed examination was made of 90 straight-out departures that yielded good measurements on multiple monitors. Predictions were made with INM 5, INM 6 and the simulation model NMSIM. Predictions were consistently lower than measurements, less so for the simulation model than for the integrated models. Lateral directivity ("installation effect") patterns were seen which are consistent with other recent measurements. Atmospheric absorption was determined to be a significant factor in the underprediction. Calculations of atmospheric attenuation were made over a full year of upper air data at seven locations across the United States. It was found that temperature/humidity effects could cause variations of up to +/-4 dB, depending on season, for the sites examined. It was concluded that local temperature and humidity should be accounted for in aircraft noise modeling.

  16. A comparison of community response to aircraft noise at Toronto International and Oshawa Municipal airports†

    NASA Astrophysics Data System (ADS)

    Taylor, S. M.; Hall, F. L.; Birnie, S. E.

    1981-07-01

    Debate continues over the validity of a single dose-response relationship to describe annoyance due to transportation noise. Doubts about the appropriateness of a single relationship have centred primarily on the issue of differential response to the same noise level for different sources (e.g., aircraft, road traffic and trains). However, recent work suggests that response may vary for different types of the same source, namely aircraft, dependent upon the character, and specifically the number, of operations. Recent data collected around Toronto International and Oshawa Municipal airports permit a test of differences in four aggregate response variables. For the same NEF level, the percent at all annoyed at the two airports is not statistically different. The percent highly annoyed and the percent reporting speech interference are both significantly greater at Toronto but the percent reporting sleep interruption is greater at Oshawa. These differences can be explained in terms of the operational characteristics of the two airports.

  17. Noise transmission and control for a light, twin-engine aircraft

    NASA Technical Reports Server (NTRS)

    Barton, C. K.; Mixson, J. S.

    1980-01-01

    One of the dominant source-path combinations for cabin noise in light, twin-engine aircraft is propeller noise being transmitted through the fuselage sidewall. This source-path was investigated and candidate sidewall add-on treatment were installed and tested using both an external sound source and the propeller in a ground static runup. Results indicate that adding either mass or stiffness to the fuselage skin would improve sidewall attenuation and that the honeycomb stiffness treatment used generally provided more improvement than an equal amount of added mass. It is proposed that double-wall construction in conjunction with skin stiffening should provide a good weight efficient combination for the aircraft studied.

  18. A new measurement method for separating airborne and structureborne noise radiated by aircraft type panels

    NASA Technical Reports Server (NTRS)

    Mcgary, M. C.

    1982-01-01

    The theoretical basis for and experimental validation of a measurement method for separating airborne and structure borne noise radiated by aircraft type panels are presented. An extension of the two microphone, cross spectral, acoustic intensity method combined with existing theory of sound radiation of thin shell structures of various designs, is restricted to the frequency range below the coincidence frequency of the structure. Consequently, the method lends itself to low frequency noise problems such as propeller harmonics. Both an aluminum sheet and two built up aircraft panel designs (two aluminum panels with frames and stringers) with and without added damping were measured. Results indicate that the method is quick, reliable, inexpensive, and can be applied to thin shell structures of various designs.

  19. Prediction of noise levels and annoyance from aircraft run-ups at Vancouver International Airport.

    PubMed

    Scherebnyj, Katrina; Hodgson, Murray

    2007-10-01

    Annoyance complaints resulting from engine run-ups have been increasing at Vancouver International Airport for several years. To assist the Airport in managing run-up noise levels, a prediction tool based on a Green's function parabolic equation (GFPE) model has been consolidated, evaluated, and applied. It was extended to include more realistic atmospheric and ground input parameters. Measurements were made of the noise-radiation characteristics of a CRJ200 jet aircraft. The GFPE model was validated by comparing predictions with results in the literature. A sensitivity analysis showed that predicted levels are relatively insensitive to small variations in geometry and ground impedance, but relatively sensitive to variations in wind speed, atmosphere type, and aircraft heading and power setting. Predicted noise levels were compared with levels measured at noise monitoring terminals. For the four cases for which all input information was available, agreement was within 10 dBA. For events for which some information had to be estimated, predictions were within 20 dBA. The predicted annoyance corresponding to the run-up events considered ranged from 1.8% to 9.5% of people awoken, suggesting that noise complaints can be expected.

  20. Robust active noise control in the loadmaster area of a military transport aircraft.

    PubMed

    Kochan, Kay; Sachau, Delf; Breitbach, Harald

    2011-05-01

    The active noise control (ANC) method is based on the superposition of a disturbance noise field with a second anti-noise field using loudspeakers and error microphones. This method can be used to reduce the noise level inside the cabin of a propeller aircraft. However, during the design process of the ANC system, extensive measurements of transfer functions are necessary to optimize the loudspeaker and microphone positions. Sometimes, the transducer positions have to be tailored according to the optimization results to achieve a sufficient noise reduction. The purpose of this paper is to introduce a controller design method for such narrow band ANC systems. The method can be seen as an extension of common transducer placement optimization procedures. In the presented method, individual weighting parameters for the loudspeakers and microphones are used. With this procedure, the tailoring of the transducer positions is replaced by adjustment of controller parameters. Moreover, the ANC system will be robust because of the fact that the uncertainties are considered during the optimization of the controller parameters. The paper describes the necessary theoretic background for the method and demonstrates the efficiency in an acoustical mock-up of a military transport aircraft.

  1. Assessment System for Aircraft Noise (ASAN) citation database. Volume 2: Database update manual

    NASA Astrophysics Data System (ADS)

    Reddingius, Nicolaas

    1989-12-01

    The Assessment System for Aircraft Noise (ASAN) includes a database of several thousand references to the literature on the impact of noise and sonic booms on humans, animals and structures. Bibliographic data, abstracts and critical reviews of key documents can be retrieved. The manual for the database maintenance module is presented. It is only intended for use by the critical maintenance organization to prepare new releases of the database. Several programs used to add, delete and update the database are discussed are needed together with Vol. 2 to properly maintain the database.

  2. A solid-state converter for measurement of aircraft noise and sonic boom

    NASA Technical Reports Server (NTRS)

    Zuckerwar, A. J.; Shope, W. W.

    1974-01-01

    A solid-state converter, used in a system of instrumentation for measuring aircraft noise and sonic boom, features a dual-gate FET mixer and an output stage designed for compatibility with a zero drive amplifier. With a half-inch condenser microphone the converter itself has an operating frequency range from dc-28 kHz (-3 dB), a dynamic range of 72 dB, and a noise floor of 50 dB in the band from 22.4 Hz to 22.4 kHz; the system requires no impedance matching networks and is insensitive to cable length up to at least 3000 ft.

  3. Anticipated Effectiveness of Active Noise Control in Propeller Aircraft Interiors as Determined by Sound Quality Tests

    NASA Technical Reports Server (NTRS)

    Powell, Clemans A.; Sullivan, Brenda M.

    2004-01-01

    Two experiments were conducted, using sound quality engineering practices, to determine the subjective effectiveness of hypothetical active noise control systems in a range of propeller aircraft. The two tests differed by the type of judgments made by the subjects: pair comparisons in the first test and numerical category scaling in the second. Although the results of the two tests were in general agreement that the hypothetical active control measures improved the interior noise environments, the pair comparison method appears to be more sensitive to subtle changes in the characteristics of the sounds which are related to passenger preference.

  4. ANOPP Landing Gear Noise Prediction Comparisons to Model-scale Data

    NASA Technical Reports Server (NTRS)

    Burley, Casey L.; Brooks, Thomas F.; Humphreys, William M., Jr.; Rawls, John W., Jr.

    2007-01-01

    The NASA Aircraft NOise Prediction Program (ANOPP) includes two methods for computing the noise from landing gear: the "Fink" method and the "Guo" method. Both methods have been predominately validated and used to predict full-scale landing gear noise. The two methods are compared, and their ability to predict the noise for model-scale landing gear is investigated. Predictions are made using both the Fink and Guo methods and compared to measured acoustic data obtained for a high-fidelity, 6.3%-scale, Boeing 777 main landing gear. A process is developed by which full-scale predictions can be scaled to compare with model-scale data. The measurements were obtained in the NASA Langley Quiet Flow Facility for a range of Mach numbers at a large number of observer polar (flyover) and azimuthal (sideline) observer angles. Spectra and contours of the measured sound pressure levels as a function of polar and azimuthal angle characterize the directivity of landing gear noise. Comparisons of predicted noise spectra and contours from each ANOPP method are made. Both methods predict comparable amplitudes and trends for the flyover locations, but deviate at the sideline locations. Neither method fully captures the measured noise directivity. The availability of these measured data provides the opportunity to further understand and advance noise prediction capabilities, particularly for noise directivity.

  5. Evaluation of an Aircraft Concept With Over-Wing, Hydrogen-Fueled Engines for Reduced Noise and Emissions

    NASA Technical Reports Server (NTRS)

    Guynn, Mark D.; Olson, Erik D.

    2002-01-01

    This report describes the analytical modeling and evaluation of an unconventional commercial transport aircraft concept designed to address aircraft noise and emission issues. A strut-braced wing configuration with overwing, ultra-high bypass ratio, hydrogen fueled turbofan engines is considered. Estimated noise and emission characteristics are compared to a conventional configuration designed for the same mission and significant benefits are identified. The design challenges and technology issues which would have to be addressed to make the concept a viable alternative to current aircraft designs are discussed. This concept is one of the "Quiet Green Transport" aircraft concepts studied as part of NASA's Revolutionary Aerospace Systems Concepts (RASC) Program. The RASC Program seeks to develop revolutionary concepts that address strategic objectives of the NASA Enterprises, such as reducing aircraft noise and emissions, and to identify enabling advanced technology requirements for the concepts.

  6. Evaluation of a Hydrogen Fuel Cell Powered Blended-Wing-Body Aircraft Concept for Reduced Noise and Emissions

    NASA Technical Reports Server (NTRS)

    Guynn, Mark D.; Freh, Joshua E.; Olson, Erik D.

    2004-01-01

    This report describes the analytical modeling and evaluation of an unconventional commercial transport aircraft concept designed to address aircraft noise and emission issues. A blended-wing-body configuration with advanced technology hydrogen fuel cell electric propulsion is considered. Predicted noise and emission characteristics are compared to a current technology conventional configuration designed for the same mission. The significant technology issues which have to be addressed to make this concept a viable alternative to current aircraft designs are discussed. This concept is one of the "Quiet Green Transport" aircraft concepts studied as part of NASA's Revolutionary Aerospace Systems Concepts (RASC) Program. The RASC Program was initiated to develop revolutionary concepts that address strategic objectives of the NASA Enterprises, such as reducing aircraft noise and emissions, and to identify advanced technology requirements for the concepts.

  7. The effect of operations on the ground noise footprints associated with a large multibladed, nonbanging helicopter

    NASA Technical Reports Server (NTRS)

    Hilton, D. A.; Henderson, H. R.; Maglieri, D. J.; Bigler, W. B., II

    1978-01-01

    In order to expand the data base of helicopter external noise characteristics, a flyover noise measurement program was conducted utilizing the NASA Civil Helicopter Research Aircraft. The remotely operated multiple array acoustics range (ROMAAR) and a 2560-m linear microphone array were utilized for the purpose of documenting the noise characteristics of the test helicopter during flyby and landing operations. By utilizing both ROMAAR concept and the linear array, the data necessary to plot the ground noise footprints and noise radiation patterns were obtained. Examples of the measured noise signature of the test helicopter, the ground noise footprint or contours, and the directivity patterns measured during level flyby and landing operations of a large, multibladed, nonbanging helicopter, the CH-53, are presented.

  8. Strategic planning for aircraft noise route impact analysis: A three dimensional approach

    NASA Technical Reports Server (NTRS)

    Bragdon, C. R.; Rowan, M. J.; Ahuja, K. K.

    1993-01-01

    The strategic routing of aircraft through navigable and controlled airspace to minimize adverse noise impact over sensitive areas is critical in the proper management and planning of the U.S. based airport system. A major objective of this phase of research is to identify, inventory, characterize, and analyze the various environmental, land planning, and regulatory data bases, along with potential three dimensional software and hardware systems that can be potentially applied for an impact assessment of any existing or planned air route. There are eight data bases that have to be assembled and developed in order to develop three dimensional aircraft route impact methodology. These data bases which cover geographical information systems, sound metrics, land use, airspace operational control measures, federal regulations and advisories, census data, and environmental attributes have been examined and aggregated. A three dimensional format is necessary for planning, analyzing space and possible noise impact, and formulating potential resolutions. The need to develop this three dimensional approach is essential due to the finite capacity of airspace for managing and planning a route system, including airport facilities. It appears that these data bases can be integrated effectively into a strategic aircraft noise routing system which should be developed as soon as possible, as part of a proactive plan applied to our FAA controlled navigable airspace for the United States.

  9. Aircraft Conceptual Design and Risk Analysis Using Physics-Based Noise Prediction

    NASA Technical Reports Server (NTRS)

    Olson, Erik D.; Mavris, Dimitri N.

    2006-01-01

    An approach was developed which allows for design studies of commercial aircraft using physics-based noise analysis methods while retaining the ability to perform the rapid trade-off and risk analysis studies needed at the conceptual design stage. A prototype integrated analysis process was created for computing the total aircraft EPNL at the Federal Aviation Regulations Part 36 certification measurement locations using physics-based methods for fan rotor-stator interaction tones and jet mixing noise. The methodology was then used in combination with design of experiments to create response surface equations (RSEs) for the engine and aircraft performance metrics, geometric constraints and take-off and landing noise levels. In addition, Monte Carlo analysis was used to assess the expected variability of the metrics under the influence of uncertainty, and to determine how the variability is affected by the choice of engine cycle. Finally, the RSEs were used to conduct a series of proof-of-concept conceptual-level design studies demonstrating the utility of the approach. The study found that a key advantage to using physics-based analysis during conceptual design lies in the ability to assess the benefits of new technologies as a function of the design to which they are applied. The greatest difficulty in implementing physics-based analysis proved to be the generation of design geometry at a sufficient level of detail for high-fidelity analysis.

  10. Noise impact study of a new 2004 noise abatement procedure at the Louisville airport

    NASA Astrophysics Data System (ADS)

    Sizov, Natalia V.; Clarke, John-Paul B.; Ren, Liling; Elmer, Kevin R.; Shivashankara, Belur N.

    2005-09-01

    A flight demonstration test in September 2004 at Louisville was a continuation of research conducted in 2002 by a team sponsored by the Federal Aviation Administration's Center of Excellence for Air Traffic Systems. A continuous descent procedure was designed primarily to minimize environmental impacts such as community noise and aircraft emissions, and to maximize savings in fuel and flight time. The test was designed to show the operational suitability of the new area navigation arrival procedure that begins at cruise altitude and which may be used in daily operation on two opposite facing runways. Flyover noise measurements were taken during a two-week testing period, and a three-week baseline period. The latest research focused on detailed analysis of aircraft performance, collecting noise data and noise prediction. The noise measurements confirm increased repeatability and predictability of noise levels that resulted from the well-designed procedure. The Integrated Noise Model was used to compare noise levels of test and baseline flights. And noise predictions using precise flight data confirm that a continuous descent approach reduces noise levels by 4 to 6 decibels which in turn reduces contour area by as much as 30 percent.

  11. Definition of 1992 Technology Aircraft Noise Levels and the Methodology for Assessing Airplane Noise Impact of Component Noise Reduction Concepts

    NASA Technical Reports Server (NTRS)

    Kumasaka, Henry A.; Martinez, Michael M.; Weir, Donald S.

    1996-01-01

    This report describes the methodology for assessing the impact of component noise reduction on total airplane system noise. The methodology is intended to be applied to the results of individual study elements of the NASA-Advanced Subsonic Technology (AST) Noise Reduction Program, which will address the development of noise reduction concepts for specific components. Program progress will be assessed in terms of noise reduction achieved, relative to baseline levels representative of 1992 technology airplane/engine design and performance. In this report, the 1992 technology reference levels are defined for assessment models based on four airplane sizes - an average business jet and three commercial transports: a small twin, a medium sized twin, and a large quad. Study results indicate that component changes defined as program final goals for nacelle treatment and engine/airframe source noise reduction would achieve from 6-7 EPNdB reduction of total airplane noise at FAR 36 Stage 3 noise certification conditions for all of the airplane noise assessment models.

  12. Effects of low intensity noise from aircraft or from neighbourhood on cognitive learning and electrophysiological stress responses.

    PubMed

    Trimmel, Michael; Atzlsdorfer, Jürgen; Tupy, Nina; Trimmel, Karin

    2012-11-01

    The effects of low intensity noise on cognitive learning and autonomous physiological processes are of high practical relevance but are rarely addressed in empirical investigations. This study investigated the impact of neighbourhood noise (of 45 dB[A], n=20) and of noise coming from passing aircraft (of 48 dB[A] peak amplitude presented once per minute; n=19) during computer based learning of different texts (with three types of text structure, i.e. linear text, hierarchic hypertext, and network hypertext) in relation to a control group (35 dB[A], n=20). Using a between subjects design, reproduction scores, heart rate, and spontaneous skin conductance fluctuations were compared. Results showed impairments of reproduction in both noise conditions. Additionally, whereas in the control group and the neighbourhood noise group scores were better for network hypertext structure than for hierarchic hypertext, no effect of text structure on reproduction appeared in the aircraft noise group. Compared to the control group, for most of the learning period the number of spontaneous skin conductance fluctuations was higher for the aircraft noise group. For the neighbourhood noise group, fluctuations were higher during pre- and post task periods when noise stimulation was still present. Additionally, during the last 5 min of the 15 min learning period, an increased heart rate was found in the aircraft noise group. Data indicate remarkable cognitive and physiological effects of low intensity background noise. Some aspects of reproduction were impaired in the two noise groups. Cognitive learning, as indicated by reproduction scores, was changed structurally in the aircraft noise group and was accompanied by higher sympathetic activity. An additional cardiovascular load appeared for aircraft noise when combined with time pressure as indicated by heart rate for the announced last 5 min of the learning period during aircraft noise with a peak SPL of even 48 dB(A). Attentional

  13. a Survey on Health Effects due to Aircraft Noise on Residents Living around Kadena Air Base in the Ryukyus

    NASA Astrophysics Data System (ADS)

    Hiramatsu, K.; Yamamoto, T.; Taira, K.; Ito, A.; Nakasone, T.

    1997-08-01

    Results are reported of a questionnaire survey relating to a scale for general health, the Todai Health Index, in a town, bordering on a large U.S. airbase in the Ryukyus. The level of aircraft noise exposure, in the town, expressed by WECPNL, ranges from 75 to 95 or more. The sample size was 1200, including a 200 person “control” group. Results of the analysis of the responses in terms of the noise exposure suggest that the exposed residents suffer psychosomatic effects, especially perceived psychological disorders, due to the noise exposure to military aircraft, and that such responses increase with the level of noise exposure.

