Science.gov

Sample records for aircraft fuselage lap

  1. Measurements of fuselage skin strains and displacements near a longitudinal lap joint in a pressurized aircraft

    NASA Technical Reports Server (NTRS)

    Phillips, Edward P.; Britt, Vicki O.

    1991-01-01

    Strains and displacements in a small area near a longitudinal lap joint in the fuselage skin of a B737 aircraft were measured during a pressurization cycle to a differential pressure of 6.2 psi while the aircraft was on the ground. It was found that hoop strains were higher than longitudinal strains at each location; membrane strains in the unreinforced skin were higher than in the joint; membrane strains in the hoop direction, as well as radial displacements, tended to be highest at the mid-bay location between skin reinforcements; significant bending in the hoop direction occurred in the joint and in the skin near the joint, and the bending was unsymmetrically distributed about the stringer at the middle of the joint; and radial displacements were unsymmetrically distributed across the lap joint. The interpretation of the strain gage data for locations on the bonded and riveted lap joint assumed that the joint did not contain disbonded areas.

  2. Nondestructive evaluation of aircraft fuselage panels with electronic shearography

    NASA Astrophysics Data System (ADS)

    Safai, Morteza

    1993-10-01

    With the growing number of aging passenger aircraft in the fleet, improve nondestructive inspection (NDI) techniques are being investigated to insure the reliability of the fuselage structures of these aircraft. The Boeing Commercial Airplane Group is evaluating nondestructive testing techniques for detecting disbonds in aircraft structures. One of the techniques under evaluation is electronic shearography. This paper describes the disbond inspection of aluminum lap joint coupons with electronic shearography. Inspection results from the simulated lap joint coupons, containing programmed defects, are reported.

  3. Evaluation of the fuselage lap joint fatigue and terminating action repair

    NASA Technical Reports Server (NTRS)

    Samavedam, Gopal; Thomson, Douglas; Jeong, David Y.

    1994-01-01

    Terminating action is a remedial repair which entails the replacement of shear head countersunk rivets with universal head rivets which have a larger shank diameter. The procedure was developed to eliminate the risk of widespread fatigue damage (WFD) in the upper rivet row of a fuselage lap joint. A test and evaluation program has been conducted by Foster-Miller, Inc. (FMI) to evaluate the terminating action repair of the upper rivet row of a commercial aircraft fuselage lap splice. Two full scale fatigue tests were conducted on fuselage panels using the growth of fatigue cracks in the lap joint. The second test was performed to evaluate the effectiveness of the terminating action repair. In both tests, cyclic pressurization loading was applied to the panels while crack propagation was recorded at all rivet locations at regular intervals to generate detailed data on conditions of fatigue crack initiation, ligament link-up, and fuselage fracture. This program demonstrated that the terminating action repair substantially increases the fatigue life of a fuselage panel structure and effectively eliminates the occurrence of cracking in the upper rivet row of the lap joint. While high cycle crack growth was recorded in the middle rivet row during the second test, failure was not imminent when the test was terminated after cycling to well beyond the service life. The program also demonstrated that the initiation, propagation, and linkup of WFD in full-scale fuselage structures can be simulated and quantitatively studied in the laboratory. This paper presents an overview of the testing program and provides a detailed discussion of the data analysis and results. Crack distribution and propagation rates and directions as well as frequency of cracking are presented for both tests. The progression of damage to linkup of adjacent cracks and to eventual overall panel failure is discussed. In addition, an assessment of the effectiveness of the terminating action repair and the

  4. Fracture analysis of multi-site cracking in fuselage lap joints

    NASA Astrophysics Data System (ADS)

    Beuth, J. L.; Hutchinson, J. W.

    1994-09-01

    A two-dimensional plane stress elastic fracture mechanics analysis of a cracked lap joint fastened by rigid pins is presented and results are applied to the problem of multi-site damage (MSD) in riveted lap joints of aircraft fuselage skins. Two problems are addressed, the problem of equal length MSD cracks and the problem of alternating length MSD cracks. For the problem of equal length cracks, two models of rivet/skin interactions are studied and the role of residual stresses due to the riveting process is explored. Stress intensity factors are obtained as a function of normalized crack length. Also, the load distribution among rivet rows and the compliance change of the joint due to MSD cracking are obtained. For the problem of alternating length cracks, attention is focussed on how load is distributed between columns of rivets and how this load shedding can alter crack tip stress intensity factors. The equal and alternating length crack analyses reveal no clear-cut mechanism to explain the relative uniformity of fatigue cracks emerging from lap joint rivet holes in actual aircraft and in mechanical lap joint tests.

  5. Low frequency ultrasonic nondestructive inspection of aluminum/adhesive fuselage lap splices

    SciTech Connect

    Patton, T.

    1994-01-04

    This thesis is a collection of research efforts in ultrasonics, conducted at the Center for Aviation Systems Reliability located at Iowa State University, as part of the Federal Aviation Administration`s ``Aging Aircraft Program.`` The research was directed toward the development of an ultrasonic prototype to inspect the aluminum/adhesive fuselage lap splices found on 1970`s vintage Boeing passenger aircraft. The ultrasonic prototype consists of a normal incidence, low frequency inspection technique, and a scanning adapter that allows focused immersion transducers to be operated in a direct contact manner in any inspection orientation, including upside-down. The inspection technique uses a computer-controlled data acquisition system to produce a C-scan image of a radio frequency (RF) waveform created by a low frequency, broadband, focused beam transducer, driven with a spike voltage pulser. C-scans produced by this technique are color representations of the received signal`s peak-to-peak amplitude (voltage) taken over an (x, y) grid. Low frequency, in this context, refers to a wavelength that is greater than the lap splice`s layer thicknesses. With the low frequency technique, interface echoes of the lap splice are not resolved and gating of the signal is unnecessary; this in itself makes the technique simple to implement and saves considerable time in data acquisition. Along with the advantages in data acquisition, the low frequency technique is relatively insensitive to minor surface curvature and to ultrasonic interference effects caused by adhesive bondline thickness variations in the lap splice.

  6. Structural analysis of Aircraft fuselage splice joint

    NASA Astrophysics Data System (ADS)

    Udaya Prakash, R.; Kumar, G. Raj; Vijayanandh, R.; Senthil Kumar, M.; Ramganesh, T.

    2016-09-01

    In Aviation sector, composite materials and its application to each component are one of the prime factors of consideration due to the high strength to weight ratio, design flexibility and non-corrosive so that the composite materials are widely used in the low weight constructions and also it can be treated as a suitable alternative to metals. The objective of this paper is to estimate and compare the suitability of a composite skin joint in an aircraft fuselage with different joints by simulating the displacement, normal stress, vonmises stress and shear stress with the help of numerical solution methods. The reference Z-stringer component of this paper is modeled by CATIA and numerical simulation is carried out by ANSYS has been used for splice joint presents in the aircraft fuselage with three combinations of joints such as riveted joint, bonded joint and hybrid joint. Nowadays the stringers are using to avoid buckling of fuselage skin, it has joined together by rivets and they are connected end to end by splice joint. Design and static analysis of three-dimensional models of joints such as bonded, riveted and hybrid are carried out and results are compared.

  7. Structural Configuration Systems Analysis for Advanced Aircraft Fuselage Concepts

    NASA Technical Reports Server (NTRS)

    Mukhopadhyay, Vivek; Welstead, Jason R.; Quinlan, Jesse R.; Guynn, Mark D.

    2016-01-01

    Structural configuration analysis of an advanced aircraft fuselage concept is investigated. This concept is characterized by a double-bubble section fuselage with rear mounted engines. Based on lessons learned from structural systems analysis of unconventional aircraft, high-fidelity finite-element models (FEM) are developed for evaluating structural performance of three double-bubble section configurations. Structural sizing and stress analysis are applied for design improvement and weight reduction. Among the three double-bubble configurations, the double-D cross-section fuselage design was found to have a relatively lower structural weight. The structural FEM weights of these three double-bubble fuselage section concepts are also compared with several cylindrical fuselage models. Since these fuselage concepts are different in size, shape and material, the fuselage structural FEM weights are normalized by the corresponding passenger floor area for a relative comparison. This structural systems analysis indicates that an advanced composite double-D section fuselage may have a relative structural weight ratio advantage over a conventional aluminum fuselage. Ten commercial and conceptual aircraft fuselage structural weight estimates, which are empirically derived from the corresponding maximum takeoff gross weight, are also presented and compared with the FEM- based estimates for possible correlation. A conceptual full vehicle FEM model with a double-D fuselage is also developed for preliminary structural analysis and weight estimation.

  8. The Characteristics of Fatigue Damage in the Fuselage Riveted Lap Splice Joint

    NASA Technical Reports Server (NTRS)

    Piascik, Robert S.; Willard, Scott A.

    1997-01-01

    An extensive data base has been developed to form the physical basis for new analytical methodology to predict the onset of widespread fatigue damage in the fuselage lap splice joint. The results of detailed destructive examinations have been cataloged to describe the physical nature of MSD in the lap splice joint. ne catalog includes a detailed description, e.g., crack initiation, growth rates, size, location, and fracture morphology, of fatigue damage in the fuselage lap splice joint structure. Detailed examinations were conducted on a lap splice joint panel removed from a full scale fuselage test article after completing a 60,000 cycle pressure test. The panel contained a four bay region that exhibited visible outer skin cracks and regions of crack link-up along the upper rivet row. Destructive examinations revealed undetected fatigue damage in the outer skin, inner skin, and tear strap regions. Outer skin fatigue cracks were found to initiate by fretting damage along the faying surface. The cracks grew along the faying surface to a length equivalent to two to three skin thicknesses before penetrating the outboard surface of the outer skin. Analysis of fracture surface marker bands produced during full scale testing revealed that all upper rivet row fatigue cracks contained in a dim bay region grow at similar rates; this important result suggests that fracture mechanics based methods can be used to predict the growth of outer skin fatigue cracks in lap splice structure. Results are presented showing the affects of MSD and out-of-plane pressure loads on outer skin crack link-up.

  9. Multi-body aircraft with an all-movable center fuselage actively controlling fuselage pressure drag

    NASA Technical Reports Server (NTRS)

    Wood, Richard M. (Inventor)

    1988-01-01

    A multi-body aircraft with an all-movable center fuselage which translates relative to two side fuselages is described. At subsonic and transonic flight the center fuselage is in a forward position. At supersonic speeds the center fuselage moves aft so as to ensure optimum aerodynamic interference at particular Mach numbers. This provides an increased shock strength and greater surface areas so the significant reductions in zero-lift wave drag can be achieved. This concept allows for a significant increase in the wing aspect ratio which would improve high-lift performance at all speeds without incurring a significant supersonic zero-lift wave drag penalty. In addition to an improved low-fineness ratio, high-speed performance is achieved at all speeds and for all flight conditions.

  10. Design-Oriented Analysis of Aircraft Fuselage Structures

    NASA Technical Reports Server (NTRS)

    Giles, Gary L.

    1998-01-01

    A design-oriented analysis capability for aircraft fuselage structures that utilizes equivalent plate methodology is described. This new capability is implemented as an addition to the existing wing analysis procedure in the Equivalent Laminated Plate Solution (ELAPS) computer code. The wing and fuselage analyses are combined to model entire airframes. The paper focuses on the fuselage model definition, the associated analytical formulation and the approach used to couple the wing and fuselage analyses. The modeling approach used to minimize the amount of preparation of input data by the user and to facilitate the making of design changes is described. The fuselage analysis is based on ring and shell equations but the procedure is formulated to be analogous to that used for plates in order to take advantage of the existing code in ELAPS. Connector springs are used to couple the wing and fuselage models. Typical fuselage analysis results are presented for two analytical models. Results for a ring-stiffened cylinder model are compared with results from conventional finite-element analyses to assess the accuracy of this new analysis capability. The connection of plate and ring segments is demonstrated using a second model that is representative of the wing structure for a channel-wing aircraft configuration.

  11. Design considerations for composite fuselage structure of commercial transport aircraft

    NASA Technical Reports Server (NTRS)

    Davis, G. W.; Sakata, I. F.

    1981-01-01

    The structural, manufacturing, and service and environmental considerations that could impact the design of composite fuselage structure for commercial transport aircraft application were explored. The severity of these considerations was assessed and the principal design drivers delineated. Technical issues and potential problem areas which must be resolved before sufficient confidence is established to commit to composite materials were defined. The key issues considered are: definition of composite fuselage design specifications, damage tolerance, and crashworthiness.

  12. Determination of the Corrosive Conditions Present within Aircraft Lap-Splice Joints

    NASA Technical Reports Server (NTRS)

    Lewis, Karen S.; Kelly, Robert G.; Piascik, Robert S.

    1999-01-01

    The complexity of airframe structure lends itself to damage resulting from crevice corrosion. Fuselage lap-splice joints are a particularly important structural detail in this regard because of the difficulty associated with detection and measurement of corrosion in these occluded regions. The objective of this work is to develop a laboratory corrosion test protocol to identify the chemistry to which lap joints are exposed and to develop a model of the corrosion within the joints. A protocol for collecting and identifying the chemistry of airframe crevice corrosion has been developed. Capillary electrophoresis (CE) is used to identify the ionic species contained in corrosion product samples removed from fuselage lap splice joints. CE analysis has been performed on over sixty corrosion product samples removed from both civilian and military aircraft. Over twenty different ions have been detected. Measurements of pH of wetted corroded surfaces indicated an alkaline occluded solution. After determining the species present and their relative concentrations, the resultant solution was reproduced in bulk and electrochemical tests were performed to determine the corrosion rate. Electrochemical analyses of the behavior of AA2024-T3 in these solutions gave corrosion rates of up to 250 microns per year (10 mpy). Additional tests have determined the relative importance of each of the detected ions in model solutions used for future predictive tests. The statistically significant ions have been used to create a second generation solution. Laboratory studies have also included exposure tests involving artificial lap joints exposed to various simulated bulk and crevice environments. The extent and morphology of the attack in artificial lap joints has been compared to studies of corroded samples from actual aircraft. Other effects, such as temperature and potential, as well as the impact of the environment on fatigue crack growth have also been studied.

  13. Composite Structure Modeling and Analysis of Advanced Aircraft Fuselage Concepts

    NASA Technical Reports Server (NTRS)

    Mukhopadhyay, Vivek; Sorokach, Michael R.

    2015-01-01

    NASA Environmentally Responsible Aviation (ERA) project and the Boeing Company are collabrating to advance the unitized damage arresting composite airframe technology with application to the Hybrid-Wing-Body (HWB) aircraft. The testing of a HWB fuselage section with Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) construction is presently being conducted at NASA Langley. Based on lessons learned from previous HWB structural design studies, improved finite-element models (FEM) of the HWB multi-bay and bulkhead assembly are developed to evaluate the performance of the PRSEUS construction. In order to assess the comparative weight reduction benefits of the PRSEUS technology, conventional cylindrical skin-stringer-frame models of a cylindrical and a double-bubble section fuselage concepts are developed. Stress analysis with design cabin-pressure load and scenario based case studies are conducted for design improvement in each case. Alternate analysis with stitched composite hat-stringers and C-frames are also presented, in addition to the foam-core sandwich frame and pultruded rod-stringer construction. The FEM structural stress, strain and weights are computed and compared for relative weight/strength benefit assessment. The structural analysis and specific weight comparison of these stitched composite advanced aircraft fuselage concepts demonstrated that the pressurized HWB fuselage section assembly can be structurally as efficient as the conventional cylindrical fuselage section with composite stringer-frame and PRSEUS construction, and significantly better than the conventional aluminum construction and the double-bubble section concept.

  14. Fuselage ventilation due to wind flow about a postcrash aircraft

    NASA Technical Reports Server (NTRS)

    Stuart, J. W.

    1980-01-01

    Postcrash aircraft fuselage fire development, dependent on the internal and external fluid dynamics is discussed. The natural ventilation rate, a major factor in the internal flow patterns and fire development is reviewed. The flow about the fuselage as affected by the wind and external fire is studied. An analysis was performend which estimated the rates of ventilation produced by the wind for a limited idealized environmental configuration. The simulation utilizes the empirical pressure coefficient distribution of an infinite circular cylinder near a wall with its boundary later flow to represent the atmospheric boundary layer. The resulting maximum ventilation rate for two door size openings, with varying circumferential location in a common 10 mph wind was an order of magnitude greater than the forced ventilation specified in full scale fire testing. The parameter discussed are: (1) fuselage size and shape, (2) fuselage orientation and proximity to the ground, (3) fuselage-openings size and location, (4) wind speed and direction, and (5) induced flow of the external fire plume is recommended. The fire testing should be conducted to a maximum ventilation rate at least an order of magnitude greater than the inflight air conditioning rates.

  15. Analytical Fuselage and Wing Weight Estimation of Transport Aircraft

    NASA Technical Reports Server (NTRS)

    Chambers, Mark C.; Ardema, Mark D.; Patron, Anthony P.; Hahn, Andrew S.; Miura, Hirokazu; Moore, Mark D.

    1996-01-01

    A method of estimating the load-bearing fuselage weight and wing weight of transport aircraft based on fundamental structural principles has been developed. This method of weight estimation represents a compromise between the rapid assessment of component weight using empirical methods based on actual weights of existing aircraft, and detailed, but time-consuming, analysis using the finite element method. The method was applied to eight existing subsonic transports for validation and correlation. Integration of the resulting computer program, PDCYL, has been made into the weights-calculating module of the AirCraft SYNThesis (ACSYNT) computer program. ACSYNT has traditionally used only empirical weight estimation methods; PDCYL adds to ACSYNT a rapid, accurate means of assessing the fuselage and wing weights of unconventional aircraft. PDCYL also allows flexibility in the choice of structural concept, as well as a direct means of determining the impact of advanced materials on structural weight. Using statistical analysis techniques, relations between the load-bearing fuselage and wing weights calculated by PDCYL and corresponding actual weights were determined.

  16. Experimental measurement of structural power flow on an aircraft fuselage

    NASA Technical Reports Server (NTRS)

    Cuschieri, J. M.

    1989-01-01

    An experimental technique is used to measure the structural power flow through an aircraft fuselage with the excitation near the wing attachment location. Because of the large number of measurements required to analyze the whole of an aircraft fuselage, it is necessary that a balance be achieved between the number of measurement transducers, the mounting of these transducers, and the accuracy of the measurements. Using four transducers mounted on a bakelite platform, the structural intensity vectors at locations distributed throughout the fuselage are measured. To minimize the errors associated with using a four transducers technique the measurement positions are selected away from bulkheads and stiffeners. Because four separate transducers are used, with each transducer having its own drive and conditioning amplifiers, phase errors are introduced in the measurements that can be much greater than the phase differences associated with the measurements. To minimize these phase errors two sets of measurements are taken for each position with the orientation of the transducers rotated by 180 deg and an average taken between the two sets of measurements. Results are presented and discussed.

  17. Aeroelastic Analysis of Aircraft: Wing and Wing/Fuselage Configurations

    NASA Technical Reports Server (NTRS)

    Chen, H. H.; Chang, K. C.; Tzong, T.; Cebeci, T.

    1997-01-01

    A previously developed interface method for coupling aerodynamics and structures is used to evaluate the aeroelastic effects for an advanced transport wing at cruise and under-cruise conditions. The calculated results are compared with wind tunnel test data. The capability of the interface method is also investigated for an MD-90 wing/fuselage configuration. In addition, an aircraft trim analysis is described and applied to wing configurations. The accuracy of turbulence models based on the algebraic eddy viscosity formulation of Cebeci and Smith is studied for airfoil flows at low Mach numbers by using methods based on the solutions of the boundary-layer and Navier-Stokes equations.

  18. Experimental measurement of structural power flow on an aircraft fuselage

    NASA Technical Reports Server (NTRS)

    Cuschieri, J. M.

    1991-01-01

    An experimental technique is used to measure structural intensity through an aircraft fuselage with an excitation load applied near one of the wing attachment locations. The fuselage is a relatively large structure, requiring a large number of measurement locations to analyze the whole of the structure. For the measurement of structural intensity, multiple point measurements are necessary at every location of interest. A tradeoff is therefore required between the number of measurement transducers, the mounting of these transducers, and the accuracy of the measurements. Using four transducers mounted on a bakelite platform, structural intensity vectors are measured at locations distributed throughout the fuselage. To minimize the errors associated with using the four transducer technique, the measurement locations are selected to be away from bulkheads and stiffeners. Furthermore, to eliminate phase errors between the four transducer measurements, two sets of data are collected for each position, with the orientation of the platform with the four transducers rotated by 180 degrees and an average taken between the two sets of data. The results of these measurements together with a discussion of the suitability of the approach for measuring structural intensity on a real structure are presented.

  19. Initiation and growth of multiple-site damage in the riveted lap joint of a curved stiffened fuselage panel: An experimental and analytical study

    NASA Astrophysics Data System (ADS)

    Ahmed, Abubaker Ali

    As part of the structural integrity research of the National Aging Aircraft Research Program, a comprehensive study on multiple-site damage (MSD) initiation and growth in a pristine lap-joint fuselage panel has been conducted. The curved stiffened fuselage panel was tested at the Full-Scale Aircraft Structural Test Evaluation and Research (FASTER) facility located at the Federal Aviation Administration William J. Hughes Technical Center. A strain survey test was conducted to verify proper load application. The panel was then subjected to a fatigue test with constant-amplitude cyclic loading. The applied loading spectrum included underload marker cycles so that crack growth history could be reconstructed from post-test fractographic examinations. Crack formation and growth were monitored via nondestructive and high-magnification visual inspections. Strain gage measurements recorded during the strain survey tests indicated that the inner surface of the skin along the upper rivet row of the lap joint experienced high tensile stresses due to local bending. During the fatigue loading, cracks were detected by eddy-current inspections at multiple rivet holes along the upper rivet row. Through-thickness cracks were detected visually after about 80% of the fatigue life. Once MSD cracks from two adjacent rivet holes linked up, there was a quick deterioration in the structural integrity of the lap joint. The linkup resulted in a 2.87" (72.9-mm) lead fatigue crack that rapidly propagated across 12 rivet holes and crossed over into the next skin bay, at which stage the fatigue test was terminated. A post-fatigue residual strength test was then conducted by loading the panel quasi-statically up to final failure. The panel failed catastrophically when the crack extended instantaneously across three additional bays. Post-test fractographic examinations of the fracture surfaces in the lap joint of the fuselage panel were conducted to characterize subsurface crack initiation and

  20. A fuselage/tank structure study for actively cooled hypersonic cruise vehicles: Aircraft design evaluation

    NASA Technical Reports Server (NTRS)

    Nobe, T.

    1975-01-01

    The effects of fuselage cross sections and structural members on the performance of hypersonic cruise aircraft are evaluated. Representative fuselage/tank area structure was analyzed for strength, stability, fatigue and fracture mechanics. Various thermodynamic and structural tradeoffs were conducted to refine the conceptual designs with the primary objective of minimizing weight and maximizing aircraft range.

  1. Finite Element Model Development and Validation for Aircraft Fuselage Structures

    NASA Technical Reports Server (NTRS)

    Buehrle, Ralph D.; Fleming, Gary A.; Pappa, Richard S.; Grosveld, Ferdinand W.

    2000-01-01

    The ability to extend the valid frequency range for finite element based structural dynamic predictions using detailed models of the structural components and attachment interfaces is examined for several stiffened aircraft fuselage structures. This extended dynamic prediction capability is needed for the integration of mid-frequency noise control technology. Beam, plate and solid element models of the stiffener components are evaluated. Attachment models between the stiffener and panel skin range from a line along the rivets of the physical structure to a constraint over the entire contact surface. The finite element models are validated using experimental modal analysis results. The increased frequency range results in a corresponding increase in the number of modes, modal density and spatial resolution requirements. In this study, conventional modal tests using accelerometers are complemented with Scanning Laser Doppler Velocimetry and Electro-Optic Holography measurements to further resolve the spatial response characteristics. Whenever possible, component and subassembly modal tests are used to validate the finite element models at lower levels of assembly. Normal mode predictions for different finite element representations of components and assemblies are compared with experimental results to assess the most accurate techniques for modeling aircraft fuselage type structures.

  2. Development of pressure containment and damage tolerance technology for composite fuselage structures in large transport aircraft

    NASA Technical Reports Server (NTRS)

    Smith, P. J.; Thomson, L. W.; Wilson, R. D.

    1986-01-01

    NASA sponsored composites research and development programs were set in place to develop the critical engineering technologies in large transport aircraft structures. This NASA-Boeing program focused on the critical issues of damage tolerance and pressure containment generic to the fuselage structure of large pressurized aircraft. Skin-stringer and honeycomb sandwich composite fuselage shell designs were evaluated to resolve these issues. Analyses were developed to model the structural response of the fuselage shell designs, and a development test program evaluated the selected design configurations to appropriate load conditions.

  3. Preliminary results on the fracture analysis of multi-site cracking of lap joints in aircraft skins

    NASA Astrophysics Data System (ADS)

    Beuth, J. L., Jr.; Hutchinson, John W.

    1992-07-01

    Results of a fracture mechanics analysis relevant to fatigue crack growth at rivets in lap joints of aircraft skins are presented. Multi-site damage (MSD) is receiving increased attention within the context of problems of aging aircraft. Fracture analyses previously carried out include small-scale modeling of rivet/skin interactions, larger-scale two-dimensional models of lap joints similar to that developed here, and full scale three-dimensional models of large portions of the aircraft fuselage. Fatigue testing efforts have included flat coupon specimens, two-dimensional lap joint tests, and full scale tests on specimens designed to closely duplicate aircraft sections. Most of this work is documented in the proceedings of previous symposia on the aging aircraft problem. The effect MSD has on the ability of skin stiffeners to arrest the growth of long skin cracks is a particularly important topic that remains to be addressed. One of the most striking features of MSD observed in joints of some test sections and in the joints of some of the older aircraft fuselages is the relative uniformity of the fatigue cracks from rivet to rivet along an extended row of rivets. This regularity suggests that nucleation of the cracks must not be overly difficult. Moreover, it indicates that there is some mechanism which keeps longer cracks from running away from shorter ones, or, equivalently, a mechanism for shorter cracks to catch-up with longer cracks. This basic mechanism has not been identified, and one of the objectives of the work is to see to what extent the mechanism is revealed by a fracture analysis of the MSD cracks. Another related aim is to present accurate stress intensity factor variations with crack length which can be used to estimate fatigue crack growth lifetimes once cracks have been initiated. Results are presented which illustrate the influence of load shedding from rivets with long cracks to neighboring rivets with shorter cracks. Results are also included

  4. Preliminary results on the fracture analysis of multi-site cracking of lap joints in aircraft skins

    NASA Technical Reports Server (NTRS)

    Beuth, J. L., Jr.; Hutchinson, John W.

    1992-01-01

    Results of a fracture mechanics analysis relevant to fatigue crack growth at rivets in lap joints of aircraft skins are presented. Multi-site damage (MSD) is receiving increased attention within the context of problems of aging aircraft. Fracture analyses previously carried out include small-scale modeling of rivet/skin interactions, larger-scale two-dimensional models of lap joints similar to that developed here, and full scale three-dimensional models of large portions of the aircraft fuselage. Fatigue testing efforts have included flat coupon specimens, two-dimensional lap joint tests, and full scale tests on specimens designed to closely duplicate aircraft sections. Most of this work is documented in the proceedings of previous symposia on the aging aircraft problem. The effect MSD has on the ability of skin stiffeners to arrest the growth of long skin cracks is a particularly important topic that remains to be addressed. One of the most striking features of MSD observed in joints of some test sections and in the joints of some of the older aircraft fuselages is the relative uniformity of the fatigue cracks from rivet to rivet along an extended row of rivets. This regularity suggests that nucleation of the cracks must not be overly difficult. Moreover, it indicates that there is some mechanism which keeps longer cracks from running away from shorter ones, or, equivalently, a mechanism for shorter cracks to catch-up with longer cracks. This basic mechanism has not been identified, and one of the objectives of the work is to see to what extent the mechanism is revealed by a fracture analysis of the MSD cracks. Another related aim is to present accurate stress intensity factor variations with crack length which can be used to estimate fatigue crack growth lifetimes once cracks have been initiated. Results are presented which illustrate the influence of load shedding from rivets with long cracks to neighboring rivets with shorter cracks. Results are also included

  5. Experimental and numerical analyses of laminar boundary-layer flow stability over an aircraft fuselage forebody

    NASA Technical Reports Server (NTRS)

    Vijgen, Paul M. H. W.; Holmes, Bruce J.

    1987-01-01

    Fuelled by a need to reduce viscous drag of airframes, significant advances have been made in the last decade to design lifting surface geometries with considerable amounts of laminar flow. In contrast to the present understanding of practical limits for natural laminar flow over lifting surfaces, limited experimental results are available examining applicability of natural laminar flow over axisymmetric and nonaxisymmetric fuselage shapes at relevantly high length Reynolds numbers. The drag benefits attainable by realizing laminar flow over nonlifting aircraft components such as fuselages and nacelles are shown. A flight experiment to investigate transition location and transition mode over the forward fuselage of a light twin engine propeller driven airplane is examined.

  6. A record of all marker bands found in the upper rivet rows of 2 adjacent bays from a fuselage lap splice joint

    NASA Technical Reports Server (NTRS)

    Willard, Scott A.

    1995-01-01

    A full scale fuselage test article was subjected to 60,000 load cycles (pressurizations) to study the effect of widespread fatigue damage in fuselage structures. Every 10,000 cycles coded marker block loading sequences were used to mark the fracture surfaces of the fatigue cracks propagating within the panel. The loading sequences consisted of series of underloads combined with a series of full pressurizations. The combination of loads and underloads marked the fracture surfaces with marker bands that could later be used to reconstruct the fatigue crack growth history of selected regions within the test article. Thirty rivet holes comprising the upper rivet rows from two adjacent bays (bays #3 and #4) from a fuselage lap splice joint were examined for the purpose of this study. Optical and scanning electron microscopy (SEM) were used to locate the marker bands.

  7. A Study of the Utilization of Advanced Composites in Fuselage Structures of Commercial Aircraft

    NASA Technical Reports Server (NTRS)

    Watts, D. J.; Sumida, P. T.; Bunin, B. L.; Janicki, G. S.; Walker, J. V.; Fox, B. R.

    1985-01-01

    A study was conducted to define the technology and data needed to support the introduction of advanced composites in the future production of fuselage structure in large transport aircraft. Fuselage structures of six candidate airplanes were evaluated for the baseline component. The MD-100 was selected on the basis of its representation of 1990s fuselage structure, an available data base, its impact on the schedule and cost of the development program, and its availability and suitability for flight service evaluation. Acceptance criteria were defined, technology issues were identified, and a composite fuselage technology development plan, including full-scale tests, was identified. The plan was based on composite materials to be available in the mid to late 1980s. Program resources required to develop composite fuselage technology are estimated at a rough order of magnitude to be 877 man-years exclusive of the bird strike and impact dynamic test components. A conceptual composite fuselage was designed, retaining the basic MD-100 structural arrangement for doors, windows, wing, wheel wells, cockpit enclosure, major bulkheads, etc., resulting in a 32 percent weight savings.

  8. Weight Assessment for Fuselage Shielding on Aircraft With Open-Rotor Engines and Composite Blade Loss

    NASA Technical Reports Server (NTRS)

    Carney, Kelly; Pereira, Michael; Kohlman, Lee; Goldberg, Robert; Envia, Edmane; Lawrence, Charles; Roberts, Gary; Emmerling, William

    2013-01-01

    The Federal Aviation Administration (FAA) has been engaged in discussions with airframe and engine manufacturers concerning regulations that would apply to new technology fuel efficient "openrotor" engines. Existing regulations for the engines and airframe did not envision features of these engines that include eliminating the fan blade containment systems and including two rows of counter-rotating blades. Damage to the airframe from a failed blade could potentially be catastrophic. Therefore the feasibility of using aircraft fuselage shielding was investigated. In order to establish the feasibility of this shielding, a study was conducted to provide an estimate for the fuselage shielding weight required to provide protection from an open-rotor blade loss. This estimate was generated using a two-step procedure. First, a trajectory analysis was performed to determine the blade orientation and velocity at the point of impact with the fuselage. The trajectory analysis also showed that a blade dispersion angle of 3deg bounded the probable dispersion pattern and so was used for the weight estimate. Next, a finite element impact analysis was performed to determine the required shielding thickness to prevent fuselage penetration. The impact analysis was conducted using an FAA-provided composite blade geometry. The fuselage geometry was based on a medium-sized passenger composite airframe. In the analysis, both the blade and fuselage were assumed to be constructed from a T700S/PR520 triaxially-braided composite architecture. Sufficient test data on T700S/PR520 is available to enable reliable analysis, and also demonstrate its good impact resistance properties. This system was also used in modeling the surrogate blade. The estimated additional weight required for fuselage shielding for a wing- mounted counterrotating open-rotor blade is 236 lb per aircraft. This estimate is based on the shielding material serving the dual use of shielding and fuselage structure. If the

  9. Interior and exterior fuselage noise measured on NASA's C-8a augmentor wing jet-STOL research aircraft

    NASA Technical Reports Server (NTRS)

    Shovlin, M. D.

    1977-01-01

    Interior and exterior fuselage noise levels were measured on NASA's C-8A Augmentor Wing Jet-STOL Research Aircraft in order to provide design information for the Quiet Short-Haul Research Aircraft (QSRA), which will use a modified C-8A fuselage. The noise field was mapped by 11 microphones located internally and externally in three areas: mid-fuselage, aft fuselage, and on the flight deck. Noise levels were recorded at four power settings varying from takeoff to flight idle and were plotted in one-third octave band spectra. The overall sound pressure levels of the external noise field were compared to previous tests and found to correlate well with engine primary thrust levels. Fuselage values were 145 + or - 3 dB over the aircraft's normal STOL operating range.

  10. Application study of filamentary composites in a commercial jet aircraft fuselage

    NASA Technical Reports Server (NTRS)

    Johnson, R. W.; June, R. R.

    1972-01-01

    A study of applications of filamentary composite materials to aircraft fuselage structure was performed. General design criteria were established and material studies conducted using the 727-200 forebody as the primary structural component. Three design approaches to the use of composites were investigated: uniaxial reinforcement of metal structure, uniaxial and biaxial reinforcement of metal structure, and an all-composite design. Materials application studies for all three concepts were conducted on fuselage shell panels, keel beam, floor beams, floor panels, body frames, fail-safe straps, and window frames. Cost benefit studies were conducted and developmental program costs estimated. On the basis of weight savings, cost effectiveness, developmental program costs, and potential for early application on commercial aircraft, the unaxial design is recommended for a 5-year flight service evaluation program.

  11. High transonic speed transport aircraft study. [aerodynamic characteristics of single-fuselage, yawed-wing configuration

    NASA Technical Reports Server (NTRS)

    Kulfan, R. M.; Neumann, F. D.; Nisbet, J. W.; Mulally, A. R.; Murakami, J. K.; Noble, E. C.; Mcbarron, J. P.; Stalter, J. L.; Gimmestad, D. W.; Sussman, M. B.

    1973-01-01

    An initial design study of high-transonic-speed transport aircraft has been completed. Five different design concepts were developed. These included fixed swept wing, variable-sweep wing, delta wing, double-fuselage yawed-wing, and single-fuselage yawed-wing aircraft. The boomless supersonic design objectives of range=5560 Km (3000 nmi), payload-18 143 kg (40 000lb), Mach=1.2, and FAR Part 36 aircraft noise levels were achieved by the single-fuselage yawed-wing configuration with a gross weight of 211 828 Kg (467 000 lb). A noise level of 15 EPNdB below FAR Part 36 requirements was obtained with a gross weight increase to 226 796 Kg (500 000 lb). Although wing aeroelastic divergence was a primary design consideration for the yawed-wing concepts, the graphite-epoxy wings of this study were designed by critical gust and maneuver loads rather than by divergence requirements. The transonic nacelle drag is shown to be very sensitive to the nacelle installation. A six-degree-of-freedom dynamic stability analysis indicated that the control coordination and stability augmentation system would require more development than for a symmetrical airplane but is entirely feasible. A three-phase development plan is recommended to establish the full potential of the yawed-wing concept.

  12. Development of a biaxial test facility for structural evaluation of aircraft fuselage panels

    SciTech Connect

    Roach, D.; Walkington, P.; Rice, T.

    1998-03-01

    The number of commercial airframes exceeding twenty years of service continues to grow. An unavoidable by-product of aircraft use is that crack and corrosion flaws develop throughout the aircraft`s skin and substructure elements. Economic barriers to the purchase of new aircraft have created an aging aircraft fleet and placed even greater demands on efficient and safe repair methods. Composite doublers, or repair patches, provide an innovative repair technique which can enhance the way aircraft are maintained. Instead of riveting multiple steel or aluminum plates to facilitate an aircraft repair, it is now possible to bond a single Boron-Epoxy composite doubler to the damaged structure. The composite doubler repair process produces both engineering and economic benefits. The FAA`s Airworthiness Assurance Center at Sandia National Labs completed a project to introduce composite doubler repair technology to the commercial aircraft industry. This paper focuses on a specialized structural test facility which was developed to evaluate the performance of composite doublers on actual aircraft structure. The facility can subject an aircraft fuselage section to a combined load environment of pressure (hoop stress) and axial, or longitudinal, stress. The tests simulate maximum cabin pressure loads and use a computerized feedback system to maintain the proper ratio between hoop and axial loads. Through the use of this full-scale test facility it was possible to: (1) assess general composite doubler response in representative flight load scenarios, and (2) verify the design and analysis approaches as applied to an L-1011 door corner repair.

  13. A fuselage/tank structure study for actively cooled hypersonic cruise vehicles, summary. [aircraft design of aircraft fuel systems

    NASA Technical Reports Server (NTRS)

    Pirrello, C. J.; Baker, A. H.; Stone, J. E.

    1976-01-01

    A detailed analytical study was made to investigate the effects of fuselage cross section (circular and elliptical) and the structural arrangement (integral and nonintegral tanks) on aircraft performance. The vehicle was a 200 passenger, liquid hydrogen fueled Mach 6 transport designed to meet a range goal of 9.26 Mn (5000 NM). A variety of trade studies were conducted in the area of configuration arrangement, structural design, and active cooling design in order to maximize the performance of each of three point design aircraft: (1) circular wing-body with nonintegral tanks, (2) circular wing-body with integral tanks and (3) elliptical blended wing-body with integral tanks. Aircraft range and weight were used as the basis for comparison. The resulting design and performance characteristics show that the blended body integral tank aircraft weights the least and has the greatest range capability, however, producibility and maintainability factors favor nonintegral tank concepts.

  14. Sound Pressures and Correlations of Noise on the Fuselage of a Jet Aircraft in Flight

    NASA Technical Reports Server (NTRS)

    Shattuck, Russell D.

    1961-01-01

    Tests were conducted at altitudes of 10,000, 20,000, and 30,000 feet at speeds of Mach 0.4, 0.6, and O.8. It was found that the sound pressure levels on the aft fuselage of a jet aircraft in flight can be estimated using an equation involving the true airspeed and the free air density. The cross-correlation coefficient over a spacing of 2.5 feet was generalized with Strouhal number. The spectrum of the noise in flight is comparatively flat up to 10,000 cycles per second.

  15. Aircraft Engine Noise Scattering by Fuselage and Wings: A Computational Approach

    NASA Technical Reports Server (NTRS)

    Farassat, F.; Stanescu, D.; Hussaini, M. Y.

    2003-01-01

    The paper presents a time-domain method for computation of sound radiation from aircraft engine sources to the far field. The effects of non-uniform flow around the aircraft and scattering of sound by fuselage and wings are accounted for in the formulation. The approach is based on the discretization of the inviscid flow equations through a collocation form of the discontinuous Galerkin spectral element method. An isoparametric representation of the underlying geometry is used in order to take full advantage of the spectral accuracy of the method. Large-scale computations are made possible by a parallel implementation based on message passing. Results obtained for radiation from an axisymmetric nacelle alone are compared with those obtained when the same nacelle is installed in a generic configuration, with and without a wing. 0 2002 Elsevier Science Ltd. All rights reserved.

  16. Aircraft Engine Noise Scattering By Fuselage and Wings: A Computational Approach

    NASA Technical Reports Server (NTRS)

    Stanescu, D.; Hussaini, M. Y.; Farassat, F.

    2003-01-01

    The paper presents a time-domain method for computation of sound radiation from aircraft engine sources to the far-field. The effects of nonuniform flow around the aircraft and scattering of sound by fuselage and wings are accounted for in the formulation. The approach is based on the discretization of the inviscid flow equations through a collocation form of the Discontinuous Galerkin spectral element method. An isoparametric representation of the underlying geometry is used in order to take full advantage of the spectral accuracy of the method. Large-scale computations are made possible by a parallel implementation based on message passing. Results obtained for radiation from an axisymmetric nacelle alone are compared with those obtained when the same nacelle is installed in a generic configuration, with and without a wing.

  17. Aircraft Engine Noise Scattering by Fuselage and Wings: A Computational Approach

    NASA Technical Reports Server (NTRS)

    Stanescu, D.; Hussaini, M. Y.; Farassat, F.

    2003-01-01

    The paper presents a time-domain method for computation of sound radiation from aircraft engine sources to the far-field. The effects of nonuniform flow around the aircraft and scattering of sound by fuselage and wings are accounted for in the formulation. The approach is based on the discretization of the inviscid flow equations through a collocation form of the Discontinuous Galerkin spectral element method. An isoparametric representation of the underlying geometry is used in order to take full advantage of the spectral accuracy of the method. Large-scale computations are made possible by a parallel implementation based on message passing. Results obtained for radiation from an axisymmetric nacelle alone are compared with those obtained when the same nacelle is installed in a generic configuration, with and without a wing.

  18. Crashworthiness of light aircraft fuselage structures: A numerical and experimental investigation

    NASA Technical Reports Server (NTRS)

    Nanyaro, A. P.; Tennyson, R. C.; Hansen, J. S.

    1984-01-01

    The dynamic behavior of aircraft fuselage structures subject to various impact conditions was investigated. An analytical model was developed based on a self-consistent finite element (CFE) formulation utilizing shell, curved beam, and stringer type elements. Equations of motion were formulated and linearized (i.e., for small displacements), although material nonlinearity was retained to treat local plastic deformation. The equations were solved using the implicit Newmark-Beta method with a frontal solver routine. Stiffened aluminum fuselage models were also tested in free flight using the UTIAS pendulum crash test facility. Data were obtained on dynamic strains, g-loads, and transient deformations (using high speed photography in the latter case) during the impact process. Correlations between tests and predicted results are presented, together with computer graphics, based on the CFE model. These results include level and oblique angle impacts as well as the free-flight crash test. Comparisons with a hybrid, lumped mass finite element computer model demonstrate that the CFE formulation provides the test overall agreement with impact test data for comparable computing costs.

  19. Full-scale testing and progressive damage modeling of sandwich composite aircraft fuselage structure

    NASA Astrophysics Data System (ADS)

    Leone, Frank A., Jr.

    A comprehensive experimental and computational investigation was conducted to characterize the fracture behavior and structural response of large sandwich composite aircraft fuselage panels containing artificial damage in the form of holes and notches. Full-scale tests were conducted where panels were subjected to quasi-static combined pressure, hoop, and axial loading up to failure. The panels were constructed using plain-weave carbon/epoxy prepreg face sheets and a Nomex honeycomb core. Panel deformation and notch tip damage development were monitored during the tests using several techniques, including optical observations, strain gages, digital image correlation (DIC), acoustic emission (AE), and frequency response (FR). Additional pretest and posttest inspections were performed via thermography, computer-aided tap tests, ultrasound, x-radiography, and scanning electron microscopy. The framework to simulate damage progression and to predict residual strength through use of the finite element (FE) method was developed. The DIC provided local and full-field strain fields corresponding to changes in the state-of-damage and identified the strain components driving damage progression. AE was monitored during loading of all panels and data analysis methodologies were developed to enable real-time determination of damage initiation, progression, and severity in large composite structures. The FR technique has been developed, evaluating its potential as a real-time nondestructive inspection technique applicable to large composite structures. Due to the large disparity in scale between the fuselage panels and the artificial damage, a global/local analysis was performed. The global FE models fully represented the specific geometries, composite lay-ups, and loading mechanisms of the full-scale tests. A progressive damage model was implemented in the local FE models, allowing the gradual failure of elements in the vicinity of the artificial damage. A set of modifications

  20. Nonlinear Acoustic Response of an Aircraft Fuselage Sidewall Structure by a Reduced-Order Analysis

    NASA Technical Reports Server (NTRS)

    Przekop, Adam; Rizzi, Stephen A.; Groen, David S.

    2006-01-01

    A reduced-order nonlinear analysis of a structurally complex aircraft fuselage sidewall panel is undertaken to explore issues associated with application of such analyses to practical structures. Of primary interest is the trade-off between computational efficiency and accuracy. An approach to modal basis selection is offered based upon the modal participation in the linear regime. The nonlinear static response to a uniform pressure loading and nonlinear random response to a uniformly distributed acoustic loading are computed. Comparisons of the static response with a nonlinear static solution in physical degrees-of-freedom demonstrate the efficacy of the approach taken for modal basis selection. Changes in the modal participation as a function of static and random loading levels suggest a means for improvement in the basis selection.

  1. Laboratory tests on an aircraft fuselage to determine the insertion loss of various acoustic add-on treatments

    NASA Technical Reports Server (NTRS)

    Heitman, K. E.; Mixson, J. S.

    1984-01-01

    This paper describes a laboratory study of add-on acoustic treatments for a propeller-driven light aircraft fuselage. The treatments included: no treatment (i.e., baseline fuselage); a production-type double-wall interior; and various amounts of high density fiberglass added to the baseline fuselage. The sound source was a pneumatic-driver with attached exponential horn, supplied with a broadband signal. Data were acquired at the approximate head positions of the six passenger seats. The results were analyzed on space-averaged narrowband, one-third octave band and overall insertion loss basis. In addition, insertion loss results for the different configurations at specific frequencies representing propeller tone spectra are presented. The propeller tone data includes not only the space-averaged insertion loss, but also the variation of insertion loss at these particular frequencies across the six microphone positions.

  2. A theoretical investigation of noise reduction through the cylindrical fuselage of a twin-engine, propeller-driven aircraft

    NASA Technical Reports Server (NTRS)

    Bhat, R. B.; Mixson, J. S.

    1978-01-01

    Interior noise in the fuselage of a twin-engine, propeller-driven aircraft with two propellers rotating in opposite directions is studied analytically. The fuselage was modeled as a stiffened cylindrical shell with simply supported ends, and the effects of stringers and frames were averaged over the shell surface. An approximate mathematical model of the propeller noise excitation was formulated which includes some of the propeller noise characteristics such as sweeping pressure waves around the sidewalls due to propeller rotation and the localized nature of the excitation with the highest levels near the propeller plane. Results are presented in the form of noise reduction, which is the difference between the levels of external and interior noise. The influence of propeller noise characteristics on the noise reduction was studied. The results indicate that the sweep velocity of the excitation around the fuselage sidewalls is critical to noise reduction.

  3. Testing and Analysis of a Composite Non-Cylindrical Aircraft Fuselage Structure . Part II; Severe Damage

    NASA Technical Reports Server (NTRS)

    Przekop, Adam; Jegley, Dawn C.; Lovejoy, Andrew E.; Rouse, Marshall; Wu, Hsi-Yung T.

    2016-01-01

    The Environmentally Responsible Aviation Project aimed to develop aircraft technologies enabling significant fuel burn and community noise reductions. Small incremental changes to the conventional metallic alloy-based 'tube and wing' configuration were not sufficient to achieve the desired metrics. One airframe concept identified by the project as having the potential to dramatically improve aircraft performance was a composite-based hybrid wing body configuration. Such a concept, however, presented inherent challenges stemming from, among other factors, the necessity to transfer wing loads through the entire center fuselage section which accommodates a pressurized cabin confined by flat or nearly flat panels. This paper discusses a finite element analysis and the testing of a large-scale hybrid wing body center section structure developed and constructed to demonstrate that the Pultruded Rod Stitched Efficient Unitized Structure concept can meet these challenging demands of the next generation airframes. Part II of the paper considers the final test to failure of the test article in the presence of an intentionally inflicted severe discrete source damage under the wing up-bending loading condition. Finite element analysis results are compared with measurements acquired during the test and demonstrate that the hybrid wing body test article was able to redistribute and support the required design loads in a severely damaged condition.

  4. Nonlinear Finite Element Analysis of a Composite Non-Cylindrical Pressurized Aircraft Fuselage Structure

    NASA Technical Reports Server (NTRS)

    Przekop, Adam; Wu, Hsi-Yung T.; Shaw, Peter

    2014-01-01

    The Environmentally Responsible Aviation Project aims to develop aircraft technologies enabling significant fuel burn and community noise reductions. Small incremental changes to the conventional metallic alloy-based 'tube and wing' configuration are not sufficient to achieve the desired metrics. One of the airframe concepts that might dramatically improve aircraft performance is a composite-based hybrid wing body configuration. Such a concept, however, presents inherent challenges stemming from, among other factors, the necessity to transfer wing loads through the entire center fuselage section which accommodates a pressurized cabin confined by flat or nearly flat panels. This paper discusses a nonlinear finite element analysis of a large-scale test article being developed to demonstrate that the Pultruded Rod Stitched Efficient Unitized Structure concept can meet these challenging demands of the next generation airframes. There are specific reasons why geometrically nonlinear analysis may be warranted for the hybrid wing body flat panel structure. In general, for sufficiently high internal pressure and/or mechanical loading, energy related to the in-plane strain may become significant relative to the bending strain energy, particularly in thin-walled areas such as the minimum gage skin extensively used in the structure under analysis. To account for this effect, a geometrically nonlinear strain-displacement relationship is needed to properly couple large out-of-plane and in-plane deformations. Depending on the loading, this nonlinear coupling mechanism manifests itself in a distinct manner in compression- and tension-dominated sections of the structure. Under significant compression, nonlinear analysis is needed to accurately predict loss of stability and postbuckled deformation. Under significant tension, the nonlinear effects account for suppression of the out-of-plane deformation due to in-plane stretching. By comparing the present results with the previously

  5. Structural FEM analysis of the strut-to-fuselage joint of a two-seat composite aircraft

    NASA Astrophysics Data System (ADS)

    Vargas-Rojas, Erik; Camarena-Arellano, Diego; Hernández-Moreno, Hilario

    2014-05-01

    An analysis of a strut-to-fuselage joint is realized in order to evaluate the zones with a high probability of failure by means of a safety factor. The whole section is analyzed using the Finite Element Method (FEM) so as to estimate static resistance behavior, therefore it is necessary a numerical mock-up of the section, the mechanical properties of the Carbon-Epoxy (C-Ep) material, and to evaluate the applied loads. Results of the analysis show that the zones with higher probability of failure are found around the wing strut and the fuselage joint, with a safety factor lower than expected in comparison with the average safety factor used on aircrafts built mostly with metals.

  6. Structural FEM analysis of the strut-to-fuselage joint of a two-seat composite aircraft

    SciTech Connect

    Vargas-Rojas, Erik Camarena-Arellano, Diego Hernández-Moreno, Hilario

    2014-05-15

    An analysis of a strut-to-fuselage joint is realized in order to evaluate the zones with a high probability of failure by means of a safety factor. The whole section is analyzed using the Finite Element Method (FEM) so as to estimate static resistance behavior, therefore it is necessary a numerical mock-up of the section, the mechanical properties of the Carbon-Epoxy (C-Ep) material, and to evaluate the applied loads. Results of the analysis show that the zones with higher probability of failure are found around the wing strut and the fuselage joint, with a safety factor lower than expected in comparison with the average safety factor used on aircrafts built mostly with metals.

  7. The effect of air flow, panel curvature, and internal pressurization on field-incidence transmission loss. [acoustic propagation through aircraft fuselage

    NASA Technical Reports Server (NTRS)

    Koval, L. R.

    1975-01-01

    In the context of sound transmission through aircraft fuselage panels, equations for the field-incidence transmission loss (TL) of a single-walled panel are derived that include the effects of external air flow, panel curvature, and internal fuselage pressurization. These effects are incorporated into the classical equations for the TL of single panels, and the resulting double integral for field-incidence TL is numerically evaluated for a specific set of parameters.

  8. Efficacy of aerial spray applications using fuselage booms on Air Force C-130H aircraft against mosquitoes and biting midges.

    PubMed

    Breidenbaugh, Mark S; Haagsma, Karl A; Wojcik, George M; De Szalay, Ferenc A

    2009-12-01

    The effectiveness of a novel fuselage boom configuration was tested with flat-fan nozzles on U.S. Air Force C-130H aircraft to create ultra-low volume sprays to control mosquitoes (Culicidae) and biting midges (Ceratopogonidae). The mortality of mosquitoes and biting midges in bioassay cages and natural populations, using the organophosphate adulticide, naled, was measured. Mosquitoes in bioassay cages had 100% mortality at 639 m downwind in all single-pass spray trials, and most trials had >90% mortality up to 1491 m downwind. Mosquito mortality was negatively correlated with distance from the spray release point (r2 = 0.38, P < 0.001). The volume median diam of droplets collected was 44 tm at 213 m and decreased to 11 microm at 2130 m downwind of the release point. Droplet density decreased from an average of 18.4 drops/cm2 at 213 m to 2 drops/cm2 at 2130 m. Droplet densities of 10-18 droplets/cm2 were recorded at sampling stations with high mosquito mortality rates (>90%). In wide-area operational applications, numbers of mosquitoes from natural populations 1 wk postspray were 83% (range 55%-95%), lower than prespray numbers (P < 0.05). Biting midge numbers were reduced by 86% (range 53%-97%) on average (P = 0.051) after 7 days. The results of these field trials indicate that the fuselage boom configuration on C-130H aircraft are an effective method to conduct large-scale aerial sprays during military operations and public health emergencies. PMID:20099594

  9. Testing and Analysis of a Composite Non-Cylindrical Aircraft Fuselage Structure. Part 1; Ultimate Design Loads

    NASA Technical Reports Server (NTRS)

    Przekop, Adam; Jegley, Dawn C.; Lovejoy, Andrew E.; Rouse, Marshall; Wu, Hsi-Yung T.

    2016-01-01

    The Environmentally Responsible Aviation Project aimed to develop aircraft technologies enabling significant fuel burn and community noise reductions. Small incremental changes to the conventional metallic alloy-based 'tube and wing' configuration were not sufficient to achieve the desired metrics. One airframe concept identified by the project as having the potential to dramatically improve aircraft performance was a composite-based hybrid wing body configuration. Such a concept, however, presented inherent challenges stemming from, among other factors, the necessity to transfer wing loads through the entire center fuselage section which accommodates a pressurized cabin confined by flat or nearly flat panels. This paper discusses finite element analysis and testing of a large-scale hybrid wing body center section structure developed and constructed to demonstrate that the Pultruded Rod Stitched Efficient Unitized Structure concept can meet these challenging demands of the next generation airframes. Part I of the paper considers the five most critical load conditions, which are internal pressure only and positive and negative g-loads with and without internal pressure. Analysis results are compared with measurements acquired during testing. Performance of the test article is found to be closely aligned with predictions and, consequently, able to support the hybrid wing body design loads in pristine and barely visible impact damage conditions.

  10. Fuselage Boundary Layer Ingestion Propulsion Applied to a Thin Haul Commuter Aircraft for Optimal Efficiency

    NASA Technical Reports Server (NTRS)

    Mikic, Gregor Veble; Stoll, Alex; Bevirt, JoeBen; Grah, Rok; Moore, Mark D.

    2016-01-01

    Theoretical and numerical aspects of aerodynamic efficiency of propulsion systems are studied. Focus is on types of propulsion that closely couples to the aerodynamics of the complete vehicle. We discuss the effects of local flow fields, which are affected both by conservative flow acceleration as well as total pressure losses, on the efficiency of boundary layer immersed propulsion devices. We introduce the concept of a boundary layer retardation turbine that helps reduce skin friction over the fuselage. We numerically investigate efficiency gains offered by boundary layer and wake interacting devices. We discuss the results in terms of a total energy consumption framework and show that efficiency gains offered depend on all the elements of the propulsion system.

  11. Volumetric pattern analysis of fuselage-mounted airborne antennas. Ph.D. Thesis; [prediction analysis techniques for antenna radiation patterns of microwave antennas on commercial aircraft

    NASA Technical Reports Server (NTRS)

    Yu, C. L.

    1976-01-01

    A volumetric pattern analysis of fuselage-mounted airborne antennas at high frequencies was investigated. The primary goal of the investigation was to develop a numerical solution for predicting radiation patterns of airborne antennas in an accurate and efficient manner. An analytical study of airborne antenna pattern problems is presented in which the antenna is mounted on the fuselage near the top or bottom. Since this is a study of general-type commercial aircraft, the aircraft was modeled in its most basic form. The fuselage was assumed to be an infinitely long perfectly conducting elliptic cylinder in its cross-section and a composite elliptic cylinder in its elevation profile. The wing, cockpit, stabilizers (horizontal and vertical) and landing gear are modeled by "N" sided bent or flat plates which can be arbitrarily attached to the fuselage. The volumetric solution developed utilizes two elliptic cylinders, namely, the roll plane and elevation plane models to approximate the principal surface profile (longitudinal and transverse) at the antenna location. With the belt concept and the aid of appropriate coordinate system transformations the solution can be used to predict the volumetric patterns of airborne antennas in an accurate and efficient manner. Applications of this solution to various airborne antenna problems show good agreement with scale model measurements. Extensive data are presented for a microwave landing antenna system.

  12. Automation of disbond detection in aircraft fuselage through thermal image processing

    NASA Technical Reports Server (NTRS)

    Prabhu, D. R.; Winfree, W. P.

    1992-01-01

    A procedure for interpreting thermal images obtained during the nondestructive evaluation of aircraft bonded joints is presented. The procedure operates on time-derivative thermal images and resulted in a disbond image with disbonds highlighted. The size of the 'black clusters' in the output disbond image is a quantitative measure of disbond size. The procedure is illustrated using simulation data as well as data obtained through experimental testing of fabricated samples and aircraft panels. Good results are obtained, and, except in pathological cases, 'false calls' in the cases studied appeared only as noise in the output disbond image which was easily filtered out. The thermal detection technique coupled with an automated image interpretation capability will be a very fast and effective method for inspecting bonded joints in an aircraft structure.

  13. Modelling Strategies for Predicting the Residual Strength of Impacted Composite Aircraft Fuselages

    NASA Astrophysics Data System (ADS)

    Lachaud, Frederic; Espinosa, Christine; Michel, Laurent; Rahme, Pierre; Piquet, Robert

    2015-12-01

    Aeronautic Certification rules established for the metallic materials are not convenient for the composite structures concerning the resistance against impact. The computer-based design is a new methodology that is thought about to replace the experimental tests. It becomes necessary for numerical methods to be robust and predictive for impact. Three questions are addressed in this study: (i) can a numerical model be "mechanically intrinsic" to predict damage after impact, (ii) can this model be the same for a lab sample and a large structure, and (iii) can the numerical model be predictive enough to predict the Compression After Impact (CAI)? Three different computational strategies are used and compared: a Cohesive Model (CM), a Continuous Damage Model (CDM) coupling failure modes and damage, and a Mixed Methodology (MM) using the CDM for delamination initiation and the CM for cracks propagation. The first attempts to use the Smooth Particle Hydrodynamics method are presented. Finally, impact on a fuselage is modelled and a numerical two-stage strategy is developed to predict the CAI.

  14. Noise Reduction in an Aircraft Fuselage Model Using Active Trim Panels

    NASA Technical Reports Server (NTRS)

    Silcox, Richard J.; Lyle, Karen H.

    1996-01-01

    An experiment was conducted to evaluate the use of force actuators on a model aircraft interior trim panel as the control element for active control of interior noise. The trim panel, designed specifically for this study, was constructed in three large identical sections and hard mounted to the ring frames of the primary structure. Piezoceramic actuators were bonded to the outer surface of the trim panels. Studies of the interior pressure response due to both the primary source alone and control sources alone were conducted as well as the control cases. A single acoustic loudspeaker, centered at the axial midpoint, generated the acoustic field to be controlled.

  15. Aerodynamics of the Fuselage

    NASA Technical Reports Server (NTRS)

    Multhopp, H.

