Science.gov

Sample records for aircraft fuel tank

  1. Aircraft fuel tank slosh and vibration test

    NASA Astrophysics Data System (ADS)

    Zimmermann, H.

    1981-12-01

    A dynamic qualification test for a subsonic and a supersonic external drop tank for a European fighter is presented. The test rig and the specimens are described and the measuring results are discussed. It is shown that for the supersonic tank as well as for the subsonic tank a certain slosh angle an eigenfrequency of the rig increases the amplitudes at the excitation position and the accelerations on the tank. For the subsonic tank it seems that an eigenfrequency is excited for the nose down position of the tank. The qualification requirements are examined. It is proposed that instead of using an arbitrary vibration amplitude and frequency for excitation, frequency ranges and amplitudes which are averaged out of flight measurements at the tank attachment points on the aircraft be used and that the demand for a certain input amplitude at the top of the attachment bulkheads and an output amplitude at the bottom of the attachment bulkheads be deleted.

  2. Experimental study of fuel cloud formation inside aircraft fuel tank

    NASA Astrophysics Data System (ADS)

    Putthawong, Panu

    The design of fuel tank flammability has relied on the flammability envelope of a homogeneous mixture. There are researches indicated that the presence of droplets could cause such mixture to be flammable even the fuel-to-air ratio was below the Lower Flammability Limit. This research aims to investigate the formation of fuel cloud/droplets by a condensation process and its effect on tank flammability. The center-wing tank is the main interest because the fuel vapor in the ullage space can condense when its temperature and pressure are changed. The Fuel Tank Test Facility has proven that a cloud or group of droplets is produced under normal operating condition of the center-wing tank. Results from the experiments show the number densities of droplets on the order of 103--105 and the maximum drop size being recorded is 18 mum. The experiments also indicate that Jet A vapor and droplets must have different properties from its liquid form because of the volatility difference among species in fuel. The new parameter for droplets flammability, i.e., non-dimensional droplet spacing, suggested by Hayashi et al. (1984) is employed for a flammability assessment. The non-dimensional droplet spacings from the experiments have found to be in the vicinity of the critical value. It points toward the high possibility of having flammable center-wing tank. The explosion strength calculation of droplets-vapor-air mixture implies the sufficient explosive condition if an ignition source is introduced.

  3. 49 CFR 173.172 - Aircraft hydraulic power unit fuel tank.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false Aircraft hydraulic power unit fuel tank. 173.172 Section 173.172 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS... Class 1 and Class 7 § 173.172 Aircraft hydraulic power unit fuel tank. Aircraft hydraulic power...

  4. 49 CFR 173.172 - Aircraft hydraulic power unit fuel tank.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Aircraft hydraulic power unit fuel tank. 173.172 Section 173.172 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS... Class 1 and Class 7 § 173.172 Aircraft hydraulic power unit fuel tank. Aircraft hydraulic power...

  5. A fuselage/tank structure study for actively cooled hypersonic cruise vehicles, summary. [aircraft design of aircraft fuel systems

    NASA Technical Reports Server (NTRS)

    Pirrello, C. J.; Baker, A. H.; Stone, J. E.

    1976-01-01

    A detailed analytical study was made to investigate the effects of fuselage cross section (circular and elliptical) and the structural arrangement (integral and nonintegral tanks) on aircraft performance. The vehicle was a 200 passenger, liquid hydrogen fueled Mach 6 transport designed to meet a range goal of 9.26 Mn (5000 NM). A variety of trade studies were conducted in the area of configuration arrangement, structural design, and active cooling design in order to maximize the performance of each of three point design aircraft: (1) circular wing-body with nonintegral tanks, (2) circular wing-body with integral tanks and (3) elliptical blended wing-body with integral tanks. Aircraft range and weight were used as the basis for comparison. The resulting design and performance characteristics show that the blended body integral tank aircraft weights the least and has the greatest range capability, however, producibility and maintainability factors favor nonintegral tank concepts.

  6. Design, fabrication and testing of a liquid hydrogen fuel tank for a long duration aircraft

    NASA Astrophysics Data System (ADS)

    Mills, Gary L.; Buchholtz, Brian; Olsen, Al

    2012-06-01

    Liquid hydrogen has distinct advantages as an aircraft fuel. These include a specific heat of combustion 2.8 times greater than gasoline or jet fuel and zero carbon emissions. It can be utilized by fuel cells, turbine engines and internal combustion engines. The high heat of combustion is particularly important in the design of long endurance aircraft with liquid hydrogen enabling cruise endurance of several days. However, the mass advantage of the liquid hydrogen fuel will result in a mass advantage for the fuel system only if the liquid hydrogen tank and insulation mass is a small fraction of the hydrogen mass. The challenge is producing a tank that meets the mass requirement while insulating the cryogenic liquid hydrogen well enough to prevent excessive heat leak and boil off. In this paper, we report on the design, fabrication and testing of a liquid hydrogen fuel tank for a prototype high altitude long endurance (HALE) demonstration aircraft. Design options on tank geometry, tank wall material and insulation systems are discussed. The final design is an aluminum sphere insulated with spray on foam insulation (SOFI). Several steps and organizations were involved in the tank fabrication and test. The tank was cold shocked, helium leak checked and proof pressure tested. The overall thermal performance was verified with a boil off test using liquid hydrogen.

  7. Microbial Penetration and Utilization of Organic Aircraft Fuel-Tank Coatings1

    PubMed Central

    Crum, M. G.; Reynolds, R. J.; Hedrick, H. G.

    1967-01-01

    Microorganisms have been found as contaminants in various types of aircraft fuel tanks. Their presence introduces problems in the operation of the aircraft, including destruction of components such as the organic coatings used as protective linings in the fuel tanks. Microbial penetration and utilization of the currently used organic coatings, EC 776, DV 1180, PR 1560, and DeSoto 1080, were determined by changes in electrical resistances of the coatings; mycelial weight changes; growth counts of the bacteria; and manometric determinations on Pseudomonas aeruginosa (GD-FW B-25) and Cladosporium resinae (QMC-7998). The results indicate EC 776 and DV 1180 to be less resistant to microbial degradation than the other coatings. Organic coatings, serving as a source of nutrition, would be conducive to population buildups in aircraft fuel tanks. Images Fig. 1 PMID:16349744

  8. Advances towards the qualification of an aircraft fuel tank inert environment fiber optic oxygen sensor system

    NASA Astrophysics Data System (ADS)

    Mendoza, Edgar A.; Esterkin, Yan; Kempen, Cornelia; Sun, Songjian; Susko, Kenneth; Goglia, John

    2011-06-01

    An all optical pressure and temperature compensated fiber optic oxygen sensor (FOxSenseTM) system is under qualification for use in the in-situ closed-loop-control of the inert atmosphere environment inside fuel tanks of military and commercial aircraft. The all-optical oxygen environment control sensor is a passive, intrinsically safe, fiber-optic sensor device with no electrical connections leading to the sensors installed within the fuel tanks of an aircraft. To control the fuel tank environment, an array of multiple sensors is deployed throughout the fuel tanks of an aircraft, and a remote multi-channel optoelectronic system is used to monitor the status of all the sensors in real time to provide feedback oxygen environment information to the on-board inert gas generating system (OBIGS). Qualification testing of the all optical sensor have demonstrated the ability to monitor the oxygen environment inside a simulated fuel tank environment in the oxygen range from 0% to 21% oxygen concentrations, temperatures from (-) 40°C to (+) 60°C, and altitudes from sea level to 40,000 feet. Fiber optic oxygen sensors with built-in temperature compensation as well as the conduit fiber optic cables have passed DO-160E including acoustic noise and burn test.

  9. 49 CFR 173.172 - Aircraft hydraulic power unit fuel tank.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false Aircraft hydraulic power unit fuel tank. 173.172 Section 173.172 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS REGULATIONS SHIPPERS-GENERAL REQUIREMENTS FOR SHIPMENTS AND...

  10. Fiber optic oxygen sensor using fluorescence quenching for aircraft inerting fuel tank applications

    NASA Astrophysics Data System (ADS)

    Panahi, Allen

    2009-05-01

    On July 18, 2008, the FAA mandated that new aircraft are to include inerting technology to significantly reduce the potential for flammable vapor spaces in center wing fuel tanks. All passenger aircraft constructed since 1991 must also be retrofitted with this technology. This ruling is the result of 18 aircraft that have experienced fuel tank flammable vapor ignition incidents since 1960. Included in these are the TWA 800 and Avianca Flight 203 incidents that resulted in 337 total fatalities. Comprised of heavier hydrocarbon components, jet fuel is much less volatile, with Jet A having a flash point of approximately 100°F and JP-4 having a flash point of approximately 0°F. In contrast, straight-run gasoline has a flash point of approximately -40°F. The flash point is the minimum temperature where a liquid fuel can generate enough vapor to form a flammable mixture with air. If the temperature is below the flash point there isn't enough fuel evaporating to form a flammable fuel-air mixture. Since jet fuel and gasoline have similar flammable concentration limits, gasoline must produce much more vapor at a given temperature to have such a low flash point; hence gasoline is much more volatile than jet fuel. In this paper we explore Fluorescence Technology as applied to the design and development of O2 sensors that can be used for this application and discuss the various test and measurement techniques used to estimate the O2 gas concentration. We compare the various intensity based approaches and contrast them with the frequency domain techniques that measure phase to extract fluorescent lifetimes. The various inerting fuel tank requirements are explained and finally a novel compact measurement system using that uses the frequency heterodyning cross correlation technique that can be used for various applications is described in detail while the benefits are explored together with some test data collected.

  11. Studies of new perfluoroether elastomeric sealants. [for aircraft fuel tanks

    NASA Technical Reports Server (NTRS)

    Basiulis, D. I.; Salisbury, D. P.

    1981-01-01

    Channel and filleting sealants were developed successfully from cyano and diamidoxime terminated perfluoro alkylene ether prepolymers. The prepolymers were polymerized, formulated and tested. The polymers and/or formulations therefrom were evaluated as to their physical, mechanical and chemical properties (i.e., specific gravity, hardness, nonvolatile content, corrosion resistance, stress corrosion, pressure rupture resistance, low temperature flexibility, gap sealing efficiency, tensile strength and elongation, dynamic mechanical behavior, compression set, fuel resistance, thermal properties and processability). Other applications of the formulated polymrs and incorporation of the basic prepolymers into other polymeric systems were investigated. A cyano terminated perfluoro alkylene oxide triazine was formulated and partially evaluated. The channel sealant in its present formulation has excellent pressure rupture resistance and surpasses present MIL specifications before and after fuel and heat aging.

  12. Insulation systems for liquid methane fuel tanks for supersonic cruise aircraft

    NASA Technical Reports Server (NTRS)

    Brady, H. F.; Delduca, D.

    1972-01-01

    Two insulation systems for tanks containing liquid methane in supersonic cruise-type aircraft were designed and tested after an extensive materials investigation. One system is an external insulation and the other is an internal wet-type insulation system. Tank volume was maximized by making the tank shape approach a rectangular parallelopiped. One tank was designed to use the external insulation and the other tank to use the internal insulation. Performance of the external insulation system was evaluated on a full-scale tank under the temperature environment of -320 F to 700 F and ambient pressures of ground-level atmospheric to 1 psia. Problems with installing the internal insulation on the test tank prevented full-scale evaluation of performance; however, small-scale testing verified thermal conductivity, temperature capability, and installed density.

  13. Impact Response Study on Covering Cap of Aircraft Big-Size Integral Fuel Tank

    NASA Astrophysics Data System (ADS)

    Wang, Fusheng; Jia, Senqing; Wang, Yi; Yue, Zhufeng

    2016-05-01

    In order to assess various design concepts and choose a kind of covering cap design scheme which can meet the requirements of airworthiness standard and ensure the safety of fuel tank. Using finite element software ANSYS/LS- DYNA, the impact process of covering cap of aircraft fuel tank by projectile were simulated, in which dynamical characteristics of simple single covering cap and gland double-layer covering cap impacted by titanium alloy projectile and rubber projectile were studied, as well as factor effects on simple single covering cap and gland double-layer covering cap under impact region, impact angle and impact energy were also studied. Though the comparison of critical damage velocity and element deleted number of the covering caps, it shows that the external covering cap has a good protection effect on internal covering cap. The regions close to boundary are vulnerable to appear impact damage with titanium alloy projectile while the regions close to center is vulnerable to occur damage with rubber projectile. Equivalent strain in covering cap is very little when impact angle is less than 15°. Element deleted number in covering cap reaches the maximum when impact angle is between 60°and 65°by titanium alloy projectile. While the bigger the impact angle and the more serious damage of the covering cap will be when rubber projectile impact composite covering cap. The energy needed for occurring damage on external covering cap and internal covering cap is less than and higher than that when single covering cap occur damage, respectively. The energy needed for complete breakdown of double-layer covering cap is much higher than that of single covering cap.

  14. Corrosion of aluminum alloy 2024 by microorganisms isolated from aircraft fuel tanks.

    PubMed

    McNamara, Christopher J; Perry, Thomas D; Leard, Ryan; Bearce, Ktisten; Dante, James; Mitchell, Ralph

    2005-01-01

    Microorganisms frequently contaminate jet fuel and cause corrosion of fuel tank metals. In the past, jet fuel contaminants included a diverse group of bacteria and fungi. The most common contaminant was the fungus Hormoconis resinae. However, the jet fuel community has been altered by changes in the composition of the fuel and is now dominated by bacterial contaminants. The purpose of this research was to determine the composition of the microbial community found in fuel tanks containing jet propellant-8 (JP-8) and to determine the potential of this community to cause corrosion of aluminum alloy 2024 (AA2024). Isolates cultured from fuel tanks containing JP-8 were closely related to the genus Bacillus and the fungi Aureobasidium and Penicillium. Biocidal activity of the fuel system icing inhibitor diethylene glycol monomethyl ether is the most likely cause of the prevalence of endospore forming bacteria. Electrochemical impedance spectroscopy and metallographic analysis of AA2024 exposed to the fuel tank environment indicated that the isolates caused corrosion of AA2024. Despite the limited taxonomic diversity of microorganisms recovered from jet fuel, the community has the potential to corrode fuel tanks. PMID:16522539

  15. Investigation of Electromagnetic Field Threat to Fuel Tank Wiring of a Transport Aircraft

    NASA Technical Reports Server (NTRS)

    Ely, Jay J.; Nguyen, Truong X.; Dudley, Kenneth L.; Scearce, Stephen A.; Beck, Fred B.; Deshpande, Manohar D.; Cockrell, C. R.

    2000-01-01

    National Transportation Safety Board investigators have questioned whether an electrical discharge in the Fuel Quantity Indication System (FQIS) may have initiated the TWA-800 center wing tank explosion. Because the FQIS was designed to be incapable of producing such a discharge on its own, attention has been directed to mechanisms of outside electromagnetic influence. To support the investigation, the NASA Langley Research Center was tasked to study the potential for radiated electromagnetic fields from external radio frequency (RF) transmitters and passenger carried portable electronic devices (PEDs) to excite the FQIS enough to cause arcing, sparking or excessive heating within the fuel tank.

  16. Dual Tank Fuel System

    DOEpatents

    Wagner, Richard William; Burkhard, James Frank; Dauer, Kenneth John

    1999-11-16

    A dual tank fuel system has primary and secondary fuel tanks, with the primary tank including a filler pipe to receive fuel and a discharge line to deliver fuel to an engine, and with a balance pipe interconnecting the primary tank and the secondary tank. The balance pipe opens close to the bottom of each tank to direct fuel from the primary tank to the secondary tank as the primary tank is filled, and to direct fuel from the secondary tank to the primary tank as fuel is discharged from the primary tank through the discharge line. A vent line has branches connected to each tank to direct fuel vapor from the tanks as the tanks are filled, and to admit air to the tanks as fuel is delivered to the engine.

  17. Investigation of thermoelastic stresses induced at high altitudes on aircraft external fuel tanks

    NASA Astrophysics Data System (ADS)

    Mousseau, Stephanie Lynn Steber

    As composite technology has grown over the past several decades, the use of composite materials in military applications has become more feasible and widely accepted. Although composite materials provide many benefits, including strength optimization and reduced weight, damage and repair of these materials creates an additional challenge, especially when operating in a marine environment, such as on a carrier deck. This is evident within the Navy, as excessive damage often leads to the scrapping of F/A-18 External Fuel Tanks. This damage comes in many forms, the most elusive of which is delamination. Often the delamination found on the tanks is beyond repairable limits and the cause unknown, making it difficult to predict and prevent. The purpose of this investigation was to study the structure of the Navy's 330 gallon External Fuel Tanks and investigate one potential cause of delamination, stresses induced at high altitudes by cold temperatures. A stress analysis was completed using finite element software, and validation of the model was accomplished through testing of a scale model specimen. Due to the difficulties in modeling and predicting delamination, such as unknown presence of voids and understanding failure criteria, delamination was not modeled in Abaqus, rather stresses were observed and characteristics were studied to understand the potential for delamination within the layup. In addition, studies were performed to understand the effect of material properties and layup sequence on the stress distribution within the tank. Alternative design solutions are presented which could reduce the radial stresses within the tank, and recommendations are made for further study to understand the trade-offs between stress, cost, and manufacturability.

  18. Highly distributed multi-point, temperature and pressure compensated, fiber optic oxygen sensors (FOxSense) for aircraft fuel tank environment and safety monitoring

    NASA Astrophysics Data System (ADS)

    Mendoza, Edgar A.; Kempen, Cornelia; Sun, Sunjian; Esterkin, Yan

    2014-09-01

    This paper describes recent progress towards the development and qualification of a highly distributed, multi-point, all optical pressure and temperature compensated, fiber optic oxygen sensor (FOxSense™) system for closed-loop monitoring and safety of the oxygen ullage environment inside fuel tanks of military and commercial aircraft. The alloptical FOxSense™ system uses a passive, multi-parameter (O2/T&P) fiber optic sensor probe with no electrical connections leading to the sensors install within the fuel tanks of an aircraft. The all optical sensor consists of an integrated multi-parameter fiber optic sensor probe that integrates a fuel insensitive fluorescence based optical oxygen optrode with built-in temperature and pressure optical optrodes for compensation of temperature and pressure variants induced in the fluorescence response of the oxygen optrode. The distributed (O2/T&P) fiber optic sensors installed in the fuel tanks of the aircraft are connected to the FOxSense optoelectronic system via a fiber optic cable conduit reaching to each fuel tank in the aircraft. A multichannel frequency-domain fiber optic sensor read-out (FOxSense™) system is used to interrogate the optical signal of all three sensors in real-time and to display the fuel tank oxygen environment suitable for aircraft status and alarm applications. Preliminary testing of the all optical fiber optic oxygen sensor have demonstrated the ability to monitor the oxygen environment inside a simulated fuel tank in the range of 0% O2 to 40% O2 concentrations, temperatures from (-) 40°C to (+) 60°C, and altitudes from 0-ft to 40,000-ft.

  19. Alternative jet aircraft fuels

    NASA Technical Reports Server (NTRS)

    Grobman, J.

    1979-01-01

    Potential changes in jet aircraft fuel specifications due to shifts in supply and quality of refinery feedstocks are discussed with emphasis on the effects these changes would have on the performance and durability of aircraft engines and fuel systems. Combustion characteristics, fuel thermal stability, and fuel pumpability at low temperature are among the factors considered. Combustor and fuel system technology needs for broad specification fuels are reviewed including prevention of fuel system fouling and fuel system technology for fuels with higher freezing points.

  20. 14 CFR 25.981 - Fuel tank ignition prevention.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fuel tank ignition prevention. 25.981... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.981 Fuel tank ignition prevention. (a) No ignition source may be present at each point in the fuel tank or fuel...

  1. 14 CFR 23.965 - Fuel tank tests.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Fuel tank tests. 23.965 Section 23.965 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Fuel System § 23.965 Fuel tank tests. (a) Each fuel tank must...

  2. 14 CFR 25.963 - Fuel tanks: general.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Fuel tanks: general. 25.963 Section 25.963 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.963 Fuel tanks: general. (a) Each fuel tank must be able to...

  3. 49 CFR 173.172 - Aircraft hydraulic power unit fuel tank.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ..., such as vermiculite, in a strong outer tightly closed metal packaging which will adequately protect all... securely packed in non-combustible cushioning material, such as vermiculite, in a strong outer tightly closed metal packaging which will adequately protect all fittings. Maximum quantity of fuel per unit...

  4. 49 CFR 173.172 - Aircraft hydraulic power unit fuel tank.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...-GENERAL REQUIREMENTS FOR SHIPMENTS AND PACKAGINGS Non-bulk Packaging for Hazardous Materials Other Than... consist of an aluminum pressure vessel made from tubing and having welded heads. Primary containment of the fuel within this vessel must consist of a welded aluminum bladder having a maximum internal...

  5. Hydrogen fueled subsonic aircraft - A prospective

    NASA Technical Reports Server (NTRS)

    Witcofski, R. D.

    1977-01-01

    The performance characteristics of hydrogen-fueled subsonic transport aircraft are compared with those of aircraft using conventional aviation kerosene. Results of the Cryogenically Fueled Aircraft Technology Program sponsored by NASA indicate that liquid hydrogen may be particularly efficient for subsonic transport craft when ranges of 4000 km or more are involved; however, development of advanced cryogenic tanks for liquid hydrogen fuel is required. The NASA-sponsored program also found no major technical obstacles for international airports converting the liquid hydrogen fueling systems. Resource utilization efficiency and fuel production costs for hydrogen produced by coal gasification or for liquid methane or synthetic aviation kerosene are also assessed.

  6. Advanced fuel system technology for utilizing broadened property aircraft fuels

    NASA Technical Reports Server (NTRS)

    Reck, G. M.

    1980-01-01

    Factors which will determine the future supply and cost of aviation turbine fuels are discussed. The most significant fuel properties of volatility, fluidity, composition, and thermal stability are discussed along with the boiling ranges of gasoline, naphtha jet fuels, kerosene, and diesel oil. Tests were made to simulate the low temperature of an aircraft fuel tank to determine fuel tank temperatures for a 9100-km flight with and without fuel heating; the effect of N content in oil-shale derived fuels on the Jet Fuel Thermal Oxidation Tester breakpoint temperature was measured. Finally, compatibility of non-metallic gaskets, sealants, and coatings with increased aromatic content jet fuels was examined.

  7. Alternative aircraft fuels technology

    NASA Technical Reports Server (NTRS)

    Grobman, J.

    1976-01-01

    NASA is studying the characteristics of future aircraft fuels produced from either petroleum or nonpetroleum sources such as oil shale or coal. These future hydrocarbon based fuels may have chemical and physical properties that are different from present aviation turbine fuels. This research is aimed at determining what those characteristics may be, how present aircraft and engine components and materials would be affected by fuel specification changes, and what changes in both aircraft and engine design would be required to utilize these future fuels without sacrificing performance, reliability, or safety. This fuels technology program was organized to include both in-house and contract research on the synthesis and characterization of fuels, component evaluations of combustors, turbines, and fuel systems, and, eventually, full-scale engine demonstrations. A review of the various elements of the program and significant results obtained so far are presented.

  8. 14 CFR 23.969 - Fuel tank expansion space.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel tank expansion space. 23.969 Section 23.969 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT....969 Fuel tank expansion space. Each fuel tank must have an expansion space of not less than...

  9. 14 CFR 23.969 - Fuel tank expansion space.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Fuel tank expansion space. 23.969 Section 23.969 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT....969 Fuel tank expansion space. Each fuel tank must have an expansion space of not less than...

  10. 14 CFR 23.969 - Fuel tank expansion space.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Fuel tank expansion space. 23.969 Section 23.969 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT....969 Fuel tank expansion space. Each fuel tank must have an expansion space of not less than...

  11. 14 CFR 23.969 - Fuel tank expansion space.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fuel tank expansion space. 23.969 Section 23.969 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT....969 Fuel tank expansion space. Each fuel tank must have an expansion space of not less than...

  12. 14 CFR 23.969 - Fuel tank expansion space.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Fuel tank expansion space. 23.969 Section 23.969 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT....969 Fuel tank expansion space. Each fuel tank must have an expansion space of not less than...

  13. Selecting fuel storage tanks

    SciTech Connect

    Doherty, R. )

    1993-07-01

    Until the use of underground storage tanks (USTs) for fuel storage was mandated by the 1970 Uniform Fire Code, above-ground storage tanks (ASTs) were widely used. The tanks were relatively crude by today's standards so the technical superiority and fire protection afforded by use of underground tanks soon made USTs the system of choice for almost all uses. As a result, tens of thousands of tanks have been underground for more than 20 years, and at some point, many of them began leaking. Often, the first sign of these leaks appeared when groundwater became contaminated. The EPA responded to this major environmental problem by strictly regulating the use of below-ground tanks to store flammable liquids. These added regulations have had a severe effect on both service stations and private fueling. The removal of underground tanks and the removal and disposal of any contaminated soil is an extremely expensive proposition. Furthermore, new Uniform Fire Code regulations have added to the costs, imposing requirements for double-walled tanks, corrosion protection, electronic leak monitoring, and annual tank testing. These requirements, plus the financial responsibility requirements the EPA imposed on owners and users of below-ground tanks, led directly to a reconsideration of the use of above-ground tanks for some applications.

  14. Alternative aircraft fuels

    NASA Technical Reports Server (NTRS)

    Longwell, J. P.; Grobman, J. S.

    1977-01-01

    The efficient utilization of fossil fuels by future jet aircraft may necessitate the broadening of current aviation turbine fuel specifications. The most significant changes in specifications would be an increased aromatics content and a higher final boiling point in order to minimize refinery energy consumption and costs. These changes would increase the freezing point and might lower the thermal stability of the fuel, and could cause increased pollutant emissions, increased combustor liner temperatures, and poorer ignition characteristics. The effects that broadened specification fuels may have on present-day jet aircraft and engine components and the technology required to use fuels with broadened specifications are discussed.

  15. ADM. Tanks: from left to right: fuel oil tank, fuel ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    ADM. Tanks: from left to right: fuel oil tank, fuel pump house (TAN-611), engine fuel tank, water pump house, water storage tank. Camera facing northwest. Not edge of shielding berm at left of view. Date: November 25, 1953. INEEL negative no. 9217 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID

  16. Inerting Aircraft Fuel Systems Using Exhaust Gases

    NASA Technical Reports Server (NTRS)

    Hehemann, David G.

    2002-01-01

    Our purpose in this proposal was to determine the feasibility of using carbon dioxide, possibly obtained from aircraft exhaust gases as a substance to inert the fuel contained in fuel tanks aboard aircraft. To do this, we decided to look at the effects carbon dioxide has upon commercial Jet-A aircraft fuel. In particular, we looked at the solubility of CO2 in Jet-A fuel, the pumpability of CO2-saturated Jet-A fuel, the flashpoint of Jet-A fuel under various mixtures of air and CO2, the static outgassing of CO2-Saturated Jet-A fuel and the dynamic outgassing of Jet-A fuel during pumping of Jet-A fuel.

  17. 14 CFR 27.965 - Fuel tank tests.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fuel tank tests. 27.965 Section 27.965 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Fuel System § 27.965 Fuel tank tests. (a) Each fuel...

  18. Alternative aircraft fuels

    NASA Technical Reports Server (NTRS)

    Longwell, J. P.; Grobman, J.

    1978-01-01

    In connection with the anticipated impossibility to provide on a long-term basis liquid fuels derived from petroleum, an investigation has been conducted with the objective to assess the suitability of jet fuels made from oil shale and coal and to develop a data base which will allow optimization of future fuel characteristics, taking energy efficiency of manufacture and the tradeoffs in aircraft and engine design into account. The properties of future aviation fuels are examined and proposed solutions to problems of alternative fuels are discussed. Attention is given to the refining of jet fuel to current specifications, the control of fuel thermal stability, and combustor technology for use of broad specification fuels. The first solution is to continue to develop the necessary technology at the refinery to produce specification jet fuels regardless of the crude source.

  19. 14 CFR 23.967 - Fuel tank installation.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Fuel tank installation. 23.967 Section 23.967 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Fuel System § 23.967 Fuel tank installation. (a) Each...

  20. 14 CFR 29.969 - Fuel tank expansion space.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel tank expansion space. 29.969 Section 29.969 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System § 29.969 Fuel tank expansion...

  1. 14 CFR 27.969 - Fuel tank expansion space.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel tank expansion space. 27.969 Section 27.969 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Fuel System § 27.969 Fuel tank expansion...

  2. 14 CFR 25.969 - Fuel tank expansion space.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel tank expansion space. 25.969 Section 25.969 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.969 Fuel tank expansion...

  3. 14 CFR 25.981 - Fuel tank ignition prevention.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel tank ignition prevention. 25.981 Section 25.981 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.981 Fuel tank ignition prevention. (a) No ignition source may...

  4. 14 CFR 29.969 - Fuel tank expansion space.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Fuel tank expansion space. 29.969 Section 29.969 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System § 29.969 Fuel tank expansion...

  5. 14 CFR 25.969 - Fuel tank expansion space.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Fuel tank expansion space. 25.969 Section 25.969 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.969 Fuel tank expansion...

  6. 14 CFR 25.969 - Fuel tank expansion space.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fuel tank expansion space. 25.969 Section 25.969 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.969 Fuel tank expansion...

  7. 14 CFR 29.969 - Fuel tank expansion space.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fuel tank expansion space. 29.969 Section 29.969 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System § 29.969 Fuel tank expansion...

  8. 14 CFR 25.969 - Fuel tank expansion space.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Fuel tank expansion space. 25.969 Section 25.969 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.969 Fuel tank expansion...

  9. 14 CFR 27.969 - Fuel tank expansion space.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Fuel tank expansion space. 27.969 Section 27.969 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Fuel System § 27.969 Fuel tank expansion...

  10. 14 CFR 27.969 - Fuel tank expansion space.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fuel tank expansion space. 27.969 Section 27.969 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Fuel System § 27.969 Fuel tank expansion...

  11. 14 CFR 27.969 - Fuel tank expansion space.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Fuel tank expansion space. 27.969 Section 27.969 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Fuel System § 27.969 Fuel tank expansion...

  12. 14 CFR 29.969 - Fuel tank expansion space.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Fuel tank expansion space. 29.969 Section 29.969 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System § 29.969 Fuel tank expansion...

  13. 14 CFR 29.969 - Fuel tank expansion space.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Fuel tank expansion space. 29.969 Section 29.969 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System § 29.969 Fuel tank expansion...

  14. 14 CFR 25.969 - Fuel tank expansion space.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Fuel tank expansion space. 25.969 Section 25.969 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.969 Fuel tank expansion...

  15. 14 CFR 27.969 - Fuel tank expansion space.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Fuel tank expansion space. 27.969 Section 27.969 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Fuel System § 27.969 Fuel tank expansion...

  16. Study of methane fuel for subsonic transport aircraft

    NASA Technical Reports Server (NTRS)

    Carson, L. K.; Davis, G. W.; Versaw, E. F.; Cunnington, G. R., Jr.; Daniels, E. J.

    1980-01-01

    The cost and performance were defined for commercial transport using liquid methane including its fuel system and the ground facility complex required for the processing and storage of methane. A cost and performance comparison was made with Jet A and hydrogen powered aircraft of the same payload and range capability. Extensive design work was done on cryogenic fuel tanks, insulation systems as well as the fuel system itself. Three candidate fuel tank locations were evaluated, i.e., fuselage tanks, wing tanks or external pylon tanks.

  17. Jet aircraft hydrocarbon fuels technology

    NASA Technical Reports Server (NTRS)

    Longwell, J. P. (Editor)

    1978-01-01

    A broad specification, referee fuel was proposed for research and development. This fuel has a lower, closely specified hydrogen content and higher final boiling point and freezing point than ASTM Jet A. The workshop recommended various priority items for fuel research and development. Key items include prediction of tradeoffs among fuel refining, distribution, and aircraft operating costs; combustor liner temperature and emissions studies; and practical simulator investigations of the effect of high freezing point and low thermal stability fuels on aircraft fuel systems.

  18. 49 CFR 238.423 - Fuel tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Fuel tanks. 238.423 Section 238.423 Transportation....423 Fuel tanks. (a) External fuel tanks. Each type of external fuel tank must be approved by FRA's Associate Administrator for Safety upon a showing that the fuel tank provides a level of safety at...

  19. 49 CFR 238.423 - Fuel tanks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Fuel tanks. 238.423 Section 238.423 Transportation....423 Fuel tanks. (a) External fuel tanks. Each type of external fuel tank must be approved by FRA's Associate Administrator for Safety upon a showing that the fuel tank provides a level of safety at...