  14. Effects of low intensity noise from aircraft or from neighbourhood on cognitive learning and electrophysiological stress responses.

    PubMed

    Trimmel, Michael; Atzlsdorfer, Jürgen; Tupy, Nina; Trimmel, Karin

    2012-11-01

    The effects of low intensity noise on cognitive learning and autonomous physiological processes are of high practical relevance but are rarely addressed in empirical investigations. This study investigated the impact of neighbourhood noise (of 45 dB[A], n=20) and of noise coming from passing aircraft (of 48 dB[A] peak amplitude presented once per minute; n=19) during computer based learning of different texts (with three types of text structure, i.e. linear text, hierarchic hypertext, and network hypertext) in relation to a control group (35 dB[A], n=20). Using a between subjects design, reproduction scores, heart rate, and spontaneous skin conductance fluctuations were compared. Results showed impairments of reproduction in both noise conditions. Additionally, whereas in the control group and the neighbourhood noise group scores were better for network hypertext structure than for hierarchic hypertext, no effect of text structure on reproduction appeared in the aircraft noise group. Compared to the control group, for most of the learning period the number of spontaneous skin conductance fluctuations was higher for the aircraft noise group. For the neighbourhood noise group, fluctuations were higher during pre- and post task periods when noise stimulation was still present. Additionally, during the last 5 min of the 15 min learning period, an increased heart rate was found in the aircraft noise group. Data indicate remarkable cognitive and physiological effects of low intensity background noise. Some aspects of reproduction were impaired in the two noise groups. Cognitive learning, as indicated by reproduction scores, was changed structurally in the aircraft noise group and was accompanied by higher sympathetic activity. An additional cardiovascular load appeared for aircraft noise when combined with time pressure as indicated by heart rate for the announced last 5 min of the learning period during aircraft noise with a peak SPL of even 48 dB(A). Attentional

  15. Noise data for a twin-engine commercial jet aircraft flying conventional, steep, and two-segment approaches

    NASA Technical Reports Server (NTRS)

    Hastings, E. C., Jr.; Mueller, A. W.; Hamilton, J. R.

    1977-01-01

    Center-line noise measurements of a twin-engine commercial jet aircraft were made during steep landing approach profiles, and during two-segment approach profiles for comparison with similar measurements made during conventional approaches. The steep and two-segment approaches showed significant noise reductions when compared with the -3 deg base line. The measured noise data were also used to develop a method for estimating the noise under the test aircraft at thrust and altitude conditions typical of current landing procedures and of landing procedures under development for the Advanced Air Traffic Control System.

  16. The effects of aircraft noise at Williams Air Force Base Auxiliary Field on residential property values

    SciTech Connect

    Morey, M.J.

    1990-11-01

    This report considers the environmental consequences of moving the flight training operations of the US Air Force's 82nd Flying Training Wing from the auxiliary airfield, Coolidge-Florence Municipal Airport (CFMA), to a more remote location in Pinal County, Arizona. It examines how actual noise from touch-and-go flights of T-37 aircraft and perceived (anticipated) noise affect the market value of residential property near CFMA. Noise, measured by a noise index, is correlated with market values through a regression analysis applied to a hedonic price model of the Coolidge-Florence housing market. Prices and characteristics of 42 residential properties sold in 1987 and 1988 were used to estimate a perceived noise effect. The report finds that the coefficient on the measure of perceived noise, based on the noise exposure forecast (NEF) index, is statistically insignificant, even though the sign and value are consistent with those estimated in other studies. It concludes that current flights do not have a significant effect on residential property values, partially because there is no housing near CFMA. This and larger studies indicate that flight operations at a new auxiliary airfield would not affect property values if runways were at least 12,000 feet away from housing. 12 refs., 2 tabs.

  17. Transport jet aircraft noise abatement in foreign countries: Growth, structure, impact. Volume 2: Pacific basin, August 1980

    NASA Technical Reports Server (NTRS)

    Spencer, F. A.

    1980-01-01

    Noise control measures at the international airports of Hawaii, New Zealand, Australia, Hong Kong, Japan, and Singapore were studied. Factors in noise control, such as government structure are examined. The increasing power of environmental agencies vis-a-vis aviation departments is noted. The following methods of dealing with aircraft noise are examined by type of control: noise at the source control; noise emmission controls, zoning, building codes, subsidies for relocation, insulation, loss in property values, and for TV, radio and telephone interference; and noise-related landing charges.

  18. Noise simulation of aircraft engine fans by the boundary element method

    NASA Astrophysics Data System (ADS)

    Pyatunin, K. R.; Arkharova, N. V.; Remizov, A. E.

    2016-07-01

    Numerical simulation results of the civil aircraft engine fan stage noise in the far field are presented. Non-steady-state rotor-stator interaction is calculated the commercial software that solves the Navier-Stokes equations using differentturbulence models. Noise propagation to the far acoustic field is calculated by the boundary element method using acoustic Lighthill analogies without taking into account the mean current in the air inlet duct. The calculated sound pressure levels at points 50 m from the engine are presented, and the directional patterns of the acoustic radiation are shown. The use of the eddy resolving turbulence model to calculate rotor-stator interaction increases the accuracy in predicting fan stage noise.

  19. Aerodynamic Measurements of a Gulfstream Aircraft Model With and Without Noise Reduction Concepts

    NASA Technical Reports Server (NTRS)

    Neuhart, Dan H.; Hannon, Judith A.; Khorrami, Mehdi R.

    2014-01-01

    Steady and unsteady aerodynamic measurements of a high-fidelity, semi-span 18% scale Gulfstream aircraft model are presented. The aerodynamic data were collected concurrently with acoustic measurements as part of a larger aeroacoustic study targeting airframe noise associated with main landing gear/flap components, gear-flap interaction noise, and the viability of related noise mitigation technologies. The aeroacoustic tests were conducted in the NASA Langley Research Center 14- by 22-Foot Subsonic Wind Tunnel with the facility in the acoustically treated open-wall (jet) mode. Most of the measurements were obtained with the model in landing configuration with the flap deflected at 39º and the main landing gear on and off. Data were acquired at Mach numbers of 0.16, 0.20, and 0.24. Global forces (lift and drag) and extensive steady and unsteady surface pressure measurements were obtained. Comparison of the present results with those acquired during a previous test shows a significant reduction in the lift experienced by the model. The underlying cause was traced to the likely presence of a much thicker boundary layer on the tunnel floor, which was acoustically treated for the present test. The steady and unsteady pressure fields on the flap, particularly in the regions of predominant noise sources such as the inboard and outboard tips, remained unaffected. It is shown that the changes in lift and drag coefficients for model configurations fitted with gear/flap noise abatement technologies fall within the repeatability of the baseline configuration. Therefore, the noise abatement technologies evaluated in this experiment have no detrimental impact on the aerodynamic performance of the aircraft model.

  20. Effect of advanced aircraft noise reduction technology on the 1990 projected noise environment around Patrick Henry Airport. [development of noise exposure forecast contours for projected traffic volume and aircraft types

    NASA Technical Reports Server (NTRS)

    Cawthorn, J. M.; Brown, C. G.

    1974-01-01

    A study has been conducted of the future noise environment of Patric Henry Airport and its neighboring communities projected for the year 1990. An assessment was made of the impact of advanced noise reduction technologies which are currently being considered. These advanced technologies include a two-segment landing approach procedure and aircraft hardware modifications or retrofits which would add sound absorbent material in the nacelles of the engines or which would replace the present two- and three-stage fans with a single-stage fan of larger diameter. Noise Exposure Forecast (NEF) contours were computed for the baseline (nonretrofitted) aircraft for the projected traffic volume and fleet mix for the year 1990. These NEF contours are presented along with contours for a variety of retrofit options. Comparisons of the baseline with the noise reduction options are given in terms of total land area exposed to 30 and 40 NEF levels. Results are also presented of the effects on noise exposure area of the total number of daily operations.

  1. A new field-laboratory methodology for assessing human response to noise

    NASA Technical Reports Server (NTRS)

    Borsky, P. N.

    1973-01-01

    Gross measures of community annoyance with intrusive noises have been made in a number of real environment surveys which indicate that aircraft noise may have to be reduced 30-40 EPNdb before it will generally be considered acceptable. Interview studies, however, cannot provide the precise information which is needed by noise abatement engineers of the variable human response to different types and degrees of noise exposure. A new methodological field-survey approach has been developed to provide such information. The integrated attitudes and experiences of a random sample of subjects in the real environment are obtained by a prior field survey. Then these subjects record their more precise responses to controlled noise exposures in a new realistic laboratory. The laboratory is a sound chamber furnished as a typical living room (18 ft x 14 ft) and subjects watch a color TV program while they judge simulated aircraft flyovers that occur at controlled levels and intervals. Methodological experiments indicate that subjects in the laboratory have the sensation that the airplanes are actually moving overhead across the ceiling of the chamber. It was also determined that annoyance judgments in the laboratory stabilize after three flyovers are heard prior to a judgment of annoyance.

  2. Effects of aircraft noise on hearing and auditory pathway function of airport employees.

    PubMed

    Chen, T J; Chiang, H C; Chen, S S

    1992-06-01

    The effects of aircraft noise on hearing and auditory pathway function were studied in 112 airport employees, both by audiometry and brainstem auditory evoked potentials (BAEPs) to evaluate cochlear function and to verify the possibility of retrocochlear involvement. Employees were divided into five groups according to their daily jobs. Group A was made up of 23 maintenance workers, Group B of 20 firemen, Group C of 24 policemen, Group D of 34 airline ground staff, and Group E of 14 civil servants. The typical audiogram pattern of noise-induced hearing loss (NIHL) was a dip at 3 or 4 kHz and moderate hearing loss in the frequency range of 6 to 8 kHz. The results of audiograms in this study revealed the prevalence rate of high-frequency loss in all employees was 41.9%. The incidences of NIHL were highest in the groups of maintenance workers (65.2%) and firemen (55.0%), who are almost continuously exposed to aircraft noise. As for the BAEPs, both click threshold and latencies showed that the impairment was most severe in the groups of maintenance workers and firemen. There was prolongation in central conduction time, shown mainly in intervals of I-V and III-V. This suggests that involvement of the central auditory pathway, especially between the pons and midbrain, is present. In summary, the degree of auditory damage coincided with job patterns. Furthermore, damage of both peripheral cochlear organs and the central auditory pathway by high-frequency aircraft noise exposure was confirmed.

  3. Effects of aircraft noise on the equilibrium of airport residents: Testing and utilization of a new methodology

    NASA Technical Reports Server (NTRS)

    Francois, J.

    1981-01-01

    The focus of the investigation is centered around two main themes: an analysis of the effects of aircraft noise on the psychological and physiological equilibrium of airport residents; and an analysis of the sources of variability of sensitivity to noise. The methodology used is presented. Nine statistical tables are included, along with a set of conclusions.

  4. Effects of aircraft noise on the equilibrium of airport residents: Supplementary analyses to the study carried out around Orly

    NASA Technical Reports Server (NTRS)

    Francois, J.

    1981-01-01

    The effects of aircraft noise on humans living near airports were studied. Two main questions were considered: do residents give evidence of psychological or physiological disturbances in unusually intense noise sectors; and do personality or health factors account for the high interindividual variability of annoyance? The methodology used and results obtained are presented. Samples of the survey questionnaires are included.

  5. Implications of the road traffic and aircraft noise exposure and children's cognition and health (RANCH) study results for classroom acoustics

    NASA Astrophysics Data System (ADS)

    Stansfeld, Stephen A.; Clark, Charlotte

    2005-04-01

    Studies in West London have found associations between aircraft noise exposure and childrens' cognitive performance. This has culminated in the RANCH Study examining exposure-effect associations between aircraft and road traffic noise exposure and cognitive performance and health. The RANCH project, the largest cross-sectional study of noise and childrens health, examined 2844 children, 9-10 years old, from 89 schools around three major airports: in the Netherlands, Spain and the United Kingdom. Children were selected by external aircraft and road traffic noise exposure at school predicted from noise contour maps, modeling and on-site measurements. A substudy indicated high internal levels of noise within classrooms. Schools were matched for socioeconomic position within countries. Cognitive and health outcomes were measured by standardized tests and questionnaires administered in the classroom. A parental questionnaire collected information on socioeconomic position, parental education and ethnicity. Linear exposure-effect associations were found between chronic aircraft noise exposure and impairment of reading comprehension and recognition memory, maintained after adjustment for mothers education, socioeconomic factors, longstanding illness and classroom insulation. Road traffic noise exposure was linearly associated with episodic memory. The implications of these results for childrens' learning environments will be discussed. [Work supported by European Community (QLRT-2000-00197) Vth framework program.

  6. Effects of road traffic background noise on judgments of individual airplane noises. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Powell, C. A.

    1979-01-01

    Two laboratory experiments were conducted to investigate the effects of road-traffic background noise on judgments of individual airplane flyover noises. In the first experiment, 27 subjects judged a set of 16 airplane flyover noises in the presence of traffic-noise sessions of 30-min duration consisting of the combinations of 3 traffic-noise types and 3 noise levels. In the second experiment, 24 subjects judged the same airplane flyover noises in the presence of traffic-noise sessions of 10-min duration consisting of the combinations of 2 traffic-noise types and 4 noise levels. In both experiments the airplane noises were judged less annoying in the presence of high traffic-noise levels than in the presence of low traffic-noise levels.

  7. Emotionality in response to aircraft noise: A report of development work

    NASA Technical Reports Server (NTRS)

    Klaus, P. A.

    1975-01-01

    A literature search and pilot study conducted to investigate the topic of emotional response to aircraft noise are described. A Tell-A-Story Technique was developed for use in the pilot study which required respondents to make up stories for a series of aircraft-related and non-aircraft-related pictures. A content analysis of these stories was made. The major finding was that response patterns varied among three groups of respondents - those currently living near airports, those who had lived near airports in the past, and those who had never lived near airports. Negative emotional feelings toward aircraft were greatest among respondents who had lived near airports in the past but no longer did. A possible explanation offered for this finding was that people currently living near airports might adapt to the situation by denying some of their negative feelings, which they might feel more free to express after they had moved away from the situation. Other techniques used in the pilot study are also described, including group interviews and a word association task.

  8. Evaluation of analysis techniques for low frequency interior noise and vibration of commercial aircraft

    NASA Technical Reports Server (NTRS)

    Landmann, A. E.; Tillema, H. F.; Marshall, S. E.

    1989-01-01

    The application of selected analysis techniques to low frequency cabin noise associated with advanced propeller engine installations is evaluated. Three design analysis techniques were chosen for evaluation including finite element analysis, statistical energy analysis (SEA), and a power flow method using element of SEA (computer program Propeller Aircraft Interior Noise). An overview of the three procedures is provided. Data from tests of a 727 airplane (modified to accept a propeller engine) were used to compare with predictions. Comparisons of predicted and measured levels at the end of the first year's effort showed reasonable agreement leading to the conclusion that each technique had value for propeller engine noise predictions on large commercial transports. However, variations in agreement were large enough to remain cautious and to lead to recommendations for further work with each technique. Assessment of the second year's results leads to the conclusion that the selected techniques can accurately predict trends and can be useful to a designer, but that absolute level predictions remain unreliable due to complexity of the aircraft structure and low modal densities.

  9. Measurement and prediction of noise from low-altitude military aircraft operations

    NASA Astrophysics Data System (ADS)

    Barry, Bernard F.; Payne, Richard C.; Harris, Anthony L.; Weston, Ralph J.

    1992-04-01

    In response to the rapid growth in demand for information on noise levels around military airfields in the UK, NPL developed AIRNOISE, a mathematical model for computing aircraft noise contours. Since its first applications in 1981, the model has been used to determine zones of eligibility within the MoD compensation scheme. The model has been subject to continuous development, e.g., the incorporation of Harrier V/STOL operations. We have now extended the model to include noise from high-speed, low-level operations. The model predicts not only maximum levels but the complete time-history, so that the time-onset rate can be estimated. To aid refinement and validation of the model, a special exercise has been conducted in which Tornado, Harrier, Jaguar, Hawk, F-15 and F-16 aircraft have flown straight and level at heights between about 100 and 400 feet, at various speeds and engine power settings over an array of microphones. This paper describes the trial and the results obtained. The prediction model is outlined and comparisons made between predictions and measurements.

  10. Description and flight performance of two systems for two-segment approach. [for aircraft noise abatement

    NASA Technical Reports Server (NTRS)

    Wehrend, W. R.; Shigemoto, F. H.; Bourquin, K. R.

    1974-01-01

    This paper describes two different avionic systems which were designed and developed to provide guidance and control for two-segment noise abatement approaches. The concept of a low-cost retrofit avionic system evolved into a special-purpose two-segment computer which required a DME collocated with the ILS glide-slope transmitter. This system was evaluated in a Boeing 727-200 aircraft. The second system is an area navigation (RNAV) system modified to include the two-segment approach. This system is more sophisticated than the first system and does not restrict usage to any specific navigation ground aid. The modified RNAV system is a Collins ANS-70A and is currently being evaluated in a DC-8-61 aircraft.

  11. A review of the effects of aircraft noise on wildlife and humans, current control mechanisms, and the need for further study.

    PubMed

    Pepper, Christopher B; Nascarella, Marc A; Kendall, Ronald J

    2003-10-01

    Military and civilian aircraft overflights are an issue that may impact the quality of life for millions of United States residents. Aircraft noise annoys many people worldwide and is generally thought to adversely affect some wildlife species. In light of increasing demands being placed on airspace, and because of technological improvements in acoustical testing, there is a need to reexamine the effects of aircraft noise exposure on humans and wildlife. This paper reviews past research, current laws and legislation, and presents an argument for the need to revisit the effects of aircraft noise on humans and wildlife. Some evidence suggests that noise may adversely impact wildlife and humans, however, many of the past studies were inconclusive and based on relatively small sample sizes. Given that aircraft noise abatement legislation has been enacted and because of the recent promulgation of community-based noise awareness programs, future studies should be conducted to resolve public policy problems and debates associated with aircraft noise. The need to further study the effects of aircraft noise on humans and wildlife is critical for creating sustainable land use policies near aircraft installations. Data derived from these studies will be used to create sound public policies that enhance the operational capacity of military and civilian aircraft while reducing the opportunity for human and wildlife exposure to aircraft noise.

  12. Interior and exterior fuselage noise measured on NASA's C-8a augmentor wing jet-STOL research aircraft

    NASA Technical Reports Server (NTRS)

    Shovlin, M. D.