    1942-01-01

    The present report deals with a number of problems, particularly with the interaction of the fuselage with the wing and tail, on the basis of simple calculating method's derived from greatly idealized concepts. For the fuselage alone it affords, in variance with potential theory, a certain frictional lift in yawed flow, which, similar to the lift of a wing of small aspect ratio, is no longer linearly related to the angle of attack. Nevertheless there exists for this frictional lift something like a neutral stability point the position of which on oblong fuselages appears to be associated with the lift increase of the fuselage in proximity to the zero lift, according to the present experiments. The Pitching moments of the fuselage can be determined with comparatively great reliability so far as the flow conditions in the neighborhood of the axis of the fuselage can be approximated if the fuselage were absent, which, in general, is not very difficult. For the unstable contribution of the fuselage to the static longitudinal stability of the airplane it affords comparatively simple formulas, the evaluation of which offers little difficulty. On the engine nacelles there is, in addition a very substantial wing moment contribution induced by the nonuniform distribution of the transverse displacement flow of the nacelle along the wing chord; this also can be represented by a simple formula. A check on a large number of dissimilar aircraft types regarding the unstable fuselage and nacelle moments disclosed an agreement with the wind-tunnel tests, which should be sufficient for practical requirements. The errors remained throughout within the scope of instrumental accuracy.

  16. Multifrequency Eddy Current Inspection of Corrosion in Clad Aluminum Riveted Lap Joints and Its Effect on Fatigue Life

    SciTech Connect

    Okafor, A. C.; Natarajan, S.

    2007-03-21

    Aging aircraft are prone to corrosion damage and fatigue cracks in riveted lap joints of fuselage skin panels. This can cause catastrophic failure if not detected and repaired. Hence detection of corrosion damage and monitoring its effect on structural integrity are essential. This paper presents multifrequency eddy current (EC) inspection of corrosion damage and machined material loss defect in clad A1 2024-T3 riveted lap joints and its effect on fatigue life. Results of eddy current inspection, corrosion product removal and fatigue testing are presented.

  17. Multifrequency Eddy Current Inspection of Corrosion in Clad Aluminum Riveted Lap Joints and Its Effect on Fatigue Life

    NASA Astrophysics Data System (ADS)

    Okafor, A. C.; Natarajan, S.

    2007-03-01

    Aging aircraft are prone to corrosion damage and fatigue cracks in riveted lap joints of fuselage skin panels. This can cause catastrophic failure if not detected and repaired. Hence detection of corrosion damage and monitoring its effect on structural integrity are essential. This paper presents multifrequency eddy current (EC) inspection of corrosion damage and machined material loss defect in clad A1 2024-T3 riveted lap joints and its effect on fatigue life. Results of eddy current inspection, corrosion product removal and fatigue testing are presented.

  18. Lake Michigan and Lake Superior air quality: The 1994-2003 LADCO Aircraft Project (LAP)

    NASA Astrophysics Data System (ADS)

    Foley, T. A.; Betterton, E. A.; Jacko, R.; Hillery, J.

    2011-12-01

    The goal of the 1994 to 2003 LADCO Airplane Project (LAP) was to study ozone formation over Lake Michigan so that equitable regional control strategies could be devised. During the ten year LAP campaign, a total of 328 flights were flown on 81 days over Lake Michigan and its southern and western boundaries. LAP also monitored air quality over Lake Superior and other areas in the Midwestern and southern United States. From 2001 to 2003, 117 flights were conducted over Lake Superior, Isle Royale National Park, Painted Rocks National Lakeshore and the Seeney National Wildlife Refuge in Michigan. 63 flights were conducted over St. Louis and 58 flights over the Dolly Sods Wilderness Area in West Virginia. We are looking for collaborators to help us analyze this vast data archive. Our first paper (Atmospheric Environment 45 (2011) 3192-3202) documented the project and presented results of our ozone analysis. Our results support the hypothesis of Dye et al. (1995), who found that the atmosphere over Lake Michigan is stable in the summer due to the air water temperature difference, which creates an efficient reaction chamber for ozone formation. They also hypothesized that the southwest winds characteristic of ozone-conducive conditions transport ozone further north over the lake before it crosses the shoreline onto land. We found that below 200 m above the lake, ozone formation is VOC-limited in the morning and becomes NOx limited in the afternoon. Above 200 m, ozone formation is NOx-limited throughout the day. The onshore NOx and VOC diurnal cycles peak during the early morning rush hour and are clearly linked to traffic patterns. Over the lake, VOC and NOy concentrations peak during the mid-morning rather than the early morning, supporting the hypothesis that the land breeze transports VOC and NOy over the lake. The diurnal NOx pattern over Lake Michigan is less clearly defined than the VOC pattern possibly as a result of emissions from five coal-burning power plants

  19. Lapping slurry

    DOEpatents

    Simandl, Ronald F.; Upchurch, Victor S.; Leitten, Michael E.

    1999-01-01

    Improved lapping slurries provide for easier and more thorough cleaning of alumina workpieces, as well as inhibit corrosion of the lapping table and provide for easier cleaning of the lapping equipment. The unthickened lapping slurry comprises abrasive grains such as diamond abrasive dispersed in a carrier comprising water, glycerine, and triethanolamine. The thickened lapping slurry comprises abrasive grains such as diamond abrasive dispersed in a carrier comprising water, glycerine, triethanolamine, a water soluble silicate, and acid.

  20. Lapping slurry

    DOEpatents

    Simandl, R.F.; Upchurch, V.S.; Leitten, M.E.

    1999-01-05

    Improved lapping slurries provide for easier and more thorough cleaning of alumina work pieces, as well as inhibit corrosion of the lapping table and provide for easier cleaning of the lapping equipment. The unthickened lapping slurry comprises abrasive grains such as diamond abrasive dispersed in a carrier comprising water, glycerine, and triethanolamine. The thickened lapping slurry comprises abrasive grains such as diamond abrasive dispersed in a carrier comprising water, glycerine, triethanolamine, a water soluble silicate, and acid. 1 fig.

  1. The Influence of Feedback on the Aeroelastic Behavior of Tilt Proprotor Aircraft Including the Effects of Fuselage Motion

    NASA Technical Reports Server (NTRS)

    Curtiss, H. C., Jr.; Komatsuzaki, T.; Traybar, J. J.

    1979-01-01

    The influence of single loop feedbacks to improve the stability of the system are considered. Reduced order dynamic models are employed where appropriate to promote physical insight. The influence of fuselage freedom on the aeroelastic stability, and the influence of the airframe flexibility on the low frequency modes of motion relevant to the stability and control characteristics of the vehicle were examined.

  2. Fuselage upwash effects on RSRA rotor systems

    NASA Technical Reports Server (NTRS)

    Cowan, J.; Dadone, L.

    1985-01-01

    The effects of RSRA fuselage configurations on rotor performance and loads have been quantified analytically by means of currently available potential flow and rotor analysis. Four configurations of the Rotor Systems Research Aircraft (RSRA) were considered in this study. They were: (1) fuselage alone (conventional helicopter); (2) fuselage with auxiliary propulsion; (3) fuselage with wings (auxiliary lift); and (4) fuselage with both auxiliary lift propulsion. The rotor system investigated was identical to a CH-47D front rotor except that it had four instead of three blades. Two scaled-down versions of the same rotor were also analyzed to determine the effect of rotor scale on the fuselage upwash effects. The flight conditions considered for the upwash study are discussed. The potential flow models for the RSRA configuration, with and without the wings and the auxiliary propulsion system, are presented. The results of fuselage/wing/propulsion system upwash on performance and loads are also presented.

  3. Laboratory study of the effects of sidewall treatment, source directivity and temperature on the interior noise of a light aircraft fuselage

    NASA Technical Reports Server (NTRS)

    Heitman, K. E.; Mixson, J. S.

    1986-01-01

    This paper describes a laboratory study of add-on {coustic treatments for a twin-engine, propeller-driven aircraft fuselage. The sound source was a pneumatic-driver, with attached horn to simulate propeller noise distribution, powered by a white noise signal. Treatments included a double-wall, production-line treatment and various fiberglass and lead-vinyl treatments. Insertion losses, space-averaged across six interior microphone positions, were used to evaluate the treatments. In addition, the effects of sound source angle and ambient temperature on interior sound pressure level are presented. The sound source angle is shown to have a significant effect on one-third octave band localized sound pressure level. While changes in ambient temperature are shown to have little effect on one-third octave band localized sound pressure level, the change in narrowband localized sound pressure level may be dramatic.

  4. Double pass retroreflection for corrosion detection in aircraft structures

    NASA Astrophysics Data System (ADS)

    Komorowski, J. P.; Krishnakumar, S.; Gould, R. W.; Bellinger, N. C.; Karpala, F.; Hageniers, O. L.

    1995-01-01

    An optical double pass retroreflection surface inspection technique (D Sight) used for visualizing surface distortions, depressions or pertrusions has been adapted as a rapid, enhanced visual inspection method inspection of large external aircraft surfaces. A project to fully characterize the D Sight indications of corrosion damage in lap splices is currently active. Over 150 large transport aircraft fuselage lap splice specimens have been collected. D Sight Aircraft Inspection System - (DAIS) 250C has been developed and tested both in the laboratory and in the field. In laboratory tests lap splices retrieved from retired aircraft and subjected to accelerated corrosion and lap splices naturally corroded in-service were inspected with DAIS, eddy current, X-ray, shadow moire and subjected to tear down. It has been shown that the DAIS 250C is capable of locating corrosion pillowing indicative of a thickness loss as low as 2 percent. The first field trial of the DAIS 250C was based on two service bulletins requiring inspection of longitudinal and circumferential lap splices on the 737-200 aircraft from BS 259.5 to BS 1016. The DAIS 250C inspection, including analysis and report, took 36 man-hours. The recommended technique in the SB was close visual inspection and the time required according to the service bulletins, was 278 man-hours.

  5. Analytical study of interior noise control by fuselage design techniques on high-speed, propeller-driven aircraft

    NASA Technical Reports Server (NTRS)

    Revell, J. D.; Balena, F. J.; Koval, L. R.

    1980-01-01

    The acoustical treatment mass penalties required to achieve an interior noise level of 80 dBA for high speed, fuel efficient propfan-powered aircraft are determined. The prediction method used is based on theory developed for the outer shell dynamics, and a modified approach for add-on noise control element performance. The present synthesis of these methods is supported by experimental data. Three different sized aircraft are studied, including a widebody, a narrowbody and a business sized aircraft. Noise control penalties are calculated for each aircraft for two kinds of noise control designs: add-on designs, where the outer wall structure cannot be changed, and advanced designs where the outer wall stiffness level and the materials usage can be altered. For the add-on designs, the mass penalties range from 1.7 to 2.4 percent of the takeoff gross weight (TOGW) of the various aircraft, similar to preliminary estimates. Results for advanced designs show significant reductions of the mass penalties. For the advanced aluminum designs the penalties are 1.5% of TOGW, and for an all composite aircraft the penalties range from 0.74 to 1.4% of TOGW.

  6. Flying wings / flying fuselages

    NASA Technical Reports Server (NTRS)

    Wood, Richard M.; Bauer, Steven X. S.

    2001-01-01

    The present paper has documented the historical relationships between various classes of all lifting vehicles, which includes the flying wing, all wing, tailless, lifting body, and lifting fuselage. The diversity in vehicle focus was to ensure that all vehicle types that map have contributed to or been influenced by the development of the classical flying wing concept was investigated. The paper has provided context and perspective for present and future aircraft design studies that may employ the all lifting vehicle concept. The paper also demonstrated the benefit of developing an understanding of the past in order to obtain the required knowledge to create future concepts with significantly improved aerodynamic performance.

  7. Aircraft

    DOEpatents

    Hibbs, B.D.; Lissaman, P.B.S.; Morgan, W.R.; Radkey, R.L.

    1998-09-22

    This disclosure provides a solar rechargeable aircraft that is inexpensive to produce, is steerable, and can remain airborne almost indefinitely. The preferred aircraft is a span-loaded flying wing, having no fuselage or rudder. Travelling at relatively slow speeds, and having a two-hundred foot wingspan that mounts photovoltaic cells on most all of the wing`s top surface, the aircraft uses only differential thrust of its eight propellers to turn. Each of five sections of the wing has one or more engines and photovoltaic arrays, and produces its own lift independent of the other sections, to avoid loading them. Five two-sided photovoltaic arrays, in all, are mounted on the wing, and receive photovoltaic energy both incident on top of the wing, and which is incident also from below, through a bottom, transparent surface. The aircraft is capable of a top speed of about ninety miles per hour, which enables the aircraft to attain and can continuously maintain altitudes of up to sixty-five thousand feet. Regenerative fuel cells in the wing store excess electricity for use at night, such that the aircraft can sustain its elevation indefinitely. A main spar of the wing doubles as a pressure vessel that houses hydrogen and oxygen gases for use in the regenerative fuel cell. The aircraft has a wide variety of applications, which include weather monitoring and atmospheric testing, communications, surveillance, and other applications as well. 31 figs.

  8. Aircraft

    DOEpatents

    Hibbs, Bart D.; Lissaman, Peter B. S.; Morgan, Walter R.; Radkey, Robert L.

    1998-01-01

    This disclosure provides a solar rechargeable aircraft that is inexpensive to produce, is steerable, and can remain airborne almost indefinitely. The preferred aircraft is a span-loaded flying wing, having no fuselage or rudder. Travelling at relatively slow speeds, and having a two-hundred foot wingspan that mounts photovoltaic cells on most all of the wing's top surface, the aircraft uses only differential thrust of its eight propellers to turn. Each of five sections of the wing has one or more engines and photovoltaic arrays, and produces its own lift independent of the other sections, to avoid loading them. Five two-sided photovoltaic arrays, in all, are mounted on the wing, and receive photovoltaic energy both incident on top of the wing, and which is incident also from below, through a bottom, transparent surface. The aircraft is capable of a top speed of about ninety miles per hour, which enables the aircraft to attain and can continuously maintain altitudes of up to sixty-five thousand feet. Regenerative fuel cells in the wing store excess electricity for use at night, such that the aircraft can sustain its elevation indefinitely. A main spar of the wing doubles as a pressure vessel that houses hydrogen and oxygen gasses for use in the regenerative fuel cell. The aircraft has a wide variety of applications, which include weather monitoring and atmospheric testing, communications, surveillance, and other applications as well.

  9. Effects of boundary layer refraction and fuselage scattering on fuselage surface noise from advanced turboprop propellers

    NASA Technical Reports Server (NTRS)

    Mcaninch, G. L.; Rawls, J. W., Jr.

    1984-01-01

    An acoustic disturbance's propagation through a boundary layer is discussed with a view to the analysis of the acoustic field generated by a propfan rotor incident to the fuselage of an aircraft. Applying the parallel flow assumption, the resulting partial differential equations are reduced to an ordinary acoustic pressure differential equation by means of the Fourier transform. The methods used for the solution of this equation include those of Frobenius and of analytic continuation; both yield exact solutions in series form. Two models of the aircraft fuselage-boundary layer system are considered, in the first of which the fuselage is replaced by a flat plate and the acoustic field is assumed to be two-dimensional, while in the second the fuselage is a cylinder in a fully three-dimensional acoustic field. It is shown that the boundary layer correction improves theory-data comparisons over simple application of a pressure-doubling rule at the fuselage.

  10. Investigation of fuselage acoustic treatment for a twin-engine turboprop aircraft in flight and laboratory tests

    NASA Technical Reports Server (NTRS)

    Mixson, J. S.; Oneal, R. L.; Grosveld, F. W.

    1984-01-01

    A flight and laboratory study of sidewall acoustic treatment for cabin noise control is described. In flight, cabin noise levels were measured at six locations with three treatment configurations. Noise levels from narrow-band analysis are reduced to one-third octave format and used to calculate insertion loss, IL, defined as the reduction of interior noise associated with the addition of a treatment. Laboratory tests used a specially constructed structural panel modeled after the propeller plane section of the aircraft sidewall, and acoustic treatments representing those used in flight. Lab measured transmission loss and absorption values were combined using classical acoustic procedures to obtain a prediction of IL. Comparison with IL values measured in flight for the boundary layer component of the noise indicated general agreement.

  11. Dynamic thermal tomography for nondestructive inspection of aging aircraft

    SciTech Connect

    Del Grande, N.K.; Dolan, K.W.; Durbin, P.F.; Gorvad, M.R.; Shapiro, A.B.

    1993-11-01

    The authors apply dual-band infrared (DBIR) imaging as a dynamic thermal tomography tool for wide area inspection of a Boeing 737 aircraft and several Boeing KC-135 aircraft panels. The analyses are discussed in this report. After flash-heating the aircraft skin, they record synchronized DBIR images every 40 ms, from onset to 8 seconds after the heat flash. They analyze selective DBIR image ratios which enhance surface temperature contrast and remove surface-emissivity clutter. The Boeing 737 and KC-135 aircraft fuselage panels have varying percent thickness losses from corrosion. They established the correlation of percent thickness loss with surface temperature rise (above ambient) for a partially corroded F-18 wing box structure and several aluminum plates which had 6 to 60% thickness losses at milled flat-bottom hole sites. Based on this correlation, lap splice temperatures rise 1C per 24 {plus_minus} 5% material loss at 0.4 s after the heat flash. They tabulate and map corrosion-related percent thickness loss effects for the riveted Boeing 737, and the riveted Boeing KKC-135. They map the fuselage composite thermal inertia, based on the (inverse) slope of the surface temperature versus inverse square root of time. Composite thermal inertia maps characterized shallow skin defects within the lap splice at early times (< 0.3 s) and deeper skin defects within the lap splice at late times (> 0.4 s). Late time composite thermal inertia maps depict where corrosion-related thickness losses occur (e.g., on the inside of the Boeing 737 lap splice, beneath the galley and the latrine). Lap splice sites on a typical Boeing KC-135 panel with low composite thermal inertia values had high skin-thickness losses from corrosion.

  12. Dual-band infrared (DBIR) imaging inspections of Boeing 737 and KC-135 aircraft panels

    SciTech Connect

    Del Grande, N.K.; Dolan, K.W.; Durbin, P.F.; Gorvad, M.R.; Shapiro, A.B.

    1993-08-27

    We apply dual-band infrared (DBIR) imaging as a dynamic thermal tomography tool for wide area inspection of a Boeing 737 aircraft, and several Boeing KC-135 aircraft panels. Our analyses are discussed in this report. After flash-heating the aircraft skin, we record synchronized DBIR images every 40 ms, from onset to 8 seconds after the heat flash. We analyze selective DBIR image ratios which enhance surface temperature contrast and remove surface-emissivity clutter (from dirt, dents, tape, markings, ink, sealants, uneven paint, paint stripper, exposed metal and roughness variations). The Boeing 737 and KC-135 aircraft fuselage panels have varying percent thickness losses from corrosion. We established the correlation of percent thickness loss with surface temperature rise (above ambient) for a partially corroded F-18 wing box structure and several aluminum reference panels. Based on this correlation, lap splice temperatures rise 1{degrees}C per 24 {plus_minus} 5 % material loss at 0.4 s after the heat flash. We show tables, charts and temperature maps of typical lap splice material losses for the riveted (and bonded) Boeing 737, and the riveted (but unbonded) Boeing KC-135. We map the fuselage composite thermal inertia, based on the (inverse) slope of the surface temperature versus inverse square root of time. Composite thermal inertia maps characterize shallow skin defects within the lap splice at early times (<0.3 s) and deeper skin defects within the lap splice at late times (>0.4 s). Late time composite thermal inertia maps depict where corrosion-related thickness losses occur. Lap splice sites on a typical Boeing KC-135 panel with low composite thermal inertia values had high skin-thickness losses from corrosion.

  13. Composite Fuselage Technology

    NASA Technical Reports Server (NTRS)

    Lagace, Paul A.

    1999-01-01

    Work was conducted over a ten-year period to address the central issue of damage in primary load-bearing aircraft composite structure, specifically fuselage structure. This included the three facets of damage resistance, damage tolerance, and damage arrest. Experimental, analytical, and numerical work was conducted in order to identify and better understand the mechanisms that control the structural behavior of fuselage structures in their response to the three aspects of damage. Furthermore, work was done to develop straightforward design methodologies that can be employed by structural designers in preliminary design stages to make intelligent choices concerning the material, layup, and structural configurations so that a more efficient structure with structural integrity can be designed and built. Considerable progress was made towards achieving these goals via this work. In regard to damage tolerance considerations, the following were identified as important effects: composite layup and associated orthotropy/structural anisotropy, specifics of initial local damage mechanisms, role of longitudinal versus hoop stress, and large deformation and associated geometric nonlinearity. Means were established to account for effects of radius and for the nonlinear response. In particular, nondimensional parameters were identified to characterize the importance of nonlinearity in the response of pressurized cylinders. This led to the establishment of a iso-nonlinear-error plot for reference in structural design. Finally, in the case of damage tolerance, the general approach of the original methodology to predict the failure pressure involving extending basic plate failure data by accounting for the local stress intensification was accomplished for the general case by accounting for the mechanisms noted by utilizing the capability of the STAGS finite element code and numerically calculating the local stress intensification for the particular configuration to be considered

  14. Composite fuselage shell structures research at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Starnes, James H., Jr.; Shuart, Mark J.

    1992-01-01

    Fuselage structures for transport aircraft represent a significant percentage of both the weight and the cost of these aircraft primary structures. Composite materials offer the potential for reducing both the weight and the cost of transport fuselage structures, but only limited studies of the response and failure of composite fuselage structures have been conducted for transport aircraft. The behavior of these important primary structures must be understood, and the structural mechanics methodology for analyzing and designing these complex stiffened shell structures must be validated in the laboratory. The effects of local gradients and discontinuities on fuselage shell behavior and the effects of local damage on pressure containment must be thoroughly understood before composite fuselage structures can be used for commercial aircraft. This paper describes the research being conducted and planned at NASA LaRC to help understand the critical behavior or composite fuselage structures and to validate the structural mechanics methodology being developed for stiffened composite fuselage shell structure subjected to combined internal pressure and mechanical loads. Stiffened shell and curved stiffened panel designs are currently being developed and analyzed, and these designs will be fabricated and then tested at Langley to study critical fuselage shell behavior and to validate structural analysis and design methodology. The research includes studies of the effects of combined internal pressure and mechanical loads on nonlinear stiffened panel and shell behavior, the effects of cutouts and other gradient-producing discontinuities on composite shell response, and the effects of local damage on pressure containment and residual strength. Scaling laws are being developed that relate full-scale and subscale behavior of composite fuselage shells. Failure mechanisms are being identified and advanced designs will be developed based on what is learned from early results from

  15. Transport composite fuselage technology: Impact dynamics and acoustic transmission

    NASA Technical Reports Server (NTRS)

    Jackson, A. C.; Balena, F. J.; Labarge, W. L.; Pei, G.; Pitman, W. A.; Wittlin, G.

    1986-01-01

    A program was performed to develop and demonstrate the impact dynamics and acoustic transmission technology for a composite fuselage which meets the design requirements of a 1990 large transport aircraft without substantial weight and cost penalties. The program developed the analytical methodology for the prediction of acoustic transmission behavior of advanced composite stiffened shell structures. The methodology predicted that the interior noise level in a composite fuselage due to turbulent boundary layer will be less than in a comparable aluminum fuselage. The verification of these analyses will be performed by NASA Langley Research Center using a composite fuselage shell fabricated by filament winding. The program also developed analytical methodology for the prediction of the impact dynamics behavior of lower fuselage structure constructed with composite materials. Development tests were performed to demonstrate that the composite structure designed to the same operating load requirement can have at least the same energy absorption capability as aluminum structure.

  16. Variable Geometry Aircraft Wing Supported by Struts And/Or Trusses

    NASA Technical Reports Server (NTRS)

    Melton, John E. (Inventor); Dudley, Michael R. (Inventor)

    2016-01-01

    The present invention provides an aircraft having variable airframe geometry for accommodating efficient flight. The aircraft includes an elongated fuselage, an oblique wing pivotally connected with said fuselage, a wing pivoting mechanism connected with said oblique wing and said fuselage, and a brace operably connected between said oblique wing and said fuselage. The present invention also provides an aircraft having an elongated fuselage, an oblique wing pivotally connected with said fuselage, a wing pivoting mechanism connected with said oblique wing and said fuselage, a propulsion system pivotally connected with said oblique wing, and a brace operably connected between said propulsion system and said fuselage.

  17. Advanced Technology Composite Fuselage - Manufacturing

    NASA Technical Reports Server (NTRS)

    Wilden, K. S.; Harris, C. G.; Flynn, B. W.; Gessel, M. G.; Scholz, D. B.; Stawski, S.; Winston, V.

    1997-01-01

    The goal of Boeing's Advanced Technology Composite Aircraft Structures (ATCAS) program is to develop the technology required for cost-and weight-efficient use of composite materials in transport fuselage structure. Carbon fiber reinforced epoxy was chosen for fuselage skins and stiffening elements, and for passenger and cargo floor structures. The automated fiber placement (AFP) process was selected for fabrication of stringer-stiffened and sandwich skin panels. Circumferential and window frames were braided and resin transfer molded (RTM'd). Pultrusion was selected for fabrication of floor beams and constant-section stiffening elements. Drape forming was chosen for stringers and other stiffening elements cocured to skin structures. Significant process development efforts included AFP, braiding, RTM, autoclave cure, and core blanket fabrication for both sandwich and stiffened-skin structure. Outer-mold-line and inner-mold-line tooling was developed for sandwich structures and stiffened-skin structure. The effect of design details, process control and tool design on repeatable, dimensionally stable, structure for low cost barrel assembly was assessed. Subcomponent panels representative of crown, keel, and side quadrant panels were fabricated to assess scale-up effects and manufacturing anomalies for full-scale structures. Manufacturing database including time studies, part quality, and manufacturing plans were generated to support the development of designs and analytical models to access cost, structural performance, and dimensional tolerance.

  18. Al-Li Alloy 1441 for Fuselage Applications

    NASA Technical Reports Server (NTRS)

    Bird, R. K.; Dicus, D. L.; Fridlyander, J. N.; Sandler, V. S.

    2000-01-01

    A cooperative investigation was conducted to evaluate Al-Cu-Mg-Li alloy 1441 for long service life fuselage applications. Alloy 1441 is currently being used for fuselage applications on the Russian Be-103 amphibious aircraft, and is expected to be used for fuselage skin on a new Tupolev business class aircraft. Alloy 1441 is cold-rollable and has several attributes that make it attractive for fuselage skin applications. These attributes include lower density and higher specific modulus with similar strength as compared to conventional Al-Cu-Mg alloys. Cold-rolled 1441 Al-Li sheet specimens were tested at NASA Langley Research Center (LaRC) and at the All-Russia Institute of Aviation Materials (VIAM) in Russia to evaluate tensile properties, fracture toughness, impact resistance, fatigue life and fatigue crack growth rate. In addition, fuselage panels were fabricated by Tupolev Design Bureau (TDB) using 1441 skins and Al-Zn-Mg-Cu alloy stiffeners. The panels were subjected to cyclic pressurization fatigue tests at TDB and at LaRC to simulate fuselage pressurization/depressurization during aircraft service. This paper discusses the results from this investigation.

  19. Crack Growth Simulation and Residual Strength Prediction in Airplane Fuselages

    NASA Technical Reports Server (NTRS)

    Chen, Chuin-Shan; Wawrzynek, Paul A.; Ingraffea, Anthony R.

    1999-01-01

    The objectives were to create a capability to simulate curvilinear crack growth and ductile tearing in aircraft fuselages subjected to widespread fatigue damage and to validate with tests. Analysis methodology and software program (FRANC3D/STAGS) developed herein allows engineers to maintain aging aircraft economically, while insuring continuous airworthiness, and to design more damage-tolerant aircraft for the next generation. Simulations of crack growth in fuselages were described. The crack tip opening angle (CTOA) fracture criterion, obtained from laboratory tests, was used to predict fracture behavior of fuselage panel tests. Geometrically nonlinear, elastic-plastic, thin shell finite element crack growth analyses were conducted. Comparisons of stress distributions, multiple stable crack growth history, and residual strength between measured and predicted results were made to assess the validity of the methodology. Incorporation of residual plastic deformations and tear strap failure was essential for accurate residual strength predictions. Issue related to predicting crack trajectory in fuselages were also discussed. A directional criterion, including T-stress and fracture toughness orthotropy, was developed. Curvilinear crack growth was simulated in coupon and fuselage panel tests. Both T-stress and fracture toughness orthotropy were essential to predict the observed crack paths. Flapping of fuselages were predicted. Measured and predicted results agreed reasonable well.

  20. Advanced fiber placement of composite fuselage structures

    NASA Technical Reports Server (NTRS)

    Anderson, Robert L.; Grant, Carroll G.

    1991-01-01

    The Hercules/NASA Advanced Composite Technology (ACT) program will demonstrate the low cost potential of the automated fiber placement process. The Hercules fiber placement machine was developed for cost effective production of composite aircraft structures. The process uses a low cost prepreg tow material form and achieves equivalent laminate properties to structures fabricated with prepreg tape layup. Fiber placement demonstrations planned for the Hercules/NASA program include fabrication of stiffened test panels which represent crown, keel, and window belt segments of a typical transport aircraft fuselage.

  1. Fuselage shell and cavity response measurements on a DC-9 test section

    NASA Technical Reports Server (NTRS)

    Simpson, M. A.; Mathur, G. P.; Cannon, M. R.; Tran, B. N.; Burge, P. L.

    1991-01-01

    A series of fuselage shell and cavity response measurements conducted on a DC-9 aircraft test section are described. The objectives of these measurements were to define the shell and cavity model characteristics of the fuselage, understand the structural-acoustic coupling characteristics of the fuselage, and measure the response of the fuselage to different types of acoustic and vibration excitation. The fuselage was excited with several combinations of acoustic and mechanical sources using interior and exterior loudspeakers and shakers, and the response to these inputs was measured with arrays of microphones and accelerometers. The data were analyzed to generate spatial plots of the shell acceleration and cabin acoustic pressure field, and corresponding acceleration and pressure wavenumber maps. Analysis and interpretation of the spatial plots and wavenumber maps provided the required information on modal characteristics, structural-acoustic coupling, and fuselage response.

  2. 6. Detail of forward fuselage showing open cockpit hatch and ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. Detail of forward fuselage showing open cockpit hatch and ladder. View to southeast. - Offutt Air Force Base, Looking Glass Airborne Command Post, Looking Glass Aircraft, On Operational Apron covering northeast half of Project Looking Glass Historic District, Bellevue, Sarpy County, NE

  3. Advanced Technology Composite Fuselage - Materials and Processes

    NASA Technical Reports Server (NTRS)

    Scholz, D. B.; Dost, E. F.; Flynn, B. W.; Ilcewicz, L. B.; Nelson, K. M.; Sawicki, A. J.; Walker, T. H.; Lakes, R. S.

    1997-01-01

    The goal of Boeing's Advanced Technology Composite Aircraft Structures (ATCAS) program was to develop the technology required for cost and weight efficient use of composite materials in transport fuselage structure. This contractor report describes results of material and process selection, development, and characterization activities. Carbon fiber reinforced epoxy was chosen for fuselage skins and stiffening elements and for passenger and cargo floor structures. The automated fiber placement (AFP) process was selected for fabrication of monolithic and sandwich skin panels. Circumferential frames and window frames were braided and resin transfer molded (RTM'd). Pultrusion was selected for fabrication of floor beams and constant section stiffening elements. Drape forming was chosen for stringers and other stiffening elements. Significant development efforts were expended on the AFP, braiding, and RTM processes. Sandwich core materials and core edge close-out design concepts were evaluated. Autoclave cure processes were developed for stiffened skin and sandwich structures. The stiffness, strength, notch sensitivity, and bearing/bypass properties of fiber-placed skin materials and braided/RTM'd circumferential frame materials were characterized. The strength and durability of cocured and cobonded joints were evaluated. Impact damage resistance of stiffened skin and sandwich structures typical of fuselage panels was investigated. Fluid penetration and migration mechanisms for sandwich panels were studied.

  4. Advanced Technology Composite Fuselage: Program Overview

    NASA Technical Reports Server (NTRS)

    Ilcewicz, L. B.; Smith, P. J.; Hanson, C. T.; Walker, T. H.; Metschan, S. L.; Mabson, G. E.; Wilden, K. S.; Flynn, B. W.; Scholz, D. B.; Polland, D. R.; Fredrikson, H. G.; Olson, J. T.; Backman, B. F.

    1997-01-01

    The Advanced Technology Composite Aircraft Structures (ATCAS) program has studied transport fuselage structure with a large potential reduction in the total direct operating costs for wide-body commercial transports. The baseline fuselage section was divided into four 'quadrants', crown, keel, and sides, gaining the manufacturing cost advantage possible with larger panels. Key processes found to have savings potential include (1) skins laminated by automatic fiber placement, (2) braided frames using resin transfer molding, and (3) panel bond technology that minimized mechanical fastening. The cost and weight of the baseline fuselage barrel was updated to complete Phase B of the program. An assessment of the former, which included labor, material, and tooling costs, was performed with the help of design cost models. Crown, keel, and side quadrant cost distributions illustrate the importance of panel design configuration, area, and other structural details. Composite sandwich panel designs were found to have the greatest cost savings potential for most quadrants. Key technical findings are summarized as an introduction to the other contractor reports documenting Phase A and B work completed in functional areas. The current program status in resolving critical technical issues is also highlighted.

  5. Large-scale Advanced Propfan (LAP) program

    NASA Technical Reports Server (NTRS)

    Sagerser, D. A.; Ludemann, S. G.

    1985-01-01

    The propfan is an advanced propeller concept which maintains the high efficiencies traditionally associated with conventional propellers at the higher aircraft cruise speeds associated with jet transports. The large-scale advanced propfan (LAP) program extends the research done on 2 ft diameter propfan models to a 9 ft diameter article. The program includes design, fabrication, and testing of both an eight bladed, 9 ft diameter propfan, designated SR-7L, and a 2 ft diameter aeroelastically scaled model, SR-7A. The LAP program is complemented by the propfan test assessment (PTA) program, which takes the large-scale propfan and mates it with a gas generator and gearbox to form a propfan propulsion system and then flight tests this system on the wing of a Gulfstream 2 testbed aircraft.

  6. Lap seat belt injuries.

    PubMed

    Hingston, G R

    1996-08-01

    Over a 4 month period, three patients presented acutely to Whangarei Area Hospital after receiving severe abdominal injuries caused directly by lap seat belts. They were involved in road traffic crashes and were all seated in the middle rear seat of the car. The aim of this paper is to alert people to the injuries that can occur from two point lap belts. To this end, the patients and injuries sustained are described and a review of the literature is presented.

  7. Advanced composite fuselage technology

    NASA Technical Reports Server (NTRS)

    Ilcewicz, Larry B.; Smith, Peter J.; Horton, Ray E.

    1993-01-01

    Boeing's ATCAS program has completed its third year and continues to progress towards a goal to demonstrate composite fuselage technology with cost and weight advantages over aluminum. Work on this program is performed by an integrated team that includes several groups within The Boeing Company, industrial and university subcontractors, and technical support from NASA. During the course of the program, the ATCAS team has continued to perform a critical review of composite developments by recognizing advances in metal fuselage technology. Despite recent material, structural design, and manufacturing advancements for metals, polymeric matrix composite designs studied in ATCAS still project significant cost and weight advantages for future applications. A critical path to demonstrating technology readiness for composite transport fuselage structures was created to summarize ATCAS tasks for Phases A, B, and C. This includes a global schedule and list of technical issues which will be addressed throughout the course of studies. Work performed in ATCAS since the last ACT conference is also summarized. Most activities relate to crown quadrant manufacturing scaleup and performance verification. The former was highlighted by fabricating a curved, 7 ft. by 10 ft. panel, with cocured hat-stiffeners and cobonded J-frames. In building to this scale, process developments were achieved for tow-placed skins, drape formed stiffeners, braided/RTM frames, and panel cure tooling. Over 700 tests and supporting analyses have been performed for crown material and design evaluation, including structural tests that demonstrated limit load requirements for severed stiffener/skin failsafe damage conditions. Analysis of tests for tow-placed hybrid laminates with large damage indicates a tensile fracture toughness that is higher than that observed for advanced aluminum alloys. Additional recent ATCAS achievements include crown supporting technology, keel quadrant design evaluation, and

  8. Detailed design of a lattice composite fuselage structure by a mixed optimization method

    NASA Astrophysics Data System (ADS)

    Liu, D.; Lohse-Busch, H.; Toropov, V.; Hühne, C.; Armani, U.

    2016-10-01

    In this article, a procedure for designing a lattice fuselage barrel is developed. It comprises three stages: first, topology optimization of an aircraft fuselage barrel is performed with respect to weight and structural performance to obtain the conceptual design. The interpretation of the optimal result is given to demonstrate the development of this new lattice airframe concept for the fuselage barrel. Subsequently, parametric optimization of the lattice aircraft fuselage barrel is carried out using genetic algorithms on metamodels generated with genetic programming from a 101-point optimal Latin hypercube design of experiments. The optimal design is achieved in terms of weight savings subject to stability, global stiffness and strain requirements, and then verified by the fine mesh finite element simulation of the lattice fuselage barrel. Finally, a practical design of the composite skin complying with the aircraft industry lay-up rules is presented. It is concluded that the mixed optimization method, combining topology optimization with the global metamodel-based approach, allows the problem to be solved with sufficient accuracy and provides the designers with a wealth of information on the structural behaviour of the novel anisogrid composite fuselage design.

  9. A Practical Engineering Approach to Predicting Fatigue Crack Growth in Riveted Lap Joints

    NASA Technical Reports Server (NTRS)

    Harris, C. E.; Piascik, R. S.; Newman, J. C., Jr.

    2000-01-01

    An extensive experimental database has been assembled from very detailed teardown examinations of fatigue cracks found in rivet holes of fuselage structural components. Based on this experimental database, a comprehensive analysis methodology was developed to predict the onset of widespread fatigue damage in lap joints of fuselage structure. Several computer codes were developed with specialized capabilities to conduct the various analyses that make up the comprehensive methodology. Over the past several years, the authors have interrogated various aspects of the analysis methods to determine the degree of computational rigor required to produce numerical predictions with acceptable engineering accuracy. This study led to the formulation of a practical engineering approach to predicting fatigue crack growth in riveted lap joints. This paper describes the practical engineering approach and compares predictions with the results from several experimental studies.

  10. Continued development and correlation of analytically based weight estimation codes for wings and fuselages

    NASA Technical Reports Server (NTRS)

    Mullen, J., Jr.

    1978-01-01

    The implementation of the changes to the program for Wing Aeroelastic Design and the development of a program to estimate aircraft fuselage weights are described. The equations to implement the modified planform description, the stiffened panel skin representation, the trim loads calculation, and the flutter constraint approximation are presented. A comparison of the wing model with the actual F-5A weight material distributions and loads is given. The equations and program techniques used for the estimation of aircraft fuselage weights are described. These equations were incorporated as a computer code. The weight predictions of this program are compared with data from the C-141.

  11. Impact damage resistance of composite fuselage structure, part 1

    NASA Technical Reports Server (NTRS)

    Dost, E. F.; Avery, W. B.; Ilcewicz, L. B.; Grande, D. H.; Coxon, B. R.

    1992-01-01

    The impact damage resistance of laminated composite transport aircraft fuselage structures was studied experimentally. A statistically based designed experiment was used to examine numerous material, laminate, structural, and extrinsic (e.g., impactor type) variables. The relative importance and quantitative measure of the effect of each variable and variable interactions on responses including impactor dynamic response, visibility, and internal damage state were determined. The study utilized 32 three-stiffener panels, each with a unique combination of material type, material forms, and structural geometry. Two manufacturing techniques, tow placement and tape lamination, were used to build panels representative of potential fuselage crown, keel, and lower side-panel designs. Various combinations of impactor variables representing various foreign-object-impact threats to the aircraft were examined. Impacts performed at different structural locations within each panel (e.g., skin midbay, stiffener attaching flange, etc.) were considered separate parallel experiments. The relationship between input variables, measured damage states, and structural response to this damage are presented including recommendations for materials and impact test methods for fuselage structure.

  12. Application of a design-build-team approach to low cost and weight composite fuselage structure

    NASA Technical Reports Server (NTRS)

    Ilcewicz, L. B.; Walker, T. H.; Willden, K. S.; Swanson, G. D.; Truslove, G.; Metschan, S. L.; Pfahl, C. L.

    1991-01-01

    Relationships between manufacturing costs and design details must be understood to promote the application of advanced composite technologies to transport fuselage structures. A team approach, integrating the disciplines responsible for aircraft structural design and manufacturing, was developed to perform cost and weight trade studies for a twenty-foot diameter aft fuselage section. Baseline composite design and manufacturing concepts were selected for large quadrant panels in crown, side, and keel areas of the fuselage section. The associated technical issues were also identified. Detailed evaluation of crown panels indicated the potential for large weight savings and costs competitive with aluminum technology in the 1995 timeframe. Different processes and material forms were selected for the various elements that comprise the fuselage structure. Additional cost and weight savings potential was estimated for future advancements.

  13. Crash Simulation of a Boeing 737 Fuselage Section Vertical Drop Test

    NASA Technical Reports Server (NTRS)

    Fasanella, Edwin L.; Jackson, Karen E.; Jones, Yvonne T.; Frings, Gary; Vu, Tong

    2004-01-01

    A 30-ft/s vertical drop test of a fuselage section of a Boeing 737 aircraft was conducted in October of 1999 at the FAA Technical Center in Atlantic City, NJ. This test was performed to evaluate the structural integrity of a conformable auxiliary fuel tank mounted beneath the floor and to determine its effect on the impact response of the airframe structure and the occupants. The test data were used to compare with a finite element simulation of the fuselage structure and to gain a better understanding of the impact physics through analytical/experimental correlation. To perform this simulation, a full-scale 3-dimensional finite element model of the fuselage section was developed using the explicit, nonlinear transient-dynamic finite element code, MSC.Dytran. The emphasis of the simulation was to predict the structural deformation and floor-level acceleration responses obtained from the drop test of the B737 fuselage section with the auxiliary fuel tank.

  14. Cabin-fuselage-wing structural design concept with engine installation

    NASA Technical Reports Server (NTRS)

    Ariotti, Scott; Garner, M.; Cepeda, A.; Vieira, J.; Bolton, D.

    1993-01-01

    The purpose of this project is to provide a fuselage structural assembly and wing structural design that will be able to withstand the given operational parameters and loads provided by Federal Aviation Regulation Part 23 (FAR 23) and the Statement of Work (SOW). The goal is to provide a durable lightweight structure that will transfer the applied loads through the most efficient load path. Areas of producibility and maintainability of the structure will also be addressed. All of the structural members will also meet or exceed the desired loading criteria, along with providing adequate stiffness, reliability, and fatigue life as stated in the SOW. Considerations need to be made for control system routing and cabin heating/ventilation. The goal of the wing structure and carry through structure is also to provide a simple, lightweight structure that will transfer the aerodynamic forces produced by the wing, tailboom, and landing gear. These forces will be channeled through various internal structures sized for the pre-determined loading criteria. Other considerations were to include space for flaps, ailerons, fuel tanks, and electrical and control system routing. The difficulties encountered in the fuselage design include expanding the fuselage cabin to accept a third occupant in a staggered configuration and providing ample volume for their safety. By adding a third person the CG of aircraft will move forward so the engine needs to be moved aft to compensate for the difference in the moment. This required the provisions of a ring frame structure for the new position of the engine mount. The difficulties encountered in the wing structural design include resizing the wing for the increased capacity and weight, and compensating for a large torsion produced by the tail boom by placing a great number of stiffeners inside the boom, which will result in the relocation of the fuel tank. Finally, an adequate carry through structure for the wing and fuselage interface will be

  15. Crack Growth Simulation and Residual Strength Prediction in Airplane Fuselages

    NASA Technical Reports Server (NTRS)

    Chen, Chuin-Shan; Wawrzynek, Paul A.; Ingraffea, Anthony R.

    1999-01-01

    This is the final report for the NASA funded project entitled "Crack Growth Prediction Methodology for Multi-Site Damage." The primary objective of the project was to create a capability to simulate curvilinear fatigue crack growth and ductile tearing in aircraft fuselages subjected to widespread fatigue damage. The second objective was to validate the capability by way of comparisons to experimental results. Both objectives have been achieved and the results are detailed herein. In the first part of the report, the crack tip opening angle (CTOA) fracture criterion, obtained and correlated from coupon tests to predict fracture behavior and residual strength of built-up aircraft fuselages, is discussed. Geometrically nonlinear, elastic-plastic, thin shell finite element analyses are used to simulate stable crack growth and to predict residual strength. Both measured and predicted results of laboratory flat panel tests and full-scale fuselage panel tests show substantial reduction of residual strength due to the occurrence of multi-site damage (MSD). Detailed comparisons of n stable crack growth history, and residual strength between the predicted and experimental results are used to assess the validity of the analysis methodology. In the second part of the report, issues related to crack trajectory prediction in thin shells; an evolving methodology uses the crack turning phenomenon to improve the structural integrity of aircraft structures are discussed, A directional criterion is developed based on the maximum tangential stress theory, but taking into account the effect of T-stress and fracture toughness orthotropy. Possible extensions of the current crack growth directional criterion to handle geometrically and materially nonlinear problems are discussed. The path independent contour integral method for T-stress evaluation is derived and its accuracy is assessed using a p- and hp-version adaptive finite element method. Curvilinear crack growth is simulated in

  16. Transonic Flow Field Analysis for Wing-Fuselage Configurations

    NASA Technical Reports Server (NTRS)

    Boppe, C. W.

    1980-01-01

    A computational method for simulating the aerodynamics of wing-fuselage configurations at transonic speeds is developed. The finite difference scheme is characterized by a multiple embedded mesh system coupled with a modified or extended small disturbance flow equation. This approach permits a high degree of computational resolution in addition to coordinate system flexibility for treating complex realistic aircraft shapes. To augment the analysis method and permit applications to a wide range of practical engineering design problems, an arbitrary fuselage geometry modeling system is incorporated as well as methodology for computing wing viscous effects. Configuration drag is broken down into its friction, wave, and lift induced components. Typical computed results for isolated bodies, isolated wings, and wing-body combinations are presented. The results are correlated with experimental data. A computer code which employs this methodology is described.

  17. Design of fuselage shapes for natural laminar flow

    NASA Technical Reports Server (NTRS)

    Dodbele, S. S.; Vandam, C. P.; Vijgen, P. M. H. W.

    1986-01-01

    Recent technological advances in airplane construction techniques and materials allow for the production of aerodynamic surfaces without significant waviness and roughness, permitting long runs of natural laminar flow (NLF). The present research effort seeks to refine and validate computational design tools for use in the design of axisymmetric and nonaxisymmetric natural-laminar-flow bodies. The principal task of the investigation involves fuselage body shaping using a computational design procedure. Analytical methods were refined and exploratory calculations conducted to predict laminar boundary-layer on selected body shapes. Using a low-order surface-singularity aerodynamic analysis program, pressure distribution, boundary-layer development, transition location and drag coefficient have been obtained for a number of body shapes including a representative business-aircraft fuselage. Extensive runs of laminar flow were predicted in regions of favorable pressure gradient on smooth body surfaces. A computational design procedure was developed to obtain a body shape with minimum drag having large extent of NLF.

  18. Design of fuselage shapes for natural laminar flow

    NASA Astrophysics Data System (ADS)

    Dodbele, S. S.; Vandam, C. P.; Vijgen, P. M. H. W.

    1986-03-01

    Recent technological advances in airplane construction techniques and materials allow for the production of aerodynamic surfaces without significant waviness and roughness, permitting long runs of natural laminar flow (NLF). The present research effort seeks to refine and validate computational design tools for use in the design of axisymmetric and nonaxisymmetric natural-laminar-flow bodies. The principal task of the investigation involves fuselage body shaping using a computational design procedure. Analytical methods were refined and exploratory calculations conducted to predict laminar boundary-layer on selected body shapes. Using a low-order surface-singularity aerodynamic analysis program, pressure distribution, boundary-layer development, transition location and drag coefficient have been obtained for a number of body shapes including a representative business-aircraft fuselage. Extensive runs of laminar flow were predicted in regions of favorable pressure gradient on smooth body surfaces. A computational design procedure was developed to obtain a body shape with minimum drag having large extent of NLF.

  19. Design and analysis of a stiffened composite fuselage panel

    NASA Technical Reports Server (NTRS)

    Dickson, J. N.; Biggers, S. B.

    1980-01-01

    The design and analysis of stiffened composite panel that is representative of the fuselage structure of existing wide bodied aircraft is discussed. The panel is a minimum weight design, based on the current level of technology and realistic loads and criteria. Several different stiffener configurations were investigated in the optimization process. The final configuration is an all graphite/epoxy J-stiffened design in which the skin between adjacent stiffeners is permitted to buckle under design loads. Fail safe concepts typically employed in metallic fuselage structure have been incorporated in the design. A conservative approach has been used with regard to structural details such as skin/frame and stringer/frame attachments and other areas where sufficient design data was not available.

  20. Lap belt injuries in children.

    PubMed

    McGrath, N; Fitzpatrick, P; Okafor, I; Ryan, S; Hensey, O; Nicholson, A J

    2010-01-01

    The use of adult seat belts without booster seats in young children may lead to severe abdominal, lumbar or cervical spine and head and neck injuries. We describe four characteristic cases of lap belt injuries presenting to a tertiary children's hospital over the past year in addition to a review of the current literature. These four cases of spinal cord injury, resulting in significant long-term morbidity in the two survivors and death in one child, arose as a result of lap belt injury. These complex injuries are caused by rapid deceleration characteristic of high impact crashes, resulting in sudden flexion of the upper body around the fixed lap belt, and consequent compression of the abdominal viscera between the lap belt and spine. This report highlights the dangers of using lap belts only without shoulder straps. Age-appropriate child restraint in cars will prevent these injuries.

  1. Light aircraft sound transmission study

    NASA Technical Reports Server (NTRS)

    Atwal, M.; David, J.; Heitman, K.; Crocker, M. J.

    1983-01-01

    The revived interest in the design of propeller driven aircraft is based on increasing fuel prices as well as on the need for bigger short haul and commuter aircraft. A major problem encountered with propeller driven aircraft is propeller and exhaust noise that is transmitted through the fuselage sidewall structure. Part of the work which was conducted during the period April 1 to August 31, 1983, on the studies of sound transmission through light aircraft walls is presented.

  2. An unsteady rotor/fuselage interaction method

    NASA Technical Reports Server (NTRS)

    Egolf, T. Alan; Lorber, Peter F.

    1987-01-01

    An analytical method has been developed to treat unsteady helicopter rotor, wake, and fuselage interaction aerodynamics. An existing lifting line/prescribed wake rotor analysis and a source panel fuselage analysis were modified to predict vibratory fuselage airloads. The analyses were coupled through the induced flow velocities of the rotor and wake on the fuselage and the fuselage on the rotor. A prescribed displacement technique was used to distort the rotor wake about the fuselage. Sensitivity studies were performed to determine the influence of wake and body geometry on the computed airloads. Predicted and measured mean and unsteady pressures on a cylindrical body in the wake of a two-bladed rotor were compared. Initial results show good qualitative agreement.

  3. Crashworthy Evaluation of a 1/5-Scale Model Composite Fuselage Concept

    NASA Technical Reports Server (NTRS)

    Jackson, Karen E.; Fasanella, Edwin L.

    1999-01-01

    A 1/5-scale model composite fuselage concept for light aircraft and rotorcraft has been developed to satisfy structural and flight loads requirements and to satisfy design goals for improved crashworthiness. The 1/5-scale model fuselage consists of a relatively rigid upper section which forms the passenger cabin, a stiff structural floor, and an energy absorbing subfloor which is designed to limit impact forces during a crash event. The focus of the present paper is to describe the crashworthy evaluation of the fuselage concept through impact testing and finite element simulation using the nonlinear, explicit transient dynamic code, MSC/DYTRAN. The energy absorption behavior of two different subfloor configurations was determined through quasi-static crushing tests. For the dynamic evaluation, each subfloor configuration was incorporated into a 1/5-scale model fuselage section, which was impacted at 31 ft/s vertical velocity onto a rigid surface. The experimental data demonstrate that the fuselage section with a foam-filled subfloor configuration satisfied the impact design requirement. In addition, the fuselage section maintained excellent energy absorption behavior for a 31 ft/s vertical drop test with a 15 deg-roll impact attitude. Good correlation was obtained between the experimental data and analytical results for both impact conditions.

  4. Acoustic transmission through a fuselage sidewall

    NASA Technical Reports Server (NTRS)

    Wilby, J. F.; Scharton, T. D.

    1973-01-01

    A definition is given of an idealized fuselage sidewall structure and a simplified analytical model for determining acoustical transmission from the exterior to the interior of a fuselage was constructed. The representation of the sidewall structure chosen for the analytical model excludes complicating effects such as cabin pressurization, acoustic transmission through windows or door seal leaks, aerodynamic excitation, and structural vibration excitation of the fuselage skin.

  5. Advanced Technology Composite Fuselage - Repair and Damage Assessment Supporting Maintenance

    NASA Technical Reports Server (NTRS)

    Flynn, B. W.; Bodine, J. B.; Dopker, B.; Finn, S. R.; Griess, K. H.; Hanson, C. T.; Harris, C. G.; Nelson, K. M.; Walker, T. H.; Kennedy, T. C.; Nahan, M. F.

    1997-01-01

    Under the NASA-sponsored contracts for Advanced Technology Composite Aircraft Structures (ATCAS) and Materials Development Omnibus Contract (MDOC), Boeing is studying the technologies associated with the application of composite materials to commercial transport fuselage structure. Included in the study is the incorporation of maintainability and repairability requirements of composite primary structure into the design. This contractor report describes activities performed to address maintenance issues in composite fuselage applications. A key aspect of the study was the development of a maintenance philosophy which included consideration of maintenance issues early in the design cycle, multiple repair options, and airline participation in design trades. Fuselage design evaluations considered trade-offs between structural weight, damage resistance/tolerance (repair frequency), and inspection burdens. Analysis methods were developed to assess structural residual strength in the presence of damage, and to evaluate repair design concepts. Repair designs were created with a focus on mechanically fastened concepts for skin/stringer structure and bonded concepts for sandwich structure. Both a large crown (skintstringer) and keel (sandwich) panel were repaired. A compression test of the keel panel indicated the demonstrated repairs recovered ultimate load capability. In conjunction with the design and manufacturing developments, inspection methods were investigated for their potential to evaluate damaged structure and verify the integrity of completed repairs.

  6. Cabin fuselage structural design with engine installation and control system

    NASA Technical Reports Server (NTRS)

    Balakrishnan, Tanapaal; Bishop, Mike; Gumus, Ilker; Gussy, Joel; Triggs, Mike

    1994-01-01

    Design requirements for the cabin, cabin system, flight controls, engine installation, and wing-fuselage interface that provide adequate interior volume for occupant seating, cabin ingress and egress, and safety are presented. The fuselage structure must be sufficient to meet the loadings specified in the appropriate sections of Federal Aviation Regulation Part 23. The critical structure must provide a safe life of 10(exp 6) load cycles and 10,000 operational mission cycles. The cabin seating and controls must provide adjustment to account for various pilot physiques and to aid in maintenance and operation of the aircraft. Seats and doors shall not bind or lockup under normal operation. Cabin systems such as heating and ventilation, electrical, lighting, intercom, and avionics must be included in the design. The control system will consist of ailerons, elevator, and rudders. The system must provide required deflections with a combination of push rods, bell cranks, pulleys, and linkages. The system will be free from slack and provide smooth operation without binding. Environmental considerations include variations in temperature and atmospheric pressure, protection against sand, dust, rain, humidity, ice, snow, salt/fog atmosphere, wind and gusts, and shock and vibration. The following design goals were set to meet the requirements of the statement of work: safety, performance, manufacturing and cost. To prevent the engine from penetrating the passenger area in the event of a crash was the primary safety concern. Weight and the fuselage aerodynamics were the primary performance concerns. Commonality and ease of manufacturing were major considerations to reduce cost.

  7. Propagation of propeller tone noise through a fuselage boundary layer

    NASA Technical Reports Server (NTRS)

    Hanson, D. B.; Magliozzi, B.

    1984-01-01

    In earlier experimental and analytical studies, it was found that the boundary layer on an aircraft could provide significant shielding from propeller noise at typical transport airplane cruise Mach numbers. In this paper a new three-dimensional theory is described that treats the combined effects of refraction and scattering by the fuselage and boundary layer. The complete wave field is solved by matching analytical expressions for the incident and scattered waves in the outer flow to a numerical solution in the boundary layer flow. The model for the incident waves is a near-field frequency-domain propeller source theory developed previously for free field studies. Calculations for an advanced turboprop (Prop-Fan) model flight test at 0.8 Mach number show a much smaller than expected pressure amplification at the noise directivity peak, strong boundary layer shielding in the forward quadrant, and shadowing around the fuselage. Results are presented showing the difference between fuselage surface and free-space noise predictions as a function of frequency and Mach number. Comparison of calculated and measured effects obtained in a Prop-Fan model flight test show good agreement, particularly near and aft of the plane of rotation at high cruise Mach number.

  8. Aircraft Configured for Flight in an Atmosphere Having Low Density

    NASA Technical Reports Server (NTRS)

    Croom, Mark A. (Inventor); Smith, Stephen C. (Inventor); Gelhausen, Paul A. (Inventor); Guynn, Mark D. (Inventor); Hunter, Craig A. (Inventor); Paddock, David A. (Inventor); Riddick, Steven E. (Inventor); Teter, Jr., John E. (Inventor)

    2012-01-01

    An aircraft is configured for flight in an atmosphere having a low density. The aircraft includes a fuselage, a pair of wings, and a rear stabilizer. The pair of wings extends from the fuselage in opposition to one another. The rear stabilizer extends from the fuselage in spaced relationship to the pair of wings. The fuselage, the wings, and the rear stabilizer each present an upper surface opposing a lower surface. The upper and lower surfaces have X, Y, and Z coordinates that are configured for flight in an atmosphere having low density.

  9. An unsteady helicopter rotor: Fuselage interaction analysis

    NASA Technical Reports Server (NTRS)

    Lorber, Peter F.; Egolf, T. Alan

    1988-01-01

    A computational method was developed to treat unsteady aerodynamic interactions between a helicopter rotor, wake, and fuselage and between the main and tail rotors. An existing lifting line prescribed wake rotor analysis and a source panel fuselage analysis were coupled and modified to predict unsteady fuselage surface pressures and airloads. A prescribed displacement technique is used to position the rotor wake about the fuselage. Either a rigid blade or an aeroelastic blade analysis may be used to establish rotor operating conditions. Sensitivity studies were performed to determine the influence of the wake fuselage geometry on the computation. Results are presented that describe the induced velocities, pressures, and airloads on the fuselage and on the rotor. The ability to treat arbitrary geometries is demonstrated using a simulated helicopter fuselage. The computational results are compared with fuselage surface pressure measurements at several locations. No experimental data was available to validate the primary product of the analysis: the vibratory airloads on the entire fuselage. A main rotor-tail rotor interaction analysis is also described, along with some hover and forward flight.

  10. Nonlinear analysis of damaged stiffened fuselage shells subjected to combined loads

    NASA Technical Reports Server (NTRS)

    Starnes, James H., Jr.; Britt, Vicki O.; Young, Richard D.; Rankin, Charles C.; Shore, Charles P.; Bains, Jane C.

    1994-01-01

    The results of an analytical study of the nonlinear response of stiffened fuselage shells with long cracks are presented. The shells are modeled with a hierarchical modeling strategy that accounts for global and local response phenomena accurately. Results are presented for internal pressure and mechanical bending loads. The effects of crack location and orientation on shell response are described. The effects of mechanical fasteners on the response of a lap joint and the effects of elastic and elastic-plastic material properties on the buckling response of tension-loaded flat panels with cracks are also addressed.

  11. Advanced Technology Composite Fuselage-Structural Performance

    NASA Technical Reports Server (NTRS)

    Walker, T. H.; Minguet, P. J.; Flynn, B. W.; Carbery, D. J.; Swanson, G. D.; Ilcewicz, L. B.