  20. 49 CFR 238.423 - Fuel tanks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Fuel tanks. 238.423 Section 238.423 Transportation....423 Fuel tanks. (a) External fuel tanks. Each type of external fuel tank must be approved by FRA's Associate Administrator for Safety upon a showing that the fuel tank provides a level of safety at...

  1. 49 CFR 238.423 - Fuel tanks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Fuel tanks. 238.423 Section 238.423 Transportation....423 Fuel tanks. (a) External fuel tanks. Each type of external fuel tank must be approved by FRA's Associate Administrator for Safety upon a showing that the fuel tank provides a level of safety at...

  2. 49 CFR 238.423 - Fuel tanks.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Fuel tanks. 238.423 Section 238.423 Transportation....423 Fuel tanks. (a) External fuel tanks. Each type of external fuel tank must be approved by FRA's Associate Administrator for Safety upon a showing that the fuel tank provides a level of safety at...

  3. Ecodesign of Liquid Fuel Tanks

    NASA Astrophysics Data System (ADS)

    Gicevska, Jana; Bazbauers, Gatis; Repele, Mara

    2011-01-01

    The subject of the study is a 10 litre liquid fuel tank made of metal and used for fuel storage and transportation. The study dealt with separate life cycle stages of this product, compared environmental impacts of similar fuel tanks made of metal and plastic, as well as analysed the product's end-of-life cycle stage, studying the waste treatment and disposal scenarios. The aim of this study was to find opportunities for improvement and to develop proposals for the ecodesign of 10 litre liquid fuel tank.

  4. Fuel conservative aircraft engine technology

    NASA Technical Reports Server (NTRS)

    Nored, D. L.

    1978-01-01

    Technology developments for more fuel-efficiency subsonic transport aircraft are reported. Three major propulsion projects were considered: (1) engine component improvement - directed at current engines; (2) energy efficient engine - directed at new turbofan engines; and (3) advanced turboprops - directed at technology for advanced turboprop-powered aircraft. Each project is reviewed and some of the technologies and recent accomplishments are described.

  5. Study of fuel systems for LH2-fueled subsonic transport aircraft, volume 1

    NASA Technical Reports Server (NTRS)

    Brewer, G. D.; Morris, R. E.; Davis, G. W.; Versaw, E. F.; Cunnington, G. R., Jr.; Riple, J. C.; Baerst, C. F.; Garmong, G.

    1978-01-01

    Several engine concepts examined to determine a preferred design which most effectively exploits the characteristics of hydrogen fuel in aircraft tanks received major emphasis. Many candidate designs of tank structure and cryogenic insulation systems were evaluated. Designs of all major elements of the aircraft fuel system including pumps, lines, valves, regulators, and heat exchangers received attention. Selected designs of boost pumps to be mounted in the LH2 tanks, and of a high pressure pump to be mounted on the engine were defined. A final design of LH2-fueled transport aircraft was established which incorporates a preferred design of fuel system. That aircraft was then compared with a conventionally fueled counterpart designed to equivalent technology standards.

  6. Aircraft Fuel Cell Power Systems

    NASA Technical Reports Server (NTRS)

    Needham, Robert

    2004-01-01

    In recent years, fuel cells have been explored for use in aircraft. While the weight and size of fuel cells allows only the smallest of aircraft to use fuel cells for their primary engines, fuel cells have showed promise for use as auxiliary power units (APUs), which power aircraft accessories and serve as an electrical backup in case of an engine failure. Fuel cell MUS are both more efficient and emit fewer pollutants. However, sea-level fuel cells need modifications to be properly used in aircraft applications. At high altitudes, the ambient air has a much lower pressure than at sea level, which makes it much more difficult to get air into the fuel cell to react and produce electricity. Compressors can be used to pressurize the air, but this leads to added weight, volume, and power usage, all of which are undesirable things. Another problem is that fuel cells require hydrogen to create electricity, and ever since the Hindenburg burst into flames, aircraft carrying large quantities of hydrogen have not been in high demand. However, jet fuel is a hydrocarbon, so it is possible to reform it into hydrogen. Since jet fuel is already used to power conventional APUs, it is very convenient to use this to generate the hydrogen for fuel-cell-based APUs. Fuel cells also tend to get large and heavy when used for applications that require a large amount of power. Reducing the size and weight becomes especially beneficial when it comes to fuel cells for aircraft. My goal this summer is to work on several aspects of Aircraft Fuel Cell Power System project. My first goal is to perform checks on a newly built injector rig designed to test different catalysts to determine the best setup for reforming Jet-A fuel into hydrogen. These checks include testing various thermocouples, transmitters, and transducers, as well making sure that the rig was actually built to the design specifications. These checks will help to ensure that the rig will operate properly and give correct results

  7. Assessment of Alternative Aircraft Fuels

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The purpose of this symposium is to provide representatives from industry, government, and academia concerned with the availability and quality of future aviation turbine fuels with recent technical results and a status review of DOD and NASA sponsored fuels research projects. The symposium has included presentations on the potential crude sources, refining methods, and characteristics of future fuels; the effects of changing fuel characteristics on the performance and durability of jet aircraft components and systems; and the prospects for evolving suitable technology to produce and use future fuels.

  8. 33 CFR 183.510 - Fuel tanks.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Fuel tanks. 183.510 Section 183... SAFETY BOATS AND ASSOCIATED EQUIPMENT Fuel Systems Equipment Standards § 183.510 Fuel tanks. (a) Each fuel tank in a boat must have been tested by its manufacturer under § 183.580 and not leak...

  9. 33 CFR 183.510 - Fuel tanks.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Fuel tanks. 183.510 Section 183... SAFETY BOATS AND ASSOCIATED EQUIPMENT Fuel Systems Equipment Standards § 183.510 Fuel tanks. (a) Each fuel tank in a boat must have been tested by its manufacturer under § 183.580 and not leak...

  10. 33 CFR 183.510 - Fuel tanks.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Fuel tanks. 183.510 Section 183... SAFETY BOATS AND ASSOCIATED EQUIPMENT Fuel Systems Equipment Standards § 183.510 Fuel tanks. (a) Each fuel tank in a boat must have been tested by its manufacturer under § 183.580 and not leak...

  11. 33 CFR 183.510 - Fuel tanks.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Fuel tanks. 183.510 Section 183... SAFETY BOATS AND ASSOCIATED EQUIPMENT Fuel Systems Equipment Standards § 183.510 Fuel tanks. (a) Each fuel tank in a boat must have been tested by its manufacturer under § 183.580 and not leak...

  12. 33 CFR 183.510 - Fuel tanks.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Fuel tanks. 183.510 Section 183... SAFETY BOATS AND ASSOCIATED EQUIPMENT Fuel Systems Equipment Standards § 183.510 Fuel tanks. (a) Each fuel tank in a boat must have been tested by its manufacturer under § 183.580 and not leak...

  13. In-flight and simulated aircraft fuel temperature measurements

    NASA Technical Reports Server (NTRS)

    Svehla, Roger A.

    1990-01-01

    Fuel tank measurements from ten flights of an L1011 commercial aircraft are reported for the first time. The flights were conducted from 1981 to 1983. A thermocouple rake was installed in an inboard wing tank and another in an outboard tank. During the test periods of either 2 or 5 hr, at altitudes of 10,700 m (35,000 ft) or higher, either the inboard or the outboard tank remained full. Fuel temperature profiles generally developed in the expected manner. The bulk fuel was mixed by natural convection to a nearly uniform temperature, especially in the outboard tank, and a gradient existed at the bottom conduction zone. The data indicated that when full, the upper surface of the inboard tank was wetted and the outboard tank was unwetted. Companion NASA Lewis Research Center tests were conducted in a 0.20 cubic meter (52 gal) tank simulator of the outboard tank, chilled on the top and bottom, and insulated on the sides. Even though the simulator tank had no internal components corresponding to the wing tank, temperatures agreed with the flight measurements for wetted upper surface conditions, but not for unwetted conditions. It was concluded that if boundary conditions are carefully controlled, simulators are a useful way of evaluating actual flight temperatures.

  14. 14 CFR 29.975 - Fuel tank vents and carburetor vapor vents.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Fuel tank vents and carburetor vapor vents. 29.975 Section 29.975 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System § 29.975 Fuel tank vents and carburetor vapor vents....

  15. 14 CFR 23.975 - Fuel tank vents and carburetor vapor vents.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Fuel tank vents and carburetor vapor vents. 23.975 Section 23.975 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Fuel System § 23.975 Fuel tank...

  16. 14 CFR 25.975 - Fuel tank vents and carburetor vapor vents.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Fuel tank vents and carburetor vapor vents. 25.975 Section 25.975 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.975 Fuel tank vents and carburetor vapor vents....

  17. Passenger Transmitters as A Possible Cause of Aircraft Fuel Ignition

    NASA Technical Reports Server (NTRS)

    Nguyen, Truong X.; Ely, Jay J.; Dudley, Kenneth L.; Scearce, Stephen A.; Hatfield, Michael O.; Richardson, Robert E.

    2006-01-01

    An investigation was performed to study the potential for radio frequency (RF) power radiated from transmitting Portable Electronic Devices (PEDs) to create an arcing/sparking event within the fuel tank of a large transport aircraft. A survey of RF emissions from typical intentional transmitting PEDs was first performed. Aircraft measurements of RF coupling to the fuel tank and its wiring were also performed to determine the PEDs induced power on the wiring, and the re-radiated power within the fuel tank. Laboratory simulations were conducted to determine the required RF power level for an arcing/sparking event. Data analysis shows large positive safety margins, even with simulated faults on the wiring.

  18. Realistic Probability Estimates For Destructive Overpressure Events In Heated Center Wing Tanks Of Commercial Jet Aircraft

    SciTech Connect

    Alvares, N; Lambert, H

    2007-02-07

    The Federal Aviation Administration (FAA) identified 17 accidents that may have resulted from fuel tank explosions on commercial aircraft from 1959 to 2001. Seven events involved JP 4 or JP 4/Jet A mixtures that are no longer used for commercial aircraft fuel. The remaining 10 events involved Jet A or Jet A1 fuels that are in current use by the commercial aircraft industry. Four fuel tank explosions occurred in center wing tanks (CWTs) where on-board appliances can potentially transfer heat to the tank. These tanks are designated as ''Heated Center Wing Tanks'' (HCWT). Since 1996, the FAA has significantly increased the rate at which it has mandated airworthiness directives (ADs) directed at elimination of ignition sources. This effort includes the adoption, in 2001, of Special Federal Aviation Regulation 88 of 14 CFR part 21 (SFAR 88 ''Fuel Tank System Fault Tolerance Evaluation Requirements''). This paper addresses SFAR 88 effectiveness in reducing HCWT ignition source probability. Our statistical analysis, relating the occurrence of both on-ground and in-flight HCWT explosions to the cumulative flight hours of commercial passenger aircraft containing HCWT's reveals that the best estimate of HCWT explosion rate is 1 explosion in 1.4 x 10{sup 8} flight hours. Based on an analysis of SFAR 88 by Sandia National Laboratories and our independent analysis, SFAR 88 reduces current risk of historical HCWT explosion by at least a factor of 10, thus meeting an FAA risk criteria of 1 accident in billion flight hours. This paper also surveys and analyzes parameters for Jet A fuel ignition in HCWT's. Because of the paucity of in-flight HCWT explosions, we conclude that the intersection of the parameters necessary and sufficient to result in an HCWT explosion with sufficient overpressure to rupture the HCWT is extremely rare.

  19. Study of advanced fuel system concepts for commercial aircraft

    NASA Technical Reports Server (NTRS)

    Coffinberry, G. A.

    1985-01-01

    An analytical study was performed in order to assess relative performance and economic factors involved with alternative advanced fuel systems for future commercial aircraft operating with broadened property fuels. The DC-10-30 wide-body tri-jet aircraft and the CF6-8OX engine were used as a baseline design for the study. Three advanced systems were considered and were specifically aimed at addressing freezing point, thermal stability and lubricity fuel properties. Actual DC-10-30 routes and flight profiles were simulated by computer modeling and resulted in prediction of aircraft and engine fuel system temperatures during a nominal flight and during statistical one-day-per-year cold and hot flights. Emergency conditions were also evaluated. Fuel consumption and weight and power extraction results were obtained. An economic analysis was performed for new aircraft and systems. Advanced system means for fuel tank heating included fuel recirculation loops using engine lube heat and generator heat. Environmental control system bleed air heat was used for tank heating in a water recirculation loop. The results showed that fundamentally all of the three advanced systems are feasible but vary in their degree of compatibility with broadened-property fuel.

  20. Alternate Fuels for Use in Commercial Aircraft

    NASA Technical Reports Server (NTRS)

    Daggett, David L.; Hendricks, Robert C.; Walther, Rainer; Corporan, Edwin

    2008-01-01

    The engine and aircraft Research and Development (R&D) communities have been investigating alternative fueling in near-term, midterm, and far-term aircraft. A drop in jet fuel replacement, consisting of a kerosene (Jet-A) and synthetic fuel blend, will be possible for use in existing and near-term aircraft. Future midterm aircraft may use a biojet and synthetic fuel blend in ultra-efficient airplane designs. Future far-term engines and aircraft in 50-plus years may be specifically designed to use a low- or zero-carbon fuel. Synthetic jet fuels from coal, natural gas, or other hydrocarbon feedstocks are very similar in performance to conventional jet fuel, yet the additional CO2 produced during the manufacturing needs to be permanently sequestered. Biojet fuels need to be developed specifically for jet aircraft without displacing food production. Envisioned as midterm aircraft fuel, if the performance and cost liabilities can be overcome, biofuel blends with synthetic jet or Jet-A fuels have near-term potential in terms of global climatic concerns. Long-term solutions address dramatic emissions reductions through use of alternate aircraft fuels such as liquid hydrogen or liquid methane. Either of these new aircraft fuels will require an enormous change in infrastructure and thus engine and airplane design. Life-cycle environmental questions need to be addressed.

  1. 14 CFR 26.35 - Changes to type certificates affecting fuel tank flammability.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Changes to type certificates affecting fuel tank flammability. 26.35 Section 26.35 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT CONTINUED AIRWORTHINESS AND SAFETY IMPROVEMENTS FOR TRANSPORT CATEGORY AIRPLANES Fuel Tank Flammability §...

  2. 14 CFR Appendix N to Part 25 - Fuel Tank Flammability Exposure and Reliability Analysis

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Fuel Tank Flammability Exposure and Reliability Analysis N Appendix N TO Part 25 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Pt. 25, App. N Appendix N TO Part 25—Fuel Tank...

  3. 14 CFR Appendix N to Part 25 - Fuel Tank Flammability Exposure and Reliability Analysis

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fuel Tank Flammability Exposure and Reliability Analysis N Appendix N TO Part 25 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Pt. 25, App. N Appendix N TO Part 25—Fuel Tank...

  4. Thermally resistant polymers for fuel tank sealants

    NASA Technical Reports Server (NTRS)

    Webster, J. A.

    1972-01-01

    Conversion of fluorocarbon dicarboxylic acid to intermediates whose terminal functional groups permit polymerization is discussed. Resulting polymers are used as fuel tank sealers for jet fuels at elevated temperatures. Stability and fuel resistance of the prototype polymers is explained.

  5. Preliminary analysis of aircraft fuel systems for use with broadened specification jet fuels

    NASA Technical Reports Server (NTRS)

    Pasion, A. J.; Thomas, I.

    1977-01-01

    An analytical study was conducted on the use of broadened specification hydrocarbon fuels in present day aircraft. A short range Boeing 727 mission and three long range Boeing 747 missions were used as basis of calculation for one-day-per-year extreme values of fuel loading, airport ambient and altitude ambient temperatures with various seasonal and climatic conditions. Four hypothetical fuels were selected; two high-vapor-pressure fuels with 35 kPa and 70 kPa RVP and two high-freezing-point fuels with -29 C and -18 C freezing points. In-flight fuel temperatures were predicted by Boeing's aircraft fuel tank thermal analyzer computer program. Boil-off rates were calculated for the high vapor pressure fuels and heating/insulation requirements for the high freezing point fuels were established. Possible minor and major heating system modifications were investigated with respect to heat output, performance and economic penalties for the high freezing point fuels.

  6. 49 CFR 238.223 - Locomotive fuel tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Locomotive fuel tanks. 238.223 Section 238.223... Equipment § 238.223 Locomotive fuel tanks. Locomotive fuel tanks shall comply with either the following or....21: (a) External fuel tanks. External locomotive fuel tanks shall comply with the...

  7. 49 CFR 238.223 - Locomotive fuel tanks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Locomotive fuel tanks. 238.223 Section 238.223... Equipment § 238.223 Locomotive fuel tanks. Locomotive fuel tanks shall comply with either the following or....21: (a) External fuel tanks. External locomotive fuel tanks shall comply with the...

  8. 14 CFR 25.971 - Fuel tank sump.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fuel tank sump. 25.971 Section 25.971... STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.971 Fuel tank sump. (a) Each fuel tank... fuel tank must allow drainage of any hazardous quantity of water from any part of the tank to its...

  9. 49 CFR 238.223 - Locomotive fuel tanks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Locomotive fuel tanks. 238.223 Section 238.223... Equipment § 238.223 Locomotive fuel tanks. Locomotive fuel tanks shall comply with either the following or....21: (a) External fuel tanks. External locomotive fuel tanks shall comply with the...

  10. 14 CFR 29.971 - Fuel tank sump.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Fuel tank sump. 29.971 Section 29.971... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System § 29.971 Fuel tank sump. (a) Each fuel tank... escape through the tank outlet opening. (c) Each fuel tank must allow drainage of hazardous quantities...

  11. 14 CFR 29.971 - Fuel tank sump.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fuel tank sump. 29.971 Section 29.971... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System § 29.971 Fuel tank sump. (a) Each fuel tank... escape through the tank outlet opening. (c) Each fuel tank must allow drainage of hazardous quantities...

  12. 14 CFR 29.971 - Fuel tank sump.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Fuel tank sump. 29.971 Section 29.971... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System § 29.971 Fuel tank sump. (a) Each fuel tank... escape through the tank outlet opening. (c) Each fuel tank must allow drainage of hazardous quantities...

  13. Advanced fuel system technology for utilizing broadened property aircraft fuels

    NASA Technical Reports Server (NTRS)

    Reck, G. M.

    1980-01-01

    Possible changes in fuel properties are identified based on current trends and projections. The effect of those changes with respect to the aircraft fuel system are examined and some technological approaches to utilizing those fuels are described.

  14. Assessment of aircraft crash frequency for the Hanford site 200 Area tank farms

    SciTech Connect

    OBERG, B.D.

    2003-03-22

    Two factors, the near-airport crash frequency and the non-airport crash frequency, enter into the estimate of the annual aircraft crash frequency at a facility. The near-airport activities, Le., takeoffs and landings from any of the airports in a 23-statute-mile (smi) (20-nautical-mile, [nmi]) radius of the facilities, do not significantly contribute to the annual aircraft crash frequency for the 200 Area tank farms. However, using the methods of DOE-STD-3014-96, the total frequency of an aircraft crash for the 200 Area tank farms, all from non-airport operations, is calculated to be 7.10E-6/yr. Thus, DOE-STD-3014-96 requires a consequence analysis for aircraft crash. This total frequency consists of contributions from general aviation, helicopter activities, commercial air carriers and air taxis, and from large and small military aircraft. The major contribution to this total is from general aviation with a frequency of 6.77E-6/yr. All other types of aircraft have less than 1E-6/yr crash frequencies. The two individual aboveground facilities were in the realm of 1E-7/yr crash frequencies: 204-AR Waste Unloading Facility at 1.56E-7, and 242-T Evaporator at 8.62E-8. DOE-STD-3009-94, ''Preparation Guide for U.S. Department of Energy Nonreactor Nuclear Facility Documented Safety Analyses'', states that external events, such as aircraft crashes, are referred to as design basis accidents (DBA) and analyzed as such: ''if frequency of occurrence is estimated to exceed 10{sup -6}/yr conservatively calculated'' DOE-STD-3014-96 considers its method for estimating aircraft crash frequency as being conservative. Therefore, DOE-STD-3009-94 requires DBA analysis of an aircraft crash into the 200 Area tank farms. DOE-STD-3009-94 also states that beyond-DBAs are not evaluated for external events. Thus, it requires only a DBA analysis of the effects of an aircraft crash into the 200 Area tank farms. There are two attributes of an aircraft crash into a Hanford waste storage tank

  15. 14 CFR 121.229 - Location of fuel tanks.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Location of fuel tanks. 121.229 Section 121... of fuel tanks. (a) Fuel tanks must be located in accordance with § 121.255. (b) No part of the engine... the wall of an integral tank. (c) Fuel tanks must be isolated from personnel compartments by means...

  16. 14 CFR 121.229 - Location of fuel tanks.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Location of fuel tanks. 121.229 Section 121... of fuel tanks. (a) Fuel tanks must be located in accordance with § 121.255. (b) No part of the engine... the wall of an integral tank. (c) Fuel tanks must be isolated from personnel compartments by means...

  17. 14 CFR 125.127 - Location of fuel tanks.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Location of fuel tanks. 125.127 Section 125... Requirements § 125.127 Location of fuel tanks. (a) Fuel tanks must be located in accordance with § 125.153. (b... compartment may be used as the wall of an integral tank. (c) Fuel tanks must be isolated from...

  18. 14 CFR 27.967 - Fuel tank installation.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fuel tank installation. 27.967 Section 27... AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Fuel System § 27.967 Fuel tank installation. (a) Each fuel tank must be supported so that tank loads are not concentrated on unsupported tank...

  19. 14 CFR 125.127 - Location of fuel tanks.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Location of fuel tanks. 125.127 Section 125... Requirements § 125.127 Location of fuel tanks. (a) Fuel tanks must be located in accordance with § 125.153. (b... compartment may be used as the wall of an integral tank. (c) Fuel tanks must be isolated from...

  20. 14 CFR 121.229 - Location of fuel tanks.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Location of fuel tanks. 121.229 Section 121... of fuel tanks. (a) Fuel tanks must be located in accordance with § 121.255. (b) No part of the engine... the wall of an integral tank. (c) Fuel tanks must be isolated from personnel compartments by means...

  1. 14 CFR 125.127 - Location of fuel tanks.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Location of fuel tanks. 125.127 Section 125... Requirements § 125.127 Location of fuel tanks. (a) Fuel tanks must be located in accordance with § 125.153. (b... compartment may be used as the wall of an integral tank. (c) Fuel tanks must be isolated from...

  2. 14 CFR 121.316 - Fuel tanks.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Fuel tanks. 121.316 Section 121.316 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR CARRIERS..., FLAG, AND SUPPLEMENTAL OPERATIONS Instrument and Equipment Requirements § 121.316 Fuel tanks....

  3. 14 CFR 121.316 - Fuel tanks.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Fuel tanks. 121.316 Section 121.316 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR CARRIERS..., FLAG, AND SUPPLEMENTAL OPERATIONS Instrument and Equipment Requirements § 121.316 Fuel tanks....

  4. 14 CFR 121.316 - Fuel tanks.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Fuel tanks. 121.316 Section 121.316 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR CARRIERS..., FLAG, AND SUPPLEMENTAL OPERATIONS Instrument and Equipment Requirements § 121.316 Fuel tanks....

  5. 14 CFR 121.316 - Fuel tanks.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Fuel tanks. 121.316 Section 121.316 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR CARRIERS..., FLAG, AND SUPPLEMENTAL OPERATIONS Instrument and Equipment Requirements § 121.316 Fuel tanks....

  6. 14 CFR 121.316 - Fuel tanks.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Fuel tanks. 121.316 Section 121.316 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR CARRIERS..., FLAG, AND SUPPLEMENTAL OPERATIONS Instrument and Equipment Requirements § 121.316 Fuel tanks....

  7. 14 CFR 25.967 - Fuel tank installations.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fuel tank installations. 25.967 Section 25... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.967 Fuel tank installations. (a) Each fuel tank must be supported so that tank loads (resulting from the weight of the fuel in...

  8. 14 CFR 25.971 - Fuel tank sump.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... fuel tank must allow drainage of any hazardous quantity of water from any part of the tank to its sump... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Fuel tank sump. 25.971 Section 25.971... STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.971 Fuel tank sump. (a) Each fuel...

  9. 14 CFR 25.971 - Fuel tank sump.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... fuel tank must allow drainage of any hazardous quantity of water from any part of the tank to its sump... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Fuel tank sump. 25.971 Section 25.971... STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.971 Fuel tank sump. (a) Each fuel...

  10. Floor Plans Fuel Tank Support, Fuel Platform, and LOX ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Floor Plans - Fuel Tank Support, Fuel Platform, and LOX Platform Plans - Marshall Space Flight Center, F-1 Engine Static Test Stand, On Route 565 between Huntsville and Decatur, Huntsville, Madison County, AL

  11. LH2 fuel tank design for SSTO

    NASA Astrophysics Data System (ADS)

    Wright, Geoff

    This report will discuss the design of a liquid hydrogen fuel tank constructed from composite materials. The focus of this report is to recommend a design for a fuel tank which will be able to withstand all static and dynamic forces during manned flight. Areas of study for the design include material selection, material structural analysis, heat transfer, thermal expansion, and liquid hydrogen diffusion. A structural analysis FORTRAN program was developed for analyzing the buckling and yield characteristics of the tank. A thermal analysis Excel spreadsheet was created to determine a specific material thickness which will minimize heat transfer through the wall of the tank. The total mass of the tank was determined by the combination of both structural and thermal analyses. The report concludes with the recommendation of a layered material tank construction. The designed system will include exterior insulation, combination of metal and organize composite matrices and honeycomb.

  12. LH2 fuel tank design for SSTO

    NASA Technical Reports Server (NTRS)

    Wright, Geoff

    1994-01-01

    This report will discuss the design of a liquid hydrogen fuel tank constructed from composite materials. The focus of this report is to recommend a design for a fuel tank which will be able to withstand all static and dynamic forces during manned flight. Areas of study for the design include material selection, material structural analysis, heat transfer, thermal expansion, and liquid hydrogen diffusion. A structural analysis FORTRAN program was developed for analyzing the buckling and yield characteristics of the tank. A thermal analysis Excel spreadsheet was created to determine a specific material thickness which will minimize heat transfer through the wall of the tank. The total mass of the tank was determined by the combination of both structural and thermal analyses. The report concludes with the recommendation of a layered material tank construction. The designed system will include exterior insulation, combination of metal and organize composite matrices and honeycomb.

  13. Commercial aircraft fuel efficiency potential through 2010

    SciTech Connect

    Greene, D.L.

    1990-01-01

    Aircraft are second only to motor vehicles in the use of motor fuels, and air travel is growing twice as fast. Since 1970 air travel has more than tripled, but the growth of fuel use has been restrained by a near doubling of efficiency, from 26.2 seat miles per gallon (SMPG) in 1970 to about 49 SMPG in 1989. This paper explores the potential for future efficiency improvements via the replacement of existing aircraft with 1990's generation'' and post 2000'' aircraft incorporating advances in engine and airframe technology. Today, new commercial passenger aircraft deliver 50--70 SMPG. New aircraft types scheduled for delivery in the early 1990's are expected to achieve 65--80 SMPG. Industry and government researchers have identified technologies capable of boosting aircraft efficiencies to the 100--150 SMPG range. Under current industry plans, which do not include a post-2000 generation of new aircraft, the total aircraft fleet should reach the vicinity of 65 SMPG by 2010. A new generation of 100--150 SMPG aircraft introduced in 2005 could raise the fleet average efficiency to 75--80 SMPG in 2010. In any case, fuel use will likely continue to grow at from 1--2%/yr. through 2010. 20 refs., 2 figs., 2 tabs.

  14. 33 CFR 183.518 - Fuel tank openings.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Fuel tank openings. 183.518...) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Fuel Systems Equipment Standards § 183.518 Fuel tank openings. Each opening into the fuel tank must be at or above the topmost surface of the tank....

  15. 46 CFR 182.435 - Integral fuel tanks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Integral fuel tanks. 182.435 Section 182.435 Shipping...) MACHINERY INSTALLATION Specific Machinery Requirements § 182.435 Integral fuel tanks. (a) Gasoline fuel tanks must be independent of the hull. (b) Diesel fuel tanks may not be built integral with the hull...

  16. 46 CFR 182.435 - Integral fuel tanks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Integral fuel tanks. 182.435 Section 182.435 Shipping...) MACHINERY INSTALLATION Specific Machinery Requirements § 182.435 Integral fuel tanks. (a) Gasoline fuel tanks must be independent of the hull. (b) Diesel fuel tanks may not be built integral with the hull...

  17. 33 CFR 183.520 - Fuel tank vent systems.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Fuel tank vent systems. 183.520...) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Fuel Systems Equipment Standards § 183.520 Fuel tank vent systems. (a) Each fuel tank must have a vent system that prevents pressure in the tank from exceeding...

  18. 46 CFR 182.435 - Integral fuel tanks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Integral fuel tanks. 182.435 Section 182.435 Shipping...) MACHINERY INSTALLATION Specific Machinery Requirements § 182.435 Integral fuel tanks. (a) Gasoline fuel tanks must be independent of the hull. (b) Diesel fuel tanks may not be built integral with the hull...

  19. 46 CFR 182.435 - Integral fuel tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Integral fuel tanks. 182.435 Section 182.435 Shipping...) MACHINERY INSTALLATION Specific Machinery Requirements § 182.435 Integral fuel tanks. (a) Gasoline fuel tanks must be independent of the hull. (b) Diesel fuel tanks may not be built integral with the hull...

  20. 14 CFR 27.971 - Fuel tank sump.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fuel tank sump. 27.971 Section 27.971... STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Fuel System § 27.971 Fuel tank sump. (a) Each fuel tank... of 0.25 percent of the tank capacity or 1/16 gallon, whichever is greater, unless— (1) The...

  1. 30 CFR 36.50 - Tests of fuel tank.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Tests of fuel tank. 36.50 Section 36.50 Mineral... Requirements § 36.50 Tests of fuel tank. The fuel tank shall be inspected and tested to determine whether: (a) It is fuel-tight, (b) the vent maintains atmospheric pressure within the tank, and (c) the vent...

  2. 46 CFR 119.435 - Integral fuel tanks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Integral fuel tanks. 119.435 Section 119.435 Shipping... Machinery Requirements § 119.435 Integral fuel tanks. (a) Diesel fuel tanks may not be built integral with... for certification of a vessel, integral fuel tanks must withstand a hydrostatic pressure test of 35...

  3. 46 CFR 119.435 - Integral fuel tanks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Integral fuel tanks. 119.435 Section 119.435 Shipping... Machinery Requirements § 119.435 Integral fuel tanks. (a) Diesel fuel tanks may not be built integral with... for certification of a vessel, integral fuel tanks must withstand a hydrostatic pressure test of 35...

  4. 46 CFR 119.435 - Integral fuel tanks.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Integral fuel tanks. 119.435 Section 119.435 Shipping... Machinery Requirements § 119.435 Integral fuel tanks. (a) Diesel fuel tanks may not be built integral with... for certification of a vessel, integral fuel tanks must withstand a hydrostatic pressure test of 35...

  5. 33 CFR 183.518 - Fuel tank openings.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Fuel tank openings. 183.518...) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Fuel Systems Equipment Standards § 183.518 Fuel tank openings. Each opening into the fuel tank must be at or above the topmost surface of the tank....

  6. 46 CFR 119.435 - Integral fuel tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Integral fuel tanks. 119.435 Section 119.435 Shipping... Machinery Requirements § 119.435 Integral fuel tanks. (a) Diesel fuel tanks may not be built integral with... for certification of a vessel, integral fuel tanks must withstand a hydrostatic pressure test of 35...

  7. 33 CFR 183.520 - Fuel tank vent systems.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Fuel tank vent systems. 183.520...) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Fuel Systems Equipment Standards § 183.520 Fuel tank vent systems. (a) Each fuel tank must have a vent system that prevents pressure in the tank from exceeding...

  8. 14 CFR 125.507 - Fuel tank system inspection program.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... based on fuel tank system Instructions for Continued Airworthiness (ICA) that have been developed in... alteration for which fuel tank ICA are developed under SFAR 88, or under § 25.1529 in effect on June 6, 2001... procedures for the fuel tank system based on those ICA. (f) The fuel tank system inspection program...