    1977-01-01

    Interior and exterior fuselage noise levels were measured on NASA's C-8A Augmentor Wing Jet-STOL Research Aircraft in order to provide design information for the Quiet Short-Haul Research Aircraft (QSRA), which will use a modified C-8A fuselage. The noise field was mapped by 11 microphones located internally and externally in three areas: mid-fuselage, aft fuselage, and on the flight deck. Noise levels were recorded at four power settings varying from takeoff to flight idle and were plotted in one-third octave band spectra. The overall sound pressure levels of the external noise field were compared to previous tests and found to correlate well with engine primary thrust levels. Fuselage values were 145 + or - 3 dB over the aircraft's normal STOL operating range.

  13. Supersonic and subsonic aircraft noise effects on animals: a literature survey. Final report, 15 October 1985-15 October 1986

    SciTech Connect

    Kull, R.C.; Fisher, A.D.

    1986-12-01

    The literature was searched concerning the effects of supersonic and subsonic aircraft noise on animals. The search revealed many review papers of prior research accomplished, but few actual research papers. Out of all the reviews, Dufour's work is the most comprehensive. Many of the papers are anecdotal in nature and add little to our scientific knowledge - strictly circumstantial evidence. The literature reveals few effects on animals due to sonic booms. The effects of subsonic noise, however, needs much more investigation. One of the biggest problems with the research in this area is the lack of controls, lack of standardized ways of recording data and evaluating behaviors, and the number of variables involved. Specific recommendations to fill some of the technological gaps include a sonic boom study on a ground-nesting shorebird, effects of subsonic aircraft noise on endangered species, long term physiological effects causing immunosuppression, and noise versus visual aircraft stimuli effects.

  14. A review and preliminary evaluation of methodological factors in performance assessments of time-varying aircraft noise effects

    NASA Technical Reports Server (NTRS)

    Coates, G. D.; Alluisi, E. A.

    1975-01-01

    The effects of aircraft noise on human performance is considered. Progress is reported in the following areas: (1) review of the literature to identify the methodological and stimulus parameters involved in the study of noise effects on human performance; (2) development of a theoretical framework to provide working hypotheses as to the effects of noise on complex human performance; and (3) data collection on the first of several experimental investigations designed to provide tests of the hypotheses.

  15. A review of methodological factors in performance assessments of time-varying aircraft noise effects. [with annotated bibliography

    NASA Technical Reports Server (NTRS)

    Coates, G. D.; Alluisi, E. A.; Adkins, C. J., Jr.

    1977-01-01

    Literature on the effects of general noise on human performance is reviewed in an attempt to identify (1) those characteristics of noise that have been found to affect human performance; (2) those characteristics of performance most likely to be affected by the presence of noise, and (3) those characteristics of the performance situation typically associated with noise effects. Based on the characteristics identified, a theoretical framework is proposed that will permit predictions of possible effects of time-varying aircraft-type noise on complex human performance. An annotated bibliography of 50 articles is included.

  16. Jet Noise Modeling for Suppressed and Unsuppressed Aircraft in Simulated Flight

    NASA Technical Reports Server (NTRS)

    Stone, James R.; Krejsa, Eugene A.; Clark, Bruce J; Berton, Jeffrey J.

    2009-01-01

    This document describes the development of further extensions and improvements to the jet noise model developed by Modern Technologies Corporation (MTC) for the National Aeronautics and Space Administration (NASA). The noise component extraction and correlation approach, first used successfully by MTC in developing a noise prediction model for two-dimensional mixer ejector (2DME) nozzles under the High Speed Research (HSR) Program, has been applied to dual-stream nozzles, then extended and improved in earlier tasks under this contract. Under Task 6, the coannular jet noise model was formulated and calibrated with limited scale model data, mainly at high bypass ratio, including a limited-range prediction of the effects of mixing-enhancement nozzle-exit chevrons on jet noise. Under Task 9 this model was extended to a wider range of conditions, particularly those appropriate for a Supersonic Business Jet, with an improvement in simulated flight effects modeling and generalization of the suppressor model. In the present task further comparisons are made over a still wider range of conditions from more test facilities. The model is also further generalized to cover single-stream nozzles of otherwise similar configuration. So the evolution of this prediction/analysis/correlation approach has been in a sense backward, from the complex to the simple; but from this approach a very robust capability is emerging. Also from these studies, some observations emerge relative to theoretical considerations. The purpose of this task is to develop an analytical, semi-empirical jet noise prediction method applicable to takeoff, sideline and approach noise of subsonic and supersonic cruise aircraft over a wide size range. The product of this task is an even more consistent and robust model for the Footprint/Radius (FOOTPR) code than even the Task 9 model. The model is validated for a wider range of cases and statistically quantified for the various reference facilities. The possible

  17. Flyover Animation of Becquerel Crater on Mars

    NASA Technical Reports Server (NTRS)

    2008-01-01

    [figure removed for brevity, see original site] View the Movie Click on image to view the movie

    This simulated flyover shows rhythmic layers of sedimentary rock inside Becquerel crater on Mars. The animation uses three-dimensional modeling based on a stereo pair of images from the High Resolution Imaging Science Experiment (HiRISE) on NASA's Mars Reconnaissance Orbiter.

    NASA's Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the Mars Reconnaissance Orbiter for NASA's Science Mission Directorate, Washington. Lockheed Martin Space Systems, Denver, is the prime contractor for the project and built the spacecraft. The High Resolution Imaging Science Experiment is operated by the University of Arizona, Tucson, and the instrument was built by Ball Aerospace & Technologies Corp., Boulder, Colo.

  18. Animated Flyover of Pluto’s Icy Mountain and Plains

    NASA Video Gallery

    This simulated flyover of Pluto’s Norgay Montes (Norgay Mountains) and Sputnik Planum (Sputnik Plain) was created from New Horizons closest-approach images. Norgay Montes have been informally named...

  19. Noise Reduction in an Aircraft Fuselage Model Using Active Trim Panels

    NASA Technical Reports Server (NTRS)

    Silcox, Richard J.; Lyle, Karen H.

    1996-01-01

    An experiment was conducted to evaluate the use of force actuators on a model aircraft interior trim panel as the control element for active control of interior noise. The trim panel, designed specifically for this study, was constructed in three large identical sections and hard mounted to the ring frames of the primary structure. Piezoceramic actuators were bonded to the outer surface of the trim panels. Studies of the interior pressure response due to both the primary source alone and control sources alone were conducted as well as the control cases. A single acoustic loudspeaker, centered at the axial midpoint, generated the acoustic field to be controlled.

  20. Sound Pressures and Correlations of Noise on the Fuselage of a Jet Aircraft in Flight

    NASA Technical Reports Server (NTRS)

    Shattuck, Russell D.

    1961-01-01

    Tests were conducted at altitudes of 10,000, 20,000, and 30,000 feet at speeds of Mach 0.4, 0.6, and O.8. It was found that the sound pressure levels on the aft fuselage of a jet aircraft in flight can be estimated using an equation involving the true airspeed and the free air density. The cross-correlation coefficient over a spacing of 2.5 feet was generalized with Strouhal number. The spectrum of the noise in flight is comparatively flat up to 10,000 cycles per second.

  1. Flight investigation of cabin noise control treatments for a light turboprop aircraft

    NASA Technical Reports Server (NTRS)

    Wilby, J. F.; Oneal, R. L.; Mixson, J. S.

    1985-01-01

    The in-flight evaluation of noise control treatments for a light, twin-engined turboprop aircraft presents several problems associated with data analysis and interpretation. These problems include data repeatability, propeller synchronization, spatial distributions of the exterior pressure field and acoustic treatment, and the presence of flanking paths. They are discussed here with regard to a specific aeroplane configuration. Measurements were made in an untreated cabin and in a cabin fitted with an experimental sidewall treatment. Results are presented in terms of the insertion loss provided by the treatment and comparison made with predictions based on laboratory measurements.

  2. Experimental and theoretical sound transmission. [reduction of interior noise in aircraft

    NASA Technical Reports Server (NTRS)

    Roskam, J.; Muirhead, V. U.; Smith, H. W.; Durenberger, D. W.

    1978-01-01

    The capabilities of the Kansas University- Flight Research Center for investigating panel sound transmission as a step toward the reduction of interior noise in general aviation aircraft were discussed. Data obtained on panels with holes, on honeycomb panels, and on various panel treatments at normal incidence were documented. The design of equipment for panel transmission loss tests at nonnormal (slanted) sound incidence was described. A comprehensive theory-based prediction method was developed and shows good agreement with experimental observations of the stiffness controlled, the region, the resonance controlled region, and the mass-law region of panel vibration.

  3. Analytical modeling of the structureborne noise path on a small twin-engine aircraft

    NASA Technical Reports Server (NTRS)

    Cole, J. E., III; Stokes, A. Westagard; Garrelick, J. M.; Martini, K. F.

    1988-01-01

    The structureborne noise path of a six passenger twin-engine aircraft is analyzed. Models of the wing and fuselage structures as well as the interior acoustic space of the cabin are developed and used to evaluate sensitivity to structural and acoustic parameters. Different modeling approaches are used to examine aspects of the structureborne path. These approaches are guided by a number of considerations including the geometry of the structures, the frequency range of interest, and the tractability of the computations. Results of these approaches are compared with experimental data.

  4. The effects of chronic aircraft noise exposure on children's cognition and health: 3 field studies.

    PubMed

    Matheson, M P; Stansfeld, S A; Haines, M M

    2003-01-01

    This article provides a review of three of the most important field studies to have examined the non-auditory effects of chronic aircraft noise exposure on children's cognition and health. The design of each of the studies is outlined, relevant methodological issues are highlighted and the findings from the studies are reported. Effects are reported on annoyance and quality of life, motivation and helplessness, stress responses as indexed by neuroendocrine tests and blood pressure measurements. In terms of cognitive performance, effects are reported on reading, attention and long-term and working memory. PMID:12804210

  5. Phase noise from aircraft motion: Compensation and effect on synthetic aperture radar images

    NASA Technical Reports Server (NTRS)

    Gabriel, Andrew K.; Goldstein, Richard M.

    1986-01-01

    Image degradation of airborne SAR imagery caused by phase errors introduced in the received signal by aircraft motion is discussed. Mechanical motion has a small bandwidth and does not affect the range signal, where the total echo time is typically 60 microsec. However, since the aperture length can be several seconds, the synthesized azimuth signal can have significant errors of which phase noise is the most important. An inertial navigation system can be used to compensate for these errors when processing the images. Calculations to evaluate how much improvement results from compensation are outlined.

  6. Analytical study of interior noise control by fuselage design techniques on high-speed, propeller-driven aircraft

    NASA Technical Reports Server (NTRS)

    Revell, J. D.; Balena, F. J.; Koval, L. R.

    1980-01-01

    The acoustical treatment mass penalties required to achieve an interior noise level of 80 dBA for high speed, fuel efficient propfan-powered aircraft are determined. The prediction method used is based on theory developed for the outer shell dynamics, and a modified approach for add-on noise control element performance. The present synthesis of these methods is supported by experimental data. Three different sized aircraft are studied, including a widebody, a narrowbody and a business sized aircraft. Noise control penalties are calculated for each aircraft for two kinds of noise control designs: add-on designs, where the outer wall structure cannot be changed, and advanced designs where the outer wall stiffness level and the materials usage can be altered. For the add-on designs, the mass penalties range from 1.7 to 2.4 percent of the takeoff gross weight (TOGW) of the various aircraft, similar to preliminary estimates. Results for advanced designs show significant reductions of the mass penalties. For the advanced aluminum designs the penalties are 1.5% of TOGW, and for an all composite aircraft the penalties range from 0.74 to 1.4% of TOGW.

  7. Optimizing an Actuator Array for the Control of Multi-Frequency Noise in Aircraft Interiors

    NASA Technical Reports Server (NTRS)

    Palumbo, D. L.; Padula, S. L.

    1997-01-01

    Techniques developed for selecting an optimized actuator array for interior noise reduction at a single frequency are extended to the multi-frequency case. Transfer functions for 64 actuators were obtained at 5 frequencies from ground testing the rear section of a fully trimmed DC-9 fuselage. A single loudspeaker facing the left side of the aircraft was the primary source. A combinatorial search procedure (tabu search) was employed to find optimum actuator subsets of from 2 to 16 actuators. Noise reduction predictions derived from the transfer functions were used as a basis for evaluating actuator subsets during optimization. Results indicate that it is necessary to constrain actuator forces during optimization. Unconstrained optimizations selected actuators which require unrealistically large forces. Two methods of constraint are evaluated. It is shown that a fast, but approximate, method yields results equivalent to an accurate, but computationally expensive, method.

  8. Autonomous Slat-Cove-Filler Device for Reduction of Aeroacoustic Noise Associated with Aircraft Systems

    NASA Technical Reports Server (NTRS)

    Turner, Travis L. (Inventor); Kidd, Reggie T. (Inventor); Lockard, David P (Inventor); Khorrami, Mehdi R. (Inventor); Streett, Craig L. (Inventor); Weber, Douglas Leo (Inventor)

    2016-01-01

    A slat cove filler is utilized to reduce airframe noise resulting from deployment of a leading edge slat of an aircraft wing. The slat cove filler is preferably made of a super elastic shape memory alloy, and the slat cove filler shifts between stowed and deployed shapes as the slat is deployed. The slat cove filler may be configured such that a separate powered actuator is not required to change the shape of the slat cove filler from its deployed shape to its stowed shape and vice-versa. The outer contour of the slat cove filler preferably follows a profile designed to maintain accelerating flow in the gap between the slat cove filler and wing leading edge to provide for noise reduction.

  9. The relationship between aircraft noise exposure and day-use visitor survey responses in backcountry areas of national parks.

    PubMed

    Rapoza, Amanda; Sudderth, Erika; Lewis, Kristin

    2015-10-01

    To evaluate the relationship between aircraft noise exposure and the quality of national park visitor experience, more than 4600 visitor surveys were collected at seven backcountry sites in four U.S. national parks simultaneously with calibrated sound level measurements. Multilevel logistic regression was used to estimate parameters describing the relationship among visitor responses, aircraft noise dose metrics, and mediator variables. For the regression models, survey responses were converted to three dichotomous variables, representing visitors who did or did not experience slightly or more, moderately or more, or very or more annoyance or interference with natural quiet from aircraft noise. Models with the most predictive power included noise dose metrics of sound exposure level, percent time aircraft were audible, and percentage energy due to helicopters and fixed-wing propeller aircraft. These models also included mediator variables: visitor ratings of the "importance of calmness, peace and tranquility," visitor group composition (adults or both adults and children), first visit to the site, previously taken an air tour, and participation in bird-watching or interpretive talks. The results complement and extend previous research conducted in frontcountry areas and will inform evaluations of air tour noise effects on visitors to national parks and remote wilderness sites. PMID:26520292

  10. The relationship between aircraft noise exposure and day-use visitor survey responses in backcountry areas of national parks.

    PubMed

    Rapoza, Amanda; Sudderth, Erika; Lewis, Kristin

    2015-10-01

    To evaluate the relationship between aircraft noise exposure and the quality of national park visitor experience, more than 4600 visitor surveys were collected at seven backcountry sites in four U.S. national parks simultaneously with calibrated sound level measurements. Multilevel logistic regression was used to estimate parameters describing the relationship among visitor responses, aircraft noise dose metrics, and mediator variables. For the regression models, survey responses were converted to three dichotomous variables, representing visitors who did or did not experience slightly or more, moderately or more, or very or more annoyance or interference with natural quiet from aircraft noise. Models with the most predictive power included noise dose metrics of sound exposure level, percent time aircraft were audible, and percentage energy due to helicopters and fixed-wing propeller aircraft. These models also included mediator variables: visitor ratings of the "importance of calmness, peace and tranquility," visitor group composition (adults or both adults and children), first visit to the site, previously taken an air tour, and participation in bird-watching or interpretive talks. The results complement and extend previous research conducted in frontcountry areas and will inform evaluations of air tour noise effects on visitors to national parks and remote wilderness sites.

  11. Applications of Response Surface-Based Methods to Noise Analysis in the Conceptual Design of Revolutionary Aircraft

    NASA Technical Reports Server (NTRS)

    Hill, Geoffrey A.; Olson, Erik D.

    2004-01-01

    Due to the growing problem of noise in today's air transportation system, there have arisen needs to incorporate noise considerations in the conceptual design of revolutionary aircraft. Through the use of response surfaces, complex noise models may be converted into polynomial equations for rapid and simplified evaluation. This conversion allows many of the commonly used response surface-based trade space exploration methods to be applied to noise analysis. This methodology is demonstrated using a noise model of a notional 300 passenger Blended-Wing-Body (BWB) transport. Response surfaces are created relating source noise levels of the BWB vehicle to its corresponding FAR-36 certification noise levels and the resulting trade space is explored. Methods demonstrated include: single point analysis, parametric study, an optimization technique for inverse analysis, sensitivity studies, and probabilistic analysis. Extended applications of response surface-based methods in noise analysis are also discussed.

  12. A theoretical investigation of noise reduction through the cylindrical fuselage of a twin-engine, propeller-driven aircraft

    NASA Technical Reports Server (NTRS)

    Bhat, R. B.; Mixson, J. S.

    1978-01-01

    Interior noise in the fuselage of a twin-engine, propeller-driven aircraft with two propellers rotating in opposite directions is studied analytically. The fuselage was modeled as a stiffened cylindrical shell with simply supported ends, and the effects of stringers and frames were averaged over the shell surface. An approximate mathematical model of the propeller noise excitation was formulated which includes some of the propeller noise characteristics such as sweeping pressure waves around the sidewalls due to propeller rotation and the localized nature of the excitation with the highest levels near the propeller plane. Results are presented in the form of noise reduction, which is the difference between the levels of external and interior noise. The influence of propeller noise characteristics on the noise reduction was studied. The results indicate that the sweep velocity of the excitation around the fuselage sidewalls is critical to noise reduction.

  13. Annoyance response to simulated advanced turboprop aircraft interior noise containing tonal beats

    NASA Technical Reports Server (NTRS)

    Leatherwood, Jack D.

    1987-01-01

    A study is done to investigate the effects on subjective annoyance of simulated advanced turboprop (ATP) interior noise environments containing tonal beats. The simulated environments consisted of low-frequency tones superimposed on a turbulent-boundary-layer noise spectrum. The variables used in the study included propeller tone frequency (100 to 250 Hz), propeller tone levels (84 to 105 dB), and tonal beat frequency (0 to 1.0 Hz). Results indicated that propeller tones within the simulated ATP environment resulted in increased annoyance response that was fully predictable in terms of the increase in overall sound pressure level due to the tones. Implications for ATP aircraft include the following: (1) the interior noise environment with propeller tones is more annoying than an environment without tones if the tone is present at a level sufficient to increase the overall sound pressure level; (2) the increased annoyance due to the fundamental propeller tone frequency without harmonics is predictable from the overall sound pressure level; and (3) no additional noise penalty due to the perception of single discrete-frequency tones and/or beats was observed.