    1997-01-01

    Boeing is studying the technologies associated with the application of composite materials to commercial transport fuselage structure under the NASA-sponsored contracts for Advanced Technology Composite Aircraft Structures (ATCAS) and Materials Development Omnibus Contract (MDOC). This report addresses the program activities related to structural performance of the selected concepts, including both the design development and subsequent detailed evaluation. Design criteria were developed to ensure compliance with regulatory requirements and typical company objectives. Accurate analysis methods were selected and/or developed where practical, and conservative approaches were used where significant approximations were necessary. Design sizing activities supported subsequent development by providing representative design configurations for structural evaluation and by identifying the critical performance issues. Significant program efforts were directed towards assessing structural performance predictive capability. The structural database collected to perform this assessment was intimately linked to the manufacturing scale-up activities to ensure inclusion of manufacturing-induced performance traits. Mechanical tests were conducted to support the development and critical evaluation of analysis methods addressing internal loads, stability, ultimate strength, attachment and splice strength, and damage tolerance. Unresolved aspects of these performance issues were identified as part of the assessments, providing direction for future development.

  12. Alleviation of fuselage form drag using vortex flows: Final report

    SciTech Connect

    Wortman, A.

    1987-09-15

    The concept of using vortex generators to reduce the fuselage form drag of transport aircraft combines the outflow from the plane of symmetry which is induced by the rotational component of the vortex flow with the energization of the boundary layer to reduce the momentum thickness and to delay or eliminate flow separation. This idea was first advanced by the author in 1981. Under a DOE grant, the concept was validated in wind tunnel tests of approximately 1:17 scale models of fuselages of Boeing 747 and Lockheed C-5 aircraft. The search for the minimum drag involved three vortex generator configurations with three sizes of each in six locations clustered in the aft regions of the fuselages at the beginning of the tail upsweep. The local Reynolds number, which is referred to the length of boundary layer run from the nose, was approximately 10{sup 7} so that a fully developed turbulent boundary layer was present. Vortex generator planforms ranged from swept tapered, through swept straight, to swept reverse tapered wings whose semi-spans ranged from 50% to 125% of the local boundary layer thickness. Pitch angles of the vortex generators were varied by inboard actuators under the control of an external proportional digital radio controller. It was found that certain combinations of vortex generator parameters increased drag. However, with certain configurations, locations, and pitch angles of vortex generators, the highest drag reductions were 3% for the 747 and about 6% for the C-5, thus confirming the arguments that effectiveness increases with the rate of upsweep of the tail. Greatest gains in performance are therefore expected on aft loading military transports. 10 refs., 11 figs., 1 tab.

  13. Test and analysis results for composite transport fuselage and wing structures

    NASA Technical Reports Server (NTRS)

    Deaton, Jerry W.; Kullerd, Susan M.; Madan, Ram C.; Chen, Victor L.

    1992-01-01

    Automated tow placement (ATP) and stitching of dry textile composite preforms followed by resin transfer molding (RTM) are being investigated by researchers at NASA LaRC and Douglas Aircraft Company as cost-effective manufacturing processes for obtaining damage tolerant fuselage and wing structures for transport aircraft. The Douglas work is being performed under a NASA contract entitled 'Innovative Composites Aircraft Primary Structures (ICAPS)'. Data are presented in this paper to assess the damage tolerance of ATP and RTM fuselage elements with stitched-on stiffeners from compression tests of impacted three-J-stiffened panels and from stiffener pull-off tests. Data are also presented to assess the damage tolerance of RTM wing elements which had stitched skin and stiffeners from impacted single stiffener and three blade-stiffened compression tests and stiffener pull-off tests.

  14. Fuselage panel noise attenuation by piezoelectric switching control

    NASA Astrophysics Data System (ADS)

    Makihara, Kanjuro; Miyakawa, Takeya; Onoda, Junjiro; Minesugi, Kenji

    2010-08-01

    This paper describes a problem that we encountered in our noise attenuation project and our solution for it. We intend to attenuate low-frequency noise that transmits through aircraft fuselage panels. Our method of noise attenuation is implemented with a piezoelectric semi-active system having a selective switch instead of an active energy-supply system. The semi-active controller is based on the predicted sound pressure distribution obtained from acoustic emission analysis. Experiments and numerical simulations demonstrate that the semi-active method attenuates acoustic levels of not only the simple monochromatic noise but also of broadband noise. We reveal that tuning the electrical parameters in the circuit is the key to effective noise attenuation, to overcome the acoustic excitation problem due to sharp switching actions, as well as to control chattering problems. The results obtained from this investigation provide meaningful insights into designing noise attenuation systems for comfortable aircraft cabin environments.

  15. Cashier/Checker Learning Activity Packets (LAPs).

    ERIC Educational Resources Information Center

    Oklahoma State Dept. of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.

    Twenty-four learning activity packets (LAPs) are provided for six areas of instruction in a cashier/checker program. Section A, Orientation, contains an LAP on exploring the job of cashier-checker. Section B, Operations, has nine LAPs, including those on operating the cash register, issuing trading stamps, and completing the cash register balance…

  16. Astronaut Eileen Collins in Full Fuselage Trainer

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Astronaut Eileen M. Collins, pilot for the STS-63 mission, participates in STS-63 training at JSC's Shuttle mockup and integration laboratory. Collins is seated at the pilot's station in the Full Fuselage Trainer (FFT).

  17. Additive manufacturing of tools for lapping glass

    NASA Astrophysics Data System (ADS)

    Williams, Wesley B.

    2013-09-01

    Additive manufacturing technologies have the ability to directly produce parts with complex geometries without the need for secondary processes, tooling or fixtures. This ability was used to produce concave lapping tools with a VFlash 3D printer from 3D Systems. The lapping tools were first designed in Creo Parametric with a defined constant radius and radial groove pattern. The models were converted to stereolithography files which the VFlash used in building the parts, layer by layer, from a UV curable resin. The tools were rotated at 60 rpm and used with 120 grit and 220 grit silicon carbide lapping paste to lap 0.750" diameter fused silica workpieces. The samples developed a matte appearance on the lapped surface that started as a ring at the edge of the workpiece and expanded to the center. This indicated that as material was removed, the workpiece radius was beginning to match the tool radius. The workpieces were then cleaned and lapped on a second tool (with equivalent geometry) using a 3000 grit corundum aluminum oxide lapping paste, until a near specular surface was achieved. By using lapping tools that have been additively manufactured, fused silica workpieces can be lapped to approach a specified convex geometry. This approach may enable more rapid lapping of near net shape workpieces that minimize the material removal required by subsequent polishing. This research may also enable development of new lapping tool geometry and groove patterns for improved loose abrasive finishing.

  18. The effects of design details on cost and weight of fuselage structures

    NASA Technical Reports Server (NTRS)

    Swanson, G. D.; Metschan, S. L.; Morris, M. R.; Kassapoglou, C.

    1993-01-01

    Crown panel design studies showing the relationship between panel size, cost, weight, and aircraft configuration are compared to aluminum design configurations. The effects of a stiffened sandwich design concept are also discussed. This paper summarizes the effect of a design cost model in assessing the cost and weight relationships for fuselage crown panel designs. Studies were performed using data from existing aircraft to assess the effects of different design variables on the cost and weight of transport fuselage crown panel design. Results show a strong influence of load levels, panel size, and material choices on the cost and weight of specific designs. A design tool being developed under the NASA ACT program is used in the study to assess these issues. The effects of panel configuration comparing postbuckled and buckle resistant stiffened laminated structure is compared to a stiffened sandwich concept. Results suggest some potential economy with stiffened sandwich designs for compression dominated structure with relatively high load levels.

  19. Mechanical and analytical screening of braided composites for transport fuselage applications

    NASA Technical Reports Server (NTRS)

    Fedro, Mark J.; Gunther, Christian; Ko, Frank K.

    1991-01-01

    The mechanics of materials progress in support of the goal of understanding the application of braided composites in a transport aircraft fuselage are summarized. Composites consisting of both 2-D and 3-D braid patterns are investigated. Both consolidation of commingled graphite/PEEK and resin transfer molding of graphite-epoxy braided composite processes are studied. Mechanical tests were used to examine unnotched tension, open hole tension, compression, compression after impact, in-plane shear, out-of-plane tension, bearing, and crippling. Analytical methods are also developed and applied to predict the stiffness and strengths of test specimens. A preliminary study using the test data and analytical results is performed to assess the applicability of braided composites to a commercial aircraft fuselage.

  20. A coupled rotor-fuselage vibration analysis for helicopter rotor system fault detection

    NASA Astrophysics Data System (ADS)

    Yang, Mao

    original vibration time-history. The imbalanced mass fault causes higher 1/rev roll vibration that is insensitive to the airspeed. The misadjusted trim-tab fault induced 1/rev vertical vibration increases with airspeed. The misadjusted pitch-control rod fault causes high vibration at hover. A parametric study was conducted to identify key factors that affect the fault-induced fuselage vibration. Analysis show that elastic fuselage model and precise hub modeling (inclusion of vibration absorbers) are essential to the vibration pre diction. The analysis shows that a compound fault can be expressed as a linear combination of individual faults involved. Aircraft operational parameters, such as gross-weight; center of gravity location, flight speed, flight path and aircraft configuration, have significant impact on the fault-induced 1/rev vibration. Prediction show that there are certain patterns in the fault-induced 1/rev hub-loads. Thus measuring both fuselage vibration and hub loads may benefit rotor system fault detection.

  1. Optimization of Sandwich Composites Fuselages Under Flight Loads

    NASA Astrophysics Data System (ADS)

    Yuan, Chongxin; Bergsma, Otto; Koussios, Sotiris; Zu, Lei; Beukers, Adriaan

    2012-02-01

    The sandwich composites fuselages appear to be a promising choice for the future aircrafts because of their structural efficiency and functional integration advantages. However, the design of sandwich composites is more complex than other structures because of many involved variables. In this paper, the fuselage is designed as a sandwich composites cylinder, and its structural optimization using the finite element method (FEM) is outlined to obtain the minimum weight. The constraints include structural stability and the composites failure criteria. In order to get a verification baseline for the FEM analysis, the stability of sandwich structures is studied and the optimal design is performed based on the analytical formulae. Then, the predicted buckling loads and the optimization results obtained from a FEM model are compared with that from the analytical formulas, and a good agreement is achieved. A detailed parametric optimal design for the sandwich composites cylinder is conducted. The optimization method used here includes two steps: the minimization of the layer thickness followed by tailoring of the fiber orientation. The factors comprise layer number, fiber orientation, core thickness, frame dimension and spacing. Results show that the two-step optimization is an effective method for the sandwich composites and the foam sandwich cylinder with core thickness of 5 mm and frame pitch of 0.5 m exhibits the minimum weight.

  2. Residual Strength Pressure Tests and Nonlinear Analyses of Stringer- and Frame-Stiffened Aluminum Fuselage Panels with Longitudinal Cracks

    NASA Technical Reports Server (NTRS)

    Young, Richard D.; Rouse, Marshall; Ambur, Damodar R.; Starnes, James H., Jr.

    1999-01-01

    The results of residual strength pressure tests and nonlinear analyses of stringer- and frame-stiffened aluminum fuselage panels with longitudinal cracks are presented. Two types of damage are considered: a longitudinal crack located midway between stringers, and a longitudinal crack adjacent to a stringer and along a row of fasteners in a lap joint that has multiple-site damage (MSD). In both cases, the longitudinal crack is centered on a severed frame. The panels are subjected to internal pressure plus axial tension loads. The axial tension loads are equivalent to a bulkhead pressure load. Nonlinear elastic-plastic residual strength analyses of the fuselage panels are conducted using a finite element program and the crack-tip-opening-angle (CTOA) fracture criterion. Predicted crack growth and residual strength results from nonlinear analyses of the stiffened fuselage panels are compared with experimental measurements and observations. Both the test and analysis results indicate that the presence of MSD affects crack growth stability and reduces the residual strength of stiffened fuselage shells with long cracks.

  3. Residual Strength Pressure Tests and Nonlinear Analyses of Stringer-and Frame-Stiffened Aluminum Fuselage Panels with Longitudinal Cracks

    NASA Technical Reports Server (NTRS)

    Young, Richard D.; Rouse, Marshall; Ambur, Damodar R.; Starnes, James H., Jr.

    1998-01-01

    The results of residual strength pressure tests and nonlinear analyses of stringer- and frame-stiffened aluminum fuselage panels with longitudinal cracks are presented. Two types of damage are considered: a longitudinal crack located midway between stringers, and a longitudinal crack adjacent to a stringer and along a row of fasteners in a lap joint that has multiple-site damage (MSD). In both cases, the longitudinal crack is centered on a severed frame. The panels are subjected to internal pressure plus axial tension loads. The axial tension loads are equivalent to a bulkhead pressure load. Nonlinear elastic-plastic residual strength analyses of the fuselage panels are conducted using a finite element program and the crack-tip-opening-angle (CTOA) fracture criterion. Predicted crack growth and residual strength results from nonlinear analyses of the stiffened fuselage panels are compared with experimental measurements and observations. Both the test and analysis results indicate that the presence of MSD affects crack growth stability and reduces the residual strength of stiffened fuselage shells with long cracks.

  4. Crash Simulation of a Vertical Drop Test of a B737 Fuselage Section with Overhead Bins and Luggage

    NASA Technical Reports Server (NTRS)

    Jackson, Karen E.; Fasanella, Edwin L.

    2004-01-01

    The focus of this paper is to describe a crash simulation of a 30-ft/s vertical drop test of a Boeing 737 (B737) fuselage section. The drop test of the 10-ft. long fuselage section of a B737 aircraft was conducted in November of 2000 at the FAA Technical Center in Atlantic City, NJ. The fuselage section was outfitted with two different commercial overhead stowage bins. In addition, 3,229-lbs. of luggage were packed in the cargo hold to represent a maximum take-off weight condition. The main objective of the test was to evaluate the response and failure modes of the overhead stowage bins in a narrow-body transport fuselage section when subjected to a severe, but survivable, impact. A secondary objective of the test was to generate experimental data for correlation with the crash simulation. A full-scale 3-dimensional finite element model of the fuselage section was developed and a crash simulation was conducted using the explicit, nonlinear transient dynamic code, MSC.Dytran. Pre-test predictions of the fuselage and overhead bin responses were generated for correlation with the drop test data. A description of the finite element model and an assessment of the analytical/experimental correlation are presented. In addition, suggestions for modifications to the model to improve correlation are proposed.

  5. Noise control mechanisms of inside aircraft

    NASA Astrophysics Data System (ADS)

    Zverev, A. Ya.

    2016-07-01

    World trends in the development of methods and approaches to noise reduction in aircraft cabins are reviewed. The paper discusses the mechanisms of passive and active noise and vibration control, application of "smart" and innovative materials, new approaches to creating all fuselage-design elements, and other promising directions of noise control inside aircraft.

  6. Loose abrasive slurries for optical glass lapping

    SciTech Connect

    Neauport, Jerome; Destribats, Julie; Maunier, Cedric; Ambard, Chrystel; Cormont, Philippe; Pintault, B.; Rondeau, Olivier

    2010-10-20

    Loose abrasive lapping is widely used to prepare optical glass before its final polishing. We carried out a comparison of 20 different slurries from four different vendors. Slurry particle sizes and morphologies were measured. Fused silica samples were lapped with these different slurries on a single side polishing machine and characterized in terms of surface roughness and depth of subsurface damage (SSD). Effects of load, rotation speed, and slurry concentration during lapping on roughness, material removal rate, and SSD were investigated.

  7. Experimental and analytical study of the effects of floor location on response of composite fuselage frames

    NASA Technical Reports Server (NTRS)

    Jones, Lisa E.; Robinson, Martha; Fasanella, Edwin L.; Boitnott, Richard L.

    1992-01-01

    Experimental and analytical results are presented of the effects of floor placement on the structural response and strength of I-cross section, semi-circular fuselage frames constructed of graphite-epoxy composite material. The composite frame configuration is representative of current conventional aircraft design. Experimental strain distributions are presented from static loading tests of the composite frames and compared with finite element structural models and closed form solutions. An understanding of floor location effects can aid dynamists in predicting the crash behavior of these conventional structures, and may assist the designer in developing crashworthy structures for future aircraft.

  8. A fuselage/tank structure study for actively cooled hypersonic cruise vehicles: Structural analysis

    NASA Technical Reports Server (NTRS)

    Baker, A. H.

    1975-01-01

    The effects of fuselage cross-section (circular and elliptical) and structural arrangement (integral and nonintegral tanks) on the performance of actively cooled hypersonic cruise vehicles was evaluated. It was found that integrally machined stiffening of the tank walls, while providing the most weight-efficient use of materials, results in higher production costs. Fatigue and fracture mechanics appeared to have little effect on the weight of the three study aircraft. The need for thermal strain relief through insulation is discussed. Aircraft size and magnitude of the internal pressure are seen to be significant factors in tank design.

  9. Pediatric lap belt injuries: care and prevention.

    PubMed

    Shoemaker, B L; Ose, M

    1997-01-01

    Motor vehicle collisions are the leading cause of death from injury during childhood. As children outgrow their toddler car seats, they are often restrained by two-point lap belts, which are fashioned for adult body proportions. Those children restrained by two-point lap belts are at risk for intraabdominal and spinal injury during an auto collision. This article explores the mechanisms of injury and identification of "lap belt syndrome." Aspects of nursing care and prevention strategies will be discussed. A case study illustrates and summarizes the cogent aspects of lap belt related injury and child/family care.

  10. Advanced technology composite aircraft structures

    NASA Technical Reports Server (NTRS)

    Ilcewicz, Larry B.; Walker, Thomas H.

    1991-01-01

    Work performed during the 25th month on NAS1-18889, Advanced Technology Composite Aircraft Structures, is summarized. The main objective of this program is to develop an integrated technology and demonstrate a confidence level that permits the cost- and weight-effective use of advanced composite materials in primary structures of future aircraft with the emphasis on pressurized fuselages. The period from 1-31 May 1991 is covered.

  11. A three-dimensional, compressible, laminar boundary-layer method for general fuselages. Volume 1: Numerical method

    NASA Technical Reports Server (NTRS)

    Wie, Yong-Sun

    1990-01-01

    A procedure for calculating 3-D, compressible laminar boundary layer flow on general fuselage shapes is described. The boundary layer solutions can be obtained in either nonorthogonal 'body oriented' coordinates or orthogonal streamline coordinates. The numerical procedure is 'second order' accurate, efficient and independent of the cross flow velocity direction. Numerical results are presented for several test cases, including a sharp cone, an ellipsoid of revolution, and a general aircraft fuselage at angle of attack. Comparisons are made between numerical results obtained using nonorthogonal curvilinear 'body oriented' coordinates and streamline coordinates.

  12. A NASTRAN model of a large flexible swing-wing bomber. Volume 4: NASTRAN model development-fuselage structure

    NASA Technical Reports Server (NTRS)

    Mock, W. D.; Latham, R. A.

    1982-01-01

    The NASTRAN model plan for the fuselage structure was expanded in detail to generate the NASTRAN model for this substructure. The grid point coordinates were coded for each element. The material properties and sizing data for each element were specified. The fuselage substructure model was thoroughly checked out for continuity, connectivity, and constraints. This substructure was processed for structural influence coefficients (SIC) point loadings and the deflections were compared to those computed for the aircraft detail model. Finally, a demonstration and validation processing of this substructure was accomplished using the NASTRAN finite element program. The bulk data deck, stiffness matrices, and SIC output data were delivered.

  13. Interactive Inverse Design Optimization of Fuselage Shape for Low-Boom Supersonic Concepts

    NASA Technical Reports Server (NTRS)

    Li, Wu; Shields, Elwood; Le, Daniel

    2008-01-01

    This paper introduces a tool called BOSS (Boom Optimization using Smoothest Shape modifications). BOSS utilizes interactive inverse design optimization to develop a fuselage shape that yields a low-boom aircraft configuration. A fundamental reason for developing BOSS is the need to generate feasible low-boom conceptual designs that are appropriate for further refinement using computational fluid dynamics (CFD) based preliminary design methods. BOSS was not developed to provide a numerical solution to the inverse design problem. Instead, BOSS was intended to help designers find the right configuration among an infinite number of possible configurations that are equally good using any numerical figure of merit. BOSS uses the smoothest shape modification strategy for modifying the fuselage radius distribution at 100 or more longitudinal locations to find a smooth fuselage shape that reduces the discrepancies between the design and target equivalent area distributions over any specified range of effective distance. For any given supersonic concept (with wing, fuselage, nacelles, tails, and/or canards), a designer can examine the differences between the design and target equivalent areas, decide which part of the design equivalent area curve needs to be modified, choose a desirable rate for the reduction of the discrepancies over the specified range, and select a parameter for smoothness control of the fuselage shape. BOSS will then generate a fuselage shape based on the designer's inputs in a matter of seconds. Using BOSS, within a few hours, a designer can either generate a realistic fuselage shape that yields a supersonic configuration with a low-boom ground signature or quickly eliminate any configuration that cannot achieve low-boom characteristics with fuselage shaping alone. A conceptual design case study is documented to demonstrate how BOSS can be used to develop a low-boom supersonic concept from a low-drag supersonic concept. The paper also contains a study

  14. Textile composite fuselage structures development

    NASA Technical Reports Server (NTRS)

    Jackson, Anthony C.; Barrie, Ronald E.; Chu, Robert L.

    1993-01-01

    Phase 2 of the NASA ACT Contract (NAS1-18888), Advanced Composite Structural Concepts and Materials Technology for Transport Aircraft Structures, focuses on textile technology, with resin transfer molding or powder coated tows. The use of textiles has the potential for improving damage tolerance, reducing cost and saving weight. This program investigates resin transfer molding (RTM), as a maturing technology for high fiber volume primary structures and powder coated tows as an emerging technology with a high potential for significant cost savings and superior structural properties. Powder coated tow technology has promise for significantly improving the processibility of high temperature resins such as polyimides.

  15. Solar powered aircraft

    SciTech Connect

    Phillips, W.H.

    1983-11-15

    A cruciform wing structure for a solar powered aircraft is disclosed. Solar cells are mounted on horizontal wing surfaces. Wing surfaces with spanwise axis perpendicular to surfaces maintain these surfaces normal to the sun's rays by allowing aircraft to be flown in a controlled pattern at a large bank angle. The solar airplane may be of conventional design with respect to fuselage, propeller and tail, or may be constructed around a core and driven by propeller mechanisms attached near the tips of the airfoils.

  16. Solar powered aircraft

    NASA Technical Reports Server (NTRS)

    Phillips, W. H. (Inventor)

    1983-01-01

    A cruciform wing structure for a solar powered aircraft is disclosed. Solar cells are mounted on horizontal wing surfaces. Wing surfaces with spanwise axis perpendicular to surfaces maintain these surfaces normal to the Sun's rays by allowing aircraft to be flown in a controlled pattern at a large bank angle. The solar airplane may be of conventional design with respect to fuselage, propeller and tail, or may be constructed around a core and driven by propeller mechanisms attached near the tips of the airfoils.

  17. Aircraft empennage structural detail design

    NASA Technical Reports Server (NTRS)

    Meholic, Greg; Brown, Rhonda; Hall, Melissa; Harvey, Robert; Singer, Michael; Tella, Gustavo

    1993-01-01

    This project involved the detailed design of the aft fuselage and empennage structure, vertical stabilizer, rudder, horizontal stabilizer, and elevator for the Triton primary flight trainer. The main design goals under consideration were to illustrate the integration of the control systems devices used in the tail surfaces and their necessary structural supports as well as the elevator trim, navigational lighting system, electrical systems, tail-located ground tie, and fuselage/cabin interface structure. Accommodations for maintenance, lubrication, adjustment, and repairability were devised. Weight, fabrication, and (sub)assembly goals were addressed. All designs were in accordance with the FAR Part 23 stipulations for a normal category aircraft.

  18. Study of utilization of advanced composites in fuselage structures of large transports

    NASA Technical Reports Server (NTRS)

    Jackson, A. C.; Campion, M. C.; Pei, G.

    1984-01-01

    The effort required by the transport aircraft manufacturers to support the introduction of advanced composite materials into the fuselage structure of future commercial and military transport aircraft is investigated. Technology issues, potential benefits to military life cycle costs and commercial operating costs, and development plans are examined. The most urgent technology issues defined are impact dynamics, acoustic transmission, pressure containment and damage tolerance, post-buckling, cutouts, and joints and splices. A technology demonstration program is defined and a rough cost and schedule identified. The fabrication and test of a full-scale fuselage barrel section is presented. Commercial and military benefits are identified. Fuselage structure weight savings from use of advanced composites are 16.4 percent for the commercial and 21.8 percent for the military. For the all-composite airplanes the savings are 26 percent and 29 percent, respectively. Commercial/operating costs are reduced by 5 percent for the all-composite airplane and military life cycle costs by 10 percent.

  19. Influence of fuselage on propeller design

    NASA Technical Reports Server (NTRS)

    Troller, Theodor

    1928-01-01

    In the present paper I shall not consider the problem of the best arrangement of airplane and propeller, but only a simple method for designing a propeller for a given arrangement of airplane parts. The inflow to the propeller and hence the efficiency of the propeller is affected most by the fuselage.

  20. Astronaut Eileen Collins in Full Fuselage Trainer

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Astronaut Eileen M. Collins, pilot for the STS-63 mission, participates in STS-63 training at JSC's Shuttle mockup and integration laboratory. Collins is seated at the pilot's station in the Full Fuselage Trainer (FFT) (48403-4); Collins looks out the aft flight deck window in the Shuttle mockup trainer (48405).

  1. Summary of AH-1G flight vibration data for validation of coupled rotor-fuselage analyses

    NASA Technical Reports Server (NTRS)

    Dompka, R. V.; Cronkhite, J. D.

    1986-01-01

    Under a NASA research program designated DAMVIBS (Design Analysis Methods for VIBrationS), four U. S. helicopter industry participants (Bell Helicopter, Boeing Vertol, McDonnell Douglas Helicopter, and Sikorsky Aircraft) are to apply existing analytical methods for calculating coupled rotor-fuselage vibrations of the AH-1G helicopter for correlation with flight test data from an AH-1G Operational Load Survey (OLS) test program. Bell Helicopter, as the manufacturer of the AH-1G, was asked to provide pertinent rotor data and to collect the OLS flight vibration data needed to perform the correlations. The analytical representation of the fuselage structure is based on a NASTRAN finite element model (FEM) developed by Bell which has been extensively documented and correlated with ground vibration tests.The AH-1G FEM was provided to each of the participants for use in their coupled rotor-fuselage analyses. This report describes the AH-1G OLS flight test program and provides the flight conditions and measured vibration data to be used by each participant in their correlation effort. In addition, the mechanical, structural, inertial and aerodynamic data for the AH-1G two-bladed teetering main rotor system are presented. Furthermore, modifications to the NASTRAN FEM of the fuselage structure that are necessary to make it compatible with the OLS test article are described. The AH-1G OLS flight test data was found to be well documented and provide a sound basis for evaluating currently existing analysis methods used for calculation of coupled rotor-fuselage vibrations.

  2. Experimental and analytical investigations of fuselage modal characteristics and structural-acoustic coupling

    NASA Technical Reports Server (NTRS)

    Simpson, Myles A.; Mathur, Gopal P.

    1992-01-01

    Measurements conducted on a DC-9 aircraft test section to define the shell and cavity modes of the fuselage, understand its structural-acoustic coupling characteristics, and measure its response to different types of acoustic and vibration excitations are reported. The data were processed to generate spatial plots and wavenumber maps of the shell acceleration and cabin acoustic pressure field. Analysis and interpretation of the spatial plots and wavenumber maps showed that the only structural-acoustic coupling occurred at 105 Hz between the N=2 circumferential structural mode and the (n=2, p=0) circumferential cavity mode. The fuselage response to vibration excitation was found to be dominated by modes whose order increases with frequency.

  3. Unsteady transonic potential flow over a flexible fuselage

    NASA Technical Reports Server (NTRS)

    Gibbons, Michael D.

    1993-01-01

    A flexible fuselage capability has been developed and implemented within version 1.2 of the CAP-TSD code. The capability required adding time dependent terms to the fuselage surface boundary conditions and the fuselage surface pressure coefficient. The new capability will allow modeling the effect of a flexible fuselage on the aeroelastic stability of complex configurations. To assess the flexible fuselage capability several steady and unsteady calculations have been performed for slender fuselages with circular cross-sections. Steady surface pressures are compared with experiment at transonic flight conditions. Unsteady cross-sectional lift is compared with other analytical results at a low subsonic speed and a transonic case has been computed. The comparisons demonstrate the accuracy of the flexible fuselage modifications.

  4. Impact damage resistance of composite fuselage structure, part 2

    NASA Technical Reports Server (NTRS)

    Dost, Ernest F.; Finn, Scott R.; Murphy, Daniel P.; Huisken, Amy B.

    1993-01-01

    The strength of laminated composite materials may be significantly reduced by foreign object impact induced damage. An understanding of the damage state is required in order to predict the behavior of structure under operational loads or to optimize the structural configuration. Types of damage typically induced in laminated materials during an impact event include transverse matrix cracking, delamination, and/or fiber breakage. The details of the damage state and its influence on structural behavior depend on the location of the impact. Damage in the skin may act as a soft inclusion or affect panel stability, while damage occurring over a stiffener may include debonding of the stiffener flange from the skin. An experiment to characterize impact damage resistance of fuselage structure as a function of structural configuration and impact threat was performed. A wide range of variables associated with aircraft fuselage structure such as material type and stiffener geometry (termed, intrinsic variables) and variables related to the operating environment such as impactor mass and diameter (termed, extrinsic variables) were studied using a statistically based design-of-experiments technique. The experimental design resulted in thirty-two different 3-stiffener panels. These configured panels were impacted in various locations with a number of impactor configurations, weights, and energies. The results obtained from an examination of impacts in the skin midbay and hail simulation impacts are documented. The current discussion is a continuation of that work with a focus on nondiscrete characterization of the midbay hail simulation impacts and discrete characterization of impact damage for impacts over the stiffener.

  5. Quadruple Lap Shear Processing Evaluation

    NASA Technical Reports Server (NTRS)

    Thornton, Tony N.; McCool, A. (Technical Monitor)

    2000-01-01

    The Thiokol, Science and Engineering Huntsville Operations (SEHO) Laboratory has previously experienced significant levels of variation in testing Quadruple Lap Shear (QLS) specimens. The QLS test is used at Thiokol / Utah for the qualification of Reusable Solid Rocket Motor (RSRM) nozzle flex bearing materials. A test was conducted to verify that process changes instituted by SEHO personnel effectively reduced variability, even with normal processing variables introduced. A test matrix was designed to progress in a series of steps; the first establishing a baseline, then introducing additional solvents or other variables. Variables included normal test plan delay times, pre-bond solvent hand-wipes and contaminants. Each condition tested utilized standard QLS hardware bonded with natural rubber, two separate technicians and three replicates. This paper will report the results and conclusions of this investigation.

  6. Propeller aircraft interior noise model

    NASA Technical Reports Server (NTRS)

    Pope, L. D.; Wilby, E. G.; Wilby, J. F.

    1984-01-01

    An analytical model was developed to predict the interior noise of propeller-driven aircraft. The fuselage model is that of a cylinder with a structurally-integral floor. The cabin sidewall is stiffened by stringers and ring frames, and the floor by longitudinal beams. The cabin interior is covered with a sidewall treatments consisting of layers of porous material and an impervious trim septum. Representation of the propeller pressure field is utilized as input data in the form of the propeller noise signature at a series of locations on a grid over the fuselage structure. Results obtained from the analytical model are compared with test data measured by NASA in a scale model cylindrical fuselage excited by a model propeller.

  7. Novel Composites for Wing and Fuselage Applications

    NASA Technical Reports Server (NTRS)

    Suarez, J. A.; Buttitta, C.

    1996-01-01

    Design development was successfully completed for textile preforms with continuous cross-stiffened epoxy panels with cut-outs. The preforms developed included 3-D angle interlock weaving of graphite structural fibers impregnated by resin film infiltration (RFI) and shown to be structurally suitable under conditions requiring minimum acquisition costs. Design guidelines/analysis methodology for such textile structures are given. The development was expanded to a fuselage side-panel component of a subsonic commercial airframe and found to be readily scalable. The successfully manufactured panel was delivered to NASA Langley for biaxial testing. This report covers the work performed under Task 3 -- Cross-Stiffened Subcomponent; Task 4 -- Design Guidelines/Analysis of Textile-Reinforced Composites; and Task 5 -- Integrally Woven Fuselage Panel.

  8. Airborne Synthetic Aperature Radar (AIRSAR) on left rear fuselage of DC-8 Airborne Laboratory

    NASA Technical Reports Server (NTRS)

    1998-01-01

    A view of the Airborne Synthetic Aperature Radar (AIRSAR) antenna on the left rear fuselage of the DC-8. The AIRSAR captures images of the ground from the side of the aircraft and can provide precision digital elevation mapping capabilities for a variety of studies. The AIRSAR is one of a number of research systems that have been added to the DC-8. NASA is using a DC-8 aircraft as a flying science laboratory. The platform aircraft, based at NASA's Dryden Flight Research Center, Edwards, Calif., collects data for many experiments in support of scientific projects serving the world scientific community. Included in this community are NASA, federal, state, academic and foreign investigators. Data gathered by the DC-8 at flight altitude and by remote sensing have been used for scientific studies in archeology, ecology, geography, hydrology, meteorology, oceanography, volcanology, atmospheric chemistry, soil science and biology.

  9. Composite fuselage crown panel manufacturing technology

    NASA Technical Reports Server (NTRS)

    Willden, Kurtis; Metschan, S.; Grant, C.; Brown, T.

    1992-01-01

    Commercial fuselage structures contain significant challenges in attempting to save manufacturing costs with advanced composite technology. Assembly issues, material costs, and fabrication of elements with complex geometry are each expected to drive the cost of composite fuselage structures. Boeing's efforts under the NASA ACT program have pursued key technologies for low-cost, large crown panel fabrication. An intricate bond panel design and manufacturing concepts were selected based on the efforts of the Design Build Team (DBT). The manufacturing processes selected for the intricate bond design include multiple large panel fabrication with the Advanced Tow Placement (ATP) process, innovative cure tooling concepts, resin transfer molding of long fuselage frames, and utilization of low-cost material forms. The process optimization for final design/manufacturing configuration included factory simulations and hardware demonstrations. These efforts and other optimization tasks were instrumental in reducing cost by 18 percent and weight by 45 percent relative to an aluminum baseline. The qualitative and quantitative results of the manufacturing demonstrations were used to assess manufacturing risks and technology readiness.

  10. Airbag system and method for facilitating emergency egress from an aircraft

    NASA Technical Reports Server (NTRS)

    Rawdon, Blaine K. (Inventor); Hawley, Arthur V. (Inventor)

    2002-01-01

    An airbag system for elevating the fuselage of an aircraft off a landing surface a sufficient degree to allow for emergency egress of passengers and crew through ventral emergency exit doors. An airbag assembly made up of a plurality of independent airbags is disposed within the aircraft. When activated, the airbag system deploys the airbags external of the aircraft that elevate the fuselage of the aircraft a sufficient degree to allow for utilizing the ventral emergency exit doors on the fuselage to enable evacuating the passengers and crew. An activation mechanism is connected to the inflation.devices associated with each of the airbags. The activation mechanism generates an electrical signal which activates the inflation devices, which in turn fill the airbags with a compressed fluid, thus expanding the airbags and lifting the fuselage. A crew member initiates the activation of the airbag system through one or more switches.

  11. Large-Scale Advanced Prop-Fan (LAP)

    NASA Technical Reports Server (NTRS)

    Degeorge, C. L.

    1988-01-01

    In recent years, considerable attention has been directed toward improving aircraft fuel efficiency. Analytical studies and research with wind tunnel models have demonstrated that the high inherent efficiency of low speed turboprop propulsion systems may now be extended to the Mach .8 flight regime of today's commercial airliners. This can be accomplished with a propeller, employing a large number of thin highly swept blades. The term Prop-Fan has been coined to describe such a propulsion system. In 1983 the NASA-Lewis Research Center contracted with Hamilton Standard to design, build and test a near full scale Prop-Fan, designated the Large Scale Advanced Prop-Fan (LAP). This report provides a detailed description of the LAP program. The assumptions and analytical procedures used in the design of Prop-Fan system components are discussed in detail. The manufacturing techniques used in the fabrication of the Prop-Fan are presented. Each of the tests run during the course of the program are also discussed and the major conclusions derived from them stated.

  12. LAPS Grid generation and adaptation

    NASA Astrophysics Data System (ADS)

    Pagliantini, Cecilia; Delzanno, Gia Luca; Guo, Zehua; Srinivasan, Bhuvana; Tang, Xianzhu; Chacon, Luis

    2011-10-01

    LAPS uses a common-data framework in which a general purpose grid generation and adaptation package in toroidal and simply connected domains is implemented. The initial focus is on implementing the Winslow/Laplace-Beltrami method for generating non-overlapping block structured grids. This is to be followed by a grid adaptation scheme based on Monge-Kantorovich optimal transport method [Delzanno et al., J. Comput. Phys,227 (2008), 9841-9864], that equidistributes application-specified error. As an initial set of applications, we will lay out grids for an axisymmetric mirror, a field reversed configuration, and an entire poloidal cross section of a tokamak plasma reconstructed from a CMOD experimental shot. These grids will then be used for computing the plasma equilibrium and transport in accompanying presentations. A key issue for Monge-Kantorovich grid optimization is the choice of error or monitor function for equi-distribution. We will compare the Operator Recovery Error Source Detector (ORESD) [Lapenta, Int. J. Num. Meth. Eng,59 (2004) 2065-2087], the Tau method and a strategy based on the grid coarsening [Zhang et al., AIAA J,39 (2001) 1706-1715] to find an ``optimal'' grid. Work supported by DOE OFES.

  13. Nonlinear and progressive failure aspects of transport composite fuselage damage tolerance

    NASA Technical Reports Server (NTRS)

    Walker, Tom; Ilcewicz, L.; Murphy, Dan; Dopker, Bernhard

    1993-01-01

    The purpose is to provide an end-user's perspective on the state of the art in life prediction and failure analysis by focusing on subsonic transport fuselage issues being addressed in the NASA/Boeing Advanced Technology Composite Aircraft Structure (ATCAS) contract and a related task-order contract. First, some discrepancies between the ATCAS tension-fracture test database and classical prediction methods is discussed, followed by an overview of material modeling work aimed at explaining some of these discrepancies. Finally, analysis efforts associated with a pressure-box test fixture are addressed, as an illustration of modeling complexities required to model and interpret tests.

  14. A fuselage/tank structure study for actively cooled hypersonic cruise vehicles: Active cooling system analysis

    NASA Technical Reports Server (NTRS)

    Stone, J. E.

    1975-01-01

    The effects of fuselage cross section and structural arrangement on the performance of actively cooled hypersonic cruise vehicles are investigated. An active cooling system which maintains the aircraft's entire surface area at temperatures below 394 K at Mach 6 is developed along with a hydrogen fuel tankage thermal protection system. Thermodynamic characteristics of the actively cooled thermal protection systems established are summarized. Design heat loads and coolant flowrate requirements are defined for each major structural section and for the total system. Cooling system weights are summarized at the major component level. Conclusions and recommendations are included.

  15. Hybrid Wing-Body (HWB) Pressurized Fuselage Modeling, Analysis, and Design for Weight Reduction

    NASA Technical Reports Server (NTRS)

    Mukhopadhyay, Vivek

    2012-01-01

    This paper describes the interim progress for an in-house study that is directed toward innovative structural analysis and design of next-generation advanced aircraft concepts, such as the Hybrid Wing-Body (HWB) and the Advanced Mobility Concept-X flight vehicles, for structural weight reduction and associated performance enhancement. Unlike the conventional, skin-stringer-frame construction for a cylindrical fuselage, the box-type pressurized fuselage panels in the HWB undergo significant deformation of the outer aerodynamic surfaces, which must be minimized without significant structural weight penalty. Simple beam and orthotropic plate theory is first considered for sizing, analytical verification, and possible equivalent-plate analysis with appropriate simplification. By designing advanced composite stiffened-shell configurations, significant weight reduction may be possible compared with the sandwich and ribbed-shell structural concepts that have been studied previously. The study involves independent analysis of the advanced composite structural concepts that are presently being developed by The Boeing Company for pressurized HWB flight vehicles. High-fidelity parametric finite-element models of test coupons, panels, and multibay fuselage sections, were developed for conducting design studies and identifying critical areas of potential failure. Interim results are discussed to assess the overall weight/strength advantages.

  16. Application of Carbon Fibre Truss Technology to the Fuselage Structure of the SKYLON Spaceplane

    NASA Astrophysics Data System (ADS)

    Varvill, R.; Bond, A.

    A reusable SSTO spaceplane employing dual mode airbreathing/rocket engines, such as SKYLON, has a voluminous fuselage in order to accommodate the considerable quantities of hydrogen fuel needed for the ascent. The loading intensity which this fuselage has to withstand is relatively low due to the modest in-flight inertial accelerations coupled with the very low density of liquid hydrogen. Also the requirement to accommo- date considerable temperature differentials between the internal cryogenic tankage and the aerodynamically heated outer skin of the vehicle imposes an additional design constraint that results in an optimum fuselage structural concept very different to conventional aircraft or rocket practice. Several different structural con- cepts exist for the primary loadbearing structure. This paper explores the design possibilities of the various types and explains why an independent near ambient temperature CFRP truss structure was selected for the SKYLON vehicle. The construction of such a truss structure, at a scale not witnessed since the days of the airship, poses a number of manufacturing and design difficulties. In particular the construction of the nodes and their attachment to the struts is considered to be a key issue. This paper describes the current design status of the overall truss geometry, strut construction and manufacturing route, and the final method of assembly. The results of a preliminary strut and node test programme are presented which give confidence that the design targets will eventually be met.

  17. Drag of Exposed Fittings and Surface Irregularities on Airplane Fuselages

    NASA Technical Reports Server (NTRS)

    Wood, Donald H

    1928-01-01

    Measurements of drag were made on fittings taken from a typical fuselage to determine whether the difference between the observed full size fuselage drag and model fuselage drag could be attributed to the effects of fittings and surface irregularities found on the full size fuselage and not on the model. There are wide variations in the drag coefficients for the different fittings. In general those which protrude little from the surface or are well streamlined show very low and almost negligible drag. The measurements show, however, that a large part of the difference between model and full scale test results may be attributed to these fittings.

  18. Wireless Local Area Network Performance Inside Aircraft Passenger Cabins

    NASA Technical Reports Server (NTRS)

    Whetten, Frank L.; Soroker, Andrew; Whetten, Dennis A.; Whetten, Frank L.; Beggs, John H.

    2005-01-01

    An examination of IEEE 802.11 wireless network performance within an aircraft fuselage is performed. This examination measured the propagated RF power along the length of the fuselage, and the associated network performance: the link speed, total throughput, and packet losses and errors. A total of four airplanes: one single-aisle and three twin-aisle airplanes were tested with 802.11a, 802.11b, and 802.11g networks.

  19. 14 CFR 45.25 - Location of marks on fixed-wing aircraft.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Location of marks on fixed-wing aircraft... Location of marks on fixed-wing aircraft. (a) The operator of a fixed-wing aircraft must display the..., horizontally on both sides of the fuselage between the trailing edge of the wing and the leading edge of...

  20. 14 CFR 45.25 - Location of marks on fixed-wing aircraft.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Location of marks on fixed-wing aircraft... Location of marks on fixed-wing aircraft. (a) The operator of a fixed-wing aircraft shall display the..., horizontally on both sides of the fuselage between the trailing edge of the wing and the leading edge of...

  1. 14 CFR 45.25 - Location of marks on fixed-wing aircraft.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Location of marks on fixed-wing aircraft... Location of marks on fixed-wing aircraft. (a) The operator of a fixed-wing aircraft shall display the..., horizontally on both sides of the fuselage between the trailing edge of the wing and the leading edge of...

  2. A 0.15-scale study of configuration effects on the aerodynamic interaction between main rotor and fuselage

    NASA Technical Reports Server (NTRS)

    Trept, Ted

    1984-01-01

    Hover and forward flight tests were conducted to investigate the mutual aerodynamic interaction between the main motor and fuselage of a conventional helicopter configuration. A 0.15-scale Model 222 two-bladed teetering rotor was combined with a 0.15-scale model of the NASA Ames 40x80-foot wind tunnel 1500 horsepower test stand fairing. Configuration effects were studied by modifying the fairing to simulate a typical helicopter forebody. Separation distance between rotor and body were also investigated. Rotor and fuselage force and moment as well as pressure data are presented in graphical and tabular format. Data was taken over a range of thrust coefficients from 0.002 to 0.007. In forward flight speed ratio was varied from 0.1 to 0.3 with shaft angle varying from +4 to -12 deg. The data show that the rotors effect on the fuselage may be considerably more important to total aircraft performance than the effect of the fuselage on the rotor.

  3. VIEW OF BOEING 737200 FUSELAGE FROM TOP LEVEL OF TAIL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF BOEING 737-200 FUSELAGE FROM TOP LEVEL OF TAIL DOCK AND. A NEW SAFETY CABLE FROM THE TAIL DOCK WILL ALLOW INSPECTORS TO WALK UP AND DOWN THE FUSELAGE TO CHECK FOR CRACKS OR MISSING FASTENERS. - Greater Buffalo International Airport, Maintenance Hangar, Buffalo, Erie County, NY

  4. Use of nondestructive inspection and fiber optic sensing for damage characterization in carbon fiber fuselage structure

    NASA Astrophysics Data System (ADS)

    Neidigk, Stephen; Le, Jacqui; Roach, Dennis; Duvall, Randy; Rice, Tom

    2014-04-01

    To investigate a variety of nondestructive inspection technologies and assess impact damage characteristics in carbon fiber aircraft structure, the FAA Airworthiness Assurance Center, operated by Sandia National Labs, fabricated and impact tested two full-scale composite fuselage sections. The panels are representative of structure seen on advanced composite transport category aircraft and measured approximately 56"x76". The structural components consisted of a 16 ply skin, co-cured hat-section stringers, fastened shear ties and frames. The material used to fabricate the panels was T800 unidirectional pre-preg (BMS 8-276) and was processed in an autoclave. Simulated hail impact testing was conducted on the panels using a high velocity gas gun with 2.4" diameter ice balls in collaboration with the University of California San Diego (UCSD). Damage was mapped onto the surface of the panels using conventional, hand deployed ultrasonic inspection techniques, as well as more advanced ultrasonic and resonance scanning techniques. In addition to the simulated hail impact testing performed on the panels, 2" diameter steel tip impacts were used to produce representative impact damage which can occur during ground maintenance operations. The extent of impact damage ranges from less than 1 in2 to 55 in2 of interply delamination in the 16 ply skin. Substructure damage on the panels includes shear tie cracking and stringer flange disbonding. It was demonstrated that the fiber optic distributed strain sensing system is capable of detecting impact damage when bonded to the backside of the fuselage.

  5. Global Cost and Weight Evaluation of Fuselage Side Panel Design Concepts

    NASA Technical Reports Server (NTRS)

    Polland, D. R.; Finn, S. R.; Griess, K. H.; Hafenrichter, J. L.; Hanson, C. T.; Ilcewicz, L. B.; Metschan, S. L.; Scholz, D. B.; Smith, P. J.

    1997-01-01

    This report documents preliminary design trades conducted under NASA contracts NAS1 18889 (Advanced Technology Composite Aircraft Structures, ATCAS) and NAS1-19349 (Task 3, Pathfinder Shell Design) for a subsonic wide body commercial aircraft fuselage side panel section utilizing composite materials. Included in this effort were (1) development of two complete design concepts, (2) generation of cost and weight estimates, (3) identification of technical issues and potential design enhancements, and (4) selection of a single design to be further developed. The first design concept featured an open-section stringer stiffened skin configuration while the second was based on honeycomb core sandwich construction. The trade study cost and weight results were generated from comprehensive assessment of each structural component comprising the fuselage side panel section from detail fabrication through airplane final assembly. Results were obtained in three phases: (1) for the baseline designs, (2) after global optimization of the designs, and (3) the results anticipated after detailed design optimization. A critical assessment of both designs was performed to determine the risk associated with each concept, that is the relative probability of achieving the cost and weight projections. Seven critical technical issues were identified as the first step towards side panel detailed design optimization.

  6. Response of Composite Fuselage Sandwich Side Panels Subjected to Internal Pressure and Axial Tension

    NASA Technical Reports Server (NTRS)

    Rouse, Marshall; Ambur, Damodar R.; Dopker, Bernard; Shah, Bharat

    1998-01-01

    The results from an experimental and analytical study of two composite sandwich fuselage side panels for a transport aircraft are presented. Each panel has two window cutouts and three frames and utilizes a distinctly different structural concept. These panels have been evaluated with internal pressure loads that generate biaxial tension loading conditions. Design limit load and design ultimate load tests have been performed on both panels. One of the sandwich panels was tested with the middle frame removed to demonstrate the suitability of this two-frame design for supporting the prescribed biaxial loading conditions with twice the initial frame spacing of 20 inches. A damage tolerance study was conducted on the two-frame panel by cutting a notch in the panel that originates at the edge of a cutout and extends in the panel hoop direction through the window-belt area. This panel with a notch was tested in a combined-load condition to demonstrate the structural damage tolerance at the design limit load condition. Both the sandwich panel designs successfully satisfied all desired load requirements in the experimental part of the study, and experimental results from the two-frame panel with and without damage are fully explained by the analytical results. The results of this study suggest that there is potential for using sandwich structural concepts with greater than the usual 20-in. wide frame spacing to further reduce aircraft fuselage structural weight.

  7. Discrete crack growth analysis methodology for through cracks in pressurized fuselage structures

    NASA Astrophysics Data System (ADS)

    Potyondy, David O.; Wawrzynek, Paul A.; Ingraffea, Anthony R.

    1995-05-01

    A methodology for simulating the growth of long through cracks in the skin of pressurized aircraft fuselage structures is described. Crack trajectories are allowed to be arbitrary and are computed as part of the simulation. The interaction between the mechanical loads acting on the superstructure and the local structural response near the crack tips is accounted for by employing a hierarchical modelling strategy. The structural response for each cracked configuration is obtained using a geometrically non-linear shell finite element analysis procedure. Four stress intensity factors, two for membrane behavior and two for bending using Kirchhoff plate theory, are computed using an extension of the modified crack closure integral method. Crack trajectories are determined by applying the maximum tangential stress criterion. Crack growth results in localized mesh deletion, and the deletion regions are remeshed automatically using a newly developed all-quadrilateral meshing algorithm. The effectiveness of the methodology, and its applicability to performing practical analyses of realistic structures, is demonstrated by simulating curvilinear crack growth in a fuselage panel that is representative of a typical narrow-body aircraft. The predicted crack trajectory and fatigue life compare well with measurements of these same quantities from a full-scale pressurized panel test.

  8. Discrete crack growth analysis methodology for through cracks in pressurized fuselage structures

    NASA Astrophysics Data System (ADS)

    Potyondy, David O.; Wawrzynek, Paul A.; Ingraffea, Anthony R.

    1994-09-01

    A methodology for simulating the growth of long through cracks in the skin of pressurized aircraft fuselage structures is described. Crack trajectories are allowed to be arbitrary and are computed as part of the simulation. The interaction between the mechanical loads acting on the superstructure and the local structural response near the crack tips is accounted for by employing a hierarchical modeling strategy. The structural response for each cracked configuration is obtained using a geometrically nonlinear shell finite element analysis procedure. Four stress intensity factors, two for membrane behavior and two for bending using Kirchhoff plate theory, are computed using an extension of the modified crack closure integral method. Crack trajectories are determined by applying the maximum tangential stress criterion. Crack growth results in localized mesh deletion, and the deletion regions are remeshed automatically using a newly developed all-quadrilateral meshing algorithm. The effectiveness of the methodology and its applicability to performing practical analyses of realistic structures is demonstrated by simulating curvilinear crack growth in a fuselage panel that is representative of a typical narrow-body aircraft. The predicted crack trajectory and fatigue life compare well with measurements of these same quantities from a full-scale pressurized panel test.

  9. Enhancing commerical aircraft explosion survivability via active venting

    NASA Astrophysics Data System (ADS)

    Veldman, Roger Lee

    2001-10-01

    A new technique for enhancing aircraft safety in the event of an on-board explosion was studied. The method under study employs deployable vent panels located on the fuselage which are activated by an array of pressure sensors in the aircraft interior. In the event that an explosion is detected, appropriate vent panels are rapidly released from the aircraft. This approach seeks to provide timely relief of explosive pressures within an aircraft to prevent catastrophic structural failure. In this study, the approximate time scale of an explosive detonation and the subsequent sensing and electronic processing was determined. Then, the actuation response times of several vent panel systems were determined through analytical modeling and scale-model experimental testing with good correlation achieved. A scale-model experimental analysis was also conducted to determine the decompression venting time of an aircraft fuselage under a variety of conditions. Two different sized pressure vessels were used in the experimental work and the results correlated quite favorably with an analytical model for decompression times. Finally, a dynamic finite element analysis was conducted to determine the response of a portion of a typical commercial aircraft fuselage subjected to explosive pressure loading. It was determined from this analysis that the pre-stressing of the fuselage from cabin pressurization increases the damage vulnerability of a commercial aircraft fuselage to internal explosions. It was also learned from the structural analysis that the peak fuselage strains due to blast loading occur quickly (within approximately 2 milliseconds) while it was conservatively estimated that approximately 5 to 7 milliseconds would be required to sense the explosion, to actuate selected vent panels, and to initiate the release of cabin pressure from the aircraft. Additionally, since it was determined that predicted fuselage strains for both pressurized and unpressurized load cases remained

  10. Enhancing pulsed eddy current for inspection of P-3 Orion lap-joint structures

    NASA Astrophysics Data System (ADS)

    Butt, D. M.; Underhill, P. R.; Krause, T. W.

    2016-02-01

    During flight, aircraft are subjected to cyclic loading. In the Lockheed P-3 Orion airframe, this cyclic loading can lead to development of fatigue cracks at steel fastener locations in the top and second layers of aluminum wing skin lap-joints. An inspection method that is capable of detecting these cracks, without fastener removal, is desirable as this can minimize aircraft downtime, while subsequently reducing the risk of collateral damage. The ability to detect second layer cracks has been demonstrated using a Pulsed Eddy Current (PEC) probe design that utilizes the ferrous fastener as a flux conduit. This allows for deeper penetration of flux into the lap-joint second layer and consequently, sensitivity to the presence of cracks. Differential pick-up coil pairs are used to sense the eddy current response due to the presence of a crack. The differential signal obtained from pick-up coils on opposing sides of the fastener is analyzed using a Modified Principal Components Analysis (MPCA). This is followed by a cluster analysis of the resulting MPCA scores to separate fastener locations with cracks from those without. Probe design features, data acquisition system parameters and signal post-processing can each have a strong impact on crack detection. Physical probe configurations and signal analysis processes, used to enhance the PEC system for detection of cracks in P-3 Orion lap-joint structures, are investigated and an enhanced probe design is identified.

  11. 49 CFR 230.30 - Lap-joint seam boilers.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ..., DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Boilers and Appurtenances Inspection and Repair § 230.30 Lap-joint seam boilers. Every boiler having lap-joint longitudinal seams... 49 Transportation 4 2013-10-01 2013-10-01 false Lap-joint seam boilers. 230.30 Section...

  12. 49 CFR 230.30 - Lap-joint seam boilers.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ..., DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Boilers and Appurtenances Inspection and Repair § 230.30 Lap-joint seam boilers. Every boiler having lap-joint longitudinal seams... 49 Transportation 4 2014-10-01 2014-10-01 false Lap-joint seam boilers. 230.30 Section...

  13. 49 CFR 230.30 - Lap-joint seam boilers.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ..., DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Boilers and Appurtenances Inspection and Repair § 230.30 Lap-joint seam boilers. Every boiler having lap-joint longitudinal seams... 49 Transportation 4 2012-10-01 2012-10-01 false Lap-joint seam boilers. 230.30 Section...

  14. 49 CFR 230.30 - Lap-joint seam boilers.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ..., DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Boilers and Appurtenances Inspection and Repair § 230.30 Lap-joint seam boilers. Every boiler having lap-joint longitudinal seams... 49 Transportation 4 2011-10-01 2011-10-01 false Lap-joint seam boilers. 230.30 Section...

  15. 49 CFR 230.30 - Lap-joint seam boilers.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ..., DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Boilers and Appurtenances Inspection and Repair § 230.30 Lap-joint seam boilers. Every boiler having lap-joint longitudinal seams... 49 Transportation 4 2010-10-01 2010-10-01 false Lap-joint seam boilers. 230.30 Section...

  16. Recommendations for numerical solution of reinforced-panel and fuselage-ring problems

    NASA Technical Reports Server (NTRS)

    Hoff, N J; Libby, Paul A

    1949-01-01

    Procedures are recommended for solving the equations of equilibrium of reinforced panels and isolated fuselage rings as represented by the external loads and the operations table established according to Southwell's method. From the solution of these equations the stress distribution can be easily determined. The method of systematic relaxations, the matrix-calculus method, and several other methods applicable in special cases are discussed. Definite recommendations are made for obtaining the solution of reinforced-panel problems which are generally designated as shear lag problems. The procedures recommended are demonstrated in the analysis of a number of panels. In the case of fuselage rings it is not possible to make definite recommendations for the solution of the equilibrium equations for all rings and loadings. However, suggestions based on the latest experience are made and demonstrated on several rings.

  17. Thermal shock testing of lapped optical glass

    NASA Astrophysics Data System (ADS)

    Zhang, Yingrui; Wu, Yuansun; Liu, Han; Lambropoulos, John C.

    2007-09-01

    We have measured and modeled the thermal shock fracture of the commercially available BK-7 borosilicate crown optical glass as a function of surface finish prior to thermal shock testing. For surfaces lapped with alumina abrasives in the range 5 μm to 40 μm, the critical temperature drop for fracture in thin disk samples increases with diminishing abrasive size, and changes from 123.7+/-1.1 °C (for surfaces lapped with 40 μm abrasives) to 140.2+/-2.8 °C (for surfaces lapped with 5 μm abrasives.) We correlate the measured thermal shock (critical) temperature drop with the glass thermal and mechanical properties, including the fracture toughness, and the depth of surface cracks induced by the lapping process. We distinguish between "severe" and "mild" thermal shock conditions in terms of the applicable heat transfer coefficient and Biot number. We estimate that the depth of the strength controlling cracks on the edge of the disk samples was about 55-70 μm.

  18. Design of a spanloader cargo aircraft

    NASA Technical Reports Server (NTRS)

    Weisshaar, Terrence A.

    1989-01-01

    The design features of an aircraft capable of fulfilling a long haul, high capacity cargo mission are described. This span-loading aircraft, or flying wing, is capable of carrying extremely large payloads and is expected to be in demand to replace the slow-moving cargo ships currently in use. The spanloader seeks to reduce empty weight by eliminating the aircraft fuselage. Disadvantages are the thickness of the cargo-containing wing, and resulting stability and control problems. The spanloader presented here has a small fuselage, low-aspect ratio wings, winglets, and uses six turbofan engines for propulsion. It will have a payload capacity of 300,000 pounds plus 30 first class passengers and 6 crew members. Its projected market is transportation of freight from Europe and the U.S.A. to countries in the Pacific Basin. Cost estimates support its economic feasibility.

  19. Low-speed stability and control characteristics of a transport model with aft-fuselage-mounted advanced turboprops

    NASA Technical Reports Server (NTRS)

    Applin, Z. T.; Coe, P. L., Jr.

    1986-01-01

    A limited experimental investigation was conducted in the Langley 4- by 7-Meter Tunnel to explore the effects of aft-fuselage-mounted advanced turboprop installations on the low-speed stability and control characteristics of a representative transport aircraft in a landing configuration. In general, the experimental results indicate that the longitudinal and lateral-directional stability characteristics for the aft-fuselage-mounted single-rotation tractor and counter-rotation pusher propeller configurations tested during this investigation are acceptable aerodynamically. For the single-rotation tractor configuration, the propeller-induced aerodynamics are significantly influenced by the interaction of the propeller slipstream with the pylon and nacelle. The stability characteristics for the counter-rotation pusher configuration are strongly influenced by propeller normal forces. The longitudinal and directional control effectiveness, engine-out characteristics, and ground effects are also presented. In addition, a tabulated presentation of all aerodynamic data presented in this report is included as an appendix.