  9. 14 CFR 125.507 - Fuel tank system inspection program.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... based on fuel tank system Instructions for Continued Airworthiness (ICA) that have been developed in... alteration for which fuel tank ICA are developed under SFAR 88, or under § 25.1529 in effect on June 6, 2001... procedures for the fuel tank system based on those ICA. (f) The fuel tank system inspection program...

  10. Advanced supersonic technology fuel tank sealants

    NASA Technical Reports Server (NTRS)

    Rosser, R. W.; Parker, J. A.

    1976-01-01

    Status of the fuel tank simulation and YF-12A flight tests utilizing a fluorosilicone sealant is described. New elastomer sealant development is detailed, and comparisons of high and low temperature characteristics are made to baseline fluorosilicone sealants.

  11. Study of the application of hydrogen fuel to long-range subsonic transport aircraft. Volume 1: Summary

    NASA Technical Reports Server (NTRS)

    Brewer, G. D.; Morris, R. E.; Lange, R. H.; Moore, J. W.

    1975-01-01

    The feasibility of using liquid hydrogen as fuel in advanced designs of long range, subsonic transport aircraft is assessed. Both passenger and cargo type aircraft are investigated. Comparisons of physical, performance, and economic parameters of the LH2 fueled designs with conventionally fueled aircraft are presented. Design studies are conducted to determine appropriate characteristics for the hydrogen related systems required on board the aircraft. These studies included consideration of material, structural, and thermodynamic requirements of the cryogenic fuel tanks and fuel systems with the structural support and thermal protection systems.

  12. Fuel characteristics pertinent to the design of aircraft fuel systems

    NASA Technical Reports Server (NTRS)

    Barnett, Henry C; Hibbard, R R

    1953-01-01

    Because of the importance of fuel properties in design of aircraft fuel systems the present report has been prepared to provide information on the characteristics of current jet fuels. In addition to information on fuel properties, discussions are presented on fuel specifications, the variations among fuels supplied under a given specification, fuel composition, and the pertinence of fuel composition and physical properties to fuel system design. In some instances the influence of variables such as pressure and temperature on physical properties is indicated. References are cited to provide fuel system designers with sources of information containing more detail than is practicable in the present report.

  13. Experiments on fuel heating for commercial aircraft

    NASA Technical Reports Server (NTRS)

    Friedman, R.; Stockemer, F. J.

    1982-01-01

    An experimental jet fuel with a -33 C freezing point was chilled in a wing tank simulator with superimposed fuel heating to improve low temperature flowability. Heating consisted of circulating a portion of the fuel to an external heat exchanger and returning the heated fuel to the tank. Flowability was determined by the mass percent of unpumpable fuel (holdup) left in the simulator upon withdrawal of fuel at the conclusion of testing. The study demonstrated that fuel heating is feasible and improves flowability as compared to that of baseline, unheated tests. Delayed heating with initiation when the fuel reaches a prescribed low temperature limit, showed promise of being more efficient than continuous heating. Regardless of the mode or rate of heating, complete flowability (zero holdup) could not be restored by fuel heating. The severe, extreme-day environment imposed by the test caused a very small amount of subfreezing fuel to be retained near the tank surfaces even at high rates of heating. Correlations of flowability established for unheated fuel tests also could be applied to the heated test results if based on boundary-layer temperature or a solid index (subfreezing point) characteristic of the fuel.

  14. Inflight fuel tank temperature survey data

    NASA Technical Reports Server (NTRS)

    Pasion, A. J.

    1979-01-01

    Statistical summaries of the fuel and air temperature data for twelve different routes and for different aircraft models (B747, B707, DC-10 and DC-8), are given. The minimum fuel, total air and static air temperature expected for a 0.3% probability were summarized in table form. Minimum fuel temperature extremes agreed with calculated predictions and the minimum fuel temperature did not necessarily equal the minimum total air temperature even for extreme weather, long range flights.

  15. 14 CFR 27.975 - Fuel tank vents.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fuel tank vents. 27.975 Section 27.975... STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Fuel System § 27.975 Fuel tank vents. (a) Each fuel tank... system must be designed to minimize spillage of fuel through the vents to an ignition source in the...

  16. 14 CFR 23.977 - Fuel tank outlet.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fuel tank outlet. 23.977 Section 23.977... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Fuel System § 23.977 Fuel tank outlet. (a) There must be a fuel strainer for the fuel tank outlet or for the booster pump....

  17. 14 CFR 27.973 - Fuel tank filler connection.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fuel tank filler connection. 27.973 Section... AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Fuel System § 27.973 Fuel tank filler connection. (a) Each fuel tank filler connection must prevent the entrance of fuel into any part of...

  18. 14 CFR 25.973 - Fuel tank filler connection.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fuel tank filler connection. 25.973 Section... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.973 Fuel tank filler connection. Each fuel tank filler connection must prevent the entrance of fuel into any part of the...

  19. 14 CFR 25.977 - Fuel tank outlet.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fuel tank outlet. 25.977 Section 25.977... STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.977 Fuel tank outlet. (a) There must be a fuel strainer for the fuel tank outlet or for the booster pump. This strainer must— (1)...

  20. 14 CFR 27.963 - Fuel tanks: general.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fuel tanks: general. 27.963 Section 27.963... STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Fuel System § 27.963 Fuel tanks: general. (a) Each fuel... which it may be subjected in operation. (b) Each fuel tank of 10 gallons or greater capacity must...

  1. 14 CFR 23.977 - Fuel tank outlet.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Fuel tank outlet. 23.977 Section 23.977... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Fuel System § 23.977 Fuel tank outlet. (a) There must be a fuel strainer for the fuel tank outlet or for the booster pump....

  2. 46 CFR 58.50-10 - Diesel fuel tanks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 2 2013-10-01 2013-10-01 false Diesel fuel tanks. 58.50-10 Section 58.50-10 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING MAIN AND AUXILIARY MACHINERY AND RELATED SYSTEMS Independent Fuel Tanks § 58.50-10 Diesel fuel tanks. (a) Construction. (1) Tanks may be of either cylindrical or...

  3. 46 CFR 58.50-5 - Gasoline fuel tanks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 2 2013-10-01 2013-10-01 false Gasoline fuel tanks. 58.50-5 Section 58.50-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING MAIN AND AUXILIARY MACHINERY AND RELATED SYSTEMS Independent Fuel Tanks § 58.50-5 Gasoline fuel tanks. (a) Construction—(1) Shape. Tanks may be of either cylindrical...

  4. Alternate aircraft fuels: Prospects and operational implications

    NASA Technical Reports Server (NTRS)

    Witcofski, R. D.

    1977-01-01

    The potential use of coal-derived aviation fuels was assessed. The studies addressed the prices and thermal efficiencies associated with the production of coal-derived aviation kerosene, liquid methane and liquid hydrogen and the air terminal requirements and subsonic transport performance when utilizing liquid hydrogen. The fuel production studies indicated that liquid methane can be produced at a lower price and with a higher thermal efficiency than aviation kerosene or liquid hydrogen. Ground facilities of liquefaction, storage, distribution and refueling of liquid hydrogen fueled aircraft at airports appear technically feasibile. The aircraft studies indicate modest onboard energy savings for hydrogen compared to conventional fuels. Liquid hydrogen was found to be superior to both aviation kerosene and liquid methane from the standpoint of aircraft engine emissions.

  5. The use of hydrogen for aircraft propulsion in view of the fuel crisis

    NASA Technical Reports Server (NTRS)

    Weiss, S.

    1973-01-01

    Some factors influencing the technical feasibility of operating a liquid hydrogen-fueled airplane are discussed in light of the projected decrease of fossil fuels. Other sources of energy, such as wind, tidal, solar, and geothermal, are briefly mentioned. In view of projected decreases in available petroleum fuels, interest has been generated in exploiting the potential of liquid hydrogen (LH2) as an aircraft fuel. Cost studies of LH2 production show it to be more expensive than presently used fuels. Regardless of cost considerations, LH2 is viewed as an attractive aircraft fuel because of the potential performance benefits it offers. Accompanying these benefits, however, are many new problems associated with aircraft design and operations; for example, problems related to fuel system design and the handling of LH2 during ground servicing. Some of the factors influencing LH2 fuel tank design, pumping, heat exchange, and flow regulation are discussed.

  6. 33 CFR 183.550 - Fuel tanks: Installation.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Fuel tanks: Installation. 183.550 Section 183.550 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Fuel Systems Manufacturer Requirements § 183.550 Fuel tanks: Installation. (a) Each fuel tank...

  7. 14 CFR 25.965 - Fuel tank tests.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fuel tank tests. 25.965 Section 25.965... STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.965 Fuel tank tests. (a) It must be shown by tests that the fuel tanks, as mounted in the airplane, can withstand, without failure...

  8. 14 CFR 23.973 - Fuel tank filler connection.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fuel tank filler connection. 23.973 Section... AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Fuel System § 23.973 Fuel tank filler connection. (a) Each fuel tank filler connection must be marked as prescribed...

  9. 33 CFR 183.550 - Fuel tanks: Installation.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Fuel tanks: Installation. 183.550...) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Fuel Systems Manufacturer Requirements § 183.550 Fuel tanks: Installation. (a) Each fuel tank must not be integral with any boat structure or mounted on an engine. (b)...

  10. 33 CFR 183.512 - Fuel tanks: Prohibited materials.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Fuel tanks: Prohibited materials... (CONTINUED) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Fuel Systems Equipment Standards § 183.512 Fuel tanks: Prohibited materials. (a) A fuel tank must not be constructed from terneplate. (b) Unless it...

  11. 14 CFR 23.963 - Fuel tanks: General.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fuel tanks: General. 23.963 Section 23.963... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Fuel System § 23.963 Fuel tanks: General. (a) Each fuel tank must be able to withstand, without failure, the vibration,...

  12. 14 CFR 23.971 - Fuel tank sump.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fuel tank sump. 23.971 Section 23.971... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Fuel System § 23.971 Fuel tank sump. (a) Each fuel tank must have a drainable sump with an effective capacity, in the...

  13. 14 CFR 23.971 - Fuel tank sump.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Fuel tank sump. 23.971 Section 23.971... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Fuel System § 23.971 Fuel tank sump. (a) Each fuel tank must have a drainable sump with an effective capacity, in the...

  14. 14 CFR 23.963 - Fuel tanks: General.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Fuel tanks: General. 23.963 Section 23.963... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Fuel System § 23.963 Fuel tanks: General. (a) Each fuel tank must be able to withstand, without failure, the vibration,...

  15. 14 CFR 23.973 - Fuel tank filler connection.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Fuel tank filler connection. 23.973 Section... AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Fuel System § 23.973 Fuel tank filler connection. (a) Each fuel tank filler connection must be marked as prescribed...

  16. 33 CFR 183.512 - Fuel tanks: Prohibited materials.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Fuel tanks: Prohibited materials... (CONTINUED) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Fuel Systems Equipment Standards § 183.512 Fuel tanks: Prohibited materials. (a) A fuel tank must not be constructed from terneplate. (b) Unless it...

  17. 14 CFR 27.963 - Fuel tanks: general.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... interconnected outlets, they must be considered as one tank, and the airspaces in those tanks must be interconnected to prevent the flow of fuel from one tank to another as a result of a difference in...

  18. Study of advanced fuel system concepts for commercial aircraft and engines

    NASA Technical Reports Server (NTRS)

    Versaw, E. F.; Brewer, G. D.; Byers, W. D.; Fogg, H. W.; Hanks, D. E.; Chirivella, J.

    1983-01-01

    The impact on a commercial transport aircraft of using fuels which have relaxed property limits relative to current commercial jet fuel was assessed. The methodology of the study is outlined, fuel properties are discussed, and the effect of the relaxation of fuel properties analyzed. Advanced fuel system component designs that permit the satisfactory use of fuel with the candidate relaxed properties in the subject aircraft are described. The two fuel properties considered in detail are freezing point and thermal stability. Three candidate fuel system concepts were selected and evaluated in terms of performance, cost, weight, safety, and maintainability. A fuel system that incorporates insulation and electrical heating elements on fuel tank lower surfaces was found to be most cost effective for the long term.

  19. An Investigation of EME as a Potential Cause of Fuel Tank Ignition

    NASA Technical Reports Server (NTRS)

    Ely, Jay J.; Nguyen, Truong X.; Dudley, Kenneth L.; Scearce, Stephen A.; Beck, Fred B.; Deshpande, Manohar D.; Cockrell, C. R.

    2000-01-01

    NASA researchers were tasked to study the potential for radio signals to excite an aircraft fuel quantity indication system (FQIS) enough to cause arcing, sparking or excessive heating within a fuel tank. Computational techniques were used to determine the threat from external high intensity radiated field (HIRF) transmitters nearby, like shipboard and airborne RADAR systems. Experimental methods were used to determine the threat from Portable Electronic Devices (PEDs) carried aboard by passengers. To support this work, unique electromagnetic coupling measurements were performed on a retired Boeing 747 aircraft, and new test and analysis methods were developed that may be applied to other FQIS designs as well as other aircraft electronic systems.

  20. Thermally resistant polymers for fuel tank sealants

    NASA Technical Reports Server (NTRS)

    Webster, J. A.

    1973-01-01

    Imide-linked perfluoroalkylene ether polymers, that were developed for the high temperature fuel tank sealant application, are discussed. Modifications of polymer structure and properties were realized through use of a new aromatic dianhydride intermediate containing an ether-linked perfluoroalkylene segment. Tests of thermal, oxidative and hydrolytic stability, fuel resistance, and adhesion are discussed along with tensile strength and elongation results. Efforts to effect a low temperature condensation of amic acid prepolymer to form imide links inside are described.

  1. Feasibility of a nuclear gauge for fuel quantity measurement aboard aircraft

    NASA Technical Reports Server (NTRS)

    Signh, J. J.; Mall, G. H.; Sprinkle, D. R.; Chegini, H.

    1986-01-01

    Capacitance fuel gauges have served as the basis for fuel quantity indicating systems in aircraft for several decades. However, there have been persistent reports by the airlines that these gauges often give faulty indications due to microbial growth and other contaminants in the fuel tanks. This report describes the results of a feasibility study of using gamma ray attenuation as the basis for measuring fuel quantity in the tanks. Studies with a weak Am-241 59.5-keV radiation source indicate that it is possible to continuously monitor the fuel quantity in the tanks to an accuracy of better than 1 percent. These measurements also indicate that there are easily measurable differences in the physical properties and resultant attenuation characteristics of JP-4, JP-5, and Jet A fuels. The experimental results, along with a suggested source-detector geometrical configuration are described.

  2. 49 CFR 229.217 - Fuel tank.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...(a) and 1 CFR part 51. You may obtain a copy of the incorporated standard from the Association of... 49 Transportation 4 2012-10-01 2012-10-01 false Fuel tank. 229.217 Section 229.217 Transportation... TRANSPORTATION RAILROAD LOCOMOTIVE SAFETY STANDARDS Locomotive Crashworthiness Design Requirements § 229.217...

  3. 49 CFR 229.217 - Fuel tank.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...(a) and 1 CFR part 51. You may obtain a copy of the incorporated standard from the Association of... 49 Transportation 4 2011-10-01 2011-10-01 false Fuel tank. 229.217 Section 229.217 Transportation... TRANSPORTATION RAILROAD LOCOMOTIVE SAFETY STANDARDS Locomotive Crashworthiness Design Requirements § 229.217...

  4. 49 CFR 229.217 - Fuel tank.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...(a) and 1 CFR part 51. You may obtain a copy of the incorporated standard from the Association of... 49 Transportation 4 2014-10-01 2014-10-01 false Fuel tank. 229.217 Section 229.217 Transportation... TRANSPORTATION RAILROAD LOCOMOTIVE SAFETY STANDARDS Locomotive Crashworthiness Design Requirements § 229.217...

  5. 49 CFR 229.217 - Fuel tank.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...(a) and 1 CFR part 51. You may obtain a copy of the incorporated standard from the Association of... 49 Transportation 4 2010-10-01 2010-10-01 false Fuel tank. 229.217 Section 229.217 Transportation... TRANSPORTATION RAILROAD LOCOMOTIVE SAFETY STANDARDS Locomotive Crashworthiness Design Requirements § 229.217...

  6. 49 CFR 229.217 - Fuel tank.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...(a) and 1 CFR part 51. You may obtain a copy of the incorporated standard from the Association of... 49 Transportation 4 2013-10-01 2013-10-01 false Fuel tank. 229.217 Section 229.217 Transportation... TRANSPORTATION RAILROAD LOCOMOTIVE SAFETY STANDARDS Locomotive Crashworthiness Design Requirements § 229.217...

  7. 49 CFR 229.97 - Grounding fuel tanks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Grounding fuel tanks. 229.97 Section 229.97 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... Equipment § 229.97 Grounding fuel tanks. Fuel tanks and related piping shall be electrically grounded....

  8. 49 CFR 229.97 - Grounding fuel tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Grounding fuel tanks. 229.97 Section 229.97 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... Equipment § 229.97 Grounding fuel tanks. Fuel tanks and related piping shall be electrically grounded....

  9. 49 CFR 229.97 - Grounding fuel tanks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Grounding fuel tanks. 229.97 Section 229.97 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... Equipment § 229.97 Grounding fuel tanks. Fuel tanks and related piping shall be electrically grounded....

  10. 33 CFR 183.552 - Plastic encased fuel tanks: Installation.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Plastic encased fuel tanks... § 183.552 Plastic encased fuel tanks: Installation. (a) Each fuel tank encased in cellular plastic foam or in fiber reinforced plastic must have the connections, fittings, and labels accessible...

  11. 33 CFR 183.552 - Plastic encased fuel tanks: Installation.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Plastic encased fuel tanks... § 183.552 Plastic encased fuel tanks: Installation. (a) Each fuel tank encased in cellular plastic foam or in fiber reinforced plastic must have the connections, fittings, and labels accessible...

  12. 33 CFR 183.552 - Plastic encased fuel tanks: Installation.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Plastic encased fuel tanks... § 183.552 Plastic encased fuel tanks: Installation. (a) Each fuel tank encased in cellular plastic foam or in fiber reinforced plastic must have the connections, fittings, and labels accessible...

  13. 33 CFR 183.552 - Plastic encased fuel tanks: Installation.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Plastic encased fuel tanks... § 183.552 Plastic encased fuel tanks: Installation. (a) Each fuel tank encased in cellular plastic foam or in fiber reinforced plastic must have the connections, fittings, and labels accessible...

  14. 33 CFR 183.552 - Plastic encased fuel tanks: Installation.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Plastic encased fuel tanks... § 183.552 Plastic encased fuel tanks: Installation. (a) Each fuel tank encased in cellular plastic foam or in fiber reinforced plastic must have the connections, fittings, and labels accessible...

  15. 46 CFR 182.435 - Integral fuel tanks.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Integral fuel tanks. 182.435 Section 182.435 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS (UNDER 100 GROSS TONS) MACHINERY INSTALLATION Specific Machinery Requirements § 182.435 Integral fuel tanks. (a) Gasoline fuel tanks must be independent of the hull....

  16. 49 CFR 229.97 - Grounding fuel tanks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Grounding fuel tanks. 229.97 Section 229.97 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... Equipment § 229.97 Grounding fuel tanks. Fuel tanks and related piping shall be electrically grounded....

  17. 46 CFR 169.234 - Integral fuel oil tank examinations.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Integral fuel oil tank examinations. 169.234 Section 169... VESSELS Inspection and Certification Drydocking Or Hauling Out § 169.234 Integral fuel oil tank examinations. (a) Each fuel oil tank with at least one side integral to the vessel's hull and located...

  18. 14 CFR 129.113 - Fuel tank system maintenance program.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... based on fuel tank system Instructions for Continued Airworthiness (ICA) that have been developed in... service after any alteration for which fuel tank ICA are developed under SFAR 88, or under § 25.1529 in... for the airplane inspections and procedures for the fuel tank system based on those ICA. (f) The...

  19. 14 CFR 129.113 - Fuel tank system maintenance program.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... based on fuel tank system Instructions for Continued Airworthiness (ICA) that have been developed in... service after any alteration for which fuel tank ICA are developed under SFAR 88, or under § 25.1529 in... for the airplane inspections and procedures for the fuel tank system based on those ICA. (f) The...

  20. Chemical research projects office fuel tank sealants review. [flight testing of fluorosilicone sealants

    NASA Technical Reports Server (NTRS)

    Rosser, R. W.; Parker, J. A.

    1974-01-01

    The status of high-temperature fuel tank sealants for military and potentially commercial supersonic aircraft is examined. The interrelationships of NASA's sealants program comprise synthesis and development of new fluoroether elastomers, sealant prediction studies, flight simulation and actual flight testing of best state-of-the-art fluorosilicone sealants. The technical accomplishments of these projects are reviewed.

  1. Temperature Stratification in a Cryogenic Fuel Tank

    NASA Technical Reports Server (NTRS)

    Daigle, Matthew John; Smelyanskiy, Vadim; Boschee, Jacob; Foygel, Michael Gregory

    2013-01-01

    A reduced dynamical model describing temperature stratification effects driven by natural convection in a liquid hydrogen cryogenic fuel tank has been developed. It accounts for cryogenic propellant loading, storage, and unloading in the conditions of normal, increased, and micro- gravity. The model involves multiple horizontal control volumes in both liquid and ullage spaces. Temperature and velocity boundary layers at the tank walls are taken into account by using correlation relations. Heat exchange involving the tank wall is considered by means of the lumped-parameter method. By employing basic conservation laws, the model takes into consideration the major multi-phase mass and energy exchange processes involved, such as condensation-evaporation of the hydrogen, as well as flows of hydrogen liquid and vapor in the presence of pressurizing helium gas. The model involves a liquid hydrogen feed line and a tank ullage vent valve for pressure control. The temperature stratification effects are investigated, including in the presence of vent valve oscillations. A simulation of temperature stratification effects in a generic cryogenic tank has been implemented in Matlab and results are presented for various tank conditions.

  2. Hydrogen Fuel System Design Trades for High-Altitude Long-Endurance Remotely- Operated Aircraft

    NASA Technical Reports Server (NTRS)

    Millis, Marc G.; Tornabene, Robert T.; Jurns, John M.; Guynn, Mark D.; Tomsik, Thomas M.; VanOverbeke, Thomas J.

    2009-01-01

    Preliminary design trades are presented for liquid hydrogen fuel systems for remotely-operated, high-altitude aircraft that accommodate three different propulsion options: internal combustion engines, and electric motors powered by either polymer electrolyte membrane fuel cells or solid oxide fuel cells. Mission goal is sustained cruise at 60,000 ft altitude, with duration-aloft a key parameter. The subject aircraft specifies an engine power of 143 to 148 hp, gross liftoff weight of 9270 to 9450 lb, payload of 440 lb, and a hydrogen fuel capacity of 2650 to 2755 lb stored in two spherical tanks (8.5 ft inside diameter), each with a dry mass goal of 316 lb. Hydrogen schematics for all three propulsion options are provided. Each employs vacuum-jacketed tanks with multilayer insulation, augmented with a helium pressurant system, and using electric motor driven hydrogen pumps. The most significant schematic differences involve the heat exchangers and hydrogen reclamation equipment. Heat balances indicate that mission durations of 10 to 16 days appear achievable. The dry mass for the hydrogen system is estimated to be 1900 lb, including 645 lb for each tank. This tank mass is roughly twice that of the advanced tanks assumed in the initial conceptual vehicle. Control strategies are not addressed, nor are procedures for filling and draining the tanks.

  3. Economic study of future aircraft fuels (1970-2000)

    NASA Technical Reports Server (NTRS)

    Alexander, A. D., III

    1972-01-01

    Future aircraft fuels are evaluated in terms of fuel resource availability and pricing, processing methods, and economic projections over the period 1970-2000. Liquefied hydrogen, methane and propane are examined as potential turbine engine aircraft fuels relative to current JP fuel.

  4. 33 CFR 183.564 - Fuel tank fill system.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Fuel tank fill system. 183.564...) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Fuel Systems Manufacturer Requirements § 183.564 Fuel tank fill system. (a) Each fuel fill opening must be located so that a gasoline overflow of up to...

  5. 33 CFR 183.550 - Fuel tanks: Installation.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... fuel tank must not support a deck, bulkhead, or other structural component. (d) Water must drain from... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Fuel tanks: Installation. 183.550...) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Fuel Systems Manufacturer Requirements § 183.550 Fuel...

  6. 33 CFR 183.550 - Fuel tanks: Installation.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... fuel tank must not support a deck, bulkhead, or other structural component. (d) Water must drain from... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Fuel tanks: Installation. 183.550...) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Fuel Systems Manufacturer Requirements § 183.550 Fuel...

  7. 33 CFR 183.550 - Fuel tanks: Installation.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... fuel tank must not support a deck, bulkhead, or other structural component. (d) Water must drain from... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Fuel tanks: Installation. 183.550...) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Fuel Systems Manufacturer Requirements § 183.550 Fuel...

  8. 14 CFR 23.967 - Fuel tank installation.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... loads without permanent deformation or failure under the conditions of §§ 23.365 and 23.843 of this part... tank in structural integrity. (e) Fuel tanks must be designed, located, and installed so as to...

  9. 14 CFR 23.967 - Fuel tank installation.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... loads without permanent deformation or failure under the conditions of §§ 23.365 and 23.843 of this part... tank in structural integrity. (e) Fuel tanks must be designed, located, and installed so as to...

  10. 14 CFR 23.967 - Fuel tank installation.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... loads without permanent deformation or failure under the conditions of §§ 23.365 and 23.843 of this part... tank in structural integrity. (e) Fuel tanks must be designed, located, and installed so as to...

  11. 14 CFR 23.967 - Fuel tank installation.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... loads without permanent deformation or failure under the conditions of §§ 23.365 and 23.843 of this part... tank in structural integrity. (e) Fuel tanks must be designed, located, and installed so as to...

  12. Fuel property effects on Navy aircraft fuel systems

    NASA Technical Reports Server (NTRS)

    Moses, C. A.

    1984-01-01

    Problems of ensuring compatibility of Navy aircraft with fuels that may be different than the fuels for which the equipment was designed and qualified are discussed. To avoid expensive requalification of all the engines and airframe fuel systems, methodologies to qualify future fuels by using bench-scale and component testing are being sought. Fuel blends with increasing JP5-type aromatic concentration were seen to produce less volume swell than an equivalent aromatic concentration in the reference fuel. Futhermore, blends with naphthenes, decalin, tetralin, and naphthalenes do not deviate significantly from the correlation line of aromatic blends, Similar results are found with tensile strenth and elongation. Other elastomers, sealants, and adhesives are also being tested.

  13. 40 CFR 1060.103 - What permeation emission control requirements apply for fuel tanks?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... requirements specified in 40 CFR 1051.110 or in this section. (4) Small SI fuel tanks must meet the permeation... follows: (1) Marine SI fuel tanks, including engine-mounted fuel tanks and portable marine fuel...

  14. 40 CFR 1060.103 - What permeation emission control requirements apply for fuel tanks?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... requirements specified in 40 CFR 1051.110 or in this section. (4) Small SI fuel tanks must meet the permeation... follows: (1) Marine SI fuel tanks, including engine-mounted fuel tanks and portable marine fuel...

  15. 14 CFR Appendix M to Part 25 - Fuel Tank System Flammability Reduction Means

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Fuel Tank System Flammability Reduction... 25—Fuel Tank System Flammability Reduction Means M25.1Fuel tank flammability exposure requirements... the fuel tanks with FRMs (including any tanks that communicate with a tank via a vent system), and...

  16. 14 CFR Appendix M to Part 25 - Fuel Tank System Flammability Reduction Means

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Fuel Tank System Flammability Reduction... 25—Fuel Tank System Flammability Reduction Means M25.1Fuel tank flammability exposure requirements... the fuel tanks with FRMs (including any tanks that communicate with a tank via a vent system), and...

  17. 14 CFR Appendix M to Part 25 - Fuel Tank System Flammability Reduction Means

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fuel Tank System Flammability Reduction... 25—Fuel Tank System Flammability Reduction Means M25.1Fuel tank flammability exposure requirements... the fuel tanks with FRMs (including any tanks that communicate with a tank via a vent system), and...

  18. 14 CFR 91.1507 - Fuel tank system inspection program.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... (ICA) that have been developed in accordance with the applicable provisions of SFAR 88 of this chapter... returning an airplane to service after any alterations for which fuel tank ICA are developed under SFAR 88... the airplane inspections and procedures for the fuel tank system based on those ICA. (f) The fuel...

  19. 14 CFR 91.1507 - Fuel tank system inspection program.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... (ICA) that have been developed in accordance with the applicable provisions of SFAR 88 of this chapter... returning an airplane to service after any alterations for which fuel tank ICA are developed under SFAR 88... the airplane inspections and procedures for the fuel tank system based on those ICA. (f) The fuel...

  20. 14 CFR 121.1113 - Fuel tank system maintenance program.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Instructions for Continued Airworthiness (ICA) that have been developed in accordance with the applicable... tank ICA are developed under SFAR 88 or under § 25.1529 in effect on June 6, 2001, the certificate... tank system based on those ICA. (f) The fuel tank system maintenance program changes identified...

  1. 14 CFR 121.1113 - Fuel tank system maintenance program.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Instructions for Continued Airworthiness (ICA) that have been developed in accordance with the applicable... tank ICA are developed under SFAR 88 or under § 25.1529 in effect on June 6, 2001, the certificate... tank system based on those ICA. (f) The fuel tank system maintenance program changes identified...

  2. A fuselage/tank structure study for actively cooled hypersonic cruise vehicles: Aircraft design evaluation

    NASA Technical Reports Server (NTRS)

    Nobe, T.

    1975-01-01

    The effects of fuselage cross sections and structural members on the performance of hypersonic cruise aircraft are evaluated. Representative fuselage/tank area structure was analyzed for strength, stability, fatigue and fracture mechanics. Various thermodynamic and structural tradeoffs were conducted to refine the conceptual designs with the primary objective of minimizing weight and maximizing aircraft range.

  3. 19 CFR 10.62b - Aircraft turbine fuel.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... section. Withdrawals under this paragraph shall be annotated with the term “Withdrawal under 19 CFR 10.62b... 19 Customs Duties 1 2013-04-01 2013-04-01 false Aircraft turbine fuel. 10.62b Section 10.62b... Supplies and Equipment for Vessels § 10.62b Aircraft turbine fuel. (a) General. Unless otherwise...

  4. 19 CFR 10.62b - Aircraft turbine fuel.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... section. Withdrawals under this paragraph shall be annotated with the term “Withdrawal under 19 CFR 10.62b... 19 Customs Duties 1 2011-04-01 2011-04-01 false Aircraft turbine fuel. 10.62b Section 10.62b... Supplies and Equipment for Vessels § 10.62b Aircraft turbine fuel. (a) General. Unless otherwise...

  5. 19 CFR 10.62b - Aircraft turbine fuel.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... section. Withdrawals under this paragraph shall be annotated with the term “Withdrawal under 19 CFR 10.62b... 19 Customs Duties 1 2014-04-01 2014-04-01 false Aircraft turbine fuel. 10.62b Section 10.62b... Supplies and Equipment for Vessels § 10.62b Aircraft turbine fuel. (a) General. Unless otherwise...

  6. 19 CFR 10.62b - Aircraft turbine fuel.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... section. Withdrawals under this paragraph shall be annotated with the term “Withdrawal under 19 CFR 10.62b... 19 Customs Duties 1 2010-04-01 2010-04-01 false Aircraft turbine fuel. 10.62b Section 10.62b... Supplies and Equipment for Vessels § 10.62b Aircraft turbine fuel. (a) General. Unless otherwise...

  7. 19 CFR 10.62b - Aircraft turbine fuel.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... section. Withdrawals under this paragraph shall be annotated with the term “Withdrawal under 19 CFR 10.62b... 19 Customs Duties 1 2012-04-01 2012-04-01 false Aircraft turbine fuel. 10.62b Section 10.62b... Supplies and Equipment for Vessels § 10.62b Aircraft turbine fuel. (a) General. Unless otherwise...

  8. 12. Interior view, fuel tanks on east side of power ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. Interior view, fuel tanks on east side of power plant, electrical panels on the left and fuel tanks in the center looking north - Naval Air Station Fallon, Power Plant, 800 Complex, off Carson Road near intersection of Pasture & Berney Roads, Fallon, Churchill County, NV

  9. A fuel conservation study for transport aircraft utilizing advanced technology and hydrogen fuel

    NASA Technical Reports Server (NTRS)

    Berry, W.; Calleson, R.; Espil, J.; Quartero, C.; Swanson, E.