  14. Macroscopic study of time unsteady noise of an aircraft engine during static tests

    NASA Technical Reports Server (NTRS)

    Clark, B. J.; Heidmann, M. F.; Kreim, W. J.

    1976-01-01

    Static tests of aircraft engines can exhibit greater than 10 dB random unsteadiness of tone noise levels because flow disturbances that prevail near test site facilities are ingested. Presumably such changes are related to installation and test site features. This paper presents some properties of unsteady noise observed at a NASA-Lewis facility during tests of a Lycoming YF-102 turbofan engine. Time and spatial variations in tone noise obtained from closely spaced far-field and inlet duct microphones are displayed. Long (0.5 sec) to extremely short (0.001 sec) intermittent tone bursts are observed. Unsteadiness of the tone, its harmonics, and the broadband noise show little similarity. In the far-field, identity of tone bursts is retained over a directivity angle of less than 10 deg. In the inlet duct, tone bursts appear to propagate axially but exhibit little circumferential similarity. They show only slight relationship to tone bursts observed in the far field. The results imply an intermittent generation of random mixtures of propagating duct modes.

  15. A first-principles model for estimating the prevalence of annoyance with aircraft noise exposure.

    PubMed

    Fidell, Sanford; Mestre, Vincent; Schomer, Paul; Berry, Bernard; Gjestland, Truls; Vallet, Michel; Reid, Timothy

    2011-08-01

    Numerous relationships between noise exposure and transportation noise-induced annoyance have been inferred by curve-fitting methods. The present paper develops a different approach. It derives a systematic relationship by applying an a priori, first-principles model to the findings of forty three studies of the annoyance of aviation noise. The rate of change of annoyance with day-night average sound level (DNL) due to aircraft noise exposure was found to closely resemble the rate of change of loudness with sound level. The agreement of model predictions with the findings of recent curve-fitting exercises (cf. Miedma and Vos, 1998) is noteworthy, considering that other analyses have relied on different analytic methods and disparate data sets. Even though annoyance prevalence rates within individual communities consistently grow in proportion to duration-adjusted loudness, variability in annoyance prevalence rates across communities remains great. The present analyses demonstrate that 1) community-specific differences in annoyance prevalence rates can be plausibly attributed to the joint effect of acoustic and non-DNL related factors and (2) a simple model can account for the aggregate influences of non-DNL related factors on annoyance prevalence rates in different communities in terms of a single parameter expressed in DNL units-a "community tolerance level."

  16. Active control of aircraft engine inlet noise using compact sound sources and distributed error sensors

    NASA Technical Reports Server (NTRS)

    Burdisso, Ricardo (Inventor); Fuller, Chris R. (Inventor); O'Brien, Walter F. (Inventor); Thomas, Russell H. (Inventor); Dungan, Mary E. (Inventor)

    1996-01-01

    An active noise control system using a compact sound source is effective to reduce aircraft engine duct noise. The fan noise from a turbofan engine is controlled using an adaptive filtered-x LMS algorithm. Single multi channel control systems are used to control the fan blade passage frequency (BPF) tone and the BPF tone and the first harmonic of the BPF tone for a plane wave excitation. A multi channel control system is used to control any spinning mode. The multi channel control system to control both fan tones and a high pressure compressor BPF tone simultaneously. In order to make active control of turbofan inlet noise a viable technology, a compact sound source is employed to generate the control field. This control field sound source consists of an array of identical thin, cylindrically curved panels with an inner radius of curvature corresponding to that of the engine inlet. These panels are flush mounted inside the inlet duct and sealed on all edges to prevent leakage around the panel and to minimize the aerodynamic losses created by the addition of the panels. Each panel is driven by one or more piezoelectric force transducers mounted on the surface of the panel. The response of the panel to excitation is maximized when it is driven at its resonance; therefore, the panel is designed such that its fundamental frequency is near the tone to be canceled, typically 2000-4000 Hz.

  17. Active control of aircraft engine inlet noise using compact sound sources and distributed error sensors

    NASA Technical Reports Server (NTRS)

    Burdisso, Ricardo (Inventor); Fuller, Chris R. (Inventor); O'Brien, Walter F. (Inventor); Thomas, Russell H. (Inventor); Dungan, Mary E. (Inventor)

    1994-01-01

    An active noise control system using a compact sound source is effective to reduce aircraft engine duct noise. The fan noise from a turbofan engine is controlled using an adaptive filtered-x LMS algorithm. Single multi channel control systems are used to control the fan blade passage frequency (BPF) tone and the BPF tone and the first harmonic of the BPF tone for a plane wave excitation. A multi channel control system is used to control any spinning mode. The multi channel control system to control both fan tones and a high pressure compressor BPF tone simultaneously. In order to make active control of turbofan inlet noise a viable technology, a compact sound source is employed to generate the control field. This control field sound source consists of an array of identical thin, cylindrically curved panels with an inner radius of curvature corresponding to that of the engine inlet. These panels are flush mounted inside the inlet duct and sealed on all edges to prevent leakage around the panel and to minimize the aerodynamic losses created by the addition of the panels. Each panel is driven by one or more piezoelectric force transducers mounted on the surface of the panel. The response of the panel to excitation is maximized when it is driven at its resonance; therefore, the panel is designed such that its fundamental frequency is near the tone to be canceled, typically 2000-4000 Hz.

  18. Effects of simulated jet aircraft noise on heart rate and behavior of desert ungulates

    SciTech Connect

    Weisenberger, M.E.; Krausman, P.R.; Wallace, M.C.

    1996-01-01

    Many landscapes underlying military designated air spaces have been established as national parks, wildlife refuges, or wilderness areas. The juxtaposition of public, wilderness, and military uses has led to questions of compatibility between aircraft and wildlife. We evaluated the effects of simulated low-altitude jet aircraft noise on the behavior and heart rate of captive desert mule deer (n = 6) and mountain sheep (n - 5). We measured heart rate and behavior related to the number of simulated overflights (n = 112 overflights/season) during 3 seasons. The heart rates of ungulates increased related to dB levels during simulated overflights (P {le} 0.05), but they returned to pre-disturbance levels in 60-180 seconds. Animal behavior also changed during overflights but returned to pre-disturbance condition in {le}252 seconds (P {le} 0.005). All animal responses decreased with increased exposure suggesting that they habituated to simulated sound levels of low-altitude aircraft. 43 refs., 5 tabs.

  19. An Epidemiological Prospective Study of Children’s Health and Annoyance Reactions to Aircraft Noise Exposure in South Africa

    PubMed Central

    Seabi, Joseph

    2013-01-01

    The purpose of this study was to investigate health and annoyance reactions to change in chronic exposure to aircraft noise on a sample of South African children. It was the intention of this study to examine if effects of noise on health and annoyance can be demonstrated. If so, whether such effects persist over time, or whether such effects are reversible after the cessation of exposure to noise. A cohort of 732 children with a mean age of 11.1 (range = 8–14) participated at baseline measurements in Wave 1 (2009), and 649 (mean age = 12.3; range = 9–15) and 174 (mean age = 13.3; range = 10–16) children were reassessed in Wave 2 (2010) and Wave 3 (2011) after the relocation of the airport, respectively. The findings revealed that the children who were exposed to chronic aircraft noise continued to experience significantly higher annoyance than their counterparts in all the waves at school, and only in Wave 1 and Wave 2 at home. Aircraft noise exposure did not have adverse effects on the children’s self-reported health outcomes. Taken together, these findings suggest that chronic exposure to aircraft noise may have a lasting impact on children’s annoyance, but not on their subjective health rating. This is one of the first longitudinal studies of this nature in the African continent to make use of an opportunity resulting from the relocation of airport. PMID:23823713

  20. An epidemiological prospective study of children's health and annoyance reactions to aircraft noise exposure in South Africa.

    PubMed

    Seabi, Joseph

    2013-07-03

    The purpose of this study was to investigate health and annoyance reactions to change in chronic exposure to aircraft noise on a sample of South African children. It was the intention of this study to examine if effects of noise on health and annoyance can be demonstrated. If so, whether such effects persist over time, or whether such effects are reversible after the cessation of exposure to noise. A cohort of 732 children with a mean age of 11.1 (range = 8-14) participated at baseline measurements in Wave 1 (2009), and 649 (mean age = 12.3; range = 9-15) and 174 (mean age = 13.3; range = 10-16) children were reassessed in Wave 2 (2010) and Wave 3 (2011) after the relocation of the airport, respectively. The findings revealed that the children who were exposed to chronic aircraft noise continued to experience significantly higher annoyance than their counterparts in all the waves at school, and only in Wave 1 and Wave 2 at home. Aircraft noise exposure did not have adverse effects on the children's self-reported health outcomes. Taken together, these findings suggest that chronic exposure to aircraft noise may have a lasting impact on children's annoyance, but not on their subjective health rating. This is one of the first longitudinal studies of this nature in the African continent to make use of an opportunity resulting from the relocation of airport.

  1. Comparison of aircraft noise measured in flight test and in the NASA Ames 40- by 80-foot wind tunnel.

    NASA Technical Reports Server (NTRS)

    Atencio, A., Jr.; Soderman, P. T.

    1973-01-01

    A method to determine free-field aircraft noise spectra from wind-tunnel measurements has been developed. The crux of the method is the correction for reverberations. Calibrated loud speakers are used to simulate model sound sources in the wind tunnel. Corrections based on the difference between the direct and reverberant field levels are applied to wind-tunnel data for a wide range of aircraft noise sources. To establish the validity of the correction method, two research aircraft - one propeller-driven (YOV-10A) and one turbojet-powered (XV-5B) - were flown in free field and then tested in the wind tunnel. Corrected noise spectra from the two environments agree closely.

  2. Comparison of the Performance of Noise Metrics as Predictions of the Annoyance of Stage 2 and Stage 3 Aircraft Overflights

    NASA Technical Reports Server (NTRS)

    Pearsons, Karl S.; Howe, Richard R.; Sneddon, Matthew D.; Fidell, Sanford

    1996-01-01

    Thirty audiometrically screened test participants judged the relative annoyance of two comparison (variable level) and thirty-four standard (fixed level) signals in an adaptive paired comparison psychoacoustic study. The signal ensemble included both FAR Part 36 Stage 2 and 3 aircraft overflights, as well as synthesized aircraft noise signatures and other non-aircraft signals. All test signals were presented for judgment as heard indoors, in the presence of continuous background noise, under free-field listening conditions in an anechoic chamber. Analyses of the performance of 30 noise metrics as predictors of these annoyance judgments confirmed that the more complex metrics were generally more accurate and precise predictors than the simpler methods. EPNL was somewhat less accurate and precise as a predictor of the annoyance judgments than a duration-adjusted variant of Zwicker's Loudness Level.

  3. Is there an association between aircraft noise exposure and the incidence of hypertension? A meta-analysis of 16784 participants

    PubMed Central

    Huang, Di; Song, XuPing; Cui, Qi; Tian, Jinhui; Wang, Quan; Yang, Kehu

    2015-01-01

    To determine if aircraft noise exposure causes an increased incidence of hypertension among residents near airports. We conducted a meta-analysis of observational studies to evaluate the association between aircraft noise exposure and the incidence of hypertension. PubMed, Embase, Web of Science, the Cochrane Library, and the Chinese Biomedical Literature Database were searched without any restrictions. Odds ratios (ORs) with 95% confidence intervals (CIs) were extracted. The pooled ORs were calculated using both the fixed effects model and random effects model. All analyses were performed using STATA version 12.0 software (Stata Corporation, College Station, TX, USA). We examined five studies, comprising a total of 16,784 residents. The overall OR for hypertension in residents with aircraft noise exposure was 1.63 (95% CI, 1.14-2.33), and one of our included studies showed that there was no evidence that aircraft noise is a risk factor for hypertension in women. According to our subgroup analysis, the summary OR for the incidence was 1.31 (95% CI, 0.85-2.02) with I2 of 80.7% in women and 1.36 (95% CI, 1.15-1.60) with moderate heterogeneity in men. The pooled OR for the incidence of hypertension in residents aged over 55 years and under 55 years was 1.66 (95% CI, 1.21-2.27) with no heterogeneity and 1.78 (95% CI, 1.33-2.39) with I2 of 29.4%, respectively. The present meta-analysis suggests that aircraft noise could contribute to the prevalence of hypertension, but the evidence for a relationship between aircraft noise exposure and hypertension is still inconclusive because of limitations in study populations, exposure characterization, and adjustment for important confounders. PMID:25774612

  4. Is there an association between aircraft noise exposure and the incidence of hypertension? A meta-analysis of 16784 participants.

    PubMed

    Huang, Di; Song, XuPing; Cui, Qi; Tian, Jinhui; Wang, Quan; Yang, Kehu

    2015-01-01

    To determine if aircraft noise exposure causes an increased incidence of hypertension among residents near airports. We conducted a meta-analysis of observational studies to evaluate the association between aircraft noise exposure and the incidence of hypertension. PubMed, Embase, Web of Science, the Cochrane Library, and the Chinese Biomedical Literature Database were searched without any restrictions. Odds ratios (ORs) with 95% confidence intervals (CIs) were extracted. The pooled ORs were calculated using both the fixed effects model and random effects model. All analyses were performed using STATA version 12.0 software (Stata Corporation, College Station, TX, USA). We examined five studies, comprising a total of 16,784 residents. The overall OR for hypertension in residents with aircraft noise exposure was 1.63 (95% CI, 1.14-2.33), and one of our included studies showed that there was no evidence that aircraft noise is a risk factor for hypertension in women. According to our subgroup analysis, the summary OR for the incidence was 1.31 (95% CI, 0.85-2.02) with I2 of 80.7% in women and 1.36 (95% CI, 1.15-1.60) with moderate heterogeneity in men. The pooled OR for the incidence of hypertension in residents aged over 55 years and under 55 years was 1.66 (95% CI, 1.21-2.27) with no heterogeneity and 1.78 (95% CI, 1.33-2.39) with I2 of 29.4%, respectively. The present meta-analysis suggests that aircraft noise could contribute to the prevalence of hypertension, but the evidence for a relationship between aircraft noise exposure and hypertension is still inconclusive because of limitations in study populations, exposure characterization, and adjustment for important confounders.

  5. Program on ground test of modified quiet, clean, JT3D and JT8D turbofan engines in their respective nacelles. [modification of Boeing 707, 727, and 737 aircraft for aircraft noise reduction

    NASA Technical Reports Server (NTRS)

    1973-01-01

    A program to reduce the community noise levels of commercial jet aircraft is summarized. The program objective is the development of three acoustically treated nacelle configurations for the 707, 727, and 737 series aircraft to provide maximum noise reduction with minimum performance loss, modification requirements, and economic impact. The preliminary design, model testing, data analyses, and economic studies of proposed nacelle configurations are discussed.

  6. Annoyance with aircraft noise in local recreational areas, contingent on changes in exposure and other context variables

    NASA Astrophysics Data System (ADS)

    Krog, Norun Hjertager; Engdahl, Bo

    2004-07-01

    Few socioacoustic studies have examined the effect of noise on outdoor recreationists. The areas studied have been mountain and wilderness areas that people typically travel for a distance to visit. In this article we examine the reactions to aircraft noise in local recreational areas experiencing either decreased (1930 survey respondents), or increased noise exposure (1001 survey respondents). Field studies were conducted before and after the relocation the main airport of Norway in 1998 in one area near each airport. The relationship between individual noise exposure (LAeq for the aircraft events, percentage of time aircraft were audible, and LAsel) for the aircraft events. The analyses included the ``situation'' in which data were collected (before or after the relocation), and variables describing the recreational context. A strong effect of the ``situation'' was found in both cases, but the size of the effect was influenced by the choice of exposure variable in one of the study areas. Other context variables were also influencing annoyance. The effect of the situation (before/after a change in exposure) on the dose-response relationship may be influenced by the initial noise levels, the amount of change, and the time elapsed since the change at the time of the second survey. Further research should investigate the significance of these variables.

  7. Prediction of jet mixing noise in high-speed flight

    NASA Astrophysics Data System (ADS)

    Michel, Ulf; Boettcher, Jan

    A method for the prediction of single stream jet mixing noise in flight is presented that can be used for flight Mach numbers up to 0.9. The method is similar to the empirical SAE method. However, two important results of the theoretical scaling law of Michalke and Michel are incorporated: (1) the total noise of heated jets is separated into quadrupole and dipole noise components because they are influenced differently by the flight Mach number and, (2) the influence of the stretching of the jet plume in flight on the overall sound pressure and the frequency of the emitted sound is considered. A relative velocity exponent law is used to correlate experimental flyover data. The correlation is based on all available data for combat aircraft with fuselage mounted engines and flight Mach numbers between 0.5 and 0.9. The difference between predictions with this new method and measured overall flyover levels is generally less than two decibels. The spectra are also well predicted.

  8. Prediction of jet mixing noise for high subsonic flight speeds

    NASA Astrophysics Data System (ADS)

    Michel, Ulf; Boettcher, Jan

    1992-04-01

    A method for the prediction of single stream jet mixing noise in flight is presented that can be used for flight Mach numbers up to 0.9. The method is similar to the empirical SAE method. However, two important results of the theoretical scaling law of Michalke and Michel are incorporated: (1) the total noise of heated jets is separated into quadrupole and dipole noise components because they are influenced differently by the flight Mach number and, (2) the influence of the stretching of the jet plume in flight on the overall sound pressure and the frequency of the emitted sound is considered. A relative velocity exponent law is used to correlate experimental flyover data. The correlation is based on all available data for combat aircraft with fuselage mounted engines and flight Mach numbers between 0.5 and 0.9. The difference between predictions with this new method and measured overall flyover levels is generally less than two decibels. The spectra are also well predicted.

  9. Methods for designing treatments to reduce interior noise of predominant sources and paths in a single engine light aircraft

    NASA Technical Reports Server (NTRS)

    Hayden, Richard E.; Remington, Paul J.; Theobald, Mark A.; Wilby, John F.

    1985-01-01

    The sources and paths by which noise enters the cabin of a small single engine aircraft were determined through a combination of flight and laboratory tests. The primary sources of noise were found to be airborne noise from the propeller and engine casing, airborne noise from the engine exhaust, structureborne noise from the engine/propeller combination and noise associated with air flow over the fuselage. For the propeller, the primary airborne paths were through the firewall, windshield and roof. For the engine, the most important airborne path was through the firewall. Exhaust noise was found to enter the cabin primarily through the panels in the vicinity of the exhaust outlet although exhaust noise entering the cabin through the firewall is a distinct possibility. A number of noise control techniques were tried, including firewall stiffening to reduce engine and propeller airborne noise, to stage isolators and engine mounting spider stiffening to reduce structure-borne noise, and wheel well covers to reduce air flow noise.