  20. Aerodynamic Interaction Effects of a Helicopter Rotor and Fuselage

    NASA Technical Reports Server (NTRS)

    Boyd, David D., Jr.

    1999-01-01

    A three year Cooperative Research Agreements made in each of the three years between the Subsonic Aerodynamics Branch of the NASA Langley Research Center and the Virginia Polytechnic Institute and State University (Va. Tech) has been completed. This document presents results from this three year endeavor. The goal of creating an efficient method to compute unsteady interactional effects between a helicopter rotor and fuselage has been accomplished. This paper also includes appendices to support these findings. The topics are: 1) Rotor-Fuselage Interactions Aerodynamics: An Unsteady Rotor Model; and 2) Rotor/Fuselage Unsteady Interactional Aerodynamics: A New Computational Model.

  1. Pseudomonas putida Fis Binds to the lapF Promoter In Vitro and Represses the Expression of LapF

    PubMed Central

    Lahesaare, Andrio; Moor, Hanna; Kivisaar, Maia; Teras, Riho

    2014-01-01

    The biofilm matrix of the rhizospheric bacterium Pseudomonas putida consists mainly of a proteinaceous component. The two largest P. putida proteins, adhesins LapA and LapF, are involved in biofilm development but prevail in different developmental stages of the biofilm matrix. LapA is abundant in the initial stage of biofilm formation whereas LapF is found in the mature biofilm. Although the transcriptional regulation of the adhesins is not exhaustively studied, some factors that can be involved in their regulation have been described. For example, RpoS, the major stress response sigma factor, activates, and Fis represses LapF expression. This study focused on the LapF expression control by Fis. Indeed, using DNase I footprint analysis a Fis binding site Fis-F2 was located 150 bp upstream of the lapF gene coding sequence. The mapped 5′ end of the lapF mRNA localized the promoter to the same region, overlapping with the Fis binding site Fis-F2. Monitoring the lapF promoter activity by a β-galactosidase assay revealed that Fis overexpression causes a 4-fold decrease in the transcriptional activity. Furthermore, mutations that diminished Fis binding to the Fis-F2 site abolished the repression of the lapF promoter. Thus, these data suggest that Fis is involved in the biofilm regulation via repression of LapF expression. PMID:25545773

  2. Analysis and Testing of a Composite Fuselage Shield for Open Rotor Engine Blade-Out Protection

    NASA Technical Reports Server (NTRS)

    Pereira, J. Michael; Emmerling, William; Seng, Silvia; Frankenberger, Charles; Ruggeri, Charles R.; Revilock, Duane M.; Carney, Kelly S.

    2015-01-01

    The Federal Aviation Administration is working with the European Aviation Safety Agency to determine the certification base for proposed new engines that would not have a containment structure on large commercial aircraft. Equivalent safety to the current fleet is desired by the regulators, which means that loss of a single fan blade will not cause hazard to the Aircraft. The NASA Glenn Research Center and The Naval Air Warfare Center (NAWC), China Lake, collaborated with the FAA Aircraft Catastrophic Failure Prevention Program to design and test lightweight composite shields for protection of the aircraft passengers and critical systems from a released blade that could impact the fuselage. In the test, two composite blades were pyrotechnically released from a running engine, each impacting a composite shield with a different thickness. The thinner shield was penetrated by the blade and the thicker shield prevented penetration. This was consistent with pre-test predictions. This paper documents the live fire test from the full scale rig at NAWC China Lake and describes the damage to the shields as well as instrumentation results.

  3. Analysis and Testing of a Composite Fuselage Shield for Open Rotor Engine Blade-Out Protection

    NASA Technical Reports Server (NTRS)

    Pereira, J. Michael; Emmerling, William; Seng, Silvia; Frankenberger, Charles; Ruggeri, Charles R.; Revilock, Duane M.; Carney, Kelly S.

    2016-01-01

    The Federal Aviation Administration is working with the European Aviation Safety Agency to determine the certification base for proposed new engines that would not have a containment structure on large commercial aircraft. Equivalent safety to the current fleet is desired by the regulators, which means that loss of a single fan blade will not cause hazard to the Aircraft. The NASA Glenn Research Center and The Naval Air Warfare Center (NAWC), China Lake, collaborated with the FAA Aircraft Catastrophic Failure Prevention Program to design and test lightweight composite shields for protection of the aircraft passengers and critical systems from a released blade that could impact the fuselage. LS-DYNA® was used to predict the thickness of the composite shield required to prevent blade penetration. In the test, two composite blades were pyrotechnically released from a running engine, each impacting a composite shield with a different thickness. The thinner shield was penetrated by the blade and the thicker shield prevented penetration. This was consistent with pre-test LS-DYNA predictions. This paper documents the analysis conducted to predict the required thickness of a composite shield, the live fire test from the full scale rig at NAWC China Lake and describes the damage to the shields as well as instrumentation results.

  4. Large-Scale Advanced Prop-Fan (LAP) pitch change actuator and control design report

    NASA Technical Reports Server (NTRS)

    Schwartz, R. A.; Carvalho, P.; Cutler, M. J.

    1986-01-01

    In recent years, considerable attention has been directed toward improving aircraft fuel consumption. Studies have shown that the high inherent efficiency previously demonstrated by low speed turboprop propulsion systems may now be extended to today's higher speed aircraft if advanced high-speed propeller blades having thin airfoils and aerodynamic sweep are utilized. Hamilton Standard has designed a 9-foot diameter single-rotation Large-Scale Advanced Prop-Fan (LAP) which will be tested on a static test stand, in a high speed wind tunnel and on a research aircraft. The major objective of this testing is to establish the structural integrity of large-scale Prop-Fans of advanced construction in addition to the evaluation of aerodynamic performance and aeroacoustic design. This report describes the operation, design features and actual hardware of the (LAP) Prop-Fan pitch control system. The pitch control system which controls blade angle and propeller speed consists of two separate assemblies. The first is the control unit which provides the hydraulic supply, speed governing and feather function for the system. The second unit is the hydro-mechanical pitch change actuator which directly changes blade angle (pitch) as scheduled by the control.

  5. Rotor-Fuselage Interaction: Analysis and Validation with Experiment

    NASA Technical Reports Server (NTRS)

    Berry, John D.; Bettschart, Nicolas

    1997-01-01

    The problem of rotor-fuselage aerodynamic interaction has to be considered in industry applications from various aspects. First, in order to increase helicopter speed and reduce operational costs, rotorcraft tend to be more and more compact, with a main rotor closer to the fuselage surface. This creates significant perturbations both on the main rotor and on the fuselage, including steady and unsteady effects due to blade and wake passage and perturbed inflow at the rotor disk. Furthermore,the main rotor wake affects the tail boom, empennage and anti-torque system. This has important consequences for helicopter control and vibrations at low speeds and also on tail rotor acoustics (main rotor wake-tail rotor interactions). This report describes the US Army-France MOD cooperative work on this problem from both the theoretical and experimental aspects. Using experimental 3D velocity field and fuselage surface pressure measurements, three codes that model the interactions of a helicopter rotor with a fuselage are compared. These comparisons demonstrate some of the strengths and weaknesses of current models for the combined rotor-fuselage analysis.

  6. Analysis of lap times in international swimming competitions.

    PubMed

    Robertson, Eileen; Pyne, David; Hopkins, Will; Anson, Judith

    2009-02-15

    Swimming performances were analysed for the top 16 finishers (semi-finalists, finalists) in nine international competitions over a 7-year period (1530 males, 1527 female). Total race time and intermediate lap times were log-transformed and analysed for effects of sex (male, female), stroke (freestyle, form strokes, individual medley), event (100, 200, and 400 m), and place (1-16). Between-athlete correlations characterized the relationship of each lap to final time, and within-athlete estimates quantified the effect of lap time on improvements in final time. Finalists exhibited very large correlations (r = 0.7-0.9) with final time in the second 50-m lap of 100-m events and the middle two 50-m and 100-m laps of 200-m and 400-m events respectively. For an individual swimmer, an achievable change in lap time was associated with an approximate 0.4-0.8% improvement in final time for finalists and an approximate 0.5-1.1% improvement in final time for semi-finalists, depending on sex, stroke, and event. The pattern of lap times was similar for the top 16 swimmers and between the best and worst swims for finalists. These findings indicate that substantial improvements can be made via the final lap in sprints and the middle two laps of 200- to 400-m events, but the overall pattern of lap times should not be changed. PMID:19214862

  7. Direct measurement of transmission loss of aircraft structures using the acoustic intensity approach

    NASA Technical Reports Server (NTRS)

    Wang, Y. S.; Crocker, M. J.

    1982-01-01

    A measurement technique is developed in order to obtain the sound transmission loss of an aircraft fuselage which obviates the need for the two-room transmission suite. The sound transmission paths were determined in tests on a light aircraft fuselage using a two-microphone acoustic intensity method for measuring the acoustic intensity transmitted to the interior when the fuselage was exposed to an external random incidence sound-field. The intensity transmitted through different sections of the fuselage can be estimated accurately using this new technique. Results of these tests show that the plexiglass window is the major transmission path in the high frequency range. In addition, the transmission losses through a single and a double layer window were predicted theoretically by using the Statistical Energy Analysis Model. Very good agreement is found between the predictions and the measurements.

  8. Homologs of the LapD-LapG c-di-GMP Effector System Control Biofilm Formation by Bordetella bronchiseptica.

    PubMed

    Ambrosis, Nicolás; Boyd, Chelsea D; O Toole, George A; Fernández, Julieta; Sisti, Federico

    2016-01-01

    Biofilm formation is important for infection by many pathogens. Bordetella bronchiseptica causes respiratory tract infections in mammals and forms biofilm structures in nasal epithelium of infected mice. We previously demonstrated that cyclic di-GMP is involved in biofilm formation in B. bronchiseptica. In the present work, based on their previously reported function in Pseudomonas fluorescens, we identified three genes in the B. bronchiseptica genome likely involved in c-di-GMP-dependent biofilm formation: brtA, lapD and lapG. Genetic analysis confirmed a role for BrtA, LapD and LapG in biofilm formation using microtiter plate assays, as well as scanning electron and fluorescent microscopy to analyze the phenotypes of mutants lacking these proteins. In vitro and in vivo studies showed that the protease LapG of B. bronchiseptica cleaves the N-terminal domain of BrtA, as well as the LapA protein of P. fluorescens, indicating functional conservation between these species. Furthermore, while BrtA and LapG appear to have little or no impact on colonization in a mouse model of infection, a B. bronchiseptica strain lacking the LapG protease has a significantly higher rate of inducing a severe disease outcome compared to the wild type. These findings support a role for c-di-GMP acting through BrtA/LapD/LapG to modulate biofilm formation, as well as impact pathogenesis, by B. bronchiseptica. PMID:27380521

  9. Homologs of the LapD-LapG c-di-GMP Effector System Control Biofilm Formation by Bordetella bronchiseptica

    PubMed Central

    Ambrosis, Nicolás; Boyd, Chelsea D.; O´Toole, George A.; Fernández, Julieta; Sisti, Federico

    2016-01-01

    Biofilm formation is important for infection by many pathogens. Bordetella bronchiseptica causes respiratory tract infections in mammals and forms biofilm structures in nasal epithelium of infected mice. We previously demonstrated that cyclic di-GMP is involved in biofilm formation in B. bronchiseptica. In the present work, based on their previously reported function in Pseudomonas fluorescens, we identified three genes in the B. bronchiseptica genome likely involved in c-di-GMP-dependent biofilm formation: brtA, lapD and lapG. Genetic analysis confirmed a role for BrtA, LapD and LapG in biofilm formation using microtiter plate assays, as well as scanning electron and fluorescent microscopy to analyze the phenotypes of mutants lacking these proteins. In vitro and in vivo studies showed that the protease LapG of B. bronchiseptica cleaves the N-terminal domain of BrtA, as well as the LapA protein of P. fluorescens, indicating functional conservation between these species. Furthermore, while BrtA and LapG appear to have little or no impact on colonization in a mouse model of infection, a B. bronchiseptica strain lacking the LapG protease has a significantly higher rate of inducing a severe disease outcome compared to the wild type. These findings support a role for c-di-GMP acting through BrtA/LapD/LapG to modulate biofilm formation, as well as impact pathogenesis, by B. bronchiseptica PMID:27380521

  10. Homologs of the LapD-LapG c-di-GMP Effector System Control Biofilm Formation by Bordetella bronchiseptica.

    PubMed

    Ambrosis, Nicolás; Boyd, Chelsea D; O Toole, George A; Fernández, Julieta; Sisti, Federico

    2016-01-01

    Biofilm formation is important for infection by many pathogens. Bordetella bronchiseptica causes respiratory tract infections in mammals and forms biofilm structures in nasal epithelium of infected mice. We previously demonstrated that cyclic di-GMP is involved in biofilm formation in B. bronchiseptica. In the present work, based on their previously reported function in Pseudomonas fluorescens, we identified three genes in the B. bronchiseptica genome likely involved in c-di-GMP-dependent biofilm formation: brtA, lapD and lapG. Genetic analysis confirmed a role for BrtA, LapD and LapG in biofilm formation using microtiter plate assays, as well as scanning electron and fluorescent microscopy to analyze the phenotypes of mutants lacking these proteins. In vitro and in vivo studies showed that the protease LapG of B. bronchiseptica cleaves the N-terminal domain of BrtA, as well as the LapA protein of P. fluorescens, indicating functional conservation between these species. Furthermore, while BrtA and LapG appear to have little or no impact on colonization in a mouse model of infection, a B. bronchiseptica strain lacking the LapG protease has a significantly higher rate of inducing a severe disease outcome compared to the wild type. These findings support a role for c-di-GMP acting through BrtA/LapD/LapG to modulate biofilm formation, as well as impact pathogenesis, by B. bronchiseptica.

  11. Fis overexpression enhances Pseudomonas putida biofilm formation by regulating the ratio of LapA and LapF.

    PubMed

    Moor, Hanna; Teppo, Annika; Lahesaare, Andrio; Kivisaar, Maia; Teras, Riho

    2014-12-01

    Bacteria form biofilm as a response to a number of environmental signals that are mediated by global transcription regulators and alarmones. Here we report the involvement of the global transcription regulator Fis in Pseudomonas putida biofilm formation through regulation of lapA and lapF genes. The major component of P. putida biofilm is proteinaceous and two large adhesive proteins, LapA and LapF, are known to play a key role in its formation. We have previously shown that Fis overexpression enhances P. putida biofilm formation. In this study, we used mini-Tn5 transposon mutagenesis to select potential Fis-regulated genes involved in biofilm formation. A total of 90 % of the studied transposon mutants carried insertions in the lap genes. Since our experiments showed that Fis-enhanced biofilm is mostly proteinaceous, the amounts of LapA and LapF from P. putida cells lysates were quantified using SDS-PAGE. Fis overexpression increases the quantity of LapA 1.6 times and decreases the amount of LapF at least 4 times compared to the wild-type cells. The increased LapA expression caused by Fis overexpression was confirmed by FACS analysis measuring the amount of LapA-GFP fusion protein. Our results suggest that the profusion of LapA in the Fis-overexpressed cells causes enhanced biofilm formation in mature stages of P. putida biofilm and LapF has a minor role in P. putida biofilm formation.

  12. Systematic Construction of Real Lapped Tight Frame Transforms

    PubMed Central

    Sandryhaila, Aliaksei; Chebira, Amina; Milo, Christina; Kovčcević, Jelena; Püschel, Markus

    2010-01-01

    We present a constructive algorithm for the design of real lapped equal-norm tight frame transforms. These transforms can be efficiently implemented through filter banks and have recently been proposed as a redundant counterpart to lapped orthogonal transforms, as well as an infinite-dimensional counterpart to harmonic tight frames. The proposed construction consists of two parts: First, we design a large class of new real lapped orthogonal transforms derived from submatrices of the discrete Fourier transform. Then, we seed these to obtain real lapped tight frame transforms corresponding to tight, equal-norm frames. We identify those frames that are maximally robust to erasures, and show that our construction leads to a large class of new lapped orthogonal transforms as well as new lapped tight frame transforms. PMID:20607116

  13. Dogs lap using acceleration-driven open pumping

    PubMed Central

    Gart, Sean; Socha, John J.; Vlachos, Pavlos P.; Jung, Sunghwan

    2015-01-01

    Dogs lap because they have incomplete cheeks and cannot suck. When lapping, a dog’s tongue pulls a liquid column from the bath, suggesting that the hydrodynamics of column formation are critical to understanding how dogs drink. We measured lapping in 19 dogs and used the results to generate a physical model of the tongue’s interaction with the air–fluid interface. These experiments help to explain how dogs exploit the fluid dynamics of the generated column. The results demonstrate that effects of acceleration govern lapping frequency, which suggests that dogs curl the tongue to create a larger liquid column. Comparing lapping in dogs and cats reveals that, despite similar morphology, these carnivores lap in different physical regimes: an unsteady inertial regime for dogs and steady inertial regime for cats. PMID:26668382

  14. Dogs lap using acceleration-driven open pumping.

    PubMed

    Gart, Sean; Socha, John J; Vlachos, Pavlos P; Jung, Sunghwan

    2015-12-29

    Dogs lap because they have incomplete cheeks and cannot suck. When lapping, a dog's tongue pulls a liquid column from the bath, suggesting that the hydrodynamics of column formation are critical to understanding how dogs drink. We measured lapping in 19 dogs and used the results to generate a physical model of the tongue's interaction with the air-fluid interface. These experiments help to explain how dogs exploit the fluid dynamics of the generated column. The results demonstrate that effects of acceleration govern lapping frequency, which suggests that dogs curl the tongue to create a larger liquid column. Comparing lapping in dogs and cats reveals that, despite similar morphology, these carnivores lap in different physical regimes: an unsteady inertial regime for dogs and steady inertial regime for cats.

  15. Mechanisms of transmission and control of low-frequency sound in aircraft interiors

    NASA Technical Reports Server (NTRS)

    Fuller, C. R.

    1985-01-01

    A simplified analytical model is used to study the principal mechanisms at work in propeller noise source radiation, fuselage response, and the behavior of the coupled inner acoustic field, in order to control low frequency sound in aircraft interiors. Both active and passive methods of noise control are comparatively evaluated in light of the transmission mechanisms. Fuselage vibrational response is noted to be dominated by only a few lower order circumferential modes.

  16. New design deforming controlling system of the active stressed lap

    NASA Astrophysics Data System (ADS)

    Ying, Li; Wang, Daxing

    2008-07-01

    A 450mm diameter active stressed lap has been developed in NIAOT by 2003. We design a new lap in 2007. This paper puts on emphases on introducing the new deforming control system of the lap. Aiming at the control characteristic of the lap, a new kind of digital deforming controller is designed. The controller consists of 3 parts: computer signal disposing, motor driving and force sensor signal disposing. Intelligent numeral PID method is applied in the controller instead of traditional PID. In the end, the result of new deformation are given.

  17. Analysis of aircraft wing-mounted antenna patterns

    NASA Technical Reports Server (NTRS)

    Marhefka, R. J.

    1976-01-01

    High frequency radiation patterns of aircraft wing mounted antennas are analyzed. Basic antenna types using ray optical techniques are studied. The aircraft is modelled in its most basic form so that this study is applicable to general type aircraft. The fuselage is modelled as a perfectly conducting finite elliptic cylinder. The wings and horizontal and vertical stabilizers are modelled as perfectly conducting "n" sided flat plates that can be arbitrarily attached to the fuselage or to themselves. The antenna locations are assumed to be on the surfaces of the wings at locations removed from engines and stores such that these effects are negligible. Volumetric patterns are calculated for several aircraft. The validity of the solution is shown by comparing the results against scale model measurements. The application of this solution to practical airborne antenna problems has shown its versatility in designing antennas and predicting their radiation patterns in an accurate and efficient manner.

  18. Advanced methods of structural and trajectory analysis for transport aircraft

    NASA Technical Reports Server (NTRS)

    Ardema, Mark D.

    1995-01-01

    This report summarizes the efforts in two areas: (1) development of advanced methods of structural weight estimation, and (2) development of advanced methods of trajectory optimization. The majority of the effort was spent in the structural weight area. A draft of 'Analytical Fuselage and Wing Weight Estimation of Transport Aircraft', resulting from this research, is included as an appendix.

  19. An interactive grid generation technique for fighter aircraft geometries

    NASA Technical Reports Server (NTRS)

    Smith, Robert E.; Everton, Eric L.

    1988-01-01

    This paper describes an interactive procedure to construct grids about fighter aircraft using a state-of-the-art workstation. The aircraft are characterized by a fuselage with an integrated canopy over the cockpit, an engine inlet, an area ruled midsection, canards, and highly-swept cranked delta wings or strakes integrated into the wings and tail surfaces. The grid topology, configuration surface grid, exterior grid computation, and computational interactive process are addressed.

  20. Prediction of light aircraft interior noise

    NASA Technical Reports Server (NTRS)

    Howlett, J. T.; Morales, D. A.

    1976-01-01

    A computerized interior noise prediction method for light aircraft is described. An existing analytical program, development for commercial jets, forms the basis of some modal analysis work which is described. The accuracy of this modal analysis technique for predicting low-frequency coupled acoustic-structural natural frequencies is discussed along with trends indicating the effects of varying parameters such as fuselage length and diameter, structural stiffness, and interior acoustic absorption.

  1. The cetaceopteryx: A global range military transport aircraft

    NASA Technical Reports Server (NTRS)

    Brivkalns, Chad; English, Nicole; Kazemi, Tahmineh; Kopel, Kim; Kroger, Seth; Ortega, ED

    1993-01-01

    This paper presents a design of a military transport aircraft capable of carrying 800,000 lbs of payload from any point in the United States to any other point in the world. Such massive airlift requires aggressive use of advanced technology and a unique configuration. The Cetaceopteyx features a joined wing, canard and six turbofan engines. The aircraft has a cost 1.07 billion (1993) dollars each. This paper presents in detail the mission description, preliminary sizing, aircraft configuration, wing design, fuselage design, empennage design, propulsion system, landing gear design, structures, drag, stability and control, systems layout, and cost analysis of the aircraft.

  2. Analysis of adhesively bonded composite lap joints

    SciTech Connect

    Tong, L.; Kuruppu, M.; Kelly, D.

    1994-12-31

    A new nonlinear formulation is developed for the governing equations for the shear and peel stresses in adhesively bonded composite double lap joints. The new formulation allows arbitrary nonlinear stress-strain characteristics in both shear and peel behavior. The equations are numerically integrated using a shooting technique and Newton-Raphson method behind a user friendly interface. The failure loads are predicted by utilizing the maximum stress criterion, interlaminar delamination and the energy density failure criteria. Numerical examples are presented to demonstrate the effect of the nonlinear adhesive behavior on the stress distribution and predict the failure load and the associated mode.

  3. Diamond machine tool face lapping machine

    DOEpatents

    Yetter, H.H.

    1985-05-06

    An apparatus for shaping, sharpening and polishing diamond-tipped single-point machine tools. The isolation of a rotating grinding wheel from its driving apparatus using an air bearing and causing the tool to be shaped, polished or sharpened to be moved across the surface of the grinding wheel so that it does not remain at one radius for more than a single rotation of the grinding wheel has been found to readily result in machine tools of a quality which can only be obtained by the most tedious and costly processing procedures, and previously unattainable by simple lapping techniques.

  4. Taxiing, Take-Off, and Landing Simulation of the High Speed Civil Transport Aircraft

    NASA Technical Reports Server (NTRS)

    Reaves, Mercedes C.; Horta, Lucas G.

    1999-01-01

    The aircraft industry jointly with NASA is studying enabling technologies for higher speed, longer range aircraft configurations. Higher speeds, higher temperatures, and aerodynamics are driving these newer aircraft configurations towards long, slender, flexible fuselages. Aircraft response during ground operations, although often overlooked, is a concern due to the increased fuselage flexibility. This paper discusses modeling and simulation of the High Speed Civil Transport aircraft during taxiing, take-off, and landing. Finite element models of the airframe for various configurations are used and combined with nonlinear landing gear models to provide a simulation tool to study responses to different ground input conditions. A commercial computer simulation program is used to numerically integrate the equations of motion and to compute estimates of the responses using an existing runway profile. Results show aircraft responses exceeding safe acceptable human response levels.

  5. How lamina-associated polypeptide 1 (LAP1) activates Torsin

    PubMed Central

    Sosa, Brian A; Demircioglu, F Esra; Chen, James Z; Ingram, Jessica; Ploegh, Hidde L; Schwartz, Thomas U

    2014-01-01

    Lamina-associated polypeptide 1 (LAP1) resides at the nuclear envelope and interacts with Torsins, poorly understood endoplasmic reticulum (ER)-localized AAA+ ATPases, through a conserved, perinuclear domain. We determined the crystal structure of the perinuclear domain of human LAP1. LAP1 possesses an atypical AAA+ fold. While LAP1 lacks canonical nucleotide binding motifs, its strictly conserved arginine 563 is positioned exactly where the arginine finger of canonical AAA+ ATPases is found. Based on modeling and electron microscopic analysis, we propose that LAP1 targets Torsin to the nuclear envelope by forming an alternating, heterohexameric (LAP1-Torsin)3 ring, in which LAP1 acts as the Torsin activator. The experimental data show that mutation of arginine 563 in LAP1 reduces its ability to stimulate TorsinA ATPase hydrolysis. This knowledge may help scientists understand the etiology of DYT1 primary dystonia, a movement disorder caused by a single glutamate deletion in TorsinA. DOI: http://dx.doi.org/10.7554/eLife.03239.001 PMID:25149450

  6. How dogs lap: open pumping driven by acceleration

    NASA Astrophysics Data System (ADS)

    Gart, Sean; Socha, John; Vlachos, Pavlos; Jung, Sunghwan

    2015-11-01

    Dogs drink by lapping because they have incomplete cheeks and cannot suck fluids into the mouth. When lapping, a dog's tongue pulls a liquid column from a bath, which is then swallowed, suggesting that the hydrodynamics of column formation are critical to understanding how dogs drink. We measured the kinematics of lapping from nineteen dogs and used the results to generate a physical model of the tongue's interaction with the air-fluid interface. These experiments with an accelerating rod help to explain how dogs exploit the fluid dynamics of the generated column. The results suggest that effects of acceleration govern lapping frequency, and that dogs curl the tongue ventrally (backwards) and time their bite on the column to increase fluid intake per lap. Comparing lapping in dogs and cats reveals that though they both lap with the same frequency scaling with respect to body mass and have similar morphology, these carnivores lap in different physical regimes: a high-acceleration regime for dogs and a low-acceleration regime for cats.

  7. Learning Activity Package, Chemistry I, (LAP) Study 29.

    ERIC Educational Resources Information Center

    Jones, Naomi

    Presented is a Learning Activity Package (LAP) study concerned with carbon and its compounds. This LAP in chemistry includes a rationale for studying the chemical element of carbon, a list of student objectives (stated in behavioral terms), of activities (reading, laboratory experiments, model construction, etc.), a two-page worksheet, a…

  8. Closeup oblique view of the aft fuselage of the Orbiter ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Close-up oblique view of the aft fuselage of the Orbiter Discovery looking forward and port with the Space Shuttle Main Engines (SSME) and Orbiter Maneuvering System/Reaction Control System pods still in place. However. the heat shields have been removed from the SSMEs providing a good view toward the interior of the aft fuselage. This image was taken inside the Orbiter Processing Facility at Kennedy Space Center. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  9. Closeup oblique view of the aft fuselage of the Orbiter ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Close-up oblique view of the aft fuselage of the Orbiter Discovery looking forward and starboard with the Space Shuttle Main Engines (SSME) and Orbiter Maneuvering System/Reaction Control System pods removed. The openings for the SSMEs have been covered with a flexible barrier to create a positive pressure envelope inside of the aft fuselage. This image was taken inside the Orbiter Processing Facility at Kennedy Space Center. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  10. Detail view of the starboard side of the aft fuselage ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail view of the starboard side of the aft fuselage of the Orbiter Discovery in the Orbiter Processing Facility at Kennedy Space Center with the Orbiter Maneuvering/Reaction Control Systems Pod removed and exposing the insulating foil used to protect the orbiter structure from the heat generated by the maneuvering and reaction control engines. Also note in the view that the aft fuselage access door has bee removed and also note the ground support equipment attached to the T-0 umbilical plate in the lower left of the view. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  11. Detail view of the port side of the aft fuselage ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail view of the port side of the aft fuselage of the Orbiter Discovery in the transfer aisle of the Vehicle Assembly Building at Kennedy Space Center with a lifting frame attached to the aft attach points of the orbiter. In this view, the Orbiter Maneuvering/Reaction Control Systems pod is in place. Also note the darker-colored trapezoidal aft fuselage access door and the T-0 umbilical panel to its right in the view. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  12. Closeup oblique view of the aft fuselage of the Orbiter ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Close-up oblique view of the aft fuselage of the Orbiter Discovery looking forward and starboard with the Space Shuttle Main Engines (SSME) and Orbiter Maneuvering System/Reaction Control System pods still in place. However. the heat shields have been removed from the SSMEs providing a good view toward the interior of the aft fuselage. This image was taken inside the Orbiter Processing Facility at Kennedy Space Center. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  13. The Influences of Lamination Angles on the Interior Noise Levels of an Aircraft

    NASA Technical Reports Server (NTRS)

    Fernholz, Christian M.; Robinson, Jay H.

    1996-01-01

    The feasibility of reducing the interior noise levels of an aircraft passenger cabin through optimization of the composite lay up of the fuselage is investigated. MSC/NASTRAN, a commercially available finite element code, is used to perform the dynamic analysis and subsequent optimization of the fuselage. The numerical calculation of sensitivity of acoustic pressure to lamination angle is verified using a simple thin, cylindrical shell with point force excitations as noise sources. The thin shell used represents a geometry similar to the fuselage and analytic solutions are available for the cylindrical thin shell equations of motion. Optimization of lamination angle for the reduction of interior noise is performed using a finite element model of an actual aircraft fuselage. The aircraft modeled for this study is the Beech Starship. Point forces simulate the structure borne noise produced by the engines and are applied to the fuselage at the wing mounting locations. These forces are the noise source for the optimization problem. The acoustic pressure response is reduced at a number of points in the fuselage and over a number of frequencies. The objective function is minimized with the constraint that it be larger than the maximum sound pressure level at the response points in the passenger cabin for all excitation frequencies in the range of interest. Results from the study of the fuselage model indicate that a reduction in interior noise levels is possible over a finite frequency range through optimal configuration of the lamination angles in the fuselage. Noise reductions of roughly 4 dB were attained. For frequencies outside the optimization range, the acoustic pressure response may increase after optimization. The effects of changing lamination angle on the overall structural integrity of the airframe are not considered in this study.

  14. Aircraft control system

    NASA Technical Reports Server (NTRS)

    Lisoski, Derek L. (Inventor); Kendall, Greg T. (Inventor)

    2007-01-01

    A solar rechargeable, long-duration, span-loaded flying wing, having no fuselage or rudder. Having a two-hundred foot wingspan that mounts photovoltaic cells on most all of the wing's top surface, the aircraft uses only differential thrust of its eight propellers to turn, pitch and yaw. The wing is configured to deform under flight loads to position the propellers such that the control can be achieved. Each of five segments of the wing has one or more motors and photovoltaic arrays, and produces its own lift independent of the other segments, to avoid loading them. Five two-sided photovoltaic arrays, in all, are mounted on the wing, and receive photovoltaic energy both incident on top of the wing, and which is incident also from below, through a bottom, transparent surface.

  15. Experimental dynamic deformation analysis of active stressed lap.

    PubMed

    Zhao, Hongshen; Li, Xiaojin; Fan, Bin; Zeng, Zhige

    2016-02-20

    We introduce a method to measure the dynamic surface deformation of an active stressed lap for fabricating a 4  mf/1.5  mirror. Lap surface accuracy working in some typical deformation velocities is put forward. Experimental results indicate that dynamic lap surface accuracy is worse than that of a static surface, and dynamic surface accuracy gets worse if deformation velocity increases, while the difference of lap surface error RMS is less than 1 μm. An optimization of the processing strategy is feasible through changing the deformation velocity of the active stressed lap depending on the processing schedule. After optimizing the grinding and polishing strategy, efficiency is expected to have a significant increase. PMID:26906568

  16. 14 CFR 27.549 - Fuselage, landing gear, and rotor pylon structures.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Fuselage, landing gear, and rotor pylon... Requirements § 27.549 Fuselage, landing gear, and rotor pylon structures. (a) Each fuselage, landing gear, and... accelerated flight and landing conditions, including engine torque. (Secs. 604, 605, 72 Stat. 778, 49...

  17. 14 CFR 27.549 - Fuselage, landing gear, and rotor pylon structures.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fuselage, landing gear, and rotor pylon... Requirements § 27.549 Fuselage, landing gear, and rotor pylon structures. (a) Each fuselage, landing gear, and... accelerated flight and landing conditions, including engine torque. (Secs. 604, 605, 72 Stat. 778, 49...

  18. Numerical Investigation of Rotorcraft Fuselage Drag Reduction Using Active Flow Control

    NASA Technical Reports Server (NTRS)

    Allan, Brian G.; Schaeffler, Norman W.

    2011-01-01

    The effectiveness of unsteady zero-net-mass-flux jets for fuselage drag reduction was evaluated numerically on a generic rotorcraft fuselage in forward flight with a rotor. Previous efforts have shown significant fuselage drag reduction using flow control for an isolated fuselage by experiment and numerical simulation. This work will evaluate a flow control strategy, that was originally developed on an isolated fuselage, in a more relevant environment that includes the effects of a rotor. Evaluation of different slot heights and jet velocity ratios were performed. Direct comparisons between an isolated fuselage and rotor/fuselage simulations were made showing similar flow control performance at a -3deg fuselage angle-of-attack condition. However, this was not the case for a -5deg angle-of-attack condition where the performance between the isolated fuselage and rotor/fuselage were different. The fuselage flow control resulted in a 17% drag reduction for a peak C(sub mu) of 0.0069 in a forward flight simulation where mu = 0:35 and CT/sigma = 0:08. The CFD flow control results also predicted a favorable 22% reduction of the fuselage download at this same condition, which can have beneficial compounding effects on the overall performance of the vehicle. This numerical investigation was performed in order to provide guidance for a future 1/3 scale wind tunnel experiment to be performed at the NASA 14-by 22-Foot Subsonic Tunnel.

  19. 14 CFR 27.549 - Fuselage, landing gear, and rotor pylon structures.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Fuselage, landing gear, and rotor pylon structures. 27.549 Section 27.549 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Requirements § 27.549 Fuselage, landing gear, and rotor pylon structures. (a) Each fuselage, landing gear,...

  20. Concept for a large multi-mission amphibian aircraft

    NASA Technical Reports Server (NTRS)

    Vaughan, J. C., III; Earl, T. D.

    1979-01-01

    A very large aircraft has been proposed for meeting both civil cargo and military transport needs for 1995 and beyond. The concept includes a wide noncircular fuselage cross section with a low wing, thick inner wing section, fuselage-mounted engines, and an air cushion landing gear. The civil freighter operates independently of congested passenger airports, using sheltered water as a runway and a waterfront land site for parking and ground operations. The military transport can operate from a wide variety of surfaces and temporary bases. The air cushion landing gear weighs substantially less than conventional gear and permits the use of extended takeoff distance resulting in improved payload/gross weight ratio.

  1. Structureborne noise measurements on a small twin-engine aircraft

    NASA Technical Reports Server (NTRS)

    Cole, J. E., III; Martini, K. F.

    1988-01-01

    Structureborne noise measurements performed on a twin-engine aircraft (Beechcraft Baron) are reported. There are two overall objectives of the test program. The first is to obtain data to support the development of analytical models of the wing and fuselage, while the second is to evaluate effects of structural parameters on cabin noise. Measurements performed include structural and acoustic responses to impact excitation, structural and acoustic loss factors, and modal parameters of the wing. Path alterations include added mass to simulate fuel, variations in torque of bolts joining wing and fuselage, and increased acoustic absorption. Conclusions drawn regarding these measurements are presented.

  2. Uncertain structural dynamics of aircraft panels and fuzzy structures analysis

    NASA Astrophysics Data System (ADS)

    Sparrow, Victor W.; Buehrle, Ralph D.

    2002-11-01

    Aircraft fuselage panels, seemingly simple structures, are actually complex because of the uncertainty of the attachments of the frame stiffeners and longitudinal stringers. It is clearly important to understand the dynamics of these panels because of the subsequent radiation into the passenger cabin, even when complete information is not available for all portions of the finite-element model. Over the last few years a fuzzy structures analysis (FSA) approach has been undertaken at Penn State and NASA Langley to quantify the uncertainty in modeling aircraft panels. A new MSC.Nastran [MSC.Software Corp. (Santa Ana, CA)] Direct Matrix Abstraction Program (DMAP) code was written and tested [AIAA paper 2001-1320, 42nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conf., Seattle, WA, 16 April 2001] and was applied to simple fuselage panel models [J. Acoust. Soc. Am. 109, 2410(A) (2001)]. Recently the work has focused on understanding the dynamics of a realistic aluminum fuselage panel, typical of today's aircraft construction. This presentation will provide an overview of the research and recent results will be given for the fuselage panel. Comparison between experiments and the FSA results will be shown for different fuzzy input parameters. [Work supported by NASA Research Cooperative Agreement NCC-1-382.

  3. Identification of a Novel Human LAP1 Isoform That Is Regulated by Protein Phosphorylation

    PubMed Central

    Santos, Mariana; Domingues, Sara C.; Costa, Patrícia; Muller, Thorsten; Galozzi, Sara; Marcus, Katrin; da Cruz e Silva, Edgar F.; da Cruz e Silva, Odete A.; Rebelo, Sandra

    2014-01-01

    Lamina associated polypeptide 1 (LAP1) is an integral protein of the inner nuclear membrane that is ubiquitously expressed. LAP1 binds to lamins and chromatin, probably contributing to the maintenance of the nuclear envelope architecture. Moreover, LAP1 also interacts with torsinA and emerin, proteins involved in DYT1 dystonia and X-linked Emery-Dreifuss muscular dystrophy disorder, respectively. Given its relevance to human pathological conditions, it is important to better understand the functional diversity of LAP1 proteins. In rat, the LAP1 gene (TOR1AIP1) undergoes alternative splicing to originate three LAP1 isoforms (LAP1A, B and C). However, it remains unclear if the same occurs with the human TOR1AIP1 gene, since only the LAP1B isoform had thus far been identified in human cells. In silico analysis suggested that, across different species, potential new LAP1 isoforms could be generated by alternative splicing. Using shRNA to induce LAP1 knockdown and HPLC-mass spectrometry analysis the presence of two isoforms in human cells was described and validated: LAP1B and LAP1C; the latter is putatively N-terminal truncated. LAP1B and LAP1C expression profiles appear to be dependent on the specific tissues analyzed and in cultured cells LAP1C was the major isoform detected. Moreover, LAP1B and LAP1C expression increased during neuronal maturation, suggesting that LAP1 is relevant in this process. Both isoforms were found to be post-translationally modified by phosphorylation and methionine oxidation and two LAP1B/LAP1C residues were shown to be dephosphorylated by PP1. This study permitted the identification of the novel human LAP1C isoform and partially unraveled the molecular basis of LAP1 regulation. PMID:25461922

  4. Lamb wave-based damage quantification and probability of detection modeling for fatigue life assessment of riveted lap joint

    NASA Astrophysics Data System (ADS)

    He, Jingjing; Wang, Dengjiang; Zhang, Weifang

    2015-03-01

    This study presents an experimental and modeling study for damage detection and quantification in riveted lap joints. Embedded lead zirconate titanate piezoelectric (PZT) ceramic wafer-type sensors are employed to perform in-situ non-destructive testing during fatigue cyclical loading. A multi-feature integration method is developed to quantify the crack size using signal features of correlation coefficient, amplitude change, and phase change. In addition, probability of detection (POD) model is constructed to quantify the reliability of the developed sizing method. Using the developed crack size quantification method and the resulting POD curve, probabilistic fatigue life prediction can be performed to provide comprehensive information for decision-making. The effectiveness of the overall methodology is demonstrated and validated using several aircraft lap joint specimens from different manufactures and under different loading conditions.

  5. LEFT WING AND FUSELAGE FROM THIRD LEVEL OF TAIL DOCK ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    LEFT WING AND FUSELAGE FROM THIRD LEVEL OF TAIL DOCK STAND. THE WING IS PREPARED FOR BASIC LUBRICATION WITH E SPOILER BOARDS UP AND ALL SAFETY LOCKS IN PLACE TO PROTECT MECHANICS FROM INJURY. ON THE WING AN INSPECTOR CHECKS THE ACTUATORS. - Greater Buffalo International Airport, Maintenance Hangar, Buffalo, Erie County, NY

  6. Manufacturing scale-up of composite fuselage crown panels

    NASA Technical Reports Server (NTRS)

    Willden, Kurtis; Gessel, M.; Grant, Carroll G.; Brown, T.

    1993-01-01

    The goal of the Boeing effort under the NASA ACT program is to reduce manufacturing costs of composite fuselage structure. Materials, fabrication of complex subcomponents and assembly issues are expected to drive the costs of composite fuselage structure. Several manufacturing concepts for the crown section of the fuselage were evaluated through the efforts of a Design Build Team (DBT). A skin-stringer-frame intricate bond design that required no fasteners for the panel assembly was selected for further manufacturing demonstrations. The manufacturing processes selected for the intricate bond design include Advanced Tow Placement (ATP) for multiple skin fabrication, resin transfer molding (RTM) of fuselage frames, innovative cure tooling, and utilization of low-cost material forms. Optimization of these processes for final design/manufacturing configuration was evaluated through the fabrication of several intricate bond panels. Panels up to 7 ft. by 10 ft. in size were fabricated to simulate half scale production parts. The qualitative and quantitative results of these manufacturing demonstrations were used to assess manufacturing risks and technology readiness for production.

  7. Fuselage structure using advanced technology fiber reinforced composites

    NASA Technical Reports Server (NTRS)

    Robinson, R. K.; Tomlinson, H. M. (Inventor)

    1982-01-01

    A fuselage structure is described in which the skin is comprised of layers of a matrix fiber reinforced composite, with the stringers reinforced with the same composite material. The high strength to weight ratio of the composite, particularly at elevated temperatures, and its high modulus of elasticity, makes it desirable for use in airplane structures.

  8. An oblique view of the forward fuselage and starboard side ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    An oblique view of the forward fuselage and starboard side of the Orbiter Discovery while mounted atop the 76-wheeled orbiter transfer system as it is being rolled from the Orbiter Processing Facility to the Vehicle Assembly Building at Kennedy Space Center. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  9. An oblique view of the forward fuselage and port side ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    An oblique view of the forward fuselage and port side of the Orbiter Discovery while mounted atop the 76-wheeled orbiter transfer system as it is being rolled from the Orbiter Processing Facility to the Vehicle Assembly Building at Kennedy Space Center. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  10. RWF rotor-wake-fuselage code software reference guide

    NASA Technical Reports Server (NTRS)

    Berry, John D.

    1991-01-01

    The RWF (Rotor-Wake-Fuselage) code was developed from first principles to compute the aerodynamics associated with the complex flow field of helicopter configurations. The code is sized for a single, multi-bladed main rotor and any configuration of non-lifting fuselage. The mathematical model for the RWF code is based on the integration of the momentum equations and Green's theorem. The unknowns in the problem are the strengths of prescribed singularity distributions on the boundaries of the flow. For the body (fuselage) a surface of constant strength source panels is used. For the rotor blades and rotor wake a surface of constant strength doublet panels is used. The mean camber line of the rotor airfoil is partitioned into surface panels. The no-flow boundary condition at the panel centroids is modified at each azimuthal step to account for rotor blade cyclic pitch variation. The geometry of the rotor wake is computers at each time step of the solution. The code produces rotor and fuselage surface pressures, as well as the complex geometry of the evolving rotor wake.

  11. Tubular lap joints for wind turbine applications

    SciTech Connect

    Reedy, E.D. Jr.; Guess, T.R.

    1990-01-01

    A combined analytical/experimental study of the strength of thick- walled, adhesively bonded PMMA-to-aluminum and E-glass/epoxy composite-to-aluminum tubular lap joints under axial load has been conducted. Test results include strength and failure mode data. Moreover, strain gages placed along the length of the outer tubular adherend characterize load transfer from one adherend to the other. The strain gage data indicate that load transfer is nonuniform and that the relatively compliant PMMA has the shorter load transfer length. Strains determined by a finite element analysis of the tested joints are in excellent agreement with those measured. Calculated bond stresses are highest in the region of observed failure, and extensive bond yielding is predicted in the E- glass/epoxy composite-to-aluminum joint prior to joint failure. 4 refs., 13 figs., 1 tab.

  12. Computational fire modeling for aircraft fire research

    SciTech Connect

    Nicolette, V.F.

    1996-11-01

    This report summarizes work performed by Sandia National Laboratories for the Federal Aviation Administration. The technical issues involved in fire modeling for aircraft fire research are identified, as well as computational fire tools for addressing those issues, and the research which is needed to advance those tools in order to address long-range needs. Fire field models are briefly reviewed, and the VULCAN model is selected for further evaluation. Calculations are performed with VULCAN to demonstrate its applicability to aircraft fire problems, and also to gain insight into the complex problem of fires involving aircraft. Simulations are conducted to investigate the influence of fire on an aircraft in a cross-wind. The interaction of the fuselage, wind, fire, and ground plane is investigated. Calculations are also performed utilizing a large eddy simulation (LES) capability to describe the large- scale turbulence instead of the more common k-{epsilon} turbulence model. Additional simulations are performed to investigate the static pressure and velocity distributions around a fuselage in a cross-wind, with and without fire. The results of these simulations provide qualitative insight into the complex interaction of a fuselage, fire, wind, and ground plane. Reasonable quantitative agreement is obtained in the few cases for which data or other modeling results exist Finally, VULCAN is used to quantify the impact of simplifying assumptions inherent in a risk assessment compatible fire model developed for open pool fire environments. The assumptions are seen to be of minor importance for the particular problem analyzed. This work demonstrates the utility of using a fire field model for assessing the limitations of simplified fire models. In conclusion, the application of computational fire modeling tools herein provides both qualitative and quantitative insights into the complex problem of aircraft in fires.

  13. An in-flight investigation of a twin fuselage configuration in approach and landing

    NASA Technical Reports Server (NTRS)

    Weingarten, N. C.

    1984-01-01

    An in-flight investigation of the flying qualities of a twin fuselage aircraft design in the approach and landing flight phase was carried out in the USAF/AFWAL Total In-Flight Simulator (TIFS). The objective was to determine the effects of actual motion and visual cues on the pilot when he was offset from the centerline of the aircraft. The experiment variables were lateral pilot offset position (0, 30 and 50 feet) and effective roll mode time constant (.6, 1.2, 2.4 seconds). The evaluation included the final approach, flare and touchdown. Lateral runway offsets and 15 knot crosswinds were used to increase the pilot's workload and force him to make large lateral corrections in the final portion of the approach. Results indicated that large normal accelerations rather than just vertical displacements in rolling maneuvers had the most significant degrading effect on pilot ratings. The normal accelerations are a result of large lateral offset and fast roll mode time constant and caused the pilot to make unnecessary pitch inputs and get into a coupled pitch/roll oscillation while he was making line up and crosswind corrections. A potential criteria for lateral pilot offset position effects is proposed. When the ratio of incremented normal aceleration at the pilot station to the steady state roll rate for a step input reaches .01 to .02 g/deg/sec a deterioration of pilot rating and flying qualities level can be expected.

  14. A comparison of the aerodynamic characteristics at transonic speeds of four wing-fuselage configurations as determined from different test techniques, 4 October 1960

    NASA Technical Reports Server (NTRS)

    Donlan, C. J.; Myers, B. C., II; Mattson, A. T.

    1976-01-01

    The high speed aerodynamic characteristics of a family of four wing-fuselage configurations of 0, 35, 45, and 60 deg sweepback were determined from transonic bump model tests that were conducted in the Langley high speed 7 by 10 foot tunnel; sting supported model tests were conducted in the Langley 8 foot high speed tunnel and in the Langley high speed 7 by 10 foot tunnel, and rocket model tests were conducted by the Langley Pilotless Aircraft Research Division. A complementary study of the effect of Mach number gradients and streamline curvature on bump results is also included. The qualitative data obtained from the various test facilities for the wing-fuselage configurations were in essential agreement as regards the relative effects of sweepback and Mach number except for drag at zero lift. Quantitatively, important differences were present.

  15. New mathematical model for error reduction of stressed lap

    NASA Astrophysics Data System (ADS)

    Zhao, Pu; Yang, Shuming; Sun, Lin; Shi, Xinyu; Liu, Tao; Jiang, Zhuangde

    2016-05-01

    Stressed lap, compared to traditional polishing methods, has high processing efficiency. However, this method has disadvantages in processing nonsymmetric surface errors. A basic-function method is proposed to calculate parameters for a stressed-lap polishing system. It aims to minimize residual errors and is based on a matrix and nonlinear optimization algorithm. The results show that residual root-mean-square could be >15% after one process for classical trefoil error. The surface period errors close to the lap diameter were removed efficiently, up to 50% material removal.

  16. Modified Convair-240 aircraft at Naval Weapons Center, China Lake, California

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Convair-240 aircraft modified to fill role of a Space Shuttle is parked outside aircraft hangar at Naval Weapons Center, China Lake, California. Space shuttle side hatch mockup is incorporated in fuselage (visible toward the aft section of the aircraft). Convair-240 aircraft is part of November crew escape system (CES) testing of a candidate concept developed to provide crew egress capability during Space Shuttle controlled gliding flight. Tractor rocket testing using the Convair-240 will begin 11-20-87. Life-like dummies will be pulled by the rockets from the modified aircraft's side hatch mockup.

  17. INTERIOR OF WEST SPAN LOOKING WEST (SHADOW OF VERTICAL LAPS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR OF WEST SPAN LOOKING WEST (SHADOW OF VERTICAL LAPS PLACED ON ZONE III; ASPHALT ZONE IX) - Honey Run Bridge, Spanning Butte Creek, bypassed section of Honey Run Road (originally Carr Hill Road), Paradise, Butte County, CA

  18. FRICTION STIR LAP WELDING OF ALUMINUM - POLYMER USING SCRIBE TECHNOLOGY

    SciTech Connect

    Upadhyay, Piyush; Hovanski, Yuri; Fifield, Leonard S.; Simmons, Kevin L.

    2015-02-16

    Friction Stir Scribe (FSS) technology is a relatively new variant of Friction Stir Welding (FSW) which enables lap joining of dissimilar material with very different melting points and different high temperature flow behaviors. The cutter scribe attached at the tip of FSW tool pin effectively cuts the high melting point material such that a mechanically interlocking feature is created between the dissimilar materials. The geometric shape of this interlocking feature determines the shear strength attained by the lap joint. This work presents first use of scribe technology in joining polymers to aluminum alloy. Details of the several runs of scribe welding performed in lap joining of ~3.175mm thick polymers including HDPE, filled and unfilled Nylon 66 to 2mm thick AA5182 are presented. The effect of scribe geometry and length on weld interlocking features is presented along with lap shear strength evaluations.

  19. Double-Lap Shear Test For Honeycomb Core

    NASA Technical Reports Server (NTRS)

    Nettles, Alan T.; Hodge, Andrew J.

    1992-01-01

    Double-lap test measures shear strength of panel made of honeycomb core with 8-ply carbon-fiber/epoxy face sheets. Developed to overcome three principal disadvantages of prior standard single-lap shear test: specimen had to be more than 17 in. long; metal face sheets had to be used; and test introduced torque, with consequent bending and peeling of face sheets and spurious tensile or compressive loading of honeycomb.

  20. Acoustic measurements of F-4E aircraft operating in hush house, NSN 4920-02-070-2721

    NASA Astrophysics Data System (ADS)

    Miller, V. R.; Plzak, G. A.; Chinn, J. M.

    1981-09-01

    The primary purpose of this test program was to measure the acoustic environment in the hush house facility located at Kelly Air Force Base, Texas, during operation of the F-4E aircraft to ensure that aircraft structural acoustic design limits were not exceeded. The acoustic measurements showed that sonic fatigue problems are anticipated with the F-4E aircraft aft fuselage structure during operation in the hush house. The measured acoustic levels were less than those measured in an F-4E aircraft water cooled hush house at Hill AFB in the lower frequencies, but were increased over that measured during ground run up on some areas of the aircraft. It was recommended that the acoustic loads measured in this program should be specified in the structural design criteria for aircraft which will be subjected to hush house operation or defining requirements for associated equipment. Recommendations were also made to increase the fatigue life of the aft fuselage.

  1. GEMPAK: An arbitrary aircraft geometry generator

    NASA Technical Reports Server (NTRS)

    Stack, S. H.; Edwards, C. L. W.; Small, W. J.

    1977-01-01

    A computer program, GEMPAK, has been developed to aid in the generation of detailed configuration geometry. The program was written to allow the user as much flexibility as possible in his choices of configurations and the detail of description desired and at the same time keep input requirements and program turnaround and cost to a minimum. The program consists of routines that generate fuselage and planar-surface (winglike) geometry and a routine that will determine the true intersection of all components with the fuselage. This paper describes the methods by which the various geometries are generated and provides input description with sample input and output. Also included are descriptions of the primary program variables and functions performed by the various routines. The FORTRAN program GEMPAK has been used extensively in conjunction with interfaces to several aerodynamic and plotting computer programs and has proven to be an effective aid in the preliminary design phase of aircraft configurations.

  2. Riblets for aircraft skin-friction reduction

    NASA Technical Reports Server (NTRS)

    Walsh, Michael J.

    1986-01-01

    Energy conservation and aerodynamic efficiency are the driving forces behind research into methods to reduce turbulent skin friction drag on aircraft fuselages. Fuselage skin friction reductions as small as 10 percent provide the potential for a 250 million dollar per year fuel savings for the commercial airline fleet. One passive drag reduction concept which is relatively simple to implement and retrofit is that of longitudinally grooved surfaces aligned with the stream velocity. These grooves (riblets) have heights and spacings on the order of the turbulent wall streak and burst dimensions. The riblet performance (8 percent net drag reduction thus far), sensitivity to operational/application considerations such as yaw and Reynolds number variation, an alternative fabrication technique, results of extensive parametric experiments for geometrical optimization, and flight test applications are summarized.

  3. Adhesive-bonded scarf and stepped-lap joints

    NASA Technical Reports Server (NTRS)

    Hart-Smith, L. J.

    1973-01-01

    Continuum mechanics solutions are derived for the static load-carrying capacity of scarf and stepped-lap adhesive-bonded joints. The analyses account for adhesive plasticity and adherend stiffness imbalance and thermal mismatch. The scarf joint solutions include a simple algebraic formula which serves as a close lower bound, within a small fraction of a per cent of the true answer for most practical geometries and materials. Digital computer programs were developed and, for the stepped-lap joints, the critical adherend and adhesive stresses are computed for each step. The scarf joint solutions exhibit grossly different behavior from that for double-lap joints for long overlaps inasmuch as that the potential bond shear strength continues to increase with indefinitely long overlaps on the scarf joints. The stepped-lap joint solutions exhibit some characteristics of both the scarf and double-lap joints. The stepped-lap computer program handles arbitrary (different) step lengths and thickness and the solutions obtained have clarified potentially weak design details and the remedies. The program has been used effectively to optimize the joint proportions.

  4. Computing induced velocity perturbations due to a helicopter fuselage in a free stream

    NASA Technical Reports Server (NTRS)

    Berry, John D.; Althoff, Susan L.

    1989-01-01

    The velocity field of a representative helicopter fuselage in a free stream is computed. Perturbation velocities due to the fuselage are computed in a plan above the location of the helicopter rotor (rotor removed). The velocity perturbations computed by a source-panel model of the fuselage are compared with experimental measurements taken with a laser velocimeter. Three paneled fuselage models are studied: fuselage shape, fuselage shape with hub shape, and a body of revolution. The velocity perturbations computed for both fuselage shape models agree well with the measured velocity field except in the close vicinity of the rotor hub. In the hub region, without knowing the extent of separation, modeling of the effective source shape is difficult. The effects of the fuselage perturbations are not well-predicted with a simplified ellipsoid fuselage. The velocity perturbations due to the fuselage at the plane of the measurements have magnitudes of less than 8 percent of free-stream velocity. The velocity perturbations computed by the panel method are tabulated for the same locations at which previously reported rotor-inflow velocity measurements were made.

  5. National Aerospace Plane Integrated Fuselage/Cryotank Risk Reduction program

    NASA Astrophysics Data System (ADS)

    Dayton, K. E.

    1993-06-01

    The principal objectives and results of the National Aerospace Plane (NASP) Integrated Risk Reduction program are briefly reviewed. The program demonstrated the feasibility of manufacturing lightweight advanced composite materials for single-stage-to-orbit hypersonic flight vehicle applications. A series of combined load simulation tests (thermal, mechanical, and cryogenic) demonstrated proof of concept performance for an all unlined composite cryogenic fuel tank with flat end bulkheads and a high-temperature thin-shell advanced composite fuselage. Temperatures of the fuselage were as high as 1300 F, with 100 percent bending and shear loads applied to the tank while filled with 850 gallons of cryogenic fluid hydrogen (-425 F). Leak rates measured on and around the cryotank shell and bulkheads were well below acceptable levels.

  6. Aerodynamic analysis of a helicopter fuselage with rotating rotor head

    NASA Astrophysics Data System (ADS)

    Reß, R.; Grawunder, M.; Breitsamter, Ch.

    2015-06-01

    The present paper describes results of wind tunnel experiments obtained during a research programme aimed at drag reduction of the fuselage of a twin engine light helicopter configuration. A 1 : 5 scale model of a helicopter fuselage including a rotating rotor head and landing gear was investigated in the low-speed wind tunnel A of Technische Universität a München (TUM). The modelled parts of the helicopter induce approxiu mately 80% of the total parasite drag thus forming a major potential for shape optimizations. The present paper compares results of force and moment measurements of a baseline configuration and modified variants with an emphasis on the aerodynamic drag, lift, and yawing moment coefficients.

  7. A Computational Model for Rotor-Fuselage Interactional Aerodynamics

    NASA Technical Reports Server (NTRS)

    Boyd, D. Douglas, Jr.; Barnwell, Richard W.; Gorton, Susan Althoff

    2000-01-01

    A novel unsteady rotor-fuselage interactional aerodynamics model has been developed. This model loosely couples a Generalized Dynamic Wake Theory (GDWT) to a thin-layer Navier-Stokes solution procedure. This coupling is achieved using an unsteady pressure jump boundary condition in the Navier-Stokes model. The new unsteady pressure jump boundary condition models each rotor blade as a moving pressure jump which travels around the rotor azimuth and is applied between two adjacent planes in a cylindrical, non-rotating grid. Comparisons are made between measured and predicted time-averaged and time-accurate rotor inflow ratios. Additional comparisons are made between measured and predicted unsteady surface pressures on the top centerline and sides of the fuselage.

  8. Skid Landings of Airplanes on Rocker-Type Fuselages

    NASA Technical Reports Server (NTRS)

    Mayo, Wilbur L.

    1961-01-01

    A study is made of the landing of an airplane on a fuselage with "planned" curvature of its lower surface. Initial contact is considered to stop the vertical motion of a point remote from the center of gravity, thus causing rocking on the curved lower surface which converts sinking-speed energy into angular energy in pitch for dissipation by damping forces. Analysis is made of loads and motions for a given fuselage shape, and the contours required to give desired load histories are determined. Most of the calculations involve initial contact at the tail, but there are two cases of unflared landings with initial contact at the nose. The calculations are checked experimentally for the tail - low case.

  9. Closeup view of the upper exterior of the forward fuselage ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Close-up view of the upper exterior of the forward fuselage of the Orbiter Discovery in the Orbiter Processing Facility at NASA's Kennedy Space Center. The view show a detail of the flight deck windows with protective covers installed to protect the window surfaces during processing. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  10. Design development tests for composite crashworthy helicopter fuselage

    SciTech Connect

    Sen, J.K.; Dremann, C.C.

    1985-10-01

    Design development tests were conducted to investigate the crashworthy characteristics of composite helicopter fuselage subcomponents, and to design helicopter center beam/bulkhead specimens lighter than structural elements of honeycomb sandwich construction. Skinstringer designs of center beams - made of carbon, and hybrids of carbon and Kevlar - were fabricated and tested in axial compression. Crashworthy design parameters of specific energy, operating load and stroke efficiency were investigated. 8 references, 15 figures, 2 tables.