    1972-01-01

    The conservation of fossil fuels in commercial aviation was investigated. Four categories of aircraft were selected for investigation: (1) conventional, medium range, low take-off gross weight; (2) conventional, long range, high take-off gross weights; (3) large take-off gross weight aircraft that might find future applications using both conventional and advanced technology; and (4) advanced technology aircraft of the future powered with liquid hydrogen fuel. It is concluded that the hydrogen fueled aircraft can perform at reduced size and gross weight the same payload/range mission as conventionally fueled aircraft.

  10. Analysis of vehicle fuel release resulting in waste tank fire

    SciTech Connect

    STEPHENS, L.S.

    2003-03-21

    This document reevaluates several aspects of the in-tank vehicle fuel fire/deflagration accident formally documented as an independent accident (representative accident [rep acc] 2). This reevaluation includes frequencies for the accidents and incorporates the behavior of gasoline and diesel fuel in more detail than previous analysis. This reevaluation uses data from RPP-13121, ''Historical Summary of Occurrences from the Tank Farm Safety Analysis Report'', Table B-1, ''Tank Farm Events, Off-Normal and Critiques,'' and B-2, ''Summary of Occurrences,'' and from the River Protection Project--Occurrence Reporting & Processing System (ORPS) reports as a basis for changing some of the conclusions formally reported in HNF-SD-WM-CN-037, ''Frequency Analysis of Vehicle Fuel Releases Resulting in Waste Tank Fire''. This calculation note will demonstrate that the in-tank vehicle fuel fire/deflagration accident event may be relocated to other, more bounding accidents.

  11. Study of LH2 fueled subsonic passenger transport aircraft

    NASA Technical Reports Server (NTRS)

    Brewer, G. D.; Morris, R. E.

    1976-01-01

    The potential of using liquid hydrogen as fuel in subsonic transport aircraft was investigated to explore an expanded matrix of passenger aircraft sizes. Aircraft capable of carrying 130 passengers 2,780 km (1500 n.mi.); 200 passengers 5,560 km (3000 n.mi.); and 400 passengers on a 9,265 km (5000 n.mi.) radius mission, were designed parametrically. Both liquid hydrogen and conventionally fueled versions were generated for each payload/range in order that comparisons could be made. Aircraft in each mission category were compared on the basis of weight, size, cost, energy utilization, and noise.

  12. In Situ Multi-Species (O2, N2, Fuel, Other) Fiber Optic Sensor for Fuel Tank Ullage

    NASA Technical Reports Server (NTRS)

    Nguyen, Quang-Viet

    2007-01-01

    A rugged and compact fiber optic sensor system for in situ real-time measurement of nitrogen (N2), oxygen (O2), hydrocarbon (HC) fuel vapors, and other gases has been developed over the past several years at Glenn Research Center. The intrinsically-safe, solid-state fiber optic sensor system provides a 1% precision measurement (by volume) of multiple gases in a 5-sec time window. The sensor has no consumable parts to wear out and requires less than 25 W of electrical power to operate. The sensor head is rugged and compact and is ideal for use in harsh environments such as inside an aircraft fuel tank, or as a feedback sensor in the vent-box of an on-board inert gas generation system (OBIGGS). Multiple sensor heads can be monitored with a single optical detection unit for a cost-effective multi-point sensor system. The present sensor technology is unique in its ability to measure N2 concentration directly, and in its ability to differentiate different types of HC fuels. The present sensor system provides value-added aircraft safety information by simultaneously and directly measuring the nitrogen-oxygen-fuel triplet, which provides the following advantages: (1) information regarding the extent of inerting by N2, (2) information regarding the chemical equivalence ratio, (3) information regarding the composition of the aircraft fuel, and (4) by providing a self-consistent calibration by utilizing a singular sensor for all species. Using the extra information made available by this sensor permits the ignitability of a fuel-oxidizer mixture to be more accurately characterized, which may permit a reduction in the amount of inerting required on a real-time basis, and yet still maintain a fire-safe fuel tank. This translates to an increase in fuel tank fire-safety through a better understanding of the physics of fuel ignition, and at the same time, a reduction in compressed bleed air usage and concomitant aircraft operational costs over the long-run. The present fiber

  13. Characteristics and combustion of future hydrocarbon fuels. [aircraft fuels

    NASA Technical Reports Server (NTRS)

    Rudey, R. A.; Grobman, J. S.

    1978-01-01

    As the world supply of petroleum crude oil is being depleted, the supply of high-quality crude oil is also dwindling. This dwindling supply is beginning to manifest itself in the form of crude oils containing higher percentages of aromatic compounds, sulphur, nitrogen, and trace constituents. The result of this trend is described and the change in important crude oil characteristics, as related to aircraft fuels, is discussed. As available petroleum is further depleted, the use of synthetic crude oils (those derived from coal and oil shale) may be required. The principal properties of these syncrudes and the fuels that can be derived from them are described. In addition to the changes in the supply of crude oil, increasing competition for middle-distillate fuels may require that specifications be broadened in future fuels. The impact that the resultant potential changes in fuel properties may have on combustion and thermal stability characteristics is illustrated and discussed in terms of ignition, soot formation, carbon deposition flame radiation, and emissions.

  14. Credit WCT. Photographic copy of photograph, oxidizer and fuel tank ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Credit WCT. Photographic copy of photograph, oxidizer and fuel tank assembly for engine tests being raised by crane for permanent installation in Test Stand "D" tower. Each tank held 170 gallons of propellants. (JPL negative 384-2029-B, 7 August 1959) - Jet Propulsion Laboratory Edwards Facility, Test Stand D, Edwards Air Force Base, Boron, Kern County, CA

  15. 14 CFR 25.981 - Fuel tank ignition prevention.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Appendix N of this part, or that of a fuel tank within the wing of the airplane model being evaluated, whichever is greater. If the wing is not a conventional unheated aluminum wing, the analysis must be based on an assumed Equivalent Conventional Unheated Aluminum Wing Tank. (1) Fleet Average...

  16. 14 CFR 25.981 - Fuel tank ignition prevention.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Appendix N of this part, or that of a fuel tank within the wing of the airplane model being evaluated, whichever is greater. If the wing is not a conventional unheated aluminum wing, the analysis must be based on an assumed Equivalent Conventional Unheated Aluminum Wing Tank. (1) Fleet Average...

  17. 14 CFR 25.981 - Fuel tank ignition prevention.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Appendix N of this part, or that of a fuel tank within the wing of the airplane model being evaluated, whichever is greater. If the wing is not a conventional unheated aluminum wing, the analysis must be based on an assumed Equivalent Conventional Unheated Aluminum Wing Tank. (1) Fleet Average...

  18. 46 CFR 182.450 - Vent pipes for fuel tanks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... by reference; see 46 CFR 175.600), or 33 CFR 183, subpart J, or with diesel fuel tank vents built in accordance with ABYC H-33 (incorporated by reference; see 46 CFR 175.600), will be considered as meeting the... gauge), if the fill pipe extends into the tank; and (3) Not less than the cross sectional area of...

  19. Extending the service life of urethane fuel tanks. Final report

    SciTech Connect

    Gatza, P.E.; Touchet, P.; Feuer, H.O.; Teets, A.R.

    1992-03-01

    This report covers the development of an extraction/immersion test procedure for screening of candidate urethane-coated fabrics, used in collapsible fuel storage tanks. Also included are recommended changes in materials requirements for two military specifications which govern procurement of these tanks.

  20. 46 CFR 169.234 - Integral fuel oil tank examinations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ....234 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS SAILING SCHOOL VESSELS Inspection and Certification Drydocking Or Hauling Out § 169.234 Integral fuel oil tank... operator of the vessel shall have the tanks cleaned out and gas freed as necessary to permit...

  1. 46 CFR 169.234 - Integral fuel oil tank examinations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ....234 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS SAILING SCHOOL VESSELS Inspection and Certification Drydocking Or Hauling Out § 169.234 Integral fuel oil tank... operator of the vessel shall have the tanks cleaned out and gas freed as necessary to permit...

  2. 14 CFR 25.971 - Fuel tank sump.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... must have a sump with an effective capacity, in the normal ground attitude, of not less than the... with the airplane in the ground attitude. (c) Each fuel tank sump must have an accessible drain...

  3. 14 CFR 23.963 - Fuel tanks: General.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ..., fluid, and structural loads that it may be subjected to in operation. (b) Each flexible fuel tank liner... must be enough for at least one-half hour of operation at maximum continuous power. (e) Each...

  4. 14 CFR 23.963 - Fuel tanks: General.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ..., fluid, and structural loads that it may be subjected to in operation. (b) Each flexible fuel tank liner... must be enough for at least one-half hour of operation at maximum continuous power. (e) Each...

  5. Certification of an agricultural spray aircraft on ethanol fuel

    SciTech Connect

    Shauck, M.E.; Zanin, M.G.

    1994-12-31

    A Piper Pawnee, one of the most common agricultural spray aircraft, is currently undergoing Federal Aviation Administration (FAA) certification to allow the use of denatured ethanol as its fuel. This certification is part of a broader effort to introduce ethanol as a replacement for aviation gasoline. Various reasons brought about the choice of an agricultural spray aircraft to be certified on ethanol. One is the minimization of initial fuel distribution problems. Agricultural aviation often requires only single fuel storage since most of the flying is local. Additionally, corn-produced ethanol is the natural fuel of choice for farming operations. The increased power developed on ethanol compared to aviation gasoline (avgas) is very important when operating heavily loaded spray aircraft at very low altitudes. The power-plant, a Lycoming IO-540, is already certified. The aircraft is currently flying on ethanol in order to satisfy the airframe requirements. The effort is being supported by a consortium of organizations of corn-producing states. Upon completion of certification, the aircraft will be demonstrated around the mid-western states. Certification will allow the use of the aircraft in the commercial arena. Many mid-western agricultural spray operations and ag-pilots have already expressed interest in converting their aircraft to ethanol fuel.

  6. 46 CFR 125.115 - Oil fuel tank protection.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...) Not a tankship as defined in 46 CFR 30.10-67; and (2) In the service of oil exploitation. ... 46 Shipping 4 2014-10-01 2014-10-01 false Oil fuel tank protection. 125.115 Section 125.115... Oil fuel tank protection. (a) An OSV of at least 6,000 GT ITC (500 GRT if GT ITC is not assigned)...

  7. Aircraft Research and Technology for Future Fuels

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The potential characteristics of future aviation turbine fuels and the property effects of these fuels on propulsion system components are examined. The topics that are discussed include jet fuel supply and demand trends, the effects of refining variables on fuel properties, shekle oil processing, the characteristics of broadened property fuels, the effects of fuel property variations on combustor and fuel system performance, and combuster and fuel system technology for broadened property fuels.

  8. Combustion technology overview. [the use of broadened property aircraft fuels

    NASA Technical Reports Server (NTRS)

    Niedzwiecki, R. W.

    1980-01-01

    An overview of combustor technology developments required for use of broadened property fuels in jet aircraft is presented. The intent of current investigations is to determine the extent to which fuel properties can be varied, to obtain a data base of combustion - fuel quality effects, and to determine the trade-offs associated with broadened property fuels. Subcomponents of in-service combustors such as fuel injectors and liners, as well as air distributions and stoichiometry, are being altered to determine the extent to which fuel flexibility can be extended. Finally, very advanced technology consisting of new combustor concepts is being evolved to optimize the fuel flexibility of gas turbine combustors.

  9. Fuel conservation merits of advanced turboprop transport aircraft

    NASA Technical Reports Server (NTRS)

    Revell, J. D.; Tullis, R. H.

    1977-01-01

    The advantages of a propfan powered aircraft for the commercial air transportation system were assessed by the comparison with an equivalent turbofan transport. Comparisons were accomplished on the basis of fuel utilization and operating costs, as well as aircraft weight and size. Advantages of the propfan aircraft, concerning fuel utilization and operating costs, were accomplished by considering: (1) incorporation of propfan performance and acoustic data; (2) revised mission profiles (longer design range and reduction in; and cruise speed) (3) utilization of alternate and advanced technology engines.

  10. Durability of foam insulation for LH2 fuel tanks of future subsonic transports

    NASA Technical Reports Server (NTRS)

    Sharpe, E. L.; Helenbrook, R. G.

    1978-01-01

    In connection with the potential short-supply of petroleum based fuels, NASA has initiated investigations concerning the feasibility of aircraft using as fuel hydrogen which is to be stored in liquid form. One of the problems to be solved for an operation of such aircraft is related to the possibility of a suitable storage of the liquid hydrogen. A description is presented of an experimental study regarding the suitability of commercially available organic foams as cryogenic insulation for liquid hydrogen tanks under extensive thermal cycling typical of subsonic airline type operation. Fourteen commercially available organic foam insulations were tested. The thermal performance of all insulations was found to deteriorate with increased simulated flight cycles. Two unreinforced polyurethane foams survived over 4200 thermal cycles (representative of approximately 15 years of airline service) without evidence of structural deterioration. The polyurethane foam insulations also exhibited excellent thermal performance.

  11. 81. GENERAL VIEW FROM NORTH OF FUEL STORAGE TANK ON ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    81. GENERAL VIEW FROM NORTH OF FUEL STORAGE TANK ON SOUTH END OF SLC-3W FUEL APRON. CORNER OF CONTROL SKID VISIBLE ON LEFT. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 West, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  12. 46 CFR 169.627 - Compartments containing diesel fuel tanks.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Compartments containing diesel fuel tanks. 169.627 Section 169.627 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS SAILING SCHOOL VESSELS Machinery and Electrical Ventilation § 169.627 Compartments containing diesel fuel...

  13. 46 CFR 169.627 - Compartments containing diesel fuel tanks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Compartments containing diesel fuel tanks. 169.627 Section 169.627 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS SAILING SCHOOL VESSELS Machinery and Electrical Ventilation § 169.627 Compartments containing diesel fuel...

  14. 46 CFR 169.627 - Compartments containing diesel fuel tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Compartments containing diesel fuel tanks. 169.627 Section 169.627 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS SAILING SCHOOL VESSELS Machinery and Electrical Ventilation § 169.627 Compartments containing diesel fuel...

  15. 46 CFR 169.627 - Compartments containing diesel fuel tanks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Compartments containing diesel fuel tanks. 169.627 Section 169.627 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS SAILING SCHOOL VESSELS Machinery and Electrical Ventilation § 169.627 Compartments containing diesel fuel...

  16. Impact of future fuel properties on aircraft engines and fuel systems

    NASA Technical Reports Server (NTRS)

    Rudey, R. A.; Grobman, J. S.

    1978-01-01

    The effect of modifications in hydrocarbon jet fuels specifications on engine performance, component durability and maintenance, and aircraft fuel system performance is discussed. Specific topics covered include: specific fuel consumption; ignition at relight limits; exhaust emissions; combustor liner temperatures; carbon deposition; gum formation in fuel nozzles, erosion and corrosion of turbine blades and vanes; deposits in fuel system heat exchangers; and pumpability and flowability of the fuel. Data that evaluate the ability of current technology aircraft to accept fuel specification changes are presented, and selected technological advances that can reduce the severity of the problems are described and discussed.

  17. Effect of broadened-specification fuels on aircraft engines and fuel systems

    NASA Technical Reports Server (NTRS)

    Rudey, R. A.

    1979-01-01

    A wide variety of studies on the potential effects of broadened-specification fuels on future aircraft engines and fuel systems are summarized. The compositions and characteristics of aircraft fuels that may be derived from current and future crude-oil sources are described, and the most critical properties that may effect aircraft engines and fuel systems are identified and discussed. The problems that are most likely to be encountered because of changes in selected fuel properties are explored; and the related effects on engine performance, component durability and maintenance, and aircraft fuel-system performance are examined. The ability of current technology to accept possible future fuel specification changes is assessed and selected technological advances that can reduce the severity of the potential problems are illustrated.

  18. 46 CFR 58.50-10 - Diesel fuel tanks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    .... Table 58.50-10(a) Material ASTM specification (all incorporated by reference; see 46 CFR 58.03-1....250 (USSG 3) 0.250 (USSG 3). Nickel-copper B 127, Hot rolled sheet or plate 0.037 (USSG 20).3 0.050... tank may be subjected in service. Fuel may be used as a testing medium. (3) All tanks not vented...

  19. 46 CFR 58.50-10 - Diesel fuel tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    .... Table 58.50-10(a) Material ASTM specification (all incorporated by reference; see 46 CFR 58.03-1....250 (USSG 3) 0.250 (USSG 3). Nickel-copper B 127, Hot rolled sheet or plate 0.037 (USSG 20).3 0.050... tank may be subjected in service. Fuel may be used as a testing medium. (3) All tanks not vented...

  20. 46 CFR 58.50-10 - Diesel fuel tanks.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    .... Table 58.50-10(a) Material ASTM specification (all incorporated by reference; see 46 CFR 58.03-1....250 (USSG 3) 0.250 (USSG 3). Nickel-copper B 127, Hot rolled sheet or plate 0.037 (USSG 20).3 0.050... tank may be subjected in service. Fuel may be used as a testing medium. (3) All tanks not vented...

  1. 49 CFR Appendix D to Part 238 - Requirements for External Fuel Tanks on Tier I Locomotives

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Requirements for External Fuel Tanks on Tier I..., App. D Appendix D to Part 238—Requirements for External Fuel Tanks on Tier I Locomotives The... properties of the locomotive fuel tank to reduce the risk of fuel spillage to acceptable levels...

  2. 49 CFR Appendix D to Part 238 - Requirements for External Fuel Tanks on Tier I Locomotives

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Requirements for External Fuel Tanks on Tier I..., App. D Appendix D to Part 238—Requirements for External Fuel Tanks on Tier I Locomotives The... properties of the locomotive fuel tank to reduce the risk of fuel spillage to acceptable levels...

  3. Fiber-Optic Determination of N2, O2, and Fuel Vapor in the Ullage of Liquid-Fuel Tanks

    NASA Technical Reports Server (NTRS)

    Nguyen, Quang-Viet

    2008-01-01

    A fiber-optic sensor system has been developed that can remotely measure the concentration of molecular oxygen (O2), nitrogen (N2), hydrocarbon vapor, and other gases (CO2, CO, H2O, chlorofluorocarbons, etc.) in the ullage of a liquid-fuel tank. The system provides an accurate and quantitative identification of the above gases with an accuracy of better than 1 percent by volume (for O2 or N2) in real-time (5 seconds). In an effort to prevent aircraft fuel tank fires or explosions similar to the tragic TWA Flight 800 explosion in 1996, OBIGGS are currently being developed for large commercial aircraft to prevent dangerous conditions from forming inside fuel tanks by providing an inerting gas blanket that is low in oxygen, thus preventing the ignition of the fuel/air mixture in the ullage. OBIGGS have been used in military aircraft for many years and are now standard equipment on some newer large commercial aircraft (such as the Boeing 787). Currently, OBIGGS are being developed for retrofitting to existing commercial aircraft fleets in response to pending mandates from the FAA. Most OBIGGS use an air separation module (ASM) that separates O2 from N2 to make nitrogen-enriched air from compressed air flow diverted from the engine (bleed air). Current OBIGGS systems do not have a closed-loop feedback control, in part, due to the lack of suitable process sensors that can reliably measure N2 or O2 and at the same time, do not constitute an inherent source of ignition. Thus, current OBIGGS operate with a high factor-of-safety dictated by process protocol to ensure adequate fuel-tank inerting. This approach is inherently inefficient as it consumes more engine bleed air than is necessary compared to a closed-loop controlled approach. The reduction of bleed air usage is important as it reduces fuel consumption, which translates to both increased flight range and lower operational costs. Numerous approaches to developing OBIGGS feedback-control sensors have been under

  4. Fuel-Conservation Guidance System for Powered-Lift Aircraft

    NASA Technical Reports Server (NTRS)

    Erzberger, Heinz; McLean, John D.

    1981-01-01

    A technique is described for the design of fuel-conservative guidance systems and is applied to a system that was flight tested on board NASA's sugmentor wing jet STOL research aircraft. An important operational feature of the system is its ability to rapidly synthesize fuel-efficient trajectories for a large set of initial aircraft positions, altitudes, and headings. This feature allows the aircraft to be flown efficiently under conditions of changing winds and air traffic control vectors. Rapid synthesis of fuel-efficient trajectories is accomplished in the airborne computer by fast-time trajectory integration using a simplified dynamic performance model of the aircraft. This technique also ensures optimum flap deployment and, for powered-lift STOL aircraft, optimum transition to low-speed flight. Also included in the design is accurate prediction of touchdown time for use in four-dimensional guidance applications. Flight test results have demonstrated that the automatically synthesized trajectories produce significant fuel savings relative to manually flown conventional approaches.

  5. Fuel tank for liquefied natural gas

    NASA Technical Reports Server (NTRS)

    DeLay, Thomas K. (Inventor)

    2012-01-01

    A storage tank is provided for storing liquefied natural gas on, for example, a motor vehicle such as a bus or truck. The storage tank includes a metal liner vessel encapsulated by a resin-fiber composite layer. A foam insulating layer, including an outer protective layer of epoxy or of a truck liner material, covers the composite layer. A non-conducting protective coating may be painted on the vessel between the composite layer and the vessel so as to inhibit galvanic corrosion.

  6. Economic impact of fuel properties on turbine powered business aircraft

    NASA Technical Reports Server (NTRS)

    Powell, F. D.

    1984-01-01

    The principal objective was to estimate the economic impact on the turbine-powered business aviation fleet of potential changes in the composition and properties of aviation fuel. Secondary objectives include estimation of the sensitivity of costs to specific fuel properties, and an assessment of the directions in which further research should be directed. The study was based on the published characteristics of typical and specific modern aircraft in three classes; heavy jet, light jet, and turboprop. Missions of these aircraft were simulated by computer methods for each aircraft for several range and payload combinations, and assumed atmospheric temperatures ranging from nominal to extremely cold. Five fuels were selected for comparison with the reference fuel, nominal Jet A. An overview of the data, the mathematic models, the data reduction and analysis procedure, and the results of the study are given. The direct operating costs of the study fuels are compared with that of the reference fuel in the 1990 time-frame, and the anticipated fleet costs and fuel break-even costs are estimated.

  7. Research on antimisting fuel for suppression of postcrash aircraft fires

    NASA Technical Reports Server (NTRS)

    Sarohia, V.; Parikh, P.; Yavrouian, A.; Matthys, E.

    1986-01-01

    Recent experimental results in the field of post-crash aircraft fire suppression are reviewed, with emphasis given to antimisting kerosene fuel (AMK). Findings in three major areas of study are presented, including: rheological studies (skin friction, and heat transfer); fuel breakup processes and nozzle spray combustion; and the development of inline blenders for production of AMK at the refueling point. An interpretation of the results of the FAA/NASA Controlled Impact Demonstration of AMK fuel is also presented. It is concluded that AMK is a sound concept and offers several advantages over conventional fuels in any crash scenario involving post-crash fires.

  8. Aircraft

    DOEpatents

    Hibbs, B.D.; Lissaman, P.B.S.; Morgan, W.R.; Radkey, R.L.

    1998-09-22

    This disclosure provides a solar rechargeable aircraft that is inexpensive to produce, is steerable, and can remain airborne almost indefinitely. The preferred aircraft is a span-loaded flying wing, having no fuselage or rudder. Travelling at relatively slow speeds, and having a two-hundred foot wingspan that mounts photovoltaic cells on most all of the wing`s top surface, the aircraft uses only differential thrust of its eight propellers to turn. Each of five sections of the wing has one or more engines and photovoltaic arrays, and produces its own lift independent of the other sections, to avoid loading them. Five two-sided photovoltaic arrays, in all, are mounted on the wing, and receive photovoltaic energy both incident on top of the wing, and which is incident also from below, through a bottom, transparent surface. The aircraft is capable of a top speed of about ninety miles per hour, which enables the aircraft to attain and can continuously maintain altitudes of up to sixty-five thousand feet. Regenerative fuel cells in the wing store excess electricity for use at night, such that the aircraft can sustain its elevation indefinitely. A main spar of the wing doubles as a pressure vessel that houses hydrogen and oxygen gases for use in the regenerative fuel cell. The aircraft has a wide variety of applications, which include weather monitoring and atmospheric testing, communications, surveillance, and other applications as well. 31 figs.

  9. Aircraft

    DOEpatents

    Hibbs, Bart D.; Lissaman, Peter B. S.; Morgan, Walter R.; Radkey, Robert L.

    1998-01-01

    This disclosure provides a solar rechargeable aircraft that is inexpensive to produce, is steerable, and can remain airborne almost indefinitely. The preferred aircraft is a span-loaded flying wing, having no fuselage or rudder. Travelling at relatively slow speeds, and having a two-hundred foot wingspan that mounts photovoltaic cells on most all of the wing's top surface, the aircraft uses only differential thrust of its eight propellers to turn. Each of five sections of the wing has one or more engines and photovoltaic arrays, and produces its own lift independent of the other sections, to avoid loading them. Five two-sided photovoltaic arrays, in all, are mounted on the wing, and receive photovoltaic energy both incident on top of the wing, and which is incident also from below, through a bottom, transparent surface. The aircraft is capable of a top speed of about ninety miles per hour, which enables the aircraft to attain and can continuously maintain altitudes of up to sixty-five thousand feet. Regenerative fuel cells in the wing store excess electricity for use at night, such that the aircraft can sustain its elevation indefinitely. A main spar of the wing doubles as a pressure vessel that houses hydrogen and oxygen gasses for use in the regenerative fuel cell. The aircraft has a wide variety of applications, which include weather monitoring and atmospheric testing, communications, surveillance, and other applications as well.

  10. Aircraft Engine Technology for Green Aviation to Reduce Fuel Burn

    NASA Technical Reports Server (NTRS)

    Hughes, Christopher E.; VanZante, Dale E.; Heidmann, James D.

    2013-01-01

    The NASA Fundamental Aeronautics Program Subsonic Fixed Wing Project and Integrated Systems Research Program Environmentally Responsible Aviation Project in the Aeronautics Research Mission Directorate are conducting research on advanced aircraft technology to address the environmental goals of reducing fuel burn, noise and NOx emissions for aircraft in 2020 and beyond. Both Projects, in collaborative partnerships with U.S. Industry, Academia, and other Government Agencies, have made significant progress toward reaching the N+2 (2020) and N+3 (beyond 2025) installed fuel burn goals by fundamental aircraft engine technology development, subscale component experimental investigations, full scale integrated systems validation testing, and development validation of state of the art computation design and analysis codes. Specific areas of propulsion technology research are discussed and progress to date.

  11. Power characteristics of fuels for aircraft engines

    NASA Technical Reports Server (NTRS)

    Dickinson, W S; James, W S; Roberts, E W; Gage, V R; Harper, D R Iii

    1920-01-01

    Report presents the summation of results obtained in the testing of fuels of various compositions and characteristics in the altitude laboratory. The data upon which this report is based has had an important influence upon the writing of specifications for the various grades of aviation fuels.

  12. 4. Historic photo of fuel and oxidant tanks in hilltop ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. Historic photo of fuel and oxidant tanks in hilltop area of rocket engine test facility. 1956. On file at NASA Plumbrook Research Center, Sandusky, Ohio. NASA GRC photo number C-1956-160D. - Rocket Engine Testing Facility, NASA Glenn Research Center, Cleveland, Cuyahoga County, OH

  13. 30 CFR 36.50 - Tests of fuel tank.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Tests of fuel tank. 36.50 Section 36.50 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR TESTING, EVALUATION, AND APPROVAL OF MINING PRODUCTS APPROVAL REQUIREMENTS FOR PERMISSIBLE MOBILE DIESEL-POWERED TRANSPORTATION EQUIPMENT Test Requirements § 36.50 Tests of...

  14. 46 CFR 182.450 - Vent pipes for fuel tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... by reference; see 46 CFR 175.600), or 33 CFR 183, subpart J, or with diesel fuel tank vents built in accordance with ABYC H-33 (incorporated by reference; see 46 CFR 175.600), will be considered as meeting the... screens or arrester elements. (f) A vessel of not more than 19.8 meters (65 feet) in length, carrying...

  15. 46 CFR 119.450 - Vent pipes for fuel tanks.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Vent pipes for fuel tanks. 119.450 Section 119.450 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS CARRYING MORE THAN 150 PASSENGERS OR WITH OVERNIGHT ACCOMMODATIONS FOR MORE THAN 49 PASSENGERS MACHINERY INSTALLATION Specific Machinery Requirements § 119.450...

  16. 46 CFR 119.450 - Vent pipes for fuel tanks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Vent pipes for fuel tanks. 119.450 Section 119.450 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS CARRYING MORE THAN 150 PASSENGERS OR WITH OVERNIGHT ACCOMMODATIONS FOR MORE THAN 49 PASSENGERS MACHINERY INSTALLATION Specific Machinery Requirements § 119.450...

  17. 14 CFR 23.965 - Fuel tank tests.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... critical limit structural loads. (3) For each nonmetallic tank with walls supported by the airplane... with large, unsupported, or unstiffened flat surfaces,whose failure or deformation could cause fuel leakage, must be able to withstand the following test without leakage, failure, or excessive...

  18. 14 CFR 23.965 - Fuel tank tests.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... critical limit structural loads. (3) For each nonmetallic tank with walls supported by the airplane... with large, unsupported, or unstiffened flat surfaces,whose failure or deformation could cause fuel leakage, must be able to withstand the following test without leakage, failure, or excessive...

  19. 46 CFR 119.440 - Independent fuel tanks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Independent fuel tanks. 119.440 Section 119.440 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS CARRYING MORE THAN 150 PASSENGERS OR WITH OVERNIGHT ACCOMMODATIONS FOR MORE THAN 49 PASSENGERS MACHINERY INSTALLATION Specific Machinery Requirements §...

  20. 14 CFR 23.965 - Fuel tank tests.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... critical limit structural loads. (3) For each nonmetallic tank with walls supported by the airplane... with large, unsupported, or unstiffened flat surfaces,whose failure or deformation could cause fuel leakage, must be able to withstand the following test without leakage, failure, or excessive...

  1. 14 CFR 23.965 - Fuel tank tests.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... critical limit structural loads. (3) For each nonmetallic tank with walls supported by the airplane... with large, unsupported, or unstiffened flat surfaces,whose failure or deformation could cause fuel leakage, must be able to withstand the following test without leakage, failure, or excessive...

  2. 30 CFR 36.50 - Tests of fuel tank.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Tests of fuel tank. 36.50 Section 36.50 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR TESTING, EVALUATION, AND APPROVAL OF MINING PRODUCTS APPROVAL REQUIREMENTS FOR PERMISSIBLE MOBILE DIESEL-POWERED TRANSPORTATION EQUIPMENT Test Requirements § 36.50 Tests of...

  3. 49 CFR 393.67 - Liquid fuel tanks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... section or 49 CFR 571.301 at the time of its manufacture, provided the fuel tank of such vehicle is... requirements of 49 CFR 571.301 are exempt from the requirements of this subpart, as they apply to the vehicle's... applicable fill rate required by the regulations of the Environmental Protection Agency under 40 CFR...

  4. 46 CFR 182.450 - Vent pipes for fuel tanks.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... by reference; see 46 CFR 175.600), or 33 CFR 183, subpart J, or with diesel fuel tank vents built in accordance with ABYC H-33 (incorporated by reference; see 46 CFR 175.600), will be considered as meeting the... of 19 millimeters (0.75 inches) outer diameter (O.D.) tubing (0.9 millimeter (0.035 Inch)...

  5. 46 CFR 182.450 - Vent pipes for fuel tanks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... by reference; see 46 CFR 175.600), or 33 CFR 183, subpart J, or with diesel fuel tank vents built in accordance with ABYC H-33 (incorporated by reference; see 46 CFR 175.600), will be considered as meeting the... of 19 millimeters (0.75 inches) outer diameter (O.D.) tubing (0.9 millimeter (0.035 Inch)...

  6. 46 CFR 119.450 - Vent pipes for fuel tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Vent pipes for fuel tanks. 119.450 Section 119.450 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS CARRYING MORE THAN 150 PASSENGERS OR WITH OVERNIGHT ACCOMMODATIONS FOR MORE THAN 49 PASSENGERS MACHINERY INSTALLATION Specific Machinery Requirements § 119.450...

  7. 49 CFR 393.67 - Liquid fuel tanks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... section or 49 CFR 571.301 at the time of its manufacture, provided the fuel tank of such vehicle is... requirements of 49 CFR 571.301 are exempt from the requirements of this subpart, as they apply to the vehicle's... applicable fill rate required by the regulations of the Environmental Protection Agency under 40 CFR...