  10. Long-Term Aircraft Noise Exposure and Body Mass Index, Waist Circumference, and Type 2 Diabetes: A Prospective Study

    PubMed Central

    Hilding, Agneta; Pyko, Andrei; Bluhm, Gösta; Pershagen, Göran; Östenson, Claes-Göran

    2014-01-01

    Background: Long-term aircraft noise exposure may increase the risk of cardiovascular disease, but no study has investigated chronic effects on the metabolic system. Objectives: The aim of this study was to investigate effects of long-term aircraft noise exposure on body mass index (BMI), waist circumference, and type 2 diabetes. Furthermore, we explored the modifying effects of sleep disturbance. Methods: This prospective cohort study of residents of Stockholm County, Sweden, followed 5,156 participants with normal baseline oral glucose tolerance tests (OGTT) for up to 10 years. Exposure to aircraft noise was estimated based on residential history. Information on outcomes and confounders was obtained from baseline and follow-up surveys and examinations, and participants who developed prediabetes or type 2 diabetes were identified by self-reported physician diagnosis or OGTT at follow-up. Adjusted associations were assessed by linear, logistic, and random-effects models. Results: The mean (± SD) increases in BMI and waist circumference during follow-up were 1.09 ± 1.97 kg/m2 and 4.39 ± 6.39 cm, respectively. The cumulative incidence of prediabetes and type 2 diabetes was 8% and 3%, respectively. Based on an ordinal noise variable, a 5-dB(A) increase in aircraft noise was associated with a greater increase in waist circumference of 1.51 cm (95% CI: 1.13, 1.89), fully adjusted. This association appeared particularly strong among those who did not change their home address during the study period, which may be a result of lower exposure misclassification. However, no clear associations were found for BMI or type 2 diabetes. Furthermore, sleep disturbances did not appear to modify the associations with aircraft noise. Conclusions: Long-term aircraft noise exposure may be linked to metabolic outcomes, in particular increased waist circumference. Citation: Eriksson C, Hilding A, Pyko A, Bluhm G, Pershagen G, Östenson CG. 2014. Long-term aircraft noise exposure and

  11. Advanced Methods for Aircraft Engine Thrust and Noise Benefits: Nozzle-Inlet Flow Analysis

    NASA Technical Reports Server (NTRS)

    Gilinsky, Mikhail; Morgan, Morris H.; Hardin, Jay C.; Mosiane, Lotlamoreng; Kaushal, Patel; Blankson, Isaiah M.

    2000-01-01

    In this project, we continue to develop the previous joint research between the Fluid Mechanics and Acoustics Laboratory (FM&AL) at Hampton University (HU) and the Jet Noise Team (JNT) at the NASA Langley Research Center (NASA LaRC). The FM&AL was established at Hampton University in June of 1996 and has conducted research under two NASA grants: NAG-1-1835 (1996-99), and NAG-1-1936 (1997-00). In addition, the FM&AL has jointly conducted research with the Central AeroHydrodynamics Institute (TsAGI, Moscow) in Russia under a Civilian Research and Development Foundation (CRDF) grant #RE2-136 (1996-99). The goals of the FM&AL programs are twofold: (1) to improve the working efficiency of the FM&AUs team in generating new innovative ideas and in conducting research in the field of fluid dynamics and acoustics, basically for improvement of supersonic and subsonic aircraft engines, and (2) to attract promising minority students to this research and training and, in cooperation with other HU departments, to teach them basic knowledge in Aerodynamics, Gas Dynamics, and Theoretical and Experimental Methods in Aeroacoustics and Computational Fluid Dynamics (CFD). The research at the HU FM&AL supports reduction schemes associated with the emission of engine pollutants for commercial aircraft and concepts for reduction of observables for military aircraft. These research endeavors relate to the goals of the NASA Strategic Enterprise in Aeronautics concerning the development of environmentally acceptable aircraft. It is in this precise area, where the US aircraft industry, academia, and Government are in great need of trained professionals and which is a high priority goal of the Minority University Research and Education (MUREP) Program, that the HU FM&AL can make its most important contribution. The main achievements for the reporting period in the development of concepts for noise reduction and improvement in efficiency for jet exhaust nozzles and inlets for aircraft engines

  12. Hybrid Active-Passive Systems for Control of Aircraft Interior Noise

    NASA Technical Reports Server (NTRS)

    Fuller, Chris R.; Palumbo, Dan (Technical Monitor)

    2002-01-01

    It was proposed to continue with development and application in the two active-passive areas of Active Tuned Vibration Absorbers (ATVA) and smart foam applied to the reduction of interior noise in aircraft. In general the work was focused on making both techniques more efficient, practical and robust thus increasing their application potential. The work was also concerned with demonstrating the potential of these two technologies under realistic implementations as well as understanding the fundamental physics of the systems. The proposed work consisted of a three-year program and was tightly coordinated with related work being carried out in the Structural Acoustics Branch at NASA LaRC. The work was supervised and coordinated through all phases by Prof Chris Fuller of Va Tech.

  13. Aircraft gas-turbine engines: Noise reduction and vibration control. (Latest citations from Information Services in Mechanical Engineering data base). Published Search

    SciTech Connect

    Not Available

    1992-06-01

    The bibliography contains citations concerning the design and analysis of aircraft gas turbine engines with respect to noise and vibration control. Included are studies regarding the measurement and reduction of noise at its source, within the aircraft, and on the ground. Inlet, nozzle and core aerodynamic studies are cited. Propfan, turbofan, turboprop engines, and applications in short take-off and landing (STOL) aircraft are included. (Contains a minimum of 202 citations and includes a subject term index and title list.)

  14. Active control of counter-rotating open rotor interior noise in a Dornier 728 experimental aircraft

    NASA Astrophysics Data System (ADS)

    Haase, Thomas; Unruh, Oliver; Algermissen, Stephan; Pohl, Martin

    2016-08-01

    The fuel consumption of future civil aircraft needs to be reduced because of the CO2 restrictions declared by the European Union. A consequent lightweight design and a new engine concept called counter-rotating open rotor are seen as key technologies in the attempt to reach this ambitious goals. Bearing in mind that counter-rotating open rotor engines emit very high sound pressures at low frequencies and that lightweight structures have a poor transmission loss in the lower frequency range, these key technologies raise new questions in regard to acoustic passenger comfort. One of the promising solutions for the reduction of sound pressure levels inside the aircraft cabin are active sound and vibration systems. So far, active concepts have rarely been investigated for a counter-rotating open rotor pressure excitation on complex airframe structures. Hence, the state of the art is augmented by the preliminary study presented in this paper. The study shows how an active vibration control system can influence the sound transmission of counter-rotating open rotor noise through a complex airframe structure into the cabin. Furthermore, open questions on the way towards the realisation of an active control system are addressed. In this phase, an active feedforward control system is investigated in a fully equipped Dornier 728 experimental prototype aircraft. In particular, the sound transmission through the airframe, the coupling of classical actuators (inertial and piezoelectric patch actuators) into the structure and the performance of the active vibration control system with different error sensors are investigated. It can be shown that the active control system achieves a reduction up to 5 dB at several counter-rotating open rotor frequencies but also that a better performance could be achieved through further optimisations.

  15. Aircraft noise: accounting for changes in air traffic with time of day.

    PubMed

    Schäffer, Beat; Bütikofer, Rudolf; Plüss, Stefan; Thomann, Georg

    2011-01-01

    Aircraft noise contours are estimated using model calculations and, due to their impact on land use planning, they need to be highly accurate. During night time, not only the number and dominant types of aircraft may differ from daytime but also the flight paths flown may differ. To determine to which detail these variations in flight paths need to be considered, calculations were performed exemplarily for two airports using all available radar data over 1 year, taking into account their changes over the day. The results of this approach were compared with results of a simpler approach which does not consider such changes. While both calculations yielded similar results for the day and close to the airport, differences increased with distance as well as with the period of day (day

  16. Response measurements for two building structures excited by noise from a large horizontal axis wind turbine generator

    NASA Technical Reports Server (NTRS)

    Hubbard, H. H.; Shepherd, K. P.

    1984-01-01

    Window and wall acceleration measurements and interior noise measurements ere made for two different building structures during excitation by noise from the WTS-4 horizontal axis wind turbine generator operating in a normal power generation mode. With turbine noise input pulses resulted in acceleration pulses for the wall and window elements of the two tests buildings. Response spectra suggest that natural vibration modes of the structures are excited. Responses of a house trailer were substantially greater than those for a building of sturdier construction. Peak acceleration values correlate well with similar data for houses excited by flyover noise from commercial and military airplanes and helicopters, and sonic booms from supersonic aircraft. Interior noise spectra have peaks at frequencies corresponding to structural vibration modes and room standing waves; and the levels for particular frequencies and locations can be higher than the outside levels.

  17. The impact of aircraft noise exposure on South African children's reading comprehension: the moderating effect of home language.

    PubMed

    Seabi, Joseph; Cockcroft, Kate; Goldschagg, Paul; Greyling, Mike

    2012-01-01

    Given the limited studies conducted within the African continent, the purpose of this study was to investigate the impact of chronic aircraft noise exposure and the moderating effect of home language on the learners' reading comprehension. The sample comprised 437 (52%) senior primary learners exposed to high levels of aircraft noise (Experimental group) and 337 (48%) learners residing in a quieter area (Control group). Of these, 151 learners in the Experimental group spoke English as a first language (EFL) and 162 spoke English as a second language (ESL). In the Control group, the numbers were similarly divided (EFL n = 191; ESL n = 156). A univariate General Linear Model was used to investigate the effects of aircraft noise exposure and language on reading comprehension, while observing for the possible impact of intellectual ability, gender, and socioeconomic status on the results. A significant difference was observed between ESL and EFL learners in favor of the latter (F 1,419 = 21.95, P =.000). In addition a substantial and significant interaction effect was found between the experimental and control groups for the two language groups. For the EFL speakers there was a strong reduction in reading comprehension in the aircraft noise group. By contrast this difference was not significant for the ESL speakers. Implications of the findings and suggestions for further research are made in the article.

  18. The impact of aircraft noise exposure on South African children's reading comprehension: the moderating effect of home language.

    PubMed

    Seabi, Joseph; Cockcroft, Kate; Goldschagg, Paul; Greyling, Mike

    2012-01-01

    Given the limited studies conducted within the African continent, the purpose of this study was to investigate the impact of chronic aircraft noise exposure and the moderating effect of home language on the learners' reading comprehension. The sample comprised 437 (52%) senior primary learners exposed to high levels of aircraft noise (Experimental group) and 337 (48%) learners residing in a quieter area (Control group). Of these, 151 learners in the Experimental group spoke English as a first language (EFL) and 162 spoke English as a second language (ESL). In the Control group, the numbers were similarly divided (EFL n = 191; ESL n = 156). A univariate General Linear Model was used to investigate the effects of aircraft noise exposure and language on reading comprehension, while observing for the possible impact of intellectual ability, gender, and socioeconomic status on the results. A significant difference was observed between ESL and EFL learners in favor of the latter (F 1,419 = 21.95, P =.000). In addition a substantial and significant interaction effect was found between the experimental and control groups for the two language groups. For the EFL speakers there was a strong reduction in reading comprehension in the aircraft noise group. By contrast this difference was not significant for the ESL speakers. Implications of the findings and suggestions for further research are made in the article. PMID:23117540

  19. Development of an annoyance model based upon elementary auditory sensations for steady-state aircraft interior noise containing tonal components

    NASA Technical Reports Server (NTRS)

    Angerer, James R.; Mccurdy, David A.; Erickson, Richard A.

    1991-01-01

    The purpose of this investigation was to develop a noise annoyance model, superior to those already in use, for evaluating passenger response to sounds containing tonal components which may be heard within current and future commercial aircraft. The sound spectra investigated ranged from those being experienced by passengers on board turbofan powered aircraft now in service to those cabin noise spectra passengers may experience within advanced propeller-driven aircraft of the future. A total of 240 sounds were tested in this experiment. Sixty-six of these 240 sounds were steady state, while the other 174 varied temporally due to tonal beating. Here, the entire experiment is described, but the analysis is limited to those responses elicited by the 66 steady-state sounds.

  20. Noise measurements at Stockton Airport obtained during engineering evaluation of two-segment approaches in a 727-222 aircraft

    NASA Technical Reports Server (NTRS)

    Glass, R. E.; Tanner, C. S.

    1973-01-01

    The results of acoustic measurements made on a 727-222 aircraft during standard ILS and two-segment approaches are presented. The aircraft was equipped with a special purpose glide slope computer to provide the capability of making two-segment noise abatement approaches. For upper segment computations, the computer used barometric-corrected pressure altitude and the slant range to a DME transmitter which was colocated with the glide slope transmitter. The computer used the ILS glide slope deviation for lower segment computations. Additional measurements were made on 737 revenue aircraft using the Stockton Airport. The purpose of the acoustical portion of the test was to measure and identify the noise levels during the various approaches.

  1. Advanced Methods for Aircraft Engine Thrust and Noise Benefits: Nozzle-Inlet Flow Analysis

    NASA Technical Reports Server (NTRS)

    Morgan, Morris H., III; Gilinsky, Mikhail M.

    2004-01-01

    In this project on the first stage (2000-Ol), we continued to develop the previous joint research between the Fluid Mechanics and Acoustics Laboratory (FM&AL) at Hampton University (HU) and the Jet Noise Team (JNT) at the NASA Langley Research Center (NASA LaRC). At the second stage (2001-03), FM&AL team concentrated its efforts on solving of problems of interest to Glenn Research Center (NASA GRC), especially in the field of propulsion system enhancement. The NASA GRC R&D Directorate and LaRC Hyper-X Program specialists in a hypersonic technology jointly with the FM&AL staff conducted research on a wide region of problems in the propulsion field as well as in experimental testing and theoretical and numerical simulation analyses for advanced aircraft and rocket engines. The last year the Hampton University School of Engineering & Technology was awarded the NASA grant, for creation of the Aeropropulsion Center, and the FM&AL is a key team of the project fulfillment responsible for research in Aeropropulsion and Acoustics (Pillar I). This work is supported by joint research between the NASA GRC/ FM&AL and the Institute of Mechanics at Moscow State University (IMMSU) in Russia under a CRDF grant. The main areas of current scientific interest of the FM&AL include an investigation of the proposed and patented advanced methods for aircraft engine thrust and noise benefits. This is the main subject of our other projects, of which one is presented. The last year we concentrated our efforts to analyze three main problems: (a) new effective methods fuel injection into the flow stream in air-breathing engines; (b) new re-circulation method for mixing, heat transfer and combustion enhancement in propulsion systems and domestic industry application; (c) covexity flow The research is focused on a wide regime of problems in the propulsion field as well as in experimental testing and theoretical and numerical simulation analyses for advanced aircraft and rocket engines (see, for

  2. Special analysis of community annoyance with aircraft noise reported by residents in the vicinity of JFK Airport, 1972

    NASA Technical Reports Server (NTRS)

    Borsky, P. N.

    1975-01-01

    During the summer of 1972, about 1500 residents were interviewed twice in 11 communities near JFK airport. Detailed aircraft operations reports were also collected for this period, and an effort has been made to analyze recorded human response data in relation to a number of physical exposure parameters. A series of exposure indexes, based on an arithmetic integration of aircraft operations, were correlated with summated aircraft noise annoyance responses. None of these correlations were as good as the CNR index which assumes a logrithmetic integration of numbers of aircraft exposures and includes a day-night differential weighting of 10:1. There were substantial variations in average annoyance responses among communities with similar CNR exposures, substantiating previous findings that attitudinal and other personal variables also play an important role in determining annoyance differences.

  3. Effect of at-the-source noise reduction on performance and weights of a tilt-rotor aircraft

    NASA Technical Reports Server (NTRS)

    Gibs, J.; Stepniewski, W. Z.; Spencer, R.

    1975-01-01

    Reduction of far-field acoustic signature through modification of basic design parameters (tip speed, number of blades, disc loading and rotor blade area) was examined, using a tilt-rotor flight research aircraft as a baseline configuration. Of those design parameters, tip speed appeared as the most important. Next, preliminary design of two aircraft was performed, postulating the following reduction of noise level from that of the baseline machine, at 500 feet from the spot of OGE hover. In one aircraft, the PNL was lowered by 10 PNdB and in the other, OASPL decreased by 10 dB. The resulting weight and performance penalties were examined. Then, PNL and EPNL aspects of terminal operation were compared for the baseline and quieter aircraft.

  4. Aircraft

    DOEpatents

    Hibbs, B.D.; Lissaman, P.B.S.; Morgan, W.R.; Radkey, R.L.

    1998-09-22

    This disclosure provides a solar rechargeable aircraft that is inexpensive to produce, is steerable, and can remain airborne almost indefinitely. The preferred aircraft is a span-loaded flying wing, having no fuselage or rudder. Travelling at relatively slow speeds, and having a two-hundred foot wingspan that mounts photovoltaic cells on most all of the wing`s top surface, the aircraft uses only differential thrust of its eight propellers to turn. Each of five sections of the wing has one or more engines and photovoltaic arrays, and produces its own lift independent of the other sections, to avoid loading them. Five two-sided photovoltaic arrays, in all, are mounted on the wing, and receive photovoltaic energy both incident on top of the wing, and which is incident also from below, through a bottom, transparent surface. The aircraft is capable of a top speed of about ninety miles per hour, which enables the aircraft to attain and can continuously maintain altitudes of up to sixty-five thousand feet. Regenerative fuel cells in the wing store excess electricity for use at night, such that the aircraft can sustain its elevation indefinitely. A main spar of the wing doubles as a pressure vessel that houses hydrogen and oxygen gases for use in the regenerative fuel cell. The aircraft has a wide variety of applications, which include weather monitoring and atmospheric testing, communications, surveillance, and other applications as well. 31 figs.

  5. Aircraft

    DOEpatents

    Hibbs, Bart D.; Lissaman, Peter B. S.; Morgan, Walter R.; Radkey, Robert L.

    1998-01-01

    This disclosure provides a solar rechargeable aircraft that is inexpensive to produce, is steerable, and can remain airborne almost indefinitely. The preferred aircraft is a span-loaded flying wing, having no fuselage or rudder. Travelling at relatively slow speeds, and having a two-hundred foot wingspan that mounts photovoltaic cells on most all of the wing's top surface, the aircraft uses only differential thrust of its eight propellers to turn. Each of five sections of the wing has one or more engines and photovoltaic arrays, and produces its own lift independent of the other sections, to avoid loading them. Five two-sided photovoltaic arrays, in all, are mounted on the wing, and receive photovoltaic energy both incident on top of the wing, and which is incident also from below, through a bottom, transparent surface. The aircraft is capable of a top speed of about ninety miles per hour, which enables the aircraft to attain and can continuously maintain altitudes of up to sixty-five thousand feet. Regenerative fuel cells in the wing store excess electricity for use at night, such that the aircraft can sustain its elevation indefinitely. A main spar of the wing doubles as a pressure vessel that houses hydrogen and oxygen gasses for use in the regenerative fuel cell. The aircraft has a wide variety of applications, which include weather monitoring and atmospheric testing, communications, surveillance, and other applications as well.