  11. General view of the aft fuselage of the Orbiter Discovery ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    General view of the aft fuselage of the Orbiter Discovery looking forward showing Space Shuttle Main Engines (SSMEs) installed in positions one and three and an SSME on the process of being installed in position two. This photograph was taken in the Orbiter Processing Facility at the Kennedy Space Center. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  12. View of the forward fuselage and the reinforced carboncarbon nose ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of the forward fuselage and the reinforced carbon-carbon nose of the Orbiter Discovery looking aft while mounted atop the 76-wheeled orbiter transfer system as it is being rolled from the Orbiter Processing Facility to the Vehicle Assembly Building at Kennedy Space Center. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  13. Detailed view inside the aft fuselage of the Orbiter Discovery ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detailed view inside the aft fuselage of the Orbiter Discovery showing the network of supply, distribution and feed lines to deliver fuel, oxidizer and other vital gasses and fluids to the Space Shuttle Main Engines (SSMEs). This photograph was taken in the Orbiter Processing Facility at the Kennedy Space Center. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  14. Rotorcraft Fuselage Flow Control Using Plasma Streamwise Vortex Generators

    NASA Astrophysics Data System (ADS)

    Coleman, Dustin; Thomas, Flint

    2012-11-01

    Active flow control, in the form of dielectric barrier discharge (DBD) plasma actuators, is applied to a NASA ROBIN-mod7 generic rotorcraft fuselage model. The model is considered in what would be a typical cruise position i.e. a nose down position at α = -5° . This configuration gives rise to a massive 3-D flow separation over the aft ramp section of the fuselage, characterized by two counter-rotating, streamwise vortices. The control objective is to minimize these concentrated vortices by means of flush fuselage-mounted plasma streamwise vortex generators (PSVGs), and consequently, reduce the form drag of the vehicle. Experiments were conducted at freestream Mach and Reynolds numbers of M∞ = 0 . 12 and ReL = 2 . 65 million, respectively. Aerodynamic loads under both natural and controlled conditions were acquired through use of an ATI Mini40 6-component force sensor. The pressure field on the ramp section was monitored by a 128 count static pressure array. Likewise, the flow field was captured by time-resolved PIV wake surveys. Results are compared with previous studies that utilized active flow control by way of pulsed jets or combustion actuators. This work is supported under NASA Cooperative Agreement NNX10AM32G.

  15. Test results from large wing and fuselage panels

    NASA Technical Reports Server (NTRS)

    Madan, Ram C.; Voldman, Mike

    1993-01-01

    This paper presents the first results in an assessment of the strength, stiffness, and damage tolerance of stiffened wing and fuselage subcomponents. Under this NASA funded program, 10 large wing and fuselage panels, variously fabricated by automated tow placement and dry-stitched preform/resin transfer molding, are to be tested. The first test of an automated tow placement six-longeron fuselage panel under shear load was completed successfully. Using NASTRAN finite-element analysis the stiffness of the panel in the linear range prior to buckling was predicted within 3.5 percent. A nonlinear analysis predicted the buckling load within 10 percent and final failure load within 6 percent. The first test of a resin transfer molding six-stringer wing panel under compression was also completed. The panel failed unexpectedly in buckling because of inadequate supporting structure. The average strain was 0.43 percent with a line load of 20.3 kips per inch of width. This strain still exceeds the design allowable strains. Also, the stringers did not debond before failure, which is in contrast to the general behavior of unstitched panels.

  16. Skin, Stringer, and Fastener Loads in Buckled Fuselage Panels

    NASA Technical Reports Server (NTRS)

    Young, Richard D.; Rose, Cheryl A.; Starnes, James H., Jr.

    2001-01-01

    The results of a numerical study to assess the effect of skin buckling on the internal load distribution in a stiffened fuselage panel, with and without longitudinal cracks, are presented. In addition, the impact of changes in the internal loads on the fatigue life and residual strength of a fuselage panel is assessed. A generic narrow-body fuselage panel is considered. The entire panel is modeled using shell elements and considerable detail is included to represent the geometric-nonlinear response of the buckled skin, cross section deformation of the stiffening components, and details of the skin-string attachment with discrete fasteners. Results are presented for a fixed internal pressure and various combinations of axial tension or compression loads. Results illustrating the effect of skin buckling on the stress distribution in the skin and stringer, and fastener loads are presented. Results are presented for the pristine structure, and for cases where damage is introduced in the form of a longitudinal crack adjacent to the stringer, or failed fastener elements. The results indicate that axial compression loads and skin buckling can have a significant effect on the circumferential stress in the skin, and fastener loads, which will influence damage initiation, and a comparable effect on stress intensity factors for cases with cracks. The effects on stress intensity factors will influence damage propagation rates and the residual strength of the panel.

  17. High Fidelity Failure Analysis for a Composite Fuselage Section

    NASA Technical Reports Server (NTRS)

    Li, Jain; Davila, Carlos G.; Chen, Tzi-Kang

    2001-01-01

    A high fidelity delamination failure analysis was developed by combining a local failure analysis with a global full-scale finite element structural analysis to address strength and delamination failure in a single package. The methodology was demonstrated through a local three-dimensional pull-off failure analysis and a geometrically nonlinear structural analysis of a five-foot composite helicopter fuselage section. Pull-off specimens were used to identify potential debonding failure of co-cured skin-stringer/frame fuselage structures. An investigation of the failed pull-off specimens was performed to determine the location of the failure initiation. Three-dimensional strain energy release rate analysis indicates that the delamination initiation and growth is controlled by Mode 1 opening mode. The bending moment at the delamination tip was identified as the crucial factor controlling the failure. The geometrically nonlinear structural analysis of a five-foot composite fuselage section was performed using a detailed finite element model. Loads were applied along the periphery of the subcomponent using displacement fields generated from solutions of a full-vehicle model.

  18. A scan-angle correction for thermal infrared multispectral data using side lapping images

    USGS Publications Warehouse

    Watson, K.

    1996-01-01

    Thermal infrared multispectral scanner (TIMS) images, acquired with side lapping flight lines, provide dual angle observations of the same area on the ground and can thus be used to estimate variations in the atmospheric transmission with scan angle. The method was tested using TIMS aircraft data for six flight lines with about 30% sidelap for an area within Joshua Tree National Park, California. Generally the results correspond to predictions for the transmission scan-angle coefficient based on a standard atmospheric model although some differences were observed at the longer wavelength channels. A change was detected for the last pair of lines that may indicate either spatial or temporal atmospheric variation. The results demonstrate that the method provides information for correcting regional survey data (requiring multiple adjacent flight lines) that can be important in detecting subtle changes in lithology.

  19. Flaw Tolerance in Lap Shear Brazed Joints. Part 1

    NASA Technical Reports Server (NTRS)

    Flom, Yury; Wang, Li-Qin

    2003-01-01

    Furnace brazing is a joining process used in the aerospace and other industries to produce strong permanent and hermetic structural joints. As in any joining process, brazed joints have various imperfections and defects. At the present time, our understanding of the influence of the internal defects on the strength of the brazed joints is not adequate. The goal of this 3-part investigation is to better understand the properties and failure mechanisms of the brazed joints containing defects. This study focuses on the behavior of the brazed lap shear joints because of their importance in manufacturing aerospace structures. In Part 1, an average shear strength capability and failure modes of the single lap joints are explored. Stainless steel specimens brazed with pure silver are tested in accordance with the AWS C3.2 standard. Comparison of the failure loads and the ultimate shear strength with the Finite Element Analysis (FEA) of the same specimens as a function of the overlap widths shows excellent correlation between the experimental and calculated values for the defect-free lap joints. A damage zone criterion is shown to work quite well in understanding the failure of the braze joints. In Part 2, the findings of the Part 1 will be verified on the larger test specimens. Also, various flaws will be introduced in the test specimens to simulate lack of braze coverage in the lap joints. Mechanical testing and FEA will be performed on these joints to verify that behavior of the flawed ductile lap joints is similar to joints with a reduced braze area. Finally, in Part 3, the results obtained in Parts 1 and 2 will be applied to the actual brazed structure to evaluate the load-carrying capability of a structural lap joint containing discontinuities. In addition, a simplified engineering procedure will be offered for the laboratory testing of the lap shear specimens.

  20. Wind tunnel investigation of helicopter-rotor wake effects on three helicopter fuselage models

    NASA Technical Reports Server (NTRS)

    Wilson, J. C.; Mineck, R. E.

    1975-01-01

    The effects of rotor wake on helicopter fuselage aerodynamic characteristics were investigated in the Langley V/STOL tunnel. Force, moment, and pressure data were obtained on three fuselage models at various combinations of windspeed, sideslip angle, and pitch angle. The data show that the influence of rotor wake on the helicopter fuselage yawing moment imposes a significant additional thrust requirement on the tail rotor of a single-rotor helicopter at high sideslip angles.

  1. Use of two-dimensional transmission photoelastic models to study stresses in double-lap bolted joints: Load transfer and stresses in the inner lap

    NASA Technical Reports Server (NTRS)

    Hyer, M. W.

    1980-01-01

    The determination of the stress distribution in the inner lap of double-lap, double-bolt joints using photoelastic models of the joint is discussed. The principal idea is to fabricate the inner lap of a photoelastic material and to use a photoelastically sensitive material for the two outer laps. With this setup, polarized light transmitted through the stressed model responds principally to the stressed inner lap. The model geometry, the procedures for making and testing the model, and test results are described.

  2. Advanced air transport concepts. [review of design methods for very large aircraft

    NASA Technical Reports Server (NTRS)

    Molloy, J. K.

    1979-01-01

    The concepts of laminar flow control, very large all-wing aircraft, an aerial relay transportation system and alternative fuels, which would enable large improvements in fuel conservation in air transportation in the 1990's are discussed. Laminar boundary layer control through suction would greatly reduce skin friction and has been reported to reduce fuel consumption by up to 29%. Distributed load aircraft, in which all fuel and payload are carried in the wing and the fuselage is absent, permit the use of lighter construction materials and the elimination of fuselage and tail drag. Spanloader aircraft with laminar flow control could be used in an aerial relay transportation system which would employ a network of continuously flying liners supplied with fuel, cargo and crews by smaller feeder aircraft. Liquid hydrogen and methane fuels derived from coal are shown to be more weight efficient and less costly than coal-derived synthetic jet fuels.

  3. Generation of a multi-component aircraft grid system using NGP and Begger

    SciTech Connect

    Lijewski, L.E.; Belk, D.M.

    1996-12-31

    Generation of a multiple component aircraft grid system is presented. A hybrid system of blocked and overset grids axe generated using NGP and overlap communications established with the Beggar code. Techniques for gridding wing-flap and fuselage-flap gap regions axe discussed. Steady-state subsonic flow solutions are presented.

  4. Analysis and Design of Fuselage Structures Including Residual Strength Prediction Methodology

    NASA Technical Reports Server (NTRS)

    Knight, Norman F.

    1998-01-01

    The goal of this research project is to develop and assess methodologies for the design and analysis of fuselage structures accounting for residual strength. Two primary objectives are included in this research activity: development of structural analysis methodology for predicting residual strength of fuselage shell-type structures; and the development of accurate, efficient analysis, design and optimization tool for fuselage shell structures. Assessment of these tools for robustness, efficient, and usage in a fuselage shell design environment will be integrated with these two primary research objectives.

  5. LAP5 and LAP6 Encode Anther-Specific Proteins with Similarity to Chalcone Synthase Essential for Pollen Exine Development in Arabidopsis1[W][OA

    PubMed Central

    Dobritsa, Anna A.; Lei, Zhentian; Nishikawa, Shuh-ichi; Urbanczyk-Wochniak, Ewa; Huhman, David V.; Preuss, Daphne; Sumner, Lloyd W.

    2010-01-01

    Pollen grains of land plants have evolved remarkably strong outer walls referred to as exine that protect pollen and interact with female stigma cells. Exine is composed of sporopollenin, and while the composition and synthesis of this biopolymer are not well understood, both fatty acids and phenolics are likely components. Here, we describe mutations in the Arabidopsis (Arabidopsis thaliana) LESS ADHESIVE POLLEN (LAP5) and LAP6 that affect exine development. Mutation of either gene results in abnormal exine patterning, whereas pollen of double mutants lacked exine deposition and subsequently collapsed, causing male sterility. LAP5 and LAP6 encode anther-specific proteins with homology to chalcone synthase, a key flavonoid biosynthesis enzyme. lap5 and lap6 mutations reduced the accumulation of flavonoid precursors and flavonoids in developing anthers, suggesting a role in the synthesis of phenolic constituents of sporopollenin. Our in vitro functional analysis of LAP5 and LAP6 using 4-coumaroyl-coenzyme A yielded bis-noryangonin (a commonly reported derailment product of chalcone synthase), while similar in vitro analyses using fatty acyl-coenzyme A as the substrate yielded medium-chain alkyl pyrones. Thus, in vitro assays indicate that LAP5 and LAP6 are multifunctional enzymes and may play a role in both the synthesis of pollen fatty acids and phenolics found in exine. Finally, the genetic interaction between LAP5 and an anther gene involved in fatty acid hydroxylation (CYP703A2) demonstrated that they act synergistically in exine production. PMID:20442277

  6. Static and fatigue testing of full-scale fuselage panels fabricated using a Therm-X(R) process

    NASA Technical Reports Server (NTRS)

    Dinicola, Albert J.; Kassapoglou, Christos; Chou, Jack C.

    1992-01-01

    Large, curved, integrally stiffened composite panels representative of an aircraft fuselage structure were fabricated using a Therm-X process, an alternative concept to conventional two-sided hard tooling and contour vacuum bagging. Panels subsequently were tested under pure shear loading in both static and fatigue regimes to assess the adequacy of the manufacturing process, the effectiveness of damage tolerant design features co-cured with the structure, and the accuracy of finite element and closed-form predictions of postbuckling capability and failure load. Test results indicated the process yielded panels of high quality and increased damage tolerance through suppression of common failure modes such as skin-stiffener separation and frame-stiffener corner failure. Finite element analyses generally produced good predictions of postbuckled shape, and a global-local modelling technique yielded failure load predictions that were within 7% of the experimental mean.

  7. Behavior Of Aircraft Components Under Crash-Type Loads

    NASA Technical Reports Server (NTRS)

    Carden, Huey D.; Boitnott, Richard L.; Fasanella, Edwin L.

    1993-01-01

    Report presents overview of research involving use of concepts of aircraft elements and substructures not necessarily designed or optimized with respect to energy-absorption or crash-loading considerations. Experimental and analytical data presented in report indicate some general trends in failure behaviors of class of composite-material structures including individual fuselage frames, skeleton subfloors with stringers and floor beams but without skin covering, and subfloors with skin added to frame/stringer arrangement.

  8. Preliminary design studies of an advanced general aviation aircraft

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Preliminary design studies are presented for an advanced general aviation aircraft. Advanced guidance and display concepts, laminar flow, smart structures, fuselage and wing structural design and manufacturing, and preliminary configuration design are discussed. This project was conducted as a graduate level design class under the auspices of the KU/NASA/USRA Advanced Design Program in Aeronautics. The results obtained during the fall semester of 1990 (Phase 1) and the spring semester of 1991 (Phase 2) are presented.

  9. Application of thrusting ejectors to tactical aircraft having vertical lift and short-field capability

    NASA Technical Reports Server (NTRS)

    Koenig, D. G.; Stoll, F.; Aoyagi, K.

    1981-01-01

    The status of ejector development in terms of application to V/STOL aircraft is reported in three categories: aircraft systems and ejector concepts; ejector performance including prediction techniques and experimental data base available; and, integration of the ejector with complete aircraft configurations. Available prediction techniques are reviewed and performance of three ejector designs with vertical lift capability is summarized. Applications of the 'fuselage' and 'short diffuser' ejectors to fighter aircraft are related to current and planned research programs. Recommendations are listed for effort needed to evaluate installed performance.

  10. Cost model relationships between textile manufacturing processes and design details for transport fuselage elements

    NASA Technical Reports Server (NTRS)

    Metschan, Stephen L.; Wilden, Kurtis S.; Sharpless, Garrett C.; Andelman, Rich M.

    1993-01-01

    Textile manufacturing processes offer potential cost and weight advantages over traditional composite materials and processes for transport fuselage elements. In the current study, design cost modeling relationships between textile processes and element design details were developed. Such relationships are expected to help future aircraft designers to make timely decisions on the effect of design details and overall configurations on textile fabrication costs. The fundamental advantage of a design cost model is to insure that the element design is cost effective for the intended process. Trade studies on the effects of processing parameters also help to optimize the manufacturing steps for a particular structural element. Two methods of analyzing design detail/process cost relationships developed for the design cost model were pursued in the current study. The first makes use of existing databases and alternative cost modeling methods (e.g. detailed estimating). The second compares design cost model predictions with data collected during the fabrication of seven foot circumferential frames for ATCAS crown test panels. The process used in this case involves 2D dry braiding and resin transfer molding of curved 'J' cross section frame members having design details characteristic of the baseline ATCAS crown design.

  11. In-flight measurement of propeller noise on the fuselage of an airplane

    NASA Technical Reports Server (NTRS)

    Pla, Frederic G.; Ranaudo, Richard; Woodward, Richard P.

    1989-01-01

    In-flight measurements of propeller noise on the fuselage of an OV-10A aircraft were obtained using a horizontal and a vertical microphone array. A wide range of flight conditions were tested including changes in angle of attack, sideslip angle, power coefficient, helical tip Mach number and advance ratio, and propeller direction of rotation. Results show a dependence of the level and directivity of the tones on the angle of attack and on the sideslip angle with the propeller direction of rotation, which is similar to results obtained in wind tunnel tests with advanced propeller designs. The level of the tones at each microphone increases with increasing angle of attack for inboard-down propeller rotation and decreases for inboard-up rotation. The level also increases with increasing slideslip angle for both propeller directions of rotation. Increasing the power coefficient results in a slight increase in the level of the tones. A strong shock wave is generated by the propeller blades even at relatively low helical tip Mach numbers resulting in high harmonic levels. As the helical tip Mach number and the advance ratio are increased, the level of the higher harmonics increases much faster than the level of the blade passage frequency.

  12. An analytic modeling and system identification study of rotor/fuselage dynamics at hover

    NASA Technical Reports Server (NTRS)

    Hong, Steven W.; Curtiss, H. C., Jr.

    1993-01-01

    A combination of analytic modeling and system identification methods have been used to develop an improved dynamic model describing the response of articulated rotor helicopters to control inputs. A high-order linearized model of coupled rotor/body dynamics including flap and lag degrees of freedom and inflow dynamics with literal coefficients is compared to flight test data from single rotor helicopters in the near hover trim condition. The identification problem was formulated using the maximum likelihood function in the time domain. The dynamic model with literal coefficients was used to generate the model states, and the model was parametrized in terms of physical constants of the aircraft rather than the stability derivatives, resulting in a significant reduction in the number of quantities to be identified. The likelihood function was optimized using the genetic algorithm approach. This method proved highly effective in producing an estimated model from flight test data which included coupled fuselage/rotor dynamics. Using this approach it has been shown that blade flexibility is a significant contributing factor to the discrepancies between theory and experiment shown in previous studies. Addition of flexible modes, properly incorporating the constraint due to the lag dampers, results in excellent agreement between flight test and theory, especially in the high frequency range.

  13. An analytic modeling and system identification study of rotor/fuselage dynamics at hover

    NASA Technical Reports Server (NTRS)

    Hong, Steven W.; Curtiss, H. C., Jr.

    1993-01-01

    A combination of analytic modeling and system identification methods have been used to develop an improved dynamic model describing the response of articulated rotor helicopters to control inputs. A high-order linearized model of coupled rotor/body dynamics including flap and lag degrees of freedom and inflow dynamics with literal coefficients is compared to flight test data from single rotor helicopters in the near hover trim condition. The identification problem was formulated using the maximum likelihood function in the time domain. The dynamic model with literal coefficients was used to generate the model states, and the model was parametrized in terms of physical constants of the aircraft rather than the stability derivatives resulting in a significant reduction in the number of quantities to be identified. The likelihood function was optimized using the genetic algorithm approach. This method proved highly effective in producing an estimated model from flight test data which included coupled fuselage/rotor dynamics. Using this approach it has been shown that blade flexibility is a significant contributing factor to the discrepancies between theory and experiment shown in previous studies. Addition of flexible modes, properly incorporating the constraint due to the lag dampers, results in excellent agreement between flight test and theory, especially in the high frequency range.

  14. Validated Feasibility Study of Integrally Stiffened Metallic Fuselage Panels for Reducing Manufacturing Costs

    NASA Technical Reports Server (NTRS)

    Pettit, R. G.; Wang, J. J.; Toh, C.

    2000-01-01

    The continual need to reduce airframe cost and the emergence of high speed machining and other manufacturing technologies has brought about a renewed interest in large-scale integral structures for aircraft applications. Applications have been inhibited, however, because of the need to demonstrate damage tolerance, and by cost and manufacturing risks associated with the size and complexity of the parts. The Integral Airframe Structures (IAS) Program identified a feasible integrally stiffened fuselage concept and evaluated performance and manufacturing cost compared to conventional designs. An integral skin/stiffener concept was produced both by plate hog-out and near-net extrusion. Alloys evaluated included 7050-T7451 plate, 7050-T74511 extrusion, 6013-T6511 extrusion, and 7475-T7351 plate. Mechanical properties, structural details, and joint performance were evaluated as well as repair, static compression, and two-bay crack residual strength panels. Crack turning behavior was characterized through panel tests and improved methods for predicting crack turning were developed. Manufacturing cost was evaluated using COSTRAN. A hybrid design, made from high-speed machined extruded frames that are mechanically fastened to high-speed machined plate skin/stringer panels, was identified as the most cost-effective manufacturing solution. Recurring labor and material costs of the hybrid design are up to 61 percent less than the current technology baseline.

  15. Evaluation of frame/skin bond strength and durability for advanced composite fuselage crown structures

    SciTech Connect

    Pointer, R.; Awerbuch, J.; Wang, A.S.D.

    1994-12-31

    An experimental and analytical investigation was performed to characterize damage initiation and progression along the frame/skin interface of the aft crown panel fuselage section in a commercial aircraft. The effect of manufacturing procedures on damage initiation and failure processes was addressed by evaluating five different frame/skin assemblies. Crack initiation and progression as a function of applied load and the local failure events were monitored and recorded using a high magnification closed circuit television system. For selected specimens, acoustic emission was monitored, X-radiography was performed, and fracture surface morphologies were examined via the scanning electron microscope. In addition, a pilot program on the fatigue behavior of the frame/skin test. elements has been conducted. The Mode I and Mode II fracture toughness of the skin and braided materials were also determined using the double cantilever beam and the end notch flexure specimen configurations. A finite element code (VISOCRACK) was employed for simulating the types of failure observed experimentally and to predict failure initiation.

  16. Effects of aircraft noise on flight and ground structures

    NASA Technical Reports Server (NTRS)

    Mixson, J. S.; Mayes, W. H.; Willis, C. M.

    1976-01-01

    Acoustic loads measured on jet-powered STOL configurations are presented for externally blown and upper surface blown flap models ranging in size from a small laboratory model up to a full-scale aircraft model. The implications of the measured loads for potential acoustic fatigue and cabin noise are discussed. Noise transmission characteristics of light aircraft structures are presented. The relative importance of noise transmission paths, such as fuselage sidewall and primary structure, is estimated. Acceleration responses of a historic building and a residential home are presented for flyover noise from subsonic and supersonic aircraft. Possible effects on occupant comfort are assessed. The results from these three examples show that aircraft noise can induce structural responses that are large enough to require consideration in the design or operation of the aircraft.

  17. Propeller aircraft interior noise model utilization study and validation

    NASA Astrophysics Data System (ADS)

    Pope, L. D.

    1984-09-01

    Utilization and validation of a computer program designed for aircraft interior noise prediction is considered. The program, entitled PAIN (an acronym for Propeller Aircraft Interior Noise), permits (in theory) predictions of sound levels inside propeller driven aircraft arising from sidewall transmission. The objective of the work reported was to determine the practicality of making predictions for various airplanes and the extent of the program's capabilities. The ultimate purpose was to discern the quality of predictions for tonal levels inside an aircraft occurring at the propeller blade passage frequency and its harmonics. The effort involved three tasks: (1) program validation through comparisons of predictions with scale-model test results; (2) development of utilization schemes for large (full scale) fuselages; and (3) validation through comparisons of predictions with measurements taken in flight tests on a turboprop aircraft. Findings should enable future users of the program to efficiently undertake and correctly interpret predictions.

  18. Propeller aircraft interior noise model utilization study and validation

    NASA Technical Reports Server (NTRS)

    Pope, L. D.

    1984-01-01

    Utilization and validation of a computer program designed for aircraft interior noise prediction is considered. The program, entitled PAIN (an acronym for Propeller Aircraft Interior Noise), permits (in theory) predictions of sound levels inside propeller driven aircraft arising from sidewall transmission. The objective of the work reported was to determine the practicality of making predictions for various airplanes and the extent of the program's capabilities. The ultimate purpose was to discern the quality of predictions for tonal levels inside an aircraft occurring at the propeller blade passage frequency and its harmonics. The effort involved three tasks: (1) program validation through comparisons of predictions with scale-model test results; (2) development of utilization schemes for large (full scale) fuselages; and (3) validation through comparisons of predictions with measurements taken in flight tests on a turboprop aircraft. Findings should enable future users of the program to efficiently undertake and correctly interpret predictions.

  19. Lap time optimisation of a racing go-kart

    NASA Astrophysics Data System (ADS)

    Lot, Roberto; Dal Bianco, Nicola

    2016-02-01

    The minimum lap time optimal control problem has been solved for a go-kart model. The symbolic algebra software Maple has been used to derive equations of motion and an indirect method has been adopted to solve the optimal control problem. Simulation has been successfully performed on a full track lap with a multibody model endowed with seven degrees of freedom. Geometrical and mechanical characteristics of a real kart have been measured by a lab test to feed the mathematical model. Telemetry recorded in an entire lap by a professional driver has been compared to simulation results in order to validate the model. After the reliability of the optimal control model was proved, the simulation has been used to study the peculiar dynamics of go-karts and focus to tyre slippage dynamics, which is highly affected by the lack of differential.

  20. Progress Towards Fuselage Drag Reduction via Active Flow Control: A Combined CFD and Experimental Effort

    NASA Technical Reports Server (NTRS)

    Schaefler, Norman W.; Allan, Brian G.; Lienard, Caroline; LePape, Arnaud

    2010-01-01

    A combined computational and experimental effort has been undertaken to study fuselage drag reduction on a generic, non-proprietary rotorcraft fuselage by the application of active ow control. Fuselage drag reduction is an area of research interest to both the United States and France and this area is being worked collaboratively as a task under the United States/France Memorandum of Agreement on Helicopter Aeromechanics. In the first half of this task, emphasis is placed on the US generic fuselage, the ROBIN-mod7, with the experimental work being conducted on the US side and complementary US and French CFD analysis of the baseline and controlled cases. Fuselage simulations were made using Reynolds-averaged Navier-Stokes ow solvers and with multiple turbulence models. Comparisons were made to experimental data for numerical simulations of the isolated fuselage and for the fuselage as installed in the tunnel, which includes modeling of the tunnel contraction, walls, and support fairing. The numerical simulations show that comparisons to the experimental data are in good agreement when the tunnel and model support are included. The isolated fuselage simulations compare well to each other, however, there is a positive shift in the centerline pressure when compared to the experiment. The computed flow separation locations on the rear ramp region had only slight differences with and without the tunnel walls and model support. For the simulations, the flow control slots were placed at several locations around the flow separation lines as a series of eight slots that formed a nearly continuous U-shape. Results from the numerical simulations resulted in an estimated 35% fuselage drag reduction from a steady blowing flow control configuration and a 26% drag reduction for unsteady zero-net-mass flow control configuration. Simulations with steady blowing show a delayed flow separation at the rear ramp of the fuselage that increases the surface pressure acting on the ramp

  1. Closeup view of the aft fuselage of the Orbiter Discovery ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Close-up view of the aft fuselage of the Orbiter Discovery on the starboard side looking forward. This view is of the attach surface for the Orbiter Maneuvering System/Reaction Control System (OMS/RCS) Pod. The OMS/RCS pods are removed for processing and reconditioning at another facility. This view was taken from a service platform in the Orbiter Processing Facility at Kennedy Space Center. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  2. Closeup view of the aft fuselage looking forward along the ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Close-up view of the aft fuselage looking forward along the approximate centerline of the Orbiter Discovery looking at the expansion nozzles of the Space Shuttle Main Engines (SSME) and the Orbiter Maneuvering System. Also in the view is the orbiter's body flap with a protective covering over the High-temperature Reusable Surface Insulation tiles on the surface facing the SSMEs. This image was taken inside the Orbiter Processing Facility at Kennedy Space Center. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  3. Closeup view of the underside of the forward fuselage of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Close-up view of the underside of the forward fuselage of the Orbiter Discovery looking at the nose landing-gear and into the landing-gear well. The vehicle is elevated and supported by jack stands attached to the hoist attach points and the rear External Tank attach points on the propellant disconnect plate assemblies. This photo was taken inside the Orbiter Processing Facility at Kennedy Space Center. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  4. Characterization studies on the additives mixed L-arginine phosphate monohydrate (LAP) crystals

    NASA Astrophysics Data System (ADS)

    Haja Hameed, A. S.; Karthikeyan, C.; Ravi, G.; Rohani, S.

    2011-04-01

    L-arginine phosphate monohydrate (LAP), potassium thiocyanate (KSCN) mixed LAP (LAP:KSCN) and sodium sulfite (Na 2SO 3) mixed LAP (LAP:Na 2SO 3) single crystals were grown by slow cooling technique. The effect of microbial contamination and coloration on the growth solutions was studied. The crystalline powders of the grown crystals were examined by X-ray diffraction and the lattice parameters of the crystals were estimated. From the FTIR spectroscopic analysis, various functional group frequencies associated with the crystals were assigned. Vickers microhardness studies were done on {1 0 0} faces for pure and additives mixed LAP crystals. From the preliminary surface second harmonic generation (SHG) results, it was found that the SHG intensity at (1 0 0) face of LAP:KSCN crystal was much stronger than that of pure LAP.

  5. RPC-LAP: The Rosetta Langmuir Probe Instrument

    NASA Astrophysics Data System (ADS)

    Eriksson, A. I.; Boström, R.; Gill, R.; Åhlén, L.; Jansson, S.-E.; Wahlund, J.-E.; André, M.; Mälkki, A.; Holtet, J. A.; Lybekk, B.; Pedersen, A.; Blomberg, L. G.

    2007-02-01

    The Rosetta dual Langmuir probe instrument, LAP, utilizes the multiple powers of a pair of spherical Langmuir probes for measurements of basic plasma parameters with the aim of providing detailed knowledge of the outgassing, ionization, and subsequent plasma processes around the Rosetta target comet. The fundamental plasma properties to be studied are the plasma density, the electron temperature, and the plasma flow velocity. However, study of electric fields up to 8 kHz, plasma density fluctuations, spacecraft potential, integrated UV flux, and dust impacts is also possible. LAP is fully integrated in the Rosetta Plasma Consortium (RPC), the instruments of which together provide a comprehensive characterization of the cometary plasma.

  6. Effect of Fuselage Cross Sections on Aerodynamic Characteristics of Reusable Launch Vehicles in Subsonic Flow

    NASA Astrophysics Data System (ADS)

    Tadakuma, Kenji; Morita, Wataru; Aso, Shigeru; Tani, Yasuhiro

    An experimental study on aerodynamic effect of RLVs (Reusable Launch Vehicles) due to fuselage cross sections has been conducted in subsonic flow. Three fuselage models and two wing-body models have been considered. Fuselage models have a circular, a square and a triangular cross section. Wing-body models have a square and a triangular cross section with wings. Experiments have been conducted under test conditions of free-stream Mach number M∞=0.3 and Reynolds number Re=3.2×106. Aerodynamic forces are measured and flow fields are visualized by smoke-wire technique and oil-flow technique. Results show that fuselage cross sections have much effect on whole aerodynamic characteristics, the fuselage model with a triangular cross section has higher lift coefficient in high angle of attack region than that of the other fuselage models and the wing-body model with a triangular fuselage cross section does not stall till high angle of attack region compared with the “Square” fuselage wing-body model.

  7. Some studies on the aerodynamic effect of the gap between airplane wings and fuselages

    NASA Technical Reports Server (NTRS)

    Ober, Shatswell

    1929-01-01

    The general result indicated by this study is that if desirable from any viewpoint the gap between wing and fuselage may be closed without detrimental aerodynamic effects, and with a given monoplane there is less drag if the wing is directly on top of the fuselage than if it is parasol.

  8. GEMPAK- AN ARBITRARY AIRCRAFT GEOMETRY GENERATOR

    NASA Technical Reports Server (NTRS)

    Stack, S. H.

    1994-01-01

    calculation. There are two basic options for input to this part of the airfoil section. The first is to generate a one- or two-panel surface with basic input parameters such as aspect ratio, taper ratio, and sweep angle. A slabsided airfoil or a circular arc airfoil can be input with a minimum of input. The second is to input a point by point description of the airfoil. Once the airfoil description has been entered by either method then there are program options to change dihedral, twist, coordinate translation, angle of attack, and roll angle of the previously defined airfoil. After all of the geometry for the separate parts has been generated, then control passes to the merge section of the program. Merge calculates the intersection of all the planar surfaces with the fuselage. Input consists of program option flags and data to define the geometry of the fuselage and the wing-like portions of the aircraft. This program has been implemented in FORTRAN IV on a CDC 6000 series machine with a central memory requirement of approximately 55K (octal) of 60 bit words.

  9. Auto Mechanics I. Learning Activity Packets (LAPs). Section C--Engine.

    ERIC Educational Resources Information Center

    Oklahoma State Board of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.

    This document contains five learning activity packets (LAPs) that outline the study activities for the "engine" instructional area for an Auto Mechanics I course. The five LAPs cover the following topics: basic engine principles, cooling system, engine lubrication system, exhaust system, and fuel system. Each LAP contains a cover sheet that…

  10. Helicopter anti-torque system using fuselage strakes

    NASA Technical Reports Server (NTRS)

    Kelley, Henry L. (Inventor); Wilson, John C. (Inventor)

    1987-01-01

    The improvement of the helicopter torque control system is discussed. At low to medium forward speeds helicopter performance is limited by the effectiveness of the means for counteracting main rotor torque and controlling sideslip airloads. These problems may be overcome by mounting strakes on the aft fuselage section. For single rotor helicopters whose main rotor rotates counter-clockwise as viewed from above, one of the strakes would be mounted in the upper lefthand quadrant and the second in the lower left hand quadrant. The strakes alter the air flow around the fuselage by separating the flow so as to produce lateral airloads on the tail boom which oppose main-rotor torque. The upper strake operates in a right crosswind to oppose main rotor torque, and the lower strake has effect in left crosswinds. The novelty of this invention resides in the simple and economical manner in which the helicopter tail boom may be modified by the addition of strakes in order to increase torque control, and reduce the need for supplemental mechanical means of torque control.

  11. Numerical Investigation of a Fuselage Boundary Layer Ingestion Propulsion Concept

    NASA Technical Reports Server (NTRS)

    Elmiligui, Alaa A.; Fredericks, William J.; Guynn, Mark D.; Campbell, Richard L.

    2013-01-01

    In the present study, a numerical assessment of the performance of fuselage boundary layer ingestion (BLI) propulsion techniques was conducted. This study is an initial investigation into coupling the aerodynamics of the fuselage with a BLI propulsion system to determine if there is sufficient potential to warrant further investigation of this concept. Numerical simulations of flow around baseline, Boundary Layer Controlled (BLC), and propelled boundary layer controlled airships were performed. Computed results showed good agreement with wind tunnel data and previous numerical studies. Numerical simulations and sensitivity analysis were then conducted on four BLI configurations. The two design variables selected for the parametric study of the new configurations were the inlet area and the inlet to exit area ratio. Current results show that BLI propulsors may offer power savings of up to 85% over the baseline configuration. These interim results include the simplifying assumption that inlet ram drag is negligible and therefore likely overstate the reduction in power. It has been found that inlet ram drag is not negligible and should be included in future analysis.

  12. Interference of Wing and Fuselage from Tests of 28 Combinations in the NACA Variable-Density Tunnel

    NASA Technical Reports Server (NTRS)

    Sherman, Albert

    1937-01-01

    Report presents the results of tests conducted on 28 wing-fuselage combinations made in the variable-density wind tunnel as a part of the wing-fuselage interference program being conducted therein and in addition to the 209 combinations previously reported in NACA-TR-540. These tests practically complete the study of combinations with a rectangular fuselage and continue the study of combinations with a round fuselage and a tapered wing.

  13. The vibration characteristics of a coupled helicopter rotor-fuselage by a finite element analysis

    NASA Technical Reports Server (NTRS)

    Rutkowski, M. J.

    1983-01-01

    The dynamic coupling between the rotor system and the fuselage of a simplified helicopter model in hover was analytically investigated. Mass, aerodynamic damping, and elastic and centrifugal stiffness matrices are presented for the analytical model; the model is based on a beam finite element, with polynomial mass and stiffness distributions for both the rotor and fuselage representations. For this analytical model, only symmetric fuselage and collective blade degrees of freedom are treated. Real and complex eigen-analyses are carried out to obtain coupled rotor-fuselage natural modes and frequencies as a function of rotor speed. Vibration response results are obtained for the coupled system subjected to a radially uniform, harmonic blade loading. The coupled response results are compared with response results from an uncoupled analysis in which hub loads for an isolated rotor system subjected to the same sinusoidal blade loading as the coupled system are applied to a free-free fuselage.

  14. Study on utilization of advanced composites in fuselage structures of large transports

    NASA Technical Reports Server (NTRS)

    Johnson, R. W.; Thomson, L. W.; Wilson, R. D.

    1985-01-01

    The potential for utilizing advanced composites in fuselage structures of large transports was assessed. Six fuselage design concepts were selected and evaluated in terms of structural performance, weight, and manufacturing development and costs. Two concepts were selected that merit further consideration for composite fuselage application. These concepts are: (1) a full depth honeycomb design with no stringers, and (2) an I section stringer stiffened laminate skin design. Weight reductions due to applying composites to the fuselages of commercial and military transports were calculated. The benefits of applying composites to a fleet of military transports were determined. Significant technology issues pertinent to composite fuselage structures were identified and evaluated. Program plans for resolving the technology issues were developed.

  15. Correlation of AH-1G airframe flight vibration data with a coupled rotor-fuselage analysis

    NASA Technical Reports Server (NTRS)

    Sangha, K.; Shamie, J.

    1990-01-01

    The formulation and features of the Rotor-Airframe Comprehensive Analysis Program (RACAP) is described. The analysis employs a frequency domain, transfer matrix approach for the blade structural model, a time domain wake or momentum theory aerodynamic model, and impedance matching for rotor-fuselage coupling. The analysis is applied to the AH-1G helicopter, and a correlation study is conducted on fuselage vibration predictions. The purpose of the study is to evaluate the state-of-the-art in helicopter fuselage vibration prediction technology. The fuselage vibration predicted using RACAP are fairly good in the vertical direction and somewhat deficient in the lateral/longitudinal directions. Some of these deficiencies are traced to the fuselage finite element model.

  16. Aircraft Contrails

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Captured in this scene is a series of aircraft contrails in a high traffic region over the northern Gulf of Mexico (27.0N, 85.5W). Contrails are caused by the hot engine exhaust of high flying aircraft interacting with moisture in the cold upper atmosphere and are common occurrances of high flying aircraft.

  17. Control of an all-movable foreplane for a three surfaces aircraft wind tunnel model

    NASA Astrophysics Data System (ADS)

    Ricci, S.; Scotti, A.; Zanotti, D.

    2006-07-01

    This article deals with design and realisation of a canard foreplane control system for an aeroelastic demonstrator, suitable for wind tunnel testing. Hardware and software will be described as the methodology adopted to design, implement and realise the software. Specific attention is devoted to PID application, tuning and fuselage vibration control implementation. Results of preliminary test and simulations are presented and show realistic system effectiveness in damping fuselage bending and torsion. This work describes all the activity performed at Politecnico di Milano before wind tunnel testing at VZLU, Prague, as part of Active Aeroelastic Aircraft Structures (3AS) EU project.

  18. Learning Activity Package, Physical Science 92, LAPs 1-9.

    ERIC Educational Resources Information Center

    Williams, G. J.

    This set of nine teacher-prepared Learning Activity Packages (LAPs) for individualized instruction in physical science covers the topics of scientific equipment and procedures; measure of time, length, area, and volume; water; oxygen and oxidation; atmospheric pressure; motion; machines; carbon; and light and sound. Each unit contains a rationale…

  19. Insights: A LAP on Moles: Teaching an Important Concept.

    ERIC Educational Resources Information Center

    Ihde, John

    1985-01-01

    Describes a learning activity packet (LAP) designed to help students understand the basic concept of the mole as a chemical unit; know relationships between the mole and atomic weights in the periodic table; and solve basic conversion problems involving moles, atoms, and molecules. (JN)

  20. Learning Activity Package, Algebra 124, LAPs 46-55.

    ERIC Educational Resources Information Center

    Holland, Bill

    A series of 10 teacher-prepared Learning Activity Packages (LAPs) in advanced algebra and trigonometry, these units cover absolute value, inequalities, exponents, radicals, and complex numbers; functions; higher degree equations and the derivative; the trigonometric functions; graphs and applications of the trigonometric functions; sequences and…

  1. Cruise noise of the 2/9th scale model of the Large-scale Advanced Propfan (LAP) propeller, SR-7A

    NASA Technical Reports Server (NTRS)

    Dittmar, James H.; Stang, David B.

    1987-01-01

    Noise data on the Large-scale Advanced Propfan (LAP) propeller model SR-7A were taken in the NASA Lewis Research Center 8 x 6 foot Wind Tunnel. The maximum blade passing tone noise first rises with increasing helical tip Mach number to a peak level, then remains the same or decreases from its peak level when going to higher helical tip Mach numbers. This trend was observed for operation at both constant advance ratio and approximately equal thrust. This noise reduction or, leveling out at high helical tip Mach numbers, points to the use of higher propeller tip speeds as a possible method to limit airplane cabin noise while maintaining high flight speed and efficiency. Projections of the tunnel model data are made to the full scale LAP propeller mounted on the test bed aircraft and compared with predictions. The prediction method is found to be somewhat conservative in that it slightly overpredicts the projected model data at the peak.

  2. Propeller aircraft interior noise model: User's manual for computer program

    NASA Technical Reports Server (NTRS)

    Wilby, E. G.; Pope, L. D.

    1985-01-01

    A computer program entitled PAIN (Propeller Aircraft Interior Noise) has been developed to permit calculation of the sound levels in the cabin of a propeller-driven airplane. The fuselage is modeled as a cylinder with a structurally integral floor, the cabin sidewall and floor being stiffened by ring frames, stringers and floor beams of arbitrary configurations. The cabin interior is covered with acoustic treatment and trim. The propeller noise consists of a series of tones at harmonics of the blade passage frequency. Input data required by the program include the mechanical and acoustical properties of the fuselage structure and sidewall trim. Also, the precise propeller noise signature must be defined on a grid that lies in the fuselage skin. The propeller data are generated with a propeller noise prediction program such as the NASA Langley ANOPP program. The program PAIN permits the calculation of the space-average interior sound levels for the first ten harmonics of a propeller rotating alongside the fuselage. User instructions for PAIN are given in the report. Development of the analytical model is presented in NASA CR 3813.

  3. Consideration of some factors affecting low-frequency fuselage noise transmission for propeller aircraft

    NASA Technical Reports Server (NTRS)

    Mixson, J. S.; Roussos, L. A.

    1986-01-01

    Possible reasons for disagreement between measured and predicted trends of sidewall noise transmission at low frequency are investigated using simplified analysis methods. An analytical model combining incident plane acoustic waves with an infinite flat panel is used to study the effects of sound incidence angle, plate structural properties, frequency, absorption, and the difference between noise reduction and transmission loss. Analysis shows that these factors have significant effects on noise transmission but they do not account for the differences between measured and predicted trends at low frequencies. An analytical model combining an infinite flat plate with a normally incident acoustic wave having exponentially decaying magnitude along one coordinate is used to study the effect of a localized source distribution such as is associated with propeller noise. Results show that the localization brings the predicted low-frequency trend of noise transmission into better agreement with measured propeller results. This effect is independent of low-frequency stiffness effects that have been previously reported to be associated with boundary conditions.

  4. Aerodynamics of powered missile separation from F/A-18 aircraft

    NASA Technical Reports Server (NTRS)

    Ahmad, J. U.; Shanks, S. P.; Buning, P. G.

    1993-01-01

    A 3D dynamic 'chimera' algorithm that solves the thin-layer Navier-Stokes equations over multiple moving bodies was modified to numerically simulate the aerodynamics, missile dynamics, and missile plume interactions of a missile separating from a generic wing and from an F/A-18 aircraft in transonic flow. The missile is mounted below the wing for missile separation from the wing and on the F/A-18 fuselage at the engine inlet side for missile separation from aircraft. Static and powered missile separation cases are considered to examine the influence of the missile and plume on the wing and F/A-18 fuselage and engine inlet. The aircraft and missile are at two degrees angle of attack, Reynolds number of 10 million, freestream Mach number of 1.05 and plume Mach number of 3.0. The computational results show the details of the flow field.

  5. Full-scale flammability test data for validation of aircraft fire mathematical models

    NASA Technical Reports Server (NTRS)

    Kuminecz, J. F.; Bricker, R. W.

    1982-01-01

    Twenty-five large scale aircraft flammability tests were conducted in a Boeing 737 fuselage at the NASA Johnson Space Center (JSC). The objective of this test program was to provide a data base on the propagation of large scale aircraft fires to support the validation of aircraft fire mathematical models. Variables in the test program included cabin volume, amount of fuel, fuel pan area, fire location, airflow rate, and cabin materials. A number of tests were conducted with jet A-1 fuel only, while others were conducted with various Boeing 747 type cabin materials. These included urethane foam seats, passenger service units, stowage bins, and wall and ceiling panels. Two tests were also included using special urethane foam and polyimide foam seats. Tests were conducted with each cabin material individually, with various combinations of these materials, and finally, with all materials in the cabin. The data include information obtained from approximately 160 locations inside the fuselage.

  6. Interior noise control prediction study for high-speed propeller-driven aircraft

    NASA Technical Reports Server (NTRS)

    Rennison, D. C.; Wilby, J. F.; Marsh, A. H.; Wilby, E. G.

    1979-01-01

    An analytical model was developed to predict the noise levels inside propeller-driven aircraft during cruise at M = 0.8. The model was applied to three study aircraft with fuselages of different size (wide body, narrow body and small diameter) in order to determine the noise reductions required to achieve the goal of an A-weighted sound level which does not exceed 80 dB. The model was then used to determine noise control methods which could achieve the required noise reductions. Two classes of noise control treatments were investigated: add-on treatments which can be added to existing structures, and advanced concepts which would require changes to the fuselage primary structure. Only one treatment, a double wall with limp panel, provided the required noise reductions. Weight penalties associated with the treatment were estimated for the three study aircraft.

  7. Coupled rotor-fuselage vibration reduction with multiple frequency blade pitch control

    NASA Technical Reports Server (NTRS)

    Papavassiliou, I.; Friedmann, P. P.; Venkatesan, C.

    1991-01-01

    A nonlinear coupled rotor/flexible fuselage analysis has been developed and used to study the effects of higher harmonic blade pitch control on the vibratory hub loads and fuselage acceleration levels. Previous results, obtained with this model have shown that conventional higher harmonic control (HHC) inputs aimed at hub shear reduction cause an increase in the fuselage accelerations and vice-versa. It was also found that for simultaneous reduction of hub shears and fuselage accelerations, a pitch input representing a combination of two higher harmonic components of different frequencies was needed. Subsequently, it was found that this input could not be implemented through a conventional swashplate. This paper corrects a mistake originally made in the representation of the multiple frequency pitch input and shows that such a pitch input can be only implemented in the rotating reference frame. A rigorous mathematical solution is found, for the pitch input in the rotating reference frame, which produces simultaneous reduction of hub shears and fuselage acceleration. New insight on vibration reduction in coupled rotor/fuselage systems is obtained from the sensitivity of hub shears to the frequency and amplitude of the open loop HHC signal in the rotating reference frame. Finally the role of fuselage flexibility in this class of problems is determined.

  8. Interior noise considerations for powered-lift STOL aircraft

    NASA Technical Reports Server (NTRS)

    Barton, C. K.

    1975-01-01

    Powered-lift configurations which are currently under development for future use on STOL aircraft involve impingement of the jet engine exhaust onto wing and flap surfaces. Previous studies have suggested that the impinging jet produces higher noise levels at lower frequencies than does the jet alone. These higher levels, together with the close proximity of the engine and flap noise sources to the fuselage sidewall, suggest that the noise levels in these aircraft may be high enough to interfere with passenger comfort. To investigate this possibility, interior noise levels were estimated for both an upper surface blown (USB) and an externally blown flap (EBF) configuration. This paper describes the procedure used to estimate the interior noise levels and compares these levels with levels on existing jet aircraft and on ground transportation vehicles. These estimates indicate high levels in the STOL aircraft; therefore, areas of possible improvements in technology for control of STOL interior noise are also discussed.

  9. Distribution of Acoustic Power Spectra for an Isolated Helicopter Fuselage

    NASA Astrophysics Data System (ADS)

    Kusyumov, A. N.; Mikhailov, S. A.; Garipova, L. I.; Batrakov, A. S.; Barakos, G.

    2016-03-01

    The broadband aerodynamic noise can be studied, assuming isotropic flow, turbulence and decay. Proudman's approach allows practical calculations of noise based on CFD solutions of RANS or URANS equations at the stage of post processing and analysis of the solution. Another aspect is the broadband acoustic spectrum and the distribution of acoustic power over a range of frequencies. The acoustic energy spectrum distribution in isotropic turbulence is non monotonic and has a maximum at a certain value of Strouhal number. In the present work the value of acoustic power peak frequency is determined using a prescribed form of acoustic energy spectrum distribution presented in papers by S. Sarkar and M. Y. Hussaini and by G. M. Lilley. CFD modelling of the flow around isolated helicopter fuselage model was considered using the HMB CFD code and the RANS equations.

  10. Closeup oblique view of the aft fuselage of the Orbiter ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Close-up oblique view of the aft fuselage of the Orbiter Discovery looking forward and port as the last Space Shuttle Main Engine is being removed, it can be seen on the left side of the image frame. Note that one of the Orbiter Maneuvering System/ Reaction Control System has been removed while one of them remains. Also note that the body flap, below the engine positions has a protective covering to prevent damage to the High-temperature Reusable Surface Insulation tiles. This image was taken inside the Orbiter Processing Facility at Kennedy Space Center. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  11. Closeup oblique view of the aft fuselage of the Orbiter ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Close-up oblique view of the aft fuselage of the Orbiter Discovery looking forward and starboard as the last Space Shuttle Main Engine is being removed, it can be seen on the right side of the image frame. Note that one of the Orbiter Maneuvering System/ Reaction Control System has been removed while one of them remains. Also note that the body flap, below the engine positions has a protective covering to prevent damage to the High-temperature Reusable Surface Insulation tiles. This image was taken inside the Orbiter Processing Facility at Kennedy Space Center. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  12. Prediction of light aircraft interior noise

    NASA Technical Reports Server (NTRS)

    Howlett, J. T.; Morales, D. A.

    1976-01-01

    At the present time, predictions of aircraft interior noise depend heavily on empirical correction factors derived from previous flight measurements. However, to design for acceptable interior noise levels and to optimize acoustic treatments, analytical techniques which do not depend on empirical data are needed. This paper describes a computerized interior noise prediction method for light aircraft. An existing analytical program (developed for commercial jets by Cockburn and Jolly in 1968) forms the basis of some modal analysis work which is described. The accuracy of this modal analysis technique for predicting low-frequency coupled acoustic-structural natural frequencies is discussed along with trends indicating the effects of varying parameters such as fuselage length and diameter, structural stiffness, and interior acoustic absorption.

  13. Aircraft propeller induced structure-borne noise

    NASA Technical Reports Server (NTRS)

    Unruh, James F.

    1989-01-01

    A laboratory-based test apparatus employing components typical of aircraft construction was developed that would allow the study of structure-borne noise transmission due to propeller induced wake/vortex excitation of in-wake structural appendages. The test apparatus was employed to evaluate several aircraft installation effects (power plant placement, engine/nacelle mass loading, and wing/fuselage attachment methods) and several structural response modifications for structure-borne noise control (the use of wing blocking mass/fuel, wing damping treaments, and tuned mechanical dampers). Most important was the development of in-flight structure-borne noise transmission detection techniques using a combination of ground-based frequency response function testing and in-flight structural response measurement. Propeller wake/vortex excitation simulation techniques for improved ground-based testing were also developed to support the in-flight structure-borne noise transmission detection development.

  14. An overview of the crash dynamics failure behavior of metal and composite aircraft structures

    NASA Technical Reports Server (NTRS)

    Carden, Huey D.; Boitnott, Richard L.; Fasanella, Edwin L.; Jones, Lisa E.

    1991-01-01

    An overview of failure behavior results is presented from some of the crash dynamics research conducted with concepts of aircraft elements and substructure not necessarily designed or optimized for energy absorption or crash loading considerations. Experimental and analytical data are presented that indicate some general trends in the failure behavior of a class of composite structures that includes fuselage panels, individual fuselage sections, fuselage frames, skeleton subfloors with stringers and floor beams without skin covering, and subfloors with skin added to the frame stringer structure. Although the behavior is complex, a strong similarity in the static/dynamic failure behavior among these structures is illustrated through photographs of the experimental results and through analytical data of generic composite structural models.

  15. Method of vibration isolating an aircraft engine

    NASA Technical Reports Server (NTRS)

    Bender, Stanley I. (Inventor); Butler, Lawrence (Inventor); Dawes, Peter W. (Inventor)

    1991-01-01

    A method for coupling an engine to a support frame for mounting to a fuselage of an aircraft using a three point vibration isolating mounting system in which the load reactive forces at each mounting point are statically and dynamically determined. A first vibration isolating mount pivotably couples a first end of an elongated support beam to a stator portion of an engine with the pivoting action of the vibration mount being oriented such that it is pivotable about a line parallel to a center line of the engine. An aft end of the supporting frame is coupled to the engine through an additional pair of vibration isolating mounts with the mounts being oriented such that they are pivotable about a circumference of the engine. The aft mounts are symmetrically spaced to each side of the supporting frame by 45 degrees. The relative orientation between the front mount and the pair of rear mounts is such that only the rear mounts provide load reactive forces parallel to the engine center line, in support of the engine to the aircraft against thrust forces. The forward mount is oriented so as to provide only radial forces to the engine and some lifting forces to maintain the engine in position adjacent a fuselage. Since each mount is connected to provide specific forces to support the engine, forces required of each mount are statically and dynamically determinable.

  16. Measurement of aircraft speed and altitude

    NASA Technical Reports Server (NTRS)

    Gracey, W.

    1980-01-01

    Problems involved in measuring speed and altitude with pressure-actuated instruments (altimeter, airspeed indicator, true-airspeed indicator, Machmeter, and vertical-speed indicator) are examined. Equations relating total pressure and static pressure to the five flight quantities are presented, and criteria for the design of total and static pressure tubes are given. Calibrations of typical static pressure installations (fuselage nose, wing tip, vertical fin, and fuselage vent) are presented, various methods for flight calibration of these installations are described, and the calibration of a particular installation by two of the methods is described in detail. Equations are given for estimating the effects of pressure lag and leaks. Test procedures for the laboratory calibration of the five instruments are described, and accuracies of mechanical and electrical instruments are presented. Operational use of the altimeter for terrain clearance and vertical separation of aircraft is discussed, along with flight technical errors and overall altitude errors of aircraft in cruise operations. Altitude-measuring techniques based on a variety of properties of the Earth and the atmosphere are included. Two appendixes present airspeed and altitude tables and sample calculations for determining the various flight parameters from measured total and static pressures.

  17. Aircraft accident report: NASA 712, Convair 990, N712NA, March Air Force Base, California, July 17, 1985, executive summary

    NASA Technical Reports Server (NTRS)

    Batthauer, Byron E.; Mccarthy, G. T.; Hannah, Michael; Hogan, Robert J.; Marlow, Frank J.; Reynard, William D.; Stoklosa, Janis H.; Yager, Thomas J.

    1986-01-01

    On July 17, l985, NASA 712, a Convair 990 aircraft, was destroyed by fire during an aborted takeoff at March Air Force Base in California. Material ejected from a blowout in the tires of the right main landing gear penetrated the right-wing fuel tank. The leaking fuel ignited. Fire engulfed the right wing and fuselage as the aircraft stopped its forward motion. The crew of four and the 15 scientists and technicians aboard escaped without serious injury.

  18. Structural Features of the Pseudomonas fluorescens Biofilm Adhesin LapA Required for LapG-Dependent Cleavage, Biofilm Formation, and Cell Surface Localization

    PubMed Central

    Boyd, Chelsea D.; Smith, T. Jarrod; El-Kirat-Chatel, Sofiane; Newell, Peter D.; Dufrêne, Yves F.

    2014-01-01

    The localization of the LapA protein to the cell surface is a key step required by Pseudomonas fluorescens Pf0-1 to irreversibly attach to a surface and form a biofilm. LapA is a member of a diverse family of predicted bacterial adhesins, and although lacking a high degree of sequence similarity, family members do share common predicted domains. Here, using mutational analysis, we determine the significance of each domain feature of LapA in relation to its export and localization to the cell surface and function in biofilm formation. Our previous work showed that the N terminus of LapA is required for cleavage by the periplasmic cysteine protease LapG and release of the adhesin from the cell surface under conditions unfavorable for biofilm formation. We define an additional critical region of the N terminus of LapA required for LapG proteolysis. Furthermore, our results suggest that the domains within the C terminus of LapA are not absolutely required for biofilm formation, export, or localization to the cell surface, with the exception of the type I secretion signal, which is required for LapA export and cell surface localization. In contrast, deletion of the central repetitive region of LapA, consisting of 37 repeats of 100 amino acids, results in an inability to form a biofilm. We also used single-molecule atomic force microscopy to further characterize the role of these domains in biofilm formation on hydrophobic and hydrophilic surfaces. These studies represent the first detailed analysis of the domains of the LapA family of biofilm adhesin proteins. PMID:24837291

  19. In-flight interior sound field mapping in propeller aircraft

    NASA Astrophysics Data System (ADS)

    van der Auweraer, H.; Gielen, L.; Otte, D.

    Interior noise in propeller aircraft is currently an important issue in the aerospace industry. Efficient noise control measures require a thorough understanding of the in-flight response of the vibro-acoustic system, formed by fuselage, trim panels and cabin cavity, to the propeller excitation. The cabin interior noise is dominated by the lower order blade pass tones of the propellers. It is therefore important to map the acoustic sound field and the trimpanel and fuselage vibration responses at these frequencies. It is further advantageous to estimate the separated contributions of the two propellers because it allows a better understanding of the coupling between the propeller sound fields, the fuselage and the cabin cavity. It also provides a convenient means to compare different flight tests, regardless of the synchrophasor setting or stability. This paper discusses the acquisition and analysis of operating data on a fully trimmed Saab 340, a twin-engine commuter aircraft. The estimation of each propeller's contribution by means of cross-spectrum and coherence analysis techniques is further explored, in relation with signal processing issues, as windowing and leakage. Some resulting in-flight cabin cavity sound field shapes and trimpanel deformations are presented and discussed.

  20. Design of a spanloader cargo aircraft

    NASA Technical Reports Server (NTRS)

    1989-01-01

    With a growing demand for fast international freight service, the slow-moving cargo ships currently in use will soon find a substantial portion of their clients looking elsewhere. One candidate for filling this expected gap in the freight market is a span-loading aircraft (or 'flying wing') capable of long-range operation with extremely large payloads. This report summarizes the design features of an aircraft capable of fulfilling a long-haul, high-capacity cargo mission. The spanloader seeks to gain advantage over conventional aircraft by eliminating the aircraft fuselage and thus reducing empty weight. The primary disadvantage of this configuration is that the cargo-containing wing tends to be thick, thus posing a challenge to the airfoil designer. It also suffers from stability and control problems not encountered by conventional aircraft. The result is an interesting, challenging exercise in unconventional design. The report that follows is a student written synopsis of an effort judged to be the best of eight designs developed during the year 1988-1989.