  8. 49 CFR 393.67 - Liquid fuel tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... section or 49 CFR 571.301 at the time of its manufacture, provided the fuel tank of such vehicle is... requirements of 49 CFR 571.301 are exempt from the requirements of this subpart, as they apply to the vehicle's... applicable fill rate required by the regulations of the Environmental Protection Agency under 40 CFR...

  9. 49 CFR 393.67 - Liquid fuel tanks.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... section or 49 CFR 571.301 at the time of its manufacture, provided the fuel tank of such vehicle is... requirements of 49 CFR 571.301 are exempt from the requirements of this subpart, as they apply to the vehicle's... applicable fill rate required by the regulations of the Environmental Protection Agency under 40 CFR...

  10. 30 CFR 36.50 - Tests of fuel tank.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Tests of fuel tank. 36.50 Section 36.50 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR TESTING, EVALUATION, AND APPROVAL OF MINING PRODUCTS APPROVAL REQUIREMENTS FOR PERMISSIBLE MOBILE DIESEL-POWERED TRANSPORTATION EQUIPMENT Test Requirements § 36.50 Tests of...

  11. 8. View, fuel waste tanks and containment basin associated with ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. View, fuel waste tanks and containment basin associated with Components Test Laboratory (T-27) located uphill to the left, looking northwest. - Air Force Plant PJKS, Systems Integration Laboratory, Components Test Laboratory, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO

  12. 4. View, fuel waste tanks and containment basin in foreground ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. View, fuel waste tanks and containment basin in foreground with Systems Integration Laboratory (T-28) uphill in background, looking southeast. At the extreme right is the Long-Term Oxidizer Silo (T-28B) and the Oxidizer Conditioning Structure (T-28D). - Air Force Plant PJKS, Systems Integration Laboratory, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO

  13. 49 CFR 393.67 - Liquid fuel tanks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... section or 49 CFR 571.301 at the time of its manufacture, provided the fuel tank of such vehicle is... requirements of 49 CFR 571.301 are exempt from the requirements of this subpart, as they apply to the vehicle's... applicable fill rate required by the regulations of the Environmental Protection Agency under 40 CFR...

  14. 34. DETAILS AND SECTIONS OF SHIELDING TANK FUEL ELEMENT SUPPORT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    34. DETAILS AND SECTIONS OF SHIELDING TANK FUEL ELEMENT SUPPORT FRAME. F.C. TORKELSON DRAWING NUMBER 842-ARVFS-701-S-4. INEL INDEX CODE NUMBER: 075 0701 60 851 151978. - Idaho National Engineering Laboratory, Advanced Reentry Vehicle Fusing System, Scoville, Butte County, ID

  15. 36. DETAILS AND SECTIONS OF SHIELDING TANK, FUEL ELEMENT SUPPORT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    36. DETAILS AND SECTIONS OF SHIELDING TANK, FUEL ELEMENT SUPPORT FRAME AND SUPPORT PLATFORM, AND SAFETY MECHANISM ASSEMBLY (SPRING-LOADED HINGE). F.C. TORKELSON DRAWING NUMBER 842-ARVFS-701-S-1. INEL INDEX CODE NUMBER: 075 0701 60 851 151975. - Idaho National Engineering Laboratory, Advanced Reentry Vehicle Fusing System, Scoville, Butte County, ID

  16. 46 CFR 169.631 - Separation of machinery and fuel tank spaces from accommodation spaces.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Separation of machinery and fuel tank spaces from accommodation spaces. 169.631 Section 169.631 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED... machinery and fuel tank spaces from accommodation spaces. (a) Machinery and fuel tank spaces must...

  17. 46 CFR 169.629 - Compartments containing gasoline machinery or fuel tanks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Compartments containing gasoline machinery or fuel tanks... gasoline machinery or fuel tanks. Spaces containing gasoline machinery or fuel tanks must have natural... Standard H-2.5, “Design and Construction; Ventilation of Boats Using Gasoline....

  18. 46 CFR 169.631 - Separation of machinery and fuel tank spaces from accommodation spaces.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Separation of machinery and fuel tank spaces from accommodation spaces. 169.631 Section 169.631 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED... machinery and fuel tank spaces from accommodation spaces. (a) Machinery and fuel tank spaces must...

  19. 18 CFR 1304.405 - Fuel storage tanks and handling facilities.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 18 Conservation of Power and Water Resources 2 2013-04-01 2012-04-01 true Fuel storage tanks and handling facilities. 1304.405 Section 1304.405 Conservation of Power and Water Resources TENNESSEE VALLEY... ALTERATIONS Miscellaneous § 1304.405 Fuel storage tanks and handling facilities. Fuel storage tanks...

  20. 18 CFR 1304.405 - Fuel storage tanks and handling facilities.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 18 Conservation of Power and Water Resources 2 2014-04-01 2014-04-01 false Fuel storage tanks and handling facilities. 1304.405 Section 1304.405 Conservation of Power and Water Resources TENNESSEE VALLEY... ALTERATIONS Miscellaneous § 1304.405 Fuel storage tanks and handling facilities. Fuel storage tanks...

  1. 46 CFR 169.631 - Separation of machinery and fuel tank spaces from accommodation spaces.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Separation of machinery and fuel tank spaces from accommodation spaces. 169.631 Section 169.631 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED... machinery and fuel tank spaces from accommodation spaces. (a) Machinery and fuel tank spaces must...

  2. 46 CFR 169.629 - Compartments containing gasoline machinery or fuel tanks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Compartments containing gasoline machinery or fuel tanks... SCHOOLS SAILING SCHOOL VESSELS Machinery and Electrical Ventilation § 169.629 Compartments containing gasoline machinery or fuel tanks. Spaces containing gasoline machinery or fuel tanks must have...

  3. Autoignition characteristics of aircraft-type fuels

    NASA Technical Reports Server (NTRS)

    Spadaccini, L. J.; Tevelde, J. A.

    1980-01-01

    The ignition delay characteristics of Jet A, JP 4, no. 2 diesel, cetane and an experimental referee broad specification (ERBS) fuel in air at inlet temperatures up to 1000 K, pressures of 10, 15, 20, 25 and 30 atm, and fuel air equivalence ratios of 0.3, 0.5, 0.7 and 1.0 were mapped. Ignition delay times in the range of 1 to 50 msec at freestream flow velocities ranging from 20 to 100 m/sec were obtained using a continuous flow test apparatus which permitted independent variation and evaluation of the effect of temperature, pressure, flow rate, and fuel/air ratio. The ignition delay times for all fuels tested appeared to correlate with the inverse of pressure and the inverse exponent of temperature. With the exception of pure cetane, which had the shortest ignition delay times, the differences between the fuels tested did not appear to be significant. The apparent global activation energies for the typical gas turbine fuels ranged from 38 to 40 kcal/mole, while the activation energy determined for cetane was 50 kcal/mole. In addition, the data indicate that for lean mixtures, ignition delay times decrease with increasing equivalence ratio. It was also noted that physical (apparatus dependent) phenomena, such as mixing (i.e., length and number of injection sites) and airstream cooling (due to fuel heating, vaporization and convective heat loss) can have an important effect on the ignition delay.

  4. Review of Current State of the Art and Key Design Issues With Potential Solutions for Liquid Hydrogen Cryogenic Storage Tank Structures for Aircraft Applications

    NASA Technical Reports Server (NTRS)

    Mital, Subodh K.; Gyekenyesi, John Z.; Arnold, Steven M.; Sullivan, Roy M.; Manderscheid, Jane M.; Murthy, Pappu L. N.

    2006-01-01

    Due to its high specific energy content, liquid hydrogen (LH2) is emerging as an alternative fuel for future aircraft. As a result, there is a need for hydrogen tank storage systems, for these aircraft applications, that are expected to provide sufficient capacity for flight durations ranging from a few minutes to several days. It is understood that the development of a large, lightweight, reusable cryogenic liquid storage tank is crucial to meet the goals of and supply power to hydrogen-fueled aircraft, especially for long flight durations. This report provides an annotated review (including the results of an extensive literature review) of the current state of the art of cryogenic tank materials, structural designs, and insulation systems along with the identification of key challenges with the intent of developing a lightweight and long-term storage system for LH2. The broad classes of insulation systems reviewed include foams (including advanced aerogels) and multilayer insulation (MLI) systems with vacuum. The MLI systems show promise for long-term applications. Structural configurations evaluated include single- and double-wall constructions, including sandwich construction. Potential wall material candidates are monolithic metals as well as polymer matrix composites and discontinuously reinforced metal matrix composites. For short-duration flight applications, simple tank designs may suffice. Alternatively, for longer duration flight applications, a double-wall construction with a vacuum-based insulation system appears to be the most optimum design. The current trends in liner material development are reviewed in the case that a liner is required to minimize or eliminate the loss of hydrogen fuel through permeation.

  5. Analysis of vehicle fuel release resulting in waste tank fire

    SciTech Connect

    HARRIS, J.P.

    2003-10-14

    The purpose of the calculation documented here is to support in-tank vehicle fuel fire accident frequencies in the Documented Safety Analysis. This analysis demonstrates that the frequency of the pool fire and deflagration scenarios of the in-tank vehicle fuel fire/deflagration accident are ''extremely unlikely'' to ''unlikely.'' The chains of events that result in each scenario are presented in this document and are the same as used in previous analyses of this accident. Probabilities and frequencies are developed for each event, using wherever possible, information from RPP-13121, Tables B-1 and B-2, and from the River Protection Project ORPS. The estimated probabilities are considered reasonably conservative, but do not necessarily assume the worst possible outcomes or the most conservative possible cases. A sensitivity analysis performed in Section 4.2 shows that if the probability of either the ignition of fuel event or the fuel flows into riser event were underestimated by an order of magnitude, the accident frequency for a pool fire could increase and shift into the ''unlikely'' category. If the probability of an increase in riser strikes, or an increase in broken risers, unignited fuel entering a riser, or a fuel ignition source being present in a tank were underestimated by an order of magnitude, the accident frequency for a deflagration would remain in the ''unlikely'' category. When the likelihood of a broken riser is increased by an order of magnitude, a pool fire remains in the ''extremely unlikely'' category. The DSA accident analysis indicates that an unmitigated flammable gas deflagration resulting from an induced gas release event or an organic solvent fire occurring in either an SST or a DST is an anticipated event (> 10{sup -2}). Deflagration in a DST annulus is considered unlikely (> 10{sup -4} to {le}10{sup -2}). These frequencies clearly bound those of the in-tank vehicle fuel fire family of accidents.

  6. Carbon monoxide exposure from aircraft fueling vehicles.

    PubMed

    McCammon, C S; Halperin, W F; Lemen, R A

    1981-01-01

    Investigators from the National Institute for Occupational Safety and Health observed deficiencies in maintenance of fueling trucks at an international airport. The exhaust system is vented under the front bumper, a standard design on fueling trucks which is intended to minimize the proximity of the exhaust system to the jet fuel in the vehicles. Carbon monoxide levels were measured in the cabs of 17 fueling trucks with windows closed, heaters on, and in different positions relative to the wind. One truck had an average CO level of 300 ppm, two exceeded 100 ppm, five others exceeded 50 ppm, while levels in the other nine averaged less than or equal to 500 ppm. Levels of CO depended on the mechanical condition of the vehicle and the vehicle's orientation to the wind. Stringent maintenance is required as the exhaust design is not fail-safe. PMID:6166254

  7. Fuel conservation possibilities for terminal area compatible aircraft

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Design features and operational procedures are identified, which would reduce fuel consumption of future transport aircraft. The fuel-saving potential can be realized during the last decade of this century only if the necessary research and technology programs are implemented in the areas of composite primary structure, airfoil/wing design, and stability augmentation systems. The necessary individual R and T programs are defined. The sensitivity to fuel usage of several design parameters (wing geometry, cruise speed, propulsion) is investigated, and the results applied to a candidate 18, 140-kg (40,000-lb) payload, 5556-km (3000-nmi) transport design. Technical and economic comparisons are made with current commercial aircraft and other advanced designs.

  8. Fuel containment, lightning protection and damage tolerance in large composite primary aircraft structures

    NASA Technical Reports Server (NTRS)

    Griffin, Charles F.; James, Arthur M.

    1985-01-01

    The damage-tolerance characteristics of high strain-to-failure graphite fibers and toughened resins were evaluated. Test results show that conventional fuel tank sealing techniques are applicable to composite structures. Techniques were developed to prevent fuel leaks due to low-energy impact damage. For wing panels subjected to swept stroke lightning strikes, a surface protection of graphite/aluminum wire fabric and a fastener treatment proved effective in eliminating internal sparking and reducing structural damage. The technology features developed were incorporated and demonstrated in a test panel designed to meet the strength, stiffness, and damage tolerance requirements of a large commercial transport aircraft. The panel test results exceeded design requirements for all test conditions. Wing surfaces constructed with composites offer large weight savings if design allowable strains for compression can be increased from current levels.

  9. Design of short haul aircraft for fuel conservation

    NASA Technical Reports Server (NTRS)

    Bowden, M. K.; Sweet, H. S.; Waters, M. H.

    1975-01-01

    Current jet fuel prices of twice the 1972 level have significantly changed the characteristics of airplane design for best economy. The results of a contract with the NASA Ames Advanced Concepts and Missions Division confirmed the economic desirability of lower design cruise speeds and higher aspect-ratio wings compared to designs developed in the by-gone era of low fuel price. Evaluation of potential fuel conservation for short-haul aircraft showed that an interaction of airfoil technology and desirable engine characteristics is important: the supercritical airfoil permits higher aspect ratio wings with lower sweep; these, in turn, lower the cruise thrust requirements so that engines with higher bypass ratios are better matched in terms of lapse rate; lower cruise speeds (which are also better for fuel and operating cost economy) push the desired bypass ratio up further. Thus, if fuel prices remain high, or rise further, striking reductions in community noise level can be achieved as a fallout in development of a 1980s airplane and engine. Analyses are presented of developmental trends in the design of short-haul aircraft with lower cruise speeds and higher aspect-ratio wings, and the effects on fuel consumption of design field length, powered lift concepts, and turboprop as well as turbofan propulsion are discussed.

  10. 46 CFR 167.15-40 - Integral fuel oil tank examinations-T/ALL.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... PUBLIC NAUTICAL SCHOOL SHIPS Inspections § 167.15-40 Integral fuel oil tank examinations—T/ALL. (a) Each... vessel shall have the tanks cleaned out and gas freed as necessary to permit internal examination of the... exceed five years. (b) Integral non-double-bottom fuel oil tanks need not be cleaned out and...

  11. 46 CFR 167.15-40 - Integral fuel oil tank examinations-T/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... PUBLIC NAUTICAL SCHOOL SHIPS Inspections § 167.15-40 Integral fuel oil tank examinations—T/ALL. (a) Each... vessel shall have the tanks cleaned out and gas freed as necessary to permit internal examination of the... exceed five years. (b) Integral non-double-bottom fuel oil tanks need not be cleaned out and...

  12. Failure Analysis of a Helicopter External Fuel-Tank Pylon

    NASA Technical Reports Server (NTRS)

    Newman, John A.; Piascik, Robert S.; Lindenberg, Richard A.

    2002-01-01

    An eight-inch-long (0.2 m) crack was found in an external fuel-tank pylon of a U.S. Coast Guard HH-60 helicopter. The damaged pylon was removed from service and destructively examined at NASA Langley Research Center (LaRC) to determine the cause of the crack. Results of the analysis revealed that crack initiation occurred at corrosion pits in a fastener hole and crack propagation was a result of cyclic loading.

  13. Saturn V S-IC Stage Fuel Tank

    NASA Technical Reports Server (NTRS)

    1964-01-01

    This image shows the Saturn V S-IC-T stage (S-IC static test article) fuel tank being attached to the thrust structure in the vehicle assembly building at the Marshall Space Flight Center (MSFC). The S-IC stage utilized five F-1 engines that used liquid oxygen and kerosene as propellant and provided a combined thrust of 7,500,000 pounds.

  14. Investigation of low-cost LNG vehicle fuel tank concepts. Final report

    SciTech Connect

    O`Brien, J.E.; Siahpush, A.

    1998-02-01

    The objective of this study was to investigate development of a low-cost liquid natural gas (LNG) vehicle fuel storage tank with low fuel boil-off, low tank pressure, and high safety margin. One of the largest contributors to the cost of converting a vehicle to LNG is the cost of the LNG fuel tank. To minimize heat leak from the surroundings into the low-temperature fuel, these tanks are designed as cryogenic dewars with double walls separated by an evacuated insulation space containing multi-layer insulation. The cost of these fuel tanks is driven by this double-walled construction, both in terms of materials and labor. The primary focus of the analysis was to try to devise a fuel tank concept that would allow for the elimination of the double-wall requirement. Results of this study have validated the benefit of vacuum/MLI insulation for LNG fuel tanks and the difficulty in identifying viable alternatives. The thickness of a non-vacuum insulation layer would have to be unreasonably large to achieve an acceptable non-venting hold time. Reasonable hold times could be achieved by using an auxiliary tank to accept boil-off vapor from a non-vacuum insulated primary tank, if the vapor in the auxiliary tank can be stored at high pressure. The primary focus of the analysis was to try to devise a fuel tank concept that allowed for the elimination of the double-wall requirement. Thermodynamic relations were developed for analyzing the fuel tank transient response to heat transfer, venting of vapor, and out-flow of either vapor or liquid. One of the major costs associated with conversion of a vehicle to LNG fuel is the cost of the LNG fuel tank. The cost of these tanks is driven by the cryogenic nature of the fuel and by the fundamental design requirements of long non-venting hold times and low storage pressure.

  15. Energy supply and its effect on aircraft of the future. II - Liquid-hydrogen-fueled aircraft: Prospects and design issues.

    NASA Technical Reports Server (NTRS)

    Kirkham, F. S.; Driver, C.

    1973-01-01

    The performance of hydrogen-fueled commercial aircraft is examined in the subsonic, supersonic, and hypersonic speed regime and compared with JP-fueled systems. Hydrogen aircraft are shown to provide substantial improvements in range and payload fraction as well as to minimize or eliminate many environmental problems. The major elements of a development program required to make hydrogen-fueled aircraft a commercial reality are also outlined and the rationale for and characteristics of both a subsonic demonstrator and a high speed research airplane are described.

  16. 30 CFR 75.1904 - Underground diesel fuel tanks and safety cans.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... have liquid tight welded seams; (4) Not leak; and (5) For stationary tanks in permanent underground... for stationary tanks in permanent underground diesel fuel storage facilities and self-closing caps...

  17. 30 CFR 75.1904 - Underground diesel fuel tanks and safety cans.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... have liquid tight welded seams; (4) Not leak; and (5) For stationary tanks in permanent underground... for stationary tanks in permanent underground diesel fuel storage facilities and self-closing caps...

  18. Impact of future fuel properties on aircraft engines and fuel systems

    NASA Technical Reports Server (NTRS)

    Rudey, R. A.; Grobman, J. S.

    1978-01-01

    From current projections of the availability of high-quality petroleum crude oils, it is becoming increasingly apparent that the specifications for hydrocarbon jet fuels may have to be modified. The problems that are most likely to be encountered as a result of these modifications relate to engine performance, component durability and maintenance, and aircraft fuel-system performance. The effect on engine performance will be associated with changes in specific fuel consumption, ignition at relight limits, at exhaust emissions. Durability and maintenance will be affected by increases in combustor liner temperatures, carbon deposition, gum formation in fuel nozzles, and erosion and corrosion of turbine blades and vanes. Aircraft fuel-system performance will be affected by increased deposits in fuel-system heat exchangers and changes in the pumpability and flowability of the fuel. The severity of the potential problems is described in terms of the fuel characteristics most likely to change in the future. Recent data that evaluate the ability of current-technology aircraft to accept fuel specification changes are presented, and selected technological advances that can reduce the severity of the problems are described and discussed.

  19. Fuel containment and damage tolerance in large composite primary aircraft structures. Phase 2: Testing

    NASA Technical Reports Server (NTRS)

    Sandifer, J. P.; Denny, A.; Wood, M. A.

    1985-01-01

    Technical issues associated with fuel containment and damage tolerance of composite wing structures for transport aircraft were investigated. Material evaluation tests were conducted on two toughened resin composites: Celion/HX1504 and Celion/5245. These consisted of impact, tension, compression, edge delamination, and double cantilever beam tests. Another test series was conducted on graphite/epoxy box beams simulating a wing cover to spar cap joint configuration of a pressurized fuel tank. These tests evaluated the effectiveness of sealing methods with various fastener types and spacings under fatigue loading and with pressurized fuel. Another test series evaluated the ability of the selected coatings, film, and materials to prevent fuel leakage through 32-ply AS4/2220-1 laminates at various impact energy levels. To verify the structural integrity of the technology demonstration article structural details, tests were conducted on blade stiffened panels and sections. Compression tests were performed on undamaged and impacted stiffened AS4/2220-1 panels and smaller element tests to evaluate stiffener pull-off, side load and failsafe properties. Compression tests were also performed on panels subjected to Zone 2 lightning strikes. All of these data were integrated into a demonstration article representing a moderately loaded area of a transport wing. This test combined lightning strike, pressurized fuel, impact, impact repair, fatigue and residual strength.

  20. Momentum Transfer in a Spinning Fuel Tank Filled with Xenon

    NASA Technical Reports Server (NTRS)

    Peugeot, John W.; Dorney, Daniel J.

    2006-01-01

    Transient spin-up and spin-down flows inside of spacecraft fuel tanks need to be analyzed in order to properly design spacecraft control systems. Knowledge of the characteristics of angular momentum transfer to and from the fuel is used to size the de-spin mechanism that places the spacecraft in a controllable in-orbit state. In previous studies, several analytical models of the spin-up process were developed. However, none have accurately predicted all of the flow dynamics. Several studies have also been conducted using Navier-Stokes based methods. These approaches have been much more successful at simulating the dynamic processes in a cylindrical container, but have not addressed the issue of momentum transfer. In the current study, the spin-up and spin-down of a fuel tank filled with gaseous xenon has been investigated using a three-dimensional unsteady Navier-Stokes code. Primary interests have been concentrated on the spin-up/spin-down time constants and the initial torque imparted on the system. Additional focus was given to the relationship between the dominant flow dynamics and the trends in momentum transfer. Through the simulation of both a cylindrical and a spherical tank, it was revealed that the transfer of angular momentum is nonlinear at early times and tends toward a linear pattern at later times. Further investigation suggests that the nonlinear spin up is controlled by the turbulent transport of momentum, while the linear phase is controlled by a Coriolis driven (Ekman) flow along the outer wall. These results indicate that the spinup and spin-down processes occur more quickly in tanks with curved surfaces than those with defined top, bottom, and side walls. The results also provide insights for the design of spacecraft de-spin mechanisms.

  1. Multi-Fuel Rotary Engine for General Aviation Aircraft

    NASA Technical Reports Server (NTRS)

    Jones, C.; Ellis, D. R.; Meng, P. R.

    1983-01-01

    Design studies, conducted for NASA, of Advanced Multi-fuel General Aviation and Commuter Aircraft Rotary Stratified Charge Engines are summarized. Conceptual design studies of an advanced engine sized to provide 186/250 shaft KW/HP under cruise conditions at 7620/25,000 m/ft. altitude were performed. Relevant engine development background covering both prior and recent engine test results of the direct injected unthrottled rotary engine technology, including the capability to interchangeably operate on gasoline, diesel fuel, kerosene, or aviation jet fuel, are presented and related to growth predictions. Aircraft studies, using these resultant growth engines, define anticipated system effects of the performance and power density improvements for both single engine and twin engine airplanes. The calculated results indicate superior system performance and 30 to 35% fuel economy improvement for the Rotary-engine airplanes as compared to equivalent airframe concept designs with current baseline engines. The research and technology activities required to attain the projected engine performance levels are also discussed.

  2. 14 CFR 29.957 - Flow between interconnected tanks.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Flow between interconnected tanks. 29.957... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System § 29.957 Flow between interconnected tanks. (a) Where tank outlets are interconnected and allow fuel to flow...

  3. 33 CFR 183.516 - Cellular plastic used to encase fuel tanks.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Cellular plastic used to encase....516 Cellular plastic used to encase fuel tanks. (a) Cellular plastic used to encase metallic fuel...-polyurethane cellular plastic used to encase metallic fuel tanks must have a compressive strength of at...

  4. 46 CFR 116.620 - Ventilation of machinery and fuel tank spaces.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Ventilation of machinery and fuel tank spaces. 116.620... AND ARRANGEMENT Ventilation § 116.620 Ventilation of machinery and fuel tank spaces. In addition to the requirements of this subpart, ventilation systems for spaces containing machinery or fuel...

  5. Flashback flame arrester devices for fuel cargo tank vapor vents

    NASA Technical Reports Server (NTRS)

    Bjorklund, R. A.; Kushida, R. O.

    1981-01-01

    The flame quenching capability of four types of flame arresting devices suitable for installation on fuel cargo tank vents of marine transport vessels is evaluated. A single 30 mesh screen, a dual 20 mesh screen, a spiral wound crimped metal ribbon, and a packed bed of ballast rings were tested. Flame speed and flame penetration of the test arresters were determined. Eight fuels representative of bulk cargoes were tested. The test arresters quenched a minimum of three flashback flames from all eight fuels, with one exception: high speed ethylene flames penetrated the dual 20 mesh screen on three tests. The arresters withstood the sustained flame from a propane/air mixture for 30 minutes. None of the arresters withstood the sustained flame from an ethylene/air mixture for more than 7 minutes.

  6. Fuel Tank Assembly of the Saturn V S-IC Stage

    NASA Technical Reports Server (NTRS)

    1964-01-01

    The fuel tank assembly of the Saturn V S-IC (first) stage is readied to be mated to the liquid oxygen tank at the Marshall Space Flight Center. The fuel tank carried kerosene as its fuel. The S-IC stage utilized five F-1 engines that used kerosene and liquid oxygen as propellant. Each engine provided 1,500,000 pounds of thrust. This stage lifted the entire vehicle and Apollo spacecraft from the launch pad.

  7. Lightweight aircraft engines, the potential and problems for use of automotive fuels

    NASA Technical Reports Server (NTRS)

    Patterson, D. J.

    1983-01-01

    A comprehensive data research and analysis for evaluating the use of automotive fuels as a substitute for aviation grade fuel by piston-type general aviation aircraft engines is presented. Historically known problems and potential problems with fuels were reviewed for possible impact relative to application to an aircraft operational environment. This report reviews areas such as: fuel specification requirements, combustion knock, preignition, vapor lock, spark plug fouling, additives for fuel and oil, and storage stability.

  8. Credit BG. View looks south southeast toward tank farm, Rogers ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Credit BG. View looks south southeast toward tank farm, Rogers Dry Lake is in the background. Each cylindrical tank is labeled for jet fuel grade JP5. Two 2,000 gallon capacity rectangular tanks in midground are fabricated of concrete for storing hydrocarbons; they were constructed in 1993. Structure at extreme right of view is Building 4515, Jet Fuel Testing Laboratory - Edwards Air Force Base, North Base, Aircraft Fuel Tank Farm, Northeast of A Street, Boron, Kern County, CA

  9. Fuel dispersal modeling for aircraft-runway impact scenarios

    SciTech Connect

    Tieszen, S.R.

    1995-11-01

    A fuel dispersal model for C-141 transport accidents was developed for the Defense Nuclear Agency`s Fuel Fire Technology Base Program to support Weapon System Safety Assessments. The spectrum of accidents resulting from aircraft impact on a runway was divided into three fuel dispersal regimes: low, intermediate, and high-velocity impact. Sufficient data existed in the accident, crash test, and fuel-filled bomb literature to support development of a qualitative framework for dispersal models, but not quantitative models for all regimes. Therefore, a test series at intermediate scale was conducted to generate data on which to base the model for the high-velocity regime. Tests were conducted over an impact velocity range from 12 m/s to 91 m/s and angles of impact from 22.5{degrees} to 67.5{degrees}. Dependent variables were area covered by dispersed fuel, amount of mass in that area, and location of the area relative to the impact line. Test results showed that no liquid pooling occurred for impact velocities greater than 61 m/s, independent of the angle of impact. Some pooling did occur at lower velocities, but in no test was the liquid-layer thickness greater than 5.25 mm.

  10. Modeling, design and energy management of fuel cell systems for aircraft

    NASA Astrophysics Data System (ADS)

    Bradley, Thomas Heenan

    Fuel cell powered aircraft have been of long term interest to the aviation community because of their potential for improved performance and environmental compatibility. Only recently have improvements in the technological readiness of fuel cell powerplants enabled the first aviation applications of fuel cell technology. Based on the results of conceptual design studies and a few technology demonstration projects, there has emerged a widespread understanding of the importance of fuel cell powerplants for near-term and future aviation applications. Despite this, many aspects of the performance, design and construction of robust and optimized fuel cell powered aircraft have not been fully explored. This goal of this research then is to develop an improved understanding of the performance, design characteristics, design tradeoffs and viability of fuel cell powerplants for aviation applications. To accomplish these goals, new modeling, design, and experimental tools are developed, validated and applied to the design of fuel cell powered unmanned aerial vehicles. First, a general sub-system model of fuel cell powerplant performance, mass and geometry is derived from experimental and theoretical investigations of a fuel cell powerplant that is developed in hardware. These validated fuel cell subsystem models are then incorporated into a computer-based, application-integrated, parametric, and optimizeable design environment that allows for the concurrent design of the aircraft and fuel cell powerplant. The advanced modeling and design techniques required for modern aircraft design (including multi-disciplinary analysis, performance optimization under uncertainty and system performance validation), are applied at the fuel cell subsystem level and are linked to aircraft performance and design metrics. These tools and methods are then applied to the analysis and design of fuel cell powered aircraft in a series of case studies and design experiments. Based on the results of

  11. An assessment of the crash fire hazard of liquid hydrogen fueled aircraft

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The crash fire hazards of liquid hydrogen fueled aircraft relative to those of mission equivalent aircraft fueled either with conventional fuel or with liquefied methane were evaluated. The aircraft evaluated were based on Lockheed Corporation design for 400 passenger, Mach 0.85, 5500 n. mile aircraft. Four crash scenarios were considered ranging from a minor incident causing some loss of fuel system integrity to a catastrophic crash. Major tasks included a review of hazardous properties of the alternate fuels and of historic crash fire data; a comparative hazard evluation for each of the three fuels under four crash scenarios a comprehensive review and analysis and an identification of areas further development work. The conclusion was that the crash fire hazards are not significantly different when compared in general for the three fuels, although some fuels showed minor advantages in one respect or another.

  12. Study of Hydrogen Recovery Systems for Gas Vented While Refueling Liquid-Hydrogen Fueled Aircraft

    NASA Technical Reports Server (NTRS)

    Baker, C. R.

    1979-01-01

    Methods of capturing and reliquefying the cold hydrogen vapor produced during the fueling of aircraft designed to utilize liquid hydrogen fuel were investigated. An assessment of the most practical, economic, and energy efficient of the hydrogen recovery methods is provided.

  13. Hybrid Composites for LH2 Fuel Tank Structure

    NASA Technical Reports Server (NTRS)

    Grimsley, Brian W.; Cano, Roberto J.; Johnston, Norman J.; Loos, Alfred C.; McMahon, William M.

    2001-01-01

    The application of lightweight carbon fiber reinforced plastics (CFRP) as structure for cryogenic fuel tanks is critical to the success of the next generation of Reusable Launch Vehicles (RLV). The recent failure of the X-33 composite fuel tank occurred in part due to microcracking of the polymer matrix, which allowed cryogen to permeate through the inner skin to the honeycomb core. As part of an approach to solve these problems, NASA Langley Research Center (LaRC) and Marshall Space Flight Center (MSFC) are working to develop and investigate polymer films that will act as a barrier to the permeation of LH2 through the composite laminate. In this study two commercially available films and eleven novel LaRC films were tested in an existing cryogenics laboratory at MSFC to determine the permeance of argon at room temperature. Several of these films were introduced as a layer in the composite to form an interleaved, or hybrid, composite to determine the effects on permeability. In addition, the effects of the interleaved layer thickness, number, and location on the mechanical properties of the composite laminate were investigated. In this initial screening process, several of the films were found to exhibit lower permeability to argon than the composite panels tested.

  14. Design and evaluation of aircraft heat source systems for use with high-freezing point fuels

    NASA Technical Reports Server (NTRS)

    Pasion, A. J.