  6. Shuttle Endeavour Flyover of Los Angeles Landmarks

    NASA Video Gallery

    Space shuttle Endeavour atop NASA's Shuttle Carrier Aircraft flew over many Los Angeles area landmarks on its final ferry flight Sept. 21, 2012, including the Coliseum, the Hollywood Sign, Griffith...

  7. Results of the noise measurement program on a standard and modified OH-6A helicopter

    NASA Technical Reports Server (NTRS)

    Henderson, H. R.; Peegg, R. J.; Hilton, D. A.

    1973-01-01

    A field noise measurement program has been conducted on a standard OH-6A helicopter and one that had been modified by reducing the rotor speed, altering rotor tip shape, and treating the engine exhaust and inlet to reduce the external noise levels. The modifications consisted of extensive aircraft design changes resulting in substantial noise reductions following state-of-art noise reduction techniques. The purpose of this study was to document the ground noise characteristics of each helicopter during flyover, hover, landing, and take-off operations. Based on an analysis of the measured results, the average of the overall on-track noise levels of the final modified helicopter was approximately 14 db lower than that for the standard helicopter. Narrow-band-spectra data of the hovering helicopter show a reduction in the overall noise due to the reductions achieved for the lifting main and antitorque tail rotor, engine exhaust, and gear box noise for the modified helicopter. The noise results of the test program are found to correlate generally with noise measurements made previously on this type of aircraft.

  8. Generation of desired signals from acoustic drivers. [for aircraft engine internal noise propagation experiment

    NASA Technical Reports Server (NTRS)

    Ramakrishnan, R.; Salikuddin, M.; Ahuja, K. K.

    1982-01-01

    A procedure to control transient signal generation is developed for the study of internal noise propagation from aircraft engines. A simple algorithm incorporating transform techniques is used to produce signals of any desired waveform from acoustic drivers. The accurate driver response is then calculated, and from this the limiting frequency characteristics are determined and the undesirable frequencies where the driver response is poor are eliminated from the analysis. A synthesized signal is then produced by convolving the inverse of the response function with the desired signal. Although the shape of the synthesized signal is in general quite awkward, the driver generates the desired signal when the distorted signal is fed into the driver. The results of operating the driver in two environments, in a free field and in a duct, are presented in order to show the impedance matching effect of the driver. In addition, results using a high frequency cut-off value as a parameter is presented in order to demonstrate the extent of the applicability of the synthesis procedure. It is concluded that the desired signals can be generated through the signal synthesis procedure.

  9. Low frequency cabin noise reduction based on the intrinsic structural tuning concept: The theory and the experimental results, phase 2. [jet aircraft noise

    NASA Technical Reports Server (NTRS)

    Sengupta, G.

    1978-01-01

    Low frequency cabin noise and sonically induced stresses in an aircraft fuselage may be reduced by intrinsic tuning of the various structural members such as the skin, stringers, and frames and then applying damping treatments on these members. The concept is also useful in identifying the key structural resonance mechanisms controlling the fuselage response to broadband random excitation and in developing suitable damping treatments for reducing the structural response in various frequency ranges. The mathematical proof of the concept and the results of some laboratory and field tests on a group of skin-stringer panels are described. In the so-called stiffness-controlled region, the noise transmission may actually be controlled by stiffener resonances, depending upon the relationship between the natural frequencies of the skin bay and the stiffeners. Therefore, cabin noise in the stiffness-controlled region may be effectively reduced by applying damping treatments on the stiffeners.

  10. Test-engine and inlet performance of an aircraft used for investigating flight effects on fan noise

    NASA Astrophysics Data System (ADS)

    Golub, R. A.; Preisser, J. S.

    1984-04-01

    As part of the NASA Flight Effects on Fan Noise Program, a Grumman OV-1B Mohawk aircraft was modified to carry a modified and instrumented Pratt & Whitney JT15D-1 turbofan engine. Onboard flight data, together with simultaneously measured farfield acoustic data, comprise a flight data base to which JT15D-1 static and wind-tunnel data are compared. The overall objective is to improve the ability to use ground-based facilities for the prediction of flight inlet radiated noise. This report describes the hardware and presents performance results for the research engine.

  11. Test-engine and inlet performance of an aircraft used for investigating flight effects on fan noise

    NASA Technical Reports Server (NTRS)

    Golub, R. A.; Preisser, J. S.

    1984-01-01

    As part of the NASA Flight Effects on Fan Noise Program, a Grumman OV-1B Mohawk aircraft was modified to carry a modified and instrumented Pratt & Whitney JT15D-1 turbofan engine. Onboard flight data, together with simultaneously measured farfield acoustic data, comprise a flight data base to which JT15D-1 static and wind-tunnel data are compared. The overall objective is to improve the ability to use ground-based facilities for the prediction of flight inlet radiated noise. This report describes the hardware and presents performance results for the research engine.

  12. A prediction method for broadband shock associated noise from supersonic rectangualr jets

    NASA Technical Reports Server (NTRS)

    Tam, Christopher K. W.; Reddy, N. N.

    1993-01-01

    Braodband shock associated noise is an important aircraft noise component of the proposed high-speed civil transport (HSCT) at take-offs and landings. For noise certification purpose one would, therefore, like to be able to predict as accurately as possible the intensity, directivity and spectral content of this noise component. The purpose of this work is to develop a semi-empirical prediction method for the broadband shock associated noise from supersonic rectangular jets. The complexity and quality of the noise prediction method are to be similar to those for circular jets. In this paper only the broadband shock associated noise of jets issued from rectangular nozzles with straight side walls is considered. Since many current aircraft propulsion systems have nozzle aspect ratios (at nozzle exit) in the range of 1 to 4, the present study has been confined to nozzles with aspect ratio less than 6. In developing the prediction method the essential physics of the problem are taken into consideration. Since the braodband shock associated noise generation mechanism is the same whether the jet is circular or round the present prediction method in a number of ways is quite similar to that for axisymmetric jets. Comparisons between predictions and measurements for jets with aspect ratio up to 6 will be reported. Efforts will be concentrated on the fly-over plane. However, side line angles and other directions will also be included.

  13. The Okinawa study: an estimation of noise-induced hearing loss on the basis of the records of aircraft noise exposure around Kadena Air Base

    NASA Astrophysics Data System (ADS)

    Hiramatsu, K.; Matsui, T.; Ito, A.; Miyakita, T.; Osada, Y.; Yamamoto, T.

    2004-10-01

    Aircraft noise measurements were recorded at the residential areas in the vicinity of Kadena Air Base, Okinawa in 1968 and 1972 at the time of the Vietnam war. The estimated equivalent continuous A-weighted sound pressure level LAeq for 24 h was 85 dB.The time history of sound level during 24 h was estimated from the measurement conducted in 1968, and the sound level was converted into the spectrum level at the centre frequency of the critical band of temporary threshold shift (TTS) using the results of spectrum analysis of aircraft noise operated at the airfield. With the information of spectrum level and its time history, TTS was calculated as a function of time and level change. The permanent threshold shift was also calculated by means of Robinson's method and ISO's method. The results indicate the noise exposure around Kadena Air Base was hazardous to hearing and is likely to have caused hearing loss to people living in its vicinity.

  14. Aeroacoustic Evaluation of Flap and Landing Gear Noise Reduction Concepts

    NASA Technical Reports Server (NTRS)

    Khorrami, Mehdi R.; Humphreys, William M., Jr.; Lockard, David P.; Ravetta, Patricio A.

    2014-01-01

    Aeroacoustic measurements for a semi-span, 18% scale, high-fidelity Gulfstream aircraft model are presented. The model was used as a test bed to conduct detailed studies of flap and main landing gear noise sources and to determine the effectiveness of numerous noise mitigation concepts. Using a traversing microphone array in the flyover direction, an extensive set of acoustic data was obtained in the NASA Langley Research Center 14- by 22-Foot Subsonic Tunnel with the facility in the acoustically treated open-wall (jet) mode. Most of the information was acquired with the model in a landing configuration with the flap deflected 39 deg and the main landing gear alternately installed and removed. Data were obtained at Mach numbers of 0.16, 0.20, and 0.24 over directivity angles between 56 deg and 116 deg, with 90 deg representing the overhead direction. Measured acoustic spectra showed that several of the tested flap noise reduction concepts decrease the sound pressure levels by 2 - 4 dB over the entire frequency range at all directivity angles. Slightly lower levels of noise reduction from the main landing gear were obtained through the simultaneous application of various gear devices. Measured aerodynamic forces indicated that the tested gear/flap noise abatement technologies have a negligible impact on the aerodynamic performance of the aircraft model.

  15. Development of SCR Aircraft takeoff and landing procedures for community noise abatement and their impact on flight safety

    NASA Technical Reports Server (NTRS)

    Grantham, W. D.; Smith, P. M.

    1980-01-01

    Piloted simulator studies to determine takeoff and landing procedures for a supersonic cruise transport concept that result in predicted community noise levels which meet current Federal Aviation Administration (FAA) standards are discussed. The results indicate that with the use of advanced procedures, the subject simulated aircraft meets the FAA traded noise levels during takeoff and landing utilizing average flight crew skills. The advanced takeoff procedures developed involved violating three of the current Federal Aviation Regulations (FAR) noise test conditions. These were: (1) thrust cutbacks at altitudes below 214 meters (700 ft); (2) thrust cutback level below those presently allowed; and (3) configuration change, other than raising the landing gear. It was not necessary to violate any FAR noise test conditions during landing approach. It was determined that the advanced procedures developed do not compromise flight safety. Automation of some of the aircraft functions reduced pilot workload, and the development of a simple head-up display to assist in the takeoff flight mode proved to be adequate.

  16. [Social and economic consequences of night-time aircraft noise in the vicinity of Frankfurt/Main airport].

    PubMed

    Greiser, E; Glaeske, G

    2013-03-01

    A prospective calculation of disease-related social and economic costs due to night-time aircraft noise in the vicinity of Frankfurt/Main airport was performed for the calendar years 2012-2021. It was based on risk estimates for a variety of diagnostic entities (cardiovascular disease, depression, psychosis, diabetes mellitus, dementia and Alzheimer's disease, all cancers except malignancies of the respiratory system) from a previous case-control study on more than 1 million persons enrolled in compulsory sickness funds in the vicinity of the Cologne-Bonn airport, on disease-related cost estimates performed by the German Federal Statistical Office for the calender years 2002-2008, and calculations of the population exposed to night-time aircraft noise in the vicinity of Frankfurt/Main airport (2005 aircraft routes and flight frequencies). Total estimated costs came to more than 1.5 billion € with an excess of 23 400 cases of diseases treated in hospitals and of 3 400 subsequent deaths. PMID:23456959

  17. [Social and economic consequences of night-time aircraft noise in the vicinity of Frankfurt/Main airport].

    PubMed

    Greiser, E; Glaeske, G

    2013-03-01

    A prospective calculation of disease-related social and economic costs due to night-time aircraft noise in the vicinity of Frankfurt/Main airport was performed for the calendar years 2012-2021. It was based on risk estimates for a variety of diagnostic entities (cardiovascular disease, depression, psychosis, diabetes mellitus, dementia and Alzheimer's disease, all cancers except malignancies of the respiratory system) from a previous case-control study on more than 1 million persons enrolled in compulsory sickness funds in the vicinity of the Cologne-Bonn airport, on disease-related cost estimates performed by the German Federal Statistical Office for the calender years 2002-2008, and calculations of the population exposed to night-time aircraft noise in the vicinity of Frankfurt/Main airport (2005 aircraft routes and flight frequencies). Total estimated costs came to more than 1.5 billion € with an excess of 23 400 cases of diseases treated in hospitals and of 3 400 subsequent deaths.

  18. Aircraft noise-induced awakenings are more reasonably predicted from relative than from absolute sound exposure levels.

    PubMed

    Fidell, Sanford; Tabachnick, Barbara; Mestre, Vincent; Fidell, Linda

    2013-11-01

    Assessment of aircraft noise-induced sleep disturbance is problematic for several reasons. Current assessment methods are based on sparse evidence and limited understandings; predictions of awakening prevalence rates based on indoor absolute sound exposure levels (SELs) fail to account for appreciable amounts of variance in dosage-response relationships and are not freely generalizable from airport to airport; and predicted awakening rates do not differ significantly from zero over a wide range of SELs. Even in conjunction with additional predictors, such as time of night and assumed individual differences in "sensitivity to awakening," nominally SEL-based predictions of awakening rates remain of limited utility and are easily misapplied and misinterpreted. Probabilities of awakening are more closely related to SELs scaled in units of standard deviates of local distributions of aircraft SELs, than to absolute sound levels. Self-selection of residential populations for tolerance of nighttime noise and habituation to airport noise environments offer more parsimonious and useful explanations for differences in awakening rates at disparate airports than assumed individual differences in sensitivity to awakening.

  19. Airframe Noise Prediction of a Full Aircraft in Model and Full Scale Using a Lattice Boltzmann Approach

    NASA Technical Reports Server (NTRS)

    Fares, Ehab; Duda, Benjamin; Khorrami, Mehdi R.

    2016-01-01

    Unsteady flow computations are presented for a Gulfstream aircraft model in landing configuration, i.e., flap deflected 39deg and main landing gear deployed. The simulations employ the lattice Boltzmann solver PowerFLOW(Trademark) to simultaneously capture the flow physics and acoustics in the near field. Sound propagation to the far field is obtained using a Ffowcs Williams and Hawkings acoustic analogy approach. Two geometry representations of the same aircraft are analyzed: an 18% scale, high-fidelity, semi-span model at wind tunnel Reynolds number and a full-scale, full-span model at half-flight Reynolds number. Previously published and newly generated model-scale results are presented; all full-scale data are disclosed here for the first time. Reynolds number and geometrical fidelity effects are carefully examined to discern aerodynamic and aeroacoustic trends with a special focus on the scaling of surface pressure fluctuations and farfield noise. An additional study of the effects of geometrical detail on farfield noise is also documented. The present investigation reveals that, overall, the model-scale and full-scale aeroacoustic results compare rather well. Nevertheless, the study also highlights that finer geometrical details that are typically not captured at model scales can have a non-negligible contribution to the farfield noise signature.

  20. Advanced Methods for Aircraft Engine Thrust and Noise Benefits: Nozzle-Inlet Flow Analysis

    NASA Technical Reports Server (NTRS)

    Gilinsky, Mikhail; Morgan, Morris H.; Povitsky, Alex; Schkolnikov, Natalia; Njoroge, Norman; Coston, Calvin; Blankson, Isaiah M.

    2001-01-01

    The Fluid Mechanics and Acoustics Laboratory at Hampton University (HU/FM&AL) jointly with the NASA Glenn Research Center has conducted four connected subprojects under the reporting project. Basically, the HU/FM&AL Team has been involved in joint research with the purpose of theoretical explanation of experimental facts and creation of accurate numerical simulation techniques and prediction theory for solution of current problems in propulsion systems of interest to the NAVY and NASA agencies. This work is also supported by joint research between the NASA GRC and the Institute of Mechanics at Moscow State University (IM/MSU) in Russia under a CRDF grant. The research is focused on a wide regime of problems in the propulsion field as well as in experimental testing and theoretical and numerical simulation analyses for advanced aircraft and rocket engines. The FM&AL Team uses analytical methods, numerical simulations and possible experimental tests at the Hampton University campus. The fundamental idea uniting these subprojects is to use nontraditional 3D corrugated and composite nozzle and inlet designs and additional methods for exhaust jet noise reduction without essential thrust loss and even with thrust augmentation. These subprojects are: (1) Aeroperformance and acoustics of Bluebell-shaped and Telescope-shaped designs; (2) An analysis of sharp-edged nozzle exit designs for effective fuel injection into the flow stream in air-breathing engines: triangular-round, diamond-round and other nozzles; (3) Measurement technique improvement for the HU Low Speed Wind Tunnel; a new course in the field of aerodynamics, teaching and training of HU students; experimental tests of Mobius-shaped screws: research and training; (4) Supersonic inlet shape optimization. The main outcomes during this reporting period are: (l) Publications: The AIAA Paper #00-3170 was presented at the 36th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, 17-19 June, 2000, Huntsville, AL. The AIAA

  1. Flight velocity influence on jet noise of conical ejector, annular plug and segmented suppressor nozzles

    NASA Technical Reports Server (NTRS)

    Brausch, J. F.

    1972-01-01

    An F106 aircraft with a J85-13 engine was used for static and flight acoustic and aerodynamic tests of a conical ejector, an unsuppressed annular plug, and three segmented suppressor nozzles. Static 100 ft. arc data, corrected for influences other than jet noise, were extrapolated to a 300 ft. sideline for comparison to 300 ft. altitude flyover data at M = 0.4. Data at engine speeds of 80 to 100% (max dry) static and 88 to 100% flight are presented. Flight velocity influence on noise is shown on peak OASPL and PNL, PNL directivity, EPNL and chosen spectra. Peak OASPL and PNL plus EPNL suppression levels are included showing slightly lower flight than static peak PNL suppression but greater EPNL than peak PNL suppression. Aerodynamic performance was as anticipated and closely matched model work for the 32-spoke nozzle.

  2. Advanced Methods for Aircraft Engine Thrust and Noise Benefits: Nozzle-Inlet Flow Analysis

    NASA Technical Reports Server (NTRS)

    Morgan, Morris H.; Gilinsky, Mikhail M.