  1. Material characterization of structural adhesives in the lap shear mode

    NASA Technical Reports Server (NTRS)

    Sancaktar, E.; Schenck, S. C.

    1983-01-01

    A general method for characterizing structual adhesives in the bonded lap shear mode is proposed. Two approaches in the form of semiempirical and theoretical approaches are used. The semiempirical approach includes Ludwik's and Zhurkov's equations to describe respectively, the failure stresses in the constant strain rate and constant stress loading modes with the inclusion of the temperature effects. The theoretical approach is used to describe adhesive shear stress-strain behavior with the use of viscoelastic or nonlinear elastic constitutive equations. Two different model adhesives are used in the single lap shear mode with titanium adherends. These adhesives (one of which was developed at NASA Langley Research Center) are currently considered by NASA for possible aerospace applications. Use of different model adhesives helps in assessment of the generality of the method.

  2. FRICTION-STIR-LAP-WELDS OF AA6111 ALUMINUM ALLOY

    SciTech Connect

    Yadava, Manasij; Mishra, Rajiv S.; Chen, Y. L.; Gayden, X.; Grant, Glenn J.

    2007-01-09

    Lap joints of 1 mm thick AA6111 aluminum sheets were made by friction stir welding, using robotic and conventional machines. Welds were made for advancing as well as retreating side loading. Thinning in welds was quantified. Lap shear test of welds was conducted in as-welded and paint-baked conditions. Conventional machine welds showed less thinning and better strength than robotic machine welds. Process forces in conventional machine welding were higher. Paint bake treatment improved the weld strength; but the improvement varied with process parameters. Advancing side loaded welds achieved higher strength than the retreating side loaded welds. Fracture location was found to occur on the loaded side of the weld and along the thinning defect.

  3. The impact of lubricants on the precision lapping process.

    PubMed

    Jiang, Xionghua; Chen, Zhenxing; Wolfram, Joy; Wei, Zhongxian; Shen, Yuqiu; Yang, Zhizhou

    2014-12-01

    The impact of lubricants on pole-tip recession and surface morphology of hard disk drive heads in the precision lapping process was investigated with atomic force microscopy, scanning electron microscopy, and auger electron spectroscopy. In particular, the effects of deionized water, hydrocarbon oil, ethanediol, isopropanol, and ethanol lubricants were evaluated. The results reveal that proper selection of lubricant is critical for achieving optimal performance in the lapping process. A mixture of 68% hydrocarbon oil, 30% isopropanol, and 2% octadecenoic acid was found to yield the most favorable results, displaying a writer shield recession, first shield of reader recession, and surface roughness of 0.423, 0.581, and 0.242 nm, respectively. PMID:25387606

  4. Investigation into Interface Lifting Within FSW Lap Welds

    SciTech Connect

    K. S. Miller; C. R. Tolle; D. E. Clark; C. I. Nichol; T. R. McJunkin; H. B. Smartt

    2008-06-01

    Friction stir welding (FSW) is rapidly penetrating the welding market in many materials and applications, particularly in aluminum alloys for transportation applications. As this expansion outside the research laboratory continues, fitness for service issues will arise, and process control and NDE methods will become important determinants of continued growth. The present paper describes research into FSW weld nugget flaw detection within aluminum alloy lap welds. We present results for two types of FSW tool designs: a smooth pin tool and a threaded pin tool. We show that under certain process parameters (as monitored during welding with a rotating dynamometer that measures x, y, z, and torque forces) and tooling designs, FSW lap welds allow significant nonbonded interface lifting of the lap joint, while forming a metallurgical bond only within the pin region of the weld nugget. These lifted joints are often held very tightly together even though unbonded, and might be expected to pass cursory NDE while representing a substantial compromise in joint mechanical properties. The phenomenon is investigated here via radiographic and ultrasonic NDE techniques, with a copper foil marking insert (as described elsewhere) and by the tensile testing of joints. As one would expect, these results show that tool design and process parameters significantly affect plactic flow and this lifted interface. NDE and mechanical strength ramifications of this defect are discussed.

  5. Residual Strength Analyses of Riveted Lap-Splice Joints

    NASA Technical Reports Server (NTRS)

    Seshadri, B. R.; Newman, J. C., Jr.

    2000-01-01

    The objective of this paper was to analyze the crack-linkup behavior in riveted-stiffened lap-splice joint panels with small multiple-site damage (MSD) cracks at several adjacent rivet holes. Analyses are based on the STAGS (STructural Analysis of General Shells) code with the critical crack-tip-opening angle (CTOA) fracture criterion. To account for high constraint around a crack front, the "plane strain core" option in STAGS was used. The importance of modeling rivet flexibility with fastener elements that accurately model load transfer across the joint is discussed. Fastener holes are not modeled but rivet connectivity is accounted for by attaching rivets to the sheet on one side of the cracks that simulated both the rivet diameter and MSD cracks. Residual strength analyses made on 2024-T3 alloy (1.6-mm thick) riveted-lap-splice joints with a lead crack and various size MSD cracks were compared with test data from Boeing Airplane Company. Analyses were conducted for both restrained and unrestrained buckling conditions. Comparison of results from these analyses and results from lap-splice-joint test panels, which were partially restrained against buckling indicate that the test results were bounded by the failure loads predicted by the analyses with restrained and unrestrained conditions.

  6. Payload specialists Baudry and Chretien in the Shuttle full fuselage trainer

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Payload specialists Patrick Baudry (left) and Jean Loup Chretien are seated at the commander and pilot stations on the Shuttle full fuselage trainer. In this view they are looking at the camera over the backs of the shuttle seats.

  7. STS 51-E crew is briefed on the Shuttle full fuselage trainer

    NASA Technical Reports Server (NTRS)

    1984-01-01

    STS 51-E crew is briefed on the Shuttle full fuselage trainer. Astronauts Dave Griggs (foreground), Jean Loup Chretien (behind Griggs) and Jeff Hoffman are being shown the workings of the trainer by flight instructors.

  8. Coupled rotor-flexible fuselage vibration reduction using open loop higher harmonic control

    NASA Technical Reports Server (NTRS)

    Papavassiliou, I.; Friedmann, P. P.; Venkatesan, C.

    1991-01-01

    A fundamental study of vibration prediction and vibration reduction in helicopters using active controls was performed. The nonlinear equations of motion for a coupled rotor/flexible fuselage system have been derived using computer algebra on a special purpose symbolic computer facility. The trim state and vibratory response of the helicopter are obtained in a single pass by applying the harmonic balance technique and simultaneously satisfying the trim and the vibratory response of the helicopter for all rotor and fuselage degrees of freedom. The influence of the fuselage flexibility on the vibratory response is studied. It is shown that the conventional single frequency higher harmonic control is capable of reducing either the hub loads or only the fuselage vibrations but not both simultaneously. It is demonstrated that for simultaneous reduction of hub shears and fuselae vibrations a new scheme called multiple higher harmonic control is required.

  9. Evaluation of Pressurization Fatigue Life of 1441 Al-li Fuselage Panel

    NASA Technical Reports Server (NTRS)

    Bird, R. Keith; Dicus, Dennis I.; Fridlyander, Joseph; Davydov, Valentin

    1999-01-01

    A study was conducted to evaluate the pressurization fatigue life of fuselage panels with skins fabricated from 1441 Al-Li, an attractive new Russian alloy. The study indicated that 1441 Al-Li has several advantages over conventional aluminum fuselage skin alloy with respect to fatigue behavior. Smooth 1441 Al-Li sheet specimens exhibited a fatigue endurance limit similar to that for 1163 Al (Russian version of 2024 Al) sheet. Notched 1441 Al-Li sheet specimens exhibited greater fatigue strength and longer fatigue life than 1163 Al. In addition, Tu-204 fuselage panels fabricated by Tupolev Design Bureau using Al-Li skin and ring frames with riveted 7000-series aluminum stiffeners had longer pressurization fatigue lives than did panels constructed from conventional aluminum alloys. Taking into account the lower density of this alloy, the results suggest that 1441 Al-Li has the potential to improve fuselage performance while decreasing structural weight.

  10. Aircraft Design

    NASA Technical Reports Server (NTRS)

    Bowers, Albion H. (Inventor); Uden, Edward (Inventor)

    2016-01-01

    The present invention is an aircraft wing design that creates a bell shaped span load, which results in a negative induced drag (induced thrust) on the outer portion of the wing; such a design obviates the need for rudder control of an aircraft.

  11. Vertical drop test of a transport fuselage section located forward of the wing

    NASA Technical Reports Server (NTRS)

    Williams, M. S.; Hayduk, R. J.

    1983-01-01

    A Boeing 707 fuselage section was drop tested at the NASA Langley Research Center to measure structural, seat, and occupant response to vertical crack loads. Post-test inspection showed that the section bottom collapsed inward approximately 2 ft. Preliminary data traces indicated maximum normal accelerations of 20 g on the fuselage bottom, 10 to 12 g on the cabin floor, and 6.5 to 8 g in the pelvises of the anthropomorphic dummies.

  12. Low-Speed Aerodynamic Characteristics of a Fuselage Model with Various Arrangements of Elongated Lift Jets

    NASA Technical Reports Server (NTRS)

    Vogler, R. D.; Goodson, K. W.

    1973-01-01

    Data were obtained for a round jet located on the center of the bottom of a fuselage and for elongated slots separated spanwise by distances of 0.8 and 1.2 of the fuselage width. The effect of yawing the slots, inclining the jets laterally, and combining slot yaw with jet inclination was determined. Data were obtained in and out of ground effect through a range of effective velocity ratios and through a range of sideslip angles.

  13. Development of Textile Reinforced Composites for Aircraft Structures

    NASA Technical Reports Server (NTRS)

    Dexter, H. Benson

    1998-01-01

    NASA has been a leader in development of composite materials for aircraft applications during the past 25 years. In the early 1980's NASA and others conducted research to improve damage tolerance of composite structures through the use of toughened resins but these resins were not cost-effective. The aircraft industry wanted affordable, robust structures that could withstand the rigors of flight service with minimal damage. The cost and damage tolerance barriers of conventional laminated composites led NASA to focus on new concepts in composites which would incorporate the automated manufacturing methods of the textiles industry and which would incorporate through-the-thickness reinforcements. The NASA Advanced Composites Technology (ACT) Program provided the resources to extensively investigate the application of textile processes to next generation aircraft wing and fuselage structures. This paper discusses advanced textile material forms that have been developed, innovative machine concepts and key technology advancements required for future application of textile reinforced composites in commercial transport aircraft. Multiaxial warp knitting, triaxial braiding and through-the-thickness stitching are the three textile processes that have surfaced as the most promising for further development. Textile reinforced composite structural elements that have been developed in the NASA ACT Program are discussed. Included are braided fuselage frames and window-belt reinforcements, woven/stitched lower fuselage side panels, stitched multiaxial warp knit wing skins, and braided wing stiffeners. In addition, low-cost processing concepts such as resin transfer molding (RTM), resin film infusion (RFI), and vacuum-assisted resin transfer molding (VARTM) are discussed. Process modeling concepts to predict resin flow and cure in textile preforms are also discussed.

  14. Assembly of Lipopolysaccharide in Escherichia coli Requires the Essential LapB Heat Shock Protein*

    PubMed Central

    Klein, Gracjana; Kobylak, Natalia; Lindner, Buko; Stupak, Anna; Raina, Satish

    2014-01-01

    Here, we describe two new heat shock proteins involved in the assembly of LPS in Escherichia coli, LapA and LapB (lipopolysaccharide assembly protein A and B). lapB mutants were identified based on an increased envelope stress response. Envelope stress-responsive pathways control key steps in LPS biogenesis and respond to defects in the LPS assembly. Accordingly, the LPS content in ΔlapB or Δ(lapA lapB) mutants was elevated, with an enrichment of LPS derivatives with truncations in the core region, some of which were pentaacylated and exhibited carbon chain polymorphism. Further, the levels of LpxC, the enzyme that catalyzes the first committed step of lipid A synthesis, were highly elevated in the Δ(lapA lapB) mutant. Δ(lapA lapB) mutant accumulated extragenic suppressors that mapped either to lpxC, waaC, and gmhA, or to the waaQ operon (LPS biosynthesis) and lpp (Braun's lipoprotein). Increased synthesis of either FabZ (3-R-hydroxymyristoyl acyl carrier protein dehydratase), slrA (novel RpoE-regulated non-coding sRNA), lipoprotein YceK, toxin HicA, or MurA (UDP-N-acetylglucosamine 1-carboxyvinyltransferase) suppressed some of the Δ(lapA lapB) defects. LapB contains six tetratricopeptide repeats and, at the C-terminal end, a rubredoxin-like domain that was found to be essential for its activity. In pull-down experiments, LapA and LapB co-purified with LPS, Lpt proteins, FtsH (protease), DnaK, and DnaJ (chaperones). A specific interaction was also observed between WaaC and LapB. Our data suggest that LapB coordinates assembly of proteins involved in LPS synthesis at the plasma membrane and regulates turnover of LpxC, thereby ensuring balanced biosynthesis of LPS and phospholipids consistent with its essentiality. PMID:24722986

  15. Assembly of lipopolysaccharide in Escherichia coli requires the essential LapB heat shock protein.

    PubMed

    Klein, Gracjana; Kobylak, Natalia; Lindner, Buko; Stupak, Anna; Raina, Satish

    2014-05-23

    Here, we describe two new heat shock proteins involved in the assembly of LPS in Escherichia coli, LapA and LapB (lipopolysaccharide assembly protein A and B). lapB mutants were identified based on an increased envelope stress response. Envelope stress-responsive pathways control key steps in LPS biogenesis and respond to defects in the LPS assembly. Accordingly, the LPS content in ΔlapB or Δ(lapA lapB) mutants was elevated, with an enrichment of LPS derivatives with truncations in the core region, some of which were pentaacylated and exhibited carbon chain polymorphism. Further, the levels of LpxC, the enzyme that catalyzes the first committed step of lipid A synthesis, were highly elevated in the Δ(lapA lapB) mutant. Δ(lapA lapB) mutant accumulated extragenic suppressors that mapped either to lpxC, waaC, and gmhA, or to the waaQ operon (LPS biosynthesis) and lpp (Braun's lipoprotein). Increased synthesis of either FabZ (3-R-hydroxymyristoyl acyl carrier protein dehydratase), slrA (novel RpoE-regulated non-coding sRNA), lipoprotein YceK, toxin HicA, or MurA (UDP-N-acetylglucosamine 1-carboxyvinyltransferase) suppressed some of the Δ(lapA lapB) defects. LapB contains six tetratricopeptide repeats and, at the C-terminal end, a rubredoxin-like domain that was found to be essential for its activity. In pull-down experiments, LapA and LapB co-purified with LPS, Lpt proteins, FtsH (protease), DnaK, and DnaJ (chaperones). A specific interaction was also observed between WaaC and LapB. Our data suggest that LapB coordinates assembly of proteins involved in LPS synthesis at the plasma membrane and regulates turnover of LpxC, thereby ensuring balanced biosynthesis of LPS and phospholipids consistent with its essentiality.

  16. Pressure Distribution Over the Fuselage of a PW-9 Pursuit Airplane in Flight

    NASA Technical Reports Server (NTRS)

    Rhode, Richard V; Lundquist, Eugene E

    1932-01-01

    This report presents the results obtained from pressure distribution tests on the fuselage of a PW-9 pursuit airplane in a number of conditions of flight. The investigation was made to determine the contribution of the fuselage to the total lift in conditions considered critical for the wing structure, and also to determine whether the fuselage loads acting simultaneously with the maximum tail loads were of such a character as to be of concern with respect to the structural design of other parts of the airplane. The results show that the contribution of the fuselage toward the total lift is small on this airplane. Aerodynamic loads on the fuselage are, in general, unimportant from the structural viewpoint, and in most cases they are of such character that, if neglected, a conservative design results. In spins, aerodynamic forces on the fuselage produce diving moments of appreciable magnitude and yawing moments of small magnitude, but opposing the rotation of the airplane. A table of cowling pressures for various maneuvers is included in the report.

  17. Active Aerodynamic Load Reduction on a Rotorcraft Fuselage With Rotor Effects: A CFD Validation Effort

    NASA Technical Reports Server (NTRS)

    Allan, Brian G.; Schaeffler, Norman W.; Jenkins, Luther N.; Yao, Chung-Sheng; Wong, Oliver D.; Tanner, Philip E.

    2015-01-01

    A rotorcraft fuselage is typically designed with an emphasis on operational functionality with aerodynamic efficiency being of secondary importance. This results in a significant amount of drag during high-speed forward flight that can be a limiting factor for future high-speed rotorcraft designs. To enable higher speed flight, while maintaining a functional fuselage design (i.e., a large rear cargo ramp door), the NASA Rotary Wing Project has conducted both experimental and computational investigations to assess active flow control as an enabling technology for fuselage drag reduction. This paper will evaluate numerical simulations of a flow control system on a generic rotorcraft fuselage with a rotor in forward flight using OVERFLOW, a structured mesh Reynolds-averaged Navier-Stokes flow solver developed at NASA. The results are compared to fuselage forces, surface pressures, and PN flow field data obtained in a wind tunnel experiment conducted at the NASA Langley 14-by 22-Foot Subsonic Tunnel where significant drag and download reductions were demonstrated using flow control. This comparison showed that the Reynolds-averaged Navier-Stokes flow solver was unable to predict the fuselage forces and pressure measurements on the ramp for the baseline and flow control cases. While the CFD was able to capture the flow features, it was unable to accurately predict the performance of the flow control.

  18. Flying qualities and control system characteristics for superaugmented aircraft

    NASA Technical Reports Server (NTRS)

    Myers, T. T.; Mcruer, D. T.; Johnston, D. E.

    1984-01-01

    Aircraft-alone dynamics and superaugmented control system fundamental regulatory properties including stability and regulatory responses of the basic closed-loop systems; fundamental high and low frequency margins and governing factors; and sensitivity to aircraft and controller parameters are addressed. Alternative FCS mechanizations, and mechanizational side effects are also discussed. An overview of flying qualities considerations encompasses general pilot operations as a controller in unattended, intermittent and trim, and full-attention regulatory or command control; effective vehicle primary and secondary response properties to pilot inputs and disturbances; pilot control architectural possibilities; and comparison of superaugmented and conventional aircraft path responses for different forms of pilot control. Results of a simple experimental investigation into pilot dynamic behavior in attitude control of superaugmented aircraft configurations with high frequency time laps and time delays are presented.

  19. Apparatus and method for lapping an edge surface of an object

    NASA Technical Reports Server (NTRS)

    Rossi, Vito N. (Inventor)

    1989-01-01

    An apparatus for lapping an edge surface of an object comprises a block having a side adapted to engage a wide surface of an object, adjustable spacers disposed on the block and adapted to engage a lap plate, and a weighted spring disposed on the block for urging the spacers and the object edge surface towards the lap plate. A method for lapping comprises setting surfaces of adjustable spacers disposed on a block to be substantially the same distance from the block, affixing a wide surface of an object to the block, urging an edge surface of the object and the spacers towards a lap plate, lapping the edge of the object, inspecting the edge for parallelism to a reference line, resetting the spacers and relapping the edge surface.

  20. Optimal tubular adhesive-bonded lap joint of the carbon fiber epoxy composite shaft

    NASA Astrophysics Data System (ADS)

    Kim, Ki S.; Kim, Won T.; Lee, Dai G.; Jun, Eui J.

    The effects of the adhesive thickness and the adherend surface roughness on the fatigue strength of a tubular adhesive-bonded single lap joint were investigated using fatigue test specimens whose adherends were made of S45C carbon steel. Results of fatigue tests showed that the optimal arithmetic surface roughness of the adherends is about 2 microns and the optimal adhesive thickness is about 0.15 mm. Using these values, the prototype torsional adhesive joints were manufactured for power transmission shafts of an automotive vehicle or a small helicopter, and static tests under torque were performed on a single-lap joint, a single-lap joint with scarf, a double-lap joint, and a double-lap joint with scarf. It was found that the double-lap joint was superior among the joints, in terms of torque capacity and manufacturing cost.

  1. Closeup view of the aft fuselage of the Orbiter Discovery ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Close-up view of the aft fuselage of the Orbiter Discovery looking at the thrust structure that supports the Space Shuttle Main Engines (SSMEs). In this view, SSME number two position is on the left and SSME number three position is on the right. The thrust structure transfers the forces produce by the engines into and through the airframe of the orbiter. The thrust structure includes the SSMEs load reaction truss structure, engine interface fittings and the hydraulic-actuator support structure. The propellant feed lines are the plugged and capped orifices within the engine bays. Note that SSME position two is rotated ninety degrees from position three and one. This was needed to enable enough clearance for the engines to fit and gimbal. Note in engine bay three is a clear view of the actuators that control the gambling of that engine. This view was taken from a service platform in the Orbiter Processing Facility at Kennedy Space Center. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  2. Interference drag in a simulated wing-fuselage juncture

    NASA Technical Reports Server (NTRS)

    Kubendran, L. R.; Mcmahon, H.; Hubbartt, J. E.

    1984-01-01

    The interference drag in a wing fuselage juncture as simulated by a flat plate and a body of constant thickness having a 1.5:1 elliptical leading edge is evaluated experimentally. The experimental measurements consist of mean velocity data taken with a hot wire at a streamwise location corresponding to 16 body widths downstream of the body leading edge. From these data, the interference drag is determined by calculating the total momentum deficit (momentum area) in the juncture and also in the two dimensional turbulent boundary layers on the flat plate and body at locations sufficiently far from the juncture flow effect. The interference drag caused by the juncture drag as measured at this particular streamwise station is -3% of the total drag due to the flat plate and body boundary layers in isolation. If the body is considered to be a wing having a chord and span equal to 16 body widths, the interference drag due to the juncture is only -1% of the frictional drag of one surface of such a wing.

  3. Evaluation of the influence of aircraft shielding on the aircrew exposure through an aircraft mathematical model.

    PubMed

    Ferrari, A; Pelliccioni, M; Villari, R

    2004-01-01

    In order to investigate the influence of aircraft shielding on the galactic component of cosmic rays, an aircraft mathematical model has been developed by the combinatorial geometry package of the Monte-Carlo transport code FLUKA. The isotropic irradiation of the aircraft in the cosmic ray environment has been simulated. Effective dose and ambient dose equivalent rates have been determined inside the aircraft at several locations along the fuselage, at a typical civil aviation altitude (10 580 m), for vertical cut-off rigidity of 0.4 GV (poles) and 17.6 GV (equator) and deceleration potential of 465 MV. The values of both quantities were generally lower than those in the free atmosphere. They depend, in an intricate manner, on the location within the aircraft, quantity of fuel, number of passengers, etc. The position onboard of crew members should be taken into account when assessing individual doses. Likewise due consideration must be taken when positioning detectors which are used to measure H*(10). Care would be needed to avoid ambiguity when comparing the results of calculation with the experimental data.

  4. Structural Integrity Evaluation of the Lear Fan 2100 Aircraft

    NASA Technical Reports Server (NTRS)

    Kan, H. P.; Dyer, T. A.

    1996-01-01

    An in-situ nondestructive inspection was conducted to detect manufacturing and assembly induced defects in the upper two wing surfaces (skin s) and upper fuselage skin of the Lear Fan 2100 aircraft E009. The effects of the defects, detected during the inspection, on the integrity of the structure was analytically evaluated. A systematic evaluation was also conducted to determine the damage tolerance capability of the upper wing skin against impact threats and assembly induced damage. The upper wing skin was divided into small regions for damage tolerance evaluations. Structural reliability, margin of safety, allowable strains, and allowable damage size were computed. The results indicated that the impact damage threat imposed on composite military aircraft structures is too severe for the Lear Fan 2100 upper wing skin. However, the structural integrity is not significantly degraded by the assembly induced damage for properly assembled structures, such as the E009 aircraft.

  5. Flow visualization studies of VTOL aircraft models during Hover in ground effect

    NASA Technical Reports Server (NTRS)

    Mourtos, Nikos J.; Couillaud, Stephane; Carter, Dale; Hange, Craig; Wardwell, Doug; Margason, Richard J.

    1995-01-01

    A flow visualization study of several configurations of a jet-powered vertical takeoff and landing (VTOL) aircraft model during hover in ground effect was conducted. A surface oil flow technique was used to observe the flow patterns on the lower surfaces of the model. There were significant configuration effects. Wing height with respect to fuselage, the presence of an engine inlet duct beside the fuselage, and nozzle pressure ratio are seen to have strong effects on the surface flow angles on the lower surface of the wing. This test was part of a program to improve the methods for predicting the hot gas ingestion (HGI) for jet-powered vertical/short takeoff and landing (V/STOL) aircraft. The tests were performed at the Jet Calibration and Hover Test (JCAHT) Facility at Ames Research Center.

  6. Noise transmission and control for a light, twin-engine aircraft

    NASA Technical Reports Server (NTRS)

    Barton, C. K.; Mixson, J. S.

    1980-01-01

    One of the dominant source-path combinations for cabin noise in light, twin-engine aircraft is propeller noise being transmitted through the fuselage sidewall. This source-path was investigated and candidate sidewall add-on treatment were installed and tested using both an external sound source and the propeller in a ground static runup. Results indicate that adding either mass or stiffness to the fuselage skin would improve sidewall attenuation and that the honeycomb stiffness treatment used generally provided more improvement than an equal amount of added mass. It is proposed that double-wall construction in conjunction with skin stiffening should provide a good weight efficient combination for the aircraft studied.

  7. Evaluation of structural design concepts for an arrow-wing supersonic cruise aircraft

    NASA Technical Reports Server (NTRS)

    Sakata, I. F.; Davis, G. W.

    1977-01-01

    An analytical study was performed to determine the best structural approach for design of primary wing and fuselage structure of a Mach 2.7 arrow wing supersonic cruise aircraft. Concepts were evaluated considering near term start of design. Emphasis was placed on the complex interactions between thermal stress, static aeroelasticity, flutter, fatigue and fail safe design, static and dynamic loads, and the effects of variations in structural arrangements, concepts and materials on these interactions. Results indicate that a hybrid wing structure incorporating low profile convex beaded and honeycomb sandwich surface panels of titanium alloy 6Al-4V were the most efficient. The substructure includes titanium alloy spar caps reinforced with boron polyimide composites. The fuselage shell consists of hat stiffened skin and frame construction of titanium alloy 6Al-4V. A summary of the study effort is presented, and a discussion of the overall logic, design philosophy and interaction between the analytical methods for supersonic cruise aircraft design are included.

  8. Numerical solutions for heat flow in adhesive lap joints

    NASA Technical Reports Server (NTRS)

    Howell, P. A.; Winfree, William P.

    1992-01-01

    The present formulation for the modeling of heat transfer in thin, adhesively bonded lap joints precludes difficulties associated with large aspect ratio grids required by standard FEM formulations. This quasi-static formulation also reduces the problem dimensionality (by one), thereby minimizing computational requirements. The solutions obtained are found to be in good agreement with both analytical solutions and solutions from standard FEM programs. The approach is noted to yield a more accurate representation of heat-flux changes between layers due to a disbond.

  9. The Low-Noise Potential of Distributed Propulsion on a Catamaran Aircraft

    NASA Technical Reports Server (NTRS)

    Posey, Joe W.; Tinetti, A. F.; Dunn, M. H.

    2006-01-01

    The noise shielding potential of an inboard-wing catamaran aircraft when coupled with distributed propulsion is examined. Here, only low-frequency jet noise from mid-wing-mounted engines is considered. Because low frequencies are the most difficult to shield, these calculations put a lower bound on the potential shielding benefit. In this proof-of-concept study, simple physical models are used to describe the 3-D scattering of jet noise by conceptualized catamaran aircraft. The Fast Scattering Code is used to predict noise levels on and about the aircraft. Shielding results are presented for several catamaran type geometries and simple noise source configurations representative of distributed propulsion radiation. Computational analyses are presented that demonstrate the shielding benefits of distributed propulsion and of increasing the width of the inboard wing. Also, sample calculations using the FSC are presented that demonstrate additional noise reduction on the aircraft fuselage by the use of acoustic liners on the inboard wing trailing edge. A full conceptual aircraft design would have to be analyzed over a complete mission to more accurately quantify community noise levels and aircraft performance, but the present shielding calculations show that a large acoustic benefit could be achieved by combining distributed propulsion and liner technology with a twin-fuselage planform.

  10. Correlation of forebody pressures and aircraft yawing moments on the X-29A aircraft at high angles of attack

    NASA Technical Reports Server (NTRS)

    Fisher, David F.; Richwine, David M.; Landers, Stephen

    1992-01-01

    In-flight pressure distributions at four fuselage stations on the forebody of the X-29A aircraft have been reported at angles of attack from 15 to 66 deg and at Mach numbers from 0.22 to 0.60. At angles of attack of 20 deg and higher, vortices shed from the nose strake caused suction peaks in the pressure distributions that generally increased in magnitude with angle of attack. Above 30 deg-angle of attack, the forebody pressure distributions became asymmetrical at the most forward station, while they remained nearly symmetrical until 50 to 55 deg-angle of attack for the aft stations. Between 59 to 66 deg-angle of attack, the asymmetry of the pressure distributions changed direction. Yawing moments for the forebody alone were obtained by integrating the forebody pressure distributions. At 45 deg-angle of attack, the aircraft yaws to the right and at 50 deg and higher, the aircraft yaws to the left. The forebody yawing moments correlated well with the aircraft left yawing moment at an angle of attack of 50 deg or higher. At a 45 deg-angle of attack, the forebody yawing moments did not correlate well with the aircraft yawing moment, but it is suggested that this was due to asymmetric pressures on the cockpit region of the fuselage which was not instrumented. The forebody was also shown to provide a positive component of directional stability of the aircraft at angles of attack of 25 deg or higher. A Mach number effect was noted at angles of attack of 30 deg or higher at the station where the nose strake was present. At this station, the suction peaks in the pressure distributions at the highest Mach number were reduced and much more symmetrical as compared to the lower Mach number pressure distributions.

  11. Acoustic measurements of F-16 aircraft operating in hush house, NSN 4920-02-070-2721

    NASA Astrophysics Data System (ADS)

    Miller, V. R.; Plzak, G. A.; Chinn, J. M.

    1981-09-01

    The purpose of this test program was to measure the acoustic environment in the hush house facility located at Kelly Air Force Base, Texas, during operation of the F-16 aircraft to ensure that aircraft structural acoustic design limits were not exceeded. The acoustic measurements showed that no sonic fatigue problems are anticipated with the F-16 aircraft aft fuselage structure during operation in the hush house. The measured acoustic levels were less than those measured in an F-16 aircraft water cooled hush house at Hill AFB, but were increased over that measured during ground run up. It was recommended that the acoustic loads measured in this program should be specified in the structural design criteria for aircraft which will be subjected to hush house operation or defining requirements for associated equipment.

  12. Crash tests of four low-wing twin-engine airplanes with truss-reinforced fuselage structure

    NASA Technical Reports Server (NTRS)

    Williams, M. S.; Fasanella, E. L.

    1982-01-01

    Four six-place, low-wing, twin-engine, general aviation airplane test specimens were crash tested under controlled free flight conditions. All airplanes were impacted on a concrete test surface at a nomial flight path velocity of 27 m/sec. Two tests were conducted at a -15 deg flight path angle (0 deg pitch angle and 15 deg pitch angle), and two were conducted at a -30 deg flight path angle (-30 deg pitch angle). The average acceleration time histories (crash pulses) in the cabin area for each principal direction were calculated for each crash test. In addition, the peak floor accelerations were calculated for each test as a function of aircraft fuselage longitudinal station number. Anthropomorphic dummy accelerations were analyzed using the dynamic response index and severity index (SI) models. Parameters affecting the dummy restraint system were studied; these parameters included the effect of no upper torso restraint, measurement of the amount of inertia-reel strap pullout before locking, measurement of dummy chest forward motion, and loads in the restraints. With the SI model, the dummies with no shoulder harness received head impacts above the concussive threshold.

  13. Assessment of Damage Containment Features of a Full-Scale PRSEUS Fuselage Panel Through Test and Teardown

    NASA Technical Reports Server (NTRS)

    Bergan, Andrew C.; Bakuckas, John G., Jr.; Lovejoy, Andrew E.; Jegley, Dawn C.; Awerbuch, Jonathan; Tan, Tein-Min

    2012-01-01

    An area that shows promise in enhancing structural integrity of aircraft and aerospace structures is the integrally stitched composite technology. The most recent generation of this technology is the Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) concept developed by Boeing Research and Technology and the National Aeronautics and Space Administration. A joint test program on the assessment of damage containment capabilities of the PRSEUS concept for curved fuselage structures was conducted recently at the Federal Aviation Administration William J. Hughes Technical Center. The panel was subjected to axial tension, internal pressure, and combined axial tension and internal pressure load conditions up to fracture, with a through-the-thickness, two-bay notch severing the central stiffener. For the purpose of future progressive failure analysis development and verification, extensive post failure nondestructive and teardown inspections were conducted. Detailed inspections were performed directly ahead of the notch tip where stable damage progression was observed. These examinations showed: 1) extensive delaminations developed ahead of the notch tip, 2) the extent and location of damage, 3) the typical damage mechanisms observed in composites, and 4) the role of stitching and warp-knitting in the failure mechanisms. The objective of this paper is to provide a summary of results from these posttest inspections.

  14. Use of nose cap and fuselage pressure orifices for determination of air data for space shuttle orbiter below supersonic speeds

    NASA Technical Reports Server (NTRS)

    Larson, T. J.; Siemers, P. M., III

    1980-01-01

    Wind tunnel pressure measurements were acquired from orifices on a 0.1 scale forebody model of the space shuttle orbiter that were arranged in a preliminary configuration of the shuttle entry air data system (SEADS). Pressures from those and auxiliary orifices were evaluated for their ability to provide air data at subsonic and transonic speeds. The orifices were on the vehicle's nose cap and on the sides of the forebody forward of the cabin. The investigation covered a Mach number range of 0.25 to 1.40 and an angle of attack range from 4 deg. to 18 deg. An air data system consisting of nose cap and forebody fuselage orifices constitutes a complete and accurate air data system at subsonic and transonic speeds. For Mach numbers less than 0.80 orifices confined to the nose cap can be used as a complete and accurate air data system. Air data systems that use only flush pressure orifices can be used to determine basic air data on other aircraft at subsonic and transonic speeds.

  15. Analytical and experimental investigation of aircraft metal structures reinforced with filamentary composites. Phase 3: Major component development

    NASA Technical Reports Server (NTRS)

    Bryson, L. L.; Mccarty, J. E.

    1973-01-01

    Analytical and experimental investigations, performed to establish the feasibility of reinforcing metal aircraft structures with advanced filamentary composites, are reported. Aluminum-boron-epoxy and titanium-boron-epoxy were used in the design and manufacture of three major structural components. The components were representative of subsonic aircraft fuselage and window belt panels and supersonic aircraft compression panels. Both unidirectional and multidirectional reinforcement concepts were employed. Blade penetration, axial compression, and inplane shear tests were conducted. Composite reinforced structural components designed to realistic airframe structural criteria demonstrated the potential for significant weight savings while maintaining strength, stability, and damage containment properties of all metal components designed to meet the same criteria.

  16. High speed interference heating loads and pressure distributions resulting from elevon deflections. [shock wave interaction effects on hypersonic aircraft surfaces

    NASA Technical Reports Server (NTRS)

    Johnson, C. B.; Kaufman, L. G., III

    1979-01-01

    Effects of elevon-induced three-dimensional shock-wave turbulent boundary-layer interactions on hypersonic aircraft surfaces are analyzed. Detailed surface pressure and heating rate distributions obtained on wing-elevon-fuselage models representative of aft portions of hypersonic aircraft are compared with analytical and experimental results from other sources. Examples are presented that may be used to evaluate the adequacy of current theoretical methods for estimating the effects of three-dimensional shock-wave turbulent boundary-layer interactions on hypersonic aircraft surfaces.

  17. Auto Mechanics I. Learning Activity Packets (LAPs). Section A--Orientation and Safety.

    ERIC Educational Resources Information Center

    Oklahoma State Board of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.

    This document contains seven learning activity packets (LAPs) that outline the study activities for the orientation and safety instructional area for an Auto Mechanics I course. The seven LAPs cover the following topics: orientation, safety, hand tools, arc welding, oxyacetylene cutting, oxyacetylene fusion welding, and oxyacetylene braze welding.…

  18. Improvement of transformer core magnetic properties using the step-lap design

    NASA Astrophysics Data System (ADS)

    Valkovic, Z.; Rezic, A.

    1992-07-01

    Magnetic properties of the step-lap joints have been investigated experimentally on two three-phase three-leg transformer cores. Using the step-lap joint design, a reduction of the total core loss of 2 to 4.4% and of the exciting power of 31 to 37% has been obtained.

  19. Mechanistic Features of Nanodiamonds in the Lapping of Magnetic Heads

    PubMed Central

    Jiang, Xionghua; Chen, Zhenxing; Wolfram, Joy; Yang, Zhizhou

    2014-01-01

    Nanodiamonds, which are the main components of slurry in the precision lapping process of magnetic heads, play an important role in surface quality. This paper studies the mechanistic features of nanodiamond embedment into a Sn plate in the lapping process. This is the first study to develop mathematical models for nanodiamond embedment. Such models can predict the optimum parameters for particle embedment. From the modeling calculations, the embedded pressure satisfies p0 = (3/2)·(W/πa2) and the indentation depth satisfies δ=k1P/HV. Calculation results reveal that the largest embedded pressure is 731.48 GPa and the critical indentation depth δ is 7 nm. Atomic force microscopy (AFM), scanning electron microscopy (SEM), and Auger electron spectroscopy (AES) were used to carry out surface quality detection and analysis of the disk head. Both the formation of black spots on the surface and the removal rate have an important correlation with the size of nanodiamonds. The results demonstrate that an improved removal rate (21 nm·min−1) can be obtained with 100 nm diamonds embedded in the plate. PMID:25045730

  20. Ultrasonic guided wave inspection of Inconel 625 brazed lap joints

    NASA Astrophysics Data System (ADS)

    Comot, Pierre; Bocher, Philippe; Belanger, Pierre

    2016-04-01

    The aerospace industry has been investigating the use of brazing for structural joints, as a mean of reducing cost and weight. There therefore is a need for a rapid, robust, and cost-effective non-destructive testing method for evaluating the structural integrity of the joints. The mechanical strength of brazed joints depends mainly on the amount of brittle phases in their microstructure. Ultrasonic guided waves offer the possibility of detecting brittle phases in joints using spatio-temporal measurements. Moreover, they offer the opportunity to inspect complex shape joints. This study focused on the development of a technique based on ultrasonic guided waves for the inspection of Inconel 625 lap joints brazed with BNi-2 filler metal. A finite element model of a lap joint was used to optimize the inspection parameters and assess the feasibility of detecting the amount of brittle phases in the joint. A finite element parametric study simulating the input signal shape, the center frequency, and the excitation direction was performed. The simulations showed that the ultrasonic guided wave energy transmitted through, and reflected from, the joints was proportional to the amount of brittle phases in the joint.

  1. Nonlinear Analysis of Bonded Composite Single-LAP Joints

    NASA Technical Reports Server (NTRS)

    Oterkus, E.; Barut, A.; Madenci, E.; Smeltzer, S. S.; Ambur, D. R.

    2004-01-01

    This study presents a semi-analytical solution method to analyze the geometrically nonlinear response of bonded composite single-lap joints with tapered adherend edges under uniaxial tension. The solution method provides the transverse shear and normal stresses in the adhesive and in-plane stress resultants and bending moments in the adherends. The method utilizes the principle of virtual work in conjunction with von Karman s nonlinear plate theory to model the adherends and the shear lag model to represent the kinematics of the thin adhesive layer between the adherends. Furthermore, the method accounts for the bilinear elastic material behavior of the adhesive while maintaining a linear stress-strain relationship in the adherends. In order to account for the stiffness changes due to thickness variation of the adherends along the tapered edges, their in-plane and bending stiffness matrices are varied as a function of thickness along the tapered region. The combination of these complexities results in a system of nonlinear governing equilibrium equations. This approach represents a computationally efficient alternative to finite element method. Comparisons are made with corresponding results obtained from finite-element analysis. The results confirm the validity of the solution method. The numerical results present the effects of taper angle, adherend overlap length, and the bilinear adhesive material on the stress fields in the adherends, as well as the adhesive, of a single-lap joint

  2. Lap Shear Testing of Candidate Radiator Panel Adhesives

    NASA Technical Reports Server (NTRS)

    Ellis, David; Briggs, Maxwell; McGowan, Randy

    2013-01-01

    During testing of a subscale radiator section used to develop manufacturing techniques for a full-scale radiator panel, the adhesive bonds between the titanium heat pipes and the aluminum face sheets failed during installation and operation. Analysis revealed that the thermal expansion mismatch between the two metals resulted in relatively large shear stresses being developed even when operating the radiator at moderate temperatures. Lap shear testing of the adhesive used in the original joints demonstrated that the two-part epoxy adhesive fell far short of the strength required. A literature review resulted in several candidate adhesives being selected for lap shear joint testing at room temperature and 398 K, the nominal radiator operating temperature. The results showed that two-part epoxies cured at room and elevated temperatures generally did not perform well. Epoxy film adhesives cured at elevated temperatures, on the other hand, did very well with most being sufficiently strong to cause yielding in the titanium sheet used for the joints. The use of an epoxy primer generally improved the strength of the joint. Based upon these results, a new adhesive was selected for the second subscale radiator section.

  3. Computational Assessment of the Benefits of Boundary Layer Ingestion for the D8 Aircraft

    NASA Technical Reports Server (NTRS)

    Pandya, Shishir A.; Uranga, Alejandra

    2013-01-01

    To substantially reduce the fuel burn of future commercial transportation aircraft, the boundary layer ingestion idea is investigated. The idea is that an engine placed in the wake of the aircraft it is propelling is more efficient than a conventional engine placement under the wing or on pods mounted to the rear of the fuselage. The top, rear of the fuselage is thus designed to act as a diffuser such that the engines can be placed there with a minimal nacelle. The boundary layer thickens over the rear of the fuselage such that a large portion of it is ingested by the fan. To assess whether the boundary layer ingesting (BLI) engine placement is indeed advantageous, a study of the nacelle aerodynamics is carried out using Overflow, a viscous CFD flow solver that uses overset meshes. The computed forces and moments are compared to a wind tunnel experiment for validation. Some aspects of the design are verified using the simulation results. Finally, the effect of the nacelle placement is assessed by comparing the BLI nacelle configuration to a podded nacelle configuration and to the unpowered (without nacelles) aircraft.

  4. Development of stitched/RTM primary structures for transport aircraft

    NASA Technical Reports Server (NTRS)

    Hawley, Arthur V.

    1993-01-01

    This report covers work accomplished in the Innovative Composite Aircraft Primary Structure (ICAPS) program. An account is given of the design criteria and philosophy that guides the development. Wing and fuselage components used as a baseline for development are described. The major thrust of the program is to achieve a major cost breakthrough through development of stitched dry preforms and resin transfer molding (RTM), and progress on these processes is reported. A full description is provided on the fabrication of the stitched RTM wing panels. Test data are presented.

  5. Study of methane fuel for subsonic transport aircraft

    NASA Technical Reports Server (NTRS)

    Carson, L. K.; Davis, G. W.; Versaw, E. F.; Cunnington, G. R., Jr.; Daniels, E. J.

    1980-01-01

    The cost and performance were defined for commercial transport using liquid methane including its fuel system and the ground facility complex required for the processing and storage of methane. A cost and performance comparison was made with Jet A and hydrogen powered aircraft of the same payload and range capability. Extensive design work was done on cryogenic fuel tanks, insulation systems as well as the fuel system itself. Three candidate fuel tank locations were evaluated, i.e., fuselage tanks, wing tanks or external pylon tanks.

  6. Computation of Engine Noise Propagation and Scattering Off an Aircraft

    NASA Technical Reports Server (NTRS)

    Xu, J.; Stanescu, D.; Hussaini, M. Y.; Farassat, F.

    2003-01-01

    The paper presents a comparison of experimental noise data measured in flight on a two-engine business jet aircraft with Kulite microphones placed on the suction surface of the wing with computational results. Both a time-domain discontinuous Galerkin spectral method and a frequency-domain spectral element method are used to simulate the radiation of the dominant spinning mode from the engine and its reflection and scattering by the fuselage and the wing. Both methods are implemented in computer codes that use the distributed memory model to make use of large parallel architectures. The results show that trends of the noise field are well predicted by both methods.

  7. Multi-Terrain Impact Testing and Simulation of a Composite Energy Absorbing Fuselage Section

    NASA Technical Reports Server (NTRS)

    Fasanella, Edwin L.; Lyle, Karen H.; Sparks, Chad E.; Sareen, Ashish K.

    2004-01-01

    Comparisons of the impact performance of a 5-ft diameter crashworthy composite fuselage section were investigated for hard surface, soft soil, and water impacts. The fuselage concept, which was originally designed for impacts onto a hard surface only, consisted of a stiff upper cabin, load bearing floor, and an energy absorbing subfloor. Vertical drop tests were performed at 25-ft/s onto concrete, soft-soil, and water at NASA Langley Research Center. Comparisons of the peak acceleration values, pulse durations, and onset rates were evaluated for each test at specific locations on the fuselage. In addition to comparisons of the experimental results, dynamic finite element models were developed to simulate each impact condition. Once validated, these models can be used to evaluate the dynamic behavior of subfloor components for improved crash protection for hard surface, soft soil, and water impacts.

  8. Multi-Terrain Impact Testing and Simulation of a Composite Energy Absorbing Fuselage Section

    NASA Technical Reports Server (NTRS)

    Fasanella, Edwin L.; Jackson, Karen E.; Lyle, Karen H.; Sparks, Chad E.; Sareen, Ashish K.

    2007-01-01

    Comparisons of the impact performance of a 5-ft diameter crashworthy composite fuselage section were investigated for hard surface, soft soil, and water impacts. The fuselage concept, which was originally designed for impacts onto a hard surface only, consisted of a stiff upper cabin, load bearing floor, and an energy absorbing subfloor. Vertical drop tests were performed at 25-ft/s onto concrete, soft-soil, and water at NASA Langley Research Center. Comparisons of the peak acceleration values, pulse durations, and onset rates were evaluated for each test at specific locations on the fuselage. In addition to comparisons of the experimental results, dynamic finite element models were developed to simulate each impact condition. Once validated, these models can be used to evaluate the dynamic behavior of subfloor components for improved crash protection for hard surface, soft soil, and water impacts.

  9. XSECT: A computer code for generating fuselage cross sections - user's manual

    NASA Technical Reports Server (NTRS)

    Ames, K. R.

    1982-01-01

    A computer code, XSECT, has been developed to generate fuselage cross sections from a given area distribution and wing definition. The cross sections are generated to match the wing definition while conforming to the area requirement. An iterative procedure is used to generate each cross section. Fuselage area balancing may be included in this procedure if desired. The code is intended as an aid for engineers who must first design a wing under certain aerodynamic constraints and then design a fuselage for the wing such that the contraints remain satisfied. This report contains the information necessary for accessing and executing the code, which is written in FORTRAN to execute on the Cyber 170 series computers (NOS operating system) and produces graphical output for a Tektronix 4014 CRT. The LRC graphics software is used in combination with the interface between this software and the PLOT 10 software.

  10. The Teacher's Lap--A Site of Emotional Well-Being for the Younger Children in Day-Care Groups

    ERIC Educational Resources Information Center

    Hännikäinen, Maritta

    2015-01-01

    This study focuses on a particular relationship between teachers and one- to three-year-old children: the child in the teacher's lap. When, in what situations, does this happen? Who are the children in the teacher's lap? Why are they there? How do children express emotional well-being when in the teacher's lap? Relational, sociocultural and…

  11. C/EBPβ-LAP*/LAP Expression Is Mediated by RSK/eIF4B-Dependent Signalling and Boosted by Increased Protein Stability in Models of Monocytic Differentiation

    PubMed Central

    Christmann, Martin; Friesenhagen, Judith; Westphal, Andreas; Pietsch, Daniel; Brand, Korbinian

    2015-01-01

    The transcription factor C/EBPβ plays a key role in monocytic differentiation and inflammation. Its small isoform LIP is associated with proliferation at early premonocytic developmental stages and regulated via mTOR-dependent signalling. During later stages of (pre)monocytic differentiation there is a considerable increase in the large C/EBPβ isoforms LAP*/LAP which inhibit proliferation thus supporting terminal differentiation. Here, we showed in different models of monocytic differentiation that this dramatic increase in the LAP*/LAP protein and LAP/LIP ratio was accompanied by an only modest/retarded mRNA increase suggesting an important role for (post)translational mechanisms. We found that LAP*/LAP formation was induced via MEK/RSK-dependent cascades, whereas mTOR/S6K1 were not involved. Remarkably, LAP*/LAP expression was dependent on phosphorylated eIF4B, an acceleratory protein of RNA helicase eIF4A. PKR inhibition reduced the expression of eIF4B and C/EBPβ in an eIF2α-independent manner. Furthermore, under our conditions a marked stabilisation of LAP*/LAP protein occurred, accompanied by reduced chymotrypsin-like proteasome/calpain activities and increased calpastatin levels. Our study elucidates new signalling pathways inducing LAP*/LAP expression and indicates new alternative PKR functions in monocytes. The switch from mTOR- to RSK-mediated signalling to orchestrate eIF4B-dependent LAP*/LAP translation, accompanied by increased protein stability but only small mRNA changes, may be a prototypical example for the regulation of protein expression during selected processes of differentiation/proliferation. PMID:26646662

  12. 78 FR 68775 - Special Conditions: Airbus, Model A350-900 Series Airplane; Composite Fuselage In-Flight Fire...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-15

    ... the Federal Register published on April 11, 2000 (65 FR 19477-19478), as well as at http://DocketsInfo...; Composite Fuselage In-Flight Fire/Flammability Resistance AGENCY: Federal Aviation Administration (FAA), DOT... associated with the in-flight fire and flammability resistance of the composite fuselage. Experience...

  13. Wind tunnel investigation of helicopter rotor wake effects on three helicopter fuselage models

    NASA Technical Reports Server (NTRS)

    Wilson, J. C.; Mineck, R. E.

    1974-01-01

    The effects of rotor downwash on helicopter fuselage aerodynamic characteristics were investigated. A rotor model for generating the downwash was mounted close to each of three fuselage models. The main report presents the force and moment data in both graphical and tabular form and the pressure data in graphical form. This supplement presents the pressure data in tabular form. Each run or parameter sweep is identified by a unique run number. The data points in each run are identified by a point number. The pressure data can be matched to the force data by matching the run and point number.

  14. Blended-Wing-Body (BWB) Fuselage Structural Design for Weight Reduction

    NASA Technical Reports Server (NTRS)

    Mukhopadhyay, V.

    2005-01-01

    Structural analysis and design of efficient pressurized fuselage configurations for the advanced Blended-Wing-Body (BWB) flight vehicle is a challenging problem. Unlike a conventional cylindrical pressurized fuselage, stress level in a box type BWB fuselage is an order of magnitude higher, because internal pressure primarily results in bending stress instead of skin-membrane stress. In addition, resulting deformation of aerodynamic surface could significantly affect performance advantages provided by lifting body. The pressurized composite conformal multi-lobe tanks of X-33 type space vehicle also suffered from similar problem. In the earlier BWB design studies, Vaulted Ribbed Shell (VLRS), Flat Ribbed Shell (FRS); Vaulted shell Honeycomb Core (VLHC) and Flat sandwich shell Honeycomb Core (FLHC) concepts were studied. The flat and vaulted ribbed shell concepts were found most efficient. In a recent study, a set of composite sandwich panel and cross-ribbed panel were analyzed. Optimal values of rib and skin thickness, rib spacing, and panel depth were obtained for minimal weight under stress and buckling constraints. In addition, a set of efficient multi-bubble fuselage (MBF) configuration concept was developed. The special geometric configuration of this concept allows for balancing internal cabin pressure load efficiently, through membrane stress in inner-stiffened shell and inter-cabin walls, while the outer-ribbed shell prevents buckling due to external resultant compressive loads. The initial results from these approximate finite element analyses indicate progressively lower maximum stresses and deflections compared to the earlier study. However, a relative comparison of the FEM weight per unit floor area of the segment unit indicates that the unit weights are still relatively higher that the conventional B777 type cylindrical or A380 type elliptic fuselage design. Due to the manufacturing concern associated with multi-bubble fuselage, a Y braced box

  15. A study of the TCAS 2 collision avoidance system mounted on a Boeing 737 aircraft

    NASA Technical Reports Server (NTRS)

    Grandchamp, B.; Burnside, W. D.; Rojas, R. G.

    1987-01-01

    The purpose of this report is to determine the effects of scattering from major aircraft structures on the TCAS 2 collision avoidance system mounted on a Boeing 737. It is found that the major source of scattering for angles of observation above the horizon is the vertical stabilizer and that its effect may be greatly reduced by mounting the TCAS 2 array close to the nose of the aircraft. In addition, by mounting the array close to the nose, the effects of fuselage blockage on the array patterns at elevation angles below the horizon may be greatly reduced in the forward direction.

  16. Aircraft cybernetics

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The use of computers for aircraft control, flight simulation, and inertial navigation is explored. The man-machine relation problem in aviation is addressed. Simple and self-adapting autopilots are described and the assets and liabilities of digital navigation techniques are assessed.

  17. Lapped Block Image Analysis via the Method of Legendre Moments

    NASA Astrophysics Data System (ADS)

    El Fadili, Hakim; Zenkouar, Khalid; Qjidaa, Hassan

    2003-12-01

    Research investigating the use of Legendre moments for pattern recognition has been performed in recent years. This field of research remains quite open. This paper proposes a new technique based on block-based reconstruction method (BBRM) using Legendre moments compared with the global reconstruction method (GRM). For alleviating the blocking artifact involved in the processing, we propose a new approach using lapped block-based reconstruction method (LBBRM). For the problem of selecting the optimal number of moment used to represent a given image, we propose the maximum entropy principle (MEP) method. The main motivation of the proposed approaches is to allow fast and efficient reconstruction algorithm, with improvement of the reconstructed images quality. A binary handwritten musical character and multi-gray-level Lena image are used to demonstrate the performance of our algorithm.

  18. Shoulder-lap seat belts and thoracic transection.

    PubMed

    Byard, R W

    2002-06-01

    While seat belt usage significantly decreases mortality and morbidity from traffic accidents, specific injuries may also occur. Two cases are described in adults where the wearing of three point restraints (shoulder-lap belts) in a serious high-speed vehicle accident resulted in fatal injuries to both a driver and a passenger. 'Mirror image' fractures of the sternum, rib cage and clavicles, with separation of the two halves of the rib cages and underlying trauma to the hearts and thoracic aortae resulted in death in both victims. Profound life-threatening internal injuries may be caused by seat belts in the absence of significant cutaneous injury. The pattern of internal trauma can also be useful in determining whether a seat belt was worn at the time of the accident, and on which side of the vehicle the deceased was sitting.

  19. Testing composite-to-metal tubular lap joints

    SciTech Connect

    Guess, T.R.; Reedy, E.D. Jr.; Slavin, A.M.

    1993-11-01

    Procedures were developed to fabricate, nondestructively evaluate, and mechanically test composite-to-metal tubular joints. The axially loaded tubular lap joint specimen consisted of two metal tubes bonded within each end of a fiberglass composite tube. Joint specimens with both tapered and untapered aluminum adherends and a plain weave E-glass/epoxy composite were tested in tension, compression, and flexure. Other specimens with tapered and untapered steel adherends and a triaxially reinforced E-glass/epoxy composite were tested in tension and compression. Test results include joint strength and failure mode data. A finite element analysis of the axially loaded joints explains the effect of adherend geometry and material properties on measured joint strength. The flexural specimen was also analyzed; calculated surface strains are in good agreement with measured values, and joint failure occurs in the region of calculated peak peel stress.

  20. Testing composite-to-metal tubular lap joints

    NASA Astrophysics Data System (ADS)

    Guess, T. R.; Reedy, E. D., Jr.; Slavin, A. M.

    Procedures were developed to fabricate, nondestructively evaluate, and mechanically test composite-to-metal tubular joints. The axially loaded tubular lap joint specimen consisted of two metal tubes bonded within each end of a fiberglass composite tube. Joint specimens with both tapered and untapered aluminum adherends and a plain weave E-glass/epoxy composite were tested in tension, compression, and flexure. Other specimens with tapered and untapered steel adherends and a triaxially reinforced E-glass/epoxy composite were tested in tension and compression. Test results include joint strength and failure mode data. A finite element analysis of the axially loaded joints explains the effect of adherend geometry and material properties on measured joint strength. The flexural specimen was also analyzed; calculated surface strains are in good agreement with measured values, and joint failure occurs in the region of calculated peak peel stress.

  1. Large-Scale Advanced Prop-Fan (LAP) blade design

    NASA Technical Reports Server (NTRS)

    Violette, John A.; Sullivan, William E.; Turnberg, Jay E.

    1984-01-01

    This report covers the design analysis of a very thin, highly swept, propeller blade to be used in the Large-Scale Advanced Prop-Fan (LAP) test program. The report includes: design requirements and goals, a description of the blade configuration which meets requirements, a description of the analytical methods utilized/developed to demonstrate compliance with the requirements, and the results of these analyses. The methods described include: finite element modeling, predicted aerodynamic loads and their application to the blade, steady state and vibratory response analyses, blade resonant frequencies and mode shapes, bird impact analysis, and predictions of stalled and unstalled flutter phenomena. Summarized results include deflections, retention loads, stress/strength comparisons, foreign object damage resistance, resonant frequencies and critical speed margins, resonant vibratory mode shapes, calculated boundaries of stalled and unstalled flutter, and aerodynamic and acoustic performance calculations.

  2. Lamina Associated Polypeptide 1 (LAP1) Interactome and Its Functional Features

    PubMed Central

    Serrano, Joana B.; da Cruz e Silva, Odete A. B.; Rebelo, Sandra

    2016-01-01

    Lamina-associated polypeptide 1 (LAP1) is a type II transmembrane protein of the inner nuclear membrane encoded by the human gene TOR1AIP1. LAP1 is involved in maintaining the nuclear envelope structure and appears be involved in the positioning of lamins and chromatin. To date, LAP1’s precise function has not been fully elucidated but analysis of its interacting proteins will permit unraveling putative associations to specific cellular pathways and cellular processes. By assessing public databases it was possible to identify the LAP1 interactome, and this was curated. In total, 41 interactions were identified. Several functionally relevant proteins, such as TRF2, TERF2IP, RIF1, ATM, MAD2L1 and MAD2L1BP were identified and these support the putative functions proposed for LAP1. Furthermore, by making use of the Ingenuity Pathways Analysis tool and submitting the LAP1 interactors, the top two canonical pathways were “Telomerase signalling” and “Telomere Extension by Telomerase” and the top functions “Cell Morphology”, “Cellular Assembly and Organization” and “DNA Replication, Recombination, and Repair”. Once again, putative LAP1 functions are reinforced but novel functions are emerging. PMID:26784240

  3. Aircraft skin cooling system for thermal management of onboard high power electronic equipment

    SciTech Connect

    Hashemi, A.; Dyson, E.

    1996-12-31

    Integration of high-power electronic devices into existing aircraft, while minimizing the impact of additional heat load on the environmental control system of the aircraft, requires innovative approaches. One such approach is to reject heat through the aircraft skin by use of internal skin ducts with enhanced surfaces. This approach requires a system level consideration of the effect of cooling ducts, inlets and outlets on the performance of the electronic equipment and effectiveness of the heat rejection system. This paper describes the development of a system-level model to evaluate the performance of electronic equipment in an aircraft cabin and heat rejection through the skin. In this model, the outer surface of the fuselage is treated as a heat exchanger. Hot air from an equipment exhaust plenum is drawn into a series of baffled ducts within the fuselage support structure, where the heat is rejected, and then recirculated into the cabin. The cooler air form the cabin is then drawn into the electronic equipment. The aircraft air conditioning unit is also modeled to provide chilled air directly into the cabin. In addition, this paper describes a series of tests which were performed to verify the model assumptions for heat dissipation from and air flow through the equipment. The tests were performed using the actual electronic equipment in a representative cabin configuration. Results indicate very good agreement between the analytical calculations for the design point and model predictions.