    1979-01-01

    The objectives were the design, performance and economic analyses of practical aircraft fuel heating systems that would permit the use of high freezing-point fuels on long-range aircraft. Two hypothetical hydrocarbon fuels with freezing points of -29 C and -18 C were used to represent the variation from current day jet fuels. A Boeing 747-200 with JT9D-7/7A engines was used as the baseline aircraft. A 9300 Km mission was used as the mission length from which the heat requirements to maintain the fuel above its freezing point was based.

  15. The thermal efficiency and cost of producing hydrogen and other synthetic aircraft fuels from coal

    NASA Technical Reports Server (NTRS)

    Witcofski, R. D.

    1977-01-01

    A comparison is made of the cost and thermal efficiency of producing liquid hydrogen, liquid methane and synthetic aviation kerosene from coal. These results are combined with estimates of the cost and energy losses associated with transporting, storing, and transferring the fuels to aircraft. The results of hydrogen-fueled and kerosene-fueled aircraft performance studies are utilized to compare the economic viability and efficiency of coal resource utilization of synthetic aviation fuels.

  16. The thermal efficiency and cost of producing hydrogen and other synthetic aircraft fuels from coal

    NASA Technical Reports Server (NTRS)

    Witcofski, R. D.

    1976-01-01

    A comparison is made of the cost and thermal efficiency of producing liquid hydrogen, liquid methane and synthetic aviation kerosene from coal. These results are combined with estimates of the cost and energy losses associated with transporting, storing, and transferring the fuels to aircraft. The results of hydrogen-fueled and kerosene-fueled aircraft performance studies are utilized to compare the economic viability and efficiency of coal resource utilization of synthetic aviation fuels.

  17. Energy efficient engine program contributions to aircraft fuel conservation

    SciTech Connect

    Batterton, P.G.

    1984-01-01

    Significant advances in high bypass turbofan technologies that enhance fuel efficiency have been demonstrated in the NASA Energy Efficient Engine Program. This highly successful second propulsion element of the NASA Aircraft Energy Efficiency Program included major contract efforts with both General Electric and Pratt Whitney. Major results of these efforts will be presented including highlights from the NASA/General Electric E3 research turbofan engine test. Direct application of all the E3 technologies could result in fuel savings of over 18% compared to the CF6-50 and JT9D-7. Application of the E3 technologies to new and derivative engines such as the CF6-80C and PW 2037, as well as others, will be discussed. Significant portions of the fuel savings benefit for these new products can be directly related to the E3 technology program. Finally, results of a study looking at far term advanced turbofan engines will be briefly described. The study shows that substantial additional fuel savings over E3 are possible with additional turbofan technology programs.

  18. Cryoplane ­ Hydrogen Vs. Kerosene As Aircraft Fuel

    NASA Astrophysics Data System (ADS)

    Koroneos, C. J.; Moussiopoulos, N.

    Liquid Hydrogen is the only known fuel suitable for aircraft to be produced from renewable energy and offering extremely low emissions (zero CO2, very low NOx). Use of Liquid Hydrogen can: eliminate the dependency of aviation upon dwindling crude oil resources; eliminate, or at least reduce dramatically, the contribution of aviation to the anthropogenic greenhouse effect. The CRYOPLANE project shall provide a comprehensive analysis of the complex interrelated aspects, the feasibility of safety and environmental compatibility. It shall produce technical solutions and tools and indicate possible strategies for Europe for a smooth transition to the new fuel. Life Cycle Analysis (LCA) of kerosene is the first step for comparing the environmental impacts with those from different production chains of hydrogen fuel. A complete and accurate identification and quantification of air emissions, water effluents, and other life-cycle inputs and outputs has been performed. The environmental performance of kerosene that has been determined by the LCA study will be used as a reference point for the evaluation of hydrogen as an aviation fuel.

  19. Energy efficient engine program contributions to aircraft fuel conservation

    NASA Technical Reports Server (NTRS)

    Batterton, P. G.

    1984-01-01

    Significant advances in high bypass turbofan technologies that enhance fuel efficiency have been demonstrated in the NASA Energy Efficient Engine Program. This highly successful second propulsion element of the NASA Aircraft Energy Efficiency Program included major contract efforts with both General Electric and Pratt & Whitney. Major results of these efforts will be presented including highlights from the NASA/General Electric E3 research turbofan engine test. Direct application of all the E3 technologies could result in fuel savings of over 18% compared to the CF6-50 and JT9D-7. Application of the E3 technologies to new and derivative engines such as the CF6-80C and PW 2037, as well as others, will be discussed. Significant portions of the fuel savings benefit for these new products can be directly related to the E3 technology program. Finally, results of a study looking at far term advanced turbofan engines will be briefly described. The study shows that substantial additional fuel savings over E3 are possible with additional turbofan technology programs.

  20. Study of the application of hydrogen fuel to long-range subsonic transport aircraft, volume 2

    NASA Technical Reports Server (NTRS)

    Brewer, G. D.; Morris, R. E.; Lange, R. H.; Moore, J. W.

    1975-01-01

    The feasibility, practicability, and potential advantages/disadvantages of using liquid hydrogen as fuel in long range, subsonic transport aircraft of advanced design were studied. Both passenger and cargo-type aircraft were investigated. To provide a valid basis for comparison, conventional hydrocarbon (Jet A) fueled aircraft were designed to perform identical missions using the same advanced technology and meeting the same operational constraints. The liquid hydrogen and Jet A fueled aircraft were compared on the basis of weight, size, energy utilization, cost, noise, emissions, safety, and operational characteristics. A program of technology development was formulated.

  1. Temperature of aircraft cargo flame exposure during accidents involving fuel spills

    SciTech Connect

    Mansfield, J.A.

    1993-01-01

    This report describes an evaluation of flame exposure temperatures of weapons contained in alert (parked) bombers due to accidents that involve aircraft fuel fires. The evaluation includes two types of accident, collisions into an alert aircraft by an aircraft that is on landing or take-off, and engine start accidents. Both the B-1B and B-52 alert aircraft are included in the evaluation.

  2. 18 CFR 1304.405 - Fuel storage tanks and handling facilities.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Fuel storage tanks and handling facilities. 1304.405 Section 1304.405 Conservation of Power and Water Resources TENNESSEE VALLEY... flammable and combustible liquids storage tanks at marine service stations. (d) Fuel handling on...

  3. 18 CFR 1304.405 - Fuel storage tanks and handling facilities.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Fuel storage tanks and handling facilities. 1304.405 Section 1304.405 Conservation of Power and Water Resources TENNESSEE VALLEY... flammable and combustible liquids storage tanks at marine service stations. (d) Fuel handling on...

  4. 14 CFR Special Federal Aviation... - Fuel Tank System Fault Tolerance Evaluation Requirements

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Fuel Tank System Fault Tolerance Evaluation Requirements Federal Special Federal Aviation Regulation No. 88 Aeronautics and Space FEDERAL AVIATION..., SFAR No. 88 Special Federal Aviation Regulation No. 88—Fuel Tank System Fault Tolerance...

  5. 14 CFR Special Federal Aviation... - Fuel Tank System Fault Tolerance Evaluation Requirements

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Fuel Tank System Fault Tolerance Evaluation Requirements Federal Special Federal Aviation Regulation No. 88 Aeronautics and Space FEDERAL AVIATION..., SFAR No. 88 Special Federal Aviation Regulation No. 88—Fuel Tank System Fault Tolerance...

  6. 14 CFR Special Federal Aviation... - Fuel Tank System Fault Tolerance Evaluation Requirements

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel Tank System Fault Tolerance Evaluation Requirements Federal Special Federal Aviation Regulation No. 88 Aeronautics and Space FEDERAL AVIATION..., SFAR No. 88 Special Federal Aviation Regulation No. 88—Fuel Tank System Fault Tolerance...

  7. 14 CFR Special Federal Aviation... - Fuel Tank System Fault Tolerance Evaluation Requirements

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Fuel Tank System Fault Tolerance Evaluation Requirements Federal Special Federal Aviation Regulation No. 88 Aeronautics and Space FEDERAL AVIATION..., SFAR No. 88 Special Federal Aviation Regulation No. 88—Fuel Tank System Fault Tolerance...

  8. 14 CFR Special Federal Aviation... - Fuel Tank System Fault Tolerance Evaluation Requirements

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fuel Tank System Fault Tolerance Evaluation Requirements Federal Special Federal Aviation Regulation No. 88 Aeronautics and Space FEDERAL AVIATION..., SFAR No. 88 Special Federal Aviation Regulation No. 88—Fuel Tank System Fault Tolerance...

  9. 46 CFR 119.470 - Ventilation of spaces containing diesel fuel tanks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Ventilation of spaces containing diesel fuel tanks. 119... MACHINERY INSTALLATION Specific Machinery Requirements § 119.470 Ventilation of spaces containing diesel fuel tanks. (a) Unless provided with ventilation that complies with § 119.465 of this part, a...

  10. 46 CFR 182.470 - Ventilation of spaces containing diesel fuel tanks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... ventilation installations in accordance with ABYC H-32 (incorporated by reference; see 46 CFR 175.600) will be... 46 Shipping 7 2010-10-01 2010-10-01 false Ventilation of spaces containing diesel fuel tanks. 182... Ventilation of spaces containing diesel fuel tanks. (a) Unless provided with ventilation that complies...

  11. 33 CFR 157.33 - Water ballast in fuel oil tanks.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Water ballast in fuel oil tanks. 157.33 Section 157.33 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY... OIL IN BULK Vessel Operation § 157.33 Water ballast in fuel oil tanks. A new vessel may not...

  12. 33 CFR 157.33 - Water ballast in fuel oil tanks.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Water ballast in fuel oil tanks. 157.33 Section 157.33 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY... OIL IN BULK Vessel Operation § 157.33 Water ballast in fuel oil tanks. A new vessel may not...

  13. 40 CFR 90.129 - Fuel tank permeation from handheld engines and equipment.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... equipment with structurally integrated nylon fuel tanks (as defined in 40 CFR 1054.801). (b) Certification... meet the fuel tank permeation standards in 40 CFR 1060.103. (iii) Engines and equipment must use only... 40 CFR part 1054, subpart H. (3) The emission standards in this section apply over a useful life...

  14. 40 CFR 90.129 - Fuel tank permeation from handheld engines and equipment.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... equipment with structurally integrated nylon fuel tanks (as defined in 40 CFR 1054.801). (b) Certification... meet the fuel tank permeation standards in 40 CFR 1060.103. (iii) Engines and equipment must use only... 40 CFR part 1054, subpart H. (3) The emission standards in this section apply over a useful life...

  15. 40 CFR 90.129 - Fuel tank permeation from handheld engines and equipment.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... equipment with structurally integrated nylon fuel tanks (as defined in 40 CFR 1054.801). (b) Certification... meet the fuel tank permeation standards in 40 CFR 1060.103. (iii) Engines and equipment must use only... 40 CFR part 1054, subpart H. (3) The emission standards in this section apply over a useful life...

  16. 40 CFR 90.129 - Fuel tank permeation from handheld engines and equipment.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... equipment with structurally integrated nylon fuel tanks (as defined in 40 CFR 1054.801). (b) Certification... meet the fuel tank permeation standards in 40 CFR 1060.103. (iii) Engines and equipment must use only... 40 CFR part 1054, subpart H. (3) The emission standards in this section apply over a useful life...

  17. 40 CFR 90.129 - Fuel tank permeation from handheld engines and equipment.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... equipment with structurally integrated nylon fuel tanks (as defined in 40 CFR 1054.801). (b) Certification... meet the fuel tank permeation standards in 40 CFR 1060.103. (iii) Engines and equipment must use only... 40 CFR part 1054, subpart H. (3) The emission standards in this section apply over a useful life...

  18. 49 CFR Appendix D to Part 238 - Requirements for External Fuel Tanks on Tier I Locomotives

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Requirements for External Fuel Tanks on Tier I Locomotives D Appendix D to Part 238 Transportation Other Regulations Relating to Transportation (Continued..., App. D Appendix D to Part 238—Requirements for External Fuel Tanks on Tier I Locomotives...

  19. 49 CFR Appendix D to Part 238 - Requirements for External Fuel Tanks on Tier I Locomotives

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Requirements for External Fuel Tanks on Tier I Locomotives D Appendix D to Part 238 Transportation Other Regulations Relating to Transportation (Continued..., App. D Appendix D to Part 238—Requirements for External Fuel Tanks on Tier I Locomotives...

  20. 46 CFR 177.620 - Ventilation of machinery and fuel tank spaces.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Ventilation of machinery and fuel tank spaces. 177.620... (UNDER 100 GROSS TONS) CONSTRUCTION AND ARRANGEMENT Ventilation § 177.620 Ventilation of machinery and... containing machinery or fuel tanks must comply with the requirements of part 182 of this chapter....

  1. Approximate Pressure Distribution in an Accelerating Launch-Vehicle Fuel Tank

    NASA Technical Reports Server (NTRS)

    Nemeth, Michael P.

    2010-01-01

    A detailed derivation of the equations governing the pressure in a generic liquid-fuel launch vehicle tank subjected to uniformly accelerated motion is presented. The equations obtained are then for the Space Shuttle Superlightweight Liquid-Oxygen Tank at approximately 70 seconds into flight. This generic derivation is applicable to any fuel tank in the form of a surface of revolution and should be useful in the design of future launch vehicles

  2. Challenge to aviation: Hatching a leaner pterosauer. [improving commercial aircraft design for greater fuel efficiency

    NASA Technical Reports Server (NTRS)

    Moss, F. E.

    1975-01-01

    Modifications in commercial aircraft design, particularly the development of lighter aircraft, are discussed as effective means of reducing aviation fuel consumption. The modifications outlined include: (1) use of the supercritical wing; (2) generation of the winglet; (3) production and flight testing of composite materials; and, (4) implementation of fly-by-wire control systems. Attention is also given to engineering laminar air flow control, improving cargo payloads, and adapting hydrogen fuels for aircraft use.

  3. Biocidal Properties of Anti-Icing Additives for Aircraft Fuels

    PubMed Central

    Neihof, R. A.; Bailey, C. A.

    1978-01-01

    The biocidal and biostatic activities of seven glycol monoalkyl ether compounds were evaluated as part of an effort to find an improved anti-icing additive for jet aircraft fuel. Typical fuel contaminants, Cladosporium resinae, Gliomastix sp., Candida sp., Pseudomonas aeruginosa, and a mixed culture containing sulfate-reducing bacteria were used as assay organisms. Studies were carried out over 3 to 4 months in two-phase systems containing jet fuel and aqueous media. Diethylene glycol monomethyl ether, triethylene glycol monomethyl ether, triethylene glycol monoethyl ether, and 2-methoxyethanol were generally biocidal in aqueous concentrations of 10 to 17% for all organisms except Gliomastix, which required 25% or more. 2-Ethoxyethanol, 2-propoxyethanol, and 2-butoxyethanol were biocidal at progressively lower concentrations down to 1 to 2% for 2-butoxyethanol. The enhanced antimicrobial activity of these three compounds was attributed to cytoplasmic membrane damage because of the correlation between surface tension measurements and lytic activity with P. aeruginosa cells. The mechanism of action of the less active compounds appeared to be due to osmotic (dehydrating) effects. When all requirements are taken into account, diethylene glycol monomethyl ether appears to be the most promising replacement for the currently used additive, 2-methoxyethanol. PMID:646356

  4. Multi-fuel rotary engine for general aviation aircraft

    NASA Technical Reports Server (NTRS)

    Jones, C.; Ellis, D. R.; Meng, P. R.

    1983-01-01

    Design studies of advanced multifuel general aviation and commuter aircraft rotary stratified charge engines are summarized. Conceptual design studies were performed at two levels of technology, on advanced general aviation engines sized to provide 186/250 shaft kW/hp under cruise conditions at 7620 (25000 m/ft) altitude. A follow on study extended the results to larger (2500 hp max.) engine sizes suitable for applications such as commuter transports and helicopters. The study engine designs were derived from relevant engine development background including both prior and recent engine test results using direct injected unthrottled rotary engine technology. Aircraft studies, using these resultant growth engines, define anticipated system effects of the performance and power density improvements for both single engine and twin engine airplanes. The calculated results indicate superior system performance and 27 to 33 percent fuel economy improvement for the rotary engine airplanes as compared to equivalent airframe concept designs with current baseline engines. The research and technology activities required to attain the projected engine performance levels are also discussed.

  5. Feedback laws for fuel minimization for transport aircraft

    NASA Technical Reports Server (NTRS)

    Price, D. B.; Gracey, C.

    1984-01-01

    The Theoretical Mechanics Branch has as one of its long-range goals to work toward solving real-time trajectory optimization problems on board an aircraft. This is a generic problem that has application to all aspects of aviation from general aviation through commercial to military. Overall interest is in the generic problem, but specific problems to achieve concrete results are examined. The problem is to develop control laws that generate approximately optimal trajectories with respect to some criteria such as minimum time, minimum fuel, or some combination of the two. These laws must be simple enough to be implemented on a computer that is flown on board an aircraft, which implies a major simplification from the two point boundary value problem generated by a standard trajectory optimization problem. In addition, the control laws allow for changes in end conditions during the flight, and changes in weather along a planned flight path. Therefore, a feedback control law that generates commands based on the current state rather than a precomputed open-loop control law is desired. This requirement, along with the need for order reduction, argues for the application of singular perturbation techniques.

  6. 75 FR 71346 - Special Conditions: Boeing Model 787-8 Airplane; Lightning Protection of Fuel Tank Structure To...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-23

    ..., 2009 (74 FR 52698). Several comments were received from two commenters (Cessna and NATCA). Cessna 1.... The Boeing Model 787-8 airplane will incorporate a fuel tank nitrogen generation system (NGS) that... Features The 787 will have a fuel tank NGS that is intended to control fuel tank flammability. This NGS...

  7. Zero-G flight test of a gauging system. Volume 1: Summary. [for propellant tanks of C-135 aircraft

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The capability of a nucleonic gauging system to gauge the content of a reduced-scale storable liquid tank in a zero-g environment as provided by a KC-135 Zero-G Aircraft was demonstrated. Although the propellant-ullage interface never achieved the stable, zero-g equilibrium configuration, the gauging system gauged liquid quantity over all tank loadings to a total system accuracy the order of two percent. It was also determined that the gauging system presented no undue safety hazard to operating personnel in either ground and/or flight testing.

  8. Temperature and flow measurements on near-freezing aviation fuels in a wing-tank model

    NASA Technical Reports Server (NTRS)

    Friedman, R.; Stockemer, F. J.

    1980-01-01

    Freezing behavior, pumpability, and temperature profiles for aviation turbine fuels were measured in a 190-liter tank, to simulate internal temperature gradients encountered in commercial airplane wing tanks. Two low-temperature situations were observed. Where the bulk of the fuel is above the specification freezing point, pumpout of the fuel removes all fuel except a layer adhering to the bottom chilled surfaces, and the unpumpable fraction depends on the fuel temperature near these surfaces. Where the bulk of the fuel is at or below the freezing point, pumpout ceases when solids block the pump inlet, and the unpumpable fraction depends on the overall average temperature.

  9. Temperature and flow measurements on near-freezing aviation fuels in a wing-tank model

    NASA Technical Reports Server (NTRS)

    Friedman, R.; Stockemer, F. J.

    1980-01-01

    Freezing behavior, pumpability, and temperature profiles for aviation turbine fuels were measured in a 190-liter tank chilled to simulate internal temperature gradients encountered in commercial airplane wing tanks. When the bulk of the fuel was above the specification freezing point, pumpout of the fuel removed all fuel except a layer adhering to the bottom chilled surfaces, and the unpumpable fraction depended on the fuel temperature near these surfaces. When the bulk of the fuel was at or below the freezing point, pumpout ceased when solids blocked the pump inlet, and the unpumpable fraction depended on the overall average temperature.

  10. Fuel dispersal in high-speed aircraft/soil impact scenarios

    SciTech Connect

    Tieszen, S.R.; Attaway, S.W.

    1996-01-01

    The objective of this study is to determine how the jet fuel contained in aircraft wing tanks disperses on impact with a soft terrain, i.e., soils, at high impact velocities. The approach used in this study is to combine experimental and numerical methods. Tests were conducted with an approximately 1/42 linear-scale mass-model of a 1/4 span section of a C-141 wing impacting a sand/clay mixture. The test results showed that within the uncertainty of the data, the percentage of incident liquid mass remaining in the crater is the same as that qualitatively described in earlier napalm bomb development studies. Namely, the percentage of fuel in the crater ranges from near zero for grazing impacts to 25%--50% for high angles of impact. To support a weapons system safety assessment (WSSA), the data from the current study have been reduced to correlations. The numerical model used in the current study is a unique coupling of a Smooth Particle Hydrodynamics (SPH) method with the transient dynamics finite element code PRONTO. Qualitatively, the splash, erosion, and soil compression phenomena are all numerically predicted. Quantitatively, the numerical method predicted a smaller crater cross section than was observed in the tests.

  11. Assemblies of Conformal Tanks

    NASA Technical Reports Server (NTRS)

    DeLay, Tom

    2009-01-01

    Assemblies of tanks having shapes that conform to each other and/or conform to other proximate objects have been investigated for use in storing fuels and oxidizers in small available spaces in upper stages of spacecraft. Such assemblies might also prove useful in aircraft, automobiles, boats, and other terrestrial vehicles in which space available for tanks is limited. The basic concept of using conformal tanks to maximize the utilization of limited space is not new in itself: for example, conformal tanks are used in some automobiles to store windshield -washer liquid and coolant that overflows from radiators. The novelty of the present development lies in the concept of an assembly of smaller conformal tanks, as distinguished from a single larger conformal tank. In an assembly of smaller tanks, it would be possible to store different liquids in different tanks. Even if the same liquid were stored in all the tanks, the assembly would offer an advantage by reducing the mechanical disturbance caused by sloshing of fuel in a single larger tank: indeed, the requirement to reduce sloshing is critical in some applications. The figure shows a prototype assembly of conformal tanks. Each tank was fabricated by (1) copper plating a wax tank mandrel to form a liner and (2) wrapping and curing layers of graphite/epoxy composite to form a shell supporting the liner. In this case, the conformal tank surfaces are flat ones where they come in contact with the adjacent tanks. A band of fibers around the outside binds the tanks together tightly in the assembly, which has a quasi-toroidal shape. For proper functioning, it would be necessary to maintain equal pressure in all the tanks.

  12. Understanding electrostatic charge behaviour in aircraft fuel systems

    NASA Astrophysics Data System (ADS)

    Ogilvy, Jill A.; Hooker, Phil; Bennett, Darrell

    2015-10-01

    This paper presents work on the simulation of electrostatic charge build-up and decay in aircraft fuel systems. A model (EC-Flow) has been developed by BAE Systems under contract to Airbus, to allow the user to assess the effects of changes in design or in refuel conditions. Some of the principles behind the model are outlined. The model allows for a range of system components, including metallic and non-metallic pipes, valves, filters, junctions, bends and orifices. A purpose-built experimental rig was built at the Health and Safety Laboratory in Buxton, UK, to provide comparison data. The rig comprises a fuel delivery system, a test section where different components may be introduced into the system, and a Faraday Pail for measuring generated charge. Diagnostics include wall currents, charge densities and pressure losses. This paper shows sample results from the fitting of model predictions to measurement data and shows how analysis may be used to explain some of the observed trends.

  13. Study of the suitability of the all fiberglass XV-11A aircraft for fuel efficient general aviation flight research

    SciTech Connect

    Bennett, G.

    1980-01-01

    The impact of rapidly rising fuel prices upon future general aviation aircraft requirements is explored. The current configuration of the fiberglass XV-11A aircraft is presented and it is shown that the aircraft can become a cost effective testbed for fuel efficient general aviation aircraft configurations. Several suitable research tasks for the aircraft are defined. A low cost method to produce master wing molds is proposed.

  14. A study of subsonic transport aircraft configurations using hydrogen (H2) and methane (CH4) as fuel

    NASA Technical Reports Server (NTRS)

    Snow, D. B.; Avery, B. D.; Bodin, L. A.; Baldasare, P.; Washburn, G. F.

    1974-01-01

    The acceptability of alternate fuels for future commercial transport aircraft are discussed. Using both liquid hydrogen and methane, several aircraft configurations are developed and energy consumption, aircraft weights, range and payload are determined and compared to a conventional Boeing 747-100 aircraft. The results show that liquid hydrogen can be used to reduce aircraft energy consumption and that methane offers no advantage over JP or hydrogen fuel.

  15. Fuel Cell Airframe Integration Study for Short-Range Aircraft. Volume 1; Aircraft Propulsion and Subsystems Integration Evaluation

    NASA Technical Reports Server (NTRS)

    Gummalla, Mallika; Pandy, Arun; Braun, Robert; Carriere, Thierry; Yamanis, Jean; Vanderspurt, Thomas; Hardin, Larry; Welch, Rick

    2006-01-01

    The objective of this study is to define the functionality and evaluate the propulsion and power system benefits derived from a Solid Oxide Fuel Cell (SOFC) based Auxiliary Power Unit (APU) for a future short range commercial aircraft, and to define the technology gaps to enable such a system. United Technologies Corporation (UTC) Integrated Total Aircraft Power System (ITAPS) methodologies were used to evaluate a baseline aircraft and several SOFC architectures. The technology benefits were captured as reductions of the mission fuel burn, life cycle cost, noise and emissions. As a result of the study, it was recognized that system integration is critical to maximize benefits from the SOFC APU for aircraft application. The mission fuel burn savings for the two SOFC architectures ranged from 4.7 percent for a system with high integration to 6.7 percent for a highly integrated system with certain technological risks. The SOFC APU itself produced zero emissions. The reduction in engine fuel burn achieved with the SOFC systems also resulted in reduced emissions from the engines for both ground operations and in flight. The noise level of the baseline APU with a silencer is 78 dBA, while the SOFC APU produced a lower noise level. It is concluded that a high specific power SOFC system is needed to achieve the benefits identified in this study. Additional areas requiring further development are the processing of the fuel to remove sulfur, either on board or on the ground, and extending the heat sink capability of the fuel to allow greater waste heat recovery, resolve the transient electrical system integration issues, and identification of the impact of the location of the SOFC and its size on the aircraft.

  16. System for indicating fuel-efficient aircraft altitude

    NASA Technical Reports Server (NTRS)

    Gary, B. L. (Inventor)

    1984-01-01

    A method and apparatus are provided for indicating the altitude at which an aircraft should fly so the W/d ratio (weight of the aircraft divided by the density of air) more closely approaches the optimum W/d for the aircraft. A passive microwave radiometer on the aircraft is directed at different angles with respect to the horizon to determine the air temperature, and therefore the density of the air, at different altitudes. The weight of the aircraft is known. The altitude of the aircraft is changed to fly the aircraft at an altitude at which is W/d ratio more closely approaches the optimum W/d ratio for that aircraft.

  17. 46 CFR 119.440 - Independent fuel tanks.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... demonstrating the structural adequacy of the tank in a fully loaded static condition and in a worst case dynamic... 35 kPa (5 psig) test. Permanent deformation of the tank will not be cause for rejection...

  18. 46 CFR 119.440 - Independent fuel tanks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... demonstrating the structural adequacy of the tank in a fully loaded static condition and in a worst case dynamic... 35 kPa (5 psig) test. Permanent deformation of the tank will not be cause for rejection...

  19. 46 CFR 119.440 - Independent fuel tanks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... demonstrating the structural adequacy of the tank in a fully loaded static condition and in a worst case dynamic... 35 kPa (5 psig) test. Permanent deformation of the tank will not be cause for rejection...

  20. 46 CFR 119.440 - Independent fuel tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... demonstrating the structural adequacy of the tank in a fully loaded static condition and in a worst case dynamic... 35 kPa (5 psig) test. Permanent deformation of the tank will not be cause for rejection...

  1. Aircraft fuel conservation. (Latest citations from the NTIS bibliographic database). Published Search

    SciTech Connect

    1997-04-01

    The bibliography contains citations concerning means to conserve fuel in airline operations. Included are abstracts dealing with aircraft design, engine design, propulsion efficiency, fuels, and operating procedures which conserve fuel.(Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  2. Thermophysical problems of the application freezing fuels for the aircraft gas-turbine engines (AGTE)

    SciTech Connect

    Janovsky, L.S.; Mitin, M.B.; Antonov, A.N.; Abashina, L.W.

    1996-12-31

    Authors of this paper analyzed results of mathematical researches of thermophysical problems of freezing and cryogenic fuels application for the aircraft gas-turbine engines (AGTE). These fuels are derived from hydrogen, propane, natural gas (methane) and oil gas (freezing mixture of hydrocarbons C{sub 2}-C{sub 10}). At present use of alternative fuels in AGTE is of great interest.

  3. 33 CFR 157.33 - Water ballast in fuel oil tanks.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Water ballast in fuel oil tanks. 157.33 Section 157.33 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) POLLUTION RULES FOR THE PROTECTION OF THE MARINE ENVIRONMENT RELATING TO TANK VESSELS CARRYING OIL IN BULK Vessel Operation § 157.33...

  4. 40 CFR 1060.103 - What permeation emission control requirements apply for fuel tanks?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... requirements specified in 40 CFR 1051.110 or in this section. (4) Small SI fuel tanks must meet the permeation... AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EVAPORATIVE EMISSIONS FROM NEW AND IN-USE NONROAD... tanks to a family emission limit for calculating evaporative emission credits as described in subpart...

  5. 40 CFR 1060.103 - What permeation emission control requirements apply for fuel tanks?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... requirements specified in 40 CFR 1051.110 or in this section. (4) Small SI fuel tanks must meet the permeation... AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EVAPORATIVE EMISSIONS FROM NEW AND IN-USE NONROAD... tanks to a family emission limit for calculating evaporative emission credits as described in subpart...

  6. 40 CFR 1060.103 - What permeation emission control requirements apply for fuel tanks?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... requirements specified in 40 CFR 1051.110 or in this section. (4) Small SI fuel tanks must meet the permeation... AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EVAPORATIVE EMISSIONS FROM NEW AND IN-USE NONROAD... tanks to a family emission limit for calculating evaporative emission credits as described in subpart...

  7. 14 CFR 23.975 - Fuel tank vents and carburetor vapor vents.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... or level flight attitudes, unless drainage is provided. Any drain valve installed must be accessible... one tank and it is necessary to use these tanks in a definite sequence for any reason, the vapor vent... fuel during acrobatic maneuvers, including short periods of inverted flight, must be prevented. It...

  8. 14 CFR 23.975 - Fuel tank vents and carburetor vapor vents.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... or level flight attitudes, unless drainage is provided. Any drain valve installed must be accessible... one tank and it is necessary to use these tanks in a definite sequence for any reason, the vapor vent... fuel during acrobatic maneuvers, including short periods of inverted flight, must be prevented. It...

  9. 14 CFR 23.975 - Fuel tank vents and carburetor vapor vents.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... or level flight attitudes, unless drainage is provided. Any drain valve installed must be accessible... one tank and it is necessary to use these tanks in a definite sequence for any reason, the vapor vent... fuel during acrobatic maneuvers, including short periods of inverted flight, must be prevented. It...

  10. 14 CFR 23.975 - Fuel tank vents and carburetor vapor vents.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... or level flight attitudes, unless drainage is provided. Any drain valve installed must be accessible... one tank and it is necessary to use these tanks in a definite sequence for any reason, the vapor vent... fuel during acrobatic maneuvers, including short periods of inverted flight, must be prevented. It...

  11. 33 CFR 157.33 - Water ballast in fuel oil tanks.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Water ballast in fuel oil tanks. 157.33 Section 157.33 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) POLLUTION RULES FOR THE PROTECTION OF THE MARINE ENVIRONMENT RELATING TO TANK VESSELS CARRYING OIL IN BULK Vessel Operation § 157.33...

  12. 33 CFR 157.33 - Water ballast in fuel oil tanks.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Water ballast in fuel oil tanks. 157.33 Section 157.33 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) POLLUTION RULES FOR THE PROTECTION OF THE MARINE ENVIRONMENT RELATING TO TANK VESSELS CARRYING OIL IN BULK Vessel Operation § 157.33...

  13. The knocking characteristics of fuels in relation to maximum permissible performance of aircraft engines

    NASA Technical Reports Server (NTRS)

    Rothrock, A M; Biermann, Arnold E

    1939-01-01

    An analysis is presented of the relationship of various engine factors to knock in preignition in an aircraft engine. From this analysis and from the available experimental data, a method of evaluating the knocking characteristics of the fuel in an aircraft-engine cylinder is suggested.