    2001-01-01

    Three connected sub-projects were conducted under reported project. Partially, these sub-projects are directed to solving the problems conducted by the HU/FM&AL under two other NASA grants. The fundamental idea uniting these projects is to use untraditional 3D corrugated nozzle designs and additional methods for exhaust jet noise reduction without essential thrust lost and even with thrust augmentation. Such additional approaches are: (1) to add some solid, fluid, or gas mass at discrete locations to the main supersonic gas stream to minimize the negative influence of strong shock waves forming in propulsion systems; this mass addition may be accompanied by heat addition to the main stream as a result of the fuel combustion or by cooling of this stream as a result of the liquid mass evaporation and boiling; (2) to use porous or permeable nozzles and additional shells at the nozzle exit for preliminary cooling of exhaust hot jet and pressure compensation for non-design conditions (so-called continuous ejector with small mass flow rate; and (3) to propose and analyze new effective methods fuel injection into flow stream in air-breathing engines. Note that all these problems were formulated based on detailed descriptions of the main experimental facts observed at NASA Glenn Research Center. Basically, the HU/FM&AL Team has been involved in joint research with the purpose of finding theoretical explanations for experimental facts and the creation of the accurate numerical simulation technique and prediction theory for solutions for current problems in propulsion systems solved by NASA and Navy agencies. The research is focused on a wide regime of problems in the propulsion field as well as in experimental testing and theoretical and numerical simulation analysis for advanced aircraft and rocket engines. The F&AL Team uses analytical methods, numerical simulations, and possible experimental tests at the Hampton University campus. We will present some management activity

  3. Measurement of Model Noise in a Hard-Wall Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Soderman, Paul T.

    2006-01-01

    Identification, analysis, and control of fluid-mechanically-generated sound from models of aircraft and automobiles in special low-noise, semi-anechoic wind tunnels are an important research endeavor. Such studies can also be done in aerodynamic wind tunnels that have hard walls if phased microphone arrays are used to focus on the noise-source regions and reject unwanted reflections or background noise. Although it may be difficult to simulate the total flyover or drive-by noise in a closed wind tunnel, individual noise sources can be isolated and analyzed. An acoustic and aerodynamic study was made of a 7-percent-scale aircraft model in a NASA Ames 7-by-10-ft (about 2-by-3-m) wind tunnel for the purpose of identifying and attenuating airframe noise sources. Simulated landing, takeoff, and approach configurations were evaluated at Mach 0.26. Using a phased microphone array mounted in the ceiling over the inverted model, various noise sources in the high-lift system, landing gear, fins, and miscellaneous other components were located and compared for sound level and frequency at one flyover location. Numerous noise-alleviation devices and modifications of the model were evaluated. Simultaneously with acoustic measurements, aerodynamic forces were recorded to document aircraft conditions and any performance changes caused by geometric modifications. Most modern microphone-array systems function in the frequency domain in the sense that spectra of the microphone outputs are computed, then operations are performed on the matrices of microphone-signal cross-spectra. The entire acoustic field at one station in such a system is acquired quickly and interrogated during postprocessing. Beam-forming algorithms are employed to scan a plane near the model surface and locate noise sources while rejecting most background noise and spurious reflections. In the case of the system used in this study, previous studies in the wind tunnel have identified noise sources up to 19 d

  4. Aircraft noise prediction program propeller analysis system IBM-PC version user's manual version 2.0

    NASA Technical Reports Server (NTRS)

    Nolan, Sandra K.

    1988-01-01

    The IBM-PC version of the Aircraft Noise Prediction Program (ANOPP) Propeller Analysis System (PAS) is a set of computational programs for predicting the aerodynamics, performance, and noise of propellers. The ANOPP-PAS is a subset of a larger version of ANOPP which can be executed on CDC or VAX computers. This manual provides a description of the IBM-PC version of the ANOPP-PAS and its prediction capabilities, and instructions on how to use the system on an IBM-XT or IBM-AT personal computer. Sections within the manual document installation, system design, ANOPP-PAS usage, data entry preprocessors, and ANOPP-PAS functional modules and procedures. Appendices to the manual include a glossary of ANOPP terms and information on error diagnostics and recovery techniques.

  5. Computer programs for producing single-event aircraft noise data for specific engine power and meteorological conditions for use with USAF (United States Air Force) community noise model (NOISEMAP)

    NASA Astrophysics Data System (ADS)

    Mohlman, H. T.

    1983-04-01

    The Air Force community noise prediction model (NOISEMAP) is used to describe the aircraft noise exposure around airbases and thereby aid airbase planners to minimize exposure and prevent community encroachment which could limit mission effectiveness of the installation. This report documents two computer programs (OMEGA 10 and OMEGA 11) which were developed to prepare aircraft flight and ground runup noise data for input to NOISEMAP. OMEGA 10 is for flight operations and OMEGA 11 is for aircraft ground runups. All routines in each program are documented at a level useful to a programmer working with the code or a reader interested in a general overview of what happens within a specific subroutine. Both programs input normalized, reference aircraft noise data; i.e., data at a standard reference distance from the aircraft, for several fixed engine power settings, a reference airspeed and standard day meteorological conditions. Both programs operate on these normalized, reference data in accordance with user-defined, non-reference conditions to derive single-event noise data for 22 distances (200 to 25,000 feet) in a variety of physical and psycho-acoustic metrics. These outputs are in formats ready for input to NOISEMAP.

  6. Elastomeric Structural Attachment Concepts for Aircraft Flap Noise Reduction - Challenges and Approaches to Hyperelastic Structural Modeling and Analysis

    NASA Technical Reports Server (NTRS)

    Sreekantamurthy, Thammaiah; Turner, Travis L.; Moore, James B.; Su, Ji

    2014-01-01

    Airframe noise is a significant part of the overall noise of transport aircraft during the approach and landing phases of flight. Airframe noise reduction is currently emphasized under the Environmentally Responsible Aviation (ERA) and Fixed Wing (FW) Project goals of NASA. A promising concept for trailing-edge-flap noise reduction is a flexible structural element or link that connects the side edges of the deployable flap to the adjacent main-wing structure. The proposed solution is distinguished by minimization of the span-wise extent of the structural link, thereby minimizing the aerodynamic load on the link structure at the expense of increased deformation requirement. Development of such a flexible structural link necessitated application of hyperelastic materials, atypical structural configurations and novel interface hardware. The resulting highly-deformable structural concept was termed the FLEXible Side Edge Link (FLEXSEL) concept. Prediction of atypical elastomeric deformation responses from detailed structural analysis was essential for evaluating feasible concepts that met the design constraints. The focus of this paper is to describe the many challenges encountered with hyperelastic finite element modeling and the nonlinear structural analysis of evolving FLEXSEL concepts. Detailed herein is the nonlinear analysis of FLEXSEL concepts that emerged during the project which include solid-section, foamcore, hollow, extended-span and pre-stressed concepts. Coupon-level analysis performed on elastomeric interface joints, which form a part of the FLEXSEL topology development, are also presented.

  7. Static noise tests on modified augmentor wing jet STOL research aircraft

    NASA Technical Reports Server (NTRS)

    Cook, G. R.; Lilley, B. F.

    1981-01-01

    Noise measurements were made to determine if recent modifications made to the bifurcated jetpipe to increase engine thrust had at the same time reduced the noise level. The noise field was measured by a 6-microphone array positioned on a 30.5m (100 ft) sideline between 90 and 150 degrees from the left engine inlet. Noise levels were recorded at three flap angles over a range of engine thrust settings from flight idle to emergency power and plotted in one-third octave band spectra. Little attenuation was observed at maximum power, but significant attenuation was achieved at approach and cruise power levels.

  8. Prediction of Landing Gear Noise Reduction and Comparison to Measurements

    NASA Technical Reports Server (NTRS)

    Lopes, Leonard V.

    2010-01-01

    Noise continues to be an ongoing problem for existing aircraft in flight and is projected to be a concern for next generation designs. During landing, when the engines are operating at reduced power, the noise from the airframe, of which landing gear noise is an important part, is equal to the engine noise. There are several methods of predicting landing gear noise, but none have been applied to predict the change in noise due to a change in landing gear design. The current effort uses the Landing Gear Model and Acoustic Prediction (LGMAP) code, developed at The Pennsylvania State University to predict the noise from landing gear. These predictions include the influence of noise reduction concepts on the landing gear noise. LGMAP is compared to wind tunnel experiments of a 6.3%-scale Boeing 777 main gear performed in the Quiet Flow Facility (QFF) at NASA Langley. The geometries tested in the QFF include the landing gear with and without a toboggan fairing and the door. It is shown that LGMAP is able to predict the noise directives and spectra from the model-scale test for the baseline configuration as accurately as current gear prediction methods. However, LGMAP is also able to predict the difference in noise caused by the toboggan fairing and by removing the landing gear door. LGMAP is also compared to far-field ground-based flush-mounted microphone measurements from the 2005 Quiet Technology Demonstrator 2 (QTD 2) flight test. These comparisons include a Boeing 777-300ER with and without a toboggan fairing that demonstrate that LGMAP can be applied to full-scale flyover measurements. LGMAP predictions of the noise generated by the nose gear on the main gear measurements are also shown.

  9. Some far-field acoustics characteristics of the XV-15 tilt-rotor aircraft

    NASA Technical Reports Server (NTRS)

    Golub, Robert A.; Conner, David A.; Becker, Lawrence E.; Rutledge, C. Kendall; Smith, Rita A.

    1990-01-01

    Far-field acoustics tests have been conducted on an instrumented XV-15 tilt-rotor aircraft. The purpose of these acoustic measurements was to create an encompassing, high confidence (90 percent), and accurate (-1.4/ +1/8 dB theoretical confidence interval) far-field acoustics data base to validate ROTONET and other current rotorcraft noise prediction computer codes. This paper describes the flight techniques used, with emphasis on the care taken to obtain high-quality far-field acoustic data. The quality and extensiveness of the data base collected are shown by presentation of ground acoustic contours for level flyovers for the airplane flight mode and for several forward velocities and nacelle tilts for the transition mode and helicopter flight mode. Acoustic pressure time-histories and fully analyzed ensemble averaged far-field data results (spectra) are shown for each of the ground contour cases.

  10. Application of analysis techniques for low frequency interior noise and vibration of commercial aircraft

    NASA Technical Reports Server (NTRS)

    Landmann, A. E.; Tillema, H. F.; Macgregor, G. R.

    1992-01-01

    Finite element analysis (FEA), statistical energy analysis (SEA), and a power flow method (computer program PAIN) were used to assess low frequency interior noise associated with advanced propeller installations. FEA and SEA models were used to predict cabin noise and vibration and evaluate suppression concepts for structure-borne noise associated with the shaft rotational frequency and harmonics (less than 100 Hz). SEA and PAIN models were used to predict cabin noise and vibration and evaluate suppression concepts for airborne noise associated with engine radiated propeller tones. Both aft-mounted and wing-mounted propeller configurations were evaluated. Ground vibration test data from a 727 airplane modified to accept a propeller engine were used to compare with predictions for the aft-mounted propeller. Similar data from the 767 airplane was used for the wing-mounted comparisons.

  11. Full-scale upper-surface-blown flap noise. [for short haul STOL aircraft

    NASA Technical Reports Server (NTRS)

    Heidelberg, L. J.; Homyak, L.; Jones, W. L.

    1975-01-01

    A highly noise-suppressed TF 34 engine was used to investigate the noise of several powered lift configurations involving upper-surface-blown (USB) flaps. The configuration variables were nozzle type (i.e. slot and circular with deflector), flap chord-length, and flap angle. The results of velocity surveys at both the nozzle exit and the flap trailing edge are used for correlation of the noise data. Configurations using a long flap design were 4 dB quieter than a short flap typical of current trends in USB flap design. The lower noise for the long flap is attributed primarily to the greater velocity decay of the jet at the flap trailing edge. The full-scale data revealed substantially more quadrupole noise in the region near the deflected jet than observed in previous sub-scale tests.

  12. Noise and static performance characteristics of a STOL aircraft jet flap

    NASA Technical Reports Server (NTRS)

    Harkonen, D. L.; Mcbride, J. F.; Okeefe, J. V.

    1974-01-01

    Static noise and performance tests were conducted on a 1/4-scale jet flap model with a multilobe nozzle of array area ratio of 2.7. The model nozzle and flap tested were a two-dimensional section of a distributed blowing system similar to previously investigated augmentor wing systems without the upper shroud and intake door. Noise data were measured with the nozzle alone and also during attached flow conditions with the flap at two turning angles representing takeoff and approach conditions. The noise data are scaled to a 200,000-lb TOGW four-engine airplane and are presented in terms of perceived noise level and one-third octave band sound pressure level. Comparisons are made with the noise levels produced by an augmentor wing airplane fitted with a three-element acoustically lined augmentor flap. The static performance is presented in terms of thrust recovery and effective turning angle.

  13. Aircraft noise annoyance at three joint air carrier and general aviation airports

    NASA Technical Reports Server (NTRS)

    Fidell, S.; Horonjeff, R.; Mills, J.; Baldwin, E.; Teffeteller, S.; Pearsons, K.

    1985-01-01

    The results of social surveys conducted near three airports that support both general aviation and scheduled air carrier operations are presented and discussed. Inferences supported by these data include: (1) the nature of noise exposure and community reaction at smaller airports may differ from that at larger airports; (2) survey techniques are capable of identifying changes in annoyance associated with numerically small changes in noise exposure; (3) changes in the prevalence of annoyance are causally produced by changes in noise exposure; and (4) changes in annoyance associated with changes in exposure vary with time.

  14. Fundamental and applied research on core engine/combustion noise of aircraft engines

    NASA Technical Reports Server (NTRS)

    Plett, E. G.; Leshner, M. D.; Summerfield, M.

    1974-01-01

    Some results of a study of the importance of geometrical features of the combustor to combustion roughness and resulting noise are presented. Comparison is made among a perforated can flame holder, a plane slotted flame holder and a plane slotted flame holder which introduces two counter swirling streams. The latter is found to permit the most stable, quiet combustion. Crosscorrelations between the time derivative of chamber pressure fluctuations and far field noise are found to be stronger than between the far field noise and the direct chamber pressure signal. Temperature fluctuations in the combustor nozzle are also found to have a reasonably strong crosscorrelation with far field sound.

  15. Effect of crossflow velocity on the generation of lift fan jet noise in VTOL aircraft

    NASA Technical Reports Server (NTRS)

    Stimpert, D. L.; Fogg, R. G.

    1973-01-01

    Analytical studies based on a turbulent mixing noise prediction technique indicate that jet noise power levels are increased when a jet is situated in a crossflow. V/STOL model transport acoustic test data obtained in the NASA Ames 40 ft. x 80 ft. wind tunnel confirmed this jet noise power level increase due to crossflow. Increases up to 6 db at a Strouhal number of 2.5 and crossflow velocity to jet velocity ratio of 0.58 were observed. The power level increases observed in the experimental data confirm the predicted power level increases.

  16. Piloted Simulation Study of the Effects of High-Lift Aerodynamics on the Takeoff Noise of a Representative High-Speed Civil Transport

    NASA Technical Reports Server (NTRS)

    Glaab, Louis J.; Riley, Donald R.; Brandon, Jay M.; Person, Lee H., Jr.; Glaab, Patricia C.

    1999-01-01

    As part of an effort between NASA and private industry to reduce airport-community noise for high-speed civil transport (HSCT) concepts, a piloted simulation study was initiated for the purpose of predicting the noise reduction benefits that could result from improved low-speed high-lift aerodynamic performance for a typical HSCT configuration during takeoff and initial climb. Flight profile and engine information from the piloted simulation were coupled with the NASA Langley Aircraft Noise Prediction Program (ANOPP) to estimate jet engine noise and to propagate the resulting source noise to ground observer stations. A baseline aircraft configuration, which also incorporated different levels of projected improvements in low-speed high-lift aerodynamic performance, was simulated to investigate effects of increased lift and lift-to-drag ratio on takeoff noise levels. Simulated takeoff flights were performed with the pilots following a specified procedure in which either a single thrust cutback was performed at selected altitudes ranging from 400 to 2000 ft, or a multiple-cutback procedure was performed where thrust was reduced by a two-step process. Results show that improved low-speed high-lift aerodynamic performance provides at least a 4 to 6 dB reduction in effective perceived noise level at the FAA downrange flyover measurement station for either cutback procedure. However, improved low-speed high-lift aerodynamic performance reduced maximum sideline noise levels only when using the multiple-cutback procedures.

  17. Prediction of the interior noise levels of high-speed propeller-driven aircraft

    NASA Technical Reports Server (NTRS)

    Rennison, D. C.; Wilby, J. F.; Wilby, E. G.

    1980-01-01

    The theoretical basis for an analytical model developed to predict the interior noise levels of high-speed propeller-driven airplanes is presented. Particular emphasis is given to modeling the transmission of discrete tones through a fuselage element into a cavity, estimates for the mean and standard deviation of the acoustic power flow, the coupling between a non-homogeneous excitation and the fuselage vibration response, and the prediction of maximum interior noise levels. The model allows for convenient examination of the various roles of the excitation and fuselage structural characteristics on the fuselage vibration response and the interior noise levels, as is required for the design of model or prototype noise control validation tests.

  18. Static performance and noise tests on a thrust reverser for an augmentor wing aircraft

    NASA Technical Reports Server (NTRS)

    Harkonen, D. L.; Marrs, C. C.; Okeefe, J. V.

    1974-01-01

    A 1/3 scale model static test program was conducted to measure the noise levels and reverse thrust performance characteristics of wing-mounted thrust reverser that could be used on an advanced augmentor wing airplane. The configuration tested represents only the most fundamental designs where installation and packaging restraints are not considered. The thrust reverser performance is presented in terms of horizontal, vertical, and resultant effectiveness ratios and the reverser noise is compared on the basis of peak perceived noise level (PNL) and one-third octave band data (OASPL). From an analysis of the model force and acoustic data, an assessment is made on the stopping distance versus noise for a 90,900 kg (200,000 lb) airplane using this type of thrust reverser.

  19. Separation of airborne and structureborne noise radiated by plates constructed of conventional and composite materials with applications for prediction of interior noise paths in propeller driven aircraft. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Mcgary, M. C.

    1986-01-01

    The anticipated application of advanced turboprop propulsion systems and use of composite materials in primary structure is expected to increase the interior noise of future aircraft to unacceptability high levels. The absence of technically and economically feasible noise source-path diagnostic tools has been a primer obstacle in the development of efficient noise control treatments for propeller driven aircraft. A new diagnostic method which permits the separation and prediction of the fully coherent airborne and structureborne components of the sound radiated by plates or thin shells has been developed. Analytical and experimental studies of the proposed method were performed on plates constructed of both conventional and composite materials. The results of the study indicate that the proposed method can be applied to a variety of aircraft materials, could be used in flight, and has fewer encumbrances than the other diagnostic tools currently available. The study has also revealed that the noise radiation of vibrating plates in the low frequency regime due to combined airborne and structureborne inputs possesses a strong synergistic nature. The large influence of the interaction between the airborne and structureborne terms has been hitherto ignored by researchers of aircraft interior noise problems.

  20. Engine isolation for structural-borne interior noise reduction in a general aviation aircraft

    NASA Technical Reports Server (NTRS)

    Unruh, J. F.; Scheidt, D. C.

    1981-01-01

    Engine vibration isolation for structural-borne interior noise reduction is investigated. A laboratory based test procedure to simulate engine induced structure-borne noise transmission, the testing of a range of candidate isolators for relative performance data, and the development of an analytical model of the transmission phenomena for isolator design evaluation are addressed. The isolator relative performance test data show that the elastomeric isolators do not appear to operate as single degree of freedom systems with respect to noise isolation. Noise isolation beyond 150 Hz levels off and begins to decrease somewhat above 600 Hz. Coupled analytical and empirical models were used to study the structure-borne noise transmission phenomena. Correlation of predicted results with measured data show that (1) the modeling procedures are reasonably accurate for isolator design evaluation, (2) the frequency dependent properties of the isolators must be included in the model if reasonably accurate noise prediction beyond 150 Hz is desired. The experimental and analytical studies were carried out in the frequency range from 10 Hz to 1000 Hz.