  4. Innovative Concept for a Heavy-Load Aircraft Utilizing a Two-Dimensional Wing

    NASA Technical Reports Server (NTRS)

    Spearman, M. Leroy

    2007-01-01

    Heavy-load aircraft of conventional wing-body-tail design have become very large. Excessive size of such aircraft may present problems in the manufacturing process. In addition, large wing spans may cause some difficulties in ground handling. Increasing lift loads on large span cantilever wings will also increase the strength of the wing tip vortex. The concept presented herein proposes a means for substantially increasing the lift load capability of an aircraft without increasing the overall length and span of the configuration. The concept has a rectangular wing with a relatively low span and a large chord to provide the area required for high lift. Large fuselages are attached at each wing tip to provide the volume required for heavy loading. The fuselages serve as endplates for the wing and should preclude tip flow so that two-dimensional flow might be established on the wing. Elimination of the wing tip flow should prevent the formation of a tip vortex and eliminate the tip vortex hazard to trailing aircraft. Exploratory wind tunnel tests of such an aircraft concept have been conducted. Lessons learned from these tests are discussed herein in an effort to determine the validity of the concept.

  5. P-LAP/IRAP-induced cell proliferation and glucose uptake in endometrial carcinoma cells via insulin receptor signaling

    PubMed Central

    Shibata, Kiyosumi; Kajiyama, Hiroaki; Ino, Kazuhiko; Nawa, Akihiro; Nomura, Seiji; Mizutani, Shigehiko; Kikkawa, Fumitaka

    2007-01-01

    Background Hyperglycemia or hyperinsulinemia contributes to poorer endometrial cancer survival. It was shown that P-LAP/IRAP translocates to the plasma membrane in response to insulin stimulation. Recently, we demonstrated that P-LAP/IRAP is associated with a poor prognosis in endometrial adenocarcinoma patients. The aim of this study was to examine whether the malignant potential of endometrial cancer enhanced by P-LAP/IRAP is due to increased glucose uptake via the P-LAP/IRAP-mediated activation of insulin signaling. Methods We transfected P-LAP/IRAP cDNA into A-MEC cells (endometrial adenocarcinoma cell line), and A-MEC-LAP cells expressed a remarkably high level of GLUT4 proteins. Results 3H-2-deoxyglucose uptake which responds to insulin in A-MEC-LAP cells was significantly higher than that of A-MEC-pc cells. A-MEC-LAP cells exhibited a significant growth-stimulatory effect compared to A-MEC-pc cells. A-MEC-LAP cells expressed a remarkably high level of p85PI3K protein compared to A-MEC-pc cells, and showed a higher degree of AKT phosphorylation by insulin stimulation. Conclusion In summary, P-LAP/IRAP was involved in the increasing malignant potential of endometrial cancer mediated by insulin. P-LAP/IRAP was suggested to be a potential new target of molecular-targeted therapy for endometrial cancer. PMID:17233921

  6. Deformation verification and surface improvement of active stressed lap for 4  m-class primary mirror fabrication.

    PubMed

    Zhao, Hongshen; Li, Xiaojin; Fan, Bin; Zeng, Zhige

    2015-04-01

    The surface shape accuracy of the active stressed lap impacts the performance of grinding and polishing in the fabrication of large mirrors. We introduce a model of active stressed lap for the fabrication of a 4 m f/1.5 mirror based on finite element analysis (FEA), and the lap surface accuracy achieves RMS<1.8  μm in the FEA method. Using the lap surface measurement system, experimental verification is put forward, and the RMS of the measured lap surface is within 2 μm in practice. A general improvement in lap surface accuracy using the Zernike polynomial is shown. After compensating the calculation errors, the lap surface accuracy is improved by 8%-23%, and achieves RMS<1.5  μm, which is appropriate for practical grinding and polishing. PMID:25967173

  7. Electromechanical behaviour of REBCO tape lap splices under transverse compressive loading

    NASA Astrophysics Data System (ADS)

    Grether, A.; Scheuerlein, C.; Ballarino, A.; Bottura, L.

    2016-07-01

    We have studied the influence of transverse compressive stress on the resistance and critical current (I c ) of soldered REBCO tape lap splices. Internal contact resistances dominate the overall REBCO lap splice resistances. Application of transverse compressive stress up to 250 MPa during the resistance measurements does not alter the resistance and I c of the soldered REBCO splices that were studied. The resistance of unsoldered REBCO tape lap splices depends strongly on the contact pressure. At a transverse compressive stress of 100 MPa, to which Roebel cables are typically exposed in high field magnets, the crossover splice contact resistance is comparable to the internal tape resistances.

  8. Lumbar Chance fracture associated with use of the lap belt restraint in an adolescent.

    PubMed

    Walsh, A; Sheehan, E; Walsh, M G

    2003-05-01

    The use of the 2-point seat belt or lap belt in motor vehicles, particularly to restrain young rear seat passengers, remains an issue of some concern. The occurrence of lumbar spinal flexion-distraction injuries in lap belt restrained children and adolescents during road traffic accidents is a well known phenomenon, but is still occurring. High velocity paediatric Chance fractures are frequently associated with significant intra-abdominal trauma. We present the case of a Chance fracture sustained by a 15 year old girl, involved in a motor vehicle collision, while wearing a lap belt. We emphasise the need to develop safer seat belt designs for juvenile car passengers.

  9. Seat belt induced transection of the trachea in a child on the lap of an adult.

    PubMed

    Uemura, K; Yoshida, K

    2001-05-01

    As a victim of his parents' suicide, a three-year-old boy was found dead on the lap of the passenger in the left front seat of a car that dove from the wharf and crashed into the sea. He died from the transection of trachea due to shoulder belt in the absence of the signs of drowning. The seat belt paradoxically injured the child on the passenger's lap in the traffic accident. The popular custom of Japanese parents of holding their children on their laps in cars is dangerous, while another custom of killing their children upon suicide of parents or couples should be socially and legally controlled.

  10. Global-Local Finite Element Analysis of Bonded Single-Lap Joints

    NASA Technical Reports Server (NTRS)

    Kilic, Bahattin; Madenci, Erdogan; Ambur, Damodar R.

    2004-01-01

    Adhesively bonded lap joints involve dissimilar material junctions and sharp changes in geometry, possibly leading to premature failure. Although the finite element method is well suited to model the bonded lap joints, traditional finite elements are incapable of correctly resolving the stress state at junctions of dissimilar materials because of the unbounded nature of the stresses. In order to facilitate the use of bonded lap joints in future structures, this study presents a finite element technique utilizing a global (special) element coupled with traditional elements. The global element includes the singular behavior at the junction of dissimilar materials with or without traction-free surfaces.

  11. Machine imparting complex rotary motion for lapping a spherical inner diameter

    DOEpatents

    Carroll, T.A.; Yetter, H.H.

    1985-01-30

    An apparatus for imparting complex rotary motion is used to lap an inner spherical diameter surface of a workpiece. A lapping tool consists of a dome and rod mounted along the dome's vertical axis. The workpiece containing the lapping tool is held in a gimbal which uses power derived from a secondary takeoff means to impart rotary motion about a horizontal axis. The gimbal is rotated about a vertical axis by a take means while mounted at a radially outward position on a rotating arm.

  12. Machine imparting complex rotary motion for lapping a spherical inner diameter

    DOEpatents

    Carroll, Thomas A.; Yetter, Harold H.

    1986-01-01

    An apparatus for imparting complex rotary motion is used to lap an inner spherical diameter surface of a workpiece. A lapping tool consists of a dome and rod mounted along the dome's vertical axis. The workpiece containing the lapping tool is held in a gimbal which uses power derived from a secondary takeoff means to impart rotary motion about a horizontal axis. The gimbal is rotated about a vertical axis by a take means while mounted at a radially outward position on a rotating arm.

  13. The effect of diamond powder characteristics on lapping of sintered silicon carbide

    NASA Astrophysics Data System (ADS)

    Rosczyk, Benjamin; Burkam, Eric; Titov, Artem; Onyenemezu, Clement; Benea, Ion C.

    2015-10-01

    In Automotive applications, sintered Silicon Carbide has been used in applications such as seal pump faces. The surface of sintered SiC, when lapped or polished for sealing to another surface, must be free of blemishes and mechanical defects. Lapping and polishing processes therefore must be well defined and controlled assuring minimal variation and production scrap. In this study, we related the characteristics of different diamond powders (particle size distribution, particle shape and surface) to their performance in lapping of sintered silicon carbide material, expressed as removal rate and surface finish.

  14. Hybrid-Wing-Body Vehicle Composite Fuselage Analysis and Case Study

    NASA Technical Reports Server (NTRS)

    Mukhopadhyay, Vivek

    2014-01-01

    Recent progress in the structural analysis of a Hybrid Wing-Body (HWB) fuselage concept is presented with the objective of structural weight reduction under a set of critical design loads. This pressurized efficient HWB fuselage design is presently being investigated by the NASA Environmentally Responsible Aviation (ERA) project in collaboration with the Boeing Company, Huntington Beach. The Pultruded Rod-Stiffened Efficient Unitized Structure (PRSEUS) composite concept, developed at the Boeing Company, is approximately modeled for an analytical study and finite element analysis. Stiffened plate linear theories are employed for a parametric case study. Maximum deflection and stress levels are obtained with appropriate assumptions for a set of feasible stiffened panel configurations. An analytical parametric case study is presented to examine the effects of discrete stiffener spacing and skin thickness on structural weight, deflection and stress. A finite-element model (FEM) of an integrated fuselage section with bulkhead is developed for an independent assessment. Stress analysis and scenario based case studies are conducted for design improvement. The FEM model specific weight of the improved fuselage concept is computed and compared to previous studies, in order to assess the relative weight/strength advantages of this advanced composite airframe technology

  15. Mechanisms of Active Aerodynamic Load Reduction on a Rotorcraft Fuselage With Rotor Effects

    NASA Technical Reports Server (NTRS)

    Schaeffler, Norman W.; Allan, Brian G.; Jenkins, Luther N.; Yao, Chung-Sheng; Bartram, Scott M.; Mace, W. Derry; Wong, Oliver D.; Tanner, Philip E.

    2016-01-01

    The reduction of the aerodynamic load that acts on a generic rotorcraft fuselage by the application of active flow control was investigated in a wind tunnel test conducted on an approximately 1/3-scale powered rotorcraft model simulating forward flight. The aerodynamic mechanisms that make these reductions, in both the drag and the download, possible were examined in detail through the use of the measured surface pressure distribution on the fuselage, velocity field measurements made in the wake directly behind the ramp of the fuselage and computational simulations. The fuselage tested was the ROBIN-mod7, which was equipped with a series of eight slots located on the ramp section through which flow control excitation was introduced. These slots were arranged in a U-shaped pattern located slightly downstream of the baseline separation line and parallel to it. The flow control excitation took the form of either synthetic jets, also known as zero-net-mass-flux blowing, and steady blowing. The same set of slots were used for both types of excitation. The differences between the two excitation types and between flow control excitation from different combinations of slots were examined. The flow control is shown to alter the size of the wake and its trajectory relative to the ramp and the tailboom and it is these changes to the wake that result in a reduction in the aerodynamic load.

  16. Virtual Sensor for Failure Detection, Identification and Recovery in the Transition Phase of a Morphing Aircraft

    PubMed Central

    Heredia, Guillermo; Ollero, Aníbal

    2010-01-01

    The Helicopter Adaptive Aircraft (HADA) is a morphing aircraft which is able to take-off as a helicopter and, when in forward flight, unfold the wings that are hidden under the fuselage, and transfer the power from the main rotor to a propeller, thus morphing from a helicopter to an airplane. In this process, the reliable folding and unfolding of the wings is critical, since a failure may determine the ability to perform a mission, and may even be catastrophic. This paper proposes a virtual sensor based Fault Detection, Identification and Recovery (FDIR) system to increase the reliability of the HADA aircraft. The virtual sensor is able to capture the nonlinear interaction between the folding/unfolding wings aerodynamics and the HADA airframe using the navigation sensor measurements. The proposed FDIR system has been validated using a simulation model of the HADA aircraft, which includes real phenomena as sensor noise and sampling characteristics and turbulence and wind perturbations. PMID:22294922

  17. Virtual sensor for failure detection, identification and recovery in the transition phase of a morphing aircraft.

    PubMed

    Heredia, Guillermo; Ollero, Aníbal

    2010-01-01

    The Helicopter Adaptive Aircraft (HADA) is a morphing aircraft which is able to take-off as a helicopter and, when in forward flight, unfold the wings that are hidden under the fuselage, and transfer the power from the main rotor to a propeller, thus morphing from a helicopter to an airplane. In this process, the reliable folding and unfolding of the wings is critical, since a failure may determine the ability to perform a mission, and may even be catastrophic. This paper proposes a virtual sensor based Fault Detection, Identification and Recovery (FDIR) system to increase the reliability of the HADA aircraft. The virtual sensor is able to capture the nonlinear interaction between the folding/unfolding wings aerodynamics and the HADA airframe using the navigation sensor measurements. The proposed FDIR system has been validated using a simulation model of the HADA aircraft, which includes real phenomena as sensor noise and sampling characteristics and turbulence and wind perturbations.

  18. Emergency in-flight egress opening for general aviation aircraft

    NASA Technical Reports Server (NTRS)

    Bement, L. J.

    1980-01-01

    In support of a stall/spin research program, an emergency in-flight egress system is being installed in a light general aviation airplane. To avoid a major structural redesign for a mechanical door, an add-on 11.2 kg pyrotechnic-actuated system was developed to create an opening in the existing structure. The airplane skin will be explosively severed around the side window, across a central stringer, and down to the floor, creating an opening of approximately 76 by 76 cm. The severed panel will be jettisoned at an initial velocity of approximately 13.7 m/sec. System development included a total of 68 explosive severance tests on aluminum material using small samples, small and full scale flat panel aircraft structural mock-ups, and an actual aircraft fuselage. These tests proved explosive sizing/severance margins, explosive initiation, explosive product containment, and system dynamics.

  19. Actively Controlled Landing Gear for Aircraft Vibration Reduction

    NASA Technical Reports Server (NTRS)

    Horta, Lucas G.; Daugherty, Robert H.; Martinson, Veloria J.

    1999-01-01

    Concepts for long-range air travel are characterized by airframe designs with long, slender, relatively flexible fuselages. One aspect often overlooked is ground induced vibration of these aircraft. This paper presents an analytical and experimental study of reducing ground-induced aircraft vibration loads using actively controlled landing gears. A facility has been developed to test various active landing gear control concepts and their performance. The facility uses a NAVY A6-intruder landing gear fitted with an auxiliary hydraulic supply electronically controlled by servo valves. An analytical model of the gear is presented including modifications to actuate the gear externally and test data is used to validate the model. The control design is described and closed-loop test and analysis comparisons are presented.

  20. Aircraft Engine Noise Scattering - A Discontinuous Spectral Element Approach

    NASA Technical Reports Server (NTRS)

    Stanescu, D.; Hussaini, M. Y.; Farassat, F.

    2002-01-01

    The paper presents a time-domain method for computation of sound radiation from aircraft engine sources to the far-field. The effects of nonuniform flow around the aircraft and scattering of sound by fuselage and wings are accounted for in the formulation. Our approach is based on the discretization of the inviscid flow equations through a collocation form of the Discontinuous Galerkin spectral element method. An isoparametric representation of the underlying geometry is used in order to take full advantage of the spectral accuracy of the method. Largescale computations are made possible by a parallel implementation based on message passing. Results obtained for radiation from an axisymmetric nacelle alone are compared with those obtained when the same nacelle is installed in a generic con.guration, with and without a wing.

  1. Water Impact Test and Simulation of a Composite Energy Absorbing Fuselage Section

    NASA Technical Reports Server (NTRS)

    Fasanella, Edwin L.; Jackson, Karen E.; Sparks, Chad; Sareen, Ashish

    2003-01-01

    In March 2002, a 25-ft/s vertical drop test of a composite fuselage section was conducted onto water. The purpose of the test was to obtain experimental data characterizing the structural response of the fuselage section during water impact for comparison with two previous drop tests that were performed onto a rigid surface and soft soil. For the drop test, the fuselage section was configured with ten 100-lb. lead masses, five per side, that were attached to seat rails mounted to the floor. The fuselage section was raised to a height of 10-ft. and dropped vertically into a 15-ft. diameter pool filled to a depth of 3.5-ft. with water. Approximately 70 channels of data were collected during the drop test at a 10-kHz sampling rate. The test data were used to validate crash simulations of the water impact that were developed using the nonlinear, explicit transient dynamic codes, MSC.Dytran and LS-DYNA. The fuselage structure was modeled using shell and solid elements with a Lagrangian mesh, and the water was modeled with both Eulerian and Lagrangian techniques. The fluid-structure interactions were executed using the fast general coupling in MSC.Dytran and the Arbitrary Lagrange-Euler (ALE) coupling in LS-DYNA. Additionally, the smooth particle hydrodynamics (SPH) meshless Lagrangian technique was used in LS-DYNA to represent the fluid. The simulation results were correlated with the test data to validate the modeling approach. Additional simulation studies were performed to determine how changes in mesh density, mesh uniformity, fluid viscosity, and failure strain influence the test-analysis correlation.

  2. A Study of Vehicle Structural Layouts in Post-WWII Aircraft

    NASA Technical Reports Server (NTRS)

    Sensmeier, Mark D.; Samareh, Jamshid A.

    2004-01-01

    In this paper, results of a study of structural layouts of post-WWII aircraft are presented. This study was undertaken to provide the background information necessary to determine typical layouts, design practices, and industry trends in aircraft structural design. Design decisions are often predicated not on performance-related criteria, but rather on such factors as manufacturability, maintenance access, and of course cost. For this reason, a thorough understanding of current best practices in the industry is required as an input for the design optimization process. To determine these best practices and industry trends, a large number of aircraft structural cutaway illustrations were analyzed for five different aircraft categories (commercial transport jets, business jets, combat jet aircraft, single engine propeller aircraft, and twin-engine propeller aircraft). Several aspects of wing design and fuselage design characteristics are presented here for the commercial transport and combat aircraft categories. A great deal of commonality was observed for transport structure designs over a range of eras and manufacturers. A much higher degree of variability in structural designs was observed for the combat aircraft, though some discernable trends were observed as well.

  3. Rotor systems research aircraft predesign study. Volume 2: Conceptual study report

    NASA Technical Reports Server (NTRS)

    Schmidt, S. A.; Linden, A. W.

    1972-01-01

    The overall feasibility of the technical requirements and concepts for a rotor system research aircraft (RSRA) was determined. The designs of two aircraft were then compared against the RSRA requirements. One of these is an all new aircraft specifically designed as an RSRA vehicle. A new main rotor, transmission, wings, and fuselage are included in this design. The second aircraft uses an existing Sikorsky S-61 main rotor, an S-61 roller gearbox, and a highly modified Sikorsky S-67 airframe. The wing for this aircraft is a new design. Both aircraft employ a fan-in-fin anti-torque/yaw control system, T58-GE-16 engines for rotor power, and TF34-GE-2 turbofans for auxiliary thrust. Each aircraft meets the basic requirements and goals of the program. The all new aircraft has inflight variable main rotor shaft tilt, a side-by-side cockpit seating arrangement, and is slightly faster in the compound mode. It is also somewhat lighter since it uses new dynamic components specifically designed for the RSRA. Preliminary development plans, including schedules and costs, were prepared for both of these aircraft.

  4. A characterization of the LAP Aquarius Phantom for external LAP laser alignment and magnetic resonance geometric distortion verification for stereotactic radiation surgery patient simulation

    NASA Astrophysics Data System (ADS)

    Vergara, Daniel

    The Thesis explores additional applications of LAP's Aquarius external laser alignment verification Phantom by examining geometric accuracy of magnetic resonance images commonly used for planning intracranial stereotactic radiation surgery (ICSRS) cases. The scans were performed with MRI protocols used for ICSRS, and head and neck diagnosis, and their images fused to computerized tomographic (CT) images. The geometric distortions (GDs) were measured against the CT in all axial, sagittal, and coronal directions at different levels. Using the Aquarius Phantom, one is able to detect GD in ICSRS planning MRI acquisitions, and align the external LAP patient alignment lasers, by following the LAP QA protocol. GDs up to about 2 mm are observed at the distal regions of the longitudinal axis in the SRS treatment planning MR images. Based on the results, one may recommend the use of the Aquarius Phantom to determine if margins should be included for SRS treatment planning.

  5. Alteration of Sulphides in the Rumuruti Chondrite La Paz Icefield (LAP) 031275

    NASA Astrophysics Data System (ADS)

    Steer, E. D.; Treiman, A. H.

    2014-09-01

    Pyrrhotite in LAP 03175 (R5) has altered to a fine-grained mineral mixture. New data (optical, chemical, and Raman) suggest the mixture includes violarite and tochilinite, but not (as suggested earlier) graphite, hematite, and/or jarosite.

  6. Aerodynamic interference effects on tilting proprotor aircraft. [using the Green function method

    NASA Technical Reports Server (NTRS)

    Soohoo, P.; Morino, L.; Noll, R. B.; Ham, N. D.

    1977-01-01

    The Green's function method was used to study tilting proprotor aircraft aerodynamics with particular application to the problem of the mutual interference of the wing-fuselage-tail-rotor wake configuration. While the formulation is valid for fully unsteady rotor aerodynamics, attention was directed to steady state aerodynamics, which was achieved by replacing the rotor with the actuator disk approximation. The use of an actuator disk analysis introduced a mathematical singularity into the formulation; this problem was studied and resolved. The pressure distribution, lift, and pitching moment were obtained for an XV-15 wing-fuselage-tail rotor configuration at various flight conditions. For the flight configurations explored, the effects of the rotor wake interference on the XV-15 tilt rotor aircraft yielded a reduction in the total lift and an increase in the nose-down pitching moment. This method provides an analytical capability that is simple to apply and can be used to investigate fuselage-tail rotor wake interference as well as to explore other rotor design problem areas.

  7. B-52 Launch Aircraft in Flight

    NASA Technical Reports Server (NTRS)

    2001-01-01

    the development of parachute recovery systems used to recover the space shuttle solid rocket booster casings. It also supported eight orbiter (space shuttle) drag chute tests in 1990. In addition, the B-52 served as the air launch platform for the first six Pegasus space boosters. During its many years of service, the B-52 has undergone several modifications. The first major modification was made by North American Aviation (now part of Boeing) in support of the X-15 program. This involved creating a launch-panel-operator station for monitoring the status of the test vehicle being carried, cutting a large notch in the right inboard wing flap to accommodate the vertical tail of the X-15 aircraft, and installing a wing pylon that enables the B-52 to carry research vehicles and test articles to be air-launched/dropped. Located on the right wing, between the inboard engine pylon and the fuselage, this wing pylon was subjected to extensive testing prior to its use. For each test vehicle the B-52 carried, minor changes were made to the launch-panel operator's station. Built originally by the Boeing Company, the NASA B-52 is powered by eight Pratt & Whitney J57-19 turbojet engines, each of which produce 12,000 pounds of thrust. The aircraft's normal launch speed has been Mach 0.8 (about 530 miles per hour) and its normal drop altitude has been 40,000 to 45,000 feet. It is 156 feet long and has a wing span of 185 feet.

  8. Vibration and aeroelastic analysis of highly flexible HALE aircraft

    NASA Astrophysics Data System (ADS)

    Chang, Chong-Seok

    The highly flexible HALE (High Altitude Long Endurance) aircraft analysis methodology is of interest because early studies indicated that HALE aircraft might have different vibration and aeroelastic characteristics from those of conventional aircraft. Recently the computer code Nonlinear Aeroelastic Trim And Stability of HALE Aircraft (NATASHA) was developed under NASA sponsorship. NATASHA can predict the flight dynamics and aeroelastic behavior for HALE aircraft with a flying wing configuration. Further analysis improvements for NATASHA were required to extend its capability to the ground vibration test (GVT) environment and to both GVT and aeroelastic behavior of HALE aircraft with other configurations. First, the analysis methodology, based on geometrically exact fully intrinsic beam theory, was extended to treat other aircraft cofigurations. Conventional aircraft with flexible fuselage and tail can now be modeled by treating the aircraft as an assembly of beam elements. NATASHA is now applicable to any aircraft cofiguration that can be modeled this way. The intrinsic beam formulation, which is a fundamental structural modeling approach, is now capable of being applying to a structure consisting of multiple beams by relating the virtual displacements and rotations at points where two or more beam elements are connected to each other. Additional aspects are also considered in the analysis such as auxiliary elevator input in the horizontal tail and fuselage aerodynamics. Second, the modeling approach was extended to treat the GVT environment for HALE aircraft, which have highly flexible wings. GVT has its main purpose to provide modal characteristics for model validation. A bungee formulation was developed by the augmented Lagrangian method and coupled to the intrinsic beam formulation for the GVT modeling. After the coupling procedure, the whole formulation cannot be fully intrinsic because the geometric constraint by bungee cords makes the system statically

  9. On the water lapping of felines and the water running of lizards: A unifying physical perspective.

    PubMed

    Aristoff, Jeffrey M; Stocker, Roman; Reis, Pedro M; Jung, Sunghwan

    2011-03-01

    We consider two biological phenomena taking place at the air-water interface: the water lapping of felines and the water running of lizards. Although seemingly disparate motions, we show that they are intimately linked by their underlying hydrodynamics and belong to a broader class of processes called Froude mechanisms. We describe how both felines and lizards exploit inertia to defeat gravity, and discuss water lapping and water running in the broader context of water exit and water entry, respectively.

  10. Composition of matrix in the CR chondrite LAP 02342

    NASA Astrophysics Data System (ADS)

    Wasson, John T.; Rubin, Alan E.

    2009-03-01

    We report evidence of interchondrule matrix heterogeneity on a scale of ˜50 μm in the well-preserved CR2 chondrite LAP 02342. Despite minor effects resulting from asteroidal aqueous alteration, the matrix in this CR chondrite seems to preserve much of the compositional record of nebular fines. We carried out electron-microprobe studies using a 3-μm-diameter beam; we analyzed 10 elements in 36- or 49-point grids on 11 ca. 50 × 50-μm rectangular areas of matrix. Each grid area has a distinct composition, inconsistent with a simple model of matrix material having a uniform composition throughout the nebular formation region of the CR chondrites. On S-Fe, Mg-Si, K-Na and K-Al scatter diagrams, the grid areas (i.e., different matrix patches) are largely separated from each other; plots of means with 95% confidence limits demonstrate that the compositions are resolvable. Five matrix areas were analyzed again in duplicate runs; excellent agreement was observed between duplicate studies. LAP 02342 experienced two forms of mild aqueous alteration - as patchy enrichments in Ca (inferred to reflect CaCO 3) and as regions in which sulfide laths are embedded within phyllosilicates. Despite this evidence of aqueous transport, the effect on the composition of matrix is not resolvable. For example, matrix points that were adjacent to points with high CaCO 3 contents show elemental concentrations similar to those in regions having only one or two points with a Ca enrichment. It appears that secondary minerals are found in areas where there are suitable precursor phases and voids into which new phases could grow unimpeded. Calcium appears to be unique in forming a phase that greatly lowers the Ca ++ content of the aqueous medium, thus enhancing the rate of diffusion. Because chondrules vary widely in bulk composition, the formation of chondrules in small sets (100 or less) could generate "smoke" and mesostasis spray with compositions unique to each set. However, if these

  11. High energy radiation from aircraft-triggered lightning and thunderstorm

    NASA Astrophysics Data System (ADS)

    Kochkin, Pavlo; van Deursen, Alexander P. J.; de Boer, Alte I.; Bardet, Michiel; Boissin, Jean-François

    2016-04-01

    In-flight Lightning Strike Damage Assessment System (ILDAS http://ildas.nlr.nl/) was developed in an EU FP6 project to provide information on threat that lightning poses to aircraft. The system contains one E-field and eight H-field sensors distributed over the fuselage. It has recently been extended to include two LaBr3 scintillation detectors. The scintillation detectors are sensitive to x-ray photons above 30 keV. The entire system is installed on an A-350 aircraft. When triggered by lightning and digitizes data synchronously with 10 ns intervals. Twelve continuously monitoring photon energy channels were implemented for X-ray detectors operating at slower rate (15 ms, pulse counting). In spring of 2014 and 2015 the aircraft flew through thunderstorm cells recording the data from the sensors. Total of 93 lightning strikes to the aircraft are recorded. Eighteen of them are also detected by WWLLN network. One strike consists of six individual strokes within 200 ms that were all synchronously identified by WWLLN. The WWLLN inter-stroke distance is much larger than the aircraft movement. Three of these strokes generated X-ray bursts. One exceptionally bright X-ray pulse of more than 8 MeV has been detected in association with another strike; it probably saturated the detector's photomultiplier. Neither long gamma-ray glow, nor positron annihilation have been detected during the campaign. An explanation is sought in the typical altitude profile of these test flights.

  12. F-15B transonic flight research testbed aircraft in flight

    NASA Technical Reports Server (NTRS)

    1996-01-01

    NASA's Dryden Flight Research Center, Edwards, California, is flying a modified McDonnell-Douglas F-15B aircraft as a testbed for a variety of transonic flight experiments. The two-seat aircraft, bearing NASA tail number 836, is shown during a recent flight over the high desert carrying a Drdyen-designed Flight Test Fixture (FTF) upon which aerodynamic experiments are mounted. The FTF is a heavily instrumented fin-like structure which is mounted on the F-15B's underbelly in place of the standard external fuel tank. Since being aquired by NASA in 1993, the aircraft has been modified to include video recording, telemetry and data recording capabilities. The twin-engine aircraft flew several flights recently in support of an experiment to determine the precise location of sonic shockwave development as air passes over an airfoil. The F-15B is currently being prepared for the Boundary Layer Heat Experiment, which will explore the potential drag reduction from heating the turbulent portion of the air that passes over the fuselage of a large aircraft.

  13. Aircraft integrated design and analysis: A classroom experience

    NASA Technical Reports Server (NTRS)

    Weisshaar, Terrence A.

    1989-01-01

    AAE 451 is the capstone course required of all senior undergraduates in the School of Aeronautics and Astronautics at Purdue University. During the past year the first steps of a long evolutionary process were taken to change the content and expectations of this course. These changes are the result of the availability of advanced computational capabilities and sophisticated electronic media availability at Purdue. This presentation will describe both the long range objectives and this year's experience using the High Speed Commercial Transport design, the AIAA Long Duration Aircraft design and RPV design proposal as project objectives. The central goal of these efforts is to provide a user-friendly, computer-software-based environment to supplement traditional design course methodology. The Purdue University Computer Center (PUCC), the Engineering Computer Network (ECN) and stand-alone PC's are being used for this development. This year's accomplishments center primarily on aerodynamics software obtained from NASA/Langley and its integration into the classroom. Word processor capability for oral and written work and computer graphics were also blended into the course. A total of ten HSCT designs were generated, ranging from twin-fuselage aircraft, forward swept wing aircraft to the more traditional delta and double-delta wing aircraft. Four Long Duration Aircraft designs were submitted, together with one RPV design tailored for photographic surveillance.

  14. PIK-20 Aircraft in Flight

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This photo shows NASA's PIK-20E motor-glider sailplane during a research flight from the Ames-Dryden Flight Research Facility (later, the Dryden Flight Research Center), Edwards, California, in 1991. The PIK-20E was a sailplane flown at NASA's Ames-Dryden Flight Research Facility (now Dryden Flight Research Center, Edwards, California) beginning in 1981. The vehicle, bearing NASA tail number 803, was used as a research vehicle on projects calling for high lift-over-drag and low-speed performance. Later NASA used the PIK-20E to study the flow of fluids over the aircraft's surface at various speeds and angles of attack as part of a study of airflow efficiency over lifting surfaces. The single-seat aircraft was used to begin developing procedures for collecting sailplane glide performance data in a program carried out by Ames-Dryden. It was also used to study high-lift aerodynamics and laminar flow on high-lift airfoils. Built by Eiri-Avion in Finland, the PIK-20E is a sailplane with a two-cylinder 43-horsepower, retractable engine. It is made of carbon fiber with sandwich construction. In this unique configuration, it takes off and climbs to altitude on its own. After reaching the desired altitude, the engine is shut down and folded back into the fuselage and the aircraft is then operated as a conventional sailplane. Construction of the PIK-20E series was rather unusual. The factory used high-temperature epoxies cured in an autoclave, making the structure resistant to deformation with age. Unlike today's normal practice of laying glass over gelcoat in a mold, the PIK-20E was built without gelcoat. The finish is the result of smooth glass lay-up, a small amount of filler, and an acrylic enamel paint. The sailplane was 21.4 feet long and had a wingspan of 49.2 feet. It featured a wooden, fixed-pitch propeller, a roomy cockpit, wingtip wheels, and a steerable tailwheel.

  15. Educating with Aircraft Models

    ERIC Educational Resources Information Center

    Steele, Hobie

    1976-01-01

    Described is utilization of aircraft models, model aircraft clubs, and model aircraft magazines to promote student interest in aerospace education. The addresses for clubs and magazines are included. (SL)

  16. Fatigue strength of a single lap joint SPR-bonded

    SciTech Connect

    Di Franco, G.; Fratini, L.; Pasta, A.

    2011-05-04

    In the last years, hybrid joints, meaning with this the joints which consist in combining a traditional mechanical joint to a layer of adhesive, are gradually attracting the attention of various sectors of the construction of vehicles and transportation industries, for their better performance compared to just mechanical joints (self-piercing riveting SPR, riveting, and so on) or just to bonded joints.The paper investigates the fatigue behavior of a single lap joint self-piercing riveted (SPR) and bonded throughout fatigue tests. The considered geometric configuration allowed the use of two rivets placed longitudinally; an epoxy resin was used as adhesive. In the first part of the work static characterization of the joints was carried out through tensile tests. Then fatigue tests were made with the application of different levels of load. The fatigue curves were also obtained at the varying the distance between the two rivets in order to better assess the joint strength for a given length of overlap.

  17. Molten pool characterization of laser lap welded copper and aluminum

    NASA Astrophysics Data System (ADS)

    Xue, Zhiqing; Hu, Shengsun; Zuo, Di; Cai, Wayne; Lee, Dongkyun; Elijah, Kannatey-Asibu, Jr.

    2013-12-01

    A 3D finite volume simulation model for laser welding of a Cu-Al lap joint was developed using ANSYS FLUENT to predict the weld pool temperature distribution, velocity field, geometry, alloying element distribution and transition layer thickness—all key attributes and performance characteristics for a laser-welded joint. Melting and solidification of the weld pool was simulated with an enthalpy-porosity formulation. Laser welding experiments and metallographic examination by SEM and EDX were performed to investigate the weld pool features and validate the simulated results. A bowl-shaped temperature field and molten pool, and a unique maximum fusion zone width were observed near the Cu-Al interface. Both the numerical simulation and experimental results indicate an arch-shaped intermediate layer of Cu and Al, and a gradual transition of Cu concentration from the aluminum plate to the copper plate with high composition gradient. For the conditions used, welding with Cu on top was found to result in a better weld joint.

  18. LAPS Lidar Measurements at the ARM Alaska Northslope Site (Support to FIRE Project)

    NASA Technical Reports Server (NTRS)

    Philbrick, C. Russell; Lysak, Daniel B., Jr.; Petach, Tomas M.; Esposito, Steven T.; Mulik, Karoline R.

    1998-01-01

    This report consists of data summaries of the results obtained during the May 1998 measurement period at Barrow Alaska. This report does not contain any data interpretation or analysis of the results which will follow this activity. This report is forwarded with a data set on magnetic media which contains the reduced data from the LAPS lidar in 15 minute intervals. The data was obtained during the period 15-30 May 1998. The measurement period overlapped with several aircraft flights conducted by NASA as part of the FIRE project. The report contains a summary list of the data obtained plus figures that have been prepared to help visualize the measurement periods. The order of the presentation is as follows: Section 1. A copy of the Statement of Work for the planned activity of the second measurement period at the ARM Northslope site is provided. Section 2. A list of the data collection periods shows the number of one minute data records stored during each hour of operation and the corresponding size (Mbytes) of the one hour data folders. The folder and file names are composed from the year, month, day, hour and minute. The date/time information is given in UTC for easier comparison with other data sets. Section 3. A set of 4 comparisons between the LAPS lidar results and the sondes released by the ARM scientists from a location nearby the lidar. The lidar results show the +/- 1 sigma statistical error on each of the independent 75 m altitude bins of the data. This set of 4 comparisons was used to set and validate the calibration value which was then used for the complete data set. Section 4. A set of false color figures with up to 10 hours of specific humidity measurements are shown in each graph. Two days of measurements are shown on each page. These plots are crude representations of the data and permit a survey which indicates when the clouds were very low or where interesting events may occur in the results. These plots are prepared using the real time sequence

  19. Nacelle Integration to Reduce the Sonic Boom of Aircraft Designed to Cruise at Supersonic Speeds

    NASA Technical Reports Server (NTRS)

    Mack, Robert J.

    1999-01-01

    An empirical method for integrating the engine nacelles on a wing-fuselage-fin(s) configuration has been described. This method is based on Whitham theory and Seebass and George sonic-boom minimization theory, With it, both reduced sonic-boom as well as high aerodynamic efficiency methods can be applied to the conceptual design of a supersonic-cruise aircraft. Two high-speed civil transport concepts were used as examples to illustrate the application of this engine-nacelle integration methodology: (1) a concept with engine nacelles mounted on the aft-fuselage, the HSCT-1OB; and (2) a concept with engine nacelles mounted under an extended-wing center section, the HSCT-11E. In both cases, the key to a significant reduction in the sonic-boom contribution from the engine nacelles was to use the F-function shape of the concept as a guide to move the nacelles further aft on the configuration.

  20. Development of Advanced Methods of Structural and Trajectory Analysis for Transport Aircraft

    NASA Technical Reports Server (NTRS)

    Ardema, Mark D.

    1996-01-01

    In this report the author describes: (1) development of advanced methods of structural weight estimation, and (2) development of advanced methods of flight path optimization. A method of estimating the load-bearing fuselage weight and wing weight of transport aircraft based on fundamental structural principles has been developed. This method of weight estimation represents a compromise between the rapid assessment of component weight using empirical methods based on actual weights of existing aircraft and detailed, but time-consuming, analysis using the finite element method. The method was applied to eight existing subsonic transports for validation and correlation. Integration of the resulting computer program, PDCYL, has been made into the weights-calculating module of the AirCraft SYNThesis (ACSYNT) computer program. ACSYNT bas traditionally used only empirical weight estimation methods; PDCYL adds to ACSYNT a rapid, accurate means of assessing the fuselage and wing weights of unconventional aircraft. PDCYL also allows flexibility in the choice of structural concept, as well as a direct means of determining the impact of advanced materials on structural weight.

  1. Acoustic boundary control for quieter aircraft

    NASA Astrophysics Data System (ADS)

    Hirsch, Scott Michael

    1999-08-01

    There is a strong interest in reducing the volume of low- frequency noise in aircraft cabins. Active noise control (ANC), in which loudspeakers placed in the cabin are used to generate a sound field which will cancel these disturbances, is now a commercially available solution. A second control approach is active structural acoustic control (ASAC), which uses structural control forces to reduce sound transmitted into the cabin through the fuselage. Some of the goals of current research are to reduce the cost, weight, and bulk of these control systems, along with improving global control performance. This thesis introduces an acoustic boundary control (ABC) concept for active noise control in aircraft. This control strategy uses distributed actuator arrays along enclosure boundaries to reduce noise transmitted into the enclosure through the boundaries and to reduce global noise levels due to other disturbances. The motivation is to provide global pressure attenuation with small, lightweight control actuators. Analytical studies are conducted of acoustic boundary in two-dimensional and three-dimensional rectangular enclosures and in a finite cylindrical enclosure. The simulations provide insight into the control mechanisms of ABC and demonstrate potential advantages of ABC over traditional ANC and ASAC implementations. A key component of acoustic boundary control is the ``smart'' trim panel, a structurally modified aircraft trim panel for use as an acoustic control source. A prototype smart trim panel is built and tested. The smart trim panel is used as the control source in a real-time active noise control system in a laboratory- scale fuselage model. It is shown that the smart trim panel works as well as traditional loudspeakers for this application. A control signal scheduling approach is proposed which allows for a reduction in the computational burden of the real-time controller used in active noise control applications. This approach uses off-line system

  2. Apoptosis in the lens anlage of the heritable lens aplastic mouse (lap mouse).

    PubMed

    Aso, S; Tashiro, M; Baba, R; Sawaki, M; Noda, S; Fujita, M

    1998-08-01

    Adult homozygous lap mice show various eye abnormalities, such as aphakia, retinal disorganization, and dysplasia of the cornea and anterior chamber. In the fetal eye of a homozygous lap mouse, the lens placode seems to develop normally. However, the lens vesicle progresses abnormally to form a mass of cells without a cavity, and the mass vanishes soon afterward. We examined cell death in the lens anlage of this mutant. The lens anlagen of homozygous lap and normal mice from days 10 to 12 of gestation were observed by light microscopy after DNA end-labeling by immunohistochemistry and by transmission electron microscopy. By light microscopy, a slight frequency of cell death was detected in the lens anlage encircling the surface ectoderm and in the anlage or in the anlage of both homozygous lap mice and normal mice at day 10 of gestation. Cell death was seen in the lens anlage encircling the surface ectoderm in the normal mouse and sporadically in the anlage of the homozygous lap mouse at day 10.5 of gestation. Cell death was visible at the area of the lens vesicle attached to the surface ectoderm and encircling the surrounding surface ectoderm in the normal mouse, and in the lens anlage encircling the surface ectoderm and the apex areas of the lens anlage in the homozygous lap mouse at day 11 of gestation. At day 12 of gestation, almost no cell death was observed in the lens anlage of the normal mouse. However, extensive areas of cell death were still seen in the lens anlage at its apex, at the inner region, and encircling the surface ectoderm in the homozygous lap mouse. Electron microscopic observation showed that the dead cells observed in the lens anlagen by light microscopy in normal and lap mice are the result of apoptosis. In lap mice, cells with cytoplasmic condensation were observed mainly at days 10 and 10.5 of gestation. Many apoptotic bodies which had been phagocytosed by adjacent cells were seen predominantly at day 11 of gestation. At day 12 of

  3. Damage criticality and inspection concerns of composite-metallic aircraft structures under blunt impact

    NASA Astrophysics Data System (ADS)

    Zou, D.; Haack, C.; Bishop, P.; Bezabeh, A.

    2015-04-01

    Composite aircraft structures such as fuselage and wings are subject to impact from many sources. Ground service equipment (GSE) vehicles are regarded as realistic sources of blunt impact damage, where the protective soft rubber is used. With the use of composite materials, blunt impact damage is of special interest, since potential significant structural damage may be barely visible or invisible on the structure's outer surface. Such impact can result in local or non-local damage, in terms of internal delamination in skin, interfacial delamination between stiffeners and skin, and fracture of internal reinforced component such as stringers and frames. The consequences of these events result in aircraft damage, delays, and financial cost to the industry. Therefore, it is necessary to understand the criticality of damage under this impact and provide reliable recommendations for safety and inspection technologies. This investigation concerns a composite-metallic 4-hat-stiffened and 5-frame panel, designed to represent a fuselage structure panel generic to the new generation of composite aircraft. The test fixtures were developed based on the correlation between finite element analyses of the panel model and the barrel model. Three static tests at certain amount of impact energy were performed, in order to improve the understanding of the influence of the variation in shear ties, and the added rotational stiffness. The results of this research demonstrated low velocity high mass impacts on composite aircraft fuselages beyond 82.1 kN of impact load, which may cause extensive internal structural damage without clear visual detectability on the external skin surface.

  4. SRB/SLEEC (Solid Rocket Booster/Shingle Lap Extendible Exit Cone) feasibility study, volume 2. Appendix A: Design study for a SLEEC actuation system

    NASA Technical Reports Server (NTRS)

    Thompson, D. S.

    1986-01-01

    The results are presented of a design feasibility study of a self-contained (powered) actuation system for a Shingle Lap Extendible Exit Cone (SLEEC) for Transportation System (STS). The evolution of the SLEEC actuation system design is reviewed, the final design concept is summarized, and the results of the detailed study of the final concept of the actuation system are treated. A conservative design using proven mechanical components was established as a major program priority. The final mechanical design has a very low development risk since the components, which consist of ballscrews, gearing, flexible shaft drives, and aircraft cables, have extensive aerospace applications and a history of proven reliability. The mathematical model studies have shown that little or no power is required to deploy the SLEEC actuation system because acceleration forces and internal pressure from the rocket plume provide the required energies. A speed control brake is incorporated in the design in order to control the rate of deployment.

  5. Analysis, Design and Optimization of Non-Cylindrical Fuselage for Blended-Wing-Body (BWB) Vehicle

    NASA Technical Reports Server (NTRS)

    Mukhopadhyay, V.; Sobieszczanski-Sobieski, J.; Kosaka, I.; Quinn, G.; Charpentier, C.

    2002-01-01

    Initial results of an investigation towards finding an efficient non-cylindrical fuselage configuration for a conceptual blended-wing-body flight vehicle were presented. A simplified 2-D beam column analysis and optimization was performed first. Then a set of detailed finite element models of deep sandwich panel and ribbed shell construction concepts were analyzed and optimized. Generally these concepts with flat surfaces were found to be structurally inefficient to withstand internal pressure and resultant compressive loads simultaneously. Alternatively, a set of multi-bubble fuselage configuration concepts were developed for balancing internal cabin pressure load efficiently, through membrane stress in inner-stiffened shell and inter-cabin walls. An outer-ribbed shell was designed to prevent buckling due to external resultant compressive loads. Initial results from finite element analysis appear to be promising. These concepts should be developed further to exploit their inherent structurally efficiency.

  6. STAGS Developments for Residual Strength Analysis Methods for Metallic Fuselage Structures

    NASA Technical Reports Server (NTRS)

    Young, Richard D.; Rose, Cheryl A.

    2014-01-01

    A summary of advances in the Structural Analysis of General Shells (STAGS) finite element code for the residual strength analysis of metallic fuselage structures, that were realized through collaboration between the structures group at NASA Langley, and Dr. Charles Rankin is presented. The majority of the advancements described were made in the 1990's under the NASA Airframe Structural Integrity Program (NASIP). Example results from studies that were conducted using the STAGS code to develop improved understanding of the nonlinear response of cracked fuselage structures subjected to combined loads are presented. An integrated residual strength analysis methodology for metallic structure that models crack growth to predict the effect of cracks on structural integrity is demonstrated

  7. Automatic computation of Euler-marching and subsonic grids for wing-fuselage configurations

    NASA Technical Reports Server (NTRS)

    Barger, Raymond L.; Adams, Mary S.; Krishnan, Ramki R.

    1994-01-01

    Algebraic procedures are described for the automatic generation of structured, single-block flow computation grids for relatively simple configurations (wing, fuselage, and fin). For supersonic flows, a quasi two-dimensional grid for Euler-marching codes is developed, and some sample results in graphical form are included. A type of grid for subsonic flow calculation is also described. The techniques are algebraic and are based on a generalization of the method of transfinite interpolation.

  8. Slender body theory programmed for bodies with arbitrary cross section. [including fuselages

    NASA Technical Reports Server (NTRS)

    Werner, J.; Krenkel, A. R.

    1978-01-01

    A computer program developed for determining the subsonic pressure, force, and moment coefficients for a fuselage-type body using slender body theory is described. The program is suitable for determining the angle of attack and sideslipping characteristics of such bodies in the linear range where viscous effects are not predominant. Procedures developed which are capable of treating cross sections with corners or regions of large curvature are outlined.

  9. Simulation of transonic viscous wing and wing-fuselage flows using zonal methods

    NASA Technical Reports Server (NTRS)

    Flores, Jolen

    1987-01-01

    The thin-layer Navier-Stokes equations are coupled with a zonal scheme (or domain-decomposition method) to develop the Transonic Navier-Stokes (TNS) wing-alone code. The TNS has a total of 4 zones and is extended to a total of 16 zones for the wing-fuselage version of the code. Results are compared on the Cray X-MP-48 and compared with experimental data.

  10. Navier-Stokes and potential theory solutions for ahelicopter fuselage and comparison with experiment

    NASA Technical Reports Server (NTRS)

    Chaffin, Mark S.; Berry, John D.

    1994-01-01

    A thin-layer Navier-Stokes code and a panel method code are used to predict the flow over a generic helicopter fuselage. The computational results are compared with pressure data at four experimental conditions. Both methods produce results that agree with the experimental pressure data. However, separation patterns and other viscous flow features from the Navier-Stokes code solution are shown that cannot be easily modeled with the panel method.

  11. Vertical drop test of a transport fuselage center section including the wheel wells

    NASA Technical Reports Server (NTRS)

    Williams, M. S.; Hayduk, R. J.

    1983-01-01

    A Boeing 707 fuselage section was drop tested to measure structural, seat, and anthropomorphic dummy response to vertical crash loads. The specimen had nominally zero pitch, roll and yaw at impact with a sink speed of 20 ft/sec. Results from this drop test and other drop tests of different transport sections will be used to prepare for a full-scale crash test of a B-720.

  12. Light Absorbing Particle (LAP) Measurements in the Lower Stratosphere

    NASA Technical Reports Server (NTRS)

    Baumgardner, D.; Raga, G. B.; Anderson, B.; Diskin, G.; Sachse, G.; Kok, G.

    2003-01-01

    This viewgraph presentation covers the capabilities and design of the Single Particle Soot Photometer (SP-2), and reviews its role on the Sage III Ozone Loss Validation Experiment (SOLVE II) field campaign during 2003. On SOLVE II the SP-2 was carried into the Arctic onboard a DC-8 aircraft, in order to determine the size distribution of light-absorbing and non light-absorbing particles in the stratosphere. Graphs and tables relate some of the results from SOLVE II.

  13. Comparison of Hard Surface and Soft Soil Impact Performance of a Crashworthy Composite Fuselage Concept

    NASA Technical Reports Server (NTRS)

    Sareen, Ashish K.; Sparks, Chad; Mullins, B. R., Jr.; Fasanella, Edwin; Jackson, Karen

    2002-01-01

    A comparison of the soft soil and hard surface impact performance of a crashworthy composite fuselage concept has been performed. Specifically, comparisons of the peak acceleration values, pulse duration, and onset rate at specific locations on the fuselage were evaluated. In a prior research program, the composite fuselage section was impacted at 25 feet per second onto concrete at the Impact Dynamics Research Facility (IDRF) at NASA Langley Research Center. A soft soil test was conducted at the same impact velocity as a part of the NRTC/RITA Crashworthy and Energy Absorbing Structures project. In addition to comparisons of soft soil and hard surface test results, an MSC. Dytran dynamic finite element model was developed to evaluate the test analysis correlation. In addition, modeling parameters and techniques affecting test analysis correlation are discussed. Once correlated, the analytical methodology will be used in follow-on work to evaluate the specific energy absorption of various subfloor concepts for improved crash protection during hard surface and soft soil impacts.

  14. Hybrid Wing-Body Pressurized Fuselage and Bulkhead, Design and Optimization

    NASA Technical Reports Server (NTRS)

    Mukhopadhyay, Vivek

    2013-01-01

    The structural weight reduction of a pressurized Hybrid Wing-Body (HWB) fuselage is a serious challenge. Hence, research and development are presently being continued at NASA under the Environmentally Responsible Aviation (ERA) and Subsonic Fixed Wing (SFW) projects in collaboration with the Boeing Company, Huntington Beach and Air Force Research Laboratory (AFRL). In this paper, a structural analysis of the HWB fuselage and bulkhead panels is presented, with the objectives of design improvement and structural weight reduction. First, orthotropic plate theories for sizing, and equivalent plate analysis with appropriate simplification are considered. Then parametric finite-element analysis of a fuselage section and bulkhead are conducted using advanced stitched composite structural concepts, which are presently being developed at Boeing for pressurized HWB flight vehicles. With this advanced stiffened-shell design, structural weights are computed and compared to the thick sandwich, vaulted-ribbed-shell, and multi-bubble stiffened-shell structural concepts that had been studied previously. The analytical and numerical results are discussed to assess the overall weight/strength advantages.

  15. Compression Response of a Sandwich Fuselage Keel Panel With and Without Damage

    NASA Technical Reports Server (NTRS)

    McGowan, David M.; Ambur, Damodar R.

    1997-01-01

    Results are presented from an experimental and analytical study of a sandwich fuselage keel panel with and without damage. The fuselage keel panel is constructed of graphite-epoxy skins bonded to a honeycomb core, and is representative of a highly loaded fuselage keel structure. The face sheets of the panel contain several terminated or dropped plies along the length of the panel. The results presented provide a better understanding of the load distribution in damaged and undamaged thick-face-sheet composite sandwich structure with dropped plies and of the failure mechanisms of such structure in the presence of low-speed impact damage and discrete-source damage. The impact-damage condition studied corresponds to barely visible impact damage (BVID), and the discrete-source damage condition studied is a notch machined through both face sheets. Results are presented from an impact-damage screening study conducted on another panel of the same design to determine the impact energy necessary to inflict BVID on the panel. Results are presented from compression tests of the panel in three conditions: undamaged; BVID in two locations; and BVID in two locations and a notch through both face sheets. Surface strains in the face sheets of the undamaged panel and the notched panel obtained experimentally are compared with finite element analysis results. The experimental and analytical results suggest that for the damage conditions studied, discrete-source damage influences the structural performance more than BVID.

  16. Multi-Terrain Vertical Drop Tests of a Composite Fuselage Section

    NASA Technical Reports Server (NTRS)

    Kellas, Sotiris; Jackson, Karen E.

    2008-01-01

    A 5-ft-diameter composite fuselage section was retrofitted with four identical blocks of deployable honeycomb energy absorber and crash tested on two different surfaces: soft soil, and water. The drop tests were conducted at the 70-ft. drop tower at the Landing and Impact Research (LandIR) Facility of NASA Langley. Water drop tests were performed into a 15-ft-diameter pool of water that was approximately 42-in. deep. For the soft soil impact, a 15-ft-square container filled with fine-sifted, unpacked sand was located beneath the drop tower. All drop tests were vertical with a nominally flat attitude with respect to the impact surface. The measured impact velocities were 37.4, and 24.7-fps for soft soil and water, respectively. A fuselage section without energy absorbers was also drop tested onto water to provide a datum for comparison with the test, which included energy absorbers. In order to facilitate this type of comparison and to ensure fuselage survivability for the no-energy-absorber case, the velocity of the water impact tests was restricted to 25-fps nominal. While all tests described in this paper were limited to vertical impact velocities, the implications and design challenges of utilizing external energy absorbers during combined forward and vertical impact velocities are discussed. The design, testing and selection of a honeycomb cover, which was required in soft surface and water impacts to transmit the load into the honeycomb cell walls, is also presented.

  17. An Airplane Design having a Wing with Fuselage Attached to Each Tip

    NASA Technical Reports Server (NTRS)

    Spearman, Leroy M.

    2001-01-01

    This paper describes the conceptual design of an airplane having a low aspect ratio wing with fuselages that are attached to each wing tip. The concept is proposed for a high-capacity transport as an alternate to progressively increasing the size of a conventional transport design having a single fuselage with cantilevered wing panels attached to the sides and tail surfaces attached at the rear. Progressively increasing the size of conventional single body designs may lead to problems in some area's such as manufacturing, ground-handling and aerodynamic behavior. A limited review will be presented of some past work related to means of relieving some size constraints through the use of multiple bodies. Recent low-speed wind-tunnel tests have been made of models representative of the inboard-wing concept. These models have a low aspect ratio wing with a fuselage attached to each tip. Results from these tests, which included force measurements, surface pressure measurements, and wake surveys, will be presented herein.

  18. Aurora Flight Sciences' Perseus B Remotely Piloted Aircraft in Flight

    NASA Technical Reports Server (NTRS)

    1998-01-01

    A long, slender wing and a pusher propeller at the rear characterize the Perseus B remotely piloted research aircraft, seen here during a test flight in June 1998. Perseus B is a remotely piloted aircraft developed as a design-performance testbed under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project. Perseus is one of several flight vehicles involved in the ERAST project. A piston engine, propeller-powered aircraft, Perseus was designed and built by Aurora Flight Sciences Corporation, Manassas, Virginia. The objectives of Perseus B's ERAST flight tests have been to reach and maintain horizontal flight above altitudes of 60,000 feet and demonstrate the capability to fly missions lasting from 8 to 24 hours, depending on payload and altitude requirements. The Perseus B aircraft established an unofficial altitude record for a single-engine, propeller-driven, remotely piloted aircraft on June 27, 1998. It reached an altitude of 60,280 feet. In 1999, several modifications were made to the Perseus aircraft including engine, avionics, and flight-control-system improvements. These improvements were evaluated in a series of operational readiness and test missions at the Dryden Flight Research Center, Edwards, California. Perseus is a high-wing monoplane with a conventional tail design. Its narrow, straight, high-aspect-ratio wing is mounted atop the fuselage. The aircraft is pusher-designed with the propeller mounted in the rear. This design allows for interchangeable scientific-instrument payloads to be placed in the forward fuselage. The design also allows for unobstructed airflow to the sensors and other devices mounted in the payload compartment. The Perseus B that underwent test and development in 1999 was the third generation of the Perseus design, which began with the Perseus Proof-Of-Concept aircraft. Perseus was initially developed as part of NASA's Small High-Altitude Science Aircraft (SHASA) program, which later evolved into the ERAST

  19. RTJ-303: Variable geometry, oblique wing supersonic aircraft

    NASA Technical Reports Server (NTRS)

    Antaran, Albert; Belete, Hailu; Dryzmkowski, Mark; Higgins, James; Klenk, Alan; Rienecker, Lisa

    1992-01-01

    This document is a preliminary design of a High Speed Civil Transport (HSCT) named the RTJ-303. It is a 300 passenger, Mach 1.6 transport with a range of 5000 nautical miles. It features four mixed-flow turbofan engines, variable geometry oblique wing, with conventional tail-aft control surfaces. The preliminary cost analysis for a production of 300 aircraft shows that flyaway cost would be 183 million dollars (1992) per aircraft. The aircraft uses standard jet fuel and requires no special materials to handle aerodynamic heating in flight because the stagnation temperatures are approximately 130 degrees Fahrenheit in the supersonic cruise condition. It should be stressed that this aircraft could be built with today's technology and does not rely on vague and uncertain assumptions of technology advances. Included in this report are sections discussing the details of the preliminary design sequence including the mission to be performed, operational and performance constraints, the aircraft configuration and the tradeoffs of the final choice, wing design, a detailed fuselage design, empennage design, sizing of tail geometry, and selection of control surfaces, a discussion on propulsion system/inlet choice and their position on the aircraft, landing gear design including a look at tire selection, tip-over criterion, pavement loading, and retraction kinematics, structures design including load determination, and materials selection, aircraft performance, a look at stability and handling qualities, systems layout including location of key components, operations requirements maintenance characteristics, a preliminary cost analysis, and conclusions made regarding the design, and recommendations for further study.

  20. Aircraft Electric Secondary Power

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Technologies resulted to aircraft power systems and aircraft in which all secondary power is supplied electrically are discussed. A high-voltage dc power generating system for fighter aircraft, permanent magnet motors and generators for aircraft, lightweight transformers, and the installation of electric generators on turbine engines are among the topics discussed.

  1. World commercial aircraft accidents

    SciTech Connect

    Kimura, C.Y.