  14. Evaluating and Addressing Potential Hazards of Fuel Tanks Surviving Atmospheric Reentry

    NASA Astrophysics Data System (ADS)

    Kelley, R. L.; Johnson, N. L.

    2012-01-01

    In order to ensure reentering spacecraft do not pose an undue risk to the Earth's population, it is important to design satellites and rocket bodies with end-of-life considerations in mind. In addition to the possible consequences of deorbiting a vehicle, consideration must be given to the possible risks associated with a vehicle failing to become operational or to reach its intended orbit. Based on recovered space debris and numerous reentry survivability analyses, fuel tanks are of particular concern in both of these considerations. Most spacecraft utilize some type of fuel tank as part of their propulsion systems. These fuel tanks are most often constructed using stainless steel or titanium and are filled with potentially hazardous substances such as hydrazine and nitrogen tetroxide. For a vehicle that has reached its scheduled end-of mission, the contents of the tanks are typically depleted. In this scenario, the likely survival of a stainless steel or titanium tank during reentry poses a risk to people and property due to the high melting point and large heat-of-ablation of these materials. If a large portion of the fuel is not depleted prior to reentry, there is the added risk of a hazardous substance being released when the tank impacts the ground. This paper presents a discussion of proactive methods that have been utilized by NASA satellite projects to address the risks associated with fuel tanks reentering the atmosphere. In particular, it will address the design of a demiseable fuel tank, as well as the evaluation of fuel tank designs, which are selected based on whether they burst during reentry.

  15. Raman-based Oxygen and Nitrogen Sensor for Monitoring Empty Airplane Fuel Tanks

    NASA Technical Reports Server (NTRS)

    Chen, Peter C.

    2004-01-01

    The purpose of this project was to develop a Raman-based method for detecting oxygen and nitrogen in empty fuel tanks. The need for such a method comes from the potential danger of allowing explosive oxygen-fuel mixtures to accumulate in empty airplane fuel tanks. An explosion resulting from such a mixture is believed to have caused the Flight TWA 800 disaster in 1996. Recently, (e.g., February 17,2004 press release) the FAA announced its intentions to make fuel tank inerting mandatory. One potential solution to this problem is to use an inert gas such as nitrogen to flood the empty fue1 tanks in order to reduce the concentration of oxygen.

  16. 33 CFR 183.516 - Cellular plastic used to encase fuel tanks.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... plastic used to encase metallic fuel tanks must have a density of at least 2.0 pounds per cubic foot, measured under ASTM D 1622 (incorporated by reference, see § 183.5), “Apparent Density of Rigid...

  17. 33 CFR 183.516 - Cellular plastic used to encase fuel tanks.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... plastic used to encase metallic fuel tanks must have a density of at least 2.0 pounds per cubic foot, measured under ASTM D 1622 (incorporated by reference, see § 183.5), “Apparent Density of Rigid...

  18. 33 CFR 183.516 - Cellular plastic used to encase fuel tanks.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... plastic used to encase metallic fuel tanks must have a density of at least 2.0 pounds per cubic foot, measured under ASTM D 1622 (incorporated by reference, see § 183.5), “Apparent Density of Rigid...

  19. 33 CFR 183.516 - Cellular plastic used to encase fuel tanks.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... plastic used to encase metallic fuel tanks must have a density of at least 2.0 pounds per cubic foot, measured under ASTM D 1622 (incorporated by reference, see § 183.5), “Apparent Density of Rigid...

  20. Calculation notes that support accident scenario and consequence of the in-tank fuel fire/deflageration

    SciTech Connect

    Crowe, R.D., Westinghouse Hanford

    1996-09-09

    The purpose of this calculation note is to provide the basis for In-Tank Fuel fire/Deflageration consequence for the Tank Farm Safety Analysis Report (FSAR). Tank Fuel Fire/Deflageration scenario is developed and details and description of the analysis methods are provided.

  1. Calculation notes that support accident scenario and consequence of the in-tank fuel fire/deflagration

    SciTech Connect

    Crowe, R.D.

    1996-09-27

    The purpose of this calculation note is to provide the basis for In-Tank Fuel Fire/Deflageration consequence for the Tank Farm Safety Analysis Report (FSAR). Tank Fuel Fire/Deflageration scenario is developed and details and description of the analysis methods are provided.

  2. Fuel-rich, catalytic reaction experimental results. [fuel development for high-speed civil transport aircraft

    NASA Technical Reports Server (NTRS)

    Rollbuhler, Jim

    1991-01-01

    Future aeropropulsion gas turbine combustion requirements call for operating at very high inlet temperatures, pressures, and large temperature rises. At the same time, the combustion process is to have minimum pollution effects on the environment. Aircraft gas turbine engines utilize liquid hydrocarbon fuels which are difficult to uniformly atomize and mix with combustion air. An approach for minimizing fuel related problems is to transform the liquid fuel into gaseous form prior to the completion of the combustion process. Experimentally obtained results are presented for vaporizing and partially oxidizing a liquid hydrocarbon fuel into burnable gaseous components. The presented experimental data show that 1200 to 1300 K reaction product gas, rich in hydrogen, carbon monoxide, and light-end hydrocarbons, is formed when flowing 0.3 to 0.6 fuel to air mixes through a catalyst reactor. The reaction temperatures are kept low enough that nitrogen oxides and carbon particles (soot) do not form. Results are reported for tests using different catalyst types and configurations, mass flowrates, input temperatures, and fuel to air ratios.

  3. A study of external fuel vaporization. [for aircraft gas turbine engines

    NASA Technical Reports Server (NTRS)

    Szetela, E. J.; Chiappetta, L.; Baker, C. E.

    1981-01-01

    Candidate external vaporizer designs for an aircraft gas turbine engine are evaluated with respect to fuel thermal stability, integration of the vaporizer system into the aircraft engine, engine and vaporizer dynamic response, startup and altitude restart, engine performance, control requirements, safety, and maintenance. The selected concept is shown to offer potential gains in engine performance in terms of reduced specific fuel consumption and improved engine thrust/weight ratio. The thrust/weight improvement can be traded against vaporization system weight.

  4. Criticality safety considerations for MSRE fuel drain tank uranium aggregation

    SciTech Connect

    Hollenbach, D.F.; Hopper, C.M.

    1997-03-01

    This paper presents the results of a preliminary criticality safety study of some potential effects of uranium reduction and aggregation in the Molten Salt Reactor Experiment (MSRE) fuel drain tanks (FDTs) during salt removal operations. Since the salt was transferred to the FDTs in 1969, radiological and chemical reactions have been converting the uranium and fluorine in the salt to UF{sub 6} and free fluorine. Significant amounts of uranium (at least 3 kg) and fluorine have migrated out of the FDTs and into the off-gas system (OGS) and the auxiliary charcoal bed (ACB). The loss of uranium and fluorine from the salt changes the chemical properties of the salt sufficiently to possibly allow the reduction of the UF{sub 4} in the salt to uranium metal as the salt is remelted prior to removal. It has been postulated that up to 9 kg of the maximum 19.4 kg of uranium in one FDT could be reduced to metal and concentrated. This study shows that criticality becomes a concern when more than 5 kg of uranium concentrates to over 8 wt% of the salt in a favorable geometry.

  5. Performance test of a 6 L liquid hydrogen fuel tank for unmanned aerial vehicles

    NASA Astrophysics Data System (ADS)

    Garceau, N. M.; Kim, S. Y.; Lim, C. M.; Cho, M. J.; Kim, K. Y.; Baik, J. H.

    2015-12-01

    A 6 L liquid hydrogen fuel tank has been designed, fabricated and tested to optimize boil-off rate and minimize weight for a 200 W light weight fuel cell in an unmanned aerial vehicle (UAV). The 200 W fuel cell required a maximum flow rate of 2.3 SLPM or less liquid hydrogen boil-off from the fuel tank. After looking at several different insulation schemes, the system was optimized as two concentric lightweight aluminum cylinders with high vacuum and multi-layer insulation in between. MLI thickness and support structures were designed to minimize the tank weight. For support, filling and feed gas to a fuel-cell, the system was designed with two G-10 CR tubes which connected the inner vessel to the outer shell. A secondary G10-CR support structure was also added to ensure stability and durability during a flight. After fabrication the fuel tank was filled with liquid hydrogen. A series of boil-off tests were performed in various operating conditions to confirm thermal performance of the fuel tank for a 200 W fuel cell.

  6. Evaluating and Addressing Potential Hazards of Fuel Tanks Surviving Atmospheric Reentry

    NASA Technical Reports Server (NTRS)

    Kelley, Robert L.; Johnson, Nicholas L.

    2011-01-01

    In order to ensure reentering spacecraft do not pose an undue risk to the Earth's population it is important to design satellites and rocket bodies with end of life considerations in mind. In addition to considering the possible consequences of deorbiting a vehicle, consideration must also be given to the possible risks associated with a vehicle failing to become operational or reach its intended orbit. Based on recovered space debris and numerous reentry survivability analyses, fuel tanks are of particular concern in both of these considerations. Most spacecraft utilize some type of fuel tank as part of their propulsion system. These fuel tanks are most often constructed using stainless steel or titanium and are filled with potentially hazardous substances such as hydrazine and nitrogen tetroxide. For a vehicle which has reached its scheduled end of mission the contents of the tanks are typically depleted. In this scenario the use of stainless steel and titanium results in the tanks posing a risk to people and property do to the high melting point and large heat of ablation of these materials leading to likely survival of the tank during reentry. If a large portion of the fuel is not depleted prior to reentry, there is the added risk of hazardous substance being released when the tank impact the ground. This paper presents a discussion of proactive methods which have been utilized by NASA satellite projects to address the risks associated with fuel tanks reentering the atmosphere. In particular it will address the design of a demiseable fuel tank as well as the evaluation of off the shelf designs which are selected to burst during reentry.

  7. Thermal-fluid analysis of the fill and drain operations of a cryrogenic fuel tank

    NASA Technical Reports Server (NTRS)

    Stephens, Craig A.; Hanna, Gregory J.; Gong, Leslie

    1993-01-01

    The Generic Research Cryogenic Tank was designed to establish techniques for testing and analyzing the behavior of reusable fuel tank structures subjected to cryogenic fuels and aerodynamic heating. The Generic Research Cryogenic Tank tests will consist of filling a pressure vessel to a prescribed fill level, waiting for steady-state conditions, then draining the liquid while heating the external surface to simulate the thermal environment associated with hypersonic flight. Initial tests of the Generic Research Cryogenic Tank will use liquid nitrogen with future tests requiring liquid hydrogen. Two-dimensional finite-difference thermal-fluid models were developed for analyzing the behavior of the Generic Research Cryogenic Tank during fill and drain operations. The development and results of the two-dimensional fill and drain models, using liquid nitrogen, are provided, along with results and discussion on extrapolating the model results to the operation of the full-size Generic Research Cryogenic Tank. These numerical models provided a means to predict the behavior of the Generic Research Cryogenic Tank during testing and to define the requirements for the Generic Research Cryogenic Tank support systems such as vent, drain, pressurization, and instrumentation systems. In addition, the fill model provided insight into the unexpected role of circumferential conduction in cooling the Generic Research Cryogenic Tank pressure vessel during fill operations.

  8. 46 CFR 182.440 - Independent fuel tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... incorporated byreference; see 46 CFR 175.600) Thickness in millimeters (inches) and 1 vs. tank capacities for... metals. Avoid dissimilar metal contact with tank body. 8 The requirements of 46 CFR 182.440(a)(2) apply... test methods in ASTM D 635 and ASTM D 2863 (both incorporated by reference; see 46 CFR 175.600),...

  9. 46 CFR 182.440 - Independent fuel tanks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... incorporated byreference; see 46 CFR 175.600) Thickness in millimeters (inches) and 1 vs. tank capacities for... metals. Avoid dissimilar metal contact with tank body. 8 The requirements of 46 CFR 182.440(a)(2) apply... test methods in ASTM D 635 and ASTM D 2863 (both incorporated by reference; see 46 CFR 175.600),...

  10. 46 CFR 182.440 - Independent fuel tanks.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... incorporated byreference; see 46 CFR 175.600) Thickness in millimeters (inches) and 1 vs. tank capacities for... metals. Avoid dissimilar metal contact with tank body. 8 The requirements of 46 CFR 182.440(a)(2) apply... test methods in ASTM D 635 and ASTM D 2863 (both incorporated by reference; see 46 CFR 175.600),...

  11. 46 CFR 182.440 - Independent fuel tanks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... incorporated byreference; see 46 CFR 175.600) Thickness in millimeters (inches) and 1 vs. tank capacities for... metals. Avoid dissimilar metal contact with tank body. 8 The requirements of 46 CFR 182.440(a)(2) apply... test methods in ASTM D 635 and ASTM D 2863 (both incorporated by reference; see 46 CFR 175.600),...

  12. 46 CFR 182.440 - Independent fuel tanks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... incorporated byreference; see 46 CFR 175.600) Thickness in millimeters (inches) and 1 vs. tank capacities for... metals. Avoid dissimilar metal contact with tank body. 8 The requirements of 46 CFR 182.440(a)(2) apply... test methods in ASTM D 635 and ASTM D 2863 (both incorporated by reference; see 46 CFR 175.600),...

  13. 14 CFR 25.965 - Fuel tank tests.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... deformation of the tank walls: (1) Each complete tank assembly and its supports must be vibration tested while...) The test frequency of vibration must be as follows: (i) If no frequency of vibration resulting from... vibration must be 2,000 cycles per minute. (ii) If only one frequency of vibration resulting from any...

  14. 14 CFR 25.965 - Fuel tank tests.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... deformation of the tank walls: (1) Each complete tank assembly and its supports must be vibration tested while...) The test frequency of vibration must be as follows: (i) If no frequency of vibration resulting from... vibration must be 2,000 cycles per minute. (ii) If only one frequency of vibration resulting from any...

  15. 14 CFR 25.965 - Fuel tank tests.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... deformation of the tank walls: (1) Each complete tank assembly and its supports must be vibration tested while...) The test frequency of vibration must be as follows: (i) If no frequency of vibration resulting from... vibration must be 2,000 cycles per minute. (ii) If only one frequency of vibration resulting from any...

  16. 14 CFR 25.965 - Fuel tank tests.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... deformation of the tank walls: (1) Each complete tank assembly and its supports must be vibration tested while...) The test frequency of vibration must be as follows: (i) If no frequency of vibration resulting from... vibration must be 2,000 cycles per minute. (ii) If only one frequency of vibration resulting from any...

  17. The impact of fuels on aircraft technology through the year 2000

    NASA Technical Reports Server (NTRS)

    Grobman, J.; Reck, G. M.

    1980-01-01

    The impact that the supply, quality, and processing costs of future fuels may have on aircraft technology is assessed. The potential range of properties for future jet fuels is discussed along with the establishment of a data base of fuel property effects on propulsion system components. Also, the evolution and evaluation of advanced component technology that would permit the use of broader property fuels and the identification of technical and economic trade-offs within the overall fuel production-air transportation system associated with variations in fuel properties are examined.

  18. 14 CFR 26.35 - Changes to type certificates affecting fuel tank flammability.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... any airplane subject to 14 CFR 26.33(a): (1) Any fuel tank designed to be Normally Emptied if the fuel... comply with the requirements of 14 CFR 25.981, in effect on December 26, 2008. (3) Applicants subject to paragraph (a)(3)(ii) of this section must comply with the requirements of 14 CFR 26.33. (e) Compliance...

  19. 14 CFR 26.35 - Changes to type certificates affecting fuel tank flammability.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... any airplane subject to 14 CFR 26.33(a): (1) Any fuel tank designed to be Normally Emptied if the fuel... comply with the requirements of 14 CFR 25.981, in effect on December 26, 2008. (3) Applicants subject to paragraph (a)(3)(ii) of this section must comply with the requirements of 14 CFR 26.33. (e) Compliance...

  20. 14 CFR 26.35 - Changes to type certificates affecting fuel tank flammability.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... any airplane subject to 14 CFR 26.33(a): (1) Any fuel tank designed to be Normally Emptied if the fuel... comply with the requirements of 14 CFR 25.981, in effect on December 26, 2008. (3) Applicants subject to paragraph (a)(3)(ii) of this section must comply with the requirements of 14 CFR 26.33. (e) Compliance...

  1. 14 CFR 26.35 - Changes to type certificates affecting fuel tank flammability.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... any airplane subject to 14 CFR 26.33(a): (1) Any fuel tank designed to be Normally Emptied if the fuel... comply with the requirements of 14 CFR 25.981, in effect on December 26, 2008. (3) Applicants subject to paragraph (a)(3)(ii) of this section must comply with the requirements of 14 CFR 26.33. (e) Compliance...

  2. 14 CFR 26.33 - Holders of type certificates: Fuel tank flammability.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... installation of fuel tank IMM that comply with 14 CFR 25.981(c) in effect on December 26, 2008. (e... in the Airworthiness Limitations Section (ALS) of the ICA required by 14 CFR 25.1529 or paragraph (f... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Holders of type certificates: Fuel...

  3. 33 CFR 183.580 - Static pressure test for fuel tanks.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Static pressure test for fuel tanks. 183.580 Section 183.580 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Fuel Systems Tests § 183.580...

  4. 33 CFR 183.580 - Static pressure test for fuel tanks.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Static pressure test for fuel tanks. 183.580 Section 183.580 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Fuel Systems Tests § 183.580...

  5. 14 CFR 26.39 - Newly produced airplanes: Fuel tank flammability.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...) that meet the requirements of 14 CFR 25.981 in effect on December 26, 2008. (1) The fuel tank is... an Fleet Average Flammability Exposure of 7 percent must have an IMM that meets 14 CFR 25.981(d) in... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Newly produced airplanes: Fuel...

  6. Evaluation of advanced lift concepts and fuel conservative short-haul aircraft, volume 1

    NASA Technical Reports Server (NTRS)

    Renshaw, J. H.; Bowden, M. K.; Narucki, C. W.; Bennett, J. A.; Smith, P. R.; Ferrill, R. S.; Randall, C. C.; Tibbetts, J. G.; Patterson, R. W.; Meyer, R. T.

    1974-01-01

    The performance and economics of a twin-engine augmentor wing airplane were evaluated in two phases. Design aspects of the over-the-wing/internally blown flap hybrid, augmentor wing, and mechanical flap aircraft were investigated for 910 m. field length with parametric extension to other field lengths. Fuel savings achievable by application of advanced lift concepts to short-haul aircraft were evaluated and the effect of different field lengths, cruise requirements, and noise levels on fuel consumption and airplane economics at higher fuel prices were determined. Conclusions and recommendations are presented.

  7. Fuel Tank Assembly for the Saturn V S-IC Stage

    NASA Technical Reports Server (NTRS)

    1964-01-01

    The fuel tank assembly of the Saturn V S-IC (first) stage supported with the aid of a C frame on the transporter was readied to be transported to the Marshall Space Flight Center, building 4705. The fuel tank carried kerosene (RP-1) as its fuel. The S-IC stage utilized five F-1 engines that used kerosene and liquid oxygen as propellant and each engine provided 1,500,000 pounds of thrust. This stage lifted the entire vehicle and Apollo spacecraft from the launch pad.

  8. An expert system to manage the operation of the Space Shuttle's fuel cell cryogenic reactant tanks

    NASA Technical Reports Server (NTRS)

    Murphey, Amy Y.

    1990-01-01

    This paper describes a rule-based expert system to manage the operation of the Space Shuttle's cryogenic fuel system. Rules are based on standard fuel tank operating procedures described in the EECOM Console Handbook. The problem of configuring the operation of the Space Shuttle's fuel tanks is well-bounded and well defined. Moreover, the solution of this problem can be encoded in a knowledge-based system. Therefore, a rule-based expert system is the appropriate paradigm. Furthermore, the expert system could be used in coordination with power system simulation software to design operating procedures for specific missions.

  9. 14 CFR 25.963 - Fuel tanks: general.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... tank must be able to withstand, without failure, the vibration, inertia, fluid, and structural loads... penetration and deformation by tire fragments, low energy engine debris, or other likely debris. (2)...

  10. 14 CFR 25.963 - Fuel tanks: general.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... tank must be able to withstand, without failure, the vibration, inertia, fluid, and structural loads... penetration and deformation by tire fragments, low energy engine debris, or other likely debris. (2)...

  11. 14 CFR 25.963 - Fuel tanks: general.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... tank must be able to withstand, without failure, the vibration, inertia, fluid, and structural loads... penetration and deformation by tire fragments, low energy engine debris, or other likely debris. (2)...

  12. 14 CFR 25.963 - Fuel tanks: general.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... tank must be able to withstand, without failure, the vibration, inertia, fluid, and structural loads... penetration and deformation by tire fragments, low energy engine debris, or other likely debris. (2)...

  13. 14 CFR 25.967 - Fuel tank installations.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... that it is not required to withstand fluid loads; and (4) Each interior surface of the tank compartment must be smooth and free of projections that could cause wear of the liner unless— (i) Provisions...

  14. 14 CFR 29.971 - Fuel tank sump.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... effective with the rotorcraft in any normal attitude, and must be located so that the sump contents cannot... water from each part of the tank to the sump with the rotorcraft in any ground attitude to be...

  15. 46 CFR 58.50-5 - Gasoline fuel tanks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... (all incorporated by reference; see 46 CFR 58.03-1) Thickness in inches and gage numbers 1 vs. tank... (AWG 12) 0.182 (AWG 5). Copper-silicon B 96, alloys C65100 and C65500 0.050 (AWG 16) 0.064 (AWG 14) 0...-silicon; and “MfgStd” for steel. 2 Tanks over 400 gallons shall be designed with a factor of safety...

  16. Assessment of crash fire hazard of LH sub 2 fueled aircraft

    NASA Technical Reports Server (NTRS)

    Brewer, G. D.; Wittlin, G.; Versaw, E. F.; Parmley, R.; Cima, R.; Walther, E. G.

    1981-01-01

    The relative safety of passengers in LH2 - fueled aircraft, as well as the safety of people in areas surrounding a crash scene, has been evaluated in an analytical study. Four representative circumstances were postulated involving a transport aircraft in which varying degrees of severity of damage were sustained. Potential hazard to the passengers and to the surroundings posed by the spilled fuel was evaluated for each circumstance. Corresponding aircraft fueled with liquid methane, Jet A, and JP-4 were also studied in order to make comparisons of the relative safety. The four scenarios which were used to provide a basis for the evaluation included: (1) a small fuel leak internal to the aircraft, (2) a survivable crash in which a significant quantity of fuel is spilled in a radial pattern as a result of impact with a stationary object while taxiing at fairly low speed, (3) a survivable crash in which a significant quantity of fuel is spilled in an axial pattern as a result of impact during landing, and (4) a non-survivable crash in which a massive fuel spill occurs instantaneously.

  17. A Combustion Model for the TWA 800 Center-Wing Fuel Tank Explosion

    SciTech Connect

    Baer, M.R.; Gross, R.J.

    1998-10-02

    In support of the National Transportation Safety Board investigation of the TWA Flight 800 accident, a combined experimental/computational effort was conducted that focused on quarter-scale testing and simulation of the fuel-air explosion in the Boeing 747 center wing fuel tank. This report summarizes the modeling approach used at Sandia National Laboratories. In this approach approximations are introduced that capture the essential physics associated with turbulent flame propagation in multiple compartment fuel tanks. This model efficiently defines the pressure loading conditions during a jet-fuel air explosion in a fuel tank confinement. Modeling calculations compare favorably with a variety of experimental quarter-scale tests conducted in rigid confinement. The modeling describes well the overpressure history in several geometry configurations. Upon demonstrating a reasonable comparison to experimental observations, a parametric study of eight possible ignition sources is then discussed. Model calculations demonstrate that different loading conditions arise as the location of the ignition event is varied. By comparing the inferred damage and calculated impulses to that seen in the recovered tank, it maybe possible to reduce the number of likely sources. A possible extension of this work to better define tank damage includes coupling the combustion model as a pressure loading routine for structural failure analysis.

  18. Economic and environmental assessment of liquefied natural gas as a supplemental aircraft fuel

    NASA Astrophysics Data System (ADS)

    Withers, Mitch R.; Malina, Robert; Gilmore, Christopher K.; Gibbs, Jonathan M.; Trigg, Chris; Wolfe, Philip J.; Trivedi, Parthsarathi; Barrett, Steven R. H.

    2014-04-01

    In 2013, natural gas is 70-80% cheaper than jet fuel on an energy basis. As an alternative aviation fuel, natural gas may reduce operating costs. In this paper, we assess the use of liquefied natural gas (LNG) as a supplemental aircraft fuel in a military context, with detailed assessments of the Lockheed Martin C-130H and C-130J transport aircraft. We estimate the cost of retrofitting these aircraft to use LNG and the savings from reduced fuel expenses. We evaluate the societal impacts of LNG within a cost-benefit framework, taking into account resource consumption, human health impacts related to air quality, and climate damage. In order to compare alternative uses of natural gas in aviation, we include in our analysis Fischer-Tropsch (FT) jet fuel from natural gas as a drop-in alternative. Uncertainty analysis is performed with Monte Carlo simulations. We find that aircraft operators can save up to 14% on fuel expenses (retrofit costs included) by employing LNG retrofits, with a 95% confidence interval of 2-23%. Society can also benefit by 12% (3-20%) from LNG use as a result of improved surface air quality, lower resource consumption, and net climate neutrality. These results are highly dependent on fuel prices, the quantity and cost of the LNG retrofits, and the frequency and length of missions. FT jet fuel is not cost-competitive with conventional fuel and results in increased fuel expenses by 17%. FT fuel provides marginal societal benefits relative to jet fuel.

  19. ACFA 2020 - An FP7 project on active control of flexible fuel efficient aircraft configurations

    NASA Astrophysics Data System (ADS)

    Maier, R.

    2013-12-01

    This paper gives an overview about the project ACFA 2020 which is funded by the European Commission within the 7th framework program. The acronym ACFA 2020 stands for Active Control for Flexible Aircraft 2020. The project is dealing with the design of highly fuel efficient aircraft configurations and, in particular, on innovative active control concepts with the goal to reduce loads and structural weight. Major focus lays on blended wing body (BWB) aircraft. Blended wing body type aircraft configurations are seen as the most promising future concept to fulfill the so-called ACARE (Advisory Council for Aeronautics Research in Europe) vision 2020 goals in regards to reduce fuel consumption and external noise. The paper discusses in some detail the overall goals and how they are addressed in the workplan. Furthermore, the major achievements of the project are outlined and a short outlook on the remaining work is given.

  20. 46 CFR 58.50-15 - Alternate material for construction of independent fuel tanks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... listed in 46 CFR 58.50-5, Table 58.50-5(a) and in 46 CFR 58.50-10, Table 58.50-10(a) may be used for fuel... 46 Shipping 2 2010-10-01 2010-10-01 false Alternate material for construction of independent fuel...) MARINE ENGINEERING MAIN AND AUXILIARY MACHINERY AND RELATED SYSTEMS Independent Fuel Tanks §...

  1. Fail-safe system for activity cooled supersonic and hypersonic aircraft. [using liquid hydrogen fuel

    NASA Technical Reports Server (NTRS)

    Jones, R. A.; Braswell, D. O.; Richie, C. B.

    1975-01-01

    A fail-safe-system concept was studied as an alternative to a redundant active cooling system for supersonic and hypersonic aircraft which use the heat sink of liquid-hydrogen fuel for cooling the aircraft structure. This concept consists of an abort maneuver by the aircraft and a passive thermal protection system (TPS) for the aircraft skin. The abort manuever provides a low-heat-load descent from normal cruise speed to a lower speed at which cooling is unnecessary, and the passive TPS allows the aircraft skin to absorb the abort heat load without exceeding critical skin temperature. On the basis of results obtained, it appears that this fail-safe-system concept warrants further consideration, inasmuch as a fail-safe system could possibly replace a redundant active cooling system with no increase in weight and would offer other potential advantages.

  2. Experimental Study of Fuel Heating at Low Temperatures in a Wing Tank Model, Volume 1

    NASA Technical Reports Server (NTRS)

    Stockemer, F. J.

    1981-01-01

    Scale model fuel heating systems for use with aviation hydrocarbon fuel at low temperatures were investigated. The effectiveness of the heating systems in providing flowability and pumpability at extreme low temperature when some freezing of the fuel would otherwise occur is evaluated. The test tank simulated a section of an outer wing tank, and was chilled on the upper and lower surfaces. Turbine engine lubricating oil was heated, and recirculating fuel transferred the heat. Fuels included: a commercial Jet A; an intermediate freeze point distillate; a higher freeze point distillate blended according to Experimental Referee Broadened Specification guidelines; and a higher freeze point paraffinic distillate used in a preceding investigation. Each fuel was chilled to selected temperature to evaluate unpumpable solid formation (holdup). Tests simulating extreme cold weather flight, without heating, provided baseline fuel holdup data. Heating and recirculating fuel increased bulk temperature significantly; it had a relatively small effect on temperature near the bottom of the tank. Methods which increased penetration of heated fuel into the lower boundary layer improved the capability for reducing holdup.

  3. Safer Aircraft Possible With Nitrogen Generation

    NASA Technical Reports Server (NTRS)

    Palaszewski, Bryan A.

    2001-01-01

    A system named On-Board Inert Gas Generation System/On-Board Oxygen Generation System (OBIGGS/OBOGS) was studied with Boeing. The study established the requirements for nitrogen purge (for fuel tank inerting and cargo compartment fire suppression) and oxygen (for passengers and crew). The nitrogen would be used for suppressing fires and fuel tank explosions on the aircraft, and the oxygen would be used for breathing gas during high-altitude or emergency operations.

  4. A Continuous Liquid-Level Sensor for Fuel Tanks Based on Surface Plasmon Resonance

    PubMed Central

    Pozo, Antonio M.; Pérez-Ocón, Francisco; Rabaza, Ovidio

    2016-01-01

    A standard problem in large tanks at oil refineries and petrol stations is that water and fuel usually occupy the same tank. This is undesirable and causes problems such as corrosion in the tanks. Normally, the water level in tanks is unknown, with the problems that this entails. We propose herein a method based on surface plasmon resonance (SPR) to detect in real time the interfaces in a tank which can simultaneously contain water, gasoline (or diesel) and air. The plasmonic sensor is composed of a hemispherical glass prism, a magnesium fluoride layer, and a gold layer. We have optimized the structural parameters of the sensor from the theoretical modeling of the reflectance curve. The sensor detects water-fuel and fuel-air interfaces and measures the level of each liquid in real time. This sensor is recommended for inflammable liquids because inside the tank there are no electrical or electronic signals which could cause explosions. The sensor proposed has a sensitivity of between 1.2 and 3.5 RIU−1 and a resolution of between 5.7 × 10−4 and 16.5 × 10−4 RIU. PMID:27213388

  5. A Continuous Liquid-Level Sensor for Fuel Tanks Based on Surface Plasmon Resonance.

    PubMed

    Pozo, Antonio M; Pérez-Ocón, Francisco; Rabaza, Ovidio

    2016-01-01

    A standard problem in large tanks at oil refineries and petrol stations is that water and fuel usually occupy the same tank. This is undesirable and causes problems such as corrosion in the tanks. Normally, the water level in tanks is unknown, with the problems that this entails. We propose herein a method based on surface plasmon resonance (SPR) to detect in real time the interfaces in a tank which can simultaneously contain water, gasoline (or diesel) and air. The plasmonic sensor is composed of a hemispherical glass prism, a magnesium fluoride layer, and a gold layer. We have optimized the structural parameters of the sensor from the theoretical modeling of the reflectance curve. The sensor detects water-fuel and fuel-air interfaces and measures the level of each liquid in real time. This sensor is recommended for inflammable liquids because inside the tank there are no electrical or electronic signals which could cause explosions. The sensor proposed has a sensitivity of between 1.2 and 3.5 RIU(-1) and a resolution of between 5.7 × 10(-4) and 16.5 × 10(-4) RIU. PMID:27213388

  6. Nonlinear Analysis of the Space Shuttle Superlightweight External Fuel Tank

    NASA Technical Reports Server (NTRS)

    Nemeth, Michael P.; Britt, Vicki O.; Collins, Timothy J.; Starnes, James H., Jr.