  1. Aircraft Engine Noise Scattering by Fuselage and Wings: A Computational Approach

    NASA Technical Reports Server (NTRS)

    Farassat, F.; Stanescu, D.; Hussaini, M. Y.

    2003-01-01

    The paper presents a time-domain method for computation of sound radiation from aircraft engine sources to the far field. The effects of non-uniform flow around the aircraft and scattering of sound by fuselage and wings are accounted for in the formulation. The approach is based on the discretization of the inviscid flow equations through a collocation form of the discontinuous Galerkin spectral element method. An isoparametric representation of the underlying geometry is used in order to take full advantage of the spectral accuracy of the method. Large-scale computations are made possible by a parallel implementation based on message passing. Results obtained for radiation from an axisymmetric nacelle alone are compared with those obtained when the same nacelle is installed in a generic configuration, with and without a wing. 0 2002 Elsevier Science Ltd. All rights reserved.

  2. Aircraft Engine Noise Scattering By Fuselage and Wings: A Computational Approach

    NASA Technical Reports Server (NTRS)

    Stanescu, D.; Hussaini, M. Y.; Farassat, F.

    2003-01-01

    The paper presents a time-domain method for computation of sound radiation from aircraft engine sources to the far-field. The effects of nonuniform flow around the aircraft and scattering of sound by fuselage and wings are accounted for in the formulation. The approach is based on the discretization of the inviscid flow equations through a collocation form of the Discontinuous Galerkin spectral element method. An isoparametric representation of the underlying geometry is used in order to take full advantage of the spectral accuracy of the method. Large-scale computations are made possible by a parallel implementation based on message passing. Results obtained for radiation from an axisymmetric nacelle alone are compared with those obtained when the same nacelle is installed in a generic configuration, with and without a wing.

  3. Aircraft Engine Noise Scattering by Fuselage and Wings: A Computational Approach

    NASA Technical Reports Server (NTRS)

    Stanescu, D.; Hussaini, M. Y.; Farassat, F.

    2003-01-01

    The paper presents a time-domain method for computation of sound radiation from aircraft engine sources to the far-field. The effects of nonuniform flow around the aircraft and scattering of sound by fuselage and wings are accounted for in the formulation. The approach is based on the discretization of the inviscid flow equations through a collocation form of the Discontinuous Galerkin spectral element method. An isoparametric representation of the underlying geometry is used in order to take full advantage of the spectral accuracy of the method. Large-scale computations are made possible by a parallel implementation based on message passing. Results obtained for radiation from an axisymmetric nacelle alone are compared with those obtained when the same nacelle is installed in a generic configuration, with and without a wing.

  4. Consideration of some factors affecting low-frequency fuselage noise transmission for propeller aircraft

    NASA Technical Reports Server (NTRS)

    Mixson, J. S.; Roussos, L. A.

    1986-01-01

    Possible reasons for disagreement between measured and predicted trends of sidewall noise transmission at low frequency are investigated using simplified analysis methods. An analytical model combining incident plane acoustic waves with an infinite flat panel is used to study the effects of sound incidence angle, plate structural properties, frequency, absorption, and the difference between noise reduction and transmission loss. Analysis shows that these factors have significant effects on noise transmission but they do not account for the differences between measured and predicted trends at low frequencies. An analytical model combining an infinite flat plate with a normally incident acoustic wave having exponentially decaying magnitude along one coordinate is used to study the effect of a localized source distribution such as is associated with propeller noise. Results show that the localization brings the predicted low-frequency trend of noise transmission into better agreement with measured propeller results. This effect is independent of low-frequency stiffness effects that have been previously reported to be associated with boundary conditions.

  5. Sound Generation in the Presence of Moving Surfaces with Application to Internally Generated Aircraft Engine Noise

    NASA Technical Reports Server (NTRS)

    Goldstein, Marvin E.; Envia, E.

    2002-01-01

    In many cases of technological interest solid boundaries play a direct role in the aerodynamic sound generation process and their presence often results in a large increase in the acoustic radiation. A generalized treatment of the emission of sound from moving boundaries is presented. The approach is similar to that of Ffowcs Williams and Hawkings (1969) but the effect of the surrounding mean flow is explicitly accounted for. The results are used to develop a rational framework for the prediction of internally generated aero-engine noise. The final formulas suggest some new noise sources that may be of practical significance.

  6. Effect of aircraft noise on the equilibrium of airport residents: Longitudinal study around Roissy, phase 3

    NASA Technical Reports Server (NTRS)

    Francois, J.

    1981-01-01

    The effects of airplane noise on the mental equilibrium of residents living near airports are discussed, and based on population sample surveys involving health questionnaires and self-administered personality tests. Progressive changes were observed on the part of residents living near a large airport.

  7. Aircraft interior noise prediction using a structural-acoustic analogy in NASTRAN modal synthesis

    NASA Technical Reports Server (NTRS)

    Grosveld, Ferdinand W.; Sullivan, Brenda M.; Marulo, Francesco

    1988-01-01

    The noise induced inside a cylindrical fuselage model by shaker excitation is investigated theoretically and experimentally. The NASTRAN modal-synthesis program is used in the theoretical analysis, and the predictions are compared with experimental measurements in extensive graphs. Good general agreement is obtained, but the need for further refinements to account for acoustic-cavity damping and structural-acoustic interaction is indicated.

  8. Measured noise reductions resulting from modified approach procedures for business jet aircraft

    NASA Technical Reports Server (NTRS)

    Burcham, F. W., Jr.; Putnam, T. W.; Lasagna, P. L.; Parish, O. O.

    1975-01-01

    Five business jet airplanes were flown to determine the noise reductions that result from the use of modified approach procedures. The airplanes tested were a Gulfstream 2, JetStar, Hawker Siddeley 125-400, Sabreliner-60 and LearJet-24. Noise measurements were made 3, 5, and 7 nautical miles from the touchdown point. In addition to a standard 3 deg glide slope approach, a 4 deg glide slope approach, a 3 deg glide slope approach in a low-drag configuration, and a two-segment approach were flown. It was found that the 4 deg approach was about 4 EPNdB quieter than the standard 3 deg approach. Noise reductions for the low-drag 3 deg approach varied widely among the airplanes tested, with an average of 8.5 EPNdB on a fleet-weighted basis. The two-segment approach resulted in noise reductions of 7 to 8 EPNdB at 3 and 5 nautical miles from touchdown, but only 3 EPNdB at 7 nautical miles from touchdown when the airplanes were still in level flight prior to glide slope intercept. Pilot ratings showed progressively increasing workload for the 4 deg, low-drag 3 deg, and two-segment approaches.

  9. Theoretical vibro-acoustic modeling of acoustic noise transmission through aircraft windows

    NASA Astrophysics Data System (ADS)

    Aloufi, Badr; Behdinan, Kamran; Zu, Jean

    2016-06-01

    In this paper, a fully vibro-acoustic model for sound transmission across a multi-pane aircraft window is developed. The proposed model is efficiently applied for a set of window models to perform extensive theoretical parametric studies. The studied window configurations generally simulate the passenger window designs of modern aircraft classes which have an exterior multi-Plexiglas pane, an interior single acrylic glass pane and a dimmable glass ("smart" glass), all separated by thin air cavities. The sound transmission loss (STL) characteristics of three different models, triple-, quadruple- and quintuple-paned windows identical in size and surface density, are analyzed for improving the acoustic insulation performances. Typical results describing the influence of several system parameters, such as the thicknesses, number and spacing of the window panes, on the transmission loss are then investigated. In addition, a comparison study is carried out to evaluate the acoustic reduction capability of each window model. The STL results show that the higher frequencies sound transmission loss performance can be improved by increasing the number of window panels, however, the low frequency performance is decreased, particularly at the mass-spring resonances.

  10. Assessment of environmental benefits of flyover construction over signalized junctions: a case study.

    PubMed

    Goyal, S K; Goel, Sangita; Tamhane, S M

    2009-01-01

    In the present study, the impact of the flyover construction to curb traffic congestion problem has been assessed in terms of traffic decongestion, time saving, fuel saving and emission reduction. A flyover has also been constructed over four signalized junctions in the main commercial area in Nagpur city, India. It was found that about 35% of the total traffic is diverted to the flyover, which results in a reduction of about 32% in the total emission generation. Travel on the flyover resulted in as much as 60-70% saving in time, compared to the travel on the main road, particularly when all the four signals are found to be in the red phase. The loss of fuel for combustion and the associated cost resulting from waiting for the signal to change are also estimated, and these are found to be significant.

  11. Computational analysis of flow field around Ahmed car model passing underneath a flyover

    NASA Astrophysics Data System (ADS)

    Musa, Md Nor; Osman, Kahar; Hamat, Ab Malik A.

    2012-06-01

    A flow structure around a ground vehicle has been studied by many researchers using numerous methods, either computational or experimental. However, no analysis of flow field generated by a car passing under a flyover has been carried out. One of the famous simplified models of a car is the Ahmed body that has been established to investigate the influence of the flow structure on the drag. In this paper, we investigate a flow field around Ahmed body of a single cruising condition as the vehicle passes under a flyover, using a computational method with RANS equation. The main objective of this paper is to evaluate the turbulence kinetic energy and velocity magnitude developed within the wall boundary created by the flyover, to the air flow field that is generated by the Ahmed reference car. It was observed that the simulated airflow passes the vehicle was bounded by the wall of the flyover and consequently changes the pattern of the flow field. Understanding the characteristic of this flow field under a flyover is essential if one wants to maximize the recovery of the dissipated energy which, for example, can be used to power a small vertical-axis wind turbine to produce and store electrical energy for lighting under the flyover.

  12. Near-field shock formation in noise propagation from a high-power jet aircraft.

    PubMed

    Gee, Kent L; Neilsen, Tracianne B; Downing, J Micah; James, Michael M; McKinley, Richard L; McKinley, Robert C; Wall, Alan T

    2013-02-01

    Noise measurements near the F-35A Joint Strike Fighter at military power are analyzed via spatial maps of overall and band pressure levels and skewness. Relative constancy of the pressure waveform skewness reveals that waveform asymmetry, characteristic of supersonic jets, is a source phenomenon originating farther upstream than the maximum overall level. Conversely, growth of the skewness of the time derivative with distance indicates that acoustic shocks largely form through the course of near-field propagation and are not generated explicitly by a source mechanism. These results potentially counter previous arguments that jet "crackle" is a source phenomenon.

  13. Near-field shock formation in noise propagation from a high-power jet aircraft.

    PubMed

    Gee, Kent L; Neilsen, Tracianne B; Downing, J Micah; James, Michael M; McKinley, Richard L; McKinley, Robert C; Wall, Alan T

    2013-02-01

    Noise measurements near the F-35A Joint Strike Fighter at military power are analyzed via spatial maps of overall and band pressure levels and skewness. Relative constancy of the pressure waveform skewness reveals that waveform asymmetry, characteristic of supersonic jets, is a source phenomenon originating farther upstream than the maximum overall level. Conversely, growth of the skewness of the time derivative with distance indicates that acoustic shocks largely form through the course of near-field propagation and are not generated explicitly by a source mechanism. These results potentially counter previous arguments that jet "crackle" is a source phenomenon. PMID:23363199

  14. A prospective follow-up study of the effects of chronic aircraft noise exposure on learners' reading comprehension in South Africa.

    PubMed

    Seabi, Joseph; Cockcroft, Kate; Goldschagg, Paul; Greyling, Michael

    2015-01-01

    The purpose of this epidemiological study was to investigate the long-term effects of exposure to aircraft noise on reading comprehension on a sample of South African children. Given the impairment of reading comprehension found within the noised-exposed group before the relocation of the airport, it was the intention of this study to determine whether the effects of aircraft noise on reading comprehension remained after the relocation of the airport or whether they disappeared. A cohort of 732 learners with a mean age of 11.1 years participated at baseline measurements in 2009 and 650 (mean age=12.3) and 178 (mean age=13.1) learners were reassessed after the relocation of the airport in 2010 and 2011, respectively. The results revealed no significant effect of the groups on reading comprehension across the testing periods, but significant effects of home language were demonstrated on reading comprehension. These findings suggest that exposure to chronic aircraft noise may have a lasting impact on children's reading comprehension functioning. PMID:24169877

  15. A prospective follow-up study of the effects of chronic aircraft noise exposure on learners' reading comprehension in South Africa.

    PubMed

    Seabi, Joseph; Cockcroft, Kate; Goldschagg, Paul; Greyling, Michael

    2015-01-01

    The purpose of this epidemiological study was to investigate the long-term effects of exposure to aircraft noise on reading comprehension on a sample of South African children. Given the impairment of reading comprehension found within the noised-exposed group before the relocation of the airport, it was the intention of this study to determine whether the effects of aircraft noise on reading comprehension remained after the relocation of the airport or whether they disappeared. A cohort of 732 learners with a mean age of 11.1 years participated at baseline measurements in 2009 and 650 (mean age=12.3) and 178 (mean age=13.1) learners were reassessed after the relocation of the airport in 2010 and 2011, respectively. The results revealed no significant effect of the groups on reading comprehension across the testing periods, but significant effects of home language were demonstrated on reading comprehension. These findings suggest that exposure to chronic aircraft noise may have a lasting impact on children's reading comprehension functioning.

  16. Communal Sensor Network for Adaptive Noise Reduction in Aircraft Engine Nacelles

    NASA Technical Reports Server (NTRS)

    Jones, Kennie H.; Nark, Douglas M.; Jones, Michael G.

    2011-01-01

    Emergent behavior, a subject of much research in biology, sociology, and economics, is a foundational element of Complex Systems Science and is apropos in the design of sensor network systems. To demonstrate engineering for emergent behavior, a novel approach in the design of a sensor/actuator network is presented maintaining optimal noise attenuation as an adaptation to changing acoustic conditions. Rather than use the conventional approach where sensors are managed by a central controller, this new paradigm uses a biomimetic model where sensor/actuators cooperate as a community of autonomous organisms, sharing with neighbors to control impedance based on local information. From the combination of all individual actions, an optimal attenuation emerges for the global system.

  17. Community Response to Noise

    NASA Astrophysics Data System (ADS)

    Fidell, Sandy

    The primary effects of community noise on residential populations are speech interference, sleep disturbance, and annoyance. This chapter focuses on transportation noise in general and on aircraft noise in particular because aircraft noise is one of the most prominent community noise sources, because airport/community controversies are often the most contentious and widespread, and because industrial and other specialized formsofcommunitynoise generally posemorelocalized problems.

  18. Static and wind tunnel model tests for the development of externally blown flap noise reduction techniques

    NASA Technical Reports Server (NTRS)

    Pennock, A. P.; Swift, G.; Marbert, J. A.

    1975-01-01

    Externally blown flap models were tested for noise and performance at one-fifth scale in a static facility and at one-tenth scale in a large acoustically-treated wind tunnel. The static tests covered two flap designs, conical and ejector nozzles, third-flap noise-reduction treatments, internal blowing, and flap/nozzle geometry variations. The wind tunnel variables were triple-slotted or single-slotted flaps, sweep angle, and solid or perforated third flap. The static test program showed the following noise reductions at takeoff: 1.5 PNdB due to treating the third flap; 0.5 PNdB due to blowing from the third flap; 6 PNdB at flyover and 4.5 PNdB in the critical sideline plane (30 deg elevation) due to installation of the ejector nozzle. The wind tunnel program showed a reduction of 2 PNdB in the sideline plane due to a forward speed of 43.8 m/s (85 kn). The best combination of noise reduction concepts reduced the sideline noise of the reference aircraft at constant field length by 4 PNdB.

  19. Acute effects of aircraft noise on cardiovascular admissions - an interrupted time-series analysis of a six-day closure of London Heathrow Airport caused by volcanic ash.

    PubMed

    Pearson, Tim; Campbell, Michael J; Maheswaran, Ravi

    2016-08-01

    Acute noise exposure may acutely increase blood pressure but the hypothesis that acute exposure to aircraft noise may trigger cardiovascular events has not been investigated. This study took advantage of a six-day closure of a major airport in April 2010 caused by volcanic ash to examine if there was a decrease in emergency cardiovascular hospital admissions during or immediately after the closure period, using an interrupted daily time-series study design. The population living within the 55dB(A) noise contour was substantial at 0.7 million. The average daily admission count was 13.9 (SD 4.4). After adjustment for covariates, there was no evidence of a decreased risk of hospital admission from cardiovascular disease during the closure period (relative risk 0.97 (95% CI 0.75-1.26)). Using lags of 1-7 days gave similar results. Further studies are needed to investigate if transient aircraft noise exposure can trigger acute cardiovascular events. PMID:27494958

  20. Airframe Noise Results from the QTD II Flight Test Program

    NASA Technical Reports Server (NTRS)

    Elkoby, Ronen; Brusniak, Leon; Stoker, Robert W.; Khorrami, Mehdi R.; Abeysinghe, Amal; Moe, Jefferey W.

    2007-01-01

    With continued growth in air travel, sensitivity to community noise intensifies and materializes in the form of increased monitoring, regulations, and restrictions. Accordingly, realization of quieter aircraft is imperative, albeit only achievable with reduction of both engine and airframe components of total aircraft noise. Model-scale airframe noise testing has aided in this pursuit; however, the results are somewhat limited due to lack of fidelity of model hardware, particularly in simulating full-scale landing gear. Moreover, simulation of true in-flight conditions is non-trivial if not infeasible. This paper reports on an investigation of full-scale landing gear noise measured as part of the 2005 Quiet Technology Demonstrator 2 (QTD2) flight test program. Conventional Boeing 777-300ER main landing gear were tested, along with two noise reduction concepts, namely a toboggan fairing and gear alignment with the local flow, both of which were down-selected from various other noise reduction devices evaluated in model-scale testing at Virginia Tech. The full-scale toboggan fairings were designed by Goodrich Aerostructures as add-on devices allowing for complete retraction of the main gear. The baseline-conventional gear, faired gear, and aligned gear were all evaluated with the high-lift system in the retracted position and deployed at various flap settings, all at engine idle power setting. Measurements were taken with flyover community noise microphones and a large aperture acoustic phased array, yielding far-field spectra, and localized sources (beamform maps). The results were utilized to evaluate qualitatively and quantitatively the merit of each noise reduction concept. Complete similarity between model-scale and full-scale noise reduction levels was not found and requires further investigation. Far-field spectra exhibited no noise reduction for both concepts across all angles and frequencies. Phased array beamform maps show inconclusive evidence of noise