    1993-01-01

    This report is a compilation of all accidents world-wide involving aircraft in commercial service which resulted in the loss of the airframe or one or more fatality, or both. This information has been gathered in order to present a complete inventory of commercial aircraft accidents. Events involving military action, sabotage, terrorist bombings, hijackings, suicides, and industrial ground accidents are included within this list. Included are: accidents involving world commercial jet aircraft, world commercial turboprop aircraft, world commercial pistonprop aircraft with four or more engines and world commercial pistonprop aircraft with two or three engines from 1946 to 1992. Each accident is presented with information in the following categories: date of the accident, airline and its flight numbers, type of flight, type of aircraft, aircraft registration number, construction number/manufacturers serial number, aircraft damage, accident flight phase, accident location, number of fatalities, number of occupants, cause, remarks, or description (brief) of the accident, and finally references used. The sixth chapter presents a summary of the world commercial aircraft accidents by major aircraft class (e.g. jet, turboprop, and pistonprop) and by flight phase. The seventh chapter presents several special studies including a list of world commercial aircraft accidents for all aircraft types with 100 or more fatalities in order of decreasing number of fatalities, a list of collision accidents involving commercial aircrafts, and a list of world commercial aircraft accidents for all aircraft types involving military action, sabotage, terrorist bombings, and hijackings.

  2. Large-scale Advanced Prop-fan (LAP) high speed wind tunnel test report

    NASA Technical Reports Server (NTRS)

    Campbell, William A.; Wainauski, Harold S.; Arseneaux, Peter J.

    1988-01-01

    High Speed Wind Tunnel testing of the SR-7L Large Scale Advanced Prop-Fan (LAP) is reported. The LAP is a 2.74 meter (9.0 ft) diameter, 8-bladed tractor type rated for 4475 KW (6000 SHP) at 1698 rpm. It was designated and built by Hamilton Standard under contract to the NASA Lewis Research Center. The LAP employs thin swept blades to provide efficient propulsion at flight speeds up to Mach .85. Testing was conducted in the ONERA S1-MA Atmospheric Wind Tunnel in Modane, France. The test objectives were to confirm that the LAP is free from high speed classical flutter, determine the structural and aerodynamic response to angular inflow, measure blade surface pressures (static and dynamic) and evaluate the aerodynamic performance at various blade angles, rotational speeds and Mach numbers. The measured structural and aerodynamic performance of the LAP correlated well with analytical predictions thereby providing confidence in the computer prediction codes used for the design. There were no signs of classical flutter throughout all phases of the test up to and including the 0.84 maximum Mach number achieved. Steady and unsteady blade surface pressures were successfully measured for a wide range of Mach numbers, inflow angles, rotational speeds and blade angles. No barriers were discovered that would prevent proceeding with the PTA (Prop-Fan Test Assessment) Flight Test Program scheduled for early 1987.

  3. Evaluation of pediatric use patterns and performance of lap shoulder belt systems in the center rear.

    PubMed

    Arbogast, Kristy B; Durbin, Dennis R; Kallan, Michael J; Winston, Flaura K

    2004-01-01

    Lap and shoulder belts have been required in rear outboard positions since 1989. A recent congressional mandate encouraged the requirement of a lap and shoulder belt in the center rear seat position. This study utilized Data from the Partners for Child Passenger Safety study, a large-scale child-focused crash surveillance system, to quantify changes in seating patterns for children in vehicles that already have this feature compared to those which do not and measured the safety benefit associated with the provision of a shoulder belt in the center rear seat position. The data demonstrate that the presence of a shoulder belt in the center rear seating position influences seating practices only when there is a single child occupant in the vehicle. Belted children in the center rear of vehicles equipped with a lap shoulder belt are at an 81% reduction in risk of injury than those belted in the center rear equipped with a lap only belt. The data suggest that by requiring lap shoulder belts in the center rear, benefits would be realized to belted children, specifically the 4-8 year old group.

  4. Application of the lag-after-pulsed-separation (LAPS) flow meter to different protein solutions.

    PubMed

    Sengupta, Shramik; Mahmud, Goher; Chiou, Daniel J; Ziaie, Babak; Barocas, Victor H

    2005-02-01

    A lag after pulsed separation (LAPS) meter was previously developed to measure flow rates of protein solutions. The LAPS meter operates on the time-of-flight principle. An upstream event (electrophoretic concentration of the particles in one section of the device) is detected downstream (by change in ac resistance). The time lag between the event and its detection is inversely proportional to the fluid flow rate. We demonstrate the ability of the LAPS meter to measure the flow rate of solutions containing one or more charged biomacromolecules or particles. A prototype of the LAPS meter was used to measure flow rates of solutions of model proteins [bovine serum albumin (BSA), lysozyme and hemoglobin] and mixtures of BSA and lysozyme. Flow rates of 10-50 microl min(-1)(average velocities of 0.24-1.2 mm s(-1)) were measured. When a single ac measurement was used, the results were solution-dependent, which we attribute to the interface between the protein solution and the ac electrodes. A differential mode, in which the signal from a positive and a negative dc pulse were subtracted from each other, eliminated interfacial effects and led to a single universal (solution-independent) calibration curve. The LAPS meter can be used as a non-invasive, no-moving-parts flow sensor in any microfluidic system (such as drug delivery devices or micro-reactor arrays) where one needs to measure the flow rate of a solution or a suspension containing charged species such as proteins or cells.

  5. Perseus High Altitude Remotely Piloted Aircraft on Ramp

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The Perseus proof-of-concept vehicle waits on Rogers Dry Lake in the pre-dawn darkness before a test flight at the Dryden Flight Research Center, Edwards, California. Perseus B is a remotely piloted aircraft developed as a design-performance testbed under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project. Perseus is one of several flight vehicles involved in the ERAST project. A piston engine, propeller-powered aircraft, Perseus was designed and built by Aurora Flight Sciences Corporation, Manassas, Virginia. The objectives of Perseus B's ERAST flight tests have been to reach and maintain horizontal flight above altitudes of 60,000 feet and demonstrate the capability to fly missions lasting from 8 to 24 hours, depending on payload and altitude requirements. The Perseus B aircraft established an unofficial altitude record for a single-engine, propeller-driven, remotely piloted aircraft on June 27, 1998. It reached an altitude of 60,280 feet. In 1999, several modifications were made to the Perseus aircraft including engine, avionics, and flight-control-system improvements. These improvements were evaluated in a series of operational readiness and test missions at the Dryden Flight Research Center, Edwards, California. Perseus is a high-wing monoplane with a conventional tail design. Its narrow, straight, high-aspect-ratio wing is mounted atop the fuselage. The aircraft is pusher-designed with the propeller mounted in the rear. This design allows for interchangeable scientific-instrument payloads to be placed in the forward fuselage. The design also allows for unobstructed airflow to the sensors and other devices mounted in the payload compartment. The Perseus B that underwent test and development in 1999 was the third generation of the Perseus design, which began with the Perseus Proof-Of-Concept aircraft. Perseus was initially developed as part of NASA's Small High-Altitude Science Aircraft (SHASA) program, which later evolved into the

  6. Unsteady transonic flow calculations for realistic aircraft configurations

    NASA Technical Reports Server (NTRS)

    Batina, John T.; Seidel, David A.; Bland, Samuel R.; Bennett, Robert M.

    1987-01-01

    A transonic unsteady aerodynamic and aeroelasticity code has been developed for application to realistic aircraft configurations. The new code is called CAP-TSD which is an acronym for Computational Aeroelasticity Program - Transonic Small Disturbance. The CAP-TSD code uses a time-accurate approximate factorization (AF) algorithm for solution of the unsteady transonic small-disturbance equation. The AF algorithm is very efficient for solution of steady and unsteady transonic flow problems. It can provide accurate solutions in only several hundred time steps yielding a significant computational cost savings when compared to alternative methods. The new code can treat complete aircraft geometries with multiple lifting surfaces and bodies including canard, wing, tail, control surfaces, launchers, pylons, fuselage, stores, and nacelles. Applications are presented for a series of five configurations of increasing complexity to demonstrate the wide range of geometrical applicability of CAP-TSD. These results are in good agreement with available experimental steady and unsteady pressure data. Calculations for the General Dynamics one-ninth scale F-16C aircraft model are presented to demonstrate application to a realistic configuration. Unsteady results for the entire F-16C aircraft undergoing a rigid pitching motion illustrated the capability required to perform transonic unsteady aerodynamic and aeroelastic analyses for such configurations.

  7. Measurement, analysis, and prediction of aircraft interior noise

    NASA Technical Reports Server (NTRS)

    Howlett, J. T.; Williams, L. H.; Catherines, J. J.; Jha, S. K.

    1976-01-01

    Considerations of comfort of passengers and crew in light aircraft and helicopters indicate substantial benefits may be obtained by the reduction of interior noise levels. This paper discusses an ongoing research effort to reduce interior noise in such vehicles. Data from both field and laboratory studies for a light aircraft are presented. The laboratory data indicate that structural vibration is an efficient source of interior noise and should be considered in the reduction of interior noise. Flight data taken on a helicopter before and after installation of acoustic treatment demonstrate that over 30 dB of noise reduction can be obtained in certain portions of the spectra. However, subjective evaluations of the treated vehicle indicate that further reductions in interior noise are desirable. An existing interior noise prediction method which was developed for large jet transports was applied to study low-frequency noise in a light aircraft fuselage. The results indicate that improvements in the analytical model may be necessary for the prediction of interior noise of light aircraft.

  8. Design of a 4-seat, general aviation, electric aircraft

    NASA Astrophysics Data System (ADS)

    Rajagopalan, Arvindhakshan

    Range and payload of current electric aircraft is limited primarily due to low energy density of batteries. However, recent advances in battery technology promise storage of more than 1 kWh of energy per kilogram of weight in the near future. This kind of energy storage makes possible the design of an electric aircraft comparable to, if not better than existing state-of-the art general aviation aircraft powered by internal combustion engines. This thesis explores through parametric studies the effect of lift-to-drag ratio, flight speed, and cruise altitude on required thrust power and battery energy and presents the conceptual and preliminary design of a four-seat, general aviation electric aircraft with a takeoff weight of 1750 kg, a range of 800 km, and a cruise speed of 200 km/h. An innovative configuration design will take full advantage of the electric propulsion system, while a Lithium-Polymer battery and a DC brush less motor will provide the power. Advanced aerodynamics will explore the greatest possible extend of laminar flow on the fuselage, the wing, and the empennage surfaces to minimize drag, while advanced composite structures will provide the greatest possible savings on empty weight. The proposed design is intended to be certifiable under current FAR 23 requirements.

  9. Potential for Landing Gear Noise Reduction on Advanced Aircraft Configurations

    NASA Technical Reports Server (NTRS)

    Thomas, Russell H.; Nickol, Craig L.; Burley, Casey L.; Guo, Yueping

    2016-01-01

    The potential of significantly reducing aircraft landing gear noise is explored for aircraft configurations with engines installed above the wings or the fuselage. An innovative concept is studied that does not alter the main gear assembly itself but does shorten the main strut and integrates the gear in pods whose interior surfaces are treated with acoustic liner. The concept is meant to achieve maximum noise reduction so that main landing gears can be eliminated as a major source of airframe noise. By applying this concept to an aircraft configuration with 2025 entry-into-service technology levels, it is shown that compared to noise levels of current technology, the main gear noise can be reduced by 10 EPNL dB, bringing the main gear noise close to a floor established by other components such as the nose gear. The assessment of the noise reduction potential accounts for design features for the advanced aircraft configuration and includes the effects of local flow velocity in and around the pods, gear noise reflection from the airframe, and reflection and attenuation from acoustic liner treatment on pod surfaces and doors. A technical roadmap for maturing this concept is discussed, and the possible drag increase at cruise due to the addition of the pods is identified as a challenge, which needs to be quantified and minimized possibly with the combination of detailed design and application of drag reduction technologies.

  10. Wind-tunnel investigation of effect of interference on lateral-stability characteristics of four NACA 23012 wings, an elliptical and a circular fuselage and vertical fins

    NASA Technical Reports Server (NTRS)

    House, Rufus O; Wallace, Arthur R

    1941-01-01

    Report presents the results of a wind-tunnel investigation of the effect of wing-fuselage interference on lateral-stability characteristics made in the NACA 7 by 10-foot wind tunnel on four fuselages and two fins, representing high-wing, low-wing, and midwing monoplanes. The fuselages are of circular and elliptical cross section. The wings have rounded tips and, in plan form, one is rectangular and the three are tapered 3:1 with various amounts of sweep. The rate of change in the coefficients of rolling moment, yawing moment, and lateral force with angle of yaw is given in a form to show the increment caused by wing-fuselage interference for the model with no fin and the effect of wing-fuselage interference on fin effectiveness. Results for the fuselage-fin combination and the wing tested alone are also given.

  11. A study to define the research and technology requirements for advanced turbo/propfan transport aircraft

    NASA Technical Reports Server (NTRS)

    Goldsmith, I. M.

    1981-01-01

    The feasibility of the propfan relative to the turbofan is summarized, using the Douglas DC-9 Super 80 (DS-8000) as the actual operational base aircraft. The 155 passenger economy class aircraft (31,775 lb 14,413 kg payload), cruise Mach at 0.80 at 31,000 ft (8,450 m) initial altitude, and an operational capability in 1985 was considered. Three propfan arrangements, wing mounted, conventional horizontal tail aft mounted, and aft fuselage pylon mounted are selected for comparison with the DC-9 Super 80 P&WA JT8D-209 turbofan powered aircraft. The configuration feasibility, aerodynamics, propulsion, structural loads, structural dynamics, sonic fatigue, acoustics, weight maintainability, performance, rough order of magnitude economics, and airline coordination are examined. The effects of alternate cruise Mach number, mission stage lengths, and propfan design characteristics are considered. Recommendations for further study, ground testing, and flight testing are included.

  12. A mathematical model of aircraft for evaluating the effects of shielding structure on aircrew exposure.

    PubMed

    Ferrari, A; Pelliccioni, M; Villari, R

    2005-01-01

    To investigate the influence of the aircraft structures and contents on the exposure of aircrew to the galactic component of cosmic rays, a mathematical model of an aeroplane has been developed. The irradiation of the mathematical model in the cosmic ray environment has been simulated using the Monte Carlo transport code FLUKA. Effective dose andambient dose-equivalent rates have been determined inside the aircraft at several locations along the fuselage at a typicaI civil aviation altitude. A significant effect of the shielding of aircraft structures has been observed on the ambient dose-equivalent rates, while the impact on the effective dose rates seems to be minor. Care should be taken in positioning the detectors onboard when the measurements are aimed at validating the codes.

  13. Utilization of CAD/CAE for concurrent design of structural aircraft components

    NASA Technical Reports Server (NTRS)

    Kahn, William C.

    1993-01-01

    The feasibility of installing the Stratospheric Observatory for Infrared Astronomy telescope (named SOFIA) into an aircraft for NASA astronomy studies is investigated using CAD/CAE equipment to either design or supply data for every facet of design engineering. The aircraft selected for the platform was a Boeing 747, chosen on the basis of its ability to meet the flight profiles required for the given mission and payload. CAD models of the fuselage of two of the aircraft models studied (747-200 and 747 SP) were developed, and models for the component parts of the telescope and subsystems were developed by the various concurrent engineering groups of the SOFIA program, to determine the requirements for the cavity opening and for design configuration. It is noted that, by developing a plan to use CAD/CAE for concurrent engineering at the beginning of the study, it was possible to produce results in about two-thirds of the time required using traditional methods.

  14. Flow rate and trajectory of water spray produced by an aircraft tire

    NASA Technical Reports Server (NTRS)

    Daugherty, Robert H.; Stubbs, Sandy M.

    1986-01-01

    One of the risks associated with wet runway aircraft operation is the ingestion of water spray produced by an aircraft's tires into its engines. This problem can be especially dangerous at or near rotation speed on the takeoff roll. An experimental investigation was conducted in the NASA Langley Research Center Hydrodynamics Research Facility to measure the flow rate and trajectory of water spray produced by an aircraft nose tire operating on a flooded runway. The effects of various parameters on the spray patterns including distance aft of nosewheel, speed, load, and water depth were evaluated. Variations in the spray pattern caused by the airflow about primary structure such as the fuselage and wing are discussed. A discussion of events in and near the tire footprint concerning spray generation is included.

  15. Use of optimization to predict the effect of selected parameters on commuter aircraft performance

    NASA Technical Reports Server (NTRS)

    Wells, V. L.; Shevell, R. S.

    1982-01-01

    The relationships between field length and cruise speed and aircraft direct operating cost were determined. A gradient optimizing computer program was developed to minimize direct operating cost (DOC) as a function of airplane geometry. In this way, the best airplane operating under one set of constraints can be compared with the best operating under another. A constant 30-passenger fuselage and rubberized engines based on the General Electric CT-7 were used as a baseline. All aircraft had to have a 600 nautical mile maximum range and were designed to FAR part 25 structural integrity and climb gradient regulations. Direct operating cost was minimized for a typical design mission of 150 nautical miles. For purposes of C sub L sub max calculation, all aircraft had double-slotted flaps but with no Fowler action.

  16. Acoustic flight testing of advanced design propellers on a JetStar aircraft

    NASA Astrophysics Data System (ADS)

    Lasagna, P.; Mackall, K.

    1981-12-01

    Advanced turboprop-powered aircraft have the potential to reduce fuel consumption by 15 to 30 percent as compared with an equivalent technology turbofan-powered aircraft. An important obstacle to the use of advanced design propellers is the cabin noise generated at Mach numbers up to .8 and at altitudes up to 35,000 feet. As part of the NASA Aircraft Energy Efficiency Program, the near-field acoustic characteristics on a series of advanced design propellers are investigated. Currently, Dryden Flight Research Center is flight testing a series of propellers on a JetStar airplane. The propellers used in the flight test were previously tested in wind tunnels at the Lewis Research Center. Data are presented showing the narrow band spectra, acoustic wave form, and acoustic contours on the fuselage surface. Additional flights with the SR-3 propeller and other advanced propellers are planned in the future.

  17. Acoustic flight testing of advanced design propellers on a JetStar aircraft

    NASA Technical Reports Server (NTRS)

    Lasagna, P.; Mackall, K.

    1981-01-01

    Advanced turboprop-powered aircraft have the potential to reduce fuel consumption by 15 to 30 percent as compared with an equivalent technology turbofan-powered aircraft. An important obstacle to the use of advanced design propellers is the cabin noise generated at Mach numbers up to .8 and at altitudes up to 35,000 feet. As part of the NASA Aircraft Energy Efficiency Program, the near-field acoustic characteristics on a series of advanced design propellers are investigated. Currently, Dryden Flight Research Center is flight testing a series of propellers on a JetStar airplane. The propellers used in the flight test were previously tested in wind tunnels at the Lewis Research Center. Data are presented showing the narrow band spectra, acoustic wave form, and acoustic contours on the fuselage surface. Additional flights with the SR-3 propeller and other advanced propellers are planned in the future.

  18. Engine-induced structural-borne noise in a general aviation aircraft

    NASA Technical Reports Server (NTRS)

    Unruh, J. F.; Scheidt, D. C.; Pomerening, D. J.

    1979-01-01

    Structural borne interior noise in a single engine general aviation aircraft was studied to determine the importance of engine induced structural borne noise and to determine the necessary modeling requirements for the prediction of structural borne interior noise. Engine attached/detached ground test data show that engine induced structural borne noise is a primary interior noise source for the single engine test aircraft, cabin noise is highly influenced by responses at the propeller tone, and cabin acoustic resonances can influence overall noise levels. Results from structural and acoustic finite element coupled models of the test aircraft show that wall flexibility has a strong influence on fundamental cabin acoustic resonances, the lightweight fuselage structure has a high modal density, and finite element analysis procedures are appropriate for the prediction of structural borne noise.

  19. Lap belt iliac wing fracture: a predictor of bowel injury in children.

    PubMed

    Emery, Kathleen H

    2002-12-01

    Lap belt restraints in motor vehicle collisions have been associated with a variety of injuries, mainly bowel and lumbar spine. Cephalad positioning of the belt over the intended position across the anterior superior iliac spines (which typically occurs in younger children) is thought to be responsible for the observed bowel injuries. We report two pediatric patients, both restrained by lap belts in high-speed collisions, who suffered iliac wing fractures in addition to bowel injuries. Unexplained free peritoneal fluid was the sole CT finding in one patient (a teenage girl) who had a delay in diagnosis of bowel perforation. These cases illustrate the high frequency of bowel injury in pediatric patients with iliac wing fractures associated with lap belt use.

  20. Large-scale Advanced Prop-fan (LAP) technology assessment report

    NASA Technical Reports Server (NTRS)

    Degeorge, C. L.

    1988-01-01

    The technologically significant findings and accomplishments of the Large Scale Advanced Prop-Fan (LAP) program in the areas of aerodynamics, aeroelasticity, acoustics and materials and fabrication are described. The extent to which the program goals related to these disciplines were achieved is discussed, and recommendations for additional research are presented. The LAP program consisted of the design, manufacture and testing of a near full-scale Prop-Fan or advanced turboprop capable of operating efficiently at speeds to Mach .8. An aeroelastically scaled model of the LAP was also designed and fabricated. The goal of the program was to acquire data on Prop-Fan performance that would indicate the technology readiness of Prop-Fans for practical applications in commercial and military aviation.

  1. Grain decoration in aluminum oxynitride (ALON) from polishing on bound abrasive laps

    NASA Astrophysics Data System (ADS)

    Gregg, Leslie L.; Marino, Anne E.; Hayes, Jennifer C.; Jacobs, Stephen D.

    2004-01-01

    Aluminum oxynitride (ALON) is a polycrystalline material that has proven difficult to polish due to its grain structure. Bound abrasives are an effective means for polishing ALON, and work is being done with them to obtain good surfaces, with reasonable removal rates. Laps consisting of abrasives bound in epoxy matrices were created for polishing ALON. The effects of varying abrasive type, abrasive concentration, lap shape, coolant and load were studied. Metrology procedures were developed to monitor different aspects of the grain structure and numerically evaluate grain boundary decoration. Strategies were developed to polish ALON at acceptable rates with reasonably good surface quality. Work is directed toward finding optimal bound abrasive lap formulations that can be fabricated into ring and/or contour tools for testing on CNC machining platforms.

  2. Grain decoration in aluminum oxynitride (ALON) from polishing on bound abrasive laps

    NASA Astrophysics Data System (ADS)

    Marino, Anne E.; Hayes, Jennifer; Gregg, Leslie L.; Jacobs, Stephen D.

    2003-05-01

    Aluminum oxynitride (ALON) is a material with desirable qualities for a variety of applications that has proven difficult to polish because of its grain structure. Bound abrasives may prove to be an effective means of polishing it, and work is being done with them to obtain good surfaces on ALON, with reasonable removal rates. Laps consisting of abrasives bound in epoxy matrices have been created for polishing ALON. The effects of varying abrasive type, abrasive concentration, lap shape, coolant and load are being studied. Metrology procedures are being developed to monitor different aspects of the grain structure and numerically evaluate its decoration. Strategies have been developed to polish ALON at acceptable rates with reasonably good surface quality. Work is directed toward finding optimal bound abrasive lap formulations that can be fabricated into ring and/or contour tools for testing on CNC machining platforms.

  3. EFFECT OF TOOL FEATURE ON THE JOINT STRENGTH OF DISSIMILAR FRICTION STIR LAP WELDS

    SciTech Connect

    Jana, Saumyadeep; Hovanski, Yuri; Grant, Glenn J.; Mattlin, Karl F.

    2011-04-25

    Several variations of friction stir tools were used to investigate the effects on the joint strengths of dissimilar friction stir lap welds. In the present lap weld configuration the top sheet was a 2.32 mm thick Mg (AZ 31) alloy. The bottom sheet consisted of two different steels, a (i) 0.8 mm thick electro-galvanized (EG) mild steel, or a (ii) 1.5 mm thick hot dip galvanized (HDG) high strength low alloy (HSLA) steel. Initially the tool shape was modified to accommodate the material, at which point the tool geometry was fixed. With a fixed tool geometry an additional feature was added to the pin bottom on one of the tools by incorporating a short hard insert, which would act as a stronger bottom sheet cutter. The effects of such modification on the unguided lap shear strength, and associated microstructural changes are discussed in this study.

  4. Failure strength prediction for adhesively bonded single lap joints

    NASA Astrophysics Data System (ADS)

    Rahman, Niat Mahmud

    For adhesively bonded joint, failure strength depends on many factors such as material properties (both adhesive and adherend), specimen geometries, test environments, surface preparation procedures, etc. Failure occurs inside constitutive materials or along joint interfaces. Based on location, adhesively bonded failure mode can be classified as adhesive failure mode, cohesive failure mode and adherend failure mode. Failure mode directly affects the failure strength of joint. For last eight decades, researchers have developed analytical, empirical or semi-empirical methods capable of predicting failure strength for adhesively bonded joints generating either cohesive failure or adherend failure. Applicability of most of the methods is limited to particular cases. In this research, different failure modes for single lap joints (SLJs) were generated experimentally using epoxy based paste adhesive. Based on experimental data and analytical study, simplified failure prediction methods were developed for each failure mode. For adhesive failure mode, it is observed that peel stress distributions concur along interface near crack initiation points. All SLJs for this test endured consistent surface treatments. Geometric parameters of the joints were varied to study their effect on failure strength. Peel stress distributions were calculated using finite analysis (FEA). Based on peel stress distribution near crack initiation point, a failure model is proposed. Numerous analytical, empirical and semi-empirical models are available for predicting failure strengths of SLJs generating cohesive failures. However, most of the methods in the literature failed to capture failure behavior of SLJs having thickness of adhesive layer as variable. Cohesive failure mode was generated experimentally using aluminum as adherend and epoxy adhesive considering thickness of adhesive layers as variable within SLJs. Comparative study was performed among various methods. It was observed that

  5. Aerodynamic characteristics of an NASA supercritical-wing research airplane model with and without fuselage area-rule additions at Mach 0.25 to 1.00

    NASA Technical Reports Server (NTRS)

    Bartlett, D. W.; Harris, C. D.

    1972-01-01

    Transonic pressure tunnel tests at Mach numbers from 0.25 to 1.00 were performed to determine the effects of area-rule additions to the sides of the fuselage on the aerodynamic characteristics of a 0.087 scale model of an NASA supercritical-wing research airplane. Presented are the longitudinal aerodynamic force and moment characteristics for horizontal-tail deflection angles of -2.5 deg and -5 deg with the side fuselage area-rule additions on and off the model. The effects of the side fuselage area-rule additions on selected wing and fuselage pressure distributions at near-cruise conditions are also presented.

  6. Wind tunnel study of wake downwash behind A 6% scale model B1-B aircraft

    SciTech Connect

    Strickland, J.H.; Tadios, E.L.; Powers, D.A.

    1990-05-01

    Parachute system performance issues such a turnover and wake recontact may be strongly influenced by velocities induced by the wake of the delivering aircraft, especially if the aircraft is maneuvering at the time of parachute deployment. The effect of the aircraft on the parachute system is a function of the aircraft size, weight, and flight path. In order to provide experimental data for validation of a computer code to predict aircraft wake velocities, a test was conducted in the NASA 14 {times} 22 ft wind tunnel using a 5.78% model of the B-1B strategic bomber. The model was strut mounted through the top of its fuselage by a mechanism which was capable of pitching the model at moderate rates. In this series of tests, the aircraft was pitched at 10{degree}/sec from a cruise angle of attack of 5.3{degree} to an angle of attack of 11{degree} in order to simulate a 2.2g pullup. Data were also taken for the subsequent pitch down sequence back to the cruise angle of attack. Instantaneous streamwise and vertical velocities were measured in the wake at a number of points using a hot wire anemometer. These data have been reduced to the form of downwash coefficients which are a function of the aircraft angle of attack time-history. Unsteady effects are accounted for by use of a wake convection lag-time correlation. 12 refs., 59 figs., 4 tabs.

  7. Technical and Economic Assessment of Span-Distributed Loading Cargo Aircraft Concepts

    NASA Technical Reports Server (NTRS)

    Johnston, W. M.; Muehlbauer, J. C.; Eudaily, R. R.; Farmer, B. T.; Monrath, J. F.; Thompson, S. G.

    1976-01-01

    A 700,000 kg (1,540,000-lb) aircraft with a cruise Mach number of 0.75 was found to be optimum for the specified mission parameters of a 272 155-kg (600,000-lb) payload, a 5560-km (3000-n.mi.) range, and an annual productivity of 113 billion revenue-ton km (67 billion revenue-ton n. mi.). The optimum 1990 technology level spanloader aircraft exhibited the minimum 15-year life-cycle costs, direct operating costs, and fuel consumption of all candidate versions. Parametric variations of wing sweep angle, thickness ratio, rows of cargo, and cargo density were investigated. The optimum aircraft had two parallel rows of 2.44 x 2.44-m (8 x 8-ft) containerized cargo with a density of 160 kg/cu m (10 lb/ft 3) carried throughout the entire 101-m (331-ft) span of the constant chord, 22-percent thick, supercritical wing. Additional containers or outsized equipment were carried in the 24.4-m (80-ft) long fuselage compartment preceding the wing. Six 284,000-N (64,000-lb) thrust engines were mounted beneath the 0.7-rad (40-deg) swept wing. Flight control was provided by a 36.6-m (120-ft) span canard surface mounted atop the forward fuselage, by rudders on the wingtip verticals and by outboard wing flaperons.

  8. Laboratory test and acoustic analysis of cabin treatment for propfan test assessment aircraft

    NASA Technical Reports Server (NTRS)

    Kuntz, H. L.; Gatineau, R. J.

    1991-01-01

    An aircraft cabin acoustic enclosure, built in support of the Propfan Test Assessment (PTA) program, is described. Helmholtz resonators were attached to the cabin trim panels to increase the sidewall transmission loss (TL). Resonators (448) were located between the trim panels and fuselage shell. In addition, 152 resonators were placed between the enclosure and aircraft floors. The 600 resonators were each tuned to a 235 Hz resonance frequency. After flight testing on the PTA aircraft, the enclosure was tested in the Kelly Johnson R and D Center Acoustics Lab. Laboratory noise reduction (NR) test results are discussed. The enclosure was placed in a Gulfstream 2 fuselage section. Broadband (138 dB overall SPL) and tonal (149 dB overall SPL) excitations were used in the lab. Tonal excitation simulated the propfan flight test excitation. The fundamental tone was stepped in 2 Hz intervals from 225 through 245 Hz. The resonators increase the NR of the cabin walls around the resonance frequency of the resonator array. The effects of flanking, sidewall absorption, cabin adsorption, resonator loading of trim panels, and panel vibrations are presented. Increases in NR of up to 11 dB were measured.

  9. Advanced composite structural concepts and material technologies for primary aircraft structures

    NASA Technical Reports Server (NTRS)

    Jackson, Anthony

    1991-01-01

    Structural weight savings using advanced composites have been demonstrated for many years. Most military aircraft today use these materials extensively and Europe has taken the lead in their use in commercial aircraft primary structures. A major inhibiter to the use of advanced composites in the United States is cost. Material costs are high and will remain high relative to aluminum. The key therefore lies in the significant reduction in fabrication and assembly costs. The largest cost in most structures today is assembly. As part of the NASA Advanced Composite Technology Program, Lockheed Aeronautical Systems Company has a contract to explore and develop advanced structural and manufacturing concepts using advanced composites for transport aircraft. Wing and fuselage concepts and related trade studies are discussed. These concepts are intended to lower cost and weight through the use of innovative material forms, processes, structural configurations and minimization of parts. The approach to the trade studies and the downselect to the primary wing and fuselage concepts is detailed. The expectations for the development of these concepts is reviewed.

  10. The SR-71 Test Bed Aircraft: A Facility for High-Speed Flight Research

    NASA Technical Reports Server (NTRS)

    Corda, Stephen; Moes, Timothy R.; Mizukami, Masashi; Hass, Neal E.; Jones, Daniel; Monaghan, Richard C.; Ray, Ronald J.; Jarvis, Michele L.; Palumbo, Nathan

    2000-01-01

    The SR-71 test bed aircraft is shown to be a unique platform to flight-test large experiments to supersonic Mach numbers. The test bed hardware mounted on the SR-71 upper fuselage is described. This test bed hardware is composed of a fairing structure called the "canoe" and a large "reflection plane" flat plate for mounting experiments. Total experiment weights, including the canoe and reflection plane, as heavy as 14,500 lb can be mounted on the aircraft and flight-tested to speeds as fast as Mach 3.2 and altitudes as high as 80,000 ft. A brief description of the SR-71 aircraft is given, including details of the structural modifications to the fuselage, modifications to the J58 engines to provide increased thrust, and the addition of a research instrumentation system. Information is presented based on flight data that describes the SR-71 test bed aerodynamics, stability and control, structural and thermal loads, the canoe internal environment, and reflection plane flow quality. Guidelines for designing SR-71 test bed experiments are also provided.

  11. HA95 and LAP2 beta mediate a novel chromatin-nuclear envelope interaction implicated in initiation of DNA replication.

    PubMed

    Martins, Sandra; Eikvar, Sissel; Furukawa, Kazuhiro; Collas, Philippe

    2003-01-20

    HA95 is a chromatin-associated protein that interfaces the nuclear envelope (NE) and chromatin. We report an interaction between HA95 and the inner nuclear membrane protein lamina-associated polypeptide (LAP) 2 beta, and a role of this association in initiation of DNA replication. Precipitation of GST-LAP2 beta fusion proteins and overlays of immobilized HA95 indicate that a first HA95-binding region lies within amino acids 137-242 of LAP2 beta. A second domain sufficient to bind HA95 colocalizes with the lamin B-binding domain of LAP2beta at residues 299-373. HA95-LAP2 beta interaction is not required for NE formation. However, disruption of the association of HA95 with the NH2-terminal HA95-binding domain of LAP2 beta abolishes the initiation, but not elongation, of DNA replication in purified G1 phase nuclei incubated in S-phase extract. Inhibition of replication initiation correlates with proteasome-mediated proteolysis of Cdc6, a component of the prereplication complex. Rescue of Cdc6 degradation with proteasome inhibitors restores replication. We propose that an interaction of LAP2beta, or LAP2 proteins, with HA95 is involved in the control of initiation of DNA replication. PMID:12538639

  12. CrossLaps and beta-glucuronidase in peri-implant and gingival crevicular fluid.

    PubMed

    Schubert, U; Kleber, B M; Strietzel, F P; Dörfling, P

    2001-01-01

    Collagen degradation products of the carboxyterminal region possibly reflect bone and attachment loss. In the present study, the Serum CrossLaps One-Step enzyme-linked immunosorbent assay was used to determine a specific part of the carboxyterminal region of type I collagen, the CrossLaps. Samples of peri-implant and gingival crevicular fluid of 111 implants and 53 teeth from 47 partially or completely edentulous patients were examined in reference to levels of CrossLaps and beta-glucuronidase (beta G), an established marker of periodontal disease. Clinical probing pocket depth (PPD), bleeding on probing (BOP), plaque accumulation, mobility, radiographic bone loss, and the occurrence of Actinobacillus actinomycetemcomitans, Porphyromonas gingivalis, and Prevotella intermedia were assessed. The mean values were: for PPD at implants 3.76 +/- 1.41 mm, at teeth 3.44 +/- 0.88 mm; for beta G at implants 0.364 +/- 0.392 pU/min, at teeth 0.314 +/- 0.209 pU/min; for CrossLaps at implants 0.069 +/- 0.059 pmol/min, at teeth 0.082 +/- 0.053 pmol/min. Bleeding on probing was significantly higher on implants than on teeth (McNemar test, P = .004). No significant difference of beta G levels was found between teeth and implants (Wilcoxon test). A negative correlation was found between beta G levels and CrossLaps levels at teeth (Pearson-rank correlation, P = .002). On implants, no significant correlation of these 2 parameters was seen, but significant correlations were found between sulcus fluid flow rate and PPD (P = .012), beta G levels and bone loss (P < 0.0005), and CrossLaps levels and PPD (P = .011). CrossLaps can be detected in both gingival and peri-implant crevicular fluid. While rising levels of beta G may indicate acute peri-implantitis, CrossLaps may not, but could play a role as a marker of ongoing attachment loss.

  13. Lap-belt injury with complete avulsion of the spinal cord and cauda equina.

    PubMed

    Tubbs, R Shane; Golden, Blake; Doyle, Scott; Grabb, Paul A; Oakes, W Jerry

    2006-10-01

    The authors report a child who was involved in an automobile accident. The patient was restrained by a rear seat lap belt. Radiological examination revealed an L4 Chance-type fracture and ligamentous disruption at the L4-L5 interval. During superficial dissection of the paraspinal muscles for a spinal fusion procedure, the cauda equina and the lower spinal cord (several centimeters) were visible, completely transected and herniated into the extraspinal space through a disrupted thoracolumbar fascia. The clinician should be aware of the potentially devastating results following a lap-belt injury in which a Chance fracture is produced.

  14. Non destructive evaluation of adhesively bonded carbon fiber reinforced composite lap joints with varied bond quality

    NASA Astrophysics Data System (ADS)

    Vijayakumar, R. L.; Bhat, M. R.; Murthy, C. R. L.

    2012-05-01

    Structural adhesive bonding is widely used to execute assemblies in automobile and aerospace structures. The quality and reliability of these bonded joints must be ensured during service. In this context non destructive evaluation of these bonded structures play an important role. Evaluation of adhesively bonded composite single lap shear joints has been attempted through experimental approach. Series of tests, non-destructive as well as destructive were performed on different sets of carbon fiber reinforced polymer (CFRP) composite lap joint specimens with varied bond quality. Details of the experimental investigations carried out and the outcome are presented in this paper.

  15. Aircraft accident report: NASA 712, Convair 990, N712NA, March Air Force Base, California, July 17, 1985, facts and analysis

    NASA Technical Reports Server (NTRS)

    Batthauer, Byron E.; Mccarthy, G. T.; Hannah, Michael; Hogan, Robert J.; Marlow, Frank J.; Reynard, William D.; Stoklosa, Janis H.; Yager, Thomas J.

    1986-01-01

    On July 17, l985, at 1810 P.d.t., NASA 712, a Convair 990 aircraft, was destroyed by fire at March Air Force Base, California. The fire started during the rollout after the pilot rejected the takeoff on runway 32. The rejected takeoff was initiated during the takeoff roll because of blown tires on the right landing gear. During the rollout, fragments of either the blown tires or the wheel/brake assemblies penetrated a right-wing fuel tank forward of the right main landing gear. Leaking fuel ignited while the aircraft was rolling, and fire engulfed the right wing and the fuselage after the aircraft was stopped on the runway. The 4-man flightcrew and the 15 scientists and technicians seated in the cabin evacuated the aircraft without serious injury. The fire was not extinguished by crash/rescue efforts and the aircraft was destroyed.

  16. Aircraft interior noise reduction by alternate resonance tuning

    NASA Technical Reports Server (NTRS)

    Gottwald, James A.; Bliss, Donald B.

    1990-01-01

    The focus is on a noise control method which considers aircraft fuselages lined with panels alternately tuned to frequencies above and below the frequency that must be attenuated. An interior noise reduction called alternate resonance tuning (ART) is described both theoretically and experimentally. Problems dealing with tuning single paneled wall structures for optimum noise reduction using the ART methodology are presented, and three theoretical problems are analyzed. The first analysis is a three dimensional, full acoustic solution for tuning a panel wall composed of repeating sections with four different panel tunings within that section, where the panels are modeled as idealized spring-mass-damper systems. The second analysis is a two dimensional, full acoustic solution for a panel geometry influenced by the effect of a propagating external pressure field such as that which might be associated with propeller passage by a fuselage. To reduce the analysis complexity, idealized spring-mass-damper panels are again employed. The final theoretical analysis presents the general four panel problem with real panel sections, where the effect of higher structural modes is discussed. Results from an experimental program highlight real applications of the ART concept and show the effectiveness of the tuning on real structures.

  17. Aircraft integrated design and analysis: A classroom experience

    NASA Technical Reports Server (NTRS)

    1988-01-01

    AAE 451 is the capstone course required of all senior undergraduates in the School of Aeronautics and Astronautics at Purdue University. During the past year the first steps of a long evolutionary process were taken to change the content and expectations of this course. These changes are the result of the availability of advanced computational capabilities and sophisticated electronic media availability at Purdue. This presentation will describe both the long range objectives and this year's experience using the High Speed Commercial Transport (HSCT) design, the AIAA Long Duration Aircraft design and a Remotely Piloted Vehicle (RPV) design proposal as project objectives. The central goal of these efforts was to provide a user-friendly, computer-software-based, environment to supplement traditional design course methodology. The Purdue University Computer Center (PUCC), the Engineering Computer Network (ECN), and stand-alone PC's were used for this development. This year's accomplishments centered primarily on aerodynamics software obtained from the NASA Langley Research Center and its integration into the classroom. Word processor capability for oral and written work and computer graphics were also blended into the course. A total of 10 HSCT designs were generated, ranging from twin-fuselage and forward-swept wing aircraft, to the more traditional delta and double-delta wing aircraft. Four Long Duration Aircraft designs were submitted, together with one RPV design tailored for photographic surveillance. Supporting these activities were three video satellite lectures beamed from NASA/Langley to Purdue. These lectures covered diverse areas such as an overview of HSCT design, supersonic-aircraft stability and control, and optimization of aircraft performance. Plans for next year's effort will be reviewed, including dedicated computer workstation utilization, remote satellite lectures, and university/industrial cooperative efforts.

  18. Propulsion controlled aircraft computer

    NASA Technical Reports Server (NTRS)

    Cogan, Bruce R. (Inventor)

    2010-01-01

    A low-cost, easily retrofit Propulsion Controlled Aircraft (PCA) system for use on a wide range of commercial and military aircraft consists of an propulsion controlled aircraft computer that reads in aircraft data including aircraft state, pilot commands and other related data, calculates aircraft throttle position for a given maneuver commanded by the pilot, and then displays both current and calculated throttle position on a cockpit display to show the pilot where to move throttles to achieve the commanded maneuver, or is automatically sent digitally to command the engines directly.

  19. Surface generation and editing operations applied to structural support of aerospace vehicle fuselages. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Schwartz, Susan K.

    1992-01-01

    The Solid Modeling Aerospace Research Tool (SMART) is a computer aided design tool used in aerospace vehicle design. Modeling of structural components using SMART includes the representation of the transverse or cross-wise elements of a vehicle's fuselage, ringframes, and bulkheads. Ringframes are placed along a vehicle's fuselage to provide structural support and maintain the shape of the fuselage. Bulkheads are also used to maintain shape, but are placed at locations where substantial structural support is required. Given a Bezier curve representation of a cross sectional cut through a vehicle's fuselage and/or an internal tank, this project produces a first-guess Bezier patch representation of a ringframe or bulkhead at the cross-sectional position. The grid produced is later used in the structural analysis of the vehicle. The graphical display of the generated patches allows the user to edit patch control points in real time. Constraints considered in the patch generation include maintaining 'square-like' patches and placement of longitudinal, or lengthwise along the fuselage, structural elements called longerons.

  20. Design, analysis, and fabrication of a pressure box test fixture for tension damage tolerance testing of curved fuselage panels

    NASA Technical Reports Server (NTRS)

    Smith, P. J.; Bodine, J. B.; Preuss, C. H.; Koch, W. J.

    1993-01-01

    A pressure box test fixture was designed and fabricated to evaluate the effects of internal pressure, biaxial tension loads, curvature, and damage on the fracture response of composite fuselage structure. Previous work in composite fuselage tension damage tolerance, performed during NASA contract NAS1-17740, evaluated the above effects on unstiffened panels only. This work extends the tension damage tolerance testing to curved stiffened fuselage crown structure that contains longitudinal stringers and circumferential frame elements. The pressure box fixture was designed to apply internal pressure up to 20 psi, and axial tension loads up to 5000 lb/in, either separately or simultaneously. A NASTRAN finite element model of the pressure box fixture and composite stiffened panel was used to help design the test fixture, and was compared to a finite element model of a full composite stiffened fuselage shell. This was done to ensure that the test panel was loaded in a similar way to a panel in the full fuselage shell, and that the fixture and its attachment plates did not adversely affect the panel.

  1. A study of coupled rotor-fuselage vibration with higher harmonic control using a symbolic computing facility

    NASA Technical Reports Server (NTRS)

    Papavassiliou, I.; Venkatesan, C.; Friedmann, P. P.

    1990-01-01

    A fundamental study of vibration prediction and vibration reduction in helicopters using active controls was performed. The nonlinear equations of motion for a coupled rotor/flexible fuselage system have been derived using computer algebra on a special purpose symbolic computing facility. The details of the derivation using the MACSYMA program are described. The trim state and vibratory response of the helicopter are obtained in a single pass by applying the harmonic balance technique and simultaneously satisfying the trim and the vibratory response of the helicopter for all rotor and fuselage degrees of freedom. The influence of the fuselage flexibility on the vibratory response is studied. It is shown that the conventional single frequency higher harmonic control (HHC) capable of reducing either the hub loads or only the fuselage vibrations but not both simultaneously. It is demonstrated that for simultaneous reduction of hub shears and fuselage vibrations a new scheme called multiple higher harmonic control (MHHC) is required. The fundamental aspects of this scheme and its uniqueness are described in detail, providing new insight on vibration reduction in helicopters using HHC.

  2. Advanced composites structural concepts and materials technologies for primary aircraft structures: Design/manufacturing concept assessment

    NASA Technical Reports Server (NTRS)

    Chu, Robert L.; Bayha, Tom D.; Davis, HU; Ingram, J. ED; Shukla, Jay G.

    1992-01-01

    Composite Wing and Fuselage Structural Design/Manufacturing Concepts have been developed and evaluated. Trade studies were performed to determine how well the concepts satisfy the program goals of 25 percent cost savings, 40 percent weight savings with aircraft resizing, and 50 percent part count reduction as compared to the aluminum Lockheed L-1011 baseline. The concepts developed using emerging technologies such as large scale resin transfer molding (RTM), automatic tow placed (ATP), braiding, out-of-autoclave and automated manufacturing processes for both thermoset and thermoplastic materials were evaluated for possible application in the design concepts. Trade studies were used to determine which concepts carry into the detailed design development subtask.

  3. Experimental investigation of the vortical activity in the close wake of a simplified military transport aircraft

    NASA Astrophysics Data System (ADS)

    Bury, Yannick; Jardin, Thierry; Klöckner, Andreas

    2013-05-01

    This paper focuses on the experimental characterization of the vortex structures that develop in the aft fuselage region and in the wake of a simplified geometry of a military transport aircraft. It comes within the framework of the military applications of airflow influence on airdrop operations. This work relies on particle image velocimetry measurements combined with a vortex-tracking approach. Complex vortex dynamics is revealed, in terms of vortex positions, intensities, sizes, shapes and fluctuation levels, for both closed and opened cargo-door and ramp airdrop configurations.

  4. Simulation of Aircraft Landing Gears with a Nonlinear Dynamic Finite Element Code

    NASA Technical Reports Server (NTRS)

    Lyle, Karen H.; Jackson, Karen E.; Fasanella, Edwin L.

    2000-01-01

    Recent advances in computational speed have made aircraft and spacecraft crash simulations using an explicit, nonlinear, transient-dynamic, finite element analysis code more feasible. This paper describes the development of a simple landing gear model, which accurately simulates the energy absorbed by the gear without adding substantial complexity to the model. For a crash model, the landing gear response is approximated with a spring where the force applied to the fuselage is computed in a user-written subroutine. Helicopter crash simulations using this approach are compared with previously acquired experimental data from a full-scale crash test of a composite helicopter.

  5. Analytical modeling of the structureborne noise path on a small twin-engine aircraft

    NASA Technical Reports Server (NTRS)

    Cole, J. E., III; Stokes, A. Westagard; Garrelick, J. M.; Martini, K. F.

    1988-01-01

    The structureborne noise path of a six passenger twin-engine aircraft is analyzed. Models of the wing and fuselage structures as well as the interior acoustic space of the cabin are developed and used to evaluate sensitivity to structural and acoustic parameters. Different modeling approaches are used to examine aspects of the structureborne path. These approaches are guided by a number of considerations including the geometry of the structures, the frequency range of interest, and the tractability of the computations. Results of these approaches are compared with experimental data.

  6. Simulator Investigations of the Problems of Flying a Swept-Wing Transport Aircraft in Heavy Turbulence

    NASA Technical Reports Server (NTRS)

    Bray, Richard S.; Larsen, William E.

    1965-01-01

    An investigation of several factors which may contribute to the problem of piloting jet transport aircraft in heavy turbulence was conducted by using a piloted simulator that included the most significant airplane response and cockpit vibrations induced by rough air. Results indicated that the primary fuselage structural frequency contributed significantly to a distracting cockpit environment, and there was obtained evidence of severely reduced instrument flight proficiency during simulated maneuvering flight in heavy turbulence. It is concluded that the addition of similar rough-air response capabilities to training simulators would be of value in pilot indoctrination in turbulent-flight procedures.

  7. Assessment of dynamic effects on aircraft design loads: The landing impact case

    NASA Astrophysics Data System (ADS)

    Bronstein, Michael; Feldman, Esther; Vescovini, Riccardo; Bisagni, Chiara

    2015-10-01

    This paper addresses the potential benefits due to a fully dynamic approach to determine the design loads of a mid-size business jet. The study is conducted by considering the fuselage midsection of the DAEDALOS aircraft model with landing impact conditions. The comparison is presented in terms of stress levels between the novel dynamic approach and the standard design practice based on the use of equivalent static loads. The results illustrate that a slight reduction of the load levels can be achieved, but careful modeling of the damping level is needed. Guidelines for an improved load definition are discussed, and suggestions for future research activities are provided.

  8. Arrow-wing supersonic cruise aircraft structural design concepts evaluation. Volume 3: Sections 12 through 14

    NASA Technical Reports Server (NTRS)

    Sakata, I. F.; Davis, G. W.

    1975-01-01

    The design of an economically viable supersonic cruise aircraft requires the lowest attainable structural-mass fraction commensurate with the selected near-term structural material technology. To achieve this goal of minimum structural-mass fraction, various combinations of promising wing and fuselage primary structure were analyzed for the load-temperature environment applicable to the arrow wing configuration. This analysis was conducted in accordance with the design criteria specified and included extensive use of computer-aided analytical methods to screen the candidate concepts and select the most promising concepts for the in-depth structural analysis.

  9. Arrow-wing supersonic cruise aircraft structural design concepts evaluation. Volume 4: Sections 15 through 21

    NASA Technical Reports Server (NTRS)

    Sakata, I. F.; Davis, G. W.

    1975-01-01

    The analyses performed to provide structural mass estimates for the arrow wing supersonic cruise aircraft are presented. To realize the full potential for structural mass reduction, a spectrum of approaches for the wing and fuselage primary structure design were investigated. The objective was: (1) to assess the relative merits of various structural arrangements, concepts, and materials; (2) to select the structural approach best suited for the Mach 2.7 environment; and (3) to provide construction details and structural mass estimates based on in-depth structural design studies. Production costs, propulsion-airframe integration, and advanced technology assessment are included.

  10. Structural Stability of a Stiffened Aluminum Fuselage Panel Subjected to Combined Mechanical and Internal Pressure Loads

    NASA Technical Reports Server (NTRS)

    Rouse, Marshall; Young, Richard D.; Gehrki, Ralph R.

    2003-01-01

    Results from an experimental and analytical study of a curved stiffened aluminum panel subjected to combined mechanical and internal pressure loads are presented. The panel loading conditions were simulated using a D-box test fixture. Analytical buckling load results calculated from a finite element analysis are presented and compared to experimental results. Buckling results presented indicate that the buckling load of the fuselage panel is significantly influenced by internal pressure loading. The experimental results suggest that the stress distribution is uniform in the panel prior to buckling. Nonlinear finite element analysis results correlates well with experimental results up to buckling.

  11. Three-dimensional compressible boundary layer calculations to fourth order accuracy on wings and fuselages

    NASA Technical Reports Server (NTRS)

    Iyer, Venkit; Harris, Julius E.

    1989-01-01

    Laminar flow control and drag reduction research requires accurate boundary layer solutions as input to the three-dimensional stability analysis procedures currently under development. In support of these major programs, a fourth-order accurate finite difference scheme for solving the three-dimensional, compressible boundary layer equations has been developed and is presented in this paper. The method employs a two-point scheme in the wall normal direction and second order zigzag scheme in the cross flow direction. Accurate procedures to interface with the inviscid results are also presented. The results of applying the procedure to laminar flow on wings and fuselages are presented.

  12. A comprehensive vibration analysis of a coupled rotor/fuselage system

    NASA Astrophysics Data System (ADS)

    Yeo, Hyeonsoo

    A comprehensive vibration analysis of a coupled rotor/fuselage system for a two-bladed teetering rotor using finite element methods in space and time is developed which incorporates consistent rotor/fuselage structural, aerodynamic, and inertial couplings and a modern free wake model. A coordinate system is developed to take into account a teetering rotor's unique characteristics, such as teetering motion and undersling. Coupled nonlinear periodic blade and fuselage equations are transformed to the modal space in the fixed frame and solved simultaneously. The elastic line and detailed 3-D NASTRAN finite element models of the AH-1G helicopter airframe from the DAMVIBS program are integrated into the elastic rotor finite element model. Analytical predictions of rotor control angles, blade loads, hub forces, and vibration are compared with AH-1G Operation Load Survey flight test data. The blade loads predicted by present analysis show generally fair agreement with the flight test data, especially blade chord bending moment estimation shows good agreement. Calculated 2/rev vertical vibration levels at pilot seat show good correlation with the flight test data both in magnitude and phase, but 4/rev vibration levels show fair correlation only in magnitude. Lateral vibration results show more disagreement than vertical vibration results. Pylon flexibility effect is essential in the two-bladed teetering rotor vibration analysis. The pylon flexibility increases the first lag frequency by about 14%, and decreases 2/rev longitudinal and lateral hub forces by more than half. Rotor/fuselage coupling reduces 2/rev vertical and lateral vibration levels by 60% to 70% and has a small effect on 4/rev vibration levels. Modeling of difficult components (secondary structures, doors/panels, etc) is essential in predicting airframe natural frequencies. Refined aerodynamics such as free wake and unsteady aerodynamics have an important role in the prediction of vibration. For example, free

  13. Aircraft Noise Prediction Program theoretical manual: Propeller aerodynamics and noise

    NASA Technical Reports Server (NTRS)

    Zorumski, W. E. (Editor); Weir, D. S. (Editor)

    1986-01-01

    The prediction sequence used in the aircraft noise prediction program (ANOPP) is described. The elements of the sequence are called program modules. The first group of modules analyzes the propeller geometry, the aerodynamics, including both potential and boundary-layer flow, the propeller performance, and the surface loading distribution. This group of modules is based entirely on aerodynamic strip theory. The next group of modules deals with the first group. Predictions of periodic thickness and loading noise are determined with time-domain methods. Broadband noise is predicted by a semiempirical method. Near-field predictions of fuselage surface pressrues include the effects of boundary layer refraction and scattering. Far-field predictions include atmospheric and ground effects.

  14. A new role for structures technology in aircraft configuration development

    NASA Technical Reports Server (NTRS)

    Nisbet, J. W.; Hoy, J. M.

    1976-01-01

    It is pointed out that decisions made during configuration development determine nearly 60% of the total program cost. The key to the new Structures Technology role considered is the development of integrated computer systems for structural design and analysis. Such systems make it possible to include structural sizing within the scope of preliminary configuration development. Analysis models are discussed, taking into account approaches used to determine the structural weight of an aircraft in the preliminary design stage, a finite element representation for a supersonic arrow wing transport, and the aerodynamic model. Attention is given to automated design considerations and a study which was conducted to reduce the aerodynamic drag of a supersonic transport by blending the structure of the wing and fuselage.

  15. An analysis of factors impeding passenger escape from aircraft fires.

    PubMed

    Hill, I R

    1990-03-01

    The aviation world has long recognised that fires in aircraft are potentially very dangerous, being the cause of considerable mortality and morbidity even in otherwise survivable accidents. The evidence accumulated in the British Airtours Boeing 737 accident at Manchester International Airport on 22 August 1985, and the information acquired as a result of this investigation, reinforce the long held view that protection for passengers is needed. Heat, smoke, and toxic fumes can incapacitate people very rapidly. The time it took for people to die cannot be accurately assessed, but it is likely that all died within 4.5 min of the emergency being declared and probably within 2 min of smoke and flames entering the fuselage. Thus, it is obvious that new measures will have to be taken if lives are to be saved in future events of this nature.

  16. The pushbroom microwave radiometer and aircraft measurement of soil moisture

    NASA Technical Reports Server (NTRS)

    Harrington, R. F.; Lawrence, R. W.; Levine, J. S.; Delnore, V. E.

    1985-01-01

    Soil moisture has been identified as a controlling parameter in the occurrence of atmospheric variations and crop vigor. Evapotranspiration rates impact local temperature, precipitation and motion fields of the atmosphere. The multiple beam pushbroom microwave radiometer (MBPMR) is a candidate for moisture monitoring on the Earth Observation System. A prototype MBPMR has been devised for airborne technology evaluations of pushbroom scanning capabilities. The instrument scans at 1.4 GHz with a Diche radiometer. Test flights on a NASA aircraft with the antenna mounted on the bottom of the fuselage have generated soil moisture data over crop areas for which ground truth data were gathered. Large antennas deployed from the Orbiter could collect sufficient data for mapping the global soil moisture in 6 days.

  17. Aircraft Interior Noise Control Using Distributed Piezoelectric Actuators

    NASA Technical Reports Server (NTRS)

    Sun, Jian Q.

    1996-01-01

    Developing a control system that can reduce the noise and structural vibration at the same time is an important task. This talk presents one possible technical approach for accomplishing this task. The target application of the research is for aircraft interior noise control. The emphasis of the present approach is not on control strategies, but rather on the design of actuators for the control system. In the talk, a theory of distributed piezoelectric actuators is introduced. A uniform cylindrical shell is taken as a simplified model of fuselage structures to illustrate the effectiveness of the design theory. The actuators developed are such that they can reduce the tonal structural vibration and interior noise in a wide range of frequencies. Extensive computer simulations have been done to study various aspects of the design theory. Experiments have also been conducted and the test results strongly support the theoretical development.

  18. Numerical and Test Investigation on an Aircraft Inlet Distortion

    NASA Astrophysics Data System (ADS)

    Zhang, Zhang; Hou, Anping; Chen, Yinxiu; Tuo, Wei; Xia, Aiguo

    2013-09-01

    Subscale wind tunnel test of an aircraft vehicle is performed at different Mach number, mass-flow and angle of attack. CFD model, corrected by test results, is also presented to predict inlet performance and total pressure distortion. The result shows total pressure recovery decreases and distortion level rises when Mach number increases from subsonic to supersonic speed, AOA is negative and mass-flow value is too large or too small. Compared linear interpolation based on test result of discrete probes, numerical simulation has advantages in showing inlet flow field predicting actual surface distortion level in AIP plane. Swirl distortion is induced by vortex near the fuselage and adjustable ramp and can strengthen total pressure distortion in AIP at negative AOA. And appropriate suction mass-flow coefficient (1.7% to 3%) is beneficial for inlet performance and total pressure distortion control.

  19. F-14A aircraft high-speed flow simulations

    NASA Technical Reports Server (NTRS)

    Boppe, C. W.; Rosen, B. S.

    1985-01-01

    A model of the Grumman/Navy F-14A aircraft was developed for analyses using the NASA/Grumman Transonic Wing-Body Code. Computations were performed for isolated wing and wing fuselage glove arrangements to determine the extent of aerodynamic interference effects which propagate outward onto the main wing outer panel. Additional studies were conducted using the full potential analysis, FLO 22, to calibrate any inaccuracies that might accrue because of small disturbance code limitations. Comparisons indicate that the NASA/Grumman code provides excellent flow simulations for the range of wing sweep angles and flow conditions that will be of interest for the upcoming F-14 Variable Sweep Flight Transition Experiment.

  20. Impact Testing and Simulation of a Crashworthy Composite Fuselage Section with Energy-Absorbing Seats and Dummies

    NASA Technical Reports Server (NTRS)

    Fasanella, Edwin L.; Jackson, Karen E.

    2002-01-01

    A 25-ft/s vertical drop test of a composite fuselage section was conducted with two energy-absorbing seats occupied by anthropomorphic dummies to evaluate the crashworthy features of the fuselage section and to determine its interaction with the seats and dummies. The 5-ft diameter fuselage section consists of a stiff structural floor and an energy-absorbing subfloor constructed of Rohacel foam blocks. The experimental data from this test were analyzed and correlated with predictions from a crash simulation developed using the nonlinear, explicit transient dynamic computer code, MSC.Dytran. The anthropomorphic dummies were simulated using the Articulated Total Body (ATB) code, which is integrated into MSC.Dytran.