    1996-01-01

    Results of buckling and nonlinear analyses of the Space Shuttle external tank superlightweight liquid-oxygen (LO2) tank are presented. Modeling details and results are presented for two prelaunch loading conditions and for two full-scale structural tests that were conducted on the original external tank. The results illustrate three distinctly different types of nonlinear response for thin-walled shells subjected to combined mechanical and thermal loads. The nonlinear response phenomena consist of bifurcation-type buckling, short-wavelength nonlinear bending, and nonlinear collapse associated with a limit point. For each case, the results show that accurate predictions of non- linear behavior generally require a large-scale, high-fidelity finite-element model. Results are also presented that show that a fluid-filled launch-vehicle shell can be highly sensitive to initial geometric imperfections. In addition, results presented for two full-scale structural tests of the original standard-weight external tank suggest that the finite-element modeling approach used in the present study is sufficient for representing the nonlinear behavior of the superlightweight LO2 tank.

  7. Durability of foam insulation for LH2 fuel tanks of future subsonic transports

    NASA Technical Reports Server (NTRS)

    Sharpe, E. L.; Helenbrook, R. G.

    1979-01-01

    Organic foams were tested to determine their suitability for insulating liquid hydrogen tanks of subsonic aircraft. The specimens, including nonreinforced foams and foams with chopped glass reinforcements, flame retardants, and vapor barriers, were scaled to simulate stress conditions in large tanks. The tests were conducted within aluminum tank compartments filled with liquid hydrogen and the boil-off rate was used as the criterion of thermal performance. It was found that while all insulations deteriorated with increased cycles, two nonreinforced polyurethane foams showed no structural deterioration after 4200 thermal cycles (equivalent to 15 years of airline service). It was also found that fiberglass reinforcement and flame retardants impaired thermal performance and reduced useful life of the foams. Vapor barriers enhanced structural integrity without any deterioration in thermal properties.

  8. Evaluation of advanced lift concepts and potential fuel conservation for short-haul aircraft

    NASA Technical Reports Server (NTRS)

    Sweet, H. S.; Renshaw, J. H.; Bowden, M. K.

    1975-01-01

    The effect of different field lengths, cruise requirements, noise level, and engine cycle characteristics on minimizing fuel consumption and minimizing operating cost at high fuel prices were evaluated for some advanced short-haul aircraft. The conceptual aircraft were designed for 148 passengers using the upper surface-internally blown jet flap, the augmentor wing, and the mechanical flap lift systems. Advanced conceptual STOL engines were evaluated as well as a near-term turbofan and turboprop engine. Emphasis was given to designs meeting noise levels equivalent to 95-100 EPNdB at 152 m (500 ft) sideline.

  9. Buffeting of External Fuel Tanks at High Speeds on a Grumman F7F-3 Airplane

    NASA Technical Reports Server (NTRS)

    Turner, Howard L.

    1947-01-01

    Attempts were made to alleviate the buffeting of external fuel tanks mounted under the wings of a twin-engine Navy fighter plane. The Mach number at which the buffeting began was increased from 0.529 to 0.640 by streamlining the sway braces and increasing the lateral rigidity of the sway brace system. Further increases of the Mach number, at which buffeting began to 0.725, was obtained by moving the external fuel tank to a position under the fuselage.

  10. Buffeting of External Fuel Tanks at High Speeds on a Gruman F7F-3 Airplane

    NASA Technical Reports Server (NTRS)

    Turner, Howard L.

    1947-01-01

    Attempts were made to alleviate the buffeting of external fuel tanks mounted under the wings of a twin-engine Navy fighter airplane. The Mach number at which buffeting began was increased from 0,529 to 0.640 by streamlining the sway braces and by increasing the lateral rigidity of the sway brace system. Further increase of the Mach number, at which buffeting began to 0.725, was obtained by moving the external fuel tank to a position under the fuselage.

  11. Development and validation of purged thermal protection systems for liquid hydrogen fuel tanks of hypersonic vehicles

    NASA Technical Reports Server (NTRS)

    Helenbrook, R. D.; Colt, J. Z.

    1977-01-01

    An economical, lightweight, safe, efficient, reliable, and reusable insulation system was developed for hypersonic cruise vehicle hydrogen fuel tanks. Results indicate that, a nitrogen purged, layered insulation system with nonpermeable closed-cell insulation next to the cryogenic tank and a high service temperature fibrous insulation surrounding it, is potentially an attractive solution to the insulation problem. For the postulated hypersonic flight the average unit weight of the purged insulation system (including insulation, condensate and fuel boil off) is 6.31 kg/sq m (1.29 psf). Limited cyclic tests of large specimens of closed cell polymethacrylimide foam indicate it will withstand the expected thermal cycle.

  12. 46 CFR 58.50-10 - Diesel fuel tanks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    .... Table 58.50-10(a) Material ASTM specification (all incorporated by reference; see 46 CFR 58.03-1... COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING MAIN AND AUXILIARY MACHINERY... mechanical damage and provided at the tank connections with devices which will automatically close in...

  13. 14 CFR 23.971 - Fuel tank sump.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... system must have a sediment bowl or chamber that is accessible for drainage; has a capacity of 1 ounce... normal flight attitude, water will drain from all parts of the tank except the sump to the sediment bowl or chamber. (d) Each sump, sediment bowl, and sediment chamber drain required by paragraphs (a),...

  14. BIOVENTING TO TREAT FUEL SPILLS FROM UNDERGROUND STORAGE TANKS

    EPA Science Inventory

    Bioventilation is a procedure to cleanse soil gas of volatile hydrocarbons originating from storage tank leaks. he rate of vapor degradation is a controlling parameter in the design of a bioventing system. aboratory microcosm procedure using sandy soil from an aviation gasoline s...

  15. 33 CFR 183.514 - Fuel tanks: Labels.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... tested under 33 CFR 183.510(a).” (8) If the tank is tested under § 183.584 at less than 25g vertical... on a label must: (1) Be at least 1/16 inch high and (2) Contrast with the basic color of the label...

  16. 33 CFR 183.564 - Fuel tank fill system.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... floating position. (b) Each hose in the tank fill system must be secured to a pipe, spud, or hose fitting... that do not depend solely on the spring tension of the clamps for compressive force. (c) Each hose... the hose and the spud, pipe, or hose fitting....

  17. 33 CFR 183.564 - Fuel tank fill system.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... floating position. (b) Each hose in the tank fill system must be secured to a pipe, spud, or hose fitting... that do not depend solely on the spring tension of the clamps for compressive force. (c) Each hose... the hose and the spud, pipe, or hose fitting....

  18. 33 CFR 183.564 - Fuel tank fill system.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... floating position. (b) Each hose in the tank fill system must be secured to a pipe, spud, or hose fitting... that do not depend solely on the spring tension of the clamps for compressive force. (c) Each hose... the hose and the spud, pipe, or hose fitting....

  19. 33 CFR 183.564 - Fuel tank fill system.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... floating position. (b) Each hose in the tank fill system must be secured to a pipe, spud, or hose fitting... that do not depend solely on the spring tension of the clamps for compressive force. (c) Each hose... the hose and the spud, pipe, or hose fitting....

  20. 14 CFR 23.971 - Fuel tank sump.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... system must have a sediment bowl or chamber that is accessible for drainage; has a capacity of 1 ounce... normal flight attitude, water will drain from all parts of the tank except the sump to the sediment bowl or chamber. (d) Each sump, sediment bowl, and sediment chamber drain required by paragraphs (a),...

  1. 14 CFR 23.971 - Fuel tank sump.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... system must have a sediment bowl or chamber that is accessible for drainage; has a capacity of 1 ounce... normal flight attitude, water will drain from all parts of the tank except the sump to the sediment bowl or chamber. (d) Each sump, sediment bowl, and sediment chamber drain required by paragraphs (a),...

  2. 14 CFR 29.967 - Fuel tank installation.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... flexible tank liners are used, they must be supported so that they are not required to withstand fluid... could cause wear of the liner, unless— (i) There are means for protection of the liner at those points; or (ii) The construction of the liner itself provides such protection. (b) Any spaces adjacent...

  3. 14 CFR 27.967 - Fuel tank installation.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... flexible tank liners are used, they must be supported so that it is not necessary for them to withstand... that could cause wear of the liner unless— (i) There are means for protection of the liner at those points; or (ii) The construction of the liner itself provides such protection. (b) Any spaces adjacent...

  4. 14 CFR 25.967 - Fuel tank installations.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... to prevent the absorption of fluids; (3) If a flexible tank liner is used, it must be supported so... must be smooth and free of projections that could cause wear of the liner unless— (i) Provisions are made for protection of the liner at these points; or (ii) The construction of the liner itself...

  5. 14 CFR 25.967 - Fuel tank installations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... to prevent the absorption of fluids; (3) If a flexible tank liner is used, it must be supported so... must be smooth and free of projections that could cause wear of the liner unless— (i) Provisions are made for protection of the liner at these points; or (ii) The construction of the liner itself...

  6. 14 CFR 27.967 - Fuel tank installation.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... flexible tank liners are used, they must be supported so that it is not necessary for them to withstand... that could cause wear of the liner unless— (i) There are means for protection of the liner at those points; or (ii) The construction of the liner itself provides such protection. (b) Any spaces adjacent...

  7. 14 CFR 29.967 - Fuel tank installation.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... flexible tank liners are used, they must be supported so that they are not required to withstand fluid... could cause wear of the liner, unless— (i) There are means for protection of the liner at those points; or (ii) The construction of the liner itself provides such protection. (b) Any spaces adjacent...

  8. 14 CFR 29.967 - Fuel tank installation.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... flexible tank liners are used, they must be supported so that they are not required to withstand fluid... could cause wear of the liner, unless— (i) There are means for protection of the liner at those points; or (ii) The construction of the liner itself provides such protection. (b) Any spaces adjacent...

  9. 14 CFR 29.967 - Fuel tank installation.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... flexible tank liners are used, they must be supported so that they are not required to withstand fluid... could cause wear of the liner, unless— (i) There are means for protection of the liner at those points; or (ii) The construction of the liner itself provides such protection. (b) Any spaces adjacent...

  10. 14 CFR 27.967 - Fuel tank installation.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... flexible tank liners are used, they must be supported so that it is not necessary for them to withstand... that could cause wear of the liner unless— (i) There are means for protection of the liner at those points; or (ii) The construction of the liner itself provides such protection. (b) Any spaces adjacent...

  11. 14 CFR 25.967 - Fuel tank installations.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... to prevent the absorption of fluids; (3) If a flexible tank liner is used, it must be supported so... must be smooth and free of projections that could cause wear of the liner unless— (i) Provisions are made for protection of the liner at these points; or (ii) The construction of the liner itself...

  12. 14 CFR 27.967 - Fuel tank installation.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... flexible tank liners are used, they must be supported so that it is not necessary for them to withstand... that could cause wear of the liner unless— (i) There are means for protection of the liner at those points; or (ii) The construction of the liner itself provides such protection. (b) Any spaces adjacent...

  13. 14 CFR 29.967 - Fuel tank installation.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... flexible tank liners are used, they must be supported so that they are not required to withstand fluid... could cause wear of the liner, unless— (i) There are means for protection of the liner at those points; or (ii) The construction of the liner itself provides such protection. (b) Any spaces adjacent...

  14. 14 CFR 29.965 - Fuel tank tests.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... equivalent: (1) Each complete tank assembly and its supports must be vibration tested while mounted to... of any suitable fluid. The amplitude of vibration may not be less than one thirty-second of an inch, unless otherwise substantiated. (3) The test frequency of vibration must be as follows: (i) If...

  15. 14 CFR 29.965 - Fuel tank tests.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... equivalent: (1) Each complete tank assembly and its supports must be vibration tested while mounted to... of any suitable fluid. The amplitude of vibration may not be less than one thirty-second of an inch, unless otherwise substantiated. (3) The test frequency of vibration must be as follows: (i) If...

  16. 14 CFR 27.965 - Fuel tank tests.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... tank assembly and its support must be vibration tested while mounted to simulate the actual.... The amplitude of vibration may not be less than one thirty-second of an inch, unless otherwise substantiated. (3) The test frequency of vibration must be as follows: (i) If no frequency of...

  17. 14 CFR 29.965 - Fuel tank tests.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... equivalent: (1) Each complete tank assembly and its supports must be vibration tested while mounted to... of any suitable fluid. The amplitude of vibration may not be less than one thirty-second of an inch, unless otherwise substantiated. (3) The test frequency of vibration must be as follows: (i) If...

  18. 14 CFR 29.965 - Fuel tank tests.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... equivalent: (1) Each complete tank assembly and its supports must be vibration tested while mounted to... of any suitable fluid. The amplitude of vibration may not be less than one thirty-second of an inch, unless otherwise substantiated. (3) The test frequency of vibration must be as follows: (i) If...

  19. 14 CFR 27.965 - Fuel tank tests.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... tank assembly and its support must be vibration tested while mounted to simulate the actual.... The amplitude of vibration may not be less than one thirty-second of an inch, unless otherwise substantiated. (3) The test frequency of vibration must be as follows: (i) If no frequency of...

  20. 14 CFR 27.965 - Fuel tank tests.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... tank assembly and its support must be vibration tested while mounted to simulate the actual.... The amplitude of vibration may not be less than one thirty-second of an inch, unless otherwise substantiated. (3) The test frequency of vibration must be as follows: (i) If no frequency of...

  1. 14 CFR 27.965 - Fuel tank tests.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... tank assembly and its support must be vibration tested while mounted to simulate the actual.... The amplitude of vibration may not be less than one thirty-second of an inch, unless otherwise substantiated. (3) The test frequency of vibration must be as follows: (i) If no frequency of...

  2. 14 CFR 29.965 - Fuel tank tests.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... equivalent: (1) Each complete tank assembly and its supports must be vibration tested while mounted to... of any suitable fluid. The amplitude of vibration may not be less than one thirty-second of an inch, unless otherwise substantiated. (3) The test frequency of vibration must be as follows: (i) If...

  3. 33 CFR 183.514 - Fuel tanks: Labels.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... tested under 33 CFR 183.510(a).” (8) If the tank is tested under § 183.584 at less than 25g vertical... water, oil, salt spray, direct sunlight, heat, cold, and wear expected in normal operation of the...

  4. 33 CFR 183.514 - Fuel tanks: Labels.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... tested under 33 CFR 183.510(a).” (8) If the tank is tested under § 183.584 at less than 25g vertical... water, oil, salt spray, direct sunlight, heat, cold, and wear expected in normal operation of the...

  5. 33 CFR 183.514 - Fuel tanks: Labels.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... tested under 33 CFR 183.510(a).” (8) If the tank is tested under § 183.584 at less than 25g vertical... water, oil, salt spray, direct sunlight, heat, cold, and wear expected in normal operation of the...

  6. 46 CFR 58.50-5 - Gasoline fuel tanks.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... (all incorporated by reference; see 46 CFR 58.03-1) Thickness in inches and gage numbers 1 vs. tank..., Hot rolled sheet or plate 0.037 (USSG 20).3 0.050 (USSG 18) 0.107 (USSG 12). Copper-nickel B 122...) Baffle plate details. Baffle plates, where required, shall be of the same material and not less than...

  7. 46 CFR 58.50-5 - Gasoline fuel tanks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... (all incorporated by reference; see 46 CFR 58.03-1) Thickness in inches and gage numbers 1 vs. tank..., Hot rolled sheet or plate 0.037 (USSG 20).3 0.050 (USSG 18) 0.107 (USSG 12). Copper-nickel B 122...) Baffle plate details. Baffle plates, where required, shall be of the same material and not less than...

  8. 46 CFR 58.50-5 - Gasoline fuel tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... (all incorporated by reference; see 46 CFR 58.03-1) Thickness in inches and gage numbers 1 vs. tank..., Hot rolled sheet or plate 0.037 (USSG 20).3 0.050 (USSG 18) 0.107 (USSG 12). Copper-nickel B 122...) Baffle plate details. Baffle plates, where required, shall be of the same material and not less than...

  9. 33 CFR 183.514 - Fuel tanks: Labels.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... tested under 33 CFR 183.510(a).” (8) If the tank is tested under § 183.584 at less than 25g vertical... water, oil, salt spray, direct sunlight, heat, cold, and wear expected in normal operation of the...

  10. 46 CFR 182.460 - Ventilation of spaces containing machinery powered by, or fuel tanks for, gasoline.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... accordance with ABYC H-2 (incorporated by reference; see 46 CFR 175.600) or 33 CFR 183, subpart K..., or fuel tanks for, gasoline. 182.460 Section 182.460 Shipping COAST GUARD, DEPARTMENT OF HOMELAND..., gasoline. (a) A space containing machinery powered by, or fuel tanks for, gasoline must have a...

  11. 46 CFR 182.460 - Ventilation of spaces containing machinery powered by, or fuel tanks for, gasoline.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... accordance with ABYC H-2 (incorporated by reference; see 46 CFR 175.600) or 33 CFR 183, subpart K..., or fuel tanks for, gasoline. 182.460 Section 182.460 Shipping COAST GUARD, DEPARTMENT OF HOMELAND..., gasoline. (a) A space containing machinery powered by, or fuel tanks for, gasoline must have a...

  12. FIELD-PRODUCED JP-8 STANDARD FOR CALIBRATION OF LOWER EXPLOSIVE LIMIT METERS USED BY JET FUEL TANK MAINTENANCE PERSONNEL

    EPA Science Inventory

    Thousands of military personnel and tens of thousands of civilian workers perform jet fuel tank entry procedures. Before entering the confined space of a jet fuel tank, OSHA regulations (29CFR1910.146) require the internal atmosphere be tested with a calibrated, direct-reading...

  13. Fatal car fires from rear-end crashes: the effects of fuel tank placement before and after regulation.

    PubMed

    Robertson, L S

    1993-08-01

    A federal standard for fuel tank integrity in cars was applied to 1977 and subsequent models. National data indicate that fatalities per 10,000 occupants in rear-end crashes of small cars, where fire was the most harmful event, were reduced by approximately 57% if the fuel tank was located behind the rear axle and 77% if the tank was situated directly above or in front of the rear axle. PMID:8342730

  14. Fatal car fires from rear-end crashes: the effects of fuel tank placement before and after regulation.

    PubMed Central

    Robertson, L S

    1993-01-01

    A federal standard for fuel tank integrity in cars was applied to 1977 and subsequent models. National data indicate that fatalities per 10,000 occupants in rear-end crashes of small cars, where fire was the most harmful event, were reduced by approximately 57% if the fuel tank was located behind the rear axle and 77% if the tank was situated directly above or in front of the rear axle. PMID:8342730

  15. 26 CFR 48.4041-4 - Application of tax on sales of liquid for use as fuel in aircraft in noncommercial aviation.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... as fuel in aircraft in noncommercial aviation. 48.4041-4 Section 48.4041-4 Internal Revenue INTERNAL... aircraft in noncommercial aviation. (a) In general. The taxes imposed by subparagraphs (1)(A) and (2)(A) of... operator of an aircraft, for use as a fuel in the aircraft in noncommercial aviation. (b) Liability of...

  16. 26 CFR 48.4041-4 - Application of tax on sales of liquid for use as fuel in aircraft in noncommercial aviation.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... as fuel in aircraft in noncommercial aviation. 48.4041-4 Section 48.4041-4 Internal Revenue INTERNAL... aircraft in noncommercial aviation. (a) In general. The taxes imposed by subparagraphs (1)(A) and (2)(A) of... operator of an aircraft, for use as a fuel in the aircraft in noncommercial aviation. (b) Liability of...

  17. 26 CFR 48.4041-4 - Application of tax on sales of liquid for use as fuel in aircraft in noncommercial aviation.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... fuel in aircraft in noncommercial aviation. 48.4041-4 Section 48.4041-4 Internal Revenue INTERNAL... aircraft in noncommercial aviation. (a) In general. The taxes imposed by subparagraphs (1)(A) and (2)(A) of... operator of an aircraft, for use as a fuel in the aircraft in noncommercial aviation. (b) Liability of...

  18. 26 CFR 48.4041-4 - Application of tax on sales of liquid for use as fuel in aircraft in noncommercial aviation.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... as fuel in aircraft in noncommercial aviation. 48.4041-4 Section 48.4041-4 Internal Revenue INTERNAL... aircraft in noncommercial aviation. (a) In general. The taxes imposed by subparagraphs (1)(A) and (2)(A) of... operator of an aircraft, for use as a fuel in the aircraft in noncommercial aviation. (b) Liability of...

  19. Experimental Study of the Stability of Aircraft Fuels at Elevated Temperatures

    NASA Technical Reports Server (NTRS)

    Vranos, A.; Marteney, P. J.

    1980-01-01

    An experimental study of fuel stability was conducted in an apparatus which simulated an aircraft gas turbine fuel system. Two fuels were tested: Jet A and Number 2 Home Heating oil. Jet A is an aircraft gas turbine fuel currently in wide use. No. 2HH was selected to represent the properties of future turbine fuels, particularly experimental Reference Broad Specification, which, under NASA sponsorship, was considered as a possible next-generation fuel. Tests were conducted with varying fuel flow rates, delivery pressures and fuel pretreatments (including preheating and deoxygenation). Simulator wall temperatures were varied between 422K and 672K at fuel flows of 0.022 to 0.22 Kg/sec. Coking rate was determined at four equally-spaced locations along the length of the simulator. Fuel samples were collected for infrared analysis. The dependence of coking rate in Jet A may be correlated with surface temperature via an activation energy of 9 to 10 kcal/mole, although the results indicate that both bulk fluid and surface temperature affect the rate of decomposition. As a consequence, flow rate, which controls bulk temperature, must also be considered. Taken together, these results suggest that the decomposition reactions are initiated on the surface and continue in the bulk fluid. The coking rate data for No. 2 HH oil are very highly temperature dependent above approximately 533K. This suggests that bulk phase reactions can become controlling in the formation of coke.

  20. Thermal management for a Mach 5 cruise aircraft using endothermic fuel

    NASA Technical Reports Server (NTRS)

    Petley, Dennis H.; Jones, Stuart C.

    1990-01-01

    The present thermal management system for a carrier-based Mach 5 cruise-capable aircraft whose propulsion system does not entail cryogenic fuels is predicated on the use of the catalytic endothermic reaction of a petroleum-derived hydrocarbon fuel as the heat sink for engine cooling. The insulation of engine flowpath surfaces reduces cooling requirements. The primary elements of this closed-cycle cooling system are a fuel preheater, a catalytic fuel reactor, and engine wall-cooling panels; a silicone-based liquid polymer is used as the coolant. Structural, weight, and thermal analysis results are presented for each of the primary components.

  1. Development of an experiment for determining the autoignition characteristics of aircraft-type fuels

    NASA Technical Reports Server (NTRS)

    Spadaccini, L. J.

    1977-01-01

    An experimental test apparatus was developed to determine the autoignition characteristics of aircraft-type fuels in premixing prevaporizing passages at elevated temperatures and pressures. The experiment was designed to permit independent variation and evaluation of the experimental variables of pressure, temperature, flow rate, and fuel-air ratio. A comprehensive review of the autoignition literature is presented. Performance verification tests consisting of measurements of the ignition delay times for several lean fuel-air mixture ratios were conducted using Jet-A fuel at inlet air temperatures in the range 600 K to 900 K and pressures in the range 9 atm to 30 atm.

  2. Reductions in aircraft particulate emissions due to the use of Fischer-Tropsch fuels

    NASA Astrophysics Data System (ADS)

    Beyersdorf, A. J.; Timko, M. T.; Ziemba, L. D.; Bulzan, D.; Corporan, E.; Herndon, S. C.; Howard, R.; Miake-Lye, R.; Thornhill, K. L.; Winstead, E.; Wey, C.; Yu, Z.; Anderson, B. E.

    2013-06-01

    The use of alternative fuels for aviation is likely to increase due to concerns over fuel security, price stability and the sustainability of fuel sources. Concurrent reductions in particulate emissions from these alternative fuels are expected because of changes in fuel composition including reduced sulfur and aromatic content. The NASA Alternative Aviation Fuel Experiment (AAFEX) was conducted in January-February 2009 to investigate the effects of synthetic fuels on gas-phase and particulate emissions. Standard petroleum JP-8 fuel, pure synthetic fuels produced from natural gas and coal feedstocks using the Fischer-Tropsch (FT) process, and 50% blends of both fuels were tested in the CFM-56 engines on a DC-8 aircraft. To examine plume chemistry and particle evolution with time, samples were drawn from inlet probes positioned 1, 30, and 145 m downstream of the aircraft engines. No significant alteration to engine performance was measured when burning the alternative fuels. However, leaks in the aircraft fuel system were detected when operated with the pure FT fuels as a result of the absence of aromatic compounds in the fuel. Dramatic reductions in soot emissions were measured for both the pure FT fuels (reductions of 84% averaged over all powers) and blended fuels (64%) relative to the JP-8 baseline with the largest reductions at idle conditions. The alternative fuels also produced smaller soot (e.g. at 85% power, volume mean diameters were reduced from 78 nm for JP-8 to 51 nm for the FT fuel), which may reduce their ability to act as cloud condensation nuclei (CCN). The reductions in particulate emissions are expected for all alternative fuels with similar reductions in fuel sulfur and aromatic content regardless of the feedstock. As the plume cools downwind of the engine, nucleation-mode aerosols form. For the pure FT fuels, reductions (94% averaged over all powers) in downwind particle number emissions were similar to those measured at the exhaust plane (84

  3. Air pollution from aircraft. [jet exhaust - aircraft fuels/combustion efficiency

    NASA Technical Reports Server (NTRS)

    Heywood, J. B.; Chigier, N. A.

    1975-01-01

    A model which predicts nitric oxide and carbon monoxide emissions from a swirl can modular combustor is discussed. A detailed analysis of the turbulent fuel-air mixing process in the swirl can module wake region is reviewed. Hot wire anemometry was employed, and gas sampling analysis of fuel combustion emissions were performed.

  4. A simplified fuel control approach for low cost aircraft gas turbines.

    NASA Technical Reports Server (NTRS)

    Gold, H.

    1973-01-01

    Cost reduction in aircraft turbine engines may be obtained through performance reductions that are acceptable for ranges that are considerably shorter than the range for which current and costly engines were developed. Cost reduction in the fuel control for these cost engines must be achieved without significant performance reduction. This paper describes a fuel control approach that appears to meet this requirement and reviews the work that has been performed on it over the past few years.

  5. Fuel containment and damage tolerance for large composite primary aircraft structures. Phase 1: Testing

    NASA Technical Reports Server (NTRS)

    Sandifer, J. P.

    1983-01-01

    Technical problems associated with fuel containment and damage tolerance of composite material wings for transport aircraft were identified. The major tasks are the following: (1) the preliminary design of damage tolerant wing surface using composite materials; (2) the evaluation of fuel sealing and lightning protection methods for a composite material wing; and (3) an experimental investigation of the damage tolerant characteristics of toughened resin graphite/epoxy materials. The test results, the test techniques, and the test data are presented.

  6. Data quality objective to support resolution of the organic fuel rich tank safety issue

    SciTech Connect

    Buckley, L.L.

    1995-04-28

    During years of Hanford process history, large quantities of complexants used in waste management operations as well as an unknown quantity of degradation products of the solvents used in fuel reprocessing and metal recovery were added to man of the 149 single-shell tanks. These waste tanks also contain a presumed stoichiometric excess of sodium nitrate/nitrite oxidizers, sufficient to exothermically oxidize the organic compounds if suitably initiated. This DQO identifies the questions that must be answered to appropriately disposition organic watchlist tanks, identifies a strategy to deal with false positive or negative judgements associated with analytical uncertainty, and list the analytes of concern to support dealing with organic watchlist concerns. Uncertainties associated with both assay limitations and matrix effects complicate selection of analytes. This results in requiring at least two independent measures of potential fuel reactivity.

  7. 49 CFR 175.310 - Transportation of flammable liquid fuel; aircraft only means of transportation.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false Transportation of flammable liquid fuel; aircraft only means of transportation. 175.310 Section 175.310 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS REGULATIONS CARRIAGE...

  8. 49 CFR 175.310 - Transportation of flammable liquid fuel; aircraft only means of transportation.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Transportation of flammable liquid fuel; aircraft only means of transportation. 175.310 Section 175.310 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS REGULATIONS CARRIAGE...

  9. Aircraft Fuel, Hydraulic and Pneumatic Systems (Course Outlines), Aviation Mechanics 3 (Air Frame): 9067.01.

    ERIC Educational Resources Information Center

    Dade County Public Schools, Miami, FL.

    This document presents an outline for a 135-hour course designed to familiarize the student with the operation, inspection, and repair of aircraft fuel, hydraulic, and pneumatic systems. It is designed to help the trainee master the knowledge and skills necessary to become an aviation airframe mechanic. The aviation airframe maintenance technician…

  10. 14 CFR 26.39 - Newly produced airplanes: Fuel tank flammability.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...) that meet the requirements of 14 CFR 25.981 in effect on December 26, 2008. (1) The fuel tank is... an Fleet Average Flammability Exposure of 7 percent must have an IMM that meets 14 CFR 25.981(d) in... section applies to Boeing model airplanes specified in Table 1 of this section, including passenger...

  11. 14 CFR 26.39 - Newly produced airplanes: Fuel tank flammability.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...) that meet the requirements of 14 CFR 25.981 in effect on December 26, 2008. (1) The fuel tank is... an Fleet Average Flammability Exposure of 7 percent must have an IMM that meets 14 CFR 25.981(d) in... section applies to Boeing model airplanes specified in Table 1 of this section, including passenger...

  12. 14 CFR 26.39 - Newly produced airplanes: Fuel tank flammability.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...) that meet the requirements of 14 CFR 25.981 in effect on December 26, 2008. (1) The fuel tank is... an Fleet Average Flammability Exposure of 7 percent must have an IMM that meets 14 CFR 25.981(d) in... section applies to Boeing model airplanes specified in Table 1 of this section, including passenger...

  13. 14 CFR 26.39 - Newly produced airplanes: Fuel tank flammability.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...) that meet the requirements of 14 CFR 25.981 in effect on December 26, 2008. (1) The fuel tank is... an Fleet Average Flammability Exposure of 7 percent must have an IMM that meets 14 CFR 25.981(d) in... section applies to Boeing model airplanes specified in Table 1 of this section, including passenger...

  14. 46 CFR 119.445 - Fill and sounding pipes for fuel tanks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ..., may be used. Such hose must overlap metallic pipe ends at least 1.5 times the pipe diameter and must... 46 Shipping 4 2010-10-01 2010-10-01 false Fill and sounding pipes for fuel tanks. 119.445 Section 119.445 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER...

  15. 14 CFR 26.33 - Holders of type certificates: Fuel tank flammability.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... in the Airworthiness Limitations Section (ALS) of the ICA required by 14 CFR 25.1529 or paragraph (f... installation of fuel tank IMM that comply with 14 CFR 25.981(c) in effect on December 26, 2008. (e... 27, 2010, holders of type certificates affected by this section must establish an ALS of...

  16. 14 CFR 26.33 - Holders of type certificates: Fuel tank flammability.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... in the Airworthiness Limitations Section (ALS) of the ICA required by 14 CFR 25.1529 or paragraph (f... installation of fuel tank IMM that comply with 14 CFR 25.981(c) in effect on December 26, 2008. (e... 27, 2010, holders of type certificates affected by this section must establish an ALS of...

  17. Sterling landing fuel tanks site environmental baseline survey: Tatalina Long Range Radar Station, Alaska. Final report

    SciTech Connect

    1997-03-01

    The purpose of the environmental baselines survey (EBS) was to document the existence of petroleum hydrocarbon contamination and to identify potential environmental liabilities to the US. Air Force (USAF) associated with the fuel storage tanks at Sterling Landing on the Tatalina Long Range Radar Station (LRRS).

  18. 46 CFR 119.445 - Fill and sounding pipes for fuel tanks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Fill and sounding pipes for fuel tanks. 119.445 Section 119.445 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS CARRYING MORE THAN 150 PASSENGERS OR WITH OVERNIGHT ACCOMMODATIONS FOR MORE THAN 49 PASSENGERS MACHINERY INSTALLATION Specific Machinery Requirements...

  19. 14 CFR 26.33 - Holders of type certificates: Fuel tank flammability.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... in the Airworthiness Limitations Section (ALS) of the ICA required by 14 CFR 25.1529 or paragraph (f... installation of fuel tank IMM that comply with 14 CFR 25.981(c) in effect on December 26, 2008. (e) Instructions for Continued Airworthiness (ICA). No later than December 27, 2010, holders of type...

  20. 14 CFR 26.33 - Holders of type certificates: Fuel tank flammability.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... in the Airworthiness Limitations Section (ALS) of the ICA required by 14 CFR 25.1529 or paragraph (f... installation of fuel tank IMM that comply with 14 CFR 25.981(c) in effect on December 26, 2008. (e) Instructions for Continued Airworthiness (ICA). No later than December 27, 2010, holders of type...